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Abstract. As clusters of multicore nodes become the standard platform
for HPC, programmers are adopting approaches that combine multicore
programming (e.g. OpenMP) for on-node parallelism with MPI for inter-
node parallelism—the so-called “MPI+X”. In important use cases, such
as reductions, this hybrid approach can necessitate a scalability-limiting
sequence of independent parallel operations, one for each paradigm. For
example, MPI+OpenMP typically performs a global parallel reduction
by first performing a local OpenMP reduction followed by an MPI reduc-
tion across the nodes. If the local reductions are not well balanced, which
can happen in the case of irregular or dynamic adaptive applications,
the scalability of the overall reduction operation becomes limited. In
this paper, we study the impact of imbalanced reductions on two differ-
ent execution models: MPI+X and Asynchronous Many Tasking (AMT),
with MPI+OpenMP and HPX-5 as concrete instances of these respective
models. We explore several approaches to maximizing asynchrony with
the HPX-5 and MPI+OpenMP collective programming interfaces and
characterize the imbalance using a specialized set of microbenchmarks.
Despite maximizing MPI+OpenMP asynchrony, we find situations where
scalability of the MPI+X programming model is significantly impaired
for two-phase reductions. We report from 0.5X to 6.5X relative perfor-
mance degradation of MPI+X in the AMT instance.

1 Introduction

The standard HPC platform today is a cluster of multicore nodes, perhaps also
including some number of GPU resources. Historically, programmers have used
shared-memory approaches for parallel programming of multicore machines and
have used distributed-memory approaches (e.g. MPI) for programming clusters.
Thus, the obvious approach for programming clusters of multicore machines is
to marry the two approaches that have separately worked so well with shared
and distributed memory. The general moniker for the resulting combination
is “MPI+X” to reflect the fact that there is a multiplicity of shared-memory
approaches but only one MPI.
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Of course the expectation, or at least the hope, is that the effect of MPI+X
will provide the compounded benefits of each and enable scalability on today’s
largest machines as well as on future exascale machines. The problem with
MPI+X, as has been famously noted, is in the “+”.1 That is, there are numerous
problems in combining two separate parallel programming paradigms, as each
carries its own interface, run-time system, and high-performance programming
idioms. It is unlikely to expect independent approaches simply to compose a
coherent system (programming or otherwise).

In this paper we study one important use case in parallel programming,
namely two-phase reduction, and we investigate the impact of the “+” in
MPI+X—in our case we focus on MPI+OpenMP in particular. For example,
in MPI+ OpenMP, a global parallel reduction can be performed by first per-
forming a local OpenMP reduction, followed by an MPI reduction across the
nodes (1). However, this approach imposes a serialization (albeit a coarse one)
of the operations in the parallel reduction—i.e. it requires a reduction of the
local variables followed by a further reduction over those intermediate values.
Such a coarse serialization may not appear to be detrimental and, as the obvious
approach presented by the two systems, would also seem to be the best possible
approach. However, if the local reductions are not well balanced, which can hap-
pen in the case of irregular or dynamic adaptive applications, this serialization
can cause problems and limit the scalability of the overall reduction operation.
Any significant variation of thread arrival times at the OpenMP implicit syn-
chronization barrier (that happens just before MPI Allreduce in Listing 1) may
cause cascading delays [1–3] across the overall operation. Additionally, such seri-
alization constraints may reduce the amount of parallelism possible in a severely
imbalanced local reduction.

One approach to ameliorating the effect of imbalance on collective operations
is to make the collective operation non-blocking. This becomes problematic with
a standard MPI+OpenMP approach because only the MPI collective operation
is readily transformable into a non-blocking operation. That is, only the second
half of the compound operation can be overlapped with other work – the local

1 Quote attributed to Bill Gropp.
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portion is not overlapped. However, when using more sophisticated approaches
to asynchrony, an MPI+OpenMP programmer may work around this restriction.

Asynchronous Many Tasking (AMT) is an alternate approach to MPI+X for
programming clusters of multicore systems. The basic paradigm of AMT is to
expose and exploit maximum parallelism through large numbers of lightweight
threads. In this paper we present a representative AMT system called “HPX-5”
(based on the ParalleX execution model [4]) coupled with a fully asynchronous
high-performance collective framework that is well suited for heavily imbalanced
global reductions. We also compare and quantify the impact of imbalanced reduc-
tions on MPI+X vs AMT, with MPI+OpenMP and HPX-5 as concrete instances
of these respective models.

This paper makes the following contributions:

– We analyze the problem of imbalance in two-phase reduction in detail for
the MPI+X and AMT programming models. We also propose a generalized
formal model that can be utilized to characterize imbalance for such config-
urations (Sect. 2).

– We implement a high-performance unified collective interface on a representa-
tive AMT called “HPX-5” and a portable framework to profile and instrument
imbalance with various real-world load distributions into parallel regions of a
distributed-memory application on MPI+OpenMP and AMT (Sect. 3).

– We empirically analyze effects of load variation (Sect. 4) on multiple runtime
execution models, namely: MPI+OpenMP, MPI, and our AMT instance using
a tunable collective microbenchmark.

2 Motivation

Fig. 1. General data-
flow graph found in HPC

Collective communication is known to propagate and
even amplify noise effects within an application life
cycle. Numerous studies report the effects of external
noise [1–3,5,6] on application scalability and the propa-
gation of delays in the face of collective communication
or global synchronization barriers. With MPI+X there
is a necessary sequence of operations (local plus global)
for realizing a single compound operation. The effect of
computational irregularity becomes isomorphic to that
of system noise but potentially orders of magnitude
larger.

Figure 1 reports a simple but commonly found execution pattern of a two-
phase reduction operation. One of the limitations of executing such a program in
MPI+OpenMP is the strict ordering of the local reduction phase. The data flow
graph depicts independent regions A and C (i.e. no directed edge) and regions B
and D as dependent. Region B relies on the output of region A and then region
D on both B and C. For irregular load conditions it would be especially beneficial
to overlap the work of region C with B. However, the implicit synchronization
barrier presents a limiting factor that makes it impossible to hide irregularities
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Fig. 2. Generic communication and computation models for two-phase reduction in
MPI+X and AMT

in region A. Therefore a naive MPI+OpenMP model of programming can make
it difficult to utilize available processing resources fully for applications with the
aforementioned parallel data dependency characteristics.

Newer implementations of OpenMP (Version 3.0 and on) have attempted
to mitigate some of these issues by embedding dynamic loop scheduling, work
queues, and task parallelism techniques, e.g. by using new additions to its pro-
gramming constructs like pragma omp task, pragma omp sections, and nested
regions. An MPI-only approach for two-phase reduction may also use OpenMP
as a thread substrate. In such cases special MPI per-threaded communicators2

should be formed to accommodate local reductions on shared memory buffers.
However, effectively controlling parallelism (task scheduling, granularity, etc.),
and obscure details of performance tuning across different runtime boundaries
(MPI and OpenMP) and compilers (Intel, gcc, etc.) may introduce many perfor-
mance problems and significant discomfort for MPI+X application developers.

AMTs are the newest breed of distributed shared memory runtime systems
that have had a significant influence on data-flow-driven parallel programming.
We contend that AMTs provide a uniform approach to two-phase collectives
even under severe imbalance. For example, due to the asynchronous nature of
AMT runtimes, they can effectively overlap communication and computation of
regions A and B (Fig. 1) and combine them with region C, thus avoiding wait
time for any costly intermediate synchronization steps and thereby increasing
throughput. Threads, in terms of early finishers, can compensate for late-comers
by taking up any additional work while waiting for network completion.

2.1 Analysis of Two-Phase Reduction

We refer to Fig. 2 for a detailed analysis of the above problem. The leftmost dia-
gram (in Fig. 2) shows a two-phase reduction by n threads conducted in MPI+X
runtime under regular conditions (i.e. no outliers). The next two diagrams feature
2 This can be superseded by MPI-4 Endpoints [16] if the proposal is accepted.
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two-phase reduction when outliers are present in MPI+X and AMT, respectively.
We state the following definitions and paramters for our evaluation.

Definition 1. Overlap Region – An overlap region is a time window at which
at least one idle processor is available to process any additional independent
compute work (independent w.r.t. this reduction operation).

Definition 2. Non-overlap Region – A non-overlap region is a time window
at which no idle processor is available (e.g. due to high contention or model-
imposed constraint) to process any additional independent compute work effec-
tively (independent w.r.t. this reduction operation).

Definition 3. Sequential Overlap – A sequential overlap is compute work
executed on an overlap region that will run only on a single processor.3

Definition 4. Parallel Overlap – A parallel overlap is compute work executed
on an overlap region that may run on any number of processors. A parallel
overlap is assumed to be embarrassingly parallel.

T An upper-bound on total elapsed time to complete a single two-phase
reduction with an independent work of size Wo, across N number of
nodes;

To sequential latency of a work of size Wo;
tmin minimum latency to complete a local reduction by one or more of total

n worker threads;
tmax maximum latency to complete a local reduction by one or more of total

n worker threads;
tsync synchronization overhead incurred when switching from one runtime

boundary to another;
tcomm average communication latency for a global reduction operation;

ti barrier latency defined as time (remaining) to complete the local reduc-
tion barrier relative to the fastest thread. This implies that for regular
reduction ∀ ti → 0.

Our analysis of two-phase reduction is based on maximizing the overall par-
allelization (or minimizing latency) possible for MPI+X or AMT in the presence
of extra computation work. However, as highlighted before, MPI+X and AMT
differ in the execution of the overlap region. MPI+X has a smaller time window
to leverage any overlap due to the coarse serialization of local and global reduc-
tion phases; it will only be able to overlap work during communication time
(tcomm in Fig. 2(b)), whereas AMT’s overlap region (Fig. 2(c)) is much larger.
Therefore, quantification of such potential differentiation is necessary and use-
ful for estimation of this behaviour. We have introduced a notation in-terms
of tsync which describe the synchronization overhead when control transfers

3 We model sequential work as a compute segment with too many data dependen-
cies such that any parallelization of respective code regions is either impossible or
impractical.
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between different executions, MPI and OpenMP in this particular case. A switch
between heterogeneous execution environments may sometimes incur significant
runtime overheads due to factors such as fork-join-like model-imposed barriers,
implementation-specific constraints4 as well as system-specific overheads related
to coherency issues, instruction and data-level cache, TLB, and page misses. The
probability of such occurrence in a homogeneous execution environment such as
AMT is low, so we assume tsync → 0.

Table 1. Maximum overlap region sizes allowed in AMT two-phase reduction for opti-
mal latency hiding on different load distributions

Distribution Parallel overlap Sequential overlap

Uniform (regular) (n− 1) · tcomm tcomm

Scaled (n− 1) · tcomm + n · (tmax − tmin) tcomm + n · (tmax − tmin)

Random uniform (n− 1) · tcomm + n·(tmax−tmin)
2

tcomm + n·(tmax−tmin)
2

Gaussian (n− 1) · tcomm + ( n√
2πσ2 ) · ∫ tmax

0
t ·

e
− (t−μ)2

2·σ2 dt

tcomm + ( n√
2πσ2 ) · ∫ tmax

0
t ·

e
− (t−μ)2

2·σ2 dt

Exponential (n− 1) · tcomm + n · ∫ tmax

0
t·e−λλt

Γ(λ+1)
dt tcomm +n · ∫ tmax

0
t·e−λλt

Γ(λ+1)
dt

2.2 Evaluating MPI+X

For MPI+X, minimum latency is achievable when additional parallel work Wo,
is overlapped with the non-blocking MPI communication. However the overlap
region starts only after tmax. Therefore the following relation holds true for total
elapsed time when MPI+X reduction is executed with parallel overlap:

Tpar ov = tmax + tsync + max (tcomm,
To

n − 1
) (1)

For sequential overlap, additional work cannot be executed in parallel (by
definition). Therefore, work segment Wo must be delegated to a single thread.5

Tseq ov = tmax + tsync + max (tcomm, To) (2)

Understandably, the potential for communication and computation overlap
for MPI+X is higher in the case of parallel overlap, since the overlap region can
be masked in the communication region of tcomm. However, time to complete the
overall operation will depend on additional work when the amount of work (or
noise) becomes sufficiently large To

n−1 > tcomm and To > tcomm for parallel and
sequential overlap, respectively. Furthermore, if significant synchronization over-
heads are incurred (tsync), then potential for communication and computation
overlap will decrease.
4 For example MPI would need to execute in MPI THREAD MULTIPLE mode with

OpenMP which may induce certain penalties compared to regular mode.
5 Amdhal’s Law can be applied for all other cases when both sequential and parallel

code regions are present in Wo. However, this evaluation goes beyond the scope of
this paper.
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2.3 Evaluating AMT

For AMT, minimum latency is achievable when all or part of Wo overlaps with
local reduction. Therefore the overlap region starts just after tmin (Fig. 2(c)).
We formulate the following definition to continue our analysis.

Definition 5. Tl Local Overlap – Local overlap is the maximum amount of
work (in time units) that can be executed by all available idle processors during a
local reduction phase (ti). We model ti ∈ {R | ti ≥ 0} as a continuous random
variable, with a probability density function of f(t). Let n be the total number
of threads available, and E(t) be average projected work (i.e. expected value) per
thread, then Tl can be calculated by the following.

Tl = n · E(ti)

= n ·
∫ ti

0

t · f(t)dt
(3)

Accordingly, for an imbalanced two-phase reduction in AMT, Tl > 0. Thus,
for this case the Local Overlap facilitates the communication and computation
overlap by reducing the amount of work that need to be parallelized during
communication phase the (tcomm). By including Tl the following relation can be
formulated for the total time of parallel overlap.

Tpar ov = tmax + max (tcomm,
To − Tl

n − 1
) (4)

Similarly, the following relation holds true for sequential overlap case.

Tseq ov = tmax + max (tcomm, To − Tl) (5)

Equations 4 and 5 highlight the significance of additional work size for the pur-
pose of latency hiding. AMT two-phase reduction reaches optimal overlap6 when
the time required for additional work does not exceed global communication –
that is (n − 1) · tcomm + Tl and tcomm + Tl for parallel and sequential overlap,
respectively. Thus, the best case for parallel overlap on AMT reduction allows
overlap of an additional work region up to a size of (n − 1) · tcomm + Tl, which is
much larger than sequential case. Table 1 reports the maximum overlap allowed
on AMT for many different probability distributions of load/noise. Barrier laten-
cies (i.e. ti) follow statistical properties of respective distributions as suggested
by the formulae in Table 1, for example: [tmin, tmax] for uniform random , (μ, σ)
for gaussian, and λ for exponential.

2.4 MPI+X Vs AMT

Our model (cf. Eqs. 1 to 5) show that when tcomm > To and the load configura-
tions are the same AMT’s imbalanced two-phase reduction enables execution of
6 Optimal solution found when T = tmax + tcomm.



136 U. Wickramasinghe and A. Lumsdaine

a larger overlap region than does MPI+X. This enables AMT to execute a global
reduction very efficiently even under severe noise or load variation. Furthermore,
even for the case in which heavy computation work (To > tcomm) is overlayed
with the reduction, AMT performs better than MPI+X, as (To−Tl

n−1 ) << To

n−1 .
Therefore, according to our analysis AMT appears to be the best fit for use cases
where distributed irregular reduction will be overlayed with useful parallel com-
pute work. More importantly, such advantage of AMT has become increasingly
evident as the amount of parallelism possible per node and the scale increases.

3 A Task-Centric Approach

Fig. 3. Continuation driven collective
design in HPX-5 for reduction opera-
tions

In this paper we have selected the HPX-
5 exascale runtime as our representative
adaptive multithreaded runtime. Listing 2
reports a code listing for a global reduc-
tion of two-phase nature written in HPX-
5 pseudo code. The reference implemen-
tation of HPX-5 [7] implements a con-
ventional work-stealing scheduler [8] for
local lightweight thread scheduling, a high
performance Partitioned Global Address
Space (PGAS) for active messaging and
Remote Direct Memory Access (RDMA)
operations, and uses a Photon RDMA
library [9] for network transport. Impor-
tantly for this work, we introduce a novel
non-blocking collective interface in HPX-
5, which is assisted by its fully asyn-
chronous lightweight thread runtime. As
with MPI+OpenMP, threads interact via
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collectives through two phases: first joining the local domains and then commu-
nicating globally to arrive at the final value. However, unlike MPI+X, HPX-5
threads do not block during any stage of the collective reduction operation.
Once the final reduced result is available, the HPX-5 scheduler will signal all
suspended threads for completion.7 This allows threads to overlap collective
communication with computation and to tolerate both latency and irregularity.
Our HPX-5 collective implementation has a continuation-driven [7] design, as
shown in Fig. 3. Additionally, this implementation consists of optimizations such
as shared memory, thread-local buffers, and virtual network topologies (binary,
binomial trees, etc.) typical for any contemporary high-performance collective
interface, implementation details [10] of which are beyond the scope of this paper.
HPX-5 implements reduction operations using the HPX-5 collective interface
hpx process collective allreduce join [7]. HPX-5 collective scheduling is
naturally integrated into the HPX-5 runtime. This unified behavior eliminates
model-imposed barriers that are fundamental to all MPI+X instantiations, and
in Sect. 4 will be observed to be well-suited for tolerating noise and irregular
behavior expected in exascale systems.

A Framework for Noise Injection. We developed a framework that injects
various amounts of load into existing parallel programs to perform our analysis.
Our framework uses the method of Fixed Work Quantum (FWQ) [1] to inject
and measure load across application regions. FWQ assumes that minimum time
tu, or unit work (tmin in Fig. 2), represents the perfectly balanced execution of
a program region. Our framework can inject tmax − ti delays into an application
region. Thus, unit work is perturbed by injecting small delays, which we will
refer to as “overhead” time or “to”. Earlier work [2,5] used similar techniques
in their noise-injection benchmarks that emulate minuscule amounts of system
noise. We identified several important criteria to emulate imbalance. First, we
enabled injection of load at varying amounts (amplitude) or conforming to a
particular distribution. Second, we enabled injection of load at identified points
– locality or light-weight processes/tasks of a distributed memory application.
Finally, we implemented runtime-specific extensions for MPI, MPI+OpenMP,
and HPX-5. Our model consists of a number of load distribution parameters for
instrumentation: unit work (tu), maximum overhead units (tu/to %) to inject as a
percentage of unit work, number of threads to inject in each locality (tpn), and a
time or work resolution unit. Our emulation system varies load/noise amplitude
by adjusting random distribution (Uniform Random, Gaussian, Poisson, etc.)
parameters such as mean and standard deviation. A scaled version of distribution
will scale just one load assignment with an overhead by a specified percentage
relative to unit work. The uniform injection mode emulates the perfectly load-
balanced base scenario.

7 In fact, collectives in HPX-5 are data driven and not execution driven. The identity
of the joining threads is inconsequential, and the completion of a collective operation
triggers a set of registered continuations.
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4 Results and Discussion

Our experiments have been conducted using a set of customized benchmarks that
evaluate two-phase reduction in irregular conditions for three programming/exe-
cution models: MPI, MPI+OpenMP and HPX-5. We tested the maximum num-
ber of processing elements possible in each cluster in every experiment. We also
tested realistic workload distributions with varying frequencies and amplitudes
that may naturally occur within load-imbalanced applications. For statistical
significance, each measure was repeated 100 times and special care was taken to
limit any external interference on performance measures. We conducted all our
experiments on two platforms: the small-scale HPC cluster “Cutter” (Intel Xeon
E5 2.1 GHz processors, 16 cores per node, up to 256 cores with a gcc/open-mpi
environment) at Indiana University and the large scale HPC cluster “Edison”
(Cray X30 Intel ‘Ivy Bridge’ 2.4 GHz processors, 24 cores per node, up to 24576
cores with an intel/cray-mpich environment) on NERSC at Berkeley.

All microbenchmark experiments are based upon two categories of execution.
First, we executed a two-phase allreduce operation8 when outliers were present
in parallel compute regions. Second, we executed the same experiment with
an additional parallel work region (Fig. 1). We injected noise outliers for each
thread (MPI+OpenMP), process (MPI-only), or task (HPX-5) using our emula-
tion framework (cf. Sect. 3). For overlap we used model parameters, total over-
lapped region size (Wo), and overlapped work quantum ( To

n−1 ∼ work per thread).
An overlapped region was emulated either with a sequential or a parallel region.
The benchmarks currently implement different variants of these overlap regions
for MPI, MPI+OpenMP, and HPX-5 via the run overlapped work(uint64 t
qw, uint64 t ow) interface.
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Fig. 4. Microbenchmark scaling with and without parallel overlap, for three distribu-
tions on Cutter (upto 224 cores)

8 A collective (i.e. tree-based) algorithm was consistent across all experiments and
runtime modes.
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Each experiment pertaining to a particular random distribution was injected
with a maximum overhead workload of tomax value equating to 2x unit work tu.9

Next we adjusted statistical parameters accordingly to fit in the scaled range.
For example the Gaussian mean was set at the mid range 2tu and the sigma
parameter was set at tu. Similarly, random uniform distribution parameters [a, b]
were set between tu and 3tu, etc. Using experimentation and empirical techniques
as tools, we determined a minimum threshold where the cascading effects of
noise irregularities became significant. For all microbenchmark experiments that
followed, unit work tu was determined at a constant value of 40 time units.
Furthermore, all experiments report regression regions or error bars of a 90%
confidence interval.

We first evaluated the performance of two-phase reduction with irregu-
lar noise on the Cutter cluster. Two experiments were conducted excluding
and including parallel regions (the parallel overlap) on the reduction kernel.
On each scatter plot in Fig. 4, we display the fitted lines (evaluated by non
parametric LOESS regression) and confidence regions for MPI+OpenMP and
HPX-5 for each case. The AMT instance completed the reduction faster than
MPI+OpenMP on both these experiments. The uniform case (zero outliers)
reported approximately same running times at a single node (tcomm → 0), but,
as the frequency of outliers and the scale increased, relative variance in run-
ning times became more significant. For exponential outliers HPX-5 reported a
∼2.2X speedup when parallel regions were excluded, and when parallel regions
were included HPX-5 reported a speedup of ∼1.6X w.r.t. MPI+OpenMP.
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Fig. 5. Microbenchmark scaling results with sequential overlap on Edison (upto 24000+
cores)

Even though MPI+X and HPX-5 spent roughly the same time in global
reduction (tcomm) on Cutter, MPI+X displayed higher synchronization costs
(↑ tsync), creating higher latencies than the AMT instance. For parallel overlap
AMT showed a greater speedup than MPI+X on account of the higher potential
for latency hiding when To > tcomm. We also noticed that the average latency

9 Each parallel load injection ti was scaled between tu and 3.tu.
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variation with exponential noise was more significant in MPI+OpenMP than in
HPX-5; the fitted model for MPI+OpenMP only explained 20% while HPX-5
explained 30% of the variability of data (Fig. 4 exponential plot). Interestingly,
the MPI+OpenMP allreduce benchmark with a parallel region and a single out-
lier (Fig. 4 scaled plot) displayed resilience by absorbing noise pressure as the
number of nodes increased. MPI+OpenMP was able to hide relatively smaller
delays (where Tcomm � To) by overlapping compute work in parallel regions.
Overall results suggested that HPX-5 was better at absorbing noise delays than
MPI+OpenMP for two-phase reduction on smaller node counts.

We show the performance of two-phase reduction on the Edison cluster with
scaling up to 24000+ cores in Fig. 5. More specifically, we tested a sequential
overlap region and started with a base case of scaled noise/load injection with
a lower overlap segment size setting (20 time units). In the base case running
times of two-phase reduction were about the same (within +/−5%). As expected,
MPI+OpenMP two-phase reduction performed poorly with scale as compared
to MPI or AMT. For sequential overlapped segments on Edison, MPI+OpenMP
reported a maximum slowdown of ∼3X to ∼6.5X (on different distributions),
while MPI exhibited a marginal speedup of ∼0.25X w.r.t. HPX-5. Unlike the
case where overlap regions are parallelizable, the addition of a sequential region
imposed a sequential delay for MPI+OpenMP at the implicit barrier. At this
point, when To >> tcomm the overhead gap generated by MPI+X – (tsync +
To), was much larger than in AMT (To − Tl). This resulted in amplification
of communication overheads with scale and thus a significant slowdown w.r.t.
HPX-5 and MPI allreduce.
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Fig. 6. Microbenchmark scaling with parallel overlap work (tu = 50) for multiple
distributions on Cutter (upto 224 cores)

For parallel overlap cases, MPI+X performed much better than its sequen-
tial configuration (i.e. when uniform and scaled noise outliers were present), an
observation which matches the inferences derived by our model (cf. Eqs. 1 and
2). On Cutter (Fig. 6) both the MPI and MPI+OpenMP benchmarks reported
a relative slowdown of ∼10% to ∼50% compared to HPX-5 when outliers were
present. Here MPI+OpenMP absorbed noise pressure better when a single noise
outlier (scaled injection) was present. Interestingly, MPI proved slower in exe-
cution times, ∼10% to ∼50% w.r.t. MPI+OpenMP and HPX-5.
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Our benchmark on Edison (up to 12000+ cores, Fig. 7), tested two additional
modes of execution for MPI + OpenMP: OpenMP sections and tasks. The
AMT instance performed better than the MPI and MPI+X runtime instances
in a majority of these configurations. Importantly, we noted that it was able to
absorb noise pressure at these large scales while maintaining a running time bet-
ter than that of all MPI+OpenMP modes for two-phase reduction. More impor-
tantly, these observations are consistent with our model as well; AMT has better
latency (T ) than MPI+X, since tmax+(To−Tl

n−1 ) << tmax+tsync+ To

n−1 . However,
Fig. 7 shows that exponential and random distribution have relatively stable run-
ning times for the MPI+OpenMP two-phase reduction. This is because MPI+X
does not depend on function Tl(ti) (Eq. 1), whereas AMT may be affected by cas-
cading delays induced by variation of noise distributions (Tl(ti)) across different
nodes (cf. Table 1). Thus we observe that at larger scales the structure of noise
between nodes is as important as the mode of execution for an global reduction.
In contrast, this behaviour was not visible at smaller scales (Fig. 6), because for
a small number of nodes significant amplification of delays is unlikely.

We observed a mean slowdown of ∼2% to ∼35% in MPI+OpenMP task
execution while slowdown in MPI+OpenMP sections was ∼2% to ∼25% w.r.t.
AMT. However, the MPI+OpenMP sections benchmark displayed its best per-
formance in the presence of scaled noise outliers with ∼6% speedup against our
AMT instance. Both the MPI-only threaded mode and MPI+OpenMP regular
version behaved similarly at scale with relative slowdowns ranging from ∼2%
to ∼30% w.r.t. HPX-5. We also noticed some variance in performance charac-
teristics in MPI+ OpenMP on the two cluster environments. Mainly, differences
in runtime implementations of MPI+OpenMP (i.e. open-mpi vs cray-mpich)
and programming environments (i.e. gcc vs intel) may have contributed towards
this behavior. Synchronization costs when ↑ tsync, (costs on per-threaded com-
municators, progress engine, etc.) causes MPI execution higher penalties in cer-
tain cases (i.e. that of scaled outliers in Fig. 7) resulting in worse performance
than MPI+OpenMP.

5 Related Work

Hoefler et al. have conducted a detailed analysis on the impact of external noise
effects on communication synchronization. These effects include operating sys-
tem [2] and network noise [5]. Other studies [6] shed further light on modeling
noise to gain a more analytic perspective on the effect of noise on the scala-
bility of collective operations. Ferreira et al. [2] use noise-injection techniques
to assess the impact of noise on several large-scale applications using extremely
lightweight kernels. Beckman [1] characterized sources of noise and analyzed per-
formance on BlueGene/L systems, using a synthetic noise-injecting benchmark
called “selfish detour”.

Other research reports on MPI+OpenMP usage patterns [11–13] and how
they can be applied to existing applications and possible challenges that may
be encountered. Based on this evidence only a handful of hybrid execution pat-
terns have been deemed successful in practice. The MPI+OpenMP programming
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Fig. 7. Microbenchmark scaling with parallel overlap work segment size for 4 noise/load
distributions on Edison (up to 12000+ cores).

model has been used for irregular application domains. Notably, Tafti et al. [14]
have reported its early adoption for AMR. More recently, newer AMT runtimes,
such as Legion [15] and OCR [17], too have grown in popularity for tackling
large-scale irregular problems. However, the impact of irregularities and imbal-
ance on the performance and scalability of applications has not been thoroughly
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studied on these systems. Our work differentiates from above efforts in that we
focus our attention on the effects of imbalance for two-phase reduction in both
the MPI+X and AMT execution models. Furthermore, we formalize imbalance
in terms of a probabilistic model and characterize performance under a varying
number of configurations.

6 Conclusion

Combining MPI and X for a two-phase reduction in a naive manner introduces
a sequential barrier bottleneck between the X collective and the MPI collec-
tive. More involved combinations (e.g. by using OpenMP tasks) can eliminate
that barrier but expose the disjoint nature of the MPI and X schedulers. As
systems increase in size and real problems become more irregular, these effects
will impact the scalability of applications using MPI+X. An AMT runtime with
integrated collective support has unified scheduling, no sequential bottleneck,
and is therefore not subjected to these same scalability limitations.

Our results indicate that given the above situations, MPI + OpenMP per-
formance varied rapidly across different execution modes and environments.
MPI+X asynchronous variants, such as OpenMP tasks and sections, per-
formed better compared to the naive MPI+X implementation. The effectiveness
of other alternatives, such as threaded MPI, largely depended on the size and
structure of the irregularity. More importantly, on both small and large scales a
reference AMT collective implementation was better able to withstand the pres-
sure exerted by simulated noise than any implementation of MPI+X. However,
both AMT and asynchronous MPI+X (i.e. OpenMP tasks) variants may not
be entirely immune to noise at very large scales. We learned that, if the struc-
ture and the distribution of the noise changes significantly across nodes, then
the tendency to cascade delays may influence the overall scalability of a two-
phase reduction. Thus, we recognize that proper characterization of irregularity
is essential to understanding the limits of existing parallel systems and address
the issues of similar nature. We look forward to building on this framework to
design accurate performance models, which will allow us to implement better
parallel programming models and paradigms in the face of observed levels of
irregularity in HPC systems.
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