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Abstract. Current processor trend is to couple a commodity processor
with a GPU, a co-processor, or an accelerator. To unleash the full com-
putational power of such heterogeneous systems is a daunting task: pro-
grammers often resort to heterogeneous scheduling runtime frameworks
that use device specific library routines. However, highly-tuned libraries
do not compose very well across heterogeneous architectures. That is,
important performance-oriented optimizations such as data locality and
reuse “across” library calls is not fully exploited. In this paper, we present
a framework, called Mozart, to extend existing library frameworks to
efficiently compose a sequence of library calls for heterogeneous execu-
tion. Mozart consists of two components: library description (LD) and
library composition runtime. We advocate library writers to wrap exist-
ing libraries using LD in order to provide their performance parameters
on heterogeneous cores, no programmer intervention is necessary. Our
runtime performs composition of libraries via task-fission, load balances
among heterogeneous cores using information from LD, and automati-
cally adapts to runtime behavior of an application. We evaluate Mozart
on a Xeon + 2 Xeon Phi system using the High Performance Linpack
benchmark which is the most popular benchmark to rank supercomput-
ers in TOP500 and show GFLOPS improvement of 31.7% over MKL
with Automatic Offload and 6.7% over hand-optimized ninja code.

1 Introduction

The current processor trend is to couple a commodity processor with GPUs, co-
processors, or accelerators. Such heterogeneous systems not only offer increased
computational power but also deliver high energy efficiency. However, due to
the architectural differences between cores of the host processor and device, it
is increasingly difficult to extract every-bit of performance out of these plat-
forms, leading to growing “ninja gap” [38] where only a small number of expert
programmers are capable of harvesting the full potential of the system.
Although compilers have matured significantly over the years, most of
the time, compiler generated code still can not compete with hand-optimized
implementation even on a homogeneous architecture. An alternative approach
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commonly used in several application domains is to use highly-tuned high-
performance libraries to close ninja-gap without placing unnecessary develop-
ment burden on a programmer. For example, Intel’s Math Kernel Library (MKL)
and NVIDIA’s cuBLAS are two widely used high performance linear algebra
libraries for CPUs and GPUs, respectively. These libraries are developed by
domain experts who fully exploit the underlying processor architecture.

As heterogeneous systems become ubiquitous, it is challenging to make the
existing library frameworks heterogeneity-aware: the libraries have to be spe-
cialized for each particular processor or device, the workload has to be properly
load-balanced between them, and communication between them must be over-
lapped with computation as much as possible to gain performance. In order to
determine optimal work distribution between devices one must use device spe-
cific performance characteristics of libraries (e.g., throughput of a library on
each device). More importantly, work distribution and communication genera-
tion must look beyond just a single library call to improve data locality and
reduce communication overhead. Sometimes the communication latency hid-
ing techniques can be complicated as optimal device offload granularity might
depend on the input problem size. Thus, a generic easy-to-use framework is nec-
essary that not only allows automatic learning of device specific performance
characteristics of libraries but also efficiently composes multiple library calls
without any intervention from the programmer.

Existing research in this area fall into two broad categories:

— Leverage device specific libraries and use a heterogeneous scheduling runtime
for work distribution and communication. In this approach, the device-specific
libraries are treated as black-box and thus, the runtime can not easily take
advantage of the expert programmers’ domain knowledge related to the prop-
erties of a library during scheduling. Moreover, the programmer is responsible
for providing wrappers for device-specific library task implementations on her
own. There has been a lot of research work in the context of dividing work
between CPU-GPU using a scheduling runtime [5,14,23,26,31-33,35,40].
Although, their techniques can be adopted in the context of libraries, they are
primarily restricted to the work distribution of a single library call. Important
inter-library call optimizations are left unexplored.

— Library frameworks perform work distribution between heterogeneous cores
transparent to the programmer. Although this approach achieves peak per-
formance for a single library call by having expert programmers’ knowledge
embedded in it, it can not perform optimizations across library calls. More-
over, the programmer manually instructs the library to execute on a single
device or on the heterogeneous system. This approach is recently adopted by
MKL by adding a functionality called Automatic Offloading (AO), which can
offload part of the library call workload from a Xeon CPU to a Xeon Phi
co-processor [3]. However, this advanced feature is currently limited to “suf-
ficiently large problems” exhibiting large computation to data access ratio.
Thus, only a hand-full of Level-3 BLAS functions (GEMM, SYMM, TRMM,
and TRSM) and three matrix factorization routines (LU, QR, and Cholesky)
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have this feature today. Although this approach is best for programmers, our
experiments show that it can leave 25% performance on the table when com-
pared to a Hand-tuned version for the High Performance Linpack benchmark
on average (details in Sect. 4).

To the best of our knowledge, none of the existing systems exploit inter-
library call optimizations such as data locality and reuse. That is, if a series of
library tasks are invoked one after another, it is possible to schedule them better
by grouping them based on their data access patterns rather than naively exe-
cuting them one after another. It might also be necessary to decompose a library
call to finer granularity in order to improve its scheduling and reduce commu-
nication overhead. The goal of this paper is to devise a generic framework that
can perform optimizations across library call boundaries in order to efficiently
compose them in heterogeneous systems and further reduce the ninja-gap.

In this paper, we propose a framework for library composition, called Mozart.
Mozart consists of two components: library description (LD) and library com-
position runtime. Mozart transparently composes and decomposes such library
calls across heterogeneous processors delivering performance on par with that
of expertly tuned hand-written code. LD expresses library routines as tasks and
embeds library developer expertise via meta-information about every library
routine. The meta-information initially comes from library developers, is sub-
sequently augmented with install-time profiling on the target platform, and is
finally used in guiding the scheduling runtime to automatically load balance
between heterogeneous processors. The runtime dynamically builds a runtime
task graph for an application from the numerous library calls of the application,
dynamically decomposes tasks in the graph according to the granularity speci-
fied by LD and assigns them for execution to host processor and device as they
become available. To facilitate efficient composition of library tasks, our run-
time applies a novel optimization, task-fission, that pre-processes the task graph
as it is being constructed and partitions the tasks into coarse-grain sub-tasks
according to data flow between the tasks. We demonstrate that our approach
can improve data-locality and reuse, resulting in improved performance com-
pared to existing approaches. To the best of our knowledge, our work is the
first attempt to seamlessly perform library call composition for heterogeneous
architectures.

Compared to other task based approaches such as [5,9,14,23,26,31,32,35,
40], Mozart has the following additional capabilities. First, Mozart transparently
schedules a decomposable library task between host processor and device cores
using library metadata (LD) provided by library writers. Unlike existing systems,
programmer is not responsible for writing any wrappers for device specific library
implementations. Second, Mozart efficiently composes a series of library tasks
by performing task-fission dynamically on the runtime task graph resulting in
improved data locality. Finally, Mozart profiles device data transfer overhead and
measures host/device throughput at runtime. It then uses this data to adaptively
control the number of iterations performed by the device including the offload
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granularity of device. This results in both improved load-balance and better
communication-computation overlap.
The key contributions of this paper include:

— a novel Library Description (LD) framework to describe meta-information
about libraries. We expect library developers to use this framework to spec-
ify their domain knowledge about library routines. The parameters of this
framework are either specified by the library developer or determined via
install-time profiling of libraries on the target platform.

— ascheduling runtime that performs load balancing among heterogeneous cores
using the LD information. The distinguishing features of our runtime include
dynamic task-fission and adaptation to runtime behavior of an application.
Compared to existing scheduling runtimes [6,14,26,31,32,34,40], our runtime
enables cross library call scheduling optimizations such as data-locality and
communication optimization as well as host and device work distribution.

— an experimental evaluation of Mozart in a heterogeneous system consisting of
a Xeon CPU and 2 Xeon Phi co-processors using High Performance Linpack
benchmark which is the most popular benchmark to rank supercomputers in
TOP500. Our results show a GFLOPS improvement of 31.7% over MKL with
Automatic Offloading and 6.7% over hand-optimized version of the applica-
tion. Please note that, although we perform our experimental evaluation on a
Xeon+Xeon Phi system, our technique should be applicable to any host plus
device based system including widely used CPU+GPU based systems.

The rest of the paper is organized as follows. Section 2 describes the library
description interfaces. Section 3 describes our heterogeneous scheduling runtime.
Evaluations are presented in Sect.4. We discuss related work in Sect.5 and
conclude in Sect. 6.

2 Library Description Language

In this section, we describe the library description (LD) framework that drives
composition of library calls at runtime, so that the calls are effectively executed
in a distributed fashion on a heterogeneous system — to take advantage of the
rich hardware parallelism in such a system. LD expresses domain knowledge
from library developers and uses install-time profiling to build platform-specific
performance models. Such expertise, code, and models reflect important aspects
of the dynamic behavior of a library function.

Library experts (typically library-writers) build a library description (LD)
for each library function during or after library development. This LD is basic in
that it might not contain platform-specific information. The expert also builds
an extensive set of microbenchmarks to perform install-time profiling in order to
fill in the LD parameters of a library. Any relevant performance characteristics
of a library function can be put into the LD, but specifically, we propose a set
of abstract interfaces as shown in Table 1: Threads() and SubTaskSize() are
described, because the number of threads and the task granularity for offloading
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Table 1. Library description APIs

API Description
In, Out Returns the inputs and outputs of the library function
Threads (id) Returns the optimal number of threads to set for this

library function for a given device id

SubTaskSize(id) |Returns the best sub-task size to set for this library
function for a given device id

Rate(id) Returns the computation throughput of the library function
on a given device id

Rate is defined as the ratio of number of iterations
processed per unit time

Affinity() Returns the device affinity of the library function

Task-arch(range) | Returns a task function operating on a sub-range of the
original iteration space of the library function for a device,
e.g., arch is either CPU or GPU

InsertTask() Inserts task functions into the runtime’s task graph and
schedule it for execution when it is ready

are the two most important optimization parameters for most applications. Note
that Threads() for memory-bound applications may be much smaller than the
maximum available cores on the underlying platform. Similarly, SubTaskSize ()
determines the offload granularity to a device in order to optimally overlap it’s
computation with communication. When the library is installed, the microbench-
marks are used to profile the underlying platform and build platform-specific
models for the functions in LD, including Threads(), SubTaskSize(), and
Rate(). Many different combinations of the inputs of a library function can
be used to run the function. With different input combinations and their cor-
responding execution time of the function, profiling can learn a model for each
of Threads(), SubTaskSize(), and Rate(). The learned performance models
replace the default Threads(), SubTaskSize(), and Rate() specified by the
library-writer.

Figurel illustrates the implementation of LD class for a matrix-matrix
multiplication library call, dgemm_LD. In this example, Threads() and
SubTaskSize () are hard-coded numbers based on library-writer’s experiences.
Rate () is an auto-generated performance model built from install-time profiling
(in particular, we perform a linear approximation of the profiling data after exe-
cuting the microbenchmarks on each device). Task_arch() and InsertTask()
are written manually by expert programmers. Here we have two Task_arch()
functions: one for the host, the other for the device. We have used Intel
Offload programming model [1] to demonstrate device offloading, but it is not a
limitation.

In a specific implementation, the compiler may automatically redirect a
library function call in a user program to its corresponding library description,
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// Library description (LD) for matrix-matrix multiplication using dgemm call on host and device
class dgemm_LD {

int Threads(int tid) { return tid == 0 ? 40:240;}
int SubTaskSize (int tid) { return tid == 0 7 1500 : 3000; }
bool Affinity() { return DeviceO; }

int Rate(int tid) { // Auto-generated performance model via linear approximation
if  (1.00000%M -20000.00000 <= 0) {

dtmp=0.00087*M+0.00087*N +0.00143*K+157.65765;

else {

if  (1.00000%M -25001.00000 <= 0)
dtmp =0.00220%M + 0.00220%N +0.15566%K;

else
dtmp=-0.00008%M-0.00008*N -0.00813%K+360.9299;

-

}
return MAX(dtmp, 1);

void TaskHost (range r) {
cblas_dgemm(...); // Host MKL call to matrix-matrix multiply
void TaskDevice(range r) {
// Ninja written code
#pragma offload target (DEVO)
cblas_dgemm(r, ...); // Device library call to matrix-matrix multiply
¥
void InsertTask() {
// set arguments and argument metadata, call to scheduling runtime
insert_divisible_task(...);

Fig.1. LD for matrix-matrix multiplication library, dgemm. The library devel-
oper initially writes the dgemm_LD function. During install time of the library,
Threads, SubTaskSize, Affinity, and Rate are populated via install-time profiling.
The TaskHost and TaskDevice functions operate on sub-ranges in order to let the run-
time adaptively decide the work distribution between host and device. The InsertTask
function calls into runtime (Sect. 3).

which enqueues a divisible task into the runtime system’s task graph (described
in Sect. 3). For example, for a library function £ () with LD as £_LD(), the library
wrapper or the compiler performs the following two operations:

LD« ld = f_LD(/*originalparameters * /);

ld— > InsertTask();

When the user program runs, the above two statements create an LD object,
and invoke our runtime through that object’s InsertTask() function, which
inserts the Task_arch() function(s) into the runtime system’s task graph, and
invokes the runtime system. The runtime is described in Sect. 3.

In another implementation, the library writer may hide LD details from the
user by wrapping the library functions in new interfaces and expose these inter-
faces to the programmer. Either way, the newly created runtime task is seman-
tically equivalent to the original library function. The runtime system executes
this task in a parallel and perhaps in a distributed fashion on the heterogeneous
system.

Figure 2 depicts the high-level flow of LD. At library installation time, a per-
formance model (via linear approximation) is built for how each library function
performs on the entire system with such factors as number of threads, sub-task
size and the relative performance of each processor in the system. The compiler
pattern matches library function call names and replaces a regular function call
with a call to the runtime providing access to the model for the given function.
The runtime is then responsible for determining how best to execute the function
with the current inputs within the system. It will often do so by splitting up the
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Fig. 2. Detailed work-flow of library description framework.

work into smaller granularity and giving that work to different processors in the
heterogeneous system.

One thing to keep in mind is that LD interfaces are developed by library
writers, programmer is not involved. Additionally, the LD information for each
library routine is written exactly once and thus we believe the complexity is
manageable. Augmenting auto-tuning with install-time profiling is a subject for
future work.

3 Library Composition Runtime

In this section, we describe our heterogeneous runtime system that performs
dynamic task-fission, overlaps communication and computation to hide com-
munication latency of heterogeneous processor, and finally, adapts to runtime
behavior of an application. Our runtime system takes advantage of the perfor-
mance profile information from LD described in Sect.2. For simplicity of pre-
sentation, we treat each task as a library task created from a particular library
routine.

Library Task Representation: We introduce the notions of simple and divis-
ible library tasks in our runtime. A divisible task can be further decomposed into
sub-tasks. Typical example of a divisible task is a data-parallel library routine
which can be decomposed in many different ways including simply varying the
number of loop iterations that are grouped into a single task. For example, the
classical matrix-matrix multiplication library task is a divisible task since the
2-d iteration range of the output matrix can be blocked into sub-ranges and each
sub-range can be processed independently either on host or device.
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Runtime Interfaces: Our runtime exposes two key APIs: insert_{T} task
where T is either divisible or simple and task_wait. insert_{T}_task () communi-
cates all information regarding a task to the runtime. task-wait() function waits
for the previously issued tasks to complete and their output data become avail-
able. Some of the important information passed to an insert_{T'}_task(T,...)
include iteration range and dimensionality (for divisible tasks), function pointers
to device task implementations that operate on sub-tasks, arguments and their
corresponding metadata information (using array access descriptors as described
later in this section), device affinity if known, and performance profile informa-
tion for the corresponding library function from LD (described in Sect. 2). Each
argument to a task is marked as one of the following: IN, OUT, INOUT, VALUE
(passed-by-value), ACCUMULATOR (passed-by-reference, typically reduction vari-
ables are passed as accumulator variables). Please note that the library devel-
oper wraps insert_T_task in the LD method InsertTask for a library task and
task_wait is inferred by our runtime based on input and output dependences.

Array Access Descriptors: Affine array accesses are typical in scientific and
HPC applications, therefore are used heavily in library routines. The metadata
information for an array argument of a task in our runtime also carries a descrip-
tor in order for the runtime to be able to determine the sub-region of the array
being accessed by a sub-task, which is crucial to generate the data movements
between host and devices. The following array access descriptor captures affine
array accesses of the form a % i + b, where a and b are compile-time constants
and ¢ denotes the loop induction variable:

struct array_access_desc_Nd_s {
unsigned int dim; /* number of array dimensions */
int64_t *al, *a2; /* "a" coefficients of ai+b in each dimension */
int64_t *1_b, *u_b; /* "b" (lower and upper bound) coefficients of ai+b in each dimension */
};
The array region accessed by a sub-task can be 1-d linear, 2-d rectangular, or
3-d rectangular prism (our implementation currently does not support beyond
3-d). At runtime, each array region is associated with a location information
indicating the device that holds that array region. Runtime uses this information
to decide device affinity of a sub-task. Additionally, efficient implementations
of standard set operations such as union, intersection, and difference are also
provided for array regions in order to reduce the runtime overheads of task
graph construction. Note that since we are composing libraries, the array access
descriptors are written by expert library developers as part of LD, programmer
who uses these libraries is not involved.

Work-Sharing Runtime: The runtime determines task dependencies from the
array access descriptor metadata of task arguments, builds a task dependence
graph, generates necessary data transfers and schedules tasks for execution pos-
sibly choosing the device. Once all the predecessors of a task in the task graph
have completed execution and all the input data has been transferred to the
target device, the task is executed. This might result in the output data transfer
to a different device, as well as a trigger for the other task execution (Fig. 3).
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Fig. 3. Work-sharing runtime and runtime task graph

Typically a heterogeneous system node has a few devices leading to fewer
contention among devices. Moreover, the optimal task granularity for offload
may differ from device to device, e.g., a discrete GPU may choose a sub-task tile
that completely hides the data communication latency of an application. With
these design choices in mind, we implement a work-sharing runtime where an
idle device grabs it’s own sub-task tile of iterations for a ready divisible task from
a common shared queue of the parallel iterations. Note that sub-task tile size
for each device is bootstrapped using SubTaskSize () in LD and is adaptively
adjusted in the runtime (described later in this section). A proxy host thread
(i.e., worker) is assigned to each device that offloads work to that device.

When a task becomes ready, i.e., all its predecessors in the task dependence
graph finished their execution, it is added to the ready queue. When a worker
becomes idle, it tries to retrieve a task from this ready queue and executes it.
There could be more than one task available in the ready queue, in which case
one of the two following strategies could be used: (1) the idle worker first tries to
pick a task that no other worker is working on (that is, breadth-first approach);
(2) the idle worker picks the first ready task (that is, depth-first approach). This
is currently implemented via a runtime flag. By default, a simple task has an
affinity to the host CPU in our runtime.

Task Fission: Choosing sub-task size is critical to application performance on
heterogeneous systems as it affects both scheduling granularity, data locality,
and communication latency. It can also artificially limit parallelism and flexibil-
ity of scheduling. In general, the sub-task granularity should be large enough to
occupy at least a single core of the heterogeneous system, yet small enough to
support efficient load balancing and communication/computation overlap. Con-
sider an example program shown in Fig. 4. taskl invoked with parallel iterations
[1...10000] writes 10000 elements of array b, while task2 invoked with parallel
iterations [1...500] reads only the first 500 elements of b. Consider the following
scheduling constraint on a discrete CPU+GPU heterogeneous system: task?2
executes significantly better on CPU than GPU while taskl can be executed on
either CPU or GPU. An optimal scheduling solution is to execute first 500 iter-
ations of taskl, as well as, all of task2 on CPU and the last 9500 iterations of
taskl on the discrete GPU until CPU completes execution, at which point both
CPU and GPU can execute the remaining iterations of taskl1. This enables over-
lapping of task2 and taskl execution resulting in improved data-locality (that
is, task2 might reuse data from the cache prefetches of taskl) and reduced
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communication too (that is, there is no data transfer cost to/from GPU for the
first 500 iterations of taskl1. However, if tasks have to be scheduled as indivisible
units, a scheduler has to assign all iterations of taskl to either CPU (leaving
GPU unused) or GPU (resulting in data transfer cost) and wait for all of task1
to complete before starting task2. Choosing fine-grain tasks resolves this prob-
lem but leads to higher overhead of maintaining task graph and scheduling tasks,
potentially defeating benefits from exploiting a higher degree of parallelism.

taskl(range r, in a, out b) { task2(range r, in b, out c¢c) {
for (i = r.start : r.end) for (i = r.start : r.end)
bl[il = f(alil) // £ is a library call c[i]l = g(bl[il); // g is a library call
} }
main (O { main( {

insert_task ([1...10000], task1); // CPU or GPU insert_task ([1...500], taskl); // CPU

insert_task ([1...500], task2); // CPU
task_wait (); // wait for task completion

}

insert_task ([601...10000], taskl); // CPU or GPU
insert_task ([1...500], task2); // CPU
task_wait (); // wait for task completion

}

Fig. 4. Optimal task granularity example with dynamic task-fission; taskl with range
[1...10000] was split into two tasks with ranges [1...500] and [501...10000] at run-
time based on consumer task task2; Now task2 can start executing immediately after
taskl with range [1...500] completes on CPU. This improves locality and reduces
communication.

We propose task-fission at runtime that automatically adjusts task granu-
larity to discover additional available parallelism while keeping the cost of task
graph maintenance and scheduling under control. Tasks are split to achieve exact
match between one task output and another task input. Such tasks are further
combined into task chains that can be scheduled to a single device to reduce
communication cost.

We support two kinds of task-fission. The first one splits an existing task A
when a new task B is inserted into task graph whose input is a subset of the
output of the task A. In this case, A is split into Al and A2, such that output of
Al is the same as input of B. This enables execution of B as soon as Al finishes
without waiting for completion of A2. It also allows the runtime to schedule A1l
and B to the same device while, in parallel, executing A2 on a different device.
The second one splits a new task B when its input is a super-set of the output
of an existing task A. In this case, B is split into B1 and B2, such that output
of A is the same as input of B1. This enables execution of B2 without waiting
of completion of A and allows the runtime to schedule A and B1 to the same
device, while scheduling B2 to a different one.

When a task is inserted to our runtime, the argument metadata information
(described using array access descriptor) is used to derive task dependencies
and to construct the runtime task dependency graph. During this addition of
the newly arrived task to the runtime task graph, our runtime checks if it is
feasible to perform task-fission with the immediate predecessor task or with
the immediate successor task (as described in the previous paragraph). If the
immediate predecessor task is not already executing and offers opportunities for
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task-fission, we perform task fission and update the runtime task graph. We
enqueue the newly created tasks from task-fission to our runtime when they are
ready. In most cases, we expect that the cost of task-fission be mitigated by
the benefits we get from task-fission. Our runtime augments online profiling to
decide whether to perform task-fission or not.

Task-fission results in the following benefits: (1) increased task parallelism,
due to precise matching between task dependencies and task granularity; (2)
reduced communication cost, as sub-tasks with the same input/outputs can be
scheduled to the same device without affecting scheduling of the whole task; (3)
improved data locality and reuse, as sub-tasks with the same input/output can
reuse data from caches.

Overlap Communication and Computation: Accelerators including GPUs
and Xeon Phi are typically connected to the host processor via PCle intercon-
nect. Thus, communication overhead is one of the dominant factors in obtaining
performance of these systems. There are many existing approaches for hiding
communication latency [2]. We use the double buffering technique transparently
in our runtime to overlap communication to device with computation on host
CPU. This transparency is feasible in Mozart, since tasks can be divided into
sub-tasks and the argument array regions accesses by sub-regions can be com-
puted from the array access descriptors. Our runtime creates two temporary
buffers for every argument array region corresponding to sub-tasks and while
the current buffer holds the array region for computation on the device of sub-
task A, the next buffer holds the array region that is used for transferring data
from the device to the host (for output transfer) for sub-task B. Sub-tasks A and
B originate from the same divisible task. Similarly, we can also overlap input
data transfer of one sub-task with computation of another sub-task. The granu-
larity of the sub-tasks are chosen such that the two temporary buffers fit on the
device memory and more importantly, the ratio of communication to computa-
tion time of the sub-tasks must be close to 1. This results in optimal performance
as it hides the communication latency completely. Our runtime initially uses LD
information to choose this sub-task granularity (via SubTaskSize()), but later
on adjusts adaptively at runtime.

Strided Data Access: Several scientific and HPC applications access strided
data. Strided data can be tricky to transfer to devices using pragma based com-
pilers such as Intel Offload compiler [1] as they are limited by their expressibility
resulting in unnecessary data transfer. Consider the shaded regions to the left
of Fig.5. In order to transfer only the shaded regions to Xeon Phi using cur-
rent Intel Offload compiler, entire rows and columns corresponding to the shared
regions need to be transferred. This incurs runtime overhead and can be signifi-
cant if the matrix is large and the shaded region is very small. We mitigate this
by transparently copying data in runtime to contiguous memory locations and
then remapping the index space of this data in the library kernels for both Xeon
and Xeon Phi. The code snippet to the right of Fig. 5 depicts the argument offset
data structure used in our runtime and its use in a matrix multiplication Xeon
Phi library kernel. This data structure stores dimensionality information (dim),
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row/column size (depending on row-major or column-major) using max._size,
and the original indices using index_offset for each dimension. Each library ker-
nel now takes an additional argument for this offset data structure offset and
replaces each access to Afi] by A[i — offset— > index_offset[0]]. The offset data
structure is transparently populated by runtime and passed to the library kernel
before executing it on the device. This approach avoids unnecessary data transfer
and is likely to improve performance for strided data access applications. Based
on the above design, the library developer needs to write Task_arch(range)
functions for libraries dealing with non-contiguous data.

©,0) struct arg_offset_s {
unsigned int dim;

int64_t *inde;

(3,) int64_t *max.

et for each dimension */
h dimension*/

A typedef struct

void dgemm_task_device(range_Nd_t range, void **args,
arg_offset_t *offset, unsigned int mic_id) {

cblas_dgemm(..., &A[i-offset->index_offset[0]],..);

(n-1,n-1)

Fig. 5. Strided and non-contiguous data transfer

Runtime Adaptation: Even though LD provides platform-specific perfor-
mance sketch of libraries to runtime, it is also possible to adaptively learn
and improve these library parameters such as Affinity, Threads, Rate, and
SubTaskSize. For instance, if an application repeatedly invokes the same library
task (perhaps with a different range), we can estimate its optimal tile size for
overlapping computation and communication from invocation to invocation even
before executing it. We can also predict if task-fission is beneficial across library
tasks (due to the overhead involved in splitting a task). Our runtime maintains
an online profiling database in order to track performance profile of library tasks
as they execute on devices. Following data structure depicts our online profiling
database:
typedef struct task_profile_s {

unsigned int task_type; // O for simple_task, 1 for divisible_task

/* host execution profile */

int64_t host_num_iters; /* Number of iterations executed by host */

double host_time; /* Time taken by host */

/*device execution profile */

int64_t device_num_iters; /* Number of iterations executed by devices */

int64_t num_bytes_xfered; /* Bytes of output transferred from devices */

double xfer_time; /x Time taken for output data transfer x/

double compute_time; /*Device computation timex*/

/* task fissionx*/

double task_split_time;

} task_profile_t;

/* Map from phase signature (id) to task name (string) to profiling databasex*/
map< int64_t, map<string, task_profile_t> > profile_db;

We divide a program execution into phases. Each phase consists of all the
tasks being executed in between two consecutive wait_task(). We profile each
phase and accumulate their information in profiling data-base. Each worker
locally gathers profiling information for each task executing in a profiling phase.
After the phase completes, wait_task() accumulates the per-worker profiles into
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the data structure above. Typical information we collect include data transfer
time, computation time on host and device, and number of parallel iterations
performed by host and device. These information can be used to improve LD’s
Affinity() and Rate() information. Additionally, during runtime task graph
construction, we use the profiling database to estimate execution time of each
new invocation of a task and determine if it is beneficial to perform task-fission
in the current phase or not. That is, the total estimated time with and with-
out task-fission is computed using the throughput and data transfer overhead of
each device (computed from prior iterations). Since we estimate execution time
and data transfer time on device for each task, we also adjust the tile size (i.e.,
SubTaskSize()) in order to reduce the communication to computation gap.

4 FEvaluation

In this section, we investigate the performance of Mozart in High Performance
Linpack (HPL) benchmark. This program is typically written using several
library calls and hence, offering opportunities to our runtime to efficiently com-
pose them. We compare Mozart with MKL Offload and hand-tuned optimized
implementations of the same computation. The details of the hand-tuned HPL
implementation is described in [19]. With better load balancing, efficient library
composition, and adaptation to runtime behavior, Mozart is able to comprehen-
sively outperform MKL 0ffload and is also able to beat the hand-tuned ninja
version.

Implementation: Figure6 depicts our implementation framework. We have
implemented Mozart on top of the Julia compiler infrastructure [8]. The standard
Julia compiler converts a Julia program into the Julia AST, then transforms
it into LLVM IR, and finally generates native assembly code. We intercept the
Julia compiler at the Julia AST level, recognize the library calls via AST pattern
matching and rewrote them to create the corresponding LD object and invoke
the InsertTask() function on it (as described in Sect.2). Finally, we generate
C++ code from Julia AST. Please note that the techniques described in this
paper are not tied to our choice of implementation language and can be applied
to other languages as well.

Platform: We use a host server with two Intel® Xeon® E5-2690v2 processors
and 128 GB RAM. The processors are code-named Ivy Bridge and manufactured
using 22nm technology. Each processor has 10 cores (20 cores total) with base
frequency of 3.00 GHz. The cache sizes are 32 KB for L1I, 32 KB for L1D, 256 KB
for L2, and 25 MB for the L3 cache. It runs CentOS v6.6 distribution of Linux.
This host server is connected via PCle (with bandwidth 6 GB/s) to two mas-
sively parallel Xeon Phi co-processor with 61 in-order Pentium cores with each
core being 4-way hyper-threaded. Applications can use up to 240 threads simul-
taneously (one core is reserved for the Linux OS running on it). Each core of
Xeon Phi is embedded with a 512-bit vector unit for increased SIMD parallelism.
Furthermore, each core has 32 KB L1 data cache, 32 KB L1 instruction cache and
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Fig. 6. Overall implementation framework of Mozart

512 KB partition of globally coherent L2 cache. Each Xeon phi co-processor has
8 GB of GDDR memory.

We use the Intel® C++ Compiler (ICC) v15.0.2 with “-03” flag for compi-
lation of the Mozart runtime and the C++ code generated from the Julia AST.
We report execution times using the average of five runs.

High Performance Linpack (HPL) Performance. HPL is the most popular
benchmark to rank supercomputers in TOP500, and it spends majority of time
in numeric libraries. The key routine in HPL is LU factorization. LU factor-
ization decomposes a matrix A into a lower-triangular matrix L and an upper
triangular matrix U. We use a blocked LU factorization version that demon-
strates the benefits of library composition using Mozart. The high-level blocked
LU formulation code is shown in Fig.7.! This algorithm proceeds from left to
right of matrix A in blocks of nb until entire A is factorized. In each iteration
of the loop, nb column panels are first factorized using dgetrf library call, nb
block of matrix rows are swapped based on the pivot vector ipiv from panel
factorization using two dlaswp library calls (denoted as dlaswpL and dlaswpR),
and a portion of row panel is updated using dtrsm forward solver library call.
The trailing submatrix of A is then updated using dgemm library call.

for( j = 0; j < mn; j += nb ) {
dgetrf (A[j:n-11[j:j+nb-11, ipiv[j:j+nb-11);
dlaswpL(A[j:j+nb-11[0:3], ipiv[j:j+nb-11);
dlaswpR(A[j:j+nb-1][j+nb:n-1], ipiv[j:j+nb-11);
dtrsm(A[j:j+nb-11[j:j+nb-1]1, A[j:j+nb-1]1[j+nb:n-11);
dgemm (A[j+nb:n-1]1[j:j+nb-1], A[j:j+nbl[j+nb:n-1], A[j+nb:n-1][j+nb:n-11);

Fig. 7. HPL blocked version demonstrating library composition.

We wrote the LD specifications for the library tasks from Fig.7. The per-
formance models for Threads(), SubTaskSize() and Rate() were built using

! Note that we specifically choose the blocked version of HPL to highlight the contri-
bution of this paper, which is library composition. We do not directly use the LU
factorization algorithm provided by MKL.
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Fig. 8. HPL: task-fission performed via Mozart

simple curve-fitting from an extensive set of micro-benchmarking executions on
our platform. The library tasks were then inserted inserted into our runtime
using InsertTask() LD interfaces. Our runtime automatically identifies the task
dependencies between them based on their input-output dependencies on matrix
A and builds the task graph. The runtime task graph for two consecutive itera-
tions j —nb and j is shown to the left of Fig. 8. Our runtime identifies an opportu-
nity to detect partial loop-carried dependency between dgemm(j — nb) task and
dgetrf(j) task, i.e., dependency between previous iteration j —nb dgemm call and
next iteration j dgetrf call. It then splits dgemm(j —nb) into dgemm_1(j—nb) and
dgemm _2(j —nb) tasks using task fission (as shown in the middle of Fig.8). This
allows dgemm_1(j —nb) task to execute concurrently with both dgemm_2(j —nb)
and dgetrf(j) tasks (as shown to the right of Fig. 8). Both dgemm _2(j — nb) and
dgetrf(j) are executed on Xeon based on the affinity of dgetrf(j) task specified
in LD. On the other hand, dgemm_1(j —nb) starts by executing on Xeon Phi but
is subsequently executed on both Xeon and Xeon Phi when dgemm_ 2(j — nb)
and dgetrf(j) tasks are completed.

High Performance Linpack Performance
(Higher is better)

EIMKL Offload 8 Hand-tuned & Mozart

GFLOPS

PR N N N N D

Matrix Size

Fig. 9. Performance of High Performance Linpack running on a Xeon + 2 Phi Ivy
Bridge system (higher is better). On average, MKL Offload approach achieves 489
GFLOPS, Hand-tuned achieves 604 GFLOPS, and Mozart achieves 644 GFLOPS for
matrix sizes 5K-75K.
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Figure9 presents our experimental evaluation comparing Mozart with MKL
0ffload and Hand-tuned ninja version [19]. We vary the matrix size from 5K
until 75K in steps of 5K. We observe an average GFLOPS improvement of 31.7%
for Mozart vs. MKL Offload, primarily due to the fact that MKL. 0ffload does not
perform any cross library optimization for the blocked version of HPL, although
it is able to execute the dgemm and dtrsm library functions across both Xeon and
Xeon Phi and achieves peak performance for them individually. When compared
to hand-tuned ninja version, Mozart yields an average GFLOPS improvement of
6.7%. Although hand-tuned ninja version performs library composition using a
manual implementation of task fission, it does not perform the following tasks
effectively: (1) the ninja version is unable to load balance effectively — it does not
use a performance model like ours (via LD) to divide work between Xeon and
Xeon Phi instead uses a platform-specific hand-tuned step function to determine
the number of dgemm_1(j — nb) iterations to be performed on Xeon?; (2) the
ninja version does not perform runtime adaptation like ours as described in
Sect. 3.

Performance Breakdown: The GFLOPS improvement of 31.7% for Mozart
vs. MKL 0ffload can be explained as follows: we observe 10-15% benefit for
small size matrices (5K-25K) and close to 20% benefit for larger matrices
(>=30K) from our task-fission optimization, which MKL-Offload can not per-
form in the blocked version of HPL. Remaining benefits of close to 10-15% is
obtained from runtime adaptation via sub-task granularity determination (i.e.,
SubTaskSize ()) and cost-benefit analysis of task-fission (that is whether to per-
form task fission or not) as described in Sect. 3.

Discussion: The HPL application has the following properties that Mozart
exploits:

— dgemm matrix-matrix multiplication task is computationally expensive and
can be decomposed into smaller granularity which can distributed to host and
device cores;

— dgemm can be split via task-fission into two sub-tasks where one of them can
execute in parallel with dgetrf of the next iteration in order to reduce the
critical path length.

One of the key ideas of the paper is to dynamically perform task-fission
optimization across library calls. Task-fission opportunities are prevalent in many
data parallel application domains including emerging Al and machine-learning
that compose many data parallel libraries, e.g., Intel’s DAAL and CUDA-DNN
within a network model. Existing HPC applications such as LU, Cholesky and
QR factorization already exhibit task-fission patterns. Thus, we believe efficient
library composition via task fission will play an important role in optimizing
future applications. Although it is possible to implement task-fission statically,
it may not be straightforward in the presence of complicated control-flow such
as the one present in HPL. In summary, the techniques described in Mozart

2 Hand-tuned implementations are rarely performance portable.
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including library description and library composition runtime are general and
can be applied to other heterogeneous architectures and applications.

5 Related Work

Heterogeneous Execution: There have been several efforts [5,7,10-12,14,18,
20,22,25,26,29,31,32,32,34-36,39,40,44] to make heterogeneous execution of
applications more efficient. [4] is most closely related to our work as it analyzes
a series of GPU library calls in order to minimize the CPU-GPU communica-
tion overheads by caching the reused data. Our work is different from the above
body of works in two key aspects: Mozart performs task-fission at runtime and
dynamically adapts device tile sizes. It augments library description metadata
framework to decompose libraries for efficient heterogeneous execution.

Dynamic Task Graph: Dynamic task graph is widely used in parallel systems.
StarPU [5], OMPSs [9,13,33], and BDDT [43] build dynamic task graphs, but
they do not dynamically split tasks into subtasks. There is previous work [15]
on dividing/consolidating tasks to make better use of resource or to achieve
better load balance, but it considers only independent tasks. [17,19] manually
splits tasks in application level to enable dynamic load-balancing on a Xeon Phi
system. To the best of our knowledge, no known work splits tasks in a dynamic
task graph based on the dependencies between tasks.

Overlapped Communication and Computation: [5,9,28] present runtimes
that overlap communication with computation. [37] describes a hybrid thread-
ing approach where one thread handles all MPI-related operations and all other
threads handle computation. [24] provides an OpenCL communication library
and programming interface to optimize communication between host and accel-
erators. [40] uses static inter-node data and task distribution in large-scale GPU-
based clusters, and dynamic task scheduling within a node to overlap commu-
nication with computation. [41] uses source-to-source compiler optimization to
enable streaming for offloaded computations for Xeon Phi. In our work, we use
performance models from LD and dynamically adjust tile size to completely
overlap communication and computation for heterogeneous systems.

Telescopic Languages: The idea of annotating libraries in order to generate
fast specialized code at the translation of scripting languages has been explored
in [21]. Our library description metadata is inspired by this work, but extends it
to enable cross-library heterogeneous execution via task-fission. Library annota-
tion has also been explored in [16].

Skeleton Composition: Efficient composition of algorithmic skeletons such as
map, reduce, and zip for shared-memory systems and clusters has been explored
in the STAPL Skeleton Framework [42,45,46].
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6 Conclusion

In this paper, we show that library composition plays a crucial role in achiev-
ing peak performance in heterogeneous architectures. We propose a framework,
Mozart, consisting of two components: a library description (LD) interface for
library writers and a generic library composition runtime. The runtime performs
task-fission on-the-fly in order to improve data locality and data reuse across
library calls using the performance parameters from LD. Mozart transparently
composes library calls across heterogeneous cores and delivers close-to expertly
tuned performance. Our experimental evaluation on a heterogeneous system con-
sisting of a Xeon CPU and 2 Xeon Phi co-processors executing High Performance
Linpack benchmarks shows that Mozart achieves an average GFLOPS improve-
ment of 31.7% over MKL+AO and 6.7% over hand-optimized code. In future,
we would like to augment auto-tuning within our framework to further improve
our performance results. We would also like to extend Mozart to handle non-
affine array accesses. A tool that can automatically generate LD specifications
for library routines is also a subject for future work.
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