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Abstract. Gliomas are the most common malignant brain tumors in
adults, with Glioblastoma (GBM) being the most agressive subtype.
GBM is clinically evaluated with magnetic resonance imaging (MRI) and
presents with different growth phenotypes, involving varying degrees of
healthy tissue invasion and tumor induced herniation, also known as mass
effect. GBM growth in the brain is frequently modeled as a reaction-
diffusion process in which varying ratios of diffusion and proliferation
coefficients mimic the observed spectrum of growth phenotypes rang-
ing from nodal to diffuse. However, reaction-diffusion models alone are
insufficient to explain tumor-induced mass effect on normal peripheral
tissues, which is a critical clinical issue.

We propose an analysis method and framework for estimating GBM
growth properties (proliferation, invasiveness, displacive potential) from
MRI data routinely collected in the clinical management of GBM. This
framework accounts for the mass-effect of the growing tumor by assum-
ing a coupling between local tumor-cell density and volumetric expansion
of the tissue.

We evaluate the reconstruction workflow on synthetic data that rep-
resents a range of realistic growth situations and levels of uncertainty.
For most parameter combinations (90%) that correspond to tumors
detectable by T1-weighted MRI, target parameters are recovered with
a relative error of less than 15%.

Keywords: Mechanically-coupled tumor growth · Inverse problem ·
Image-based modeling

1 Tumor Mass-Effect in Glioblastoma

Gliomas are the most frequent malignant brain tumors in adults, with Glioblas-
toma (GBM) being the most malignant subtype. The rapid invasive growth of
this tumor frequently results in lesions that cause healthy-tissue deformation,
midline shift or herniation. Biomechanical forces, such as those caused by the
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growing tumor, are known to shape the tumor environment and contribute to
tumor progression [6]. Additionally, in brain tumors, elevated solid stress is linked
to neuronal loss and neurological dysfunction [10]. In GBM patients, increased
tumor mass-effect has been shown to be associated to poor prognosis [11]. This
suggests that the propensity of an individual tumor to displace healthy tissue
can provide information about the tumor micro-environment and might be of
predictive value for treatment and outcome. However, tumors of similar imaging
volumes have been observed to give rise to different amounts of tumor mass-
effect [11], Fig. 1, possibly resulting in distinct mechanical stress distributions
and magnitudes.

Fig. 1. Tumors of similar imaging volume can exhibit different degrees of mass-effect.
Images from TCGA-GBM.

The growth characteristics of GBM have been studied extensively using
mathematical models that describe the invasive growth of this tumor as a
reaction-diffusion process. These models characterize GBM growth phenotypes
on a spectrum from mostly nodular to mostly diffuse, corresponding to invasive
growth. However, it remains unknown whether differences in proliferative and
invasive potential are sufficient to explain the observed differences in mass-effect.

To investigate the relation between proliferation, invasiveness, tumor mass-
effect and its manifestation on clinical imaging, we are developing a framework
for characterizing mechanically-coupled GBM growth. By finding solutions to
the inverse growth problem, we aim to establish whether proliferation and inva-
siveness can explain the observed variability in tumor mass-effect, or whether
distinct biomechanical growth phenotypes of GBM exist that differ also in their
“displaciveness”.

Here, we present an approach for estimating parameters of a mathematical
tumor growth model that accounts for the mass effect of the tumor. We pro-
pose a workflow for applying this approach to MR imaging data, and evaluate
its accuracy and robustness in a parametric study on 2D synthetic data that
represents a range of realistic growth situations and levels of uncertainty.

https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
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2 Materials and Methods

2.1 Mathematical Model of Mechanically-Coupled Tumor Growth

Mathematical models of tumor mass-effect were initially studied in the context of
atlas-based image segmentation [7]. These models were soon extended to account
for tumor growth dynamics by coupling to single-species reaction diffusion equa-
tions [3]. More recently, information about tumor induced mechanical-stresses
has been incorporated in biophysical tumor growth models to inform local motil-
ity of tumor cells in the brain [5], and multi-species mechanically-coupled growth
models have been developed [12].

Here we use a single-species mechanically-coupled reaction-diffusion model [1]
that captures the dominant aspects of macroscopic GBM growth: the diffuse
invasion of the growing tumor into surrounding healthy tissue, and the resulting
mass effect.

Invasive growth is modeled phenomenologically as a reaction-diffusion pro-
cess:

∂c

∂t
= ∇ · (D∇c) + ρc (1 − c) c, (1)

with normalized cancer cell density c (x, t) and diffusion coefficient D = D(x).
Tumor cell proliferation is assumed to follow logistic growth with proliferation
rate ρ = ρ (x).

To simulate the tissue-displacing mass-effect of the growing tumor, we model
the growth domain as elastic continuum in which the actual deformation u (x, t)
of a tissue element is given by the combination of growth-induced strains ε̂ growth

and strains caused by the elastic response of the tissue. We assume a linear con-
stitutive relation between mechanical stress σ̂ and strain ε̂ , as well as mechani-
cally isotropic materials that are fully characterized by Young’s modulus E and
Poisson ratio ν.

σ̂(u) =
E

2 (1 + ν)
ε̂(u) +

E ν

(1 + ν) (1 − 2ν)
Tr ε̂(u)1 (2a)

ε̂(u) =
1
2

(∇u + (∇u)T
)

(2b)

Additionally, we postulate a linear coupling between tumor cell density and
growth-induced strain with isotropic coupling strength λ:

ε̂growth(c) = λ1c . (3)

Table 1 summarizes variables and parameters of this model.
The model is implemented using the FEniCS library1 [2] for solving the

model equations via the Finite Element Method. This implementation employs
first and second order Lagrange elements for spatial interpolation of displacement
u (x) and density c (x) fields, respectively. Time-stepping is performed using a
first order implicit numerical scheme.
1 https://fenicsproject.org.

https://fenicsproject.org
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Table 1. Variables and parameters of the mathematical model.

Symbol Parameter name Units

c (x, t) tumor cell density normalized to c0

u (x, t) tumor-induced displacements mm

D diffusion coefficient/diffusivity mm2/d

ρ proliferation rate 1/d

λ coupling constant

E young’s modulus kPa

ν poisson’s ratio

2.2 Simulation Domain

Growth is simulated in a 2D computational domain Ω based on the SRI24 2 [8]
atlas of normal human brain anatomy. The atlas contains tissue classes for White
Matter (WM), Grey Matter (GM) and Cerebrospinal Fluid (CSF). The latter
was divided into two compartments to distinguish fluid-filled brain ventricles
from the remaining CSF, Fig. 2. Distinct isotropic growth and mechanical tissue
parameters Di, ρi, Ei, νi were assigned to each subdomain Ωi.

The simulation domain was spatially discretized into a mesh of triangular ele-
ments with maximum cell diameter of 1.42 mm. We assumed the growth domain
to be free of any initial mechanical stresses and approximate the displacement
constraint imposed by the rigid skull by zero-displacement Dirichlet boundary
conditions on the domain boundary. Similarly, tumor cells were prevented from
leaving the domain by zero-flux von-Neumann boundary conditions. The tumor
was initialized by a Gaussian-shaped 2D tumor cell density field c0 = c (x0, t = 0)
centered at the seed location x 0 and with standard-deviation of 1 mm.

Fig. 2. Schema of brain simulation domain Ω with subdomains Ωi for white mat-
ter (WM), grey matter (GM), surrounding cerebrospinal fluid (CSF) and CSF-filled
ventricles.

2 https://www.nitrc.org/projects/sri24/.

https://www.nitrc.org/projects/sri24/
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2.3 Estimation of Growth Parameters as Inverse Problem

Given the forward model, Eqs. (1) to (3), growth parameter identification can
be framed as a PDE-constrained optimization problem with the aim to identify
the set of parameters p opt that minimizes an objective functional J . Such a
functional can be constructed by comparing the primary variables of the sim-
ulation, c (x) and u (x) to corresponding target tumor cell density c ∗(x) and
tissue displacement u ∗(x) fields at a specific observation time point k.

J = ‖c (x, tk) − c ∗(x, tk)‖22 + ‖u (x, tk) − u ∗(x, tk)‖22 (4)

Simulated tumor cell density c (x, tk) and tissue deformation u (x, tk) fields at
the corresponding simulation time step tk are constrained by the forward model
and depend on the current set of simulation parameters p .

While medical imaging provides information about those quantities, detailed
spatial maps are not directly observable. A commonly used approached in the
GBM modeling literature estimates tumor cell density by associating specific
imaging detection thresholds to different imaging modalities. Tumor features
visible in T1- and T2-weighted MR-imaging have been linked to different levels
of relative tumor cell density: c > 0.80 for visibility on T1-weighted contrast
enhanced MRI, and c > 0.16 for visibility on T2-weighted (T2) MRI [14]. Rou-
tine clinical imaging for brain tumors thus provides two views of the unknown
tumor cell density field c ∗(x), corresponding to two indicator functions χ ∗

T1(x)
and χ ∗

T2(x) that identify the positions x where c (x) ≥ 0.80 and c (x) ≥ 0.16,
respectively. Tissue displacements in the brain can be estimated by deformable
image registration between two imaging time points or relative to a healthy brain
atlas, which allows an estimate for the tumor-induced displacement field ũ ∗(x)
to be obtained at diagnosis and between follow-up scans.

Given these target fields, an alternative objective function based on image-
derivable target quantities can be formulated:

J = ‖χT1(x, tk) − χ ∗
T1(x, tk)‖22 + ‖χT2(x, tk) − χ ∗

T2(x, tk)‖22 (5)

+ ‖u (x, tk) − ũ ∗(x, tk)‖22
with χi(x, tk) obtained by applying the respective detection threshold to the
simulated density field c (x, tk).

The adjoint method provides an efficient approach for computing the gradient
dJ
dp and thus for solving the minimization problem min

p
(J). This implementation

uses the dolfin-adjoint library3 for automatic derivation of the discrete adjoint
equations for our forward model, Eqs. (1) to (3), and optimization functionals
Eqs. (4) and (5), respectively.

2.4 Evaluation of Parameter Estimation Approach

We evaluated the performance of this parameter estimation approach in two
different scenarios using synthetic data generated from simulation of the for-
3 http://www.dolfin-adjoint.org.

http://www.dolfin-adjoint.org
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Table 2. Parameter ranges for parametric study. Growth parameters DWM, ρ , λ were
varied across physiological ranges (min, max) resulting in 100 parameter combinations.
A fixed relation was assumed between diffusivity in GM and WM: DWM = 5 ·DGM [13].

Parameter min max step # steps init Units

DWM 0.05 0.20 0.05 4 0.001 mm2/d

ρ 0.02 0.18 0.04 5 0.001 1/d

λ 0.02 0.18 0.04 5 0.001

ward model. In both cases, the duration of tumor growth T , as well as initial
conditions, tumor seed location and zero initial displacements, were assumed
to be known. Mechanical tissue properties were fixed to EWM/GM = 3.00 kPa,
ECSF = 1.00 kPa, νWM/GM = 0.45, νCSF = 0.30.

Reconstruction from Forward Simulation: First, we aimed to recover the simula-
tion parameters of the forward model p = {DWM,DGM, ρWM, ρGM, λ}, directly
from results of the forward simulation, using density c (x, T ) and displacement
u (x, T ) fields from the final simulation time point T as reference, Eq. (4).

Reconstruction from Image-Derived Target Fields: Second, we studied a more
realistic scenario in which we aimed to recover the simulation parameters from
information available from routine clinical MR imaging, Eq. (5). This scenario
accounts for the noise associated to the derivation of target fields χ ∗

T1, χ ∗
T2,

u ∗ from this information. In this setting, we characterized the performance of
the proposed parameter estimation approach in a parametric study by sampling
(n = 100) from realistic ranges of three independent growth parameters p =
{DWM, ρ , λ}, Table 2.

For each parameter combination p , tumor growth was simulated for a time
period T with time steps Δt = 1d, Fig. 3(A). At the final simulation time point,
density c (x, T ) and displacement u (x, T ) fields were extracted and used to
construct a synthetic dataset that mimics the kind of information that can be
obtained from routine clinical MR imaging, Fig. (3)(B). The simulated density
field c (x, T ) was subjected to thresholds c (x) ≥ 0.16 and c (x) ≥ 0.80, resulting
in two indicator functions corresponding to the portion of the tumor visible on
T2-weighted and T1-weighted MRI. We used these indicator functions χ ∗

T1, χ ∗
T2

as target fields in the optimization process, Eq. (5). The simulated displacement
field u (x, T ) was used to deform the anatomical (T1 MRI) atlas on which growth
had been simulated. From the resulting images we estimated the tumor-induced
displacement by deformable image registration, using the symmetric image nor-
malization method (SyN) as implemented in the Advanced Normalization Tools
(ANTs)4. This reconstructed displacement field ũ ∗ served as target field in the
optimization process, Fig. (3)(C).

4 https://github.com/ANTsX/ANTs.

https://github.com/ANTsX/ANTs
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Fig. 3. Workflow of parametric study: Results from forward simulation (A) were used to
create synthetic target fields (B) to which the proposed parameter estimation approach
(C) was applied to recover the original simulation parameters p opt ≈ p .

We applied this approach to each synthetic data set to obtain a set of recon-
structed growth parameters p opt = {D̃WM, ρ̃ , λ̃}. Parameter optimization was
initialized with the values indicated in column init in Table 2. Duration of tumor
growth T and initial conditions were assumed to be known in each optimization
scenario.

We compared reconstructed p opt to actual p growth parameters in terms of
their absolute value and relative reconstruction error εi = (popti − pi)/pi.

3 Results

3.1 Forward Simulation

Tumor evolution and tumor-induced mass-effect were simulated for T = 250 d
days forward in time starting from an initial Gaussian-shaped tumor cell distri-
bution. Figure 4 illustrates the evolution of tumor cell density c (x, T ) and the
resulting tumor-induced displacement field u (x, T ). Compression of the lateral
ventricles by the growing tumor is evident from the last row of Fig. 4.

3.2 Reconstruction from Forward Simulation

Forward simulation over T = 250 d was repeated for seed positions in three
different locations, indicated by red arrows in Fig. 5: in GM (Case 1 ), WM
(Case 2 ), and at the interface between GM and WM (Case 3 ). Using density
and displacement fields from the final time point, c ∗(x, T ), u ∗(x, T ), we tried
to recover the simulation parameters of the forward model by PDE-constrained
optimization.
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Fig. 4. Simulated evolution of tumor growth and mass effect.

Fig. 5. Simulated evolution of tumor growth from seeds in three different locations: GM
(Case 1 ), WM (Case 2 ), and at the interface between GM and WM (Case 3 ). Simulated
density fields based on the reference parameters p ref are compared (T = 250d) to
density fields based on the parametersets obtained from optimization (p opt1, p opt2,
p opt3, see Table 3). Note that GBM very rarely grow or migrate into the cerebellum.
The seed locations have been chosen to illustrate the parameter estimation approach on
approximately equally sized contiguous patches of GM and WM. (Color figure online)
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Table 3 summarizes reference parameters for the forward simulation p ref,
their initialization for optimization p init and optimization results p opt for the
three scenarios depicted in Fig. 5.

Reference growth parameters could be recovered correctly for the brain region
most affected by the tumor: GM properties for Case 1 and WM properties for
Case 2. For Case 3, which grew with substantial involvement of both WM and
GM domains, target parameters for both regions were recovered correctly.

Table 3. Reference parameters for forward simulations and reconstructed parameters
for cases 1 to 3 in Fig. 5.

ρWM

[1/d]
ρGM

[1/d]
DWM

[mm2/d]
DGM

[mm2/d]
λ

Forward model
reference pref

0.08 0.080 0.100 0.020 0.150

Optimization
initialization p init

0.010 0.010 0.010 0.010 0.200

Case 1 popt1 0.010 0.080 0.010 0.020 0.150

Case 2 popt2 0.080 0.010 0.100 0.010 0.150

Case 3 popt3 0.080 0.080 0.100 0.020 0.150

3.3 Reconstruction from Image-Derived Target Fields

In a second evaluation, the workflow shown in Fig. 3 was applied to n = 100
combinations of growth parameters p = {DWM, ρ , λ}, Table 2, for a duration of
T = 100 d in two different growth domains.

Figure 6 compares the resulting distribution of reconstructed parameter val-
ues to their target values. Distributions of reconstructed DWM and ρWM are
concentrated around the respective target values Estimates corresponding to
the highest parameter values explored in this study (DWM = 0.20 mm2/d,
ρWM = 0.18 d−1) show the largest uncertainty with few outliers extending their
distribution towards values below the target value. Most reconstructions of λ
slightly overestimate the target value; parameter estimates for the lowest cou-
pling (λ = 0.02) are associated with highest uncertainty and biased towards
larger values.

Only tumors that are sufficiently large and dense to be detected on both
T1 and T2 weighted MRI were included in Fig. 6. Slowly or diffusively growing
tumors with high D/ρ ratios may not be visible in one or both MR modalities and
therefore do not contribute to the objective functional, Eq. (5), resulting in higher
relative reconstruction errors for this group of parameter combinations. Figure 7
shows the fraction of reconstructed parameter sets in function of the maximum
relative reconstruction error in each parameter, and visibility of the tumor on
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Fig. 6. Distribution of reconstructed parameter values versus target values. Horizontal
lines indicate the target value used in the forward simulation. Only simulations with
c (x, T ) exceeding T1 and T2 detection thresholds are included; therefore, no recon-
structed values are reported for simulation parameter ρ = 0.02d−1 in (b).

T1- and T2-weighted MR imaging. Provided that the tumor is detectable in T1-
weighted MRI, we obtained relative reconstruction errors of less than 15 % for
about 90 % of all converged optimization cases (190 of 200) across the parameter
space.

Fig. 7. Fraction of reconstructed parameter sets in function of the maximum relative
reconstruction error. A value of ±ζ on the x-axis indicates that all relative reconstruc-
tion errors εi simultaneously fulfill |εi| < |ζ| for all parameters i ∈ {DWM, ρWM, λ}.

4 Discussion

This study proposes an imaging biomarker for tumor mass-effect that can
be derived from parametrizations of a biomechanically-coupled tumor growth
model.

While adjoint-based optimization of parameters in a similar mechanically
coupled tumor growth model had been explored before [4], the characterization
of this approach was limited to 1D, and tumor-induced tissue deformation was



Characterization of Biomechanical Tumor Growth Phenotypes 85

taken into account only at selected landmark positions. More recent advances
include frameworks, such as [9] which combines adjoint parameter estimation of
a reaction diffusion model with image registration, but does not explicitly model
tumor mass-effect.

Here, we presented a method for estimating parameters of a mechanically
coupled tumor growth model from routine clinical imaging information of glioma
patients. Performance of this method was characterized on 2D synthetic data in
a reconstruction workflow that mimics data and associated uncertainties of real
reconstruction scenarios. We demonstrated self-consistency of this approach and
found relative reconstruction errors of less than 15 % for about 90 % of cases,
provided that the tumor is detectable in T1 weighted MRI.

This study assumed that origin and duration of tumor growth were known
for the optimization process. However, and particularly when applied to a single
observation at the time of diagnosis, tumor origin and duration of growth may
be unknown. Preliminary tests indicate similar reconstruction performance when
seeding the optimization process at the center-of-mass position of the observed
synthetic tumor. Estimated values of the ratio D/ρ are expected to be inde-
pendent of the growth period. However, the degree to which D/ρ and λ can be
identified simultaneously under this condition remains to be studied.

We aim to use the developed framework to characterize GBM growth in terms
of the tumor’s invasiveness and its displacive potential. As next steps, we plan
to characterize this approach in 3D and to investigate its application to patient
MR images.
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