
Parallel Roles for Practical Deterministic
Parallel Programming

Michael Faes(B) and Thomas R. Gross(B)

Department of Computer Science, ETH Zurich, Zürich, Switzerland
{mfaes,trg}@inf.ethz.ch

Abstract. Deterministic parallel programming languages are attractive
as they do not allow data races, deadlocks, or similar kinds of concurrency
bugs that are caused by unintended (or poorly understood) parallel exe-
cution. We present here a simple programming model for deterministic
parallel programming that is based on roles. The programmer specifies
the role that an object plays for a task (e.g., the readonly role), and com-
piler and runtime system together ensure that only those object accesses
are performed that are allowed by this role. An object may play differ-
ent roles in the course of a program’s execution, giving the programmer
considerable flexibility in expressing a parallel program.

The model has been implemented in a Java-like language with refer-
ences and object sharing. Preliminary results indicate that the runtime
overhead is moderate (compared to standard Java programs), and that
the compiled programs achieve substantial parallel speedups.

1 Introduction

Deterministic parallel programming languages avoid bugs caused by the unin-
tended or poorly understood parallel execution of programs. These languages
attempt to make concurrency bugs impossible by design [5,23,24,37,38].

Recently, several projects proposed static effect systems to support determin-
istic parallel programming (dpp) for imperative and object-oriented languages
[6,18,20,25]. In such systems, the programmer declares the side effects of tasks
and methods by indicating the memory regions that are read or modified. These
effect specifications are then used by the compiler or the runtime system to check
that tasks with interfering effects are not executed in parallel.

Memory regions as used in effect systems may allow a precise description
of which memory locations are read or modified by a program unit. However,
object-oriented programs are not structured (or documented) based on memory
locations but instead use objects as the unit of reasoning. Memory locations pro-
vide little abstraction and are at too low a level. Since objects are the foundation
of object-oriented programs, our approach to dpp is based on objects. The first
idea is to leverage the concept of roles, which have a long-standing tradition in
sequential object-oriented programming and modeling, where they are used to
characterize the different “roles” an object may assume when collaborating with

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 163–181, 2019.
https://doi.org/10.1007/978-3-030-35225-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_12


164 M. Faes and T. R. Gross

other objects [15,21,28,30,31]. Our work builds on this foundation and uses roles
as the key abstraction to specify and reason about parallelism. Together with
the concept of role transitions, roles form the basis for a new object-oriented
dpp model.

In this model, every object plays a role in each task, and these roles change
dynamically when tasks start or finish. Because the role of an object defines the
legal interactions with that object, roles provide a concise way to reason about,
document, and specify the effects of concurrent tasks. In contrast to effect sys-
tems, the model does not focus on pieces of code and their effects on memory
regions; instead, it focuses on objects and the roles they play in parallel – hence
the name Parallel Roles. By employing a specific set of roles and role transition
rules, the model guarantees that tasks do not interfere. Noninterference is not
checked at compile time or before a task is started, like in effect systems; instead,
it is enforced during the execution of tasks. However, unlike in speculative sys-
tems, noninterference is enforced deterministically and without rollback.

This dynamic approach makes it possible to design dpp languages with simple
program annotations, without the need for special syntactic constructs for par-
allel execution, and without any kind of aliasing restriction. To illustrate these
points, we give an overview of a roles-based, Java-like language we call Rolez.
This language enables programmers to parallelize a program by simply marking
a method as a “task” and declaring one of three possible roles for its parameters:
readwrite, readonly, or pure. When a task is invoked, it is executed in paral-
lel to the invoking code, while the runtime system prevents the two concurrent
parts of the program from interfering, based on the declared roles.

Fig. 1. Rolez example. The role declarations
are highlighted in green and orange. (Color
figure online)

Figure 1 illustrates the simplic-
ity of Rolez in a snippet of an
encryption program we use in our
evaluation. The encryption scheme
is block-based, so different parts
of the data can be encrypted in
parallel. Note that for the sake
of clarity, some annotations are
left out; Sect. 3.2 explains what
additional annotations are required.
The encrypt task has two main
parameters: src and dst, both of
type Array. The task declares the
readonly role for the src array,
which the task only reads, and the readwrite role for the dst array, to which
the task writes the encrypted data. In addition, the encrypt task has a param-
eter that defines the part of the src array that should be encrypted. The
parallelEncrypt method achieves parallelism by creating multiple destination
arrays and starting a separate encrypt task for each of them. Noninterference is
guaranteed in two ways: First, the plaintext array plays the readonly role in
all tasks, which means that it cannot be modified by any of them. Second, every



Parallel Roles for Practical Deterministic Parallel Programming 165

task writes to a separate destination array. In terms of roles, a destination array
that plays the readwrite role in one task plays the pure role in all other tasks
(including the parent task), meaning that it is inaccessible. However, as soon as
all tasks have finished, all destination arrays are readwrite again in the parent
task, so they can be merged into a single array. When the merge method in the
parent task tries to read from the destination arrays, it is automatically blocked
until all encrypt tasks have finished.

To demonstrate the viability of roles-based languages, we implemented a pro-
totype compiler and runtime system for Rolez and use a suite of parallel programs
to assess its effectiveness. These programs contain a range of parallel patterns
that are expressible with the three mentioned roles. All programs achieve sub-
stantial speedups over a sequential Java version and exhibit a reasonable runtime
overhead compared to a manually parallelized Java programs.

To summarize, the key contributions of this paper are the following:

1. an object-oriented parallel programming model, based on three roles:
readwrite, readonly, and pure that guarantee determinism (Sect. 2);

2. an overview of the design of Rolez, a roles-based, Java-like dpp language that
requires only simple role declarations from a programmer (Sect. 3);

3. a preliminary evaluation of the Rolez prototype for 4 parallel programs. Rolez
can express many parallel patterns found in these programs and achieves
substantial speedups over sequential Java for most of them (Sect. 4).

2 The Parallel Roles Model

This section presents the Parallel Roles programming model. We first present a
simple core version for single objects and then extend it to cover object graphs.

2.1 Core Parallel Roles

Fig. 2. The components of an
object: fields, methods, roles

The main idea behind Parallel Roles is to use
the object, the key concept of object-oriented pro-
gramming (OOP) as the basis to reason about
concurrent effects and parallelism. In the stan-
dard oop model an object is a collection of fields,
which contain the object’s state, plus a collection
of methods, which define the object’s functional-
ity. In the Parallel Roles model, every object has
a third component: the roles it currently plays
for the different tasks in the program. This is
illustrated in Fig. 2.

The fields and methods of an object define the object’s sequential behavior.
That is, they define how the object behaves when other objects interact with it
in a single task. On the other hand, the roles of an object define the object’s
concurrent behavior. Specifically, they define which interactions are legal in which



166 M. Faes and T. R. Gross

tasks and what happens when an illegal interaction occurs. Like the content of
an object’s fields, the roles an object plays may change over time. However, in
contrast to the fields’ contents, which (in general) can be modified arbitrarily,
the changing of roles follows strict rules. These role transition rules restrict
the combinations of roles an object may play in different tasks at the same
time. Those restrictions in turn guarantee noninterference and, by extension,
determinism. In the following paragraphs, we explain these core concepts, roles,
tasks, and role transitions, in more detail.

Fig. 3. Operations permitted by the roles

Roles. The role of an object
defines how other objects may
interact with that object, i.e.,
which kinds of field operations they
may perform and, by extension,
which methods they may invoke.
There are three roles: readwrite,
readonly, and pure. readwrite permits both field read and field write oper-
ations, while readonly permits only read operations. pure permits neither,
except if a field is final (i.e., it cannot be modified, as in Java); then it may be
read. Final fields are treated specially because they can never be the source of
interference. Figure 3 summarizes these rules.

The set of permitted field operations also defines the set of permitted meth-
ods. readwrite permits calls to any method, while readonly permits only calls
to methods that do not modify the target object. pure permits only calls to pure
methods, which are the object-oriented counterpart of a pure function: They are
side-effect free (i.e., they do not write to any of the target object’s fields) and
their result is always the same, given the same target object (i.e., they do not
read any of the target object’s non-final fields). As an example, pure for some
Account object would only permit calls to getAccountNo() (assuming account
numbers are immutable), readonly would also permit calls to getBalance(),
and readwrite would permit calls to all methods, including withdraw().

Tasks and Role Declarations. Tasks are execution contexts, like threads. When
the execution of a program begins, all objects interact with each other in the
main task. A task may start other tasks (called child tasks) and thereby create
multiple concurrent execution contexts. While tasks are similar to threads, there
is a key difference: When defining a task, the programmer needs to declare the
role that each object is supposed to play in that task. With these role declarations,
the programmer controls the role transitions that objects perform, as described
next.

Role Transitions. As mentioned earlier, there are rules about when and how the
roles of an object change, i.e., when and how an object performs a role transition.
Most importantly, role transitions only take place when a task starts or finishes.
When a new task starts, every object for which the task declares a role performs
a role transition such that its role in that task matches the declared one. Hence,



Parallel Roles for Practical Deterministic Parallel Programming 167

at the beginning of a task, every object plays the declared role in that task.
However, a role transition may also change the role an object plays in the parent
task (the task that starts the new task). For example, this is the case if the
new task declares the readwrite role for an object. In such a case, the object
becomes pure in the parent task, to prevent interference. Therefore, while an
object is guaranteed to play the declared role at the beginning of a task, a role
declaration does not state that the object plays this role for the whole duration
of the task. What a role declaration does state is that the object may never play
a more permissive role than the one declared, in either that task itself or any
task that is (transitively) started by it. That is, an object may never play a role
that permits an operation the declared role does not permit. For example, if the
declared role of an object is readonly, this object can never play the readwrite

role in that task, since readwrite is more permissive than readonly.

Fig. 4. The core role transition rules

The rules in Fig. 4 define when and how the roles of an object can change. As
we explain shortly, these rules are designed such that they guarantee noninter-
ference for every object. Rule 1 concerns newly created objects, while Rules 2–4
concern the starting of tasks and Rules 5–8 the finishing of tasks.

Figure 5 illustrates these rules by showing a series of role transitions an object
can go through. Initially, when the object is created in task t1, it is readwrite in
t1 and pure in the tmain task. It is then shared with two tasks: t2, which declares
it as readwrite, and later t3, which declares it as readonly. When t2 and t3
start and finish, the object performs a role transition. After t3 has finished, it is
again readwrite in t1. Finally, t1 finishes and the object becomes readwrite

in tmain.

Guarding. An object may never play a role that is more permissive than the role
declared in a given task. However, the object may temporarily play a less permis-
sive role. When this happens, some operations may become illegal, despite being



168 M. Faes and T. R. Gross

Fig. 5. Illustration of the role transition rules for an object. The gray arrows from the
left to the right are tasks, the black boxes represent the same object in different points
in time, and the small colored boxes show the roles the object plays in each task. (Color
figure online)

legal under the declared role. For example, if an object is declared readwrite

in a task, it might play the readonly role for some time, because it was shared
with another task. This discrepancy between declared and current role is the sub-
ject of guarding. The idea of guarding is to wait until the current role equals the
declared role: When an operation is performed that is legal under the declared
but not under the current role of the target object, this operation is not an error
but instead is blocked until the object plays its declared role again.

We illustrate guarding with a simplified Rolez snippet (from a program we
later use for the evaluation) and a corresponding illustration, in Fig. 6. This
program renders animated 3d scenes and encodes the rendered images as frames
in a video file. The main loop consists of three steps: First, the scene is rendered
for a fixed point in (animation) time, then the resulting image is encoded as a
video frame, and finally an animation step is performed to update the scene for
the next frame. The encoding and the animation step can be done in parallel,
which is why encode is declared and invoked as a task. Because encode only needs
to read the image, it declares it as readonly. When the encode task starts, the
image performs a role transition and becomes readonly also in the “main”
task. While animateStep does not modify the image, the rendering in the next
iteration does. In case the render method begins execution before the encode

task has finished, guarding blocks the execution of render to prevent it from
interfering with the encoding. Once encode finishes, the render method resumes
execution. Note that in the version of the program used for the evaluation, two
image buffers are used, to enable the encode task to also execute in parallel to
render.

Properties. We now examine the properties of Parallel Roles. First of all, the
transition rules ensure the soundness of role declarations, i.e., that no object may
play a more permissive role than its declared role in both the task that declared
it and any task it (transitively) starts. This follows from two observations: First,



Parallel Roles for Practical Deterministic Parallel Programming 169

Fig. 6. Guarding example. The left side shows (simplified) Rolez code and the right
side illustrates how guarding prevents encode from interfering with the render method.

no transition rule permits an object with a declared role to play a role it has not
played before in a given task. And second, none of the rules permit an object
to be shared with a task that declares a more permissive role than the object
currently plays. Note that Rule 8 does permit objects to play a more permissive
role (readwrite) in the parent task than before (pure), but since these objects
were newly created, they do not have a declared role in the parent task.

Second, the transition rules guarantee that no object ever plays the
readwrite role in one task while it plays the readwrite or the readonly

role in another task. We call this property exclusiveness of readwrite and we
show it using induction: When an object is created, it is readwrite for the
creator task and pure for all other tasks (Rule 1). This is the base case. For
the inductive step, we assume the object is either readwrite in a single task or
readonly in a number of tasks, but in both cases pure for all other tasks. After
any start transition (Rules 2 or 3), this rule still holds. After any transition at
the end of a task (Rules 5, 6, or 8), the condition also still holds. In particular,
Rule 6 ensures that an object that is readonly in any task can only become
readwrite again once there is no task left in which it is readonly. Therefore,
no series of transitions may ever violate the exclusiveness of readwrite.

Exclusiveness of readwrite, combined with guarding and the definitions of
permitted operations in Fig. 3, implies that if an object can be modified in one
task, then the mutable parts of it cannot be accessed by any other task until the
modifying task has finished. Thus, the model guarantees noninterference. Note
that two mechanisms to prevent interference are combined: (i) An operation that
is illegal with respect to the declared role of an object results in an error. This
could be a runtime or a compile-time error, depending on the language. (ii) An
operation that is illegal with respect to the current role of an object, but not
with respect to its declared role, is blocked by guarding until the object plays a
role under which the operation is legal.

Note that noninterference is much stricter than data race freedom. Since the
exclusiveness of readwrite holds for all objects in the program, no modification
of a task t can be observed by any other task, as long as t is running. Therefore,
tasks cannot communicate, except for passing arguments and waiting for each



170 M. Faes and T. R. Gross

other’s results. This restriction is the key to guarantee determinism. However,
Parallel Roles could be extended with nondeterministic roles to enable inter-task
communication for parallel applications that profit from nondeterminism.

Since noninterference is achieved in part by blocking the execution of oper-
ations, it may seem like the model is prone to deadlock. However, this is not
the case: Whenever an operation is blocked in a task t1, it is because the tar-
get object currently plays a less permissive role than its declared role. This can
only be the case if t1 shared the object with another task t2. Since objects can
only be shared when a task is started, t2 must be a child task of t1. Therefore,
tasks can be blocked only by child tasks, and this property precludes cyclic
dependences. Thus, Parallel Roles not only guarantees noninterference, but also
deadlock freedom. Together, these two properties imply that Parallel Roles guar-
antees determinism.

To summarize, Parallel Roles combines roles, which determine the legal oper-
ations for an object, with transition rules, which determine the possible combina-
tions of roles an object may play in parallel. Tasks are prevented from interfering
using a combination of runtime or compile-time checking and guarding.

2.2 Object Graphs

A shortcoming of the transition rules presented so far is that they do not consider
objects with references to other objects. That is, they do not define what happens
to objects that are reachable from an object that performs a role transition.

A safe but impractical definition would be that objects are simply unaffected
by the role transitions of their referrers. However, with such a definition, an
object could easily break when shared with another task, because objects it
depends on would play a different role than itself. For example, consider a Bank

object, which contains references to all Accounts of that bank. The Bank has a
method payInterest, which computes and deposits the yearly interest for each
of its accounts. If such a Bank object was shared with a task t that declares it
as readwrite, calling the payInterest method in t would fail, since all of its
Account objects would be pure and their balance could not be accessed in t.

We employ a practical, but simple and safe way to handle object graphs.
Expressed as two additional role transition rule, it states:

9. Whenever an object o is about to perform a role transition, all objects that
are reachable from o perform the same transition. The transitions only take
place once all these objects play one of the roles o is required to play. The
implicitly declared role of these objects is the same as for o. In case an object
is reachable from multiple objects that perform different role transitions at
the start of a task, that object performs the transition that makes it play
the most permissive role in the new task.

10. When a task t that declared the readwrite role for an object o is about to
finish, t waits until all objects that were reachable from o when t started are
readwrite. Then, t finishes and all these objects become readwrite in t’s
parent task.



Parallel Roles for Practical Deterministic Parallel Programming 171

With Rule 9, when an object is shared with a task, the task will not start until
that object and all objects that are reachable from it play the required role. For
example, when a Bank object is shared with a task that declares it as readwrite,
not only the Bank itself, but also all of its Accounts must play the readwrite role
before the task may start. Once they do, all these objects perform a transition
and become readwrite for the new task. Now, payInterest can be successfully
invoked in that task, because all required objects play the readwrite role.

Finally, Rule 10 concerns object graphs that are shared with a task that
unlinks some objects in the graph. Since these objects may still be used in the
parent task later, they also revert to their previous roles once the task finishes.

3 Rolez Language Overview

This section gives an informal description of a concrete programming language,
Rolez, which implements the Parallel Roles model presented in the previous
section. It is a Java-like language with a roles-based type system.

Fig. 7. Rolez code example for tasks, role declarations, and global singleton objects

3.1 Tasks and Role Declarations

Declaring and Starting Tasks. In Rolez, tasks are declared in the same way as
methods. Two different keywords, def and task, are used to distinguish the two.
Likewise, starting a task is expressed in the same way as invoking a method,
except for the keyword start, which replaces the dot. When an object is sup-
posed to be shared with a task, the programmer simply creates a corresponding
parameter for that task and passes the object as an argument when starting it.
Figure 7 shows a Rolez example program that illustrates these points. Lines 2
to 8 contain the declarations of a method and a task, while Lines 11 and 12 show
how these are called or started, respectively. Note that void return types can be
omitted.



172 M. Faes and T. R. Gross

Role Declarations. To declare the role of an object in a task, the programmer
annotates the corresponding task parameter with that role, as shown on Line 5.
This line indicates that the payInterest task requires a single object to be shared
with it, namely an Account object that plays the readwrite role. The parameter
is declared as readwrite because the payInterest modifies the balance of the
given account when calling deposit on Line 7. So when this task is started
on Line 12, the Account object that is passed as an argument performs a role
transition and becomes readwrite for the payInterest task and pure for the
main task.

Incidentally, both the payInterest and the main task have another parameter:
the “this”. The role for “this” is declared right after the task keyword and is
pure for both of these tasks. This means that the App instance does not per-
form any role transition (see Rule 4). This instance is created implicitly before
the program starts and is the target (the “this”) of both task start invocations
(including the implicit start of the main task at the start of the program execu-
tion).

Note that, in Rolez, not only task parameters but also method parameters
and other constructs have role declarations. Section 3.2 elaborates these aspects.

Global Objects. How can Rolez guarantee that only objects that have been shared
with a task are accessed in that task? Simply, a task can only access objects that
were passed to it as arguments (including “this”), or that are reachable from
such. (As per Rule 9, such reachable objects perform the same transitions as
their referrers and implicitly have the same declared role.) That is, no objects
can be globally accessed in Rolez, in contrast to, e.g., objects in static fields in
Java.

However, there is one exception: A programmer may define global singleton
objects, using the object keyword instead of class. To prevent tasks from inter-
fering when they access such global objects, these objects are immutable. In
other words, they are (conceptually) initialized at the beginning of the program
and then they permanently play the readonly role for all tasks. An example
for the declaration of such a singleton is shown in Fig. 7 on Lines 27 to 29, while
Line 3 shows how this singleton is accessed using the keyword “the”.

3.2 Role Type System

Rolez uses a static type system to report erroneous operations at compile time.
Recall that there are two kinds of illegal operations with regard to roles, only one
of which is considered erroneous. The first kind is a temporarily illegal operation,
which is illegal only with respect to an object’s current role. Such an operation
is not considered an error, but is delayed until it becomes legal, using guarding.
The second kind of an illegal operation is illegal with respect to an object’s
declared role. Such an operation can never become legal and must be reported
as a role error. In Rolez, role errors are reported at compile-time, using a roles-
based type system. In this section, we give a brief, informal overview of this type
system.



Parallel Roles for Practical Deterministic Parallel Programming 173

Note that the Rolez type system does not guarantee noninterference on its
own, unlike static effect systems. Only in combination with guarding can Rolez
guarantee that tasks do not interfere. Thus, the Rolez type system is much less
complex than static effect systems or permission-based type systems (see Sect. 5)
and does not, e.g., impose any aliasing restrictions.

Role Types. The Rolez type system is an extension of the class-based type system
known from Java and other oop languages. Every variable in such a language
has a type that corresponds to a class. A sound type system guarantees that,
at runtime, a variable always refers to an object that is an instance of the class
that corresponds to the variable’s type (or a subclass thereof). Therefore, when
accessing a field or calling a method on a variable, the compiler can check whether
this member exists in that class, or else report a type error. Likewise, by including
an object’s declared role in the static type of variables that refer to that object,
the Rolez type system enables the compiler to report role errors.

A static type in Rolez, called a role type, consists of two parts, the class part
and the static role. The class part corresponds to the class of an object, while the
static role corresponds to the declared role of an object in the currently executing
task. An example for a role type is readwrite Account, where readwrite is the
static role and Account is the class part.

Fig. 8. Rolez type hierarchy example: source code and corresponding type hierarchy

In Java-like languages, a variable may not only refer to instances of the very
class that corresponds to the variable’s type, but also to instances of subclasses
thereof. In Rolez, the same applies to the static role: A variable may refer to
objects whose declared role is a subrole of the variable’s static role. A role is
a subrole of another role if it is the same or a more permissive role. Hence,
subtyping applies to both the class part and the static role.

Figure 8 illustrates the subtype relation with an example consisting of three
classes. In Java, this code would lead to a type hierarchy with a linear structure
and three types that correspond to the three classes. On the other hand, in
Rolez the code results in a lattice containing nine role types that correspond to
all possible combinations of roles and classes.



174 M. Faes and T. R. Gross

Type Declarations and Type Checks. In Rolez, like in other languages with a
static type system, all local variables, parameters, fields, and methods need a
type declaration, in general. However, Fig. 7 shows that type inference is applied
to local variables to reduce the programmer’s annotation burden. If a variable
is assigned right when it is declared, the variable’s type is inferred from the
right-hand side of the assignment (Lines 6 and 10). For method parameters,
type inference is not possible under modular compilation, therefore types must
be fully declared. This is true also for the “this” parameter of methods (and
tasks), although the class part of the type is implicit, because it corresponds to
the method’s class. The role part is still necessary though (Lines 17, 20, and 23).
These type declarations are used by the compiler to perform type checks, with
the ultimate purpose of preventing operations that are not permitted under the
declared role of an object.

Most type checks in Rolez are standard, like “the right-hand side type of
an assignment must be a subtype of the left-hand side type”. The roles-specific
checks concern field accesses. A field may only be read if the target’s role is
“at least” readonly (or if the field is final). Likewise, a field may only be written
to if the target is readwrite. Another difference between the field access rules in
Rolez and other oop languages is that the type of a field read expression depends
on the role of the target expression, and is not simply the declared type of the
field. The reason for this difference is the object graphs extension introduced in
Sect. 2.2. With this extension, the declared role of an object that is reachable
from a task parameter corresponds to the declared role of that parameter. To
reflect this in the type system, the role of a field-read expression must always be
a superrole (the same or a less permissive role) of that of the target expression.

Fig. 9. Rolez example to illustrate the field-read type check

The example in Fig. 9 illustrates how this last rule ensures that the static
role of an object that is reachable from a task parameter is always a superrole of
that object’s implicitly declared role. The getOwnerName task declares an Account

parameter with the readonly role. When an Account object is shared with this
task, it becomes readonly, like the Client object that the owner field on Line 6
refers to. When this field is read on Line 2, the role of the a.owner expression is
readonly, even though the type of the owner field is readwrite Client. Therefore,
this expression can only be assigned to a variable of type readonly Client, mak-
ing sure that the Client object’s implicitly declared readonly role is respected.

4 Evaluation

In this section, we present a preliminary evaluation of the Rolez language that
shows that (i) parallel programs for non-trivial problems can be written in Rolez,



Parallel Roles for Practical Deterministic Parallel Programming 175

and (ii) parallel Rolez programs realize a speedup over both sequential Rolez and
Java programs, despite the runtime overhead of role transitions and guarding.

4.1 Experimental Setup

We implemented a Rolez prototype, i.e., a compiler and a runtime system, on top
of the Java platform. The runtime system is implemented as a Java library, while
the compiler, implemented with Xtext [1], transforms Rolez source code into Java
source code, inserting role transition and guarding operations as method calls
to the runtime library where necessary. The generated code is compiled using a
standard Java compiler and executed on a standard Java Virtual Machine (jvm).

The following programs were implemented in Rolez: idea encryption and
Monte Carlo financial simulation, both adapted from the Parallel Java Grande
benchmark suite [34]; a k-means clustering algorithm, as in the stamp Bench-
mark Suite [10]; and a ray tracer that renders animated scenes (called anima-
tor). These programs contain the following parallel patterns, all of which can
be expressed in Rolez: data parallelism, task parallelism, read-only data, and
task-local data.

We measured the performance of each program on a machine with four Intel
Xeon E7-4830 processors with a total of 32 cores and 64gb of main memory,
running Ubuntu Linux. As the Java platform we used OpenJdk 7. To eliminate
warm-up effects from the jit compiler in the jvm, we executed every program
5 to 10 times before measuring. Then we repeated every experiment 30 times
inside the same jvm, taking the arithmetic mean.

1 2 4 8 16 32

kmeans

0.5

1

2

4

8

16

32

1 2 4 8 16 32

S
p

ee
d

up
(re

la
tiv

e 
to

 s
eq

ue
nt

ia
l J

av
a)

animator

1 2 4 8 16 32

idea

1 2 4 8 16 32

montecarlo

Tasks

Rolez

Java

Fig. 10. Speedup of parallel Rolez programs, compared to speedup of parallel Java
programs, for different numbers of tasks. All numbers are relative to single-threaded
Java. Error bars are omitted since the variation is insignificant for all programs.

4.2 Results

First, we focus on the parallel speedup of the Rolez programs and compare it to
that of equivalent Java programs. Note that the Rolez programs reuse some Java
classes, such as System and Math, which contain native code, and also classes like



176 M. Faes and T. R. Gross

String and Random, to avoid the porting effort to Rolez. We manually ensured
that the use of these classes is deterministic. Figure 10 shows the speedups of
the Rolez and Java programs, relative to the single-threaded Java version, for
different numbers of tasks. Note the logarithmic scale of both axes.

All Rolez programs achieve substantial speedups. They outperform single-
threaded Java already with two tasks, and achieve maximum speedups of 7–20×.
The speedup they achieve is practically linear with up to 8 tasks, and for idea

and Monte Carlo even with 32 tasks. The plots also give a first idea about the
Rolez overhead. While for idea and Monte Carlo the speedup lines are mostly
equal, the overhead is clearly visible for animator and k-means, where the Java
versions achieve substantially higher performance.

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

animator kMeans idea monteCarlo

R
o

le
z 

o
ve

rh
ea

d
 o

ve
r 

Ja
va

Benchmark / Tasks

Fig. 11. Relative Rolez overhead when compared to the Java version of the same
program and with the same number of tasks. Again, error bars are omitted due to
insignificant variation.

Figure 11 shows this overhead in more detail. For idea, the overhead stays
below 35% and for Monte Carlo even below 10%. In both of these programs,
there is a modest amount of sharing and, due to static analysis in the Rolez
compiler, almost no need for guarding. While there is more sharing in the ani-
mator program, the overhead stays low for up to 8 tasks. With more tasks, a
limitation of the current incarnation of Parallel Roles shows: Since there is no
built-in support for data partitioning, data sets need to be split and merged
explicitly, which may result in a substantial overhead. Finally, k-means contains
the most sharing and therefore suffers most from the overhead caused by role
transitions.

To summarize, while the runtime concepts of Parallel Roles may inflict a
non-negligible performance overhead, our prototype still delivers substantial par-
allel speedups. We expect that the performance of Rolez could be significantly
improved by a more advanced compiler with access to global program informa-
tion or runtime data (such as a jit compiler), or by more optimized guarding
and role transitions. However, we argue that the current Rolez prototype already
provides good performance for many applications, especially on personal devices,
where the number of cores has remained relatively small.



Parallel Roles for Practical Deterministic Parallel Programming 177

5 Related Work

Many approaches have been proposed to make parallel programming in some
way safer than with explicit synchronization. Recently, the deterministic-by-
default approach for imperative, object-oriented languages has sparked the inter-
est of the research community [5,13,23,24]. In imperative languages, dpp is hard
because tasks may have effects on shared mutable state. If not restricted, the non-
deterministic interleaving of such effects leads to nondeterministic results [23].

The first imperative dpp language is Jade [22,32], where the programmer
specifies the effects of a task using arbitrary code that is executed at runtime.
Though extremely flexible, this approach comes with a substantial drawback:
The correctness of effect specifications can only be checked at runtime. Such
checks impact performance and may lead to unexpected errors. The same applies
to Prometheus [2], where the programmer writes code that assigns operations
to different serialization sets, and to Yada [14], where sharing types restrict how
tasks may access shared data. Yada’s sharing types are similar in spirit to role
types, but they were not designed with compile-time checking as a goal.

To avoid these problems, static effect systems enable checking the correct-
ness of effect specifications at compile time. In fact, these systems typically
even check noninterference statically, avoiding runtime checks altogether. While
early systems like fx [26] can only express limited forms of parallelism, recent
systems like Liquid Effects [20] or Deterministic Effects [25] can handle many
kinds of parallelism, although not necessarily in an object-oriented setting. The
effect system used in Deterministic Parallel Java (dpj) [4,6] and TweJava [18]
brings statically checked effects to Java-like languages. To support a wide range
of parallel patterns, it includes many features: region parameters, disjointness
constraints, region path lists, indexed-parameterized arrays, subarrays, and invo-
cation effects. This formidable list shows that dpj and TweJava require a pro-
grammer to understand many and potentially complex concepts. Parallel Roles
aims to simplify dpp by using the concepts of roles and role transitions to specify
the effects of tasks. In addition, the concept of guarding enables parallelization
by simply marking methods as tasks and invoking them like normal methods.

Other effect systems have been proposed to make parallel programming less
error-prone, e.g., by enforcing a locking discipline or by preventing data races
or deadlocks [7,19]. These systems combine effects with ownership types [11,12]
and generally couple the regions and effects of an object with those of its owner.
This idea resembles our handling of object graphs, which can be interpreted as
coupling the role of an object with that of its “owners”, i.e., the objects that
have a reference to it. Even though this simple idea of “referrer as owner” has the
advantage that no additional notion of ownership is involved, combining roles
with a more advanced concept of ownership would be interesting future work.

An alternative to effects are systems based on permissions [3,8,9]. Permis-
sions accompany object references and define how an object is shared and how
it may be accessed. In Æminium [37,38] for instance, permissions like unique,
immutable, or shared keep track of how may references to an object exist
and specify the permitted operations. The system then automatically extracts



178 M. Faes and T. R. Gross

and exploits concurrency. Similarly, the Rust language [27] features mutable or
immutable references and guarantees that there are either a single mutable or
multiple immutable references to an object at any time. Permissions are more
object-based than effects and conceptually similar to our roles. However, roles
and particularly guarding are dynamic concepts and enable simpler language
designs, at the cost of some runtime overhead. For instance, while Æminium

and Rust rigorously restrict aliasing, Rolez is a simpler language that permits
arbitrary aliasing.

Another approach for dpp is speculative execution, where the effects of tasks
are buffered by a runtime component and rolled back in case they interfere.
The two most well-known such approaches, Thread Level Speculation [29,35,36]
and Transactional Memory [16,17,33] are not dpp models in a strict sense: The
former automatically parallelizes sequential programs and the latter usually pro-
vides no determinism guarantees. However, there are speculative approaches
that constitute dpp models: Safe Futures for Java [40] and Implicit Parallelism
with Ordered Transactions [39]. In both models, the programmer defines which
parts of a sequential program should execute asynchronously. The runtime then
executes them as speculative tasks, enforcing their sequential order. In Paral-
lel Roles, speculation is not necessary, because interfering operations are either
delayed by guarding or cause an error (in the case of Rolez, at compile time).

6 Conclusion

During the last few years, much research about deterministic parallel program-
ming has focused on static effect or permission systems. In this paper, we pre-
sented Parallel Roles to leverage roles to express the kinds of access that are
permitted for an object. Parallel Roles puts the focus on objects and presents a
simple object-oriented way to specify and reason about effects of parallel compu-
tations. This paper explores parallel programming with just three simple roles;
these are powerful enough to express a wide range of parallel patterns and appli-
cations without the burden of complex program annotations. While a certain
runtime overhead seems to be the necessary toll for this simplicity, a prelimi-
nary evaluation indicates that the overhead is moderate: The implementation
of a roles-based language achieves substantial speedups over the corresponding
sequential Java version. Furthermore, past programming language innovations
such as garbage collection or runtime type checking have shown that a modest
runtime overhead is a small price to pay for more safety, simplicity and program-
mer productivity.

References

1. Xtext. http://www.eclipse.org/Xtext/
2. Allen, M.D., Sridharan, S., Sohi, G.S.: Serialization sets: a dynamic dependence-

based parallel execution model. In: Proceedings of the 14th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP 2009), pp.
85–96. ACM, New York (2009)

http://www.eclipse.org/Xtext/


Parallel Roles for Practical Deterministic Parallel Programming 179

3. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: Pro-
ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems and Applications (OOPSLA 2007), pp. 301–320. ACM, New
York (2007)

4. Bocchino, R.L., Adve, V.S.: Types, regions, and effects for safe programming with
object-oriented parallel frameworks. In: Mezini, M. (ed.) ECOOP 2011. LNCS,
vol. 6813, pp. 306–332. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22655-7 15

5. Bocchino, R.L., Adve, V.S., Adve, S.V., Snir, M.: Parallel programming must be
deterministic by default. In: Proceedings of the 1st USENIX Conference on Hot
Topics in Parallelism (HotPar 2009). USENIX Association, Berkeley (2009). http://
dl.acm.org/citation.cfm?id=1855591.1855595

6. Bocchino, R.L., et al.: A type and effect system for deterministic parallel Java. In:
Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Program-
ming Systems Languages and Applications (OOPSLA 2009), pp. 97–116. ACM,
New York (2009)

7. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: Proceedings of the 17th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2002), pp. 211–230. ACM, New York (2002)

8. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

9. Boyland, J.T., Retert, W.: Connecting effects and uniqueness with adoption. In:
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2005), pp. 283–295. ACM, New York (2005)

10. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: stanford transac-
tional applications for multi-processing. In: Proceedings of The IEEE International
Symposium on Workload Characterization (IISWC 2008), September 2008

11. Clarke, D.G., Noble, J., Potter, J.M.: Simple ownership types for object contain-
ment. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 53–76. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 4

12. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protec-
tion. In: Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 1998), pp. 48–64.
ACM, New York (1998)

13. Devietti, J., Lucia, B., Ceze, L., Oskin, M.: DMP: deterministic shared memory
multiprocessing. In: Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
XIV), pp. 85–96. ACM, New York (2009)

14. Gay, D., Galenson, J., Naik, M., Yelick, K.: Yada: straightforward parallel pro-
gramming. Parallel Comput. 37(9), 592–609 (2011)

15. Gottlob, G., Schrefl, M., Röck, B.: Extending object-oriented systems with roles.
ACM Trans. Inf. Syst. 14(3), 268–296 (1996)

16. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Proceed-
ings of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ing, Systems, Languages, and Applications (OOPSLA 2003), pp. 388–402. ACM,
New York (2003)

17. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture (ISCA 1993), pp. 289–300. ACM, New York (1993)

https://doi.org/10.1007/978-3-642-22655-7_15
https://doi.org/10.1007/978-3-642-22655-7_15
http://dl.acm.org/citation.cfm?id=1855591.1855595
http://dl.acm.org/citation.cfm?id=1855591.1855595
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-45337-7_4


180 M. Faes and T. R. Gross

18. Heumann, S.T., Adve, V.S., Wang, S.: The tasks with effects model for safe concur-
rency. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2013), pp. 239–250. ACM, New York
(2013)

19. Jacobs, B., Smans, J., Piessens, F., Schulte, W.: A statically verifiable programming
model for concurrent object-oriented programs. In: Liu, Z., He, J. (eds.) ICFEM
2006. LNCS, vol. 4260, pp. 420–439. Springer, Heidelberg (2006). https://doi.org/
10.1007/11901433 23

20. Kawaguchi, M., Rondon, P., Bakst, A., Jhala, R.: Deterministic parallelism via
liquid effects. In: Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2012), pp. 45–54. ACM,
New York (2012)

21. Kristensen, B.B.: Object-Oriented Modeling with Roles. In: Murphy, J., Stone, B.
(eds.) OOIS 1995, pp. 57–71. Springer, London (1996)

22. Lam, M.S., Rinard, M.C.: Coarse-grain parallel programming in Jade. In: Proceed-
ings of the 3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP 1991), pp. 94–105. ACM, New York (1991)

23. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)
24. Lu, L., Scott, M.L.: Toward a formal semantic framework for deterministic par-

allel programming. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 460–474.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0 43

25. Lu, Y., Potter, J., Zhang, C., Xue, J.: A type and effect system for determin-
ism in multithreaded programs. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211,
pp. 518–538. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28869-2 26

26. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 1988), pp. 47–57. ACM, New York (1988)

27. Matsakis, N.D., Klock II, F.S.: The rust language. In: Proceedings of the 2014
ACM SIGAda Annual Conference on High Integrity Language Technology (HILT
2014), pp. 103–104. ACM, New York (2014)

28. Pernici, B.: Objects with roles. In: Proceedings of the ACM SIGOIS and IEEE
CS TC-OA Conference on Office Information Systems (COCS 1990), pp. 205–215.
ACM, New York (1990)

29. Rauchwerger, L., Padua, D.: The LRPD test: speculative run-time parallelization
of loops with privatization and reduction parallelization. In: Proceedings of the
ACM SIGPLAN 1995 Conference on Programming Language Design and Imple-
mentation (PLDI 1995), pp. 218–232. ACM, New York, June 1995

30. Reenskaug, W., Wold, P., Lehne, O.A.: Working with Objects: OORAM Software
Engineering Method. J a Majors, Greenwich, June 1995

31. Riehle, D., Gross, T.: Role model based framework design and integration. In:
Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 1998), pp. 117–133. ACM,
New York (1998)

32. Rinard, M.C., Lam, M.S.: The design, implementation, and evaluation of Jade.
ACM Trans. Program. Lang. Syst. 20(3), 483–545 (1998)

33. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing (PODC
1995), pp. 204–213. ACM, New York (1995)

https://doi.org/10.1007/11901433_23
https://doi.org/10.1007/11901433_23
https://doi.org/10.1007/978-3-642-24100-0_43
https://doi.org/10.1007/978-3-642-28869-2_26
https://doi.org/10.1007/978-3-642-28869-2_26


Parallel Roles for Practical Deterministic Parallel Programming 181

34. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel java grande benchmark suite. In:
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (SC 2001),
pp. 8. ACM, New York (2001)

35. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar processors. In: Proceedings
of the 22nd Annual International Symposium on Computer Architecture (ISCA
1995), pp. 414–425. ACM, New York, June 1995

36. Steffan, J., Mowry, T.: The potential for using thread-level data speculation to
facilitate automatic parallelization. In: Proceedings of the 4th International Sympo-
sium on High-Performance Computer Architecture (HPCA 1998), pp. 2–13. IEEE
Computer Society, Washington DC (1998)

37. Stork, S., Marques, P., Aldrich, J.: Concurrency by default: using permissions to
express dataflow in stateful programs. In: Proceedings of the 24th ACM SIGPLAN
Conference Companion on Object Oriented Programming Systems Languages and
Applications (OOPSLA 2009), pp. 933–940. ACM, New York (2009)

38. Stork, S., et al.: Æminium: a permission-based concurrent-by-default programming
language approach. ACM Trans. Program. Lang. Syst. 36(1), 2:1–2:42 (2014)

39. von Praun, C., Ceze, L., Caşcaval, C.: Implicit parallelism with ordered trans-
actions. In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2007), pp. 79–89. ACM, New York
(2007)

40. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proceedings of
the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2005), pp. 439–453. ACM, New
York (2005)


	Parallel Roles for Practical Deterministic Parallel Programming
	1 Introduction
	2 The Parallel Roles Model
	2.1 Core Parallel Roles
	2.2 Object Graphs

	3 Rolez Language Overview
	3.1 Tasks and Role Declarations
	3.2 Role Type System

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References




