
Lawrence Rauchwerger (Ed.)
LN

CS
 1

14
03

30th International Workshop, LCPC 2017
College Station, TX, USA, October 11–13, 2017
Revised Selected Papers

Languages and Compilers
for Parallel Computing

Lecture Notes in Computer Science 11403

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Lawrence Rauchwerger (Ed.)

Languages and Compilers
for Parallel Computing
30th International Workshop, LCPC 2017
College Station, TX, USA, October 11–13, 2017
Revised Selected Papers

123

Editor
Lawrence Rauchwerger
Texas A&M University
College Station, TX, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-35224-0 ISBN 978-3-030-35225-7 (eBook)
https://doi.org/10.1007/978-3-030-35225-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-35225-7

To our friend and colleague, Dr. Utpal Banerjee (1943 – 2017), who gave us fast and practical
dependence analysis, its theoretical framework and uni-modular loop transformations. He also
co-founded the LCPC workshop.
Photo provided by Utpal Banerjee’s daughter, Sanchita Saxena.

David Kuck and James Browne having a conversation in the “Oval Office” of the George
H.W. Bush Presidential Library.
The photo was taken by David Ramirez. Used with permission.

Participants of the LCPC Workshop 2017.
The photo was taken by David Ramirez, USA. Used with permission.

Preface

The 30th Workshop on Languages and Compilers for Parallel Computing (LCPC) was
held October 11-13, 2017 in College Station, Texas. It was organized by the Parasol
Lab and the Department of Computer Science and Engineering at Texas A&M
University. The workshop gathered together more than 60 researchers from academia,
corporate and government research institutions spanning three continents.

This year we celebrated the 30th anniversary of the workshop. In honor of the
occasion we included in the program both new contributions as well invited retro-
spective presentations of 30 years of compiler and language research for parallel
computing. The program included 17 regular papers, 11 invited presentations and 5
keynote lectures. We received 26 regular paper submissions which were double blind
reviewed by three PC members each. The program committee met online and accepted
13 full length papers and 4 short papers. In addition, four papers where invited to be
presented as posters.

The program also included a panel discussion appropriately named for the 30th
anniversary of the workshop: “Compilers and Languages for Parallel Computing -
What have we Achieved?” The panel was moderated by the Program Chair and the
panelists were selected from the long time contributors to LCPC: James Browne
(University of Texas), Henry G. Dietz (University of Kentucky), David Kuck (Intel),
Monica Lam (Stanford University), Keshav Pingali (University of Texas), and Harry
Wijshoff (Leiden University). The workshop took place in three different venues on the
campus of Texas A&M University and enabled participants to interact during breaks in
a relaxed environment. On the second day, the workshop was held on the grounds
of the George H.W. Bush (41) Presidential Library. It allowed participants to visit the
museum at leisure and “travel” through modern American history. The traditional
banquet was held at Messina Hof, the local winery just outside of town, and included a
presentation about wine making and tasting.

Finally, the 30th LCPC Workshop was also an occasion to give tribute to Dr. Utpal
Banerjee’s life and accomplishments. On the first day of workshop, in a special
gathering, his friends and colleagues reminded everybody of his amazing life story and
his great technical achievements. He gave us the theoretical basis of data dependence
analysis and uni-modular loop transformations. He was also a founder of this work-
shop. He was remembered by his friends, colleagues and Ph.D. adviser. His daughter
Sanchita was also present and received an award on behalf of her father.

November 2017 Lawrence Rauchwerger

Organization

General and Program Chair

Lawrence Rauchwerger Texas A&M University, USA

Workshop Organizing Committee

Nancy M. Amato Texas A&M University, USA
Jeff Huang Texas A&M University, USA
Lawrence Rauchwerger Texas A&M University, USA

Steering Committee

David Padua University of Illinois, USA
Alexandru Nicolau University of California, Irvine, USA
Rudolf Eigenmann University of Delaware, USA
Lawrence Rauchwerger Texas A&M University, USA

Program Committee

Nancy M. Amato Texas A&M University, USA
John Criswell University of Rochester, USA
Tim Davis Texas A&M University, USA
Chen Ding University of Rochester, USA
Matthew Fluet Rochester Institute of Technology, USA
Mary Hall University of Utah, USA
Jeff Huang Texas A&M University, USA
Jaejin Lee Seoul National University, South Korea
Sam Midkiff Purdue University, USA
Jose Moreira IBM, USA
Frank Mueller North Carolina State University, USA
Peter Pirkelbauer University of Alabama at Birmingham, USA
Xipeng Shen North Carolina State University, USA
James Tuck North Carolina State University, USA
Peng Wu Huawei, USA

Sponsors

Parasol Lab Texas A&M University, USA
Texas A&M Engineering

Experiment Station
Texas A&M University, USA

Institute for Applied
Mathematics and
Computational Science

Texas A&M University, USA

Huawei China
Intel USA

x Organization

Keynote Talks

Making Sparse Fast

Saman Amarasinghe

MIT, USA

Abstract. Achieving high performance is no easy task. When it comes to
programs operating on sparse data, where there is very little hardware, pro-
gramming language or compiler support, getting high performance is nearly
impossible. As important modern problems such as deep learning in big data
analytics and physical simulations in computer graphics and scientific com-
puting operate on sparse data, lack of performance is becoming a critical issue.
Achieving high performance was so important from the early days of comput-
ing, many researchers have spent their lifetime trying to extract more FLOPS out
of critical codes. Hardcore performance engineers try to get to this performance
nirvana single handedly without any help from languages, compilers or tools. In
this talk, using two examples, I’ll argue that domain specific languages and
compiler technology can take most of the performance optimization burden even
in a very difficult domain such as sparse computations. The first example I will
describe is TACO, an optimizing code generator for linear and tensor algebra.
TACO introduces a new techniques for compiling compound tensor algebra
expressions into efficient loops. TACO-generated code has competitive perfor-
mance to best-in-class hand-written codes for sparse, dense and mixed tensor
and matrix expressions. Next, I will introduce Simit, a new language for
physical simulation. Simit lets the programmer seamlessly work on a physical
system both in its individual geometric elements as a graph as well as the
behavior of the entire system as a set of global tensors. We demonstrate that
Simit is easy to use: a Simit program is typically shorter than a Matlab program;
that it is high performance: a Simit program running sequentially on a CPU
performs comparably to hand-optimized simulations; and that it is portable:
Simit programs can be compiled for GPUs with no change to the program,
delivering 4 to 20? speedups over our optimized CPU code.

Software Challenges for Extreme
Heterogeneity

Vivek Sarkar

Georgia Institute of Technology, USA

Abstract. It is widely recognized that a major disruption is under way in
computer hardware as processors strive to extend, and go beyond, the end-game
of Moore’s Law. This disruption will include new forms of heterogenous pro-
cessor and memory hierarchies, near-memory computation structures, and, in
some cases, Non-von Neumann computing elements. In this talk, we summarize
the software challenges for these levels of “extreme heterogeneity”, with a focus
on the role of programming systems, which encompass programming models,
compilers, and runtime systems. These challenges anticipate a new vision for
programming systems that goes beyond their traditional role of mapping a
specific subcomputation to a specific hardware platform, to an expanded world
view in which programming systems control the global selection of computation
and data mappings of subcomputations on heterogeneous subsystems. We will
discuss recent trends in programming models, compilers, and runtime systems
that point the way towards addressing the challenges of extreme heterogeneity.

A New Framework for Expressing,
Parallelizing and Optimizing Parallel

Applications

Harry Wijshoff

University of Leiden, The Netherlands

Abstract. The Forelem framework was initially introduced as a means to
optimize database queries using optimization techniques developed for com-
pilers. Since its introduction, Forelem has proven to be more versatile and to be
applicable beyond database applications. In this talk we show that the original
Forelem framework can be adapted to express general applications and
demonstrate how this framework can be used to express and optimize appli-
cations. More specifically, we will demonstrate the effectiveness of this
framework by applying it to k-Means clustering and PageRank, resulting in
automatically generated implementations of these applications. These imple-
mentations are more efficient than standard, hand coded, and state of the art MPI
C/C++ implementations of k-Means and PageRank, as well as significantly
outperform state-of-the-art Hadoop implementations.

Languages and Compilers for Exascale Science

Katherine Yelick

UC Berkeley, Lawrence Berkeley National Laboratory, USA

Abstract. In the next few years, exascale computing systems will become
available to the scientific community. They will require new levels of paral-
lelization, new models of memory and storage, and a variety of node archi-
tectures for processors and accelerators. They will enable simulations with
unprecedented scale and complexity across many fields from fundamental sci-
ence to the environment, infrastructure design, and human health. These systems
will also offer exascale data analysis capabilities, allowing genomes, images,
and sensor data to be processed, analyzed, and modeled using machine learning
and other analytics techniques. But several programming challenges remain as
architectures are diverging and data movement continues to dominate compu-
tation. In this talk, I will describe some of the latest communication-avoiding
algorithms and open questions on automating the communication optimizations.
Using example from genomics, MRI image analysis, and machine learning, I
will argue that we can take advantage of the characteristics of particular science
domains to produce compilers, libraries and runtime systems that are powerful
and convenient, while still providing scalable, high performance code.

Thingtalk: A Distributed and Synthesizable
Programming Language for Virtual Assistants

Monica Lam

Stanford University, USA

Abstract. Virtual assistants, such as Alexa, Siri, and Google Home, are
emerging as the super app that intermediates between users and their IoT
devices and online services. As an intermediary, the virtual assistant sees all our
personal data and has control over the services and vendors we use. A monop-
olistic virtual assistant would pose a great threat to personal privacy as well as
open competition and innovation. This talk presents Almond, an open-source
project to create an open virtual assistant platform that protects user privacy. At
the core of the project is ThingTalk, a domain-specific language which lets end
users use natural language to describe sophisticated tasks involving an open
world of skills. It also protects privacy by letting users share data and devices
while keeping their credentials and data on their personal devices.

Invited Speakers

Programming in a Spatial World

James Brodman

Intel

Abstract. Moore’s Law provided ever increasing performance gains for
decades. However, power has become a limiting factor for architectural
improvements. The increasing success of accelerators like GPUs and FPGAs
shows willingness to trade off general purpose flexibility for greater efficiency
and performance. This talk will examine generating high-performing programs
for FPGAs. While existing data parallel programming models are capable of
generating good results, a few simple extensions to these models can exploit the
unique nature of these devices. Several architecture-specific optimizations will
be discussed as well as difficulties that arise due to optimization tradeoffs that
differ from those for CPUs or GPUs.

Is Parallelization Technology Ready
For Prime Time?

Rudolf Eigenmann

University of Delaware, USA

Abstract. Our language and compilers community has created a large body of
work in parallelization techniques over the past three decades. Nevertheless,
current practical compilers make little use of these contributions. Automatic
parallelization tools have a mixed reputation at best. This situation contrasts
with the expectation of the now over two-years-old National Strategic
Computing Initiative (NSCI). The NSCI, in addition to pushing high-end
compute capabilities, wants to make high-performance computing available to
the large majority of non-experts in parallel computing. In this talk, after a brief
review of the past, I will plot a path forward that aims to ensure that the
technology our community has put so much energy in, will be harnessed and
benefit a large number of HPC users. Elements of this path include highly
interactive translators, options that can set the degree of automation versus user
involvement, and tight involvement with the applications community, giving us
constant feedback on how to improve the tools.

Compilers for Program Execution Models
Inspired By Dataflow - A Personal Reflection

of 30 Years (1987–2017)

Guang Gao

University of Delaware, USA

Abstract. Recently we have witnessed a rapid growing Interests and activities
on dataflow program execution models and systems – from academia and
industry. In this talk, I will present a personal reflection on compiler technology
evolution for dataflow-inspired parallel architectures in the past 30 years.
Remarks will be made on aspects that may be particularly useful in exploring
future innovative system design assisted by modern hardware/software tech-
nologies especially when facing the challenges from applications in advanced
data analytics and machine learning.

Autotuning Stencil Computations
with Structural Ordinal Regression Learning

Ben Juurlink

Berlin University of Technology, Germany

Abstract. Stencil computations expose a large and complex space of equivalent
implementations. These computations often rely on autotuning techniques,
based on iterative compilation or machine learning (ML), to achieve high per-
formance. Iterative compilation autotuning is a challenging and time-consuming
task that may be unaffordable in many scenarios. Meanwhile, traditional ML
autotuning approaches exploiting classification algorithms (such as neural net-
works and support vector machines) face difficulties in capturing all features of
large search spaces. This presentation proposes a new way of automatically
tuning stencil computations based on structural learning. By organizing the
training data in a set of partially-sorted samples (i.e., rankings), the problem is
formulated as a ranking prediction model, which translates to an ordinal
regression problem. This approach can be coupled with an iterative compilation
method or used as a standalone autotuner. Its potential is demonstrated by
comparing it with state-of-the-art iterative compilation methods on a set of nine
stencil codes and by analyzing the quality of the obtained ranking in terms of
Kendall rank correlation coefficients.

Multigrain Parallelization
and Compiler/Architecture Co-design

for 30 Years

Hironori Kasahara

Waseda University, Japan

Abstract. Multicores have been attracting much attention to improve perfor-
mance and reduce power consumption of computing systems facing the end of
Moore’s Law. To obtain high performance and low power on multicores,
co-design of hardware and software especially parallelizing and power reducing
compiler is very important. OSCAR (Optimally Scheduled Advanced Mul-
tiprocessor) compiler and OSCAR multiprocessor/multicore architecture have
been researched since 1985. This talk includes OSCAR multigrain paralleliza-
tion compiler that hierarchically exploits coarse grain task parallelism, loop
parallelism, and statement level parallelism, global data locality optimization
over coarse grain tasks for cache and local memory automatic power reduction
controlling frequency and voltage control, clock and power gating, heteroge-
neous task scheduling with overlapping data transfers using DMA controllers
software coherence controls by OSCAR compiler local memory automatic
management with software-defined block and its replacement, performance and
power consumption of real applications including automobile engine control,
cancer treatment, scientific applications and so on various multicore systems,
such as Intel, ARM, IBM, Fujitsu, Renesas, Tilera and so on.

When Small Things Cause Big Problems

Paul Petersen

Intel, USA

Abstract. Effective performance optimization requires knowledge of the target
application’s dynamic behavior. Measuring this behavior without excessive
effort or substantially perturbing the applications execution has been a common
request from developers. For many applications, we have today effective tools
which can give you a good understanding of the dynamic behavior of an
application at rather low cost. But this is only when certain assumptions are met.
The typical assumption being that the application execution is sufficiently long
relative to the sampling period, and that the behavior of the functions are rel-
atively uniform without unexpected actions occurring on the system. But
problems arise when you violate these assumptions. What if you care about
small execution paths (< < 100K instructions), but your sampling period
is >100K instructions. What if you care about minimizing the cost of outliers
more than reducing the average behavior of these short sequences? What if these
outliers are not necessarily caused by the program itself, but by the interaction
of the program with other things being managed by the OS? These problems can
be solved with the help of hardware support for collecting fine-grain execution
traces. In this talk we will walk through some simple examples illustrating these
problems, and show what is possible with the instruction tracing features
available on today’s systems.

Thirty Years of the Polyhedral Model:
Let’s Return to the Origins

Sanjay Rajopadhye

Colorado State University, USA

Abstract. Even after thirty years, the polyhedral model is far from being an
unequivocal success, even on the restricted domain where it is applicable.
Despite impressive recent progress, we do not (yet) have compilers for
general-purpose processors that can generate code approaching either the
machine peak, or the algorithmic peak of the source program, or even hand
tuned libraries developed by “heroes” of high performance computing. I will try
to explain why this is so by arguing that although the theory is elegant and
beautiful, we have been solving the wrong problems. We are also targeting the
wrong platforms. I will suggest a plan of how we can improve this state of
affairs by targeting accelerators, building analytical models, and using discrete
nonlinear optimization.

On Using Data Movement Lower Bounds
To Guide Code Optimization

P. (Saday) Sadayappan

Ohio State University, USA

Abstract. The four-index integral transform is a computationally demanding
calculation used in many quantum chemistry software suites like NWChem. It
requires a sequence of four tensor contractions that each contract a
four-dimensional tensor with a two-dimensional transformation matrix. Loop
fusion and tiling can be used to reduce the total space requirement, as well as
data movement within and across nodes of a parallel supercomputer. However,
the large number of possible choices for loop fusion and tiling, and
data/computation distribution across a parallel system, make it challenging to
develop an optimized parallel implementation. Lower bounds on data movement
as a function of available aggregate physical memory in a parallel computer
system are used to identify and prune ineffective fusion configurations. This
enables a characterization of optimality criteria and the development of an
improved parallel implementation of the four-index transform - with higher
performance and the ability to model larger electronic systems than feasible with
previously available implementations in NWChem.

Experiences on Generalizing Redundancy
Removal

Xipeng Shen

North Carolina State University, USA

Abstract. Born soon after the advent of the first computer, as one of the oldest
branches in Computer Science, Compiler Technology is often regarded as a
mature field. However, recent observations led Dr. Shen and his group to believe
that some dramatic, hidden power of compilers has remained untapped, espe-
cially for modern computing. When the power gets exerted, computing effi-
ciency may improve by up to hundreds of times, and even automatic algorithm
derivations become possible. In this talk, Dr. Shen will discuss the findings by
drawing on their recent experiences in generalizing redundancy removal into a
large scope and a high level. (The talk is based on his publications at
PLDI’2017, OOPSLA’2017, ICDE’2017, VLDB’2015, ICML’2015.)

The Route To Automation

Armando Solar-Lezama

MIT, USA

Abstract. Traditionally, there has been a trade-off between the level of
abstraction afforded by a language and the performance one can expect from the
resulting code. In this talk, I will describe how a new class of techniques based
on program synthesis could help introduce more automation into
high-performance programming tasks. The goal is to help to reduce programmer
effort without sacrificing performance.

Hiding the High Overheads of Persistent
Memory

Yan Solihin

NSF/North Carolina State University, USA

Abstract. Byte-addressable non-volatile memory technology is emerging as an
alternative for DRAM for main memory. This new Non-Volatile Main Memory
(NVMM) allows programmers to store important data in data structures in
memory instead of serializing it to the file system, thereby providing a sub-
stantial performance boost. However, computer systems reorder memory oper-
ations and utilize volatile caches for better performance, making it difficult to
ensure a consistent state in NVMM. Intel recently announced a new set of
persistence instructions, clflushopt, clwb, and pcommit. These new instructions
make it possible to implement fail-safe code on NVMM, but few workloads
have been written or characterized using these new instructions. In this talk, I
will discuss a new logging approach for durable transactions that achieves the
favorable characteristics of both prior software and hardware approaches. Like
software, it has no hardware constraint limiting the number of transactions or
logs available to it, and like hardware, it has very low overhead. Our approach
introduces two new instructions: one that indicates whether a load instruction
should create a log entry, and a log flush instruction to make a copy of a cache
line in the log. We add hardware support, primarily within the core, to manage
the execution of these instructions and critical ordering requirements between
logging operations and updates to data. We also propose a novel optimization at
the memory controller that is enabled by a battery backed write pending queue
in the memory controller. Our experiments show that our technique improves
performance by 1.48?, on average, compared to a system without hardware
logging and 10.5% faster than ATOM. A significant advantage of our approach
is dropping writes to the log when they are not needed.

Contents

Compilers for Parallel Computing

Using Hardware Counters to Predict Vectorization 3
Neftali Watkinson, Aniket Shivam, Zhi Chen, Alexander Veidenbaum,
Alexandru Nicolau, and Zhangxiaowen Gong

Software Cache Coherent Control by Parallelizing Compiler. 17
Boma A. Adhi, Masayoshi Mase, Yuhei Hosokawa, Yohei Kishimoto,
Taisuke Onishi, Hiroki Mikami, Keiji Kimura, and Hironori Kasahara

Polyhedral Compilation Support for C++ Features: A Case Study
with CPPTRAJ . 26

Amit Roy, Daniel Roe, Mary Hall, and Thomas Cheatham

Language-Agnostic Optimization and Parallelization
for Interpreted Languages. 36

Michelle Mills Strout, Saumya Debray, Kate Isaacs, Barbara Kreaseck,
Julio Cárdenas-Rodríguez, Bonnie Hurwitz, Kat Volk, Sam Badger,
Jesse Bartels, Ian Bertolacci, Sabin Devkota, Anthony Encinas,
Ben Gaska, Brandon Neth, Theo Sackos, Jon Stephens, Sarah Willer,
and Babak Yadegari

Performance Modeling and Instrumentation

Memory Distance Measurement for Concurrent Programs 49
Hao Li, Jialiang Chang, Zijiang Yang, and Steve Carr

Efficient Cache Simulation for Affine Computations 65
Wenlei Bao, Prashant Singh Rawat, Martin Kong,
Sriram Krishnamoorthy, Louis-Noel Pouchet, and P. Sadayappan

ADLER: Adaptive Sampling for Precise Monitoring 86
Arnamoy Bhattacharyya and Cristiana Amza

How Low Can You Go? . 101
Henry Dietz

Memory-Access-Pattern Analysis Techniques for OpenCL Kernels 109
Gangwon Jo, Jaehoon Jung, Jiyoung Park, and Jaejin Lee

Parallel Programming and Abstractions

Characterizing Performance of Imbalanced Collectives on Hybrid and Task
Centric Runtimes for Two-Phase Reduction . 129

Udayanga Wickramasinghe and Andrew Lumsdaine

Abstract Representation of Shared Data for Heterogeneous Computing 145
Tushar Kumar, Aravind Natarajan, Wenjia Ruan, Mario Badr,
Dario Suarez Gracia, and Calin Cascaval

Parallel Roles for Practical Deterministic Parallel Programming 163
Michael Faes and Thomas R. Gross

Mozart: Efficient Composition of Library Functions
for Heterogeneous Execution . 182

Rajkishore Barik, Tatiana Shpeisman, Hongbo Rong, Chunling Hu,
Victor W. Lee, Todd A. Anderson, Greg Henry, Hai Liu, Youfeng Wu,
Paul Petersen, and Geoff Lowney

Lock-Free Transactional Adjacency List. 203
Zachary Painter, Christina Peterson, and Damian Dechev

GPU Applications

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 223
Thorsten Blaß, Michael Philippsen, and Ronald Veldema

Scalable Top-K Query Processing Using Graphics Processing Unit 240
Yulin Zhang, Hui Fang, and Xiaoming Li

Fast Dynamic Graph Algorithms . 262
Gaurav Malhotra, Hitish Chappidi, and Rupesh Nasre

Posters

Towards Fine-Grained Dataflow Parallelism in Big Data Systems. 281
Sebastian Ertel, Justus Adam, and Jeronimo Castrillon

JIT for Intelligent Manufacturing. 283
Lei Zhang, L. N. C. Annadorai, Atin Angrish, Xipeng Shen, Binil Starly,
Yuan-Shin Lee, and Paul Cohen

Static Reuse Time Analysis Using Dependence Distance 285
Dong Chen, Fangzhou Liu, Chen Ding, and Chucheow Lim

Analyzing Auto-Vectorization Rates and Quality
in C/C++ Compilers . 287

Angela Pohl, Biagio Cosenza, and Ben Juurlink

Author Index . 289

xxxiv Contents

Compilers for Parallel Computing

Using Hardware Counters to Predict
Vectorization

Neftali Watkinson1(&), Aniket Shivam1, Zhi Chen1,
Alexander Veidenbaum1, Alexandru Nicolau1,

and Zhangxiaowen Gong2

1 Department of Computer Science, University of California, Irvine, Irvine, USA
{watkinso,aniketsh,zhic2,alexv,anicolau}@uci.edu

2 Department of Computer Science, University of Illinois, Urbana-Champaign,
Champaign, USA

gong15@illinois.edu

Abstract. Vectorization is the process of transforming the scalar implementa-
tion of an algorithm into vector form. This transformation aims to benefit from
parallelism through the generation of microprocessor vector instructions. Using
abstract models and source level information, compilers can identify opportu-
nities for auto-vectorization. However, compilers do not always predict the
runtime effects accurately or completely fail to identify vectorization opportu-
nities. This ultimately results in no performance improvement.
This paper takes on a new perspective by leveraging the use of runtime

hardware counters to predict the potential for loop vectorization. Using super-
vised machine learning models, we can detect instances where vectorization can
be applied (but the compilers fail to) with 80% validation accuracy. We also
predict profitability and performance in different architectures.
We evaluate a wide range of hardware counters across different machine

learning models. We show that dynamic features, extracted from performance
data, implicitly include useful information about the host machine and runtime
program behavior.

Keywords: Machine learning � Compilers � Auto-vectorization � Profitability

1 Introduction

During the last decades, numerous techniques have been proposed for automatically
transform code to improve performance and optimize the use of resources. When a
compiler is performing optimizations, most of the transformations are applied early in
the compilation process relying on an abstract model of the host machine configuration.
Because of this, it is expected that only a few optimizations will take full advantage of
the host’s architecture and hardware configuration.

Among these transformations, there are some designed to take advantage of dif-
ferent levels of parallelism found in modern architectures. These may range from
parallel functional units in a CPU core, to using special instruction sets and parallel
thread execution. Such is the case for Single Instruction Multiple Data (SIMD)

© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 3–16, 2019.
https://doi.org/10.1007/978-3-030-35225-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_1

instructions. They apply an operation on “vectors” of data simultaneously. Hence the
transformation of code to take advantage of these instructions is called “vectorization”.

However, obstacles like data dependency, function calls, or complex memory
access patterns could prevent vectorization. Most compilers rely on static information
(gathered at the source level and/or at the intermediate representation) to decide when
to vectorize.

The compiler’s analysis faces challenges as well. The two most common ones are:
lack of running-time information (e.g. the behavior depends on the input data) and
inaccurate profitability prediction due to an incomplete model of the host architecture.
In [6] we can see that three of the widely used (and arguably best) C compilers (IBM
XL, Intel’s compiler, GCC) failed to vectorize over 30% of loops inside a benchmark.
Manual analysis showed that many of these loops were clearly vectorizable.

With the increasingly complex modern architectures with highly constrained vector
instructions (i.e. with a specific purpose for the architecture), multiple levels of par-
allelism exploitation (e.g. vector instructions, instruction-level parallelism (ILP), multi-
core processing), and complex memory hierarchies, it is also increasingly hard for
compilers to create an accurate model.

Recent approaches have tried to design a model that is self-adaptable (i.e. can be
applied to different machine configurations) and capable of predicting vectorization and
its profitability. Fursin et al. [10] create models from dynamic and static data that can
be used to identify parallelism and profitable scheduling policies for loops inside a
code. Kennedy et al. [5] use dependence information extracted at the source and
intermediate level to optimize a compiler. However, these are not specific to vector-
ization and use only static information. Cammarota et al. [3] use hardware counters and
unsupervised learning to find similarity among different applications that translate into
performance improvement through the application of similar optimizations among
clusters. This shows that dynamic information extracted at run time contains a different
representation than the one provided by static models.

We focus on evaluating dynamic data (hardware counters) in supervised machine
learning models for the prediction of vectorization. We predict whether a loop-nest can
be vectorized, manually or by a compiler, and if vectorization will be profitable. The
prediction is done for two major compilers, the Intel C Compiler (ICC) and the GNU
Compiler Collection (GCC), using their respective auto-vectorization options.

To fully evaluate the performance of dynamic data, we make use of six machine
learning algorithms: Support Vector Machines, Naïve Bayes, K-Nearest Neighbors,
Random Forest Trees and Logistic Regression. In our experiments, we could predict
when vectorization is successful with up to 94% accuracy on cross-validation, and
profitability with up to 92% accuracy. In the last experiment, we extend our dataset to
include loops that can be manually vectorized but the compiler fails to do so. We
created a validation set using these loops and we achieved 80% accuracy in predicting
whether the loops could be manually vectorized.

The rest of this paper is organized as follows: The section Approach explains the
tools and the methodology that we used, the key concepts needed to understand the
problem and the solution. In Experiments, we present the tests we performed and
the results obtained with six different sets of classification models and discuss the
applicability of hardware event features. The section Related work gives a brief

4 N. Watkinson et al.

overview of other projects and a comparison of their approaches with ours, including a
similar approach that used only static information. Finally, in Conclusion we analyze
the implication of our results and explain why this approach to the problem has
potential to grow further and be used in other areas of compiler optimization as well.

2 Approach

In most of supervised Machine Learning workflows, there is a dataset from which one
can extract features, then build a classifying model using these features and one of the
available algorithms, and finally validate that model. Our dataset is built from loops
that were compiled, executed and profiled to collect runtime data from the hardware
event counters. That data is then used to build the feature vector. We select the features
that are more relevant for the classifier. Finally, the features are evaluated using several
machine learning algorithms. Figure 1 illustrates the workflow.

2.1 Data Collection

For our training dataset, we used the TSVC (Test Suite for Vectorizing Compilers)
benchmark [6]. It contains 151 loops written in C. It was designed to evaluate auto-
vectorization capabilities in different compilers. Each loop is also nested inside a
control loop that repeats the run to record execution time accurately.

We reevaluated the work in [6] to update the number of loops that newer versions
of the GCC (5.6) and ICC (15) compilers can vectorize. By using – O3, there are 105
loops that are vectorized by ICC and 57 by GCC (114 in the union set of both
compilers). However, by disabling the cost estimation model and force the compiler to
vectorize (using the -vec-threshold0 flag on ICC and -fvect-cost-model = unlimited on
GCC), the report yielded 116 from Intel and 78 from GCC (with 123 total). For our first
experiment, we disregard the profitability of vectorization and focus only on whether
the loop can or can’t be vectorized.

Fig. 1. Flow diagram for our machine learning approach.

Using Hardware Counters to Predict Vectorization 5

Adding the information about manual vectorization and IBM compiler in [6] we
end up with 137 loops that are vectorizable (compared to the 124 originally reported in
[6]). Note that for our approach we consider a loop vectorizable if either of the
compilers report some level of vector transformations applied to the loop or there was a
way to vectorize it manually.

To create a separate validation data for our last experiment, we used the extracted
loops from LORE [15]. We isolated the loops that are not vectorized by ICC and then
performed manual vectorization to identify the ones that could be vectorized. There
was a total of 490 loops that could not be vectorized by the compilers. Out of those,
123 could be vectorized manually. We profiled these loops using the same method
described for TSVC.

2.2 Hardware Performance Counters

We built the features using performance data gathered with Linux Perf [13] and Intel
Vtune Amplifier XE 2016 [8]. Since we want to predict vectorization only, the data
comes from non-vectorized code (with O3 enabled but vectorization turned off). Some
of the hardware events include branching, micro operations, cycles, memory flow, and
time-based events, among others. These are also called dynamic features, because they
depend on the performance of the program and change with each architecture.

2.3 Feature Evaluation

When working with a new set of features, it is important to evaluate and discard those
that - related to the model’s output - are irrelevant or introduce noise to the dataset. This
list of features may be different for each ML model and algorithm depending on the
problem being solved. Since we use every hardware counter available to build our
feature vector, we use filter based feature selection [7].

We selected features using Information Gain (IG), a ratio useful for identifying
those features that reduce bias in decision trees. It builds a decision tree for each feature
and measures the difference in entropy before and after splitting the instances. The
higher the IG value the better the feature is in dividing the dataset. In Sect. 3 we discuss
the features selected in each experiment, as well as in general terms the ones that we
found to be most useful across the experiments.

2.4 Classification

There are several machine learning techniques and algorithms for classification. We
focused on applying the most common ones. We used Orange 3.2 [4] to build and
evaluate the models.

Support Vector Machine (SVM)
This algorithm creates a virtual space with multiple dimensions (hyperspace) and then
represents each instance as a point in that space using features as coordinates. It then
divides the space by using a hyperplane via support vectors that define the limits for
each class. When a new data point is evaluated, depending on which side of the

6 N. Watkinson et al.

decision hyperplane it falls, the model will define the predicted class. Along with
feature filtering, it is a very powerful classifier for discriminative classification, and it is
also very versatile since the user can define the number of dimensions the kernel that
the SVM will use.

K-nearest Neighbors (KNN)
Similar, to SVM, this algorithm also deals with a vector space in the sense that it
represents the instances as points in it using features as coordinates. However, instead
of dividing the data into two spaces, it calculates the distance between the data point to
be predicted and the ones nearest to it. The predicted value will be equal to the majority
of the k neighbors nearest to it. The distance can be measured with different metrics, we
use Manhattan distance (distance following a strictly horizontal and vertical axis [7]).

Naïve Bayes
This is a generative model that makes a statistical assumption: the features are con-
ditionally independent to the predicted value. Once trained, the probability of each
class is computed given the new example’s feature. It then classifies the example as
having the most likely class label [7].

Random Decision Forest
This algorithm builds a set of classification trees using the training data and outputs the
mode for all the trees built. This is done to countermeasure the tendency of classification
trees to overfit. Each tree is built using a subset of the features chosen stochastically [12].
The predicted value comes from the average of the trees selected in training.

Logistic Regression
This algorithm assigns weights to each of the features and fits a sigmoid function where
the instances are assigned a probability of being part of a class or not [7].

2.5 Validation

We validate most of our models using leave-one-out cross validation, which is a
variance of K-fold Cross validation [14]. We use all the instances but one for training,
and validate on the remaining one, iterating until all the instances have been used once
for validation. No classifier is ever tested on examples used in training it, which
maintains the statistical integrity of the procedure. For the last experiment, we have
previous knowledge of the features that are good predictors and we include more loops
in the dataset so we can create a separate validation set by randomly splitting the data
70/30 (70% for training and 30% for validation). We do leave-one-out cross validation
on the training set to select the features that perform the best and then use the validation
set for accuracy.

3 Experiments

The first four experiments are designed to identify a relationship between hardware
counters (dynamic features) and auto-vectorizability (whether a compiler can or cannot
vectorize the given loop). The first and second experiment consider Harpertown and

Using Hardware Counters to Predict Vectorization 7

Haswell architecture respectively but each with a different set of hardware counters.
The third experiment analyzes the use of hardware counters with a different compiler.
The fourth experiment uses the data from [6] to predict vectorization in general
(vectorization with any of the compilers and manual vectorization). The fifth experi-
ment analyzes profitability, and compares our results to the Intel Compiler model. The
sixth and final experiment tests the models using an extended dataset consisting of non-
vectorized loops.

3.1 Hardware Setup

Since our approach is designed to be independent of the architecture, or more accu-
rately, adaptable to it, we performed our experiments on three different Intel processors.
Table 1 shows the hardware configuration for our experiments, we used Harpertown
for the first and sixth experiment, and Sandy Bridge and Haswell systems for the rest.

For every architecture, we compiled and ran the TSVC dataset using ICC 15.0.4
and GCC 5.3.0 with O3 optimization minus vectorization (-fno-tree-vectorize option
for GCC and –no-vec for ICC) to obtain the hardware counters without vector trans-
formations. Next, we compiled and ran the dataset again but enabling vectorization and
using the default cost model for each compiler (the default flags are “-fvect-cost-
model = dynamic” for GCC and “-vec-threshold100” for ICC), which will vectorize
only when the compiler estimates that there is going to be favorable speedup (over 1.0).
Finally, we performed the same experiment but now ignoring the cost model (“-fvect-
cost-model = unlimited” for GCC and “-vec-threshold0”) to obtain runtimes for the
loops that the compiler’s cost models predict to have no speedup. We consider that a
compiler is capable of vectorizing a loop, if for any of the two cost models the compiler
report one or more vector transformations.

Table 1. Hardware configuration of the three systems

Microarchitecture Harpertown Sandy Bridge Haswell

Hardware setup
Operating system CentOS Linux 6.6

(x64)
Linux Ubuntu
14.04 (x64)

Linux Ubuntu
14.04 (x64)

Processor Xeon E5450 Intel Core i7-2600 Intel Core i7-4770
Vector instruction set
extensions

SSE 4.1 SSE 4.1/4.2, AVX SSE 4.1/4.2, AVX
2.0

Processor
Frequency

3.00 Ghz
(4 cores)

3.40 Ghz
(4 cores)

3.40 Ghz
(4 cores)

RAM 32 GB 8 GB 8 GB
Compiler version
Intel C compiler ICC 15.0.4
GNU compiler collection GCC 5.3.0

8 N. Watkinson et al.

3.2 EXP1: Predicting Vectorization on Harpertown

Our Harpertown architecture has vector instructions up to SSE 4.1, so we expected the
evaluation to find the loops that are vectorized by ICC to be different than the other two
systems. Due to compatibility issues with Intel Vtune Amplifier, for the Harpertown
System we used Linux Perf to obtain the hardware counters. For this experiment, our
machine learning models are predicting whether ICC can vectorize the loops with any of
the profitability models. In this case the significant features used were: L1 Cache loads
misses, LLC store misses, LLC stores, D-TLB load misses, cache-references and branch-
misses. Table 2 shows the results for the top classification models. Of all the models,
Random Forest had the best result for accuracy on leave-one-out cross validation.

The class distribution for this experiment is 77% are vectorizable by ICC (yes
class), and 33% are not (no class).

3.3 EXP2: Prediction on a Different Architecture

For this experiment, we evaluate the models for predicting vectorization by ICC in the
Haswell system. To take full advantage of the hardware counters available, we used Intel
Vtune Amplifier’s analysis to obtain our data for the feature vector. Due to the avail-
ability of AVX instructions, ICC yields different results when vectorizing the code.

The features selected by the filter were instructions retired, Micro-operations
issued, Retired load micro-operations, Stalls pending (cycle activity), micro-operations
executed, micro-operations dispatched by port, and load misses in D-TLB levels.

Table 3 shows that the two best classification models for this dataset are SVM and
KNN. Results are consistent with our previous experiment in the increase of accuracy
over the baseline. It is important to note that all the classification models are using the
same set of features and the same cross validation. We don’t fine tune the experiment
separately for each model. This is in order to focus on the performance of hardware
counters as features and not on evaluating a specific instance of a classifier. In a
separate experiment, Haswell’s results were almost identical to Sandy Bridge’s, so for
the sake of space we will not discuss them.

Table 2. Accuracy for Xeon processor (EXP I)

Harpertown
Algorithm Overall accuracy

Class distribution 0.77 (YES)
Random forest 0.83

Table 3. Accuracy for ICC auto-vectorization (EXP 2)

Haswell
Algorithm Overall accuracy

SVM 0.80
KNN 0.81

Using Hardware Counters to Predict Vectorization 9

3.4 EXP3: Prediction Using GCC

For this experiment, we turn our focus to the GCC compiler and used its vectorization
report to feed the model. For the feature vector, we profiled a GCC’s non-vectorized
version of the benchmark.

In Table 4, the class distribution for this experiment is 50% (equally distributed
between GCC vectorized, and not vectorized) for both Harpertown and Haswell. SVM
and Naïve Bayes are the best models with up to 75% accuracy. For Haswell, the filter
chose Instructions retired, Micro-operations issued, Micro-operations dispatched by
port (8 ports total), and Micro-operations retired. For Harpertown, the features selected
were CPU Cycles, Cache References, L1 D-Cache Load Misses, L1 D-Cache pre-
fetches, L1 I-Cache loads and bus cycles. The models had very similar results, with up
to 25 percentage point improvement over the baseline.

Since GCC uses a vectorization model that doesn’t change much with the host
architecture (vectorization results are the same regardless of the architecture, while ICC
produces different results based on the cost estimation), we believe that the loops
vectorized by it will have some degree of similarity between them, forming clusters that
are easily detectable by the classifier. The difference in features from the previous
experiment is due to that clustering difference. While we considered testing with
LLVM compiler, the results in the vectorization report (number of loops vectorized) for
TSVC were not better than GCC’s.

3.5 EXP4: Predicting Vectorization Across Compilers

As mentioned in Sect. 2, TSVC was used in [6] to test vectorization capabilities of
different compilers. For this experiment, we used their data to build a separate set of
models to predict vectorizability by either GCC, ICC, IBM XL or manual vectorization.
The output class is whether a loop can or can’t be vectorized by any of the mentioned
compilers, and/or manually. We used the feature data from the ICC non-vectorized
version ran on the Haswell system. Table 5 shows the result from this experiment.

Table 4. Accuracy for GCC’s auto-vectorization (EXP 3)

Algorithm Overall accuracy

Vectorizable with GCC in
Harpertown
Class distribution 0.5
SVM 0.75
Naïve Bayes 0.67
Vectorizable with GCC in Haswell
SVM 0.73
Naïve Bayes 0.76

10 N. Watkinson et al.

Class distribution for this experiment is 92% yes, 8% no. SVM obtained the highest
overall accuracy with 94%. The results seem to be consistent with the other experi-
ments since the features selected were: Memory Micro-operations retired, Cycle stalls,
Micro-operations dispatched by port, and L1 D-Cache replacements.

3.6 EXP5: Predicting Profitability

Since on Haswell and Sandy Bridge systems, ICC uses a profitability model to decide
when to vectorize a loop, we designed this experiment to analyze the performance of
hardware counters to predict the profitability of vectorization. The main challenge for
this model is that profitability will change per the architecture.

We collected data by running a vectorized version and comparing the runtime for each
loop. We removed the loops that cannot be vectorized by ICC, and then defined every
loop with at least 1x speedup as profitable, which is the same threshold the compiler uses.

In these models, the significant features selected for Haswell were Instructions
Retired, Micro-operations retired, Micro-operations dispatched by port, and Memory
Micro-operations retired. For the Sandy Bridge model, the features selected where
Instructions Retired, Micro-operations issued, Micro-operations retired, Memory Load
Micro-operations, L2 Cache hits, and IDQ Micro-operations not delivered.

Table 6 shows the results for the experiment. Interestingly, Sandy Bridge’s models
have highest accuracy when predicting profitability than Haswell’s models do.

Table 5. Accuracy for all auto-vectorization (EXP 4)

Vectorizability
Algorithm Overall accuracy

SVM 0.94
Logistic regression 0.91

Table 6. Accuracy for profitability classification (EXP 5)

Profitability
Algorithm Overall Accuracy

Haswell
Majority 0.84
Naïve Bayes 0.88
KNN 0.85
Logistic regression 0.85
Intel compiler 0.86
Sandy Bridge
Majority 0.90
SVM 0.93
Naïve Bayes 0.92
KNN 0.91
Logistic regression 0.91
Intel compiler 0.91

Using Hardware Counters to Predict Vectorization 11

While in previous models, comparing to the compiler was somewhat impossible
(the compiler vectorizes what it can without making any prediction), we can compare
to the compiler’s Cost Estimation Model. We don’t know how this model is computed,
but we can get the output value by using the -vec-report = 9 flag which lets us calculate
an accuracy for their model. Note that the compiler uses information obtained very
early in the compilation process. Through informal experiments we identified that it
will predict different values depending on the architecture, which leads us to think that
the model includes some abstract representation of the host system.

The compiler correctly predicts profitability in 86% of the loops ran on Haswell and
91% on Sandy Bridge. Note that we only consider profitability, however the value
obtained from ICC’s cost model is not always close to the actual speedup. It is worth
noticing that with the newer architecture (Haswell), a lower number of loops have
profitable vectorization and the compiler has lower accuracy in predicting it. This could
be because the cost model is not keeping up with the changes of architecture, or the
newer architectures have other optimizations that make vectorization less critical,
depending on the loop.

Our best models are 2% more accurate than Intel’s Model and are completely
agnostic to the information the compiler uses to estimate speedup. These results may be
used in future work to fine tune the compiler’s model.

EXP6: Finding opportunities for Vectorization with a Validation Set
TSVC is biased towards already vectorizable loops (most the loops are vectorized by
ICC). Therefore, for this experiment we combined the dataset with the loops from
LORE that ICC couldn’t vectorize. Out of those, we identified the loops that are
manually vectorizable. We partitioned the data so that 70% of this extended dataset
would be used for training, and the rest of the loops could be used as a validation set.
We first performed cross validation on the training set to select the best features using
an Information Gain filter. In this case the features chosen were LLC loads, LLC stores,
D-TLB load misses, Branch loads, L1 Cache prefetches and Instructions per cycle. We
then tested our model using the validation dataset.

Table 7. Accuracy for validation set (EXP 6)

Algorithm Overall Accuracy

Cross Validation for 70%
Majority 0.62
SVM 0.72
Naïve Bayes 0.70
KNN 0.71
Random forest 0.78
Validating on 30%
Majority 0.61
SVM 0.75
Naïve Bayes 0.70
KNN 0.71
Random forest 0.80

12 N. Watkinson et al.

Table 7 shows that the improvement over the majority classifier is much greater.
This gives us a better sense of the potential that hardware counters have in detecting
vectorization. When testing on the validation set, Random Forest performs best with
80% accuracy in detecting loops with opportunities for vectorization - recall that these
loops were not originally vectorized by the compiler. This prediction could be used to
detect loops that require a deeper analysis for improvement.

3.7 Result Analysis

The results on vectorizability from the first four experiments give us an insight on the
effect vectorization has on the loop nests. Table 8 shows the different groups of features
and how they were used in each of the 6 experiments. While Vtune and Perf don’t have
the same hardware events, we can group them and correlate them by the type of
hardware counter.

The experiments show evidence that there is information about the opportunities for
vectorization hidden in the runtime data. In this experiment, all the features were
extracted from non-vectorized implementations of the code. While some experiments
are designed to show that it is possible to predict vectorization using dynamic features,
the output of those models is easily obtained by running the compiler. However, for our
last experiment the output is not so trivial. By using the validation set, we are finding
loops that the compiler is not able to vectorize but with manual analysis could be
vectorized. This can be applied to detect optimization opportunities where today’s tools
fail.

Going back to the dynamic features, there were some that may seem counterintu-
itive but they still yielded good results in the classification models. Possible explana-
tions behind some features being prominent across the different models are:

– IPC (Instruction per Cycle): The loops with higher IPC values seem to be well-
suited for vectorization. The higher IPC correlates to higher parallelism at
instruction level, to computation-bound loops and low cache miss rates, and pre-
dictable branches. The high scalar IPC also indicates that multiple operations
available in same or near cycles, which indicates a potential to vectorize.

– Branch Instructions: Number of branch instructions had significant impact on
predicting vectorization. Branching leads to inefficiency in generating vector

Table 8. Features used by experiment

Features used by experiment
Feature class Exp1 Exp2 Exp3 Exp4 Exp5 Exp6

Instructions related counters ✓ ✓ ✓ ✓ ✓ ✓

Last Level Cache (LLC)
counters

✓ ✓ ✓

L1 Data Cache counters ✓ ✓ ✓ ✓

Others ✓ ✓ ✓ ✓ ✓ ✓

Using Hardware Counters to Predict Vectorization 13

instructions since even after several compiler optimizations (Flattening-IFs, Index
Set Splitting, etc.) it may be not possible to eliminate branches. Also, branch
misprediction introduce stalls and reduce IPC.

– L1 Data Cache: Misses in L1 D-Cache may indicate that access to data inside the
loop is not consecutive across iterations and hence vector instructions may not
profitable. The fetching or storing of each data element needs to be performed as a
scalar access and moved to/from an SIMD register separately. While the compu-
tation is now a vector instruction, but scalar moves are costly.

– LLC Loads and Stores: The LLC accesses are costly and LLC misses even more
so. Both can significantly lower the IPC, ultimately making the program memory
bound. SIMD instructions may not give speedup when the memory hierarchy
dominates performance.

– TLB: A TLB miss also introduces significant delays and has the same effect on IPC
as cache misses.

The results from our last experiment demonstrate that the accuracy of the models is
not random. Being able to predict vectorization in a “blind” validation test, implies that
the correlation between runtime data and vectorization potential is strong. The static
information that compilers use to vectorize the code is insufficient.

4 Related Work

The use of static models and dependence analysis for vectorization has been studied for
at least three decades ([2] and [5]). However, the use of machine learning for compiler
optimization is new and growing. In [3] a feature-agnostic model is used to predict
performance, it deals mainly with finding parallelism and it doesn’t need any previous
knowledge of the program because it uses unsupervised learning. [1] uses a set of hand
written rules guided by a combined set of static and dynamic features to generate
suggestions for the programmer on where to apply transformations that will help to
vectorize code using SIMD instructions. Their decision system is designed to work at
the source level and it only deals with possible vectorization opportunities that need to
be validated by the user.

The work presented in [9] applies an SVM model to detect basic block vector-
ization specific to unroll factors (they populate a dataset using TSVC with different
unroll factors from 0 to 20, ending with a dataset of 151 � 20 loops) and get a final
classification accuracy of about 70% in binary (yes/no) classification to determine
whether unrolling would be profitable or not. They use static features only.

In [11] they make a good case about using profiling information by showing that it
improves the classification model considerably. In their specific case, it is applied
towards identifying auto-parallelization, which represents a different challenge than
auto-vectorization, the latter being a more constrained problem. They use an SVM
predictor to identify if a parallel execution would be profitable and identify which
scheduling policy to choose and rely on the user to approve the cases where static
correctness cannot be proved.

14 N. Watkinson et al.

Our approach stands out from the others mentioned because it evaluates a wide
array of dynamic features and machine learning models, and compares it with the state
of the art which is what the compiler uses today. The cost estimation models used by
compilers are applied very early in the compilation process so they disregard the effects
of other optimization transformations and the differences in architectures, therefore the
use of only static features will likely have the same outcome. However, static features
are not to be discarded, in future work we are going to explore dependence analysis
information to our models.

5 Conclusion

We evaluated the use of hardware counters in machine learning to predict if vector-
ization can be applied and how profitable it will be. We predicted loops that contain
opportunities for manual vectorization that the compilers miss with 80% accuracy. As
of now, this model can already be applied to find potential candidates for vectorization,
without having to manually analyze each loop that the compiler can’t vectorize.

In other experiments, we built different models that predict the vectorizability of a
loop-nest when using GCC (with 76% accuracy), ICC (80% accuracy), and manual
vectorization (94% accuracy), as well as vectorization profitability (93% accuracy).
This shows viability towards the use of runtime data to identify optimization oppor-
tunities. This gives new insight into code optimization. We can identify optimization
opportunities that a commercial compiler misses.

Dynamic information can be used to further optimize the compilers. Since our
approach is not constrained to a specific compiler or architecture, it can be further
implemented to predict how the combination of the two will produce different gains in
performance.

Acknowledgements. This material is based upon work supported by the National Science
Foundation under Award 1533912.

References

1. Aumage, O., Barthou, D., Haine, C., Meunier, T.: Detecting SIMDization opportunities
through static/dynamic dependence analysis. In: an Mey, D., et al. (eds.) Euro-Par 2013.
LNCS, vol. 8374, pp. 637–646. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54420-0_62

2. Banerjee, U.: An introduction to a formal theory of dependence analysis. J. Supercomput. 2
(2), 133–149 (1988)

3. Cammarota, R., Beni, L.A., Nicolau, A., Veidenbaum, A.V.: Optimizing program
performance via similarity, using a feature-agnostic approach. In: Wu, C., Cohen, A.
(eds.) APPT 2013. LNCS, vol. 8299, pp. 199–213. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-45293-2_15

4. Demšar, J., et al.: Orange: data mining toolbox in python. J. Mach. Learn. Res. 14(1), 2349–
2353 (2013)

Using Hardware Counters to Predict Vectorization 15

http://dx.doi.org/10.1007/978-3-642-54420-0_62
http://dx.doi.org/10.1007/978-3-642-54420-0_62
http://dx.doi.org/10.1007/978-3-642-45293-2_15
http://dx.doi.org/10.1007/978-3-642-45293-2_15

5. Kennedy, K., Allen, J.R.: Optimizing Compilers for Modern Architectures: A Dependence-
Based Approach (2001)

6. Maleki, S., Gao, Y., Garzarán, M.J., Wong, T., Padua, D.A.: An evaluation of vectorizing
compilers. In: Parallel Architectures and Compilation Techniques - Conference Proceedings,
PACT, pp. 372–382 (2011)

7. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval. In:
Americas, vol. 32, pp. 2473–10013. Delhi Cambridge University Press (2008)

8. Reinders, J.: VTuneTM Performance Analyzer Essentials Measurement and Tuning
Techniques for Software Developers (First.). Intel Press (2005)

9. Trouvé, A., et al.: Using machine learning in order to improve automatic SIMD instruction
generation. Procedia Comput. Sci. 18, 1292–1301 (2013)

10. Fursin, G., et al.: Milepost GCC: machine learning enabled self-tuning compiler. Int.
J. Parallel Prog. 39(3), 296–327 (2011)

11. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.M.: Towards a holistic approach to
auto-parallelization: integrating profile-driven parallelism detection and machine-learning
based mapping. In: ACM SIGPLAN Notices, pp. 177–187 (2009)

12. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
13. Weaver, V.M.: Linux perf_event features and overhead. In: The 2nd International Workshop

on Performance Analysis of Workload Optimized Systems, FastPath, p. 80, April 2013
14. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model

selection. In: IJCAI, vol. 14, no. 2, pp. 1137–1145, August 1995
15. Chen, Z., et al.: LORE: a loop repository for the evaluation of compilers. In: 2017 IEEE

International Symposium on Workload Characterization (in press)

16 N. Watkinson et al.

Software Cache Coherent Control
by Parallelizing Compiler

Boma A. Adhi(B), Masayoshi Mase, Yuhei Hosokawa, Yohei Kishimoto,
Taisuke Onishi, Hiroki Mikami, Keiji Kimura, and Hironori Kasahara

Department of Computer Science and Engineering,
Waseda University, Tokyo, Japan

{boma, onishi, hiroki, kimura, kasahara}@kasahara.cs.waseda.ac.jp

Abstract. Recently multicore technology has enabled development of
hundreds or thousands core processor on a single chip. However, on such
multicore processor, cache coherence hardware will become very com-
plex, hot and expensive. This paper proposes a parallelizing compiler
directed software coherence scheme for shared memory multicore sys-
tems without hardware cache coherence control. The general idea of the
proposed method is that an automatic parallelizing compiler parallelize
coarse grain task, analyzes stale data and line sharing in the program,
then solves those problems by simple program restructuring and data
synchronization. The proposed method is a simple and efficient software
cache coherent control scheme built on OSCAR automatic parallelizing
compiler and evaluated on Renesas RP2 with 8 SH-4A cores processor.
The cache coherence hardware on the RP2 processor is only available
for up to 4 cores. The cache coherence hardware can also be turned off
for non-coherence cache mode. Performance evaluation was performed
using 10 benchmark programs from SPEC2000, SPEC2006, NAS Parallel
Benchmark (NPB) and MediaBench II. The proposed method performed
as good as or better than hardware cache coherence scheme while still
provided correct result as the hardware coherent mechanism. For exam-
ple, the proposed software cache coherent control (NCC) gave us 2.63
times speedup for SPEC 2000 equake with 4 cores against sequential
execution while got only 2.52 times speedup for 4 cores MESI hardware
coherent control. Also, the software coherence control gave us 4.37 speed
up for 8 cores with no hardware coherent mechanism available.

1 Introduction

For many years, cache coherent SMPs have been widely used as the core com-
ponent of all classes of machines, from smartphones, IoTs, PCs, and embedded
systems all the way to HPC systems. Typically, a hardware cache coherence
mechanism, either snoopy or directory based, is employed to ensure every change
made into a shared line in one processor’s private cache is always reflected in the
content of all private cahces so that coherency is maintained. Hardware cache
coherence mechanism scales well for current generation multicore processor [1],
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 17–25, 2019.
https://doi.org/10.1007/978-3-030-35225-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_2

18 B. A. Adhi et al.

e.g. Intel Xeon Phi [2], Tilera Tile64 [3]. However, despite its common usage
among current generation multicore processor, this kind of hardware will too
complex, hot and expensive for the upcoming hundreds to thousands core mas-
sively parallel multicore system to avoid the complexity of the hardware based
cache coherency.

Research on software controlled started in the late 80’s. One of the prominent
contributions is [4] which proposed fast selective invalidation scheme and version
control scheme for compiler directed cache coherence. More recent research [5]
proposes a compiler support for software based cache coherency. A practical and
ready to use solution for software based coherence is yet to be proposed.

This paper proposes a new software coherent control scheme to guarantee
coherency by avoiding stale data and false sharing. This method is novel, simple,
powerful and give us delivers the same performance as the hardware implementa-
tion of cache coherency. Next, we present an overview of OSCAR’s parallelization
strategy followed by a discussion of the techniques to handle sate data and false
sharing.

2 Software Cache Coherent Control by Parallelizing
Compiler

The proposed method is built into the OSCAR parallelizing compiler, which
analyzes and decomposes programs into tasks using control flow and data depen-
dence. Based on the data access range of each task, the compiler addresses stale
data and false sharing. Our proposed method may be applied to almost any
kind of interprocessor networking as our method uses the main shared memory
for synchronization and does not rely on communication between CPU cores.
Next, we present an overview of OSCAR’s parallelization strategy followed by a
discussion of the techniques to handle sate data and false sharing.

2.1 Coarse-Grain Task Parallelization

The OSCAR compiler is a multi-grain parallelizing compiler. The compiler gen-
erates C or Fortran program extended with invocations to OSCAR API [6] rou-
tines in this way, OSCAR compiler generated parallel multicore code that can
be compiled for any shared memory multicore available in the market using a
conventional compiler. The OSCAR compiler starts the compilation process by
dividing the source program into three types of coarse-grain tasks, or Macro
Tasks (MTs): Basic Blocks (BBs), Repetition Blocks (RBs), and Subroutine
Blocks (SBs). RBs and SBs are hierarchically decomposed into smaller MTs if
coarse-grain task parallelism still exists within the task. Then, as all MTs for
the input program are generated, they are analyzed to produce a Macro Flow
Graph (MFG). An MFG is a control flow graph among the MTs having the data
dependence edges. A Macro Task Graph (MTG) is generated by analyzing the
earliest executable condition of every MT and tracing the control dependencies
and data dependencies among MTs on the MFG. Based on this information, the
compiler generates appropriate cache coherence control code [7].

Software Cache Coherent Control by Parallelizing Compiler 19

2.2 Handling the Stale Data Problem

A hardware based cache coherence ensures information on changes made to
the data in one of the CPU cores cache line is propagated to other cores so
that each copy of this data in other cores can be invalidated. The process of
notifying the other processors in a snoopy based cache coherence may impact
the performance of the processor. With directory based mechanism, simultaneous
access to directory may become a performance bottleneck. Meanwhile, without
any hardware cache coherence, these bottlenecks do not exist, but access to stale
data should be manually managed by the compiler.

Fig. 1. Cache control code inserted by the compiler to prevent reference to stale data.

Based on the coarse grain scheduling result, to manage stale data problem,
the compiler generates explicit cache manipulation instructions to the processor,
i.e. writeback, self-invalidate, and purge. Writeback command tells the processor
to write the modified cache line to the main memory. The self-invalidate is a
command for invalidating the line of the cache memory. The purge command
executes the self-invalidate after the writing back (writeback) of the data stored
in the line of the cache memory.

Figure 1 is an example of the compiler generated code to prevent stale data
reference. Core 0 defines a new value for a shared variable, A. The compiler auto-
matically inserts a writeback instruction and an assignment to a synchronization
flag on core 0’s code. The compiler also inserts a self-invalidate instruction on
core 1 right after testing the synchronization flag. The compiler then schedules
the task in a way that minimize the delay caused by the synchronization. In
addition, if multiple cores retain the same data at the same time, the compiler
schedules all cores in way to prevent the data to be simultaneously updated.
These cache manipulation instructions are inserted only for Read-after-Write
data dependence. Meanwhile for Write-after-Read and Write-after-Write, only
synchronization instruction is inserted. By using this approach, stale data can be
avoided. Moreover, the overhead caused by the transmission of invalidate packets
associated with hardware based mechanism can be eliminated.

20 B. A. Adhi et al.

2.3 Handling the False Sharing Problem

False sharing is a condition in which two or more data items share a single cache
line. Whenever one of those data is updated, inconsistency may occur. This is
due to the granularity of the cache writeback mechanism usually works with line
instead of byte or word sized. To address this problem, OSCAR compiler uses
one of the following four mechanisms:

Variable Alignment and Array Expansion. To prevent unrelated variables
from sharing a single cache line, the compiler aligns each variable to the begin-
ning of a cache line. Not only for scalar variables, but this approach is also
applicable for small sized one-dimension array. The array can be expanded so
that each element is stored in a single cache line. While not very efficient due to
potentially wasting cache space, this approach effectively prevents false sharing.
Data alignment works best for one-dimension array whose size is smaller than
the number of cache line in all available processor cores. It also works well for
indirect access array where the compiler has no information regarding the access
pattern of the array.

Cache Aligned Loop Decomposition. OSCAR compiler applies loop decom-
position which consist in partitioning the iteration space of a loop to create sev-
eral tasks. Instead of assigning the same number of iterations to each partial
task, the compiler decomposes loops taking into account the cache line size as
seen in Fig. 2(A).

Array Padding. It is not always possible to partition a two-dimension array
cleanly along cache line boundaries. This happens when the lowest dimension of
the array is not an integer multiply of the cache line size. In this case, OSCAR
compiler inserts padding to the end of the array to match the cache line size.
This approach is depicted in Fig. 2(B). It should be noted that this approach
may also waste cache space.

Data Transfer Using Non-cacheable Buffer. When cache aligned loop
causes a significant load imbalance or array padding consumes too much cache
space or none of the former approaches cannot be applied, OSCAR compiler uses
a non-cacheable buffer. The compiler designates a an area in the main memory
that should not be copied to the cache and places the shared data in that area.
Figure 3 depicts the usage of non-cacheable buffer.

Software Cache Coherent Control by Parallelizing Compiler 21

Fig. 2. (A)Cache alligned loop decomposition is applied to a one-dimension matrix to
avoid false sharing. (B)Array padding is applied to a two-dimention matrix to avoid
false sharing.

Fig. 3. Non-cacheable buffer is used to avoid false sharing.

3 Performance of the Software Coherent Control
on Embedded Multicore

This section shows the performance of the proposed method on an embedded
multicore the Renesas RP2 for benchmark programs from SPEC, NAS Parallel
and MediaBench.

3.1 The RP2 Processor

The Renesas RP2 is an 8-core embedded processor configured as two 4-core SH-
4A SMP clusters, with each cluster having MESI protocol, jointly developed by
Renesas Electronics, Hitachi Ltd. and Waseda University under support from the
METI/NEDO Multicore Processors for Real-time Consumer Electronics Project
in 2007 [8]. Each processor core has its own private cache. However, there is no
hardware coherence controller between the cluster for hard real-time applica-
tions like automobile engine control; hence, to use more than 4 cores across the

22 B. A. Adhi et al.

cluster, a software based cache coherency must be used. The MESI hardware
coherence mechanism can be disabled completely. The RP2 board as configured
for this experiment has 16 kB of data cache with 32-byte line size and 128MB
shared memory. The local memory, which was provided for hard real-time control
application was not used in this evaluation. The RP2 processor supports sev-
eral native instructions in NCC mode: writeback operation (OCBWB instruction),
cache invalidate (OCBBI instruction), cache flush (OCBP instruction).

3.2 Benchmark Applications

To evaluate the performance of the proposed method, we used 10 benchmark
applications from SPEC2000, SPEC2006, NAS Parallel Benchmark (NPB) and
Mediabench II. While the selection of the benchmark program is somewhat lim-
ited due to the main memory size of the current board, the selected benchmark
represents several different types of scientific and multimedia application. These
benchmarks were written in C and converted to Parallelizable C [9] which is sim-
ilar to MISRA-C used in embedded field. Then these programs were compiled
by the OSCAR source-to-source automatic parallelizing compiler. The output C
program by the OSCAR compiler was compiled by the Renesas SuperH C Com-
piler (SH C) as the backend compiler as mentioned before. The SPEC benchmark
programs were run in their default configuration and datasets except lbm which
were run with 100 × 100 × 15 matrix. All NPB benchmarks were configured with
CLASS S data size considering small shared memory or main memory (128 MB)
of the RP2 processor.

3.3 Experimental Results and Analysis

Figure 4 is a graph showing the speedups by multiple cores of the proposed
method on RP2 Processor. The lighter bars show the baseline performance on
a Symmetric Multiprocessor (SMP) cluster with MESI hardware coherence con-
trol. The darker bars show the performance of the proposed software coher-
ence control method on NCC architecture. The single core performance on SMP
machine was selected as the baseline.

Fig. 4. The performance of the proposed method on RP2 Processor.

Software Cache Coherent Control by Parallelizing Compiler 23

Figure 5 depicts the performance impact of each proposed methods. Five
different plots are presented for four of the benchmark programs executing in
1, 2 and 4 cores: SMP is a normal shared memory architecture with native
hardware based coherence. This is selected as the baseline of the measurement.

Stale data handling: stale data handling method with hardware based coher-
ence control still turned on. We can see here that the performance is negatively
impacted. This is to be expected since stale data handling method wastes CPU
cycles since the hardware already handles this problem. But we can see here the
effect of the stale data handling negatively impacted the performance of lbm.

False sharing avoidance: false sharing handling which comprises data align-
ment, cache line aligned data decomposition, and other layout transformation
with hardware coherence control still turned on. We can see here that there
is almost no significant performance impact. The cache line wasting effect is
insignificant. In certain benchmarks, most notably lbm, this approach improves
the performance. This is to be expected since false sharing is also bad even
for hardware based cache coherence control. Removing false sharing problem
will improves the performance of a hardware based coherence control. NCC
(hardware coherence): this graph measures the overhead of both proposed
method for handling stale data and false sharing with hardware coherence still
active. NCC (software coherence): this graph shows the performance of the
proposed method with hardware coherence control completely turned off.

Fig. 5. The performance impact of software cache coherence.

The performance of the proposed software cache coherence method give us
roughly 4%–14% better performance compared to hardware based coherence.
With hardware based coherence, an overhead is imposed due to frequent trans-
mission of invalidation packet between processor cores via the interconnection
bus. On the other hand, the software does not require the transmission of such
packet as the compiler will insert self-invalidate instruction to the required pro-
cessor core. For art, quake and lbm benchmark, is positively affected by this
performance benefit of software based coherence. The data structure of “lbm” is

24 B. A. Adhi et al.

also unique that it has a lot of false sharing. We can see here that our proposed
false sharing avoidance method improves the performance significantly.

While not offering huge performance benefit, compared to hardware based
approach, the proposed method has enabled the usage of 8 cores in RP2 proces-
sor which does not have cache coherence mechanism. Before, using our proposed
method, it was impossible to run an application with 8 cores without very com-
plicated hand-tuned optimization.

4 Conclusions

This paper proposes a method to manage cache coherency by an automatic par-
allelizing compiler for non-coherent cache architecture. The proposed method
incorporates control dependence, data dependence analysis and automatic par-
allelization by the compiler. Based on the analyzed stale data, any possible false
sharing is identified and resolved. Then, software cache control code is automati-
cally inserted. The proposed method was evaluated using 10 benchmark applica-
tions from SPEC2000, SPEC2006, NAS Parallel Benchmark and MediaBench II
on Renesas RP2 8 core multicore processor. The performance of the NCC archi-
tecture with the proposed method was similar or better than the hardware based
c herenc mple, the hardware coherent mechanism using MESI protocol gave us
2.52 speedup on 4 core against one core SPEC2006 “equake”, 2.9 times speedup
on 4 cores for SPEC2006 “lbm”, 3.34 times speedup on 4 cores for NPB “cg”,
3.17 times speedup on 4 cores for MediaBench II “MPEG2 Encoder”. On the
otherhand, the proposed software cache coherence control method implemented
on OSCAR Multigrain Parallelizing Compiler gave us 2.63 times on 4 cores, 4.37
times on 8 cores speedup for “equake”, 3.28 times on 4 cores and 4.76 times on
“lbm”, 3.71 times on 4 cores and 5.66 times on 8 cores for “cg”, 3.02 times on
4 cores and 4.92 times on 8 cores for “MPEG2 Encoder”. Those result shows
the proposed software coherent control method allow us to obtain comparable
performance with the MESI hardware coherence control mechanism for the same
number of processor cores. Furthermore, it gives us good speedup automatically
and quickly for many processor cores without the hardware coherent control
mechanism although up until now application programmers had to spend huge
development time to use the non-coherent cache architecture.

Acknowledgement. Masayoshi Mase and Yohei Kishimoto are currently working for
Hitachi, Ltd. and Yahoo Japan Corp respectively. Their works contained in this paper
were part of their study at Waseda University. Boma Anantasatya Adhi is part of
Universitas Indonesia and currently a PhD student at Waseda University supported
by Hitachi Scholarship.

References

1. Martin, M.M.K., Hill, M.D., Sorin, D.J.: Why on-chip cache coherence is here to
stay. Commun. ACM 55(7), 78–89 (2012)

Software Cache Coherent Control by Parallelizing Compiler 25

2. Chrysos, G.: Intel & R©Xeon Phi Coprocessor-the Architecture. Intel Whitepaper
(2014)

3. Bell, S., et al.: TILE64 - processor: a 64-Core SoC with mesh interconnect. In: 2008
IEEE International Solid-State Circuits Conference - Digest of Technical Papers,
pp. 588–598, February 2008

4. Cheong, H., Veidenbaum, A.V.: Compiler-directed cache management in multipro-
cessors. Computer 23(6), 39–47 (1990)

5. Tavarageri, S., Kim, W., Torrellas, J., Sadayappan, P.: Compiler support for software
cache coherence. In: 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC), pp. 341–350, December 2016

6. Kimura, K., Hayashi, A., Mikami, H., Shimaoka, M., Shirako, J., Kasahara, H.:
OSCAR API v2. 1 : extensions for an advanced accelerator control scheme to a
low-power multicore API. In: 17th Workshop on Compilers for Parallel Computing
(2013)

7. Kasahara, H., Kimura, K., Adhi, B.A., Hosokawa, Y., Kishimoto, Y., Mase, M.:
Multicore cache coherence control by a parallelizing compiler. In: 2017 IEEE 41st
Annual Computer Software and Applications Conference (COMPSAC), vol. 01, pp.
492–497, July 2017

8. Ito, M.: An 8640 mips soc with independent power-off control of 8 cpus and 8 rams
by an automatic parallelizing compiler. In: 2008 IEEE International Solid-State
Circuits Conference - Digest of Technical Papers, pp. 90–598, February 2008

9. Mase, M., Onozaki, Y., Kimura, K., Kasahara, H.: Parallelizable c and its perfor-
mance on low power high performance multicore processors (2010)

Polyhedral Compilation Support for C++
Features: A Case Study with CPPTRAJ

Amit Roy1, Daniel Roe2, Mary Hall1(B), and Thomas Cheatham2

1 School of Computing, University of Utah, Salt Lake City, UT 84112, USA
mhall@cs.utah.edu

2 Department of Medicinal Chemistry, University of Utah,

Salt Lake City, UT 84112, USA

Abstract. This paper reveals challenges in migrating C++ codes to
GPUs using polyhedral compiler technology. We point to instances where
reasoning about C++ constructs in a polyhedral model is feasible. We
describe a case study using CPPTRAJ, an analysis code for molecu-
lar dynamics trajectory data. An initial experiment applied the CUDA-
CHiLL compiler to key computations in CPPTRAJ to migrate them
to the GPUs of NCSA’s Blue Waters supercomputer. We found three
aspects of this code made program analysis difficult: (1) STL C++ vec-
tors; (2) structures of vectors; and, (3) iterators over these structures.
We show how we can rewrite the computation to affine form suitable for
CUDA-CHiLL, and also describe how to support the original C++ code
in a polyhedral framework. The result of this effort yielded speedups over
serial ranging from 3× to 278× on the six optimized kernels, and up to
100× over serial and 10× speedup over OpenMP.

1 Introduction

CPPTRAJ is a biomolecular analysis code that examines results of simulations
that are represented as time series of three-dimensional atomic positions (i.e.,
coordinate trajectories) [1]. CPPTRAJ is an MPI and OpenMP code distributed
as part of the AmberTools suite, a widely-used set of tools for complete molecular
dynamics simulations, with either explicit water or implicit solvent models [2],
and is also available on GitHub [3]. Historically, the analysis function is less
compute-intensive than the simulation, and less attention has been paid to its
parallelization. As Amber simulations scale to larger supercomputing systems, it
is desirable to perform analysis functions in situ during simulation to reduce data
movement and storage. Thus, analysis has become a more significant component
of simulation time, and worthy of renewed attention paid to its parallelization,
especially in light of new architectures.

Parallelization within the Action class computations offered an unexploited
opportunity for thread-level parallelism on GPUs. We adapted one of the more
time-consuming analyses in CPPTRAJ, the Action Closest, which determines
the N closest solvent molecules to M solute atoms where N and M are both user-
specified. This calculation can require millions of distance calculations for each
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 26–35, 2019.
https://doi.org/10.1007/978-3-030-35225-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_3

Polyhedral Compilation Support for C++ Features 27

trajectory frame, to use GPUs. To ease the programming challenges of migrating
CPPTRAJ to use GPUs, we employed CUDA-CHiLL, which generates CUDA
code from a sequential implementation [4,5]. CUDA-CHiLL is a lightweight
GPU-specific layer for CHiLL, a source-to-source code translator that takes as
input sequential loop nest computations written in C, performs transformations,
and generates optimized sequential or parallel C. A separate input called a trans-
formation recipe describes high-level code transformations to be applied to the
code; this recipe can either be automatically generated [5] or specified by the
programmer. The underlying compiler technology relies on a polyhedral abstrac-
tion of loop nest computations, where loop iteration spaces are represented as
polyhedra.

CUDA-CHiLL has a C++ frontend, but has primarily been applied to C
codes. We discovered that some of the C++ features are difficult to represent
in a polyhedral framework: (1) structures of arrays; (2) C++ iterators; and,
(3) a vector library. We initially modified the code so that CUDA-CHiLL could
analyze it and generate GPU code. The resulting code achieves high performance,
meeting the goals of the optimization exercise and providing a template to the
CPPTRAJ team for further parallelization. We then considered how to extend
CUDA-CHiLL to support these features. The contributions of this paper are: (1)
a description of a successful parallelization of CPPTRAJ for GPUs; (2) analysis
of barriers to automatic parallelization in CUDA-CHiLL; and, (3) extensions to
polyhedral compiler technology to support the C++ features of this code.

2 Background and Related Work

We describe the foundations of polyhedral transformation and code generation
technology, and tease out key concepts in extending its support.

2.1 Polyhedral Compiler Frameworks

Polyhedral frameworks describe the iteration space for each statement in a loop
nest as a set of lattice points of a polyhedron. Loop transformations can then
be viewed as mapping functions that convert the original iteration space to a
transformed iteration space, providing the compiler a powerful abstraction to
transform a loop nest without being restricted to the original loop structure [6].
To verify correctness of iteration space remappings, the compiler employs depen-
dence analysis, which detects possible accesses to the same memory location,
where one of the accesses is a write. Reordering a statement’s execution order is
valid as long as it preserves all data dependences [7]. Once transformations are
proven safe through dependence analysis, the code corresponding to the trans-
formed iteration space may then be generated by polyhedra scanning [8–12].

Let us consider for example, the loop permutation transformation applied to
the loop nest in Fig. 1(a), with the iteration space I represented as an integer
tuple set. The original statement is replaced by a statement macro as shown in
Fig. 1(b). The loop permutation transformation T in Fig. 1(c), which permutes

28 A. Roy et al.

Fig. 1. An example of a loop permutation transformation.

the order of the loops, takes I as input and returns an output integer tuple. The
code generator then employs polyhedra scanning of the resulting iteration space
to generate the output code shown. To determine safety of the transformation,
dependence relations are extracted from examining the iteration space and array
accesses, as in Fig. 1(d). In this case, while there is a dependence between reads
and writes of a, permutation is safe because it does not reverse the dependence
on a. The statement is not specified in the set representation, and therefore the
loop body contains statement macros. The transformed loop need only pass to
the statement macro the original iterators for the statement as functions of the
new loop iterators.

2.2 Support for C++ Code

Many polyhedral frameworks are embedded into C and C++ compilers and
leverage parsing of C++ code into an abstract syntax tree (e.g., PolyOpt,
PSSC [13], Polly [14]). Some polyhedral compilers generate CUDA code as in
this work [15,16]. Such compilers typically look for analyzable regions of code
amenable to polyhedral optimization, called Static Control Parts (SCoPs) such
that all loop bounds and conditionals are affine functions of enclosing loops.
Certain C++ code constructs may appear to be non-affine to a polyhedral com-
piler, and therefore these portions of the code would be ignored and not opti-
mized, even though they could be rewritten into an affine form. Notably, analysis
and transformation merely needs to extract dependence relations and statement
macros as functions of loop indices. We consider in this paper such examples
whereby we reason about C++ code and represent the code in statement macros,
extract iteration spaces to facilitate transformation and code generation, and
extract dependence relations to determine safety of transformations.

Polyhedral Compilation Support for C++ Features 29

3 Code Modifications and Extensions for CPPTRAJ

This section highlights the C++ features that we modified to pass the CPPTRAJ
code through CUDA-CHiLL, and discusses possible extensions.

1 void Act i on Clo s e s t : : Action NoImage Center (Frame&, double maxD)
2 {
3 double Dist ;
4 i n t smol ;
5 std : : vector<int > : : c o n s t i t e r a t o r satom ;
6

7 Vec3 maskCenter = frmIn . VGeometricCenter (distanceMask) ;
8 f o r (smol=0; smol < Nsmols ; smol++) {
9 SolventMols [smol] .D = maxD;

10 f o r (satom = SolventMols [smol] . solventAtoms . begin () ;
11 satom != SolventMols [smol] . solventAtoms . end () ;
12 ++satom)
13 {
14

15 double ∗a1 = maskCenter . Dptr () ; // cente r o f s o l u t e molecule
16 double ∗a2 = frmIn .XYZ(∗ satom) ;
17

18 double x = a1 [0] − a2 [0] ;
19 double y = a1 [1] − a2 [1] ;
20 double z = a1 [2] − a2 [2] ;
21

22 Dist = (x∗x + y∗y + z∗z) ;
23

24 i f (Dist < SolventMols [smol] .D)
25 SolventMols [smol] .D = Dist ;
26 }
27 }
28 }
29 \vspace ∗{−.1 in }

Listing 1.1. Original code for Action Closest.

3.1 Changes Irrelevant to a Polyhedral Framework

The original C++ code is shown in Listing 1.1. A few constructs not supported
by CUDA-CHiLL are not fundamental, and extensions to the implementation
are straightforward. The required changes, which will not be discussed further,
include (1) use of member functions of a class, and reference to member fields,
which should be replaced with C functions and parameters; (2) control flow sim-
plifications that would benefit from more sophisticated data-flow analysis; and,
(3) the min calculation over Dist, which should be recognized as a reduction.

3.2 Other Ways of Expressing Loops over Arrays in C++

Additional required changes show C++ constructs that are comparable to stan-
dard loop nests over dense arrays, but are expressed differently from C. The ref-
erence in line 15 to maskCenter returns a variable of type Vec3, which is a simple
datatype for representing 3D coordinates. The reference in line 16 to frmIn.XYZ

30 A. Roy et al.

returns a pointer to the position inside the Frame datatype’s internal 3D coor-
dinate array corresponding to atom n. Since these are read-only variables, it is
sufficient to ignore the references since they cannot carry a dependence. How-
ever, in the more general case where they may also be written, it is useful to
recognize that these types actually represent an array of three doubles.

The second kind of vector represented by SolventMols adds more complex-
ity to the analysis. It is declared as std::vector〈MolDist〉. That is, it uses the
vector data type from the C++ standard template library. The code loops over
the elements of this vector using a C++ iterator, satom.

A key observation is that these are implemented similarly to unit-stride access
to arrays, but the compiler must be extended to recognize this. For our exper-
iments, we have made these changes explicit. Referring back to Sect. 2.1, it is
realistic to support these because we only need to extract three things from the
code: (1) the iteration space of the loop nest; (2) the statement macro; and, (3)
the dependence relations.

First, the loop nest needs to be rewritten in the code representation leading
to an affine iteration space. The following rewrite is safe if you know that these
vectors are stored contiguously in memory and the meaning of the begin(),
end() and size() functions [17].

ub = SolventMols_[smol].solventAtoms.size();

I = {[smol,satom] | 0<=smol<Nsmols_ && 0<=satom<ub}

For the statement macros, we can leave line 15 as written in this case. But
for line 16, we would like to rewrite so that if we are to modify the iteration
space for the satom loop, we will be able to update the access in the context of
the loop indices. The same is true for the reduction statement at lines 24 and
25. Therefore, the statement macros are as follows:

#define S16(smol,satom)

double *a2 = SolventMols_[(smol)].solventAtoms[(satom)]

#define S24(smol,satom)

SolventMols_[(smol)].D = min(Dist,SolventMols_[(smol)].D)

Finally, we consider the dependence relations arising from the statements
that reference these vectors. As the statements at lines 15 and 16 are read-only
accesses to the maskCenter and the data associated with the solvent atom, there
are no dependence relations. For the access at lines 24 and 25, after the reduc-
tion transformation is performed as described above, the following dependence
relation arises between read and write of SolventMols [smol].D.

{[smol,satom]->[smol’,satom’] | 0<=smol,smol’<NSmols_ &&

0<satom,satom’<ub && smol=smol’}

This discussion assumes that the compiler can perform dependence analysis
on fields in structures. This is a straightforward extension, where indexed fields
are treated as arrays, and distinct fields are considered independent.

Polyhedral Compilation Support for C++ Features 31

3.3 CUDA Code Generation and Application Integration

CUDA-CHiLL was applied to manually modified code to arrive at the output
kernel code in Listing 1.2 and scaffolding code (not shown). The problem size
is fixed to the sample input used for the experiments in Sect. 5. The generated
code was derived using the CUDA-CHiLL script below.

1 g l o b a l void Action No image GPU (double ∗D , double ∗maskCenter ,
double (∗ SolventMols) [9 6 5] [3])

2 {
3 i n t satom ;
4 i n t bx ;
5 i n t tx ;
6

7 double maxD;
8 double Dist ;
9 double newVariable0 ;

10

11 bx = blockIdx . x ;
12 tx = threadIdx . x ;
13 newVariable0 = D [tx + 32 ∗ bx] ;
14 newVariable0 = maxD;
15

16 f o r (satom = 0 ; satom <= 15021; satom += 1) {
17 Dist = (pow(maskCenter [0] − SolventMols [smol] [satom] [0] , 2) +
18 pow(maskCenter [1] − SolventMols [smol] [satom] [1] , 2) +
19 pow(maskCenter [2] − SolventMols [smol] [satom] [2] , 2)) ;
20 newVariable0 = (min (Dist , newVariable0)) ;
21 }
22 D [tx + 32 ∗ bx] = newVariable0 ;
23 }
24 \vspace ∗{−.1 in }

Listing 1.2. Kernel output of CUDA-CHiLL.

init("simple_action_noImage.c", "Action_NoImage_Center",0)

NA=15022

NM=965

TI=32

TJ=3*NM/TI

tile_by_index(0,{"smol"}, {TI}, {l1_control="ii"}, {"ii","smol"})

cudaize(0,"Action_No_image_GPU",

{D_=NM*3, SolventMols_=NA*3,maskCenter=3},

{block={"ii"}, thread={"smol"}},{})

copy_to_registers(0, "satom", "D_")

It is only safe to parallelize the outermost loop as the inner loop carries a depen-
dence on D [smol]. Therefore, this simple script creates two levels of paral-
lelism for the outermost loop using the tile by index command. Each thread
then computes one element of D . To avoid unnecessary memory accesses, the
copy to registers command is used to locally store D [smol] in newVariable0
during the majority of a thread’s execution. The cudaize command marks the
outermost two loops to serve as block and thread indices, whose sizes are con-
trolled by TI and TJ derived from tuning. Note that different transformation
recipes will lead to very different generated codes.

32 A. Roy et al.

Five more member functions were also replaced with CUDA kernels. These all
had similar structure and C++ features as compared to the code in Listing 1.1,
but some had more computation at each point. We used the generated CUDA
code as a template for the other kernels, and replaced the computation at the
innermost loop. The CUDA code was then integrated back into the application
with some additional functions calls from the Action Closest class. We also
inserted timing functions within a combined CUDA harness code for the kernels.
Therefore, the impact in terms of coding changes on the application was not
significant, but the performance gains were substantial, as shown in Sect. 5.

4 Incorporating Knowledge of Library or Class Properties

The previous section shows it is certainly feasible to represent the C++ con-
structs in this code as affine. However, the question arises as to how to embed
knowledge into the compiler of the C++ STL or even a user class. For something
as widely used as the STL, we could treat it as part of the C++ language and
integrate these transformations into the CHiLL compiler directly. However, this
approach would not apply to any user-defined class.

We propose to take advantage of CHiLL’s existing transformation recipe
interface to extend the compiler to convey this additional information. This
concept of programmability of transformation recipes has been used before in
adding CUDA support through a programming language interface [4], but in
that case it was composing and reinterpeting existing CHiLL commands and
modifying the output only. Here, we need a way of reinterpreting the input. We
propose a new command in a transformation recipe called scopInfo:

scopInfo(loop, IS={affine_relation}, SM={statement_macros},D={deps})

This is one way to convey information to the compiler, before it attempts to ana-
lyze the code, that this analysis should permit extensions to whatever is already
supported by CHiLL. This approach is similar to rewrite rules that are supported
in domain-specific compiler frameworks such as DeLite [18], but specifically pro-
vides the inputs of a polyhedral framework to facilitate dependence analysis,
iteration space reordering and code generation.

While such an extension could make it possible for a programmer to add
scopInfo commands to their recipes, it may be too low-level for the average
programmer. However, a custom preprocessing phase could be added to the
framework to derive specialized information such as this in a domain-specific
or library-specific way, particularly if the recipes are automatically generated as
in [5]. We foresee such an extension would make it possible to convey other infor-
mation to the compiler useful to loop nest optimization for HPC applications,
such as for example, how to interpret user-defined domain decompositions.

5 Experimental Results

The GPU-enabled version of CPPTRAJ was then executed on the NCSA Blue-
waters supercomputer, and compared against an MPI-only implementation and

Polyhedral Compilation Support for C++ Features 33

an MPI+OpenMP implementation. Bluewaters has two types of nodes, namely
XE or XK. XE nodes have 2 AMD 6276 Interlagos processors while XK nodes
have a single Interlagos processor and a GPU accelerator, an NVIDIA GK110
(K20X) Kepler GPU with 2688 CUDA cores. Both XE and XK nodes have 64
GBytes of memory. We used a molecular system for our experiment as a good
proxy for typical real world usage, consisting of 4143 solute atoms and 15022
solvent molecules, resulting in up to 62M distance calculations for each frame.

As described in Sect. 3, the CPPTRAJ code was extended to replace six
Action member functions with calls to CUDA kernels. The six kernels are
divided into two groups: one group calculates distance with respect to the sol-
vent molecule’s center as represented by the code in Listing 1.2; the other calcu-
lates distance with respect to each atom contained within the solvent molecule.
Figure 2(left) compares speedup over serial for each GPU kernel. Speedups range
from 3× to 278×, with the Non-center kernels exhibiting a higher speedup.
Each of the 3 kernels in each group is furthermore separated by the type of
imaging method they use during the distance calculation. The labels Ortho and
Non-Ortho refer to orthorhombic and nonorthorhombic, respectively, indicating
the unit cell shape. Non-orthorhombic distance calculations are more compute-
intensive as they check the “self” unit cell plus 26 images.

We now compare performance of the Non-Center, Non-Ortho kernel to the
original OpenMP code within the full CPPTRAJ MPI code in Fig. 2(right). On
a single node, the GPU version is rougly 10× faster than the OpenMP version.
The substantial parallelism exhibits strong scaling as we deploy the application
across multiple nodes, ranging from 1 to 32.

Fig. 2. Performance measurements on Blue Waters, showing speedup over serial of all
Action kernels (left); OpenMP comparison and strong scaling within MPI code (right).

6 Conclusion

This paper has explored using polyhedral compiler technology to parallelize for
GPUs key computations in CPPTRAJ, a real-world analysis code used for molec-
ular dynamics trajectory data written in C++. The primary goal of this work
was to derive high-performance GPU code for CPPTRAJ. At the same time,
we explored the gaps in the CUDA-CHiLL framework for supporting C++ code

34 A. Roy et al.

and proposed how to extend polyhedral compiler technology to support C++
features, including the vectors in the standard template library.

We believe interactions such as this between HPC tool researchers and appli-
cation developers on real applications lead to tools that better meet user needs
while aiding applications in their migration to the variety of current and future
architectures that require significant application changes.

Acknowledgment. This research is part of the Blue Waters sustained-petascale com-
puting project, which is supported by the National Science Foundation (awards OCI-
0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the
University of Illinois at Urbana-Champaign and its National Center for Supercomput-
ing Applications.

References

1. Roe, D.R., Cheatham, T.E.: Ptraj and cpptraj: software for processing and analysis
of molecular dynamics trajectory data. J. Chem. Theory Comput. 9(7), 3084–3095
(2013). https://doi.org/10.1021/ct400341p. pMID: 2658398

2. http://ambermd.org
3. https://github.com/Amber-MD/cpptraj
4. Rudy, G., Khan, M.M., Hall, M., Chen, C., Chame, J.: A programming lan-

guage interface to describe transformations and code generation. In: Cooper, K.,
Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 136–150.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19595-2 10

5. Khan, M., Basu, P., Rudy, G., Hall, M., Chen, C., Chame, J.: A script-based
autotuning compiler system to generate high-performance cuda code. ACM Trans.
Archit. Code Optim. 9(4), 31:1–31:25 (2013). https://doi.org/10.1145/2400682.
2400690

6. Feautrier, P.: Automatic parallelization in the polytope model. In: Perrin, G.-R.,
Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp.
79–103. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61736-1 44

7. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann Publishers, Burlington (2002)

8. Ancourt, C., Irigoin, F.: Scanning polyhedra with DO loops. In: Symposium on
Principles and Practice of Parallel Programming, April 1991

9. Kelly, W.A.: Optimization within a unified transformation framework. Ph.D. dis-
sertation, University of Maryland, December 1996

10. Quilleré, F., Rajopadhye, S.: Generation of efficient nested loops from polyhedra.
Int. J. Parallel Program. 28(5), 469–498 (2000)

11. Vasilache, N., Bastoul, C., Cohen, A.: Polyhedral code generation in the real world.
In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 185–201. Springer,
Heidelberg (2006). https://doi.org/10.1007/11688839 16

12. Chen, C.: Polyhedra scanning revisited. In: Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementation, ser.
PLDI 2012, pp. 499–508, June 2012

13. Adamski, D., Jablonski, G., Perek, P., Napieralski, A.: Polyhedral source-to-source
compiler. In: 2016 MIXDES - 23rd International Conference Mixed Design of Inte-
grated Circuits and Systems, pp. 458–463, June 2016

https://doi.org/10.1021/ct400341p
http://ambermd.org
https://github.com/Amber-MD/cpptraj
https://doi.org/10.1007/978-3-642-19595-2_10
https://doi.org/10.1145/2400682.2400690
https://doi.org/10.1145/2400682.2400690
https://doi.org/10.1007/3-540-61736-1_44
https://doi.org/10.1007/11688839_16

Polyhedral Compilation Support for C++ Features 35

14. Grosser, T., Armin, G., Lengauer, C.: Pollyâperforming polyhedral optimizations
on a low-level intermediate representation. Parallel Process. Lett. 22(04), 1250010
(2012)

15. Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic C-to-CUDA code
generation for affine programs. In: Proceedings of the International Conference on
Compiler Construction, March 2010

16. Leung, A.: A mapping path for multi-GPGPU accelerated computers from a
portable high level programming abstraction. In: Workshop on General-Purpose
Processing using GPUs, September 2010

17. http://en.cppreference.com/w/cpp/container/vector
18. Sujeeth, A.K., et al.: Delite: a compiler architecture for performance-oriented

embedded domain-specific languages. ACM Trans. Embed. Comput. Syst. 13(4s),
134:1–134:25 (2014). https://doi.org/10.1145/2584665

http://en.cppreference.com/w/cpp/container/vector
https://doi.org/10.1145/2584665

Language-Agnostic Optimization
and Parallelization for Interpreted

Languages

Michelle Mills Strout(B), Saumya Debray, Kate Isaacs, Barbara Kreaseck,
Julio Cárdenas-Rodŕıguez, Bonnie Hurwitz, Kat Volk, Sam Badger,

Jesse Bartels, Ian Bertolacci, Sabin Devkota, Anthony Encinas, Ben Gaska,
Brandon Neth, Theo Sackos, Jon Stephens, Sarah Willer, and Babak Yadegari

Department of Computer Science, University of Arizona, Tucson, AZ, USA
mstrout@cs.arizona.edu

Abstract. Scientists are increasingly turning to interpreted languages,
such as Python, Java, R, Matlab, and Perl, to implement their data
analysis algorithms. While such languages permit rapid software devel-
opment, their implementations often run into performance issues that
slow down the scientific process. Source-level approaches for paralleliza-
tion are problematic for two reasons: first, many of the language features
common to these languages can be challenging for the kinds of analyses
needed for parallelization; and second, even where such analysis is possi-
ble, a language-specific approach implies that each language would need
its own parallelizing compiler and/or constructs, resulting in significant
duplication of effort.

The Science Up To Par project is investigating a radically different
approach to this problem: automatic parallelization at the machine code
level using trace information. The key to accomplishing this will be the
static and dynamic analysis of executables and the reconstitution of such
executables into parallel executables. The key insight is that with trace
information it should be possible optimize out the interpreter and other
dynamic features in a language-agnostic manner and create parallelized
executables for multicore architectures. If successful, this can enable sci-
entists to continue to develop in programming environments that most
conveniently support their scientific exploration without paying the per-
formance overheads currently associated with many such environments.

1 Introduction

Scientific communities, such as medical imaging, the life sciences, and plan-
etary sciences, rely extensively on computer software to process and analyze
the wealth of data they and others are generating. In recent years, interpreted
languages such as Python, Perl, and R have come to dominate data analysis
software development in many areas of science: for example, most of the bioin-
formatics software developed in the last five years was implemented in Python,
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 36–46, 2019.
https://doi.org/10.1007/978-3-030-35225-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_4

Science up to Par 37

Fig. 1. s2par tool. Solid boxes are modules being developed as part of this project;
dashed shaded boxes represent third-party software.

JavaScript, or Perl [7]. Such languages have been referred to as productivity
languages [2]. The high-level abstractions supported by such languages enable
rapid prototyping that, together with the re-use of contributed code from the
scientific community, has led to productivity gains in the development of data
analysis and simulation programs.

Unfortunately, some of the features that make these languages productive,
e.g., dynamic typing, dynamic error checking, not requiring programmers to
specify the parallelization strategy, and being interpreted, incur significant run-
time overheads and lead to execution times that are orders of magnitude more
than programming languages such as Fortran, C/C++, and parallel program-
ming languages. Scientists can therefore either work within the constraints of
inefficient software, which can limit the problem sizes they can address; or rewrite
their software in a different programming language, where they would also have
to port their colleagues’ algorithms to reuse sub-routines and/or compare results.
Neither alternative is very appealing because of the iterative nature of data
analysis algorithm development that involves evolving the algorithms based on
feedback from evaluating such algorithms on large datasets. The Science Up To
Par project, presented in this paper, aims to provide the advantages of current
alternatives while mitigating their disadvantages.

Our goal is to bring multicore parallelism to scientists while still allowing
them to use programming environments that most conveniently support their
scientific exploration. We are developing a language-agnostic, trace-guided opti-
mization tool that operates directly on the productivity-language software written
by scientists. This tool will combine dynamic instrumentation and analysis with
aggressive optimization and parallelization to create specialized and parallelized
executables for use with large datasets based on example runs with small repre-
sentative datasets. Figure 1 illustrates the Science Up To Par optimization tool
(s2par) and the dynamic analysis toolchain that s2par is built on.

Scientists will extend their development cycle with a step where they let
the Science Up To Par optimization tool trace the processing of small example
datasets. The optimization tool will provide a specialized, optimized, and par-
allelized executable based on the traces. Scientists will then be able to analyze
their larger datasets with the provided executable. Our usage goal is for the tool
to “just work” as illustrated in the following example:

38 M. M. Strout et al.

s2par --profile <profile_name> python myprog.py <parameters>
s2par --optimize <profile_name> -o newexec
./newexec <parameters for larger datasets>

Thus, scientists will be able to continue using the programming languages that
they are most productive in while still being able to leverage multicore resources
to analyze large datasets with scientifically useful turnaround times.

To achieve these goals, we need to solve the following technical problems:

– Given an execution trace (a sequence of machine instructions), how can we
separate out the control-flow and data-flow logic of the interpreted program
(the interpretee) from those of the interpreter?

– How representative are traces of small inputs in scientific codes?
– How can we detect parallel and/or reduction loops in the recovered control

flow graphs?
– How can we implement the parallel loops without assuming an underlying

memory model, (i.e., without assuming arrays are being used)?
– How can we efficiently catch control-flow that did not occur in the traced

input execution but does for larger datasets?

The remainder of this paper overviews the progress we have made in solving
these problems.

2 Control-Flow and Data-Flow Separation

The machine-level instruction sequence observed in an execution trace reflects
control flows and data flows resulting from a combination of the program logic
of the interpreter and the interpreted program. This intermingling of the logic of
these two programs can hamper parallelization. For example, branch instructions
in the interpreter’s dispatch code can result in spurious control dependencies,
while data movement to and from the interpreter’s expression evaluation stack
can result in spurious data dependencies. To permit effective parallelization,
therefore, we have to separate out the program logic of the interpreted program
from that of the interpreter. This involves a number of nontrivial challenges, for
example:

– Translating from the input program to the interpreter’s internal representa-
tion (IR) of that code involves the interpreter’s front-end (possibly including
the compiler that generates the IR), whose logic can be complex and difficult
to untangle.

– Different interpreters may use different IRs, e.g., a linear array of byte code
instructions, as in Python and Java, or a tree representation, as in Perl and
some implementations of Ruby.

– The dispatch mechanism may be different, e.g., byte code as in Python and
Java, direct-threading as in Ruby.

– Some of the interpreter code may be created dynamically at interpreter
startup time, as in the Hotspot template-based interpreter for Java [6].

Science up to Par 39

– Depending on the optimizations performed by the interpreter front end,
the dispatch code may be replicated, resulting in multiple different dispatch
instructions in the executed code (e.g., as in optimized CPython).

– An interpreter that supports multi-threading (or simulates it, as with the
thread library in CPython) may have multiple virtual instruction pointers
(vips), making it necessary to untangle the code corresponding to the different
vips.

Many of these issues arise from the diversity of design choices available for
implementing interpreters, and they mean that a language-agnostic system such
as that proposed here cannot make a priori assumptions about any particular
design choice. For example, we cannot assume that the IR is a byte-code, or
that it occupies a contiguous region of memory. Coming up with effective ways
to identify and reason about interpreters and interpreted programs under weak
assumptions is a major research thrust of this research.

2.1 Control-Flow Separation

Control-flow separation refers to the process of untangling and separating the
control flow logic of the interpreted program from that of the interpreter. Fur-
thermore, in an interpreted execution of a program, control dependencies in the
input program are mapped to data dependencies through the interpreter’s vir-
tual instruction pointer (vip) [14]. For example, a conditional branch in the input
program is implemented by updating the value of the vip appropriately, thereby
inducing a data dependence through that variable. These data dependencies
have to be identified, and the corresponding control dependencies reconstructed,
when separating out the control flow logic of the interpreter from that of the
input program (see Fig. 2).

Fig. 2. Illustrating the process of deriving the interpreters control flow graph from a
trace and then specializing then deriving the control flow graph of the program being
interpreted.

40 M. M. Strout et al.

Fig. 3. Example
recovered CFG

We are decomposing the interpreter specialization prob-
lem into a collection of smaller and simpler problems.

1. Given the file from which the input program is read (spec-
ified, for example, as a command-line argument), identify
the memory regions corresponding to the IR of the pro-
gram being interpreted. An example of such an IR is the
byte code for the input program.

2. Given the set of locations comprising the input program’s
IR, identify the control transfers corresponding to the dis-
patch instruction(s) of the interpreter.

3. Given the set of dispatch instructions, identify the machine
instructions corresponding to the handler for each byte
code instruction and thereby reconstruct the control flow
graph of the input program.

4. Given the control flow graph of the input program, identify
and optimize out inefficiencies due to interpretation.

We propose to use dynamic taint analysis [10] (augmented
to deal with implicit flows through control dependencies) to
follow the flow of values through the computation: e.g., from
the input program through the front end to the IR; and from
the IR to the dispatch code. To obtain accurate results, it
will be essential to minimize imprecision arising from over-
tainting; we propose to apply ideas from our earlier work on
bit-precise architecture-aware taint analysis [12,13] to address
this issue.

To explore the viability of these ideas, we have experi-
mented with a simple prototype tool for analyzing interpreter
traces for a variety of different languages, including Java, Perl, Python, and
Ruby. These experiments have helped identify, and clarify our understanding
of, many of the research challenges identified above. This prototype does not
address the issues that arise from the interactions between the interpreter’s code
and data structures (e.g., the interpreter’s expression stack) as well as interac-
tions with other components of the runtime system (e.g., the garbage collector).
Nevertheless, we have been able to make progress on the third research subprob-
lem mentioned above: namely, given a set of dispatch instructions, reconstruct
the control flow graph of the input program.

We recover the control flow graph using a method broadly analogous to
that of Sharif et al. [11], though significantly different in details. Like Sharif et
al, we employ a multi-label taint analysis to identify the dispatch of an inter-
preter; unlike that work, however, we do not make any assumptions about the
interpreter or the interpreted IR (e.g., Sharif et al. assume a bytecode inter-
preter where the executed bytecode is laid out as a contiguous array of memory
locations—assumptions that do not hold for AST interpreters as for Perl and
direct-threaded interpreters as for Ruby). The generality of our approach, while
important for applicability to a wide variety of interpreters, can sometimes result

Science up to Par 41

in an over-approximation of the bytecode executed. Additionally, we extend past
Sharif’s work by using the identified bytecode to construct a CFG of the input
source file, allowing us to determine not only what x86 instructions are related
to a particular bytecode instruction, but also what x86 instructions execute a
particular instance of a bytecode instruction. With this information, we believe
the interpreter can be optimized for a particular input program using techniques
similar to those employed by trace based JIT compilers [1].

Experiments using the above approach on a few small programs have been
encouraging. Figure 3 shows the control flow graph of a histogram loop written
in Python, recovered from the dynamic trace using our method. Each node
represents a basic block of byte codes, each bytecode is composed of multiple
x86 instructions, and the label on the node represents the address of the first
x86 instruction in the basic block. The edge labels represent dynamic trip count.
Our method correctly retrieves two loops, one to generate the histogram and
another to write it out and reconstitutes them into a working executable.

2.2 Data-Flow Separation

Data-flow separation refers to the process of separating the data-flow logic of the
interpreted program from that of the interpreter and the runtime system. The
issue arises because computations of data values in the interpreter involve data
movement into and out of a set of locations used for expression evaluation (e.g.,
an expression stack, as in the Java Virtual Machine and CPython interpreter; or
virtual registers, as in the Dalvik virtual machine and the SPIM interpreter for
MIPS assembly code). The reads and writes involving these locations can then
induce spurious dependencies between instructions. Such dependencies can also
arise from data movements in the runtime system, e.g., due to garbage collection
or just-in-time compilation.

We plan to apply compiler optimization techniques to effect data-flow sepa-
ration. For example, using an SSA representation may allow us to identify and
separate out distinct uses of expression evaluation locations in the interpreter,
such as the expression stack, without having to presuppose any particular mech-
anism for expression evaluation. There may also be complexities arising from
architectural features, e.g., the stack of floating point registers on x86 and x86-
64 processors.

3 Small Datasets Appear Representative

A potential drawback of optimization based on dynamic analysis is that of code
coverage: the only code paths observed in dynamic analyses are those executed
with the profiling inputs. This can be problematic if the “real” datasets exercise
code paths that deviate from those observed on profiling runs. Avoiding correct-
ness problems resulting from such deviations requires adding additional runtime
checks into the code, which then incur some runtime overhead.

42 M. M. Strout et al.

As an initial check that the dynamic analyses performed on small input data
are representative enough to be applied to larger-scale target inputs without
loss of correctness, we examined coverage between the training and reference
inputs of twelve SPECfp-2006 benchmarks.1 We used our binary-level dynamic
analysis toolset to determine, for each benchmark program tested, the fraction
of the machine code executed on the reference inputs that was also executed on
the training inputs.

Our experiments indicate that, on average, 96.5% of the code executed on the
reference inputs is also executed on the training inputs, with ten of the programs
having >99% coverage. Only one, calculix, had a significant difference (69%)
in coverage of the scientific features. This suggests that while smaller training
inputs may not always provide complete coverage of the code executed on the
reference inputs, in most cases the difference will likely be small. To guide sci-
entists in choosing a set of small representative inputs, we plan to automatically
pre-check inputs and provide feedback when coverage tools exists for their lan-
guage. Examples of such tools include Figleaf for Python, simplecov for Ruby,
and Devel::Cover for Perl.

When coverage is incomplete, we must insert appropriate and efficient run-
time checks to ensure correctness should a given input attempt to access a
non-traced feature of the software. Interpreter specialization will impose strong
assumptions regarding facets of the program such as control flow and data types.
We will identify the locations of these assumptions, encode those assumptions
as checks, and insert the checks into the control flow where they dominate the
assumption. For example, the Python interpreter includes many conditional
checks involving type information. We can assume types do not change while
data analysis is being performed, assume the largest version of the datatype
(e.g., double vs. float) used during training runs on representative inputs should
be used throughout, and therefore remove extraneous conditional checks.

We also plan an in-depth analysis of these scripts to determine the charac-
teristics of the aliasing used in their data structures, with a focus on multiply-
referenced values in the same data structure, amount of indirection, and the
differences between small and large inputs with respect to these measures. Mul-
tiply referenced values could affect the correctness of our parallelization. This
analysis will guide our strategy in handling these cases.

4 Parallelism Exists

Data analysis scripts contain significant parallelism. In current and previous
work [3,4], we have been collaborating with scientists who write data analysis
codes in Python, Perl, Matlab, and Julia. These data analysis codes typically
have a single bottleneck loop. The bottleneck is often a reduction of some kind:

1 We had problems building and running the remaining five benchmarks in the
SPECfp-2006 suite. Some of these problems may have been due to non-standard-
conformant code in the benchmarks.

Science up to Par 43

adding items to a list, set, or matrix or performing some calculation and main-
taining summary information.

As part of an in depth analysis of scientific data analysis codes, done in
conjunction with a graduate level course, we ported Matlab and Perl scien-
tific data analysis codes to new parallel programming models, leading to signifi-
cant speedups (60x for a medical imaging analysis) [3,5]. Although some of this
speedup was due to porting a snap-shot of the program to a compiled program-
ming language, through this process we also discovered significant parallelism in
the computations causing performance bottlenecks (in [5] over 6× speedup on
8 cores for an orbital analysis code in Python and in [3] over 7× speedup for a
medical imaging analysis code in Matlab).

Finding the parallelism in a trace that includes the interpreter code as its
interpreting is more challenging than finding parallelism of a compiled program.
Oh et al. [8,9] showed that if an interpreter is specialized for a specific input
program, it is possible to find pipeline and speculative loop-level parallelism at
the LLVM IR level. They found that performing profiling at the LLVM level
significantly reduced the speculation overhead thus leading to decent parallel
scaling with some Lua and Perl programs.

5 Implementing the Parallelism

We plan to implement loop-level parallelism by breaking the LLVM IR instruc-
tions from time-consuming loops into two sets: the instructions that perform
the (parallelizable) work and the instructions that determine the next iteration,
including the loop completion. A master thread will execute the iterator code
and then spawn off tasks to a task pool implementation.

The proposed work includes plans to raise the interprocedural control flow
graph of x86 instructions into annotated LLVM and then analyze for parallelism.
In our initial experiments, we determined how to find parallelism in the full x86
traces using a back tainting analysis (e.g., equivalent to backward slicing. The
example code was a C++ loop traversing an input linked list, performing some
busy work computation in the form of a loop of sin() calls, and writing the sum
of those sin() call results into a node of the output linked list.

Figure 4(a) illustrates the split of x86 instructions for one loop iteration into a
master thread that deals with the linked list traversal that needs to be serialized
and the task instructions (minus the sin() loop due to space considerations) for
tasks that can be computationally overlapped. We have also started experiment-
ing with finding the parallelism in the traces. The algorithm for finding the split
involves identifying loop-exit branches and upwards-exposed reads per iteration
and placing the instructions that influence those into the master thread. The
leftover instructions can be encapsulated into a worker task function.

To implement the found parallelism, we use POSIX threads (pthreads). Using
a hand-implemented version of the example loop at the C level, we see promising
results. The goal of these tests were to determine the size of work tasks required
to see a performance increase over serial execution. To see execution speeds on

44 M. M. Strout et al.

3f cmp

47 jz

7c mov
80 mov

84 mov

88 mov

90 mov

94 jmp

67 mov
6a div

76 mov

7a mov

71 add
6c sub

61 mov
5e shl

58 add

52 mov
56 mov

64 mov
66 cdq

4d mov

8c mov

(a) The x86 instructions of one loop iteration are split into those to be
serialized by the master thread (pink) and those that can be parallelized
into tasks (green). Parameters needed by the tasks are also determined
(red lines).

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Serial
1 Thread
2 Threads
4 Threads
8 Threads

(b) Execution time scaling with number of threads and amount of dis-
covered parallel work. As the work per iteration crosses the equivalent
of 35 calls to sin(), our method run on four threads executes faster than
the original C serial code.

Fig. 4. Proof of concept identification of serial master thread and parallel worker
instructions from an x86 trace of a C program and performance of an initial pthreads
implementation. (Color figure online)

Science up to Par 45

par with the serial execution, the work function must execute 8,000 instructions
with two worker threads, 5,000 with four, and 11,000 with eight. This corresponds
to 50, 40, and 70 calls to sin(), respectively. Figure 4(b) summarizes these results.

Another major issue that will need to be addressed is the detection of reduc-
tion dependences in the loop and implementing their parallelism. Their detection
and implementation will be somewhat intertwined, because it will be more com-
plex than a read, add, and update operation on a register. Some of the values
experiencing a reduction might be values in a dictionary. Therefore the reduc-
tion operation will have to be detected within a trace through memory loads and
stores as well as operations on registers. We plan to leverage the existing research
on source-level detection of reductions and other commutative operations and
extend that to the LLVM IR.

One possible approach for handling reductions is that once the loads and
stores involved have been detected, the implementation will be built by putting
off the loads and stores to the shared memory accesses. Each thread could be
given its own map that maps memory addresses to value and address pairs at
runtime. At end of executing all tasks in a loop, all thread maps would be reduced
into shared memory.

With reduction and loop parallelism detected, the next step will be exper-
imenting with implementation approaches that leverage that parallelism while
amortizing overhead. The most problematic overhead will probably be the serial
bottleneck of the master thread. Providing each thread its own address space
and then mapping results back into shared spaces once large-grained tasks are
complete might help break this bottleneck, but will introduce memory copying
overhead. Experimentation and modeling of the various tradeoffs will be needed.

6 Conclusion

This research aims to develop software analysis, optimization, and paralleliza-
tion techniques to obtain significant performance improvements in research soft-
ware developed by scientists (including several collaborators from a diversity
of scientific disciplines). Our goal is to do this in a way that (a) is language-
agnostic and transparent to the scientists, so that they can continue to work
in the programming language of their choice and (b) leverages state-of-the-art
compiler technology to effectively utilize multicore parallelism. The impact of
this research will be two-fold: first and foremost, it will benefit a wide variety
of scientists—most immediately medical imaging analysis and life sciences at
the University of Arizona but also elsewhere—by boosting the speed of their
research software with little to no additional effort on their part; second, it
will benefit computer science research by developing new techniques for software
performance optimization and thereby giving rise to additional new and exciting
research problems.

46 M. M. Strout et al.

References

1. Bolz, C.F., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the meta-level: Pypy’s
tracing JIT compiler. In: Proceedings of the 4th Workshop on the Implementa-
tion, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, pp. 18–25. ACM (2009)

2. Catanzaro, B., et al.: SEJITS: getting productivity and performance with selec-
tive embedded JIT specialization. Technical report UCB/EECS-2010-23, EECS
Department, University of California, Berkeley, March 2010

3. Danford, F., Welch, E., Cárdenas-Ródriguez, J., Strout, M.M.: Analyzing parallel
programming models for magnetic resonance imaging. In: Ding, C., Criswell, J.,
Wu, P. (eds.) LCPC 2016. LNCS, vol. 10136, pp. 188–202. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52709-3 15

4. Gaska, B.J.: Parforpy: loop parallelism in python. Master’s thesis, University of
Arizona (2017)

5. Gaska, B.J., Jothi, N., Mohammadi, M.S., Volk, K., Strout, M.M.: Handling nested
parallelism, load imbalance, and early termination in an orbital analysis code.
Technical report arXiv:1707.09668, University of Arizona (2017)

6. Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Russell, K., Cox, D.:
Design of the Java hotspot™ client compiler for Java 6. ACM Trans. Archit.
Code Optim. 5(1), 7:1–7:32 (2008)

7. Lindenbaum, P.: Programming language use distribution from recent programs/ar-
ticles, April 2017. https://www.biostars.org/p/251002/

8. Oh, T., Beard, S.R., Johnson, N.P., Popovych, S., August, D.I.: A generalized
framework for automatic scripting language parallelization. In: Proceedings of the
26th International Conference on Parallel Architectures and Compilation Tech-
niques (PACT) (2017, to appear)

9. Oh, T., Kim, H., Johnson, N.P., Lee, J.W., August, D.I.: Practical automatic
loop specialization. In: Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2013, pp. 419–430. ACM, New York (2013)

10. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Proceedings of IEEE Symposium on Security and Privacy, pp. 317–331
(2010)

11. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 94–109.
IEEE (2009)

12. Yadegari, B., Debray, S.: Bit-level taint analysis. In: IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM) (2014)

13. Yadegari, B., Debray, S.: Symbolic execution of obfuscated code. In: Proceedings of
22nd ACM Conference on Computer and Communications Security (CCS), Octo-
ber 2015

14. Yadegari, B., Debray, S.: Control dependencies in interpretive systems. In: Lahiri,
S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 312–329. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67531-2 19

https://doi.org/10.1007/978-3-319-52709-3_15
http://arxiv.org/abs/1707.09668
https://www.biostars.org/p/251002/
https://doi.org/10.1007/978-3-319-67531-2_19

Performance Modeling and
Instrumentation

Memory Distance Measurement
for Concurrent Programs

Hao Li, Jialiang Chang, Zijiang Yang(B), and Steve Carr

Western Michigan University, Kalamazoo, MI, USA
{hao.81.li,jialiang.chang,zijiang.yang,steve.carr}@wmich.edu

Abstract. Memory distance analysis, the number of unique memory ref-
erences made between two accesses to the same memory location, is an
effective method to measure data locality and predict memory behavior.
Many existing methods on memory distance measurement and analysis
consider sequential programs only. With the trend towards concurrent
programming, it is necessary to study the impact of memory distance on
the performance of concurrent programs. Unfortunately, accurate mea-
surement of concurrent program memory distance is non-trivial. In fact,
due to non-determinism, the reuse distance of memory references may
differ with the same input set across multiple runs. Since memory dis-
tance measurement is fundamental to analysis, we propose a measur-
ing approach that is based on randomized executions. Our approach
provides a probabilistic guarantee of observing all possible interleavings
without repeated executions. In order to evaluate our approach, we pro-
pose a second symbolic execution based approach that is more rigorous
but much less scalable than the first approach. We have compared the
two approaches on small programs and evaluated the first one on Par-
sec benchmark suite and a large industrial-size benchmark MySQL. Our
experiments confirm that the randomized execution based approach is
effective and practical.

1 Introduction

Nowadays, widespread multicore hardware has put us at a fundamental turning
point in software development. Although we have seen incrementally more pro-
grammers writing multithreaded programs in the past decade, the vast majority
of applications today are still single-threaded and cannot benefit from the hard-
ware improvement without significant redesign. Applications will need to be
well-written concurrent software programs in order to benefit from the advances
in multicore processors.

The main reason to develop concurrent programs, which are much more
sophisticated than sequential programs, is to enhance the performance of an
application. To achieve the performance, developers usually make extra effort
to hand tune the programs. One aspect of performance enhancement is data
locality because of its significant effect on cache. In order to manage locality,
developers need to measure the memory distance of their programs.
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 49–64, 2019.
https://doi.org/10.1007/978-3-030-35225-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_5

50 H. Li et al.

The memory distance of a reference is a dynamic quantifiable distance in
terms of the number of different memory references between two accesses to
the same memory location [1]. It is a widely accepted concept in analyzing pro-
gram cache performance. The speed gap between the processor and memory has
resulted in what is known as the memory wall. To overcome this wall and speed
up program performance, data locality is an important factor that developers
must consider. Memory distance analysis [1–4] is an effective method to measure
data locality and predict memory behavior.

Much existing work on memory distance measurement and analysis considers
sequential programs only. With the trend towards concurrency, we need to do
such measurement on concurrent programs. Unfortunately, adapting existing
approaches that were designed for sequential programs is not feasible. Due to the
inherent non-deterministic behavior under fixed inputs for concurrent programs,
measuring concurrent memory distance is fundamentally different from that of
sequential programs.

Table 1. Memory reference of a program execution

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Reference accessed A B C A C C B A C B A C B B A C

Memory distance ∞ ∞ ∞ 2 1 0 2 2 2 2 2 2 2 0 2 2

Consider the example shown in Table 1. The first row lists the indices of the
events in a program execution under input vector v. The second row gives the
symbolic memory address being accessed and the third row computes the mem-
ory distance. In the following, we use an index as the superscript to differentiate
the instances of the same memory addresses in the execution trace. The memory
distance of A1, denoted as Δv(A1), is ∞ because it is the first appearance of A.
For the same reason we have Δv(B2) = Δv(C3) = ∞. Δv(A4) = 2 because there
are two accesses to other memory locations between the current access and the
previous access to A. Note that Δv(B7) = 2, because although there are four
accesses between B2 and B7, three out of the four access visit the same mem-
ory location. It can be easily observed that the minimal and maximal memory
distances under v are 0 and 2 (not considering ∞), respectively. All the existing
memory analysis approaches are in general based on such computation, with
minor variants 1.

However, the minimal and maximal memory distances under v may not be
0 and 2 if the program under analysis is concurrent. For example, the trace in
Table 1 may be from a concurrent program with two threads as shown in Table 2.
That is, the first eight memory accesses are from Thread 1 and the remaining
eight are from Thread 2. The execution trace in Table 1 corresponds to the case

1 For example, some approaches may report Δv(B
7) = 4 because there are four

accesses between B2 and B7 regardless same memory locations are accessed.

Memory Distance Measurement for Concurrent Programs 51

Table 2. Motivating example

Index 1 2 3 4 5 6 7 8

Memory references in thread 1 A B C A C C B A

Memory references in thread 2 C B A C B B A C

where Thread 2 starts its execution after Thread 1 completes. However, this is
not the only possibility. Many other interleavings are possible, as illustrated in
Table 3.

Table 3. Memory distance results in different interleavings

idx Reference accessed Memory distance

1 {C2,B2,A2,C2,B2,B2,A2,C2,A1,B1,C1,A1,C1,C1,B1,A1} {∞,∞,∞,2,2,0,2,2,1,2,2,2,1,0,2,2}
2 {C2,B2,A2,C2,A1,B1,C1,A1,C1,C1,B1,A1,C2,B2,B2,A2} {∞,∞,∞,2,1,2,2,2,1,0,2,2,2,2,0,2}
3 {A1,B1,C1,C2,B2,A2,C2,A1,C1,C1,B1,A1,C2,B2,B2,A2} {∞,∞,∞,0,1,2,2,1,1,0,2,2,2,2,0,2}
4 {A1,C2,B2,B1,C1,A2,C2,A1,C1,C2,B2,C1,B1,A1,B2,A2} {∞,∞,∞,0,1,2,1,1,1,0,2,1,1,2,1,1}
5 {A1,C2,B1,B2,C1,A2,C2,A1,C1,C2,C1,B2,B1,B2,A1,A2} {∞,∞,∞,0,1,2,1,1,1,0,0,2,0,0,2,0}
6 {C2,B2,A1,B1,A2,C2,C1,A1,B2,B2,C1,C1,A2,C2,B1,A1} {∞,∞,∞,1,1,2,0,1,2,0,2,0,2,1,2,2}
7 {C2,A1,B2,B1,A2,C1,A1,C2,B2,B2,C1,A2,C1,C2,B1,A1} {∞,∞,∞,0,1,2,1,1,2,0,1,2,1,0,2,2}

This simple example illustrates the challenge in measuring memory distance
for concurrent programs. Multiple executions of a concurrent program with the
same input might exercise different sequences of synchronization events possibly
producing different results each time. To obtain accurate memory distances for a
given input, all execution traces permissible under that input must be examined.
However, in current execution environments a developer has no control over the
scheduling of threads. Furthermore, when executing a concurrent program by
running it repeatedly on a lightly-loaded machine, the same thread interleaving,
with minor variations, tend to be exercised since thread schedulers generally
switch among threads at the same program locations. The net effect of these
impediments is that only a few interleavings end up being examined. This leads
to an incomplete picture of memory distances.

In this paper, we present an approach to measure memory distance of con-
current programs. Given the fact that we cannot possibly explore all the thread
interleavings of a concurrent program, our approach introduces randomness in
repeated executions. By adapting a method called PCT [5], our approach pro-
vides a mathematical guarantee to detect memory distances of given triggering
depths. That is, if there exists a memory distance d between memory accesses
to m with triggering depth δd

m(definition to be given in Sect. 4), our approach
guarantees its detection with probability of 1/(n × kδd

m−1), where n and k are
the approximated number of threads and the approximated number of events,
respectively, of the given program. We have implemented our method in a tool
called DisConPro (Memory Distance measurement of Concurrent Programs with
Probabilistic Guarantee).

52 H. Li et al.

In order to validate the effectiveness of DisConPro, we propose a more rig-
orous but much less scalable approach to measure memory distance based on
symbolic execution. The second approach utilizes the symbolic execution engine
that we developed to exhaustively explore all intra-thread paths and inter-thread
interleavings. We name this tool DisConSym (Memory Distance measurement
of Concurrent Programs based on Symbolic Execution Guarantee). DisConSym
can only handle small programs due to its inherent path explosion. By compar-
ing DisConPro against DisConSym on small programs, we are able to determine
if DisConPro covers a similar memory distance spectrum as DisConSym.

The contributions of this paper include the following:

1. To the best of our knowledge, we are the first to propose a feasible approach
to measure the memory distance of concurrent programs. Our approach is
based on randomized executions and provides probabilistic guarantees.

2. We propose a second approach that is more rigorous but less scalable than
the first approach. Although such a symbolic execution based approach can
only handle small benchmarks, it allows us to evaluate the effectiveness of
the first approach.

3. We have implemented two prototypes DisConPro and DisConSym and con-
ducted experiments on medium-sized Parsec [6] benchmarks and a large
industrial size benchmark MySQL with DisConPro.

The rest of the paper is organized as follows. The background knowledge of
concurrent program execution is described in Sect. 2, followed by the explanation
of our two approaches in Sects. 3 and 4, respectively. The experimental results
are given in Sect. 5. Section 6 discusses the related work. Finally Sect. 7 concludes
the paper.

2 Background: Execution of Concurrent Programs

Figure 1 gives a code snippet of a concurrent program with two threads. Depend-
ing on the values of a and b, different branches in the two threads can be
observed across executions. Depending on the synchronization and operating
system scheduling policies, different interleavings can also be observed. In order
to present intra-thread paths and inter-thread interleavings, we use the gen-
eralized interleaving graph(GIG) [7,8] to illustrate all possible executions of a
concurrent program.

Figure 1 depicts the GIG of the code snippet on its left, where black and
blue edges represent an execution step of Threads T1 and T2, respectively. The
dashed lines with the same source (defined as b-PP node) denote a branch within
a thread and the solid lines with the same source (defined as i-PP node) denote
a context switch between two threads. Note that a node can be both b-PP and i-
PP. In order to measure memory distance accurately, all the paths in a GIG must
be considered. This is what our symbolic execution based approach, described
in Sect. 7, attempts to accomplish. However, enumerating all possible executions
is obviously impractical. Thus, we present a practical approach in Sect. 4.

Memory Distance Measurement for Concurrent Programs 53

T11:a=x;
T12:if(a > 0) Br1;

else Br1;
T13:if(a % 2==0) Br2;

else Br2;
T14:
---- [T1] ----

T21:b=y;
T22:if(b > 0) Br3;

else Br3;
T23:if(b % 2 == 1) B4;

else Br4;
T24:
---- [T2] ----

< T 11, T 21 >

< T12, T 21 > < T11, T 22 >

< T13, T 21 > < T 12, T 22 > < T 11, T 23 >

< T13, T 22 > < T 12, T 23 >

< T 13, T 23 >

Br1

Br1

< T 14, T21 >

< T 14, T 22 >

< T14, T 23 >

< T 14, T 24 >

< T 13, T 24 >

< T12, T 24 >

< T11, T 24 >

Br2
Br2

Br3

Br3

Br1

Br1

Br4
Br4

Br3

Br3

Br3

Br3

Br3

Br3Br2

Br2

Br2

Br2

Br4
Br4

Br4

Br4

Br4

Br4

Br2

Br2

Br1

Br1

Br1

Br1

Fig. 1. Code snippet of a concurrent program and its generalized interleaving
graph(GIG).

3 Memory Distance Measurement Based on Symbolic
Execution

In this section, we present a symbolic execution based approach that is able to
systematically explore all the intra-thread branches and inter-thread interleav-
ings. The pseudo-code is shown in Algorithm 1, which is based on the symbolic
execution algorithm proposed in [8], and follows the Concolic [9] framework. The
algorithm uses a recursive procedure TrackState to explore paths. The first
path is randomly chosen. When a new b-PP node with condition c is encoun-
tered, TrackState checks whether the current path condition appended with c
if satisfiable. If so, it continues the execution along the branch while pushing the
other branch ¬c on the stack S. The satisfiability is checked by an SMT solver
such as Z3 [10]. If the SMT solver fails to find a solution, it indicates that no
inputs or interleavings can continue the execution along the branch. In this case,
the current execution backtracks by popping its stack S. If an i-PP node is first
encountered, TrackState randomly choose one interleaving while pushing the
other one on the stack. For a more detailed explanation, please refer to [8].

The measurement of memory distance occurs during backtrack. That is,
when the current execution reaches an end state normal end state or reaches an
infeasible branch. In GetMemDist, a path is treated as a sequence of member
accesses 〈acc1, . . . , accn〉. Each acci is a pair (addr, d) of memory address and
distance. All the global memory accesses are analyzed to calculate the memory
distance. Initially the memory distance of any memory access is set to -1. The
algorithm continuously checks the next access accj . If accj accesses a memory
address different from acci.addr, accj .addr is added to the set memorySet. Oth-
erwise, the size of memorySet is the memory distance between acci and accj .

54 H. Li et al.

Algorithm 1. SymbolicExecution(P)
let Stack S ← ∅ be the path constraints of a path;

1: TrackState(s)
2: S.push(s);
3: if (s is an i-PP node or b-PP node)
4: while (∃t ∈ (s.enabled \ s.done \ s.branch))
5: s′ ← Next(s, t);
6: TrackState(s′);
7: s.done ← s.done ∪ {t};
8: else if (s is an local thread node)
9: t ← s.next;

10: s′ ← Next(s, t);
11: TrackState(s′);
12: path ← S.pop();
13: Next(s, t)
14: let s be 〈pcon, M〉;
15: if (t instanceof halt)
16: s′ ← normal end state;
17: GetMemDist(path);
18: else if (t instanceof branch(c))
19: if (s.pcon is unsatisfiable under M)
20: s′ ← infeasible state;
21: GetMemDist(path);
22: else
23: s′ ← 〈pcon ∧ c, M〉;
24: else if (t instanceof X = Y op Z)
25: s′ ← 〈pcon, M[X]〉;
26: return s′;
27: GetMemDist(path)
28: let path be 〈acc1, . . . , accn〉;
29: for (int i ← 0, i < n − 1, i++)
30: memorySet ← ∅;
31: for (int j ← 1, j < n, j++)
32: if (acci.addr = acci.addr
33: acci.d ← memorySet.size();
34: break;
35: else
36: memorySet.insert(accj .addr);

4 Memory Distance Measurement with Random
Scheduling

In this section, we present our main approach that computes memory distances
with random scheduling. We begin with the concept of memory distance minimal
depth δd

m. Given a memory location m, δd
m is defined as the minimal number

of constraints for any pair of accesses to m that have a memory distance of d.
Consider the example given in Table 4. There are four threads with eight events

Memory Distance Measurement for Concurrent Programs 55

e1, . . . , e8 that access four memory locations A,B,C and D. Among the total
2520 interleavings, the memory distances between a pair of accesses to A range
from 0 to 3. The memory distance of 3 occurs only if e1 ≺ e2 ∧ e1 ≺ e3 ∧ e1 ≺ e4,
where ≺ denotes the happens-before relation. That is, δ3A = 3 because there are
three constraints.

Table 4. Four threads with eight memory accesses.

Thread1 Thread2 Thread3 Thread4

< e1, A > < e2, B > < e3, C > < e4, D >

< e5, A > < e6, A > < e7, A > < e8, A >

4.1 PCT Algorithm

We adapt the PCT [5] algorithm that was proposed to detect concurrent bugs
with a probabilistic guarantee. The basic idea is to add a random scheduling
control mechanism to randomize scheduling to avoid redundant executions.

In [5], a concurrent bug depth is defined as the minimum number of order con-
straints that are sufficient to guarantee to find the bug. The algorithm attempts
to find the concurrent bug with depth of d by controlling the thread scheduling
as the following.

– The scheduling is controlled by giving each thread a priority. A thread exe-
cutes only if it has the highest priority or the threads with higher priorities
are waiting.

– It assigns n initial priorities d, d + 1, d + 2....d + n − 1 to the n threads.
– It randomly picks d − 1 change points from k instructions, where k is the

estimated number of instructions. The program is then executed with the
following rules.

• Each time only the enabled instruction from the thread with the high-
est priority can be executed. During execution all the instructions are
counted.

• If the instruction to be executed is counted as the number k-th and k is
equal to any of ki, change the priority value of the current thread to i.
This causes a context switch.

4.2 Measure Memory Distance with Random Scheduling

We propose an approach called DisConPro, which adapts the PCT [5] algo-
rithm to measure the memory distance in concurrent programs. As demonstrated
above, memory distances may be different with different interleavings.

The basic idea of DisConPro is to measure the memory distance in multi-
ple executions with the PCT scheduling control menchanism. At the begining,
DisConPro generates a random schedule following PCT [5]. Then it executes

56 H. Li et al.

the program following the schedule. The memory distance is measured during
the execution. Each memory access is recorded in a memory access trace and
memory distances are calculated based on the memory access traces.

In practice, the statically computed scheduling is not always feasible. How-
ever, the infeasible cases only deviate from the planned interleavings but do not
lead to execution error. For example, DisConPro may attempt to execute an
instruction that is disabled by the operating system. In this case, the execution
will choose the next thread with highest priority until an enabled instruction is
found.

Algorithm 2. DisConPro(P,n,k,d,m)
Input: P is a program
Input: n is the number of threads
Input: k is the number of events
Input: d is memory distance minimum depth
Input: m is a memory address on which memory distance is measured

1: Var: Trace is a list that records every memory access events
2: Var: Distance is an array of memory distances

Distance[i] is the memory distance between i-th and (i+1)-th access to m
3: Trace = Empty List
4: Generate a random schedule S based on PCT algorithm
5: Schedule n threads based on S and execute those k events
6: for each memory access event e do
7: Trace.add(e)

8: end for
9: Calculate Distance based on Trace

4.3 Probabilistic Guarantee Inheritance

The PCT algorithm provides a probabilistic guarantee to find a concurrent bug.
By adapting it, our approach can provide a probabilistic guarantee to find a
particular memory distance d with a depth of δd

m. The probability is at least
1/(n × kδd

m−1). Now we now give the proof by adapting the proof for finding a
concurrent bug found in [5].

Definition 1. DisConPro(m,n, k, P) is defined as a set of memory distances
of a memory object m. DisConPro finds memory distances during one execution
of program P , containing n threads and k instructions.

Theorem 1 (Probabilistic Guarantee Theorem). If there exists a memory
distance d with a minimum depth memory distance of δd

m, the probability of
DisConPro finding it in one execution is

Pr(d ∈ DisConPro(m,n, k, P)) > 1/(n × kδd
m−1) (1)

Memory Distance Measurement for Concurrent Programs 57

Proof. We define an assert statement assert(m, d) as that d is not the memory
distance of memory object m in the execution. We define a bug B that can
be flagged if the assertion fails. If bug B is detected, d is found as the memory
distance of memory m. We define event E1 as DisConPro finds bug B and event
E2 as DisConPro finds d as the memory distance of m. Base on the definition
of E1 and E2, we can argue that E1 ≡ E2. Let Cons be a minimum set of
constraints that are sufficient for E1 to happen. We argue that Cons is one of
the minimum set of constraints that are sufficient for E2 to happen. This bug B
is not different from other concurrent bugs hidden in rare schedules. The depth
of B equals δd

m, which is the size of Cons. We defineE3 as PCT algorithm find
B in one execution. Since DisConPro adapts PCT algorithm, we can argue that
Pr(E2) = Pr(E3). By the definition, we have

Pr(E1 : d ∈ DisConPro(m,n, k, P)) = Pr(E2 : DisConPro finds B) (2)

Pr(E2 : DisConPro finds B) = Pr(E3 : PCT finds B) (3)

It has been proved that (see [5])

Pr(E3 : PCT finds B) > 1/(n × kδd
m−1) (4)

Then,
Pr(E1 : d ∈ DisConPro(m,n, k, P)) > 1/(n × kδd

m−1) (5)

5 Experiments

5.1 Implementation

We implement DisConPro using PIN [11], a dynamic binary instrumenta-
tion(DBI) framework that allows users to insert analysis routines to the original
program in binary form. DisConSym is based on Cloud9 [12], a symbolic execu-
tion engine built upon LLVM [13,14] and KLEE [15]. DisConSym has an exten-
sion for analyzing concurrent programs since Cloud9 only partially supports
concurrency. The extension of Cloud9 follows the algorithm and implemention
given in [16]. With the extension, DisConSym can analyze the interleavings not
only due to synchronization primitives, which is also supported by Cloud9, but
also due to global variables. The latter is essential and a prerequisite to analyze
the memory distance of a concurrent program.

5.2 Comparison Between DisConPro and DisConSym on Small
Programs

We compare DisConPro with DisConSym to answer the following questions.

– Can DisConPro discover the same memory reuse range as DisConSym does?
– Can DisConPro cover all valid tracks as DisConSym does?
– Is DisConPro more scalable than DisConSym?

58 H. Li et al.

Table 5. Impact of the number of global variables comparing with DisConSym and
DisConPro

Thread number = 3 2 mem global 3 mem global 4 mem global 5 mem global

DisConSym mem global 1 −1, 0, 1 −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 2 −1, 0, 1 −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 3 N/A −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 4 N/A N/A −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 5 N/A N/A N/A −1, 0, 1, 2, 3, 4

DisConPro mem global 1 −1, 0, 1 −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 2 −1, 0, 1 −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 3 N/A −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 4 N/A N/A −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 5 N/A N/A N/A −1, 0, 1, 2, 3, 4

Since DisConSym is not scalable, we compare the two tools on several small
concurrent programs with an adjustable number of threads and global variables.
All the programs have less than 100 lines of code. Table 5 gives the experimental
results. In the experiments we set the number of threads to 3, as indicated by
the heading of Column 2, and the number of global variables to be 2–5. DisCon-
Sym is not able to handle a program with more threads and global variables.
Columns 3–6 indicate the number of global variables created in each group of
experiments. Each row in the table gives the memory distance observed for each
individual global variable. When a variable does not exist in an experiment, e.g.
mem global3 in an experiment with only two global variables in Column 3, N/A
is given. In the table, the top half of the rows give the results under DisConSym
and the bottom half show the results under DisConPro. For all the experiments
done by DisConPro, we set depth to be 5 and run each program 100 times. The
table indicates that memory distances can be affected by the number of global
variables. It can also be observed that for the small programs DisConPro can
find as many memory distances as DisConSym.

Although for small programs DisConSym and DisConPro generate the same
results in measuring memory distance, the cost is significantly different. Table 6
gives the number of paths and time usage of the seven groups of experiments
with various numbers of threads and global variables. It can be observed that
even for such small programs DisConPro is more than 1000 times faster. As
concurrent programs become larger, the gap will be wider. Although we cannot
guarantee DisConPro can detect as many memory distances as DisConSym does
for non-trivial programs, we believe DisConPro achieves a nice trade-off between
accuracy and efficiency.

5.3 DisConPro on Public Benchmarks

We evaluate DisConPro with 9 applications in the Parsec benchmark suite [6], as
well as the real-world application MySQL with more than 11 million lines of code.

Memory Distance Measurement for Concurrent Programs 59

Table 6. Tracked paths and time cost result for DisConSym and DisConPro

Threads and mem global setting Approach # Paths Time (seconds)

3 threads, 2 mem global DisConSym 90 2

DisConPro 100 25

3 threads, 3 mem global DisConSym 1680 27

DisConPro 100 25

3 threads, 4 mem global DisConSym 34650 930

DisConPro 100 25

3 threads, 5 mem global DisConSym >200000 >6794

DisConPro 100 25

2 threads, 3 mem global DisConSym 20 1

DisConPro 100 25

4 threads, 3 mem global DisConSym >200000 >9609

DisConPro 100 25

5 threads, 3 mem global DisConSym >200000 >11473

DisConPro 100 25

(a) blackscholes (b) bodytrack (c) canneal

(d) raytrace (e) swaptions (f) vips

(g) dedup (h) ferret (i) freqmine

Fig. 2. Parsec results

60 H. Li et al.

For each application, we conduct 6 groups of experiments. Group one measures
the memory distance by only running the test cases once without scheduling
control. Groups 2 to 6 measure the memory distances by running each test
case 30 times. Group 2 uses random scheduling. Groups 3–6 set the predefined
depth to 5, 10, 20 and 50, respectively. For each application, we perform memory
distance analysis on global variables only. For a large application with too many
global variables, we randomly choose several global variables to measure their
memory distances.

Parsec Benchmark. Figure 2 gives the results of the experiments on Par-
sec [6]. The data in the sub-tables and sub-figures present the range of memory
distances. Each column gives the minimum and maximum distances of all the
global variables we evaluate. The figures show that in most cases the ranges that
DisConPro finds are larger than those detected by Random Schedule, which in
turn are larger than the ranges discovered by Single Run. However, the range
gaps achieved by PCT are not comparable to those obtained by random algo-
rithm or even single runs. This is because the ranges reported in the figure are
for all the global variables that we have evaluated. Assume that there exists a
global variable that is accessed at the beginning of an execution and is re-accessed
before the program terminates, its memory distance span is large and does not
change much under all the possible interleavings. In this case, this variable hides
the differences of the ranges exhibited in other variables.

For the application vips, single and random executions without PCT detect
a larger memory distance span. Since PCT randomly generates change points
to enforce context switches, it may disturb program executions significantly.
For this reason, PCT may observe memory distances that are less diverse than
those without PCT. This phenomenon is further amplified by the facts that we
aggregate all variables in the same figure. To understand the performance of
PCT algorithms further, we choose to illustrate the data per variable in MySQL
experiments.

MySQL. Figure 3 gives the experimental results on MySQL. We randomly
choose 6 memory objects whose addresses are listed in the table. The figure
depicts the ranges of the minimum and maximum memory distances that we
have observed from each group of experiments. It can be observed that the
memory ranges in Groups 2 to 6 are larger than that in Group 1. By com-
paring the results of Group 2 to Groups 3–5, we can conclude that DisConPro
is more effective than the random scheduling algorithm. The best performance
algorithms for the six memory objects are PCT 5, PCT 50, PCT 5 or PCT 10
or PCT 50, PCT 10, PCT 5 or PCT 10, PCT 50, respectively. For measuring
the memory distances of individual variables, DisConPro can find a range that
is 30% larger than Random Schedule.

Memory Distance Measurement for Concurrent Programs 61

Fig. 3. MySQL result

6 Related Work

Cache performance heavily depends on program locality. In the past there were
studies that indirectly measure program locality by simulating its execution on a
set of probable cache configurations. Such simulations are not only time consum-
ing but also inaccurate. In [17], Ding and Zhong proposed to measure program
locality directly by the distance between the reuses of its data because data reuse
is an inherent program property and does not depend on any cache parameters.
They designed two algorithms with one targeting efficiency and the other one
targeting accuracy. Their work inspired further improvements that exploits sam-
pling [16] and statistical methods [1]. These methods work well for sequential
programs. However, they do not consider that non-deterministic thread schedul-
ing and thus not applicable to concurrent programs.

In recent years there has been research on multicore reuse distance analy-
sis [18–21]. Schuff et al. [18] propose a sampled, parallelized method of measuring
reuse distance profiles for multithreaded programs. Whereas previous full reuse
distance analysis tracks every reference, sampling analysis randomly selects indi-
vidual references from the dynamic reference stream and yields a sample for each
by tracking unique addresses accessed until the reuse of that address. The sam-
pling analyzer can account for multicore characteristics in much the same way
as the full analyzer. The method allows the use of a fast-execution mode when
no samples are currently active and allows parallelization to reduce overhead in
analysis mode. These techniques result in a system with high accuracy that has
comparable performance to the best single-thread reuse distance analysis tools.
While our work also conducts reuse distance analysis of multithreaded programs,
there exists fundamental difference between their approach and ours. Schuff et
al. focus on the hardware while we focus on software. Their goal is to efficiently
measure the distance on a more sophisticated multicore. Thus efficiency is a
major concern of their research. With the help of the their findings a system
designer may design a better cache. We aim to provide a feasible approach that
measures the reuse distance of a particular multithreaded program. Therefore

62 H. Li et al.

non-deterministic thread scheduling is the major concern of our work. With our
approach we hope to let programmers understand the behavior of their multi-
threaded programs regardless of the cache configurations. The two methods are
orthogonal and can potentially be integrated. While we strive to diversify the
executions of a multithreaded program, the approach proposed in [18] can be
used to monitor each execution.

The goal of the approaches in [19–21] are similar to that of [18]. They apply
reuse distance analysis to study the scalability of multicore cache hierarchies,
with the goal to help architects design better cache systems. In particular, Jiang
et al. [19] introduce the concept of concurrent reuse distance (CRD), a direct
extension of the traditional concept of reuse distance with data references by
all co-running threads (or jobs) considered. They reveal the special challenges
facing the collection and application of CRD on multicore platforms, and present
the solutions based on a probabilistic model that connects CRD with the data
locality of each individual thread. Wu et al. [20] present a framework based on
concurrent reuse distance and private reuse distance (PRD) profiles for reasoning
about the locality impact of core count. They find that interference-based locality
degradation is more significant than sharing-based locality degradation. Wu and
Yeung [21] extend [20] by using reuse distance analysis to efficiently analyze
multicore cache performance for loop-based parallel programs. They provide
an in-depth analysis on how CRD and PRD profiles change with core count
scaling, and develop techniques to predict CRD and PRD profile scaling. As
we mentioned, our focus is to examine program behavior rather than the cache
performance. Thus we measure memory distance from a completely different
perspective from [19–21].

There exists work that studies reuse distance from other perspectives.
Keramidas et al. [22] propose a direct way to predict reuse distance and apply
their method to cache optimization. Zhong et al. [23] focus on the effect of
input on reuse distance. They propose a statistical, pattern-matching method to
predict reuse distance of a program based on executions under limited number
of inputs. Shen et al. [24] introduce the time-efficiency model to analyze reuse
distance with time distance. Retaining the high accuracy of memory distance,
their approach significantly reduces the reuse-distance measurement cost. Niu
et al. [25] present the first parallel framework to analyze reuse distance effi-
ciently. They apply a cached size upper bound to restrict a maximum reuse
distance to get a faster analysis. Although these approaches are not optimized
for multithreaded programs, many of their ideas can potentially be adopted to
extend our work.

Our repeated executions of a multithreaded program relies on PCT [5,26], a
randomized algorithm originally designed for concurrent program testing. The
advantage of PCT over total randomized algorithms is that PCT provides a
probabilistic guarantee to detect bugs in a concurrent program. There has been
recent work that adopts PCT for various purposes. For example, Liu et al. [27]
introduce a pthread library replacement that applies PCT to support analyz-
ing data races and deadlocks in concurrent programs deterministically. Cai and
Yang [28] propose to add a radius to the PCT algorithm so the revised algorithm

Memory Distance Measurement for Concurrent Programs 63

can efficiently detect deadlocks. However, to the best of our knowledge, we are
the first to apply PCT in applications that are not intended to detect concur-
rency bugs.

7 Conclusion

In this paper, we have presented an approach to measure the memory distance
of concurrent programs. Given the fact that we cannot possibly explore all the
thread interleavings of a concurrent program, our approach introduces random-
ness in repeated executions. By adapting the scheduling method PCT, our app-
roach provides a mathematical guarantee to detect memory distances of given
triggering depths.

Acknowledgements. This work was supported in part by the National Science Foun-
dation (NSF) under grant CSR-1421643.

References

1. Fang, C., Carr, S., Onder, S., Wang, Z.: Instruction based memory distance analysis
and its application to optimization. In: 14th International Conference on Parallel
Architectures and Compilation Techniques (PACT 2005), pp. 27–37. IEEE (2005)

2. Ding, C., Zhong, Y.: Predicting whole-program locality through reuse distance
analysis. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, PLDI 2003, pp. 245–257 (2003)

3. Fang, C., Carr, S., Önder, S., Wang, Z.: Reuse-distance-based miss-rate prediction
on a per instruction basis. In: Proceedings of the 2004 Workshop on Memory
System Performance, MSP 2004, pp. 60–68 (2004)

4. Marin, G., Mellor-Crummey, J.: Cross-architecture performance predictions for
scientific applications using parameterized models. In: Proceedings of the Joint
International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS 2004/Performance 2004, pp. 2–13 (2004)

5. Burckhardt, S., Kothari, P., Musuvathi, M., Nagarakatte, S.: A randomized sched-
uler with probabilistic guarantees of finding bugs. In: Fifteenth Edition of ASPLOS
on Architectural Support for Programming Languages and Operating Systems, pp.
167–178 (2010)

6. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: charac-
terization and architectural implications. In: International Conference on Parallel
Architecture and Compilation Techniques, pp. 72–81 (2008)

7. Wang, C., Mahmoud, S., Gupta, A., Kahlon, V., Sinha, N.: Dynamic test genera-
tion for concurrent programs, 12 July 2012. US Patent App. 13/348,286

8. Guo, S., Kusano, M., Wang, C., Yang, Z., Gupta, A.: Assertion guided symbolic
execution of multithreaded programs. In: Proceedings of the 2015 10th Joint Meet-
ing on Foundations of Software Engineering, pp. 854–865. ACM (2015)

9. Sen, K.: Scalable automated methods for dynamic program analysis. Technical
report (2006)

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/978-3-540-78800-3_24

64 H. Li et al.

11. Luk, C.-K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: ACM Sigplan Notice, vol. 40, pp. 190–200. ACM (2005)

12. Ciortea, L., Zamfir, C., Bucur, S., Chipounov, V., Candea, G.: Cloud9: a software
testing service. Oper. Syst. Rev. 43(4), 5–10 (2009)

13. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization, p.
75. IEEE Computer Society (2004)

14. Lattner, C.: LLVM and Clang: next generation compiler technology. In: The BSD
Conference, pp. 1–2 (2008)

15. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs, pp. 209–224 (2008)

16. Shen, X., Zhong, Y., Ding, C.: Locality phase prediction. ACM SIGPLAN Not.
39(11), 165–176 (2004)

17. Ding, C., Zhong, Y.: Reuse Distance Analysis. University of Rochester, Rochester
(2001)

18. Schuff, D.L., Kulkarni, M., Pai, V.S.: Accelerating multicore reuse distance analysis
with sampling and parallelization. In: Proceedings of the 19th International Con-
ference on Parallel Architectures and Compilation Techniques, pp. 53–64. ACM
(2010)

19. Jiang, Y., Zhang, E.Z., Tian, K., Shen, X.: Is reuse distance applicable to data
locality analysis on chip multiprocessors? In: Gupta, R. (ed.) CC 2010. LNCS,
vol. 6011, pp. 264–282. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11970-5 15

20. Wu, M.-J., Zhao, M., Yeung, D.: Studying multicore processor scaling via reuse
distance analysis. In: ACM SIGARCH Computer Architecture News, vol. 41, pp.
499–510. ACM (2013)

21. Meng-Ju, W., Yeung, D.: Efficient reuse distance analysis of multicore scaling for
loop-based parallel programs. ACM Trans. Comput. Syst. (TOCS) 31(1), 1 (2013)

22. Keramidas, G., Petoumenos, P., Kaxiras, S.: Cache replacement based on reuse-
distance prediction. In: 25th International Conference on Computer Design, ICCD
2007, pp. 245–250. IEEE (2007)

23. Zhong, Y., Shen, X., Ding, C.: Program locality analysis using reuse distance. ACM
Trans. Program. Lang. Syst. (TOPLAS) 31(6), 20 (2009)

24. Shen, X., Shaw, J., Meeker, B., Ding, C.: Locality approximation using time. In:
ACM SIGPLAN Notices, vol. 42, pp. 55–61. ACM (2007)

25. Niu, Q., Dinan, J., Lu, Q., Sadayappan, P.: PARDA: a fast parallel reuse dis-
tance analysis algorithm. In: 2012 IEEE 26th International Parallel & Distributed
Processing Symposium (IPDPS), pp. 1284–1294. IEEE (2012)

26. Burckhardt, S., Kothari, P., Musuvathi, M., SNagarakatte, M.: A randomized
scheduler with probabilistic guarantees of finding bugs. In: ACM Sigplan Notices,
vol. 45, pp. 167–178. ACM (2010)

27. Liu, T., Curtsinger, C., Berger, E.D.: Dthreads: efficient deterministic multithread-
ing. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pp. 327–336. ACM (2011)

28. Cai, Y., Yang, Z.: Radius aware probabilistic testing of deadlocks with guarantees.
In: Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, 3–7 September 2016, Singapore, pp. 356–367
(2016)

https://doi.org/10.1007/978-3-642-11970-5_15
https://doi.org/10.1007/978-3-642-11970-5_15

Efficient Cache Simulation
for Affine Computations

Wenlei Bao1(B), Prashant Singh Rawat1, Martin Kong2,
Sriram Krishnamoorthy3, Louis-Noel Pouchet4, and P. Sadayappan1

1 The Ohio State University, Columbus, USA
{bao.79,rawat.15,sadayappan.1}@osu.edu

2 Brookhaven National Laboratory, Upton, USA
mkong@bnl.gov

3 Pacific Northwest National Laboratory, Richland, USA
sriram@pnnl.gov

4 Colorado State University, Fort Collins, USA
pouchet@colostate.edu

Abstract. Trace based cache simulation are common techniques in
design space exploration. In this paper, we develop an efficient strategy to
simulate cache behavior for affine computations. Our framework exploits
the regularity of polyhedral programs to implement a cache set parti-
tion transformation to parallelize both trace generation and simulation.
We demonstrate that our framework accurately models the cache behav-
ior of polyhedral programs while achieving significant improvements in
simulation time. Extensive evaluations show that our proposed frame-
work systematically outperforms the time-partition based parallel cache
simulation.

1 Introduction

Modern computer architectures leverage memory hierarchies to bridge the speed
gap between fast processors and slow memories. At the top of this hierarchy sits
the fastest, smaller, and most expensive memory, i.e. registers; at the bottom
of the hierarchy, one can find much slower, larger, and cheaper memories (e.g.
DRAM, or other permanent media storage such as disks). The intermediate lev-
els of this hierarchy provide temporary storage between two or more levels. This
avoids making time-expensive trips to lower memory levels. These intermediate
levels are often known as caches, and their main characteristic is to store fre-
quently used data under some pre-determined storage and replacement policy
(e.g. LRU, FIFO, etc.).

The behavior of a cache is defined by a number of properties and policies,
the most obvious being its memory capacity, the possible locations where a
unit of data can be stored, as well as mechanisms for identifying and search-
ing data. Other intricacies of caches include determining when data should be
evicted or when it should be committed to a more permanent memory, so as to

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 65–85, 2019.
https://doi.org/10.1007/978-3-030-35225-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_6

66 W. Bao et al.

keep all levels synchronized [17,27]. In system design, different cache architec-
tures and configurations are thoroughly evaluated to gauge the effectiveness of
their use. It is easy to see that the aforementioned cache characteristics increase
the complexity of this task. Furthermore, this evaluation is generally performed
by trace-driven simulation, which is more flexible and accurate compared to
execution-driven cache simulation [25] and modeling approaches [30]. The rele-
vance of cache simulation is also observed in the design of new compiler analyses
and transformations. In order for a simulation to be preferred, it must produce
the same output as the real program execution while simultaneously being faster
or more cost effective. Therefore, fast, reliable and accurate cache simulators are
an important tool for engineers and researchers.

Techniques to reduce the complexity of cache simulation have been widely
studied in the past. The stack processing algorithm [25] was introduced to reduce
the complexity of sequential cache simulation. It was later extended to simulate
several cache configurations in a single pass [39], and reduce space complexity
by compressing program traces [30].

Trace-driven cache simulation is one of the preferred methods primarily due
to the accuracy of its results. However, with the increase in complexity of the
cache architectures, trace-driven methods incurs longer simulation times and
requires storing large program traces (which store the referenced addresses) to
generate accurate results. Therefore, it is imperative to study and develop tech-
niques to overcome these shortcomings. One such technique is the parallel sim-
ulation approach [15,26] that exploits the parallelism of current processors to
reduce the simulation time.

Previous research efforts in the context of parallel simulation approaches
can be divided into two major classes – time-partitioning simulation [15], and
set-partitioning simulation [6]. Time-partitioning methods separate the program
trace into a number of sequential subtraces of equal length. All the subtraces are
used to concurrently simulate cache behavior with identical configuration, and
generate partial simulation results. In set-partitioning simulation, a program ref-
erence is mapped to a single cache set for a given cache configuration. Each cache
set can be simulated independently by a different processor. The parallelism of
the set-partitioning approach is therefore limited by the number of sets within
the cache configurations.

Time-partitioning parallel simulation can be more efficient than the set-
partitioning simulation under certain conditions [6]. However, the accuracy of
results for time-partitioning is often lower than set-partitioning because it ignores
the initial cache state of each program trace. Subtle algorithmic tweaks are
employed to correct/improve the accuracy of the simulation result by perform-
ing re-simulation. The added overhead and cost of re-simulation can potentially
overcome the benefits from parallelism. Moreover, the time-partitioning scheme
involves a preprocessing step that divides the entire program trace into sub-
traces in order to enable the concurrent simulation. Clearly, the entire trace of
the program has to be stored in memory, which may be problematic when the
trace size exceeds the system storage.

Efficient Cache Simulation for Affine Computations 67

In this work, we propose a novel parallel cache simulation framework based on
set-partitioning for affine programs (where cache set partition based on compile-
time analysis in the paper is possible), which achieves up to 100+× speedup
against sequential simulation on 64 nodes cluster among 60 evaluations of 10
benchmarks with 6 different cache configurations.

Unlike previous parallel simulation approaches that generate the trace in
sequential fashion, our approach also parallelizes the trace production. Moreover,
compared to previous set-partitioning approaches [6] that compute the cache set
number while performing the trace analysis, our approach organizes the trace by
cache set at the very beginning of its generation. It thus avoids costly operations
such as insertion and synchronization by maintaining the traces in lexicographic
order. To the best of our knowledge, our work is the first to adopt this approach.
Experimental evaluations validate the correctness and also demonstrates the
performance of our framework.

In summary, we make the following contributions:

– We introduce a novel compiler technique that classifies the program references
by their targeted cache set. This allows to parallelize the trace generation,
and accelerates the overall cache simulation.

– We propose a program transformation that exploits the inherent parallelism
exposed by classifying the program references by cache sets, and leverage
two standard parallel runtimes, OpenMP and MPI, to increase the cache
simulation speed.

– We provide a fully automated tool that, given a C source file containing a
polyhedral program region as input, performs the cache set partition transfor-
mation and generates code that could conduct the program cache simulation
in parallel.

– We perform an extensive evaluation to demonstrate the accuracy of the sim-
ulation in terms of cache miss and efficiency in terms of simulation time for
our proposed approach.

The rest of the paper is organized as follows: Sect. 2 describes the moti-
vation, Sects. 3 and 4 introduce the background and present the algorithm to
perform the cache set partition. Section 5 summarizes our parallel cache simula-
tion framework. Section 6 shows the evaluation results. We conclude the paper
with Sect. 7.

2 Motivation

The problem of cache simulation has been extensively studied in the past
decades [1,8,16,19,21,25,32,34,38]. Accurate and fast simulation techniques are
necessary in order to do extensive architectural space exploration as well as
devising new compiler optimization strategies. This problem will become even
more important in the current and next generation of computer systems, where

68 W. Bao et al.

(a) Performance Scaling

8 16 32 64
0

20

40

60

80

Si
m
.S

pe
ed
up

vs
Se
q. gemm

Time-Partition+Trace-Seq Time-Partition+Trace-Par Our Set-Partitioning(PCS)

(b) Time and Space cost of Program Trace
Problem Trace Time Set Trace Set Time
Size (GB) (sec) (GB) (sec)

1283 0.06 1.34 0.001 0.02
2563 0.5 10.57 0.008 0.17
5123 4.4 59.18 0.07 0.92
10243 36 511.36 0.56 7.99
20483 247 2425.18 3.9 37.89

Fig. 1. Motivation example of Gemm

massively parallel processors will effectively have hundreds and thousands of
cores. Therefore, good parallel hierarchical cache simulator will play a critical
role.

Previous research efforts have demonstrated the benefits of exposing and
exploiting parallelism in cache simulations [6,15,31,37]. In particular, paralleliza-
tion approaches for trace-driven techniques have taken two directions – time-
partitioning and set-partitioning. Time-partition approach suffers from inaccu-
racy and resimulation overhead as previously described. Set-partition approach
simulates each cache set independently, does not suffer from the re-simulation
problem, and obtains better accuracy. Nevertheless, the achievable speedup is
limited to the number of available cache sets. Additionally, most of the previously
proposed set-partitioning techniques suffer from the following limitations:

1. Inefficient sequential trace generation phase could dominate the simulation
time.

2. Long program runs produce large trace files (potentially in the order of hun-
dreds of GB), which could exceed the storage capacity of a single node.

We now demonstrate the problems in detail with the example of matrix mul-
tiplication, Gemm, on a real-world cache configuration: a 3-Level cache memory
hierarchy with 32 KB 4-way L1, 256 KB 4-way L2 and 8 MB 16-way L3 cache.

Space Complexity of Trace Generation. Table 1b in Fig. 1 lists the space needed
to store the trace file for different matrix sizes for Gemm. It is easy to observe
that even for a problem size of 20483, the storage required for the trace file is as
huge as 247 GB. Therefore, cache simulation on full-size problems will demand
significant storage space, which is impractical.

Time Complexity of Trace Generation. The plot in Fig. 1 illustrates the
speedup obtained over the sequential simulation across different number of
nodes for problem size of 2563. Time-partition+Trace-seq represents the speedup
with time-partition simulation and sequential trace generation, while Time-
partition+Trace-par shows the speedup of time-partition but with parallel trace

Efficient Cache Simulation for Affine Computations 69

1 for (t = 0; t <T; t++)
2 for (i = 1; i <N; i++)
3 for (j = 1; j <N; j++)
4 /* reference c */ /* reference a */ /* reference b */
5 S1: A[i][j] = A[i-1][j] + A[i][j-1];

Fig. 2. Simplified Seidel-2d benchmark (actual benchmark has 5 read references).

generation. The difference clearly demonstrates that the trace generation phase
can dominate the whole simulation time, making the parallel simulation ineffi-
cient. Columns set trace and set time indicate the storage space and time needed
if the trace generation phase get parallelized by set-partitioning with 64 nodes.
We can observe significant improvements in both space and time consumption.
Moreover, the parallelization of trace generation allows the subsequent simula-
tion process to be more efficient compared to previous approaches [6].

Therefore, we propose an efficient parallel cache simulation framework for a
class of computationally intensive programs known as affine programs, which
automatically transforms the program, and parallelizes the cache simulation
along with the trace generation process based on set-partitioning.

3 Program Representation

The compute-intensive kernels of many linear algebra methods, image processing
applications [41,43–45], and physics simulations [9,14,40,42] can be expressed
as an affine/polyhedral program [2,4,11,14]. Extracting a high performance for
such kernels often requires an effective utilization of cache hierarchies.

A property of polyhedral program is that the loop bounds, conditionals, and
array indices in the program must be affine functions. The mathematical struc-
tures used in this work to represent polyhedral program are: iteration domain,
data access relations, and schedule of iterations. The operations on these struc-
tures, such as composition and inverse, are the same as [3,5], and not listed here
because of the space limitations.

Iteration Domains. Iteration domains capture the set of runtime executions of
a statement, using integer sets where the loop bounds are used to constrain the
number of points in the set. Each statement S is associated with an iteration
vector iS with one component per surrounding loop, and the values iS are cap-
tured by defining its iteration space DS . For example the iteration domain of
S1 in Fig. 2 is:

DS1 = [T,N] → {S1[t, i, j] : 0 ≤ t < T ∧ 1 ≤ i < N ∧ 1 ≤ j < N}

Data Access Functions. An essential part of our cache simulation framework
is the cache analysis based on representing the data accessed by each program
iteration. For polyhedral programs, the function that maps a statement instance
to the array element being accessed is by definition an affine relation, including

70 W. Bao et al.

surrounding loop iterators and parameters. The access relation maps an iteration
domain to the multidimensional array index being accessed. For example, the
function that relates the iterations of S1 with the location read in array A for
the reference A[i − 1][j] in Fig. 2 is:

ReadA
S1

= {S1[t, i, j] �→ A[i2, j2] : (i2 = i − 1) ∧ (j2 = j)}

We note Write for the write references. Furthermore, one can build the relation
that is restricted to the set of iterations of S1 by computing S = ReadA

S1 ∩ DS1,
that is embed the constraints on the possible values for S1[t, i, j] directly in the
relation.

Finally, we note ProgRefs the union of all access relations for the pro-
gram, ReadRefs the union of all read-only access relations for the program,
and WriteRefs the union of all write-access relations in the program. We have
ProgRefs = ReadRefs ∪ WriteRefs.

Program Execution Order. Schedule is used to specify the execution order of
statements in program by mapping statement instances in iteration domain to
timestamps of iteration space combed with values to indicate orders. As such,
statement instances in the iteration domain are executed following the lexico-
graphic ordering ≺ of their associated timestamp. ≺ is defined as (a1, . . . , an) ≺
(b1, . . . , bm) iff there exists an integer 1 ≤ i ≤ min(n,m) s.t. (a1, . . . , ai−1) =
(b1, . . . , bi−1) and ai < bi.

The program schedule can be denoted by 2d + 1 timestamps, where d is the
maximum depth of loop in program [14]. A schedule can be constrained by the
iteration domain of its statement, e.g., via SchedS1 ∩ DS1, and the set of all
distinct statement iterations in the program can be built by the union of all
schedules constrained by the respective statement iteration domain as Sched.

4 Cache Set Partition Analysis

4.1 Cache Access Modeling

The core polyhedral abstractions are obtained from the C code via the PET [36].
In order to model the events corresponding to accessing different cache lines, we
must first translate the underlying virtual memory address of each individual
array reference into the unique cache line, and the associated set in the cache.
For the moment, we will assume that the referenced variable has already been
translated to a virtual memory address. Definition 1 defines the steps of the
conversion from a given virtual memory address to the associated and accessed
cache set.

Definition 1 (Set-associative cache). A set-associative cache C with asso-
ciativity K, cache line (i.e., block) size of B bytes, and size n bytes contains S
sets, with S = n/B/K. A virtual memory address addr maps to a unique line
index Lid = floor(addr/B), and a line maps to a unique set SLid

= Lid%S.

Efficient Cache Simulation for Affine Computations 71

The previous definition essentially assumes that the cache size in bytes (n),
the number in bytes of a cache line (B), and associativity degree (K) are given.

We now explain how the translation from a particular array reference to its
virtual memory address is performed. The first step is to linearize the access
relation. Therefore, for each distinct variable (array or scalar) a vector of fixed
dimension sizes is provided at compile-time. The reason for requiring fixed sizes
is that the exact virtual memory address must be determined before computing
the associated cache set. To complete the linearization, we also require an offset
address for each program variable, which in this case, can be either a program
parameter or a fixed numerical integer value. If a fixed value is preferred, we can
simply estimate the address offsets by taking the declaration order, and com-
puting each array size with the dimension sizes and the floating point precision
used. For example, the linearization transformation from a 2D access relation
RA for array A, with sz the size of A and startA its starting address can be
written as:

Linearize = {[i, j] �→ [m] : m = startA + i ∗ sz1 + j}
Then the unique cache line index is given by applying the relation:

MemToLineId = {[m] �→ [lid] : lid = floor(m/B)}
Computing the set to which a cache line maps to is given by the relation:

LineIdToCacheSet = {[lid] �→ [cset] : cset = lid % S}
Definition 2 (Array to Cache set index). Given an access function RA

of an array reference A with sizes sz and starting address startA, for a cache
as defined in Definition 1. The associated cache line in cache C is identified by
AccessToLine as:

AccessToLine = RA ◦ Linearize(sz, startA) ◦ MemToLineId

The composition of the obtained relation with the LineIdToCacheSet relation
provides the corresponding cache set in C that is referenced by the array and
identified by AccessToSet as:

AccessToSet = AccessToLine ◦ LineIdToCacheSet

Thus, for every array access within the program, we can determine in a static
fashion which cache set it maps to given cache configuration based on above
relations.

4.2 Cache Set Partition

In order to distribute and parallelize the trace generation and program simula-
tion, we first need to construct a map from the time space (space of timestamps
assigned to each lexical statement) to the accessed cache set. This relation is

72 W. Bao et al.

easily built by composing the inverse of the program schedule with the compo-
sition of the union of access relations with the union of maps that translate the
access relation to a specific cache set instance:

TimeToCacheSet = Sched−1 ◦ (ProgRefs ◦ AccessToSet)

where the composition of ProgRefs and AccessToSet provides the relation
from program statements to the cache set index they are mapped to. In a nut-
shell, the complete equation essentially determines all the timestamps that affect
a particular cachet set. The composition is done via the statement instances
being accessed. The benefits of having in a closed form all the timestamps
mapped to a cache set, is that we can easily determine the subset of statement
instances that are associated to the timestamps, and that impact a specific cache
set. Obviously, this also allows us to use the schedule map (Sched) to generate
the necessary array references in the order required by the original program.
This step is vital to maintain the program semantics, thereby keeping the origi-
nal locality and avoiding to insert fake access patterns or remove real ones. Thus,
the expression TimeToCacheSet calculates the mapping between all assigned
timestamps to all different cache sets for affine programs, under the constraints
previously discussed.

Hierarchical Cache. To handle multi-level cache hierarchies, we remark that it
is easy to build the formulation with the expression above. It can be achieved by
editing the cache parameters in MemToLineId and LineIdToCacheSet, e.g.,
block size B in MemToLineId and number of sets S in LineIdToCacheSet.
Besides the changes of the formulation for set-partition, the trace analysis algo-
rithm also needs to support multi-level cache simulation, which is shown in the
later section. Therefore, an iterative algorithm for program reference behaviors,
specializing TimeToCacheSet for each cache set value Si ∈ [0, S] is built. It can
be easily parallelized using either OpenMP or MPI since there are no interactions
needed between different threads but a simple accumulation, which compulsory
to form the union of cache behaviors such as cache misses for all cache sets.

4.3 Code Generation

The code generation in our framework leverages the result from the previous
steps that (a) partition the program statement instances into distinct and indi-
vidual cache sets; and (b) generate the code that can be execute to conduct the
cache simulation in parallel.

There are two phases to achieve the goal of code generation. During the first
phase, the union of all statements within an iteration space is scanned using
the provided global lexicographic ordering specified by the program schedule,
and loop nests in the target program are generated that execute the statement
instances in the new lexicographic order. During the second phase, the primary
tasks of post-AST processing are (1) Adding parallel/distributed primitives such
as OpenMP or MPI for parallel execution; (2) Instrument code to construct

Efficient Cache Simulation for Affine Computations 73

and analyze the trace for cache simulation; (3) Place the reduction code to
accumulate the simulation result of each cache set.

Algorithms 1 and 2 detail the code generation steps. Algorithm 1 takes the
relation TimeToCacheSet together with iteration domains D, and access rela-
tions and the original program schedule as input. The overall idea here is that
the generated code must contain the original access sequence of the input code;
each lexical program statement is decomposed into as many array references as
it has; and the original loop nests must be surrounded by an outer parallel loop.
This outer loop effectively iterates over all cache sets. In terms of standard loop
transformations, this is akin to strip-mining all the original dimensions by the
cache set index being accessed.

Line 7 in Algorithm 1 deserves further explanation. The role of Compute-
NewProgramSchedule is to build the new program schedule from the Time-
ToCacheSet union map. It achieves this by creating a new union map, where
the domain is the TimeToCacheSet map, wrapped into a set, while the range
is a second wrapped map. The second wrapped map has in its domain the same
dimensions as the domain of TimeToCacheSet with an additional fixed dimen-
sion which represents the array reference ID of a specific statement, the i argu-
ment of the function. The range of the second wrapped map is almost identical
to its domain, but where the leading dimension (at position zero) is inserted,
and set to the cache set index (which is also the unique dimension in the image
of TimeToCacheSet). Furthermore, the domains of the second wrapped union
map are also properly renamed to prevent fusion among the same points of dif-
ferent statements. Finally, after this map of wrapped union maps to wrapped
union maps is computed, we apply a range operation to it and return this result.

Algorithm 2 details the post processing steps. It takes the previous generated
program as input, and traverse it to enable the instrumentation and proper calls
to the parallel runtime of choice. In summary, at this stage we: (1) enable the
parallel execution, (2) perform trace generation and analysis and (3) collect the
final simulation results by a reduction. Line 1 inserts the parallel primitives for
the outer most loop in the transformed program, where the outer most loop is
the one to iterate all different cache sets and thus can be easily parallelized. e.g.
using #pragma omp for. When using MPI, the described transformations equate
to adding a filter to handle the case where many cache sets are assigned to a
single process, i.e., we add a filter such as if (cache set % comm size ==
my rank). Lines 2 to 7 traverse the program to instrument the code for trace
production and analysis. Line 8 places the reduction code the collect the final
simulation results from parallel processes or distributed nodes. The AnalyzeTrace
function is responsible of performing the trace analysis and counting the number
of cache misses and hits, etc.

Example. Figure 3 presents an example generated by our parallel simulation
framework using Seidel as the sequential source program. Line 1 to 3 declare
the number of sets in the cache configuration and number of nodes available.
Line 4 is the loop that decides which cache sets to execute, and depends on the
set id and node id match. Line 7 to 10 perform the simulation by construct-

74 W. Bao et al.

Algorithm 1. Cache Set Partition Code Generation
Input: Program statement iteration domains: DS , s ∈ S

Program access relations: AS, s ∈ S
TimeToCacheSet relations
Program schedule with cache set dimension: θS, s ∈ S

Output: Cache set partitioned program: P
1: for all statements S do
2: Sort array references of S by lexicographic order and make the write reference

the last one
3: for all array references AS

i in the current lexical statement S do
4: // Create iteration domains, access relations and schedules for each reference

5: DS,A,i ← copy DS , rename set to S A i, append fixed dimension and fix to i
6: AS,A,i ← copy AS

i , rename the map’s domain to S A i, append fixed dimen-
sion to domain of map and fix it to i

7: θS,A,i ← ComputeNewProgramSchedule (TimeToCacheSet,i)
8: // Establish the order among array references of a single statement
9: Append to the image of θS,A,i a fixed dimension with value i

10: // Add computed abstractions to their respective unions
11: domain ← domain ∪ DS,A,i

12: access ← access ∪ AS,A,i

13: schedule ← schedule ∪ θS,A,i

14: end for
15: end for
16: P ← codegen(domain,access,schedule)
17: return Generated program P;

ing and analyzing the traces on different threads (if using OpenMP) or process
ranks (if MPI is preferred). Finally, line 11 is the reduction function to collect
the simulation results from all nodes.

Algorithm 2. Post AST processing
Input: Cache set partitioned program: P
Output: Parallel cache simulation program: PS

1: PS ← Add parallel primitives for outer most loop
2: for all Statements Si do
3: for all Array reference R do
4: TR ← Construct trace based on reference R
5: PS ← Instrument trace analysis code AnalyzeTrace(TR)
6: end for
7: end for
8: PS ← Add parallel reduction code ParReducation to collect results
9: return Parallel cache simulation program: PS ;

Efficient Cache Simulation for Affine Computations 75

Fig. 3. Example of generated code for Seidel by our framework

5 Parallel Cache Simulation Framework

The overall flow diagram of our set-partition based parallel cache simulation
framework is shown in Fig. 4. Our automatic simulation framework works as fol-
lows. The input source program is scanned and parsed, the affine computation
kernels are extracted and analyzed to construct the relations such as ProgRefs,
Sched, which is performed using ISL. Then the cache set partition analysis and
transformation, which is the critical part within the framework, is performed
as described in the previous sections. The partition is achieved by the relation
TimeToCacheSet, which is built upon the cache accessing model and cache
set partition formulation, together with the polyhedral analysis. We view this
step as cache set partition transformation, which reorganizes the programs state-
ments and execution order so that the references accessing the same cache set are
grouped together. Next, the code generation algorithm generates the code skele-
ton of the transformed program, where memory references are grouped based on
the calculated cache set number. After that, the post-AST processing algorithm
adds the necessary parallel primitives and trace analysis code to generate code
for simulation. This is denoted as the code generation part in the flow diagram.
Finally, during parallel cache simulation step, the generated code is compiled
and executed in parallel to conduct the trace-driven cache simulation. Thus, the
program traces are generated and analyzed in parallel with respect to cache set
to produce cache simulation results.

The parallelism of our cache simulation framework comes from set-partition.
However, it is better than previous set-partitioning simulation techniques in
mainly two aspects. One is the parallelization of trace generation, which exploits

Fig. 4. Parallel trace-driven cache simulation framework

76 W. Bao et al.

more parallelism within the simulation process and improves the overall perfor-
mance. The other is the trace analysis process. Previous approaches need to
calculate the set number for each trace that involves expensive operations such
as trace insertion and synchronization, making the simulation inefficient. In con-
trast, our approach avoids these operations via the proposed cache set partition
transformation, separating the trace based on cache set at source level, which
makes the trace analysis much more efficient.

6 Experimental Evaluation

6.1 Experiment Setup

Implementation Details. Our framework takes a sequential C program, cache
parameters, array sizes and starting addresses as input. Polyhedral Extraction
Tool [36] detects affine regions and extracts the polyhedral model from C source
code. ISL [35] is used to perform the cache partition transformation described
in previous sections. CLooG [7], a state-of-the-art polyhedral code generator, is
used to generate the code based on the algorithm described previously.

Benchmarks. We validate the accuracy and efficiency of our parallel cache simu-
lation framework via the PolyBench/C benchmark suite [29], which is a collection
of benchmarks with static control parts that meets our requirements. For the
experiments, We select 10 representative benchmarks that are listed in Table 1.

Tools and Setup. To conduct the comparison experiments to validate the perfor-
mance and correctness with our proposed parallel cache simulation framework,
we use DineroIV, a trace-based cache simulator that can handle hierarchical set
associative caches, to perform the sequential cache simulation. All experiments
are performed on a cluster with a maximum of 64 nodes, each with an Intel
Xeon E5640 processor at frequency 2.67 GHz. The programs are all compiled
using MPI with MVAPICH2 version 2.1 with -O3 optimization and using one
process for each node [18,22–24]. All reported results are the average of 5 runs
with single precision used for the benchmarks.

6.2 Experiments Results

We use single- and multi- level set associative caches to validate our framework
in both accuracy and efficiency. Note our experiments only show the simulations
of most commonly used LRU replacement policy and write allocate write back
policy in the evaluation process. However, other replacement policies (FIFO,
random, etc.) and write policies (non write-allocate, write through, etc.) are
seamlessly handled: their processing is independent from proposed parallel trace
generation and simulation.

Single Level Set Associative Cache. We first perform the validation on single
level cache with 4 different cache sizes ranging including 4 KB, 8 KB, 16 KB and
32 KB, with block size 64 bytes and 8-way associativity.

Efficient Cache Simulation for Affine Computations 77

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

5

10
Si
m
.S

pe
ed
up

vs
Se

q.
L1-4KB on 8 nodes

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

5

10

15

20 L1-8KB on 16 nodes

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

10

20

30

40 L1-16KB on 32 nodes

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

Si
m
.S

pe
ed
up

vs
Se

q.

L1-32KB on 64 nodes

Time-Partitioning+Trace-Par Our Set-Partitioning(PCS)

L1-4KB L1-8KB L1-16KB L1-32KB
0

20

40

60

80
Avg. Speedup for different cache size

Fig. 5. Summary of simulation speedup for single level cache

Accuracy. The number of cache misses is one of the most important metrics
that users want to obtain from the cache simulation to better understand a
program’s behavior. Table 1 compares the cache miss results for all sizes of single
level caches between the sequential simulation with DineroIV and our parallel
simulation framework (PCS).

We observe an exact match of the cache misses of the two simulations, which
results in an error rate of 0% for all benchmarks across different cache sizes. We
can also observe from the table that the cache miss count decreases along with
the increasing of cache size until all data can be hold by the cache.

Table 1. Cache misses for single level cache

Sim. Bench. Cache configurations Sim.

L1-4KB L1-8KB L1-16KB L1-32KB

Dinero 2mm 33,846,272 33,709,056 33,709,056 33,708,032 PCS

serial 3mm 50,769,408 50,563,584 50,563,584 50,562,048

bicg 3,146,240 3,146,240 3,146,240 3,146,240

doitgen 270,893,056 270,893,056 270,860,288 270,796,800

gemm 16,923,136 16,854,528 16,854,528 16,854,016

gemver 5,767,936 5,523,312 5,261,165 4,732,719

jacobi 12,558,336 12,558,336 8,408,992 8,376,320

seidel 6,279,168 6,279,168 2,097,152 2,097,152

symm 200,525,957 200,524,323 200,523,289 200,430,141

syrk 134,348,800 71,753,728 67,305,472 67,305,472

Sum. Error rate 0% 0% 0% 0%

Efficiency. To further
evaluate the performance
of our simulation frame-
work, we also compare
PCS with a nearly ideal
time-partitioning based
parallel simulation besi-
des the sequential sim-
ulation. The time-
partition cache simula-
tion divides the whole
program trace into mul-
tiple, roughly equal sized

subtraces, and simulates them in parallel. In our time-partitioning implemen-
tation we assume that only one partition requires re-simulation. So the real
performance gap between it and PCS could effectively be larger.

78 W. Bao et al.

Table 2. Summary of cache misses for hierarchical cache

Sim. Benchmark Cache configurations Sim.

L1 L2 L3-Conf1 L3-Conf2 L3-Conf3 L3-Conf4 L3-Conf5

Dinero

serial

2mm 33,708,032 707,844 20,480 20,480 20,480 28,399 285,897 PCS

3mm 50,562,048 1,061,766 28,672 28,672 28,672 32,784 49,104

bicg 3,146,240 1,049,600 1,049,600 1,049,600 1,049,600 1,049,600 1,049,600

doitgen 8,387,648 8,384,064 8,371,360 262,144 1,046,424 262,144 285,144

gemm 4,332,830 4,329,184 24,800 12,288 12,288 12,288 16,128

gemvel 4,732,719 4,722,357 4,721,994 4,722,186 4,722,282 4,323,120 4,722,351

jacobi 935,584 934,808 6,873 12,288 12,288 16,128 8,029,984

seidel 2,016,000 2,016,000 63,000 63,000 2,016,000 2,016,000 2,016,000

symm 200,429,973 192,265,358 49,090 49,090 3,175,278 70,699,265 164,684,202

syrk 67,305,472 67,305,472 261,960 1,043,743 67,305,472 67,305,472 67,305,472

Sum. Error rate 0% 0% 0% 0% 0% 0% 0%

Furthermore, normally in time-partitioning based simulation, the whole pro-
gram trace would need to be first generated and then split into subtraces. This
incurs in an inefficient sequential trace generation phase as we already demon-
strated in the previous section. It is for this reason that we also combine the time-
partitioning scheme with our parallel trace generation. This effectively removes
the big performance gap between both schemes. Moreover, here we assume a per-
fect accuracy of time-partition simulation results even it suffers accuracy problem
in reality because of the unknown cache initialization state at the beginning of
each subtrace.

Figure 5 illustrates the efficiency of simulation by comparing the speedup of
sequential simulation vs. parallel simulation on varying number of nodes. The 4
bar charts in Figure present the simulation speedup between time-partitioning
and our framework on different degree of parallelism for all benchmarks across
different cache sizes.

We observe that for all the cases, our set-partitioning simulation achieved
better speedup compared to time-partitioning. In fact, our set-partitioning simu-
lation constantly outperforms time-partitioning across all the benchmarks. There
are several reasons: First of all, the re-simulation phase of time-partitioning app-
roach takes extra cost. In practice, the time cost of the re-simulation phase to
correct the simulation results will often make the simulation time much longer
than the optimal case we considered here in the experiments. Besides, our set-
partitioning approach has better memory efficiency. The memory trace accessed
by the program has smaller footprint compared to time-partitioning. This effect
is more obvious in hierarchical cache shown later in this section. Line chart in
Fig. 5 shows average speedup of all benchmarks for different cache sizes. This
is because more parallelism can be achieved for large cache compared to small
ones.

Hierarchical Set Associative Cache. We perform similar experiments for
multi-level caches for further validation. We consider 5 real world scenario con-
figurations: a 3-Level cache hierarchy with 32 KB 4-way set-associative L1 and

Efficient Cache Simulation for Affine Computations 79

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

150
Si
m
.S

pe
ed
up

vs
Se
q.

Cache Configuration 1

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

150 Cache Configuration 2

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

150
Cache Configuration 3

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

150

200

Si
m
.S

pe
ed
up

vs
Se
q.

Cache Configuration 4

Time-Partitioning+Trace-Par Our Set-Partitioning(PCS)

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

150

200 Cache Configuration 5

Fig. 6. Summary of simulation speedup for hierarchical cache

256 KB 4-way set-associative L2, and L3 cache with size and associativity reduce
by 2 for each configuration start from 8 MB 16-way for Conf1. The block size is
64 Bytes across all levels.

Accuracy. Table 2 compares cache miss count between DineroIV and our parallel
simulation framework (PCS) for all evaluated configurations.

Again we observation that for all cache configurations, our framework pro-
duces exactly the same results as DineroIV. For all benchmarks the cache miss
count decreases when moving from the L1 to the L3 cache as expected.

Efficiency. Figure 6 shows the results of performance speedup comparison
between time-partitioning and our approach against sequential simulation when
using 64 nodes and 1 process for each node (make sure each process has enough
computation resources such as cache and memory). We observe that our frame-
work outperforms the time-partitioning approach for all the benchmarks, and
across different cache hierarchies.

To illustrate the benefits of our parallel cache simulation framework, we ana-
lyze the results of benchmark symm in detail. As shown in the chart, symm
achieves the highest speedup compared to time-partitioning approach among
all benchmarks. The underlying reason is that, symm uses three matrices of
size 512 × 512, and among the array references, 5 out of 6 of them incur on
high-strides. Thus, the non-efficient memory access pattern leads to large cache
memory footprints when simulating the full cache. This phenomenon happens
again in time-partitioning simulation, as the order of the memory references and
cache footprint in trace file remains unaltered. Moreover, the cache set partition
transformation changes the memory access order (in simulation) and also the
simulation cache footprint. Because every memory reference within each trace is
mapping to the same cache set, which has a much smaller cache footprint when

80 W. Bao et al.

8 16 32 64
0

50

100

Si
m
.S

pe
ed
up

vs
Se
q.

3mm

Time-Partitioning+Trace-Seq Time-Partitioning+Trace-Par Our Set-Partitioning(PCS)

8 16 32 64
0

50

100 doitgen

8 16 32 64
0

50

100 jacobi-2d

8 16 32 64
0

50

100
seidel-2d

Fig. 7. Summary of performance scaling on cache Conf1

simulating the full cache. Furthermore, the benefits also come from the fact
that trace analysis algorithm does not need to spent time on calculating and
searching cache set and other related operations in our framework. Therefore,
our framework uses a smaller cache footprint during the full cache simulation,
and performs much better than the time-partitioning counterpart for bench-
mark symm. Opposing symm we have the gemm benchmark, which also uses
three matrices, but wherein 3 out of 4 matrix references within the innermost
loop have stride-1 access. This clearly leads to having rather smaller cache mem-
ory footprint compared to symm. Thus, the benefits over the time-partitioning
on gemm are not as large as with symm.

Performance Scaling. Figure 7 illustrates the performance scaling of our
framework, which is the simulation speedup across different number of nodes
(8, 16, 32, 64) with cache configuration Conf1. There are three different curves
in each subfigure. Time-partitioning+Trace-Seq represents time partition par-
allel simulation with sequential trace generation; Time-partitioning+Trace-Par
represents time partition parallel simulation with parallel trace generation; Set-
partitioning(PCS) represents our parallel cache simulation framework. Note we
only show 4 benchmarks here because of the space.

It is more than obvious that the simulation with sequential trace genera-
tion has limited performance scaling. This demonstrates again the necessity of
trace generation parallelization. We also observe that both approaches show
strong scaling when increasing the number of nodes. However, our simulation
framework outperforms the time-partitioning approach for all the benchmarks
by showing a stronger scaling of performance. At this point we also recall
that our implementation of the Time-partitioning+Trace-Par variant is a nearly
ideal and inaccurate simulation, unlike PCS which is as accurate as the serial
simulation.

Readers may also observe the super-linear scaling in some benchmarks (e.g.
doitgen). The reason behind is the cache effect resulting from the different mem-
ory hierarchies. With more nodes involved in the computation, the accumu-
lated cache memory (for simulation purposes) also becomes larger, and with
larger accumulated cache sizes, more or even all of the working sets can fit into
caches and the memory access time reduces dramatically, which causes the extra
speedup in addition to that from the actual computation.

Efficient Cache Simulation for Affine Computations 81

7 Related Work

Cache simulation is used to evaluate different cache architectures during new
system design. The seminal paper of [25] proposed to use simulation in vir-
tual memory. Their technique computed, in a single pass of the trace file, the
miss ratios for all memory capacities, and also introduced notions such as set-
refinement and inclusion. However, it was limited to a number of constraints,
among of which was a fixed page size. Their work had many applications, in
particular, simulation of hierarchical caches.

Due to the constant increase in complexity of cache architectures, a broad
range of techniques have been proposed along the years [12,15,28,30,33]. The
main difference among the techniques is their cost-efficiency ratio, that is, how
much accuracy one is willing to sacrifice in exchange for faster simulation speeds.
On one end of the spectrum, parametric analytical models that estimate the
number of cache misses are faster and more general available [1,12,13]. On
the other end, non-parameterized and less general models combined with trace-
driven techniques can be used to produce more accurate simulations, at expense
of longer simulation times [8,21,34]. These two classes of work are complemen-
tary, and can be used at different stages of the design process.

Compare to cache modeling analysis, simulation still provides a wider cover-
age of cache architectures and better accuracy. Among all simulation approaches,
trace-driven simulation [34], has better accuracy and flexibility. In this context,
two directions have been preferred: single pass optimization and trace paralleliza-
tion strategies. The former one attempts to optimize the simulation in a single
sequential pass. This is usually achieved by reducing the trace file size, either
by sampling or judicious address selection, and leveraging data structures such
as linked lists and trees [8,32] to represent the cache state. Within this research
branch, Dinero [10], which is a uniprocessor cache simulator that can handle
hierarchical set-associative caches as well as numerous replacement and write
policies, thereby characterizing program cache behavior with varying degrees of
fidelity.

The second direction aims at partitioning the simulation so that parti-
tions of traces can be executed in parallel [15,19,21,37]. There are two major
approaches to exploit the parallelism in cache simulation: time-partitioning and
set-partitioning. The idea behind time partitioning is to divide the input program
trace into chunks, which can then be simulated in parallel. However, an extra
step is necessary to assign the correct cache state between every pair of chunks.
Furthermore, depending on the cache configuration and the input program, a
number of re-simulation might be necessary and could potentially overcome all
parallel benefits, thereby making it even slower than the sequential version. The
approach of set partitioning does not require this re-simulation step, since it
divides the trace file by the sets addresses by each variable reference. However,
the degree of parallelism is limited by the number of sets of cache configuration.
Barriga et al. [6] presented a straightforward implementation of cache simula-
tion that exploited set-partitioning. However, their approach included expensive
operations such as insertion and synchronization during the trace generation.

82 W. Bao et al.

Works such as [37], use GPU to exploit the set-partitioning parallelism and sim-
ulate multiple cache configurations at one time. Despite utilizing GPUs, their
approach still suffers from the inefficiency of processing program traces, specifi-
cally, during the address sorting stage.

To the best of our knowledge, in context of trace-driven simulation, all previ-
ous works have assumed that the trace generation stage to be inherently sequen-
tial. This makes trace-driven cache simulation less efficient as the time spent on
generating traces could dominate the simulation time and overcome the benefits
achieved via parallelization. Thus, our approach also parallelizes this phase to
achieve better efficiency.

Finally, in the general field of simulation, approximate techniques have also
been devised. The idea behind this is that results accuracy can be sacrificed
in exchange for faster execution times [20]. These techniques have also been
adapted for time-parallel cache simulation [19].

8 Conclusion

Exploiting parallelism to accelerate trace-driven cache simulation is a well-
studied problem. Previous works have typically focused on two major aspects:
(a) the time-partitioning based parallel simulation; and (b) the set-partitioning
based approach. These approaches are inefficient when generating and processing
large program traces.

In this paper, we propose a novel parallel cache simulation framework for
polyhedral programs to perform accurate, and efficient cache simulation. Com-
pared to previous state-of-the-art works, our approach exploits not only the
parallelism in the trace analysis, but also improves the trace generation phase
based on cache set partition transformation. Our approach avoids inefficient
operations such as trace insertion and synchronization, which are necessary in
other set-partitioning methods. We demonstrate that for affine programs, we
can achieve better simulation speedup and better memory efficiency compared
to time-partition approach. Experimental evaluations validate the accuracy of
the proposed framework, showing significant simulation speedup on representa-
tive benchmarks against the time-partition parallel simulation.

Acknowledgments. We thank the anonymous referees for the feedback and many
suggestions that helped in improving the presentation. This work was supported in
part by the U.S. Department of Energy, Office of Science, Office of Advanced Scien-
tific Computing Research under Awards 66905 and DE-SC0014135, program manager
Lucy Nowell, by the U.S. National Science Foundation through awards 1513120 and
1731612, and by computational resources from the Ohio Supercomputer Center. Pacific
Northwest National Laboratory is operated by Battelle for DOE under Contract DE-
AC05-76RL01830.

References

1. Agarwal, A., Hennessy, J., Horowitz, M.: An analytical cache model. ACM Trans.
Comput. Syst. (TOCS) 7(2), 184–215 (1989)

Efficient Cache Simulation for Affine Computations 83

2. Bao, W., Tavarageri, S., Ozguner, F., Sadayappan, P.: PWCET: power-aware worst
case execution time analysis. In: 2014 43rd International Conference on Parallel
Processing Workshops, pp. 439–447, September 2014

3. Bao, W.: Power aware WCET analysis (2014)
4. Bao, W., et al.: Static and dynamic frequency scaling on multicore CPUs. ACM

Trans. Arch. Code Optim. (TACO) 13(4), 51:1–51:26 (2016). https://doi.org/10.
1145/3011017

5. Bao, W., Krishnamoorthy, S., Pouchet, L.N., Rastello, F., Sadayappan, P.: Poly-
Check: dynamic verification of iteration space transformations on affine programs.
SIGPLAN Not. 51(1), 539–554 (2016). https://doi.org/10.1145/2914770.2837656

6. Barriga, L., Ayani, R.: Parallel cache simulation on multiprocessor workstattions.
In: 1993 International Conference on Parallel Processing, ICPP 1993, vol. 1, pp.
171–174. IEEE (1993)

7. Bastoul, C.: Generating loops for scanning polyhedra: CLooG users guide. Poly-
hedron 2, 10 (2004)

8. Conte, T.M., Hirsch, M.A., Hwu, W.M.: Combining trace sampling with single
pass methods for efficient cache simulation. IEEE Trans. Comput. 47(6), 714–720
(1998)

9. Dundar, M., Kou, Q., Zhang, B., He, Y., Rajwa, B.: Simplicity of kmeans versus
deepness of deep learning: a case of unsupervised feature learning with limited data.
In: 2015 IEEE 14th International Conference on Machine Learning and Applica-
tions (ICMLA), pp. 883–888. IEEE (2015)

10. Edler, J., Hill, M.D.: Dinero IV trace-driven uniprocessor cache simulator (1999).
http://www.cs.wisc.edu/markhill

11. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. Int. J. Parallel Prog. 21(6), 389–420 (1992)

12. Ghosh, S., Martonosi, M., Malik, S.: Precise miss analysis for program transfor-
mations with caches of arbitrary associativity. In: Proceedings of the Eighth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS VIII, pp. 228–239. ACM, New York (1998). https://
doi.org/10.1145/291069.291051

13. Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: a compiler framework
for analyzing and tuning memory behavior. ACM Trans. Program. Lang. Syst.
(TOPLAS) 21(4), 703–746 (1999)

14. Girbal, S., et al.: Semi-automatic composition of loop transformations. Int. J. Par-
allel Prog. 34(3), 261–317 (2006)

15. Heidelberger, P., Stone, H.S.: Parallel trace-driven cache simulation by time parti-
tioning. In: 1990 Proceedings of the Simulation Conference, Winter, pp. 734–737.
IEEE (1990)

16. Hill, M.D., Smith, A.J.: Evaluating associativity in CPU caches. IEEE Trans. Com-
put. 38(12), 1612–1630 (1989)

17. Hong, C., et al.: Effective padding of multidimensional arrays to avoid cache conflict
misses. SIGPLAN Not. 51(6), 129–144 (2016). https://doi.org/10.1145/2980983.
2908123

18. Zhang, J., Lu, X., Panda, D.: High performance MPI library for container-based
HPC cloud on InfiniBand clusters, August 2016

19. Kiesling, T.: Approximate time-parallel cache simulation. In: Proceedings of the
36th Conference on Winter Simulation, pp. 345–354. Winter Simulation Conference
(2004)

https://doi.org/10.1145/3011017
https://doi.org/10.1145/3011017
https://doi.org/10.1145/2914770.2837656
http://www.cs.wisc.edu/markhill
https://doi.org/10.1145/291069.291051
https://doi.org/10.1145/291069.291051
https://doi.org/10.1145/2980983.2908123
https://doi.org/10.1145/2980983.2908123

84 W. Bao et al.

20. Kiesling, T., Pohl, S.: Time-parallel simulation with approximative state matching.
In: Proceedings of the Eighteenth Workshop on Parallel and Distributed Simula-
tion, pp. 195–202. ACM (2004)

21. Lauterbach, G.: Accelerating architectural simulation by parallel execution of trace
samples. In: 1994 Proceedings of the Twenty-Seventh Hawaii International Con-
ference on System Sciences, vol. 1, pp. 205–210. IEEE (1994)

22. Li, M., Lu, X., Hamidouche, K., Zhang, J., Panda, D.K.: Mizan-RMA: accelerating
Mizan graph processing framework with MPI RMA. In: 2016 IEEE 23rd Interna-
tional Conference on High Performance Computing (HiPC), pp. 42–51, December
2016

23. Li, M., Potluri, S., Hamidouche, K., Jose, J., Panda, D.K.: Efficient and truly pas-
sive MPI-3 RMA using InfiniBand atomics. In: Proceedings of the 20th European
MPI Users’ Group Meeting, EuroMPI 2013, pp. 91–96. ACM, New York (2013).
https://doi.org/10.1145/2488551.2488573

24. Li, M., Hamidouche, K., Lu, X., Subramoni, H., Zhang, J., Panda, D.K.: Designing
MPI library with on-demand paging (ODP) of InfiniBand: challenges and benefits.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, pp. 37:1–37:11. IEEE Press, Piscat-
away (2016). http://dl.acm.org/citation.cfm?id=3014904.3014954

25. Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L.: Evaluation techniques for
storage hierarchies. IBM Syst. J. 9(2), 78–117 (1970)

26. Nicol, D.M., Greenberg, A.G., Lubachevsky, B.D.: Massively parallel algorithms for
trace-driven cache simulations. IEEE Trans. Parallel Distrib. Syst. 5(8), 849–859
(1994)

27. Patterson, D.A.: Computer Architecture: A Quantitative Approach. Elsevier, Ams-
terdam (2011)

28. Pieper, J.J., Mellan, A., Paul, J.M., Thomas, D.E., Karim, F.: High level cache
simulation for heterogeneous multiprocessors. In: Proceedings of the 41st Annual
Design Automation Conference, pp. 287–292. ACM (2004)

29. Pouchet, L.N.: Polybench: the polyhedral benchmark suite (2012). http://www.cs.
ucla.edu/pouchet/software/polybench

30. Puzak, T.R.: Analysis of cache replacement-algorithms (1985)
31. Schuff, D.L., Kulkarni, M., Pai, V.S.: Accelerating multicore reuse distance anal-

ysis with sampling and parallelization. In: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, PACT 2010,
pp. 53–64. ACM, New York (2010). https://doi.org/10.1145/1854273.1854286

32. Sugumar, R.A., Abraham, S.G.: Set-associative cache simulation using generalized
binomial trees. ACM Trans. Comput. Syst. (TOCS) 13(1), 32–56 (1995)

33. Sugumar, R.A.: Multi-configuration simulation algorithms for the evaluation of
computer architecture designs (1993)

34. Uhlig, R.A., Mudge, T.N.: Trace-driven memory simulation: a survey. ACM Com-
put. Surv. (CSUR) 29(2), 128–170 (1997)

35. Verdoolaege, S.: isl : an integer set library for the polyhedral model. In: Fukuda,
K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
299–302. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-
6 49

36. Verdoolaege, S., Grosser, T.: Polyhedral extraction tool. In: Second International
Workshop on Polyhedral Compilation Techniques (IMPACT 2012), Paris, France
(2012)

https://doi.org/10.1145/2488551.2488573
http://dl.acm.org/citation.cfm?id=3014904.3014954
http://www.cs.ucla.edu/pouchet/software/polybench
http://www.cs.ucla.edu/pouchet/software/polybench
https://doi.org/10.1145/1854273.1854286
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49

Efficient Cache Simulation for Affine Computations 85

37. Wan, H., Gao, X., Long, X., Wang, Z.: GCSim: a GPU-based trace-driven simulator
for multi-level cache. In: Dou, Y., Gruber, R., Joller, J.M. (eds.) APPT 2009.
LNCS, vol. 5737, pp. 177–190. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03644-6 14

38. Wu, M.J., Yeung, D.: Efficient reuse distance analysis of multicore scaling for
loop-based parallel programs. ACM Trans. Comput. Syst. 31(1), 1:1–1:37 (2013).
https://doi.org/10.1145/2427631.2427632

39. Wu, Y., Muntz, R.: Stack evaluation of arbitrary set-associative multiprocessor
caches. IEEE Trans. Parallel Distrib. Syst. 6(9), 930–942 (1995)

40. Zhang, B., et al.: Trust from the past: Bayesian personalized ranking based link pre-
diction in knowledge graphs. In: SDM Workshop on Mining Networks and Graphs
(MNG 2016) (2016)

41. Zhang, B., Dundar, M., Hasan, M.A.: Bayesian non-exhaustive classification a
case study: online name disambiguation using temporal record streams. In: CIKM
2016 Proceedings of the 25th ACM International Conference on Information and
Knowledge Management, pp. 1341–1350. ACM (2016)

42. Zhang, B., Dundar, M., Hasan, M.A.: Bayesian non-exhaustive classification for
active online name disambiguation. arXiv preprint arXiv:1708.04531 (2017)

43. Zhang, B., Hasan, M.A.: Name disambiguation in anonymized graphs using net-
work embedding. In: The 26th ACM International Conference on Information and
Knowledge Management (CIKM 2017) (2017)

44. Zhang, B., Mohammed, N., Dave, V., Hasan, M.A.: Feature selection for classifi-
cation under anonymity constraint. Trans. Data Priv. 10, 1–25 (2017)

45. Zhang, B., Saha, T.K., Al Hasan, M.: Name disambiguation from link data in a
collaboration graph. In: 2014 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), pp. 81–84. IEEE (2014)

https://doi.org/10.1007/978-3-642-03644-6_14
https://doi.org/10.1007/978-3-642-03644-6_14
https://doi.org/10.1145/2427631.2427632
http://arxiv.org/abs/1708.04531

ADLER: Adaptive Sampling
for Precise Monitoring

Arnamoy Bhattacharyya(B) and Cristiana Amza

Department of Electrical and Computer Engineering, University of Toronto,
Toronto, Canada

{arnamoyb,amza}@ece.utoronto.ca

Abstract. In this paper, we present ADLER, a tool for profiling appli-
cations using a sampling frequency that is tuned at program runtime.
ADLER can not only determine the adaptive sampling rate for any appli-
cation, but also can instrument the code for profiling so that different
parts of the application can be sampled at different frequencies. The
frequencies are selected to provide enough information without collect-
ing redundant data. ADLER uses performance models of program ker-
nels and prepare the kernels for sampling according to their complexity
classes. We also show an example use case of real-time anomaly detection,
where using ADLER’s execution models, the anomalies can be detected
23% quicker than static sampling.

1 Introduction

Application sampling is widely used for a number of scenarios: (1) applica-
tion phase detection [15], (2) anomaly detection [5] (3) improving energy effi-
ciency [13]. Choosing an appropriate sampling frequency to correctly capture
the behaviour of an application is quite important. Choosing a high frequency
may give rise to redundant data thus incurring unnecessary storage and analysis
overhead, while sampling at a low frequency may fail to capture enough infor-
mation. Moreover, different applications have parts of code that show different
execution behaviour. Therefore, setting a static sampling frequency is not the
right choice for correctly capturing the behaviour of an entire application.

Correctly capturing data though application profiling at an optimal sampling
frequency is also necessary for other use cases, for example, anomaly detection in
the cloud [5]. In large-scale cloud systems like Cassandra, HBase, stateful com-
ponents are expected to be many, and failures are expected to be the rule rather
than the exception; for example, one hardware failure per data center, per day
is commonly reported. Moreover, the necessary maintenance activities for moni-
toring, diagnosis, inspection or repair can no longer be handled through frequent
human intervention. New approaches that predict the resource consumption of
cloud applications [1] and provide automatic solutions for anomaly detection are
more applicable today. For fast and effective anomaly identification in real time,
an adaptive strategy for monitoring application execution and resource usage
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 86–100, 2019.
https://doi.org/10.1007/978-3-030-35225-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_7

ADLER: Adaptive Sampling for Precise Monitoring 87

is very important. Adaptive sampling provides a balance between the storage
overhead of the profiled data and the processing time of the profiled data to
detect anomalies.

In this paper we propose a compiler based tool called ADLER (ADaptive
sampLER) that instruments the application for adaptive sampling. ADLER
takes application bytecode and different input configurations. It then builds
performance models for program kernels and cluster them according to their
performance complexity classes. The output from ADLER is application code
that is instrumented to set the sampling frequency on the fly as the application
runs with a particular input. We show the effectiveness of ADLER in reducing
the storage overhead from a high static sampling frequency sampling while still
keeping enough information to correctly identify anomalies. We present results
for a wide range of database server applications written in multiple program-
ming languages. We show that ADLER is able to efficiently switch the sampling
frequency at minimum performance penalty. We also show the effectiveness of
adaptive sampling an example use case of real-time performance anomaly iden-
tification in database servers running in the cloud.

2 Motivational Experiment

In this section, we provide a motivational experiment to show that a proper
sampling frequency is necessary for correctly capturing a program’s runtime
behaviour. For this experiment, we set up an Hbase server. We monitor the CPU
utilization of the HBase process running the Yahoo! Cloud Serving Benchmark
(YCSB) [5] workload over time.

Figure 1 shows the CPU utilization of a HBase server when the YCSB work-
load is run on it. The sampling frequency for the CPU utilization is set at 300
HZ. There is a busy phase when the workload is run in the server. Also before
the beginning and at the end of the service, there are setup and cleanup phases
that the application uses to set up and clean up tables for running the workload.

In Figs. 1(c) and (d) we introduce a disk anomaly during the setup phase (at
around time 51 in Fig. 1(c)). This anomaly can be detected using a real-time
anomaly detection technique using sampled data about resources [5].

Figures 1(b) and (d) show the same scenario but with a lower frequency of
sampling (50 Hz). Here the CPU utilization patterns with and without the pres-
ence of an anomaly are not clearly distinguishable due to the sparse collection,
therefore, the anomaly is not detected.

The motivational experiment clearly shows the necessity of a good choice of
sampling frequency for understanding the behaviour of servers running in the
cloud. The sampled data can not only be used for resource anomaly detection,
but also for debugging the code, phase analysis, application optimization, VM
migration decisions [9].

The sampling frequency should not be very high as well, because that may
give rise to a lot of redundant data that incurs both storage and analysis complex-
ity overhead. Therefore, a technique of adaptive sampling, where the frequency

88 A. Bhattacharyya and C. Amza

Fig. 1. Motivational Experiment with different sampling frequencies for a HBase server
serving a YCSB workload. A higher sampling frequency captures more information,
helping in Anomaly detection (at around time 51), but a lower sampling frequency,
though can save space, fails to detect the same anomaly.

changes depending on the overall application structure is necessary. In the next
section, we provide our methodology for adaptive sampling that can correctly
capture the behavior of applications without incurring too much storage and
analysis overhead.

3 A New Method for Adaptive Sampling

In this section, we provide a detailed description of our adaptive sampling tech-
nique. Our methodology consists of two main steps:

– Estimate a sampling frequency based on the execution time models of pro-
gram kernels.

– Modify the sampling frequency on the fly according to the complexities of the
kernels during the program execution for a given input.

3.1 Execution Time Modeling

The first step of the adaptive sampling methodology is to build precise per-
formance models of kernels. An execution time model of a program kernel is
a function that can estimate the execution time of a kernel based on the pro-
gram inputs. We provide the definition of kernels and describe how we generate
execution time models of those kernels below.

ADLER: Adaptive Sampling for Precise Monitoring 89

Program Kernels. We identify loops and functions in the program as program
kernels. We represent the performance M of a program through the execution
time models m of n kernels:

M = {m1,m2, . . . ,mn} (1)

We define the execution time model m of each kernel as a linear regression
function of a set of predictors p = {p1, p2, . . . , pp}.

m =
|p|∑

i=1

αi · pi + β where pi ∈ p (2)

A predictor pi is a function of one or more program input parameters ι. If there
are r input parameters that influence the performance of a kernel, the predictor
set is formed by applying a set of transformations τ1, τ2, . . . τv on those input
parameters.

p = {
⋃

v

⋃

r

τv(ιr)} (3)

Values of Model Parameters. The first task is to assemble a list of all input
parameters that significantly influence the runtime of the application. We call
such parameters critical (input) parameters.

Critical parameters should be scalar values such as sizes of dimensions, num-
ber of iterations or the percentage of reads and writes during a workload. If the
execution time of the program is determined by an input file or a vector, then it
should be condensed into the smallest number of scalar critical parameters (e.g.,
if the input file is a sparse matrix, the critical parameter could be the number of
non-zero elements in the matrix). A domain expert has to determine the com-
plete set of parameters and supply them. We identify the set of parameters as
P = (p1, p2, . . . , pn).

Model Fitting. We use an empirical method to determine the execution time
model of the kernel in terms of its input parameters. In constructing models
to predict performance and put locations into clusters, we make use of “least-
squares linear regression and power law regression”. Regression selects model
parameters that minimize some measure of error. We use the LASSO statistical
method proposed by Bhattacharyya et al. [6] to determine the execution time
model of the kernel. Following this approach, the predictors are formed by apply-
ing powers and logarithm transformations on program inputs. The search space
of predictors is constructed from program input parameters using the following
normal form:

p = {ιki logl ιki , k, l ∈ R, ιi ∈ I} (4)

Here I represents the set of program input parameters. By assigning different
values to k and l, the predictor set is constructed from the input parameters.

90 A. Bhattacharyya and C. Amza

An example model from EPMNF for program input parameters ι1 and ι2 would
be c1 · ι21 + c2 · ι2 log ι2, where c1 and c2 are constants.

We generate execution time models for each calling context of a kernel. We
define a calling context of a kernel following the Loop Call Graph (LCG) [4] of
the program as following:

Definition 3.1 A context C of a kernel is defined as the set of nodes of the
LCG that are visited during a particular instance of execution.

Fig. 2. Sample code with corresponding LCG.

Figure 2 shows a sample code and its corresponding LCG. According to our
definition of context, the LCG will have the following contexts.

1. main → f1
2. main → f1 → f4
3. main → f1 → f5
4. main → f2
5. main → f2 → f5
6. main → f2 → f6
7. main → lp1

While profiling the kernels for the construction of execution time models, we
model each calling context separately. Therefore, at the end of the execution
time modeling step, we have one execution time model per kernel per calling
context. It is possible for a kernel to have multiple execution time models due
to execution from different calling contexts.

Measure of Fit. As our method for constructing execution time model is
based on empirical method, the constructed model sometimes does not reflect
the theoretical exact execution time model. Therefore, we need to measure the
goodness of fit of the constructed model so that it can be effective utilized to
tune the sampling rate in the following step. For measuring the goodness of

ADLER: Adaptive Sampling for Precise Monitoring 91

fit of the constructed model, we use the adjusted R2 (cite pemogen) statistic, a
measure of the model’s goodness-of-fit that quantifies the fraction of the variance
in execution time accounted for by a least-squares linear regression on the inputs:

The adjusted R-square (ARS) of the predictions by the model is calculated
on the test data:

R2 ≡ 1 −
∑x

i=1 (yi − fi)
2

∑x
i=1 (yi − ȳ)2

(5)

ARS = R2 − (1 − R2)
m

x − m − 1
(6)

Where x and m are the test data batch size and number of parameters respec-
tively.

3.2 Adaptive Sampling

After we generate the execution time models for all the kernels in the program,
we have to set execution points in the loop call graph of the program where we
want to switch the sampling frequency. If we switch the sampling frequency for
the execution of each kernel in each context, the overhead from sampling will be
too high, resulting in a high drop in application throughput. Therefore, in this
section we provide a novel approach for adaptive sampling based on complexity
classes of the kernels at various calling contexts.

Complexity Classes. We cluster the execution time models of kernels as the
following four main classes. This clustering of kernels helps to modify the sam-
pling frequency switching to keep the sampling frequency switching at a mini-
mum. Since the sampling frequency switching requires communication between
the program and the sampler, a frequency switch at the beginning of execution
of each kernel will produce too much runtime overhead.

1. Logarithmic Class: The kernels belonging to the logarithmic class have the
following normal form of the execution time model.

p = {
∑

logl ιi, l ∈ R, ιi ∈ I} (7)

2. Linear Class: The kernels belonging to the linear class has the following nor-
mal form of the execution time model.

p = {
∑

ιki , k ∈ {1} ιi ∈ I} (8)

3. Polynomial Class: The kernels in the polynomial class has the following nor-
mal form:

p = {ιki logl ιki , k ∈ {2, 3} , l ∈ R, ιi ∈ I} (9)

It is important to note that we consider two kernels with execution time
models O(n2) and O(n2 ∗ log n) to be in the same complexity class because
their asymptotic behaviour is roughly the same.

92 A. Bhattacharyya and C. Amza

4. Unknown Class: All kernels whose execution time models do not achieve a
good fit for the training data, belong to a Unknown complexity class. We
consider a value of 0.95 for the ARS a good fit.

Grouping of Kernels. Once we have identified all the different complexity
classes of the kernels, we instrument the code to prepare it for adaptive sampling.
The instrumentation prepares the code to communicate with the sampling tool
to modify the sampling frequency on the fly during application deployment. Our
goal in this grouping step is to minimize the communication between the appli-
cation and the sampling tool, while still collecting enough information through
sampling to capture the complete behaviour of the application.

To group the kernels, we use two information:

– The complexity class of the kernel.
– The calling context of the kernel in the LCG.

Our grouping algorithm starts from the leaves of the LCG. For each leaf of
the LCG, we also check the calling context of the kernel to determine its level.
The instrumentation adds codes for either setting the sampling for the respective
kernels. The result of the instrumentation is to produce a code that after adaptive
sampling, will generate the same number of data points for each kernel at each
calling context level. This means that a kernel with a higher execution time will
need a lower sampling frequency while a kernel with a smaller execution time
will be in need of a higher sampling frequency. The setting of sampling frequency
uses both the static structure and the runtime information about the kernels.

During static check, all the kernels belonging to the same complexity class is
sampled against the same frequency. Therefore, code for switching is added only
once for these kernels of the same group. But if two kernels belong to different
complexity classes (where the input parameters in the execution time model are
different), we take a look at the execution time trends of the kernels obtained
during the execution time model generation. If the trend shows that the kernels
do not differ from each other by more that 5% in their execution time for the
different input parameter values, we do not switch the sampling frequency during
the kernels switch. The number 5%, according to our experiments, provides the
sweet spot between the number of sampling switches and the quality of the
collected data.

The static analysis begins with kernels at the deepest calling context level
(the highest number of nodes in the calling context). It processes the leaf kernels
at the same level of the LCG. Once the leaves at the lowest level have been pro-
cessed, the analysis moves one level up and applies the same clustering strategy.
Once the processing of all the leaves at all calling context levels is done, our
instrumentation for the code necessary for frequency switching per context is
complete.

ADLER: Adaptive Sampling for Precise Monitoring 93

Setting the Sampling Frequency. Once the instrumentation of the switching
of sampling frequency is done, the setting of actual sampling frequency is done
during the program execution as this is input specific.

At runtime, the switching code first calculates the predicted execution time
of a kernel at a particular calling context based on the values of input parameters
during that particular run. After calculating the execution time, based on the
given number of data points necessary for capturing the program behaviour, the
frequency is set. The required number of samples per kernel per calling context
can be set by the analyst and that is a compromise between the resource one has
vs. the amount of information one wants to collect about the program behaviour.
For the kernels with Unknown execution time models, the execution time is
conservatively predicted to be the minimum of all the execution times of that
kernel during training and the sampling frequency is set according to that.

Example. In this section we give a complete example of sampling frequency
switching using our kernel grouping heuristics. Listing 1.1 shows a sample code
and Fig. 3 shows the corresponding LCG for the code. Figure 3 is also annotated
with the execution time models of the relevant of the LCG.

Listing 1.1. Example code for Adaptive Sampling.

main(){

f1();

//non -kernel code

for (...){

f6();

} //lp2

//non -kernel code

for (...) {} //lp3

}

f1(){

f4();

//non -kernel code

for (...) {} //lp1

//non -kernel code

f5();

}

We first start our instrumentation for all the leaves in the LCG of the pro-
gram. In the given LCG, there are five leaves: (1) f4() (2) loop1 (lp1) (3) f5()
(4) f6() and (5) loop3 (lp3). As a first step, we have to identify all the leaves
that belong to the same calling context. We can see from the graph that the
three leaves (f4(), lp1 and f5()) belong to the same calling context which is
main() → f1(). Therefore, first we process them. Here let us assume that during
the execution time model generation with different input parameter values, the
execution time trends of f4() and lp1 do not vary by more than 5%. Therefore,
according to our heuristics, even though they have different input parameter
values in their respective execution time models, they belong to the same linear

94 A. Bhattacharyya and C. Amza

Fig. 3. Loop Call Graph and their respective sampling groups for the code in Listing 1.

complexity class. As a result, we do not have to switch sampling frequency during
the kernel switch. But f5() belongs to a different (quadratic) complexity class.
When the code switches from the execution of kernel lp1 to f5() we perform a
sampling frequency switch.

Next we process the next leaf node of the graph that is f6(). This node
alone belongs to the calling context main() → lp2. Therefore, this kernel is
instrumented with its own sampling frequency code. As the kernel belongs to a
Unknown complexity class, the sampling frequency will be set according to the
smallest execution time of this kernel during the execution time model generation
phase.

Once we finish processing of all the leaf kernels at the deepest level, we
move one level up and process the leaf kernel lp3. lp3 has the calling context
main() and it is the only kernel belonging to this context. Therefore, it will be
instrumented with the sampling frequency according to the predicted execution
time for the given input at runtime. Listing 1.2 shows the instrumented code
with our adaptive sampling method.

Listing 1.2. Instrumented for Adaptive Sampling.

main(){

f1();

//non -kernel code

for (...){

predict_and_setfreq (f6);

f6();

} //lp2

//non -kernel code

predict_and_setfreq (lp3);

for (...) {} //lp3

}

f1(){

predict_and_setfreq (f4);

ADLER: Adaptive Sampling for Precise Monitoring 95

f4();

//non -kernel code

for (...) {} //lp1

//non -kernel code

predict_and_setfreq (f5);

f5();

}

4 Implementation

In this section we provide details about the implementation of our tool ADLER.
As seen in Fig. 4, the tool is composed of three components.

1. Execution time model Generator: The execution time model generation
engine of ADLER has all the capabilities built for generating the execution
time models of the kernels in the program.

2. Adaptive Sampler: The adaptive sampler engine of ADLER takes the exe-
cution time models generated by the execution time model generator engine
and then instruments the original code for adaptive sampling.

3. Compiler Analysis: The compiler component of ADLER has two compilers
that support intermediate languages: (1) LLVM for C/C++ and (2) Soot [16]
for Java. The execution time model generator and the adaptive sampler com-
ponents both are connected to this component.

ADLER takes as input source code files and produces an instrumented ver-
sion of the source code ready for adaptive sampling. If the source code is not
available, ADLER can work with intermediate representations of the code as
well. For the intermediate representation of C and C++ programs, we use the
LLVM’s intermediate language. The LLVM compiler is widely used by program-
ming language research these days the intermediate representation of the code
gives the flexibility to work across microarchitectures.

Similar to C/C++ applications, for Java ADLER supports both source code
files and class/ jar files that are essentially intermediate representation of source
code in the Java language.

The analyst supplies the source code files, the language of analysis and the
values and names of the input parameters for the given code. ADLER first
performs static analysis of the source code and instruments the source code for
execution time model construction. This produces an instrumented version of
the source code, which, when run by the user with different input parameter
values, produces profile files with timing information per run.

Next, the profile files are fed back into the execution time model generator
component of ADLER to learn the execution time models of the kernels inside
the code. The execution time models of the kernels are written to files by the
model generator engine.

96 A. Bhattacharyya and C. Amza

Fig. 4. Different components of ADLER and the complete workflow.

In the next step, the adaptive sampler engine of ADLER uses the execution
time models learned at the previous step to perform instrumentation for prepar-
ing the code for adaptive sampling. The instrumentation in this step does not
go on top of the previous instrumentation because our tool buffers the original
code.

5 Experimental Evaluation

In this section, we present the effectiveness of adaptive sampling using ADLER
for a number of popular cloud database servers written in both C/C+ and Java.
Though our method for adaptive sampling is versatile and can be used in any use
case where sampling needs to be performed, we focus our use case on real time
resource anomaly detection on the cloud. We choose the YCSB [1] workloads for
running on the cloud servers. The various parameters of the YCSB workloads
give us different input values to train the execution time models of kernels.
We first present the study on the kernel characteristics of the servers and how
adaptive sampling is effective in grouping the kernels based on their complexity
classes. Then we present a detailed study on an anomaly detection use case.

5.1 Execution Time Modeling

In this section, we present the results from the execution time modeling engine of
ADLER. We report the total number of kernels in each of the databases we use
for experiments and their complexity classes. We also report how many sampling
frequency switching points are created by ADLER to show the effectiveness of

ADLER: Adaptive Sampling for Precise Monitoring 97

Table 1. The total number of kernels and their complexity classes for the codebases
of our experiments.

Codebase Language# kernelsLogLinear PolynomialUnknown# Switching

Hbase-1.1.0 Java 488953 45 488529 279 100 2536

Cassandra-3.0 Java 133331 44 133141 89 57 4789

Elasticsearch-2.3.3Java 134581 10 134416 90 65 2987

MongoDB-3.0.14 C/C++ 298822 12 298735 45 30 546

ArangoDB-4.3.61 C++ 1539 30 1473 20 16 656

Memcached-1.4.37C 120 3 108 6 3 54

the grouping strategy. We run each database with 100 different input parameter
combinations, each for 10 times.

As seen from Table 1, most of the kernels can be correctly classified into
complexity classes, with a few unknowns. Also most kernels belong to a linear
complexity class for the databases. We see in the last column of Table 1, that the
number of switching points introduced by ADLER is relatively low, which shows
the effective clustering of the kernels in these applications. Grouping a large
number of kernels in a smaller number of clusters also indicate the existence of
recurrent phases in applications that have a significant number of kernels with
similar complexity classes.

5.2 Case Study: Anomaly Detection

In this section we show an example use case of ADLER in case of anomaly
detection. We use the execution time models to detect the anomaly during pro-
gram runtime. Our anomaly detection technique closely relates to the method
proposed by Bhattacharyya et a. [5] in the sense that we annotate raw resource
usage data with semantic information (with the kernels). But unlike them, we
use the predicted execution time from the execution time models and compare
against the actual execution time during a program run of kernels for detecting
anomalies.

For building the execution time models, we use 10 different configurations
of YCSB workload for a total of 1000 runs. Then for testing the accuracy of
anomaly detection, we use the systemtap tool to simulate a faulty disk anomaly.
During the execution of a YCSB workload on Cassandra, we inject a delay of
50 s each in 50% of the reads and 50% of the writes to disk coming from the
database. We keep injecting the delay for a period of 10 s.

Table 2 shows the methods from Cassandra that represent the workload pro-
cessing phase. The actual and predicted execution times for a normal run and
the actual execution time of an anomalous run are also shown. It is clearly seen
that by comparing the predicted execution time with the actual execution time
at runtime, the anomaly can be detected.

98 A. Bhattacharyya and C. Amza

Fig. 5. The CPU and Memory consumption by the kernel org.apache.cassandra.io.util.
ByteBufferOutputStream.write() for normal and anomalous runs for Cassandra.

Table 2. Predicted and actual execution times for Cassandra kernels for anomalous
runs. Pred is Predicted execution time and Anom is Anomalous run.

Kernel Normal Pred Anom

org.apache.cassandra.io.util.ByteBufferOutputStream.write() 150 ms 160 ms 300 ms

org.apache.cassandra.utils.PureJavaCrc32.update() 52 ms 60 ms 150 ms

org.apache.cassandra.io.util.ChecksummedOutputStream.write() 100 ms 95 ms 234 ms

Root-Cause Analysis. With our adaptive sampling methodology, we are able
to perform a root cause analysis of the anomaly by correlating the monitored
usage of different resources. Figure 5 shows the CPU and memory utilization of
one of the Cassandra kernels (org.apache.cassandra.io.util.
ByteBufferOutputStream.write()) during the normal and anomalous runs.

To learn the characteristics of normal runs, we use the method described by
Bhattacharyya et al. [5]. By looking at the figure, it can be seen that there is not
much change in the memory utilization for the disk fault anomaly but in CPU
utilization, there is a noticeable difference. By correlating the resource utilization
data with the execution time difference, we can identify this anomaly type. For a
different anomaly e.g. memory leak, the difference in the memory usage pattern
between a normal and anomalous run will become more significant.

Adaptive sampling can help in root cause analysis by reducing the analysis
complexity of the amount of collected data. In an online setting, this is crucial.
Using ADLER, we are able to perform the root cause analysis for the anomaly
23% faster after the end of the busy phase. Also, at a lower sampling frequency
(e.g. the default sampling frequency of gprof), due to the lack of enough data
points, the anomaly root cause analysis cannot be performed.

ADLER: Adaptive Sampling for Precise Monitoring 99

6 Related Work

Symantec i3 for J2EE [8] is a commercial tool that features the ability to adap-
tively instrument Java applications based on the application response time. Rish
et al. [14] describe a technique, called active probing. Kumar et al. [10] apply
transformations to the instrumentation code to reduce the number of instru-
mentation points executed as well the cost of instrumentation probes and pay-
load. A technique to switch between instrumented and non-instrumented code
is described by Arnold and Ryder [2]. Munawar and Ward [12] argue that a
monitoring system should continuously assess current conditions by observing
the most relevant data, it must promptly detect anomalies and it should help to
identify the root-causes of problems. The magpie [3] and the Pinpoint [7] are also
two well-known projects of the field. Magalhaes et al. [11] provides an approach
for adaptive profiling and probably the closest to our work. But in contrary to
them, our approach is not application and workload specific and it is not turned
on only when anomaly is detected.

7 Conclusion

In this paper we present a tool for adaptive sampling – ADLER. ADLER can
prepare applications that can self-adapt sampling frequencies on the fly based
on the application input. We show an use case of ADLER in anomaly detection
for web servers running on the cloud. Compared to a static sampling at high
frequency, ADLER can improve the delay in anomaly root-cause analysis by
23%, making it very effective in real-time anomaly detection. ADLER can be
used for any use case where sampling is necessary.

References

1. Yahoo Cloud Service Benchmarks. https://research.yahoo.com/news/yahoo-cloud-
serving-benchmark/

2. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code.
ACM SIGPLAN Not. 36(5), 168–179 (2001)

3. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using magpie for request extrac-
tion and workload modelling. In: OSDI, vol. 4, p. 18 (2004)

4. Bhattacharyya, A., Hoefler, T.: Pemogen: automatic adaptive performance mod-
eling during program runtime. In: 2014 23rd International Conference on Parallel
Architecture and Compilation Techniques (PACT), pp. 393–404. IEEE (2014)

5. Bhattacharyya, A., Jandaghi, S.A.J., Sotiriadis, S., Amza, C.: Semantic aware
online detection of resource anomalies on the cloud. In: 2016 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 134–
143. IEEE (2016)

6. Bhattacharyya, A., Kwasniewski, G., Hoefler, T.: Using compiler techniques to
improve automatic performance modeling. In: 2015 International Conference on
Parallel Architecture and Compilation (PACT), pp. 468–479. IEEE (2015)

7. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem
determination in large, dynamic internet services. In: Null, p. 595. IEEE (2002)

https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/

100 A. Bhattacharyya and C. Amza

8. Symantec Corporation: Symantec i3 for J2EE - performance management for the
J2EE platform

9. Jandaghi, S.J., Bhattacharyya, A., Sotiriadis, S., Amza, C.: Consolidation of under-
utilized virtual machines to reduce total power usage. In: Proceedings of the 26th
Annual International Conference on Computer Science and Software Engineering,
pp. 128–137. IBM Corp. (2016)

10. Kumar, N., Childers, B.R., Soffa, M.L.: Low overhead program monitoring and
profiling. ACM SIGSOFT Softw. Eng. Notes 31(1), 28–34 (2006)

11. Magalhaes, J.P., Silva, L.M.: Adaptive profiling for root-cause analysis of per-
formance anomalies in web-based applications. In: 2011 10th IEEE International
Symposium on Network Computing and Applications (NCA), pp. 171–178. IEEE
(2011)

12. Munawar, M.A., Ward, P.: Adaptive monitoring in enterprise software systems.
SysML, June 2006

13. Padmanabha, S., Lukefahr, A., Das, R., Mahlke, S.: Trace based phase predic-
tion for tightly-coupled heterogeneous cores. In: Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 445–456. ACM
(2013)

14. Rish, I., et al.: Adaptive diagnosis in distributed systems. IEEE Trans. Neural
Netw. 16(5), 1088–1109 (2005)

15. Sherwood, T., Perelman, E., Hamerly, G., Sair, S., Calder, B.: Discovering and
exploiting program phases. IEEE Micro 23(6), 84–93 (2003)

16. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot:
a java bytecode optimization framework. In: CASCON First Decade High Impact
Papers, pp. 214–224. IBM Corp. (2010)

How Low Can You Go?

Henry Dietz(B)

University of Kentucky, Lexington, KY 40506, USA
hankd@engr.uky.edu,

http://aggregate.org/hankd

Abstract. It could be said that much of the evolution of computers
has been the quest to make use of the exponentially-growing amount of
on-chip circuitry that Moore predicted in 1965 – a trend that many now
claim is coming to an end [1]. Whether that rate slows or not, it is no
longer the driver; there is already more circuitry than can be continu-
ously powered. The immediate future of parallel language and compiler
technology should be less about finding and using parallelism and more
about maximizing the return on investment of power.

Programming language constructs generally operate on data words,
and so does most compiler analysis and transformation. However, indi-
vidual word-level operations often harbor pointless, yet power hungry,
lower-level operations. This paper suggests that parallel compilers should
not only be identifying and manipulating massive parallelism, but that
the analysis and transformations should go all the way down to the bit
or gate level with the goal of maximizing parallel throughput per unit of
power consumed. Several different ways in which compiler analysis can
go lower than word-level are discussed.

Keywords: Precision · Accuracy · Bit-slice · Logic optimization

1 A Word About Words

Throughout the history of computers, programming systems have taken a mul-
titude of different approaches: procedural, declarative, functional, However,
in nearly all cases, typed data objects are treated as indivisible entities. A REAL
in Fortran is a thing; it may be operated upon, but whatever happens to it hap-
pens to it as a whole unit. In lower-level languages like C, machine words can
be dressed as abstract data types, but they retain all the properties of machine
words. This paper suggests it is time for compiler technology to start looking
inside basic word-level data and operations.

There are two different ways that sub-word analysis can be approached.
The following section discusses methods by which words may be segmented into
smaller words or fields to avoid processing meaningless bits. The section follow-
ing that describes full bit-level analysis and optimization to remove unnecessary
power use at the gate level.

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 101–108, 2019.
https://doi.org/10.1007/978-3-030-35225-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_8

102 H. Dietz

2 Not All the Bits, Not All the Time

In languages and compilers for parallel computing, the focus has largely been on
utilizing as much parallelism as the hardware provides, with the expectation that
the maximum speedup will be obtained. At Thinking Machines in the 1980s,
the mantra was “all the wires all the time” – and this notion of keeping all
the hardware busy all the time certainly predates the 1980s and has persisted.
However, it is now practical to have far more circuitry on a chip than can be
continuously powered. The implication is that languages and compilers must
become more careful about not wasting power on unnecessary computation.

Whenever a programmer writes code manipulating numeric data, they will
likely consider if the values are known to always be integers, and most often will
declare the variable as int if so, and double otherwise. Even the unsigned int
type is rarely used, which is strange given that array index values are normally
non-negative. Accepting these sloppy type declarations implies extra work – and
extra power consumption – for processing what are essentially useless bits.

2.1 Integer Range Analysis

In most modern programming languages, an integer is implemented by hardware
operating on a word with at least 32 bits. In code you have written, does each
integer really have values spanning the complete range of 32-bit integer values,
from –2,147,483,648 to 2,147,483,647? Of course not.

For example, if an integer int i; is used to index an array declared as double
a[1000];, it is fairly clear that i should be in the range 0..999. That range spans
fewer than 1024 values, which means it fits within 10 bits. So, what happens to
the other 22 bits of the 32-bit integer? The answer is everything – even though
the result is to store the same 22-bit zero value that was already there into i’s
top bits. If the 10-bit value was treated as a 16-bit value, instead of 32-bit, less
than half as much ALU and datapath circuitry would need to be active.

Originally, the C programming language did not specify how many bits were
used to represent an int – it merely stated that an int was “an integer, typically
reflecting the natural size of integers on the host machine” and listed as exam-
ples 16 bits for a DEC PDP-11, 36 bits for Honeywell 6000, and 32 bits for IBM
370 and Interdata 8/32 [2]. However, this made many programs non-portable
between machines. To improve portability, programmers used macros to define
portable names for declaring types of various common sizes, which eventually
led to standards like int32 t meaning a 32-bit integer in C++. Ironically, the
original C language includes a fully general syntax for specifying the exact num-
ber of bits in an integer, but the syntax was only allowed for fields of a struct.
For example, struct { int:5 a; unsigned:1 b; } ab; specifies that ab.a is
a 5-bit signed integer and ab.b is 1-bit unsigned integer.

Certainly, it makes sense for programming languages to allow specification
of the number of bits in each value. However, there is even ambiguity in such
a specification: does int:5 mean “5-bit integer” or “integer of at least 5 bits”?
As bitfield specifications, C treated the specification as the exact number of

How Low Can You Go? 103

bits rather than a minimum, but arguably it would often be useful, for exam-
ple, to store a 5-bit integer in an 8-bit byte to meet memory access alignment
constraints.

From a compilation point of view, the key is not just tracking the size
of data objects, but using analysis to determine the set of active bits. Thus,
the loop index variable declared as int i; could be automatically transformed
by compiler analysis into something like unsigned i:10;. The necessary com-
piler value range analysis has long been known and used to perform loop
unrolling/unraveling, improve efficiency of array bounds checking, and support
dependence analysis... and it was used to infer types of variables as early as
the mid-1960s [3]! The suggestion of the current work is simply that this type
of analysis of value range be used both to adjust the declared size and type
(e.g., signed vs. unsigned), and also to restrict operations to cover the active
bits within that value’s storage representation. Reusing the loop index example,
even if i is stored as int i:32;, it is perfectly valid to operate only on the
bottom 16 (or 10) bits in code where the top bits are known to be unaffected.

2.2 Floating-Point Accuracy, Not Precision

While tracking the size of integers is straightforward, the logically equivalent
analysis for floating-point values is significantly more complex.

Operations on floating-point representations are inherently imprecise. The
whole concept of floating-point is based on using an approximate representation
of values to allow greater dynamic range with fewer bits. New hardware supports
several floating-point precisions with huge performance benefits in use of lower
precisions while remaining in the same power budget. Peak performance of the
AMD RADEON INSTINCT MI25 GPU [4] is 768 GFLOPS 64-bit, 12.3 TFLOPS
32-bit, and 24.6 TFLOPS 16-bit – a factor of 32X faster using the lowest precision
instead of 64-bit double.

According to IEEE 754 [5], the larger exponent field of 64-bit double gives it
greater dynamic range than a 32-bit float, but lack of dynamic range is rarely
why double is specified. The 24-bit mantissa of a float is accurate enough to
express nearly any physical measurement for input or output. However, it is diffi-
cult to analyze the accuracy resulting from errors compounded while performing
an arbitrary computation; the 53-bit mantissa of a double is treated as having
so many guard bits that the programmer is comfortable accepting the results
as accurate. This is a false security; not only is efficiency sacrificed, but when
float is insufficient, double often also fails to deliver accurate results [6].

Rather than requiring the programmer to specify the precision, perhaps
needed accuracy should be specified, and the compiler tasked with picking the
appropriate precision. Unfortunately, compile-time analysis of accuracy bounds
is inherently conservative, disturbingly often revealing that even double arith-
metic is insufficient to guarantee an acceptably accurate result for worst-case
input data, although lower precisions might suffice for every dataset actually
used. Most programming languages also lack syntax for specifying accuracy.
Both these problems can be resolved by adding a language construct (or pragma)

104 H. Dietz

that allows a user-specified accuracy acceptance test [6], which can be used to
speculatively perform each computation at the minimum feasible precision, auto-
matically repeating the computation at higher precision if necessary.

There is yet another advantage to specifying accuracy rather than precision
for floating-point values: the values do not need to be represented using floating-
point at all! For example, it may be advantageous to use LNS (logarithmic num-
ber system) [7] or to map the computation into scaled integer arithmetic. IEEE
floating-point formats are primarily portable data exchange representations.

2.3 Smaller Data Fits

A consequence of the transformations discussed above for both integer and
floating-point data is that lower precision values can fit in a smaller memory
footprint. That principle holds true whether the memory is DRAM used for
main memory or SRAM registers in a processing element. Reducing memory
footprint reduces power by implying transmission of fewer bits, and can result
in far greater power savings if the smaller data can more often reside in a higher
level of the memory hierarchy.

Originally, the concept of SWAR (SIMD within a register) [8] was primarily
to obtain modest speedups by packing a vector of smaller data objects into each
register and performing SIMD-parallel operations on the packed data. Nearly
all processors provide support for such packing, most in the form of SWAR
instructions as seen in Intel AVX [9] or ARM NEON [10], but also in the form
of “Advanced Vector Extensions” in RISC-V [11]. Operations on packed data
significantly reduce power consumption while facilitating parallel execution.

For non-SIMD non-vector code, this packing requires compiler tracking of
the occupancy of portions of registers, not just complete registers. A 64-bit
register might hold four 16-bit values, and the lifetimes of those values may be
different; thus, it is possible that a fraction of the register might be free for reuse
while other parts are occupied by live values. Early work attempting to create
SWAR register packings was called common subexpression induction [12], and
the tracking of partial liveness was mentioned, but the analysis was never fully
developed. Perhaps it is now time? There is no need to restrict layout analysis
to registers; similar benefits can be obtained packing cache lines.

3 From Bits to Words, and Back Again

In 1958, the vacuum-tube-based EDSAC 2 computer [13] used the innova-
tive trick of bit-slicing: implementing word-level instructions by executing
microcoded sequences of operations on a smaller number of bits at a time. This
approach was very widely adopted throughout the 1970s; for example, the AMD
Am2900-series bipolar logic chips [14] provided 4-bit slice components that were
used in a wide variety of computers including various DEC PDP-11 models and
the UCSD Pascal P-machine processor. Use of bit-slicing greatly simplified the
hardware, lowering cost at the expense of serial execution speed. By the 1980s,

How Low Can You Go? 105

circuitry was cheap enough for most computers to operate on full words at a
time, with word size slowly increasing from 8, to 16, to 32, and finally to 64 bits.

Massively-parallel computers have largely followed the same pattern. Fewer
gates per processing element meant more parallelism, hence greater speedup, so
many parallel supercomputers reduced circuitry per processing element by slic-
ing. The ICL Distributed Array Processor (DAP) [15], STARAN [16], Goodyear
Massively Parallel Processor (MPP) [17], Thinking Machines CM and CM2 [18],
and NCR GAPP [19] sliced at the single-bit level; the somewhat-later MasPar
MP-1 [20] was built using 4-bit slices. As 32-bit microprocessors became cost
effective, and especially with the birth of Linux PC cluster supercomputing in
1994, massively-parallel computers began to migrate to processing elements that
operate on a word at a time. Now, even GPUs with thousands of processing ele-
ments on a single chip operate on at least 32-bit words.

The point is that word-parallel hardware was about speeding up serial oper-
ations on word data at the cost of higher circuit complexity per unit perfor-
mance. For example, a 32-bit adder needs additional logic (e.g., implementing
carry lookahead) to perform one 32-bit add as fast as 32 one-bit adders can each
perform 1/32 of a 32-bit add. This difference has become critical in the power-
limited world. As a result, I believe we are now in the early days of a rebirth in
bit-level massively-parallel processing. This brings at least two new challenges
for optimizing, parallelizing, compiler technology.

3.1 True Bit-Level Optimization

Mapping of word-level algorithms into optimized bit-level implementations must
be addressed. Earlier bit-sliced systems generally did not do this; they would use
a generic microcode subroutine to handle each word-level operator rather than
optimizing at the bit level. An early example of true bit-level optimization is
the BitC language and compiler [21]. For example, BitC generates 3,040 gate
operations for an 8-bit multiply, but just 64 for 8-bit squaring.

The new bit-level targets are not just conventional gates, but include FPGAs
and reconfigurable logic, adiabatic circuits, quantum logic, etc. For example,
TrueNorth [22] is fundamentally a massively parallel bit-serial machine with a
somewhat unusual gate structure; although there is some compiler infrastruc-
ture for mapping neural networks to it, there is no fundamental reason why
parallel algorithms in general could not be transformed to target it (in fact,
watching the TrueNorth videos, I have flashbacks of Danny Hillis talking about
the interconnections between processors in the connection machine [18]).

3.2 Whole Program Scale Gate Optimization

Thus far, very little optimizing compiler work has attacked the problem of opti-
mizing programs at what might be called the circuit model level. There are lots of
gate-level circuit optimization tools, especially for SOP (sum of products) form
using AND, OR, and NOT gates with arbitrary many inputs (e.g., Espresso [23]),
but these tools are ill-suited to processing logic representing complete programs.

106 H. Dietz

Optimizing more realistic hardware designs also using XOR gates, or using only
a single, fixed number of inputs, universal gate such as NAND, NOR, or MUX
(1-of-2 multiplexor), is also an unsolved problem. Genetic algorithms and other
machine learning techniques can help.

Fig. 1. MUX and CSWAP (Fredkin) gates and logic functions

In addition, a variety of new types of gates have been created for adiabatic
and quantum computation. One of the more promising is the Fredkin, or CSWAP
(conditional swap), gate. As Fig. 1 shows, CSWAP is essentially a MUX with an
extra output, so it is obviously universal, but has the interesting property that
the number of 1 bits entering and leaving is preserved, making it particularly
suitable for adiabatic (thermodynamically reversible, very low power) implemen-
tation. A quantum CSWAP implementation was reported last year [24]. Thus,
converting programs into CSWAP logic could be a path to very low power con-
sumption and high performance. A key complication is that CSWAP gates do
not allow fanout; minimizing the number of ancilla “garbage” wires added to
copy signals while conserving the number of 1s is a non-trivial design problem.

4 Conclusion

Parallel languages and compilers had mostly been about the large. This paper
suggests it is time to be looking at very large numbers of very small, low-level,
details – many intricately intertwining compiler technology and architecture.

We have been slowly moving in the directions discussed in this paper for over
two decades [6,12,21]. Earlier this year, we made a significant advance toward
targeting various bit-level architectures, especially those involving adiabatic or
quantum logic: a compiler that converts a program written in a subset of C
directly into a full custom gate-level hardware design [25]. This compiler first
performs conventional analysis and various optimizations, then inserts explicit
manipulation of a state variable to implement control flow. Each word-level
value is then decomposed into a vector of bit-level operation DAGs computing
the individual bits, and the bit-level code for all basic blocks in the program
is optimized as a single combinatorial logic circuit. The resulting circuit can be
output in any of a variety of forms, including as a combinatorial Verilog module
that implements the C code when fed a series of clock pulses. Of course, this
compiler is just a crude proof of concept; there is still a long way to go.

How Low Can You Go? 107

References

1. Fletcher, S.: Computing after Moore’s Law. Scientific American, 1 May 2015.
https://www.scientificamerican.com/article/moores-law-computing-after-moores-
law/

2. Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Prentice Hall,
Upper Saddle River (1978). ISBN 0-13-110163-3

3. Klerer, M., May, J.: Two-dimensional programming. In: Proceedings of the 30
November–1 December 1965, Fall Joint Computer Conference, Part I, pp. 63–75
(1965)

4. AMD: Radeon Instinct MI25. http://instinct.radeon.com/ downloads/radeon-
instinct-mi25-datasheet-15.6.17.pdf. Accessed July 2017

5. IEEE: IEEE Standard for Binary Floating Point Arithmetic Std 754–1985 (1985)
6. Dietz, H., Dieter, B., Fisher, R., Chang, K.: Floating-point computation with just

enough accuracy. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Don-
garra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 226–233. Springer, Heidelberg
(2006). https://doi.org/10.1007/11758501 34

7. Chugh, M., Parhami, B.: Logarithmic arithmetic as an alternative to floating-point:
a review. In: 2013 Asilomar Conference on Signals, Systems and Computers, pp.
1139–1143 (2013)

8. Fisher, R.J., Dietz, H.G.: Compiling for SIMD within a register. In: Chatterjee,
S., Prins, J.F., Carter, L., Ferrante, J., Li, Z., Sehr, D., Yew, P.-C. (eds.) LCPC
1998. LNCS, vol. 1656, pp. 290–305. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48319-5 19. ISBN 978-3-540-48319-9

9. Lento, G.: Optimizing Performance with Intel Advanced Vector Extensions. Intel
White Paper, September 2014

10. ARM: NEON. https://developer.arm.com/technologies/neon. Accessed July 2017
11. Waterman, A., Asanovic, K. (eds.): The RISC-V instruction set manual, volume

1: user-level ISA, Document Version 2.2. RISC-V Foundation, May 2017
12. Dietz, H.: Common subexpression induction. Technical report, TR-EE 92–5. School

of Electrical Engineering, Purdue University, January 1992
13. Wilkes, M.V.: EDSAC 2. IEEE Ann. Hist. Comput. 14(4), 49–56 (1992). ISSN

1058-6180
14. Advanced Micro Devices: The Am 2900 Family Data Book With Related Support

Circuits. Advanced Micro Devices (1979)
15. Reddaway, S.F.: DAP - a distributed array processor. In: Proceedings of the 1st

Annual Symposium on Computer Architecture, pp. 61–65, ACM Press (1973)
16. Batcher, K.E.: STARAN parallel processor system hardware. In: National Com-

puter Conference, pp. 405–410 (1974)
17. Batcher, K.: Design of a massively parallel processor. IEEE Trans. Comput. C–

29(9), 836–840 (1980)
18. Tucker, L.W., Robertson, G.G.: Architecture and applications of the connection

machine. IEEE Comput. 21(8), 26–38 (1988)
19. Morely, R.E., Sullivan, T.J.: A massively parallel systolic array processor system.

In: Proceedings of the International Conference on Systolic Arrays, pp. 217–225
(1988)

20. Blank, T.: The MasPar MP-1 architecture. In: Thirty-Fifth IEEE Computer Soci-
ety International Conference, Compcon, pp. 20–24 (1990)

https://www.scientificamerican.com/article/moores-law-computing-after-moores-law/
https://www.scientificamerican.com/article/moores-law-computing-after-moores-law/
http://instinct.radeon.com/_downloads/radeon-instinct-mi25-datasheet-15.6.17.pdf
http://instinct.radeon.com/_downloads/radeon-instinct-mi25-datasheet-15.6.17.pdf
https://doi.org/10.1007/11758501_34
https://doi.org/10.1007/3-540-48319-5_19
https://doi.org/10.1007/3-540-48319-5_19
https://developer.arm.com/technologies/neon

108 H. Dietz

21. Dietz, H.G., Arcot, S.D., Gorantla, S.: Much ado about almost nothing: com-
pilation for nanocontrollers. In: Rauchwerger, L. (ed.) LCPC 2003. LNCS, vol.
2958, pp. 466–480. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24644-2 30

22. Sawada, J., et al.: TrueNorth ecosystem for brain-inspired computing: scalable sys-
tems, software, and applications. In: IEEE/ACM SC16: International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 130–141
(2016)

23. Brayton, R.K., Sangiovanni-Vincentelli, A.L., McMullen, C.T., Hachtel, G.D.:
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,
Dordrecht (1984). ISBN 0898381649

24. Patel, R.B., Ho, J., Ferreyrol, F., Ralph, T.C., Pryde, G.J.: A quantum Fredkin
gate. Sci. Adv. 2(3) (2016)

25. Dietz, H.G.: Spring 2017 EE599-006/EE699-007 optimizing compilers, “hardly soft-
ware” class project. Electrical and Computer Engineering Department, University
of Kentucky, 5 May 2017

https://doi.org/10.1007/978-3-540-24644-2_30
https://doi.org/10.1007/978-3-540-24644-2_30

Memory-Access-Pattern Analysis
Techniques for OpenCL Kernels

Gangwon Jo(B), Jaehoon Jung, Jiyoung Park, and Jaejin Lee

Center for Manycore Programming, Department of Computer Science
and Engineering, Seoul National University, Seoul 08826, Korea

{gangwon,jaehoon,jiyoung}@aces.snu.ac.kr, jaejin@snu.ac.kr,

http://aces.snu.ac.kr

Abstract. Previous pattern-by-pattern approaches for OpenCL/CUDA
memory optimization require explicit user interventions to extract the
kernel memory access patterns. This paper presents an automatic
memory-access-pattern analysis framework called MAPA. It is based
on a source-level analysis technique derived from traditional symbolic
analyses and a run-time pattern selection technique. We propose formal
notations of the memory access patterns, analysis algorithms based on
the SSA form, and the integration method of MAPA with auto-tuners.
The experimental results indicate that MAPA properly analyzes 116
real-world OpenCL kernels from Rodinia and Parboil benchmark suites.
We also show an auto-tuner case study, Auto-Dymaxion, which exploits
MAPA to automate a memory-access-pattern-based optimization app-
roach.

1 Introduction

Despite of a great success of heterogeneous computing in the last decade [6,10,
11,17,20,26], efficiently exploiting accelerators remains a difficult, tedious, and
error-prone task. A näıve OpenCL or CUDA program usually fails to achieve
expected performance gain compared to the original sequential program even
though the theoretical performance of an accelerator (e.g., a GPU) is better
than that of a CPU. One of the main reasons for not achieving the gain is the
access overhead of off-chip memory that is shared by thousands of threads. To
overcome this problem, the programmer has to apply well-known manual opti-
mization techniques [1,18,23] by exploiting memory coalescing, vectorization,
on-chip SRAM, and texture units of GPUs on a case-by-case basis.

This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Ministry of Science and ICT (MSIT) (No. 2013R1A3A2003664), PF Class
Heterogeneous High Performance Computer Development through the NRF funded by
the MSIT (No. 2016M3C4A7952587), and BK21 Plus for Pioneers in Innovative Com-
puting (Dept. of Computer Science and Engineering, SNU) through the NRF funded
by the Ministry of Education (21A20151113068). ICT at Seoul National University
provided research facilities for this study.

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 109–126, 2019.
https://doi.org/10.1007/978-3-030-35225-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_9

110 G. Jo et al.

1.1 Problems of Previous Approaches

There have been many proposals that use compiler and runtime techniques to
overcome aforementioned problems. Particularly, some of them rely on memory
access patterns of GPU kernels [4,8,25]. They decide which specific optimization
technique (e.g., code transformation and data movement) needs to be applied
to a kernel by observing its memory access patterns on a case-by-case basis.
Since most of memory accesses made in a typical GPU kernel have simple and
regular patterns such as affine accesses and scatter/gather, such pattern-by-
pattern approaches are adequate for GPU applications and may outperform a
single, generic technique. Here are some examples:

– Data reordering. Dymaxion [8] reorganizes the layout of data stored in the
off-chip memory to coalesce memory accesses. It classifies non-coalesced mem-
ory accesses into four patterns (row2col, diagonal, indirect, and arrstruct) and
applies a different transformation to each of the patterns.

– Data prefetching. CudaDMA [3,4] reduces the memory access latency of a
kernel by prefetching data from the off-chip memory to the on-chip SRAM.
It supports three prefetching algorithms associated with sequential, strided,
and indirect memory access patterns [3].

– Workload and data distribution. MAPS-Multi [25] automatically distributes
the workload and data assigned to a single virtual GPU across multiple actual
GPUs based on memory access patterns of kernels (eight patterns for input
data and five patterns for output data).

However, all these techniques cannot automatically detect the memory access
patterns. No prior studies address this issue seriously because no (open-source)
automatic framework for OpenCL/CUDA applications has been proposed so far.
Instead, developers are forced to explicitly annotate the memory access patterns
in their code using language extensions and/or API functions. Consequently,
many existing applications written in pure OpenCL or CUDA cannot benefit
from the existing pattern-by-pattern approaches.

1.2 Proposed Techniques

The goal of this paper is to bridge the missing link between the previous pattern-
by-pattern techniques and real-world OpenCL applications, and to encourage
many future studies to adopt pattern-by-pattern-based methods.

We present a framework called MAPA that automatically determines and
extracts memory access patterns of a kernel. MAPA is based on an observation
that the architecture of widely used accelerators and programming model lead
kernels to have characteristics that are beneficial to automating memory-access-
pattern analyses. It relies on both a source-level compiler analysis technique
derived from traditional symbolic analyses for parallelizing compilers [13,27]
and run-time information (e.g., kernel arguments). The current implementation
of MAPA only supports OpenCL, but it can be easily extended to support CUDA
and other heterogeneous programming models.

Memory-Access-Pattern Analysis Techniques for OpenCL Kernels 111

Fig. 1. An example of the memory access pattern analysis by MAPA.

Figure 1 shows a brief outline of how an OpenCL kernel is analyzed by MAPA
and what its output is. Note that all notations in Fig. 1 will be explained in
detail in Sect. 3. The kernel shown in Fig. 1(a) is from the kmeans in the Rodinia
benchmark suite [7]. The kernel accesses three OpenCL buffers (i.e., memory
objects such as arrays), feature, clusters, and membership. The MAPA’s
source-level analyzer first identifies all memory accesses in the kernel. There
are four reads and one write in Fig. 1(a). It converts the address of each access
into a canonical symbolic expression as shown in Fig. 1(b). Then, it aggregates all
addresses that belong to the same buffer together. For example, two reads 1© and
3© belong to feature in Fig. 1(a), and their addresses in Fig. 1(b) are aggregated
together in Fig. 1(c) under feature. Using this information, it determines the
access pattern of each buffer. The memory access patterns extracted by the
source-level analyzer is shown in Fig. 1(c).

When a read or write address is calculated from parameters of a kernel,
the access pattern of the kernel may vary depending on the actual arguments
given at run time. In this case, the MAPA’s source-level analyzer generates all
possible candidates for the access pattern (e.g., feature in Fig. 1(c)). Then, the
MAPA’s pattern selector chooses one of the candidates immediately after the

112 G. Jo et al.

kernel arguments are set at run time, as shown in Fig. 1(d). This mechanism
can be combined with a memory-access-pattern-based optimizer. For example,
a kernel compiler may generate multiple optimized versions of the kernel, one
for each access pattern candidate. Then, the runtime system can select a proper
version at run time and execute it on the accelerator.

Optimizing compilers for CPU applications usually adopt the polyhedral
model [5,12,19] to represent array references within a loop in a mathematical
form (i.e., access relations). The polyhedral model formulates data dependences
in a loop, and its scope is restricted to affine array references. On the other
hand, since GPUs rely on a relaxed memory consistency model, the pattern-
by-pattern approaches for GPU applications do not concern about data depen-
dences between threads inside a GPU kernel. Instead, they target a wider range
of memory access patterns (e.g., gather and scatter A[B[i]]).

Some prior studies [14,16,21] assume OpenCL/CUDA kernels contain only
affine access patterns. This assumption is not true for many real-world bench-
mark applications, and MAPA may help these approaches to distinguish affine
memory accesses from the others.

The major contributions of the paper are the following:

– We introduce an automatic memory-access-pattern analysis framework, called
MAPA. It relies on two new ideas – a simple SSA-form-based analysis tech-
nique derived from traditional symbolic analyses and a run-time pattern selec-
tion technique.

– We propose formal internal representations of memory access patterns of
OpenCL kernels. Previous approaches describe the target memory access pat-
terns in an informal, verbose way.

– We evaluate the effectiveness of MAPA with a set of applications from
Rodinia [7] and Parboil [24] benchmark suites. About 60% of the buffers
are properly analyzed by MAPA. The result is wide enough to replace pre-
vious manual approaches because the 60% cover most of the memory access
patterns used in the previous approaches. We also discuss how to improve
MAPA to handle the remaining 40%.

– As a case study, we implement a MAPA-based auto-tuner called Auto-
Dymaxion. It automates the data reordering techniques of Dymaxion [8].

2 Background and Observations

In this section, we briefly describe OpenCL and discuss some OpenCL kernel
characteristics that are beneficial to automatic symbolic analyses.

2.1 OpenCL Platform and Execution Model

An OpenCL application consists of a host program and a set of kernels. A host
program is written in a typical high-level programming language, such as C and
C++. Kernels are written in OpenCL C derived from C99 with some extensions

Memory-Access-Pattern Analysis Techniques for OpenCL Kernels 113

and restrictions. The host program runs on a CPU and issues a kernel execution
command to an OpenCL device (e.g., a GPU or an Intel Xeon Phi coprocessor).
Then, many instances of the kernel execute on the device. An instance of the
kernel execution is called a work-item.

The CPU and OpenCL device do not share an address space. Instead, an
OpenCL device has its own device memory. The host program allocates a buffer
in the device memory, and issues a memory command to the device to copy data
between the main memory and a buffer. A buffer is a contiguous chunk of the
device memory.

When the host program issues a kernel execution command, pointers to
buffers and scalar values can be passed as arguments to the kernel. For exam-
ple, the kernel in Fig. 1(a) receives three buffer pointers and five scalar values
from the host program. All kernel instances have the same argument values. The
address of a buffer in the device memory is managed by the OpenCL runtime
and is not exposed to the host program. The host program obtains only a handle
to the buffer object from the runtime.

The host program defines an N -dimensional index space (1 ≤ N ≤ 3) to
specify how many work-items are created. Work-items are organized into work-
groups. Each work-group in the index space is assigned to a compute unit (a
streaming multiprocessor in CUDA), and work-items in the work-group are exe-
cuted concurrently on processing elements (a scalar processor in CUDA) in the
compute unit.

Each work-item has a unique global ID that is the index of the corresponding
point in the index space and represented by an N -tuple with each dimension
starting from 0. Similarly, each work-group has a unique work-group ID, and
each work-item has a unique local ID within a work-group. Although all work-
items execute the same kernel code, they can access different data and perform
different tasks depending on their global ID, local ID, and work-group ID.

Let Gi be the size of the index space in dimension i (0 ≤ i < 3). We treat all
index spaces as if they were three-dimensional. When the space is one dimen-
sional, the sizes in dimension 1 and 2 are ones. Similarly, when the space is two
dimensional, the size in dimension 2 is one. The same thing applies to work-
groups. Then, the total number of work-items in the index space is

∏2
i=0 Gi.

Similarly, let Li and Wi be the size of a work-group (i.e., the number of work-
items) and the number of work-groups in dimension i, respectively. Then,

Gi = Li × Wi (1)

Let the global ID, the local ID, and the corresponding work-group ID of a
work-item be (g0, g1, g2), (l0, l1, l2), and (w0, w1, w2), respectively. Then,

gi = Li × wi + li (2)

2.2 Observations

MAPA is based on the observation that the OpenCL platform model and
the architecture of widely used accelerators (especially GPUs) lead OpenCL

114 G. Jo et al.

kernels to have some beneficial characteristics that make memory-access-pattern
analyses much easier and more practical.

Specifically, an OpenCL device has a separated memory address space. The
host program does not know the layout of the device memory. Thus, all values in
a buffer stored by the host program can never be pointers to the device memory.
The only pointers passed to a kernel are buffer pointers in the parameters. Buffer
handles passed by the host to the kernel become buffer pointers at run time.

Moreover, programmers usually try to minimize the number of branches in
an OpenCL kernel because branch divergence may significantly degrade the per-
formance on GPUs. It is also very rare that a pointer points to different buffers
depending on the control flow. Thus, it is not unnatural to assume that each
pointer points to at most one buffer. Consequently, a conservative simple control-
flow-insensitive analysis technique works well with OpenCL kernels rather than
sophisticated but complicated analysis techniques [22].

MAPA’s buffer-by-buffer analysis technique is facilitated by the fact that
an OpenCL buffer typically contains a single data structure (e.g., a matrix),
and memory access patterns largely depend on data structures used. Finally,
OpenCL does not allow using function pointers in kernels. Thus, MAPA can
always determine the target of each function call.

3 Notations for Memory Access Patterns

In this section, we describe the categories of memory access patterns handled by
MAPA and their notations.

3.1 Categories of Memory Access Patterns

We classify access patterns of an OpenCL buffer, say MA, into ten categories
that are listed below in the preferred order. That is, if more than one of the
categories are matched, MAPA chooses the one that appears first in the list. We
say a memory location is affine in variables if the location is determined by an
affine function of the variables.

– 〈constant〉: All work-items in the index space access the same element(s) of MA.
– 〈affine in IDs〉: Every work-item accesses exactly one element of MA poten-

tially more than once. The location is affine in local IDs and/or work-group IDs.
– 〈affine in IDs and iteration counts〉: Each loop iteration of a work-item

accesses exactly one elements of MA. The location is affine in local IDs, work-
group IDs, and/or iteration counts.

– 〈set of offsets + affine in IDs〉: Each work-item accesses multiple elements
of MA. However, all of the elements have the same base address, and only constant
offsets differ (e.g., A[i], A[i+1], and A[i+2]). The base address is affine in local
IDs and/or work-group IDs.

– 〈set of offsets + affine in IDs and iteration counts〉: Each loop itera-
tion of a work-item accesses multiple elements of MA. The elements have the same
base address and different constant offsets. The base address is affine in local IDs,
work-group IDs, and/or iteration counts.

Memory-Access-Pattern Analysis Techniques for OpenCL Kernels 115

– 〈indirect , affine in IDs〉: Each work-item accesses exactly one element of MA

using an element of another read-only buffer MB as the index (e.g., A[B[...]]).
The location of the index is affine in local IDs and/or work-group IDs. This pattern
corresponds to the access pattern of scatter or gather operations.

– 〈indirect, affine in IDs and iteration counts〉: Each loop iteration of a
work-item accesses exactly one element of MA using an element of another read-
only buffer MB as the index. The location of the index is affine in local IDs,
work-group IDs, and/or iteration counts.

– 〈contiguous in a work -item〉: Every work-item accesses all elements in a con-
tiguous region of MA. However, the exact location of the region is not analyzable.
This pattern is frequently used in important applications, such as graph traversals
and sparse matrix operations.

– 〈indirect, contiguous in a work -item〉: Every work-item accesses elements
of MA using all elements in a contiguous region of another read-only buffer MB as
the indices. The exact locations of the indices are not analyzable.

– 〈complex 〉: The access pattern of MA does not match any of the above categories.

Table 1. Pattern categories of MAPA and previous manual approaches.

MAPA Dymaxion [8] CudaDMA [4] MAPS-Multi [25]

〈constant〉 reductive

〈affine in IDs〉 row2col,
diagonal

block, reductive,
structured
injective

〈affine in IDs and iter.〉 row2col sequential,
strided

block

〈set of offsets + affine in IDs〉 arrstruct,
diagonal

window,
structured
injective

〈set of offsets + affine in IDs and iter.〉 arrstruct sequential,
strided

window

〈indirect, affine in IDs〉 indirect

〈indirect, affine in IDs and iter.〉 indirect indirect

〈contiguous in a work-item〉 adjacency

〈indirect, contiguous in a work-item〉 adjacency

〈complex〉 traversal,
permutation,
unstructured
injective,
irregular

Table 1 compares the categories automatically analyzable by MAPA and
those manually analyzed by previous approaches. Three access patterns of
MAPS-Multi [25] (i.e., traversal, permutation, and unstructured injective) are
not analyzable by MAPA. However, these patterns are used in only a limited
number of applications (e.g., FFT).

116 G. Jo et al.

3.2 Normal Form of Affine Functions

Six of the ten categories are related to affine functions. They contain a variety
of sub-patterns depending on the value of coefficients in its associated affine
function. To denote a memory access pattern more precisely, we make a category
name followed by a notation for the associated affine function. This notation is
called a normal form of the affine function. It emphasizes features of the affine
function on which the memory-access-pattern-based techniques usually focus.

Consider an affine function f(x1, x2, · · · , xk) = a1x1 +a2x2 + · · ·+akxk + c
that represents a memory access location within a buffer, where ai �= 0 and
0 ≤ xi < Ni for all 1 ≤ i ≤ k. Ni indicates the constant upper bound of variable
xi. For example, if xi indicates the local ID of work-items in dimension 0 (i.e., l0),
Ni becomes L0. L0 denotes the size of a work-group in dimension 0, as described
in Sect. 2.1. If xi indicates the loop iteration count i in for(i=0;i<100;i++),
then Ni becomes 100. Without loss of generality, we assume |ai| ≤ |ai+1| for all
1 ≤ i ≤ k − 1. We introduce two arbitrary values a0 and N0 in the following
definitions. a0 is 1, and N0 is the width of the memory access (e.g., 4 for int).

Definition 1. An affine function is discrete if |ai−1 × Ni−1| ≤ |ai| for all 1 ≤
i ≤ k.

A discrete affine function is always injective. That is, a different point
(x1, x2, · · · , xk) corresponds to a different memory location. However, the
inverse is not true.

Definition 2. A variable xi of a discrete affine function is contiguous if |ai−1 ×
Ni−1| = |ai|. Otherwise, xi is strided by ai.

If xi is contiguous, the difference between f(· · · , pi, pi+1, · · ·) and
f(· · · , pi+1, pi+1, · · ·) is equal to the difference between f(· · · , Ni−1, pi+1, · · ·)
and f(· · · , 0, pi+1, · · ·) (assume ai > 0). Otherwise, the latter is larger than the
former.

Definition 3. The normal form of a discrete affine function f(x1, x2, · · · , xk)
is a sequence t1 − t2 − · · · − tk − c, where ti is cont(xi) if xi is contiguous, or
strided(xi, ai) if xi is strided by ai. The normal form of a non-discrete affine
function f(x1, x2, · · · , xk) is f itself.

For example, consider a memory access buf[l0 + L0w0 + (2L0W0)w1 + 1].
Assume buf is an array of single-precision floating point numbers (i.e., 4-byte
elements). The memory location of the access is given by an affine function:

f(l0, w0, w1) = 4 · l0 + (4L0) · w0 + (8L0W0) · w1 + 4 (3)

This function takes three variables, l0, w0, and w1. The constant upper bounds
of the variables, N1, N2, and N3, are L0, W0, and W1, respectively. Moreover,
a0 = 1 and N0 = 4 as mentioned above. The following is true:

|a0 × N0| = |1 × 4| = |a1| (4)

Memory-Access-Pattern Analysis Techniques for OpenCL Kernels 117

|a1 × N1| = |4 × L0| = |a2| (5)

|a2 × N2| = |4L0 × W0| < |8L0W0| = |a3| (6)

Thus, this function is discrete, and l0 and w0 are contiguous (Eqs. (4) and (5))
while w1 is strided by 8L0W0 (Eq. (6)). Consequently, f can be represented by
the following normal form:

cont(l0) − cont(w0) − strided(w1, 8L0W0) − 4 (7)

Table 2. Symbolic variables used in the analysis.

Variables Description

l0, l1, l2 The local ID of a work-item

w0, w1, w2 The work-group ID of a work-item

L0, L1, L2 The size of a work-group in each dimension

W0, W1, W2 The number of work-groups in each dimension

bufx The kernel parameter x that stores a buffer pointer

paramx The kernel parameter x that stores a scalar value

ind(f, s) An induction variable that has the initial value 0, finishes
with the value f , and increased by s

4 Memory Access Pattern Analysis

MAPA extracts the address of each buffer access (e.g., Fig. 1(b)), and determines
its memory access pattern (e.g., Fig. 1(c)). If the access pattern varies according
to the values passed by the host program at run time, MAPA generates all
possible pattern candidates, each of which is annotated by a condition to choose
the actual pattern at run time.

4.1 Internal Representation

MAPA uses the static single assignment (SSA) form [9] as its internal represen-
tation for kernels at the source level. Each scalar variable and structure field is
replaced with an SSA variable unless its address is ever taken. In addition, each
induction variable is replaced with a µ-function [2] (i.e., a combination of an
initial value, a loop bound, and an increment). All user-defined function calls in
a kernel are inlined to make interprocedural analyses unnecessary.

4.2 Symbolic Analysis

MAPA performs a symbolic analysis to identify memory access patterns of each
buffer. The symbolic analysis consists of two steps. First, it represents the value
of each SSA variable in a symbolic expression. Then, it determines the address
of each buffer access in a symbolic expression.

118 G. Jo et al.

expr canonical-expr | ⊥
canonical-expr buffer-address | affine-expr

buffer-address bufx + affine-expr | bufx + ⊥
affine-expr affine-term + · · · + affine-term

affine-term invariant × variant | invariant

invariant constant | paramx | Li | Wi | invariant op invariant

variant li | wi | ind(canonical-expr , invariant) | ∗(buffer-address , type)

Fig. 2. Definition of canonical symbolic expressions.

Input: V : a set of SSA variables, P : a set of kernel parameters.
Output: A: a set of buffer accesses.
1: M ∅
2: for all xi ∈ V do
3: M [xi] �
4: end for
5: for all p ∈ P do
6: if p is a buffer pointer then
7: M [p1] bufp + 0
8: else
9: M [p1] paramp

10: end if
11: end for
12: for all definitions xi = E for xi ∈ V , in program order do
13: M [xi] Canonicalize(Substitute(E, M))
14: end for
15:
16: A ∅
17: for all buffer accesses E that is one of x[y], ∗x, or x->f do
18: addr Canonicalize(Substitute(&E, M))
19: width sizeof(E)
20: rw one of read, write, or read+write
21: A A ∪ {(addr, width, rw)}
22: end for
23: return A

Fig. 3. The symbolic analysis algorithm.

A symbolic expression contains only variables listed in Table 2. Each symbolic
variable represents a value that is determined at run time, either before or during
the kernel execution. Since the work-item IDs, the size of a work-group, the
number of work-groups, and the values of kernel arguments are not available at
compile time, we treat them as symbolic variables. Note that the global ID of a
work-item (gi) and the size of the entire kernel index space (Gi) are not included
in Table 2 because they can be represented with li, wi, Li, and Wi. In addition,
an induction variable is also treated as a symbolic variable.

Since our goal is to discover regular buffer access patterns, we do not need to
take all complicated symbolic expressions into account. Instead, we consider only
canonical symbolic expressions defined in Fig. 2. If a value cannot be represented
in the canonical form, it is just represented by ⊥. ⊥ means that the value is too
complex to be analyzed by MAPA. In Fig. 2, [[invariant]] is an expression whose
value is the same in all work-items in the index space. [[variant]] is an expres-
sion whose value can be different across work-items (e.g., li and wi) or across

Memory-Access-Pattern Analysis Techniques for OpenCL Kernels 119

loop iterations within a single work-item (e.g., ind(· · ·)). ind(f, i) represents
an induction variable whose final value is f and increment is i. The canonical
form only contains induction variables whose final value is [[canonical-expr]] and
increment is [[invariant]]. All other induction variables are just ignored. ∗(a, t)
corresponds to a buffer element (i.e., a value read from the device memory)
whose address is a and data type is t.

The symbolic analysis algorithm implemented in MAPA is shown in Fig. 3.
An associative array M maps each SSA variable xi to its value M [xi]. � indicates
that the value of the variable is not yet analyzed.

The Substitute(E, M) function replaces all operands in E by their values
represented in the canonical form. Every SSA variable xi is substituted by M [xi],
and every non-SSA variable (e.g., a variable whose address is ever taken) is
substituted by ⊥. If some of the SSA variables have not been analyzed yet (i.e.,
M [xi] is �), they are also substituted by ⊥.

The Canonicalize(E) function transforms E to a canonical symbolic expres-
sion or ⊥. It traverses the abstract syntax tree of E from the leafs to the root.
For each node, the corresponding canonical expression is constructed by merging
the canonical expressions of the child nodes.

The result of applying the algorithm in Fig. 3 is a set of all buffer accesses in
the kernel. Each buffer access is represented with its target address, data width
(in bytes), and whether the access is a read (e.g., · · · = A[i]), a write (e.g., A[i]
= · · ·), or both (e.g., A[i] += · · ·). Our algorithm is control-flow insensitive.

4.3 Pattern Classification

Finally, MAPA identifies the memory access pattern (or multiple candidates for
the pattern) of each buffer x using the result A of the symbolic analysis algorithm
in Fig. 3. For example, in Fig. 1(b) and (c), the buffer membership is accessed
by an affine function f(l0, w0) = 4 × l0 + (4 × L0) × w0. Since this function is
definitely represented in a normal form cont(l0) − cont(w0) − 0, MAPA does not
need to generate multiple candidates. On the other hand, the buffer feature is
accessed by an affine function f(l0, w0, i) = 4 × l0 + (4 × L0) × w0 + (4 ×
npoints) × i, where i = ind(nclusters − 1, 1). It can be represented in one of
the following normal forms depending on the value of L0, W0, and npoints.

– cont(l0) − cont(w0) − cont(i) − 0 when |npoints| = |L0 × W0|.
– cont(l0) − cont(w0) − strided(i, 4 × npoints) − 0 when |npoints| > |L0 × W0|.
– A non-discrete affine function when 0 < |npoints| < |L0 × W0|.
– cont(l0) − cont(w0) − 0 when |npoints| = 0.

Thus, MAPA generates four candidates for the pattern of feature, as shown in
Fig. 1(c).

4.4 MAPA Framework

The MAPA framework consists of two parts: a source-level analyzer and a pattern
selector. The source-level analyzer implements the compiler analysis described

120 G. Jo et al.

above, i.e., it takes an OpenCL kernel source code as input and prints the mem-
ory access pattern (or multiple pattern candidates and their conditions) for each
buffer. We have implemented the source-level analyzer by modifying a clang-
based OpenCL C frontend developed by the Khronos Group [15]. The pattern
selector chooses one of the pattern candidates according to the values of kernel
parameters passed by the host program instance at run time, i.e., it takes the
kernel arguments as input and returns the selected pattern candidate.

5 Evaluation

In this section, we evaluate the effectiveness of MAPA using popular OpenCL
benchmark applications.

Table 3. Benchmark applications used.

Application LoCa NoKb NoBPc Application LoC NoK NoBP

Rodinia 3.1 [7] Parboil 2.5 [24]

backprop 90 2 8 bfs (base) 146 1 7

bfs 50 2 10 bfs (nvidia) 426 3 27

b+tree 220 2 15 cutcp (base) 203 1 4

cfd 284 5 19 cutcp (nvidia) 280 1 4

dwt2d 707 3 8 histo (base) 570 6 15

gaussian 49 2 5 histo (nvidia) 445 5 13

heartwall 2506 1 32 lbm (base) 422 1 2

hotspot 115 1 3 lbm (nvidia) 420 1 2

hotspot3D 50 1 3 mri-gridding (base) 601 9 25

hybridsort 341 7 23 mri-gridding (nvidia) 687 9 25

kmeans 61 2 6 mri-q (base) 288 2 9

lavaMD 393 1 4 mri-q (nvidia) 85 2 9

leukocyte 581 4 20 sad (base) 333 3 4

lud 162 3 3 sad (nvidia) 372 3 4

myocyte 1445 1 4 sgemm (base) 25 1 3

nn 21 1 2 sgemm (nvidia) 65 1 3

nw 202 2 6 spmv (base) 35 1 7

particlefilter 752 9 58 spmv (amd) 57 1 7

pathfinder 116 1 4 spmv (amd vec) 75 1 7

srad 374 6 27 spmv (nvidia) 73 1 7

streamcluster 68 2 6 stencil (base) 40 1 2

stencil (fermi) 52 1 2

stencil (nvidia) 109 1 2

tpacf (base) 206 1 3

tpacf (nvidia) 228 1 3

Total 116 462
aLoC: Lines of code in OpenCL kernels.
b NoK: Number of kernels.
cNoBP: Number of buffer pointers.

Memory-Access-Pattern Analysis Techniques for OpenCL Kernels 121

We use all 116 kernels from applications in Rodinia 3.1 [7] and Parboil 2.5 [24]
benchmark suites. Table 3 summarizes the applications. Some of them have mul-
tiple implementations optimized for different types of devices. For example,
(nvidia) indicates a version optimized for NVIDIA GPUs. We use all applica-
tions except two versions of spmv in Parboil (tex and tex nvidia) because they
use OpenCL image objects. The last column labeled NoBP in Table 3 shows the
total number of buffer pointers in the kernel parameters. In summary, we have
462 different buffer pointers to be analyzed by MAPA. Previous memory-access-
pattern-based techniques are usually evaluated with a few simple applications.

Table 4 shows how the buffer pointers in Rodinia and Parboil are analyzed
by MAPA. Since 13 buffer pointers are just passed to a kernel and never used,
we focus on the remaining 449 buffer pointers. The result shows that 60% of the
buffers are properly classified to 8 pattern categories. Other buffers are classified
into 〈complex〉 because:

– The kernel has a buffer access whose base address is unknown. This happens
only in one kernel from heartwall. Adopting a more precise pointer analysis [22]
can resolve this problem.

– Some of the buffer addresses are not in the form of [[affine-expr]]. Because of
this reason, 25% of the buffers are classified into 〈complex〉. We can extend
the definition of canonical symbolic expressions in Fig. 2 to overcome this
problem.

– All buffer addresses are correctly analyzed by the symbolic analysis (Fig. 3),
but there is no category that matches the addresses. Additional pattern cat-
egories may cover these kinds of access patterns.

The source-level analyzer generates multiple pattern candidates for a single
buffer if there are more than one possible normal forms of the associated address
function because of run-time parameters. Table 4 also shows how many buffers
have multiple pattern candidates at compile time. Memory access patterns of 81
buffers are completely determined at run time by the pattern selector.

The result shows that MAPA can detect various memory access patterns used
in the previous manual approaches (Table 1) in real-world OpenCL kernels auto-
matically. Most of 〈complex〉 buffers identified by MAPA really have complicated
access patterns and cannot be optimized by the previous manual techniques even
though they can be detected manually. Note that the benchmark applications
are highly optimized for GPUs. Thus, their memory access patterns are more
complex than those of usual in-house OpenCL applications.

122 G. Jo et al.

Table 4. Analysis result.

Pattern categories # of buffers Portion #BwSPa #BwMCb

〈constant〉 39 8.69% 39 –

〈affine in IDs〉 136 30.29% 96 40

〈affine in IDs and iter.〉 37 8.24% 12 25

〈set of offsets + affine in IDs〉 21 4.68% 14 7

〈set of offsets + affine in IDs and iter.〉 8 1.78% 1 7

〈indirect, affine in IDs〉 10 2.23% 8 2

〈indirect, affine in IDs and iter.〉 0 0.00% 0 0

〈contiguous in a work-item〉 5 1.11% 5 –

〈indirect, contiguous in a work-item〉 8 1.78% 8 –

Subtotal 264 58.80% 183 81

〈complex〉 185 41.20%

- Stopped at Step 1 in Sect. 4.3 (34) (7.57%)

- Stopped at Step 2 in Sect. 4.3 (113) (25.17%)

- Not classified at Step 3 in Sect. 4.3 (38) (8.46%)

Total 449 100.00%

(Not used in a kernel) (13)
a#BwSP: Number of buffers with a single pattern.
b#BwMC: Number of buffers with multiple candidates.

6 Case Study: Automatic Data Reordering

In this section, we show a case study, Auto-Dymaxion, which exploits MAPA to
automate the memory-access-pattern analysis and perform auto-tuning with the
analysis result.

As described in Sect. 1, Dymaxion [8] reorders buffer elements prior to kernel
execution if the access pattern of the buffer is one of row2col, diagonal, indirect,
and arrstruct. It eliminates non-coalesced memory accesses in the kernel. In addi-
tion, it overlaps data transfer between a CPU and a GPU with data reordering
performed by the GPU to reduce the overhead caused by the data reordering.

Figure 4 shows how an OpenCL application is executed with Auto-Dymaxion.
When a host-to-device copy command is issued, Auto-Dymaxion does not send
data to the device memory immediately. Instead, it waits until a subsequent
kernel execution command is arrived (1©).

When a kernel execution command is issued, Auto-Dymaxion checks the
buffer will be accessed by the kernel according to one of the Dymaxion’s tar-
get access patterns (i.e., row2col, · · · , arrstruct), using the analysis result from
MAPA. For example, the MAPA pattern 〈indirect, affine in IDs〉 with a normal
form of cont(l0)−cont(w0)−c corresponds to the indirect pattern of Dymaxion. If
a Dymaxion’s pattern is detected, Auto-Dymaxion divides the data into multiple
chunks, copies chunks to the device memory one by one (2©), and executes the
data reordering kernel for each chunk (3©). Otherwise, Auto-Dymaxion simply
copies the entire data to the device memory. Then, the kernel is executed on the

Memory-Access-Pattern Analysis Techniques for OpenCL Kernels 123

Commands issued
by the host program

Host
(CPU)

Device
(GPU)

A

A

A
A’

A’
’

A’’

Copy

Reordering

Kernel X

Kernel Y

Reordering

Copy

A Original data layout

A Rearranged (optimized)
data layout

Copying data A
from the host to the device

Executing the kernel X

Executing the kernel Y

Copying data A’’
from the device to the host

Fig. 4. Using Auto-Dymaxion.

device (4©). The kernel compiler of Auto-Dymaxion replaces the index of every
buffer reference in a kernel with a new (rearranged) index.

Once a buffer is stored in a rearranged form, whenever a new command is
issued, Auto-Dymaxion checks whether the buffer layout should be restored or
not. For example, in Fig. 4, if kernel Y has the same access pattern to the buffer
A as that of kernel X, Auto-Dymaxion keeps the layout of A and executes kernel
Y (5©). On the other hand, if the subsequent kernel has a different access pattern
or a device-to-host copy command is issued, Auto-Dymaxion restores the layout
of the buffer immediately (6©).

Table 5. The target system of Auto-Dymaxion.

GPU NVIDIA GeForce GTX 480 (480 CUDA cores, 1.5 GB memory)

CPU 2× Intel Xeon X5660

Main memory 48 GB DDR3 PC3-10600

OS CentOS 6.7

OpenCL CUDA Toolkit 7.5

Compiler gcc 4.4.7

At the time of Dymaxion’s publication [8], it was evaluated on a NVIDIA
GeForce GTX 480 GPU using four benchmark applications kmeans, nw, spmv,
and nn [8]. We use the same target device and the same applications to com-
pare the performance of Auto-Dymaxion and Dymaxion. Table 5 describes the
specification of the target system.

Figure 5 shows the speedup of the four applications obtained by Auto-
Dymaxion (i.e., without any user intervention) over the execution time with-
out data reordering. Auto-Dymaxion works correctly for all the applications,

124 G. Jo et al.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

kmeans nw spmv nn Geo
mean

Sp
ee

du
p

Dymaxion Auto-Dymaxion

0
1
2
3
4
5
6
7

kmeans nw spmv nn Geo
mean

Sp
ee

du
ps

(a) Entire Application (b) Kernel

1.65

Fig. 5. (a) The speedup of applications obtained by Auto-Dymaxion and Dymaxion.
(b) The speedup of the kernel functions (i.e. excluding PCI-E transfer and data reorder-
ing overhead).

and achieves 1.05x–1.65x. For comparison, Fig. 5 also shows the speedups from
Dymaxion [8]. Auto-Dymaxion outperforms Dymaxion in kmeans and nw while
it gets slower than Dymaxion in spmv and nn. The average speedup of Auto-
Dymaxion is comparable to that of the manual approach (Dymaxion). Since the
source code of Dymaxion is not available, we cannot analyze the reasons for
speedup or slowdown.

7 Conclusions

This paper proposes MAPA, an automatic memory-access-pattern analysis
framework for OpenCL applications. MAPA is based on an observation that
accelerator architectures (especially GPUs) and programming models lead ker-
nels to have characteristics that are beneficial to automating memory-access-
pattern analyses. Memory access patterns in OpenCL kernels are classified into
ten categories in MAPA. Some of them are further detailed by the normal form
of the address functions associated to the patterns. The source-level analyzer
in MAPA represents a kernel with an SSA form and determines the memory
access pattern of each buffer accessed in the kernel using a symbolic analysis. If
the pattern depends on a run-time parameter, the analyzer generates multiple
candidates, and the pattern selector chooses the best suited one at run time.
The evaluation results with 116 real-world OpenCL kernels and a case study of
auto-tuners indicate that MAPA is effective enough to replace manual labor to
identify the kernel memory access patterns. We plan to make the source code of
MAPA publicly available.

References

1. AMD: AMD APP SDK OpenCL optimization guide (2015). http://amd-
dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD OpenCL
Programming Optimization Guide2.pdf

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf

Memory-Access-Pattern Analysis Techniques for OpenCL Kernels 125

2. Ballance, R.A., Maccabe, A.B., Ottenstein, K.J.: The program dependence web:
a representation supporting control-, data-, and demand-driven interpretation of
imperative languages. In: Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation, pp. 257–271 (1990)

3. Bauer, M., Cook, H., Khailany, B.: CudaDMA. http://lightsighter.github.io/
CudaDMA/

4. Bauer, M., Cook, H., Khailany, B.: CudaDMA: optimizing GPU memory band-
width via warp specialization. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis (2011)

5. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 101–113 (2008)

6. Brown, W.M., Wang, P., Plimpton, S.J., Tharrington, A.N.: Implementing molecu-
lar dynamics on hybrid high performance computers - short range forces. Comput.
Phys. Commun. 182(4), 898–911 (2011)

7. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: Pro-
ceedings of 2009 IEEE International Symposium on Workload Characterization,
pp. 44–54 (2009)

8. Che, S., Sheaffer, J.W., Skadron, K.: Dymaxion: optimizing memory access pat-
terns for heterogeneous systems. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis (2011)

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

10. Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical image processing on
the GPU - past, present and future. Med. Image Anal. 17(8), 1073–1094 (2013)

11. Götz, A.W., Williamson, M.J., Xu, D., Poole, D., Le Grand, S., Walker, R.C.:
Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1.
generalized born. J. Chem. Theory Comput. 8(5), 1542–1555 (2012)

12. Grosser, T., Groesslinger, A., Lengauer, C.: Polly - performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Process. Lett. 22(4),
1250010 (2012)

13. Haghighat, M.R., Polychronopoulos, C.D.: Symbolic analysis for parallelizing com-
pilers. ACM Trans. Program. Lang. Syst. 18, 477–518 (1996)

14. Jang, B., Schaa, D., Mistry, P., Kaeli, D.: Exploiting memory access patterns to
improve memory performance in data parallel architectures. IEEE Trans. Parallel
Distrib. Syst. 22(1), 105–118 (2011)

15. Khronos Group: SPIR generator/Clang. https://github.com/KhronosGroup/SPIR
16. Kim, J., Kim, H., Lee, J.H., Lee, J.: Achieving a single compute device image

in OpenCL for multiple GPUs. In: Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming, pp. 277–288 (2011)

17. NVIDIA: cuDNN. https://developer.nvidia.com/cudnn
18. NVIDIA: CUDA C best practices guide (2015). http://docs.nvidia.com/cuda/

cuda-c-best-practices-guide/
19. Pop, S., Cohen, A., Bastoul, C., Girbal, S., Silber, G.A., Vasilache, N.:

GRAPHITE: polyhedral analyses and optimizations for GCC. In: Proceedings of
the 2006 GCC Developers Summit (2006)

20. Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A.: High-throughput sequence
alignment using graphics processing units. BMC Bioinform. 8(1), 1–10 (2007)

http://lightsighter.github.io/CudaDMA/
http://lightsighter.github.io/CudaDMA/
https://github.com/KhronosGroup/SPIR
https://developer.nvidia.com/cudnn
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

126 G. Jo et al.

21. Seo, S., Lee, J., Jo, G., Lee, J.: Automatic OpenCL work-group size selection for
multicore CPUs. In: Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques, pp. 387–397 (2013)

22. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 32–41 (1996)

23. Stratton, J.A., et al.: Optimization and architecture effects on GPU computing
workload performance. In: Proceedings of Innovative Parallel Computing (InPar)
(2012)

24. Stratton, J.A., et al.: Parboil: a revised benchmark suite for scientific and com-
mercial throughput computing. Technical report, IMPACT-12-01, IMPACT, Uni-
versity of Illinois at Urbana-Champaign (2012)

25. Tal, B.N., Levy, E., Barak, A., Rubin, E.: Memory access patterns: the missing
piece of the multi-GPU puzzle. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (2015)

26. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Comput. 36(5–6), 232–240 (2010)

27. Tu, P., Padua, D.: Gated SSA-based demand-driven symbolic analysis for paral-
lelizing compilers. In: Proceedings of the 9th International Conference on Super-
computing, pp. 414–423 (1995)

Parallel Programming and Abstractions

Characterizing Performance
of Imbalanced Collectives on Hybrid

and Task Centric Runtimes
for Two-Phase Reduction

Udayanga Wickramasinghe1(B) and Andrew Lumsdaine2

1 Indiana University, Bloomington, IN, USA
uswickra@indiana.edu

2 Pacific Northwest National Laboratory, Richland, USA
andrew.lumsdaine@pnnl.gov

Abstract. As clusters of multicore nodes become the standard platform
for HPC, programmers are adopting approaches that combine multicore
programming (e.g. OpenMP) for on-node parallelism with MPI for inter-
node parallelism—the so-called “MPI+X”. In important use cases, such
as reductions, this hybrid approach can necessitate a scalability-limiting
sequence of independent parallel operations, one for each paradigm. For
example, MPI+OpenMP typically performs a global parallel reduction
by first performing a local OpenMP reduction followed by an MPI reduc-
tion across the nodes. If the local reductions are not well balanced, which
can happen in the case of irregular or dynamic adaptive applications,
the scalability of the overall reduction operation becomes limited. In
this paper, we study the impact of imbalanced reductions on two differ-
ent execution models: MPI+X and Asynchronous Many Tasking (AMT),
with MPI+OpenMP and HPX-5 as concrete instances of these respective
models. We explore several approaches to maximizing asynchrony with
the HPX-5 and MPI+OpenMP collective programming interfaces and
characterize the imbalance using a specialized set of microbenchmarks.
Despite maximizing MPI+OpenMP asynchrony, we find situations where
scalability of the MPI+X programming model is significantly impaired
for two-phase reductions. We report from 0.5X to 6.5X relative perfor-
mance degradation of MPI+X in the AMT instance.

1 Introduction

The standard HPC platform today is a cluster of multicore nodes, perhaps also
including some number of GPU resources. Historically, programmers have used
shared-memory approaches for parallel programming of multicore machines and
have used distributed-memory approaches (e.g. MPI) for programming clusters.
Thus, the obvious approach for programming clusters of multicore machines is
to marry the two approaches that have separately worked so well with shared
and distributed memory. The general moniker for the resulting combination
is “MPI+X” to reflect the fact that there is a multiplicity of shared-memory
approaches but only one MPI.
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 129–144, 2019.
https://doi.org/10.1007/978-3-030-35225-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_10

130 U. Wickramasinghe and A. Lumsdaine

Of course the expectation, or at least the hope, is that the effect of MPI+X
will provide the compounded benefits of each and enable scalability on today’s
largest machines as well as on future exascale machines. The problem with
MPI+X, as has been famously noted, is in the “+”.1 That is, there are numerous
problems in combining two separate parallel programming paradigms, as each
carries its own interface, run-time system, and high-performance programming
idioms. It is unlikely to expect independent approaches simply to compose a
coherent system (programming or otherwise).

In this paper we study one important use case in parallel programming,
namely two-phase reduction, and we investigate the impact of the “+” in
MPI+X—in our case we focus on MPI+OpenMP in particular. For example,
in MPI+ OpenMP, a global parallel reduction can be performed by first per-
forming a local OpenMP reduction, followed by an MPI reduction across the
nodes (1). However, this approach imposes a serialization (albeit a coarse one)
of the operations in the parallel reduction—i.e. it requires a reduction of the
local variables followed by a further reduction over those intermediate values.
Such a coarse serialization may not appear to be detrimental and, as the obvious
approach presented by the two systems, would also seem to be the best possible
approach. However, if the local reductions are not well balanced, which can hap-
pen in the case of irregular or dynamic adaptive applications, this serialization
can cause problems and limit the scalability of the overall reduction operation.
Any significant variation of thread arrival times at the OpenMP implicit syn-
chronization barrier (that happens just before MPI Allreduce in Listing 1) may
cause cascading delays [1–3] across the overall operation. Additionally, such seri-
alization constraints may reduce the amount of parallelism possible in a severely
imbalanced local reduction.

One approach to ameliorating the effect of imbalance on collective operations
is to make the collective operation non-blocking. This becomes problematic with
a standard MPI+OpenMP approach because only the MPI collective operation
is readily transformable into a non-blocking operation. That is, only the second
half of the compound operation can be overlapped with other work – the local

1 Quote attributed to Bill Gropp.

Characterizing Performance of Imbalanced Collectives 131

portion is not overlapped. However, when using more sophisticated approaches
to asynchrony, an MPI+OpenMP programmer may work around this restriction.

Asynchronous Many Tasking (AMT) is an alternate approach to MPI+X for
programming clusters of multicore systems. The basic paradigm of AMT is to
expose and exploit maximum parallelism through large numbers of lightweight
threads. In this paper we present a representative AMT system called “HPX-5”
(based on the ParalleX execution model [4]) coupled with a fully asynchronous
high-performance collective framework that is well suited for heavily imbalanced
global reductions. We also compare and quantify the impact of imbalanced reduc-
tions on MPI+X vs AMT, with MPI+OpenMP and HPX-5 as concrete instances
of these respective models.

This paper makes the following contributions:

– We analyze the problem of imbalance in two-phase reduction in detail for
the MPI+X and AMT programming models. We also propose a generalized
formal model that can be utilized to characterize imbalance for such config-
urations (Sect. 2).

– We implement a high-performance unified collective interface on a representa-
tive AMT called “HPX-5” and a portable framework to profile and instrument
imbalance with various real-world load distributions into parallel regions of a
distributed-memory application on MPI+OpenMP and AMT (Sect. 3).

– We empirically analyze effects of load variation (Sect. 4) on multiple runtime
execution models, namely: MPI+OpenMP, MPI, and our AMT instance using
a tunable collective microbenchmark.

2 Motivation

Fig. 1. General data-
flow graph found in HPC

Collective communication is known to propagate and
even amplify noise effects within an application life
cycle. Numerous studies report the effects of external
noise [1–3,5,6] on application scalability and the propa-
gation of delays in the face of collective communication
or global synchronization barriers. With MPI+X there
is a necessary sequence of operations (local plus global)
for realizing a single compound operation. The effect of
computational irregularity becomes isomorphic to that
of system noise but potentially orders of magnitude
larger.

Figure 1 reports a simple but commonly found execution pattern of a two-
phase reduction operation. One of the limitations of executing such a program in
MPI+OpenMP is the strict ordering of the local reduction phase. The data flow
graph depicts independent regions A and C (i.e. no directed edge) and regions B
and D as dependent. Region B relies on the output of region A and then region
D on both B and C. For irregular load conditions it would be especially beneficial
to overlap the work of region C with B. However, the implicit synchronization
barrier presents a limiting factor that makes it impossible to hide irregularities

132 U. Wickramasinghe and A. Lumsdaine

Fig. 2. Generic communication and computation models for two-phase reduction in
MPI+X and AMT

in region A. Therefore a naive MPI+OpenMP model of programming can make
it difficult to utilize available processing resources fully for applications with the
aforementioned parallel data dependency characteristics.

Newer implementations of OpenMP (Version 3.0 and on) have attempted
to mitigate some of these issues by embedding dynamic loop scheduling, work
queues, and task parallelism techniques, e.g. by using new additions to its pro-
gramming constructs like pragma omp task, pragma omp sections, and nested
regions. An MPI-only approach for two-phase reduction may also use OpenMP
as a thread substrate. In such cases special MPI per-threaded communicators2

should be formed to accommodate local reductions on shared memory buffers.
However, effectively controlling parallelism (task scheduling, granularity, etc.),
and obscure details of performance tuning across different runtime boundaries
(MPI and OpenMP) and compilers (Intel, gcc, etc.) may introduce many perfor-
mance problems and significant discomfort for MPI+X application developers.

AMTs are the newest breed of distributed shared memory runtime systems
that have had a significant influence on data-flow-driven parallel programming.
We contend that AMTs provide a uniform approach to two-phase collectives
even under severe imbalance. For example, due to the asynchronous nature of
AMT runtimes, they can effectively overlap communication and computation of
regions A and B (Fig. 1) and combine them with region C, thus avoiding wait
time for any costly intermediate synchronization steps and thereby increasing
throughput. Threads, in terms of early finishers, can compensate for late-comers
by taking up any additional work while waiting for network completion.

2.1 Analysis of Two-Phase Reduction

We refer to Fig. 2 for a detailed analysis of the above problem. The leftmost dia-
gram (in Fig. 2) shows a two-phase reduction by n threads conducted in MPI+X
runtime under regular conditions (i.e. no outliers). The next two diagrams feature
2 This can be superseded by MPI-4 Endpoints [16] if the proposal is accepted.

Characterizing Performance of Imbalanced Collectives 133

two-phase reduction when outliers are present in MPI+X and AMT, respectively.
We state the following definitions and paramters for our evaluation.

Definition 1. Overlap Region – An overlap region is a time window at which
at least one idle processor is available to process any additional independent
compute work (independent w.r.t. this reduction operation).

Definition 2. Non-overlap Region – A non-overlap region is a time window
at which no idle processor is available (e.g. due to high contention or model-
imposed constraint) to process any additional independent compute work effec-
tively (independent w.r.t. this reduction operation).

Definition 3. Sequential Overlap – A sequential overlap is compute work
executed on an overlap region that will run only on a single processor.3

Definition 4. Parallel Overlap – A parallel overlap is compute work executed
on an overlap region that may run on any number of processors. A parallel
overlap is assumed to be embarrassingly parallel.

T An upper-bound on total elapsed time to complete a single two-phase
reduction with an independent work of size Wo, across N number of
nodes;

To sequential latency of a work of size Wo;
tmin minimum latency to complete a local reduction by one or more of total

n worker threads;
tmax maximum latency to complete a local reduction by one or more of total

n worker threads;
tsync synchronization overhead incurred when switching from one runtime

boundary to another;
tcomm average communication latency for a global reduction operation;

ti barrier latency defined as time (remaining) to complete the local reduc-
tion barrier relative to the fastest thread. This implies that for regular
reduction ∀ ti → 0.

Our analysis of two-phase reduction is based on maximizing the overall par-
allelization (or minimizing latency) possible for MPI+X or AMT in the presence
of extra computation work. However, as highlighted before, MPI+X and AMT
differ in the execution of the overlap region. MPI+X has a smaller time window
to leverage any overlap due to the coarse serialization of local and global reduc-
tion phases; it will only be able to overlap work during communication time
(tcomm in Fig. 2(b)), whereas AMT’s overlap region (Fig. 2(c)) is much larger.
Therefore, quantification of such potential differentiation is necessary and use-
ful for estimation of this behaviour. We have introduced a notation in-terms
of tsync which describe the synchronization overhead when control transfers

3 We model sequential work as a compute segment with too many data dependen-
cies such that any parallelization of respective code regions is either impossible or
impractical.

134 U. Wickramasinghe and A. Lumsdaine

between different executions, MPI and OpenMP in this particular case. A switch
between heterogeneous execution environments may sometimes incur significant
runtime overheads due to factors such as fork-join-like model-imposed barriers,
implementation-specific constraints4 as well as system-specific overheads related
to coherency issues, instruction and data-level cache, TLB, and page misses. The
probability of such occurrence in a homogeneous execution environment such as
AMT is low, so we assume tsync → 0.

Table 1. Maximum overlap region sizes allowed in AMT two-phase reduction for opti-
mal latency hiding on different load distributions

Distribution Parallel overlap Sequential overlap

Uniform (regular) (n− 1) · tcomm tcomm

Scaled (n− 1) · tcomm + n · (tmax − tmin) tcomm + n · (tmax − tmin)

Random uniform (n− 1) · tcomm + n·(tmax−tmin)
2

tcomm + n·(tmax−tmin)
2

Gaussian (n− 1) · tcomm + (n√
2πσ2) · ∫ tmax

0
t ·

e
− (t−μ)2

2·σ2 dt

tcomm + (n√
2πσ2) · ∫ tmax

0
t ·

e
− (t−μ)2

2·σ2 dt

Exponential (n− 1) · tcomm + n · ∫ tmax

0
t·e−λλt

Γ(λ+1)
dt tcomm +n · ∫ tmax

0
t·e−λλt

Γ(λ+1)
dt

2.2 Evaluating MPI+X

For MPI+X, minimum latency is achievable when additional parallel work Wo,
is overlapped with the non-blocking MPI communication. However the overlap
region starts only after tmax. Therefore the following relation holds true for total
elapsed time when MPI+X reduction is executed with parallel overlap:

Tpar ov = tmax + tsync + max (tcomm,
To

n − 1
) (1)

For sequential overlap, additional work cannot be executed in parallel (by
definition). Therefore, work segment Wo must be delegated to a single thread.5

Tseq ov = tmax + tsync + max (tcomm, To) (2)

Understandably, the potential for communication and computation overlap
for MPI+X is higher in the case of parallel overlap, since the overlap region can
be masked in the communication region of tcomm. However, time to complete the
overall operation will depend on additional work when the amount of work (or
noise) becomes sufficiently large To

n−1 > tcomm and To > tcomm for parallel and
sequential overlap, respectively. Furthermore, if significant synchronization over-
heads are incurred (tsync), then potential for communication and computation
overlap will decrease.
4 For example MPI would need to execute in MPI THREAD MULTIPLE mode with

OpenMP which may induce certain penalties compared to regular mode.
5 Amdhal’s Law can be applied for all other cases when both sequential and parallel

code regions are present in Wo. However, this evaluation goes beyond the scope of
this paper.

Characterizing Performance of Imbalanced Collectives 135

2.3 Evaluating AMT

For AMT, minimum latency is achievable when all or part of Wo overlaps with
local reduction. Therefore the overlap region starts just after tmin (Fig. 2(c)).
We formulate the following definition to continue our analysis.

Definition 5. Tl Local Overlap – Local overlap is the maximum amount of
work (in time units) that can be executed by all available idle processors during a
local reduction phase (ti). We model ti ∈ {R | ti ≥ 0} as a continuous random
variable, with a probability density function of f(t). Let n be the total number
of threads available, and E(t) be average projected work (i.e. expected value) per
thread, then Tl can be calculated by the following.

Tl = n · E(ti)

= n ·
∫ ti

0

t · f(t)dt
(3)

Accordingly, for an imbalanced two-phase reduction in AMT, Tl > 0. Thus,
for this case the Local Overlap facilitates the communication and computation
overlap by reducing the amount of work that need to be parallelized during
communication phase the (tcomm). By including Tl the following relation can be
formulated for the total time of parallel overlap.

Tpar ov = tmax + max (tcomm,
To − Tl

n − 1
) (4)

Similarly, the following relation holds true for sequential overlap case.

Tseq ov = tmax + max (tcomm, To − Tl) (5)

Equations 4 and 5 highlight the significance of additional work size for the pur-
pose of latency hiding. AMT two-phase reduction reaches optimal overlap6 when
the time required for additional work does not exceed global communication –
that is (n − 1) · tcomm + Tl and tcomm + Tl for parallel and sequential overlap,
respectively. Thus, the best case for parallel overlap on AMT reduction allows
overlap of an additional work region up to a size of (n − 1) · tcomm + Tl, which is
much larger than sequential case. Table 1 reports the maximum overlap allowed
on AMT for many different probability distributions of load/noise. Barrier laten-
cies (i.e. ti) follow statistical properties of respective distributions as suggested
by the formulae in Table 1, for example: [tmin, tmax] for uniform random , (μ, σ)
for gaussian, and λ for exponential.

2.4 MPI+X Vs AMT

Our model (cf. Eqs. 1 to 5) show that when tcomm > To and the load configura-
tions are the same AMT’s imbalanced two-phase reduction enables execution of
6 Optimal solution found when T = tmax + tcomm.

136 U. Wickramasinghe and A. Lumsdaine

a larger overlap region than does MPI+X. This enables AMT to execute a global
reduction very efficiently even under severe noise or load variation. Furthermore,
even for the case in which heavy computation work (To > tcomm) is overlayed
with the reduction, AMT performs better than MPI+X, as (To−Tl

n−1) << To

n−1 .
Therefore, according to our analysis AMT appears to be the best fit for use cases
where distributed irregular reduction will be overlayed with useful parallel com-
pute work. More importantly, such advantage of AMT has become increasingly
evident as the amount of parallelism possible per node and the scale increases.

3 A Task-Centric Approach

Fig. 3. Continuation driven collective
design in HPX-5 for reduction opera-
tions

In this paper we have selected the HPX-
5 exascale runtime as our representative
adaptive multithreaded runtime. Listing 2
reports a code listing for a global reduc-
tion of two-phase nature written in HPX-
5 pseudo code. The reference implemen-
tation of HPX-5 [7] implements a con-
ventional work-stealing scheduler [8] for
local lightweight thread scheduling, a high
performance Partitioned Global Address
Space (PGAS) for active messaging and
Remote Direct Memory Access (RDMA)
operations, and uses a Photon RDMA
library [9] for network transport. Impor-
tantly for this work, we introduce a novel
non-blocking collective interface in HPX-
5, which is assisted by its fully asyn-
chronous lightweight thread runtime. As
with MPI+OpenMP, threads interact via

Characterizing Performance of Imbalanced Collectives 137

collectives through two phases: first joining the local domains and then commu-
nicating globally to arrive at the final value. However, unlike MPI+X, HPX-5
threads do not block during any stage of the collective reduction operation.
Once the final reduced result is available, the HPX-5 scheduler will signal all
suspended threads for completion.7 This allows threads to overlap collective
communication with computation and to tolerate both latency and irregularity.
Our HPX-5 collective implementation has a continuation-driven [7] design, as
shown in Fig. 3. Additionally, this implementation consists of optimizations such
as shared memory, thread-local buffers, and virtual network topologies (binary,
binomial trees, etc.) typical for any contemporary high-performance collective
interface, implementation details [10] of which are beyond the scope of this paper.
HPX-5 implements reduction operations using the HPX-5 collective interface
hpx process collective allreduce join [7]. HPX-5 collective scheduling is
naturally integrated into the HPX-5 runtime. This unified behavior eliminates
model-imposed barriers that are fundamental to all MPI+X instantiations, and
in Sect. 4 will be observed to be well-suited for tolerating noise and irregular
behavior expected in exascale systems.

A Framework for Noise Injection. We developed a framework that injects
various amounts of load into existing parallel programs to perform our analysis.
Our framework uses the method of Fixed Work Quantum (FWQ) [1] to inject
and measure load across application regions. FWQ assumes that minimum time
tu, or unit work (tmin in Fig. 2), represents the perfectly balanced execution of
a program region. Our framework can inject tmax − ti delays into an application
region. Thus, unit work is perturbed by injecting small delays, which we will
refer to as “overhead” time or “to”. Earlier work [2,5] used similar techniques
in their noise-injection benchmarks that emulate minuscule amounts of system
noise. We identified several important criteria to emulate imbalance. First, we
enabled injection of load at varying amounts (amplitude) or conforming to a
particular distribution. Second, we enabled injection of load at identified points
– locality or light-weight processes/tasks of a distributed memory application.
Finally, we implemented runtime-specific extensions for MPI, MPI+OpenMP,
and HPX-5. Our model consists of a number of load distribution parameters for
instrumentation: unit work (tu), maximum overhead units (tu/to %) to inject as a
percentage of unit work, number of threads to inject in each locality (tpn), and a
time or work resolution unit. Our emulation system varies load/noise amplitude
by adjusting random distribution (Uniform Random, Gaussian, Poisson, etc.)
parameters such as mean and standard deviation. A scaled version of distribution
will scale just one load assignment with an overhead by a specified percentage
relative to unit work. The uniform injection mode emulates the perfectly load-
balanced base scenario.

7 In fact, collectives in HPX-5 are data driven and not execution driven. The identity
of the joining threads is inconsequential, and the completion of a collective operation
triggers a set of registered continuations.

138 U. Wickramasinghe and A. Lumsdaine

4 Results and Discussion

Our experiments have been conducted using a set of customized benchmarks that
evaluate two-phase reduction in irregular conditions for three programming/exe-
cution models: MPI, MPI+OpenMP and HPX-5. We tested the maximum num-
ber of processing elements possible in each cluster in every experiment. We also
tested realistic workload distributions with varying frequencies and amplitudes
that may naturally occur within load-imbalanced applications. For statistical
significance, each measure was repeated 100 times and special care was taken to
limit any external interference on performance measures. We conducted all our
experiments on two platforms: the small-scale HPC cluster “Cutter” (Intel Xeon
E5 2.1 GHz processors, 16 cores per node, up to 256 cores with a gcc/open-mpi
environment) at Indiana University and the large scale HPC cluster “Edison”
(Cray X30 Intel ‘Ivy Bridge’ 2.4 GHz processors, 24 cores per node, up to 24576
cores with an intel/cray-mpich environment) on NERSC at Berkeley.

All microbenchmark experiments are based upon two categories of execution.
First, we executed a two-phase allreduce operation8 when outliers were present
in parallel compute regions. Second, we executed the same experiment with
an additional parallel work region (Fig. 1). We injected noise outliers for each
thread (MPI+OpenMP), process (MPI-only), or task (HPX-5) using our emula-
tion framework (cf. Sect. 3). For overlap we used model parameters, total over-
lapped region size (Wo), and overlapped work quantum (To

n−1 ∼ work per thread).
An overlapped region was emulated either with a sequential or a parallel region.
The benchmarks currently implement different variants of these overlap regions
for MPI, MPI+OpenMP, and HPX-5 via the run overlapped work(uint64 t
qw, uint64 t ow) interface.

0.0

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224
cores

m
ea

n
 t

im
e

/ i
te

ra
ti

o
n

 (
s) HPX−5

HPX−5_with_parov
MPI+OpenMP
MPI+OpenMP_with_parov

distribution = uniform

0.0

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112 128 144 160 176 192 208 224
cores

scaled

0.0

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112 128 144 160 176 192 208 224
cores

exponential

Fig. 4. Microbenchmark scaling with and without parallel overlap, for three distribu-
tions on Cutter (upto 224 cores)

8 A collective (i.e. tree-based) algorithm was consistent across all experiments and
runtime modes.

Characterizing Performance of Imbalanced Collectives 139

Each experiment pertaining to a particular random distribution was injected
with a maximum overhead workload of tomax value equating to 2x unit work tu.9

Next we adjusted statistical parameters accordingly to fit in the scaled range.
For example the Gaussian mean was set at the mid range 2tu and the sigma
parameter was set at tu. Similarly, random uniform distribution parameters [a, b]
were set between tu and 3tu, etc. Using experimentation and empirical techniques
as tools, we determined a minimum threshold where the cascading effects of
noise irregularities became significant. For all microbenchmark experiments that
followed, unit work tu was determined at a constant value of 40 time units.
Furthermore, all experiments report regression regions or error bars of a 90%
confidence interval.

We first evaluated the performance of two-phase reduction with irregu-
lar noise on the Cutter cluster. Two experiments were conducted excluding
and including parallel regions (the parallel overlap) on the reduction kernel.
On each scatter plot in Fig. 4, we display the fitted lines (evaluated by non
parametric LOESS regression) and confidence regions for MPI+OpenMP and
HPX-5 for each case. The AMT instance completed the reduction faster than
MPI+OpenMP on both these experiments. The uniform case (zero outliers)
reported approximately same running times at a single node (tcomm → 0), but,
as the frequency of outliers and the scale increased, relative variance in run-
ning times became more significant. For exponential outliers HPX-5 reported a
∼2.2X speedup when parallel regions were excluded, and when parallel regions
were included HPX-5 reported a speedup of ∼1.6X w.r.t. MPI+OpenMP.

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536307261441228824576
cores

m
ea

n
tim

e
/ i

te
ra

tio
n

(s
)

HPX−5
MPI
MPI+OpenMP

distribution,overlap = scaled 2.5x , 20

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 61441228824576
cores

exponential , 80

Fig. 5. Microbenchmark scaling results with sequential overlap on Edison (upto 24000+
cores)

Even though MPI+X and HPX-5 spent roughly the same time in global
reduction (tcomm) on Cutter, MPI+X displayed higher synchronization costs
(↑ tsync), creating higher latencies than the AMT instance. For parallel overlap
AMT showed a greater speedup than MPI+X on account of the higher potential
for latency hiding when To > tcomm. We also noticed that the average latency

9 Each parallel load injection ti was scaled between tu and 3.tu.

140 U. Wickramasinghe and A. Lumsdaine

variation with exponential noise was more significant in MPI+OpenMP than in
HPX-5; the fitted model for MPI+OpenMP only explained 20% while HPX-5
explained 30% of the variability of data (Fig. 4 exponential plot). Interestingly,
the MPI+OpenMP allreduce benchmark with a parallel region and a single out-
lier (Fig. 4 scaled plot) displayed resilience by absorbing noise pressure as the
number of nodes increased. MPI+OpenMP was able to hide relatively smaller
delays (where Tcomm � To) by overlapping compute work in parallel regions.
Overall results suggested that HPX-5 was better at absorbing noise delays than
MPI+OpenMP for two-phase reduction on smaller node counts.

We show the performance of two-phase reduction on the Edison cluster with
scaling up to 24000+ cores in Fig. 5. More specifically, we tested a sequential
overlap region and started with a base case of scaled noise/load injection with
a lower overlap segment size setting (20 time units). In the base case running
times of two-phase reduction were about the same (within +/−5%). As expected,
MPI+OpenMP two-phase reduction performed poorly with scale as compared
to MPI or AMT. For sequential overlapped segments on Edison, MPI+OpenMP
reported a maximum slowdown of ∼3X to ∼6.5X (on different distributions),
while MPI exhibited a marginal speedup of ∼0.25X w.r.t. HPX-5. Unlike the
case where overlap regions are parallelizable, the addition of a sequential region
imposed a sequential delay for MPI+OpenMP at the implicit barrier. At this
point, when To >> tcomm the overhead gap generated by MPI+X – (tsync +
To), was much larger than in AMT (To − Tl). This resulted in amplification
of communication overheads with scale and thus a significant slowdown w.r.t.
HPX-5 and MPI allreduce.

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224
coresm

ea
n

 t
im

e
/ i

te
ra

ti
o

n
 (

s)

HPX−5
MPI
MPI+OpenMP

distribution = uniform

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224
cores

scaled 2.5x

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224
cores

exponential

Fig. 6. Microbenchmark scaling with parallel overlap work (tu = 50) for multiple
distributions on Cutter (upto 224 cores)

For parallel overlap cases, MPI+X performed much better than its sequen-
tial configuration (i.e. when uniform and scaled noise outliers were present), an
observation which matches the inferences derived by our model (cf. Eqs. 1 and
2). On Cutter (Fig. 6) both the MPI and MPI+OpenMP benchmarks reported
a relative slowdown of ∼10% to ∼50% compared to HPX-5 when outliers were
present. Here MPI+OpenMP absorbed noise pressure better when a single noise
outlier (scaled injection) was present. Interestingly, MPI proved slower in exe-
cution times, ∼10% to ∼50% w.r.t. MPI+OpenMP and HPX-5.

Characterizing Performance of Imbalanced Collectives 141

Our benchmark on Edison (up to 12000+ cores, Fig. 7), tested two additional
modes of execution for MPI + OpenMP: OpenMP sections and tasks. The
AMT instance performed better than the MPI and MPI+X runtime instances
in a majority of these configurations. Importantly, we noted that it was able to
absorb noise pressure at these large scales while maintaining a running time bet-
ter than that of all MPI+OpenMP modes for two-phase reduction. More impor-
tantly, these observations are consistent with our model as well; AMT has better
latency (T) than MPI+X, since tmax+(To−Tl

n−1) << tmax+tsync+ To

n−1 . However,
Fig. 7 shows that exponential and random distribution have relatively stable run-
ning times for the MPI+OpenMP two-phase reduction. This is because MPI+X
does not depend on function Tl(ti) (Eq. 1), whereas AMT may be affected by cas-
cading delays induced by variation of noise distributions (Tl(ti)) across different
nodes (cf. Table 1). Thus we observe that at larger scales the structure of noise
between nodes is as important as the mode of execution for an global reduction.
In contrast, this behaviour was not visible at smaller scales (Fig. 6), because for
a small number of nodes significant amplification of delays is unlikely.

We observed a mean slowdown of ∼2% to ∼35% in MPI+OpenMP task
execution while slowdown in MPI+OpenMP sections was ∼2% to ∼25% w.r.t.
AMT. However, the MPI+OpenMP sections benchmark displayed its best per-
formance in the presence of scaled noise outliers with ∼6% speedup against our
AMT instance. Both the MPI-only threaded mode and MPI+OpenMP regular
version behaved similarly at scale with relative slowdowns ranging from ∼2%
to ∼30% w.r.t. HPX-5. We also noticed some variance in performance charac-
teristics in MPI+ OpenMP on the two cluster environments. Mainly, differences
in runtime implementations of MPI+OpenMP (i.e. open-mpi vs cray-mpich)
and programming environments (i.e. gcc vs intel) may have contributed towards
this behavior. Synchronization costs when ↑ tsync, (costs on per-threaded com-
municators, progress engine, etc.) causes MPI execution higher penalties in cer-
tain cases (i.e. that of scaled outliers in Fig. 7) resulting in worse performance
than MPI+OpenMP.

5 Related Work

Hoefler et al. have conducted a detailed analysis on the impact of external noise
effects on communication synchronization. These effects include operating sys-
tem [2] and network noise [5]. Other studies [6] shed further light on modeling
noise to gain a more analytic perspective on the effect of noise on the scala-
bility of collective operations. Ferreira et al. [2] use noise-injection techniques
to assess the impact of noise on several large-scale applications using extremely
lightweight kernels. Beckman [1] characterized sources of noise and analyzed per-
formance on BlueGene/L systems, using a synthetic noise-injecting benchmark
called “selfish detour”.

Other research reports on MPI+OpenMP usage patterns [11–13] and how
they can be applied to existing applications and possible challenges that may
be encountered. Based on this evidence only a handful of hybrid execution pat-
terns have been deemed successful in practice. The MPI+OpenMP programming

142 U. Wickramasinghe and A. Lumsdaine

0.2

0.4

0.6

24 48 96 192 384 768 1536 3072 6144 12288
cores

HPX−5
MPI
MPI+OpenMP
MPI+OpenMP_3.0_Sections
MPI+OpenMP_3.0_Tasks

distribution,overlap = uniform, 50

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288
cores

scaled 2.5x, 50

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 614412288
cores

m
ea

n
tim

e
/ i

te
ra

tio
n

(s
) uniform random, 50

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288
cores

exponential, 50

0.2

0.4

0.6

24 48 96 192 384 768 1536 3072 6144 12288
cores

uniform, 80

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144
cores

scaled 2.5x, 80

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288
cores

uniform random, 80

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288
cores

exponential, 80

Fig. 7. Microbenchmark scaling with parallel overlap work segment size for 4 noise/load
distributions on Edison (up to 12000+ cores).

model has been used for irregular application domains. Notably, Tafti et al. [14]
have reported its early adoption for AMR. More recently, newer AMT runtimes,
such as Legion [15] and OCR [17], too have grown in popularity for tackling
large-scale irregular problems. However, the impact of irregularities and imbal-
ance on the performance and scalability of applications has not been thoroughly

Characterizing Performance of Imbalanced Collectives 143

studied on these systems. Our work differentiates from above efforts in that we
focus our attention on the effects of imbalance for two-phase reduction in both
the MPI+X and AMT execution models. Furthermore, we formalize imbalance
in terms of a probabilistic model and characterize performance under a varying
number of configurations.

6 Conclusion

Combining MPI and X for a two-phase reduction in a naive manner introduces
a sequential barrier bottleneck between the X collective and the MPI collec-
tive. More involved combinations (e.g. by using OpenMP tasks) can eliminate
that barrier but expose the disjoint nature of the MPI and X schedulers. As
systems increase in size and real problems become more irregular, these effects
will impact the scalability of applications using MPI+X. An AMT runtime with
integrated collective support has unified scheduling, no sequential bottleneck,
and is therefore not subjected to these same scalability limitations.

Our results indicate that given the above situations, MPI + OpenMP per-
formance varied rapidly across different execution modes and environments.
MPI+X asynchronous variants, such as OpenMP tasks and sections, per-
formed better compared to the naive MPI+X implementation. The effectiveness
of other alternatives, such as threaded MPI, largely depended on the size and
structure of the irregularity. More importantly, on both small and large scales a
reference AMT collective implementation was better able to withstand the pres-
sure exerted by simulated noise than any implementation of MPI+X. However,
both AMT and asynchronous MPI+X (i.e. OpenMP tasks) variants may not
be entirely immune to noise at very large scales. We learned that, if the struc-
ture and the distribution of the noise changes significantly across nodes, then
the tendency to cascade delays may influence the overall scalability of a two-
phase reduction. Thus, we recognize that proper characterization of irregularity
is essential to understanding the limits of existing parallel systems and address
the issues of similar nature. We look forward to building on this framework to
design accurate performance models, which will allow us to implement better
parallel programming models and paradigms in the face of observed levels of
irregularity in HPC systems.

References

1. Beckman, P., Iskra, K., Yoshii, K., Coghlan, S., Nataraj, A.: Benchmarking the
effects of operating system interference on extreme-scale parallel machines. Cluster
Comput. 11(1), 3–16 (2008). https://doi.org/10.1007/s10586-007-0047-2

2. Ferreira, K.B., Bridges, P., Brightwell, R.: Characterizing application sensitivity
to OS interference using kernel-level noise injection. In: Proceedings of SC 2008,
pp. 19:1–19:12. IEEE Press, Piscataway (2008). http://dl.acm.org/citation.cfm?
id=1413370.1413390

https://doi.org/10.1007/s10586-007-0047-2
http://dl.acm.org/citation.cfm?id=1413370.1413390
http://dl.acm.org/citation.cfm?id=1413370.1413390

144 U. Wickramasinghe and A. Lumsdaine

3. Hoefler, T., Schneider, T., Lumsdaine, A.: The impact of network noise at large-
scale communication performance. In: IPDPS 2009, pp. 1–8 (2009). https://doi.
org/10.1109/IPDPS.2009.5161095

4. Kaiser, H., Brodowicz, M., Sterling, T.: Parallex an advanced parallel execution
model for scaling-impaired applications. In: Proceedings of ICPPW 2009, pp. 394–
401. IEEE Computer Society, Washington, DC (2009). https://doi.org/10.1109/
ICPPW.2009.14

5. Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the influence of system
noise on large-scale applications by simulation. In: Proceedings of SC 2010, pp.
1–11. IEEE Computer Society, Washington, DC (2010). https://doi.org/10.1109/
SC.2010.12

6. Agarwal, S., Garg, R., Vishnoi, N.K.: The impact of noise on the scaling of collec-
tives: a theoretical approach. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna,
V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 280–289. Springer, Heidelberg (2005).
https://doi.org/10.1007/11602569 31

7. CREST: HPX-5. http://hpx.crest.iu.edu
8. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work

stealing. J. ACM 46(5), 720–748 (1999)
9. Kissel, E., Swany, M.: Photon: remote memory access middleware for high-

performance runtime systems. In: IPDPSW 2016, pp. 1736–1743 (2016). https://
doi.org/10.1109/IPDPSW.2016.120

10. Wickramasinghe, U., DAlessandro, L., Lumsdaine, A., Kissel, E., Swany, M., New-
ton, R.: Evaluating collectives in networks of multicore/two-level reduction. Tech-
nical report, Indiana University, School of Informatics and Computing (2017)

11. Bova, S., et al.: Combining message-passing and directives in parallel applications.
SIAM News 32(9), 10–14 (1999)

12. Cappello, F., Etiemble, D.: MPI versus MPI+OpenMP on the IBM SP for the
NAS benchmarks. In: Supercomputing, ACM/IEEE 2000 Conference, p. 12 (2000).
https://doi.org/10.1109/SC.2000.10001

13. Corbalan, J., Duran, A., Labarta, J.: Dynamic load balancing of MPI+OpenMP
applications. In: ICPP 2004, vol. 1, pp. 195–202 (2004). https://doi.org/10.1109/
ICPP.2004.1327921

14. Huang, W., Tafti., D.: A parallel computing framework for dynamic power balanc-
ing in adaptive mesh refinement applications. In: Proceedings of Parallel Compu-
tational Fluid Dynamics, pp. 249–256 (1999)

15. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, p. 66. IEEE
Computer Society Press (2012)

16. Dinan, J., et al.: Enabling communication concurrency through flexible MPI end-
points. Int. J. High Perform. Comput. Appl. 28(4), 390–405 (2014)

17. Dokulil, J., Sandrieser, M., Benkner, S.: OCR-Vx-an alternative implementation
of the open community runtime. In: International Workshop on Runtime Systems
for Extreme Scale Programming Models and Architectures, in Conjunction with
SC15, Austin, Texas (2015)

https://doi.org/10.1109/IPDPS.2009.5161095
https://doi.org/10.1109/IPDPS.2009.5161095
https://doi.org/10.1109/ICPPW.2009.14
https://doi.org/10.1109/ICPPW.2009.14
https://doi.org/10.1109/SC.2010.12
https://doi.org/10.1109/SC.2010.12
https://doi.org/10.1007/11602569_31
http://hpx.crest.iu.edu
https://doi.org/10.1109/IPDPSW.2016.120
https://doi.org/10.1109/IPDPSW.2016.120
https://doi.org/10.1109/SC.2000.10001
https://doi.org/10.1109/ICPP.2004.1327921
https://doi.org/10.1109/ICPP.2004.1327921

Abstract Representation of Shared Data
for Heterogeneous Computing

Tushar Kumar1(B), Aravind Natarajan1, Wenjia Ruan1, Mario Badr2,
Dario Suarez Gracia3, and Calin Cascaval4

1 Qualcomm Research, SantaClara, USA
{tushark,naravind,wenjiar}@qti.qualcomm.com

2 University of Toronto, Toronto, Canada
mario.badr@mail.utoronto.ca

3 Universidad de Zaragoza, Zaragoza, Spain
dario@unizar.es

4 Barefoot Networks, Santa Clara, USA
cascaval@acm.org

Abstract. Data management across address spaces in heterogeneous
platforms represents a significant performance bottleneck and energy
cost for applications, particularly on mobile System-on-Chip (SoC). We
propose a light-weight middleware layer to regulate concurrent access to
shared data in a Heterogeneous SoC. Our approach uses acquire-release
semantics to provide the following benefits: (i) enable high-level het-
erogeneous programming frameworks to easily maintain consistent non-
device, non-platform-specific data abstractions for programmers, and (ii)
provide an abstract memory interface with strong analyzable properties
about the correctness and performance of the synchronization opera-
tions across memory-types. These benefits are achieved while retaining
the ability to plug-in arbitrary types of heterogeneous memory frame-
works and to enable platform-specific and inter-framework synchroniza-
tion optimizations. We demonstrate that our approach avoids paying the
“abstraction cost”, achieving performance within 5% of manually opti-
mized OpenCL while providing a simpler and understandable API.

Keywords: Heterogeneous system-on-chip · Memory synchronization ·
Memory concurrency · Data sharing

1 Introduction

Heterogeneous computing systems allow programmers to match parts of an appli-
cation to the strengths of the different devices available [14]. The ultimate goal
of heterogeneous computing is to obtain higher performance at lower power by
judiciously balancing the computation. Prior work has focused on partition-
ing applications across heterogeneous devices. For example, the Fast Multipole

Qualcomm Research is a division of Qualcomm Technologies, Inc.

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 145–162, 2019.
https://doi.org/10.1007/978-3-030-35225-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_11

146 T. Kumar et al.

Method has been shown to work better on a CPU-GPU architecture [10]. How-
ever, heterogeneous systems are not limited to CPUs and GPUs. As we scale to
a more diverse set of accelerators, a major impediment to programmers becomes
moving data across devices. Mobile Systems-on-Chip (SoCs) typically share data
across devices using a contiguously-allocated block of memory (i.e., a buffer) that
is modifiable by one device at a time. Without advanced hardware support [2]
synchronization is explicit, placing a significant burden on programmers. We
propose to simplify data movement across devices via intuitive abstractions.

Not all devices share a common view of system memory or even have access
to it. For example, a device may not be cache coherent, and some devices may
address 32-bit memory while others address 64-bit. Our approach leverages the
familiar notion of a buffer augmented with acquire-release semantics to deal with
this non-uniformity. We abstract the diverse mechanisms for data access into a
uniform set of synchronization primitives that is implemented on top of hardware
support. Put simply, in acquire-release semantics either the entire buffer is made
available to a kernel or none of it is. This provides programmers with a familiar
technique for sharing data in a heterogeneous system.

Currently, many frameworks exist to enable offloading data to a device. For
example, OpenCL, CUDA, or OpenGL are used to offload computation to the
GPU and to share data between the CPU and GPU [7,18,22]. Android ION
is another industry standard that allocates memory accessible by any ION-
compliant devices on an SoC. It is often used to share data between compute
devices and custom-components of the SoC, such as image-processing acceler-
ators [11]. However, to efficiently use ION from OpenCL kernels (i.e., to avoid
unnecessary copying of data from ION into GPU-accessible memory regions),
programmers must use specialized extensions of OpenCL API calls (typically
vendor specific). This results in multiple versions of the application code to sup-
port the range of platforms. Prior work focused on establishing a cache-coherent
shared memory model over multiple devices does not capture this level of intri-
cacies [6].

The challenge of managing multiple frameworks for offloading data gets more
complex as more devices are added to heterogeneous systems. For example,
FPGAs and ML accelerators [1,17] will have their own mechanisms. Currently,
a programmer looking to take advantage of all the compute devices available
must:

1. Synchronize data across any combination of devices correctly and efficiently
2. Be aware of supported memory-optimizations for each target platform
3. Write application code to accommodate multiple device combinations

To alleviate the programmer’s burden and enable heterogeneous applications,
we propose an abstraction layer with a novel representation for a shared data
buffer (Fig. 1). The synchronization state of a shared data buffer is maintained
in a device- and platform-agnostic manner (buffer state – the middle of Fig. 1).
An existing memory framework; e.g., OpenCL or ION, is plugged-in underneath
the buffer-state via an abstract representation of memory called an arena (the
bottom of Fig. 1). An arena provides generic operations to the buffer-state to

Heterogeneous Data Sharing 147

Fig. 1. The abstract representation of shared data decouples existing memory frame-
works from their use by a high-level programming framework.

(1) allocate storage and (2) manage access to the storage, while hiding the par-
ticulars of the underlying memory framework. Each arena maintains an arena
state capturing information sufficient for the buffer-state to correctly manage
storage and synchronize data across arenas. The arena state includes the map
state; i.e., which devices may currently access the storage (a generalization over
OpenCL operations that burden the user to track state). Arenas serve as a wrap-
per around an existing memory framework, placing the onus on the platform
developer rather than the application developer. For example, an OpenCL-arena
would translate the arena operations into appropriate OpenCL API calls and
correspondingly update the arena state. The arena and buffer-state transactions
together ensure (1) correct storage allocation and synchronization of shared data
across the memory frameworks, and (2) correct throttling of concurrent access by
device kernels to the shared data based on the arena states. To ensure synchro-
nization between any two arenas, the buffer-state requires the arenas to support
a default synchronization mechanism, for example, require all arenas to allow the
CPU to access their data, so the CPU may perform memory-copies between are-
nas. An ION-arena may simply provide a pointer to its ION-allocated storage,
while an OpenCL-arena may use the OpenCL APIs to “read” or “map” data
from the GPU memory into main memory (memory frameworks typically pro-
vide CPU-access mechanisms as current heterogeneous devices typically offload
the CPU). The buffer-state synchronizes data across arenas using two interface
functions: can copy(src, dst) and copy(src, dst). Under the default mechanism
described above, can copy(src, dst) would prevent synchronization between the
src and dst arenas if granting access to the CPU would interfere with kernels
already accessing the data in src, e.g., an OpenCL-arena in unmapped state may
not be mapped for access by the CPU while GPU OpenCL kernels are access-
ing it. When permitted by can copy(src, dst), copy(src, dst) performs the data
synchronization, including allocating storage inside dst if not already allocated.

148 T. Kumar et al.

The platform developer may override the default synchronization mechanism
between two arenas with a cross-arena synchronization mechanism (bottom-left
of Fig. 1) that is faster, requires less storage-allocation than the default, and/or
provides alternative paths to synchronization. While the default can copy() may
disallow synchronization when the CPU cannot be granted access, the optimized
can copy() may evaluate use of platform-specific or memory-type-specific mech-
anisms to perform the synchronization without disrupting executing kernels.
The corresponding copy() may also bind-allocate storage between arenas, e.g.,
the MainMem-arena and OpenCL-arena may directly use the storage allocated
in the ION-arena instead of allocating their own. Crucially, the arena abstrac-
tion greatly alleviates the burden on the platform developer when implementing
cross-arena optimizations – the developer may perform arbitrary transforms on
the arena-state to carry out the synchronization, while easily verifying against
the arena-state whether a transform impacts access to currently executing
kernels.

Finally, the buffer-state itself provides an abstract representation that can be
transformed by a high-level heterogeneous runtime in a fairly arbitrary manner
to implement sophisticated program-specific and platform-specific optimizations,
with an automatic guarantee of correctness (top-left of Fig. 1).

In this paper we make the following contributions:

1. We define an abstract representation of memory regions and synchronization
primitives to maintain consistency across memory regions in the presence of
multiple heterogeneous devices with different capabilities (Sect. 3).

2. We propose an overload mechanism, the cross-arena, that allows arbitrary
memory synchronization optimizations to be plugged-in while retaining the
ability to easily verify correctness of implementation (Sect. 3.2).

3. We implement these abstractions into a middleware, which we refer to as
the data management layer (DML), that enables the creation of high-level
programming frameworks with abstract representations of shared data, and
provides portability across a range of platforms supporting any combinations
of low-level memory-frameworks (Sect. 4).

4. We evaluate the proposed ideas by incorporating the DML into a C++ high-
level programming framework, the Qualcomm R© Symphony System Manager
SDK [23,24] (“the SDK”). The SDK exploits its knowledge about program
structure and data sharing patterns by performing transformations on the
buffer-state abstraction, and plugs-in cross-arena optimizations to take advan-
tage of platforms-specific synchronization mechanisms (Sect. 5).

In summary, our abstraction decouples the low level, platform-specific details
of sharing and synchronizing memory regions from the high-level programming
data abstraction and allows application programmers to write efficient, portable
code. Next, we motivate our work with examples of the programmer burden.

Heterogeneous Data Sharing 149

Fig. 2. Data management burden: the heterogeneous application developer is forced to
track platform-specific functionality and the dynamic execution order of components.

2 Illustration of Programmer’s Burden

Consider the application phases in Fig. 2. In the first phase, buffers are allocated
for use with a CPU, GPU and DSP. On the given platform, ION is used to share
data with the DSP, whereas an additional pool of memory is available to the
GPU OpenCL driver for sharing data between the CPU and GPU. Option α
allocates a buffer from GPU driver memory. Option β allocates from the ION
pool and then uses the OpenCL-ION extensions available on some platforms to
access ION memory efficiently from the GPU. Option ε allocates ION memory,
but does not use the OpenCL-ION extensions, leading to the GPU OpenCL
driver potentially copying data back and forth between the ION- and GPU-
allocated storage. Option δ allocates ION storage for data that will only be
shared between the CPU and DSP. For each buffer, the application programmer
has to keep track of which buffer allocation option – α, β, ε or δ – was used.
For data to be shared between the CPU, GPU and DSP, the programmer has to
select at compile-time or run-time between options β and ε, to support platforms
with and without support for the OpenCL-ION extensions.

Next, consider the data management challenges in the execution phase of the
application. Exec 1 shows a producer-consumer relationship between a GPU and
a DSP component using data buffer b. If b has format β, typically an OpenCL
‘map’ would be the correct synchronization operation. For format ε, however, an
OpenCL ‘read’ may be more performant on some platforms, requiring the pro-
grammer to select synchronization operations based on platform. Exec 2 shows
a CPU and a GPU component executing concurrently. When b1 and b2 are dis-
tinct data buffers, the two components may execute without any synchroniza-
tion. However, when invoked on the same buffer, the programmer has to detect
b1 = b2 during execution and serialize the components; e.g., by holding locks
on the buffers. If fCPU is serialized to execute before fGPU and the buffer was
allocated using option α or ε, the programmer must perform OpenCL ‘unmap’
or ‘write’ operations in between (whichever is more performant on the given
platform), and ‘map’ or ‘read’ for the opposite execution order. With option β,
‘unmap’ or ‘map’ would correspondingly be used for the two serialization orders.

Of course, if the components only read the buffers, it would generally be
feasible to execute them concurrently even when b1 = b2. Even so, option α

150 T. Kumar et al.

allocation may force a serialization if fGPU executes first and the buffer has
never been ‘mapped’ before—the fCPU component is unable to access the data
because the OpenCL buffer may not be ‘mapped’ while in use by the GPU.

Finally, Exec 3 shows a scenario of arbitrary concurrent components running
on multiple heterogeneous devices (with more than one component possible on
a device). Each component accesses multiple buffers. Depending on whether a
given buffer, say b4, is read-only accessed by fV and fX or not, control serializa-
tion must be imposed between fV and fX . Similarly, every other buffer creates
potential serialization between any of fU , fV , fW and fX . Correspondingly,
there are a large combinations of data synchronization operations that must be
judiciously selected between any serialized components to ensure correct and
performant data management. This quickly becomes overwhelming for the pro-
grammer to manage, even at the level of relatively platform-abstract OpenCL
and ION APIs.

3 Abstract Representation

Clearly a high-level programming runtime should alleviate the burden on the
programmer by taking care of the data management, and consider a number of
optimizations based on the memory access patterns: read-only accesses, concur-
rent access, allocation usage, etc. Toward this goal, our proposed data manage-
ment layer (DML) introduces an abstract representation of the following con-
cepts: arena to abstract operations over a device-specific memory, buffer state to
abstract the distribution of a data buffer over multiple device-specific memories
and to track the device kernels accessing the data, and cross arena to compart-
mentalize knowledge about platform-specific synchronization optimizations.

3.1 Arena

The arena representation captures the following abstract state information for a
single type of memory or memory framework:

– allocation state: the storage of the underlying memory framework may be
unallocated, internally-allocated, externally-allocated, or bind-allocated.

– bind-arena: identifies which other arena under the buffer state is this arena
bind-allocated with (if at all).

– native device: a fixed attribute identifying which device accesses the mem-
ory wrapped by this arena to execute its kernels.

– remote devices: a fixed attribute identifying additional devices that are
directly able to access the storage on this memory, not necessarily efficiently.
By ‘directly’ we mean the remote device is able to access the data without
involving another device (to perform a mem-copy, for example).

– map handles: for each remote device a handle that the device may use
to access the data storage on this memory. For example, an OpenCL ‘map’
operation would provide the CPU with a ‘map pointer’ handle to access the

Heterogeneous Data Sharing 151

OpenCL-allocated memory in an OpenCL-arena. The map handle for a cus-
tom accelerator’s memory arena may be a set of memory IDs that a remote
CPU may use to program a DMA engine. Therefore, the map handle may
have a platform- or memory-dependent format, but the handle is abstract in
the sense that it is never interpreted by the buffer-state or arena abstractions.

– map state: either unmapped, mapped or bimapped. Unmapped implies that
the data storage is currently accessible to the native device. Mapped implies
that the data storage is available to an identified subset of remote devices
using their corresponding map handles. Bimapped implies simultaneous
access by the native device and an identified subset of remote devices.

– ref-count: tracks how many kernels executing on the native device have
currently been granted access to the data storage on this memory.

The allocation state captures whether storage has been allocated for the data
buffer on the memory wrapped by the arena. An internal-allocation implies that
the arena itself has allocated the storage, which will be de-allocated when the
buffer-state containing the arena is de-allocated. An external-allocation implies
that the application program or some other entity in the high-level programming
framework has already allocated storage on the wrapped memory, and wants
the buffer-state to use the available storage and the data on it. Bind-allocated is
crucial for optimizing the storage allocation and synchronization across different
types of memory holding the shared data buffer. It implies that the storage
has been allocated by another arena, and there is some specialized cross-arena
mechanism available to synchronize data between this arena and the another
arena. For example, an OpenCL-arena and a MainMem-arena may both bind-
allocate to an ION-arena – this means that storage was initially allocated inside
ION memory, and the OpenCL-arena and MainMem-arena are able to use the
ION-allocated storage pointer instead of allocating from their own memory pool.

An arena wrapper over a memory framework consists of the following aspects:

1. Abstract arena state: as described above.
2. Abstract arena operations API: a device-, platform- and memory-

agnostic API, used by the buffer state to manipulate the abstract arena state.
3. Arena implementation: concrete implementation that is highly specific

to the memory-type. Ties the abstract state and the abstract operations to
the specific memory-type or memory-framework wrapped by this arena; e.g.,
translate to OpenCL API calls in an OpenCL-arena.

For example, an OpenCL-arena would have native device as GPU, remote
device as CPU, internal-allocation would allocate an OpenCL buffer, external-
allocation would track a user-allocated OpenCL buffer, bind-allocate would cre-
ate an OpenCL buffer using memory from a MainMem-arena or ION-allocated
memory from an ION-arena, the map handle would be a CPU-accessible pointer,
the map state would correspond to the map/unmap state of the contained
OpenCL buffer, and ref-count would track how many GPU kernels currently
access the contained OpenCL buffer. A MainMem-arena would have both the
native and remote device as CPU, internal-allocation would malloc storage,

152 T. Kumar et al.

external-allocation would save a user-pointer, bind-allocation would use the
pointer from an ION-arena or the pointer provided by the OpenCL ‘map’ oper-
ation in an OpenCL-arena, the map-state would always be bimapped, and the
ref-count would track how many CPU kernels currently access the MainMem-
arena.

The abstract arena API provide the following operations to the buffer state:

– allocate storage – internal, external or bind-allocate.
– request/revoke access to one or more remote devices, or to the native

device. Depending on the specific arena implementation, granting access may
implicitly revoke access for another device, which the map state will reflect.

– up-ref tracks that one more kernel executing on the native device now has
access to the arena’s storage, while down-ref indicates a kernel completion.

The up-ref call increments the arena ref-count, while down-ref decrements it.
A ref-count = 0 indicates no kernel on the native device is accessing the storage
allocated in this arena, and hence any map-state changes are now permitted. A
ref-count > 0 would disallow any map-state change that would disrupt access to
executing kernels, possibly preventing data synchronization with another arena.

3.2 Cross-Arena

The cross-arena representation allows the following synchronization operations
to be overridden by platform-specific implementations:

– bool can copy(src-arena, dst-arena)
– copy(src-arena, dst-arena)

The buffer state provides a default implementation of these functions. In one
possible default implementation, the CPU serves as a remote device for every
arena, and the src and dst arenas can be mapped so the CPU may perform a
mem-copy. In general, can copy(src, dst) returns success if the data in the src
arena can be used to update the storage in the dst arena. It may fail for the
following reasons – (i) the src and dst do not share a common device in either
their native or remote devices (“the sync device”), or (ii) using the sync device
to access the data would require a change to src’s map state, but ref-count > 0 in
the src’s arena state currently prevents that change. Note that when the buffer
state invokes can copy() or copy(), the dst arena does not contain valid data and
has ref-count = 0, making any map-state change in dst feasible.

The cross arena interface in the DML provides a mechanism for plugging
in platform-specific and memory-type specific overrides for any combination of
src and dst arena types. The overridden copy() will also determine the best
manner to allocate storage in the dst arena (whether to internal-allocate or bind-
allocate), which frequently enables zero-copy optimizations. can copy() can also
return a cost to help buffer-state more precisely determine the cheapest copy
mechanism.

The buffer-state abstract machine may evaluate multiple combinations of
can copy() calls to determine the cheapest or most optimal “sync sequence”

Heterogeneous Data Sharing 153

currently available to synchronize data into a desired dst arena. On finding the
best available sequence, the abstract machine will call one or more copy(src,
dst) to enact data transfer on the chosen sequence. The copy() calls will allocate
storage in their corresponding dst arenas if the storage was not already allocated.
In this manner, more optimal bind-allocations that minimize synchronization
costs and the total amount of storage allocated may be performed.

Overlapping remote and native devices across arenas create a path for the
movement of data across corresponding memory types. Therefore, the buffer
state essentially needs to find the ‘shortest sync path’ from any src arena cur-
rently holding valid data to the dst arena needing to get the shared data of the
buffer. The path is over a graph whose nodes represent arenas, and an edge
connects two arenas if they have a sync device in common. The edge cost is
the cost returned by can copy(). Overridden copy() and can copy() may pro-
vide new mechanisms to synchronize data without changing the map-state of
the src, and may also introduce alternative remote devices. Therefore, platform-
specific cross-arena overrides often enhance the degree of concurrency possible
for executing kernels.

As an example, consider that memory-type m1 (wrapped in arena a1) cur-
rently holds valid data. Suppose device d2, the native device of memory-type m2
(wrapped in arena a2) needs to execute a kernel that reads the data buffer. Sup-
pose can copy(a1, a2) fails because a1’s map-state cannot be currently changed.
The buffer-state’s abstract machine can try can copy(a1, a3) and can copy(a3,
a2) to accomplish can copy(a1, a2) if another arena a3 has sync devices in com-
mon with a1 and a2. This may also create bind-allocations between a1, a2 and
a3.

Next, consider custom hardware accelerators accel1 and accel2 on an FPGA,
with their corresponding private memory banks m1 and m2 wrapped by arenas
a1 and a2, respectively. a1 has the CPU as remote device because m1 is con-
nected to the system bus, but a2 only has accel1 as remote device because accel1
can also access m2. Such a situation may occur in custom FPGA designs, and
our proposed abstractions will find a path to transmit data from the CPU to
accel2.

3.3 Buffer-State

The buffer-state representation contains the following information:

– arenas-set – one arena for each type of memory.
– valid-set – which arenas currently have valid data.
– requestor-set – which kernels (over multiple devices) currently access the

shared data buffer, what are their corresponding access types (read-only,
write-invalidate, read-write), and which arena is accessed by each kernel.

The high-level programming runtime makes a kernel-access request to the
buffer-state whenever a kernel k on device d needs to access data buffer b. Each
data buffer maintains a distinct buffer-state. To grant a kernel-access request,

154 T. Kumar et al.

the buffer-state’s abstract machine must first ensure that the access-type of the
request does not conflict with the accesses already granted; e.g., multiple read-
only access requests may be granted, but only one write-invalidate or read-write
request may exist in the requestor-set. Secondly, the buffer-state must ensure
that an arena with native device d has been (i) storage allocated and (ii) the
arena either already has valid data, or a sequence of can copy() calls have been
found that will make the latest data buffer contents available on the arena. If so,
the buffer-state will issue the corresponding sequence of copy() calls, and return
a “grant-success” to the high-level runtime. A “grant-failure” would prevent k
from executing, whereby the DML would force a serialization in the runtime
until one or more of the already executing kernels complete and are removed
from the requestor-set. Completion of another kernel k2 may perhaps resolve an
access-type conflict with k. Or, the arena a2 associated with k2 may now allow
map state changes suitable for copying valid data out from a2 into the arena
needed for executing k.

A kernel k may be represented in the requestor-set using any encoding scheme
suitable for the high-level runtime. For example, a kernel could be represented
simply by a pointer if the high-level runtime has a unique pointer to each ker-
nel, or the kernel may be represented by a more complex data structure in the
requestor-set. The only requirement is for the kernel representation to support an
equality test, so the presence of a kernel k can be checked for in the requestor-set.

Our proposed data management layer relies on acquire-release semantics to
provide kernels access to a shared buffer. Either the entire buffer is made available
to a kernel or none of it is. For this reason, it is sufficient to maintain a valid-set,
where each arena can be marked as holding valid data or as invalid. All arenas
that are marked valid are considered to hold identical data contents.

3.4 Correctness Under Concurrent Kernel Access Requests

The following steps are taken by the buffer state on a kernel access request.
Invariant properties at each step provide the requisite correctness guarantees
under arbitrary concurrent requests from the high-level programming runtime.

Terms Given kernel k requesting access to shared buffer b:

1. RS(b): Requestor-set of b, the kernels that currently access b.
2. Kernel’s device d: the device k will execute on. Can be more specific than

just the hardware component; e.g., d = cpu, gpucl, gpugl; when the GPU
supports both OpenCL and OpenGL kernels.

3. Kernel’s arena to access b: arena a under b’s buffer-state that k will use to
access the data buffer contents. The native device for a would be d.

Step 1 : Acquire(k, b): the runtime makes a kernel access request to the DML

1. A lock is held on b to stall another concurrent request on b until the current
request is granted or fails.

Heterogeneous Data Sharing 155

2. The access-type of k is checked against RS(b) – request fails if a conflict is
found with another kernel in RS(b), e.g., if k requests read-write access to b.

3. If a does not have valid data, buffer-state determines a can copy sequence to
make a valid, or returns failure if no such sequence currently exists.

4. k and its access-type is added to RS(b).
5. buffer-state executes the corresponding copy() sequence, to make a valid.
6. change a to unmapped state or bimapped state to allow access by k

(unmapped vs bimapped depends on the arena-wrapper implementation).
7. a.upref()

Invariant: Either k fails to acquire b, or k’s arena a is identified, has valid data,
and has been put in a map-state suitable for access by k.

Step 2 : Execute(k): runtime executes k after acquiring all its buffers.

1. No lock is held on b, allowing concurrent kernel access requests involving b to
be made while k executes.

2. k executes and accesses the storage inside a. For example, an OpenCL k would
be launched with the OpenCL buffer extracted from inside b’s OpenCL-arena.

Invariant: The map-state of a will remain unmapped or perhaps become
bimapped during the execution of k. No Acquire(k2, b) or Release(k2, b) for
a concurrent kernel k2 may make a inaccessible to k. a will continue to hold the
latest valid data of the shared buffer b until k completes execution.

Step 3 : Release(k, b): runtime relinquishes access to b from k once k has
completed execution.

1. A lock is held on b to update buffer-state of b safely.
2. k is removed from RS(b).

A b-specific lock is held only for the duration of the Acquire and Release
calls involving b. Kernel execution is allowed to happen without the lock held.
The steps above have the annotated invariants that guarantee correctness. High
concurrency in kernel execution is facilitated by (i) having individual locks for
buffers, and (ii) only briefly holding those locks for associated Acquire and
Release.

4 Use in a Heterogeneous Programming Runtime

We incorporate our proposed DML inside one high-level framework for C++
heterogeneous programming, the Qualcomm Symphony System Manager SDK
[23,24] for mobile SoCs. Section 3 described how the DML ensures correct con-
current access to a single buffer. However, a kernel k often needs to access mul-
tiple buffers b1, b2, etc. during its execution. In accordance with our use of the
acquire-release model, k must acquire all its buffers upfront before it can begin

156 T. Kumar et al.

Fig. 3. High-level compute APIs in the SDK enabled by the data management layer.

execution. If any buffer acquire fails, all previously acquired buffers must be
released, and the whole operation to acquire buffers for k must resume from
scratch.

Since the Acquire and Release operations hold a buffer’s lock only for the
duration of that operation, there is never a situation where a thread in the
SDK would acquire a lock for b2 while holding a lock for b1. Thus, deadlock
is avoided. Unfortunately, kernels k1 and k2 may acquire overlapping buffers
in different orders, creating the possibility of livelock. The SDK avoids livelock
by having each kernel acquire and release its buffers in a canonical order—the
sorted order of the pointers to the DML’s buffer-state objects representing the
buffers.

The SDK supports a number of existing heterogeneous compute and mem-
ory frameworks. The SDK has execution back-ends that wrap the compute APIs
of OpenCL, OpenGL and proprietary custom devices to launch kernels, while
delegating the data allocation and synchronization aspects to the DML. Due to
the DML, the SDK exposes very high-level programming APIs with an abstract
representation for program data. As shown in the sample SDK program in Fig. 3,
there are no explicit calls to allocate or synchronize data. In fact, the creation
of buf c does not imply any storage allocation for it. buf a and buf b illustrate
the use of an externally-allocated MainMem-arena for each of them. However,
buf c only needs to allocate storage when accessed by a kernel. The execution of
t1 requires OpenCL-arenas to be created under the buffer-states for buf a, buf b
and buf c, and OpenCL storage to be allocated inside them. Due to cross-arena
optimizations, buf a and buf b bind-allocate their OpenCL arenas to the cor-
responding MainMem-arenas. The SDK accepted “program structure” hints for
buf c, indicating future access on the GPU and DSP. Therefore, the SDK relies
on the program structure information to first create an ION-arena inside buf c’s
buffer-state, so that the subsequent launch of t1 would cause the OpenCL-arena
to bind-allocate to the ION-arena. Without the SDK’s initial transformation of

Heterogeneous Data Sharing 157

Table 1. Comparison of operation counts and execution time.

Call Vector-Add Matrix-Multiply BFS

hand noopt opt hand noopt opt hand noopt opt

CL map 1 3 1 0 3 0 0 20 0

CL unmap 0 2 0 0 2 0 0 18 0

CL read 0 0 0 1 0 1 13 0 13

CL write 2 0 2 2 0 2 18 0 18

CL kernel 1 1 1 1 1 1 24 24 24

alloc - 6 3 - 6 3 - 14 7

bind - - 3 - - 3 - - 7

memcpy - 3 0 - 3 0 - 31 0

Time (ms) 31.74 41.20 32.44 1011 1023 1015 149.57 156.31 154.54

buf c’s buffer-state to first allocate ION-storage, the DML would allocate arena
storage in the order of use by kernels—allocating independent storage in the
OpenCL-, ION-, and MainMem-arenas, and produce two unnecessary memory-
copies at the launch of t2 and t3. The SDK also provides “programming pattern”
constructs, such as heterogeneous pipelines and parallel-fors, which provide a
much more precise order of device access than the hints, allowing the SDK to
perform additional buffer-state transformations.

Table 2. Comparison of operation counts and execution time for SLAMBench.

Call GPU GPU-DSP GPU-CPU

hand noopt opt noopt opt noopt opt

CL map 0 41480 12066 41480 12945 12314 5280

CL unmap 0 41479 12065 41479 12944 12308 5274

CL read 12066 0 0 0 0 0 1752

CL write 29414 0 28534 0 28534 0 4402

CL kernel 34252 34252 34252 33372 33372 10120 10120

alloc - 58844 29429 57965 29429 10587 5297

bind - - 29415 - 28536 - 5290

memcpy - 41480 0 41480 0 12314 0

Time (ms) 100447 109357 105356 119538 114187 112818 108484

158 T. Kumar et al.

5 Experimental Evaluation

We run experiments on a Qualcomm Snapdragon
TM

mobile SoC [21] with multi-
core CPUs and an integrated GPU and DSP. We port the following applications
to the SDK, and benchmark against hand-optimized OpenCL versions.

1. Vector-Add: Adds two 1-million element vectors on the GPU.
2. Matrix-Multiply: Multiplies two 512 × 512-element matrices on the GPU.
3. BFS from the Rodinia benchmark suite [5]. Performs a breadth first search

on a graph of 1 million nodes. Executes one kernel once on the GPU and a
second kernel in a loop on the GPU.

4. SLAMBench. [15] solves the Simultaneous Localization and Mapping
(SLAM) problem using the KinectFusion algorithm [16]. The algorithm con-
sists of 9 kernels executed within multiple levels of loops. We use SLAM-
Bench’s reference data-set living room traj2 loop.raw consisting of 880 image
frames.

Vector-Add and Matrix-Multiple execute a single kernel on the GPU once. The
CPU creates the inputs and reads back the result to verify. BFS and SLAM-
Bench are real-world applications that invoke multiple kernels repeatedly. There
is repeated synchronization required between CPU steps and GPU kernels in
each loop iteration. We also extend SLAMBench to execute the “mm2meters”
kernel on the DSP. We count the number of OpenCL API calls in the SDK and
hand-optimized versions—clEnqueue{Map, Unmap, ReadBuffer, WriteBuffer,
NDRangeKernel}. We also compare execution times, averaged over 5 runs.

The hand-optimized implementations of the applications optimize perfor-
mance and minimize use of the OpenCL calls based on the programmer’s knowl-
edge of the program structure and data access patterns. The SDK hides the
low-level details from the programmer, while being conservative to ensure cor-
rect data synchronization at device kernel execution boundaries. We evaluate
the SDK in two modes: (1) non-optimized, where all storage allocation and data
synchronization decisions are defered to our proposed DML, which chooses the
appropriate actions in the dynamic order of the kernel access requests received,
and (2) optimized where the SDK plugs cross-arena optimizations into the DML
and manipulates the buffer-state representation to force optimal storage alloca-
tion decisions based on advance knowledge of the program structure (Sect. 4).

Table 1 shows the count of CL operations and execution time for the hand-
optimized OpenCL implementations (hand) against implementations using the
SDK– both non-optimized (noopt) and optimized (opt). We also compare the
number of storage allocations (alloc), the number of bind-allocations across are-
nas in a buffer-state (bind), and the number of memory-copies for data synchro-
nization (memcpy). Vector-Add and Matrix-Multiply create two input buffers
and one output buffer. Therefore, hand incurs two CL write operations to syn-
chronize the inputs to the GPU, and one CL map or CL read to read back the
GPU result. noopt allocates separate main-memory and GPU-memory storage
for each buffer, resulting in an explicit mem-copy between the two allocated

Heterogeneous Data Sharing 159

storages of the buffer, and a CL map or unmap. In contrast, in opt the SDK uses
cross-arena optimizations to bind-allocate, creating a single storage per buffer
and avoiding mem-copies. Therefore, opt matches both the CL operation count
and the execution time of hand. The results for BFS show a similar trend.

Table 2 compares multiple implementations of the SLAMBench application:
(1) hand-written OpenCL (GPU-hand), where all the kernels execute on the
GPU, (2) SDKGPU, where all kernels execute on the GPU, (3) SDKGPU-DSP,
where all kernels execute on the GPU except the “mm2meters” kernel which
executes on the DSP, and (4) SDKGPU-CPU, which executes the “track” and
“reduce” kernels on the CPU and the rest on the GPU. Each SDK implementa-
tion is evaluated in non-optimized (noopt) and optimized (opt) modes. Table 2
shows that GPU-hand executes the fastest, with GPU-opt within 5%. SDK opt
versions show a substantially reduced number of OpenCL calls, storage alloca-
tions and mem-copies compared to noopt, resulting in execution time gains that
range between 3.8 and 4.7%.

Overall, these results demonstrate that (1) the SDK does not substantially
increase execution time over the hand-optimized implementations, successfully
bounding the overheads of the DML, and (2) the DML abstractions allows the
SDK to correctly and easily use platform-specific and program-structure knowl-
edge to achieve significant performance improvements. Using the data manage-
ment techniques presented in this paper and the SDK’s high level abstractions
we make it easy for programmers to get performance within 5–10% of hand
optimized with much less effort.

6 Related Work

Distributed Shared Memory (DSM) is an abstraction that provides a shared
address space over a multitude of, potentially heterogeneous, computing nodes.
DSM enables the free sharing of pointers across the different nodes, ensuring
a common logical memory space for accessing data. Several ideas have been
proposed and implemented to improve the performance of DSM, such as reducing
communication overhead by sending only the updates to a page as opposed
to the entire page, and lazy release consistency—delaying the propagation of
changes until the page is acquired by a node [12]. These systems address issues
in which nodes are loosely connected and the latency of communication is high.
InterWeave [6] assumes a distributed collection of servers and clients. Servers
maintain persistent copies of shared data and coordinate sharing among clients
by mapping cached copies of needed data into client local memory. The unit
of sharing is a segment, with addresses represented as URLs. While such an
approach works for large clusters of computers, it is too heavy for mobile SoCs.

Asymmetric DSM (ADSM) [9] is a programming model that implements a
specialized DSM over a heterogeneous computing system, with CPUs and other
accelerators. By allowing unidirectional CPU access to accelerator memory (the
accelerator does not have access to the CPU memory), the overheads associated
with ensuring coherency are significantly reduced.

160 T. Kumar et al.

Liu et al. describe a system that allows sharing of virtual memory between
CPUs and accelerators [13]. Data transfer between the CPU and accelerator
memories is achieved through an explicit communication buffer maintained by
the runtime. The synchronization of data across the different memories is per-
formed by the runtime, and programmers do not have finer control. Our system
differs from this approach, in that we do not enforce a shared virtual address
space.

A number of heterogeneous tasking models have proposed various mecha-
nisms to address memory management: OmpSs [8] extends OpenMP [19] to
enable concurrent execution of tasks on heterogeneous devices. Data transfers
are inserted by the compiler, which performs array slice analysis to determine
the necessary data movements. The programmer is responsible to define the
read/write sets for the heterogeneous tasks. StarPu [4] is a task based hetero-
geneous runtime that allows the user to specify where the memory needs to be
allocated via an API call. Fluidicl [20] is an OpenCL runtime that enables a
kernel execution to be partitioned across the CPU and GPU. A data merge step
on the GPU combines the partial results. OpenACC [3] supports heterogeneous
systems where CPU and accelerator either share memory, or have separate mem-
ories. A “data” construct takes care of synchronizing data between the host and
device memories.

Heterogeneous System Architecture (HSA) [2] provides a unified address
space between CPUs and GPUs by performing memory management in hard-
ware. In terms of synchronization, it offers cross-device atomic operations. This
model is similar to shared memory programming in multi-core CPUs, with some
additional restrictions on the size of coherence units and memory regions avail-
able for sharing, but it is too low level and requires expert knowledge of the
underlying hardware.

7 Conclusions

We have proposed a data management layer based on a novel abstract repre-
sentation over heterogeneous memory. The use of the data management layer
hides the considerable complexity and platform-dependence that programmers
of heterogeneous applications currently face. We advocate a software architec-
ture where a high-level programming framework, whether general-purpose or
domain-specific, may rely on our data management layer to easily avoid dealing
with the complexities of multiple memory frameworks and platform variations.
The high-level frameworks may focus on domain and application-specific opti-
mizations and provide simpler high-level programming abstractions to the users,
while relying on the data management layer to provide correct synchronization of
data, optimized to the platform and program properties, and enhance the concur-
rent sharing of data over the available heterogeneous devices. We incorporated
our data management layer into the Qualcomm Symphony System Manager
SDK, and demonstrated using both micro-benchmarks and large multi-kernel
workloads that the benefits of high-level user abstractions, platform-portability

Heterogeneous Data Sharing 161

and strong correctness properties are achieved with less than 5% performance
overhead compared to hand-optimized OpenCL applications.

Acknowledgement. Qualcomm and Snapdragon are trademarks of Qualcomm Incor-
porated, registered in the United States and other countries. Qualcomm Snapdragon
and Qualcomm Symphony System Manager are products of Qualcomm Technologies,
Inc.

References

1. IvyTown Xeon + FPGA: The HARP program. Intel Corp
2. HSA programmer’s reference manual: HSAIL virtual ISA and programming model,

compiler writer, and object format (BRIG). Technical report, HSA Foundation,
July 2015

3. The OpenACC: Application Programming Interface. Technical report, OpenACC-
Standard.org, October 2015

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
Comput.: Pract. Experience 23(2), 187–198 (2011)

5. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: 2009
IEEE International Symposium on Workload Characterization, IISWC 2009, pp.
44–54, October 2009

6. Chen, D.Q., Dwarkadas, S., Parthasarathy, S., Pinheiro, E., Scott, M.L.: Inter-
Weave: a middleware system for distributed shared state. In: Dwarkadas, S. (ed.)
LCR 2000. LNCS, vol. 1915, pp. 207–220. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-40889-4 16

7. Compute unified device architecture (CUDA). http://www.nvidia.com/object/
cuda home new.html

8. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Process. Lett. 21(02), 173–193 (2011)

9. Gelado, I., Stone, J.E., Cabezas, J., Patel, S., Navarro, N., Hwu, W.W.: An asym-
metric distributed shared memory model for heterogeneous parallel systems. In:
Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XV, pp. 347–358. ACM,
New York (2010)

10. Hu, Q., Gumerov, N.A., Duraiswami, R.: Scalable fast multipole methods on dis-
tributed heterogeneous architectures. In: Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC
2011, pp. 36:1–36:12. ACM, New York 2011

11. The Android ION memory allocator. https://lwn.net/Articles/480055/
12. Keleher, P., Cox, A.L., Dwarkadas, S., Zwaenepoel, W.: TreadMarks: distributed

shared memory on standard workstations and operating systems. In: Proceedings of
the USENIX Winter 1994 Technical Conference on USENIX Winter 1994 Technical
Conference, WTEC 1994, p. 10. USENIX Association, Berkeley (1994)

13. Wei Liu, et al.: A balanced programming model for emerging heterogeneous mul-
ticore systems. In: Proceedings of the 2nd USENIX Conference on Hot Topics in
Parallelism, HotPar 2010, p. 3. USENIX Association, Berkeley (1994)

14. Mittal, S., Vetter, J.S.: A survey of CPU-GPU Heterogeneous Computing Tech-
niques. ACM Comput. Surv. 47(4), 1–35 (2015)

https://doi.org/10.1007/3-540-40889-4_16
https://doi.org/10.1007/3-540-40889-4_16
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://lwn.net/Articles/480055/

162 T. Kumar et al.

15. Nardi, L., et al.: Introducing SLAMBench, a performance and accuracy benchmark-
ing methodology for SLAM. In: 2015 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5783–5790, May 2015

16. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and track-
ing. In: 2011 10th IEEE International Symposium on Mixed and Augmented Real-
ity (ISMAR), pp. 127–136, October 2011

17. Jouppi, N.P., et al.: In-datacenter performance analysis of a Tensor Processing
Unit. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, pp. 1–12. ACM, New York (2017)

18. OpenCL: The open standard for parallel programming of heterogeneous systems.
http://www.khronos.org/opencl

19. The OpenMP API specification for parallel programming. http://www.openmp.
org/

20. Pandit, P., Govindarajan, R.: Fluidic kernels: cooperative execution of OpenCL
programs on multiple heterogeneous devices. In: Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization, p.
273. ACM (2014)

21. Qualcomm Snapdragon: Qualcomm Technologies Inc. https://www.qualcomm.
com/products/snapdragon

22. Shreiner, D., The Khronos OpenGL ARB Working Group: OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1, 7th edn.
Addison-Wesley Professional (2009)

23. Heterogeneous computing made simpler with the Symphony SDK. https://
developer.qualcomm.com/blog/heterogeneous-computing-made-simpler-
symphony-sdk

24. Qualcomm Symphony System Manager SDK. https://developer.qualcomm.com/
software/symphony-system-manager-sdk

http://www.khronos.org/opencl
http://www.openmp.org/
http://www.openmp.org/
https://www.qualcomm.com/products/snapdragon
https://www.qualcomm.com/products/snapdragon
https://developer.qualcomm.com/blog/heterogeneous-computing-made-simpler-symphony-sdk
https://developer.qualcomm.com/blog/heterogeneous-computing-made-simpler-symphony-sdk
https://developer.qualcomm.com/blog/heterogeneous-computing-made-simpler-symphony-sdk
https://developer.qualcomm.com/software/symphony-system-manager-sdk
https://developer.qualcomm.com/software/symphony-system-manager-sdk

Parallel Roles for Practical Deterministic
Parallel Programming

Michael Faes(B) and Thomas R. Gross(B)

Department of Computer Science, ETH Zurich, Zürich, Switzerland
{mfaes,trg}@inf.ethz.ch

Abstract. Deterministic parallel programming languages are attractive
as they do not allow data races, deadlocks, or similar kinds of concurrency
bugs that are caused by unintended (or poorly understood) parallel exe-
cution. We present here a simple programming model for deterministic
parallel programming that is based on roles. The programmer specifies
the role that an object plays for a task (e.g., the readonly role), and com-
piler and runtime system together ensure that only those object accesses
are performed that are allowed by this role. An object may play differ-
ent roles in the course of a program’s execution, giving the programmer
considerable flexibility in expressing a parallel program.

The model has been implemented in a Java-like language with refer-
ences and object sharing. Preliminary results indicate that the runtime
overhead is moderate (compared to standard Java programs), and that
the compiled programs achieve substantial parallel speedups.

1 Introduction

Deterministic parallel programming languages avoid bugs caused by the unin-
tended or poorly understood parallel execution of programs. These languages
attempt to make concurrency bugs impossible by design [5,23,24,37,38].

Recently, several projects proposed static effect systems to support determin-
istic parallel programming (dpp) for imperative and object-oriented languages
[6,18,20,25]. In such systems, the programmer declares the side effects of tasks
and methods by indicating the memory regions that are read or modified. These
effect specifications are then used by the compiler or the runtime system to check
that tasks with interfering effects are not executed in parallel.

Memory regions as used in effect systems may allow a precise description
of which memory locations are read or modified by a program unit. However,
object-oriented programs are not structured (or documented) based on memory
locations but instead use objects as the unit of reasoning. Memory locations pro-
vide little abstraction and are at too low a level. Since objects are the foundation
of object-oriented programs, our approach to dpp is based on objects. The first
idea is to leverage the concept of roles, which have a long-standing tradition in
sequential object-oriented programming and modeling, where they are used to
characterize the different “roles” an object may assume when collaborating with

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 163–181, 2019.
https://doi.org/10.1007/978-3-030-35225-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_12

164 M. Faes and T. R. Gross

other objects [15,21,28,30,31]. Our work builds on this foundation and uses roles
as the key abstraction to specify and reason about parallelism. Together with
the concept of role transitions, roles form the basis for a new object-oriented
dpp model.

In this model, every object plays a role in each task, and these roles change
dynamically when tasks start or finish. Because the role of an object defines the
legal interactions with that object, roles provide a concise way to reason about,
document, and specify the effects of concurrent tasks. In contrast to effect sys-
tems, the model does not focus on pieces of code and their effects on memory
regions; instead, it focuses on objects and the roles they play in parallel – hence
the name Parallel Roles. By employing a specific set of roles and role transition
rules, the model guarantees that tasks do not interfere. Noninterference is not
checked at compile time or before a task is started, like in effect systems; instead,
it is enforced during the execution of tasks. However, unlike in speculative sys-
tems, noninterference is enforced deterministically and without rollback.

This dynamic approach makes it possible to design dpp languages with simple
program annotations, without the need for special syntactic constructs for par-
allel execution, and without any kind of aliasing restriction. To illustrate these
points, we give an overview of a roles-based, Java-like language we call Rolez.
This language enables programmers to parallelize a program by simply marking
a method as a “task” and declaring one of three possible roles for its parameters:
readwrite, readonly, or pure. When a task is invoked, it is executed in paral-
lel to the invoking code, while the runtime system prevents the two concurrent
parts of the program from interfering, based on the declared roles.

Fig. 1. Rolez example. The role declarations
are highlighted in green and orange. (Color
figure online)

Figure 1 illustrates the simplic-
ity of Rolez in a snippet of an
encryption program we use in our
evaluation. The encryption scheme
is block-based, so different parts
of the data can be encrypted in
parallel. Note that for the sake
of clarity, some annotations are
left out; Sect. 3.2 explains what
additional annotations are required.
The encrypt task has two main
parameters: src and dst, both of
type Array. The task declares the
readonly role for the src array,
which the task only reads, and the readwrite role for the dst array, to which
the task writes the encrypted data. In addition, the encrypt task has a param-
eter that defines the part of the src array that should be encrypted. The
parallelEncrypt method achieves parallelism by creating multiple destination
arrays and starting a separate encrypt task for each of them. Noninterference is
guaranteed in two ways: First, the plaintext array plays the readonly role in
all tasks, which means that it cannot be modified by any of them. Second, every

Parallel Roles for Practical Deterministic Parallel Programming 165

task writes to a separate destination array. In terms of roles, a destination array
that plays the readwrite role in one task plays the pure role in all other tasks
(including the parent task), meaning that it is inaccessible. However, as soon as
all tasks have finished, all destination arrays are readwrite again in the parent
task, so they can be merged into a single array. When the merge method in the
parent task tries to read from the destination arrays, it is automatically blocked
until all encrypt tasks have finished.

To demonstrate the viability of roles-based languages, we implemented a pro-
totype compiler and runtime system for Rolez and use a suite of parallel programs
to assess its effectiveness. These programs contain a range of parallel patterns
that are expressible with the three mentioned roles. All programs achieve sub-
stantial speedups over a sequential Java version and exhibit a reasonable runtime
overhead compared to a manually parallelized Java programs.

To summarize, the key contributions of this paper are the following:

1. an object-oriented parallel programming model, based on three roles:
readwrite, readonly, and pure that guarantee determinism (Sect. 2);

2. an overview of the design of Rolez, a roles-based, Java-like dpp language that
requires only simple role declarations from a programmer (Sect. 3);

3. a preliminary evaluation of the Rolez prototype for 4 parallel programs. Rolez
can express many parallel patterns found in these programs and achieves
substantial speedups over sequential Java for most of them (Sect. 4).

2 The Parallel Roles Model

This section presents the Parallel Roles programming model. We first present a
simple core version for single objects and then extend it to cover object graphs.

2.1 Core Parallel Roles

Fig. 2. The components of an
object: fields, methods, roles

The main idea behind Parallel Roles is to use
the object, the key concept of object-oriented pro-
gramming (OOP) as the basis to reason about
concurrent effects and parallelism. In the stan-
dard oop model an object is a collection of fields,
which contain the object’s state, plus a collection
of methods, which define the object’s functional-
ity. In the Parallel Roles model, every object has
a third component: the roles it currently plays
for the different tasks in the program. This is
illustrated in Fig. 2.

The fields and methods of an object define the object’s sequential behavior.
That is, they define how the object behaves when other objects interact with it
in a single task. On the other hand, the roles of an object define the object’s
concurrent behavior. Specifically, they define which interactions are legal in which

166 M. Faes and T. R. Gross

tasks and what happens when an illegal interaction occurs. Like the content of
an object’s fields, the roles an object plays may change over time. However, in
contrast to the fields’ contents, which (in general) can be modified arbitrarily,
the changing of roles follows strict rules. These role transition rules restrict
the combinations of roles an object may play in different tasks at the same
time. Those restrictions in turn guarantee noninterference and, by extension,
determinism. In the following paragraphs, we explain these core concepts, roles,
tasks, and role transitions, in more detail.

Fig. 3. Operations permitted by the roles

Roles. The role of an object
defines how other objects may
interact with that object, i.e.,
which kinds of field operations they
may perform and, by extension,
which methods they may invoke.
There are three roles: readwrite,
readonly, and pure. readwrite permits both field read and field write oper-
ations, while readonly permits only read operations. pure permits neither,
except if a field is final (i.e., it cannot be modified, as in Java); then it may be
read. Final fields are treated specially because they can never be the source of
interference. Figure 3 summarizes these rules.

The set of permitted field operations also defines the set of permitted meth-
ods. readwrite permits calls to any method, while readonly permits only calls
to methods that do not modify the target object. pure permits only calls to pure
methods, which are the object-oriented counterpart of a pure function: They are
side-effect free (i.e., they do not write to any of the target object’s fields) and
their result is always the same, given the same target object (i.e., they do not
read any of the target object’s non-final fields). As an example, pure for some
Account object would only permit calls to getAccountNo() (assuming account
numbers are immutable), readonly would also permit calls to getBalance(),
and readwrite would permit calls to all methods, including withdraw().

Tasks and Role Declarations. Tasks are execution contexts, like threads. When
the execution of a program begins, all objects interact with each other in the
main task. A task may start other tasks (called child tasks) and thereby create
multiple concurrent execution contexts. While tasks are similar to threads, there
is a key difference: When defining a task, the programmer needs to declare the
role that each object is supposed to play in that task. With these role declarations,
the programmer controls the role transitions that objects perform, as described
next.

Role Transitions. As mentioned earlier, there are rules about when and how the
roles of an object change, i.e., when and how an object performs a role transition.
Most importantly, role transitions only take place when a task starts or finishes.
When a new task starts, every object for which the task declares a role performs
a role transition such that its role in that task matches the declared one. Hence,

Parallel Roles for Practical Deterministic Parallel Programming 167

at the beginning of a task, every object plays the declared role in that task.
However, a role transition may also change the role an object plays in the parent
task (the task that starts the new task). For example, this is the case if the
new task declares the readwrite role for an object. In such a case, the object
becomes pure in the parent task, to prevent interference. Therefore, while an
object is guaranteed to play the declared role at the beginning of a task, a role
declaration does not state that the object plays this role for the whole duration
of the task. What a role declaration does state is that the object may never play
a more permissive role than the one declared, in either that task itself or any
task that is (transitively) started by it. That is, an object may never play a role
that permits an operation the declared role does not permit. For example, if the
declared role of an object is readonly, this object can never play the readwrite

role in that task, since readwrite is more permissive than readonly.

Fig. 4. The core role transition rules

The rules in Fig. 4 define when and how the roles of an object can change. As
we explain shortly, these rules are designed such that they guarantee noninter-
ference for every object. Rule 1 concerns newly created objects, while Rules 2–4
concern the starting of tasks and Rules 5–8 the finishing of tasks.

Figure 5 illustrates these rules by showing a series of role transitions an object
can go through. Initially, when the object is created in task t1, it is readwrite in
t1 and pure in the tmain task. It is then shared with two tasks: t2, which declares
it as readwrite, and later t3, which declares it as readonly. When t2 and t3
start and finish, the object performs a role transition. After t3 has finished, it is
again readwrite in t1. Finally, t1 finishes and the object becomes readwrite

in tmain.

Guarding. An object may never play a role that is more permissive than the role
declared in a given task. However, the object may temporarily play a less permis-
sive role. When this happens, some operations may become illegal, despite being

168 M. Faes and T. R. Gross

Fig. 5. Illustration of the role transition rules for an object. The gray arrows from the
left to the right are tasks, the black boxes represent the same object in different points
in time, and the small colored boxes show the roles the object plays in each task. (Color
figure online)

legal under the declared role. For example, if an object is declared readwrite

in a task, it might play the readonly role for some time, because it was shared
with another task. This discrepancy between declared and current role is the sub-
ject of guarding. The idea of guarding is to wait until the current role equals the
declared role: When an operation is performed that is legal under the declared
but not under the current role of the target object, this operation is not an error
but instead is blocked until the object plays its declared role again.

We illustrate guarding with a simplified Rolez snippet (from a program we
later use for the evaluation) and a corresponding illustration, in Fig. 6. This
program renders animated 3d scenes and encodes the rendered images as frames
in a video file. The main loop consists of three steps: First, the scene is rendered
for a fixed point in (animation) time, then the resulting image is encoded as a
video frame, and finally an animation step is performed to update the scene for
the next frame. The encoding and the animation step can be done in parallel,
which is why encode is declared and invoked as a task. Because encode only needs
to read the image, it declares it as readonly. When the encode task starts, the
image performs a role transition and becomes readonly also in the “main”
task. While animateStep does not modify the image, the rendering in the next
iteration does. In case the render method begins execution before the encode

task has finished, guarding blocks the execution of render to prevent it from
interfering with the encoding. Once encode finishes, the render method resumes
execution. Note that in the version of the program used for the evaluation, two
image buffers are used, to enable the encode task to also execute in parallel to
render.

Properties. We now examine the properties of Parallel Roles. First of all, the
transition rules ensure the soundness of role declarations, i.e., that no object may
play a more permissive role than its declared role in both the task that declared
it and any task it (transitively) starts. This follows from two observations: First,

Parallel Roles for Practical Deterministic Parallel Programming 169

Fig. 6. Guarding example. The left side shows (simplified) Rolez code and the right
side illustrates how guarding prevents encode from interfering with the render method.

no transition rule permits an object with a declared role to play a role it has not
played before in a given task. And second, none of the rules permit an object
to be shared with a task that declares a more permissive role than the object
currently plays. Note that Rule 8 does permit objects to play a more permissive
role (readwrite) in the parent task than before (pure), but since these objects
were newly created, they do not have a declared role in the parent task.

Second, the transition rules guarantee that no object ever plays the
readwrite role in one task while it plays the readwrite or the readonly

role in another task. We call this property exclusiveness of readwrite and we
show it using induction: When an object is created, it is readwrite for the
creator task and pure for all other tasks (Rule 1). This is the base case. For
the inductive step, we assume the object is either readwrite in a single task or
readonly in a number of tasks, but in both cases pure for all other tasks. After
any start transition (Rules 2 or 3), this rule still holds. After any transition at
the end of a task (Rules 5, 6, or 8), the condition also still holds. In particular,
Rule 6 ensures that an object that is readonly in any task can only become
readwrite again once there is no task left in which it is readonly. Therefore,
no series of transitions may ever violate the exclusiveness of readwrite.

Exclusiveness of readwrite, combined with guarding and the definitions of
permitted operations in Fig. 3, implies that if an object can be modified in one
task, then the mutable parts of it cannot be accessed by any other task until the
modifying task has finished. Thus, the model guarantees noninterference. Note
that two mechanisms to prevent interference are combined: (i) An operation that
is illegal with respect to the declared role of an object results in an error. This
could be a runtime or a compile-time error, depending on the language. (ii) An
operation that is illegal with respect to the current role of an object, but not
with respect to its declared role, is blocked by guarding until the object plays a
role under which the operation is legal.

Note that noninterference is much stricter than data race freedom. Since the
exclusiveness of readwrite holds for all objects in the program, no modification
of a task t can be observed by any other task, as long as t is running. Therefore,
tasks cannot communicate, except for passing arguments and waiting for each

170 M. Faes and T. R. Gross

other’s results. This restriction is the key to guarantee determinism. However,
Parallel Roles could be extended with nondeterministic roles to enable inter-task
communication for parallel applications that profit from nondeterminism.

Since noninterference is achieved in part by blocking the execution of oper-
ations, it may seem like the model is prone to deadlock. However, this is not
the case: Whenever an operation is blocked in a task t1, it is because the tar-
get object currently plays a less permissive role than its declared role. This can
only be the case if t1 shared the object with another task t2. Since objects can
only be shared when a task is started, t2 must be a child task of t1. Therefore,
tasks can be blocked only by child tasks, and this property precludes cyclic
dependences. Thus, Parallel Roles not only guarantees noninterference, but also
deadlock freedom. Together, these two properties imply that Parallel Roles guar-
antees determinism.

To summarize, Parallel Roles combines roles, which determine the legal oper-
ations for an object, with transition rules, which determine the possible combina-
tions of roles an object may play in parallel. Tasks are prevented from interfering
using a combination of runtime or compile-time checking and guarding.

2.2 Object Graphs

A shortcoming of the transition rules presented so far is that they do not consider
objects with references to other objects. That is, they do not define what happens
to objects that are reachable from an object that performs a role transition.

A safe but impractical definition would be that objects are simply unaffected
by the role transitions of their referrers. However, with such a definition, an
object could easily break when shared with another task, because objects it
depends on would play a different role than itself. For example, consider a Bank

object, which contains references to all Accounts of that bank. The Bank has a
method payInterest, which computes and deposits the yearly interest for each
of its accounts. If such a Bank object was shared with a task t that declares it
as readwrite, calling the payInterest method in t would fail, since all of its
Account objects would be pure and their balance could not be accessed in t.

We employ a practical, but simple and safe way to handle object graphs.
Expressed as two additional role transition rule, it states:

9. Whenever an object o is about to perform a role transition, all objects that
are reachable from o perform the same transition. The transitions only take
place once all these objects play one of the roles o is required to play. The
implicitly declared role of these objects is the same as for o. In case an object
is reachable from multiple objects that perform different role transitions at
the start of a task, that object performs the transition that makes it play
the most permissive role in the new task.

10. When a task t that declared the readwrite role for an object o is about to
finish, t waits until all objects that were reachable from o when t started are
readwrite. Then, t finishes and all these objects become readwrite in t’s
parent task.

Parallel Roles for Practical Deterministic Parallel Programming 171

With Rule 9, when an object is shared with a task, the task will not start until
that object and all objects that are reachable from it play the required role. For
example, when a Bank object is shared with a task that declares it as readwrite,
not only the Bank itself, but also all of its Accounts must play the readwrite role
before the task may start. Once they do, all these objects perform a transition
and become readwrite for the new task. Now, payInterest can be successfully
invoked in that task, because all required objects play the readwrite role.

Finally, Rule 10 concerns object graphs that are shared with a task that
unlinks some objects in the graph. Since these objects may still be used in the
parent task later, they also revert to their previous roles once the task finishes.

3 Rolez Language Overview

This section gives an informal description of a concrete programming language,
Rolez, which implements the Parallel Roles model presented in the previous
section. It is a Java-like language with a roles-based type system.

Fig. 7. Rolez code example for tasks, role declarations, and global singleton objects

3.1 Tasks and Role Declarations

Declaring and Starting Tasks. In Rolez, tasks are declared in the same way as
methods. Two different keywords, def and task, are used to distinguish the two.
Likewise, starting a task is expressed in the same way as invoking a method,
except for the keyword start, which replaces the dot. When an object is sup-
posed to be shared with a task, the programmer simply creates a corresponding
parameter for that task and passes the object as an argument when starting it.
Figure 7 shows a Rolez example program that illustrates these points. Lines 2
to 8 contain the declarations of a method and a task, while Lines 11 and 12 show
how these are called or started, respectively. Note that void return types can be
omitted.

172 M. Faes and T. R. Gross

Role Declarations. To declare the role of an object in a task, the programmer
annotates the corresponding task parameter with that role, as shown on Line 5.
This line indicates that the payInterest task requires a single object to be shared
with it, namely an Account object that plays the readwrite role. The parameter
is declared as readwrite because the payInterest modifies the balance of the
given account when calling deposit on Line 7. So when this task is started
on Line 12, the Account object that is passed as an argument performs a role
transition and becomes readwrite for the payInterest task and pure for the
main task.

Incidentally, both the payInterest and the main task have another parameter:
the “this”. The role for “this” is declared right after the task keyword and is
pure for both of these tasks. This means that the App instance does not per-
form any role transition (see Rule 4). This instance is created implicitly before
the program starts and is the target (the “this”) of both task start invocations
(including the implicit start of the main task at the start of the program execu-
tion).

Note that, in Rolez, not only task parameters but also method parameters
and other constructs have role declarations. Section 3.2 elaborates these aspects.

Global Objects. How can Rolez guarantee that only objects that have been shared
with a task are accessed in that task? Simply, a task can only access objects that
were passed to it as arguments (including “this”), or that are reachable from
such. (As per Rule 9, such reachable objects perform the same transitions as
their referrers and implicitly have the same declared role.) That is, no objects
can be globally accessed in Rolez, in contrast to, e.g., objects in static fields in
Java.

However, there is one exception: A programmer may define global singleton
objects, using the object keyword instead of class. To prevent tasks from inter-
fering when they access such global objects, these objects are immutable. In
other words, they are (conceptually) initialized at the beginning of the program
and then they permanently play the readonly role for all tasks. An example
for the declaration of such a singleton is shown in Fig. 7 on Lines 27 to 29, while
Line 3 shows how this singleton is accessed using the keyword “the”.

3.2 Role Type System

Rolez uses a static type system to report erroneous operations at compile time.
Recall that there are two kinds of illegal operations with regard to roles, only one
of which is considered erroneous. The first kind is a temporarily illegal operation,
which is illegal only with respect to an object’s current role. Such an operation
is not considered an error, but is delayed until it becomes legal, using guarding.
The second kind of an illegal operation is illegal with respect to an object’s
declared role. Such an operation can never become legal and must be reported
as a role error. In Rolez, role errors are reported at compile-time, using a roles-
based type system. In this section, we give a brief, informal overview of this type
system.

Parallel Roles for Practical Deterministic Parallel Programming 173

Note that the Rolez type system does not guarantee noninterference on its
own, unlike static effect systems. Only in combination with guarding can Rolez
guarantee that tasks do not interfere. Thus, the Rolez type system is much less
complex than static effect systems or permission-based type systems (see Sect. 5)
and does not, e.g., impose any aliasing restrictions.

Role Types. The Rolez type system is an extension of the class-based type system
known from Java and other oop languages. Every variable in such a language
has a type that corresponds to a class. A sound type system guarantees that,
at runtime, a variable always refers to an object that is an instance of the class
that corresponds to the variable’s type (or a subclass thereof). Therefore, when
accessing a field or calling a method on a variable, the compiler can check whether
this member exists in that class, or else report a type error. Likewise, by including
an object’s declared role in the static type of variables that refer to that object,
the Rolez type system enables the compiler to report role errors.

A static type in Rolez, called a role type, consists of two parts, the class part
and the static role. The class part corresponds to the class of an object, while the
static role corresponds to the declared role of an object in the currently executing
task. An example for a role type is readwrite Account, where readwrite is the
static role and Account is the class part.

Fig. 8. Rolez type hierarchy example: source code and corresponding type hierarchy

In Java-like languages, a variable may not only refer to instances of the very
class that corresponds to the variable’s type, but also to instances of subclasses
thereof. In Rolez, the same applies to the static role: A variable may refer to
objects whose declared role is a subrole of the variable’s static role. A role is
a subrole of another role if it is the same or a more permissive role. Hence,
subtyping applies to both the class part and the static role.

Figure 8 illustrates the subtype relation with an example consisting of three
classes. In Java, this code would lead to a type hierarchy with a linear structure
and three types that correspond to the three classes. On the other hand, in
Rolez the code results in a lattice containing nine role types that correspond to
all possible combinations of roles and classes.

174 M. Faes and T. R. Gross

Type Declarations and Type Checks. In Rolez, like in other languages with a
static type system, all local variables, parameters, fields, and methods need a
type declaration, in general. However, Fig. 7 shows that type inference is applied
to local variables to reduce the programmer’s annotation burden. If a variable
is assigned right when it is declared, the variable’s type is inferred from the
right-hand side of the assignment (Lines 6 and 10). For method parameters,
type inference is not possible under modular compilation, therefore types must
be fully declared. This is true also for the “this” parameter of methods (and
tasks), although the class part of the type is implicit, because it corresponds to
the method’s class. The role part is still necessary though (Lines 17, 20, and 23).
These type declarations are used by the compiler to perform type checks, with
the ultimate purpose of preventing operations that are not permitted under the
declared role of an object.

Most type checks in Rolez are standard, like “the right-hand side type of
an assignment must be a subtype of the left-hand side type”. The roles-specific
checks concern field accesses. A field may only be read if the target’s role is
“at least” readonly (or if the field is final). Likewise, a field may only be written
to if the target is readwrite. Another difference between the field access rules in
Rolez and other oop languages is that the type of a field read expression depends
on the role of the target expression, and is not simply the declared type of the
field. The reason for this difference is the object graphs extension introduced in
Sect. 2.2. With this extension, the declared role of an object that is reachable
from a task parameter corresponds to the declared role of that parameter. To
reflect this in the type system, the role of a field-read expression must always be
a superrole (the same or a less permissive role) of that of the target expression.

Fig. 9. Rolez example to illustrate the field-read type check

The example in Fig. 9 illustrates how this last rule ensures that the static
role of an object that is reachable from a task parameter is always a superrole of
that object’s implicitly declared role. The getOwnerName task declares an Account

parameter with the readonly role. When an Account object is shared with this
task, it becomes readonly, like the Client object that the owner field on Line 6
refers to. When this field is read on Line 2, the role of the a.owner expression is
readonly, even though the type of the owner field is readwrite Client. Therefore,
this expression can only be assigned to a variable of type readonly Client, mak-
ing sure that the Client object’s implicitly declared readonly role is respected.

4 Evaluation

In this section, we present a preliminary evaluation of the Rolez language that
shows that (i) parallel programs for non-trivial problems can be written in Rolez,

Parallel Roles for Practical Deterministic Parallel Programming 175

and (ii) parallel Rolez programs realize a speedup over both sequential Rolez and
Java programs, despite the runtime overhead of role transitions and guarding.

4.1 Experimental Setup

We implemented a Rolez prototype, i.e., a compiler and a runtime system, on top
of the Java platform. The runtime system is implemented as a Java library, while
the compiler, implemented with Xtext [1], transforms Rolez source code into Java
source code, inserting role transition and guarding operations as method calls
to the runtime library where necessary. The generated code is compiled using a
standard Java compiler and executed on a standard Java Virtual Machine (jvm).

The following programs were implemented in Rolez: idea encryption and
Monte Carlo financial simulation, both adapted from the Parallel Java Grande
benchmark suite [34]; a k-means clustering algorithm, as in the stamp Bench-
mark Suite [10]; and a ray tracer that renders animated scenes (called anima-
tor). These programs contain the following parallel patterns, all of which can
be expressed in Rolez: data parallelism, task parallelism, read-only data, and
task-local data.

We measured the performance of each program on a machine with four Intel
Xeon E7-4830 processors with a total of 32 cores and 64gb of main memory,
running Ubuntu Linux. As the Java platform we used OpenJdk 7. To eliminate
warm-up effects from the jit compiler in the jvm, we executed every program
5 to 10 times before measuring. Then we repeated every experiment 30 times
inside the same jvm, taking the arithmetic mean.

1 2 4 8 16 32

kmeans

0.5

1

2

4

8

16

32

1 2 4 8 16 32

S
p

ee
d

up
(re

la
tiv

e
to

 s
eq

ue
nt

ia
l J

av
a)

animator

1 2 4 8 16 32

idea

1 2 4 8 16 32

montecarlo

Tasks

Rolez

Java

Fig. 10. Speedup of parallel Rolez programs, compared to speedup of parallel Java
programs, for different numbers of tasks. All numbers are relative to single-threaded
Java. Error bars are omitted since the variation is insignificant for all programs.

4.2 Results

First, we focus on the parallel speedup of the Rolez programs and compare it to
that of equivalent Java programs. Note that the Rolez programs reuse some Java
classes, such as System and Math, which contain native code, and also classes like

176 M. Faes and T. R. Gross

String and Random, to avoid the porting effort to Rolez. We manually ensured
that the use of these classes is deterministic. Figure 10 shows the speedups of
the Rolez and Java programs, relative to the single-threaded Java version, for
different numbers of tasks. Note the logarithmic scale of both axes.

All Rolez programs achieve substantial speedups. They outperform single-
threaded Java already with two tasks, and achieve maximum speedups of 7–20×.
The speedup they achieve is practically linear with up to 8 tasks, and for idea

and Monte Carlo even with 32 tasks. The plots also give a first idea about the
Rolez overhead. While for idea and Monte Carlo the speedup lines are mostly
equal, the overhead is clearly visible for animator and k-means, where the Java
versions achieve substantially higher performance.

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

animator kMeans idea monteCarlo

R
o

le
z

o
ve

rh
ea

d
 o

ve
r

Ja
va

Benchmark / Tasks

Fig. 11. Relative Rolez overhead when compared to the Java version of the same
program and with the same number of tasks. Again, error bars are omitted due to
insignificant variation.

Figure 11 shows this overhead in more detail. For idea, the overhead stays
below 35% and for Monte Carlo even below 10%. In both of these programs,
there is a modest amount of sharing and, due to static analysis in the Rolez
compiler, almost no need for guarding. While there is more sharing in the ani-
mator program, the overhead stays low for up to 8 tasks. With more tasks, a
limitation of the current incarnation of Parallel Roles shows: Since there is no
built-in support for data partitioning, data sets need to be split and merged
explicitly, which may result in a substantial overhead. Finally, k-means contains
the most sharing and therefore suffers most from the overhead caused by role
transitions.

To summarize, while the runtime concepts of Parallel Roles may inflict a
non-negligible performance overhead, our prototype still delivers substantial par-
allel speedups. We expect that the performance of Rolez could be significantly
improved by a more advanced compiler with access to global program informa-
tion or runtime data (such as a jit compiler), or by more optimized guarding
and role transitions. However, we argue that the current Rolez prototype already
provides good performance for many applications, especially on personal devices,
where the number of cores has remained relatively small.

Parallel Roles for Practical Deterministic Parallel Programming 177

5 Related Work

Many approaches have been proposed to make parallel programming in some
way safer than with explicit synchronization. Recently, the deterministic-by-
default approach for imperative, object-oriented languages has sparked the inter-
est of the research community [5,13,23,24]. In imperative languages, dpp is hard
because tasks may have effects on shared mutable state. If not restricted, the non-
deterministic interleaving of such effects leads to nondeterministic results [23].

The first imperative dpp language is Jade [22,32], where the programmer
specifies the effects of a task using arbitrary code that is executed at runtime.
Though extremely flexible, this approach comes with a substantial drawback:
The correctness of effect specifications can only be checked at runtime. Such
checks impact performance and may lead to unexpected errors. The same applies
to Prometheus [2], where the programmer writes code that assigns operations
to different serialization sets, and to Yada [14], where sharing types restrict how
tasks may access shared data. Yada’s sharing types are similar in spirit to role
types, but they were not designed with compile-time checking as a goal.

To avoid these problems, static effect systems enable checking the correct-
ness of effect specifications at compile time. In fact, these systems typically
even check noninterference statically, avoiding runtime checks altogether. While
early systems like fx [26] can only express limited forms of parallelism, recent
systems like Liquid Effects [20] or Deterministic Effects [25] can handle many
kinds of parallelism, although not necessarily in an object-oriented setting. The
effect system used in Deterministic Parallel Java (dpj) [4,6] and TweJava [18]
brings statically checked effects to Java-like languages. To support a wide range
of parallel patterns, it includes many features: region parameters, disjointness
constraints, region path lists, indexed-parameterized arrays, subarrays, and invo-
cation effects. This formidable list shows that dpj and TweJava require a pro-
grammer to understand many and potentially complex concepts. Parallel Roles
aims to simplify dpp by using the concepts of roles and role transitions to specify
the effects of tasks. In addition, the concept of guarding enables parallelization
by simply marking methods as tasks and invoking them like normal methods.

Other effect systems have been proposed to make parallel programming less
error-prone, e.g., by enforcing a locking discipline or by preventing data races
or deadlocks [7,19]. These systems combine effects with ownership types [11,12]
and generally couple the regions and effects of an object with those of its owner.
This idea resembles our handling of object graphs, which can be interpreted as
coupling the role of an object with that of its “owners”, i.e., the objects that
have a reference to it. Even though this simple idea of “referrer as owner” has the
advantage that no additional notion of ownership is involved, combining roles
with a more advanced concept of ownership would be interesting future work.

An alternative to effects are systems based on permissions [3,8,9]. Permis-
sions accompany object references and define how an object is shared and how
it may be accessed. In Æminium [37,38] for instance, permissions like unique,
immutable, or shared keep track of how may references to an object exist
and specify the permitted operations. The system then automatically extracts

178 M. Faes and T. R. Gross

and exploits concurrency. Similarly, the Rust language [27] features mutable or
immutable references and guarantees that there are either a single mutable or
multiple immutable references to an object at any time. Permissions are more
object-based than effects and conceptually similar to our roles. However, roles
and particularly guarding are dynamic concepts and enable simpler language
designs, at the cost of some runtime overhead. For instance, while Æminium

and Rust rigorously restrict aliasing, Rolez is a simpler language that permits
arbitrary aliasing.

Another approach for dpp is speculative execution, where the effects of tasks
are buffered by a runtime component and rolled back in case they interfere.
The two most well-known such approaches, Thread Level Speculation [29,35,36]
and Transactional Memory [16,17,33] are not dpp models in a strict sense: The
former automatically parallelizes sequential programs and the latter usually pro-
vides no determinism guarantees. However, there are speculative approaches
that constitute dpp models: Safe Futures for Java [40] and Implicit Parallelism
with Ordered Transactions [39]. In both models, the programmer defines which
parts of a sequential program should execute asynchronously. The runtime then
executes them as speculative tasks, enforcing their sequential order. In Paral-
lel Roles, speculation is not necessary, because interfering operations are either
delayed by guarding or cause an error (in the case of Rolez, at compile time).

6 Conclusion

During the last few years, much research about deterministic parallel program-
ming has focused on static effect or permission systems. In this paper, we pre-
sented Parallel Roles to leverage roles to express the kinds of access that are
permitted for an object. Parallel Roles puts the focus on objects and presents a
simple object-oriented way to specify and reason about effects of parallel compu-
tations. This paper explores parallel programming with just three simple roles;
these are powerful enough to express a wide range of parallel patterns and appli-
cations without the burden of complex program annotations. While a certain
runtime overhead seems to be the necessary toll for this simplicity, a prelimi-
nary evaluation indicates that the overhead is moderate: The implementation
of a roles-based language achieves substantial speedups over the corresponding
sequential Java version. Furthermore, past programming language innovations
such as garbage collection or runtime type checking have shown that a modest
runtime overhead is a small price to pay for more safety, simplicity and program-
mer productivity.

References

1. Xtext. http://www.eclipse.org/Xtext/
2. Allen, M.D., Sridharan, S., Sohi, G.S.: Serialization sets: a dynamic dependence-

based parallel execution model. In: Proceedings of the 14th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP 2009), pp.
85–96. ACM, New York (2009)

http://www.eclipse.org/Xtext/

Parallel Roles for Practical Deterministic Parallel Programming 179

3. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: Pro-
ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems and Applications (OOPSLA 2007), pp. 301–320. ACM, New
York (2007)

4. Bocchino, R.L., Adve, V.S.: Types, regions, and effects for safe programming with
object-oriented parallel frameworks. In: Mezini, M. (ed.) ECOOP 2011. LNCS,
vol. 6813, pp. 306–332. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22655-7 15

5. Bocchino, R.L., Adve, V.S., Adve, S.V., Snir, M.: Parallel programming must be
deterministic by default. In: Proceedings of the 1st USENIX Conference on Hot
Topics in Parallelism (HotPar 2009). USENIX Association, Berkeley (2009). http://
dl.acm.org/citation.cfm?id=1855591.1855595

6. Bocchino, R.L., et al.: A type and effect system for deterministic parallel Java. In:
Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Program-
ming Systems Languages and Applications (OOPSLA 2009), pp. 97–116. ACM,
New York (2009)

7. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: Proceedings of the 17th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2002), pp. 211–230. ACM, New York (2002)

8. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

9. Boyland, J.T., Retert, W.: Connecting effects and uniqueness with adoption. In:
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2005), pp. 283–295. ACM, New York (2005)

10. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: stanford transac-
tional applications for multi-processing. In: Proceedings of The IEEE International
Symposium on Workload Characterization (IISWC 2008), September 2008

11. Clarke, D.G., Noble, J., Potter, J.M.: Simple ownership types for object contain-
ment. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 53–76. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 4

12. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protec-
tion. In: Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 1998), pp. 48–64.
ACM, New York (1998)

13. Devietti, J., Lucia, B., Ceze, L., Oskin, M.: DMP: deterministic shared memory
multiprocessing. In: Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
XIV), pp. 85–96. ACM, New York (2009)

14. Gay, D., Galenson, J., Naik, M., Yelick, K.: Yada: straightforward parallel pro-
gramming. Parallel Comput. 37(9), 592–609 (2011)

15. Gottlob, G., Schrefl, M., Röck, B.: Extending object-oriented systems with roles.
ACM Trans. Inf. Syst. 14(3), 268–296 (1996)

16. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Proceed-
ings of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ing, Systems, Languages, and Applications (OOPSLA 2003), pp. 388–402. ACM,
New York (2003)

17. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture (ISCA 1993), pp. 289–300. ACM, New York (1993)

https://doi.org/10.1007/978-3-642-22655-7_15
https://doi.org/10.1007/978-3-642-22655-7_15
http://dl.acm.org/citation.cfm?id=1855591.1855595
http://dl.acm.org/citation.cfm?id=1855591.1855595
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-45337-7_4

180 M. Faes and T. R. Gross

18. Heumann, S.T., Adve, V.S., Wang, S.: The tasks with effects model for safe concur-
rency. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2013), pp. 239–250. ACM, New York
(2013)

19. Jacobs, B., Smans, J., Piessens, F., Schulte, W.: A statically verifiable programming
model for concurrent object-oriented programs. In: Liu, Z., He, J. (eds.) ICFEM
2006. LNCS, vol. 4260, pp. 420–439. Springer, Heidelberg (2006). https://doi.org/
10.1007/11901433 23

20. Kawaguchi, M., Rondon, P., Bakst, A., Jhala, R.: Deterministic parallelism via
liquid effects. In: Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2012), pp. 45–54. ACM,
New York (2012)

21. Kristensen, B.B.: Object-Oriented Modeling with Roles. In: Murphy, J., Stone, B.
(eds.) OOIS 1995, pp. 57–71. Springer, London (1996)

22. Lam, M.S., Rinard, M.C.: Coarse-grain parallel programming in Jade. In: Proceed-
ings of the 3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP 1991), pp. 94–105. ACM, New York (1991)

23. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)
24. Lu, L., Scott, M.L.: Toward a formal semantic framework for deterministic par-

allel programming. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 460–474.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0 43

25. Lu, Y., Potter, J., Zhang, C., Xue, J.: A type and effect system for determin-
ism in multithreaded programs. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211,
pp. 518–538. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28869-2 26

26. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 1988), pp. 47–57. ACM, New York (1988)

27. Matsakis, N.D., Klock II, F.S.: The rust language. In: Proceedings of the 2014
ACM SIGAda Annual Conference on High Integrity Language Technology (HILT
2014), pp. 103–104. ACM, New York (2014)

28. Pernici, B.: Objects with roles. In: Proceedings of the ACM SIGOIS and IEEE
CS TC-OA Conference on Office Information Systems (COCS 1990), pp. 205–215.
ACM, New York (1990)

29. Rauchwerger, L., Padua, D.: The LRPD test: speculative run-time parallelization
of loops with privatization and reduction parallelization. In: Proceedings of the
ACM SIGPLAN 1995 Conference on Programming Language Design and Imple-
mentation (PLDI 1995), pp. 218–232. ACM, New York, June 1995

30. Reenskaug, W., Wold, P., Lehne, O.A.: Working with Objects: OORAM Software
Engineering Method. J a Majors, Greenwich, June 1995

31. Riehle, D., Gross, T.: Role model based framework design and integration. In:
Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 1998), pp. 117–133. ACM,
New York (1998)

32. Rinard, M.C., Lam, M.S.: The design, implementation, and evaluation of Jade.
ACM Trans. Program. Lang. Syst. 20(3), 483–545 (1998)

33. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing (PODC
1995), pp. 204–213. ACM, New York (1995)

https://doi.org/10.1007/11901433_23
https://doi.org/10.1007/11901433_23
https://doi.org/10.1007/978-3-642-24100-0_43
https://doi.org/10.1007/978-3-642-28869-2_26
https://doi.org/10.1007/978-3-642-28869-2_26

Parallel Roles for Practical Deterministic Parallel Programming 181

34. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel java grande benchmark suite. In:
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (SC 2001),
pp. 8. ACM, New York (2001)

35. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar processors. In: Proceedings
of the 22nd Annual International Symposium on Computer Architecture (ISCA
1995), pp. 414–425. ACM, New York, June 1995

36. Steffan, J., Mowry, T.: The potential for using thread-level data speculation to
facilitate automatic parallelization. In: Proceedings of the 4th International Sympo-
sium on High-Performance Computer Architecture (HPCA 1998), pp. 2–13. IEEE
Computer Society, Washington DC (1998)

37. Stork, S., Marques, P., Aldrich, J.: Concurrency by default: using permissions to
express dataflow in stateful programs. In: Proceedings of the 24th ACM SIGPLAN
Conference Companion on Object Oriented Programming Systems Languages and
Applications (OOPSLA 2009), pp. 933–940. ACM, New York (2009)

38. Stork, S., et al.: Æminium: a permission-based concurrent-by-default programming
language approach. ACM Trans. Program. Lang. Syst. 36(1), 2:1–2:42 (2014)

39. von Praun, C., Ceze, L., Caşcaval, C.: Implicit parallelism with ordered trans-
actions. In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2007), pp. 79–89. ACM, New York
(2007)

40. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proceedings of
the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2005), pp. 439–453. ACM, New
York (2005)

Mozart: Efficient Composition of Library
Functions for Heterogeneous Execution

Rajkishore Barik(B), Tatiana Shpeisman, Hongbo Rong, Chunling Hu,
Victor W. Lee, Todd A. Anderson, Greg Henry, Hai Liu, Youfeng Wu,

Paul Petersen, and Geoff Lowney

Intel Corporation, Santa Clara, CA, USA
rajbarik@uber.com

Abstract. Current processor trend is to couple a commodity processor
with a GPU, a co-processor, or an accelerator. To unleash the full com-
putational power of such heterogeneous systems is a daunting task: pro-
grammers often resort to heterogeneous scheduling runtime frameworks
that use device specific library routines. However, highly-tuned libraries
do not compose very well across heterogeneous architectures. That is,
important performance-oriented optimizations such as data locality and
reuse “across” library calls is not fully exploited. In this paper, we present
a framework, called Mozart, to extend existing library frameworks to
efficiently compose a sequence of library calls for heterogeneous execu-
tion. Mozart consists of two components: library description (LD) and
library composition runtime. We advocate library writers to wrap exist-
ing libraries using LD in order to provide their performance parameters
on heterogeneous cores, no programmer intervention is necessary. Our
runtime performs composition of libraries via task-fission, load balances
among heterogeneous cores using information from LD, and automati-
cally adapts to runtime behavior of an application. We evaluate Mozart
on a Xeon + 2 Xeon Phi system using the High Performance Linpack
benchmark which is the most popular benchmark to rank supercomput-
ers in TOP500 and show GFLOPS improvement of 31.7% over MKL
with Automatic Offload and 6.7% over hand-optimized ninja code.

1 Introduction

The current processor trend is to couple a commodity processor with GPUs, co-
processors, or accelerators. Such heterogeneous systems not only offer increased
computational power but also deliver high energy efficiency. However, due to
the architectural differences between cores of the host processor and device, it
is increasingly difficult to extract every-bit of performance out of these plat-
forms, leading to growing “ninja gap” [38] where only a small number of expert
programmers are capable of harvesting the full potential of the system.

Although compilers have matured significantly over the years, most of
the time, compiler generated code still can not compete with hand-optimized
implementation even on a homogeneous architecture. An alternative approach
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 182–202, 2019.
https://doi.org/10.1007/978-3-030-35225-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_13

Mozart: Efficient Composition of Library Functions 183

commonly used in several application domains is to use highly-tuned high-
performance libraries to close ninja-gap without placing unnecessary develop-
ment burden on a programmer. For example, Intel’s Math Kernel Library (MKL)
and NVIDIA’s cuBLAS are two widely used high performance linear algebra
libraries for CPUs and GPUs, respectively. These libraries are developed by
domain experts who fully exploit the underlying processor architecture.

As heterogeneous systems become ubiquitous, it is challenging to make the
existing library frameworks heterogeneity-aware: the libraries have to be spe-
cialized for each particular processor or device, the workload has to be properly
load-balanced between them, and communication between them must be over-
lapped with computation as much as possible to gain performance. In order to
determine optimal work distribution between devices one must use device spe-
cific performance characteristics of libraries (e.g., throughput of a library on
each device). More importantly, work distribution and communication genera-
tion must look beyond just a single library call to improve data locality and
reduce communication overhead. Sometimes the communication latency hid-
ing techniques can be complicated as optimal device offload granularity might
depend on the input problem size. Thus, a generic easy-to-use framework is nec-
essary that not only allows automatic learning of device specific performance
characteristics of libraries but also efficiently composes multiple library calls
without any intervention from the programmer.

Existing research in this area fall into two broad categories:

– Leverage device specific libraries and use a heterogeneous scheduling runtime
for work distribution and communication. In this approach, the device-specific
libraries are treated as black-box and thus, the runtime can not easily take
advantage of the expert programmers’ domain knowledge related to the prop-
erties of a library during scheduling. Moreover, the programmer is responsible
for providing wrappers for device-specific library task implementations on her
own. There has been a lot of research work in the context of dividing work
between CPU-GPU using a scheduling runtime [5,14,23,26,31–33,35,40].
Although, their techniques can be adopted in the context of libraries, they are
primarily restricted to the work distribution of a single library call. Important
inter-library call optimizations are left unexplored.

– Library frameworks perform work distribution between heterogeneous cores
transparent to the programmer. Although this approach achieves peak per-
formance for a single library call by having expert programmers’ knowledge
embedded in it, it can not perform optimizations across library calls. More-
over, the programmer manually instructs the library to execute on a single
device or on the heterogeneous system. This approach is recently adopted by
MKL by adding a functionality called Automatic Offloading (AO), which can
offload part of the library call workload from a Xeon CPU to a Xeon Phi
co-processor [3]. However, this advanced feature is currently limited to “suf-
ficiently large problems” exhibiting large computation to data access ratio.
Thus, only a hand-full of Level-3 BLAS functions (GEMM, SYMM, TRMM,
and TRSM) and three matrix factorization routines (LU, QR, and Cholesky)

184 R. Barik et al.

have this feature today. Although this approach is best for programmers, our
experiments show that it can leave 25% performance on the table when com-
pared to a Hand-tuned version for the High Performance Linpack benchmark
on average (details in Sect. 4).

To the best of our knowledge, none of the existing systems exploit inter-
library call optimizations such as data locality and reuse. That is, if a series of
library tasks are invoked one after another, it is possible to schedule them better
by grouping them based on their data access patterns rather than naively exe-
cuting them one after another. It might also be necessary to decompose a library
call to finer granularity in order to improve its scheduling and reduce commu-
nication overhead. The goal of this paper is to devise a generic framework that
can perform optimizations across library call boundaries in order to efficiently
compose them in heterogeneous systems and further reduce the ninja-gap.

In this paper, we propose a framework for library composition, called Mozart.
Mozart consists of two components: library description (LD) and library com-
position runtime. Mozart transparently composes and decomposes such library
calls across heterogeneous processors delivering performance on par with that
of expertly tuned hand-written code. LD expresses library routines as tasks and
embeds library developer expertise via meta-information about every library
routine. The meta-information initially comes from library developers, is sub-
sequently augmented with install-time profiling on the target platform, and is
finally used in guiding the scheduling runtime to automatically load balance
between heterogeneous processors. The runtime dynamically builds a runtime
task graph for an application from the numerous library calls of the application,
dynamically decomposes tasks in the graph according to the granularity speci-
fied by LD and assigns them for execution to host processor and device as they
become available. To facilitate efficient composition of library tasks, our run-
time applies a novel optimization, task-fission, that pre-processes the task graph
as it is being constructed and partitions the tasks into coarse-grain sub-tasks
according to data flow between the tasks. We demonstrate that our approach
can improve data-locality and reuse, resulting in improved performance com-
pared to existing approaches. To the best of our knowledge, our work is the
first attempt to seamlessly perform library call composition for heterogeneous
architectures.

Compared to other task based approaches such as [5,9,14,23,26,31,32,35,
40], Mozart has the following additional capabilities. First, Mozart transparently
schedules a decomposable library task between host processor and device cores
using library metadata (LD) provided by library writers. Unlike existing systems,
programmer is not responsible for writing any wrappers for device specific library
implementations. Second, Mozart efficiently composes a series of library tasks
by performing task-fission dynamically on the runtime task graph resulting in
improved data locality. Finally, Mozart profiles device data transfer overhead and
measures host/device throughput at runtime. It then uses this data to adaptively
control the number of iterations performed by the device including the offload

Mozart: Efficient Composition of Library Functions 185

granularity of device. This results in both improved load-balance and better
communication-computation overlap.

The key contributions of this paper include:

– a novel Library Description (LD) framework to describe meta-information
about libraries. We expect library developers to use this framework to spec-
ify their domain knowledge about library routines. The parameters of this
framework are either specified by the library developer or determined via
install-time profiling of libraries on the target platform.

– a scheduling runtime that performs load balancing among heterogeneous cores
using the LD information. The distinguishing features of our runtime include
dynamic task-fission and adaptation to runtime behavior of an application.
Compared to existing scheduling runtimes [6,14,26,31,32,34,40], our runtime
enables cross library call scheduling optimizations such as data-locality and
communication optimization as well as host and device work distribution.

– an experimental evaluation of Mozart in a heterogeneous system consisting of
a Xeon CPU and 2 Xeon Phi co-processors using High Performance Linpack
benchmark which is the most popular benchmark to rank supercomputers in
TOP500. Our results show a GFLOPS improvement of 31.7% over MKL with
Automatic Offloading and 6.7% over hand-optimized version of the applica-
tion. Please note that, although we perform our experimental evaluation on a
Xeon+Xeon Phi system, our technique should be applicable to any host plus
device based system including widely used CPU+GPU based systems.

The rest of the paper is organized as follows. Section 2 describes the library
description interfaces. Section 3 describes our heterogeneous scheduling runtime.
Evaluations are presented in Sect. 4. We discuss related work in Sect. 5 and
conclude in Sect. 6.

2 Library Description Language

In this section, we describe the library description (LD) framework that drives
composition of library calls at runtime, so that the calls are effectively executed
in a distributed fashion on a heterogeneous system – to take advantage of the
rich hardware parallelism in such a system. LD expresses domain knowledge
from library developers and uses install-time profiling to build platform-specific
performance models. Such expertise, code, and models reflect important aspects
of the dynamic behavior of a library function.

Library experts (typically library-writers) build a library description (LD)
for each library function during or after library development. This LD is basic in
that it might not contain platform-specific information. The expert also builds
an extensive set of microbenchmarks to perform install-time profiling in order to
fill in the LD parameters of a library. Any relevant performance characteristics
of a library function can be put into the LD, but specifically, we propose a set
of abstract interfaces as shown in Table 1: Threads() and SubTaskSize() are
described, because the number of threads and the task granularity for offloading

186 R. Barik et al.

Table 1. Library description APIs

API Description

In, Out Returns the inputs and outputs of the library function

Threads(id) Returns the optimal number of threads to set for this
library function for a given device id

SubTaskSize(id) Returns the best sub-task size to set for this library
function for a given device id

Rate(id) Returns the computation throughput of the library function
on a given device id
Rate is defined as the ratio of number of iterations
processed per unit time

Affinity() Returns the device affinity of the library function

Task arch(range) Returns a task function operating on a sub-range of the
original iteration space of the library function for a device,
e.g., arch is either CPU or GPU

InsertTask() Inserts task functions into the runtime’s task graph and
schedule it for execution when it is ready

are the two most important optimization parameters for most applications. Note
that Threads() for memory-bound applications may be much smaller than the
maximum available cores on the underlying platform. Similarly, SubTaskSize()
determines the offload granularity to a device in order to optimally overlap it’s
computation with communication. When the library is installed, the microbench-
marks are used to profile the underlying platform and build platform-specific
models for the functions in LD, including Threads(), SubTaskSize(), and
Rate(). Many different combinations of the inputs of a library function can
be used to run the function. With different input combinations and their cor-
responding execution time of the function, profiling can learn a model for each
of Threads(), SubTaskSize(), and Rate(). The learned performance models
replace the default Threads(), SubTaskSize(), and Rate() specified by the
library-writer.

Figure 1 illustrates the implementation of LD class for a matrix-matrix
multiplication library call, dgemm LD. In this example, Threads() and
SubTaskSize() are hard-coded numbers based on library-writer’s experiences.
Rate() is an auto-generated performance model built from install-time profiling
(in particular, we perform a linear approximation of the profiling data after exe-
cuting the microbenchmarks on each device). Task arch() and InsertTask()
are written manually by expert programmers. Here we have two Task arch()
functions: one for the host, the other for the device. We have used Intel
Offload programming model [1] to demonstrate device offloading, but it is not a
limitation.

In a specific implementation, the compiler may automatically redirect a
library function call in a user program to its corresponding library description,

Mozart: Efficient Composition of Library Functions 187

Fig. 1. LD for matrix-matrix multiplication library, dgemm. The library devel-
oper initially writes the dgemm LD function. During install time of the library,
Threads, SubTaskSize, Affinity, and Rate are populated via install-time profiling.
The TaskHost and TaskDevice functions operate on sub-ranges in order to let the run-
time adaptively decide the work distribution between host and device. The InsertTask

function calls into runtime (Sect. 3).

which enqueues a divisible task into the runtime system’s task graph (described
in Sect. 3). For example, for a library function f() with LD as f LD(), the library
wrapper or the compiler performs the following two operations:
LD ∗ ld = f LD(/ ∗ originalparameters ∗ /);
ld− > InsertTask();

When the user program runs, the above two statements create an LD object,
and invoke our runtime through that object’s InsertTask() function, which
inserts the Task arch() function(s) into the runtime system’s task graph, and
invokes the runtime system. The runtime is described in Sect. 3.

In another implementation, the library writer may hide LD details from the
user by wrapping the library functions in new interfaces and expose these inter-
faces to the programmer. Either way, the newly created runtime task is seman-
tically equivalent to the original library function. The runtime system executes
this task in a parallel and perhaps in a distributed fashion on the heterogeneous
system.

Figure 2 depicts the high-level flow of LD. At library installation time, a per-
formance model (via linear approximation) is built for how each library function
performs on the entire system with such factors as number of threads, sub-task
size and the relative performance of each processor in the system. The compiler
pattern matches library function call names and replaces a regular function call
with a call to the runtime providing access to the model for the given function.
The runtime is then responsible for determining how best to execute the function
with the current inputs within the system. It will often do so by splitting up the

188 R. Barik et al.

Fig. 2. Detailed work-flow of library description framework.

work into smaller granularity and giving that work to different processors in the
heterogeneous system.

One thing to keep in mind is that LD interfaces are developed by library
writers, programmer is not involved. Additionally, the LD information for each
library routine is written exactly once and thus we believe the complexity is
manageable. Augmenting auto-tuning with install-time profiling is a subject for
future work.

3 Library Composition Runtime

In this section, we describe our heterogeneous runtime system that performs
dynamic task-fission, overlaps communication and computation to hide com-
munication latency of heterogeneous processor, and finally, adapts to runtime
behavior of an application. Our runtime system takes advantage of the perfor-
mance profile information from LD described in Sect. 2. For simplicity of pre-
sentation, we treat each task as a library task created from a particular library
routine.

Library Task Representation: We introduce the notions of simple and divis-
ible library tasks in our runtime. A divisible task can be further decomposed into
sub-tasks. Typical example of a divisible task is a data-parallel library routine
which can be decomposed in many different ways including simply varying the
number of loop iterations that are grouped into a single task. For example, the
classical matrix-matrix multiplication library task is a divisible task since the
2-d iteration range of the output matrix can be blocked into sub-ranges and each
sub-range can be processed independently either on host or device.

Mozart: Efficient Composition of Library Functions 189

Runtime Interfaces: Our runtime exposes two key APIs: insert {T} task
where T is either divisible or simple and task wait. insert {T} task() communi-
cates all information regarding a task to the runtime. task wait() function waits
for the previously issued tasks to complete and their output data become avail-
able. Some of the important information passed to an insert {T} task(T, . . .)
include iteration range and dimensionality (for divisible tasks), function pointers
to device task implementations that operate on sub-tasks, arguments and their
corresponding metadata information (using array access descriptors as described
later in this section), device affinity if known, and performance profile informa-
tion for the corresponding library function from LD (described in Sect. 2). Each
argument to a task is marked as one of the following: IN, OUT, INOUT, VALUE
(passed-by-value), ACCUMULATOR (passed-by-reference, typically reduction vari-
ables are passed as accumulator variables). Please note that the library devel-
oper wraps insert T task in the LD method InsertTask for a library task and
task wait is inferred by our runtime based on input and output dependences.

Array Access Descriptors: Affine array accesses are typical in scientific and
HPC applications, therefore are used heavily in library routines. The metadata
information for an array argument of a task in our runtime also carries a descrip-
tor in order for the runtime to be able to determine the sub-region of the array
being accessed by a sub-task, which is crucial to generate the data movements
between host and devices. The following array access descriptor captures affine
array accesses of the form a ∗ i + b, where a and b are compile-time constants
and i denotes the loop induction variable:
struct array_access_desc_Nd_s {

unsigned int dim; /* number of array dimensions */
int64_t *a1 , *a2; /* "a" coefficients of ai+b in each dimension */
int64_t *l_b , *u_b; /* "b" (lower and upper bound) coefficients of ai+b in each dimension */

};

The array region accessed by a sub-task can be 1-d linear, 2-d rectangular, or
3-d rectangular prism (our implementation currently does not support beyond
3-d). At runtime, each array region is associated with a location information
indicating the device that holds that array region. Runtime uses this information
to decide device affinity of a sub-task. Additionally, efficient implementations
of standard set operations such as union, intersection, and difference are also
provided for array regions in order to reduce the runtime overheads of task
graph construction. Note that since we are composing libraries, the array access
descriptors are written by expert library developers as part of LD, programmer
who uses these libraries is not involved.

Work-Sharing Runtime: The runtime determines task dependencies from the
array access descriptor metadata of task arguments, builds a task dependence
graph, generates necessary data transfers and schedules tasks for execution pos-
sibly choosing the device. Once all the predecessors of a task in the task graph
have completed execution and all the input data has been transferred to the
target device, the task is executed. This might result in the output data transfer
to a different device, as well as a trigger for the other task execution (Fig. 3).

190 R. Barik et al.

Fig. 3. Work-sharing runtime and runtime task graph

Typically a heterogeneous system node has a few devices leading to fewer
contention among devices. Moreover, the optimal task granularity for offload
may differ from device to device, e.g., a discrete GPU may choose a sub-task tile
that completely hides the data communication latency of an application. With
these design choices in mind, we implement a work-sharing runtime where an
idle device grabs it’s own sub-task tile of iterations for a ready divisible task from
a common shared queue of the parallel iterations. Note that sub-task tile size
for each device is bootstrapped using SubTaskSize() in LD and is adaptively
adjusted in the runtime (described later in this section). A proxy host thread
(i.e., worker) is assigned to each device that offloads work to that device.

When a task becomes ready, i.e., all its predecessors in the task dependence
graph finished their execution, it is added to the ready queue. When a worker
becomes idle, it tries to retrieve a task from this ready queue and executes it.
There could be more than one task available in the ready queue, in which case
one of the two following strategies could be used: (1) the idle worker first tries to
pick a task that no other worker is working on (that is, breadth-first approach);
(2) the idle worker picks the first ready task (that is, depth-first approach). This
is currently implemented via a runtime flag. By default, a simple task has an
affinity to the host CPU in our runtime.

Task Fission: Choosing sub-task size is critical to application performance on
heterogeneous systems as it affects both scheduling granularity, data locality,
and communication latency. It can also artificially limit parallelism and flexibil-
ity of scheduling. In general, the sub-task granularity should be large enough to
occupy at least a single core of the heterogeneous system, yet small enough to
support efficient load balancing and communication/computation overlap. Con-
sider an example program shown in Fig. 4. task1 invoked with parallel iterations
[1 . . . 10000] writes 10000 elements of array b, while task2 invoked with parallel
iterations [1...500] reads only the first 500 elements of b. Consider the following
scheduling constraint on a discrete CPU+GPU heterogeneous system: task2
executes significantly better on CPU than GPU while task1 can be executed on
either CPU or GPU. An optimal scheduling solution is to execute first 500 iter-
ations of task1, as well as, all of task2 on CPU and the last 9500 iterations of
task1 on the discrete GPU until CPU completes execution, at which point both
CPU and GPU can execute the remaining iterations of task1. This enables over-
lapping of task2 and task1 execution resulting in improved data-locality (that
is, task2 might reuse data from the cache prefetches of task1) and reduced

Mozart: Efficient Composition of Library Functions 191

communication too (that is, there is no data transfer cost to/from GPU for the
first 500 iterations of task1. However, if tasks have to be scheduled as indivisible
units, a scheduler has to assign all iterations of task1 to either CPU (leaving
GPU unused) or GPU (resulting in data transfer cost) and wait for all of task1
to complete before starting task2. Choosing fine-grain tasks resolves this prob-
lem but leads to higher overhead of maintaining task graph and scheduling tasks,
potentially defeating benefits from exploiting a higher degree of parallelism.

Fig. 4. Optimal task granularity example with dynamic task-fission; task1 with range
[1 . . . 10000] was split into two tasks with ranges [1 . . . 500] and [501 . . . 10000] at run-
time based on consumer task task2; Now task2 can start executing immediately after
task1 with range [1 . . . 500] completes on CPU. This improves locality and reduces
communication.

We propose task-fission at runtime that automatically adjusts task granu-
larity to discover additional available parallelism while keeping the cost of task
graph maintenance and scheduling under control. Tasks are split to achieve exact
match between one task output and another task input. Such tasks are further
combined into task chains that can be scheduled to a single device to reduce
communication cost.

We support two kinds of task-fission. The first one splits an existing task A
when a new task B is inserted into task graph whose input is a subset of the
output of the task A. In this case, A is split into A1 and A2, such that output of
A1 is the same as input of B. This enables execution of B as soon as A1 finishes
without waiting for completion of A2. It also allows the runtime to schedule A1
and B to the same device while, in parallel, executing A2 on a different device.
The second one splits a new task B when its input is a super-set of the output
of an existing task A. In this case, B is split into B1 and B2, such that output
of A is the same as input of B1. This enables execution of B2 without waiting
of completion of A and allows the runtime to schedule A and B1 to the same
device, while scheduling B2 to a different one.

When a task is inserted to our runtime, the argument metadata information
(described using array access descriptor) is used to derive task dependencies
and to construct the runtime task dependency graph. During this addition of
the newly arrived task to the runtime task graph, our runtime checks if it is
feasible to perform task-fission with the immediate predecessor task or with
the immediate successor task (as described in the previous paragraph). If the
immediate predecessor task is not already executing and offers opportunities for

192 R. Barik et al.

task-fission, we perform task fission and update the runtime task graph. We
enqueue the newly created tasks from task-fission to our runtime when they are
ready. In most cases, we expect that the cost of task-fission be mitigated by
the benefits we get from task-fission. Our runtime augments online profiling to
decide whether to perform task-fission or not.

Task-fission results in the following benefits: (1) increased task parallelism,
due to precise matching between task dependencies and task granularity; (2)
reduced communication cost, as sub-tasks with the same input/outputs can be
scheduled to the same device without affecting scheduling of the whole task; (3)
improved data locality and reuse, as sub-tasks with the same input/output can
reuse data from caches.

Overlap Communication and Computation: Accelerators including GPUs
and Xeon Phi are typically connected to the host processor via PCIe intercon-
nect. Thus, communication overhead is one of the dominant factors in obtaining
performance of these systems. There are many existing approaches for hiding
communication latency [2]. We use the double buffering technique transparently
in our runtime to overlap communication to device with computation on host
CPU. This transparency is feasible in Mozart, since tasks can be divided into
sub-tasks and the argument array regions accesses by sub-regions can be com-
puted from the array access descriptors. Our runtime creates two temporary
buffers for every argument array region corresponding to sub-tasks and while
the current buffer holds the array region for computation on the device of sub-
task A, the next buffer holds the array region that is used for transferring data
from the device to the host (for output transfer) for sub-task B. Sub-tasks A and
B originate from the same divisible task. Similarly, we can also overlap input
data transfer of one sub-task with computation of another sub-task. The granu-
larity of the sub-tasks are chosen such that the two temporary buffers fit on the
device memory and more importantly, the ratio of communication to computa-
tion time of the sub-tasks must be close to 1. This results in optimal performance
as it hides the communication latency completely. Our runtime initially uses LD
information to choose this sub-task granularity (via SubTaskSize()), but later
on adjusts adaptively at runtime.

Strided Data Access: Several scientific and HPC applications access strided
data. Strided data can be tricky to transfer to devices using pragma based com-
pilers such as Intel Offload compiler [1] as they are limited by their expressibility
resulting in unnecessary data transfer. Consider the shaded regions to the left
of Fig. 5. In order to transfer only the shaded regions to Xeon Phi using cur-
rent Intel Offload compiler, entire rows and columns corresponding to the shared
regions need to be transferred. This incurs runtime overhead and can be signifi-
cant if the matrix is large and the shaded region is very small. We mitigate this
by transparently copying data in runtime to contiguous memory locations and
then remapping the index space of this data in the library kernels for both Xeon
and Xeon Phi. The code snippet to the right of Fig. 5 depicts the argument offset
data structure used in our runtime and its use in a matrix multiplication Xeon
Phi library kernel. This data structure stores dimensionality information (dim),

Mozart: Efficient Composition of Library Functions 193

row/column size (depending on row-major or column-major) using max size,
and the original indices using index offset for each dimension. Each library ker-
nel now takes an additional argument for this offset data structure offset and
replaces each access to A[i] by A[i − offset− > index offset[0]]. The offset data
structure is transparently populated by runtime and passed to the library kernel
before executing it on the device. This approach avoids unnecessary data transfer
and is likely to improve performance for strided data access applications. Based
on the above design, the library developer needs to write Task arch(range)
functions for libraries dealing with non-contiguous data.

Fig. 5. Strided and non-contiguous data transfer

Runtime Adaptation: Even though LD provides platform-specific perfor-
mance sketch of libraries to runtime, it is also possible to adaptively learn
and improve these library parameters such as Affinity, Threads, Rate, and
SubTaskSize. For instance, if an application repeatedly invokes the same library
task (perhaps with a different range), we can estimate its optimal tile size for
overlapping computation and communication from invocation to invocation even
before executing it. We can also predict if task-fission is beneficial across library
tasks (due to the overhead involved in splitting a task). Our runtime maintains
an online profiling database in order to track performance profile of library tasks
as they execute on devices. Following data structure depicts our online profiling
database:
typedef struct task_profile_s {

unsigned int task_type; // 0 for simple_task , 1 for divisible_task
/* host execution profile */
int64_t host_num_iters; /* Number of iterations executed by host */
double host_time; /* Time taken by host */

/* device execution profile */
int64_t device_num_iters ; /* Number of iterations executed by devices */
int64_t num_bytes_xfered ; /* Bytes of output transferred from devices */
double xfer_time; /* Time taken for output data transfer */
double compute_time; /* Device computation time*/

/* task fission */
double task_split_time;

} task_profile_t;

/* Map from phase signature (id) to task name (string) to profiling database */
map < int64_t , map <string , task_profile_t > > profile_db;

We divide a program execution into phases. Each phase consists of all the
tasks being executed in between two consecutive wait task(). We profile each
phase and accumulate their information in profiling data-base. Each worker
locally gathers profiling information for each task executing in a profiling phase.
After the phase completes, wait task() accumulates the per-worker profiles into

194 R. Barik et al.

the data structure above. Typical information we collect include data transfer
time, computation time on host and device, and number of parallel iterations
performed by host and device. These information can be used to improve LD’s
Affinity() and Rate() information. Additionally, during runtime task graph
construction, we use the profiling database to estimate execution time of each
new invocation of a task and determine if it is beneficial to perform task-fission
in the current phase or not. That is, the total estimated time with and with-
out task-fission is computed using the throughput and data transfer overhead of
each device (computed from prior iterations). Since we estimate execution time
and data transfer time on device for each task, we also adjust the tile size (i.e.,
SubTaskSize()) in order to reduce the communication to computation gap.

4 Evaluation

In this section, we investigate the performance of Mozart in High Performance
Linpack (HPL) benchmark. This program is typically written using several
library calls and hence, offering opportunities to our runtime to efficiently com-
pose them. We compare Mozart with MKL Offload and hand-tuned optimized
implementations of the same computation. The details of the hand-tuned HPL
implementation is described in [19]. With better load balancing, efficient library
composition, and adaptation to runtime behavior, Mozart is able to comprehen-
sively outperform MKL Offload and is also able to beat the hand-tuned ninja
version.

Implementation: Figure 6 depicts our implementation framework. We have
implemented Mozart on top of the Julia compiler infrastructure [8]. The standard
Julia compiler converts a Julia program into the Julia AST, then transforms
it into LLVM IR, and finally generates native assembly code. We intercept the
Julia compiler at the Julia AST level, recognize the library calls via AST pattern
matching and rewrote them to create the corresponding LD object and invoke
the InsertTask() function on it (as described in Sect. 2). Finally, we generate
C++ code from Julia AST. Please note that the techniques described in this
paper are not tied to our choice of implementation language and can be applied
to other languages as well.

Platform: We use a host server with two Intel R© Xeon R© E5-2690v2 processors
and 128 GB RAM. The processors are code-named Ivy Bridge and manufactured
using 22 nm technology. Each processor has 10 cores (20 cores total) with base
frequency of 3.00 GHz. The cache sizes are 32 KB for L1I, 32 KB for L1D, 256 KB
for L2, and 25 MB for the L3 cache. It runs CentOS v6.6 distribution of Linux.
This host server is connected via PCIe (with bandwidth 6 GB/s) to two mas-
sively parallel Xeon Phi co-processor with 61 in-order Pentium cores with each
core being 4-way hyper-threaded. Applications can use up to 240 threads simul-
taneously (one core is reserved for the Linux OS running on it). Each core of
Xeon Phi is embedded with a 512-bit vector unit for increased SIMD parallelism.
Furthermore, each core has 32 KB L1 data cache, 32 KB L1 instruction cache and

Mozart: Efficient Composition of Library Functions 195

Fig. 6. Overall implementation framework of Mozart

512 KB partition of globally coherent L2 cache. Each Xeon phi co-processor has
8 GB of GDDR memory.

We use the Intel R©C++ Compiler (ICC) v15.0.2 with “-O3” flag for compi-
lation of the Mozart runtime and the C++ code generated from the Julia AST.
We report execution times using the average of five runs.

High Performance Linpack (HPL) Performance. HPL is the most popular
benchmark to rank supercomputers in TOP500, and it spends majority of time
in numeric libraries. The key routine in HPL is LU factorization. LU factor-
ization decomposes a matrix A into a lower-triangular matrix L and an upper
triangular matrix U . We use a blocked LU factorization version that demon-
strates the benefits of library composition using Mozart. The high-level blocked
LU formulation code is shown in Fig. 7.1 This algorithm proceeds from left to
right of matrix A in blocks of nb until entire A is factorized. In each iteration
of the loop, nb column panels are first factorized using dgetrf library call, nb
block of matrix rows are swapped based on the pivot vector ipiv from panel
factorization using two dlaswp library calls (denoted as dlaswpL and dlaswpR),
and a portion of row panel is updated using dtrsm forward solver library call.
The trailing submatrix of A is then updated using dgemm library call.

Fig. 7. HPL blocked version demonstrating library composition.

We wrote the LD specifications for the library tasks from Fig. 7. The per-
formance models for Threads(), SubTaskSize() and Rate() were built using

1 Note that we specifically choose the blocked version of HPL to highlight the contri-
bution of this paper, which is library composition. We do not directly use the LU
factorization algorithm provided by MKL.

196 R. Barik et al.

Fig. 8. HPL: task-fission performed via Mozart

simple curve-fitting from an extensive set of micro-benchmarking executions on
our platform. The library tasks were then inserted inserted into our runtime
using InsertTask() LD interfaces. Our runtime automatically identifies the task
dependencies between them based on their input-output dependencies on matrix
A and builds the task graph. The runtime task graph for two consecutive itera-
tions j−nb and j is shown to the left of Fig. 8. Our runtime identifies an opportu-
nity to detect partial loop-carried dependency between dgemm(j −nb) task and
dgetrf(j) task, i.e., dependency between previous iteration j−nb dgemm call and
next iteration j dgetrf call. It then splits dgemm(j−nb) into dgemm 1(j−nb) and
dgemm 2(j−nb) tasks using task fission (as shown in the middle of Fig. 8). This
allows dgemm 1(j−nb) task to execute concurrently with both dgemm 2(j−nb)
and dgetrf(j) tasks (as shown to the right of Fig. 8). Both dgemm 2(j −nb) and
dgetrf(j) are executed on Xeon based on the affinity of dgetrf(j) task specified
in LD. On the other hand, dgemm 1(j−nb) starts by executing on Xeon Phi but
is subsequently executed on both Xeon and Xeon Phi when dgemm 2(j − nb)
and dgetrf(j) tasks are completed.

Fig. 9. Performance of High Performance Linpack running on a Xeon + 2 Phi Ivy
Bridge system (higher is better). On average, MKL Offload approach achieves 489
GFLOPS, Hand-tuned achieves 604 GFLOPS, and Mozart achieves 644 GFLOPS for
matrix sizes 5K–75K.

Mozart: Efficient Composition of Library Functions 197

Figure 9 presents our experimental evaluation comparing Mozart with MKL
Offload and Hand-tuned ninja version [19]. We vary the matrix size from 5K
until 75K in steps of 5K. We observe an average GFLOPS improvement of 31.7%
for Mozart vs. MKL Offload, primarily due to the fact that MKL Offload does not
perform any cross library optimization for the blocked version of HPL, although
it is able to execute the dgemm and dtrsm library functions across both Xeon and
Xeon Phi and achieves peak performance for them individually. When compared
to hand-tuned ninja version, Mozart yields an average GFLOPS improvement of
6.7%. Although hand-tuned ninja version performs library composition using a
manual implementation of task fission, it does not perform the following tasks
effectively: (1) the ninja version is unable to load balance effectively – it does not
use a performance model like ours (via LD) to divide work between Xeon and
Xeon Phi instead uses a platform-specific hand-tuned step function to determine
the number of dgemm 1(j − nb) iterations to be performed on Xeon2; (2) the
ninja version does not perform runtime adaptation like ours as described in
Sect. 3.

Performance Breakdown: The GFLOPS improvement of 31.7% for Mozart
vs. MKL Offload can be explained as follows: we observe 10–15% benefit for
small size matrices (5K–25K) and close to 20% benefit for larger matrices
(>=30K) from our task-fission optimization, which MKL-Offload can not per-
form in the blocked version of HPL. Remaining benefits of close to 10–15% is
obtained from runtime adaptation via sub-task granularity determination (i.e.,
SubTaskSize()) and cost-benefit analysis of task-fission (that is whether to per-
form task fission or not) as described in Sect. 3.

Discussion: The HPL application has the following properties that Mozart
exploits:

– dgemm matrix-matrix multiplication task is computationally expensive and
can be decomposed into smaller granularity which can distributed to host and
device cores;

– dgemm can be split via task-fission into two sub-tasks where one of them can
execute in parallel with dgetrf of the next iteration in order to reduce the
critical path length.

One of the key ideas of the paper is to dynamically perform task-fission
optimization across library calls. Task-fission opportunities are prevalent in many
data parallel application domains including emerging AI and machine-learning
that compose many data parallel libraries, e.g., Intel’s DAAL and CUDA-DNN
within a network model. Existing HPC applications such as LU, Cholesky and
QR factorization already exhibit task-fission patterns. Thus, we believe efficient
library composition via task fission will play an important role in optimizing
future applications. Although it is possible to implement task-fission statically,
it may not be straightforward in the presence of complicated control-flow such
as the one present in HPL. In summary, the techniques described in Mozart

2 Hand-tuned implementations are rarely performance portable.

198 R. Barik et al.

including library description and library composition runtime are general and
can be applied to other heterogeneous architectures and applications.

5 Related Work

Heterogeneous Execution: There have been several efforts [5,7,10–12,14,18,
20,22,25,26,29,31,32,32,34–36,39,40,44] to make heterogeneous execution of
applications more efficient. [4] is most closely related to our work as it analyzes
a series of GPU library calls in order to minimize the CPU-GPU communica-
tion overheads by caching the reused data. Our work is different from the above
body of works in two key aspects: Mozart performs task-fission at runtime and
dynamically adapts device tile sizes. It augments library description metadata
framework to decompose libraries for efficient heterogeneous execution.

Dynamic Task Graph: Dynamic task graph is widely used in parallel systems.
StarPU [5], OMPSs [9,13,33], and BDDT [43] build dynamic task graphs, but
they do not dynamically split tasks into subtasks. There is previous work [15]
on dividing/consolidating tasks to make better use of resource or to achieve
better load balance, but it considers only independent tasks. [17,19] manually
splits tasks in application level to enable dynamic load-balancing on a Xeon Phi
system. To the best of our knowledge, no known work splits tasks in a dynamic
task graph based on the dependencies between tasks.

Overlapped Communication and Computation: [5,9,28] present runtimes
that overlap communication with computation. [37] describes a hybrid thread-
ing approach where one thread handles all MPI-related operations and all other
threads handle computation. [24] provides an OpenCL communication library
and programming interface to optimize communication between host and accel-
erators. [40] uses static inter-node data and task distribution in large-scale GPU-
based clusters, and dynamic task scheduling within a node to overlap commu-
nication with computation. [41] uses source-to-source compiler optimization to
enable streaming for offloaded computations for Xeon Phi. In our work, we use
performance models from LD and dynamically adjust tile size to completely
overlap communication and computation for heterogeneous systems.

Telescopic Languages: The idea of annotating libraries in order to generate
fast specialized code at the translation of scripting languages has been explored
in [21]. Our library description metadata is inspired by this work, but extends it
to enable cross-library heterogeneous execution via task-fission. Library annota-
tion has also been explored in [16].

Skeleton Composition: Efficient composition of algorithmic skeletons such as
map, reduce, and zip for shared-memory systems and clusters has been explored
in the STAPL Skeleton Framework [42,45,46].

Mozart: Efficient Composition of Library Functions 199

6 Conclusion

In this paper, we show that library composition plays a crucial role in achiev-
ing peak performance in heterogeneous architectures. We propose a framework,
Mozart, consisting of two components: a library description (LD) interface for
library writers and a generic library composition runtime. The runtime performs
task-fission on-the-fly in order to improve data locality and data reuse across
library calls using the performance parameters from LD. Mozart transparently
composes library calls across heterogeneous cores and delivers close-to expertly
tuned performance. Our experimental evaluation on a heterogeneous system con-
sisting of a Xeon CPU and 2 Xeon Phi co-processors executing High Performance
Linpack benchmarks shows that Mozart achieves an average GFLOPS improve-
ment of 31.7% over MKL+AO and 6.7% over hand-optimized code. In future,
we would like to augment auto-tuning within our framework to further improve
our performance results. We would also like to extend Mozart to handle non-
affine array accesses. A tool that can automatically generate LD specifications
for library routines is also a subject for future work.

References

1. Effective Use of the Intel Compiler’s Offload Features. https://software.intel.com/
en-us/articles/effective-use-of-the-intel-compilers-offload-features

2. How to Overlap Data Transfers in CUDA C/C++. https://devblogs.nvidia.com/
parallelforall/how-overlap-data-transfers-cuda-cc/

3. Intel Math Kernel Library Automatic Offload for Intel Xeon Phi Copro-
cessor. https://software.intel.com/en-us/articles/math-kernel-library-automatic-
offload-for-intel-xeon-phi-coprocessor

4. AlSaber, N., Kulkarni, M.: Semcache: semantics-aware caching for efficient GPU
offloading. In: Proceedings of the 27th International ACM Conference on Interna-
tional Conference on Supercomputing, ICS 2013, pp. 421–432. ACM, New York
(2013)

5. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exp. 23(2), 187–198 (2011)

6. Barik, R., et al.: Efficient mapping of irregular C++ applications to integrated
GPUs. In: IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO) (2014)

7. Belviranli, M.E., Bhuyan, L.N., Gupta, R.: A dynamic self-scheduling scheme
for heterogeneous multiprocessor architectures. ACM Trans. Archit. Code Optim.
9(4), 57:1–57:20 (2013)

8. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic lan-
guage for technical computing. CoRR, abs/1209.5145 (2012)

9. Bueno, J., Martorell, X., Badia, R.M., Ayguadé, E., Labarta, J.: Implementing
OmpSs support for regions of data in architectures with multiple address spaces.
In: Proceedings of the 27th International ACM Conference on International Con-
ference on Supercomputing, ICS 2013, pp. 359–368. ACM, New York (2013)

10. Cederman, D., Tsigas, P.: On dynamic load balancing on graphics processors.
In: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware, GH 2008, Aire-la-Ville, Switzerland, pp. 57–64 (2008)

https://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
https://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
https://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
https://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/
https://software.intel.com/en-us/articles/math-kernel-library-automatic-offload-for-intel-xeon-phi-coprocessor
https://software.intel.com/en-us/articles/math-kernel-library-automatic-offload-for-intel-xeon-phi-coprocessor

200 R. Barik et al.

11. Chatterjee, S., Grossman, M., Sb̂ırlea, A., Sarkar, V.: Dynamic task parallelism
with a GPU work-stealing runtime system. In: Rajopadhye, S., Mills Strout, M.
(eds.) LCPC 2011. LNCS, vol. 7146, pp. 203–217. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36036-7 14

12. Chen, L., Villa, O., Krishnamoorthy, S., Gao, G.R.: Dynamic load balancing on
single- and multi-GPU systems. In: IEEE International Symposium on Parallel
and Distributed Processing (IPDPS), pp. 1–12 (2010)

13. Chronaki, K., Rico, A., Badia, R.M., Ayguadé, E., Labarta, J., Valero, M.:
Criticality-aware dynamic task scheduling for heterogeneous architectures. In: Pro-
ceedings of the 29th ACM on International Conference on Supercomputing, ICS
2015, New York, NY, USA, pp. 329–338 (2015)

14. Grewe, D., Wang, Z., O’Boyle, M.F.P.: OpenCL task partitioning in the presence
of GPU contention. In: Caşcaval, C., Montesinos, P. (eds.) LCPC 2013. LNCS,
vol. 8664, pp. 87–101. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09967-5 5

15. Guo, Z., Pierce, M., Fox, G., Zhou, M.: Automatic task re-organization in MapRe-
duce. In: 2011 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 335–343 (2011)

16. Guyer, S.Z., Lin, C.: Broadway: a software architecture for scientific computing. In:
IFIPS Working Group 2.5: Software Architecture for Scientific Computing (2000)

17. Haidar, A., Tomov, S., Arturov, K., Guney, M., Story, S., Dongarra, J.: LU, QR,
and Cholesky factorizations: programming model, performance analysis and opti-
mization techniques for the Intel Knights Landing Xeon Phi. In: 2016 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7, September 2016

18. Harris, T., Maas, M., Marathe, V.J.: Callisto: co-scheduling parallel runtime sys-
tems. In: Proceedings of the Ninth European Conference on Computer Systems,
EuroSys 2014, pp. 24:1–24:14. ACM, New York (2014)

19. Heinecke, A., et al.: Design and implementation of the Linpack benchmark for
single and multi-node systems based on Intel Xeon Phi coprocessor. In: 2013 IEEE
27th International Symposium on Parallel and Distributed Processing (IPDPS),
Washington, DC, USA, pp. 126–137 (2013)

20. Hugo, A.-E., Guermouche, A., Wacrenier, P.-A., Namyst, R.: Composing multiple
StarPU applications over heterogeneous machines: a supervised approach. IJHPCA
28(3), 285–300 (2014)

21. Kennedy, K., et al.: Telescoping languages: a strategy for automatic generation
of scientific problem-solving systems from annotated libraries. J. Parallel Distrib.
Comput. 61(12), 1803–1826 (2001)

22. Kim, J., Kim, H., Lee, J.H., Lee, J.: Achieving a single compute device image
in OpenCL for multiple GPUs. In: Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming, PPoPP 2011, NY, USA, pp.
277–288 (2011)

23. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: SnuCL: an OpenCL framework for
heterogeneous CPU/GPU clusters. In: Proceedings of the 26th ACM International
Conference on Supercomputing, ICS 2012, pp. 341–352 (2012)

24. Komoda, T., Miwa, S., Nakamura, H.: Communication library to overlap computa-
tion and communication for OpenCL application. In: Proceedings of the 2012 IEEE
26th International Parallel and Distributed Processing Symposium Workshops and
Ph.D. Forum, IPDPSW 2012, Washington, DC, USA, pp. 567–573 (2012)

https://doi.org/10.1007/978-3-642-36036-7_14
https://doi.org/10.1007/978-3-319-09967-5_5
https://doi.org/10.1007/978-3-319-09967-5_5

Mozart: Efficient Composition of Library Functions 201

25. Lee, J., Samadi, M., Park, Y., Mahlke, S.: Transparent CPU-GPU collaboration
for data-parallel kernels on heterogeneous systems. In: Proceedings of the 22nd
International Conference on Parallel Architectures and Compilation Techniques,
PACT (2013)

26. Luk, C.-K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO, NY, USA, pp. 45–55
(2009)

27. Majo, Z., Gross, T.R.: A library for portable and composable data locality opti-
mizations for NUMA systems. ACM Trans. Parallel Comput. 3(4), 20:1–20:32
(2017)

28. Marjanović, V., Labarta, J., Ayguadé, E., Valero, M.: Overlapping communication
and computation by using a hybrid MPI/SMPSs approach. In: Proceedings of the
24th ACM International Conference on Supercomputing, ICS 2010, New York, NY,
USA, pp. 5–16 (2010)

29. Ogata, Y., Endo, T., Maruyama, N., Matsuoka, S.: An efficient, model-based CPU-
GPU heterogeneous FFT library. In: IEEE International Symposium on Parallel
and Distributed Processing, IPDPS, pp. 1–10 (2008)

30. Pan, H., Hindman, B., Asanović, K.: Lithe: enabling efficient composition of par-
allel libraries. In: Proceedings of the First USENIX Conference on Hot Topics in
Parallelism, HotPar 2009, p. 11. USENIX Association, Berkeley (2009)

31. Pandit, P., Govindarajan, R.: Fluidic kernels: cooperative execution of OpenCL
programs on multiple heterogeneous devices. In: Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
CGO 2014, NY, USA, pp. 273:273–273:283 (2014)

32. Phothilimthana, P.M., Ansel, J., Ragan-Kelley, J., Amarasinghe, S.: Portable per-
formance on heterogeneous architectures. In: Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2013, NY, USA, pp. 431–444 (2013)

33. Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: SSMART: smart scheduling of
multi-architecture tasks on heterogeneous systems. In: Proceedings of the Second
Workshop on Accelerator Programming Using Directives, WACCPD 2015, pp. 1:1–
1:11 (2015)

34. Ravi, V.T., Ma, W., Chiu, D., Agrawal, G.: Compiler and runtime support for
enabling generalized reduction computations on heterogeneous parallel configura-
tions. In: Proceedings of the 24th ACM International Conference on Supercom-
puting, ICS 2010, NY, USA, pp. 137–146 (2010)

35. Ravi, V.T., Agrawal, G.: A dynamic scheduling framework for emerging hetero-
geneous systems. In: 2011 18th International Conference on High Performance
Computing (HiPC), pp. 1–10, December 2011

36. Rey, A., Igual, F.D., Prieto-Mat́ıas, M.: HeSP: a simulation framework for solving
the task scheduling-partitioning problem on heterogeneous architectures. In: Dutot,
P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS, vol. 9833, pp. 183–195. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-43659-3 14

37. Satish, N., Kim, C., Chhugani, J., Dubey, P.: Large-scale energy-efficient graph
traversal: a path to efficient data-intensive supercomputing. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC 2012, Los Alamitos, CA, USA, pp. 14:1–14:11 (2012)

https://doi.org/10.1007/978-3-319-43659-3_14

202 R. Barik et al.

38. Satish, N.: Can traditional programming bridge the ninja performance gap for
parallel computing applications? In: Proceedings of the 39th Annual International
Symposium on Computer Architecture, ISCA 2012, Washington, DC, USA, pp.
440–451 (2012)

39. Schaa, D., Kaeli, D.: Exploring the multiple-GPU design space. In: IEEE Interna-
tional Symposium on Parallel Distributed Processing, IPDPS, pp. 1–12 (2009)

40. Song, F., Dongarra, J.: A scalable framework for heterogeneous GPU-based clus-
ters. In: Proceedings of the 24th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2012, NY, USA, pp. 91–100 (2012)

41. Song, L., Feng, M., Ravi, N., Yang, Y., Chakradhar, S.: COMP: compiler optimiza-
tions for manycore processors. In: Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-47, Washington, DC,
USA, pp. 659–671 (2014)

42. Thomas, N., Tanase, G., Tkachyshyn, O., Perdue, J., Amato, N.M., Rauchwerger,
L.: A framework for adaptive algorithm selection in STAPL. In: Proceedings of
the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP 2005, pp. 277–288. ACM, New York (2005)

43. Tzenakis, G., Papatriantafyllou, A., Vandierendonck, H., Pratikakis, P., Nikolopou-
los, D.S.: BDDT: block-level dynamic dependence analysis for task-based paral-
lelism. In: Wu, C., Cohen, A. (eds.) APPT 2013. LNCS, vol. 8299, pp. 17–31.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45293-2 2

44. Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., Dongarra, J.: Hierarchical DAG
scheduling for hybrid distributed systems. In: 29th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Hyderabad, India, May 2015

45. Yu, H., Rauchwerger, L.: An adaptive algorithm selection framework for reduction
parallelization. IEEE Trans. Parallel Distrib. Syst. 17(10), 1084–1096 (2006)

46. Zandifar, M., Jabbar, M.A., Majidi, A., Keyes, D., Amato, N.M., Rauchwerger,
L.: Composing algorithmic skeletons to express high-performance scientific appli-
cations. In: Proceedings of the 29th ACM on International Conference on Super-
computing, ICS 2015, pp. 415–424. ACM, New York (2015)

https://doi.org/10.1007/978-3-642-45293-2_2

Lock-Free Transactional Adjacency List

Zachary Painter(B), Christina Peterson, and Damian Dechev

University Of Central Florida, Orlando, FL 32816, USA
zacharypainter@knights.ucf.edu

Abstract. Adjacency lists are frequently used in graphing or map based
applications. Although efficient concurrent linked-list algorithms are well
known, it can be difficult to adapt these approaches to build a high-
performance adjacency list. Furthermore, it can often be desirable to
execute operations in these data structures transactionally, or perform
a sequence of operations in one atomic step. In this paper, we present
a lock-free transactional adjacency list based on a multi-dimensional list
(MDList). We are able to combine known linked list strategies with the
capability of the MDList in order to efficiently organize graph vertexes
and their edges. We design our underlying data structure to be node-
based and linearizable, then use the Lock-Free Transactional Transforma-
tion (LFTT) methodology to efficiently enable transactional execution.
In our performance evaluation, our lock-free transactional adjacency list
achieves an average of 50% speedup over a transactional boosting imple-
mentation.

1 Introduction

Lock-free data structures aim to fully utilize the computing resources of multi-
core processors without the drawbacks of lock-based counterparts such as dead-
lock or priority inversion. However, lock-free data structures are difficult to
design due to the consideration of all possible thread interleavings when reason-
ing about safety or liveness properties. Even more so are lock-free transactional
data structures because in addition to the safety and liveness properties of tra-
ditional lock-free data structures, isolation must be preserved such that a series
of operations appear to occur in one atomic step.

An adjacency list data structure maps graph nodes, or “vertexes,” to other
nodes by their connections, or “edges.” Generally, if a vertex i is adjacent to
another vertex j, then vertex j is contained in the sublist of vertex i. In order
to implement such a data structure concurrently, one would need to overcome
the challenges of traversing in multiple dimensions, organizing vertex and edge
nodes, and properly disposing of all children of a vertex before deleting the
vertex.

This research was supported by the National Science Foundation under NSF OAC
1440530, NSF CCF 1717515, and NSF OAC 1740095.

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 203–219, 2019.
https://doi.org/10.1007/978-3-030-35225-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_14

204 Z. Painter et al.

Previous work on lock-free linked list data structures are designed for sets and
queues. Since elements of these abstract data types do not account for relation-
ships between elements, they are unsuitable to be directly used for an adjacency
list data structure. An adjacency list data structure needs to support operations
that can insert and remove vertexes and edges, as well as check whether a vertex
or edge is contained in the list. Additional synchronization is required to ensure
that an operation that deletes a vertex i does not modify or remove nodes that
are currently part of i’s sublist of adjacent nodes. Further synchronization is
required to ensure that two operations are able to simultaneously modify the
sublist of a vertex despite those operations appearing to take place at the same
vertex.

A lock-free adjacency list provides atomicity at the granularity of an indi-
vidual operation. However, in some cases one may want to perform a sequence
of operations such that the entire sequence appears to take place in one atomic
step. One such case is during the deletion of a vertex, in which case it must first
be guaranteed that all edges from that vertex have already been deleted. In such
a case, a sequence of operations such as the following would be useful.

1: if isEmpty(vertex.List) then
2: Delete(vertex);

This code should be able to verify that a given node’s sublist is empty before
deleting that node. Unfortunately, this operation fails to complete its goal. Since
the composition of the methods is not atomic, another thread a could insert an
edge between the time that thread b reads that the list of edge nodes is empty,
and thread b deleting the vertex, thus invalidating the operation.

In order to perform a series of operations such as those previously men-
tioned, all involved operations need to appear to take place in a single atomic
step. Additionally, if any operation fails, it must appear as though none of the
operations took place. Some implementations, such as Transactional Boosting
[9], use fine-grained locking in order to create a transactional data structure
from an underlying concurrent data structure. This, however, reduces the per-
formance of the data structure, and negates any lock-free progress guarantee
the underlying data structure might have had. Software Transactional Memory
(STM) can also be used to create transactional data structures from existing
ones. Unfortunately, this approach also creates significant performance loss. In
an STM data structure, transactions maintain a list of read and write locations.
If a transaction’s read and write set overlaps with another transaction’s write
set, those transactions conflict. In the case of a conflict, one of the transactions
must abort. This results in a significant amount of unnecessary aborts, as con-
flicts detected in this way do not necessarily correspond to high-level semantic
conflicts. These excessive aborts can severely limit the degree of concurrency
when executing transactions on a data structure.

Transactional Adjacency List 205

In this paper, we present a high performance lock-free transactional adja-
cency list. The primary goal of the data structure presented in this work is
to (1) implement a lock-free adjacency list base data structure, and (2) enable
transactional execution of operations in this data structure.

In order to achieve the first goal, we implement lock-free adjacency list using
a lock-free linked list of vertexes, where each vertex contains a pointer to a
Multi-Dimensional List (MDList) [24] to allow fast lookup of edges. We depict
the adjacency list structure in Fig. 1. An MDList guarantees a worst-cast search
time complexity of O(logN), an improvement over a worst-cast search time
complexity of O(N) provided by design alternatives such as a linked list or
skiplist. A skiplist provides an average search time complexity of O(logN), but
has a worst-cast search time complexity of O(N) if shortcuts to the node of
interest do not exist. We place all vertexes in the primary linked list, and all
adjacent edges to that vertex as a node in its associated MDList. This allows us to
take maximum advantage of the multi-dimensional property of the MDList, while
also easily organizing the relative locations of each vertex and their corresponding
edges. Background details on the MDList are provided in Sect. 2.

We refer to elements in the primary linked list as vertexes, and elements
in the sublist of a vertex as nodes. A node a contained in vertex b’s associated
MDList indicates that vertex a is adjacent to vertex b. When inserting or deleting
a vertex, we traverse along the main list of vertexes, checking each key, until we
find the location to insert or delete our vertex. While allocating the vertex we
also allocate a new MDList for that vertex to point to.

0
(0,0,0)

1
(0,0,1)

2
(0,0,2)

3
(0,1,0)

4
(0,1,1)

5
(0,1,2)

6
(0,2,0)

7
(0,2,1)

0
(0,0,0)

3
(0,1,0)

6
(0,2,0)

5
(0,1,2)

9
(1,0,0)

1
(0,0,1)

2
(0,0,2)

3
(0,1,0)

4
(0,1,1)

8
(0,2,2)

9
(1,0,0)

10
(1,0,1)

1
(0,0,1)

10
(1,0,1)

8
(0,2,2)

4
(0,1,1)

7
(0,2,1)

Vertex List (Linked List)

Node List of Adjacent Edges (3-Dimensional MDList)

6
(0,2,0)

8
(0,2,2)

Fig. 1. Adjacency list structure

In order to achieve the second goal, we adopt Lock-Free Transaction Trans-
formation (LFTT) [25] by storing descriptor objects within each node in both
the main list and each MDList. LFTT uses high-level semantic conflict detec-
tion to avoid low-level read/write conflicts, and a logical rollback to avoid the

206 Z. Painter et al.

performance penalties of a physical rollback. Background details on LFTT are
provided in Sect. 2.

The contribution made by this paper is as follows:

– To the best of our knowledge, this paper presents the only lock-free transac-
tional adjacency list.

– This data structure experiences an average speedup greater than 50% when
compared to similar approaches based on transactional boosting and STM.

2 Background

An MDList partitions a linked list into shorter lists organized in multi-
dimensional space to improve search time. A node in a D-dimensional MDList
comprises a key-value pair, a coordinate vector of integers k[D], and an array of
child pointers where the dth pointer links to a child node of dimension d. A list
of arbitrary dimension D is formally defined as follows.

Definition 1. A D-dimensional list is a rooted tree in which each node is implic-
itly assigned a dimension of d ∈ [0,D). The root node’s dimension is 0. A node
of dimension d has no more than D − d children, and each child is assigned a
unique dimension of d′ ∈ [d,D) [24].

Given a key range of [0, N) in a D-dimensional space, the maximum number
of keys in each dimension is b = � D

√
N �. The mapping of an integer key to its

D-dimension vector coordinates is performed by converting the key to a b-based
number and using each digit as an entry in the vector coordinates. Each node
is associated with a coordinate vector k, where a dimension d node shares a
coordinate prefix of length d with its parent. The following definition provides
the criteria for which nodes are ordered in their D-dimensional list.

Definition 2. Given a non-root node of dimension d with coordinate k =
(k0, ..., kD−1) and its parent with coordinate k′ = (k′

0, ..., k
′
D−1) in an ordered

D-dimensional list: ki = k′
i,∀i ∈ [0, d) ∧ kd > k′

d [24].

The search for a node is performed by starting at the 0-dimension and travers-
ing all nodes at this dimension until either a node with the same 0th coordinate
as the key of interest is reached, or the current node being traversed has a greater
0th coordinate than the key of interest. If a node with a 0th coordinate identical
to the key of interest exists, then the search advances to the next dimension
d. The search will continue advancing dimensions given that a node with the
same dth coordinate as the key of interest is found. The search terminates when
either a node with the same coordinates as the key of interest is found, or no
node exists with the same dth coordinate as the key of interest.

The worst-case time complexity of a search in an MDList is O(D ·b), where b
is the maximum number of nodes in a dimension. Replacing b in the worst-cast
time complexity, we have O(D · b) = O(D · D

√
N). If we choose D ∝ logN , then

O(D · D
√
N) = O(logN · log N

√
N) = O(logN · 2) = O(logN).

Transactional Adjacency List 207

Insertion into an MDList is performed by splicing and child adoption. Splicing
consists of updating the new node’s child pointer to point to the predecessor’s
child, and updating the predecessor’s child pointer to point to the new node.
Child adoption is necessary when the dimension of an old child has changed due
to the insertion of a new node, where the old child will be adopted as a higher
dimension child of the new node. Deletion of a node in an MDList is performed
by updating the predecessor’s child point to point to the child of the node to be
deleted. In the case of a deletion, the child of the node to be deleted is adopted
as a lower dimension child of the predecessor.

Lock Free Transactional Transformation (LFTT) is a methodology for cre-
ating transactional data structures from lock-free node-based data structures.
LFTT handles conflicts between operations by utilizing descriptor objects refer-
enced by each node. These transaction descriptors contain all information nec-
essary for an arbitrary thread to perform any given operation or sequence of
operations belonging to a transaction. For a thread to perform an operation at
a node as part of a transaction, it is must first create a reference to its trans-
action descriptor in the node. If there already exists a transaction descriptor
at that node, a conflict between two transactions accessing the same node has
been detected. LFTT resolves these conflicts by having the thread that finds
an existing transaction descriptor at a node help complete the conflicting trans-
action by executing all remaining operations that are part of that transaction,
thus eventually causing the conflicting transaction to either succeed or fail. Once
the transaction referenced by the transaction descriptor at a node is complete, a
thread may place a reference to its own transaction descriptor in the node and
proceed with its operation.

LFTT additionally handles the recovery of failed transactions through its
transaction descriptors. A transaction descriptor may be marked as committed,
indicating that all operations that are part of the transaction have been success-
fully completed. Alternatively, a transaction descriptor may be marked aborted,
indicating that none of the operations in the transaction should occur. LFTT is
able to avoid the need to physically undo already completed operations that are
part of an aborted transaction by interpreting the logical status of a node based on
its transaction descriptors status. A nodes status in the list is interpreted inversely
if it is part of an aborted transaction. This results in the appearance that all com-
pleted operations that are part of an aborted transaction have been undone.

3 Lock-Free Transactional Adjacency List

The primary challenge in creating a lock-free transactional adjacency list is
its multi-dimensional structure, which poses a major challenge to perform-
ing transactional synchronization for non-commutative operations. InsertEdge
and DeleteEdge create a relation between two vertexes by adding or removing
a node from the sublist of an existing vertex. Any InsertEdge or DeleteEdge

operation occurring at vertex j would have their outcome affected by a trans-
action that modifies vertex j. As a result, two edge operations occurring at the

208 Z. Painter et al.

same vertex are able to commute, while an edge operation and an operation
that modifies the vertex itself are not. The DeleteVertex method requires
special consideration. The case in which a transaction deletes a vertex at which
one or multiple threads are performing an edge operation must be prevented. A
DeleteVertex operation on a vertex should help complete all pending edge
operations currently accessing the MDList contained at that vertex. Simulta-
neously, any subsequent operations attempting to access that MDList will first
help complete the pending DeleteVertex.

The constants provided by LFTT are detailed in Algorithm1. We introduce
a currentOpid field to each descriptor to track the current progress of each trans-
action. The IsNodePresent, IsKeyPresent, ExecuteOps, MarkDelete,

LocatePred, and pointer marking operations are provided in Lock-Free Trans-
actional Transformation [25].

Algorithm 1. LFTT Definitions
1: enum TxStatus
2: Active
3: Committed
4: Aborted
5: enum OpType
6: InsertVertex
7: DeleteVertex
8: InsertEdge
9: DeleteEdge
10: Find
11: struct Operation
12: OpType type
13: int key

14: struct Desc
15: int size
16: TxStatus status
17: int currentOpid
18: Operation ops[]

19: struct NodeDesc
20: Desc* desc
21: int opid

22: struct Node
23: NodeDesc* info
24: int key
25: MDList* list
26: ...

Algorithm 2. Update Info Pointer
1: function UpdateInfo(Node* n, NodeDesc* info, bool wantkey)
2: NodeInfo *oldinfo ← n.info
3: if IsMarked(oldinfo) then
4: Do Delete(n)
5: return retry;

6: if oldinfo.desc �= info.desc then
7: if oldinfo.desc.ops[oldinfo.opid] == DeleteVertex & oldinfo.desc.currentOpid == old-

info.opid then
8: ExecuteOps(oldinfo.desc, oldinfo.opid)
9: else
10: ExecuteOps(oldinfo.desc, oldinfo.opid+1)

11: else if oldinfo.opid >= info.opid then
12: return success
13: haskey ← IsKeyPresent(oldinfo)
14: if (!haskey & wantkey) || (haskey & !wantkey) then
15: return fail
16: if info.desc.status �= Active then
17: return fail
18: if CAS(&n.info, oldinfo, info) then
19: return success
20: else
21: return retry

Transactional Adjacency List 209

Algorithm 2 contains the UpdateInfo operation provided by Lock-Free
Transactional Transformation [25], which has been modified in the following way
to allow for a special case regarding DeleteVertex. At line 2.6 we check the
info pointer at node n. If a different operation is currently taking place at node n,
that operation must be completed before the desired operation can begin. At line
2.7 we check if the operation that occurred at node n was a DeleteVertex

operation. If so, we check whether the DeleteVertex operation is pending.
The currentOpid variable stores what step the transaction is currently on. If
this value is equal to the value of the operation that occurred at node n, then
the DeleteVertex operation is not complete and the current thread should
use the descriptor object to attempt to delete the vertex. For all other oper-
ations, the presence of an info pointer at node n indicates that the operation
described by n.info is already complete. Thus, ExecuteOps is called on the
next operation in the transaction.

Algorithm 3. Transformed Delete Vertex
1: function DeleteVertex(int vertex, NodeDesc* nDesc)
2: Node *curr ← head
3: Node *pred ← NULL
4: while true do
5: LocatePred(pred, curr, vertex)
6: if IsNodePresent(curr, vertex) then
7: ret ← (UpdateInfo(curr, nDesc, true) == success)
8: if ret then
9: MDList *list ← curr.list
10: ret ← list.FinishDelete(list.head, 0, nDesc)

11: else
12: ret ← false

13: if ret then
14: return true
15: else
16: return false

Algorithm 4. Finish Pending DeleteVertex Operation
1: function FinishDelete(MDList::Node* n, int dc, NodeDesc* nDesc)
2: while true do
3: if UpdateInfo(n, nDesc, true) == success then
4: Break
5: else
6: return false

7: for i ∈ [dc,DIMENSION) do
8: MDList::Node *child ← n.child[i]
9: CAS(&n.child[i], child, Set Mark(child))
10: if child! = NULL then
11: ret ← FinishDelete(child, i, nDesc)
12: if ret == false then
13: return false

14: else
15: return true

210 Z. Painter et al.

3.1 Adjacency List Operations

This adjacency list supports 5 operations: InsertVertex, DeleteVertex,

InsertEdge, DeleteEdge, and Find. The InsertVertex operation adds a
vertex to a primary linked list of vertexes. The InsertEdge operation adds a
node to a specific vertex’s sublist, thus establishing that node as adjacent to
the specified vertex. The DeleteVertex and DeleteEdge operations are the
inverses of their counterparts. The Find operation searches for a node within
the sublist of vertex j, returning whether or not that node shares an edge with
vertex j.

Algorithm 5. Find Vertex Operation
1: function FindVertex(int vertex, NodeDesc* nDesc, int opid)
2: Node *curr ← head
3: Node *pred ← NULL
4: while true do
5: LocatePred(pred, curr, vertex)
6: if IsNodePresent(curr, vertex) then
7: NodeDesc *cDesc ← curr.info
8: if cDesc != nDesc then
9: ExecuteOps(cDesc.desc,cDesc.opid+1)

10: if IsKeyPresent(cDesc) then
11: if nDesc.desc.status != ACTIVE then
12: return NULL
13: else
14: return curr
15: else
16: return NULL

Algorithm 3 details the DeleteVertex operation. DeleteVertex tra-
verses the main list of vertexes by calling LocatePred on line 3.5. If the node
with the target key already exists, then LocatePred will return when curr
points to the node with that key, otherwise, curr will point to the logical suc-
cessor of the node to be deleted. We check for the case that the node with the
desired key already exists on line 3.6. We then call UpdateInfo to attempt to
redirect the info pointer. If this succeeds, we must then call FinishDelete on
the vertex’s list object. FinishDelete traverses list calling UpdateInfo on all
the nodes it contains. Additionally, we must mark the next pointer of all nodes as
they are traversed, which will interrupt competing InsertEdge operations that
have already begun inserting their node on line 6.15, causing them to re-traverse.
The goal of this operation is to logically delete all edges adjacent to the vertex
to be deleted. This process allows all pending transactions occurring within the
sublist to commit due to the call to UpdateInfo at line 4.3. Once it can be
guaranteed that all nodes within the vertex’s list are deleted, the operation is
complete. Physical deletion is later done by using Compare-And-Swap to change
pred.next to point to curr.next, thus removing the vertex from the main list.

The InsertVertex algorithm is similar to DeleteVertex. InsertVer-

tex traverses the list using LocatePred, but can only succeed if its value

Transactional Adjacency List 211

is not already in the list (!IsNodePresent(curr, vertex)). In this case, it allo-
cates a new vertex and inserts it into the list using Compare-And-Swap to change
pred.next to curr.

Algorithm 5 details the main method used to help the insertion of edge nodes.
To begin, it searches the list until it finds the correct vertex node and verifies
that it is logically in the list, and that no other transaction currently holds the
info pointer. If another thread does hold the info pointer, the thread will help
complete that transaction at line 5.9. Otherwise, the function returns a pointer
to the node.

Algorithm 6. Insert key:edge at target vertex
1: function InsertEdge(int vertex, int edge, NodeDesc* nDesc, int opid)
2: while true do
3: Node *currVertex ←
4: FindVertex(vertex, nDesc, opid))
5: if currVertex == NULL then
6: return false

7: Node *pred ← NULL
8: Node *currEdge ← currVertex.list.head
9: while true do
10: currVertex.list.LocatePred(pred, currEdge)
11: if IsNodePresent(currEdge, edge) then
12: return (UpdateInfo(currEdge, nDesc, false) == success)
13: else
14: MDList::Node *n ← new MDList::Node
15: n.info ← nDesc
16: return currVertex.list.Do Insert(n)

Algorithm 7. Delete key:edge at target vertex
1: function DeleteEdge(int vertex, int edge, NodeDesc* nDesc, int opid)
2: while true do
3: Node *currVertex ←
4: FindVertex(vertex, nDesc, opid))
5: if currVertex == NULL then
6: return false
7: Node *pred ← NULL
8: Node *currEdge ← currVertex.list.head
9: while true do
10: currVertex.list.LocatePred(pred, currEdge)
11: if IsNodePresent(currEdge, edge) then
12: return (UpdateInfo(currEdge, nDesc, true) == success)
13: else
14: return false

Algorithm 6 details the insertion of a node into an MDList in order to cre-
ate an edge with a vertex. InsertEdge begins by calling FindVertex to get
the proper vertex node for insertion. If the node exists, then we traverse the
MDList pointed to by the vertex to find the proper location to insert the new
edge node. Once the traversal is complete, insertion is done the same way as in
InsertVertex.

212 Z. Painter et al.

Algorithm 7 details the deletion of a node in an MDList in order to remove
an edge with a vertex. DeleteEdge traverses to the target vertex using the
same logic as InsertEdge. Once it has acquired a valid vertex, it traverses the
MDList looking for the target edge node to delete. If the target node is found in
the MDList, deletion is done by updating the info pointer of the target node.

4 Correctness

The lock-free transactional adjacency list is designed for the correctness property
strict serializability. According to conclusion by Herlihy et al. [9], a committed
transaction is strictly serializable given that a data structure contains lineariz-
able operations and obeys commutativity isolation.

4.1 Definitions

According to Herlihy et al. [9], a history is a sequence of instantaneous events.
Events occur during the transition of a transactions status between pending,
committed, and aborted.

Definition 3. A history h is strictly serializable if the committed series of trans-
actions is equivalent to a legal history in which all transactions executed sequen-
tially in the order they commit.

Definition 4. Two method calls I,R and I’,R’ commute if: for all histories h,
if h · I · R and h · I’ · R’ are both legal, then h · I · R · I’ · R’ and h · I’ · R’ ·
I · R are both legal and define the same abstract state.

Operations are said to commute if executing them in any order yields the
same abstract state. The commutativity of adjacency list operations are as fol-
lows, assuming vertexes x,y and nodes i,j :

InsertVertex(x) ↔ InsertVertex(y), x �= y

DeleteVertex(x) ↔ DeleteVertex(y), x �= y

InsertVertex(x) ↔ DeleteVertex(y), x �= y

InsertEdge(x, i) ↔ InsertEdge(x, j), i �= j

InsertEdge(x, i) ↔ InsertEdge(y, i), x �= y

DeleteEdge(x, i) ↔ DeleteEdge(x, j), i �= j

DeleteEdge(x, i) ↔ DeleteEdge(y, i), x �= y

InsertEdge(x, i) ↔ DeleteEdge(x, j), i �= j

InsertEdge(x, i) ↔ DeleteEdge(y, i), x �= y

FindVertex(x) ↔ InsertVertex(x)/false ↔ DeleteVertex(x)/false

FindEdge(x, i) ↔ InsertEdge(x, i)/false ↔ DeleteEdge(x, i)/false

Rule 1. Linearizability: For any history h, two concurrent invocations I and
I’ must be equivalent to either the history h · I · R · I’ · R’ or the history h · I’
· R’ · I · R

Transactional Adjacency List 213

Rule 2. Commutativity Isolation: For any non-commutative method calls
I1,1 ∈ T1 and I2, R2 ∈ T2, either T1 commits or aborts before any additional
method calls in T2 are invoked, or vice-versa.

To meet the specifications of the correctness condition linearizability, we
identify an operation’s linearization points. Furthermore, we will identify an
operation’s decision points and state-read points. The decision point of an oper-
ation occurs the moment the outcome of the operation is decided atomically. A
state-read point occurs when the deciding state of the data structure is read.

Lemma 1. The adjacency list operations InsertVertex, DeleteVertex,
InsertEdge, DeleteEdge, and Find are linearizable.

Proof. In the DeleteVertex operation, execution can branch at multiple
points. Beginning at 3.6, if the vertex to be deleted is not found, the opera-
tion returns a fail status. The state-read point of this execution occurs during
traversal, when the thread reads pred.next and does not find a node with the
desired key. If the vertex is successfully found, but the operation returns fail
at line 2.15 or 2.17, then the state-read point occurs when oldinfo.desc.status
and info.desc.status are read, respectively. Following a successful logical status
update, the decision point is when the CAS operation at line 2.18 succeeds.

The code path for FinishDelete, in which all nodes in the vertex’s sub-
list are acquired by the transaction, is identical to the code path followed by
DeleteVertex because of the call to UpdateInfo at line 4.3. Thus, the state-
read and decision points for FinishDelete are the same as the respective cases
in DeleteVertex. The code path for the physical deletion of the vertex is lin-
earizable because Do Delete, which is provided by the base data structure, is
linearizable.

The same reasoning applies to the InsertVertex, InsertEdge, Dele-

teEdge and Find operations because they share the same UpdateInfo pro-
cedure for updating the logical status of a node.

Lemma 2. The adjacency list operations InsertVertex, DeleteVertex,
InsertEdge, DeleteEdge, and Find satisfy the commutativity isolation rule.

Proof. As previously shown, commuting operations are those that access differ-
ent vertexes, or those that access different nodes within the same vertex so long
as no operation is operating on that vertex. This means that commuting oper-
ations must either operate on different vertexes or operate on different nodes
rooted at the same vertex without operating on the vertex itself. Let T1 denote
a transaction that currently accesses vertex n1. If another transaction T2 were to
access n1, it must first perform ExecuteOps for T1 which will either commit or
abort T1 before it is finished executing. Alternatively, let T1 denote a transaction
that currently accesses node m1 stored in the sublist of vertex n1. If a trans-
action T2 were to try to access vertex n1 it would first perform ExecuteOps

for T1 when it traverses to node m1 during the call to FinishDelete at 2.10,
which will either commit or abort T1.

214 Z. Painter et al.

Theorem 1. The transformed lock-free adjacency list is strictly serializable

Proof. Following Lemmas 1 and 2, we can claim that the lock-free adjacency list
is strictly serializable due to the conclusions by Herlihy and Koskinen [9].

5 Experimental Evaluation

We compare the scalability and performance of our lock-free transactional adja-
cency list to related approaches based on transactional boosting [9] and NOrec
Rochester Software Transactional Memory [13]. We create a related approach
using transactional boosting by converting the lock-free transactional adjacency
list’s base data structure operations transaction boosting methodology. Addi-
tionally, an undo log is maintained per-thread for rollbacks in the boosted imple-
mentation.

We evaluate the performance of these implementations using varying compo-
sitions of adjacency list operations. The compositions of operations are selected
to highlight “vertex” operations and “edge” operations separately, as well mea-
suring the effects of non-commutative or expensive operations like DeleteV-

ertex. Each test consists of a series of fixed-size transactions made up of
InsertVertex, DeleteVertex, InsertEdge, DeleteEdge and Find oper-
ations on random keys. The tests are performed on two systems; a 64-core NUMA
system containing 4 AMD opteron 6272 16 core CPUs @2.1 GHz, and a 12-core
system containing an Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.7 ghz.

Figure 2 shows the performance results of the 64-core NUMA system. Figure 3
shows the results for the 12-core system. Throughput is measured in terms of
operations per second. Only operations that are part of a committed transac-
tions are counting in the calculation of throughput in order to measure the
performance impact of various conflict detection and rollback schemes. The x-
axis represents the number of threads running the test. In each figure, graph
(a) shows a work-load dominated by operations occurring at vertexes, whereas
graph (b) represents a work-load made up of relatively more operations occur-
ring at edges. This test measures the performance impact of non-commutative
operations such as DeleteVertex and InsertEdge as well as the performance
impact of rollbacks on lengthy operations such as DeleteVertex. Each thread
executed 20,000 transactions with a key range of 500.

In Fig. 2, the difference between the lock-free transactional adjacency list,
denoted ‘LFTT,’ the transactional boosting implementation, denoted ‘Boost,’
and the Software Transactional Memory implementation, denoted ‘STM’ is
shown. In the boosting implementation, threads must acquire locks on nodes
for each operation. In the case of DeleteVertex, threads may need to acquire
a number of locks equal to the size of the vertex’s sublist. In this case, the lock-
free algorithm has the advantage of only needing to allocate a single descriptor
object for the entire transaction. Additionally with regards to Boost, the cost
of rolling back aborted operations is very high in operations like DeleteVer-

tex. Not only must the vertex be restored after an aborted transaction, but all

Transactional Adjacency List 215

(a) 40% InsertVertex, 40% DeleteVertex,
10% InsertEdge, 10% DeleteEdge

(b) 20% InsertVertex, 20% DeleteVertex,
25% InsertEdge, 25% DeleteEdge, 10%
Find

Fig. 2. Performance Results

(a) 40% InsertVertex, 40% DeleteVertex,
10% InsertEdge, 10% DeleteEdge

(b) 20% InsertVertex, 20% DeleteVertex,
25% InsertEdge, 25% DeleteEdge, 10%
Find

Fig. 3. Performance Results

nodes from the vertex’s sublist must be re-added using InsertEdge. This cre-
ates a very low performance for aborted transactions in transactional boosting.
Because of LFTT’s logical status update, the lock-free transactional adjacency
list is able to rollback these operations in a single atomic step. Similarly, STM
experiences a heavy performance loss due to its high number of spurious aborts.
STM is very likely to detect a conflict between operations like DeleteVertex,
which modify a great number of nodes, despite there being no semantic conflict
between transactions. These results are highly similar to the ones gathered from
the 12-core system displayed in Fig. 3.

In general, the lock-free transactional adjacency list outperforms transac-
tional boosting implementation by an average of 50%, and frequently outper-
forms RSTM by as much as 150%.

216 Z. Painter et al.

6 Related Work

Transactions can be enabled in similar data structures using related approaches
such as STM or Transactional Boosting. We focus our discussion on transac-
tional Lists and Skiplists, which provide similar node-based store and search
time complexities.

6.1 Transactional Memory

Transactional memory is a programming paradigm initially proposed by Herlihy
et al. [11] intended to simplify concurrent programming by allowing user-specified
blocks of code to be executed in hardware, exhibiting both atomicity and isola-
tion. Software transactional memory, proposed by Shavit et al. [18], was devel-
oped to facilitate transactional programming without hardware transactional
memory support. Herlihy et al. [10] present DSTM, an application programming
interface for obstruction-free STM designed to support dynamic-sized data struc-
tures. Dalessandro et al. [2] present NOrec, a low-overhead STM that utilizes
a single global sequence lock shared with the transactional mutex lock system,
an indexed write set, and value-based conflict detection to provide features such
as livelock freedom, full compatibility with existing data structure layouts, and
starvation avoidance mechanisms. Dice et al. [4] present Transactional Locking II
(TL2), an STM algorithm that uses a novel version-clock validation to guarantee
that user code operates only on consistent memory states. Other STM designs
include [6,13,16]. STM implementations rely on low-level conflict detection to
enable transactions. These implementations generally suffer from high spurious
abort counts, making them less desirable for concurrent data structures.

Initial performance experiments were performed with Hardware Transac-
tional Memory (HTM) by Dice et al. [3]. Intel introduced Transactional Syn-
chronization Extensions (TSX) to the x86 instruction set architecture of the
Intel 4th Generation CoreTMProcessors [23]. IBM introduced HTM in the Power
ISA [1]. Both implementations offer a best-effort HTM, which means that there
is no guarantee provided that a hardware transaction will commit to memory.
The disadvantage of a best-effort strategy is that HTM may experience frequent
aborts due to data access conflicts, hardware interrupts, limited transactional
resources, or false sharing due to unrelated variables mapping to the same cache
line [12].

Herlihy et al. [9] present transactional boosting, a methodology for transform-
ing highly-concurrent linearizable objects into highly-concurrent transactional
objects. Transactional boosting uses a high-level semantic conflict detection to
allow commutative operations in separate transactions to proceed concurrently
using the thread-level synchronization of the base linearizable data structure;
non-commutative operations require transaction-level synchronization through
the acquisition of an abstract lock. If a transaction aborts, it recovers the cor-
rect abstract state by invoking the inverse operations recorded in the undo log.

Transactional Adjacency List 217

6.2 Linked Lists

Valois [22], Harris [7], Michael [14], and Fomitchev et al. [5] present individual
algorithms for a lock-free linearizable linked list based on the Compare-And-
Swap operation. Valois’ algorithm addresses the problem of (1) a concurrent
deletion and insertion on an adjacent cell, and (2) a concurrent deletion and
deletion on an adjacent cell, by requiring that every normal node in the list have
an auxiliary node with only a next field as both its predecessor and successor. The
auxiliary nodes prevent the undesirable circumstance of performing an insertion
or deletion on a node adjacent to a node to be deleted. Harris’ algorithm uses the
bit-stealing technique to logically mark a node for deletion. A lazy approach is
taken for the physical deletion in which a delete operation attempts to physically
delete a node once using Compare-And-Swap. If Compare-And-Swap fails, then
the physical deletion is left for other threads to perform if they traverse the
logically deleted node. Michael’s algorithm is compatible with efficient lock-free
memory management methods, including IBM freelists [21] and the safe memory
reclamation method [15]. Fomitchev et al.’s algorithm uses backlinks that are set
when a node is deleted to allow a node to backtrack to a predecessor that is not
undergoing a deletion. An MDList provides a worst-case search time complexity
of O(logN) an improvement over the O(N) worst-cast search time complexity
provided by a linked list.

Transactional linked list implementations based on transactional boosting
use coarse-grained locking to ensure that non-commutative method calls are
never allowed to execute simultaneously. The underlying linked list algorithm’s
linearizability is preserved during this process to handle thread level synchro-
nization. Rollbacks are performed by calling a method’s inverse operation, which
causes a performance loss for aborted transactions. Zhang and Dechev [24]
present a lock-free transactional linked list alongside LFTT which takes advan-
tage of a node based conflict detection scheme to preserve the underlying algo-
rithm’s lock-freedom. This approach additionally reduces the performance hit
of rollbacks by introducing a logical status update scheme capable of aborting
a transaction in a single atomic step. LFTT provides transformation templates
for the set abstract data type, which does not account for operations in which
elements are related to each other.

6.3 Skiplists and Queues

Sundell et al. [20] present a lock-free priority queue based on a lock-free skiplist
adapted from Lotan et al. [17]. Fomitchev et al. [5] use their lock-free linked
list design [5] to implement a lock-free skiplist. Each node is augmented with a
pointer to the next lower level and a pointer to the base level. Herlihy et al. [8]
present a lock-free skiplist based on an algorithm developed by Faser [6]. Skiplists
eliminate global rebalancing and provide a logarithmic sequential search time on
average, but the worst-case search time is linear with respect to the input size.
An MDList improves upon the skiplist by providing a worst-case logarithmic
sequential search time.

218 Z. Painter et al.

Spiegelman et al. [19] presented a transactional skiplist that uses STM-like
techniques combined with node locking in an attempt to reduce overhead and
false aborts. Spiegelman et al. additionally present a transactional queue using
a pessimistic lock-based approach. In this queue, the execution of Enqueue

operations are deferred to the final phase of the transaction, the commit phase,
in order to avoid keeping track of the current head of the queue. Meanwhile,
Dequeue operations acquire a lock on the queue until their transaction is com-
plete. Zhang and Dechev [24] preserved lock-freedom in their algorithm by trans-
forming a skiplist using LFTT which, again, offers a performance improvement
on transaction rollbacks.

7 Conclusion

In this paper we introduced an efficient lock-free adjacency list algorithm based
on MDList, then enabled transactions using the LFTT methodology. We allowed
for multiple threads to concurrently modify nodes rooted at the same vertex
thus increasing the amount of operations that commute. When compared to
similar implementations based on related approaches, our algorithm experiences
performance gains across several compositions of methods.

References

1. Cain, H.W., Michael, M.M., Frey, B., May, C., Williams, D., Le, H.: Robust archi-
tectural support for transactional memory in the power architecture. In: ACM
SIGARCH Computer Architecture News, vol. 41, pp. 225–236. ACM (2013)

2. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: ACM Sigplan Notices, vol. 45, pp. 67–78. ACM (2010)

3. Dice, D., Lev, Y., Moir, M., Nussbaum, D., Olszewski, M.: Early experience with
a commercial hardware transactional memory implementation. Sun Microsystems
Technical report (2009)

4. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006). https://doi.org/
10.1007/11864219 14

5. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: Proceedings
of the Twenty-Third Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 50–59. ACM (2004)

6. Fraser, K.: Practical lock-freedom. Technical report, University of Cambridge,
Computer Laboratory (2004)

7. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,
J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45414-4 21

8. Herlihy, M., Lev, Y., Shavit, N.: A lock-free concurrent skiplist with wait-free
search. Unpublished Manuscript, Sun Microsystems Laboratories, Burlington,
Massachusetts (2007)

9. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-
concurrent transactional objects. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pp. 207–216. ACM
(2008)

https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/3-540-45414-4_21

Transactional Adjacency List 219

10. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: Proceedings of the Twenty-Second
Annual Symposium on Principles of Distributed Computing, pp. 92–101. ACM
(2003)

11. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures, vol. 21. ACM (1993)

12. Intel. Intel 64 and IA-32 architectures optimization reference manual (2016)
13. Marathe, V.J., et al.: Lowering the overhead of nonblocking software transactional

memory. In: Workshop on Languages, Compilers, and Hardware Support for Trans-
actional Computing (TRANSACT) (2006)

14. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, pp. 73–82. ACM (2002)

15. Michael, M.M.: Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In: Proceedings of the Twenty-First Annual Symposium
on Principles of Distributed Computing, pp. 21–30. ACM (2002)

16. Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-
STM: a high performance software transactional memory system for a multi-core
runtime. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 187–197. ACM (2006)

17. Shavit, N., Lotan, I.: Skiplist-based concurrent priority queues. In: 2000 Proceed-
ings of the 14th International Parallel and Distributed Processing Symposium,
IPDPS 2000, pp. 263–268. IEEE (2000)

18. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2),
99–116 (1997)

19. Spiegelman, A., Golan-Gueta, G., Keidar, I.: Transactional data structure libraries.
In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2016), vol. 51, pp. 682–696. ACM (2016)

20. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. In: 2003 Proceedings of the International Parallel and Distributed
Processing Symposium, pp. 11–pp. IEEE (2003)

21. Treiber, R.K.: Systems programming: coping with parallelism. International Busi-
ness Machines Incorporated, Thomas J. Watson Research Center (1986)

22. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing, pp.
214–222. ACM (1995)

23. Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance evaluation of intel R©
transactional synchronization extensions for high-performance computing. In: 2013
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1–11. IEEE (2013)

24. Zhang, D., Dechev, D.: An efficient lock-free logarithmic search data structure
based on multi-dimensional list. In: 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), pp. 281–292. IEEE (2016)

25. Zhang D., Dechev, D.: Lock-free transactions without rollbacks for linked data
structures. In: Proceedings of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures, pp. 325–336. ACM (2016)

GPU Applications

Efficient Inspected Critical Sections
in Data-Parallel GPU Codes

Thorsten Blaß(B), Michael Philippsen, and Ronald Veldema

Programming Systems Group, Friedrich-Alexander University, Erlangen, Germany
{Thorsten.Blass,Michael.Philippsen,Ronald.Veldema}@fau.de

Abstract. Optimistic concurrency control and STMs rely on the
assumption of sparse conflicts. For data-parallel GPU codes with many or
with dynamic data dependences, a pessimistic and lock-based approach
may be faster, if only GPUs would offer hardware support for GPU-wide
fine-grained synchronization. Instead, current GPUs inflict dead- and
livelocks on attempts to implement such synchronization in software.

The paper demonstrates how to build GPU-wide non-hanging criti-
cal sections that are as easy to use as STMs but also get close to the
performance of traditional fine-grained locks. Instead of sequentializing
all threads that enter a critical section, the novel programmer-guided
Inspected Critical Sections (ICS) keep the degree of parallelism up. As
in optimistic approaches threads that are known not to interfere, may
execute the body of the inspected critical section concurrently.

Keywords: GPGPU · CUDA · SIMT · Critical section · Mutual
exclusion

1 Introduction

Optimistic concurrency control – as it is implemented in Software Transactional
Memory (STM) – comes with some overhead for logging and rollback [5]. This
overhead grows with the number of threads that collide in their memory accesses.
On asynchronous multicores often only a few of the running threads are in an
atomic region at any time, whereas on a GPU with its data-parallel/lock-step
execution model, all threads must enter this critical section at exactly the same
time. Hence, optimistic approaches may cause significant overhead on GPUs.

1 while (atomicCAS(&lock , −1, TID) != −1); // s p i n
2 // c r i t i c a l s e c t i o n c o d e h e r e
3 atomicExch (lock , −1);

1 bool leaveLoop = f a l s e ; // t h r e a d l o c a l
2 while (! leaveLoop){
3 i f (atomicCAS(&lock , −1, TID) == TID){
4 // c r i t i c a l s e c t i o n c o d e h e r e
5 leaveLoop = true ;
6 atomicExch (lock , −1);
7 }
8 // p o i n t o f c o n v e r g e n c e
9 }

Fig. 1. Spin lock implementations, with and w/o a
SIMT-deadlock. TID is the global thread Id.

Assume you want to
study this hypothesis. You
pick benchmarks from the
GPU-STM community, you
take (or re-implement) an
STM prototype for GPUs [6,
12,16,20], and to gauge
the overhead, you re-work
the atomic regions of the
benchmark codes into pes-
simistic concurrency control,
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 223–239, 2019.
https://doi.org/10.1007/978-3-030-35225-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_15

224 T. Blaß et al.

Table 1. Fraction of the runs affected by dead- or livelocks; see Appendix.

Hash table Bank Graph Labyrinth Genome Kmeans Vacation

Problem size 1,572,864 786,432 25,165,824 25% 75% (512,512,7) Configuration see Appendix

threads 1,572,864 25,165,824 10,280 512 811,008 3,014,656 4,194,304

FGL 43% 42% 45% 29% 42% 33% 49% 37% 53%

STM 39% 45% 49% 35% 43% 37% 50% 41% 55%

i.e., your threads simply acquire a fine-grained lock for each of the data items
that they may access concurrently at runtime. If threads need to acquire mul-
tiple locks, you use a global order to avoid deadlocks. Since you know that the
Single Instruction Multiple Thread (SIMT) execution model is prone to dead-
locks1 [9,11] you re-work your code as shown in Fig. 1, i.e., you pull the loop out
of the if-statement that holds the CAS. With the resulting convergence point
after the if-statement, regardless of the SIMT-scheduling, both sets of threads
make progress; the lock is eventually released.

At this point you will understand the first motivation of our work. In our
experiments and with a particular STM framework [20], our otherwise correct
benchmark code (see Appendix) often hangs in dead- or livelocks that are beyond
our control, see Table 1. Your mileage will vary. It depends on the size, configu-
ration, version and vendor of your GPU, the number of threads that your code
spawns, the unknown scheduling strategies that run on your GPU, . . . , and the
compiler version that you are using.2 Hence, either it works by coincidence or you
need to carefully fine-tune your setup to avoid similar dead- or livelocks – both
for the STM codes and for the codes with the fine-grained locks (FGL). While
the FGL-codes are straightforward to construct, unfortunately in general they
are incorrect. The STM codes hang on the GPU because the STM framework
internally uses such error prone synchronization.

In Sect. 2 we discuss that there are fundamental architectural reasons for
those dead- and livelocks on current GPUs. We also show how to construct a
non-hanging GPU-wide critical section.

This brings us to our second motivation: In all the successful, non-hanging
runs (and only those), the FGL-code has less overhead and clearly outperforms

1 Recall that the upper code in Fig. 1 can deadlock on a GPU. Generally speaking,
the while-condition splits the threads (of a warp/wavefront) into two sets. One set
has the thread that has acquired the lock, the other set holds all the other threads.
The SIMT instruction scheduler then runs the sets in turn, one after the other, and
up to a convergence point where the sets are combined again. The problem is that
there is no yield and that the instruction scheduler does not switch between sets. If
the scheduler chooses to issue instructions to the set of the spinning threads first,
the set with the winning thread never receives a single instruction, it does not make
any progress, and thus it never releases the lock.

2 For Table 1 we compiled with -O0. If we use -O3 all the runs hang. In our benchmark
environment the compiler seems to undo the manual anti-SIMT-deadlock transfor-
mation shown in Fig. 1.

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 225

Fig. 2. Runtimes, normalized to ICS codes (-O3).

the optimistic concurrency control on the GPU, see the first and last bar of each
bundle in Fig. 2. With more collisions (smaller hash table and p = 75% for the
Graph benchmark) the STM versions get even slower.

Sections 3 and 4 then extend our GPU-wide critical section to so-called
Inspected Critical Sections (ICS) that get close to the FGL-performance (with-
out the hanging) and that also make the reasoning for the programmer as
straightforward as for the FGL-codes. See the ICS-columns in Fig. 2 that we
have used to normalize the other runtimes.3

2 Non-hanging GPU-wide Critical Sections

Fig. 3. GPU architecture and schedulers.

To explain where the dead-
and livelocks come from, we
sketch a GPU’s execution
model and its vendor-provided
schedulers. When a GPU pro-
grammer creates a grid of
threads s/he also organizes
them into b groups of t
threads each (NVIDIA: block,
AMD: workgroup). We call
t the group-size. The GPU
breaks up a group into warps
of typically 32 threads (AMD:
wavefront). To keep the discus-
sion simple, assume that the
grid size is exactly b·t and that

3 Since we can only show -O0 numbers for STM and FGL due to the compiler issue, we
show those numbers for ICS as well, even though the compiler issue did not prevent
-O3 for our approach.

226 T. Blaß et al.

t is a multiple of 32. Figure 3 shows a grid of threads in the work list of the GPU’s
group scheduler. It picks a group and assigns it to one of the GPU’s Streaming
Multiprocessors (SM). Groups are never preempted before they have com-
pleted execution. Since in general, there are unassigned groups (even if some
SMs can process more than a group), there cannot be a GPU-wide barrier for
all threads of the grid. Assume that all threads of all the SM-assigned groups
had reached such a barrier. As they all still have work to do beyond that barrier,
these groups are unfinished. This prevents pending groups from being assigned
to an SM; the SM-assigned threads wait forever.

When a group is assigned to an SM, its warp scheduler dispatches the threads
of the group’s warps to the SM’s many Stream Processors (SP). Multiple
SPs then execute all the threads of the warp in SIMT-mode. To achieve this,
the instruction scheduler spawns the same instruction to all threads at the same
time in a lock-step fashion.

GPU vendors do not disclose the strategies that their schedulers use and could
change them at will between hardware releases and compiler versions. As it is
unspecified for which of the branches of a condition the instruction dispatcher
spawns the instructions first, the upper spin lock of Fig. 1 was incorrect and prone
to SIMT-deadlocks. As there are no fairness guarantees for the warp scheduler
on when to replace unfinished warps with pending ones, the code in the lower
part of Fig. 1 is also incorrect. It can cause a livelock because in contrast to the
group scheduler, the warp scheduler can take back unfinished warps from the
SPs at any time. Assume that more warps are dispatched to an SM than it has
SPs. Some of these warps can be part of the same group, or they can belong to
other groups assigned to the same SM. Immediately after a winning thread has
entered the critical section (line 4), the warp scheduler can choose to replace the
winner’s warp by another warp. Afterwards all the SPs run warps whose threads
all wait for the critical section to become available again. From the viewpoint
of the warp scheduler all the scheduled warps perform useful work because they
all process the while loop. So there is no need to (ever) schedule back in the
winner; the other warps may hence spin forever. The code hangs in a livelock.4

1 i f (GID == 0) // 1 t h r e a d h a s Group− l e v e l ID 0
2 g l oba l . l ock () ; // e x c l u d e o t h e r g r o u p s
3 <thread−group−bar r i e r> //CUDA : s y n c t h r e a d s ()

4 // Run t h r e a d s i n t h e g r o u p one a f t e r t h e o t h e r
5 for (i=0 . . GROUP SIZE−1) {
6 i f (i == GID)
7 // c r i t i c a l s e c t i o n c o d e h e r e
8 <thread−group−bar r i e r>
9 }

10 i f (GID == 0) // 1 t h r e a d o f t h e s e t (= g r o u p)
11 g l oba l . unlock () ; // a l l o w o t h e r g r o u p s

Fig. 4. Non-hanging GPU-wide critical section.

Figure 4 shows our new
non-hanging GPU-wide crit-
ical section. It hoists the
lock-acquisition and the lock-
release out of the individual
threads of a group. Instead
of having each of the t
threads of a group compete
for the global lock, the lock is
acquired only once per group.

4 To circumvent this problem, many codes use the incorrect spin lock with a grid size
that stays below (warp size · # of SPs). With such an underutilization of the GPU
the warp scheduler does not have to re-schedule because there is no more than one
warp per SP.

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 227

All the threads of an SP-assigned warp execute the code in Fig. 4 concurrently
in a lock-step fashion. In each of the SM-assigned groups the one thread with
the group-level ID 0 within that group acquires the GPU-wide lock global (of
the critical section) in line 2. (Release is in line 11.)

Fig. 5. Schematic execution of Fig. 4. (Color figure
online)

In Fig. 5 time flows
from top to bottom. The
thread with GID = 0 (red)
of a group acquires and
releases the lock. Let us
ignore the global lock-
ing (and unlocking) for
now – it only matters
that the locking is fol-
lowed by a <thread-group
-barrier> in line 3 of
the code (or the dot-
ted line in Fig. 5, resp.).
This is the SM-wide bar-
rier that interacts with
the warp scheduler. The
GID-condition in line 1
splits a warp into two sets.
The set with the single
thread acquires the lock
and runs into the barrier.
The threads in the other
set also run into the barrier. Which set of threads receive their SIMT-instructions
first is irrelevant as the convergence point for all threads is before the barrier.
Note that the warp scheduler replaces such warps (whose threads all are inac-
tive) with other (pending) warps that still have active threads. As more and
more warps find all their threads inactive in the barrier, eventually all warps of
a group will be assigned to SPs and will reach the barrier. Thus, regardless of
the scheduler’s internal strategy, the hanging-problem is gone.

Note that it is irrelevant whether and when other groups that are scheduled
to other SMs reach their barriers. It only matters that all the threads of the warp
with the winning thread eventually finish their work. Then other warps finish
because of the same reasoning. Then eventually an SM finishes and another
(pending) group can be assigned to this SM.

There are two issues left to explain. First, the global lock (lines 2 and 11) can
be implemented with any CPU-style lock, e.g., with the upper spin lock from
Fig. 1. As the group scheduler never takes back the group that acquired the lock
before completion, this group is still active when it eventually releases the lock.

The second question is, how the group’s threads actually perform the body
of the critical section sequentially. In line 3 there is an SM-wide barrier. After
that barrier all threads of the group are active again (not just the thread that

228 T. Blaß et al.

acquired the lock). However, the critical work needs to be performed sequentially
by one thread at a time. This is what the code in lines 4–9 achieves. In SIMT-
mode all threads execute the for loop. But in each iteration only one of them
finds the loop counter to be equal to its own GID. This thread executes the
body of the critical section, the others pause, before all threads meet again in
the SM-wide barrier in line 8 which is the point of convergence for all threads.
This barrier is needed to prevent other threads from prematurely starting with
their critical section work. After the barrier the next thread executes the body of
the critical section, as shown in the for-loop area of Fig. 5. When all threads are
done, the thread with GID = 0 releases the lock to let the next group proceed.

We will later reuse this idea for each of the architectural levels of a GPU
(and for more levels) to efficiently implement inspected critical sections.

3 Inspected Critical Sections

Now that we have non-hanging GPU-wide critical sections we can let the threads
execute the code sequentially. However, this is obviously overly restrictive as
threads that work on disjoint data should be able to do their work in parallel.

Thus, we introduce ics(list of items) { block }, an Inspected Critical
Section wherein the programmer declares all the items (data elements, mem-
ory addresses, fields, . . .) up front that each of the data-parallel threads needs
isolated access to (in the block). As for the FGL-codes, the programmer must
know what is thread-local data and what is shared between threads and thus
needs to be mentioned in the list of items. For the hash table with chaining,
the list holds the number of the bucket that a put uses. This number represents
the shared data that potentially causes a conflicting access. It is more straight-
forward than the memory address of the bucket.

The semantics of the inspected critical sections is inspired by the classic
inspector-executor paradigm [3]. Upon entry to the critical section, it is checked
whether the lists of items intersect between threads. If so, the code will run
sequentially, otherwise the threads run the body in parallel, as they would do for
an atomic region. For the inspection, the threads atomically register their items
in a bitmap. If a bit is already set when they try to set it, a conflict is detected.

There are three differences to the traditional inspector-executor. First, we
start from parallel code and the inspector downgrades to a sequential execution,
whereas originally the inspector is used to parallelize a loop if possible. Second,
we rely on the programmer to identify where conflicts may be. As there is no
automatic detection of all the accessed memory addresses, the programmer can
leave out irrelevant addresses. There is also no longer the problem that computed
memory addresses may fool the automatic detection (think of a[foo()] where
foo is impure). In general, there is not even the need to consider all memory
addresses. Instead, smaller data structures suffice. For the hash table a bitmap
with one bit per bucket is large enough. A traditional inspector works with the
full memory addresses of the buckets.

Therefore, in addition to the ics-statement, the developer has to specify an
upperBound() of the size of the shared data structure and hence the size of the

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 229

bitmap. The developer can also overwrite the mapping function idx() with an
application-specific one that maps a potentially conflicting item (data element,
memorylocation, . . .) to an index of the bitmap.5 For the hash table, the number
of available buckets is the upper bound; as the bucket number used by the put
is a good index, there is no need to use the memory address.

The third difference to the traditional inspector-executor is that we do better
than all-or-nothing. Instead of sequentializing as soon as there is a conflict, Sect. 4
introduces a gradual retrenchment of parallelism that keeps up the degree of
parallelism for those threads that do not interfere.

Some algorithms (like the Labyrinth benchmark) can find a detour if an
initially available resource can no longer be used because another thread has
taken it. Instead of sequentializing to deal with this conflict, there may be an
application-specific way around. For such situations the developer can provide a
method alternative(item) that exploits knowledge about which item causes
the conflict, finds a detour, and retries the conflict check with a new list of items.

1 void check4con f l (l e v e l , i tems []) {
2 // p r e c o n d i t i o n : h a s C o n f l i c t = f a l s e ;
3 r e s e tB i t s (bitmap) ;
4 b a r r i e r [l e v e l] () ;
5 i t e r = 0 ;
6 r e t r i e s = 0 ;
7 do {
8 item = items [i t e r] ;
9 i f (atomicCAS(&bitmap [i d x (item)] ,

)1==)1,001 {
11 i f (a l t e r n a t i v e != NULL) { // De t o u r ?

;)smeti,pamtib(stiByMteser21
=smeti31 a l t e r n a t i v e (item) ;

;0=reti41
;++seirter51

16 continue ;
17 }
18 hasCon f l i c t = true ;
19 }
20 i t e r++;
21 } while (items . s i z e ()> i t e r && r e t r i e s !=3) ;
22 }

Fig. 6. Check for conflicts, with “Detour” option.

The pseudo code in
Fig. 6 shows how the initial
inspection checks whether
there are conflicts between
the concurrent threads.
(For a better understand-
ing, ignore the level-
indices for now and assume
single values instead –
Sect. 4 will fill in the
details.) All threads run
the code in parallel. For
each potentially critical
item the threads use a
CAS operation to set the
corresponding bit (line 9) in the bitmap. The index of the bit is determined by
means of idx(). If there is a conflict and if there is a valid function pointer to
an application-specific alternative() callback function in line 11, then the
application gets the chance to modify the local results and to retry with a dif-
ferent set of potentially conflicting items (lines 11–17). There is an upper bound
on the number of retries. If the application cannot find a patch/an alternative
that avoids the conflicting item, the global conflict flag is set. We optimize this
if there is only a single item to inspect.

5 Note that if needed, the developer can trade time for space: Ideally idx() is an
injective projection of an item to [0.. upperBound()-1]. With a smaller co-domain
of idx(), the bitmap can be smaller, but the conflict detection may announce false
positives that then cause sequential execution and hence longer runtimes.

230 T. Blaß et al.

4 Gradual Retrenchment of Parallelism

Sequentializing all threads once a conflict is found is too slow to be practical. To
make inspected critical sections efficient, we use a divide-and-conquer approach
that instead of instantly switching to a fully sequential execution, splits the
threads into smaller sets [7]. We process these sets in order, set after set. Within
such a set, the threads could still modify the data without a conflict. Hence,
before the threads of a set perform their work sequentially, they again check for
conflicts, but this time only among themselves. If there is no conflict, this set of
threads can run in parallel. Otherwise we apply this idea recursively. Since all
the sets of the same level are always processed one after the other, the threads
that caused the initial conflict can never run at the same time.

The GPU architecture from Fig. 3 guides the hierarchical splitting into sets
of threads. If the conflict is on the first level of the recursion, between the threads
that run on all the SMs, then we split them into their groups. The SMs those
groups are assigned to process them sequentially. One level down it may be
possible that all the threads in a group can run without a conflict.

If there is still a conflict among all the threads on that SM, then the SM
needs to process its warps (i.e., the next level of sets) sequentially. One level
down, potentially all the threads in a warp can run without a conflict.

The next level down are pairs of threads. To keep it simple, we have left this
out in Fig. 4. Pairs are executed in order, but within a pair the two threads can
run concurrently unless they interfere.

The base level is a full sequentialization of the threads as shown in the figure.

1 stat ic bool hasCon f l i c t ;
2 void r e t r ench (l ev e l , items []) {
3 lock [l e v e l] . a cqu i r e () ; // i n c l u d e s ? ID==0 t e s t
4 hasCon f l i c t = f a l s e ;
5 b a r r i e r [l e v e l] () ;
6 i f (l e v e l < 4) {
7 check4con f l (l e v e l , i tems []) ;
8 b a r r i e r [l e v e l] () ;
9 }

10 i f (! ha sCon f l i c t) {
11 // c r i t i c a l s e c t i o n c o d e h e r e ; b o d y o f i c s
12 } else {
13 re t rench (l e v e l +1, items []) ;
14 }
15 ba r r i e r [l e v e l] () ;
16 lock [l e v e l] . r e l e a s e () ; // i n c l u d e ? ID==0 t e s t
17 }

Fig. 7. Hierarchical retrenchment of parallelism.

The recursive pseudo code
is shown in Fig. 7. This
code is a generalization of
the code shown in Fig. 4.
As discussed above, there
cannot be GPU-wide barri-
ers. Thus the recursion does
not start from the full grid
but from the SM level. To
implement the user’s ics-
statement, all active threads
execute retrench (which calls
the body of the ics). As
in Sect. 2 only one of them
acquires the lock of the current level (line 3). The acquire method comprises
the ?ID==0 test known from before (? stands for the level, e.g., G for group
level). The other sets of that hierarchy level wait; the lock acquisition serializes
them. All threads of the winning set leave the barrier in line 5. There are dif-
ferent barrier implementations for each level: a (home-grown spin-based) barrier
across the SMs, the hardware-supported SM-wide <thread-group-barrier>, a
(home-grown) warp-wide barrier, and conceptually even a barrier for a pair of
threads in a warp. The recursion level is used to pick the appropriate type of

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 231

barrier. In line 7 all those threads inspect the items that they intend to work
with for conflicts. If there is none, they can execute the critical section code
concurrently (line 11). Otherwise, we recursively split the set of threads into
smaller sets. Notice that on the lowest level 4, there is no checking for conflicts
as there is only one active thread. Thus the recursion always ends in line 11 as
soon as it reaches the level of a single thread. On the way out of the recursion,
one thread releases the level’s lock (line 16). This releases another set of threads
that is waiting for the lock.

Fig. 8. From group to warp level. (Color figure online)

Figure 8 shows what hap-
pens at the group level.
Initially the thread with
GID= 0 (red, on the left)
acquires the lock. Then all
the group’s threads check
whether there are conflicts
(c4c for check4confl). If
there is none, the threads
concurrently execute the
critical section code (bot-
tom left of the figure) and
the thread with GID = 0
releases the lock so that
another SM can proceed
with its group (not shown).
Otherwise the recursive invo-
cation of retrench splits
the t threads into warps.
Each of the warps has a
thread with WID= 0 that
tries to acquire the (orange) lock (line 3 of the code; conflict side of Fig. 8).
The warps are processed in sequence, one after the other. For each of the warps
there is again the concurrent checking for conflicts. A warp can either run in par-
allel or – if there is a conflict among the warp’s threads – the recursion proceeds
to pair level. This decision can vary from warp to warp.

The above recursive pseudo code is simplified to get the idea across. The
actual implementation not only unrolls the recursion, but it also cuts off the
recursive descent as soon as it reaches warp level (=2). Here the for-loop
known from the non-hanging GPU lock, see Fig. 4, suffices due to the SIMT-
execution. Moreover, for pairs of threads that execute in a lock-step fashion any-
way, check4confl can be optimized as no longer bitmaps with atomic operations
are needed. Due to space restrictions, we cannot get into details, but eventually
the lower two levels of the retrenchment are fused into a single efficient for-loop
that also saves on the number of synchronization barriers.

232 T. Blaß et al.

5 Evaluation

Recall that the quantitative results are the motivation of this work, see Sect. 1:
The STM versions (with mostly given atomic regions) and the FGL versions
(written by us) of the benchmark codes (see Appendix) frequently hang in dead-
or livelocks, see Table 1. The ICS versions never hang, they use straightforward
idx functions to indicate where the threads may be in conflict at runtime,6 and

they are much faster than the STM codes and often get close to the FGL-versions
(provided the latter do not hang), see Fig. 2.

Table 2. Level on which ICS executes the critical code.

Hash table Bank Graph Labyrinth Genome Kmeans Vacation

Problem size 1,572,864 786,432 25,165,824 25% 75% (512,512,7) Configuration see Appendix

threads 1,572,864 25,165,824 10,280 512 811,008 3,014,656 4,194,304

8·SM 215,040 23,040 5,360,640 0 0 0 122,880 872,448 906,240

group 1,282,560 416,128 11,438,336 3456 128 0 318,080 1,482,240 2,129,536

warp 72,608 799,648 8,233,856 6176 3392 160 351,904 639,936 1,085,856

pair 2642 333,980 132,844 648 6698 312 18,102 19,988 72,634

single 14 68 148 0 62 40 42 44 38

Let us now look into three more aspects of these general results. First, as the
key idea of our approach is to retrench parallelism gradually so that threads that
work on non-conflicting parts of the shared data can run concurrently instead of
being sequentialized, Table 2 shows on which level of the retrenchment cascade
the threads actually execute the critical code (average over 100 runs).

For the large hash table 215,040 (14%) of the threads execute the critical
section code in parallel on the first level of the retrenchment cascade. Since
the recursive decent stops on the first level only a few barriers cause overhead.
The majority of the threads (82%) can retain group-level parallelism, where 128
threads run in parallel. Only 14 threads need to run in isolation. For the smaller
hash table with more collisions the numbers shift towards the lower end of the
scale; still retaining a high degree of parallelism. Bank is similar. The other four
benchmarks have more collisions, but they also achieve a bell-shaped distribution
of levels.7

6 For Hash we use the number of the bucket, for Bank it is the account numbers.
Labyrinth uses the coordinates of the points in the mesh as idx. Genome uses a
common subsequence (string) to identify a hash bucket that holds common DNA-
segments. Kmeans uses the Id of a cluster. Vacation uses Ids of hotel rooms, flighs,
and cars. We never use memory addresses as items.

7 If we force ICS to always assume a conflict and to go down to the single thread level,
runtimes are much slower than the STM version (Hash table: 14x and 11x, Bank:
13x, Graph: 6x and 2x, Labyrinth: 2x, Genome: 12x, Kmeans: 10x, Vacation: 15x).

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 233

Fig. 9. Fraction of overhead of ICS and STM.

Second, let
us study the
overhead. STM
research sepa-
rates the run-
time spent in
the atomic reg-
ion from the
time spent for
logging, commit processing, and rollback. We mimic this and also isolate the
time spent in the retrenchment cascade and the barriers from the critical section
bodies. Figure 9 shows that the GPU-STMs overhead is 24%–84% (similar results
can be found in [20]), while the ICS codes only have an overhead of 2.7%–13%.

To understand where this small overhead comes from, Fig. 10 compares an
ICS with both an empty block and with no items to check for conflicts, to the
non-hanging GPU-wide critical section from Fig. 4 with its full sequentialization.
The first bar of each group depicts this base line (total runtime of all threads;
the overhead per thread is given in the table on the side of Fig. 10).8

Fig. 10. Overhead of the retrench cascade.

The bars that follow show
the runtimes of the recursive
retrenchment cascade. For a
certain retrenchment level (60 ·
SM, group, . . . , single), we let
check4confl on the surround-
ing levels (if any) always signal a
conflict. On the measured level
there is no conflict so that the
parallel threads perform their
(empty) critical section in par-
allel. Hence, on the 60 · SM
level, on each of the 60 SMs of
our GPU all the 128 threads of
the assigned group run in par-
allel (i.e., there is a total num-
ber of 60 · 128 = 7, 680 parallel
threads). On the group level, the SMs process their assigned groups sequentially,
while within a group all 128 threads run in parallel. The last bar shows that the
worst case overhead of the level-wise retrenchment adds about 7% to the base
line.

There are additional aspects to note. (a) The overhead per thread is better
with fewer retrenchment, see side table, since higher levels have fewer barriers
along the cascade. Hence, the fewer dynamic dependences an application has,
the smaller is the runtime fee that it pays. (b) The warp-level optimizations and
the pairing of threads pay off. (c) Doubling the number of threads approximately

8 All measurements with -O3; the compiler did not remove the empty block.

234 T. Blaß et al.

doubles the total runtime and leaves the overhead per thread fixed. (d) If the
body had not been empty, the inner four bars of each bundle would shrink in
relation to the fully sequential execution of both the first and the last bar.

Third, if there is a conflict in the Labyrinth benchmark, the STM has to
completely undo the transaction. The results in Fig. 2 show that due to the
enhanced expressiveness, the FGL-code and the ICS-code with the optional
alternative() can do much better. It also lowers the overhead in Fig. 9.

6 Limits

Inspected critical sections trade STM-comfort for runtime performance. When
using the inspected critical section, a programmer may miss items that can be
in conflict between threads. Failure to declare such items is likely to cause races.
Because of the lock-step execution it may be a bit easier to avoid such bugs than
in general MIMD codes. For collision detection, ICS expects that all accessed
memory addresses are known a-priori. If there are unforeseeable addresses, i.e.,
conflicting accesses to computed memory addresses it is much more difficult to
keep the degree of parallelism up.

The programmer can trick the inspected critical sections into a buggy behav-
ior with wrong auxiliary functions. Examples are a too narrow upperBound()
that does not match the co-domain of the mapping function idx(), or an
idx() that is stateful and yields different answers when invoked for a single

item (data element, memoryaddress, . . .) twice and/or by different threads.
The pseudo code that this paper uses to explain how an inspected criti-

cal section is implemented, assumes that (like in all the benchmark codes) all
data-parallel threads of the GPU kernel do enter the critical section, i.e., there
cannot be a surrounding condition that lets some threads avoid the critical
section. (The reasons are: (a) current GPUs require that all threads must reach
a thread-group-barrier, and (b) for correctness our pseudo code requires that
the thread with ?ID=0 has entered the critical section.) So far, we circumvent
this problem by (manually) hoisting the critical section out of the condition. In
general, there is a performance penalty for this as the critical sections get larger.

7 Related Work

Several authors study how to correctly and efficiently implement synchroniza-
tion, locking, and barriers on the GPU and on its architectural levels. A general
difference to our work is that most of the related work comes from MIMD-
parallelism and deals with threads that perform individual tasks. Our base line
is different because we assume that all threads follow the same instructions in
data-parallel code, but there are some code fragments that need synchronization.
So whenever a locking is needed, conceptually all threads are involved.

ElTantawy and Aamodt [9] work on the SIMT-induced deadlocks and build
their solution into a compiler transformation. Another published workaround
moves the convergence point to a statement that all threads can reach – no

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 235

matter if they have the lock [15]. At the lowest level of our recursive approach,
we use similar ideas, but we also guarantee progress.

Xiao et al. [17,18] also work on inter-group barriers for GPUs. Whereas our
threads also proceed after the ICS in parallel, there is also the block of code
that conceptually they execute in isolation – running in parallel if there are
no data dependences. Another difference is that on every level, our recursive
retrenchment of parallelism uses smaller barriers that wait for fewer threads.
The fewer and the more local the threads are that wait in a barrier, the more
efficient the barrier code gets. On some levels of the GPU architecture there is
even hardware support for barriers. Their group-level locking cannot use a similar
optimization. Xu et al. [19] build livelock-free lock stealing and lock virtualization
for GPUs. Their techniques only work on warp level, whereas our mechanisms
not only work across all levels of the GPU architecture, but we also present
optimizations on sub-warp level, e.g., for pairs of threads. Another difference is
that their lock stealing makes it necessary that the developer provides undo-
methods that reinstate functional correctness in case of a stolen lock. We do not
need to supply such code.

With respect to low-level locks and barriers there is orthogonal work that
we may be able to incorporate and benefit from. Whenever our system-level
implementation needed a barrier or lock, we used a basic CPU-style spin lock
(except where discussed in detail in the paper). Operating systems research has
targeted the efficiency of locking techniques. Some authors improve the time
delay, the memory traffic, and storages costs compared to locks based on atom-
ics [21]. Others optimize for situations in which many locks are acquired and
released often [13]. SmartLocks [8] is a library for spin lock implementations. Its
goal is that the scheduler always picks from the spinning threads the one that
probably contributes most to a certain goal, e.g., the overall runtime, the energy
consumption, etc. It is orthogonal research to port such ideas to the GPU and to
use the best types in our system-level implementation, especially as some ideas
require hardware support that is not (or not yet?) available on GPUs.

There are several Transactional Memory implementations in software (STM)
for GPUs [6,12,16,20]. Their common principle is to log all read and write
operations that happen in a critical section. Multiple threads execute the critical
section concurrently. If they detect a conflicting access in the logs at commit
time, then they undo the work. All of this causes storage costs and memory
traffic. In our approach we also execute critical sections concurrently, but only
if we can check beforehand that there will be no conflicts. We assume that the
developer knows the application well enough to be able to indicate those data
elements/memory locations that at runtime threads may access in a conflicting
way. This is less costly because there is no need to rollback. Moreover, instead
of logging all memory accesses, we use application-specific knowledge and only
check those memory accesses that the developer knows to be potentially critical.
This lowers the checking overhead even further. STMs are general-purpose. They
hence need to be conservative and check and log every single memory access to
achieve correctness.

236 T. Blaß et al.

Systems that rely on a static code analysis to find spots where concurrent
threads can have conflicting access to data usually face a similar type of draw-
back. Due to their conservative approach, these systems, like race detection tools,
in general produce many false positives. If these tools cannot prove the absence of
a dependence, then they must assume that there is one. They do not benefit from
application-specific knowledge. In contrast, we let the programmer specify the
potentially critical data elements – and in a converse reasoning – it is known that
other data does not cause any correctness problems. Synchronize via Scheduling
(SvS) by Best et al. [4] is such a static analysis that checks whether certain tasks
can run in parallel because they access disjoint variables. Because of the many
false positives, SvS instruments the tasks with runtime checks that compare the
working sets of the tasks. In a way, this is similar to our check4confl. However,
we only have to consider a few programmer-indicated data elements while SvS –
due to its general-purpose approach – has to process the whole state of a thread,
if not the reachable graph of objects on the heap. SvS also does not optimize for
GPUs whereas we carefully map the checking to the GPU architecture so that
we retain as much parallelism as possible, even for the checking itself.

CUDA 9 is announced to offer so-called Cooperative Groups [1] that can
bundle threads for collective operations. On current NVIDIA GPUs these bun-
dles stick to the GPU hardware hierarchy and are unlikely to impede the results
of this paper. On the announced Volta architecture [2] there will be a thread
scheduling that is independent of the GPU hardware hierarchy. Although that
will potentially make some dead- and livelocks go away, the programmer still
has to make sure by hand that all threads are active that need to synchronize.
We expect this to be as complicated as the mechanisms presented here. These
issues and performance comparisons are future work.

8 Conclusion

On current GPUs, thread synchronization often suffers from dead- and livelocks
(because of the SIMT execution and the schedulers). This makes porting of par-
allel applications to GPUs error-prone, especially when efficient fine-grain syn-
chronization is needed. Inspected Critical Sections that make use of application-
specific knowledge on which data items may cause dynamic data-dependences
among data-parallel threads, outperform optimistic STM approaches on GPUs
and get close to (unreliable) implementations with fine-grain locking. The key
to the efficiency of ICS is a divide-and-conquer approach that exploits the archi-
tectural levels of GPUs and that employs a dead- and livelock free GPU-wide
barrier with guaranteed progress.

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 237

Appendix

Benchmark Infrastructure

For all measurements we use a 1,5 GHz Desktop NVIDIA TITAN Xp GPU with
12 GBytes of global memory and 3.840 cores in 60 SMs (with 64 SPs each) that
runs CUDA (Version 8.0) code.

The group-size in all measurements is 128 threads. The reason is that on
our GPU the kernels can use up to 32.000 registers per group, i.e., 250 registers
per thread. Both the retrenchment cascade and the STM framework need 70 of
those registers. This leaves 180 registers for the local variables of the applications.
Since the benchmarks need that many, we could not use larger group-sizes. While
smaller group-sizes are possible, we only present measurements for a group-size of
128 threads because our experiments did not show qualitatively different results
for smaller group-sizes.

We repeated all measurements 100 times; all given numbers are averages. For
the code versions with fine-grained locks and the STM-based implementations
we only measured those runs that did not face a dead- or livelock.

Benchmark Set

We use seven benchmarks, some of which are taken from the STAMP benchmark
suite [14] with given atomic regions. We always use the largest possible shared
data structure and/or the maximal number of threads that fit onto our GPU.

Hash Table. We use 1.5M threads and a hash table with the same number
of buckets, each of which holds the linked lists of colliding entries. The threads
randomly put a single entry into the shared hash table. ICS uses the bucket
number as item to check for conflicts. The bucket operation is the atomic region
in the STM code. The fine-grained lock code (FGL) uses one lock per bucket.
To study the effect of the number of collisions, we also use half the buckets.

Bank. There are 24M accounts. 24M parallel threads withdraw an amount of
money from one randomly picked account and deposit it to another. The two
accounts are the items for conflict checking. There is a conflict if two threads use
an account in common. STM: the transfer happens in the atomic region. FGL:
there is one lock per account.

Graph. The G(n, p)-instance of the Erdős-Rényi Graph Model (ERGM) [10]
starts from an edgeless graph with n = 10K nodes. A thread per node adds
an undirected edge to any other node (= ICS item for conflict checking) with
probability p. To illustrate the effect of the number of collisions we study the
two probabilities p = 25% and p = 75%. STM: the atomic region is the insertion
of an edge. FGL: the code locks the adjacency lists of both the nodes that the
new edge connects.

Labyrinth. The largest 3D-mesh from the STAMP input files that fits into our
memory has size (512, 512, 7). Thus 512 threads plan non-intersecting routes in
parallel. All nodes of the route are the items for conflict checking. STM: a full

238 T. Blaß et al.

routing step is the atomic region. FGL: there is a lock per mesh point. FGL and
ICS: if a route hits a spot that is already part of another route, the thread tries
(three times) to find a detour around it. This avoids recalculating the full route.

Genome. 8M threads try to reconstruct a genome from DNA segments that
reside in a shared pool, that is a hash table. There may not be duplicates and only
one thread may check whether and where a segment from the pool matches the
given genome. ICS checks conflicts on the bucket number. We consider a genome
size of 65, 536, DNA segments have a size of 192, and there are 1, 677, 726 such
segments. STM and FGL: see Hash table.

Kmeans. 3M threads partition the same number of data items from a 32-
dimensional space into 1, 536 subsets (clusters). Until a fix point is reached, all
threads check the distance to the centers of all of the clusters and migrate a data
item to the closest cluster (= item for conflict checking). STM: the migration
is the atomic region. FGL: there is one lock per cluster; the code locks the two
clusters that are affected by a migration.

Vacation. The travel reservation system uses hash tables to store customers
and their reservations for a hotel, a flight, and a rental car, i.e., on three poten-
tially conflicting items. 4M parallel threads perform 4M (random) reservations,
cancellations, and updates for full trips. There may be conflicts. There are config-
uration parameters for the likelihood of such conflicts and the mix of operations
(for the STAMP expert: we use r = 629148, u = 93, q = 90). STM: one opera-
tion on all three components of a trip is in the atomic region. FGL: there is a
lock per hotel, flight, and car.

References

1. CUDA 9 Features Revealed: Volta, Cooperative Groups and More (2017).
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/. Accessed 03
July 2017

2. Inside Volta: The World’s Most Advanced Data Center GPU (2017). https://
devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/. Accessed 03 July
2017

3. Baxter, D., Mirchandaney, R., Saltz, J.H.: Run-time parallelization and scheduling
of loops. In: (SPAA 1989): Symposium on Parallel Algorithms and Architecture,
Santa Fe, NM, pp. 603–612, June 1989

4. Best, M.J., Mottishaw, S., Mustard, C., Roth, M., Fedorova, A., Brownsword, A.:
Synchronization via scheduling: techniques for efficiently managing shared state.
In: (PLDI 2011): International Conference on Programming Language Design and
Implementation, San Jose, CA, pp. 640–652, June 2011

5. Cascaval, C., et al.: Software transactional memory: why is it only a research toy?
Queue 6(5), 40:46–40:58 (2008)

6. Cederman, D., Tsigas, P., Chaudhry, M.T.: Towards a software transactional mem-
ory for graphics processors. In: (EG PGV 2010): Eurographics Conference on Par-
allel Graphics and Visualization, Norrköping, Sweden, pp. 121–129, May 2010

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 239

7. Dang, F.H., Rauchwerger, L.: Speculative parallelization of partially parallel loops.
In: (LCR 2000): International Workshop Languages, Compilers, and Run-Time
Systems for Scalable Computers, Rochester, NY, pp. 285–299, May 2000

8. Eastep, J., Wingate, D., Santambrogio, M.D., Agarwal, A.: Smartlocks: lock acqui-
sition scheduling for self-aware synchronization. In: (ICAC 2010): International
Conference on Autonomic Computing, Washington, DC, pp. 215–224, June 2010

9. ElTantawy, A., Aamodt, T.M.: MIMD synchronization on SIMT architectures. In:
(MICRO 2016): International Symposium on Microarchitecture, Taipei, Taiwan,
pp. 1–14, October 2016

10. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. (Debrecen) 6, 290–297
(1959)

11. Habermaier, A., Knapp, A.: On the correctness of the SIMT execution model of
GPUs. In: (ESOP 2012): European Symposium on Programming, Tallinn, Estonia,
pp. 316–335, March 2012

12. Holey, A., Zhai, A.: Lightweight software transactions on GPUs. In: (ICPP 2014):
International Conference on Parallel Processing, Minneapolis, MN, pp. 461–470,
September 2014

13. Li, A., van den Braak, G.J., Corporaal, H., Kumar, A.: Fine-grained synchroniza-
tions and dataflow programming on GPUs. In: (ICS 2015): International Confer-
ence on Supercomputing, Newport Beach, CA, pp. 109–118, June 2015

14. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: (IISWC 2008): International Sympo-
sium on Workload Characterization, Seattle, WA, pp. 35–46, September 2008

15. Ramamurthy, A.: Towards scalar synchronization in SIMT architectures. Master’s
thesis, University of British Columbia, September 2011

16. Shen, Q., Sharp, C., Blewitt, W., Ushaw, G., Morgan, G.: PR-STM: priority rule
based software transactions for the GPU. In: (Euro-Par 2015): International Con-
ference on Parallel and Distributed Systems, Vienna, Austria, pp. 361–372, August
2015

17. Xiao, S., Aji, A.M., Feng, W.C.: On the robust mapping of dynamic programming
onto a graphics processing unit. In: (ICPADS 2009): International Conference on
Parallel and Distributed Systems, Shenzhen, China, pp. 26–33, December 2009

18. Xiao, S., Feng, W.: Inter-Block GPU communication via fast barrier synchroniza-
tion. In: (IPDPS 2010): International Symposium on Parallel and Distributed Pro-
cessing, Atlanta, GA, pp. 1–12, April 2010

19. Xu, Y., Gao, L., Wang, R., Luan, Z., Wu, W., Qian, D.: Lock-based Synchroniza-
tion for GPU architectures. In: (CF 2016): International Conference on Computing
Frontiers, Como, Italy, pp. 205–213, May 2016

20. Xu, Y., Wang, R., Goswami, N., Li, T., Gao, L., Qian, D.: Software transactional
memory for GPU architectures. In: (CGO 2014): International Symposium on Code
Generation and Optimization, Orlando, FL, pp. 1:1–1:10, February 2014

21. Yilmazer, A., Kaeli, D.R.: HQL: a scalable synchronization mechanism for GPUs.
In: (IPDPS 2013): International Symposium on Parallel and Distributed Process-
ing, Cambridge, MA, pp. 475–486, May 2013

Scalable Top-K Query Processing Using
Graphics Processing Unit

Yulin Zhang(B), Hui Fang, and Xiaoming Li

University of Delaware, Newark, DE 19716, USA
{yzhan,hfang,xli}@udel.edu

Abstract. Top-K query processing is one of the fundamental and the
most performance-deciding components in Web search engines. A num-
ber of techniques such as dynamic pruning have been proposed to reduce
the query processing time on CPU. However, it has become increasingly
difficult to further improve Top-K query processing’s efficiency without
hurting its effectiveness. On the other hand, Graphic Processing Unit
(GPU), a powerful computing accelerator on almost every computer
today, is barely tapped in Web search engines. The biggest challenge
to accelerate top-K query processing on GPU is that the parallel nature
of execution model of GPU prevents many CPU top-K query processing
optimizations from being directly ported to GPU. GPU with hundreds
of cores is ideal for applications with massive parallelism, which is not
readily available in existing CPU-oriented top-K query implementations.

This paper exploits the GPU computation power for top-K query pro-
cessing. In particular, we propose a new domain-specific parallelization
framework to utilize GPU to parallelize it. The proposed framework is
general enough for both disjunctive and conjunctive query processing
modes. Experiments on TREC collections show that our proposed GPU
top-K query processing framework is able to improve the query process-
ing time by a factor of 7 when compared with state-of-the-art dynamic
pruning methods for the disjunctive mode and by a factor of 6 when com-
pared with the conjunctive mode. Our results show that our GPU top-K
query processing framework is faster than previously known GPU base-
line method. In particular, our framework is shown to be more scalable
and efficient than the CPU and GPU baselines when K is large.

Keywords: Query processing · GPU · Scalable

1 Introduction

Large-scale Information Retrieval (IR) systems, such as Web search engines,
rely on fast response and high throughput to deal with rapid growing number
of queries and web pages. The efficiency of a search engine can directly affect its
revenue as well as users’ search experience [17]. Given a query, an IR system needs
to compute the relevance score for each document based on a underlying retrieval
function, and then returns top K documents with the highest relevant scores.
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 240–261, 2019.
https://doi.org/10.1007/978-3-030-35225-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_16

Scalable Top-K Query Processing Using Graphics Processing Unit 241

This process is known as top-K query processing. Although most Web search
engines adopt a multi-stage distributed architecture to process queries [3,23],
top-K query processing on a single node is still the first step to quickly identify
a set of promising documents that need to be re-ranked with more complicated
ranking mechanisms. Clearly, reducing top-K query processing time is a crucial
step to improve search efficiency.

The most basic query processing strategy is exhaustive query processing using
disjunctive (OR) mode, which evaluates all documents containing at least one
query term and then ranks them based on their relevance scores. Although this
strategy is simple, the computational cost would be quite high, in particular
when an IR system has to deal with hundreds of millions of documents. An
alternative is to process queries using conjunctive (AND) mode, which means
that relevance scores are computed only for documents that contain all the query
terms. This significantly decreases the number of evaluated documents and thus
reduce the query processing time. However, it hurts the retrieval effectiveness sig-
nificantly since many relevant documents do not contain all query terms [15,25].
Various dynamic pruning methods [5,9,22] have been proposed to reduce the
query processing time for the disjunctive mode without hurting the retrieval
effectiveness. The main idea is to avoid evaluating documents which are unlikely
to make to the top-K search results. Although these methods can improve the
search efficiency when the number of returned documents (i.e., K) is small, they
are not scalable for larger K ′s [25]. This is probably because the overhead of
the dynamic pruning methods (such as pre-computing necessary statistics and
storing them on the disk) increases as K gets larger. In fact, it becomes increas-
ingly difficult to further improve the efficiency of top-K query processing without
any degradation of effectiveness in the search results. Recently, researchers have
started to look into how to sacrifice effectiveness for the sake of further reducing
the query processing time [21,25].

Almost all of today’s top-K query processing implementations were developed
on and tuned for CPU. A significant source for computation power in today’s
computers is unused. Most of today’s computers have not only CPU but also
GPU, i.e., Graphics Processing Unit. GPU is a powerful platform that has been
successfully used to accelerate various computer-intensive applications. Despite
its great potential, GPU has not been fully utilized to improve the search effi-
ciency. This is largely because porting top-K query processing to GPU is hard.
The first challenge is how to effectively utilize GPU’s massive parallelism in
top-K query processing. The number of computing cores on a GPU is large,
e.g., thousands cores in most powerful GPU models, which makes it possible for
massive parallelism. However, top-K query processing is not a task that can be
easily massively parallelized. One naive way is to set the number of threads the
same as the number of query terms. However, the degree of parallelism here, i.e.,
the number of query terms, is much smaller than what the GPUs can do, lead-
ing to under-utilization of the GPUs. The second challenge is how to structure
the computations and the data transfers involved in the top-K query process-
ing so that we can effectively leverage the programming model offered by the

242 Y. Zhang et al.

GPU. In particular, GPU runs most efficiently when threads execute the same
workload at the same time, which is called SIMT (Single-Instruction-Multiple-
Thread). SIMT requires very different way to express computation workload
than on CPU. It means that the computations in CPU-oriented top-K query
processing need to be structured in a way that all threads that are executed at
the same time better to perform the same task. This is not trivial because many
steps in the top-K query processing are adaptive and it requires careful designs
when we need to massive parallelize each step. Ding et al. [8] tried to leverage
the GPU for query processing, but they focused on query processing for a small
value of K (i.e., K = 10). It remains unclear whether there is a general strategy
for GPU-based top-K query processing and how well it can scale with K.

In this paper, we propose a novel framework of exploiting the parallelism of
top-K query processing on GPUs. Our framework presents the same interface
as existing top-K query processing implementations, that is, queries are sub-
mitted to a CPU. However, for each query, the CPU transfers the compressed
inverted indexes related to the query to a GPU, and the GPU then evaluates
documents and returns top-K results back to the CPU. The processing time of
a query consists of the query processing time spent on the GPU as well as the
data transfer time. The main innovation of our framework is that we leverage the
data-parallel programming model provided by the GPU to speed up the process
of document evaluation. Generally speaking, the document evaluation process
consists of three steps: index decompression, score calculation and top-K selec-
tion. Since these three steps require different types of computations, we have
designed different strategies, such as blocked scan, double-level binary search,
bucket selection, to parallelize each step. Unlike the previous study [8], our frame-
work is general enough to process queries in both disjunctive and conjunctive
modes.

Experiments are conducted over multiple TREC Web collections. Results
show that the proposed GPU top-K query processing framework can signifi-
cantly improve the efficiency compared with the CPU baseline method in both
disjunctive and conjunctive mode over all collections. When compared with the
exhaustive query processing on CPU, the average speedup is around 33 for the
disjunctive mode and 6 for the conjunctive mode. The GPU-based methods are
more efficient than the state of the art dynamic pruning methods. It can also
outperform the previously proposed GPU-based method [8], in particular, when
K is larger. Moreover, empirical results consistently show that the GPU-based
methods are scalable with respect to K, i.e., the speedup remains the same as K
gets larger. Finally, it is interesting to note that, with the proposed GPU opti-
mization methods, the processing time of the disjunctive mode is comparable
to that of the conjunctive mode, which means that we can significantly improve
the efficiency without any sacrifice in terms of the effectiveness.

2 Related Work and Background

Improving search efficiency has been an active research topic since the beginning
of the IR field. Commonly used strategies include index compression [26], caching

Scalable Top-K Query Processing Using Graphics Processing Unit 243

[7], dynamic pruning [5,9,22], distributed computing [4], query processing on
multicore architecture [20] etc.

Although GPU is a powerful platform used to accelerate computing-intensive
applications, not many studies focus on top-K query processing on GPUs. There
are a few studies that used GPUs to improve the efficiency for applications
related to the top-K query processing, such as list intersection [2,24] and rela-
tional operations [11]. However, they only solve one step involved in the top-K
query processing, and none of them provided a complete solution to top-K query
processing.

Ding et al. [8] was the first and probably the only study done on using GPUs
for top-K query processing so far. They mainly focused on conjunctive query
processing mode and the results are evaluated only when K is set to 10. On
the contrary, we propose a general framework that can process queries in both
disjunctive and conjunctive modes with scalability. We evaluated the proposed
methods on multiple values of K, and found that the proposed framework is
scalable and can still keep large speedup even when K is large. Finally, another
key difference is that we do not assume that inverted lists are available in GPU
global memory when processing queries on the GPUs, which is an assumption
made in the previous study [8]. The assumption might give unrealistic advantage
to GPU-based implementations. Instead, when measuring the performance, the
query processing time includes the time spent on transferring data between CPU
and GPU memories. This transfer is often considered to be one of the bottlenecks
when applying GPU to accelerate applications, but, as shown in this paper, even
with this overhead the proposed GPU framework can still achieve significant
speedup.

The contribution of this paper can be summarized as follows. First, we pro-
pose a novel framework that can fully exploit the massive parallelism power of
GPU to speedup the top-K query processing time. The framework is general
enough for both disjunctive and conjunctive modes. Second, experiment results
show that the proposed GPU framework is more efficient and scalable than the
state-of-the-art CPU and GPU top-K query processing methods. Finally, with
the GPU optimization, for the first time, the query processing time for the dis-
junctive mode is comparable to that for the conjunctive mode, making it possible
to improve the efficiency significantly without hurting the search effectiveness.

2.1 Top-K Query Processing Background

Web search engines use inverted indexes to facilitate the search process. For each
term in the collection, an inverted index was built to store the information about
the occurrences of the term in the documents. An inverted list consists of a list
of postings, where each posting contains a document ID and the occurrences of
the term in the corresponding document. Indexes are often stored in a highly
compressed format. The compression not only reduces the total size of index,
but also improves efficiency by decreasing the number of disk reads. Since the
indexes are compressed, the first step of the top-K query processing is often to
decompress the indexes to get the term statistics.

244 Y. Zhang et al.

With the decompressed statistics, search engines need to traverse inverted
indexes to compute relevance scores for all documents based on a underlying
retrieval function. There are two commonly used index traversal methods: Term-
At-A-Time (TAAT) [6] and Document-AT-A-Time (DAAT) [5]. TAAT sequen-
tially processes one query term at a time. It goes through the inverted list of a
term and accumulates the partial document scores contributed by the term. The
partial scores are stored in an accumulator, and will later be accumulated to
compute the final document scores. On the contrary, DAAT processes one doc-
ument at a time. It goes through the inverted lists of all query terms in parallel.
A document needs to be fully evaluated before moving on to the next one. Since
DAAT requires the synchronization among posting lists, it is not suitable for the
highly parallel architecture of the GPUs due to data dependency. Therefore, in
the proposed GPU implementation, we use the TAAT query processing strategy.

Given a query, it can be processed either using disjunctive (OR) mode or
conjunctive (AND) mode. In the disjunctive mode, we compute the scores for all
documents with at least one query term. In the conjunctive mode, we compute
the scores only for documents with all query terms. The conjunctive mode is often
considered more efficient and less effective, since it evaluates fewer documents
and some relevant documents may not contain all query terms [25]. In this paper,
we develop a general framework that can process queries in both modes.

3 GPU-Based Top-K Query Processing

Our GPU-based top-K query processing framework works as follows. Given a
query, CPU sends the query as well as the inverted indexes of all the query
terms to GPU. The GPU then evaluates documents based on the query and
the inverted indexes, and returns top-K ranked documents to the CPU. Note
that the query processing time here includes the time spent on transferring the
indexes, the time spent on document evaluation, and the time spent on returning
the search results.

Unlike the previous study where the entire inverted indexes are assumed to
be kept in the GPU memory, our framework keeps only simple global statistics
such as document lengths and IDF values in the GPU memory. The main reason
of our design is that GPU memory has limited size and it may not be able
to hold the entire inverted indexes for large data collections. Therefore, all the
inverted indexes are kept on the CPU side, and only those related to the query
will be transferred to the GPU. As we will show in the experiments, even with
the overhead of the data transfer, the proposed GPU framework is still able to
improve the search efficiency significantly.

The transfer of data between GPU and CPU is pretty straightforward. The
main challenge, also the main technical contribution of our framework, is the
parallel implementation of document evaluation for the GPU-based top-K query
processing. During the document evaluation, the system first needs to read the
compressed indexes and decompress them to get the posting information. After
that, we need to traverse the indexes and compute the relevance scores. As

Scalable Top-K Query Processing Using Graphics Processing Unit 245

discussed earlier, we use the TAAT method for index traversal. In particular,
a large array is allocated to record the relevance score for each document with
respect to a query term, where the size of the array is the total number of
documents for the query term. When processing a query with TAAT, the GPU
would first go through each posting list and compute the partial relevance score
of a document with respect to the corresponding query term. After that, we can
compute the relevance scores of all documents by combining the partial scores in
all the posting lists of a query. To do this, list operations (either intersection or
union) need to be performed. Finally, we need to select top-K ranked documents
from the list based on their scores.

Clearly, when implementing the query processing with GPUs, we can divide
document evaluation into the following three steps: (1) index decompression,
which decompresses the indexes related to the query terms; (2) score calcula-
tion, which calculates the partial relevance scores of documents for the posting
list of each query term and then combines scores from multiple posting lists
through different list operations (i.e., list intersection for conjunctive query pro-
cessing mode and list union for disjunctive query processing mode); and (3)
top-K selection, which goes through the final list and selects documents with
top-K highest scores. We describe how to parallelize each component for GPUs
in the following subsections.

3.1 Parallel Index Decompression

As mentioned in the previous section, given a query, the CPU transfers the
inverted indexes of the query terms to the GPU. Since the indexes are com-
pressed, the first step is to decompress the indexes.

One possible solution to parallelize index decompression is to decompress the
inverted index for all the terms in parallel. Since the number of terms in a query
is not big, such parallelism would under-utilize the GPU. Recall that each term
has an inverted index with a list of postings, and the posting list of a common
term could contain billions of postings. Thus, a more sensible solution could be
to parallelize the decompression of the posting list of a common term. We now
provide more details on how we tackle this challenge.

PForDelta is a commonly used index compression method for IR systems [27].
Like all the other index compression methods, PForDelta does not directly store
the document IDs in each posting list because the document IDs can be fairly
large numbers. Instead, it stores the differences between the sorted document
IDs in each posting list, and these gaps are then compressed. PForDelta first
splits the data into blocks and decompresses one block at a time. The size of a
block needs to be a multiple of 32, and we set it to 64 in this paper. For each
block, PForDelta chooses an integer b so that a certain percentage (e.g., 90%)
of the gaps in a list can fit into a fixed length field with b bit. The remaining
gaps, i.e., those are larger than 2b, are referred to as exceptions. PForDelta can
be tuned by choosing different thresholds for the number of exceptions allowed.
Because exceptions and non-exceptions are compressed using different numbers
of bits, it is difficult to decompress both of them simultaneously on the GPU in

246 Y. Zhang et al.

one CUDA kernel invocation. In order to exploit more parallelism, we set the
number of exceptions allowed to zero. In other words, for each block, we choose
the value of b such that all the gaps in the block are smaller than 2b. As a result,
all the information in the indexes are compressed using the same strategy. It
is expected that the compressed index size would increase because of this new
increased value of b. Our result shows the compressed size of Gov2 collection
increases from 8.2 GB to 11 GB. However, the major benefit of using this variant
is to eliminate the kernel invocation overhead of exceptions decompression as well
as provide a uniformly parallel decompression scheme for the whole block. It is
worth pointing out the decompression technique CPU query processing used in
this work is PForDelta since it is more efficient than our parallel decompression
method.

Fig. 1. An example of index compression

Figure 1 illustrates the basic idea of index compression method with a sim-
plified example. We assume that the term t occurs in multiple documents whose
IDs are dID1, dID2, . . . , dID64. Instead of storing these IDs directly in the post-
ing list, we store the gaps, i.e., the differences between the sorted document IDs
such as dID2 − dID1. Note that other information (such as term frequency and
term position) also needs to be stored together with document ID gaps. We want
to keep the example simple, so did not show those information here. The posting
list can be divided into blocks (32 postings per block in this example), and each
block can then be decompressed using different values of b to make sure that all
of the gaps in the block are smaller than 2b. Since the sizes of the compressed
data blocks could be different, when storing the compressed postings for each
block, we also need to store the value of b and the length of the compressed
block.

When decompressing the indexes, we need to recover the posting lists includ-
ing the document ID and term frequency for each document and term pair. Since
an inverted list needs to be split into blocks when using PForDelta for compres-
sion, we can first look at the main computations involved in each block and then
discuss how to process the entire list. The main computations involved in each
block include:

– block address calculation, to compute the starting address of each compressed
data block;

Scalable Top-K Query Processing Using Graphics Processing Unit 247

– block decompression, to read and decode a block based on the block address;
– document ID recovery, to read the document ID gaps from the decompressed

blocks for the document ID gaps, and recover the original document IDs based
on the ID gaps.

Fig. 2. The layout of compressed data for
each block in compressed postinglist

Block Address Calculation. The
first step of the decompression is to
read each compressed block. Since the
length of each block is not fixed, we
need to use the lengths of compressed
blocks to recover the address for each
block. Figure 2 zooms in the com-
pressed data for block in Fig. 1, and

it shows the internal layout for each compressed data block in the compressed
postinglist. The respective values of b and the length of each compressed block
are denoted as B and Len in Fig. 2. If we want to read the compressed blocks in
parallel, we have to figure out how to compute the starting addresses of all the
blocks in parallel.

Take Fig. 1 as an example, the address of the second compressed block can
be computed by summing up the address of the first block and the length of the
first block. Similarly, the address of the third compressed block, if there is any,
can be computed by adding the address of the second block with the length of
the second block. In fact, this process is essentially to compute the prefix sum
for all the lengths of compressed blocks, and can be parallelized using parallel
scan. Parallel scan is a widely used parallel operation on GPU and can be used in
applications such as sorting, stream compaction, building histogram, etc. [10,18].
When computing the starting address of a block, we do not use the length of
the current block, so this kind of prefix sum is exclusive. In this paper, we apply
an exclusive parallel scan to compute the starting address of each compressed
block of data. Regarding the GPU configuration, we set the thread block size
to 1,024, and each thread is assigned to process an integer, which contains the
information about two postings.

Block Decompression. After reading all the compressed blocks, the next step
is to decompress these blocks in parallel. This step is pretty straightforward.
Since an inverted list is split into blocks and each block contains the informa-
tion about 64 postings, we launch a block of 64 threads to decompress each
compressed data block and the total number of threads is equal to the num-
ber of document in the posting list, and thus, the compressed posting can be
decompressed simultaneously.

Document ID Recovery. After decompressing the data blocks, we can get
the document ID gaps for each posting list. The next step is to recover the
original document IDs. For example, as shown in Fig. 1, dID1 and dID2 − dID1

248 Y. Zhang et al.

are stored in the posting list and we can get the original document ID of the
second document, i.e., dID2, by adding the gaps up. How do we parallelize this
process to recover a large number of document IDs in the same time? This
can still be solved using parallel scan since the computation is inclusive prefix
sum. However, since the posting lists could be very long, it may require multiple
levels of recursions to finish the scan, adding extra scan kernel invocations. To
improve the efficiency, we propose a segment-based parallel scan. The main idea
is to split each posting list into segments and apply an inclusive parallel scan on
each segment. For each inverted list, we build an array called FirstID to store the
original ID for the first document in each segment, and the array elements are
then later used together with the segment-based parallel scan results to recover
the original ID for all the documents. We also tune the thread block size and set
it to 128 based on our preliminary results, and each thread processes 8 postings
to better cover the global memory latency for each thread [14]. So, the size of
a segment is set to 1,024, meaning each segment contains 1024 postings. Our
preliminary results show that the proposed segment-based parallel scan is more
efficient than the original parallel scan, achieving a speed up of 1.4 for an array
with 224 elements.

3.2 Parallel Score Calculation

After decompressed the indexes, the system can then traverse the indexes to
compute the relevance scores for all the documents. The relevance scores of a
document with respect to a query is often computed by summing up the partial
relevance score of a document with respect to a term for all the query terms [16].
Thus, two main computations involved in this step include:

– partial score calculation, which computes partial relevance scores of a doc-
ument for matching each of the query term based on a underlying retrieval
function;

– score accumulation, which accumulates all the partial scores of a document
with respect to each query term and computes the final relevance score for
the document;

– unique document filtering, which filters out duplicate documents between
posting lists, and leave unique documents with final score for top-K
selection.

In the partial score calculation step, for each query term, we need to go
through its posting list, calculate the partial scores of each document on the
list and record them in large score arrays. They are allocated in GPU global
memory with size of the total number of documents for each term, as we already
mentioned in the introduction of our general framework. Auxiliary information
such as total number of documents for each term is saved as part of the indexes.
Since we need to compute the partial score for each term and its associated
document, we can parallelize this step by allocating one GPU thread for each

Scalable Top-K Query Processing Using Graphics Processing Unit 249

document in the term utilizing BM25 [16] function. Specifically, it is a combina-
tion of inverse document frequency, term frequency in the document, the length
of the document and average document length in the collection.

Here, we have completed partial score calculation for each document with
respect to the query, our next step is to accumulate partial score and compute
the final score. When computing the final score of a document, we need to find
all the posting lists that contain the document and sum up the partial scores.
Specifically, given a document (i.e., posting) in an inverted list, we need to locate
the document in the other inverted lists so that the partial scores of this doc-
ument could be accumulated. The main computation here is to look up the
document in the posting lists. To speed up the process, we propose to leverage
the FirstID arrays discussed in Sect. 3.1. Recall that we split an inverted index
into segments, and FirstID stores the original ID of the first document in each
segment. The FirstID array are preprocessed offline, as a part of auxiliary data
structure to the indexes. Its space overhead is acceptable, e.g., FirstID array in
GOV2 is 345 MB comparing with 11.5 GB for the compressed posting lists. The
ratio between them is 3%. Thus, given a document, we employ a two-level binary
search to locate its location in the posting lists. We first use FirstID arrays to
narrow down the search space, and then use the document IDs to identify the
exact location. To parallelize the above process, we allocate a thread for each
document, and then conduct two-level parallel binary searches to locate the posi-
tions of the posting in all the inverted lists and compute the final score. In this
step, we utilize a predicate array to save boolean variables, if a duplicate doc-
ument is found during two-level search, the corresponding location of predicate
array is marked as TRUE. Before the parallelization process, we sort the decom-
pressed posting lists by their lengths in an ascending order, which minimizes the
number of allocated thread blocks and further reduces the overhead on GPU.

Fig. 3. An example of two-level search

Figure 3 illustrates an
example. Assume that a
query has two terms t1 and
t2 and each segment contains
3 postings in this example.
t1 has a shorter posting list
than t2, so we would first
go through the postings of
t1 to calculate the final doc-
ument scores for each of
them. When computing the
final score for document 33,
instead of search a match on
the posting list of t2, we first

search over the FirstID array for t2 to identify the corresponding segment on
the posting list of t2 and then search the elements in the segments.

There might be duplicate documents between posting lists. Suppose a query
contains term A and B, both posting lists of A and B have duplicate document I

250 Y. Zhang et al.

(called I A and I B). In the previous score accumulation step, the score array of
I B contains the total score for the query while I A contains partial score. Thus, it
requires to filter out duplicate document with partial score. Otherwise, duplicate
documents might be selected into tok-K results. In this unique document filtering
step, we adopt the implementation in [1]. Its key idea is to use shared memory
atomics to filter out duplicate documents by the Predicate array mentioned
above.

Note that the above parallel method can be applied to both disjunctive and
conjunctive query modes. For disjunctive mode, we need to allocate threads for
documents that occur in the inverted lists of the query terms, i.e., those contain-
ing at least one query term. For conjunctive mode, we need to allocate threads to
only documents that occur in the shortest posting list. To establish a connection
among these three steps, we present the following pseudocode for conjunctive
mode. The disjunctive mode can be established similarly. In Algorithm 1, N is
the number of query terms. PRED represents the predicate array mentioned in
two-level search. It is also used in document filtering step. DocIDi represents
the corresponding decompressed posting lists for each term. They are sorted by
their length in ascending order.

Algorithm 1. Parallel Score Calculation
Function{ScoreCalculation}{DocID, Score, F irstID, PRED,N}
PartialScoreCalulation{DocID, Score}
for i ∈ {2, . . . , N} do

ScoreAccumulation{DocID1, DocIDi, Score, F irstID, PRED}
end for
DocumentFiltering{DocID, Score, PRED}
EndFunction

3.3 Parallel Top-K Selection

We have discussed how to leverage GPU to parallel decompress indexes and
compute the final relevance scores for documents. This section focuses on how
to select top-K ranked documents using GPU.

The simplest strategy is to sort all documents based on their scores and pick
the top-K ranked documents. However, this might unnecessarily waste a lots of
computational power because we do not care about the ranking of a document
if it does not make it into the top-K and K is often much smaller than the total
number of documents in the collection. To speed up this process, we propose a
method based on bucket sorting. The main idea is to first distribute documents
into a number of buckets based on their relevance scores, select a minimum
number of buckets that can cover the top-K ranked documents, and identify
top-K ranked documents from the selected promising buckets.

The first step is to divide documents into buckets based on the scores and then
select a minimum number of buckets that can cover top-K documents. Assuming

Scalable Top-K Query Processing Using Graphics Processing Unit 251

there are a number of buckets, each of them corresponds to a range of relevance
scores, and the documents in a bucket should be within the corresponding score
range of the bucket. Therefore, the relevance score of a document decides which
bucket it would be put in.

When deciding on the score range for each bucket, we first use the collection
statistics to compute the maximal and minimal values for the relevance score and
then divide the score range evenly based on the number of buckets, e.g., Based
on the statistics about the GOV2 collection and BM25 function, we choose max
value to be 74, and min value is 0. Thus, let B denotes the number of buckets,
max and min denote that maximum and minimum of the relevance scores,
and score[i] denotes the relevance score of document i. We can determine the
bucket number for the document (i.e., bucket [i]) as: bucket [i] = B−� B

max−min ·(
score [i] − min

)�.
During the process of documents distribution, we also maintain an array

in GPU global memory to save the bucket number for each document. After
assigning a document to its corresponding bucket based on the above equation,
we need to count the number of documents in each bucket. We now explain how
to parallelize this step. Each bucket maintains a counter to record the number
of documents in the bucket. We allocate one thread for each document. So when
we assign a document to a bucket, the corresponding thread needs to atomically
increase the counter of the corresponding bucket by 1. When multiple threads
need to add the value to the same bucket, we may encounter the problem of
collision and need to make sure the operation to be atomic. It is well known
that atomic operations on global memory in GPU is computationally expensive,
especially in the case of large collision volume, and atomic operations in the
shared memory is faster than in the global memory. Therefore, we have adopted
a method from the previous study [19] to simulate atomic add in the shared
memory. Our preliminary results show that this method can reduce the collision
rate of atomic operations and achieve a speed up of 2. After counting the number
of documents for each bucket, we can perform a serial accumulative sum and
figure out how many buckets include the top-K documents.

With the identified buckets, we can then sort all the candidate documents
with any existing sorting algorithms. We used radix sorting algorithms [13] in
this paper, since it is considered as one of the fastest sorting algorithm on GPU,
and Thrust library [12] in CUDA includes its implementation. Radix sorting is
a non-comparison based sorting algorithm, which considers one bit from each
key, and partitions the unsorted array elements so that all elements with a 0 in
that bit precede those with 1 in that bit. When GPU finishes selecting top-K
documents, it returns the retrieval results back to CPU.

4 Experiments

To evaluate the efficiency of the proposed GPU-based top-K query processing
framework, first, we compare the proposed parallel GPU top-K query process-
ing methods with the CPU top-K query processing methods for the exhaustive

252 Y. Zhang et al.

evaluation, where all the candidate documents are evaluated and ranked. The
methods are compared in both disjunctive and conjunctive modes. Second, we
compare the proposed GPU methods with several state of the art top-K query
processing methods, which includes dynamic pruning methods maxScore [22]
and Block-Max WAND [9] as well as the previously proposed GPU top-K query
processing method for both conjunctive and disjunctive modes [8]. Additionally,
we conduct more analysis to further understand the proposed GPU methods.

The proposed GPU framework is implemented on Nvidia Tesla C2075 with
448 CUDA cores. All CPU query processing methods are evaluated on a single
core of Intel Core i7 CPU. All the methods use the same indexes, which are kept
in the CPU memory. Relevance scores are computed based on Okapi BM25 [16] in
our experiments, but the proposed GPU framework can work with any retrieval
functions. The number of buckets (i.e., B in Sect. 3.3) is set to 32 because the
size of a warp in GPU is 32 and it is easier to implement the atomic operation
in shared memory when setting B to the same value as the number of threads
in a warp. The code of our proposed methods will be made available at GitHub
for other researchers to use and study in the future.

Experiments are conducted over multiple TREC collections. The first three
were used in the TREC 2004–2006 Terabyte tracks, and their document collec-
tion (i.e., GOV2) consists of 25 millions of webpages. The data sets are denoted
as TB04, TB05 and TB06. The other four data sets were used at the TREC
2009–2012 Web track, and their document collection (i.e., ClueWeb09 category
B) contains 50 million web pages. These data sets are denoted as Web09, Web10,
Web11, and Web12.

When measuring the performance, we report the average query processing
time for each data set. As discussed earlier, the query processing time of the
GPU-based implementations includes the time spent on identifying top-K doc-
uments on GPU as well as the data transfer time between CPU and GPU.

4.1 Performance Comparison

Comparison with Exhaustive Evaluation (CPU-Based). The most basic
query processing method is to exhaustively evaluate all candidate documents, i.e.,
all documents with at least one query term for the disjunctive processing mode,
and all documents with all query terms for the conjunctive processing mode. Our
proposed GPU framework essentially computes the relevance scores of all the
candidate documents, and can be considered as an exhaustive query processing
method. Therefore, it would be interesting to compare its performance with its
counterparts on CPU. The proposed GPU-based query processing methods are
denoted as GPU-OR and GPU-AND. The exhaustive CPU-based top-K query
processing methods are denoted as CPU-OR and CPU-AND.

Table 1a shows the performance comparison for the disjunctive query pro-
cessing methods when K is set to 1000. It is clear that GPU-OR consistently
outperforms CPU-OR methods. It indicates that processing queries in the dis-
junctive mode on the CPU is significantly slower than in the conjunctive mode
no matter what the value of K is. However, the performance differences between

Scalable Top-K Query Processing Using Graphics Processing Unit 253

Table 1. Performance comparison on exhaustive evaluation (ms)

(a) Disjunctive (OR) mode (K=1,000)

TB04 TB05 TB06 Web09 Web10 Web11 Web12

CPU-OR 683.99 577.70 545.55 1038.70 752.26 1557.03 1054.51
GPU-OR 21.09 17.94 16.40 31.08 21.82 43.45 31.15
(Speedup) (32.4) (32.2) (33.3) (33.4) (34.5) (35.8) (33.9)

(b) Conjunctive (AND) mode (K=100)

TB04 TB05 TB06 Web09 Web10 Web11 Web12
CPU-AND 73.53 43.16 43.81 172.78 106.72 103.55 172.76
GPU-AND 12.90 11.12 10.40 22.80 15.80 25.50 20.67
(Speedup) (5.7) (3.9) (4.2) (7.6) (6.8) (4.1) (8.4)

the two GPU methods are very small. The latencies are almost comparable for
all the values of K. This is a very encouraging finding. It has been very difficult
to further improve the query processing efficiency, so researchers have started
looking into how to sacrifice effectiveness, such as using conjunctive mode or
document prioritization [25], to reduce the query latency. Previous study on
using GPU for top-K query processing [8] proposed to optimize the efficiency by
executing the conjunctive mode first and then disjunctive if there are not enough
results, which indicates that there is still a performance gap between these two
modes when using their GPU-based method. Interestingly, our results show that,
using our proposed GPU optimization methods, we can finally bridge the effi-
ciency gap between the disjunctive and conjunctive processing modes without
making any sacrifice on the retrieval effectiveness.

Comparison with Dynamic Pruning Methods (CPU-Based). Since there
have been many efforts on developing more efficient query processing methods
on CPU, we further compare our efforts with a few stronger baseline methods.
We compare our methods with two state of the art dynamic pruning methods:
maxScore [22] and Block-Max WAND (BMW) [9]. Results are summarized in
Table 2. Clearly, the GPU-based method is much more efficient than the two
baseline methods over all the data sets.

Table 2. Performance comparison for disjunctive processing (ms): GPU vs. dynamic
pruning (K = 1,000)

TB04 TB05 TB06 Web09 Web10 Web11 Web12

BMW 199.61 125.12 106.52 171.96 113.66 258.47 169.48

Maxscore 130.52 108.72 74.30 329.33 190.60 234.94 223.31

GPU-OR 21.09 17.94 16.40 31.08 21.82 43.45 31.15

254 Y. Zhang et al.

Furthermore, we conduct experiments to examine how the query process-
ing time would be affected by K. Figure 4 shows the average query processing
time of the GPU-OR and the two baseline methods for different values of K on
the TB05 data set. The plots on other data sets show similar trends. It is very
interesting to see that the execution time of GPU-OR remains nearly the same
as K gets larger, while the speed of dynamic pruning methods increases. This
observation demonstrates the scalability of the proposed GPU-based framework.
It is mainly due to the final radix sorting of the framework, where the number
of documents (K) to be sorted is several orders of magnitude smaller than the
original document lists, accounting for only 5% of the total execution time. As
K increases in Fig. 4, the GPU approach stays nearly constant. A deeper anal-
ysis on the break-down of performance is presented below. On the other hand,
the dynamic pruning methods evaluate more documents as K increases. Con-
sequently, the performance difference between our GPU method and dynamic
pruning ones becomes larger. The speedup scalability is a desirable property
because previous studies [15,25] suggested that a large value of K can lead to
more satisfying search results.

Table 3. Performance comparison with the GPU baseline in disjunctive mode (ms)
(K = 2,000)

TB04 TB05 TB06 Web09 Web10 Web11 Web12

BL-GPU-OR 95.14 94.97 96.51 95.12 93.33 100.82 95.35

GPU-OR 21.61 17.47 16.90 32.14 22.08 44.19 32.01

(Speedup) (4.5) (5.3) (6.0) (3.1) (4.3) (2.3) (3.1)

Comparison with Previous GPU-Based Method. We now compare the
proposed GPU methods with the baseline methods proposed in the previous

200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

m
s

k

BMW Maxscore GPU − OR

Fig. 4. GPU-OR vs dynamic pruning (TB05)

Scalable Top-K Query Processing Using Graphics Processing Unit 255

Table 4. Performance comparison with the GPU baseline in conjunctive mode (ms)
(K = 1,000)

TB04 TB05 TB06 Web09 Web10 Web11 Web12

BL-GPU-AND 29.17 26.64 27.21 29.80 24.82 34.77 32.06

GPU-AND 12.79 11.08 11.42 23.93 16.2 25.73 21.73

(Speedup) (2.3) (2.4) (2.4) (1.3) (1.5) (1.4) (1.5)

study [8], since this study was the first and probably the only complete solution
for GPU-based top-K query processing. The authors of the previous study have
kindly shared the code with us, so we directly used their codes to generate the
results to ensure the correctness. Note the baseline methods assume the inverted
list are stored in GPU memory and do not consider the data transfer time in
the query processing time. On the contrary, our methods do not make such
an assumption and the query processing time includes the data transfer time
between CPU and GPU.

Table 3 summarizes the performance comparison for the disjunctive mode
when K is set to 2000. We want to point out that, due to the different assump-
tion made in the methods, the reported query processing time for the baseline
methods (i.e., BL-GPU-OR and BL-GPU-AND) does not include the data trans-
fer time while the reported time for our proposed method (i.e., GPU-OR and
GPU-AND) includes it. As shown in the results, even when we include the data
transfer time, our proposed method can still achieve an average speedup of 4
over all the collections. The results for the conjunctive mode are reported in
Table 4. The proposed method can still outperform the baseline method.

10 50 90 130 170 210 250 290 330 370 410 450 490
2

6

10

14

18

K

m
s

GPU − AND BL− GPU − AND

(a) GPU-AND vs. BL-GPU-AND

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

K

m
s

GPU − OR BL− GPU − OR

(b) GPU-OR vs. BL-GPU-OR

Fig. 5. Speed comparison of GPU and BL-GPU as K increases (TB05)

Next, we examine how the performance comparison changes with different
values of K. Figure 5b shows the trend for the disjunctive mode. It is clear that

256 Y. Zhang et al.

GPU-OR method is scalable and the query processing time does not change much
when we increase the value of K, while the BL-GPU-OR method does not have
such a nice property. Thus, as K increases, the speedup of the GPU-OR over
the BL-GPU-OR would be larger. Figure 5a shows the trend for the conjunctive
mode. Here, we use a smaller value of K because the number of documents
that contain all the query terms is not large. One interesting observation is that
when K is small, GPU-AND performs worse than the baseline method. But as
the value of K increases, GPU-AND becomes more efficient since the processing
time of the baseline method increases linearly but the processing time of the
GPU-AND does not change much.

Finally, we decompose the computations involved in the query processing
time to better understand the impact of K on our methods as well as the baseline
methods. In particular, we report the time spent on the three main steps: i.e.,
index decompression, score calculation and top-K selection.

Figure 6a shows the results for the conjunctive mode. We can see that, for
the BL-GPU-AND method, the time spent on top-K selection increases linearly
because it used maximum reduction to select top-K documents, and the over-
head of looping through the maximum reduction grows almost linearly with K.
On the contrary, for the GPU-AND method, the time spent on top-K selec-
tion stays nearly constant. Furthermore, BL-GPU-AND only decompressed and
computed score for the intersected posting lists while GPU-AND decompressed
and computed score for all the posting lists of query terms. As a result, decom-
pression and scoring in BL-GPU-AND are more efficient than in GPU-AND.
However, for the BL-GPU-AND methods, as K increases, the performance gain
in the decompression and scoring steps can not compensate for its performance
degradation in the top-K selection step. Therefore, the GPU-AND starts to out-
perform GPU-AND-BL when K increases as shown in Fig. 5a.

Similarly, Fig. 6b shows the decomposed query processing time for the dis-
junctive mode. It is clear that the performance gap between GPU-OR and BL-
GPU-OR mainly comes from the top-K selection step. BL-GPU-OR spent sig-
nificant amount of time on this step, because the maximum reduction overhead
increases with the value of K. Moreover, we can see that the time spent on the
decompression and scoring is about the same for GPU-OR and BL-GPU-OR.
This is because when we processing queries in the disjunctive mode, the subset of
the documents that the baseline method needs to consider becomes much larger.

In summary, our proposed methods demonstrate their advantages in terms of
the efficiency and scalability when compared with both CPU and GPU baselines.

Time Analysis. We break down the performance to understand where the
speedup comes from. Particularly the data transfer time to-and-from GPU is
included in our results. Figure 7a and b show the respective percentage of the
query processing time spent on each task for CPU and GPU. Note that the last
step is named differently, which is document synchronization and top-K selection,
respectively. CPU uses document pointers to synchronize among the posting lists
to evaluate document in a DAAT fashion. The GPU method does not introduce

Scalable Top-K Query Processing Using Graphics Processing Unit 257

10 50 90 130 170 210 250 290 330 370 410 450 490

2

6

10

14

K

m
s

GPU − AND : Decom

GPU − AND : Scoring

GPU − AND : topK

BL− GPU − AND : Decom

BL− GPU − AND : Scoring

BL− GPU − AND : topK

(a) GPU-AND vs. BL-GPU-AND

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

10
20
30
40
50
60
70
80
90

100
110
120
130
140

K

m
s

GPU − OR : Decom

GPU − OR : Scoring

GPU − OR : topK

BL− GPU − OR : Decom

BL− GPU − OR : Scoring

BL− GPU − OR : topK

(b) GPU-OR vs. BL-GPU-OR

Fig. 6. Speed comparison of GPU and BL-GPU as K increases (TB05)

such a document synchronization. Instead it deploys top-K selection to evaluate
the candidate documents. For the purpose of a fair performance comparison,
they should be put into the same category. We use Nvidia profiler to measure
kernel running time. It is clear that each of the three steps (i.e., decompression,
scoring and top-K selection) takes a big chunk of time (31%, 29%, and 27%,
respectively). Beside them, the data transfer from CPU to GPU (CtoG transfer)
takes the most time (12%). For each query to be executed on GPU, CPU transfers
it corresponding compressed inverted index and FirstID to GPU. When GPU
finishes top-K query processing, it transfers back the top-K results to the CPU.
Only less than 1% is spent on GPU to CPU transfer since the size of top-K
results is relatively small.

(a) CPU-OR

Fig. 7. Query processing time decomposition for CPU-OR when K = 1000 (TB05)

When comparing the time spent on each step by GPU and CPU, we find
that the speedup of our GPU-based framework mainly comes from the score
computation and the index decompression and Top-k selection gains the least

258 Y. Zhang et al.

speedup. The massive parallelism used in the score computation makes it possible
to decrease the time spent on computing the scores significantly. More specifi-
cally, with the CPU-based implementation, around 59% of the processing time
were spent on calculating the scores. But with the GPU-based implementation,
only 29% were about score calculation. In situation where massive parallelism
exists, such as BM25 function in scoring step, GPU outperforms CPU signifi-
cantly. Moreover, the block-based posting list is a highly regular structure with
relatively high number of warp divergence and uncoalesced memory access, they
lead to a loss of efficiency on GPU for decompression step. Apart from these two
inefficiencies, top-K selection also suffers from atomics operation, which incurs
additional performance penalty on GPU.

Moreover, the break-down analysis also reveals the scalability of the GPU-
based methods. As shown in Figs. 4 and 5a, the performance of the GPU methods
does not change much with the value of K. This is because the value of K only
affects the radix sorting and GPU to CPU transfer (GtoC) steps. Which only
consists of less than 5% of query processing time. As a result, the efficiency of
GPU-OR query processing methods nearly stay constant.

Speedup for Different Query Lengths. One great advantage of the GPU-
based implementation is the ability to process the posting lists of multiple terms
in parallel, so it would be interesting to see how the speedup changes for differ-
ent query lengths. Figure 8 shows how the speedup of GPU-OR over CPU-OR
changes for queries with different lengths. It is quite encouraging to see that the
speedup increases when the query length gets longer. This is a desirable property
because the query processing time is closely related to the number of terms in
the query. Long queries often have a long query processing time, which can cause
load unbalancing and search user dissatisfaction. It is very hard to improve the
efficiency of these queries without hurting the effectiveness [21]. However, our
proposed GPU-based query processing framework has been shown to have great
advantages in this aspect.

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

S
pe
ed
up

QueryLength

Fig. 8. Speedup over different query lengths (TB05) (K = 1000)

Scalable Top-K Query Processing Using Graphics Processing Unit 259

5 Conclusions

It is critical to improve the efficiency of Web search engines. Many CPU-based
optimization strategies have been proposed for top-K query processing. Unfor-
tunately, GPU, another powerful computational resource that is available on
today’s computers, has been largely under-utilized in IR systems. Our paper is
one of a few studies that try to bridge the gap through studying how to leverage
GPU to accelerate top-K query processing.

In this work, we proposed and implemented a one-of-the-first GPU-based
top-K query processing framework for both disjunctive and conjunctive modes.
We identified three important components in the framework, and discussed how
to design and implement each of them by exploiting the parallel functionality
provided by GPU. Empirical results over multiple TREC collections showed that
the proposed GPU-based query processing methods are very efficient and highly
scalable compared with both CPU and GPU baselines, in particular when the
number of returned results (i.e., K) is large. Additionally, the proposed GPU-
based framework can be used to achieve high efficiency and effectiveness in search
system. The implemented system and its code will be made publicly available
so that others could utilize them for their own work.

This paper shows that GPUs can be harnessed to accelerate top-K query
processing in particular when K is large in Web search engines. There are several
interesting future directions. First, there is the study of the GPU top-K execution
time model to be able to predict the incoming query to GPU. Second, it would
be interesting to study how to design a hybrid CPU-GPU system to co-process
incoming queries based on the time model. Third, there is the possibility of
exploiting the use of GPU to accelerate other components (e.g., query expansion
and feedback) in a Web search engine that can potentially further improve the
search efficiency. Finally, it would be interesting to study how to automatically
set the parameter values in our proposed methods.

References

1. Adinetz, A.: CUDA pro tip: optimized filtering with warp-aggregated atomics.
Parallel Forall. Np (2014)

2. Ao, N., et al.: Efficient parallel lists intersection and index compression algorithms
using graphics processing units. Proc. VLDB Endow. 4(8), 470–481 (2011)

3. Asadi, N., Lin, J.: Effectiveness/efficiency tradeoffs for candidate generation in
multi-stage retrieval architectures. In: Proceedings of the 36th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
997–1000. ACM (2013)

4. Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: the Google cluster
architecture. IEEE Micro 23(2), 22–28 (2003)

5. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.: Efficient query evalua-
tion using a two-level retrieval process. In: Proceedings of the twelfth International
Conference on Information and Knowledge Management, pp. 426–434. ACM (2003)

260 Y. Zhang et al.

6. Buckley, C., Lewit, A.F.: Optimization of inverted vector searches. In: Proceed-
ings of the 8th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 97–110. ACM (1985)

7. Büttcher, S., Clarke, C.L.: Index compression is good, especially for random access.
In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge
Management, pp. 761–770. ACM (2007)

8. Ding, S., He, J., Yan, H., Suel, T.: Using graphics processors for high performance
IR query processing. In: Proceedings of the 18th International Conference on World
Wide Web, pp. 421–430. ACM (2009)

9. Ding, S., Suel, T.: Faster top-k document retrieval using block-max indexes. In:
Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 993–1002. ACM (2011)

10. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA.
GPU Gems 3(39), 851–876 (2007)

11. He, B., et al.: Relational query coprocessing on graphics processors. ACM Trans.
Database Syst. (TODS) 34(4), 21 (2009)

12. Hoberock, J., Bell, N.: Thrust: a parallel template library (2010)
13. Lee, S.J., Jeon, M., Kim, D., Sohn, A.: Partitioned parallel radix sort. J. Parallel

Distrib. Comput. 62(4), 656–668 (2002)
14. Lichterman, D.: Course project for UIUC ECE 498 AL: programming massively

parallel processors. Wen-Mei Hwu and David Kirk, instructors (2007)
15. Macdonald, C., Santos, R.L., Ounis, I.: The whens and hows of learning to rank

for web search. Inf. Retrieval 16(5), 584–628 (2013)
16. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M., et al.:

Okapi at TREC-3. NIST Special Publication SP, p. 109 (1995)
17. Schurman, E., Brutlag, J.: Performance related changes and their user impact. In:

Velocity Web Performance and Operations Conference (2009)
18. Sengupta, S., Harris, M., Garland, M., Owens, J.D.: Efficient parallel scan algo-

rithms for many-core GPUs. In: Scientific Computing with Multicore and Acceler-
ators, pp. 413–442 (2011)

19. Shams, R., Kennedy, R., et al.: Efficient histogram algorithms for NVIDIA CUDA
compatible devices. In: Proceedings of the International Conference on Signal Pro-
cessing and Communications Systems (ICSPCS), pp. 418–422. Citeseer (2007)

20. Tatikonda, S., Cambazoglu, B.B., Junqueira, F.P.: Posting list intersection on mul-
ticore architectures. In: Proceedings of the 34th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 963–972. ACM
(2011)

21. Tonellotto, N., Macdonald, C., Ounis, I.: Efficient and effective retrieval using
selective pruning. In: Proceedings of the Sixth ACM International Conference on
Web Search and Data Mining, pp. 63–72. ACM (2013)

22. Turtle, H., Flood, J.: Query evaluation: strategies and optimizations. Inf. Process.
Manag. 31(6), 831–850 (1995)

23. Wang, L., Lin, J., Metzler, D.: A cascade ranking model for efficient ranked
retrieval. In: Proceedings of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 105–114. ACM (2011)

24. Wu, D., Zhang, F., Ao, N., Wang, G., Liu, J., Liu, J.: Efficient lists intersection
by CPU-GPU cooperative computing. In: 2010 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Ph.D. Forum (IPDPSW), pp.
1–8. IEEE (2010)

Scalable Top-K Query Processing Using Graphics Processing Unit 261

25. Wu, H., Fang, H.: Document prioritization for scalable query processing. In: Pro-
ceedings of the 23rd ACM International Conference on Conference on Information
and Knowledge Management, pp. 1609–1618. ACM (2014)

26. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching
in search engines. In: Proceedings of the 17th International Conference on World
Wide Web, pp. 387–396. ACM (2008)

27. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache com-
pression. In: Proceedings of the 22nd International Conference on Data Engineer-
ing, ICDE 2006, p. 59. IEEE (2006)

Fast Dynamic Graph Algorithms

Gaurav Malhotra, Hitish Chappidi, and Rupesh Nasre(B)

IIT Madras, Chennai, India
{gaurav,hitish,rupesh}@cse.iitm.ac.in

Abstract. We show that dynamic graph algorithms are amenable to
parallelism on graphics processing units (GPUs). Evolving graphs such
as social networks undergo structural updates, and analyzing such graphs
with the existing static graph algorithms is inefficient. To deal with such
dynamic graphs, we present techniques to (i) represent evolving graphs,
(ii) amortize the processing cost over multiple updates, and (iii) optimize
graph analytic algorithms for GPUs. We illustrate the effectiveness of our
proposed mechanisms with three dynamic graph algorithms: dynamic
breadth-first search, dynamic shortest paths computation and dynamic
minimum spanning tree maintenance. In particular, we show that the
dynamic processing is beneficial up to a certain percentage of updates
beyond which a static algorithm is more efficient.

1 Introduction

Graphs are fundamental data structures to represent varied real-life phenomena
such as interaction among molecules, friendships across persons, and city roads.
Applications from various disciplines operate on these graphs to extract useful
information such as placement of molecules, communities in social networks, and
shortest path from one place to another. As data sizes grow, fast graph analyt-
ics rely on parallel graph processing. Former research has shown evidence that
static graph algorithms contain enough parallelism to keep GPU cores busy [1–
4]. However, several real-world graphs continue evolving. For instance, molecules
change positions based on interaction and forces; new friendships get formed in
social networks leading to new communities; while roads get blocked due to traf-
fic management. A näıve way to deal with such dynamic updates is to rerun the
static graph algorithm on each update to keep the information up-to-date. How-
ever, this is often time-consuming. Hard time-constraints in several applications
(such as those dealing with streaming data or large-scale simulations) demand
faster processing of dynamic updates, and quicker solutions.

In this work we deal with GPU-based dynamic graph algorithms. Following
technical challenges get surfaced in such a setup, which fuel our work.

– Graph representation: Existing popular formats such as compressed
sparse-row (CSR) storage for representing graphs are ill-suited for dynamic
updates. A small change in the graph structure leads to a considerable data-
movement in the CSR format. We devise a dynamic CSR storage format

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 262–277, 2019.
https://doi.org/10.1007/978-3-030-35225-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_17

Fast Dynamic Graph Algorithms 263

Fig. 1. Dynamic graph representation. Edge b − d is deleted from G0 and edge a − d
is added to get G1. src stores index in the dst array.

which continues its benefits for static graphs while allowing dynamic updates
(Sect. 2).

– Data-driven versus topology-driven processing: It has been shown that
a topology-driven processing can be beneficial for static graph algorithms [5].
However, a limitation of the existing topology-driven methods (wherein all
graph elements are processed in each iteration) is their work-inefficiency.
Especially in the context of dynamic updates, a topology-driven process-
ing leads to wasted resources. We propose a data-driven approach to deal
with dynamic updates. Unlike traditional static data-driven graph algorithms
which use a single worklist, our dynamic graph algorithms necessitate use of
multiple worklists for efficient data-driven processing (Sect. 3).

– Synchronization: Synchronization is a major challenge in graph algorithms
in case of highly concurrent setting such as GPUs. This issue is exacerbated
in the dynamic setting when the underlying graph structure is arbitrarily
changed by threads. We propose a combination of lock-free updates and
barrier-based processing to tame the synchronization cost (Sect. 4).

– Interplay of incremental and decremental updates: Fully dynamic
graph algorithms may insert and remove graph elements that may affect their
concurrent processing. For instance, in maintaining the minimum spanning
tree, a higher-weight spanning tree edge may be deleted while a lower-weight
new edge may be added. Taking advantage of such scenarios is critical for
efficient dynamic processing of graphs.

We address the above challenges with effective mechanisms and illustrate
that it is indeed beneficial to process dynamic graphs on GPUs. We apply
the proposed techniques to three graph theoretic algorithms: dynamic breadth-
first search (BFS), dynamic single-source shortest paths (SSSP) computation
and dynamic maintenance of the minimum spanning tree (MST). Using several
graphs from SNAP [6], we show that our GPU-based dynamic graph algorithms
are faster than their static counterparts up to 15–20% of updates.

2 Graph Representation

An evolving graph is denoted using its version number as a sequence G0, G1,
Node addition and deletion can be simulated by edge addition and deletion.

264 G. Malhotra et al.

Similarly, edge updates can be simulated using deletion (of the edge) followed
by addition. Therefore, we focus on edge addition and deletion in our setup.

CSR: A traditionally popular representation for GPU-based graph processing
is compressed sparse-row (CSR) storage format [4]. It essentially concatenates
the adjacency lists of nodes and uses offsets to mark the beginnings of adjacency
lists. A sample graph and its CSR representation is depicted in Fig. 1.

Unfortunately, traditional CSR has limitations when applied to dynamic
graph algorithms as in our case. First, for adding a new edge u → v, we need to
append v to u’s adjacency list (two updates are required for an undirected edge).
However, this necessitates moving the adjacency lists of all the nodes after u.
Additionally, this changes the offsets of all the nodes after u, requiring updates
to src, dst as well as wt array if applicable (see Fig. 1). Second, adding multiple
edges in parallel by multiple threads requires heavy synchronization to move
elements in the CSR arrays. Third, CSR does not allow us to take advantage of
interacting edge additions and removals.

diff-CSR: We address these issues (and retain benefits of CSR) by augmenting
CSR representation with a diff-CSR. Thus, the initial graph G0 is represented
using CSR format. The next graph version G1 is formed by following the trans-
formations to the original CSR array by processing deleted edges followed by
the newly inserted edges. The deleted edges are marked by overwriting with a
sentinel ∞ in dst array. For inserting an edge u − v, our method checks if any
deleted edge exists for each source node (u and v), and if it does, it is replaced
with the new destination in the original CSR array. If such a deleted entry is
not found, then the new edge is pushed into an additional diff-CSR array which
contains only the additional insertions which could not be fitted into the original
CSR array. These two arrays together represent the graph G1.

For the subsequent versions Gi we reuse the original CSR array of Gi−1 and
allocate a new diff array if required. Such a representation can form a chain of
diffs over the original array. In our setup, we merge the two diffs to create a
single consolidated diff array. This allows us to remove the sequential bottleneck
of chain-traversal while processing a graph update. For deletion of edges in the
graph, the original and the diff arrays of Gi−1 are checked for the corresponding
node, and it is marked as deleted. Insertions are tried to be fitted into one of
these arrays. Additional insertions are copied into a bigger diff array by copying
all the edges already present in the previous array to the new diff array. As the
diff arrays are small, such a copying does not incur any noticeable overhead.

MST Representation: In the case of dynamic MST computation, the MST
itself needs to be maintained. We take advantage of our diff-CSR to store the
MST. For instance, the MST of G0 in Fig. 1a consists of edges {a−b, b−d, d−c}
with the MST cost of 16 (note that edge a− d is not present in G0). After edge
a− d is added and edge b− d is deleted to get version G1 (Fig. 1b), the modified
MST denoted as MST 1 consists of edges {a−b, a−d, d−c} with cost 15. MST 1

can be stored in diff-CSR format as shown in Fig. 1c.

Fast Dynamic Graph Algorithms 265

3 Data-Driven Processing

GPUs are ideal for regular dense matrix computations. A topology-driven pro-
cessing is useful in such scenarios as most of the elements are almost always
active; that is, work is required to be done at these elements. On the other
hand, in a data-driven approach, only the active graph elements are processed,
making better use of the available resources. The down-side of a data-driven
approach is that the active graph elements need to be stored explicitly and
maintained during the parallel processing. This demands maintenance of a con-
current worklist in the presence of thousands of threads on the GPU. Thus,
there is a tension between work-efficiency and synchronization cost in topology-
driven versus data-driven graph processing. In the context of dynamic graph
algorithms, we advocate the use of a data-driven approach. This stems from the
fact that typically the updates are sparse; that is, there are only a few updates.

3.1 Incremental Graph Processing

In an incremental setting, edges are only added to the graph and no edge-deletion
is performed. Given a graph G0 and a statically computed information I0, the
goal here is to incrementally compute the modified information I1 for the super-
set graph G1. For BFS, I1 is the updated level information; for SSSP, it is the
updated shortest path from a designated source; while for MST, it is the mod-
ified minimum spanning tree. An efficient implementation of such incremental
algorithms would exploit the following properties:

– BFS: In I1, no vertex has a level larger than its level in I0. In other words,
level numbers can only reduce across incremental updates.

– SSSP: In I1, no vertex has a distance longer than its distance in I0.
– MST: The MST cost cannot increase due to incremental updates.

BFS: In incremental BFS, when a new edge u → v is added, the levels of only
those nodes that are reachable via edge u → v may reduce. Such a processing can
be readily modeled by mapping incremental work in the context of static graph
processing. Thus, vertex u can be added to the worklist and concurrent level-
synchronous BFS can proceed, exactly as in the static version. If v’s level reduces,
the processing may continue to the next level; otherwise, no other vertices need
to be processed further. Figure 2 shows the processing steps when edge a − d is
added and a is the source in the graph of Fig. 1a.

SSSP: Similar to incremental BFS, in incremental SSSP also, when an edge u →
v is added, the distances of only those vertices that are reachable via edge u → v
may reduce. Therefore, the processing can also piggyback on the static processing
by inserting vertex u into the worklist of active vertices. An important difference
with respect to BFS is that SSSP computation is asynchronous, enforcing a
different synchronization requirement (discussed in Sect. 4).

266 G. Malhotra et al.

Fig. 2. Incremental BFS on the graph from Fig. 1a

Fig. 3. Level-order traversal of the minimum spanning forest

MST: Unlike BFS and SSSP, incremental MST requires special consideration,
which we discuss next. In MST, addition of an edge creates a cycle. Our imple-
mentation allows such a cycle to be created, and later traverses the cycle to
remove the maximum weight edge (which could as well be the newly added
edge). However, a näıve traversal to find the cycle is expensive. Therefore, we
resort to preprocessing of the MST (in general, minimum spanning forest MSF)
which reduces the traversal and improves incremental MST computation. The
preprocessing ensures that there is a dedicated directed path (note that the MST
is undirected) to traverse to find that cycle. In this step, we find out the repre-
sentative vertices for each disjoint component of the MSF and start a level-order
traversal from each vertex in parallel. During the traversal, we maintain three
attributes with each vertex: Parent, Level and Cost. Whenever an unvisited ver-
tex v is reached from the current vertex u, Parent(v) = u, Level(v) = Level(u)
+ 1, Cost(v) = Wt(u − v). This data-driven worklist-based process continues
until all the vertices are visited as shown in Fig. 3.

We perform incremental updates as below. We first add the incremental
edges that connect two different MSTs in the MSF. This is because such cut-
edges would always be part of the new MSF and are guaranteed not to create
cycle. After all such inter-component edges are processed, any new edge would
be intra-component and would necessarily create a cycle. This necessitates find-
ing the maximum-weight cycle edge. To do this, we start from the two ends
of the incremental edge; say, first end and other end. Without loss of gener-
ality, assume that Level(first end) ≥ Level(other end). So, we start from the
first end and then following the vertices from the parent array, we update the

Fast Dynamic Graph Algorithms 267

Fig. 4. Path traversal to find maximum weight edge in a cycle

parent of the first end to be the new first end. We continue with this until we
get to a point where Level(first end) == Level(other end). At this point, also
if first end == other end, then we have found the cycle and we return with the
maximum weight edge found on the path traversed. This is depicted in Fig. 4.

When we add multiple incremental edges in parallel, there exists a chance
that two incremental edges pick up the same maximum weight edge during its
cycle traversal. In such cases, we must consider only one of the two incremental
edges in that iteration and process the other edge later. Otherwise, there is a
danger of forming a cycle in the maintained spanning tree.

3.2 Decremental Graph Processing

In a decremental setting, edges are only removed from the graph and no edge-
insertion is performed. Given a graph G0 and a statically computed information
I0, the goal here is to decrementally compute the modified information I1 for
the subset graph G1. For BFS, I1 is the updated level information; for SSSP,
it is the updated shortest path from a designated source; while for MST, it
is the modified minimum spanning tree. An efficient implementation of such
decremental algorithms would exploit the following properties:

– BFS: In I1, no vertex has a level smaller than its level in I0. In other words,
level numbers can only increase across decremental updates.

– SSSP: In I1, no vertex has a distance shorter than its distance in I0.
– MST: The MST cost cannot reduce due to decremental updates.

BFS: Unlike in incremental BFS, the decremental version poses a challenge that
the next shortest path (new parent) is not known. To address this issue, we use
a multi-worklist approach, which we explain below. The static BFS processes G0

in level-synchronous worklist-based manner and computes the level values in I0.
Next, to compute I1, the dynamic version processes all the deleted edges a → b
to check if a is a parent of b in the BFS tree (BFST). If it is, then we check all

268 G. Malhotra et al.

the incoming nodes of b (to check for the new shortest path) and update b’s level.
If its level increases then it is added to a special worklist. Processing threads
remove nodes from this worklist and check if any of their outgoing vertices is
a child in BFST to the currently removed node. If a vertex is indeed a child,
it is pushed to the special worklist. For each vertex in the special worklist, we
update its level based on its incoming nodes, whereas the regular worklist is used
to propagate distances to the outgoing neighbors. If a vertex’s level increases,
we mark it special. The change is propagated to the special nodes’ children by
checking their parents in the BFST as discussed.

SSSP: Similar to decremental BFS, decremental SSSP also uses a multi-worklist
approach. A key difference from BFS is that SSSP computation is asynchronous,
enforcing a different synchronization requirement (discussed in Sect. 4).

MST: Similar to BFS and SSSP, decremental MST also uses a data-driven
worklist-based approach, but its operators are quite different [7]. We first mark
and delete all the decremental edges in the previous version of the MST. This is
done by a level-order traversal of the MST where we start from representative
vertices of the MSTs in the MSF and vertices from which edges are being deleted.
After deleting the decremental edges, we will have different MST components.

For every such MST segment, we will have one representative vertex. We need
to connect MSTs (if possible) by using other non-tree edges from the original
graph. Similar to the processing in the incremental setting, we first add the
cut edges across different representative vertices from the non-tree edges of the
graph. Threads operate on representative vertices and start finding the minimum
weight edge representative vertex adjacent to them. Since each representative
vertex chooses at most one representative vertex, cycles may be introduced while
adding edges between them. We borrow the technique of choosing the lower of
the vertex identifiers for same-weight edges from Vineet et al. [8]. This ensures
that only 2-length cycles are possible as illustrated in Fig. 5. Threads can quickly
check for 2-length cycles by finding if a reverse-edge is chosen by the end-point
of the chosen-edge. After this step, minimum weight edges from the remaining
vertices are added to the MST. Finally, all the vertices connected by minimum
weight edges form one super-vertex component and all these disjoint components
form new vertices for the next iteration. This process continues until no more
edges can be added between any two components.

3.3 Fully Dynamic Graph Processing

BFS: Fully-dynamic BFS can be built upon the concepts of incremental and
decremental BFS. For each deleted edge u → v in parallel, we push v to the
special worklist, while for each inserted edge u → v, we push u to the regular
worklist. Threads then extract vertices from the special worklist, and process
their incoming edges. A vertex is marked as special if there is an increase in
its level compared to the previous version. Then, similar to the decremental
algorithm, the special node is pushed into the regular worklist for propagating the

Fast Dynamic Graph Algorithms 269

Fig. 5. Adding non-tree edges to get final MST

Fig. 6. Dynamic SSSP on graph versions G0 and G1

level information to its children. Threads extract vertices from the worklist and
check if any of them is special. For each special vertex, similar to the decremental
algorithm, we check if it has any child in the BFST in its outgoing edges. If there
is, the child is pushed into the special worklist. For the remaining children, we
propagate the (special) parent’s change along its outgoing edges. If an outgoing
neighbor’s level reduces, it is pushed to the regular worklist. This repeats until
both the worklists are empty.

SSSP: The incremental and the decremental algorithms can be combined and
this can be used when both insertions and deletions are happening simultane-
ously. The algorithm is listed in Algorithm1 which uses the results of iteration
i− 1 in iteration i. For each deleted edge (u, v) where u is the SPT parent of v,
we push v to the special worklist. We also check if the vertex has a new outgoing
edge (due to incremental updates). If it does, we push it into the (regular) work-
list. We then process vertices from the special worklist, we relax all the incoming
edges of each node and update the node’s distance. We then check if the node’s
distance increased. If so, then the node is marked as special and pushed into the
worklist. We loop through the worklist for special vertices. For special vertices,
similar to the case of the decremental algorithm, we check if it is a parent to
any node in the SPT in its outgoing edges. If so, then the child is pushed to
the special worklist. For the others, we propagate the change along the outgoing
edges. The two worklists are processed until they get empty.

270 G. Malhotra et al.

Algorithm 1. Fully Dynamic SSSP

1 function SSSP-static(G0)

2 for each i t e r a t i o n Gi other than G0

3 readGraph (Gi)
4 copyResult (disti−1 , disti)
5 preprocess(Gi)
6 while (! both wo r k l i s t s are empty)
7 for each ver tex a in specWL
8 specFunc(a)
9 for each node a in inWL

10 regularFunc(a)
11 swap (inWL,outWL)
12

13 function preprocess(Gi)

14 for each ver tex a in Gi

15 i f newoutgoing [a] = true
16 push a to inWL
17 for each de l e t ed edge a → b
18 i f a i s the parent o f b in SPT
19 push b to specWL
20

21 function regularFunc(a)
22 i f (a i s s p e c i a l)
23 for each outgoing neighbor b o f a
24 i f a i s the parent o f b in SPT
25 push b to specWL
26 else
27 for each outgoing neighbor b o f a
28 i f d i s t [a] + wt (a, b) < d i s t [b]
29 d i s t [b] := wt (a, b) + d i s t [a]
30 push b to outWL
31

32 function specFunc(a)
33 pr evd i s t := d i s t [a]
34 d i s t [a] := ∞
35 for each parent b o f a
36 update d i s t [a] v ia b
37 i f d i s t [a] > pr evd i s t
38 push a to outWL
39 mark a as s p e c i a l
40 else i f d i s t [a] < pr evd i s t
41 push a to outWL

Consider the example shown in Fig. 6. Edge b → c is deleted and edges a → d
and a → c are added. Vertex c is a child of vertex b in SPT and we push c to the
special worklist. Then vertex a is pushed into the regular worklist because it has

Fast Dynamic Graph Algorithms 271

new outgoing edges. We extract vertex c from the special worklist, process its
incoming vertices, and update its distance to 6. Then we push c to the worklist
because of reduced distance. Then we process all the nodes in the worklist. This
reduces d’s distance to 8 and it is pushed to the worklist. This finally leads to
the fixed-point.

MST: In contrast to BFS and SSSP, for dynamic MST, we first follow the steps
of the incremental algorithm. However, instead of picking only the maximum
weighted edges from either of the ends, if we get a decremental edge having
weight greater than the incremental edge during the cycle traversal, then we
replace the incremental edge with the decremental edge. This mechanism is valid
because we are replacing a valid incremental edge whose weight is less than the
decremental edge, if found. However, if we do not find any decremental edges
or any decremental edges whose weight is less than the incremental edges, then
we continue with our above proposed incremental algorithm. After processing
all the incremental edges in this fashion, we process the remaining decremental
edges which have to be deleted.

4 Synchronization Considerations

Irregular procedures such as graph algorithms necessitate thread-synchronization
for safe concurrent processing. The synchronization requirement is heavy when
the graph undergoes structural updates, as in our case. Thus, for instance, while
a thread is updating an MST to include a new edge, some other thread may be
deleting the same edge. The synchronization issue gets exacerbated on GPUs as
logical locks are prohibitively expensive.

BFS: Level-by-level static BFS can be implemented without using atomic
instructions as the data-races are benign. However, synchronization may still
be necessary while maintaining the frontier, depending upon its implementa-
tion. Thus, if the frontier is implemented as a bit-vector (one bit per vertex),
then no explicit atomics are necessary (as single word writing is atomic in CUDA
and most other hardware). However, if the frontier is implemented as a compact
worklist containing vertex identifiers, then synchronization in terms of either
atomics or prefix-sum barriers is necessary to insert vertices. Removal of ele-
ments need not require synchronization as all the elements can be read in par-
allel and the worklist can be emptied by setting its size variable to 0. However,
a barrier is necessary between reading and resetting the worklist. All these syn-
chronization requirements are applicable in case of the dynamic setting also. In
addition, efficient processing of special and regular worklists demands careful
synchronization. In particular, we need to insert two barriers between the iter-
ative processing of special and regular worklists (after for loops at lines 7 and 9
in BFS code similar to Algorithm 1).

SSSP: Synchronization considerations of dynamic SSSP are similar to those
of BFS. However, since SSSP is implemented in an asynchronous manner, it
demands usage of atomicMin instruction while updating distances.

272 G. Malhotra et al.

MST: Dynamic MST poses more synchronization challenges. First, all primitive
data type updates rely on atomic instructions. Performing level-order traversal
to find maximum weight edge in a cycle needs BFS-like synchronization. The
underlying data structure to keep track of MSTs also necessitates careful syn-
chronization. For instance, various components of the minimum spanning forest
(MSF) are efficiently stored in a concurrent union-find data structure. Updating
parent pointers of vertices (union) and identifying if two vertices belong to the
same component (find) need to be separated either by a barrier or protected using
atomics. Note that find is not a read-only operation when path-compression is
enabled. Further, if the incremental and the decremental phases are separated
by a barrier, it helps reduce intra-phase synchronization. Note, however, that the
fully-dynamic version takes advantage of the decremental edges while inserting
new edges for efficiency (as discussed in Sect. 3.3).

5 Experimental Results

We implemented dynamic BFS, SSSP and MST in CUDA. The experiments are
run on an Intel Xeon X5675 with Tesla M2070 GPU with 6 GB RAM and 14 SMs
containing 448 cores. We compare our dynamic BFS and SSSP with the static
versions from LonestarGPU 2.0 [9], and dynamic MST with our implementation
of the static version by Vineet et al. [8]. We call the static versions as Base. Our
code is publicly available1 which contains optimized incremental, decremental
as well as fully-dynamic versions.

In the evaluation below, the base implementation creates the graph with all
the dynamic updates and then runs the static version on it. We present results
directly for fully-dynamic version. We select an edge for addition or removal by
selecting two random vertex identifiers, and checking if the edge already exists.
We add edge-weight as a random number between 1 and 100. Figure 7 shows the
characteristics of various graphs from SNAP [6].

Fig. 7. Input graphs

1 http://www.cse.iitm.ac.in/∼rupesh/?mode=Research.

http://www.cse.iitm.ac.in/~rupesh/?mode=Research

Fast Dynamic Graph Algorithms 273

Fig. 8. diff-CSR throughput and performance of fully-dynamic BFS (Color figure
online)

5.1 Performance

diff-CSR: To evaluate our diff-CSR representation, we added and removed ran-
domly selected edges to various graphs. Figure 8 shows throughput (number of
updates performed per second) for various number of updates. We find that (i)
the throughput improves almost linearly, (ii) the throughput reaches a plateau
after 10 million updates, and (iii) is largely the same independent of the graph.

BFS: Figure 8 shows the performance of fully-dynamic BFS. It plots the execu-
tion time with varying number of dynamic updates (as a percentage of |E| from
1..20) for a subset of graphs (to avoid clutter, but others have similar behavior).
The plot also indicates the execution time of the static version by the dotted
lines (with the same color). We observe that the dynamic version takes much
lesser time compared to its static counterpart for a few updates. As the num-
ber of dynamic updates increases, the amount of processing and, in turn, the
execution time of the dynamic version increases almost linearly. In practice, we
believe the number of dynamic updates would be small and our dynamic version
would prove useful.

SSSP: Figure 9 shows the performance of fully dynamic SSSP with varying inser-
tion and deletion percentage for a few graphs. Similar to BFS, dynamic SSSP
performs better than its static counterpart until a graph-dependent threshold.

Fig. 9. Performance of fully dynamic SSSP and MST

274 G. Malhotra et al.

Fig. 10. Dynamic MST performance, and computed statistics

MST: Figure 9 shows the performance of the fully dynamic MST with varying
insertions and deletions. The plot differs from the earlier ones (BFS and SSSP)
in two aspects. One, dynamic MST is a complicated algorithm, its benefits get
reduced due to higher synchronization costs. Therefore, it works better only up to
a few thousand dynamic updates (which may be good for several applications).
Hence, we plot directly the number of updates (1..20K) rather than a percent-
age (which would be very small). Second, we plot the performance over several
graphs. Hence, instead of showing two lines per graph, we plot normalized exe-
cution times. We observe a trend similar to that of BFS and SSSP, with dynamic
MST performing better than the static version for a few thousand updates.

In Fig. 10 we show the execution time split-up for dynamic MST across five
stages of the algorithm: (i) level order BFS traversal to initialize Parent, Level
and Cost arrays, (ii) connecting incremental edges across the disjoint MST com-
ponents, (iii) inserting incremental edges within the MST component, (iv) mark-
ing and deleting decremental edges in the MST to form disjoint MST compo-
nents, and (v) reconnecting the MST components to get the MST or MSF. We
observe that fully dynamic MST is dominated in execution time by the decre-
mental part which involves complicated processing in deleting the decremental
edges and then reconnecting the MST components. Secondly, for graphs like
rmat20 and patents, where there are multiple components, time consumed in
adding incremental edges across the MST components is more than the time
consumed for adding incremental edges within the MST tree component. This is
because in these graphs most of the incremental edges have been added across
the MST components rather than within an MST component. Figure 10 also
shows the statistics obtained by our MST computation. #C indicates the num-
ber of connected components, and Cost indicates the total MST (MSF) cost. It
shows that Patent and Rmat20 are disconnected.

Overall, we illustrate that our dynamic versions of graph algorithms pro-
vide benefits over recomputing the graph analytic information from scratch. In
particular, when the number of updates is relatively small – which happens in
social networks, dynamic molecular simulations and control-flow graphs across
code versions, our dynamic methods offer promising results.

Fast Dynamic Graph Algorithms 275

6 Related Work

There exists a body of work on speeding up processing of evolving graphs [10–12].
While Chronos [10] introduces a novel memory layout to improve cache locality
during serial or parallel graph processing, much of the other work restricts type
of queries or are designed for a specific algorithm (e.g., Ren et al. [11] and Kan
et al. [12] consider queries that depend upon the graph structure alone).

There are many implementations of parallel static graph algorithms on
a variety of architectures, including distributed-memory supercomputers [13],
shared-memory supercomputers [14], and multicore machines [15]. Harish and
Narayanan [16] pioneered CUDA implementations of graph algorithms such as
BFS and single-source shortest paths computation. BFS has received significant
attention [4,17,18]. Hong et al. [3] propose a warp-centric approach for imple-
menting BFS. In Pregel-like graph processing systems [19] some of the underlying
algorithms like Page Rank, SSSP and DMST have been proposed for distributed
processing. Vineet et al. [8] and Nobari et al. [20] propose computing the min-
imum spanning tree and forest, respectively, on GPUs. MST computation on
temporal graphs [21] has also been proposed in the sequential setting.

Ashari et al. [22] propose an adaptive CSR layout for sparse matrix-vector
multiplication. Their method reduces thread-divergence on GPUs by sorting ver-
tices based on their degrees and binning the vertices with similar degrees. Adap-
tive CSR also uses dynamic parallelism supported in the latest GPUs to improve
work-efficiency. King et al. [23] propose a dynamic CSR layout for graphs with
changing structures. The difference between dynamic CSR and our diff-CSR
(Sect. 2) is that dynamic CSR keeps track of additional segments to accommo-
date new edges. This leads to fragmentation when the segments are not full,
and the authors propose a defragmentation step to compact the segment. In
contrast, diff-CSR maintains a diff in the same CSR format, but the diff is sepa-
rately maintained from the original CSR. diff-CSR may also incur fragmentation
due to deletions, but since it never allocates more memory than required in a
step, it does not incur fragmentation on insertion. cuSTINGER [24] proposes
to store dynamic graphs on GPUs. It also uses arrays to store adjacency lists;
however, diff-CSR uses two arrays (original and diff). Further, unlike diff-CSR,
cuSTINGER separates insertions and deletions, and needs a host-device copying
of adjacency lists when the current storage space is insufficient for the dynamic
updates. cuSTINGER also compacts the storage at the end of a batch deletion;
diff-CSR does not perform compaction, but retains the deleted markings.

Closest to our work is the work on morph algorithms on GPUs [25] wherein
structurally changing graphs are analyzed on the GPUs. While similar in spirit,
our work proposes a new dynamic graph representation and highlight new syn-
chronization challenges. Automatic code generation for morph algorithms has
been proposed by Cheramangalath et al. [26].

276 G. Malhotra et al.

7 Conclusion

We illustrated the promise in processing dynamic graph algorithms on GPUs. To
address challenges posed by the structural updates, we proposed a backwards-
compatible dynamic CSR representation, advocated data-driven processing,
carefully chose the synchronization primitives, and took advantage of the inter-
play of incremental and decremental updates. By implementing and optimizing
three popular graph algorithms in CUDA, we illustrated the promise in our
proposed techniques. Using a collection of real-world and synthetic graphs, we
showed that the proposed techniques work effectively and provide performance
benefits over static graph algorithms up to a certain percentage of structural
updates. We believe our techniques can be applied to other propagation-based
algorithms such as Page Rank, Betweenness Centrality, and Coloring.

Acknowledgments. We thank the reviewers and our shepherd Nancy Amato for their
comments which considerably improved our work. This work is partially supported by
IIT Madras Exploratory Research Grant CSE/16-17/837/RFER/RUPS.

References

1. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: a
high-performance graph processing library on the GPU. In: PPoPP (2015)

2. Gharaibeh, A., Costa, L.B., Santos-Neto, E., Ripeanu, M.: A yoke of oxen and a
thousand chickens for heavy lifting graph processing. In: PACT (2012)

3. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algo-
rithms at maximum warp. In: PPoPP, pp. 267–276 (2011)

4. Merrill, D.G., Garland, M., Grimshaw, A.S.: Scalable GPU graph traversal. In:
PPoPP (2012)

5. Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus topology-driven irregular
computations on GPUs. In: IPDPS, pp. 463–474 (2013)

6. Leskovec, J., Sosič, R.: SNAP: a general purpose network analysis and graph mining
library in C++, June 2014. http://snap.stanford.edu/snap

7. Pingali, K., et al.: The tao of parallelism in algorithms. In: PLDI, pp. 12–25 (2011)
8. Vineet, V., Harish, P., Patidar, S., Narayanan, P.J.: Fast minimum spanning tree

for large graphs on the GPU. In: HPG, pp. 167–171 (2009)
9. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs

on GPUs. In: IISWC, pp. 141–151 (2012)
10. Hant, W., et al.: Chronos: a graph engine for temporal graph analysis. In: ECCS,

p. 1 (2014)
11. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph

sequences. Proc. VLDB Endow. 4(11), 726–737 (2011)
12. Kan, A., Chan, J., Bailey, J., Leckie, C.: A query based approach for mining evolv-

ing graphs. In: Proceedings of the Eighth Australasian Data Mining Conference,
vol. 101, pp. 139–150. Australian Computer Society Inc. (2009)

13. Yoo, A., Chow, E., Henderson, K., McLendon, W., Hendrickson, B., Catalyurek,
U.: A scalable distributed parallel breadth-first search algorithm on BlueGene/L.
In: SC, p. 25 (2005)

http://snap.stanford.edu/snap

Fast Dynamic Graph Algorithms 277

14. Bader, D.A., Madduri, K.: Designing multithreaded algorithms for breadth-first
search and st-connectivity on the Cray MTA-2. In: ICPP, pp. 523–530 (2006)

15. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.:
Optimistic parallelism requires abstractions. SIGPLAN Not. (PLDI) 42(6), 211–
222 (2007)

16. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU using
CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC
2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-77220-0 21

17. Luo, L., Wong, M., Hwu, W.-M.: An effective GPU implementation of breadth-first
search. In: DAC, pp. 52–55 (2010)

18. Hong, S., Oguntebi, T., Olukotun, K.: Efficient parallel graph exploration on multi-
core CPU and GPU. In: PACT. PACT 2011 (2011)

19. Han, M., Daudjee, K.: Giraph unchained: barrierless asynchronous parallel execu-
tion in pregel-like graph processing systems. Proc. VLDB Endow. 8(9), 950–961
(2015)

20. Nobari, S., Cao, T.-T., Karras, P., Bressan, S.: Scalable parallel minimum spanning
forest computation. In: Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. PPoPP 2012, pp. 205–214. ACM,
New York (2012). http://doi.acm.org/10.1145/2145816.2145842

21. Huang, S., Fu, A.W.-C., Liu, R.: Minimum spanning trees in temporal graphs.
In: Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD 2015, pp. 419–430. ACM, New York (2015).
http://doi.acm.org/10.1145/2723372.2723717

22. Ashari, A., Sedaghati, N., Eisenlohr, J., Parthasarathy, S., Sadayappan, P.: Fast
sparse matrix-vector multiplication on GPUs for graph applications. In: SC, pp.
781–792 (2014)

23. King, J., Gilray, T., Kirby, R.M., Might, M.: Dynamic sparse-matrix allocation on
GPUs. In: Kunkel, J.M., Balaji, P., Dongarra, J. (eds.) ISC High Performance 2016.
LNCS, vol. 9697, pp. 61–80. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-41321-1 4

24. Green, O., Bader, D.A.: cuSTINGER: supporting dynamic graph algorithms for
GPUs. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–6, September 2016

25. Nasre, R., Burtscher, M., Pingali, K.: Morph algorithms on GPUs. In: PPoPP, pp.
147–156 (2013)

26. Cheramangalath, U., Nasre, R., Srikant, Y.N.: Falcon: a graph manipulation lan-
guage for heterogeneous systems. ACM Trans. Archit. Code Optim. 12(4), 54:1–
54:27 (2015). http://doi.acm.org/10.1145/2842618

https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.1007/978-3-540-77220-0_21
http://doi.acm.org/10.1145/2145816.2145842
http://doi.acm.org/10.1145/2723372.2723717
https://doi.org/10.1007/978-3-319-41321-1_4
https://doi.org/10.1007/978-3-319-41321-1_4
http://doi.acm.org/10.1145/2842618

Posters

Towards Fine-Grained Dataflow Parallelism in
Big Data Systems

Sebastian Ertel(B), Justus Adam, and Jeronimo Castrillon

Technische Universität Dresden, Dresden, Germany
{Sebastian.Ertel,Justus.Adam,Jeronimo.Castrillon}@tu-dresden.de

1 Introduction

Over the last decade big data analytics became the major source of new insights
in science and industry. Applications include the identification of mutations in
cancer genome and the tracking of other vehicles around an autonomously driv-
ing car. The big data systems (BDSs) that enable such analyses have to be
able to process massive amounts of data as fast as possible. To do so, current
BDSs apply coarse-grained data parallelism, i.e., they execute the same code on
each core of the nodes in a cluster on a different chunk of the data. Such an
application is said to scale with the number of cores in the cluster. However,
not every aspect of a big data application exposes data parallelism. For these
aspects, current BDSs fail to scale.

2 Scalability Issues of Big Data Systems

A typical big data analysis program assembles a set of predefined operations and
applies them to the data in multiple phases. For example, the famous MapReduce
programming model defines exactly two phases: a map and a reduce phase [1].
The map phase is data parallel by definition but the data parallelism of the
reduce phase depends on the application. For example, in data analytics queries,
the join operation for two tables can not be performed in a data parallel way
(when the input data is not partitioned). In such a case, a single node receives
all results from the map phase and becomes the throughput bottleneck.

BDSs have been traditionally designed to execute applications in a massive
coarse-grained data parallel fashion across a cluster of machines. The underlying
assumption was that applications would process large amounts of simply struc-
tured data, such as text. The effort to serialize and deserialize such data struc-
tures, i.e., transforming them to bytes (and its dual operation on the receiver
side), is negligible. This setup led to the common belief that network I/O, instead
of computation, is the performance bottleneck in these systems.

Only recently, researchers have shown that I/O is not always the limiting fac-
tor for performance [3]. Authors in [4] benchmarked the current state-of-the-art
BDSs Apache Spark and Apache Flink in a high bandwidth cluster setup. They
show that reduce operations do not profit from modern multi-core architectures

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 281–282, 2019.
https://doi.org/10.1007/978-3-030-35225-7

https://doi.org/10.1007/978-3-030-35225-7

282 S. Ertel et al.

since their cores do not take advantage of fine-grained parallelism. As a result,
the data throughput does not increase for faster network devices, i.e., it does
not scale with the network.

To better exploit new hardware, the design of BDSs must be revisited [4].
Redesign is non trivial due to the complexity of the code bases of state-of-the-art
BDSs, e.g., with over 1.4 million lines of code in Hadoop MapReduce (HMR).
Approaching this task with common parallel programming means, like threads,
tasks or actors and their respective synchronization via locks, futures or mail-
boxes, inevitably increases code complexity. As a result, these systems become
harder to reason about, maintain and extend. We believe that this redesign can
be better achieved with new programming abstractions together with associated
compilers and runtimes to help automatically optimize the code depending on
the application characteristics. This paper represents first steps in this direction.

3 Implicit Dataflow Programming

1.0

1.5

2.0

2.5

3.0

3.5

2 4 6
Threads

Th
ro

ug
hp

ut
 −

 S
pe

ed
up

Fig. 1. Map task execution of a
black list filter on TPC-H data.

In our work, we investigate rewrites for the
processing cores of current big data sys-
tems to increase data throughput, effectively
improving scalability with new hardware.
Our rewrites use the implicit parallel pro-
gramming language, Ohua [2], to provide con-
cise code that is easy to maintain. The cor-
responding compiler transforms the program
into a dataflow graph that the runtime sys-
tem executes in a pipeline and task parallel
fashion across the cores of a single machine.
To verify the claim that all BDSs face the
above scalability issues, we analyzed the code base of HMR, Spark and Flink.
We found that all three systems use the same design patterns to build their data
processing pipelines and use them as an indicator for code that can execute in
parallel. The rewrite of the data processing cores of HMR with Ohua resulted
in concise code that is free of concurrency abstractions and reuses existing code
to a large extend. Figure 1 presents first performance results with speed-ups of
up to 3.5× for compute-intensive configurations.

References

1. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI 2004. USENIX Association (2004)

2. Ertel, S., Fetzer, C., Felber, P.: Ohua: implicit dataflow programming for concurrent
systems. In: PPPJ 2015. ACM (2015)

3. Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., Chun, B.G.: Making sense
of performance in data analytics frameworks. In: NSDI 2015. USENIX Association
(2015)

4. Trivedi, A., et al.: On the [ir]relevance of network performance for data processing.
In: HotCloud 2016. USENIX Association (2016)

JIT for Intelligent Manufacturing

Lei Zhang(B), L. N. C. Annadorai, Atin Angrish, Xipeng Shen, Binil Starly,
Yuan-Shin Lee, and Paul Cohen

North Carolina State University, Raleigh, NC 27695, USA
{lzhang45, lcoimba, aangris, xshen5, bstarly, yslee, pcohen}@ncsu.edu

Modern manufacturing machines center on computer numerical control (CNC).
Despite years’ of progresses, today’s manufacturing still runs upon an old
paradigm as shown in Fig. 1. Through CAD/CAM software, engineers produce
a computer file containing some high-level instructions on how to manufacture
a product on a CNC machine (with some drilling, milling tools). The file is then
translated into a low-level format called G-code [1] through vendor-provided
non-disclosed postprocessors. The generated machine-specific G-code is sent as
input to a CNC, which drives the motors and tools in the machine to make the
product.

G-code is a standard programming language for CNC machines, created in
1950s. Vendors have added many extra features into G-code that are specific
to some CNC machines, resulting in thousands of variations of G-code. Conse-
quently, code for part fabrication is often customized to a physical CNC machine
on a shop floor, not portable across CNC machines.

In current manufacturing, there are usually some humans called CNC oper-
ators who need to closely monitor the operations of CNC machines throughout
the manufacturing process. Because the tool wearing conditions and initial posi-
tions of a particular CNC machine may differ from what the product designers
had assumed when they create the high-level designs of the manufacturing code,
these operators often need to manually modify the G-code of the product at
manufacturing time to meet the quality requirement. Given the many variations
of G-code, the operators usually have to learn the G-code of a particular CNC
machine to be able to do the work. In other instances, there is often variability
in the raw material dimension and physical properties that results in the oper-
ator having to edit the G-code to add additional steps that the manufacturing
process engineer may not have accounted for in the initial G-code.

G-code
Postprocessors

 CNC

Operator

Fig. 1. Conventional manufacturing process.

This paper advocates that the key to removing the main barrier lies in pro-
gramming systems, esp. Just-In-Time (JIT) compilation techniques. We use
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 283–284, 2019.
https://doi.org/10.1007/978-3-030-35225-7

https://doi.org/10.1007/978-3-030-35225-7

284 L. Zhang et al.

Fig. 2 to outline the role that JIT can play in enabling intelligent manufac-
turing. The CNC machine is equipped with a JIT-based runtime, which trans-
forms the IM code (a replacement of G-code) at manufacturing time to adapt
the machine operations to dynamic conditions. The automatic feedback-driven
paradigm may improve the productivity and quality of future manufacturing
dramatically. There are two-fold opportunities and challenges.

JIT-based runtime
CNC Mechanics

w/ sensors

Data buffer

IM API

Optimization
Models

IM code

Fig. 2. JIT-based intelligent manufacturing framework. “IM” stands for intelligent
manufacturing, Optimization model is a model for optimizing the manufacturing, writ-
ten by domain experts with IM API.

The first fold of challenges are on how to derive optimization decisions from
the feedback data reported by the sensors. A runtime system may need to moni-
tor the dispatch and executions of instructions and map the data to the currently
running instructions and manufacturing steps. Meanwhile, a set of programming
interface or descriptive programming language shall be designed to facilitate the
interactions between domain experts and the runtime software.

The second fold of challenges are on how to materialize the desired opti-
mizations. A portable programming language shall be introduced to replace
G-code such that the code can carry the high-level features of the product. The
representation shall be generic across CNC machines. Vendor-specific machine
instructions shall be part of the backend of the code generator that generates
native instructions from the new language. The development of the new language
could be based upon some existing high-level languages proposed in manufac-
turing. The code transformation challenge could be addressed through a JIT
compiler, which runs on CNC machines, and compiles the product code in the
portable programming language into the native code at manufacturing time.
There are some research challenges in the JIT development, including the com-
pilation speed for high responsiveness, safety constraints in manufacturing, and
more complex optimization criteria in manufacturing.

Acknowledgments. This material is based upon work supported by NSF Grant
#1547105. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of NSF.

Reference

1. Jones, F.D., Ryffel, H.H., Amiss, J.M.: Machinery’s Handbook. Industrial Press
(1996)

Static Reuse Time Analysis Using Dependence
Distance

Dong Chen1(B), Fangzhou Liu1, Chen Ding1, and Chucheow Lim2

1 Department of Computer Science, University of Rochester, Rochester, NY, USA
{dchen39, fliu14, cding}@cs.rochester.edu

2 Qualcomm, Santa Clara, CA, USA
chucheow@qti.qualcomm.com

Introduction: Locality analysis is an important problem in program optimiza-
tion. Compile time locality analysis can provide detailed feedback related to code
structure. Compared to trace based analysis, compiler analysis does not require
the program input and does not execute a program.

We present a new technique that is based on the recent Higher-Order Theory
of Locality (HOTL). HOTL shows when and how reuse time can be used to derive
the cache performance, both for cache misses by Xiang et al. [4] and writebacks
by Chen et al. [3] Here reuse time is the number of memory accesses between use
and its next reuse. The new technique differs from past techniques in targeting
the reuse time instead of the reuse distance, as in [2], or the miss ratio, which
we can now compute from the reuse time using HOTL.

In this paper, we show how to derive the reuse time distribution using depen-
dence analysis, in particular the dependence distance described in Sect. 2.2 of [1].
Furthermore, we extend the analysis to reuses at the cache line granularity.

Reuse Time Analysis: Reuse Time Analysis (RTA) assumes a loop nest
whose dependence distances for all pairs of memory references to each array are
all vectors of constants. Among all the dependences from a single source src, the
shortest distance v(src) is contributed by its reuse, calculated in Eq. 1.

v(src) = min({v(src, snk) | snk ∈ ref }) (1)

By iterating v(src) for all the loop ranges containing the source, the reuse
time histogram can be constructed. However, not all dependence distances give
valid reuses in all iterations. Some sink iterations may be outside the loop bound.
For each dependence distance, precise RTA must consider the iteration range for
which the sink is valid.

Using Eq. 1, we can derive the reuse time of each reference from the depen-
dence distances originated from the reference. This analysis assumes that the
granularity of data access is a single data element.

Cache Line Granularity: A cache line contains b > 1 data elements, which
is calculated by the ratio of the cache line size (CLS) to the data element size
(DS), b = CLS

DS . A cache line reuse can happen between accesses to different
data elements. For cache line RTA, we extend the basic RTA with additional
information: the data position p inside the cache line. For 32B cache line size
and 8B data element size, b is 4 and p ranges from 0 to 3.

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 285–286, 2019.
https://doi.org/10.1007/978-3-030-35225-7

https://doi.org/10.1007/978-3-030-35225-7

286 D. Chen et al.

Adding the position information, we expand the dependence distance to find
the reuses between the source cache line accessed at data position psrc and the
sink cache line accessed at data position psnk. The block granularity dependence
distance vb is given by Eq. 2:

vb(src, psrc, snk, psnk) = v(src, snk) + (0, 0, ..., 0, psnk − psrc) (2)

Equation 2 relaxes the requirement of reuse. That is, instead of requiring
that the source and the sink access the same data element, it requires that they
access the same cache lines. The dependence distance vb(src, psrc, snk, psnk) can
be derived by adding the position difference between source and its sink to the
innermost dimension of the original distance v(src, snk). Note this calculation
of distance assumes: (1) The innermost loop accesses the array contiguously.
Otherwise it will need more sophisticated calculation, and the result may be the
same as that of element granularity. (2) Some iterations of the last dimension of
vb(src, psrc, snk, psnk) may be outside the loop bound.

The cache line reuse time for source src at position psrc is given by
vb(src, psrc), which is the shortest dependence distance vb(src, psrc, snk, psnk) for
all its sinks that access the same cache line, shown by Eq. 3:

vb(src, psrc) = min({vb(src, psrc, snk, psnk) | snk ∈ ref, psnk ∈ 0 . . . b−1}) (3)

In addition to making sure the sink happens within the iteration space, we
also need to make sure the iteration space we are analyzing does not contain a
cache line with data across different iterations in higher dimensions (except the
innermost dimension). By iterating vb(src, psrc) for all the loop ranges containing
the source, we obtain the cache line granularity reuse time distribution.

Acknowledgements. We thank Chunling Hu, Kath Knobe, Zoran Budimlic for dis-
cussion of the ideas. The research is partially supported by the National Science Foun-
dation (Contract No. CCF-1717877, CCF-1629376) and IBM CAS Faculty Fellowship.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann Publishers, October 2001

2. Beyls, K., D’Hollander, E.H.: Generating cache hints for improved program effi-
ciency. J. Syst. Archit. 51(4), 223–250 (2005)

3. Chen, D., Ye, C., Ding, C.: Write locality and optimization for persistent mem-
ory. In: Proceedings of the Second International Symposium on Memory Systems,
pp. 77–87. ACM (2016)

4. Xiang, X., Ding, C., Luo, H., Bao, B.: HOTL: a higher order theory of locality,
343–356 (2013)

Analyzing Auto-Vectorization Rates and Quality
in C/C++ Compilers

Angela Pohl(B), Biagio Cosenza, and Ben Juurlink

Technische Universität Berlin, Berlin, Germany
{angela.pohl, cosenza, b.juurlink}@tu-berlin.de

Data Level Parallelism (DLP) is one of three types of parallelism in applications.
A typical source for DLP are loops, where multiple iterations of the same instruc-
tion can be executed in parallel. In recent years, straight-line code vectorization,
called Superword Level Parallelism (SLP) or Basic Block (BB) vectorization,
has been exploited as well. Here, algorithms work on BBs, i.e. straight-line code
sequences with only one entry and exit point, instead of loops. SLP tries to
group instructions into vectors by analyzing all data dependence graphs within
and across BBs. Using both, Loop Level Vectorization (LLV) and SLP, it is
possible to achieve speedups up to the Vectorization Factor (VF), i.e. the num-
ber of elements processed in parallel, and beyond; such super-linear speedups
can be obtained by applying pattern substitutions, for example. Nonetheless,
there are codes where a vectorization is not possible, would require alterations
to the sources, or is not beneficial. Herein lie the challenges of vectorization:
determining the most suitable code transformation and assessing its prospective
benefit.

In this work, we assessed the vectorization capabilities of today’s most pop-
ular C/C++ compilers: GCC, ICC, and LLVM. Based on a study from 2011 [1],
we used the same TSVC benchmark [3] to determine the progress that has been
made in the past six years. In addition, we studied the LCALS [2] benchmark
to cover C++ codes as well.

We ran both benchmarks without further code enhancements or annotations
to obtain pure auto-vectorization results; they are shown in Fig. 1. Out of the
151 TSVC loop patterns, GCC is able to vectorize 83 loops (55%) on the Intel
i5 and 89 loops (59%) on the Intel E5, while ICC vectorizes 107 (71%) on either
platform, as does LLVM with 75 loops (50%). All numbers are taken from the
compilers’ vectorization reports. Based on these results, it can be seen that all
of the compilers fail to efficiently vectorize a certain amount of codes. Some of
these patterns exhibit only a minor speedup after vectorization, i.e. up to 15%,
while others show the exact scalar performance, or even a slowdown.

We identified one of the patterns exhibiting a slowdown in LLVM to be loops
with non-constant but loop invariant anti dependences. Here, vectorized code
is produced, but not executed due to runtime checks for overlapping memory
regions. When enhancing the run-time check to determine the value of the depen-
dence distance, we were able to safely execute the vectorized code for positive
distances, yielding a 2× speedup for our patterns.

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 287–288, 2019.
https://doi.org/10.1007/978-3-030-35225-7

https://doi.org/10.1007/978-3-030-35225-7

288 A. Pohl et al.

i5-2500K E5-2697 i5-2500K E5-2697

G
CC IC

C

LL
VM G

CC IC
C

LL
VM

0

50

100

65

95

62

72
94

66

17 11 8 15 13 5
1 1 5 2 4

N
o.

of
ve
ct
or
iz
ed

lo
op

s
TSVC (151 Loops)

G
CC IC

C

LL
VM G

CC IC
C

LL
VM

0

10

20

12 17

8

11
15

8

2
1 2

3 2
21 1 1

LCALS (30 Kernels)

S ≤ 0.95 0.95 < S ≤ 1.15 1.15 < S

Fig. 1. Vectorization rates of the TSVC and LCALS benchmarks, classified by speedup
factor.

Another observation was that SLP barely contributed to the overall vector-
ization rate, i.e. the number of vectorized patterns. Since the benchmark consists
of short body loops, the SLP vectorizer did not find enough statements to group
together. When applying loop unrolling before the vectorization pass, the SLP
vectorization rate increased significantly by 33%.

In this work, we furthermore compared the results that were achieved by
either vectorization pass, LLV or SLP. With unrolling, the SLP vectorizer is
able to optimize 69 loops, only three less than the LLV pass; this vectorization
rate is constant when the unrolling factor is greater or equal than the vectoriza-
tion factor. Surprisingly, only 40 loops are optimized by both compiler passes,
i.e. each vectorizer is able to improve ∼30 loops exclusively. As a second metric,
we analyzed the speedups obtained by each pass for a qualitative analysis. As
only 40 loops are vectorized by both, we limited our investigation to these test
patterns. Our measurements indicate that speedups are similar, with LLV typ-
ically having a slight advantage. Nonetheless, there are codes where SLP with
unrolling outperforms LLV; here, LLV would benefit from a higher unrolling
factor of its vectorized loop.

References

1. Maleki, S., Gao, Y., Garzarán, M., Wong, T., Padua, D.: An Evaluation of vector-
izing compilers. In: PACT 2011, Galveston Island, USA (2011)

2. Hornung, R.: Livermore Compiler Analysis Loop Suite. https://codesign.llnl.gov/
LCALS.php

3. Extended Test Suite for Vectorizing Compilers. http://polaris.cs.uiuc.edu/∼maleki/
TSVC.tar.gz

https://codesign.llnl.gov/LCALS.php
https://codesign.llnl.gov/LCALS.php
http://polaris.cs.uiuc.edu/~maleki/TSVC.tar.gz
http://polaris.cs.uiuc.edu/~maleki/TSVC.tar.gz

Author Index

Adam, Justus 281
Adhi, Boma A. 17
Amza, Cristiana 86
Anderson, Todd A. 182
Angrish, Atin 283
Annadorai, L. N. C. 283

Badger, Sam 36
Badr, Mario 145
Bao, Wenlei 65
Barik, Rajkishore 182
Bartels, Jesse 36
Bertolacci, Ian 36
Bhattacharyya, Arnamoy 86
Blaß, Thorsten 223

Cárdenas-Rodríguez, Julio 36
Carr, Steve 49
Cascaval, Calin 145
Castrillon, Jeronimo 281
Chang, Jialiang 49
Chappidi, Hitish 262
Cheatham, Thomas 26
Chen, Dong 285
Chen, Zhi 3
Cohen, Paul 283
Cosenza, Biagio 287

Debray, Saumya 36
Dechev, Damian 203
Devkota, Sabin 36
Dietz, Henry 101
Ding, Chen 285

Encinas, Anthony 36
Ertel, Sebastian 281

Faes, Michael 163
Fang, Hui 240

Gaska, Ben 36
Gong, Zhangxiaowen 3
Gracia, Dario Suarez 145
Gross, Thomas R. 163

Hall, Mary 26
Henry, Greg 182
Hosokawa, Yuhei 17
Hu, Chunling 182
Hurwitz, Bonnie 36

Isaacs, Kate 36

Jo, Gangwon 109
Jung, Jaehoon 109
Juurlink, Ben 287

Kasahara, Hironori 17
Kimura, Keiji 17
Kishimoto, Yohei 17
Kong, Martin 65
Kreaseck, Barbara 36
Krishnamoorthy, Sriram 65
Kumar, Tushar 145

Lee, Jaejin 109
Lee, Victor W. 182
Lee, Yuan-Shin 283
Li, Hao 49
Li, Xiaoming 240
Lim, Chucheow 285
Liu, Fangzhou 285
Liu, Hai 182
Lowney, Geoff 182
Lumsdaine, Andrew 129

Malhotra, Gaurav 262
Mase, Masayoshi 17
Mikami, Hiroki 17

Nasre, Rupesh 262
Natarajan, Aravind 145
Neth, Brandon 36
Nicolau, Alexandru 3

Onishi, Taisuke 17

Painter, Zachary 203
Park, Jiyoung 109
Petersen, Paul 182
Peterson, Christina 203
Philippsen, Michael 223
Pohl, Angela 287
Pouchet, Louis-Noel 65

Rawat, Prashant Singh 65
Roe, Daniel 26
Rong, Hongbo 182
Roy, Amit 26
Ruan, Wenjia 145

Sackos, Theo 36
Sadayappan, P. 65
Shen, Xipeng 283
Shivam, Aniket 3
Shpeisman, Tatiana 182

Starly, Binil 283
Stephens, Jon 36
Strout, Michelle Mills 36

Veidenbaum, Alexander 3
Veldema, Ronald 223
Volk, Kat 36

Watkinson, Neftali 3
Wickramasinghe, Udayanga 129
Willer, Sarah 36
Wu, Youfeng 182

Yadegari, Babak 36
Yang, Zijiang 49

Zhang, Lei 283
Zhang, Yulin 240

290 Author Index

	Preface
	Organization
	Keynote Talks
	Making Sparse Fast
	Software Challenges for Extreme Heterogeneity
	A New Framework for Expressing, Parallelizing and Optimizing Parallel Applications
	Languages and Compilers for Exascale Science
	Thingtalk: A Distributed and Synthesizable Programming Language for Virtual Assistants
	Invited Speakers
	Programming in a Spatial World
	Is Parallelization Technology Ready For Prime Time?
	Compilers for Program Execution Models Inspired By Dataflow - A Personal Reflection of 30 Years (1987–2017)
	Autotuning Stencil Computations with Structural Ordinal Regression Learning
	Multigrain Parallelization and Compiler/Architecture Co-design for 30 Years
	When Small Things Cause Big Problems
	Thirty Years of the Polyhedral Model: Let’s Return to the Origins
	On Using Data Movement Lower Bounds To Guide Code Optimization
	Experiences on Generalizing Redundancy Removal
	The Route To Automation
	Hiding the High Overheads of Persistent Memory
	Contents
	Compilers for Parallel Computing
	Using Hardware Counters to Predict Vectorization
	Abstract
	1 Introduction
	2 Approach
	2.1 Data Collection
	2.2 Hardware Performance Counters
	2.3 Feature Evaluation
	2.4 Classification
	2.5 Validation

	3 Experiments
	3.1 Hardware Setup
	3.2 EXP1: Predicting Vectorization on Harpertown
	3.3 EXP2: Prediction on a Different Architecture
	3.4 EXP3: Prediction Using GCC
	3.5 EXP4: Predicting Vectorization Across Compilers
	3.6 EXP5: Predicting Profitability
	3.7 Result Analysis

	4 Related Work
	5 Conclusion
	Acknowledgements
	References

	Software Cache Coherent Control by Parallelizing Compiler
	1 Introduction
	2 Software Cache Coherent Control by Parallelizing Compiler
	2.1 Coarse-Grain Task Parallelization
	2.2 Handling the Stale Data Problem
	2.3 Handling the False Sharing Problem

	3 Performance of the Software Coherent Control on Embedded Multicore
	3.1 The RP2 Processor
	3.2 Benchmark Applications
	3.3 Experimental Results and Analysis

	4 Conclusions
	References

	Polyhedral Compilation Support for C++ Features: A Case Study with CPPTRAJ
	1 Introduction
	2 Background and Related Work
	2.1 Polyhedral Compiler Frameworks
	2.2 Support for C++ Code

	3 Code Modifications and Extensions for CPPTRAJ
	3.1 Changes Irrelevant to a Polyhedral Framework
	3.2 Other Ways of Expressing Loops over Arrays in C++
	3.3 CUDA Code Generation and Application Integration

	4 Incorporating Knowledge of Library or Class Properties
	5 Experimental Results
	6 Conclusion
	References

	Language-Agnostic Optimization and Parallelization for Interpreted Languages
	1 Introduction
	2 Control-Flow and Data-Flow Separation
	2.1 Control-Flow Separation
	2.2 Data-Flow Separation

	3 Small Datasets Appear Representative
	4 Parallelism Exists
	5 Implementing the Parallelism
	6 Conclusion
	References

	Performance Modeling and Instrumentation
	Memory Distance Measurement for Concurrent Programs
	1 Introduction
	2 Background: Execution of Concurrent Programs
	3 Memory Distance Measurement Based on Symbolic Execution
	4 Memory Distance Measurement with Random Scheduling
	4.1 PCT Algorithm
	4.2 Measure Memory Distance with Random Scheduling
	4.3 Probabilistic Guarantee Inheritance

	5 Experiments
	5.1 Implementation
	5.2 Comparison Between DisConPro and DisConSym on Small Programs
	5.3 DisConPro on Public Benchmarks

	6 Related Work
	7 Conclusion
	References

	Efficient Cache Simulation for Affine Computations
	1 Introduction
	2 Motivation
	3 Program Representation
	4 Cache Set Partition Analysis
	4.1 Cache Access Modeling
	4.2 Cache Set Partition
	4.3 Code Generation

	5 Parallel Cache Simulation Framework
	6 Experimental Evaluation
	6.1 Experiment Setup
	6.2 Experiments Results

	7 Related Work
	8 Conclusion
	References

	ADLER: Adaptive Sampling for Precise Monitoring
	1 Introduction
	2 Motivational Experiment
	3 A New Method for Adaptive Sampling
	3.1 Execution Time Modeling
	3.2 Adaptive Sampling

	4 Implementation
	5 Experimental Evaluation
	5.1 Execution Time Modeling
	5.2 Case Study: Anomaly Detection

	6 Related Work
	7 Conclusion
	References

	How Low Can You Go?
	1 A Word About Words
	2 Not All the Bits, Not All the Time
	2.1 Integer Range Analysis
	2.2 Floating-Point Accuracy, Not Precision
	2.3 Smaller Data Fits

	3 From Bits to Words, and Back Again
	3.1 True Bit-Level Optimization
	3.2 Whole Program Scale Gate Optimization

	4 Conclusion
	References

	Memory-Access-Pattern Analysis Techniques for OpenCL Kernels
	1 Introduction
	1.1 Problems of Previous Approaches
	1.2 Proposed Techniques

	2 Background and Observations
	2.1 OpenCL Platform and Execution Model
	2.2 Observations

	3 Notations for Memory Access Patterns
	3.1 Categories of Memory Access Patterns
	3.2 Normal Form of Affine Functions

	4 Memory Access Pattern Analysis
	4.1 Internal Representation
	4.2 Symbolic Analysis
	4.3 Pattern Classification
	4.4 MAPA Framework

	5 Evaluation
	6 Case Study: Automatic Data Reordering
	7 Conclusions
	References

	Parallel Programming and Abstractions
	Characterizing Performance of Imbalanced Collectives on Hybrid and Task Centric Runtimes for Two-Phase Reduction
	1 Introduction
	2 Motivation
	2.1 Analysis of Two-Phase Reduction
	2.2 Evaluating MPI+X
	2.3 Evaluating AMT
	2.4 MPI+X Vs AMT

	3 A Task-Centric Approach
	4 Results and Discussion
	5 Related Work
	6 Conclusion
	References

	Abstract Representation of Shared Data for Heterogeneous Computing
	1 Introduction
	2 Illustration of Programmer's Burden
	3 Abstract Representation
	3.1 Arena
	3.2 Cross-Arena
	3.3 Buffer-State
	3.4 Correctness Under Concurrent Kernel Access Requests

	4 Use in a Heterogeneous Programming Runtime
	5 Experimental Evaluation
	6 Related Work
	7 Conclusions
	References

	Parallel Roles for Practical Deterministic Parallel Programming
	1 Introduction
	2 The Parallel Roles Model
	2.1 Core Parallel Roles
	2.2 Object Graphs

	3 Rolez Language Overview
	3.1 Tasks and Role Declarations
	3.2 Role Type System

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	Mozart: Efficient Composition of Library Functions for Heterogeneous Execution
	1 Introduction
	2 Library Description Language
	3 Library Composition Runtime
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Lock-Free Transactional Adjacency List
	1 Introduction
	2 Background
	3 Lock-Free Transactional Adjacency List
	3.1 Adjacency List Operations

	4 Correctness
	4.1 Definitions

	5 Experimental Evaluation
	6 Related Work
	6.1 Transactional Memory
	6.2 Linked Lists
	6.3 Skiplists and Queues

	7 Conclusion
	References

	GPU Applications
	Efficient Inspected Critical Sections in Data-Parallel GPU Codes
	1 Introduction
	2 Non-hanging GPU-wide Critical Sections
	3 Inspected Critical Sections
	4 Gradual Retrenchment of Parallelism
	5 Evaluation
	6 Limits
	7 Related Work
	8 Conclusion
	References

	Scalable Top-K Query Processing Using Graphics Processing Unit
	1 Introduction
	2 Related Work and Background
	2.1 Top-K Query Processing Background

	3 GPU-Based Top-K Query Processing
	3.1 Parallel Index Decompression
	3.2 Parallel Score Calculation
	3.3 Parallel Top-K Selection

	4 Experiments
	4.1 Performance Comparison

	5 Conclusions
	References

	Fast Dynamic Graph Algorithms
	1 Introduction
	2 Graph Representation
	3 Data-Driven Processing
	3.1 Incremental Graph Processing
	3.2 Decremental Graph Processing
	3.3 Fully Dynamic Graph Processing

	4 Synchronization Considerations
	5 Experimental Results
	5.1 Performance

	6 Related Work
	7 Conclusion
	References

	Posters
	Towards Fine-Grained Dataflow Parallelism in Big Data Systems
	1 Introduction
	2 Scalability Issues of Big Data Systems
	3 Implicit Dataflow Programming
	References

	JIT for Intelligent Manufacturing
	Reference

	Static Reuse Time Analysis Using Dependence Distance
	References

	Analyzing Auto-Vectorization Rates and Quality in C/C++ Compilers
	References

	Author Index

