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Preface

It is with great pleasure that we welcome you to the proceedings of the First
International Symposium on Mathematical and Computational Oncology
(ISMCO 2019), which was held in Lake Tahoe, Nevada, USA (October 14–16, 2019).

The purpose of ISMCO is to provide a common interdisciplinary forum for
mathematicians, scientists, engineers, and clinical oncologists throughout the world to
present and discuss their latest research findings, ideas, developments, and applications
in mathematical and computational oncology. Despite significant advances in the
understanding of the principal mechanisms leading to various cancer types, less
progress has been made toward developing patient-specific treatments. Advanced
mathematical and computational models could play a significant role in examining the
most effective patient-specific therapies. ISMCO aspires to enable the forging of
stronger relationships among mathematics and physical sciences, computer science,
data science, engineering, and oncology with the goal of developing new insights into
the pathogenesis and treatment of malignancies.

The program included eight oral sessions, one special track, one tutorial, three
invited talks, and seven keynote presentations. We received 30 submissions from
which we accepted 19 submissions (7 papers and 12 abstracts) for oral presentation.
This LNCS volume includes only the papers accepted for presentation; all abstracts
accepted for presentation appeared in an online volume of Frontiers (link is provided on
the ISMCO website).

All submissions were reviewed with an emphasis on the potential to contribute to
the state of the art in the field. Selection criteria included accuracy and originality of
ideas, clarity and significance of results, and presentation quality. The review process
was quite rigorous, involving three independent blind reviews followed by several days
of discussion. During the discussion period we tried to correct anomalies and errors that
might have existed in the initial reviews. Despite our efforts, we recognize that some
papers worthy of inclusion may have not been included in the program. We offer our
sincere apologies to authors whose contributions might have been overlooked.

Organizing ISMCO for the first time was rewarding but also challenging due to the
diverse background and interests of the targeted audience. Although significant
advances have been made in various fields individually, it is evident now more than
ever that new challenges in oncology can only be addressed by truly transcending
disciplinary boundaries. Effectively bridging the gap among physical sciences,
computer science, engineering, data science, and oncology is an absolute necessity in
the hope of making significantly more progress in the fight against cancer.

Many contributed to the success of ISMCO 2019. First and foremost, we are grateful
to the Steering, Organizing, and Program Committees; they strongly welcomed,
supported, and promoted the organization of this new meeting. Second, we are deeply
indebted to the keynote speakers who warmly accepted our invitation to talk at
ISMCO 2019; their reputation in mathematical and computational oncology added



significant value to and excitement to the meeting. Next, we wish to thank the invited
speakers, the authors who submitted their work to ISMCO 2019 and the reviewers who
helped us to evaluate the quality of the submissions. It was because of their contri-
butions that we succeeded in putting together a technical program of high quality.
Finally, we would like to express our appreciation Springer-Verlag, Frontiers, and the
International Society for Computational Biology (ISCB) for sponsoring ISMCO 2019.

We sincerely hope that ISMCO 2019 offered participants opportunities for
professional growth. We look forward to many more successful meetings in
mathematical and computational oncology.

September 2019 George Bebis
Takis Benos
Ken Chen

Katharina Jahn
Ernesto Lima
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Keynote Talks



Breast Cancer Genomics: Tackling Complexity
with Functional Genomics

and Patient-Derived Organoids

Ron Bose

Washington University School of Medicine, USA

Abstract. Breast cancer is a heterogeneous disease with multiple molecular
subtypes and three major clinical subtypes: hormone receptor positive, HER2
positive, and triple negative breast cancer. These three clinical subtypes are very
important because they determine the drugs used for patient treatment. Cellular,
molecular, and genomic understanding of breast cancer has resulted in new
treatments for breast cancer. In 2019, the FDA approved an oral PIK3CA
inhibitor for PIK3CA mutated, hormone receptor positive, Stage IV breast
cancer and immunotherapy for triple negative, Stage IV breast cancer. Major
challenges facing future research on breast cancer and other cancers are:
(1) Interpreting genome sequencing results to better understand the effects and
significance of new or under-characterized mutations, and (2) having platforms
for rapid biological testing of hypotheses. I will provide examples of how my
laboratory is trying to address both of these challenges.



High Dimensional Unsupervised Approaches
for Dealing with Heterogeneity of Cell

Populations and Proliferation
of Algorithmic Tools

Yuval Kluger

Yale University School of Medicine, USA

Abstract. Revealing the clonal composition of a single tumor is essential for
identifying cell subpopulations with metastatic potential in primary tumors or
with resistance to therapies in metastatic tumors. Bulk sequencing technologies
provide only an overview of the aggregate of numerous cells. We propose an
evolutionary framework for deconvolving data from a bulk genome-wide
experiment to infer the composition, abundance and evolutionary paths of the
underlying cell subpopulations of a tumor. With advances in high throughput
single cell techniques, we can in principle resolve these issues. However, these
techniques introduce new challenges such as analyzing datasets of millions of
cells, batch effects, missing values etc. We provide several algorithmic solutions
for some of these challenges. Finally, a key challenge in bioinformatics is how
to rank and combine the possibly conflicting predictions of several algorithms,
of unknown reliability. We provide new mathematical insights of striking
conceptual simplicity that explain mutual relationships between independent
classifiers/algorithms. These insights enable the design of efficient, robust and
reliable methods to rank the classifiers performances and construct improved
predictions in the absence of ground truth.



Career Development Opportunities:
The Government Can Help!

Susan Perkins

National Cancer Institute, USA

Abstract. The National Cancer Institute is committed to the training and support
of the next generation of cancer researchers. The NCI funds training at extra-
mural institutions across the nation, using funding mechanisms that include
fellowships, career development awards, and institutional training grants. This
session will provide a broad overview of this wide range of opportunities, with
an emphasis on some new NCI programs for early-stage investigators, as well as
some tips and tools for applicants.



Bringing Math into the Clinic:
Mathematical Oncology at City of Hope

Russell Rockne

City of Hope, USA

Abstract. In this keynote lecture, I will provide vignettes of applications of
mathematical modeling aimed at use in the clinic within the Division of
Mathematical Oncology at City of Hope. I will focus on the use of non-invasive
imaging (MRI, PET) to calibrate and validate patient-specific mathematical
models of cancer growth and response to therapy. Applications include primary
brain tumors and breast cancer, with therapeutic applications including
cell-based therapies, radiation therapy, and combination therapies. I will provide
a forward-looking view of Mathematical Oncology at City of Hope and present
clinical challenges that may be addressed with mathematical modeling.



Application of Functional Genomics
to Oncology Practice: Opportunities,
Successes, Failures and Barriers

Panos Anastasiadis and George Vasmatzis

Mayo Clinic, USA

Abstract. Radical improvement in cancer care can be accomplished by indi-
vidualizing patient management via the application of genomics and functional
model systems into clinical practice. Recent breakthroughs in immunotherapy
(i.e. checkpoint inhibitors) and targeted therapies (i.e. NTRK inhibitors) have
shown that therapy of advanced cancers might become agnostic to the organ of
origin, arguing for a more individualized approach to patient care. Emerging
genomics technologies, data integration and visualization platforms are powerful
tools to determine the state of the individual’s tumor and point to tailored
treatments. Furthermore, an efficient combination of comprehensive genomics
with 3D microcancer functional model systems can further refine treatment
decisions. However, applying such disruptive technologies in clinical practice is
not trivial. Regulatory, financial and clinical barriers will be discussed.



Recognition of Non-synonymous Somatic
Mutations by Tumor Infiltrating Lymphocytes

(TIL) in Metastatic Breast Cancer

Nikos Zacharakis

National Cancer Institute, USA

Abstract. Adoptive transfer of tumor infiltrating lymphocytes (TIL) can mediate
long-term durable regression in patients with metastatic melanoma, a type of
cancer which is characterized by a high number of mutated genes and pro-
nounced lymphocytic infiltrate. Common epithelial cancers, including breast
cancer, express far fewer somatic mutations than melanoma and the level of
reactive TIL is limited. This pilot study investigated the ability to identify
personalized non-synonymous somatic mutations in metastatic breast cancer
lesions, to grow TIL that recognize the products of these mutations, and to
adoptively transfer these TIL into patients with metastatic breast cancer,
refractory to other treatments. Metastatic and primary tumor lesions from thirty
one patients with breast cancer were studied in the Surgery branch, NCI, NIH
and all of them were found to contain and express mutated genes (range: 4-1788
, median: 99). TIL recognized at least one (range: 1-10, median: 3) mutated
product in 21 of 32 the patients (66%). Five evaluable patients with metastatic
breast cancer, refractory to prior multiple lines of treatment, were treated with
enriched mutation-reactive TIL in our ongoing pilot clinical trial. The
immunogenicity of mutations in the majority of the patients with metastatic
breast cancer can be the platform for an adoptive T cell transfer therapeutic
approach targeting those mutated genes.



Inferring Tumor Evolution from Bulk
and Single-cell Sequencing Data

Ben Raphael

Princeton University, USA

Abstract. Cancer is an evolutionary process driven by somatic mutations that
accumulate in a population of cells. These mutations provide markers to infer
the ancestral relationships between cells of a tumor, to describe populations of
cells that are sensitive/resistant to treatment, or to study migrations between a
primary tumor and distant metastases. However, such phylogenetic analyses are
complicated by specific features of cancer sequencing data such as heteroge-
neous mixtures of cells present in bulk tumor sequencing data, undersampling in
single-cell sequencing data, and large-scale genome rearrangements. In this talk,
I will describe algorithms to address several problems in tumor evolution
including: the inference of seeding patterns of metastases; the identification of
copy number aberrations and whole-genome duplications in multi-sample
sequencing data; and the integrated analysis of single-nucleotide mutations and
copy number aberrations in single-cell sequencing data.
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Phylogenies Derived from Matched
Transcriptome Reveal the Evolution

of Cell Populations and Temporal Order
of Perturbed Pathways in Breast Cancer

Brain Metastases

Yifeng Tao1,2, Haoyun Lei1,2, Adrian V. Lee3, Jian Ma1,
and Russell Schwartz1,4(B)

1 Computational Biology Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, USA

2 Joint Carnegie Mellon–University of Pittsburgh Ph.D. Program in Computational
Biology, Pittsburgh, PA 15213, USA

3 Department of Pharmacology and Chemical Biology,
UPMC Hillman Cancer Center, Magee–Womens Research Institute,

University of Pittsburgh, Pittsburgh, PA 15213, USA
4 Department of Biological Sciences, Carnegie Mellon University,

Pittsburgh, PA 15213, USA
russells@andrew.cmu.edu

Abstract. Metastasis is the mechanism by which cancer results in mor-
tality and there are currently no reliable treatment options once it
occurs, making the metastatic process a critical target for new diagnos-
tics and therapeutics. Treating metastasis before it appears is challeng-
ing, however, in part because metastases may be quite distinct genom-
ically from the primary tumors from which they presumably emerged.
Phylogenetic studies of cancer development have suggested that changes
in tumor genomics over stages of progression often results from shifts
in the abundance of clonal cellular populations, as late stages of pro-
gression may derive from or select for clonal populations rare in the pri-
mary tumor. The present study develops computational methods to infer
clonal heterogeneity and temporal dynamics across progression stages
via deconvolution and clonal phylogeny reconstruction of pathway-level
expression signatures in order to reconstruct how these processes might
influence average changes in genomic signatures over progression. We
show, via application to a study of gene expression in a collection of
matched breast primary tumor and metastatic samples, that the method
can infer coarse-grained substructure and stromal infiltration across the
metastatic transition. The results suggest that genomic changes observed
in metastasis, such as gain of the ErbB signaling pathway, are likely
caused by early events in clonal evolution followed by expansion of minor
clonal populations in metastasis (Algorithmic details, parameter settings,
and proofs are provided in an Appendix with source code available at
https://github.com/CMUSchwartzLab/BrM-Phylo).

c© Springer Nature Switzerland AG 2019
G. Bebis et al. (Eds.): ISMCO 2019, LNCS 11826, pp. 3–24, 2019.
https://doi.org/10.1007/978-3-030-35210-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35210-3_1&domain=pdf
https://github.com/CMUSchwartzLab/BrM-Phylo
https://doi.org/10.1007/978-3-030-35210-3_1


4 Y. Tao et al.

Keywords: Breast cancer · Brain metastases · Phylogenetics ·
Deconvolution · Pathways · Gene modules

1 Introduction

Metastatic disease is the primary mechanism by which cancer results in patient
mortality [6,7]. By the time metastases have appeared, there are generally no
viable treatment options [14]. Successful treatment thus depends on treating
not just the primary tumor but the seeds of metastasis that may linger after
a seemingly successful remission. Identifying successful treatment options for
metastasis is problematic, however, since the genomics of primary and metastatic
tumors may be quite different even in single patients and metastatic cell pop-
ulations may be poorly responsive to therapies effective on the primary tumor.
Studies of cell-to-cell variation in cancers have revealed often substantial clonal
heterogeneity in single tumors, with clonal populations sometimes dramatically
shifting across progression stages [13]. Phylogenetic studies of clonal populations
have been inconclusive on the typical evolutionary relationships between primary
and metastatic tumors [35] and it remains a matter of debate whether changes
in clonal composition occur primarily through ongoing clonal evolution, which
results in novel clones with metastatic potential and resistance to therapy, or
from selection on existing clonal heterogeneity already present at the time of
first treatment [5,10]. The degree to which either answer is true has impor-
tant implications for prospects for early detection or prophylactic treatment of
metastasis.

Fig. 1. The pipeline of BrM phylogenetics using matched bulk transcriptome.
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Brain metastases (BrMs) occur in around 10%–30% of metastatic breast
cancers cases [26]. Although recent advances in the treatment of metastatic
breast cancer have been able to achieve long-term overall survival, there are
limited treatment options for BrMs and clinical prognoses are still disappoint-
ing [41]. Recent work examining transcriptomic changes between paired primary
and BrM samples has demonstrated dramatic changes in expression programs
over metastasis, including changes in tumor subtype with important implications
for treatment options and prognosis [31,38]. Some past research has sought to
infer phylogenetic models to explain the development of brain metastases based
on somatic genomic alterations [4,21]. Such methods are challenged in draw-
ing robust conclusions about recurrent progression processes, though, by the
high heterogeneity both within single tumors and across progression stages and
patients. Changes in the activity of particular genetic pathways or modules may
provide a more robust measure of frequent genomic alterations across cancers.

In the present work, we develop a strategy for tumor phylogenetics to explore
how changes in clonal composition, via both novel molecular evolution and shifts
in population dynamics of tumor clones and associated stroma, influence changes
in expression programs across such progression stages. Our methods make use of
multi-site bulk transcriptomic data to profile changes evident in gene expression
programs between clones and progression stages. We break from past work in
this domain in that we seek to study not clones per se, as is typical in tumor
phylogenetics, but what we dub “cell communities”: collections of clones or other
stromal cell types that persist as a group with similar proportions across sam-
ples (Sect. 2.4). We accomplish this via a novel genomic deconvolution approach
designed to make use of multiple samples both within and between patients [36]
while improving robustness to inter- and intra-tumor heterogeneity by integrat-
ing deconvolution with pathway-based analyses of expression variation [30].

2 Methods

2.1 Overview

Cell populations evolve due to genomic perturbations that can result in changes
in the activity of various functional pathways between clones. Our overall method
for deriving coarse-grained portraits of cell community evolution at the path-
way level is illustrated by Fig. 1. After the preprocessing of transcriptome data
(Sect. 2.2), the overall workflow consists of three main steps: First, the bulk
expression profiles are mapped into the gene module and pathway space using
external knowledge bases to reduce redundancy, noise, sparsity, and to provide
markers of expression variation for the subsequent analysis (Sect. 2.3). Second,
a deconvolution step is implemented to resolve cell communities, i.e., coarse-
grained mixtures of cell types presumed to represent an associated population of
cancer clones and stromal cells, from the compressed pathway representation of
samples (Sect. 2.4). Third, phylogenies of these cell communities are built based
on the deconvolved communities as well as inferred ancestral (Steiner) commu-
nities to reconstruct likely trajectories of evolutionary progression by which cell
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Fig. 2. Method details. (a) Neural network architecture of NND. (b) Test errors of
NND using 20-fold CV. Errors in unit of mean square error (MSE). (c) Illustration of
a phylogeny with five extant nodes and three Steiner nodes.

communities develop—through a combination of genetic mutations, expression
changes, and changes in population distributions—as a tumor progresses from
healthy tissue to primary and potentially metastatic tumor (Sect. 2.5).

2.2 Transcriptome Data Preprocessing

We applied a series of preprocessing methods, including quantile normaliza-
tion [1], to the raw bulk RNA-Sequencing data of 44 matched primary breast
and metastatic brain tumors from 22 patients [31,38]. See Appendix Sect. A1 for
detailed protocols of data preprocessing.

2.3 Mapping to Gene Modules and Cancer Pathways

The mapping step compresses the high dimensional data and provides markers
of cancer-related biological processes (Fig. 1 Step 1). Gene Modules: Genes in
the same “gene modules” [8,37] are usually affected by a common set of somatic
alterations [30], and therefore are co-expressed in cells. We mapped the protein-
coding gene expressions into gene modules using the DAVID tool and external
knowledge bases [17,18]. The z -scores of m1 = 109 gene modules in all the
n = 44 samples were represented as a matrix BM ∈ R

m1×n. Cancer Pathways:
We extracted the 23 cancer-related pathways from the KEGG database [19].
An additional recurrently gained RET pathway was added [38]. See y-axis of
Fig. 3d for the complete list of pathways. z -scores of m2 = 24 cancer pathways
were represented as BP ∈ R

m2×n. In summary, the raw gene expressions were
compressed into the gene module/pathway representation B =

[
Bᵀ

M ,Bᵀ
P

]ᵀ ∈
R

m×n. The gene module serves for accurately deconvolving and unmixing the cell
communities, while the pathway serves as markers/probes and for interpretation
purpose. We will refer to the compressed representation containing both gene
modules and pathways as “pathway representation” for brevity if not specified.
See Appendix Sect. A2 for further details of the mapping.

2.4 Deconvolution of Bulk Data

We applied a type of matrix factorization (MF) with constraints on the pathway-
level expression signatures to deconvolve the communities/populations from
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primary and metastatic tumor samples (Fig. 1 Step 2) [22]. Note that com-
mon alternatives, such as principal components analysis (PCA) and non-negative
matrix factorization (NMF) [23] are not amenable to this case, since PCA does
not provide a feasible solution to the constrained problem, and the NMF does
not apply to our mixture data which can be either positive or negative.

Cell Communities. We define a cell community to be a set of clones/clonal
subpopulations and other cell types that propagate as a group during the evolu-
tion of a tumor. A community may be just a single subpopulation/clone, but is a
more general concept in the sense that it usually involves multiple related clones
and their associated stroma. For example, a set of immunogenic clones and the
immune cells infiltrating them might collectively form a community that has a
collective expression signature mixing signatures of the clones and associated
immune cells, even if the individual cell types are not distinguishable from bulk
expression data alone. While much work in this space has classically aimed to
separate individual clones, or perhaps individual cell types more broadly defined,
we note that deconvolution may be unable in principle to resolve distinct cell
types if they are always co-located in similar proportions. Particularly when
data is sparse and cell types are fit only approximately, as in the present work,
a model with large complexity to deconvolve the fine-grained populations is
prone to overfit. The community concept is intended in part to better describe
the results we expect to achieve from the kind of data examined here and in
part because identifying these communities is itself of interest in understanding
how tumor cells coevolve with their stroma during progression and metastasis.
Single-cell methods may provide an alternative, but are not amenable to pre-
served samples such as are needed when retrospectively studying primary tumors
and metastases that may have been biopsied years apart.

Formulation of Deconvolution. With a matrix of bulk pathway values
B ∈ R

m×n, the deconvolution problem is to find a component matrix C =[
Cᵀ

M ,Cᵀ
P

]ᵀ ∈ R
m×k that represents the inferred fundamental communities of

tumors, and the corresponding set of mixture fractions F ∈ R
k×n
+ :

min
C,F

‖B − CF‖2Fr , (1)

s.t. Flj ≥ 0, l = 1, ..., k, j = 1, ..., n, (2)
∑k

l=1
Flj = 1, j = 1, ..., n, (3)

where ||X||Fr is the Frobenius norm. The column-wise normalization in Eq. (3)
aims for recovering the biologically meaningful cell communities. In addition,
they are equivalent to applying �1 regularizers and therefore enforce sparsity to
the fraction matrix F (Appendix Fig. 5).

Neural Network Deconvolution. Although it is possible to build new algo-
rithms for solving MF by adapting previous work [23], the additional but nec-
essary constraints of Eqs. (2–3) make the optimization much harder to solve.
For the problem Eqs. (1–3), one can prove that it does not generally guarantee
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convexity (Appendix Sect. A3.1). A slightly modified version of the algorithm
to solve NMF with constraints may guarantee neither good fitting nor conver-
gence [25]. Therefore, instead of revising existing MF algorithms, such as ALS-
FunkSVD [3,12,22], we developed an algorithm which we call “neural network
deconvolution” (NND) to solve the optimization problem using gradient descent.
Specifically, the NND was implemented using backpropagation in the form of a
neural network (Fig. 2a) with PyTorch package (https://pytorch.org/) [20,34],
based on the revised constraints:

min
C,Fpar

‖B − CF‖2Fr , (4)

s.t. F = cwn (|Fpar|) , (5)

where |X| applies element-wise absolute value, cwn (X) is column-wise normal-
ization, so that each column sums up to 1. The two operations of Eq. (5) naturally
rephrase and remove the two constraints in Eqs. (2–3), and meanwhile fit the
framework of neural networks. This implementation is easy to adapt to a wide
range of optimization scenarios with various constraints, and has the flexibility
of allowing for cross-validation to prevent overfitting.

Cross-Validation of NND. In order to find the best tradeoff between model
complexity and overfitting, we used cross-validation (CV) with the “masking”
method to choose the optimal number of components/communities k = 5 that
has the smallest test error (Fig. 2b). Note that the actual number of cell pop-
ulations is probably considerably larger than 5, and therefore each one of the
five communities may contain multiple cell populations. Furthermore, it is likely
that with sufficient numbers and precision of measurements, these communities
could be more finely resolved into their constituent cell types. However k = 5
represents the largest hypothesis space of NND model that can be applied to
the current dataset without severe overfitting.

See Appendix for details of NND, including architecture specifica-
tions (Sect. A3.2), hyperparameters (Sect. A3.3), evaluation of fitting ability
(Sect. A3.4), sparsity of results (Sect. A3.5), and cross-validation implementa-
tion (Sect. A3.6).

2.5 Phylogeny of Inferred Cell Subcommunities and Pathway
Inference of Steiner Nodes

We built “phylogenies” of cell subcommunities and estimated the pathway rep-
resentation of unobserved (Steiner) nodes [27] inferred to be ancestral to them,
with the goal of discovering critical communities that appear to be involved in
the transition to metastasis and identifying the important changes of functions
and expression pathways during this transition (Fig. 1 Step 3). Note that we are
using the term “phylogeny” loosely here, as these trees are intended to capture
evolution of populations of cells not just by accumulation of mutations from a
single ancestral clone but also changes in community structure, for example due
to generating or suppressing an immune response or migrating to a metastatic

https://pytorch.org/
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site. Although an abuse of terminology, we use the term phylogeny here to make
clear the methodological similarity to more proper phylogenetic methods in wide
use for analyzing mutational data in cancers [35].

Phylogeny of Communities. Given the pathway profiles of the extant com-
munities at the time of collecting tumor samples C ∈ R

m×k, a phylogeny of
the k extant cell communities was built using the neighbor-joining (NJ) algo-
rithm [29], which inferred a tree that contains k extant nodes/leaves, k − 2
unobserved Steiner nodes, and edges connecting two Steiner nodes or a Steiner
node and an extant node. We estimated an evolutionary distance for any pair of
two communities u, v as the input of NJ using the Euclidean distance between
their pathway vectors ‖C·u − C·v‖2, similar to that in a prior work [30].

Inference of Pathways. Denote the phylogeny of cell subcommunities as G =
(V, E), and V = VS ∪VC , where the indices of Steiner node VS = {1, 2, ..., k −2},
the indices of extant nodes VC = {k − 1, k, ..., 2k − 2}. For each edge (u, v) ∈ E ,
where 1 ≤ u < v ≤ 2k − 2, the first node of edge u ≤ k − 2 is always a Steiner
node. The second node v can be either a Steiner node (v ≤ k−2) or extant node
(v ≥ k − 1). Denote the set of weights W = {wuv = 1/duv | (u, v) ∈ E} (inverse
distance), where the edge length duv is the output of NJ. For each dimension i
of the pathway vectors, we consider them independently and separately, so that
each dimension of the Steiner nodes can be solved in the same way. Now let us
consider the i-th dimension (and omit the subscript i for brevity) of extant nodes
VC : y = [yk−1, yk, ..., y2k−2]

ᵀ = Cᵀ
i· and Steiner nodes VS : x = [x1, x2, ..., xk−2]

ᵀ.
Figure 2c illustrates a phylogeny where k = 5. The inference of the i-th element
in the pathway vector of the Steiner nodes can be formulated as minimizing the
following elastic potential energy U(x,y;W):

min
x

U(x,y; W) =
∑

(u,v)∈E
v≤k−2

1
2
wuv(xu − xv)2 +

∑

(u,v)∈E
v≥k−1

1
2
wuv(xu − yv)2, (6)

which can be further rephrased as a quadratic programming problem and solved
easily. See Appendix Sect. A4 for the derivation and proof of this section.

3 Results

3.1 Gene Modules/Pathways Provide an Effective Representation

Gene expressions of samples were mapped into gene module and pathway space
in order to reduce the noise of raw transcriptome data and reduce redundancy
(Sect. 2.3). We verified that the pathway representation is effective in the sense
that it captures distinguishing features of primary/metastatic sites and individ-
ual samples well and is able to identify recurrently gained or lost pathways.

Feature Space of the Pathway Representation. As one can see in Fig. 3a,
the first principal component analysis (PCA) dimension of the pathway repre-
sentation accounts for the difference between primary and metastatic samples,
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Fig. 3. Results and analysis. (a) First three pathway representation PCA dimensions
of matched primary and metastatic samples. Matched samples are connected. (b) Hier-
archical clustering of tumor samples based on raw gene expressions (left panel) and
compressed gene module/pathway representation (right panel). Metastatic samples are
shown in red rectangles and primary ones in yellow. (c) Portions and changes of the
five communities in primary and metastatic sites. Each gray line connects the portions
of a community in the primary site (blue node) and metastatic site (red node) from
the same patient. (d) Pathway strengths across cell communities. (e) Phylogeny of cell
subcommunities. (Color figure online)

while the second and third PCA dimensions mainly capture variability between
patients. This observation suggests the feasibility of using the pathway represen-
tation to distinguish recurrent features of metastatic progression across patients
despite heterogeneity between patients. To make a direct comparison of the noise
and redundancy between the pathway and raw gene expression representations,
we applied hierarchical clustering to the 44 samples using Ward’s minimum vari-
ance method [39]. Two hierarchical trees were built based on the two different
representations (Fig. 3b). The gene module/pathway features more effectively
separate the primary and metastatic samples into distinct clusters (Fig. 3b right
panel) than do the raw gene expression values (Fig. 3a left panel). This is con-
sistent with the PCA results that the largest mode of variance in the pathway
representation distinguishes primary from metastatic samples. We do notice that
in a few cases, matched primary and metastatic samples from the same patient
are neighbors with pathway-based clustering. For example, 29P Pitt:29M Pitt
and 51P Pitt:51M Pitt are grouped in the same clades using the pathway rep-
resentation, showing that in a minority of cases, features of individual patients
dominate over primary vs. metastatic features. Following previous work [30], we
quantified the ability of the hierarchical tree to group the samples of the same
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labels using four metrics. 1. MSD: Mean square distance of edges that connect
nodes of the same label (primary vs. metastatic). 2. zMSD: The labels of all nodes
were shuffled and the MSD is recalculated for 1,000 times to get the mean μMSD

and standard deviation σMSD, which were used to get the z-score of the current
assignment zMSD = (MSD − μMSD)/σMSD . 3. rMSD: The ratio of MSD of edges
that connect same label nodes and MSD of edges that connect distinct label
nodes. 4. zrMSD: as with MSD, a z-score of rMSD was calculated by shuffling
labels for 1,000 times. Intuitively, the smaller values the MSD, zMSD, rMSD,
and zrMSD are, the better is the feature representation at grouping same label
samples together. The shortest paths and distances between all pairs of nodes
were calculated using the Floyd-Warshall algorithm [11,40]. All the edge length
were considered as 1.0 to account for the different scales of pathway and gene
representations. The pathway representation has significantly lower values for
all four metrics (Table 1), indicating its strong grouping ability.

Recurrently Perturbed Cancer Pathways. We next identified differentially
expressed pathways in the primary and metastatic tumors using bulk data
BP ∈ R

24×44, prior to deconvolving cellular subcommunities. We conducted
the Student’s t-test followed by FDR correction on each of the 24 pathways.
Eleven pathways are significantly different between the two sites (FDR< 0.05;
Appendix Table 2). The signaling pathways related to neurotransmitter and
calcium homeostasis (cAMP, Calcium [16]) are enriched in metastatic samples,
which we can suggest may reflect stromal contamination by neural cells in the
brain metastatic samples. We also observed recurrent gains in ErbB pathway,
as indicated by the primary studies [31,38]. Three pathways related to immune
activity are under-expressed in metastatic samples (Cytokine-cytokine receptor
interaction [24], JAK-STAT [24], Notch [2]), consistent with the previous infer-
ence of reduced immune cell expression in metastases in general and brain metas-
tasis most prominently [44]. We can suggest that this result similarly may reflect
expression changes in infiltrating immune cells, due to the immunologically priv-
ileged environment of the brain, rather than expression changes in tumor cell
populations. Five other signalling pathways (Apoptosis [42], Wnt [43], Hedge-
hog [15], PI3K-Akt [4], TGF-beta [28]) show reduction in metastatic samples and
in each case, their loss or dysregulation has been reported to promote the tumor
growth and brain metastasis. Note that the primary references for these data
define pathways using co-expression pattern of genes [31,38], while our work uses
external knowledge bases. Previous research also used somatic mutations or copy
number variation to analyze perturbed genes [4,31], while we focus exclusively
on the transcriptome. Despite large differences in data types and pathway defi-
nitions, our observations are consistent with the prior analysis, especially with
respect to variation in the HER2/ErbB2 and PI3K-Akt pathways.

3.2 Landscape of Deconvolved Cell Communities in Tumors

We unmixed the bulk data B into five components using NND (Sect. 2.4). The
deconvolution enables us to produce at least a coarse-grained landscape of major
cell communities C and their distributions in primary and metastatic tumors F.
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Table 1. Quantitative performance of hierarchical clustering.

Feature representation MSD rMSD zMSD zrMSD

Gene expression 99.62 0.93 −2.60 −2.57

Gene module/pathway 86.23 0.66 −13.37 −11.42

Community Distributions Across Samples F. The portions of the 5 com-
ponents in all the 44 samples are represented as the mixture fraction matrix
F ∈ R

5×44 (Fig. 3c). A primary or metastatic community is one inferred to
change proportions substantially (magnitude> 0.05) in the tumor samples after
metastasis, or perhaps to be entirely novel to or extinct in the metastatic sam-
ple (denoted by a |P or |M suffix). Otherwise, the component is classified as
a neutral community. Three components (C1|M , C2|M , C4|M) are classified
as metastatic communities; one (C3|P ) as primary; and one (C5) as neutral
(Fig. 3c). Some components may be missing in both samples of some patients,
e.g., C1|M , C2|M , C5|M are absent in two, one, and one patient. We note that
these five communities represent rough consensus clusters of cell populations
inferred to occur frequently, but not universally, among the samples. Based on
this rule, we can define four basic cases of patients in total. Twelve subcases can
be found using a more detailed classification method based on the existence of
communities in both primary and metastatic samples (Appendix Fig. 6).

Pathway Values of Communities C. We are especially interested in the path-
way part CP of the cell community inferences, since it serves as the marker and
provides results easier to interpret. The pathway values of five subcommunities
using CP provides a much more fine-grained description of samples (Fig. 3d),
compared with that in Sect. 3.1, which is only able to distinguish the differen-
tially expressed pathways in bulk samples. As noted in Sect. 2.4, it is likely that
true cellular heterogeneity is greater than the methods are able to discriminate
and that communities inferred by our model may each conflate one or more dis-
tinct cell types and clones. We observe that the metastatic community C4|M
most prominently contributes to the enrichment for functions related to neuro-
transmitter and ion transport, since its strongest pathways (cAMP, Calcium) are
greatly enriched relative to those of the other four communities. We might inter-
pret this community as reflecting at least in part stromal contamination from
neural cells specific to the metastatic site. C4|M also contributes most to the
gains of ErbB in brain samples. The metastatic subcommunity C1|M is proba-
bly most closely related to the loss of immune response in metastatic samples as
it has the lowest pathway values of Notch, JAK-STAT, and Cytokine-cytokine
receptor interaction. This component might thus in part reflect the effect of rel-
atively greater immune infiltration in the primary versus the metastatic site.
C1|M also has the lowest pathway values of Apoptosis, Wnt, and Hedgehog. The
metastatic community C2|M is most responsible for the loss of PI3K-Akt and
TGF-beta pathways. We also note that although RET does not show up in the
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list of Table 2, it seems to be quite over-expressed in the metastatic communities
C1|M and C4|M but not in the metastatic community C2|M .

3.3 Phylogenies of BrM Communities Reveal Common Temporal
Order of Perturbed Pathways

We built phylogenies of cell communities and calculated the pathway representa-
tions of their Steiner nodes (Sect. 2.5). The phylogenies’ topologies provide a way
to infer a likely evolutionary history of cancer cell communities and thus their
constitutive cell types, while the perturbed pathways along their edges suggest
the temporal order of genomic alterations or changes in community composition.

Topologically Similar BrM Phylogenies. All five cell components do not
appear in each BrM patient. We analyze the distribution of communities in each
patient based on whether the community is inferred to be present in the patient
(Appendix Fig. 6). There are four different cases in general (Fig. 3e). Case 1:
all five communities are found in the patient (majority; 18/22 patients). Case
2: only C1|M missing (minority; 2/22). Case 3: only C2|M missing (minority;
1/22). Case 4: only C5 missing (minority; 1/22). Although not all communities
exist in Case 2–4, the topologies are similar to that of Case 1 and can be seen
as special cases of Case 1, representing some inferred common mechanisms of
progression across all the BrM patients.

Common Temporal Order of Altered Cancer Pathways. After inferring
the pathway values for Steiner nodes, the most perturbed pathways can also be
found by subtracting the pathway vectors of nodes that share an edge. We focus
on the top five gained or lost pathways along the evolutionary trajectories and
the changes of magnitude larger than 1.0 (Appendix Tables 3, 4, 5 and 6). We
further examine those perturbed cancer pathways that were specifically proposed
in the study that generated the data examined here, as well as others that are
clinically actionable [4,31,38], i.e., ErbB, PI3K-Akt, and RET (Fig. 3e). As one
may see from Case 1, the primary community C3|P first evolves to community
S3 by gaining expressions in ErbB and losing functions in PI3K-Akt. Then, if
it continues to lose PI3K-Akt activity, it will evolve into the metastatic com-
munity C2|M . If it gains in RET activity, it will instead evolve into metastatic
communities C1|M and C4|M . The perturbed pathways along the trajectories
of Cases 2–4 are similar to those of Case 1, with minor differences. We therefore
draw to the conclusion that the evolution of BrMs follows a specific and common
order of pathway perturbations. Specifically, the gain of ErbB reproducibly hap-
pens before the loss of PI3K-Akt and the gain of RET. Different subsequently
perturbed pathways lead to different metastatic tumor cell communities. These
inferences are consistent with the hypothesis that at least some major changes
in expression programs between primary and metastatic communities occur by
selecting for heterogeneity present early in tumor development rather than solely
deriving from novel functional changes immediately prior to or after metastasis.
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4 Conclusions and Future Work

Cancer metastasis is usually a precursor to mortality with no successful treat-
ment options. Better understanding mechanisms of metastasis provides a poten-
tial pathway to identify new diagnostics or therapeutic targets that might catch
metastasis before it ensues, treat it prophylactically, or provide more effective
treatment options once it occurs. The present work developed a computational
approach intended to better reconstruct mechanisms of functional adaption from
multisite RNA-seq data to help us understand at the level of cancer pathways the
mechanisms by which progression frequently proceeds across a patient cohort.
Our method compresses expression data into gene module/pathway represen-
tation using external knowledge bases, deconvolves the bulk data into putative
cell communities where each community contains a set of associated cell types or
subclones, and builds evolutionary trees of inferred communities with the goal
of reconstructing how these communities evolve, adapt, and reconfigure their
compositions across metastatic progression. We applied the pipeline to matched
transcriptome data from 22 BrM patients and found that although there are
slight differences of tumor communities across the cohort, most patients share
a similar mechanism of tumor evolution at the pathway level. Specifically, the
methods infer a fairly conserved mechanism of early gain of ErbB prior to metas-
tasis, followed post-metastasis gain of RET or loss of PI3K-Akt resulting in
intertumor heterogeneity between samples. Our methods provide a novel way
of viewing the development of BrM with implications for basic research into
metastatic processes and potential translational applications in finding markers
or drug targets of metastasis-producing clones prior to the metastatic transition.

The results suggest several possible avenues for future development. In part,
they suggest a need for better separating phylogenetically-related mixture com-
ponents (i.e., distinct tumor cell clones) from unrelated infiltrating cell types
(e.g., healthy stroma from the primary or metastatic site or infiltrating immune
cells). The methods are likely finding only a small fraction of the true clonal het-
erogeneity of the tumors and stroma, and might benefit from algorithms capable
of better resolution or from integration of multi-omics data (e.g., RNA-seq, DNA-
seq, methylation) that might have complementary value in finer discrimination
of cell types. Validation is challenging as we know of no data with known ground
truth that models the kind of progression process studied here nor of other tools
designed for modeling similar progression processes from expression data, leav-
ing us reliant on validating based on consistency with prior research on brain
metastasis [4,31,38]. Future work might compare to prior approaches for recon-
struction of clonal evolution from expression data more generically [9,33,36]
and seek replication on additional real or simulated expression data or artificial
mixtures of different cell types [32] designed to mimic metastasis-like progres-
sion. The general approach might also have broader application than studying
metastasis, for example in reconstructing mechanisms of other progression pro-
cesses, such as pre-cancerous to cancerous, as well as to other tumor types or
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independent data sets. Finally, much remains to be done to exploit the trans-
lational potential of the method in better identifying diagnostic signatures and
therapeutic targets.
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Appendix

A1 Transcriptome Data Preprocessing

We applied our methods to raw bulk RNA-Sequencing data of 44 matched pri-
mary breast and metastatic brain tumors from 22 patients (each patient gives
two samples) [31,38], where six patients are from the Royal College of Surgeons
(RCS) and sixteen patients from the University of Pittsburgh (Pitt). These data
profiled the expression levels of approximately 60,000 transcripts. We removed
the genes that are not expressed in any sample. We also considered only protein-
coding genes in the present study. We conducted quantile normalization across
samples using the geometric mean to remove possible artifacts from different
experiment batches [1]. The top 2.5% and bottom 2.5% of expressions were
clipped to further reduce noise. Finally, we transformed the resulting bulk gene
expression values into the log space and mapped those for each gene to the
interval [0, 1] by a linear transformation.

A2 Mapping to Gene Modules and Cancer Pathways

The protein-coding gene expressions were mapped into both perturbed gene
modules and cancer pathways, using the DAVID tool and external knowledge
bases [18], as well as the cancer pathways in KEGG database [19]. This step
compresses the high dimensional data and provides markers of cancer-related
biological processes (Fig. 1 Step 1).

Gene Modules. Functionally similar genes are usually affected by a common
set of somatic alterations [30] and therefore are co-expressed in the cells. These
genes are believed to belong to the same “gene modules” [8,37]. Inspired by the
idea of gene modules, we fed a subset of 3,000 most informative genes out of the
approximately 20,000 genes that have the largest variances into the DAVID tool
for functional annotation clustering using several databases [18]. DAVID maps
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each gene to one or more modules. We did not force the genes to be mapped into
disjunct modules because a gene may be involved in several biological functions
and therefore more than one gene module. We removed gene modules that were
not enriched (fold enrichment < 1.0) and kept the remaining m1 = 109 modules
(and the corresponding annotated functions), where fold enrichment is defined
as the EASE score of the current module to the geometric mean of EASE scores
in all modules [17]. The gene module values of all the n = 44 samples were
represented as a gene module matrix BM ∈ R

m1×n. The i-th gene module value
in j-th sample, BMi,j

, was calculated by taking the sum of expressions of all the
genes in the i-th module. Then BM was rescaled row-wise by taking the z -scores
across samples to compensate for the effect of variable module sizes.

Cancer Pathways. Although gene module representation is able to capture the
variances across samples and reduce the redundancy of raw gene expressions, it
has two disadvantages: First of all, lack of interpretability. Specifically, some
annotations assigned by DAVID are not directly related to biological functions,
and the annotations of different modules may substantially overlap. Secondly,
the key perturbed cancer pathways or functions may not be always the ones that
vary most across samples. For example, genes in cancer-related KEGG pathways
(hsa05200) [19] are not especially enriched in the top 3,000 genes with the largest
expression variances. To make better use of prior knowledge on cancer-relevant
pathways, we supplemented the generic DAVID pathway sets with a KEGG
“cancer pathway” representation of samples BP ∈ R

m2×n, where the number of
cancer pathways m2 = 24. The cancer-related pathways in the KEGG database
are cleaner and easier to explain, more orthogonal to each other, and contain
critical signaling pathways to cancer development. We extracted the 23 cancer-
related pathways from the following 3 KEGG pathway sets: Pathways in cancer
(hsa05200), Breast cancer (hsa05224), and Glioma (hsa05214). An additional
cancer pathway RET pathway was added, since it was found to be recurrently
gained in the prior research [38]. See y-axis of Fig. 3d for the complete list of 24
cancer pathways. We considered all the ∼20,000 protein-coding genes other than
top 3,000 genes. The following mapping of cancer pathways and transformation
to z -scores were similar to that we did to map the gene modules.

Until this step, the raw gene expressions of n samples were transformed
into the compressed gene module/pathway representation of samples B =[
Bᵀ

M ,Bᵀ
P

]ᵀ ∈ R
m×n, where m = m1 + m2. The gene module representation

BM serves for accurately deconvolving and unmixing the cell communities, while
the pathway representation BP serves as markers/probes and for interpretation
purposes.
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A3 Deconvolution of Bulk Data

A3.1 Non-convexity of Deconvolution Problem

Theorem 1. The deconvolution problem Eqs. (1–3) below is not convex:

min
C,F

f(C,F) = ‖B − CF‖2Fr , (7)

s.t. Flj ≥ 0, l = 1, ..., k, j = 1, ..., n, (8)
∑k

l=1
Flj = 1, j = 1, ..., n. (9)

Proof. If the problem is convex, we should have: ∀λ ∈ (0, 1), and ∀Cx,Cy,Fx,Fy

in the feasible domain, the following inequality always holds:

λf(Cx,Fx) + (1 − λ)f(Cy,Fy) ≥ f(λCx + (1 − λ)Cy, λFx + (1 − λ)Fy). (10)

However, for the following setting:

B =
[−1.38 0.92

1.03 −0.15

]
, (11)

Cx =
[−1.74 2.21

1.00 −3.97

]
, Cy =

[
1.03 −0.46

−3.13 0.16

]
, (12)

Fx =
[
0.83 0.32
0.17 0.68

]
, Fy =

[
0.09 0.34
0.91 0.66

]
, (13)

and λ = 0.5, we have

λf(Cx,Fx) + (1 − λ)f(Cy ,Fy) = 4.86 < 11.74 = f(λCx + (1 − λ)Cy , λFx + (1 − λ)Fy).

(14)

This is contradictory to Eq. (10). 	


A3.2 Architecture Specifications of NND

In the NND architecture, |X| applies element-wise absolute value, cwn (X)
column-wisely normalizes X, so that each column of the output sums up to
1. The two operations of Eq. (5) naturally rephrase and remove the two con-
straints in Eqs. (2–3), and meanwhile fit the framework of neural networks. An
alternative to the absolute value operation |X| might be rectified linear unit
ReLU(X) = max (0,X). However, this activation function is unstable and leads
to inferior performance in our case, since Xlj will be fixed to zero once it becomes
negative and will lose the chance to get updated in the following iterations. One
may also want to replace the column-wise normalization cwn (X) with softmax
operation softmax(X). However, the nonlinearity introduced by softmax actu-
ally changes the original optimization problem Eqs. (1–3) and the fitted F is
therefore not sparse.
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A3.3 Hyperparameters of NND

We used an Adam optimizer with default momentum parameters and learning
rate of 1 × 10−5 [20]. The mini-batch technique is not required since the data
size in our application is small enough not to require it (B ∈ R

m×n, m = 133,
n = 44). The training was run until convergence, when the relative decrease of
training loss is smaller than ε = 1 × 10−10 every 20,000 iterations.

A3.4 Fitting Ability of NND

One might be suspicious whether the neural network fits precisely in practice, since
it is based on a simple gradient descent optimization. To validate the fitting ability
of NND, we plotted the PCA of original samples B and the fitted samples B̂ = CF
(Fig. 4). One can easily see that NND provides good model fits to the data.

Fig. 4. PCA of pathway representation B and nnMF fitted B̂. Each dot represents the
pathway values of a sample B·j or fitted B̂·j . The first two PCA dimensions of original
data and fitted data are almost in the same positions, which indicates that NND is
able to fit precisely in our application. The number of components is set to be k = 5
here.

Fig. 5. Distribution of elements in fraction matrix F�. Since each column of F is forced
to sum up to be one, a Laplacian prior is applied to the elements of matrix F. This
leads to the sparsity of F�: 24 out of its 220 elements (k × n = 5 × 44) are zeros
(threshold set to 2.5 × 10−2).

A3.5 Sparsity of NND Results

See Fig. 5 for distribution of fraction matrix in NND deconvolution results.
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A3.6 Cross-Validation of NND

In each fold of the CV, we used B̂ = CF to only fit some randomly selected
elements of B, and then the test error was calculated using the other ele-
ments of B. This was implemented by introducing two additional mask matrices
Mtrain,Mtest ∈ {0, 1}m×n, which are in the same shape of B, and Mtrain +
Mtest = 1m×n. During the training time, with the same constraints in Eq. (5),
the optimization goal is:

min
C,Fpar

‖Mtrain � (B − CF)‖2Fr (15)

where X�Y is the Hadamard (element-wise) product. At the time of evaluation,
given optimized C�, F�

par, and therefore optimized F� = cwn
(∣∣F�

par

∣
∣) for the

optimization problem during training, the test error was calculated on the test
set: ‖Mtest � (B − C�F�)‖2Fr. We used 20-fold cross-validation on the NND, so
in each fold 95% positions of Mtrain and 5% positions of Mtest were 1s.

A4 Derivation of Quadractic Programming, P(W),
and q(W, c)

Recall Sect. 2.5, for the phylogeny G = (V, E), the Steiner nodes are indexed as
VS = {1, 2, ..., k − 2} (|VS | = k − 2), the extant nodes are indexed as VC =
{k − 1, k, ..., 2k − 2} (|VC | = k). The i-th pathway values of Steiner nodes are
denoted as x = [x1, x2, ..., xk−2]

ᵀ ∈ R
k−2, and values of extant nodes as y =

[yk−1, yk, ..., y2k−2]
ᵀ ∈ R

k. Since we consider each pathway dimension separately
here, the subscript i for x and y is omitted for brevity. The weight of edge
(u, v) ∈ E connecting nodes u and v is wuv (1 ≤ u < v ≤ 2k − 2). Denote
W = {wuv | (u, v) ∈ E}. The inference of the i-th element in the pathway vector
of the Steiner nodes can be formulated as minimizing the elastic potential energy
U(x,y;W) shown below:

min
x

U(x,y; W) =
∑

(u,v)∈E
v≤k−2

1
2
wuv(xu − xv)2 +

∑

(u,v)∈E
v≥k−1

1
2
wuv(xu − yv)2, (16)

Theorem 2. Equation (16) can be further rephrased as a quadratic program-
ming problem:

min
x

1
2
xᵀP(W)x + q(W,y)ᵀx, (17)

where P(W) is a function that takes as input edge weights W and outputs a
matrix P ∈ R

(k−2)×(k−2), q(W,y) is a function that takes as input edge weights
W and vector y and outputs a vector q ∈ R

k−2.
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Proof. Based on Eq. (16), U(x,y;W) ≥ 0. Each term inside the first summation
(v ≤ k − 2) can be written as:

1
2
wuv(xu − xv)2 =

1
2
xᵀP(wuv)x, (18)

where

P(wuv) =
u-th row

v-th row

⎡

⎢
⎢
⎢
⎢
⎣

0
u-th col

0 0
v-th col

0 0
0 wuv 0 −wuv 0
0 0 0 0 0
0 −wuv 0 wuv 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

. (19)

Each term (v ≥ k − 1) inside the second summation can be rephrased as:

1
2
wuv(xu − yv)2 =

1
2
xᵀP(wuv)x + q(wuv, yv)ᵀx + C(wuv, yv), (20)

where

P(wuv) =
u-th row

⎡

⎢
⎢
⎢
⎢
⎣

0
u-th col

0 0 0 0
0 wuv 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

, q(wuv, yv) =
u-th row

⎡

⎢
⎢
⎢
⎢
⎣

0
−wuvyv

0
0
0

⎤

⎥
⎥
⎥
⎥
⎦

, (21)

and C(wuv, yv) = 1
2wuvy2

v is independent of x. Therefore the optimization in
Eq. (16) can be calculated and written as below:

min
x

∑

(u,v)∈E
v≤k−2

1
2
xᵀP(wuv)x +

∑

(u,v)∈E
v≥k−1

(
1
2
xᵀP(wuv)x + q(wuv, yv)ᵀx

)
, (22)

⇔ min
x

1
2
xᵀ

⎛

⎜
⎜
⎝

∑

(u,v)∈E
v≤k−2

P(wuv) +
∑

(u,v)∈E
v≥k−1

P(wuv)

⎞

⎟
⎟
⎠x +

∑

(u,v)∈E
v≥k−1

q(wuv, yv)ᵀx,

(23)

⇔ min
x

1
2
xᵀP(W)x + q(W,y)ᵀx. (24)

	

Remark 1. The optimal x� of the Eq. (16), or the solution to the quadratic
programming problem Eq. (17) can be solved by setting the gradient to be 0:

P(W)x� + q(W,y) = 0. (25)

Therefore,

x� = −P(W)−1q(W,y). (26)
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Remark 2. Based on the proof, we can derive how to calculate the matrix P(W)
and vector q(W,y).

Initialize the matrix and vector with zeros:

P ← 0(k−2)×(k−2), q ← 0k−2. (27)

For each edge (u, v) ∈ E with weight wuv, there are two possibilities of nodes u
and v: First, if both of them are Steiner nodes (u ≤ k − 2, v ≤ k − 2), we update
P and keep q the same:

Puu ← Puu + wuv, Pvv ← Pvv + wuv, Puv ← Puv − wuv, Pvu ← Pvu − wuv.
(28)

Second, if u is Steiner node and v is an extant node (u ≤ k − 2, v ≥ k − 1), we
update both P and q:

Puu ← Puu + wuv, qu ← qu − yv · wuv. (29)

We apply the same procedure to all dimension of pathways i = 1, 2, ...,m to get
the full pathway values for each Steiner node.

A5 Differentially Expressed Cancer Pathways

Table 2 provides a list of the identified differentially expressed cancer pathways.

Table 2. Differentially expressed cancer pathways between primary and metastatic
samples (FDR < 0.05).

Gain/Loss after metastasis Differentially expressed pathways FDR

Relative gain cAMP signaling pathway 6.88e-03

Relative gain ErbB signaling pathway 2.09e-02

Relative gain Calcium signaling pathway 4.39e-02

Relative loss Cytokine-cytokine receptor interaction 4.37e-06

Relative loss Apoptosis 8.53e-04

Relative loss JAK-STAT signaling pathway 8.53e-04

Relative loss Wnt signaling pathway 3.97e-03

Relative loss Hedgehog signaling pathway 4.50e-03

Relative loss PI3K-Akt signaling pathway 1.35e-02

Relative loss TGF-beta signaling pathway 4.56e-02

Relative loss Notch signaling pathway 4.56e-02
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A6 Portions of Cell Communities in BrM Patients

Figure 6 shows the inferred cell community portions across the BrM samples.
The figure displays, for each patient, the proportion of each community in the
primary and the metastatic sample.

A7 Perturbed Cancer Pathways Along Phylogenies

Tables 3, 4, 5 and 6 provide a full list of perturbed pathways across the phylo-
genies for Case 1, 2, 3, and 4 in Fig. 3e.

Fig. 6. Classification of BrM patients based on the consisted cell subcommunities in
matched samples. There are 12 subcases of the 4 cases mentioned in Sect. 3.2. Specif-
ically, there are 9 specific cases (Case 1a-i) in Case 1. Most patients (7) have all the
five cell communities in both primary and metastatic samples (Case 1i). A few patients
(4) have all communities in metastasis samples and all clones but community C3|P in
primary samples. The element Flj is taken as 0 when it is smaller than a threshold
2.5 × 10−2, and therefore the l-th community is missing in the j-th sample.
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Table 3. Perturbed pathways during the evolution of cell communities in primary and
metastatic tumors (Fig. 3e Case 1). The top five perturbed pathways whose gain or
loss greater than 1.0 along each edge of phylogeny are shown. Clinically actionable
perturbed cancer pathways during metastasis are shown in boldface, i.e., ErbB, RET,
and PI3K-Akt [4,31,38].

Trajectory Gain Perturbed Pathways Loss Perturbed pathways

C3|P → S3 +2.83 Homologous recombination −3.76 Hedgehog signaling pathway

+2.41 Cell cycle −3.45 Cytokine-cytokine receptor
interaction

+1.86 ErbB signaling pathway −3.39 PI3K-Akt signaling
pathway

+1.10 cAMP signaling pathway −3.15 TGF-beta signaling pathway

−3.14 JAK-STAT signaling
pathway

S3 → S1 < 1.0 ∅ < 1.0 ∅
S1 → S2 +1.36 cAMP signaling pathway −1.28 JAK-STAT signaling

pathway

+1.18 RET −1.22 Apoptosis

−1.21 Cytokine-cytokine receptor
interaction

−1.12 Wnt signaling pathway

−1.04 Notch signaling pathway

S2 → C1|M +1.90 RET −3.25 Wnt signaling pathway

+1.59 PPAR signaling pathway −3.11 JAK-STAT signaling
pathway

−2.77 Notch signaling pathway

−2.48 Hedgehog signaling pathway

−2.18 PI3K-Akt signaling
pathway

S2 → C4|M +4.48 Calcium signaling pathway −3.06 p53 signaling pathway

+4.17 cAMP signaling pathway −2.74 Cell cycle

+3.83 MAPK signaling pathway −2.21 Homologous recombination

+3.35 ECM-receptor interaction −1.40 Apoptosis

+3.20 Focal adhesion −1.33 Cytokine-cytokine receptor
interaction

S1 → C5 +3.91 Cell cycle −3.00 RET

+3.17 p53 signaling pathway −1.58 MAPK signaling pathway

+2.85 Adherens junction −1.41 cAMP signaling pathway

+2.76 Cytokine-cytokine receptor
interaction

+2.68 Wnt signaling pathway

S3 → C2|M +1.39 Homologous recombination −3.65 TGF-beta signaling pathway

−3.61 PI3K-Akt signaling
pathway

−3.34 ECM-receptor interaction

−3.20 Focal adhesion

−2.60 PPAR signaling pathway
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Table 4. Perturbed pathways during the evolution of cell communities in primary and
metastatic tumors (Fig. 3e Case 2). The top five perturbed pathways whose gain or
loss greater than 1.0 along each edge of phylogeny are shown.

Trajectory Gain Perturbed Pathways Loss Perturbed pathways

C3|P → S1 +2.83 Homologous
recombination

−3.22 Hedgehog signaling
pathway

+2.47 Cell cycle −3.10 TGF-beta signaling
pathway

+1.81 ErbB signaling
pathway

−3.08 Cytokine-cytokine
receptor interaction

+1.02 cAMP signaling pathway −2.93 PI3K-Akt signaling
pathway

−2.64 PPAR signaling pathway

S1 → S2 +1.08 ECM-receptor interaction

+1.08 ErbB signaling
pathway

S2 → C4|M +5.51 cAMP signaling pathway −3.97 Cell cycle

+5.12 Calcium signaling
pathway

−3.83 p53 signaling pathway

+4.45 MAPK signaling pathway −3.20 Apoptosis

+3.37 ECM-receptor interaction −3.15 Cytokine-cytokine
receptor interaction

+3.08 ErbB signaling
pathway

−3.00 Homologous
recombination

S2 → C5 +3.68 Cell cycle −2.25 RET

+3.18 p53 signaling pathway −1.81 MAPK signaling pathway

+2.50 Homologous
recombination

−1.43 cAMP signaling pathway

+2.16 Adherens junction −1.24 Hedgehog signaling
pathway

+2.15 Cytokine-cytokine
receptor interaction

−1.13 Calcium signaling
pathway

S1 → C2|M +1.39 Homologous
recombination

−4.06 PI3K-Akt signaling
pathway

−3.70 TGF-beta signaling
pathway

−3.55 Focal adhesion

−3.52 ECM-receptor interaction

−2.87 Adherens junction
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Table 5. Perturbed pathways during the evolution of cell communities in primary and
metastatic tumors (Fig. 3e Case 3). The top five perturbed pathways whose gain or
loss greater than 1.0 along each edge of phylogeny are shown.

Trajectory Gain Perturbed Pathways Loss Perturbed pathways

C3|P → S2 +3.10 Cell cycle −3.51 Hedgehog signaling
pathway

+3.10 ErbB signaling
pathway

−2.41 Notch signaling pathway

+2.93 Homologous
recombination

−2.39 Cytokine-cytokine
receptor interaction

+1.70 cAMP signaling pathway −2.34 JAK-STAT signaling
pathway

+1.66 HIF-1 signaling pathway −2.07 Apoptosis

S2 → S1 +1.62 cAMP signaling pathway −2.02 Cytokine-cytokine
receptor interaction

+1.54 RET −1.98 JAK-STAT signaling
pathway

+1.14 Calcium signaling
pathway

−1.91 Apoptosis

−1.75 Wnt signaling pathway

−1.32 Cell cycle

S1 → C1|M +1.85 RET −3.52 Wnt signaling pathway

+1.19 PPAR signaling pathway −3.38 JAK-STAT signaling
pathway

−2.78 PI3K-Akt signaling
pathway

−2.76 Hedgehog signaling
pathway

−2.68 Notch signaling pathway

S1 → C4|M +4.20 Calcium signaling
pathway

−3.18 p53 signaling pathway

+3.89 cAMP signaling pathway −2.65 Cell cycle

+3.40 MAPK signaling pathway −1.99 Homologous
recombination

+2.76 Hedgehog signaling
pathway

−1.64 Cytokine-cytokine
receptor interaction

+2.72 ECM-receptor interaction −1.61 Apoptosis

S2 → C5 +3.67 Cell cycle −2.69 RET

+2.76 Homologous
recombination

−2.08 MAPK signaling pathway

+2.56 p53 signaling pathway −1.59 PPAR signaling pathway

+1.85 mTOR signaling pathway −1.43 cAMP signaling pathway

+1.79 Adherens junction −1.02 Hedgehog signaling
pathway
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Table 6. Perturbed pathways during the evolution of cell communities in primary and
metastatic tumors (Fig. 3e Case 4). The top five perturbed pathways whose gain or
loss greater than 1.0 along each edge of phylogeny are shown.

Trajectory Gain Perturbed Pathways Loss Perturbed pathways

C3|P → S1 +2.38 Homologous
recombination

−4.49 Cytokine-cytokine
receptor interaction

+1.56 ErbB signaling
pathway

−4.23 PI3K-Akt signaling
pathway

+1.54 Cell cycle −4.10 JAK-STAT signaling
pathway

+1.41 cAMP signaling pathway −3.97 Hedgehog signaling
pathway

−3.74 Apoptosis

S1 → S2 +1.89 cAMP signaling pathway −1.66 Notch signaling pathway

+1.69 ErbB signaling
pathway

−1.27 JAK-STAT signaling
pathway

+1.47 HIF-1 signaling pathway −1.14 Apoptosis

+1.47 ECM-receptor interaction −1.01 Cytokine-cytokine
receptor interaction

+1.43 Calcium signaling
pathway

S2 → C1|M +1.43 PPAR signaling pathway −2.53 Notch signaling pathway

+1.19 RET −2.44 Wnt signaling pathway

+1.09 p53 signaling pathway −2.35 Hedgehog signaling
pathway

−2.32 JAK-STAT signaling
pathway

−1.66 VEGF signaling pathway

S2 → C4|M +4.40 Calcium signaling
pathway

−2.37 p53 signaling pathway

+3.91 cAMP signaling pathway −1.93 Cell cycle

+3.81 ECM-receptor interaction −1.74 Homologous
recombination

+3.64 MAPK signaling pathway

+3.62 Focal adhesion

S1 → C2|M +1.84 Homologous
recombination

−3.07 TGF-beta signaling
pathway

+1.39 Cell cycle −2.77 PI3K-Akt signaling
pathway

−2.69 ECM-receptor interaction

−2.59 Focal adhesion

−2.58 PPAR signaling pathway
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Abstract. Gliomas are tumors that evolve from glial cells in the brain or
spine. Most gliomas are diagnosed as either lower-grade lesions (grade II)
or Glioblastoma (grade IV). Progression of lower-grade gliomas (LGG) to
Glioblastoma (GBM) is accompanied by a phenotypic switch to a highly
invasive tumor cell phenotype. Converging evidence from different cancer
types, including colorectal-, breast-, and lung- cancers, suggests a strong
enrichment of high ploidy cells among metastatic lesions as compared
to the primary tumor [1,2]. Even in normal development: trophoblast
giant cells - the first cell type to terminally differentiate during embryo-
genesis - are responsible for invading the placenta and strikingly these
cells can have up to 1000 copies of the genome [5]. All this points to the
existence of a ubiquitous mechanism that links high DNA content to an
invasive phenotype. We formulate a mechanistic Grow-or-go model that
postulates higher energy demands of high-ploidy cells as a driver of their
invasive behavior. We will test whether this mechanism may contribute
to the quick recurrence of GBMs after surgery [7] and whether it can
explain striking differences in the prognostic power of integrin signaling
and cell cycle progression between males and females [13].

Keywords: Ploidy · Glioblastoma · Mathematical modeling

Introduction

Glioblastoma multiforme (GBM) is a devastating brain cancer that invades the
brain parenchyma and perivascular space. The moniker “multiforme” is based
on first histopathologic descriptions of the diverse morphologic features of the
tumor. GBM is a highly hecterogeneous tumor, in which hypercellular regions
coexist with areas of interspersed tumor cells spreading beyond the tumor’s
invasive edge. Intra-tumour genetic heterogeneity emerging from the variable
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clonal selection processes within these spatially distinct niches allow glioma cells
to evade therapy.

Mathematical Go-or-Grow models have been formulated to describe this
dynamic process and to better understand what facilitates the invasive phe-
notype of GBM [7,10]. These models take into account the ability of prolifer-
ative cells to become invasive under certain conditions, such as hypoxia. Here
we describe a new Grow-or-go model that postulates higher energy demands of
high-ploidy cells as a driver of their invasive behavior. A key similarity to previ-
ously described Grow-or-go models is that the switch from highly proliferative
to invasive phenotype is modeled as a function of the environment. What is
novel here is that our model takes into account a potential contribution of the
genotype, namely of large-scale CNVs, to the propensity of that switch.

Evidence supports a stronger role for CNVs rather than SNVs in developing
and maintaining population diversity [3,4,8]. Large scale CNVs are so powerful,
affect so many genes, even the size of the cell. Gene duplication in particular
is arguably the most important evolutionary force on the organism level [11].
Without extensive CNVs, diversity of a population is likely to be limited for
rapid adaptation when exposed to stressful environments [3]. CNVs have a locus-
specific mutation frequency that is 2 to 4 orders of magnitude greater than that
of point mutations [6], and it’s precisely this magnitude which makes CNVs so
phenotypically effective. However, in contrast to point mutations, CNVs do not
offer the convenience of the infinite site assumption, making them more chal-
lenging to model. We propose that large-scale CNVs, such as those introduced
by chromosome segregation errors, offer many routes for a cell to switch back
and forth between migration and proliferation, conferring an underappreciated
phenotypic plasticity to the population.

1 Results

1.1 PDE Model

To understand how the distribution of energy (E) influences cell ploidy (c) we
model energy and cell density (u) with continuity equations:

∂ρ

∂t
+ ∇ · J = q. (1)

Here ρ is the quantity of interest (E or u), J is the flux and q is known as a
source/sink term. For the energy component, we have two terms for the flux:

JE = JE, diff + JE, adv = −ΓE∇E + κEηE, (2)

where ΓE is the diffusion coefficient (i.e. diffusion acts along the gradient of
energy, in opposing direction), κE a measure of the ability for energy to move
due to the flow velocity η. The cell density u is a function of ploidy u(c), and
we add a ploidy-dependent chemotaxis term χu∇g(E, c),

Ju = Ju, diff + Ju, adv + Jchemotaxis = −Γu∇u + κuηu + χu∇g(E, c). (3)
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where χ is the chemotaxis coefficient. Inserting the fluxes into Eq. (1) yields our
coupled advection-diffusion equation for the energy and cell concentrations:

∂E

∂t
= ΓE∇2E − κE∇ · (ηE) + f, (4)

∂u

∂t
= Γu∇2u − κu∇ · (ηu) − χ∇ · [u∇g(E)] + h. (5)

These equations are valid in the interior of our specified domain (e.g. a circular
dish of radius R for cells grown in culture). Here f is related to the consumption
of E due to u, and h is related to the birth/death process governing u. Along
the boundary, we assume no-flux boundary conditions, which reduces to ∂E

∂n =
∂u
∂n = 0, where n is the out-pointing normal direction.

1.2 Agent-Based Model

Let x0 be a cell with proliferation rate αx0, deathrate γx0, motility rate ηx0 and
ploidy cx0. Sn

x0 := {x0, x1, . . . , xkn
}, are living cells in the neighborhood of x0

up to reachability level n, where kn ≤ Kn := 8 · n·(n+1)
2 . The probability of

observing a cell division, given we consider x0, is proportional to the energy,
Ex0, available to the cell:

P (α|x0) ∼ o · αx0 · sgn (Ex0) (6)

where o :=
{

1, if k1 < K1

0, otherwise and Ex0 = E · Kn − ∑
x∈Sn

x0
cx − 1

2cx0 · Kn

E · Kn is the maximum energy available for any given cell. The higher the
neighborhood cell density and the higher the ploidy, the more likely it is that
the cell’s energy-demands for division are not met by the environment. This
comparison between available and required energy is a surrogate for the dual
role of integrin signaling: integrin-mediated signals allow cells to progress from
G1 to S phase of the cell cycle. At the same time integrins mediate cell migration.
The probability of observing movement while tracing x0, is proportional to:

P (η|x0) ∼ o · αx0 · sgn (−Ex0) (7)

i.e. when insufficient energy prevents a cell from dividing, it is more likely to
migrate. Insufficient energy for proliferation implicitly increases motility.

The model was implemented as a cellular automaton whereby energy is ini-
tially uniformly distributed across a 150-by-150 grid. Any given cell can access
energy from its neighborhood, thereby decreasing the available energy of that
neighborhood accordingly. Every time a cell dies, it releases the same amount
of energy in its neighborhood as it requires for cell division. At each timestep
actively migrating and dividing cells are chosen at random according to their
probabilities. Candidate new locations are all free locations in the Moore neigh-
borhood of an active cell.

Final location of each migrating cell is chosen among all candidate locations,
such that the new location is towards a less dense neighborhood. Final location
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of each dividing cell is randomly chosen among all candidates. A dividing cell
gains/loses a copy of its chromosomes to its daughter cell at a rate v. The effect
of the mutation on the fitness of both daughter cells is modelled as a change in
the cells’ proliferation- and death-rates:

α∗
x0 := αx0 · N

(
1, σ2

)
(8)

γ∗
x0 := γx0 · N

(
2

cx0
, κ2

)
, (9)

i.e. the copy-losing and -gaining daughter cell will have decreased and increased
robustness to future mutations respectively.

We ran 2,500 simulations at variable energies, each time allowing cells to
evolve over 100 time steps (Table 1). In low-energy environments high-ploidy
clones were enriched at the leading edge of the tumor. This was not the case
in high-energy environments (Fig. 1). Jupyter notebook to re-run the simula-
tions and subsequent analyses is available at https://github.com/MathOnco/
GoOrGrow PloidyEnergy.

Table 1. Initial conditions and simulation parameters.

Description Name Value or Range

Cell division α 0.32

Missegregation rate v 0.02

Cell death γ 0.25

Cell motility η 0.2

Ploidy c 2.5

Energy E 100–2,200

2 Discussion

CNVs are a phenotypically effective form of genomic instability, leading to
changes in the expression of a lot of genes simultaneously, even affecting the size
of the cell. Yet most studies have focused on point mutations for the convenience
that comes with the infinite-site assumption. Our model proposes chromosome
missegregations and the resulting CNVs as an efficient route for cells to switch
between migration and proliferation. Aneuploidy rates have been shown to vary
between chromosomes after drug-exposure [12], motivating future modelling of
chromosome-specific segregation rates.

Future validation experiments will leverage spatially annotated H&E slides
from different regions of a GBM from the Ivy GBM atlas [9]. This will include
comparing the size and staining intensity of nuclei between regions annotated as
“cellular tumor” vs. “leading tumor edge”. A higher representation of larger and

https://github.com/MathOnco/GoOrGrow_PloidyEnergy
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Fig. 1. Agent-based model. (A) Two representative simulations are shown. Every
dot is a cell growing in either one of two static environments of uniformly distributed
low energy (left) or high energy (right). Cells are colored by ploidy - from dark-red
(low ploidy) to yellow (high ploidy). (B) In low-energy environments we see high-ploidy
clones enriched at the leading edge of the tumor. This is not the case in high-energy
environments: when energy falls below a certain threshold, a cell’s ploidy starts to
correlate with its distance from the tumor core, up to a correlation coefficient of 0.5.
(Color figure online)

darker nuclei in the latter would be in line with the prediction of our model and
therefor support its assumptions. As a second line of validation we will expose
GBM cell lines to different flow speeds and use the corresponding response of
the fixation probability of high-ploidy clones as an indicator for model selection.
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Abstract. Histological staining and analysis of tissue sections is integral to
diagnosis and treatment of many diseases, including cancer. Multiplex imaging
technologies (e.g., cyclic immunostaining) have dramatically increased capa-
bilities for assessing prognostic biomarkers in situ, enabling new insights into
complex diseases. However, high-resolution, multiplex image data can be ter-
abytes (TB) in size, and traditional pipelines for image analysis are not suited for
these rich datasets. While much software development effort goes towards
improving image processing tools such as stitching, registration, and segmen-
tation; integration of these tools into a pipeline is often manual, which is highly
laborious, error-prone and lacks reproducibility and scalability. Therefore, we
developed a Python3 library, cmIF, a free and open-source tool to handle our
high-throughput multiplex image processing pipeline. cmIF enables analysis of
full-slide pathology tissue sections and tissue microarrays (TMAs), facilitating
processing from raw image files through registration, segmentation, feature
extraction, manual thresholding, and spatial pattern analysis. Our cmIF library
includes functionality for image handling, quality control, metadata extraction,
and subtraction of background images (i.e., autofluorescence subtraction).
Additionally, it includes a Jupyter notebook for efficient generation and visu-
alization of manual thresholds. Compared to a manual pipeline, use of cmIF
reduces errors and improves processing time of datasets from weeks to hours,
while documenting processing steps for reproducibility. All code is available on
https://gitlab.com/engje/cmif. While our library is specific to our pipeline ele-
ments, it is a blueprint for types of functions needed for high throughput anal-
ysis. In the future, we will continue developing this open-source tool, and with
input from the wider community, adapt it to a range of multiplex image
pipelines.
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1 Introduction

Staining, imaging, and analysis of tissue sections reveals cell phenotypes in native
in vivo context, elucidating normal and diseased tissue biology. Multiplex imaging
enables identification of numerous cell types and their spatial relationships, with the
objective of informing treatment in diseases whose progression is impacted by
numerous cell-cell interactions, such as cancer [1]. Recently developed cyclic
immunostaining procedures detect dozens of markers in individual tissue sections
through repeated staining, imaging, and signal removal [2–7]. Such techniques produce
rich, high-resolution image datasets; however, the data pose unique challenges for
image processing and analysis. For example, using automated scanning systems,
groups, including ours, routinely acquire datasets with more than 60 high-resolution
scans, totaling terabytes (TB) in size for one experiment. Existing tools for image
analysis are not suited for the size and number of images acquired.

Challenges include lengthy image-opening and viewing operations and repetitive
but error-prone tasks. A typical pipeline includes stitching, registration, background
subtraction, segmentation, feature extraction, cell classification, and visualization.
Processing pipelines must integrate modules developed in different languages (Java,
Matlab, Python, custom software, etc.) and this integration is often manual. Additional
challenges include accurate capture of metadata, including stain information and
microscope settings. Finally, quality control (QC) is an important consideration as
errors occur during the manual stain or scan setup steps, while image quality deviations
lead to failure of registration, segmentation or background subtraction.

Herein we present an open-source Python library, cmIF, as a solution to the issues
outlined above. Even as new methods such as deep learning are leveraged for improved
image registration or segmentation, less visible issues such as automated pipeline
implementation, QC and data visualization plague many users. Our open-source tools
for automated processing, QC, and documentation enable high-throughput, repro-
ducible analysis of multiplex imaging data.

2 Implementation

Our cmIF library for high-throughput, reproducible processing and analysis of multi-
plex imaging data is implemented in Python 3. There are three major components. The
first, mpimage, is a collection of functions that act directly on the image files. Scikit-
image is used to load and write 16-bit image files (https://scikit-image.org). Images can
be arrayed side by side, overlaid or subtracted. Image attributes including biomarker
name, channel, and exposure time are automatically extracted. For example, biomarker
and channel are obtained with functions to parse different file-naming schemes (parse_
org, parse_img). Exposure time and light intensity are extracted from microscope files
using the Python bioformats library to read proprietary image formats (get_exposure)
(https://github.com/CellProfiler/python-bioformats). One of the main innovations of
this module is flexible implementation of an autofluorescence subtraction step (sub-
tract_images). While this is conceptually simple, i.e. simple subtraction of a blank
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channel image from a stained image [7], this is often missing from multiplex workflows
[3, 5, 9].

The second component is a collection of functions to automate image processing
pipelines. The preprocess module performs QC, prepares registration and segmentation
inputs and starts parallel jobs on a server. Following registration, segmentation and
feature extraction, the getdata module formats data into.csv’s and the process module
filters data for cells with complete retention across rounds, normalizes each channel by
exposure time, performs autofluorescence subtraction, and prepares files for thresh-
olding. We use the numpy and pandas libraries for these operations (https://numpy.org,
https://pandas.pydata.org).

The last component is a Jupyter notebook for manual thresholding and visualization
of results. We elected to develop our own thresholding solution because available
software had size and speed limitations (e.g. 500 � 500 pixels) [10]. While manual
gating is the gold standard for cell classification, many published analyses using
multiplex imaging data avoid gating in favor of clustering [5, 11]. We found current
clustering approaches to be highly sensitive to imaging artifacts (edge effect, areas of
photo bleaching) as well as negative staining. Therefore, we developed a Jupyter
notebook to efficiently set manual thresholds on thousands of images. Matplotlib is
used for plotting (https://matplotlib.org).

Fig. 1. cmIF Functionality A.Multiplex Image Handling. Functions array, overlay and subtract
grayscale images and extract image metadata including biomarker name, channel, and exposure
time, for QC and downstream analysis. B. Pipeline. cmIF integrates separate image processing
steps into an automated pipeline. From image/metadata inputs, cmIF automatically generates
custom inputs for each module and starts batch/parallel processing. C. Visualization. A Jupyter
notebook enables the user to efficiently set manual intensity thresholds and visualize the results.
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3 Results

To illustrate the functionality of our library, we processed a medium-sized dataset
comprised of five core-needle biopsy samples, acquiring full scans of twelve 5-channel
rounds of staining, and two 5-channel background rounds. In total, we generated data
for 48 biomarkers and 8 background images in each tissue sample.

3.1 Quality Control

In our example dataset, we used cmIF to perform quality control. We identified the
following QC issues in a total of 685 grayscale images from 137 separate 5-channel
scans: swapped images (3), missing images (4), poor cropping of tissue borders (2),
out-of-focus scans (3), poorly-exposed scans (1), mis-registration (2) and non-standard
biomarker names (4). While the rates of manually (17/19) and algorithmically (2/19)
introduced errors can differ between operators and datasets, it is important to identify
potential errors while documenting their occurrence and correction. cmIF accomplishes
this in minutes, while a manual check of the images would take significantly longer and
might fail to detect problems.

3.2 Metadata Extraction and Autofluorescence Subtraction

Metadata tracking is an important part of pipeline functionality. Although imaging
systems store imaging parameters in proprietary file formats, this information is lost
upon export of images to standard formats, i.e. tiff, for processing. Using cmIF, we read
metadata directly from proprietary files and extracted the desired information. In our
dataset, we read 355 exposure times from Zeiss.czi’s, and found one differing from the
manually recorded time. Exposure times impact scaling for background subtraction as
well as normalization for quantitative comparison across datasets.

Following acquisition of the correct exposure times, we scaled each image by
exposure time and performed autofluorescence subtraction. Visual inspection of the
images allowed us to determine the optimal channels to use as background, which
could be either quenched images (N = 3), failed stains (N = 3) or none (N = 1).
Importantly, cmIF allows complete control over specification of which channel should
be designated as background for each individual channel/marker, and documents this
choice.

3.3 Pipeline Operations

In our case and others, it is necessary to use custom algorithms for stitching, regis-
tration and segmentation. Our workflow uses in-house Matlab code for registration and
an in-house Java-based software for single-cell segmentation and feature extraction.
cmIF is specific to these elements but can be modified to integrate other custom
algorithms.

Our pipeline starts with registration of images generated by repeated rounds of
multi-channel imaging. Previously it was necessary to manually edit and run a separate
Matlab script to register images for each tissue. cmIF automatically edits these scripts
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and starts the registration jobs in parallel. It also documents all parameters, such as
coordinates for tiling large (>4 GB) images and the reference round for registration.

Single-cell segmentation and feature extraction, similar to registration, previously
required the manual input of each biomarker name and subcellular localization, staining
round, microscope channel and exposure time, and intensity threshold. These inputs
had to be prepared separately for each tissue, which became unmanageable as we
scaled to dozens and hundreds of tissues. cmIF’s preprocess module automatically
extracts metadata, including biomarker name and exposure time, and generates the
necessary documents for each segmentation job. Another function allows rapid
screening and documentation of intensity thresholds (check_seg_markers). Automation
of these tasks dramatically improves efficiency and reduces errors. Following seg-
mentation and feature extraction, we convert custom outputs into our standardized
output, which is returned to cmIF for downstream processing (Fig. 1B).

3.4 Visualization and Cell Classification

An important problem following extraction of single-cell features is cell classification.
We created a Jupyter notebook allowing interactive visualization of manual gating
results. Due to the inherent limitations in displaying full resolution image data in real
time, we opted to visualize cell identity and location in tissue as a scatterplot (Fig. 1C).
This allows thresholds to be quickly updated and visualized across dozens of markers
and tissues. Our scatterplot visualizations may be combined with existing image
viewers (ImageJ, Zeiss Zen, etc.) for visualization of images. Another feature facili-
tating fast visualization is a function in mpimage that converts images to 8 bit depth
and makes custom overlays of multipage tiffs that can be viewed with standard soft-
ware (Fig. 1C).

3.5 Scalability

To demonstrate the power of our automated processing pipeline, we analyzed a large
dataset comprised of 424 breast cancer tissues arrayed in four separate tissue
microarrays (TMAs). The total number of images collected in just two experiments was
over 23,000. While manual processing and QC of our previously discussed biopsy
dataset is possible, this TMA dataset illustrates the need for automated processing. We
performed automated QC on the images and after excluding all tissues with any tissue
loss or other imaging issues over 11 rounds of staining, we went on to analyze 163
tissues. Using our Jupyter notebook for efficient manual gating, we set thresholds on
3,586 separate images, and generated single cell positive/negative calls for 1,185,286
total cells. While processing took *3 weeks of total time for one student, generation of
such a large dataset would not be possible without an automated pipeline.

3.6 Code Availability

All source code and documentation, and an example pipeline scripts and dataset are
available free and open-source under GPL v3 license at https://gitlab.com/engje/cmif.
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4 Discussion

We offer a solution that integrates and automates multiplex image analytics to obtain
single-cell classification and localization for deep understanding of normal and dis-
eased tissues. Our lab has roughly 5 years of experience with generation of multiplex
images using the cyclic immunofluorescence method [2, 3] and 2 years of experience
with image processing, including a transition from a manual to an automated pipeline.
Accordingly, we offer tools addressing often ignored, non-trivial problems such as
automation, QC, background subtraction, incorporation of custom algorithms, and
efficient visualization.

Limitations of our pipeline include the necessity for familiarity with Python and the
command line interface. However, this enables programmatic control of highly
repetitive processes and facilitates better documentation and reproducibility than cur-
rent software solutions (https://www.akoyabio.com, http://www.qi-tissue.com). Other
limitations include the need for users to customize functions for their own datasets, e.g.
to parse filenames or include other registration or segmentation algorithms. However,
we include functions in our mpimage module that work on different grayscale image
types, as well as a general filename parsing function that has been successfully adopted
by collaborators. We expect that groups adopting our software tool will experience
improved workflow efficiency and achieve their scientific aims faster and more easily.

Financial Supports. NIH/NCI U54 CA209988, NIH/NCI U2C CA233280, Prospect Creek
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Abstract. We propose a Bayesian method termed MultiMuC for accu-
rate detection of somatic mutations (mutation call) from multi-regional
tumor sequence data sets. To improve detection performance, our method
is based on the assumption of mutation sharing: if we can predict at
least one tumor region has the mutation, then we can be more confi-
dent to detect a mutation in more tumor regions by lowering the original
threshold of detection. We find two drawbacks in existing methods for
leveraging the assumption of mutation sharing. First, existing methods
do not consider the probability of the “No-TP (True Positive)” case:
we could expect mutation candidates in multiple regions, but actually,
no true mutations exist. Second, existing methods cannot leverage scores
from other state-of-the-art mutation calling methods for a single-regional
tumor. We overcome the first drawback through evaluation of the prob-
ability of the No-TP case. Next, we solve the second drawback by the
idea of Bayes-factor-based model construction that enables flexible inte-
gration of probability-based mutation call scores as building blocks of
a Bayesian statistical model. We empirically evaluate that our method
steadily improves results from mutation calling methods for a single-
regional tumor, e.g., Strelka2 and NeuSomatic, and outperforms existing
methods for multi-regional tumors through a real-data-based simulation
study. Our implementation of MultiMuC is available at https://github.
com/takumorizo/MultiMuC.

1 Introduction

The process of genomic alteration is one of the most important factors for car-
cinogenesis. Acquired somatic mutations, together with individual germline vari-
ations, have a large effect on cancer evolution. By obtaining accurate genomic
c© Springer Nature Switzerland AG 2019
G. Bebis et al. (Eds.): ISMCO 2019, LNCS 11826, pp. 47–61, 2019.
https://doi.org/10.1007/978-3-030-35210-3_4
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alteration profiles, we can estimate the cause of cancer for individual patients
and search for optimal therapies. Thus, mutation calling from sequence data
sets has become a fundamental analysis in cancer therapy and research. An
enormous number of studies [1–8] have been conducted to improve the perfor-
mance of single-tumor-based mutation call, i.e., mutation call from a tumor and
a matched normal sequence data set, and the performance of mutation call is
updated annually by modeling properties of raw sequence data sets in more
sophisticated manners. Strelka2 and OHVarfinDer construct Bayesian statistical
models to utilize sequence data specific properties. DeepVariant [9] is a convo-
lutional neural network (CNN) based method for detecting germline mutations
and able to learn the properties in any sequence data platform. NeuSomatic
is also a CNN based method for somatic mutation call, which is motivated by
DeepVariant.

Mutation profiles from multi-regional tumor sequencing data sets give helpful
information to understand the tumor evolutionary process and the intratumoral
heterogeneity. In order to detect subclonal mutations with lower variant allele fre-
quencies, researchers have developed mutation calling methods that are suitable
for multi-regional tumor data sets. There are mainly two types of approaches for
multi-regional mutation call. The first type of the methods [10–13] consider the
property of tumor phylogenetic tree and clonal populations. The second type [14]
focused on the sharing assumption of mutation across multiple samples, defined
in Sect. 2.1. For these multi-regional mutation calling methods, comprehensive
performance evaluations were conducted in recent reports [15].

Although one of the existing methods of multiSNV is based on the shar-
ing assumption of mutation and improved the performance of mutation call,
there are still two drawbacks. First, multiSNV does not consider the “No-TP
case”: even if we could detect mutation candidates in multiple regions, no true
mutations exist, unfortunately. We will define No-TP case in Sect. 2.2. Second,
detection of a mutation for each tumor region in multiSNV is based on scores
from a set of pre-defined generative models and cannot leverage scores from
other state-of-the-art mutation calling methods for a single-regional tumor.

Here, we propose a Bayesian method of MultiMuC for multi-regional muta-
tion call. Our method has two defining characteristics. First, our method avoids
the No-TP case by leveraging the specificity of detection and the number of
detected candidates. We evaluate the probability of the No-TP case and investi-
gate that the probability decreases as the specificity of detection or the number
of detected candidates increases. Second, our method can incorporate scores
from state-of-the-art mutation calling methods as long as these scores are based
on probabilities, i.e., Bayes factors [16] or posterior probabilities. We investi-
gate that Bayes factors provide sufficient information for maximum a posteri-
ori (MAP) estimate even if data generation probabilities for each data set are
not available. We demonstrate that our method improves the original detection
performance in state-of-the-art mutation calling methods for a single-regional
tumor through real-data-based (TCGA 4 mutation calling benchmark datasets)
sequence data simulation and outperforms existing multi-regional mutation call-
ing methods.
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2 Methods

2.1 The Mutation Sharing Assumption

Here, we explain the mutation sharing assumption that is leveraged to improve
the performance of multi-regional mutation call. We assume that there are N
sequence data sets {Di}i=1,··· ,N and latent variables {Xi}i=1,··· ,N (Xi ∈ {0, 1})
express the existence of a mutation at i-th data set and C ∈ {0, 1} represents
the existence of the mutation at least one data set and {Vi}i=1,··· ,N (Vi ∈ R)
are the scores from single-tumor-based mutation call. The concept of the muta-
tion sharing assumption for mutation call can be summarized in the following
assumption.

Assumption 1 (The mutation sharing assumption)

∀v ∈ R,∃w < v s.t. e(w|C = 1) = e(v), r(w) > r(v),
where

e(v) :=
1
N

N∑

i=1

Pr(Xi = 1|Vi > v) (Precision on average)

e(v|C = c) :=
1
N

N∑

i=1

Pr(Xi = 1|Vi > v,C = c) (Precision given C)

r(v) :=
1
N

N∑

i=1

Pr(Vi > v|Xi = 1) (Recall on average)

V2V1 V3

· · ·
VN

· · ·

f1 f2 f3 fN

Pr(X1, · · · , XN )

X1 X2 X3 XN

fi := Pr(Vi|Xi)

Fig. 1. Graphical representation of the assumed stochastic dependence between
{Xi}i=1,··· ,N and {Vi}i=1,··· ,N . In this assumed stochastic dependence, we do not set
any independence of prior distribution in Pr({Xi}i=1,··· ,N ) and only assume that each
Vi is dependent on the corresponding Xi.
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According to this assumption, if we know (or predict with high confidence)
the existence of a mutation in at least one tumor data set (C = 1), then we can
improve recall from r(v) up to r(w) by lowering the threshold from v down to w
with constant precision e(w|C = 1) = e(v). Based on this idea, multiSNV [14] has
succeeded in performance improvement. The assumption reflects on the increase
of posterior odds as described in Appendix A.1.

2.2 The Probability of the No True Positive (No-TP) Case

We focus on the No-TP cases that cause performance degradation. We define
the No-TP case for v detection threshold and M candidate number as the case
in which the mutation does not truly exist in any region, even if M candidate
mutations are found by the threshold value of v. Under the No-TP case, we
cannot obtain any true mutations by lowering the threshold and obtain only
false positives instead, thereby negatively affecting the performance of detection.
For simplicity, we assume that V1 ≥ V2 · · · ≥ VN and we define the probability
of the No-TP case as follows.

Pr(X1 = 0, · · · ,XN = 0|V1 > v, · · · , VM > v, VM+1 ≤ v, · · · , VN ≤ v) (1)

To evaluate the probability, we assume the stochastic dependence as shown
in the graphical model of Fig. 1. In this setting, we do not set any restriction
for stochastic dependence between X1, · · · ,XN and only assumes the following
conditional independence between V1, · · · , VN .

Pr(V1, · · · , VN |X1, · · · ,XN ) =
N∏

i=1

Pr(Vi|Xi) (2)

To sketch our idea, we evaluate the probability of the No-TP case when M = N .

Pr(X1 = 0, · · · ,XN = 0|V1 > v, · · · , VN > v)
∝ Pr(X1 = 0, · · · ,XN = 0, V1 > v, · · · , VN > v)
= Pr(X1 = 0, · · · ,XN = 0)Pr(V1 > v, · · · , VN > v|X1 = 0, · · · ,XN = 0)

= Pr(X1 = 0, · · · ,XN = 0)
N∏

i=1

Pr(Vi > v|Xi = 0) ∵) Eq. (2)

= Pr(X1 = 0, · · · ,XN = 0)
N∏

i=1

(1 − si(v)), (3)

where si(v) := Pr(Vi ≤ v|Xi = 0) corresponds to the specificity. Therefore from
Eq. (3), we can decrease the probability of the No-TP case by increasing the
number of mutation candidates M (= N) or improving the specificity si(v). In
Appendix A.2, we evaluate the probability in the other case of M < N .
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2.3 Leveraging Scores from Other Methods for Bayesian Models

We propose an idea to leverage probabilistic scores from other state-of-the-art
mutation calling methods for a single-regional tumor to construct a Bayesian
hierarchical model for multi-regional tumors.

We can see that data generation probabilities given dependent latent vari-
ables can be used as building blocks to construct a Bayesian hierarchical model.
For example of Fig. 2, if we can borrow P (Di|Xi = Tumor) and P (Di|Xi =
Error) as building blocks, then we only need to additionally build the stochas-
tic dependence of latent variables {Xi}i=1,··· ,N to construct the full Bayesian
models.

Fig. 2. Summary for usage of probability-based outputs to construct Bayesian models
from mutation calling methods for a single-regional tumor.

Although we would like to use the data generation probabilities given depen-
dent latent variables from this idea, e.g., Pr(Data|Error) and Pr(Data|Tumor)
defined in mutation calling methods for each region of tumor, such probabili-
ties are not available in most cases. On the other hand, alternative values, e.g.,
Bayes factors or posterior probabilities are available as mutation calling scores
from state-of-the-art methods, e.g., Strelka2 and NeuSomatic. In the following
sections, we will demonstrate how Bayes factors and posterior probabilities can
be used as building blocks to construct a Bayesian model (Fig. 2). First, we will
show how to extract equivalent information to the data generation probabilities
from Bayes factors by considering maximum a posteriori (MAP) state (Fig. 2A)
through introducing a toy example model. Next, we will show how to convert
posterior probabilities to Bayes factors (Fig. 2B).
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Data Generation Probabilities from Bayes Factors. We show that
Bayes factors are sufficient for MAP estimate for a toy example of stochastic
models even when full data generation probabilities of Pr(Data|Tumor) and
Pr(Data|Error) are not given.

For this example, we assume the stochastic model as shown in Fig. 3. S ∈
{0, 1} represents the existence of tumor cells and Yi ∈ {0, 1} represents the
existence of mutation at the i-th data set Di. The Bayes factor for the i-th data
set is defined as the ratio of the marginal likelihood and Pcall is defined in a
single-tumor-based mutation calling method.

BFi :=
Pcall(Di|Yi = 1)
Pcall(Di|Yi = 0)

(4)

Di

Yi

S

i = 1, · · · , N

Fig. 3. A toy example model for multiple tumor samples. S ∈ {0, 1} represents the
existence of tumor cells and Yi ∈ {0, 1} represents the existence of mutation at i-th
data set Di.

We assume that each data generation probability is a positive value for any
observed data point Di.

Pcall(Di|Yi = 1) > 0, Pcall(Di|Yi = 0) > 0 (5)

We consider two settings of probability distributions for this toy example model
and denote the first setting as P (1)(·) and the second setting as P (2)(·). For both
settings, we assume common distributions for S and Yi.

Pr(1)(S) = Pr(2)(S) = Ber(S|f1)
Pr(1)(Yi|S) = Pr(2)(Yi|S) = Ber(Yi|f2)S · Ber(Yi|f3)(1−S)

where Ber(·|f) means the probability mass function of Bernoulli distribution
with a frequency of f and we set 0 ≤ f1, f2, f3 ≤ 1. In the first setting at
Eq. (6), we use both the numerator and denominator in each Bayes factor to
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define the distributions. In the second setting at Eq. (7), we only use Bayes
factors and supplement the distributions with a pre-defined positive constant p
for all the data index i.

Pr(1)(Di|Yi = 0) = Pcall(Di|Yi = 0), P r(1)(Di|Yi = 1) = Pcall(Di|Yi = 1) (6)

Pr(2)(Di|Yi = 0) = p, Pr(2)(Di|Yi = 1) = p · BFi (0 < p) (7)

As shown in the following lemma, this difference in setting the probability distri-
bution does not affect the MAP state of the latent variable S and Yi. Therefore,
Bayes factors give sufficient information on data generation probabilities for
MAP inference of the latent state for some models of stochastic dependence.

Lemma 1 (Unchanged MAP state).

arg max
S,Y

Pr(1)(S,Y |D) = arg max
S,Y

Pr(2)(S,Y |D),

where
Y := (Y1, · · · , YN ), D := (D1, · · · ,DN ) .

Proof. It is sufficient if we can show that the following conditions hold true.

· Pr(1)(S, {Di, Yi}i) > 0 ⇐⇒ Pr(2)(S, {Di, Yi}i) > 0 (Same support region)

· Pr(1)(S′, {Di, Y
′
i }i) > 0, P r(1)(S, {Di, Yi}i) > 0

⇒ Pr(1)(S′, {Di, Y
′
i }i)

Pr(1)(S, {Di, Yi}i)
=

Pr(2)(S′, {Di, Y
′
i }i)

Pr(2)(S, {Di, Yi}i)
(Same probability ratio)

The first condition is satisfied from Eq. (5) and 0 < p.
For the second condition, we can show the condition by substitution. 
�

Bayes Factors from Posterior Probabilities. Some methods, e.g., Strelka2
and NeuSomatic return the output of posterior event probabilities. We can con-
vert the posterior event probabilities to Bayes factors by setting the prior event
ratio, e.g., Pr(tumor)/Pr(error) = 1 used in this paper.

BF =
Pcall(tumor|D)

Pcall(error|D)

Pr(error)

Pr(tumor)
=

Pcall(tumor|D)

1 − Pcall(tumor|D)

Pr(error)

Pr(tumor)
(8)

2.4 Bayesian Statistical Model in MultiMuC

Based on the ideas shown above, we constructed the Bayesian statistical method
named as MultiMuC and the graphical summary of MultiMuC is shown in Fig. 4.

Our method is composed of an evidence generation model and a data gener-
ation model as shown in the left part and the right part in Fig. 4 respectively.
For the evidence generation model, Ei,j represents the i-th evidence around the
j-th somatic mutation, Zi,j ∈ {0, 1} represents the existence of the j-th somatic
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Tj

Zi,j

Ei,j

Yi,j

Di,j

Sj

i i
i = 1, · · · , N : Tumor data index.
j = 1, · · · , G : Mutation candidate index.

Fig. 4. Graphical summary of MultiMuC. i represents the location index of tumor
sequence data and j represents the index of mutation candidate. The left side of the
figure shows the evidence generation model and the right side of the figure shows the
data generation model.

mutation at the i-th evidence, and Tj ∈ {0, 1} represents the existence of the j-
th somatic mutation for at least one evidence. The distributions of these random
variables are set as follows.

Pr(Tj) = Ber(·|0.5)

Pr(Zi,j |Tj) = Ber(·|ε)1−Tj · Ber(·|0.5)Tj

Pr(Ei,j |Zi,j) = 11−Zi,j · H
Zi,j

i,j

Hi,j is the Bayes factor and we can detect a mutation with high specificity if
Hi,j > 1. ε(≈0) corresponds to the false-positive rate (equal to 1−specificity) for
this Bayes factor of Hi,j .

For the data generation model, Di,j represents the i-th data set around the j-
th mutation candidate, Yi,j ∈ {0, 1} represents the existence of the j-th somatic
mutation at the i-th data set and Sj ∈ {0, 1} represents the existence of the j-th
somatic mutation for at least one data set. The distributions of these random
variables are set as follows depending on Tj .

Pr(Sj |Tj) = Ber(·|0.5)1−TjBer(·|pcon)Tj

Pr(Yi,j |Sj) = Ber(·|δ)1−Sj · Ber(·|0.5)Sj

Pr(Di,j |Yi,j , Sj , Tj) = 11−Yi,j
(
Li,j · 10θTj · 10ρSj

)Yi,j

Li,j is the Bayes factor that is generally used and δ corresponds to its false
positive rate. 10θ(>1) lowers the threshold of Bayes factors when the presence
of a mutation can be predicted with high specificity (Tj = 1). 10ρ(>1) also lowers
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the threshold of Bayes factors when the presence of a mutation can be predicted
from the usual result (Sj = 1). pcon(≈1) is the consistency rate from Tj = 1 to
Sj = 1. In this paper, we used the following setting of hyperparameters: ε = 0.2,
δ = 0.02, θ = 0.5, ρ = 0.1 and pcon = 0.999.

In this method we estimate the MAP state by MCMC [17] for each position
j and use Y ′

i,j for mutation call.

Y ′
j ,Z′

j , S
′
j , T

′
j = arg max

Y ′
j ,Z ′

j ,S′
j ,T ′

j

Pr(Y ′
j ,Z′

j , S
′
j , T

′
j |D·,j , E·,j)

(Y ′
j := (Y ′

1,j , · · · , Y ′
N,j), Z

′
j := (Z ′

1,j , · · · , Z ′
N,j))

Preparation of Bayes Factors. This method requires Bayes factors with high
specificity in addition to the usual Bayes factor results. For preparation of these
Bayes factors, we set threshold values and multiplied the original Bayes factor
by the inverse number of the threshold as follows.

Hi,j = BFi,j · 10−1.5, Li,j = BFi,j · 10a, (9)

where BFi,j is the original Bayes factor outputs generated by the single-tumor-
based method and 10−a corresponds to the general threshold value for the Bayes
factors. For mutation calling with high specificity, we set 101.5 as the threshold
value. For MuTect2, we conducted a = a − 6.3 because of the default threshold
setting in MuTect2.

Fig. 5. Examples of simulated clonal mixture rates. (A) illustrates the case of α = 0.01
and (B) illustrates the case of α = 0.1, and (C) illustrates the case of α = 0.2.

3 Results

3.1 Simulation Experiments Based on Real Data Sets

We evaluated MultiMuC performance by simulating multiple tumor sequence
datasets. To do this, we used multiple settings for both the tumor phyloge-
netic tree and the mixture rate of clones, where a clone means a type of tumor
cell population. These datasets were prepared in 24 different configurations.
Figures 5 and 6 show the examples of the mixture composition rates and tumor
phylogenetic trees that were used. The simulation procedures were as follows.
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Fig. 6. Simulated trees used for evaluations. Each numbered node corresponds to a
clone (a type of tumor cell population) and each edge corresponds to a non-empty set
of somatic mutations. For each simulated data set, we sampled a mixture rate of clones
and simulated bulk sample data sets.

(1) Collect true somatic mutations and sequence errors from a single pure tumor
(=toriginal) and a matched pure normal (=noriginal) data set.

(2) Filter out true mutations with allele frequencies of <30% or >70% for allele
frequencies to decrease from ∼50% following the phylogenetic tree.

(3) Generate a random phylogenetic tree T .
(4) Randomly relate each somatic mutation with an edge of the tree T .
(5) For each tumor simulation data set, we generated reads as follows for 10

tumor data sets.
(5-a) Sample a mixture rate of clones pmix ∼ Dirichlet(·|(α, · · · , α)).
(5-b) For each true somatic mutation s, calculate the total population of

clone ptumor =
∑

i∈A pmix,i, A := {i|i-th clone has mutation s}.
(5-c) Collect reads around the true somatic mutation of s from toriginal at

the down sampling rate of ptumor and from noriginal at the rate of
1 − ptumor.

(5-d) For each error position e, sample an error rate perror ∼
Beta(·|0.1, 0.1).

(5-e) Collect reads around the error position of e from toriginal at the rate
of perror and from noriginal at the rate of 1 − perror.

For toriginal and noriginal, we used real data sets from TCGA 4 mutation
calling benchmark datasets (https://gdc.cancer.gov/resources-tcga-users/tcga-
mutation-calling-benchmark-4-files).

Performance Comparison. We conducted a performance comparison based
on F-measure. We used Strelka2, MuTect2, NeuSomatic and OHVarfinDer
as Bayes factor inputs. For the counterpart method, we prepared multiSNV
and treeomics. We summarized the F-measures of these methods at a =
0.0 in Fig. 7. In this figure, +M indicates that our method was used. Our
method steadily contributes to performance improvement for Strelka2, Neu-
Somatic and OHVarfinDer and does not cause performance degradation for

https://gdc.cancer.gov/resources-tcga-users/tcga-mutation-calling-benchmark-4-files
https://gdc.cancer.gov/resources-tcga-users/tcga-mutation-calling-benchmark-4-files
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Fig. 7. The summary of F-measures at a = 0.0. 10−a is the Bayes factor threshold
for mutation call as shown in Eq. (9). +M represents the use of MultiMuC, and an
orange-colored circle represents a positive difference of F-measures on average with
a P-value less than 0.01 (two-sided paired t-test). (A) represents the summary of F-
measure with the threshold at a = 0.0. (B) represents the difference of F-measure by
applying MultiMuC with the threshold at a = 0.0.

Fig. 8. Summary of recalls in the original mutation calling methods at different default
threshold values of 10−a, where a ∈ {−1.0, −0.5, 0.0, 0.5, 1.0}. (A) at Strelka2. (B) at
MuTect2. (C) at NeuSomatic. (D) at OHVarfinDer.
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MuTect2 (Fig. 7B). Furthermore, the combined output of our method and single-
tumor-based methods outperformed both multiSNV and treeomics (Fig. 7A).
The reason for no statistically significant performance gain in MuTect2 may be
due to the increase of recalls at MuTect2 being smaller than that of the other
methods used, as shown in Fig. 8.

4 Conclusions

In this paper, we propose a Bayesian method for multi-regional mutation call
based on the mutation sharing assumption with two characteristics. First, our
method avoids the No-TP case by considering both the specificity of detection
and the number of detected candidates to avoid performance degradation. Sec-
ond, our method can incorporate scores from state-of-the-art mutation calling
methods for a single-regional tumor if scores are based on probabilities except for
P-values. This improvement for the performance of mutation call will contribute
to an improved inference of tumor phylogeny.

For future work, there remains at least one interesting extension of this
method to be explored. With this method, we can use the outputs of single-
tumor-based methods if posterior event probability, or a Bayes factor, is avail-
able. However, our method cannot handle P-value-based outputs of some single-
tumor-based methods [1,4,18–20] although P-value is a useful measure for deci-
sion making.
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A Appendix

A.1 Increasing Posterior Odds Score of Mutation Call Given C = 1

In the main text, we mentioned the assumption that lowering the threshold of
scores given C = 1 leads to performance improvement at Sect. 2.1. Here, we show
that the assumption is based on an increase of posterior odds for mutation call.
We assume that each score is represented by posterior odds form Vi := Pr(Xi =
1|Di)/Pr(Xi = 0|Di). If we observe C = 1 in addition to the observed sequence
data set, the true posterior odds can be represented as follows.

V ′
i :=

Pr(Xi = 1|C = 1,Di)
Pr(Xi = 0|C = 1,Di)

=
Pr(Xi = 1, C = 1,Di)
Pr(Xi = 0, C = 1,Di)

=
Pr(Xi = 1|C = 1)
Pr(Xi = 0|C = 1)

Pr(Di|Xi = 1, C = 1)
Pr(Di|Xi = 0, C = 1)

The true posterior odds is greater than the original posterior odds as shown in
the following lemma.
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Lemma 2 (Increasing posterior odds).

If Pr(Di|Xi, C) = Pr(Di|Xi), 0 < Pr(C = 0) < 1, and Vi, V
′
i ∈ R, then V ′

i > Vi .

Proof.

It is sufficient to show that the following condition holds true.

· Pr(Xi = 1|C = 1)
Pr(Xi = 0|C = 1)

>
Pr(Xi = 1)
Pr(Xi = 0)

The condition can be proved by evaluating Pr(Xi = 1) and Pr(Xi = 0) as
follows.

Pr(Xi = 1)
= Pr(Xi = 1|C = 1)Pr(C = 1) + Pr(Xi = 1|C = 0)Pr(C = 0)
= Pr(Xi = 1|C = 1)Pr(C = 1) (∵ Pr(Xi = 1|C = 0) = 0)
Pr(Xi = 0)
= Pr(Xi = 0|C = 1)Pr(C = 1) + Pr(Xi = 0|C = 0)Pr(C = 0)
= Pr(Xi = 0|C = 1)Pr(C = 1) + Pr(C = 0) (∵ Pr(Xi = 0|C = 0) = 1)
> Pr(Xi = 0|C = 1)Pr(C = 1) (∵ 0 < Pr(C = 0) < 1)

By using the above evaluations, we can show Pr(Xi=1|C=1)
Pr(Xi=0|C=1) > Pr(Xi=1)

Pr(Xi=0) .
From this condition and the given hypothesis,

V ′
i =

Pr(Xi = 1|C = 1)

Pr(Xi = 0|C = 1)

Pr(Di|Xi = 1, C = 1)

Pr(Di|Xi = 0, C = 1)
>

Pr(Xi = 1)

Pr(Xi = 0)

Pr(Di|Xi = 1)

Pr(Di|Xi = 0)
= Vi


�

A.2 The Probability of No-TP Case in General

Here, we evaluate the probability of the No-TP case when M < N . For sim-
plicity, we define variables and relational operators between vector and scalar.
For Eq. (10), we also define similar relational operators for ≥, <,≤,= between
vector and scalar.

V := (V1, · · · , VM ), ˜V := (VM+1, · · · , VN ),X := (X1, · · · , XM ), ˜X := (XM+1, · · · , XN ),

u > v ⇐⇒ ui > v (∀i) (10)
u �= v ⇐⇒ ui �= v (∃i)

The probability of the No-TP case can be represented as follows.

Pr(X = 0, X̃ = 0|V > v, Ṽ ≤ v) (11)
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For Pr(V > v, Ṽ ≤ v), we can obtain a lower bound as follows.

Pr(V > v, ˜V ≤ v)

=
∑

X ,˜X

Pr(X , ˜X)Pr(V > v, ˜V ≤ v|X , ˜X)

=
∑

X ,˜X

Pr(X , ˜X)
M
∏

i=1

Pr(Vi > v|Xi)
N
∏

k=M+1

Pr(Vk ≤ v|Xk) (∵ Eq. (2))

=
∑

X ,˜X

Pr(X , ˜X)
M
∏

i=1

(1 − si(v))1−XiRi(v)Xi

N
∏

k=M+1

sk(v)1−Xk(1 − Rk(v))Xk

≥ Pr(X = 1, ˜X = 0)

M
∏

i=1

Ri(v)

N
∏

k=M+1

sk(v) =: A, (12)

where Ri(v) := Pr(Vi > v|Xi = 1) corresponds to recall.
From Eq. (12), if A > 0, we can derive an upper bound for Eq. (11) as follows.

Pr(X = 0, X̃ = 0|V > v, Ṽ ≤ v) =
Pr(X = 0, X̃ = 0,V > v, Ṽ ≤ v)

Pr(V > v, Ṽ ≤ v)

≤ min

(
1,

P r(X = 0, X̃ = 0)
∏M

i=1(1 − si(v))
∏N

k=M+1 sk(v)

Pr(X = 1, X̃ = 0)
∏M

i=1 Ri(v)
∏N

k=M+1 sk(v)

)

= min

(
1,

P r(X = 0, X̃ = 0)

Pr(X = 1, X̃ = 0)

M∏

i=1

1 − si(v)
Ri(v)

)
(13)

From Eq. (13), as the specificity increases, the probability of the No-TP case
also decreases when M < N .
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Abstract. Machine learning (ML) methods are still rarely used for gene
expression/mutation-based prediction of individual tumor responses on anti-
cancer chemotherapy due to relatively rare clinical case histories supplemented
with high-throughput molecular data. This leads to high vulnerability of most
ML methods are to overtraining. Recently, we proposed a novel hybrid global-
local approach to ML termed FLOating Window Projective Separator (FloWPS)
that avoids extrapolation in the feature space and may improve robustness of
classifiers even for datasets with limited number of preceding cases. FloWPS
has been validated for the support vector machines (SVM) method, where if
significantly improved the quality of classifiers. The core property of FloWPS is
data trimming, i.e. sample-specific removal of features. The irrelevant features in
a sample that don’t have significant number of neighboring hits in the training
dataset are removed from further analyses. In addition, for each point of a
validation dataset, only the proximal points of the training dataset are taken into
account. Thus, for every point of a validation dataset, the training dataset is
adjusted to form a floating window. Here, we applied this approach to seven
popular ML methods, including SVM, k nearest neighbors (kNN), random forest
(RF), Tikhonov (ridge) regression (RR), binomial naïve Bayes (BNB), adaptive
boosting (ADA) and multi-layer perceptron (MLP). We performed computa-
tional experiments for 21 high throughput clinically annotated gene expression
datasets totally including 1778 cancer patients who either responded or not on
chemotherapy treatments. The biggest dataset had samples for 235, whereas the
smallest for 41 individual cases. For global ML methods, such as SVM, RF,
BNB, ADA and MLP, FloWPS essentially improved the classifier quality.
Namely, the area under the receiver-operator curve (ROC AUC) for the
responder vs non-responder classifier, increased from typical range 0.65–0.85 to
0.80–0.95, respectively. On the other hand, FloWPS was shown useless for
purely local ML techniques such as kNN method or RR. However, both these
local methods exhibited low sensitivity or specificity in cases when false pos-
itive or false negative errors, respectively, should be avoided. According to
sensitivity-specificity criterion, for all the datasets tested, the best performance
in combination with FloWPS data trimming was shown for the binomial naïve
Bayesian method, which can be valuable for further development of predictors
in personalized oncology.
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1 Background

Personalized medicine (PM) approach in clinical oncology provides important advan-
tages including improved patient survival and lower side toxicities of drugs [1, 2].

Using transcriptomic data, bioinformatic models can be built for patient-oriented
ranking of cancer drugs [3]. These models can be hypothesis-driven, based on the
assumptions how drug activity should be connected with molecular features within the
tumor [4–6]. Alternatively, non-hypothesis-driven approaches including machine
learning (ML) don’t need any theory providing a link between the molecular profiles
and drug efficiencies but strongly require sufficient training and validation datasets.

Although some ML methods have recently been successfully applied for distin-
guishing between cancer patients with positive and negative response to certain
treatment methods [7–10], even these modern sophisticated techniques were not so
successful (AUC < 0.66) in prediction of clinical outcome for large datasets, e.g. for
multiple myeloma treatment with bortezomib [11].

From the other side, recently we have suggested another approach to ML [3, 12–15],
which is called flexible data trimming. Our data trimming approach avoids it by using
the rectangular projections along all irrelevant expression features that cause extrapo-
lation during the ML-based predictions for every validation point. Moreover, for each
point of a validation dataset, it takes into account only the proximal points of the training
dataset. Thus, for every point of a validation dataset, the training dataset is adjusted to
form a floating window, and that is why the ML scheme with flexible data trimming was
alternatively called FLOating Window Projective Separator, FloWPS [15].

In the pilot trial [15], FloWPS provided surprisingly high performance for the
classifiers: AUC > 0.7 for leave-one-out scheme for all datasets, including the multiple
myeloma dataset with 169 patients, where responders and non-responders to borte-
zomib treatment are generally seem poorly separable using the omics data [11]. In the
current work, we will consider its application for other ML methods.

2 Results

2.1 Principles of Flexible Data Trimming

Our data trimming method was applied to classify the clinical response of cancer
patients to certain chemotherapy treatment using a training dataset with the gene
expression/mutation profiles linked to known response for the same treatment of same
disease. Since the number of patients with annotated case histories (when treatment
method and its clinical success is known, together with the high-throughput gene
expression/mutation profile) is limited, we have tailored the whole data trimming
scheme to match the leave-one-out (LOO) methodology.
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This LOO approach in our flexible data trimming is employed three times [3, 15]:

– first, it helped us to specify the core marker gene sets, which form the feature space
F = (f1, …, fS) for subsequent application of data trimming;

– second, it was applied for every ML prediction act for the wide range of data
trimming parameters, m and k;

– third, it was used for the final prediction of the treatment response for every patient
and optimized (for all remaining patients) values of parameters m and k.

Imagine that we have to classify the clinical response for a certain patient i (called
patient of interest) from a given dataset using the most relevant information, i.e.
avoiding extrapolation in the feature space and neglecting the preceding cases, which
are too distant from the patient of interest. Let the whole dataset contain N patients, so
that the remaining N–1 patients form the preceding dataset Di, for the patient of
interest. For ML without data trimming, in the feature space F = (f1, …, fS) all N–1
remaining patients are used to build the classifier.

Let us now trim this preceding dataset. First, perform the LOO procedure for
prediction of treatment response within the preceding dataset, which has N–1 patients.
To classify every patient j from the preceding dataset Di, N–2 remaining patients may
be used. To avoid extrapolation in the feature space, let us select the subset of Fij of
relevant features [15]. A feature fs is considered relevant for the patient j if on its axis
there are at least m projections from N–2 training samples, which are larger than fs(i,j),
and, at the same time, at least m, which are smaller than fs(i,j), when m is a non-
negative integer parameter. Note that the relevant subset Fij(m) is individual for every
patient i and j [15].

Next, in the space of relevant features Fij (m) we keep for training only k samples
closest to sample j, from given (N–2) patients, except i and j; k is also an integer
parameter. As a measure for proximity, the Euclidean distance was used, both previ-
ously [15] and now. Thus, the k parameter specifies the number of nearest neighbors in
the subspace of selected features. Although this approach seems quite similar to rel-
atively simple k nearest neighbors (kNN) ML method [16], unlike the kNN, where k is
relatively small and does not usually exceed 20, for our data trimming method we
found reasonable making the k value higher [15].

After selection of relevant features and nearest neighbors for the patient j, the ML
model is trained using nearest neighbors only, and used for prediction of a clinical
response, Pij(m,k), for the patient j. In our previous work [15], we used the SVM
method; in the current work we have tried the kNN method [16], random forest
(RF) [17], Tikhonov (ridge) regression (RR) [18], binomial naïve Bayesian method
(BNB) [19–22], adaptive boosting (ADA) [7, 23, 24], and multi-layer perceptron
(MLP) [25–27]. Repeating this procedure for all other j 6¼ i, we obtain the area-under
the ROC curve, AUCi(m,k), for all but i-th patients for fixed values of data trimming
parameters, m and k.

The AUCi(m,k) value can be then analyzed as a function of data trimming param-
eters, m and k [15]. Over the range of possible m and k values, we compare the AUCi

function [15]. All pairs of (m,k) values that provide AUCi(m,k) > p�max(AUCi(m,k))
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constitute the prediction-accountable set, Si, for the patient of interest i [15].
Our experience suggests that reasonable values for the confidence threshold, p, are 0.90
or 0.95 [15].

Finally, the FloWPS prediction, PFi, for the patient of interest i, is calculated via
averaging the ML predictions over the prediction-accountable set Si: PFi ¼
meanSi Pi m; kð Þð Þ [15]. Repeating this procedure for all other patients, we obtain a set of
FloWPS predictions for the whole dataset.

2.2 Performance Assessment for Different ML Methods on 21 Cancer
Datasets

Note that for any ML methods, after the application of data trimming, the FloWPS
predictions, PFi, are expressed in regression-like terms, i.e. they are likelihoods for
attribution of samples to any of two classes (clinical responders or non-responders).

The discrimination threshold (s), which the user may apply to distinguish between
two classes, should be determined according to the cost balance between false positive
(FP) and false negative (FN) errors. Generally, the penalty value P = B�FP + FN
should be minimized; here B is called relative balance factor. This relative balance
factor B < 1 for the situations when the FN error (refusal of prescription of a drug,
which might help the patient) is more dangerous than the FP one (prescription of a
useless, however, not a harmless, treatment). Contrary, B > 1, when it is safer not to
give a doubtful treatment for a patient then to give it to him/her. Several practitioners of
diagnostics tests have different opinions on how high/low should be this balance factor.
According to different sources, the preferred values are B = 4 [28–30], B < 0.16 [31],
4.5 < B < 5 [32], B < 5 [33], B > 10 for emergency medicine only [34], B > 5 for
toxicology [35].

For such a dangerous disease like cancer, B should be lower when few, perhaps
only one, treatment option is approved for a certain cancer morphological type and
localization, when the refusal to give the unique radical treatment would inevitably
doom the patient to death. Contrary, when multiple treatment options are possible, and
the doctor has to choose the best one, the risk of prescription of wrong drug should be
taken into account, and B should be higher.

We have applied our FloWPS data trimming for 21 cancer datasets. These datasets
embraced totally 1778 patients; the biggest dataset had 235 samples, and the smallest one
had 41. Among them, ten (10) had expression profiles for breast cancer patients:
GSE25066 [36, 37], GSE41998 [38], GSE18728 [39], GSE20181 [40, 41], GSE20194
[42], GSE23988 [43], GSE32646 [44], GSE37946 [45], GSE42822 [46], and GSE59515
[47]. Four (4) datasets represented multiple myeloma: GSE9782 [11], GSE39753 [48],
GSE68871 [49] and GSE55145 [50]. Among those for leukemia, one (1) described adult
AML cases (GSE5122 [51]), two (2) stayed for pediatric AML [52], and the rest one
(1) accounted for pediatric ALL [52, 53]. Additionally, there were one (1) dataset for
pediatric Wilms kidney tumor [52], one (1) of low grade glioma [54] and one (1) for lung
cancer [54]. Chemotherapeutics included taxanes, bortezomib, vincristine, trastuzumab,
letrozole, tipifarnib, temozolomide, busulfan and cyclophosphamide. Among seven ML
methods (SVM, kNN, RF, RR, BNB, ADA and MLP) four (SVM, RF, BNB, and MLP)
showed the most robust results according to sensitivity and specificity (Fig. 1). Each ML
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methodwas appliedwithout andwith data trimming. Although different values of relative
balance factor B, and, therefore, discrimination threshold s, do not affect the ROC AUC
characteristics (Fig. 1A–D), they are certainly critical for sensitivity (SN, Fig. 1E–H) and
specificity (SP, Fig. 1I–L).

The best results for SVMwere obtained using the linear kernel with penalty parameter
C = 1 (Fig. 1A, E, I). For RF, the best results were exhibited under the following
parameter settings: n_estimators = 30, criterion = ‘entropy’ (Fig. 1B, F, J). For BNB,
the best parameters were alpha = 1.0, binarize = 0.0, and fit_prior = False (Fig. 1C, G,
K). For MLP, the best settings were hidden_layer_sizes = 30, alpha = 0.001 (Fig. 1D,
H, L). Among these four ML methods, the best results were shown by BNB.

3 Discussion

Many ML methods, which are designed for global separation of different classes of
points in the feature, space suffer from overtraining, especially in the situations when
the number of preceding cases is limited. The global methods may also fail if there is
only local rather than global order in placement of different classes in the feature space.

Fig. 1. ROC AUC (A–D), sensitivity (E–H) and specificity (I–L) for treatment response
classifiers for eleven newly processed cancer datasets. The classifiers were based on linear SVM
with C = 1 (A, E, I), as well as RF (B, F, J), BNB (C, G, K) and MLP (D, H, L) with the best
parameter settings. The color legend (M) shows absence (No DT) or presence (DT) of flexible
data trimming and the value of relative balance factor, B. Within each panel, each violin shows
distribution of values for 21 cancer datasets: each point stays for a dataset.
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To improve the performance of such global ML methods, we have introduced the
elements of local approach, using the flexible data trimming that first avoids extrap-
olation in the feature space for each validation point, and then selects only several
nearest to each validation point neighbors from the training dataset. Note that according
to such a hybrid, both global and local simultaneously, approach, for each validation
point, training of ML models is done in the specially tailored, individual feature space.

Our approach has confirmed its efficiency for global ML methods, such as SVM,
RF, BNB, ADA and MLP. For all 21 cancer gene expression datasets, the use of data
trimming with these five ML methods has increased the ROC AUC metric for the
classifiers of clinical response on chemotherapy treatment. Moreover, for all these
global ML methods with data trimming, 21 out of 21 had ROC AUC metric above the
generally acceptable quality threshold (0.70), whereas without data trimming the AUC
value exceeded 0.70 not for all these datasets.

Contrary, our data trimming was unable to increase the performance of purely local
ML methods such as kNN and RR (data not shown). However, these two local methods
suffered from the following disadvantage. Note that regression-like methods, as well as
our data trimming, produce as output the continuous value for likelihood of belonging
to any class. Contrary, four global ML methods, such as SVM, RF, BNB and MLP, all
with data trimming, exhibited more or less acceptable SN and SP in the range for the
type I and II error balance factor 0.25 � B � 4 (Fig. 1).

Based on a large-scale trial with 21 high throughput clinically annotated gene
expression datasets, the BNB method might be advised for further development and
implementation for expression-based classifier of individual clinical response to anti-
cancer chemotherapy.

4 Methods

All calculations were done using the R package flowpspkg.tar.gz. The package and a
manual for it are available at Gitlab through the link: https://gitlab.com/borisov_
oncobox/flowpspkg.
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Abstract. Gliomas are the most common malignant brain tumors in
adults, with Glioblastoma (GBM) being the most agressive subtype.
GBM is clinically evaluated with magnetic resonance imaging (MRI) and
presents with different growth phenotypes, involving varying degrees of
healthy tissue invasion and tumor induced herniation, also known as mass
effect. GBM growth in the brain is frequently modeled as a reaction-
diffusion process in which varying ratios of diffusion and proliferation
coefficients mimic the observed spectrum of growth phenotypes rang-
ing from nodal to diffuse. However, reaction-diffusion models alone are
insufficient to explain tumor-induced mass effect on normal peripheral
tissues, which is a critical clinical issue.

We propose an analysis method and framework for estimating GBM
growth properties (proliferation, invasiveness, displacive potential) from
MRI data routinely collected in the clinical management of GBM. This
framework accounts for the mass-effect of the growing tumor by assum-
ing a coupling between local tumor-cell density and volumetric expansion
of the tissue.

We evaluate the reconstruction workflow on synthetic data that rep-
resents a range of realistic growth situations and levels of uncertainty.
For most parameter combinations (90%) that correspond to tumors
detectable by T1-weighted MRI, target parameters are recovered with
a relative error of less than 15%.

Keywords: Mechanically-coupled tumor growth · Inverse problem ·
Image-based modeling

1 Tumor Mass-Effect in Glioblastoma

Gliomas are the most frequent malignant brain tumors in adults, with Glioblas-
toma (GBM) being the most malignant subtype. The rapid invasive growth of
this tumor frequently results in lesions that cause healthy-tissue deformation,
midline shift or herniation. Biomechanical forces, such as those caused by the
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growing tumor, are known to shape the tumor environment and contribute to
tumor progression [6]. Additionally, in brain tumors, elevated solid stress is linked
to neuronal loss and neurological dysfunction [10]. In GBM patients, increased
tumor mass-effect has been shown to be associated to poor prognosis [11]. This
suggests that the propensity of an individual tumor to displace healthy tissue
can provide information about the tumor micro-environment and might be of
predictive value for treatment and outcome. However, tumors of similar imaging
volumes have been observed to give rise to different amounts of tumor mass-
effect [11], Fig. 1, possibly resulting in distinct mechanical stress distributions
and magnitudes.

Fig. 1. Tumors of similar imaging volume can exhibit different degrees of mass-effect.
Images from TCGA-GBM.

The growth characteristics of GBM have been studied extensively using
mathematical models that describe the invasive growth of this tumor as a
reaction-diffusion process. These models characterize GBM growth phenotypes
on a spectrum from mostly nodular to mostly diffuse, corresponding to invasive
growth. However, it remains unknown whether differences in proliferative and
invasive potential are sufficient to explain the observed differences in mass-effect.

To investigate the relation between proliferation, invasiveness, tumor mass-
effect and its manifestation on clinical imaging, we are developing a framework
for characterizing mechanically-coupled GBM growth. By finding solutions to
the inverse growth problem, we aim to establish whether proliferation and inva-
siveness can explain the observed variability in tumor mass-effect, or whether
distinct biomechanical growth phenotypes of GBM exist that differ also in their
“displaciveness”.

Here, we present an approach for estimating parameters of a mathematical
tumor growth model that accounts for the mass effect of the tumor. We pro-
pose a workflow for applying this approach to MR imaging data, and evaluate
its accuracy and robustness in a parametric study on 2D synthetic data that
represents a range of realistic growth situations and levels of uncertainty.

https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
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2 Materials and Methods

2.1 Mathematical Model of Mechanically-Coupled Tumor Growth

Mathematical models of tumor mass-effect were initially studied in the context of
atlas-based image segmentation [7]. These models were soon extended to account
for tumor growth dynamics by coupling to single-species reaction diffusion equa-
tions [3]. More recently, information about tumor induced mechanical-stresses
has been incorporated in biophysical tumor growth models to inform local motil-
ity of tumor cells in the brain [5], and multi-species mechanically-coupled growth
models have been developed [12].

Here we use a single-species mechanically-coupled reaction-diffusion model [1]
that captures the dominant aspects of macroscopic GBM growth: the diffuse
invasion of the growing tumor into surrounding healthy tissue, and the resulting
mass effect.

Invasive growth is modeled phenomenologically as a reaction-diffusion pro-
cess:

∂c

∂t
= ∇ · (D∇c) + ρc (1 − c) c, (1)

with normalized cancer cell density c (x, t) and diffusion coefficient D = D(x).
Tumor cell proliferation is assumed to follow logistic growth with proliferation
rate ρ = ρ (x).

To simulate the tissue-displacing mass-effect of the growing tumor, we model
the growth domain as elastic continuum in which the actual deformation u (x, t)
of a tissue element is given by the combination of growth-induced strains ε̂ growth

and strains caused by the elastic response of the tissue. We assume a linear con-
stitutive relation between mechanical stress σ̂ and strain ε̂ , as well as mechani-
cally isotropic materials that are fully characterized by Young’s modulus E and
Poisson ratio ν.

σ̂(u) =
E

2 (1 + ν)
ε̂(u) +

E ν

(1 + ν) (1 − 2ν)
Tr ε̂(u)1 (2a)

ε̂(u) =
1
2

(∇u + (∇u)T
)

(2b)

Additionally, we postulate a linear coupling between tumor cell density and
growth-induced strain with isotropic coupling strength λ:

ε̂growth(c) = λ1c . (3)

Table 1 summarizes variables and parameters of this model.
The model is implemented using the FEniCS library1 [2] for solving the

model equations via the Finite Element Method. This implementation employs
first and second order Lagrange elements for spatial interpolation of displacement
u (x) and density c (x) fields, respectively. Time-stepping is performed using a
first order implicit numerical scheme.
1 https://fenicsproject.org.

https://fenicsproject.org
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Table 1. Variables and parameters of the mathematical model.

Symbol Parameter name Units

c (x, t) tumor cell density normalized to c0

u (x, t) tumor-induced displacements mm

D diffusion coefficient/diffusivity mm2/d

ρ proliferation rate 1/d

λ coupling constant

E young’s modulus kPa

ν poisson’s ratio

2.2 Simulation Domain

Growth is simulated in a 2D computational domain Ω based on the SRI24 2 [8]
atlas of normal human brain anatomy. The atlas contains tissue classes for White
Matter (WM), Grey Matter (GM) and Cerebrospinal Fluid (CSF). The latter
was divided into two compartments to distinguish fluid-filled brain ventricles
from the remaining CSF, Fig. 2. Distinct isotropic growth and mechanical tissue
parameters Di, ρi, Ei, νi were assigned to each subdomain Ωi.

The simulation domain was spatially discretized into a mesh of triangular ele-
ments with maximum cell diameter of 1.42 mm. We assumed the growth domain
to be free of any initial mechanical stresses and approximate the displacement
constraint imposed by the rigid skull by zero-displacement Dirichlet boundary
conditions on the domain boundary. Similarly, tumor cells were prevented from
leaving the domain by zero-flux von-Neumann boundary conditions. The tumor
was initialized by a Gaussian-shaped 2D tumor cell density field c0 = c (x0, t = 0)
centered at the seed location x 0 and with standard-deviation of 1 mm.

Fig. 2. Schema of brain simulation domain Ω with subdomains Ωi for white mat-
ter (WM), grey matter (GM), surrounding cerebrospinal fluid (CSF) and CSF-filled
ventricles.

2 https://www.nitrc.org/projects/sri24/.

https://www.nitrc.org/projects/sri24/
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2.3 Estimation of Growth Parameters as Inverse Problem

Given the forward model, Eqs. (1) to (3), growth parameter identification can
be framed as a PDE-constrained optimization problem with the aim to identify
the set of parameters p opt that minimizes an objective functional J . Such a
functional can be constructed by comparing the primary variables of the sim-
ulation, c (x) and u (x) to corresponding target tumor cell density c ∗(x) and
tissue displacement u ∗(x) fields at a specific observation time point k.

J = ‖c (x, tk) − c ∗(x, tk)‖22 + ‖u (x, tk) − u ∗(x, tk)‖22 (4)

Simulated tumor cell density c (x, tk) and tissue deformation u (x, tk) fields at
the corresponding simulation time step tk are constrained by the forward model
and depend on the current set of simulation parameters p .

While medical imaging provides information about those quantities, detailed
spatial maps are not directly observable. A commonly used approached in the
GBM modeling literature estimates tumor cell density by associating specific
imaging detection thresholds to different imaging modalities. Tumor features
visible in T1- and T2-weighted MR-imaging have been linked to different levels
of relative tumor cell density: c > 0.80 for visibility on T1-weighted contrast
enhanced MRI, and c > 0.16 for visibility on T2-weighted (T2) MRI [14]. Rou-
tine clinical imaging for brain tumors thus provides two views of the unknown
tumor cell density field c ∗(x), corresponding to two indicator functions χ ∗

T1(x)
and χ ∗

T2(x) that identify the positions x where c (x) ≥ 0.80 and c (x) ≥ 0.16,
respectively. Tissue displacements in the brain can be estimated by deformable
image registration between two imaging time points or relative to a healthy brain
atlas, which allows an estimate for the tumor-induced displacement field ũ ∗(x)
to be obtained at diagnosis and between follow-up scans.

Given these target fields, an alternative objective function based on image-
derivable target quantities can be formulated:

J = ‖χT1(x, tk) − χ ∗
T1(x, tk)‖22 + ‖χT2(x, tk) − χ ∗

T2(x, tk)‖22 (5)

+ ‖u (x, tk) − ũ ∗(x, tk)‖22
with χi(x, tk) obtained by applying the respective detection threshold to the
simulated density field c (x, tk).

The adjoint method provides an efficient approach for computing the gradient
dJ
dp and thus for solving the minimization problem min

p
(J). This implementation

uses the dolfin-adjoint library3 for automatic derivation of the discrete adjoint
equations for our forward model, Eqs. (1) to (3), and optimization functionals
Eqs. (4) and (5), respectively.

2.4 Evaluation of Parameter Estimation Approach

We evaluated the performance of this parameter estimation approach in two
different scenarios using synthetic data generated from simulation of the for-
3 http://www.dolfin-adjoint.org.

http://www.dolfin-adjoint.org
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Table 2. Parameter ranges for parametric study. Growth parameters DWM, ρ , λ were
varied across physiological ranges (min, max) resulting in 100 parameter combinations.
A fixed relation was assumed between diffusivity in GM and WM: DWM = 5 ·DGM [13].

Parameter min max step # steps init Units

DWM 0.05 0.20 0.05 4 0.001 mm2/d

ρ 0.02 0.18 0.04 5 0.001 1/d

λ 0.02 0.18 0.04 5 0.001

ward model. In both cases, the duration of tumor growth T , as well as initial
conditions, tumor seed location and zero initial displacements, were assumed
to be known. Mechanical tissue properties were fixed to EWM/GM = 3.00 kPa,
ECSF = 1.00 kPa, νWM/GM = 0.45, νCSF = 0.30.

Reconstruction from Forward Simulation: First, we aimed to recover the simula-
tion parameters of the forward model p = {DWM,DGM, ρWM, ρGM, λ}, directly
from results of the forward simulation, using density c (x, T ) and displacement
u (x, T ) fields from the final simulation time point T as reference, Eq. (4).

Reconstruction from Image-Derived Target Fields: Second, we studied a more
realistic scenario in which we aimed to recover the simulation parameters from
information available from routine clinical MR imaging, Eq. (5). This scenario
accounts for the noise associated to the derivation of target fields χ ∗

T1, χ ∗
T2,

u ∗ from this information. In this setting, we characterized the performance of
the proposed parameter estimation approach in a parametric study by sampling
(n = 100) from realistic ranges of three independent growth parameters p =
{DWM, ρ , λ}, Table 2.

For each parameter combination p , tumor growth was simulated for a time
period T with time steps Δt = 1d, Fig. 3(A). At the final simulation time point,
density c (x, T ) and displacement u (x, T ) fields were extracted and used to
construct a synthetic dataset that mimics the kind of information that can be
obtained from routine clinical MR imaging, Fig. (3)(B). The simulated density
field c (x, T ) was subjected to thresholds c (x) ≥ 0.16 and c (x) ≥ 0.80, resulting
in two indicator functions corresponding to the portion of the tumor visible on
T2-weighted and T1-weighted MRI. We used these indicator functions χ ∗

T1, χ ∗
T2

as target fields in the optimization process, Eq. (5). The simulated displacement
field u (x, T ) was used to deform the anatomical (T1 MRI) atlas on which growth
had been simulated. From the resulting images we estimated the tumor-induced
displacement by deformable image registration, using the symmetric image nor-
malization method (SyN) as implemented in the Advanced Normalization Tools
(ANTs)4. This reconstructed displacement field ũ ∗ served as target field in the
optimization process, Fig. (3)(C).

4 https://github.com/ANTsX/ANTs.

https://github.com/ANTsX/ANTs
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Fig. 3. Workflow of parametric study: Results from forward simulation (A) were used to
create synthetic target fields (B) to which the proposed parameter estimation approach
(C) was applied to recover the original simulation parameters p opt ≈ p .

We applied this approach to each synthetic data set to obtain a set of recon-
structed growth parameters p opt = {D̃WM, ρ̃ , λ̃}. Parameter optimization was
initialized with the values indicated in column init in Table 2. Duration of tumor
growth T and initial conditions were assumed to be known in each optimization
scenario.

We compared reconstructed p opt to actual p growth parameters in terms of
their absolute value and relative reconstruction error εi = (popti − pi)/pi.

3 Results

3.1 Forward Simulation

Tumor evolution and tumor-induced mass-effect were simulated for T = 250 d
days forward in time starting from an initial Gaussian-shaped tumor cell distri-
bution. Figure 4 illustrates the evolution of tumor cell density c (x, T ) and the
resulting tumor-induced displacement field u (x, T ). Compression of the lateral
ventricles by the growing tumor is evident from the last row of Fig. 4.

3.2 Reconstruction from Forward Simulation

Forward simulation over T = 250 d was repeated for seed positions in three
different locations, indicated by red arrows in Fig. 5: in GM (Case 1 ), WM
(Case 2 ), and at the interface between GM and WM (Case 3 ). Using density
and displacement fields from the final time point, c ∗(x, T ), u ∗(x, T ), we tried
to recover the simulation parameters of the forward model by PDE-constrained
optimization.
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Fig. 4. Simulated evolution of tumor growth and mass effect.

Fig. 5. Simulated evolution of tumor growth from seeds in three different locations: GM
(Case 1 ), WM (Case 2 ), and at the interface between GM and WM (Case 3 ). Simulated
density fields based on the reference parameters p ref are compared (T = 250d) to
density fields based on the parametersets obtained from optimization (p opt1, p opt2,
p opt3, see Table 3). Note that GBM very rarely grow or migrate into the cerebellum.
The seed locations have been chosen to illustrate the parameter estimation approach on
approximately equally sized contiguous patches of GM and WM. (Color figure online)
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Table 3 summarizes reference parameters for the forward simulation p ref,
their initialization for optimization p init and optimization results p opt for the
three scenarios depicted in Fig. 5.

Reference growth parameters could be recovered correctly for the brain region
most affected by the tumor: GM properties for Case 1 and WM properties for
Case 2. For Case 3, which grew with substantial involvement of both WM and
GM domains, target parameters for both regions were recovered correctly.

Table 3. Reference parameters for forward simulations and reconstructed parameters
for cases 1 to 3 in Fig. 5.

ρWM

[1/d]
ρGM

[1/d]
DWM

[mm2/d]
DGM

[mm2/d]
λ

Forward model
reference pref

0.08 0.080 0.100 0.020 0.150

Optimization
initialization p init

0.010 0.010 0.010 0.010 0.200

Case 1 popt1 0.010 0.080 0.010 0.020 0.150

Case 2 popt2 0.080 0.010 0.100 0.010 0.150

Case 3 popt3 0.080 0.080 0.100 0.020 0.150

3.3 Reconstruction from Image-Derived Target Fields

In a second evaluation, the workflow shown in Fig. 3 was applied to n = 100
combinations of growth parameters p = {DWM, ρ , λ}, Table 2, for a duration of
T = 100 d in two different growth domains.

Figure 6 compares the resulting distribution of reconstructed parameter val-
ues to their target values. Distributions of reconstructed DWM and ρWM are
concentrated around the respective target values Estimates corresponding to
the highest parameter values explored in this study (DWM = 0.20 mm2/d,
ρWM = 0.18 d−1) show the largest uncertainty with few outliers extending their
distribution towards values below the target value. Most reconstructions of λ
slightly overestimate the target value; parameter estimates for the lowest cou-
pling (λ = 0.02) are associated with highest uncertainty and biased towards
larger values.

Only tumors that are sufficiently large and dense to be detected on both
T1 and T2 weighted MRI were included in Fig. 6. Slowly or diffusively growing
tumors with high D/ρ ratios may not be visible in one or both MR modalities and
therefore do not contribute to the objective functional, Eq. (5), resulting in higher
relative reconstruction errors for this group of parameter combinations. Figure 7
shows the fraction of reconstructed parameter sets in function of the maximum
relative reconstruction error in each parameter, and visibility of the tumor on
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Fig. 6. Distribution of reconstructed parameter values versus target values. Horizontal
lines indicate the target value used in the forward simulation. Only simulations with
c (x, T ) exceeding T1 and T2 detection thresholds are included; therefore, no recon-
structed values are reported for simulation parameter ρ = 0.02d−1 in (b).

T1- and T2-weighted MR imaging. Provided that the tumor is detectable in T1-
weighted MRI, we obtained relative reconstruction errors of less than 15 % for
about 90 % of all converged optimization cases (190 of 200) across the parameter
space.

Fig. 7. Fraction of reconstructed parameter sets in function of the maximum relative
reconstruction error. A value of ±ζ on the x-axis indicates that all relative reconstruc-
tion errors εi simultaneously fulfill |εi| < |ζ| for all parameters i ∈ {DWM, ρWM, λ}.

4 Discussion

This study proposes an imaging biomarker for tumor mass-effect that can
be derived from parametrizations of a biomechanically-coupled tumor growth
model.

While adjoint-based optimization of parameters in a similar mechanically
coupled tumor growth model had been explored before [4], the characterization
of this approach was limited to 1D, and tumor-induced tissue deformation was
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taken into account only at selected landmark positions. More recent advances
include frameworks, such as [9] which combines adjoint parameter estimation of
a reaction diffusion model with image registration, but does not explicitly model
tumor mass-effect.

Here, we presented a method for estimating parameters of a mechanically
coupled tumor growth model from routine clinical imaging information of glioma
patients. Performance of this method was characterized on 2D synthetic data in
a reconstruction workflow that mimics data and associated uncertainties of real
reconstruction scenarios. We demonstrated self-consistency of this approach and
found relative reconstruction errors of less than 15 % for about 90 % of cases,
provided that the tumor is detectable in T1 weighted MRI.

This study assumed that origin and duration of tumor growth were known
for the optimization process. However, and particularly when applied to a single
observation at the time of diagnosis, tumor origin and duration of growth may
be unknown. Preliminary tests indicate similar reconstruction performance when
seeding the optimization process at the center-of-mass position of the observed
synthetic tumor. Estimated values of the ratio D/ρ are expected to be inde-
pendent of the growth period. However, the degree to which D/ρ and λ can be
identified simultaneously under this condition remains to be studied.

We aim to use the developed framework to characterize GBM growth in terms
of the tumor’s invasiveness and its displacive potential. As next steps, we plan
to characterize this approach in 3D and to investigate its application to patient
MR images.
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1. Abler, D., Büchler, P.: Evaluation of a mechanically coupled reaction–diffusion
model for macroscopic brain tumor growth. In: Gefen, A., Weihs, D. (eds.) Com-
puter Methods in Biomechanics and Biomedical Engineering. LNB, pp. 57–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59764-5 7

2. Alnæs, M., et al.: The FEniCS Project Version 1.5. Archive of Numerical Software,
vol. 3 (2015). https://doi.org/10.11588/ans.2015.100.20553

3. Clatz, O., et al.: Realistic simulation of the 3-D growth of brain tumors in MR
images coupling diffusion with biomechanical deformation. IEEE Trans. Med.
Imaging 24(10), 1334–1346 (2005). https://doi.org/10.1109/TMI.2005.857217

4. Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation prob-
lem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol.
56(6), 793–825 (2008). https://doi.org/10.1007/s00285-007-0139-x

5. Hormuth, D.A., Eldridge, S.L., Weis, J.A., Miga, M.I., Yankeelov, T.E.: Mechan-
ically coupled reaction-diffusion model to predict glioma growth: methodological
details. In: von Stechow, L. (ed.) Cancer Systems Biology. MMB, vol. 1711, pp. 225–
241. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7493-1 11

https://doi.org/10.1007/978-3-319-59764-5_7
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1109/TMI.2005.857217
https://doi.org/10.1007/s00285-007-0139-x
https://doi.org/10.1007/978-1-4939-7493-1_11


86 D. Abler et al.

6. Jain, R.K., Martin, J.D., Stylianopoulos, T.: The role of mechanical forces in tumor
growth and therapy. Ann. Rev. Biomed. Eng. 16(1), 321–346 (2014). https://doi.
org/10.1146/annurev-bioeng-071813-105259

7. Mohamed, A., Davatzikos, C.: Finite element modeling of brain tumor mass-
effect from 3D medical images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005.
LNCS, vol. 3749, pp. 400–408. Springer, Heidelberg (2005). https://doi.org/10.
1007/11566465 50

8. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel
atlas of normal adult human brain structure. Human Brain Mapping 31(5), 798–
819 (2010). https://doi.org/10.1002/hbm.20906

9. Scheufele, K., Mang, A., Gholami, A., Davatzikos, C., Biros, G., Mehl, M.: Coupling
brain-tumor biophysical models and diffeomorphic image registration. Comput.
Methods Appl. Mech. Eng. 347, 533–567 (2019)

10. Seano, G., et al.: Solid stress in brain tumours causes neuronal loss and neurological
dysfunction and can be reversed by lithium. Nature Biomed. Eng., January 2019.
https://doi.org/10.1038/s41551-018-0334-7

11. Steed, T.C., et al.: Quantification of glioblastoma mass effect by lateral ventricle
displacement. Sci. Rep. 8(1), December 2018. https://doi.org/10.1038/s41598-018-
21147-w

12. Subramanian, S., Gholami, A., Biros, G.: Simulation of glioblastoma growth using
a 3d multispecies tumor model with mass effect. J. Math. Biol. 79(3), 941–967
(2019). https://doi.org/10.1007/s00285-019-01383-y

13. Swanson, K.R., Alvord, E.C., Murray, J.D.: A quantitative model for differential
motility of gliomas in grey and white matter. Cell Prolif. 33(5), 317–329 (2000)

14. Swanson, K.R., Rostomily, R.C., Alvord, E.C.: A mathematical modelling tool
for predicting survival of individual patients following resection of glioblastoma: a
proof of principle. Br. J. Cancer 98(1), 113–119 (2008)

https://doi.org/10.1146/annurev-bioeng-071813-105259
https://doi.org/10.1146/annurev-bioeng-071813-105259
https://doi.org/10.1007/11566465_50
https://doi.org/10.1007/11566465_50
https://doi.org/10.1002/hbm.20906
https://doi.org/10.1038/s41551-018-0334-7
https://doi.org/10.1038/s41598-018-21147-w
https://doi.org/10.1038/s41598-018-21147-w
https://doi.org/10.1007/s00285-019-01383-y


Population Modeling of Tumor Growth
Curves, the Reduced Gompertz Model
and Prediction of the Age of a Tumor

Cristina Vaghi1,2, Anne Rodallec3, Raphaelle Fanciullino3, Joseph Ciccolini3,
Jonathan Mochel4, Michalis Mastri5, John M. L. Ebos5, Clair Poignard1,2,

and Sebastien Benzekry1,2(B)

1 MONC Team, Inria Bordeaux Sud-Ouest, Bordeaux, France
sebastien.benzekry@inria.fr
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Abstract. Quantitative analysis of tumor growth kinetics has been
widely carried out using mathematical models. In the majority of cases,
individual or average data were fitted.

Here, we analyzed three classical models (exponential, logistic and
Gompertz within the statistical framework of nonlinear mixed-effects
modelling, which allowed us to account for inter-animal variability within
a population group. We used in vivo data of subcutaneously implanted
Lewis Lung carcinoma cells. While the exponential and logistic mod-
els failed to accurately fit the data, the Gompertz model provided a
superior descriptive power. Moreover, we observed a strong correlation
between the Gompertz parameters. Combining this observation with
rigorous population parameter estimation motivated a simplification of
the standard Gompertz model in a reduced Gompertz model, with only
one individual parameter. Using Bayesian inference, we further applied
the population methodology to predict the individual initiation times of
the tumors from only three measurements. Thanks to its simplicity, the
reduced Gompertz model exhibited superior predictive power.

The method that we propose here remains to be extended to clinical
data, but these results are promising for the personalized estimation of
the tumor age given limited data at diagnosis.

Keywords: Tumor growth kinetics · Gompertz model · Mixed-effects
modeling · Bayesian estimation

1 Introduction

Tumor growth kinetics have been studied since several decades both clinically
[8] and experimentally [18]. One of the findings of these early studies is that
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tumor growth is not exponential provided it is observed on a long enough time
frame (100 to 1000 folds of increase) [13]. The specific growth rate slows down
and this deceleration can be particularly well captured by the Gompertz model
[13,15,21]. The analytical expression of this model writes (where V0 is the initial
tumor size at t = 0 and α and β are two parameters):

V (t) = V0e
α
β (1−e−βt) (1)

While the etiology of the Gompertz model has been long debated [10], several
independent researchers have reported a strong correlation between the param-
eters α and β estimated on distinct subjects within the same species [6,13,16].
While some suggested this would imply a constant maximal tumor size (given
by V0e

α
β in (1)) across tumor types within a given species [6], others argued that

because of the presence of the exponential, this could vary over several orders of
magnitude [19]. To date, the generalizability, implications and understanding of
this observation remain open questions in quantitative tumor growth.

Mathematical models for tumor growth have been previously studied at the
level of individual kinetics and for prediction of future tumor growth [2]. How-
ever, up to our knowledge, a detailed study of statistical properties of classical
growth models at the level of the population (i.e. integrating structural dynam-
ics with inter-animal variability) remains yet to be reported. Longitudinal data
analysis with nonlinear mixed-effect modelling provides an ideal tool for such
a task [14]. In addition, the reduced number of parameters (from p × N to
p+ p(p+1)

2 where N is the number of animals and p the number of parameters of
the model) ensures a higher robustness of the estimates, in the sense of smaller
standard errors. Therefore, this framework is particularly adapted to study the
above-mentioned correlation between the two Gompertz parameters.

Moreover, using the population distribution as prior allows to make predic-
tions on new subjects by means of Bayesian algorithm such as the Hamiltonian
Monte Carlo algorithm [11,12], implemented in Stan [7]. The advantage of this
method is that only few measurements of the new individual are necessary to
have reliable prognosis.

2 Materials and Methods

Mice Experiments. The experimental data consisted in murine Lewis lung car-
cinoma cells originally derived from a spontaneous tumor in a C57BL/6 mouse
[4]. They were implanted subcutaneously (106 cells at injection) on the caudal
half of the back in anesthetized 6- to 8-week-old C57BL/6 mice. Tumor size was
measured as described for the breast data. The data was pooled from two experi-
ments with a total of 188 observations. A precise description of the experimental
protocol is reported elsewhere (see [2]).

Tumor Growth Models. At the time of injection (t0 = 0), we assumed that
all the animal tumor volumes within a group have the same volume V0 (taken
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to be equal to the number of injected cells converted in mm3) and denote by α
the specific growth rate (α = 1

V
dV
dt ) at this time and volume.

We considered the exponential, logistic and Gompertz models [2]. The first
two are respectively defined by:

VE(t;α) = V0 exp(αt) and VL(t;α,K)
V0K

(V0 + (K − V0)e−αt)
. (2)

In the logistic equation, K is a carrying capacity parameter.
The Gompertz model VG(t;α, β) is characterized by an exponential decrease

of the specific growth rate with rate β. The differential form thus reads:
⎧
⎪⎨

⎪⎩

dVG

dt
=

(

α − β log
(

VG

V0

))

VG,

VG(t = 0) = V0.

(3)

Note here that the initial condition also appears in the differential equation
defining VG. This is natural from our assumption that α is the specific growth
rate at the injected volume V0.

Population Approach. Let N be the total number of subjects within the
population and Y i = {yi

1, . . . , y
i
ni} the vector of longitudinal measurements of

the animal i, where yi
j is the observation of subject i at time tij for i = 1, . . . , N

and j = 1, . . . , ni (ni is the total number of measurements of individual i). We
assumed the following statistical model

yi
j = V (tij ;θ

i) + ei
j , j = 1, . . . , ni, i = 1, . . . , N, (4)

where V (tij ;θ
i) is the evaluation of one of the tumor growth models at time

tij , θi ∈ R
p is the vector of the parameters relative to the individual i and ei

j

the residual error model, to be defined later. We assumed that the individual
parameters θi follow a lognormal distribution that are therefore identified by

log(θi) = log(μ) + ηi,

where μ denotes the fixed effects and ηi denotes the random effects. The former
are identical within the population while the latter are specific for each animal
and follow a normal distribution ηi ∼ N (0,ω) with mean zero and variance
matrix ω.

We considered a combined residual error model ei
j , defined as

ei
j =

(
σ1 + σ2f(tij ;θ

i)
)
εi
j ,

where εi
j ∼ N (0, 1) are the residual errors and (σ1, σ2) are the residual error

model parameter.
In order to compute the population parameters, we maximized a population

likelihood, obtained by pooling together all the data. Usually, this likelihood can-
not be computed explicitly for nonlinear mixed-effect models. The optimization
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procedure can be implemented using the stochastic approximation expectation
minimization algorithm (SAEM) [14], implemented in Monolix [1].

From now on we denote by φ = {μ,ω,σ} the set of the population parameters
containing the fixed effects μ and the random effects ω of the parameters and
the vector of error model parameters σ = [σ1, σ2].

Individual Predictions: Bayesian Inference. We considered the problem of
predicting the age of the tumor of an animal based on three late measurements.
We splitted the data set into two subgroups: a training set, used to learn the
population parameters distribution, and a test set, to assess the performance of
the prediction.

Let us assume that the set of the population parameters φ has been identified
on a training set using the population approach. We used this information to
make predictions for a new animal j in the test set considering only its last three
measurements yj = {yj

nj−2, y
j
nj−1, y

j
nj }. The posterior distribution P(θj |yj , φ)

of the parameters θj was then given thanks to the Bayesian approach [11]:

P(θj |yj ;φ) = P(θj ;φ)P(yj |θj ;φ), (5)

where P(θj ;φ) is the prior distribution of the parameters found with the nonlin-
ear mixed effects modeling and P(yj |θj ;φ) is the likelihood. Then we computed
the posterior predictive distribution of ỹj(u), with u < tnj−2 defined as

P(ỹj(u)|yj) =
∫

θj

P(ỹj(u)|θj ;φ)P(θj |yj ;φ)dθj . (6)

We draw realizations for (5) and for (6) using Pystan, a Python interface to
the software Stan [7] for Bayesian inference based on the No-U-Turn sampler, a
variant of Hamiltonian Monte Carlo [12]. These realizations were then used to
estimate tumor growth kinetic as the median value of the sample.

3 Results

In [20] other two data sets (two animal models of breast cancer, measured by
volume and fluorescence) are considered for the analysis with equivalent results.

3.1 Population Analysis of Tumor Growth Curves

We applied the population approach to test the descriptive power of the expo-
nential, logistic and Gompertz models for tumor growth kinetics. The number
of injected cells at time t0 = 0 was 106, therefore we fixed the initial volume
V0 = 1 mm3 in the whole dataset [2].

We ran the SAEM algorithm with the Monolix software to estimate the fixed
and random effects. Moreover, different statistical indices were evaluated in order
to compare the different tumor growth models. We report them in Table 1, where
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Fig. 1. Results relative to the population analysis: visual predictive check (A), observa-
tions vs predictions (B), distribution of the individual weighted residuals with respect
to time (C) and example of an individual fit (D) of the exponential (left), the logistic
(center) and the Gompertz (right) models.

the models are ranked according to their AIC (Akaike information criterion). As
shown below, the Gompertz model provided the lowest AIC values. Different
types of model diagnostic plots are reported in Fig. 1. The visual predictive
checks (VPCs) in Fig. 1A compare the empirical percentiles with the theoret-
ical percentiles, i.e. those obtained from simulations of the calibrated models.
Only in the case of the Gompertz model the observed percentiles were close to
the predicted ones and remained within the corresponding prediction interval.
The VPCs of the exponential and the logistic models exhibited model misspec-
ification. The observations vs individual predictions of the Gompertz model in
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Fig. 1B show a low percentage of outliers, i.e. the predictions outside of the 90%
prediction interval. Moreover, the distribution of the observations were sym-
metrical around the predicted values with the Gompertz model (Fig. 1C) while
the exponential and the logistic models provided skewed distributions. Figure 1D
shows an example of individual fit with the three different models. This confirms
that the Gompertz model describes better the dynamic of tumor growth.

Table 2 provides the values of the population parameters. The relative stan-
dard errors associated to population parameters were all low (<10.7%), indi-
cating good practical identifiability of the model parameters. Relative standard
errors of the standard deviations of the random effects ω were all smaller than
34.1%.

Table 1. Models ranked in ascending order of AIC (Akaike information criterion).
Other statistical indices are the log-likelihood estimate (-2LL) and the Bayesian infor-
mation criterion (BIC). The reported values in the first row are the values of the indices
of the best model (the Gompertz model). The other rows provide the difference of each
statistical index between the model in the row and the Gompertz model. ∗ The reduced
Gompertz model is introduced in Sect. 3.2.

Model -2LL AIC BIC

Gompertz 2232 2246 2253

Reduced Gompertz∗ +24 +20 +18

Logistic +83 +81 +80

Exponential +412 +406 +403

3.2 The Reduced Gompertz Model

Correlation Between the Gompertz Parameters. Although the Gompertz
parameters α and β were assumed to be independent, a high correlation within
the population has been observed. Indeed, the SAEM algorithm estimated a
correlation of the random effects equal to 0.957. Moreover, Fig. 2A shows the
relation between the individual parameters, where we found R2 = 0.929. This
correlation was observed in other experimental system: in a rat mammary carci-
noma system [16], human lung metastases from testicular tumors [9] and human
benign tumors [17]. We write the relationship between the two parameters as:

αi = kβi + c (7)

where c is the intercept of the regression line, which is found close to zero. The
slope of the regression line could be a characteristic constant of tumor growth
within a certain species. From a biological point of view, this characteristic
constant could be associated to the carrying capacity K, following the rela-
tion K = V0 exp(k), where V0 is the initial volume of the tumor. As previously
remarked by [6], this result might be supported by the fact that a particular
species is able to support a tumor of a certain maximum size.



Population Modeling of Tumor Growth Curves 93

Table 2. Fixed effects (typical values) of the parameters of the different models. CV
= Coefficient of Variation, expressed in percentage and estimated as the standard
deviation of the parameter divided by the fixed effect and multiplied by 100. σ is vector
of the residual error model parameters. Last column shows the relative standard errors
(R.S.E.) of the estimates. ∗ The reduced Gompertz model is introduced in Sect. 3.2.

Model Parameter Unit Fixed effects CV (%) R.S.E. (%)

Gompertz α day−1 0.713 22.57 3.79

β day−1 0.0731 318 5.77

σ – [28.2, 0.081] – [13.8, 14.3]

Reduced Gompertz∗ β day−1 0.0757 158.37 10.7

k – 9.51 – 5.26

σ – [27.6, 0.106] – [14.03, 11.7]

Logistic α day−1 0.477 25.48 2.84

K mm3 1.65e+03 0.006 4.67

σ – [38.5, 0.11] – [13.2, 14.01]

Exponential α day−1 0.403 28.01 2.75

σ – [87.8, 0.37] – [19.1, 14.8]

Biological Interpretation in Terms of the Proliferation Rate. By defi-
nition, the parameter α is equal to the specific growth rate at the time of injec-
tion. Assuming that the cells do not change their proliferation kinetics when
implanted, this value should thus be equal to the in vitro proliferation rate (sup-
posed to be the same for all the cells of the same cell line), denoted here by λ.
The value of this biological parameter was assessed in vitro and found equal to
0.929 [3]. Confirming our theory, we indeed found estimated values of α close to
λ (fixed effects of 0.713), although strictly smaller in the majority of the cases
(Fig. 2A). This difference could be explained by the fact that not all the cells
“take” when grafted in an animal. Denoting by V̂ i

0 < V0 the volume of these
cells, our assumption would rather be expressed as:

λ = αi − βi log

(
V̂ i
0

V0

)

> αi,

which was confirmed in our observations.

Population Analysis of the Reduced Gompertz Model. The high cor-
relation among the Gompertz parameters, combined to the biological rationale
explained above, suggested that a reduction of the degrees of freedom could
improve identifiability of the parameters and yield a simpler model. Consider-
ing the relation in (7), and assuming c negligible, we thus propose the following
reduced Gompertz model VR(t;β, k):

dVR

dt
= βik − βi log

(
VR

V0

)

, i = 1, . . . , N (8)
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Fig. 2. Correlation between the parameters of the Gompertz model (A) and results of
the population analysis of the reduced Gompertz model: visual predictive check (B),
examples of individual fits (C) and scatter plots of the residuals (D).

where β has mixed effects, while k has only fixed effects, i.e. k is constant within
the population.

Figure 2 shows the results relative to the population analysis performed with
Monolix. We noticed a good description of the population (Fig. 2B) and of the
individual trends (Fig. 2C) even if only one parameter has mixed effects. More-
over, the residuals are symmetrically distributed around zero (Fig. 2D).

Table 1 shows the statistical indices of the 1-d Gompertz model. Compar-
ing these values with the other equations we noticed that the reduced model
performes well compared to the other growth curves. Moreover, we obtained an
excellent identifiability of the parameters (Table 2).

3.3 Prediction of the Time Since Tumor Initiation

We then studied the relative performances of the reduced Gompertz and the
Gompertz models for the problem of predicting the initiation time from the three
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last measurements using Bayesian inference. For a given animal i, we consider
as first observation yi

ni−2 and tried to predict tini−2. Initial conditions were not
considered equal to the number of injected cells anymore but rather to yi

ni−2.
The value tipred was defined as the time when the median value of the posterior
predictive distribution of ỹ(u) reached V0.

Different data sets were used for learning the priors (training sets) and for
making predictions (test sets) by means of k-fold cross validation, with k equal
to the total number of animals of the dataset (k = N). At each iteration we
computed the parameters distribution of the population composed by N − 1
individuals and used this as prior to predict the initiation time of the excluded
subject i. The Stan software was used to draw 2000 realizations from the poste-
rior predictive distribution of the animal i. We eventually estimated the model
accuracy (i.e. relative error of the prediction, defined by erri = tipred/tini−2) and
the uncertainty of the prediction (i.e. precision, measured by the width of the
90% prediction interval (PI)).

Fig. 3. Three examples of backward predictions of individuals A, B and C computed
with Bayesian inference: Gompertz model (first row) and reduced Gompertz (second
row). Only the last three points are considered to estimate the parameters. The grey
area is the 90% prediction interval (P.I) and the dotted blue line is the median of the
posterior predictive distribution. The red line is the predicted initiation time and the
black vertical line the actual initiation time. (Color figure online)

Figure 3 shows some examples of prediction of three individuals and Fig. 4
shows the distribution of the relative error. The reduced Gompertz model
was found to have better accuracy in predicting the initiation time (mean
error= 9.4%) and to have the smallest uncertainty (mean precision = 7.34 days),
while the Gompertz model had worse performances (mean error= 19.6% and
precision = 18.2 days). Indeed the reduced Gompertz had only one parameter to
estimate and the prior distribution allowed to have a reliable prediction.
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Fig. 4. Accuracy of the prediction models: swarmplots of relative errors of the Gom-
pertz and the reduced Gompertz model.

4 Conclusions

We have performed a quantitative analysis of tumor growth kinetics using non-
linear mixed-effects modeling. This allowed us to propose a novel, “reduced”
Gompertz model with one parameter less. We further developed a method for
prediction of individual tumor age given few measurements. The approach is
based on: (i) the application of the population approach in order to learn the
parameter distribution of the models, (ii) the reduced Gompertz model with only
one individual parameter and (iii) Bayesian inference to determine the posterior
predictive distribution used to compute the time since initiation.

Our results warrant against the use of the exponential or logistic models for
description of tumor growth, that were therefore excluded in the prediction of
the age of a tumor. On the other hand, combining the population approach with
a reduced version of the Gompertz model comprising one parameter only allows
to reach a level of accuracy which offers promising clinical perspectives.

The method that we propose here remains to be extended to clinical data,
although it will not be possible to have a firm confirmation since the entire
natural history of neoplasms cannot be observed. Nevertheless, the encouraging
results obtained here could allow to give approximate estimates. Such predictions
could be informative in clinical practice to determine the extent of invisible
metastatics at the time of diagnosis, by refining published methods [5].
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