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Abstract. Adjacency lists are frequently used in graphing or map based
applications. Although efficient concurrent linked-list algorithms are well
known, it can be difficult to adapt these approaches to build a high-
performance adjacency list. Furthermore, it can often be desirable to
execute operations in these data structures transactionally, or perform
a sequence of operations in one atomic step. In this paper, we present
a lock-free transactional adjacency list based on a multi-dimensional list
(MDList). We are able to combine known linked list strategies with the
capability of the MDList in order to efficiently organize graph vertexes
and their edges. We design our underlying data structure to be node-
based and linearizable, then use the Lock-Free Transactional Transforma-
tion (LFTT) methodology to efficiently enable transactional execution.
In our performance evaluation, our lock-free transactional adjacency list
achieves an average of 50% speedup over a transactional boosting imple-
mentation.

1 Introduction

Lock-free data structures aim to fully utilize the computing resources of multi-
core processors without the drawbacks of lock-based counterparts such as dead-
lock or priority inversion. However, lock-free data structures are difficult to
design due to the consideration of all possible thread interleavings when reason-
ing about safety or liveness properties. Even more so are lock-free transactional
data structures because in addition to the safety and liveness properties of tra-
ditional lock-free data structures, isolation must be preserved such that a series
of operations appear to occur in one atomic step.

An adjacency list data structure maps graph nodes, or “vertexes,” to other
nodes by their connections, or “edges.” Generally, if a vertex i is adjacent to
another vertex j, then vertex j is contained in the sublist of vertex i. In order
to implement such a data structure concurrently, one would need to overcome
the challenges of traversing in multiple dimensions, organizing vertex and edge
nodes, and properly disposing of all children of a vertex before deleting the
vertex.
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Previous work on lock-free linked list data structures are designed for sets and
queues. Since elements of these abstract data types do not account for relation-
ships between elements, they are unsuitable to be directly used for an adjacency
list data structure. An adjacency list data structure needs to support operations
that can insert and remove vertexes and edges, as well as check whether a vertex
or edge is contained in the list. Additional synchronization is required to ensure
that an operation that deletes a vertex i does not modify or remove nodes that
are currently part of i’s sublist of adjacent nodes. Further synchronization is
required to ensure that two operations are able to simultaneously modify the
sublist of a vertex despite those operations appearing to take place at the same
vertex.

A lock-free adjacency list provides atomicity at the granularity of an indi-
vidual operation. However, in some cases one may want to perform a sequence
of operations such that the entire sequence appears to take place in one atomic
step. One such case is during the deletion of a vertex, in which case it must first
be guaranteed that all edges from that vertex have already been deleted. In such
a case, a sequence of operations such as the following would be useful.

1: if isEmpty(vertex.List) then
2: Delete(vertex );

This code should be able to verify that a given node’s sublist is empty before
deleting that node. Unfortunately, this operation fails to complete its goal. Since
the composition of the methods is not atomic, another thread a could insert an
edge between the time that thread b reads that the list of edge nodes is empty,
and thread b deleting the vertex, thus invalidating the operation.

In order to perform a series of operations such as those previously men-
tioned, all involved operations need to appear to take place in a single atomic
step. Additionally, if any operation fails, it must appear as though none of the
operations took place. Some implementations, such as Transactional Boosting
[9], use fine-grained locking in order to create a transactional data structure
from an underlying concurrent data structure. This, however, reduces the per-
formance of the data structure, and negates any lock-free progress guarantee
the underlying data structure might have had. Software Transactional Memory
(STM) can also be used to create transactional data structures from existing
ones. Unfortunately, this approach also creates significant performance loss. In
an STM data structure, transactions maintain a list of read and write locations.
If a transaction’s read and write set overlaps with another transaction’s write
set, those transactions conflict. In the case of a conflict, one of the transactions
must abort. This results in a significant amount of unnecessary aborts, as con-
flicts detected in this way do not necessarily correspond to high-level semantic
conflicts. These excessive aborts can severely limit the degree of concurrency
when executing transactions on a data structure.
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In this paper, we present a high performance lock-free transactional adja-
cency list. The primary goal of the data structure presented in this work is
to (1) implement a lock-free adjacency list base data structure, and (2) enable
transactional execution of operations in this data structure.

In order to achieve the first goal, we implement lock-free adjacency list using
a lock-free linked list of vertexes, where each vertex contains a pointer to a
Multi-Dimensional List (MDList) [24] to allow fast lookup of edges. We depict
the adjacency list structure in Fig. 1. An MDList guarantees a worst-cast search
time complexity of O(logN), an improvement over a worst-cast search time
complexity of O(N) provided by design alternatives such as a linked list or
skiplist. A skiplist provides an average search time complexity of O(logN), but
has a worst-cast search time complexity of O(N) if shortcuts to the node of
interest do not exist. We place all vertexes in the primary linked list, and all
adjacent edges to that vertex as a node in its associated MDList. This allows us to
take maximum advantage of the multi-dimensional property of the MDList, while
also easily organizing the relative locations of each vertex and their corresponding
edges. Background details on the MDList are provided in Sect. 2.

We refer to elements in the primary linked list as vertexes, and elements
in the sublist of a vertex as nodes. A node a contained in vertex b’s associated
MDList indicates that vertex a is adjacent to vertex b. When inserting or deleting
a vertex, we traverse along the main list of vertexes, checking each key, until we
find the location to insert or delete our vertex. While allocating the vertex we
also allocate a new MDList for that vertex to point to.
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Fig. 1. Adjacency list structure

In order to achieve the second goal, we adopt Lock-Free Transaction Trans-
formation (LFTT) [25] by storing descriptor objects within each node in both
the main list and each MDList. LFTT uses high-level semantic conflict detec-
tion to avoid low-level read/write conflicts, and a logical rollback to avoid the
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performance penalties of a physical rollback. Background details on LFTT are
provided in Sect. 2.

The contribution made by this paper is as follows:

– To the best of our knowledge, this paper presents the only lock-free transac-
tional adjacency list.

– This data structure experiences an average speedup greater than 50% when
compared to similar approaches based on transactional boosting and STM.

2 Background

An MDList partitions a linked list into shorter lists organized in multi-
dimensional space to improve search time. A node in a D-dimensional MDList
comprises a key-value pair, a coordinate vector of integers k[D], and an array of
child pointers where the dth pointer links to a child node of dimension d. A list
of arbitrary dimension D is formally defined as follows.

Definition 1. A D-dimensional list is a rooted tree in which each node is implic-
itly assigned a dimension of d ∈ [0,D). The root node’s dimension is 0. A node
of dimension d has no more than D − d children, and each child is assigned a
unique dimension of d′ ∈ [d,D) [24].

Given a key range of [0, N) in a D-dimensional space, the maximum number
of keys in each dimension is b = � D

√
N �. The mapping of an integer key to its

D-dimension vector coordinates is performed by converting the key to a b-based
number and using each digit as an entry in the vector coordinates. Each node
is associated with a coordinate vector k, where a dimension d node shares a
coordinate prefix of length d with its parent. The following definition provides
the criteria for which nodes are ordered in their D-dimensional list.

Definition 2. Given a non-root node of dimension d with coordinate k =
(k0, ..., kD−1) and its parent with coordinate k′ = (k′

0, ..., k
′
D−1) in an ordered

D-dimensional list: ki = k′
i,∀i ∈ [0, d) ∧ kd > k′

d [24].

The search for a node is performed by starting at the 0-dimension and travers-
ing all nodes at this dimension until either a node with the same 0th coordinate
as the key of interest is reached, or the current node being traversed has a greater
0th coordinate than the key of interest. If a node with a 0th coordinate identical
to the key of interest exists, then the search advances to the next dimension
d. The search will continue advancing dimensions given that a node with the
same dth coordinate as the key of interest is found. The search terminates when
either a node with the same coordinates as the key of interest is found, or no
node exists with the same dth coordinate as the key of interest.

The worst-case time complexity of a search in an MDList is O(D ·b), where b
is the maximum number of nodes in a dimension. Replacing b in the worst-cast
time complexity, we have O(D · b) = O(D · D

√
N). If we choose D ∝ logN , then

O(D · D
√
N) = O(logN · log N

√
N) = O(logN · 2) = O(logN).
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Insertion into an MDList is performed by splicing and child adoption. Splicing
consists of updating the new node’s child pointer to point to the predecessor’s
child, and updating the predecessor’s child pointer to point to the new node.
Child adoption is necessary when the dimension of an old child has changed due
to the insertion of a new node, where the old child will be adopted as a higher
dimension child of the new node. Deletion of a node in an MDList is performed
by updating the predecessor’s child point to point to the child of the node to be
deleted. In the case of a deletion, the child of the node to be deleted is adopted
as a lower dimension child of the predecessor.

Lock Free Transactional Transformation (LFTT) is a methodology for cre-
ating transactional data structures from lock-free node-based data structures.
LFTT handles conflicts between operations by utilizing descriptor objects refer-
enced by each node. These transaction descriptors contain all information nec-
essary for an arbitrary thread to perform any given operation or sequence of
operations belonging to a transaction. For a thread to perform an operation at
a node as part of a transaction, it is must first create a reference to its trans-
action descriptor in the node. If there already exists a transaction descriptor
at that node, a conflict between two transactions accessing the same node has
been detected. LFTT resolves these conflicts by having the thread that finds
an existing transaction descriptor at a node help complete the conflicting trans-
action by executing all remaining operations that are part of that transaction,
thus eventually causing the conflicting transaction to either succeed or fail. Once
the transaction referenced by the transaction descriptor at a node is complete, a
thread may place a reference to its own transaction descriptor in the node and
proceed with its operation.

LFTT additionally handles the recovery of failed transactions through its
transaction descriptors. A transaction descriptor may be marked as committed,
indicating that all operations that are part of the transaction have been success-
fully completed. Alternatively, a transaction descriptor may be marked aborted,
indicating that none of the operations in the transaction should occur. LFTT is
able to avoid the need to physically undo already completed operations that are
part of an aborted transaction by interpreting the logical status of a node based on
its transaction descriptors status. A nodes status in the list is interpreted inversely
if it is part of an aborted transaction. This results in the appearance that all com-
pleted operations that are part of an aborted transaction have been undone.

3 Lock-Free Transactional Adjacency List

The primary challenge in creating a lock-free transactional adjacency list is
its multi-dimensional structure, which poses a major challenge to perform-
ing transactional synchronization for non-commutative operations. InsertEdge
and DeleteEdge create a relation between two vertexes by adding or removing
a node from the sublist of an existing vertex. Any InsertEdge or DeleteEdge
operation occurring at vertex j would have their outcome affected by a trans-
action that modifies vertex j. As a result, two edge operations occurring at the
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same vertex are able to commute, while an edge operation and an operation
that modifies the vertex itself are not. The DeleteVertex method requires
special consideration. The case in which a transaction deletes a vertex at which
one or multiple threads are performing an edge operation must be prevented. A
DeleteVertex operation on a vertex should help complete all pending edge
operations currently accessing the MDList contained at that vertex. Simulta-
neously, any subsequent operations attempting to access that MDList will first
help complete the pending DeleteVertex.

The constants provided by LFTT are detailed in Algorithm1. We introduce
a currentOpid field to each descriptor to track the current progress of each trans-
action. The IsNodePresent, IsKeyPresent, ExecuteOps, MarkDelete,
LocatePred, and pointer marking operations are provided in Lock-Free Trans-
actional Transformation [25].

Algorithm 1. LFTT Definitions
1: enum TxStatus
2: Active
3: Committed
4: Aborted
5: enum OpType
6: InsertVertex
7: DeleteVertex
8: InsertEdge
9: DeleteEdge
10: Find
11: struct Operation
12: OpType type
13: int key

14: struct Desc
15: int size
16: TxStatus status
17: int currentOpid
18: Operation ops[]

19: struct NodeDesc
20: Desc* desc
21: int opid

22: struct Node
23: NodeDesc* info
24: int key
25: MDList* list
26: ...

Algorithm 2. Update Info Pointer
1: function UpdateInfo(Node* n, NodeDesc* info, bool wantkey)
2: NodeInfo *oldinfo ← n.info
3: if IsMarked(oldinfo) then
4: Do Delete(n)
5: return retry;

6: if oldinfo.desc �= info.desc then
7: if oldinfo.desc.ops[oldinfo.opid] == DeleteVertex & oldinfo.desc.currentOpid == old-

info.opid then
8: ExecuteOps(oldinfo.desc, oldinfo.opid)
9: else
10: ExecuteOps(oldinfo.desc, oldinfo.opid+1 )

11: else if oldinfo.opid >= info.opid then
12: return success
13: haskey ← IsKeyPresent(oldinfo)
14: if (!haskey & wantkey) || (haskey & !wantkey) then
15: return fail
16: if info.desc.status �= Active then
17: return fail
18: if CAS(&n.info, oldinfo, info) then
19: return success
20: else
21: return retry
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Algorithm 2 contains the UpdateInfo operation provided by Lock-Free
Transactional Transformation [25], which has been modified in the following way
to allow for a special case regarding DeleteVertex. At line 2.6 we check the
info pointer at node n. If a different operation is currently taking place at node n,
that operation must be completed before the desired operation can begin. At line
2.7 we check if the operation that occurred at node n was a DeleteVertex
operation. If so, we check whether the DeleteVertex operation is pending.
The currentOpid variable stores what step the transaction is currently on. If
this value is equal to the value of the operation that occurred at node n, then
the DeleteVertex operation is not complete and the current thread should
use the descriptor object to attempt to delete the vertex. For all other oper-
ations, the presence of an info pointer at node n indicates that the operation
described by n.info is already complete. Thus, ExecuteOps is called on the
next operation in the transaction.

Algorithm 3. Transformed Delete Vertex
1: function DeleteVertex(int vertex, NodeDesc* nDesc)
2: Node *curr ← head
3: Node *pred ← NULL
4: while true do
5: LocatePred(pred, curr, vertex)
6: if IsNodePresent(curr, vertex) then
7: ret ← (UpdateInfo(curr, nDesc, true) == success)
8: if ret then
9: MDList *list ← curr.list
10: ret ← list.FinishDelete(list.head, 0, nDesc)

11: else
12: ret ← false

13: if ret then
14: return true
15: else
16: return false

Algorithm 4. Finish Pending DeleteVertex Operation
1: function FinishDelete(MDList::Node* n, int dc, NodeDesc* nDesc)
2: while true do
3: if UpdateInfo(n, nDesc, true) == success then
4: Break
5: else
6: return false

7: for i ∈ [dc,DIMENSION) do
8: MDList::Node *child ← n.child[i]
9: CAS(&n.child[i], child, Set Mark(child))
10: if child! = NULL then
11: ret ← FinishDelete(child, i, nDesc)
12: if ret == false then
13: return false

14: else
15: return true
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3.1 Adjacency List Operations

This adjacency list supports 5 operations: InsertVertex, DeleteVertex,
InsertEdge, DeleteEdge, and Find. The InsertVertex operation adds a
vertex to a primary linked list of vertexes. The InsertEdge operation adds a
node to a specific vertex’s sublist, thus establishing that node as adjacent to
the specified vertex. The DeleteVertex and DeleteEdge operations are the
inverses of their counterparts. The Find operation searches for a node within
the sublist of vertex j, returning whether or not that node shares an edge with
vertex j.

Algorithm 5. Find Vertex Operation
1: function FindVertex(int vertex, NodeDesc* nDesc, int opid)
2: Node *curr ← head
3: Node *pred ← NULL
4: while true do
5: LocatePred(pred, curr, vertex)
6: if IsNodePresent(curr, vertex) then
7: NodeDesc *cDesc ← curr.info
8: if cDesc != nDesc then
9: ExecuteOps(cDesc.desc,cDesc.opid+1 )

10: if IsKeyPresent(cDesc) then
11: if nDesc.desc.status != ACTIVE then
12: return NULL
13: else
14: return curr
15: else
16: return NULL

Algorithm 3 details the DeleteVertex operation. DeleteVertex tra-
verses the main list of vertexes by calling LocatePred on line 3.5. If the node
with the target key already exists, then LocatePred will return when curr
points to the node with that key, otherwise, curr will point to the logical suc-
cessor of the node to be deleted. We check for the case that the node with the
desired key already exists on line 3.6. We then call UpdateInfo to attempt to
redirect the info pointer. If this succeeds, we must then call FinishDelete on
the vertex’s list object. FinishDelete traverses list calling UpdateInfo on all
the nodes it contains. Additionally, we must mark the next pointer of all nodes as
they are traversed, which will interrupt competing InsertEdge operations that
have already begun inserting their node on line 6.15, causing them to re-traverse.
The goal of this operation is to logically delete all edges adjacent to the vertex
to be deleted. This process allows all pending transactions occurring within the
sublist to commit due to the call to UpdateInfo at line 4.3. Once it can be
guaranteed that all nodes within the vertex’s list are deleted, the operation is
complete. Physical deletion is later done by using Compare-And-Swap to change
pred.next to point to curr.next, thus removing the vertex from the main list.

The InsertVertex algorithm is similar to DeleteVertex. InsertVer-
tex traverses the list using LocatePred, but can only succeed if its value
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is not already in the list (!IsNodePresent(curr, vertex)). In this case, it allo-
cates a new vertex and inserts it into the list using Compare-And-Swap to change
pred.next to curr.

Algorithm 5 details the main method used to help the insertion of edge nodes.
To begin, it searches the list until it finds the correct vertex node and verifies
that it is logically in the list, and that no other transaction currently holds the
info pointer. If another thread does hold the info pointer, the thread will help
complete that transaction at line 5.9. Otherwise, the function returns a pointer
to the node.

Algorithm 6. Insert key:edge at target vertex
1: function InsertEdge(int vertex, int edge, NodeDesc* nDesc, int opid)
2: while true do
3: Node *currVertex ←
4: FindVertex(vertex, nDesc, opid))
5: if currVertex == NULL then
6: return false

7: Node *pred ← NULL
8: Node *currEdge ← currVertex.list.head
9: while true do
10: currVertex.list.LocatePred(pred, currEdge)
11: if IsNodePresent(currEdge, edge) then
12: return (UpdateInfo(currEdge, nDesc, false) == success)
13: else
14: MDList::Node *n ← new MDList::Node
15: n.info ← nDesc
16: return currVertex.list.Do Insert(n)

Algorithm 7. Delete key:edge at target vertex
1: function DeleteEdge(int vertex, int edge, NodeDesc* nDesc, int opid)
2: while true do
3: Node *currVertex ←
4: FindVertex(vertex, nDesc, opid))
5: if currVertex == NULL then
6: return false
7: Node *pred ← NULL
8: Node *currEdge ← currVertex.list.head
9: while true do
10: currVertex.list.LocatePred(pred, currEdge)
11: if IsNodePresent(currEdge, edge) then
12: return (UpdateInfo(currEdge, nDesc, true) == success)
13: else
14: return false

Algorithm 6 details the insertion of a node into an MDList in order to cre-
ate an edge with a vertex. InsertEdge begins by calling FindVertex to get
the proper vertex node for insertion. If the node exists, then we traverse the
MDList pointed to by the vertex to find the proper location to insert the new
edge node. Once the traversal is complete, insertion is done the same way as in
InsertVertex.
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Algorithm 7 details the deletion of a node in an MDList in order to remove
an edge with a vertex. DeleteEdge traverses to the target vertex using the
same logic as InsertEdge. Once it has acquired a valid vertex, it traverses the
MDList looking for the target edge node to delete. If the target node is found in
the MDList, deletion is done by updating the info pointer of the target node.

4 Correctness

The lock-free transactional adjacency list is designed for the correctness property
strict serializability. According to conclusion by Herlihy et al. [9], a committed
transaction is strictly serializable given that a data structure contains lineariz-
able operations and obeys commutativity isolation.

4.1 Definitions

According to Herlihy et al. [9], a history is a sequence of instantaneous events.
Events occur during the transition of a transactions status between pending,
committed, and aborted.

Definition 3. A history h is strictly serializable if the committed series of trans-
actions is equivalent to a legal history in which all transactions executed sequen-
tially in the order they commit.

Definition 4. Two method calls I,R and I’,R’ commute if: for all histories h,
if h · I · R and h · I’ · R’ are both legal, then h · I · R · I’ · R’ and h · I’ · R’ ·
I · R are both legal and define the same abstract state.

Operations are said to commute if executing them in any order yields the
same abstract state. The commutativity of adjacency list operations are as fol-
lows, assuming vertexes x,y and nodes i,j :

InsertVertex(x) ↔ InsertVertex(y), x �= y

DeleteVertex(x) ↔ DeleteVertex(y), x �= y

InsertVertex(x) ↔ DeleteVertex(y), x �= y

InsertEdge(x, i) ↔ InsertEdge(x, j ), i �= j

InsertEdge(x, i) ↔ InsertEdge(y, i), x �= y

DeleteEdge(x, i) ↔ DeleteEdge(x, j ), i �= j

DeleteEdge(x, i) ↔ DeleteEdge(y, i), x �= y

InsertEdge(x, i) ↔ DeleteEdge(x, j ), i �= j

InsertEdge(x, i) ↔ DeleteEdge(y, i), x �= y

FindVertex(x) ↔ InsertVertex(x)/false ↔ DeleteVertex(x)/false

FindEdge(x, i) ↔ InsertEdge(x, i)/false ↔ DeleteEdge(x, i)/false

Rule 1. Linearizability: For any history h, two concurrent invocations I and
I’ must be equivalent to either the history h · I · R · I’ · R’ or the history h · I’
· R’ · I · R
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Rule 2. Commutativity Isolation: For any non-commutative method calls
I1,1 ∈ T1 and I2, R2 ∈ T2, either T1 commits or aborts before any additional
method calls in T2 are invoked, or vice-versa.

To meet the specifications of the correctness condition linearizability, we
identify an operation’s linearization points. Furthermore, we will identify an
operation’s decision points and state-read points. The decision point of an oper-
ation occurs the moment the outcome of the operation is decided atomically. A
state-read point occurs when the deciding state of the data structure is read.

Lemma 1. The adjacency list operations InsertVertex, DeleteVertex,
InsertEdge, DeleteEdge, and Find are linearizable.

Proof. In the DeleteVertex operation, execution can branch at multiple
points. Beginning at 3.6, if the vertex to be deleted is not found, the opera-
tion returns a fail status. The state-read point of this execution occurs during
traversal, when the thread reads pred.next and does not find a node with the
desired key. If the vertex is successfully found, but the operation returns fail
at line 2.15 or 2.17, then the state-read point occurs when oldinfo.desc.status
and info.desc.status are read, respectively. Following a successful logical status
update, the decision point is when the CAS operation at line 2.18 succeeds.

The code path for FinishDelete, in which all nodes in the vertex’s sub-
list are acquired by the transaction, is identical to the code path followed by
DeleteVertex because of the call to UpdateInfo at line 4.3. Thus, the state-
read and decision points for FinishDelete are the same as the respective cases
in DeleteVertex. The code path for the physical deletion of the vertex is lin-
earizable because Do Delete, which is provided by the base data structure, is
linearizable.

The same reasoning applies to the InsertVertex, InsertEdge, Dele-
teEdge and Find operations because they share the same UpdateInfo pro-
cedure for updating the logical status of a node.

Lemma 2. The adjacency list operations InsertVertex, DeleteVertex,
InsertEdge, DeleteEdge, and Find satisfy the commutativity isolation rule.

Proof. As previously shown, commuting operations are those that access differ-
ent vertexes, or those that access different nodes within the same vertex so long
as no operation is operating on that vertex. This means that commuting oper-
ations must either operate on different vertexes or operate on different nodes
rooted at the same vertex without operating on the vertex itself. Let T1 denote
a transaction that currently accesses vertex n1. If another transaction T2 were to
access n1, it must first perform ExecuteOps for T1 which will either commit or
abort T1 before it is finished executing. Alternatively, let T1 denote a transaction
that currently accesses node m1 stored in the sublist of vertex n1. If a trans-
action T2 were to try to access vertex n1 it would first perform ExecuteOps
for T1 when it traverses to node m1 during the call to FinishDelete at 2.10,
which will either commit or abort T1.
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Theorem 1. The transformed lock-free adjacency list is strictly serializable

Proof. Following Lemmas 1 and 2, we can claim that the lock-free adjacency list
is strictly serializable due to the conclusions by Herlihy and Koskinen [9].

5 Experimental Evaluation

We compare the scalability and performance of our lock-free transactional adja-
cency list to related approaches based on transactional boosting [9] and NOrec
Rochester Software Transactional Memory [13]. We create a related approach
using transactional boosting by converting the lock-free transactional adjacency
list’s base data structure operations transaction boosting methodology. Addi-
tionally, an undo log is maintained per-thread for rollbacks in the boosted imple-
mentation.

We evaluate the performance of these implementations using varying compo-
sitions of adjacency list operations. The compositions of operations are selected
to highlight “vertex” operations and “edge” operations separately, as well mea-
suring the effects of non-commutative or expensive operations like DeleteV-
ertex. Each test consists of a series of fixed-size transactions made up of
InsertVertex, DeleteVertex, InsertEdge, DeleteEdge and Find oper-
ations on random keys. The tests are performed on two systems; a 64-core NUMA
system containing 4 AMD opteron 6272 16 core CPUs @2.1 GHz, and a 12-core
system containing an Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.7 ghz.

Figure 2 shows the performance results of the 64-core NUMA system. Figure 3
shows the results for the 12-core system. Throughput is measured in terms of
operations per second. Only operations that are part of a committed transac-
tions are counting in the calculation of throughput in order to measure the
performance impact of various conflict detection and rollback schemes. The x-
axis represents the number of threads running the test. In each figure, graph
(a) shows a work-load dominated by operations occurring at vertexes, whereas
graph (b) represents a work-load made up of relatively more operations occur-
ring at edges. This test measures the performance impact of non-commutative
operations such as DeleteVertex and InsertEdge as well as the performance
impact of rollbacks on lengthy operations such as DeleteVertex. Each thread
executed 20,000 transactions with a key range of 500.

In Fig. 2, the difference between the lock-free transactional adjacency list,
denoted ‘LFTT,’ the transactional boosting implementation, denoted ‘Boost,’
and the Software Transactional Memory implementation, denoted ‘STM’ is
shown. In the boosting implementation, threads must acquire locks on nodes
for each operation. In the case of DeleteVertex, threads may need to acquire
a number of locks equal to the size of the vertex’s sublist. In this case, the lock-
free algorithm has the advantage of only needing to allocate a single descriptor
object for the entire transaction. Additionally with regards to Boost, the cost
of rolling back aborted operations is very high in operations like DeleteVer-
tex. Not only must the vertex be restored after an aborted transaction, but all
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(a) 40% InsertVertex, 40% DeleteVertex,
10% InsertEdge, 10% DeleteEdge

(b) 20% InsertVertex, 20% DeleteVertex,
25% InsertEdge, 25% DeleteEdge, 10%
Find

Fig. 2. Performance Results

(a) 40% InsertVertex, 40% DeleteVertex,
10% InsertEdge, 10% DeleteEdge

(b) 20% InsertVertex, 20% DeleteVertex,
25% InsertEdge, 25% DeleteEdge, 10%
Find

Fig. 3. Performance Results

nodes from the vertex’s sublist must be re-added using InsertEdge. This cre-
ates a very low performance for aborted transactions in transactional boosting.
Because of LFTT’s logical status update, the lock-free transactional adjacency
list is able to rollback these operations in a single atomic step. Similarly, STM
experiences a heavy performance loss due to its high number of spurious aborts.
STM is very likely to detect a conflict between operations like DeleteVertex,
which modify a great number of nodes, despite there being no semantic conflict
between transactions. These results are highly similar to the ones gathered from
the 12-core system displayed in Fig. 3.

In general, the lock-free transactional adjacency list outperforms transac-
tional boosting implementation by an average of 50%, and frequently outper-
forms RSTM by as much as 150%.
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6 Related Work

Transactions can be enabled in similar data structures using related approaches
such as STM or Transactional Boosting. We focus our discussion on transac-
tional Lists and Skiplists, which provide similar node-based store and search
time complexities.

6.1 Transactional Memory

Transactional memory is a programming paradigm initially proposed by Herlihy
et al. [11] intended to simplify concurrent programming by allowing user-specified
blocks of code to be executed in hardware, exhibiting both atomicity and isola-
tion. Software transactional memory, proposed by Shavit et al. [18], was devel-
oped to facilitate transactional programming without hardware transactional
memory support. Herlihy et al. [10] present DSTM, an application programming
interface for obstruction-free STM designed to support dynamic-sized data struc-
tures. Dalessandro et al. [2] present NOrec, a low-overhead STM that utilizes
a single global sequence lock shared with the transactional mutex lock system,
an indexed write set, and value-based conflict detection to provide features such
as livelock freedom, full compatibility with existing data structure layouts, and
starvation avoidance mechanisms. Dice et al. [4] present Transactional Locking II
(TL2), an STM algorithm that uses a novel version-clock validation to guarantee
that user code operates only on consistent memory states. Other STM designs
include [6,13,16]. STM implementations rely on low-level conflict detection to
enable transactions. These implementations generally suffer from high spurious
abort counts, making them less desirable for concurrent data structures.

Initial performance experiments were performed with Hardware Transac-
tional Memory (HTM) by Dice et al. [3]. Intel introduced Transactional Syn-
chronization Extensions (TSX) to the x86 instruction set architecture of the
Intel 4th Generation CoreTMProcessors [23]. IBM introduced HTM in the Power
ISA [1]. Both implementations offer a best-effort HTM, which means that there
is no guarantee provided that a hardware transaction will commit to memory.
The disadvantage of a best-effort strategy is that HTM may experience frequent
aborts due to data access conflicts, hardware interrupts, limited transactional
resources, or false sharing due to unrelated variables mapping to the same cache
line [12].

Herlihy et al. [9] present transactional boosting, a methodology for transform-
ing highly-concurrent linearizable objects into highly-concurrent transactional
objects. Transactional boosting uses a high-level semantic conflict detection to
allow commutative operations in separate transactions to proceed concurrently
using the thread-level synchronization of the base linearizable data structure;
non-commutative operations require transaction-level synchronization through
the acquisition of an abstract lock. If a transaction aborts, it recovers the cor-
rect abstract state by invoking the inverse operations recorded in the undo log.
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6.2 Linked Lists

Valois [22], Harris [7], Michael [14], and Fomitchev et al. [5] present individual
algorithms for a lock-free linearizable linked list based on the Compare-And-
Swap operation. Valois’ algorithm addresses the problem of (1) a concurrent
deletion and insertion on an adjacent cell, and (2) a concurrent deletion and
deletion on an adjacent cell, by requiring that every normal node in the list have
an auxiliary node with only a next field as both its predecessor and successor. The
auxiliary nodes prevent the undesirable circumstance of performing an insertion
or deletion on a node adjacent to a node to be deleted. Harris’ algorithm uses the
bit-stealing technique to logically mark a node for deletion. A lazy approach is
taken for the physical deletion in which a delete operation attempts to physically
delete a node once using Compare-And-Swap. If Compare-And-Swap fails, then
the physical deletion is left for other threads to perform if they traverse the
logically deleted node. Michael’s algorithm is compatible with efficient lock-free
memory management methods, including IBM freelists [21] and the safe memory
reclamation method [15]. Fomitchev et al.’s algorithm uses backlinks that are set
when a node is deleted to allow a node to backtrack to a predecessor that is not
undergoing a deletion. An MDList provides a worst-case search time complexity
of O(logN) an improvement over the O(N) worst-cast search time complexity
provided by a linked list.

Transactional linked list implementations based on transactional boosting
use coarse-grained locking to ensure that non-commutative method calls are
never allowed to execute simultaneously. The underlying linked list algorithm’s
linearizability is preserved during this process to handle thread level synchro-
nization. Rollbacks are performed by calling a method’s inverse operation, which
causes a performance loss for aborted transactions. Zhang and Dechev [24]
present a lock-free transactional linked list alongside LFTT which takes advan-
tage of a node based conflict detection scheme to preserve the underlying algo-
rithm’s lock-freedom. This approach additionally reduces the performance hit
of rollbacks by introducing a logical status update scheme capable of aborting
a transaction in a single atomic step. LFTT provides transformation templates
for the set abstract data type, which does not account for operations in which
elements are related to each other.

6.3 Skiplists and Queues

Sundell et al. [20] present a lock-free priority queue based on a lock-free skiplist
adapted from Lotan et al. [17]. Fomitchev et al. [5] use their lock-free linked
list design [5] to implement a lock-free skiplist. Each node is augmented with a
pointer to the next lower level and a pointer to the base level. Herlihy et al. [8]
present a lock-free skiplist based on an algorithm developed by Faser [6]. Skiplists
eliminate global rebalancing and provide a logarithmic sequential search time on
average, but the worst-case search time is linear with respect to the input size.
An MDList improves upon the skiplist by providing a worst-case logarithmic
sequential search time.
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Spiegelman et al. [19] presented a transactional skiplist that uses STM-like
techniques combined with node locking in an attempt to reduce overhead and
false aborts. Spiegelman et al. additionally present a transactional queue using
a pessimistic lock-based approach. In this queue, the execution of Enqueue
operations are deferred to the final phase of the transaction, the commit phase,
in order to avoid keeping track of the current head of the queue. Meanwhile,
Dequeue operations acquire a lock on the queue until their transaction is com-
plete. Zhang and Dechev [24] preserved lock-freedom in their algorithm by trans-
forming a skiplist using LFTT which, again, offers a performance improvement
on transaction rollbacks.

7 Conclusion

In this paper we introduced an efficient lock-free adjacency list algorithm based
on MDList, then enabled transactions using the LFTT methodology. We allowed
for multiple threads to concurrently modify nodes rooted at the same vertex
thus increasing the amount of operations that commute. When compared to
similar implementations based on related approaches, our algorithm experiences
performance gains across several compositions of methods.
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