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Preface

Present-day imaging techniques are powerful diagnostic tools that are rou-
tinely employed in many areas of medicine. In most applications, imaging
techniques play a more secondary role to the first line of medical care, such
as clinical examination or laboratory tests, that guide clinical diagnosis.
However, when the organ of interest is less accessible, imaging techniques
play a more primary role. This is particularly true for the brain, arguably the
most complex of human organs. Indeed, over the last three decades neuroim-
aging has been the only noninvasive technique to provide insight into the
living brain’s structure and function. Moreover, these techniques, particularly
in the context of neuroscience research applications, have provided an unpar-
alleled ability to study the human brain in both health and disease.

Many of the most advanced neuroimaging techniques have been applied to
the study of neuropsychiatric disorders. The application of imaging tech-
niques to neuropsychiatric disorders has not been limited to addressing more
traditional research questions (i.e., case—control comparisons in brain struc-
ture or function)— many of which could not be addressed prior to the devel-
opment of such tools—but have also now expanded to encompass studies that
are aimed at identifying imaging-based markers for diagnosis, prognosis, or
treatment efficacy. Modern-day scanners have the capacity to visualize brain
structures with close microscopic precision, in a manner heretofore not pos-
sible, allowing advances in the measurement of underlying biological mecha-
nisms such as molecules that can penetrate blood—brain barrier or individual
cellular organelles. There is also a strong emphasis to establish big data
repositories that would facilitate clinical and/or imaging queries, as well as an
emphasis on machine-learning approaches that are capable of learning and
improving data analysis iteratively, without supervision. These are just a few
of the examples of advances in the field of neuroimaging over the last 30
years, which have changed the landscape of what is possible with respect to
understanding the brain.

Neuroimaging techniques have been applied to schizophrenia more than
any other psychiatric disorder. In the past, imaging approaches could not
quantify the subtle alterations in the brains of individuals with schizophrenia
because more sensitive tools were needed. With the advent of advanced imag-
ing tools, we now know a great deal more about schizophrenia. However, the
multitude of methods used, in addition to the large number of publications,
have made the field quite complex to navigate for clinicians and scientists.
Further, at this time, little effort has been made to map these research findings
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into a thoughtful and easily accessible library that can succinctly capture the
state of the field of neuroimaging in schizophrenia, along with some of the
promising inroads for understanding the neurobiology of this devastating dis-
ease. In the chapters that follow we highlight some of these efforts. This book
is intended to provide an overview of neuroimaging findings in schizophre-
nia. The target audience includes clinicians, PhD students in psychology or
neuroscience, medical students, residents in psychiatry, as well as experi-
enced researchers, who, in the quest for understanding schizophrenia, want
an overview in areas in which they have not specialized themselves, but want
to understand the state of other imaging modalities.

This book is divided into two parts—Part I provides detailed synopses of
imaging techniques that have been employed in schizophrenia research,
paired with the conclusions that have been drawn regarding how changes in
brain structure and/or function may contribute to schizophrenia. In contrast,
Part II provides representative examples of applications in which the use of
neuroimaging techniques have made a significant impact. We end with a
chapter that, while highlighting the existing shortcomings of the field, sug-
gests possible solutions in the form of formulating future directions for the
field of schizophrenia in general and neuroimaging in schizophrenia in
particular.

The chapters are written by world-renowned experts in the field whom we
asked to address the newest and most important developments in neuroimag-
ing research in schizophrenia. We asked these experts to place these develop-
ments within the context of the last 30 years of research. Our purpose was to
bring the reader closer to understanding the intricacies, advantages, and dis-
advantages of various imaging techniques, and to provide a greater under-
standing of how researchers in the field are using these techniques to test
clinical hypotheses, or to develop clinically relevant biomarkers of disease
onset, treatment response, or long-term prognosis. Our purpose was also to
demonstrate, and to discuss, a path forward that merges imaging and non-
imaging measures to build and to test hypotheses that may lead to a more
comprehensive understanding of the neurophysiology, neurobiology, or neu-
rotransmission pathologies involved in the clinical picture of schizophrenia.
We hope that by showcasing many of the new challenges that the field of
neuroimaging in schizophrenia now face, we could provide a roadmap for the
future generation of researchers that will guide them toward finding solutions
to many of today’s questions.

We would like to acknowledge several people without whom this book
would not have come to fruition. First of all, we are grateful to all the authors
and co-authors of the chapters who agreed without hesitation to be part of this
endeavor, and we are grateful also for delivering their thoughtful, comprehen-
sive, and innovative contributions. We would like also to acknowledge our
family members: our spouses Zuzanna and George, and our children:
Michalina, Anthony, and Jessica for support and inspiration (often scientific).
We would also like to thank Elizabeth Rizzoni for her help with editing and
formatting. Finally, we acknowledge Harvard Medical School and the
Department of Psychiatry at Brigham and Women’s Hospital and
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Massachusetts General Hospital for supporting our work, the National
Institute of Health, and the VA for funding our research, and Springer for giv-
ing us the opportunity to showcase the state-of-the-neuroimaging techniques
in schizophrenia research.

Boston, MA, USA Marek Kubicki
Boston, MA, USA Martha E. Shenton
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1.1 Introduction puterized tomography. However, it was the intro-

The human brain is a complex organ comprising
various substructures and has been extensively
studied both in vivo and ex vivo. Before the
advent of more recent imaging techniques,
knowledge about the possible relation between
brain structure and function was primarily based
on lesion studies revealing a level of functional
specialization for various structures and their
connecting networks. It is this structural-
functional relationship that forms the basis for
the interest in brain structures because by study-
ing various aspects of brain morphology, we
obtain a better understanding of the etiology of
schizophrenia. The imaging studies in schizo-
phrenia that have been performed since, and the
numerous magnetic resonance imaging (MRI)
studies in particular, have resulted in important
new insights into the disorder. These new insights
required acquisition and processing methodology
that are described for gray matter in this chapter.

The main strength of MRI is the ability to dis-
tinguish between brain gray matter and white
matter. Human brain tissue is mainly made up
from two types of neuronal cells, namely neurons
(including projection neurons and interneurons)
and neuroglia (e.g., oligodendrocytes, astrocytes
and microglia). Human brain tissue has approxi-
mately 10 times more glial cells than neurons.
Neurons form large networks and communicate
with each other using electrical signals (action
potentials). Gray matter predominantly consists
of the brain’s neuronal cell bodies, glial cells,
synapses and capillaries, while white matter pre-
dominantly consists of the brain’s long-range
myelinated axons connecting the distant neuronal
cell bodies together forming neural networks.
The first imaging studies in schizophrenia used
pneumoencephalography and subsequently com-

duction of MRI in the 1980s that enabled the
visualization of the gray and white matter in
greater detail.

Another major advantage of MRI over most
other medical imaging modalities is that it is non-
invasive as the imaging contrasts are based on
magnetic properties of water protons (abundant
in brain tissue), which can be manipulated using
harmless non-ionizing radio-frequency pulses in
combination with varying magnetic fields. This
makes MRI well-suited to study the brain in large
groups of subjects. Different types of imaging
contrasts can also be obtained by using various
pulse combinations on the same scanner, render-
ing MRI as one of the most versatile medical
imaging modalities to date. Indeed, MRI has
been used for more than 30 years, but it is still the
subject of active research with new types of
acquisitions developed every day.

MRI brain scans are frequently interpreted by
the expert judgment of the radiologist to identify
possible abnormalities. While this is very suc-
cessful for the identification of many neurologi-
cal abnormalities such as vascular anomalies,
space occupying lesions, and severe atrophy, the
clinical interpretation of brain scans from patients
with schizophrenia is usually normal. It
thus requires sophisticated image analysis and
subsequent quantification of large image datasets
to detect the subtle yet clear changes in brain
structures in schizophrenia. In addition, compari-
son with MRI brain scans of healthy individuals
is needed to distinguish disorder-related changes
from those of normal age and sex related influ-
ences. A key issue in such group comparisons is
to define the feature(s) of interest in a valid and
reliable manner.

In this chapter, we briefly introduce the anat-
omy of gray matter, MRI methodology, and the
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most frequently used MRI contrasts in structural
brain imaging. Next, we discuss gray matter tis-
sue in more detail and focus on how gray matter
brain structures can be (in part) delineated from
MRI images, ranging from laborious manual
delineation to modern fully-automated segmen-
tation techniques. For the latter we will pay par-
ticular attention to the non-linear transformation
step (warping) that is needed to align individual
scans with the template brain. This warping is a
crucial step in voxel-based and surface-based
analysis techniques. This is then followed by a
discussion of more complex study designs, and a
discussion of the use of machine learning in
structural gray matter brain imaging.

1.2 Magnetic Resonance

Imaging

Until the 1970s, making ‘pictures’ of the human
brain in vivo was limited to the use of pneumoen-
cephalography (an X-ray-based method), which,
when applied to schizophrenia research, lead to
the important finding that patients had larger ven-
tricles when compared to healthy individuals
(Johnstone et al. 1976). The invention of com-
puted tomography (CT) was a major step for-
ward, because of the possibility to reconstruct
parts of the human body (including the brain) in
three dimensions. However, the quality was still
limited because the skull severely hinders the
radiation, which carries the information from the
brain, to the receiver. The introduction of the use
of nuclear magnetic resonance (NMR) in the
field of medicine in the 1980s, leading to mag-

A
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Fig. 1.1 Basic MRI physics. A proton rotates (blue
arrow) around its axis (black arrow); its spin is aligned to
the external magnetic field (green arrow, BO; left). A radio
pulse (green, RF) makes the spin turn away from its align-

netic resonance imaging (MRI) of the human
body, was a major breakthrough. Using MRI,
pictures with higher resolution and better con-
trast between gray and white matter in the brain
could be obtained. This led to many important
findings, including the finding that a lower gray
matter volume of the left superior temporal cor-
tex is associated with a higher degree of thought
disorder in patients with schizophrenia (Shenton
et al. 1992).

In MRI the signals are created and carried by
electromagnetic fields and radio waves. All (brain)
matter is made of molecules, which, in turn are
formed by atoms (e.g., hydrogen (H), carbon (C),
oxygen (O)). Each atom consists of a core, the
nucleus, and a ‘cloud’ of electrons, which deter-
mine the chemical properties, i.e., the way the
atom forms bonds with other atoms. It is the
atom’s nucleus that is relevant for MRI. Almost
all of the atom’s mass is contained in its nucleus,
which consists of protons (charged +1) and neu-
trons (electrically neutral). Although nuclei of
several atoms can be used for NMR, we will focus
on hydrogen-based NMR, the most widely used
form in medical MRI. The hydrogen’s nucleus is
a single proton and can be thought of as a tiny
sphere that rapidly rotates around its axis
(Fig. 1.1). Because the proton is electrically
charged, this so-called spin causes the nucleus to
have a magnetic moment; it can be viewed as a
little magnet, with a north pole and a south pole.
When not inside a strong magnetic field, the
nuclear spins are randomly oriented. When, how-
ever, the spins are exposed to the strong magnetic
field of the MRI scanner (typically 1.5 or 3 T),
they tend to align with it (compare with a compass

RF RF

ment (over a certain ‘flip angle’, red; middle). The proton
sends back a radio signal (‘echo’), which can be received
by the scanner (right)



R.C.W. Mandl et al.

needle pointing to the earth’s magnetic north pole).
If an electromagnetic (¢f FM radio) pulse, pro-
duced by an antenna in the scanner, reaches the
tissue, the nuclei ‘feel’ this as a force and the spins
are tipped away from alignment, called excitation.
Depending on the duration of the pulse, they now
point in a direction at a certain angle (the so-called
flip angle) with respect to the scanner’s magnetic
field, and start to make a precession, i.e., a rotating
motion around the scanner’s magnetic field. The
frequency of this precession is called the Larmor
frequency. This changing magnetic field produces
electromagnetic (radio) waves, so the spin sends
back a signal that can be received by an antenna in
the scanner. This is in a nutshell how we can obtain
signals, i.e., information, from brain matter by
MRI. Note that it is a simplified picture of what is
truly happening when a scan is made. Since, for
now, all nuclei send their signals simultaneously, it
would be impossible to trace back the origin of
each individual signal. (Parenthetically, one can
compare this to locating someone by his/her voice
in a large room with many people, when all of
them are talking simultaneously). Hence, we need
to solve two issues: (1) can we discriminate
between signals from different tissue types? and
(2) can we discriminate between signals from dif-
ferent sources, i.e., different locations in the brain?

MRI can discriminate between signals from
different tissue types. Spins are not alone. They
are in an environment packed with other mol-
ecules containing atoms with nuclei with spins,
all of them behaving like tiny magnets.
Interactions between these—moving—parti-
cles cause spins to show relaxation: after a
while, a spin will return to its original orienta-
tion, i.e., aligned with the magnetic field. Not
all spins will return at the same moment (cf.
radioactive decay); after a certain time that we
call T1, 63% of the spins return to alignment.
T1 relaxation times differ between different
tissues and this causes signal strength differ-
ences. Collecting the signals at a well-chosen
moment after excitation (the so-called echo-
time (TE)), will lead to an optimal contrast
between two tissues. Optimizing contrast
between any pair of tissues will need tuning TE
(and other parameters) differently, and not all

contrasts can be optimal in one acquisition pro-
tocol. Tl-weighted scans can provide good
contrast between gray and white matter. Of
course, this assumes the existence of pure gray
and white matter, which is not the case, not
biologically (see next section) nor technically
(see voxels, below, leading to partial voluming,
see Sect. 1.4.1). Another contrast can be made
by the so-called T2-weighting, which arises
from de-phasing of the precession between the
spins in a piece of tissue, due to between-tissue
differences in Larmor frequency, caused by
local differences in magnetic field strength. T2
is the time after which the spins’ in-phase com-
ponent reduces to 37% of the original value.
T2-weighted scans can, for example, be used to
provide good contrast between cerebro-spinal
fluid (CSF) and brain tissue. Finally, if signals
are recorded very fast after excitation, relax-
ation effects do not play a role and the signal
strength is a measure of the proton density
(PD-contrast) in the tissue.

MRI can discriminate between signals from
different sources, i.e., different locations in the
brain. The Larmor frequency depends on the field
strength. This dependency can be used to dis-
criminate between signals coming from spins at
different locations in the brain. Apart from the
big coil producing the static magnetic field, the
scanner contains several other coils that can be
switched on and off to produce small, rapidly
changing magnetic fields, or gradients, the
strength of which varies with location, e.g., from
left to right. When switched on, the spins’ Larmor
frequency will vary from left to right, and thus
their precession frequency will vary. By tuning to
a certain frequency, the receiver can ‘listen’ to
signals originating from a certain location in the
brain (cf. listening to a certain radio station). The
scanner can tune to many different frequencies
simultaneously and map the signals to their place
of origin. The strength of the signals (see point 1)
is converted to brightness values, and the result is
an image containing (location, intensity)
combinations.

Altogether, making an MRI scan is a compli-
cated task consisting of many, repeated broad-
casting of radio pulses and switching on/off
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T1-weighted
scan

T2-weighted
scan

T2*-weighted
scan (fMRI)

Fig. 1.2 Examples of a Tl-weighted scan (left), a
T2-weighted scan (middle) and a T2s-weighted scan
(right). The bottom row shows the relaxation process
related to T1-relaxation (spins realigning to the scanner

gradient fields (see Stark and Bradley, 1999) for a
more detailed description of the physics behind
MRI). Moreover, acquisition of signals from dif-
ferent locations is a stepwise procedure, so sig-
nals are attributed to elements from a discrete
3-dimensional grid. The resulting image is there-
fore composed of elements of finite size (typi-
cally ~1 mm), the so-called voxels (from volume
elements, cf. pixels from picture elements). When
an acquisition protocol is developed, the MRI
technician has to set parameters so as to obtain
certain tissue contrasts (e.g., flip angle, echo time
(TE), number of echos) and voxel size (Fig. 1.2).
It is important to realize that all parameter set-
tings have consequences. For instance, measur-
ing more echos can improve signal-to-noise, but
at the cost of longer scan time. Having more
detailed images, i.e., with smaller voxels, will
decrease signal-to-noise and/or increase scan
time. Scanners with higher field strength give
larger signals, which can thus be used for either
improving contrast-to-noise, decreasing voxel
size, or decreasing scan duration.

magnetic field; left) and T2-relaxation (spins dephasing;
right). Differences in relaxation times between tissues
lead to different signal strengths at time of measurement
(echo time, TE) and thus to tissue contrast

1.3  BrainTissue
In the human brain, various types of neurons
exist but all neurons have a number of properties
in common. They have a cell body (soma), den-
drites, and, most frequently, one single axon
(Fig. 1.3 left). The cell body of a neuron can gen-
erate an action potential, which is transported via
the axon to other neurons, sometimes over long
distances. This electrical signal is then chemi-
cally transferred from the axon’s endpoint via
synaptic transmission of neurotransmitters to the
dendrites, which are extremities (or processes) of
other neurons. The axons are often sheathed by a
fatty substance named myelin, which enables fast
and efficient signal transport. In the central ner-
vous system this myelin sheath is formed by the
oligodendrocytes. It is this myelin that is
responsible for the white color of the white mat-
ter tissue.

Indeed, the gray and white matter in the human
brain (Fig. 1.3 right) do not represent different
types of neuronal cells but instead represent two
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Fig. 1.3 Brain tissue (right), cartoon of a neuron (left).
The electrical signal is generated in the cell body. This
signal (or action potential) is then transported along the
axon. The axon-terminals connect to dendrites from other
neuronal cells. From the axon terminals the electrical sig-

different parts within the neurons, namely the cell
bodies (gray matter) and high concentrations of
myelinated axons (white matter). This apparent
difference in tissue is not only visible by the naked
eye in brain slices but can also be observed in con-
ventional MRI scans as several MRI contrasts are
highly sensitive to myelin concentration.
According to Eickhoff and colleagues (2005a),
77-84% of the T1 and T2 MR signal variation
reflects variation in myelin (sheathing the axons)
and only 9-16% reflects variation in size and
packing density in cell-bodies. The fact that this
gray/white matter distinction does not reflect a
difference in neuronal cell types but merely a dif-
ference in myelin concentration should always be
kept in mind when interpreting the results of MR
imaging studies reporting differences or changes
in gray matter tissue. For instance, when thinning
of regions of cerebral cortex is reported during
development this could reflect a reduction in the
amount of neurons/connections between neu-
rons—known as pruning (Huttenlocher et al.

white matter

R.C.W. Mandl et al.

gray matter
(cortex)

ventricle

nal is chemically transmitted to the dendrites of other
cells. On the right a Tl-weighted image of the brain
(transverse view) is shown with gray matter showing up in
gray, white matter in white, and cerebrospinal fluid in
black

1982). Alternatively, it may reflect a maturation-
related increase in myelination of the axons close
to the cortex (so-called encroachment (Paus et al.
2001)), or a combination of both. The brain’s gray
matter comprises the cerebral cortex, subcortical
brain structures, including (amongst others) the
putamen, caudate nucleus, thalamus and the lim-
bic system, including the hippocampus and
amygdala.

1.3.1 Cerebral Cortex

The cerebral (or neo) cortex is the highly curved,
thin (ranging between 1.5 and 5 mm) outer layer
of the cerebrum consisting of gray matter
(Fig. 1.4). The ridges are called gyri and the
grooves or fissures are referred to as sulci. The
cellular makeup of the cortex has a clear laminar
structure, where each layer can be defined based
on the dominant cell type. Based on cytoarchitec-
ture, six major different layers are recognized in



1 Structural Methods in Gray Matter

Fig. 1.4 Cortex and subcortical structures. The left pane
shows the cortex from three different views. The right
pane shows three different views for a few subcortical

the human cerebral cortex (with the exception of
the motor cortex, which only has five layers) with
layer I being the most outer layer and layer VI
being the layer adjacent to the white matter.

These six layers (Fig. 1.5) are (I) the molecu-
lar layer, (II) the external granule cell layer, (III)
the external pyramidal cell layer, (IV) the internal
granule cell layer, (V) the internal pyramidal cell
layer and (V1) the multiform layer (Kandell 2012:
326). The cytoarchitecture is not constant over
the whole cerebral cortex but varies spatially.
Regions with a similar architecture can be defined
(e.g. Brodmann areas (1909)). Using various
post-mortem staining techniques both the cyto-
and myeloarchitecture can be studied in detail
allowing identification of the regions, which can
then be used to construct so-called brain atlases.
There is a clear structural-functional relationship
between these regions and various brain func-
tions (Zilles and Amunts 2015). Some of these
relations have been extensively studied (e.g.
visual system, motor system, sensory system),
but for higher order functions less information is
available and this structural-functional relation-
ship is part of active research.

At present, it is not possible to use MRI in
vivo to measure cytoarchitecture in detail because
conventional MRI contrasts like T1, T2 and PD
predominantly provide myeloarchitectonical

structures that have been frequently studied in schizophre-
nia: the right thalamus (green), right caudate (purple),
right putamen (light blue) and right pallidum (dark blue)

information rather than cytoarchitectonical infor-
mation (Zilles and Amunts 2015). Indeed, there
does exist a clear relation between myeloarchi-
tecture and cytoarchitecture, but this relationship
is not one-to-one (see Fig. 1.5). Also, there
appears to be no clear relationship between mac-
roscopic landmarks in the brain (such as loca-
tions of sulci and gyri, which can be detected
with MRI) and the boundaries of these regions
(Zilles and Amunts 2010, 2015). Thus, although
MRI can be used to determine the boundaries
between white matter and the pial boundary (i.e.,
the boundary between the most outer cortical
layer (layer 1) and the CSF), in general it cannot
be used to directly identify the boundaries
between the cortical regions as these boundaries
within the gray matter are defined by differences
in cytoarchitecture. To estimate this part of the
boundary for these cortical regions, a so-called
brain atlas can be used (which will be discussed
in the next section).

1.3.2 Subcortical Structures

Compared to the cerebral (neo)cortex, the sub-
cortical brain structures are the evolutionary
older brain structures and many of the subcortical
structures of the brain have been studied in rela-
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Fig. 1.5 Brodmann atlas and relation between cyto- and
myeloarchitecture. The left pane shows the Brodmann
areas for human neocortex (illustration from Brodmann
(1909: 131)). The right pane shows an example of the

tion to schizophrenia (e.g., thalamus, cau-
date nucleus). In contrast to the cerebral cortex,
the subcortical structures (except for the lateral
geniculate nucleus and the superior colliculus
(Zilles and Amunts 2015)) have no laminar archi-
tecture, albeit some of these substructures can be
split up into constituent parts (Kandell 2015). In
general, the boundaries of these subcortical struc-
tures are based on gray-white/gray-CSF borders
only, which makes it relatively easy to reliably
detect these borders using MRI.

1.3.3 Limbic System

The limbic system consists of brain structures
that have been referred to as paleomammalian
cortex. The limbic system is involved in emotion
and long-term memory and has been extensively
studied in relation to schizophrenia (Roalf et al.
2015; White et al. 2008; Fuller Torrey and
Peterson 1974; Bogerts et al. 1985; Aleman and
Kahn 2005). The definitions of these structures

Cytoarchitecture Myeloarchitecture

outer
principal;
zone

inner stripe of Baillarger

inner
principal
zone

relation between cyto- and myeloarchitecture (illustration
from Palomero-Gallagher and Zilles (2019) https://cre-
ativecommons.org/licenses/by/4.0)

vary and include both cortical (e.g., hippocam-
pus, para-hippocampal gyrus, and entorhinal cor-
tex) and subcortical structures (e.g., amygdala).
Whether the limbic system can be considered a
separate system is, however, challenged.
Anatomically, it combines a number of structures
that lie directly under the cerebral hemispheres
that are sometimes challenging to reliably mea-
sure with MRI (e.g., the amygdala, which is noto-
riously complex to delineate).

1.4  Analyses

1.4.1 Tissue Classification
An important part in all the different image anal-
ysis methods is tissue classification.

First, it is important to distinguish brain from
non-brain tissue (e.g., dura, skull) and within
brain matter to distinguish between gray matter,
white matter, and CSF. For this task a priori
knowledge such as location in stereotactic space
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and geometric information can be used to deter-
mine what is brain tissue and what is not. For
example, the location of gray/white matter
boundary and the knowledge about the thickness
of the cortex and smoothness are constraints used
as a priori information to define the pial bound-
ary. As the dura (at some locations and especially
in younger individuals) may be very close to cor-
tical gray matter, the resolution of the T 1-weighted
scan should contain sufficiently detailed informa-
tion to enable successful separation of brain from
non-brain tissue. One obvious way to improve
the quality of the segmentation is to increase the
resolution of the scan. Another solution is to
combine T1-weighted scan with scans containing
other types of contrast i.e., T2-weighted scans. In
T2-weighted scans the main contrast is not found
between gray and white matter (as in T1-weighted
scans) but between CSF and brain tissue. If the
T2-weighted scan is of a sufficiently high resolu-
tion then even very narrow gaps (filled with CSF)
between dura and gray matter show up as detect-
able increases in signal intensity thereby aiding
in the segmentation of brain tissue.

Tissue classification of brain tissue usually
includes some form of (global) histogram separa-
tion or clustering of intensities, where differences
in signal intensity are used to classify tissue into
gray matter, white matter, and CSF. An important
requirement, however, is that in the brain region
of interest, the intensity values within the tissue
classes are much more alike than the intensity
values between the tissue classes. For standard
T1 acquisitions, this requirement can only be met
if the main magnetic BO field is sufficiently
homogeneous. Obtaining a homogeneous B0
field over large regions becomes increasingly dif-
ficult with increased magnetic field strengths.
Therefore, when this region is large (e.g., the
whole brain) additional preprocessing may be
required (such as a BO field inhomogeneity cor-
rection (Sled et al. 1998)) to obtain similar inten-
sities within tissue types. Even when the tissue
types can be separated by their intensity values
there is still the problem of so-called partial vol-
uming. Partial voluming refers to the case where
a voxel contains more than one type of tissue
yielding an ‘in between’ intensity value and typi-

cally occurs at the boundaries. Depending on the
application, one can assign the voxel to one par-
ticular tissue type. A solution for instance is to
simply assign the voxel to the tissue whose mean
signal intensity is closest to that of the voxel.
More sophisticated solutions also take informa-
tion from surrounding voxels into account.
Alternatively, one can estimate the fraction of
each tissue type in a voxel. Increasing the resolu-
tion reduces the relative amount of partial volume
voxels but does not completely eliminate them,
so the problem of partial voluming will always be
there.

1.4.2 Segmentation

Segmentation refers to the process of delineating
the brain structure of interest. In some cases (e.g.,
subcortical structures) a large part of the bound-
ary is defined by tissue type but in other cases
(e.g., cortical regions) a part of the boundary is
found within gray matter and additional informa-
tion (e.g., cytoarchitecture) is needed. Because
studies in the majority of neuropsychiatric disor-
ders including schizophrenia are often character-
ized by small effect sizes (requiring large groups
to obtain sufficient statistical power), automatic
segmentation methods are clearly favored over
manual segmentation for reasons of time and
resources and often also for reasons of reliability.
However, in some cases manual segmentation is
required, for instance when creating new brain
atlases (Despotovié et al. 2015) (see Sect. 1.4.3)
or when expert knowledge is needed to manually
adjust the boundaries in order to increase the sen-
sitivity of the analysis. In both cases, however,
care must be taken that the level of reproducibil-
ity of the resulting segmentation is sufficient and
(perhaps more importantly) that no bias is intro-
duced. A way to ensure the former is to standard-
ize the delineation or to adjust the automatic
delineation (known as editing) as much as possi-
ble, to train and test the persons who perform the
delineating/editing for consistency, and to dis-
cuss and decide on ‘problem cases’ together with
other experts (known as consenting). Blinding
the experts for group status is also one way to
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minimize the risk of introducing bias. But if, for
example, the comparison also includes left versus
right brain regions, then it is also necessary to
blind the experts for hemisphere (for instance by
randomly swap the left and right side) because
the quality of manual editing may depend on the
location in the image.

To assess the reliability of the manual delinea-
tion/editing performed by two-or more image
analysts, the inter-rater reliability can be com-
puted using intraclass correlation coefficients
(ICC) (Bartko 1966; Koo and Li 2016). To com-
pute an ICC, each of the analysts process the
same random subsample of the scans. In addition
to a standard correlation an ICC typically also
takes bias into account. This bias could be due to
one analyst consistently including more tissue
into the structure than the other. ICCs can also be
used to assess the reliability of a single analyst
(i.e., intra-rater reliability). In that case the ana-
lyst has to process the data set two or more times.
Other possible solution to assess reliability
include bland-altman plots (Bland and Altman
1986), providing similar information.

It may seem that systematic bias is only a
potential problem in manual segmentation/edit-
ing, but this is certainly not the case. For instance,
schizophrenia patients tend to move more during
MRI acquisition (Pardoe et al. 2016) which may
result in more motion artifacts (e.g., blurring,
ghosting). These artifacts can lead to poorer seg-
mentation results for the patients and hence a sys-
tematic bias. On the other hand, disease-related
cortical atrophy in patients leads to a larger space
between cortex and dura, which makes separa-
tion of the two easier in patients than in healthy
controls. Thus in automatic segmentation studies,
a careful checking of the analyses and interpreta-
tions is necessary. This can be done by compar-
ing overall trends within and between studies.

1.4.3 Brain Atlases

Many of the automatic segmentation pipelines
make use of atlases to incorporate a priori infor-
mation (Evans et al. 2012; Toga 1999; Beckmann
et al. 2001; Eickhoff et al. 2005b). For instance,

when segmenting the cortex in separate regions
for which the boundaries cannot be detected from
conventional T1 and T2 contrast MRI scans. The
basic idea is that a brain to be segmented is
mapped to a model brain (or template) for which
a segmentation (atlas) is available (See Fig. 1.6),
and segmentation rules from the atlas are applied
to the target brain. Currently, many different
atlases are available where the parcellation may
be based on histology, cortical folding, or the
topography of the white matter tracts. Unlike the
much-used Talairach atlas (Talairach and
Tournoux 1988), which was based on the post-
mortem dissection of a single human brain, more
recent model brains and atlases are based on a set
of subjects (usually healthy) in order to take pop-
ulation variability into account (e.g., MNI152,
ICBM452 please see Mandal et al. (2012) for an
overview). Also, different atlases can be used in a
multi-atlas approach to increase segmentation
accuracy (Iglesias and Sabuncu 2015).

The choice of model brain can avoid bias in
certain population studies. For example, child
templates have been developed (Fonov et al.
2011; Sanchez et al. 2012) because using an adult
template in a pediatric population would allow
for easier warping in the older subjects, thereby
introducing bias. Alternatively, study-based
atlases that include all subjects in a study can be
built, providing a warping that is unbiased for
example for disease status (Mazziotta et al.
2001). Additionally, a study-based atlas will have
the same contrast as the individual subjects,
which should allow for easier warping. In addi-
tion to the choice of the atlas, the quality of the
mapping (or transformation) is crucial for the
quality of the final segmentation as no two brains
are alike. Note that this atlas approach assumes
that there is a meaningful relationship between
macroscopic features (used to steer the warping)
and the information contained in the atlas.

1.4.3.1 Linear and Non-linear
Transformations

Various types of transformations are applied for

which the most basic are linear transforma-

tions. Linear transformations are a combination

of global transformations such as translation,
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Fig. 1.6 Example of brain atlas application. First, the
transformation is computed between an individual brain
in native space (b) and the model brain (MNI152 (Fonov
etal. 2011)) (a). The inverse of this transformation is then

scaling, rotation, and shearing (See Fig. 1.7).
These linear transformations only provide a
crude mapping between brains, and usually an
additional non-linear (warping) transformation
is required to increase the quality of the map-
ping. With warping it is possible to apply local
deformations (e.g., shrinking and stretching) to
obtain a better mapping. Different types of
warping transformations exist, but for this type
of image analysis the most frequently used
warping is the so-called elastic (or rubber-

used to map the model brains atlas (in this example the
AAL2 atlas (Tzourio-Mazoyer et al. 2002)) (¢) to the
native space of the individual brain resulting in a segmen-
tation (d) for the individual brain

sheet) warping, where the warping transforma-
tion is subject to a smoothness constraint. This
means that there are no abrupt differences in
deformations between neighboring points
allowed (much like a rubber sheet) guarantee-
ing a (topology-preserving) point-to-point
mapping. The latter is important as it ensures
that there exists an inverse of a transformation
mapping image A to image B, that can be
applied to map image B to image A. If the map-
ping is not one-to-one (as may be the case in
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Fig. 1.7 Linear and nonlinear transformations. Examples
of 2 dimensional linear transformations are shown in (a):
translation, scaling, rotation and shearing. In (b) examples

so-called fluid-transformations) then two or
more points in image A can map to a single
point in image B, and, as a consequence, one
point in image B should then map to more than
one point in A. Compared with the linear trans-
formations, the non-linear transformations
allow for a more tailor-made mapping due to
the higher number of degrees of freedom but
this comes at the price of higher computational
workload when searching for the best possible
mapping.

A key issue in determining the best possible
mapping is to define a similarity metric to rate the
quality of the mappings. This similarity metric
must be based on macroscopic features (i.e., the
features that can be visually detected by an opera-
tor) that can be determined in both the model
image (in model space) and the image to be trans-
formed to model space. For example, to manually
put a brain in so-called Talairach space (Talairach
and Szikla 1967) (one of the first stereotactic
atlases originally developed for stereotactic neu-
rosurgery) the operator needs to determine fea-
tures including positions of the anterior
commissure (AC) and posterior commissure (PC)

of non-linear transformations are shown in the middle and
right figures. Note that the smoothness constraint is higher
in the middle figure than in right figure

on the sagittal mid-slice and the top, front and
back of the brain. These features are then used to
rotate and piecewise scale the brain to fit the
Talairach space. This is a basic procedure includ-
ing (piecewise) linear transformations only, and
the identification of the features can easily be per-
formed by hand. More sophisticated approaches,
however, require many more features to compute
the high-dimensional non-linear transformations
needed to further increase the quality of the fit
between the individual brain and the model. Here
manual identification of the features is no longer
possible simply because of the large number, and
because reliable detection of these features by the
naked eye is also no longer possible. Examples of
such features include voxel intensity values (or
higher order features based on these values) and
shape characteristics of structures in the brain that
can be automatically delineated. An example for
the latter are the axon fiber bundles that form the
white matter which can be detected by a combina-
tion of diffusion-weighted imaging and fiber
tracking (see Chap. 3). The shape and begin and
end points of the reconstructed tracts can be used
as features of interest to guide the mapping.
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1.4.4 Voxel-Based Morphometry

If tissue classification provides a measure of the
brain structure of interest, the above techniques
are sufficient to study patient—control differ-
ences. An alternative option is provided by using
a voxel-based morphometry (VBM) approach,
which does not require an a priori hypothesis.
Similar to the atlas-based approaches, with VBM
all brains are warped to a model brain (Fig. 1.8).
Under the assumption of a perfect warping, all
brains perfectly fit to the model brain (and to
each other) resulting in a true point-by-point (or
voxel-by-voxel) correspondence between all the
brains (in model space).

However, there are (at least) two reasons why,
in practice, the applied warping is less than per-
fect and the voxel-by-voxel correspondence is
not complete. The first reason is that the variabil-
ity between brains is more complex (for instance
due to differences in topology rather than topog-
raphy) and cannot be mitigated using local
stretches. A second reason is that (at least with
the VBM approach) we want to keep possible
pathologies untouched (i.e., the group differ-

Fig. 1.8 Voxel based analysis (VBM). Left: VBM starts
with placing the brains of all n subjects in the study in
model space. For each of the n subjects the nonlinear
transformation is computed that aligns the subject’s brain
with the model. By applying the non-linear transforma-
tion each brain is warped from native space to model
space. Middle: Example of the effect of blurring. When
blurring is applied, the signal is spread out over the imme-
diate vicinity (the larger the applied blurring kernel the
larger the spreading out of the signal). In A the effect of
blurring is shown from the top (left) and a cross-section
(right). Note that the total amount of signal does not
change. After blurring the signal is spread out over a

ences between patients and controls). Removing
these group differences by the warping would
defeat its purpose (but see DBA analysis below).
This raises the question about the definition of a
perfect warping. In the case of VBM, a “perfect”
warping would remove all differences that are
not of interest and leave all differences of inter-
est untouched.

1.4.4.1 Blurring Kernel

One solution to restore the one-to-one corre-
spondence is to apply a blurring kernel to each
of the brain images. When applying a blurring
kernel, the information in a voxel is spread out
over its neighboring voxels (effectively reduc-
ing the image resolution and therefore the
degrees of freedom). This averaging over vox-
els/leaking of information into neighboring vox-
els mitigates effects of small misalignments
because at least part of the information is now
available in the right place. Of course, in this
way the sensitivity is reduced but robustness is
gained. Note, however, that this action only
(partly) restores the one-to-one correspondence
if it can be assumed that neighboring voxels are

larger region and, thus as a consequence, the signal in the
original region is lower. In B, the effect of blurring is
shown when applied to the gray matter segmentation
mask. Because the information is spread out over a larger
region, the effect of small misalignments is mitigated.
Right: After blurring, which (partly) restores the voxel-
by-voxel correspondence, it is possible to perform statis-
tics per voxel (e.g., voxel at (X, y)) to detect differences
between schizophrenia and healthy comparison subjects.
The result of this VBM analysis is a statistical map show-
ing voxels for which there is a significant group difference
found in gray matter tissue concentration
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Fig. 1.9 Example for which two neighboring voxels are
not functionally related. The Euclidean distance between
the black and the white voxel is very small and the appli-
cation of a 3D blurring kernel would therefore mix the
signals from these voxels. However, these voxels are part
of different lobes and despite their Euclidean proximity
they are not structurally/functionally related

structurally/functionally related (which is not
always the case, see Fig. 1.9).

1.4.4.2 Mass Statistical Tests

Given the point-by-point (in this case a voxel-per-
voxel) correspondence, one can now perform a sta-
tistical test per voxel to test for differences between
patients and controls. This does however result in a
large number of statistical tests and therefore some
form of correction for multiple comparisons
(Lindquist and Mejia 2015) is required to keep the
type II error (false positives) within bounds. One
solution is to use the conservative Bonferroni cor-
rection. This correction is—especially after apply-
ing a blurring kernel—considered to be too
conservative as it assumes that the degrees of free-
dom is equal to the number of tests (voxels) in the
image while the real number of degrees of freedom
is much lower (for instance due to the application
of the blurring kernel). Therefore, more sophisti-
cated correction methods, such as methods based
on the random field theory (Worsley 2007) and the
false discovery rate (Benjamini and Hochberg
1995) are often utilized.

1.4.5 Deformation-Based Analysis

An alternative analysis that is still closely related
to VBM is deformation-based analysis (DBA).
The main difference between the two methods is
that with DBA we study group differences in the
warping transformations themselves instead of in
the warped images. For this approach we simply
try to use a warping transformation that removes
all the differences. Any group-related differences
are then ‘captured’ in the transformations. In this
way one avoids the problem of choosing a proper
warping transformation, i.e., a transformation
that removes all differences except for the differ-
ences of interest, such as is used in VBM. The
problem of distinguishing between differences of
interest and nuisance is, however, merely shifted
to the interpretation part, and as a consequence,
the interpretation of the results is more difficult.
This may be one of the reasons why VBM is
more popular than DBA.

1.4.6 Surface-Based Analysis

VBM and DBA can (and have been) used to ana-
lyze the neocortex, but the fact that these analytic
techniques are volume based (3D) makes them
probably not the best choice because of the highly
curved nature of this gray matter structure, com-
bined with the application of the 3D blurring ker-
nel to mitigate the effects of small imperfections
in warping. For structures with a high curvature
there are regions where the assumption of
structural/functional relations between neighbor-
ing voxels is violated. In Fig. 1.9 it can be seen
that two points on the cortex may be very close to
each other in terms of Euclidian distance, but in
terms of geodesic (over the surface) distance they
are far apart.

For these cases, surface-based analysis (SBA)
methods such as FreeSurfer (Fischl et al. 1999)
and CIVET (June et al. 2005; MacDonald et al.
2000) are better suited. In contrast to VBM (which
is a whole brain analysis), SBA is used specifi-
cally to study the cortex. With SBA the cortex is
considered a folded sheet where at each point
(vertex) information on thickness and curvature is
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available, determined from the pial surface and
the surface determined by the gray and white mat-
ter boundary. Similar to VBM a vertex-by-vertex
correspondence can be obtained by warping these
folded sheets to a model, which also requires the
application of a warping transformation and a
blurring kernel. The main difference with VBM,
however, is that both the warping and blurring are
performed in 2D. The warping is based on infor-
mation on locations of both gyri and sulci. Using
a series of preprocessing steps, a spherical repre-
sentation of sulci and gyri information is obtained
for both the model and brain in native space (see
Fig. 1.10). The warping transformation is deter-
mined by mapping the surface of the native sphere
to the surface of the model sphere in such a way
that the gyri and sulci information overlap as
much as possible. As with VBA a smoothness
constraint is forced on the solution.

Besides vertex-based group comparisons it is
also possible to define regions of interest by using
an atlas. Note however that this assumes that
there is a meaningful relationship between the
positions of the gyri and sulci (macroscopic
information) and the cytoarchitecture, a relation-
ship that is questionable (Zilles and Amunts
2015).

As there is considerable evidence (e.g., func-
tional specialization) that geodesic proximity is
related to functional similarity, the application of
2D blurring can be expected to do a better job in
restoring the assumed (now) vertex-by-vertex
correspondence required for group analysis. In
Fig. 1.10 the various steps of SBA are depicted.

1.4.7 Statistical Shape Analysis
of Subcortical Structures

While VBM provides information about local
differences, it does not provide any information
about differences in more global features of the
structure such as volume and shape. While the
computation of volume is straightforward once
the segmentation for a specific structure is avail-
able, the shape analysis requires more sophisti-
cated approach. Analogous to surface-based
analysis it may be beneficial to use a more tailor-

made type of analysis when studying one or
more of cerebral gray matter subcortical struc-
tures (Roalf et al. 2015; Shenton et al. 2002;
Styner et al. 2004; Coscia et al. 2009; McClure
et al. 2013; Johnson et al. 2013; Chakravarty
et al. 2015). Luckily, most of these substructures
typically have a convex shape with a smooth sur-
face and automatic delineation is therefore rela-
tively easy.

Statistical shape analysis can be loosely
divided into two categories, namely those based
on local shape descriptors and those based on
global shape descriptors (Niethammer et al.
2007). In the first category, similar to SBA, the
structure is transformed to a standard coordinate
system to obtain a one-to-one correspondence
between the structures to be analyzed. Like SBA,
this requires the definition of salient features (in
SBA the locations of major sulci and gyri) to
determine the transformation. These salient fea-
tures do not have to be part of the structure per se
but could also be marked features found in sur-
rounding tissue. This is of particular importance
when the structure itself does not hold sufficient
marked features to determine the transformation.
Of further note, compared to SBA, the transfor-
mation is usually of lower degrees of freedom (in
many cases a linear transformation will suffice),
hence requiring a fewer number of salient fea-
tures. The shape of the object is then usually rep-
resented by a regular grid placed over the
structure (similar to the vertices in SBA). Here
the features of interest are the positions of the
grid elements and group analysis can be per-
formed to detect local differences in shape.

The second category includes descriptors that
represent the structure’s shape at a global level in a
compact way. Often these global descriptors are
invariant under translation, rotation, and scaling
and can therefore directly be computed without
the need to place the structure in standard coordi-
nate system. Examples of such shape descriptors
are invariant moments, shape indices, spherical
harmonics, and Laplace-Beltrami spectrum
(Niethammer et al. 2007). A possible disadvantage
of these global descriptors is that the group-
differences found are less simple to interpret com-
pared to those found with local shape descriptors.
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Fig. 1.10 Examples of surface-based analysis. In the top
pane the computation of the surface-based warping transfor-
mation (a) and warping of the atlas information on the indi-
vidual brain is shown (b). The computation of the
transformation is based on the gyri/sulci pattern and requires
the determination of the inner and outer cortical surface
(left) for both the individual brain (upper row) and the model
brain (lower left). Based on the surface information the gyri/
sulci patterns for both the individual brain and the model
brain are computed and placed on an inflated version of the
brain (middle). Note that the inflated brains for the individ-
ual brain and model brain are not the same. Next, the inflated
brains are transformed to a sphere allowing efficient compu-
tation of a nonlinear transformation (T) that registers the
gyri/sucli patterns. To project the atlas information from the

1.4.8 Within Gray Matter Imaging

In the previous section we discussed analyses
that focus on shape and size characteristics of
gray matter structures. There are, however, new
techniques that aim to look within the gray mat-
ter. Within the field of schizophrenia research, the
focus is on the cortex because disease-related
cortical thinning is a frequently reported finding,
but it is not clear which layers are implicated.
One ‘obvious’ possibility is to use ultra-high field
MRI and/or high-performance gradient systems
in order to increase image resolution for the stan-
dard imaging contrasts (e.g., T1, T2, PD, T2x).
Given the relation between cytoarchitecture and
myeloarchitecture, a finer resolution will allow
us to measure variations in myelin content within,
for example, the cortex, which can be used to
infer cytoarchitectural properties.

In Fig. 1.11 an example of a high-resolution
T1-weighted scan is shown that was acquired
using ultra-high field (7 T) MRI where the line of
Gennari can be detected in the visual cortex. To
increase contrast within the cortex, T1-weighted
scans can be optimized to be most sensitive to
variations in myelin concentrations within in
gray matter (Fracasso et al. 2016).

Increasing image resolution to study cortical
layers, however, does not always require the use
of ultra-high field MRI. Several approaches
based on MRI scans at conventional field
strengths were developed to study gray matter in
more detail. For example, processing techniques
can be used to compute so-called average cortical

model brain to the individual brain the reverse route is fol-
lowed (b). The atlas information available for the model
brain (lower left) is projected onto the sphere (lower right)
via the inflated brain (lower middle). Using the inverse of
the transformation T, the atlas information is transformed to
the sphere for the individual brain (right). Finally, this infor-
mation is projected via the individual inflated brain (upper
middle) to the individual brain in native space (upper left).
In the bottom pane, an example (unpublished data) of the
results of a vertex-based equivalent of a VBM are shown.
Here cortical thickness information computed with
FreeSurfer in 50 patients with schizophrenia and 50 healthy
controls was warped to an average brain and vertex-wise
compared. The red-yellow regions depict vertices where the
cortex was significantly thinner in patients

profiles from standard MRI scans acquired at 3 T
and are therefore particularly useful in studies
where the expected effect size is small and where
large groups are required (such as in psychiatric
diseases). A recently proposed technique uses a
combination of deconvolution and profile align-
ment to compute one highly detailed profile per
cytoarchitecture-based cortical region (Ferguson
et al. 2018). In this method, resolution is
‘exchanged’ in the sense that resolution perpen-
dicular to the cortex becomes higher (the detailed
profile) and the resolution parallel to the cortex
becomes lower (only one profile per area). See
Fig. 1.12 for an example.

Another way to extract more information from
gray matter is to use an MRI acquisition with
multiple T1 values (Lifshits et al. 2018). The idea
behind this approach is that due to differences in
cellular makeup, the layers not only differ in sig-
nal intensity, but also in T1 relaxation time. By
acquiring a series of T1 scans with different echo
times it is possible to compute the T1-decay
curve in each voxel allowing for computing the
actual T1. Another MRI technique, not primarily
sensitive to myelin concentration, makes use of
the fact that the differences in cellular makeup
also lead to differences in the diffusion profiles of
water molecules, as can be measured with diffu-
sion weighted imaging. Diffusion weighted
imaging is most frequently used to image the
brains’ white matter, but can also be used to study
the gray matter’s microarchitecture (Assaf 2019)
as the shape and size of the diffusion profile
depends on the configuration of cell types in the
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Fig. 1.11 Examples of ultra-high resolution MRI. Left:
High-resolution whole brain scan of a T2-weighted image
(voxel size 0.5 mm isotropic) showing primary visual cor-
tex acquired at 7 T. Here the line of Gennari, which is a
heavily myelinated outer band of Baillarger (exclusive for
the visual cortex), is clearly visible as a dark band (white

brain tissue. By studying various shape charac-
teristics of the diffusion profile, information
about the microstructure from the underlying
brain tissue can be inferred. Although the resolu-
tion of the last two methods described is usually
lower than conventional contrasts, and is cur-
rently too low to be used to accurately define
cytoarchitectonical boundaries, the fact that these
methods may have a more direct connection with
cytoarchitecture makes them promising lines of
research to pursue.

1.5 Complex Study Designs

1.5.1 Multicenter Studies

There have been several successful attempts to
boost power for imaging studies in schizophrenia
by combining data collected at different sites
throughout the world. Several approaches have
been explored. First, imaging data from schizo-
phrenia patients have been made available to the
public (e.g., SchizConnect (Wang et al. 2016))

arrows). Right: Example of a high-resolution T2-weighted
scan (voxel size, 0.28 x 0.28 x 2.0 mm?) designed to study
the subfields of the hippocampus at 7 T. Automatic seg-
mentation of the hippocampal subfields was obtained
using the ashs software package (Yushkevich et al. 2015)

which can be downloaded and explored. Second,
imaging (and other types of data) has been
brought together in consortia, either by pooling
the original data (e.g., GENUS—Genetics of
Endophenotypes of Neurofunction to Understand
Schizophrenia (Blokland et al. 2018)) or through
meta-analysis  (e.g., ENIGMA—Enhancing
Neurolmaging Genetics through Meta-Analysis;
schizophrenia working group (Van Erp et al.
2016)) (see also Chap. 21). All of these
approaches have the advantage that data that
were first acquired at the individual sites can be
reanalyzed in a larger context, making optimal
use of the time and money that have been
expended for these studies. The mega-analytic
approach additionally allows researchers to
answer more detailed questions, but harmoniza-
tion of the different instruments used at each indi-
vidual site can be a problem. A meta-analytic
approach partly solves this problem when each
individual site is well-balanced in terms of cases
and controls. Finally, there are currently several
multi-site collaborations ongoing (e.g., Psyscan
(psyscan.edu), Prism (prism-project.eu/en/prism-
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Fig. 1.12 Average cortical profiles. Example of an aver-
age cortical profile computed for area V1 from a standard
T1-weightedimage acquired at3 T. First, 3D-deconvolution
is applied to the original T1-weighted scan (a) resulting in
a scan with increased detail but also with increased noise
levels (b). Using information on the inner (white matter/
gray matter boundary) and the outer (pial) surface (shown
in ¢) obtained with FreeSurfer from the original T1 scan,
average profiles can be computed for the complete region.
We note that the inner and outer boundaries are computed
in 3D and that the result shown on a 2D-slice (as in ¢)

study/)) that collect data as part of collaborations,
thereby allowing for harmonization of imaging
protocols before the data are collected.

1.5.2 Longitudinal Measurements

Given that the effect sizes in schizophrenia are
usually modest, the differences between subjects
are often larger than the group differences
between patients and controls. It is therefore hard
to separate meaningful brain differences from the
individual differences that are not related to
disease. This is especially the case in questions
about whether there are progressive changes in
the brain which are more easily answered in lon-
gitudinal studies (Brans et al. 2008; van Haren
et al. 2007; Hulshoft Pol and Kahn 2008). A pow-

appears sub-optimal. All individual profiles (shown in d)
are then aligned to correct for effects of small misalign-
ments at the boundaries. The vertical white dashed lines
represents the white matter/gray matter boundary (left)
and the pial boundary (right). Finally, the aligned profiles
are averaged yielding one average cortical profile (white
profile in shown in d). In (e) the expected profile for the
same region is shown that was created on ultra-high reso-
lution imaging. See Ferguson et al. (2018) for a more
detailed explanation of the method

erful design is the use of repeated measures in the
same subjects in order to detect changes related
to illness duration or ageing effects. In addition,
longitudinal studies reduce measurement noise.
That said, it is generally challenging to keep sub-
jects willing to participate for longer periods of
time in such studies. Also, scanner stability (see
above) becomes even more important. Careful
randomization of patients and controls can partly
solve the latter problem.

1.5.3 Family Designs

1.5.3.1 Family Designs

Understanding the relative influences of genes
and environment on differences in human brain
structure are important for understanding the
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dynamics of brain development and disease risk
(see also Chap. 15). The family design, and in
particular the twin model, is a powerful approach
for determining the relative contributions of
genetic influences and common and unique envi-
ronmental influences on variation in brain struc-
tures and their common origin with disease
liability (Rijsdijk et al. 2005). Moreover, mor-
phologic findings in twins can be extended to
singleton populations (Hulshoff Pol et al. 2002).
Using the family design, important insight into
the contributions of familial influences to brain
structure in schizophrenia have been revealed
(Moran et al. 2013). Gray matter deficits observed
in schizophrenia patients are in part also found in
their first-degree relatives, and to a larger extent in
monozygotic co-twins than in dizygotic co-twins
(Moran et al. 2013; Baare et al. 2001; Hulshoff
Pol et al. 2012; Bohlken et al. 2015), suggesting a
shared genetic basis for both the liability for
schizophrenia and gray matter deficits.
Importantly, age-related changes in brain struc-
tures, such as in cortical thickness, are also par-
tially genetically determined (Brans et al. 2010;
Brouwer et al. 2017; Teeuw et al. 2019). This is
relevant to schizophrenia where the extent of
brain tissue loss over time based on longitudinal
MRI is supported by findings from post-mortem
studies (Hulshoff Pol and Kahn 2008).
Longitudinal modeling of brain measures in twin
pairs discordant for schizophrenia has also shown
that genes for schizophrenia overlap with genes
for brain volume change (Brans et al. 2008) and
cortical thickness change (Hedman et al. 2016).
These findings provide important directions for
further research into the specific genetic and envi-
ronmental factors implicated in schizophrenia.

1.6  Analysis of Derived
Measures
1.6.1 Which Brain Measures Should

Be Used?

We have reviewed a multitude of different
ways in which structural MRI scans can be

processed to obtain information about the
brain’s gray matter. This information ranges
from global measures, where the gray matter
properties are summarized into a single vari-
able, e.g., total gray matter volume, to local
measures, where the latter provide detailed
information about gray matter, e.g., gray mat-
ter thickness at a certain position on the cortex.
It should be clear by now that all of these quan-
titative measures are estimates, with different
precision and accuracy. For instance, estimates
of local cortical thickness from high-resolution
MRI scans can be influenced by noise in the
scan, which can interfere with the triangular
net reconstruction of the cortical interfaces
from which the distance is calculated.
Conversely, local voxel-based gray matter vol-
umetric information might be less accurate,
since the procedure does not lead to well-
defined measures (‘concentration’, ‘density’,
‘presence’ of gray matter, depending on a num-
ber of parameters such as kind of non-linear
transformation technique and amount of defor-
mation; amount of blurring).

Global measures, or more generally, measures
of larger regions of the brain, are more reliable
(or stable), than local measures, due to the sum-
mation (or averaging) effect that tends to cancel
out (random) noise. The measures that need more
complex reconstructions (shape analysis, cortical
surface), however, tend to be less reliable
(Schnack et al. 2010). A measure such as local
cortical thickness has the advantage that it is
clear what it is estimating: the distance from the
cortical surface to the gray/white matter inter-
face, while the shape of the hippocampus or gray
matter density at some point in the brain is a
much less clear measure. The bottom line is that
from the many possible ways information can be
retrieved from the brain image, the researcher
should choose the ‘best’ one by balancing the
advantages and disadvantages of the different
approaches. This decision should be based on
which measure is best suited to answer the
research question, and on whether or not the sam-
ple is large enough to afford high-resolution
measures.
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1.6.2 From Group Analysis
to Individual Predictions:
Statistics and Machine
Learning

Until now, when examining different image pro-
cessing techniques, we referred to whether or not
there would be a difference between patients and
controls for a certain measure without actually stat-
ing what we meant by ‘a difference between
patients and controls’. Here, what is generally
meant is a difference at the group-level, that is, a
difference between the mean of patient values and
the mean of control values. However, if there is
large variation in values for the individual sub-
jects—more precisely, if the spread of the values is
large compared to the mean difference—this dif-
ference is quite meaningless. One needs statistics,
e.g., a t-test, to determine whether or not the
observed difference is ‘significant’ or could have
happened by chance. If there is a large overlap in
values between patients and controls, the measure
used is not suitable as a marker for discriminating
between patients and controls. It is, in other words,
not a biomarker. However, why should we investi-
gate only one measure (be it a voxel or total vol-
ume) at one time? In brain disorders, such as
schizophrenia, morphological differences have
been found throughout the brain (Haijma et al.
2013) and one could analyze brain measures in a
multivariate way to detect patterns in brain mor-
phology that are different between patients and
controls. Examples of such multivariate techniques
are principal component analysis (PCA), linear dis-
criminant analysis (LDA), and partial least squares
(PLS). The next step is to use an algorithm and
have the computer detect which combination of
measures (‘features’), or pattern, best discriminates
patients from controls. Such a procedure of training
an algorithm and testing it—in data not used for
training—is incorporated in machine learning.
When applied to local (e.g., voxel-wise or vertex-
wise) gray matter measures of a set of patients and
controls, the result can be a discriminative ‘map’ in
which each feature has been attributed a weight,
reflecting its relative importance in the classifica-
tion of patients and controls. Most popular machine
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learning algorithms include support vector
machines (SVM) and random forests. In addition
to being a multivariate technique to assess differ-
ences between patients and controls, machine
learning models can also predict disease status for
the individual patient. The application of machine
learning methods to anatomical brain scan data to
separate schizophrenia patients from healthy sub-
jects has yielded accuracies between 70 and 90%
(Kambeitz and Koutsouleris 2014). However, some
studies used small datasets, and the classification
models built from these sets are prone to overfit-
ting. Indeed, a negative effect of sample size on
accuracy has been found (Schnack and Kahn
2016). Large, multicenter datasets are thus needed
to build accurate and reliable classification models
using machine learning. Recently, using such
approaches, imaging markers were found to predict
functional outcome in patients (Koutsouleris et al.,
2018), thus holding promise for potential future
clinical applications of such methods in patients to
aid in prevention, treatment and hopefully
recovery.

Summary

e MRI is a brain image modality that
allows for the inclusion of large groups
of subjects which are needed to obtain
sufficient statistical power to compare
patients and healthy comparison sub-
jects even if the effect sizes are small.

e With Tl-weighted MRI, differences in
myelin concentration are more predomi-
nantly observed than differences in cell
types. Thus in this context, gray and
white matter brain tissue refer to tissue
with high and low concentrations of
myelin.

* The relation between brain structure and
brain function forms the basis for inter-
est in brain structures because by study-
ing various aspects of the structures we
obtain a better understanding of the eti-
ology of schizophrenia.
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* Where there are large datasets, fully
automatic analysis of the various gray
matter structures is preferred.

e Multi-center initiatives are instrumental
for obtaining sufficiently large subject
samples.

* Machine learning may be used to trans-
late group findings to individual
predictions.
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2.1 Schizophrenia-Related Gray

Matter Alterations

A number of analytical approaches have been
used to assess case-control differences in struc-
tural MRI studies (see Chap. 1 for more details).

Univariate analyses of group differences in
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the latter involves a voxel-wise comparison of
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brain tissue concentration or density between
two groups. In meta-analyses of ROI-based
studies, the pooled effect size of case-control
differences is commonly expressed either as
Cohen’s d (Cohen 1977) or Hedges’ g (Hedges
1981). Meta-analyses of VBM studies examine
whether the brain-coordinates of case-control
differences derived from the primary literature
are statistically likely to cluster within spe-
cific brain regions. The Anatomical Likelihood
Estimation (ALE) (Eickhoff et al. 2012) and
Signed Differential Mapping (SDM) (Radua
and Mataix-Cols 2009) are the most widely
used algorithms for VBM-based meta-analy-
ses. Univariate analyses, although informative,
ignore potential covariation among brain regions
or voxels. By contrast multivariate analyses are
concerned with the identification of case-control
differences in the spatial patterns of brain struc-
tural covariation. Several multivariate methods
have been employed and these mainly include
source based morphometry and machine learning
algorithms. Source-based morphometry (SBM)
(Xu et al. 2009) extracts spatially independent
components (i.e., clusters) from MRI-derived
voxelwise measures of gray matter concentration
or volume. Machine learning approaches exam-
ine the predictive value of brain phenotypes in
discriminating patients from healthy individuals
and commonly include a recursive feature elimi-
nation framework (Guyon et al. 2002; Saeys et al.
2007). Multiple machine learning algorithms are
available with support vector machines (SVM),
discriminant and sparse canonical analyses,
multiple kernel learning, deep learning and mul-
tiview learning being the most popular choices
(Arbabshirani et al. 2017; Veronese et al. 2013).

2.1.1 Cross-Sectional Studies

2.1.1.1 Univariate Analyses in Patient
Samples Unselected for lliness
Duration

The consortium for Enhancing Neurolmaging

Genetics through Meta-Analysis (ENIGMA)

(http://enigma.ini.usc.edu/) is the largest inter-

national collaborative initiative in brain imaging.

ENIGMA is organized in disorder-specific work-
ing groups which aim to quantify case-control
differences in brain phenotypes extracted from
MRI data using harmonized analysis and quality
assurance protocols across all participating sites
(Thompson et al. 2014, 2017). The ENIGMA
schizophrenia working-group has leveraged the
data within the consortium to create one of the
largest datasets of gray matter ROIs in patients
with schizophrenia and healthy individuals.
Studies from the ENIGMA consortium (Chap.
21) have established that schizophrenia is associ-
ated with replicable but subtle case-control dif-
ferences in the volume of subcortical structures
(patients = 2028 and healthy individuals = 2540)
(van Erp et al. 2016) (Fig. 2.1) and in regional
cortical thickness and area (patients = 4474 and
healthy individuals = 5089) (van Erp et al. 2018)
(Fig. 2.2). Specifically, compared to healthy
individuals, patients had smaller hippocampus
(d = —0.46), amygdala (d = —0.31), thalamus
(d = —0.31), accumbens (d = —0.25) and intra-
cranial volumes (d = —0.12) and larger pallidum
(d = 0.21) and lateral ventricles (d = 0.37) and
global bilateral reductions in cortical thickness
(left: d = —0.53; right: d = —0.51) and surface
area (left: d = —0.25; right: d = —0.25) (Fig. 2.1).
When controlling for these global effects, patients
showed further regional changes in cortical thick-
ness but not area. This accentuated regional corti-
cal thinning was most pronounced in the fusiform
gyrus, but was also present in multiple temporal
regions (inferior, middle and superior temporal
gyri and parahippocampal gyrus), in the ven-
trolateral prefrontal cortex (PFC; lateral orbito-
frontal and inferior frontal gyrus), in the insula,
and in the posterior anterior cingulate cortex
(ACC) (Fig. 2.3). Notably, the motor (precentral
gyrus), somatosensory (postcentral gyrus), and
parietal (superior and inferior parietal cortex and
paracentral lobule) cortices as well as the rostral
ACC were significantly thicker in patients than
in healthy individuals (Fig. 2.3). The findings of
ENIGMA have been replicated in an independent
Japanese sample of 884 patients with schizophre-
nia and 1680 healthy individuals from the con-
sortium of the Cognitive Genetics Collaborative
Research Organization (COCORO) (Okada et al.
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Fig. 2.2 Cortical map of differences in cortical thickness
between patients with schizophrenia and healthy individu-
als. Cortical map of regional effect size (Cohen’s d) of
case-control differences in regional cortical thickness

2016) and are aligned with meta-analyses based
on pooled effect size of case-control differences
from 317 studies comprising over 18,000 patients
(Haijma et al. 2013).

Two meta-analyses, published a year apart
used ALE to map gray matter changes in schizo-
phrenia. Glahn et al. (2008) used data from 31
VBM studies, comprising 1195 patients with
schizophrenia and 1262 healthy volunteers,
while Fornito et al. (2009) used data from 37
VBM studies that collectively compared 1646

controlling for age and gender (a) and age, sex, and global
cortical thickness (b) (van Erp et al. 2018). (From https://
www.ncbi.nlm.nih.gov/pubmed/29960671)

patients to 1690 healthy individuals. Not surpris-
ingly the primary studies in these two meta-anal-
yses showed significant overlap, which extended
to the results reported. Schizophrenia-related
reductions were more consistent for gray matter
concentration than for volume although the find-
ings largely converged (Fornito et al. 2009). The
regions where gray matter density reductions in
patients were most likely to be reported com-
prised the ACC, the parahippocampal, middle
frontal and postcentral gyri, and the thalamus;
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Fig. 2.3 Regional differences in cortical thickness
between patients with schizophrenia and healthy individu-
als. Mean and standard error of the effect size (Cohen’s d)
of regional case-control differences in cortical thickness

conversely, patients had increased gray matter
density in striatal regions (Fornito et al. 2009;
Glahn et al. 2008). These findings were updated
by Bora et al. (2011) who applied SDM to MRI
data from 49 VBM studies comparing 1999
patients with schizophrenia and 2180 healthy
individuals. Gray matter volume reductions
were more likely to be located bilaterally in the
ACC, the medial and inferior PFC, the superior
temporal gyrus, the precentral gyrus and insula.
Amongst the subcortical regions, schizophrenia-
related reductions were also noted in the thalamus
and the amygdala extending to the red nucleus in
the midbrain.

2.1.1.2 Univariate Analyses

in First-Episode Patients
Three separate meta-analyses have identified
brain changes seen in patients with first-episode
schizophrenia. Vita et al. (2006) and Steen et al.

T
-0.1 0 0.1 0.2 0.3
Cohen’s d + Standard Error

after controlling for age, sex, and global mean cortical
thickness (van Erp et al. 2016). (From https://www.ncbi.
nlm.nih.gov/pubmed/29960671)

(2006) examined case-control differences in a
very limited number of volumetric ROIs. The
former study used data from 21 studies involving
551 first-episode patients with an approximate
mean age of 25 years and 680 demographically
matched healthy individuals. The latter extracted
data contrasting 1424 patients with first-episode
schizophrenia, with an approximate average age
of 26 years, to 1315 matched healthy individu-
als. Although both studies found larger ventricles
and smaller hippocampi, effect sizes were only
provided by Vita et al. (ventricles: d = 0.39; hip-
pocampi right d = —0.47 and left: d = —0.65).
Radua et al. (2012) used SDM to analyse data
from 25 VBM studies, contrasting 965 patients
with first-episode psychosis, with an approxi-
mate mean age of 24 years, to 1040 matched
healthy individuals. In patients, gray matter vol-
ume decrements clustered in the insula, opercu-
lum, the superior temporal gyrus and the medial
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frontal and anterior cingulate cortices while gray
matter increased clustered in the precentral gyri.

2.1.1.3 Univariate Analyses
in Early-Onset Schizophrenia

A relatively small number of studies primarily
conducted by the National Institutes of Mental
Health (NIMH) in the USA and centres in the
Norway, Spain, and the UK have examined
brain alterations in patients with childhood-onset
(onset before the age of 13 years) or adolescent-
onset (onset between the ages of 13-18 years)
schizophrenia, henceforth jointly referred to
as early onset psychosis (EOP). Although EOP
patients represent less than 4% of schizophre-
nia cases arising from any birth cohort (Cannon
et al. 1999), their study has the potential to pro-
vide information about the interaction between
schizophrenia-related mechanisms and develop-
mental processes that occur during adolescence
(Giedd et al. 1999).

Studies in adolescent-onset schizophrenia
have found reductions in total brain volume
(Collinson et al. 2003; Matsumoto et al. 2001)
and gray matter volume particularly within the
frontal lobe (Moreno et al. 2005; Reig et al. 2011;
Yoshihara et al. 2008) but no such differences in
subcortical volumes (James et al. 1999; Juuhl-
Langseth et al. 2012; Matsumoto et al. 2001).

Nearly all studies on childhood-onset schizo-
phrenia derive from the NIMH cohort and col-
lectively have found that patients, compared to
age-matched healthy children, have lower total
brain and thalamic volumes and larger caudate
and globus pallidus (Frazier et al. 1996a, b;
Jacobsen et al. 1996; Kumra et al. 2000).

2.1.1.4 Multivariate Pattern Analyses

in Patients Unselected

for lliness Duration
The study of Gupta et al. (2015) is of particu-
lar interest as they applied SBM to the largest
MRI dataset to date comprising 936 healthy
individuals and 784 patients with schizophrenia.
Following age and sex regression, both decre-
ments and increments in gray matter concentra-
tion were observed in schizophrenia. Decrements
clustered within the superior, middle, medial and

inferior frontal gyri, the superior and inferior
temporal gyri, the fusiform gyrus, the insula, the
cuneus and precuneus, and the cerebellar vermis
and declive while increments were located in the
brainstem (pons and ventral tegmental area).

Further, Kambeitz et al. (2015) conducted
a meta-analysis of studies (n = 20) that applied
machine learning to MRI data from patients with
schizophrenia from healthy individuals. They
found that, regardless of the specific algorithm,
patients with schizophrenia could be distin-
guished from healthy individuals with a sensitiv-
ity of 76.4% and a specificity of 79.0%.

Similar findings were reported in two of the
largest studies conducted to-date that applied
machine learning algorithms to structural MRI
data to discriminate healthy individuals from
patients with first episode schizophrenia (n = 127)
and from patients with schizophrenia (n = 387)
at different stages of their illness (Rozycki et al.
2018; Squarcina et al. 2017). In both studies,
regions within the medial prefrontal, temporo-
limbic and peri-Sylvian cortex, together with
ventricular and pallidal enlargement, showed the
higher discriminative power but the accuracy of
diagnostic classification was modest and ranged
from 72 to 77% (Rozycki et al. 2018).

2.1.2 Longitudinal Studies

Several studies have assessed gray matter mor-
phometry in patients with a first episode psy-
chosis or chronic schizophrenia at multiple time
points after illness onset as well as examined the
association of the longitudinal changes identified
to clinical outcome. The challenge in this line of
research is to disentangle brain alterations related
to disease mechanism versus those that may be
more closely associated with medication expo-
sure and side-effects, substance use, and subopti-
mal lifestyle choices.

2.1.2.1 First-Episode Psychosis

Multiple research groups, mostly based in
Australia, Europe, and North America have
contributed to the literature on brain alterations
following the first psychotic episode in adult
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(Andreasen et al. 2011; Cahn et al. 2002; DeLisi
et al. 1997, 2004; Haukvik et al. 2016; Lieberman
et al. 2001; Nakamura et al. 2007; Puri et al.
2001; Takahashi et al. 2009; Whitworth et al.
2005) and in EOP patients (Arango et al. 2012;
Fraguas et al. 2012; Jacobsen et al. 1998; James
et al. 2004; Keller et al. 2003; Reig et al. 2009;
Sporn et al. 2003; Thompson et al. 2001). There
is significant variability in the results reported,
even between studies using cohorts with similar
characteristics. Nevertheless, key meta-analyses
of the literature have identified some consistent
findings.

Fraguas et al. (2016) focused specifically
on early onset psychosis. Their meta-analy-
sis included longitudinal MRI studies (with a
mean inter-scan of 2.46 years) that collectively
involved 156 EOP patients (mean age at base-
line 13.3-16.6 years) and 163 demographi-
cally matched healthy youth. They used a ROI
approach to derive the effect size of case-control
differences in longitudinal changes in total brain
volume, total gray matter volume and in the gray
matter volume of each cerebral lobe. Compared
to healthy youth, EOP patients showed acceler-
ated volume reduction in all the gray matter ROIs
examined; the largest effect sizes were noted for
the gray matter volume of the frontal (g = —0.43)
and the occipital lobes (g = —0.79). These results
resonate with the longitudinal changes in corti-
cal thickness reported by Greenstein et al. (2006)
in the NIMH cohort which only comprises youth
with childhood-onset schizophrenia (n = 70)
and healthy youth (n = 70) scanned repeatedly
between the ages of 14 and 22 years. At younger
ages, patients showed greater cortical thinning in
anterior and posterior cortical regions. This pat-
tern became more localized in the superior, mid-
dle, medial, and lateral orbital frontal gyri and in
the superior and middle temporal gyri when the
patients reached adulthood. Additionally during
the follow-up period, the rate of cortical thinning
in the superior parietal and postcentral gyri “nor-
malized” while that in the superior and middle
temporal gyri did not. Collectively, these find-
ings have been interpreted as an exacerbation of
the developmental changes taking place during
adolescence (Thompson et al. 2001); in typically

developing youth, there is a posterior-to-anterior
wave of reduction in cortical volume and thick-
ness which is assumed to reflect brain matura-
tional processes in frontal and occipital regions
that precede similar maturational changes in
the lateral temporal cortex (Giedd et al. 1999;
Gogtay et al. 2004).

Although EOP studies are informative, the
typical onset of schizophrenia is in the third
decade of life and therefore adult-onset datasets
are more representative of the clinical popula-
tion with schizophrenia. A meta-analysis by Vita
et al. (2012) identified nine longitudinal stud-
ies of adults patients scanned within the first
24 months from onset that provided ROIs mea-
sures of gray matter of the whole-brain, the cere-
bral lobes and the auditory cortex on Heschl’s
gyrus (HG). Compared to healthy individuals
(n =337), patients (n = 341) showed reduction of
moderate effect size (range of d: —0.30 to —0.58)
in all the gray matter measures examined with the
exception of the HG where the effect size of case-
control differences was large (right: g = —1.13;
left: g = —1.33).

We also highlight the contribution of the
Iowa Longitudinal Study that stands out based
on sample size and duration of follow-up. The
Towa Longitudinal Study was conducted between
1987 and 2007 that recruited 542 patients at their
initial psychotic presentation at a mean approxi-
mate age of 24 years. Repeated MRI scans (mini-
mum 2 and maximum 5 scans) were available
from 202 patients and 125 healthy individuals;
the mean interval between first scan and last
available scan was 7.2 years (Andreasen et al.
2011). Patients showed accentuated decrease in
whole-brain and regional gray and white matter
volume and increased enlargement of the lateral
ventricles. With regards to gray matter volume,
the slope of decline in patients was greater for
the frontal lobe and the thalamus (Andreasen
et al. 2011). However, progressive brain changes
did not occur uniformly in patients or in healthy
individuals. For example, 47% of patients were
losing at least 0.5% and 34% were losing at
least 1% of frontal gray matter volume (as com-
pared with 36% and 23% in healthy individuals,
respectively). The interaction between time and
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diagnostic group on all brain measures was sta-
tistically significant at the first inter-scan inter-
val, which was at 2 years after intake, but not
thereafter. Increased attrition with longer follow-
up may have reduced the power to detect case-
control differences. However, these findings raise
the possibility that disease-mechanisms affecting
brain integrity may indeed be most active during
the early stages of schizophrenia. This interpre-
tation may need to be considered in the context
of a study by Schaufelberger et al. (2011) who
conducted a 1-year follow-up of 39 patients with
first-episode psychosis and 52 healthy individu-
als enrolled in a population-based case-control
study. Although the sample size was small and the
follow-up period was brief, the authors reported a
significant group by time interaction in the supe-
rior temporal gyrus and the hippocampus due to
gray matter increase in patients in these brain
regions while no change was observable in the
control group. This “gain” in patients was associ-
ated with prolonged remission suggesting that if
disease mechanisms are indeed active in the early
stages of the illness this effect may be limited to
a subset of patients likely to have a more severe
illness.

2.1.2.2 Patient Samples Unselected
for lliness Duration

Several studies have examined progressive brain
changes in patients of schizophrenia at different
stages of their illness beyond the first episode
(Mathalon et al. 2001; Mitelman et al. 2009;
van Haren et al. 2008, 2011, 2016; Veijola
et al. 2014; Wood et al. 2001) as have several
reviews (Hulshoff Pol and Kahn 2008; Zipursky
et al. 2013). Several meta-analyses have also
provided a synthesis of the emerging patterns
(Haijma et al. 2013; Kempton et al. 2010; Olabi
et al. 2011).

More specifically, Kempton et al. (2010)
focused their meta-analysis on the issue of lateral
ventricular enlargement as an indirect measure of
progressive brain loss; they included 13 studies
that had measured the lateral ventricles or entire
ventricular system at a minimum of two time
points in a cumulative sample of 473 patients and
348 healthy individuals. Patients showed greater

progressive ventricular enlargement than healthy
individuals with a mean effect size g = 0.45; the
effect size of case-control differences was similar
for early stage (g = 0.49) and chronic (g = 0.41)
patients.

Olabi et al. (2011) conducted a meta-analy-
sis using data from 27 patient cohorts compris-
ing 928 patients and 867 healthy individuals for
whom baseline and follow-up a ROI volumetric
data were available. The mean duration of ill-
ness at the baseline scan was 6.2 years (range:
0.3-18.7 years) and the mean inter-scan inter-
val was 3.49 years. Greater progressive changes
in patients were noted for the whole brain vol-
ume (d = —0.40) and the ventricular volume
(d = 0.53). The slope of decline was steeper in
patients for all gray matter ROIs but reached sig-
nificance for the whole-brain (d = —0.52) and
frontal lobe (d = —0.34). No significant time by
diagnosis interaction was noted for subcortical
structures although the reported confidence inter-
vals were large, suggesting significant inter-study
heterogeneity.

The results of these meta-analyses resonate
with the findings from one of the largest lon-
gitudinal MRI datasets of patients with schizo-
phrenia at the University Medical Center Utrecht
(Hulshoff Pol et al. 2001). At baseline, the cohort
comprised 159 patients with schizophrenia (with
a mean duration of illness of 13.7 years) and
158 healthy participants. At intake, patients had
smaller amygdala, hippocampus and thalamus
and larger caudate and globus pallidus. They
also showed evidence of cortical thinning in the
inferior frontal, superior temporal and ventral
occipital regions and in the precuneus, insula and
posterior cingulate cortex (Hulshoff Pol et al.
2001) and greater volume in the superior pari-
etal lobule and occipital pole (van Haren et al.
2011). After a mean interval of approximately
5 years, 96 patients and 113 healthy individuals
were rescanned. At follow-up, both diagnostic
groups showed progressive reductions in whole-
brain and cerebral lobe gray matter volume (van
Haren et al. 2008) and thickness, but the slope
was steeper in patients particularly in frontal
and temporal regions (van Haren et al. 2011).
Subcortical progressive volumetric reductions
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were more pronounced in patients’ caudate, puta-
men, hippocampus, and amygdala (van Haren
et al. 2016).

2.2  Associations Between Gray
Matter Morphometry
and the Clinical Features

of Schizophrenia

Gray matter alterations in schizophrenia are
thought to underpin disease expression but this
association is complex. Several clinical features
seem to correlate with symptom severity in cross-
sectional investigations and the prognostic value
of neuroimaging for clinical and functional out-
comes. Outcomes were commonly defined using
consensus criteria for clinical remission (e.g.,
Andreasen et al. 2005), type of course (e.g., non-
remitting versus remitting) or overall function
based on the General Assessment of Functioning
(GAF) score. We focus on associations between
gray matter morphometry and disease expression
that were reported in the studies discussed in the
preceding sections when such information was
available. Additionally we highlight notable find-
ings from the wider literature.

2.2.1 Cross-Sectional Studies
2.2.1.1 Associations Between Gray

Matter Changes and Symptom

Severity
In the ENIGMA studies, the association between
gray matter ROIs and symptoms was assessed
using both whole-brain and hypothesis-led ROI
methods. In the whole-brain analyses, greater
positive symptom severity correlated with corti-
cal thickness in the left fusiform gyrus (r = 0.60),
the left pars triangularis (r = —0.08), the left supe-
rior frontal gyrus (r = —0.07), the right inferior
(r=—0.07), and the bilateral middle frontal gyrus
(leftr=—0.08; right r = —0.10) and middle tempo-
ral gyrus (left r = —0.07; right r = —0.06) (van Erp
et al. 2018). Greater negative symptom severity
correlated with widespread cortex thinning bilat-
erally (left and right r = —0.08) and larger lateral
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ventricular volume (van Erp et al. 2016, 2018).
The hypothesis-led analyses focused on the supe-
rior temporal gyrus (STG) given its involvement
in auditory hallucinations (Lee et al. 2018) and
on PFC regions because of their association with
negative symptoms (Millan et al. 2014). In these
analyses, positive symptom severity was nega-
tively related to STG thickness bilaterally (left:
Bstd = —0.05; right: pstd = —0.07) (Walton et al.
2017) while negative symptom severity nega-
tively related with the thickness of the left medial
orbitofrontal cortex (fstd = —0.07) and to a lesser
extent with the thickness of the left lateral orbi-
tofrontal gyrus and the pars opercularis (Walton
et al. 2018).

However, the ENIGMA findings are only
partially supported by other meta-analyses. The
meta-analysis by Bora et al. (2011) reported a
link between negative symptom severity and
reduced gray matter density in the medial and
lateral orbital PFC (as well as the insula) but
only in chronic patients. Fusar-Poli et al. (2012),
who focused on first-episode mediation-naive
patients, found a negative between reduced STG
gray matter volume and overall psychopathol-
ogy. Therefore the magnitude of the associations
between gray matter changes and psychopa-
thology is generally small and perhaps it is not
surprising that such associations have not been
always detectable (e.g., Gupta et al. 2015).

The complexity of the links between gray
matter phenotypes and psychopathology is
highlighted by the contradictory findings from
machine learning studies. Kambeitz et al. (2015)
found that diagnostic accuracy based on machine
learning analysis of structural MRI data was
better for patients with predominantly positive
symptoms while Rozycki et al. (2018) reported
better diagnostic classification accuracy for
patients with greater negative symptom severity.

2.2.1.2 Associations Between Gray

Matter Changes and Outcome
In childhood-onset schizophrenia, whole-brain
mean cortical thickness at baseline was positively
associated with remission at 3 months post-scan
(Greenstein et al. 2008). This finding was par-
tially confirmed by Doucet et al. (2018) who
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used a machine learning approach to evaluate the
predictive value of gray matter phenotypes for
symptomatic improvement at 6-months in adult
patients (n = 100) in the early stages of schizo-
phrenia (duration of illness <5 years). Although
symptomatic improvement showed moderate
correlations with global cortical thickness and
subcortical volumes, none of these phenotypes
had significant prognostic value.

Two notable studies attempted to test whether
machine learning applied to brain structural fea-
tures can distinguish between patients with remit-
ting versus non-remitting outcomes (also see
Chap. 17). Zannetti and colleagues (2013) used
MRI data from 62 patients with first-episode of
schizophrenia and an equal number of matched
healthy individuals; the diagnostic accuracy of
the classifier was modest in distinguishing cases
from controls (73.4%), but failed to discriminate
between patients with remitting and non-remitting
course, as the diagnostic accuracy achieved was
marginally above chance (58.3%). Nieuwenhuis
et al. (2017) expanded upon this effort by using
data from a substantial sample of patients with
first episode psychosis (n = 386) from centres in
Australia, Brazil, the Netherlands, Spain, and the
UK. Classification accuracy according to out-
come was modest in some of the participating
centres but did not generalize across centres; in
fact when data from all the centres were analyzed
into one model, the classification accuracy was at
chance level.

2.2.2 Longitudinal Studies

None of the major meta-analyses of longitudi-
nal studies have addressed the association with
clinical outcome (Fraguas et al. 2016; Olabi
et al. 2011; Vita et al. 2012) so we focus on the
findings of the two largest longitudinal studies,
the Towa Longitudinal Study, which followed-
up first-episode psychosis (Andreasen et al.
2011, 2013), and the study coordinated by the
University Medical Center Utrecht that exam-
ined patients with schizophrenia at different
stages of their illness (Hulshoff Pol et al. 2001;
van Haren et al. 2008, 2011, 2016). The Iowa

Longitudinal Study focused on the association
between remission (defined as in Andreasen et al.
2005), relapse (defined as in Csernansky et al.
2002) and the rate of progressive brain changes
in patients (n = 202). Over an average period
of 7 years, the mean duration of relapse was
1.34 years. The early phases of the illness were
characterized by multiple relapses of relatively
short duration; as time progressed, the number of
relapses decreased while their length increased.
The length of the period spent in relapse (but
not the number of relapses) was associated with
greater loss in whole-brain and frontal gray mat-
ter volume (Andreasen et al. 2013). In the cohort
from the University Medical Center Utrecht,
patients (n = 96) were followed-up for an average
period of 5 years at which point the median GAF
score was used to divide patients into those with
good (GAF = 66.7) and those with poor outcome
(GAF = 38.2). The outcome groups did not dif-
fer in age, sex, scan interval, socioeconomic sta-
tus, illness duration, or antipsychotic medication
intake. However, compared to patients with good
outcomes, those with poor outcomes showed
more pronounced progressive cortical thinning in
multiple temporal regions (superior and middle
temporal and Heschl gyri), in the ACC and in the
visual cortex (cuneus).

2.3 Potential Moderators

2.3.1 Sex

There are no consistent reports of a differential
effect of sex on schizophrenia-related brain struc-
tural alterations either in cross-sectional or lon-
gitudinal studies. Whenever an effect of sex has
been found it has been associated with greater
brain structural deviance in male patients. For
example, the ENIGMA studies found no inter-
action between diagnosis and sex on subcortical
volume when correcting for multiple compari-
sons; at a nominal uncorrected statistical thresh-
old, the proportion male patients was associated
with more pronounced case-control differences in
the accumbens and the amygdala (van Erp et al.
2016). Moreover, meta-analyses that examined



36

S.Frangou and R. S. Kahn

the effect of sex found no interactions with diag-
nosis (Fraguas et al. 2016; Haijma et al. 2013;
Kempton et al. 2010; Olabi et al. 2011) with the
exception of Bora et al. (2011), who reported that
male sex was associated with greater deviance in
the gray matter of the PFC, the insula, the amyg-
dala and the thalamus.

23.2 Age

Age and illness duration are commonly highly
correlated and their independent contribution to
schizophrenia-related gray matter morphometry
can be difficult to disentangle. Age is a signifi-
cant determinant of gray matter morphometry; a
substantial body of literature suggests that gray
matter regions cortical thickness and volume
peak during late childhood and decrease there-
after (Ducharme et al. 2015; Good et al. 2001;
Raz et al. 2005, 2010). The association between
age and brain morphometry in schizophrenia is
likely to involve complex interactions between
age-related brain changes, primary effects of
disease mechanisms, and secondary effects of
prolonged medication exposure and patients’
suboptimal lifestyle. There is some evidence
that the magnitude of case-control differences
in schizophrenia may be influenced by devel-
opmental age (Chap. 15). As previously noted,
the slope of cortical thinning was steeper in
adolescence in the NIMH cohort of childhood-
onset schizophrenia but became similar to that
of healthy youth as patients approached adult-
hood (Greenstein et al. 2006). The evidence for
older adults is somewhat conflicting. Kambeitz
et al. (2015) found that machine learning algo-
rithms attained better diagnostic sensitivity for
chronic compared to first-episode patients indi-
cating that case-control differences in schizo-
phrenia may become more distinctive with age.
By contrast, in the University Medical Center
Utrecht cohort, excessive gray matter volume
decrease in patients with schizophrenia over a
5-year follow-up was significant for those aged
18-46 years but not in older patients (van Haren
et al. 2008). This observation has not been rep-
licated in other studies including a further study

from the same cohort that examined cortical
thickness (van Haren et al. 2011).

2.3.3 Antipsychotic Medication

The effect of antipsychotic medication on brain
morphology is subject to intense scrutiny and
debate (See also Chap. 18). Antipsychotic drugs
are the mainstay pharmacological treatment of
schizophrenia and reduce dopaminergic neuro-
transmission albeit to a variable degree. The first-
generation antipsychotics (FGA) are high-affinity
antagonists of dopamine D, receptors while the
second-generation (SGA) antipsychotics have
lower affinity for D, receptors but different affin-
ities for serotonergic, adrenergic, acetylcholine,
and histamine receptors (Miyamoto et al. 2005).
Antipsychotic exposure and illness severity are
not independent because patients with a more
severe illness are more likely to receive medi-
cation for longer periods and at higher doses.
Disambiguating the effects of medication on gray
matter integrity from those attributable to pri-
mary disease mechanism is the greatest challenge
as most MRI studies include medicated patients.

2.3.3.1 Effect of Antipsychotic
Medication on Striatal Volumes

Striatal enlargement has been associated with
antipsychotic treatment in multiple studies
(Gupta et al. 2015; Ho et al. 2011; van Haren
et al. 2016) and meta-analyses (Haijma et al.
2013) and is absent in studies of medication-
naive patients (Fusar-Poli et al. 2012, 2013). The
first indication that antipsychotics may causally
affect striatal structure was provided by Chakos
and colleagues in 1994 who reported an increase
in the volume of the caudate nucleus in patients
with first-episode schizophrenia following initia-
tion of treatment with haloperidol, a prototypi-
cal FGA. Subsequent studies found that caudate
enlargement can be reversed following with-
drawal of antipsychotic medication or substitu-
tion of FGAs with SGAs (Chakos et al. 1995;
Frazier et al. 1996b; Corson et al. 1999). Because
the caudate is rich in dopamine D, receptors, this
FGA-induced enlargement has been attributed
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to remodelling caused by strong dopaminer-
gic blockade which can induce ultrastructural
changes in striatal neurons (Benes et al. 1985;
Chakos et al. 1998; Meshul et al. 1992) and
alterations in the dendritic morphology of cor-
tical neurons (Lidow et al. 2001; Selemon et al.
1999) and in fronto-striatal connectivity (Tost
et al. 2010).

Antipsychotics may also influence progressive
striatal changes. In the University Medical Center
Utrecht cohort, the cumulative annual intake of
FGAs was inversely associated with progressive
volume loss in the putamen (rho = 0.46) and cau-
date (tho = 0.38) over a 5-year period (van Haren
et al. 2016); similarly, in the Towa Longitudinal
Study, higher antipsychotic doses were inversely
associated with progressive volume loss in the
caudate and putamen over a 7-year period (Ho
etal. 2011).

2.3.3.2 Antipsychotic Treatment

and Volume Changes in Other

Subcortical Regions
The most convincing evidence for an association
between antipsychotic exposure and subcortical
volumes derives from the ENIGMA dataset (van
Erp et al. 2016). Specifically, the proportion of
medication-naive patients was negatively associ-
ated with the effect size of case-control differ-
ences in hippocampal volume. The effect size
of case-control difference in ventricular enlarge-
ment was negatively associated with the propor-
tion of patients treated with SGA and positively
associated with the mean current antipsychotic
dose in chlorpromazine equivalents (CPZE).

2.3.3.3 Antipsychotic Treatment

and Changes in Cortical

Thickness or Volume
Preclinical studies suggest several mechanisms
that may lead to cortical thinning following
exposure to both FGAs and SGAs. These include
antipsychotic-induced microstructural changes
in dendritic morphology (Dorph-Petersen et al.
2005; Vernon et al. 2011), which can be reversed
upon discontinuation (Vernon et al. 2012). FGAs
may compromise gray matter integrity by reduc-
ing cerebral flow and metabolism (Goff et al.

1995; Lahti et al. 2004; Miller et al. 1997; Molina
et al. 2003; Wright et al. 1998) and by increas-
ing oxidative stress and excitotoxicity (Goff et al.
1995; Wright et al. 1998). Conversely, SGAs
(such as olanzapine and clozapine) may preserve
cortical gray matter integrity by reducing exci-
totoxicity (Duncan et al. 2000) while enhancing
dendritic resilience (Wang and Deutch 2008),
neurogenesis (Halim et al. 2004; Wakade et al.
2002; Wang et al. 2004), and neurotrophic fac-
tor expression (Bai et al. 2003; Fumagalli et al.
2003). The association between antipsychotic
dose and class has therefore been examined
in multiple MRI studies comparing patients to
healthy individuals and patients treated with
FGAs or SGAs.

The ENIGMA consortium found evidence for
an association between antipsychotic exposure
and mostly global measures of cortical thick-
ness (van Erp et al. 2018). In particular, mean
hemispheric cortical thickness was inversely
associated with exposure to FGAs or combina-
tions of FGAs and SGAs. In addition, higher
dose in CPZEs inversely correlated with corti-
cal thickness in almost all cortical regions but
more prominently in the superior frontal gyrus,
the pars triangularis, the superior, middle and
inferior temporal gyri, and the supramarginal
gyrus. The magnitude of these associations how-
ever was small (Irl < 0.2). The meta-analysis by
Radua et al. (2012) has provided further infor-
mation about the localization of cortical changes
associated with antipsychotic medication in first-
episode patients. In a series of meta-regression
analyses they found that the gray matter volume
in medial PFC, the ACC, and the insula were sig-
nificantly lower in medicated patients compared
to healthy individuals. This reduction was greater
than that observed in the same regions in a sub-
group analysis that included only samples with
antipsychotic-naive patients. The meta-analysis
by Haijma et al. (2013) focused on more global
measures and reported that higher antipsychotic
dose at the time of scanning was associated with
lower whole-brain gray matter volume for both
FGAs and SGAs. Importantly, a sub-analysis of
antipsychotic-naive samples found that the effect-
size of case-control differences was approxi-
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mately 75% of that seen in medicated samples,
indicating that the most significant reduction in
whole-brain gray matter volume may predate
treatment initiation.

Two key single-cohort studies have examined
the association between antipsychotic exposure
and progressive cortical changes. In the Iowa
Longitudinal Study, patients were divided into
those that received high (mean dose, 929.4 CPZE
mg), intermediate (mean dose, 391.7 CPZE mg),
and low daily antipsychotic dose (mean dose,
111.5 CPZE mg) (Ho et al., 211; Andreasen
et al. 2013). Patients in the top tertile had smaller
frontal gray matter volume compared to those in
the lowest tertile; this association however was
independent of follow-up duration. Conversely,
in the University Medical Center Utrecht longi-
tudinal cohort, cortical thickness reduction over
the 5-year follow-up period was associated with
antipsychotic class (van Haren et al. 2011), being
more pronounced in those treatment with FGAs.
The main SGA prescribed in this cohort was
olanzapine; higher exposure to olanzapine over
the follow-up period (in mg per year) was asso-
ciated with a non-significant increase in whole-
brain gray matter volume. A different pattern was
observed in patients with emergent treatment
resistance that were prescribed clozapine at any
point during the follow-up period. These patients
showed more pronounced cortical thinning in
the left superior temporal cortex compared to all
other patients, and those prescribed higher doses
of clozapine (in mg per year) showed further
thinning in the PFC and ACC.

Similar results were reported by Vita and col-
leagues who examined the association between
antipsychotic dose and class (FGA or SGA)
on ROIs involving whole-brain, frontal, tem-
poral, and parietal gray matter volume derived
from 18 longitudinal studies (range of follow-
up: 1-7 years) yielding a cumulative sample
of 1155 patients with schizophrenia and 911
healthy individuals (Vita et al. 2015). Patients
treated with FGAs or a combination of FGAs
and SGAs showed reductions in all gray matter
measures over time; the greater the exposure to
FGAs during the inter-scan period, both in terms
of cumulative and mean daily dose, the greater

the reduction in whole-brain gray matter volume.
By contrast, the higher the mean daily dose of
SGAs during the follow-up, the lower the reduc-
tion in whole brain gray matter volume. A larger
ROI-based meta-analysis by Fusar-Poli et al.
(2013) of 30 studies comprising MRI data from
of 1046 schizophrenia patients and 780 controls
over a median follow-up period of over 1-year,
also confirmed that progressive whole-brain gray
matter volume decreases and lateral ventricular
enlargement were associated with greater cumu-
lative exposure to higher antipsychotic doses.
This meta-analysis however did not consider
antipsychotic class.

The study by Lieberman et al. (2005) merits
special attention because their sample of patients
with first-episode schizophrenia (n = 263) was
randomized to double-blind treatment with the
SGA olanzapine, 5-20 mg/day, or the FGA halo-
peridol, 2-20 mg/day, for up to 104 weeks. This
random assignment enabled investigators to dis-
entangle the effect of antipsychotic class from
patient- and physician characteristics that may
drive medication regimes in clinical settings.
Patients were assessed by MRI at weeks 0 (base-
line), 12, 24, 52, and 104 and were compared to
58 healthy study participants. At study end, the
sample with available data comprised 239 patients
with a baseline MRI, and 161 patients with at least
one follow-up assessment. By week 12, patients’
rate of whole-brain gray matter volume reduction
was steeper in the haloperidol- versus the olan-
zapine-treatment group and the magnitude of this
difference remained largely constant to the study
end. These group differences were driven by vol-
ume loss in haloperidol-treated patients, which
was absent in the olanzapine-treated patients. The
same pattern was noted for frontal, temporal, and
parietal gray matter volumes. The volume of the
caudate showed greater enlargement in the halo-
peridol- compared with the olanzapine-treatment
group beginning at week 24.

2.3.3.4 Gray Matter Alterations

in Medication-Naive Patients
Studies on medication-naive patients are par-
ticularly useful in disentangling disease- ver-
sus medication-related brain structural changes.
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Fusar-Poli et al. (2012) identified 14 studies
with structural MRI data, collectively contrast-
ing 206 antipsychotic-naive patients with first-
episode psychosis (mean age of 26.4 years) to
202 healthy individuals. They found consistent
and significant gray matter reductions (g = 0.83)
(but no increases) in patients compared to healthy
individuals that clustered within the superior
temporal gyrus, the insula, and the cerebellum.
These findings were largely replicated in a fur-
ther meta-analysis by Haijma et al. (2013) who
also found that medication-naive patients, com-
pared to healthy individuals, had smaller intra-
cranial (d = —0.14), whole-brain (d = —0.21),
whole-brain gray matter (d = —0.36), thalamic
(d = —0.68), and caudate (d = —0.38) volumes.

2.3.4 Substance Use

Substance use, and particularly cigarette smok-
ing, cannabis and alcohol, is highly prevalent
in schizophrenia, affecting approximately 40%
of patients (de Leon and Diaz 2005; Hunt et al.
2018). In MRI studies of non-psychotic popula-
tions, cannabis (Martin-Santos et al. 2010), ciga-
rette smoking (Gallinat et al. 2006), and alcohol
abuse (Zahr and Pfefferbaum 2017) have all been
associated with diminished brain tissue volumes.
Therefore substance abuse has the potential to
exacerbate volume reductions in schizophrenia.
Supporting evidence has been provided mainly
from the University Medical Center Utrecht
cohort, by Rais et al. (2008) who reported that
first-episode patients who continued to use can-
nabis over the 5-year follow-up period showed
greater reduction in gray matter volumes and
increased ventricular enlargement compared to
those that did not abuse cannabis. The effect of
cannabis was most pronounced in regions rich
in cannabinoid receptors (CB1) within the dor-
solateral PFC, the ACC, and the occipital cortex
(Rais et al. 2010). However, in a review of the lit-
erature, Malchow et al. (2013) cautioned that the
effect of cannabis on brain structure in patients
with schizophrenia is inconsistent and is likely to
be small. Finally, a meta-analysis of the relevant
literature, showed that alcohol abuse in patients

with schizophrenia was associated with thinner
cortex and enlarged ventricles but the magnitude
of this effect was commensurate to that seen in
non-psychotic individuals (Lange et al. 2017).

2.3.5 Stress and Cardiometabolic
Risk Factors

There is substantial support for elevated baseline
activity of the hypothalamic-pituitary-adrenal
(HPA) axis, the central stress response system, in
patients with psychosis (Borges et al. 2013; Walker
et al. 2008). It is generally known that HPA hyper-
activity is associated with microstructural abnor-
malities and volume loss in the hippocampus,
which is a key target region for glucocorticoids
(Sapolsky 2003). At present, the link between hip-
pocampal volume reduction and HPA activity is
based on a sample of 24 patients with first-episode
schizophrenia where an inverse association was
found with cortisol levels both cross-sectionally
and at 3-month follow-up (Mondelli et al. 2010).
Patients with schizophrenia are at risk of
developing cardio-metabolic disease for several
reasons including genetic predisposition to diabe-
tes (Ryan et al. 2003), reduced physical activity
(Rosenbaum et al. 2014), and the metabolic side-
effects of antipsychotic medications (Mitchell
et al. 2013). It has been estimated that at least a
quarter of all medicated patients meet criteria for
metabolic syndrome (Mitchell et al. 2013). In
non-psychotic populations (Doucet et al. 2018;
Medic et al. 2016; Yates et al. 2012), the presence
of metabolic syndrome (comprising insulin resis-
tance, obesity, dyslipidemia and hypertension), or
merely increased body mass index (BMI), is asso-
ciated with cortical thinning. There are only two
studies that have addressed the effect of BMI on
brain morphometry in patients with schizophrenia.
Jgrgensen et al. (2017) obtained MRI data from
patients with first-episode schizophrenia (n = 78)
and healthy individuals (n = 119) at intake and
then 1 year later. Increases in BMI over the fol-
low-up period showed a small negative associa-
tion (p = —0.19) with whole-brain and whole-brain
gray matter volume change, which was however
similar in magnitude in both groups. Moser et al.
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(2018) used a multivariate machine approach
to examine the effect of BMI on MRI measures
from 100 patients with recent-onset schizophrenia
(illness duration <5 years) while simultaneously
modelling correlations with clinical and cognitive

symptoms, substance use, psychological trauma,
physical activity, and medication (Fig. 2.4). Even
after accounting for these multiple variables, BMI
was negatively and significantly associated the
cortical thickness (r = —0.28).
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Fig. 2.4 Multivariate associations between behavioral,
clinical and multimodal imaging phenotypes in psychosis.
Right Panel: Association between neuroimaging and non-
imaging variables across all imaging modalities. Left
Panel: (a): Regional cortical thickness measures corre-
lated most highly with non-imaging variate (top) and cor-
relations between non-imaging variables and cortical
thickness variate (bottom). (b): Subcortical volumetric
measures correlated most highly with non-imaging variate
(top) and correlations between non-imaging variables and

subcortical volumes variate (bottom). (¢): Regional task-
related brain activation correlated most highly with non-
imaging variate (top) and correlations between
non-imaging variables and task-related brain activation
variate (bottom). (d): Regional fractional anisotropy mea-
sures correlated most highly with non-imaging variate
(top) and correlations between non-imaging variables and
fractional anisotropy variate (bottom) Results from sparse
canonical correlation analyses from Moser et al. (2018).
(From https://www.ncbi.nlm.nih.gov/pubmed/29516092)


https://www.ncbi.nlm.nih.gov/pubmed/29516092

2 Gray Matter Involvement in Schizophrenia: Evidence from Magnetic Resonance Imaging Studies 41

2.4  Overview of Findings

The studies presented in the preceding sections
provide evidence for the following statements:
(1) schizophrenia-related gray matter alterations
consist mostly of subtle and widespread reduc-
tions in cortical and subcortical gray matter den-
sity and volume and in cortical thickness; these
gray matter alterations occur in the context of a
small but significant reduction in intracranial vol-
ume (ICV) in patients with schizophrenia (effect
size —0.2) (Haijma et al. 2013); (2) tissue loss
is most prominent in the temporal (inferior, mid-
dle and superior temporal and parahippocampal
gyri), the occipital and the frontal (lateral orbi-
tofrontal and inferior frontal gyrus) cortex, in the
posterior ACC, and in the insula; notably regions
within the motor (precentral gyrus), somatosen-
sory (postcentral gyrus), and parietal (superior
and inferior parietal cortex and paracentral lob-
ule) cortex may show tissue gain; (3) gray matter
tissue reductions are largely present at the time
of the first psychotic episode and may be greatest
early in the course of illness, mirroring the social
and occupational deterioration which seems
more pronounced in the early stages of psycho-
sis (Hafner and Maurer 2006); (4) after illness
onset, the slope of age-related decline in corti-
cal regions appears to be steeper in patients with
schizophrenia than in healthy individuals but of
small magnitude; it is estimated that the cumula-
tive loss of brain tissue after 20 years of illness is
approximately 3% (Hulshoff Pol and Kahn 2008;
Wright et al. 2000); (5) the association between
gray matter alterations and clinical outcome
is complex; the general pattern suggests that
whole-brain gray matter reductions are more pro-
nounced in patients that are more symptomatic
and have poor clinical and functional outcomes;
(6) sex differences in schizophrenia-related gray
matter alterations are small, and when present
they indicate greater deviance in male patients;
(7) antipsychotic drugs, and particularly FGAs,
have been associated with progressive striatal
and ventricular enlargement and diffuse cortical
thinning; (8) several factors including HPA dys-
regulation, substance abuse, stress, higher BMI,
and cardiometabolic risk are likely to contribute

to the gray matter alterations observed in schizo-
phrenia (Fig. 2.5).

2.5 Mechanistic Implications

and Future Directions

Structural MRI as applied to the studies described
above lacks the resolution to inform us about the
nature of pathogenetic processes underlying gray
matter changes in schizophrenia. Furthermore,
the processes involved may not affect all patients
in the same fashion. Studies that have applied
multivariate clustering techniques to multimodal
datasets from patients with schizophrenia (i.e.,
datasets that include clinical, genetic, cognitive
and brain phenotypes) hint at the presence of
multiple, partially overlapping syndromes that
may be associated with a discrete set of risk fac-
tors (Arnedo et al. 2015; Zheutlin et al. 2018).
No systematic examination, however, has been
undertaken to date to examine the association
between gray matter integrity and risk-conferring
gene variants or other non-genetic risk factors.
A meta-analyses of the limited neuroimaging
studies available have implicated a four-marker
haplotype in G72, a microsatellite and single
nucleotide polymorphism in NRGI1, DISCI,
CNR1, BDNF, COMT and GADI1; these asso-
ciations were of small or medium magnitude and
were most frequently observed in frontal regions
(Harari et al. 2017).

The gray matter changes in patients with
schizophrenia should be considered in the con-
text of ICV reduction, a consistent finding in
MRI studies of schizophrenia (Haijma et al.
2013). The expansion of the skull, which deter-
mines ICV, is driven by brain growth (O’Rahilly
and Miiller 2001) and reaches its maximum size
at approximately 13 years of age (Blakemore
2012). The reduced ICV in patients suggests
that the biological process leading to overt dis-
ease may be active early in development. As
already discussed, there are progressive post-
onset changes in brain and gray matter volume
that are indicative of on-going disease related
mechanisms that lead to further compromise in
brain structural integrity.
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Fig.2.5 Maps of change in cortical thickness in millime-
ters and F values, showing reduction (blue) or excess
(red) at study entry (patients with schizophrenia = 154,

Traditional models of schizophrenia empha-
size neurotransmitter abnormalities mostly in
the dopaminergic (Howes and Kapur 2009) and
glutamatergic systems (Moghaddam and Javitt
2012). According to the dopamine hypothesis,
schizophrenia is characterized by hyperactive
transmission in the striatal areas and hypoactive
transmission in the prefrontal cortex as proposed
by Davis and colleagues in 1991 and updated
more recently by Howes and Kapur in 2009.
In vivo and in vitro studies suggest that excess
dopamine can trigger inflammation, oxidative
stress, apoptosis, and mitochondrial impair-
ment (Junn and Mouradian 2001). For example,
prolonged stimulation of cortical neurons by
excessive dopamine can induce calcium-related
excitotoxicity and mitochondrial dysfunction
through mitochondrial complex I inhibition
(Ben-Shachar 2017). With respect to glutamate,
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controls = 156) and during the 5-year interval (patients =
96, controls = 113) (van Haren et al., 2011; https://www.
ncbi.nlm.nih.gov/pubmed/21893656)

the primary excitatory neurotransmitter, gray
matter pathology in schizophrenia may be linked
to excitotoxic injury through excessive Ca2+
influx via the N-methyl-d-aspartate (NMDA-R)
receptor (Moghaddam and Javitt 2012). Further,
Ca2+ toxicity targets mitochondria leading to
dysfunction, either directly or through oxidative
inhibition of mitochondrial complexes I, II and
V, ultimately activating death signals (Nicholls
2009; Davis et al. 2014).

Several other mechanisms have been pro-
posed to explain the gray matter alterations
observed in schizophrenia with most of the data
derived from post-mortem studies. To-date,
there is no convincing evidence that schizophre-
nia is associated with gliosis or neuronal cell
loss or other histopathological changes com-
monly seen in degenerative disorders (Arnold
et al. 1998; Baldessarini et al. 1997; Heckers
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etal. 1991; Pakkenberg 1993; Thune et al. 2001;
Walker et al. 2002). By contrast, decreased cor-
tical neuropil, relative to specimens from psy-
chiatrically-healthy individuals, has been one
of the most replicable post-mortem findings in
schizophrenia (Selemon and Goldman-Rakic
1999). This reduction has been observed in
multiple brain regions including primary sen-
sory and associative cortices (Casanova et al.
2008). In a parallel line of research, replicable
reductions have been noted in synaptic protein
and mRNA levels in multiple cortical regions,
although the precise distribution of these
changes cannot be fully evaluated because of
limited brain coverage of the available data.
The most robust, but modest, reductions have
been noted for synaptophysin (a neuron-spe-
cific presynaptic protein) particularly within
the hippocampus, but also in dorsolateral PFC
and ACC as these regions are preferentially
sampled in schizophrenia research (Osimo
et al. 2018). Additional but smaller reductions
in other synaptic proteins (i.e., SNAP-25, PSD-
95, synapsin and rab3A) have also been con-
sistently noted in the hippocampus while data
for other brain regions are very limited (Osimo
et al. 2018). Whether these changes are devel-
opmental or whether they occur later in life
remains unknown as post-mortem studies are
restricted to chronic cases.

Some researchers have proposed that mito-
chondrial dysfunction (either primary or induced)
may contribute to the neuronal, dendritic, and
synaptic abnormalities seen in schizophrenia.
While the brain comprises less than 2% of the
human body mass, it consumes 20% of the energy
expensed. ATP production is therefore crucial for
cellular homeostasis, electrical conductivity, and
synaptic function; neurons are critically depen-
dent on the mitochondria to generate the requisite
amounts of ATP. Evidence of abnormal energy
generation in schizophrenia has been known
since Looney and Childs (1934) who reported
increased lactate and decreased glutathione in
blood samples from schizophrenic patients. In
post-mortem brain tissue from patients with
schizophrenia, mitochondria are differentially
affected depending on the brain region, cell type,
and subcellular location. The overall pattern

however indicates that mitochondria, particularly
in or near the synapses and neuropil, are func-
tionally compromised (Roberts 2017).

Mitochondrial DNA is susceptible to damage
from reactive oxygen species (Corral-Debrinski
et al. 1992) while release of mitochondrial
DNA during cell stress can trigger inflamma-
tory responses (Lopez-Armada et al. 2013;
Naik and Dixit 2011; Oka et al. 2012). There
is substantial evidence implicating oxidative/
nitrosative stress pathways in the pathophysi-
ology of schizophrenia as recently shown in a
meta-analysis of 61 independent cohorts com-
prising blood samples from 3002 patients with
first-episode schizophrenia and 2806 healthy
individuals; patients had lower total antioxidant
status and docosahexaenoic acid (DHA) levels
and higher levels of homocysteine, interleukin-6
(IL-6) and tumor necrosis factor alpha (TNF-a)
(Fraguas et al. 2018). Moreover, a recent meta-
analysis of post-mortem studies (n = 41; 783
patients and 762 controls) by van Kesteren et al.
(2017) confirmed that despite significant inter-
study heterogeneity, both microglia density and
the concentrations of pro-inflammatory proteins
are increased in schizophrenia. These changes
were particularly evident in temporal cortical
regions. Direct in-vivo evidence that these mech-
anisms operate centrally is currently lacking.
Neuroimaging studies attempting to quantify
case-control differences in central pro-inflam-
matory markers have focused on the activation
state of microglia. Activated microglia expresses
higher levels of the 18-kDa translocator protein
(TSPO) (Cosenza-Nashat et al. 2009) which
can be measured in vivo using positron emis-
sion tomography (PET) radiotracers. Studies
using this methodology have thus far failed to
provide consistent support for an increase of
TSPO in schizophrenia (Plaven-Sigray et al.
2018; Marques et al. 2018), and the heterogene-
ity between studies is at least partly attributable
to on-going methodological challenges (Plavén-
Sigray and Cervenka 2019).

Finally, there is also evidence for myelin-
related dysfunction in schizophrenia, which
could also account for the observed decreases
in brain tissue. Maturational changes in intra-
cortical myelination occur in late adolescence
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and early adulthood and coincide with the peak
period of risk for schizophrenia (Bartzokis
2002; Paus et al. 2008; Rapoport et al. 2005;
Weinberger 1987). Several oligodendrocyte/
myelin related genes, such as neuregulin and its
receptor ERBB4, are genetically associated with
schizophrenia (Karoutzou et al. 2008; Norton
et al. 2006). Post-mortem studies in schizo-
phrenia have reported compromised integrity of
the myelin sheath (Uranova et al. 2001), abnor-
mal oligodendrocyte density and morphology
(Uranova et al. 2004), and expression of genes
associated with oligodendrocytes and myelin in
multiple brain regions (Dratcheva et al. 2006;
Hakak et al. 2001; Katsel et al. 2005). These
findings do not seem attributable to antipsy-
chotic exposure (Hakak et al. 2001; Konopaske
et al. 2008). In vivo neuroimaging studies of
intracortical myelination in schizophrenia have
yielded variable results. Nevertheless, reduced
intracortical myelin has been found in the pre-
frontal cortex (Bagary et al. 2003; Bohner et al.
2012; Price et al. 2010), temporal lobes (Foong
et al. 2000) and primary/association visual cor-
tex (Bachmann et al. 2011; Palaniyappan et al.
2013). A more recent and larger study reported
myelin reduction in patients with schizophrenia
compared to controls in the sensorimotor cortex,
the transverse temporal gyri, the cuneus, and in
the visual cortex (Jgrgensen et al. 2016).

The small effect size of case-control differ-
ences in gray matter integrity and the multiplicity
of potential mechanisms and moderators argue
that future research efforts will require adequately
powered large-scale projects comprising multi-
scale measures (e.g., genetic, molecular, neuro-
imaging, clinical, and cognitive) from patients
and healthy individuals. It is widely accepted
that adolescent mental health problems arise
from complex interactions between these fac-
tors. Examination of these interacting influences
requires advanced multivariate modelling and
significant computing power in order to simulta-
neously handle high-dimensional datasets. This
is an emerging field with multiple groups endeav-
oring to define optimal statistical algorithms and
to test the validity of the resultant models (e.g.,
Nymberg et al. 2013).

S.Frangou and R. S. Kahn

Summary

* Gray matter alterations in schizophrenia
comprise subtle and widespread reduc-
tions in cortical and subcortical gray
matter density and volume and in corti-
cal thickness in the context of reduction
in intracranial volume.

e Gray matter tissue reductions seem to
occur at the time of the first psychotic
episode and may mirror the social and
occupational deterioration observed in
the early stages of psychosis.

e After illness onset, the slope of age-
related decline in cortical regions
appears steeper in patients with schizo-
phrenia than in healthy individuals;
these age-related changes may be exac-
erbated by the use of first-generation
antipsychotics.

e Factors that may contribute to gray mat-
ter abnormalities in schizophrenia also
include substance abuse, stress, and car-
diometabolic dysregulation.
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pathologies include demyelination, abnormal
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these pathologies in order to design better and
more focused treatment approaches. Modern
dMRI technologies has the potential to provide
improved specificity, and thus clearer understand-
ing of the relation between the brain’s microstruc-
ture and the etiology of different types of
pathology. This chapter is a brief introduction to
the principles of dMRI and gives examples of
analysis methods that are frequently used in the
field, as well as more advanced methods for diffu-
sion encoding that are promising venues for future
exploration of the brain. Where possible, we refer
to articles that give more comprehensive descrip-
tions of subjects that are outside of the scope of
this chapter.
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Fig. 3.1 Visualization of an isotropic Gaussian diffusion
process. Each plume, from left to right, shows the position
of 10° particles at five equidistant timepoints. The red line
traces the trajectory of a single particle; its path is not
straight, but rather stochastic and tortuous. This is the case
for all particles, since they are part of a medium within
which they constantly collide with each other on a very
short time scale. In dMRI, we are not interested in the his-
tory of a single particle, but rather in the relevant features

Water is ubiquitous in biological tissues and its
thermal motion (diffusion) is vital to all life-
sustaining chemical processes—which would halt
without it. The diffusing particles interact with
each other as well as their surroundings; imperme-
able membranes restrict the movement to a finite
region, and obstacles hinder the motion such that
the path between two points becomes more tortu-
ous. Given enough time, the diffusion process will
be imprinted with features of the microstructure
allowing a carefully designed MRI experiment to
serve as an indirect probe of the microstructure.

The phenomenon of diffusion is also named
‘Brownian motion’ after the botanist Robert
Brown, who observed the movement of plant
spores floating in the water in 1827. The first
theoretical treatment of Brownian motion was
not presented until 1905 by Einstein (1905).
Einstein’s interest in explaining the erratic move-
ment of pollen in water was not directly moti-
vated by a specific interest in diffusion, but by the
general interest of proving the existence of the
atom. Einstein derived an equation relating the
distance travelled by each particle () to the time
during which the diffusion is observed (7). In the
absence of flow, the movement of particles is
symmetric with an average displacement of zero.
The diffusivity is related to the average over
squared distances from the origin (or variance of
the distribution of r), expressed

(r7) =200 3.0)

of the larger ensemble. At each time point, the black point
clouds describes the density of all pathways, and if nor-
malized, they describe the probability of a particle being
at a specific location after each time step. In this case, we
can say that the diffusion is isotropic, and by measuring
the width of the distribution at multiple time points, we
may calculate the rate of diffusion, or diffusivity, of the
medium

such that D is the diffusion coefficient and n is
the number of spatial dimensions of movement.
Interestingly, the mean squared displacement of a
particle is not proportional to the time, but rather
to its square root; also reflected in the unit of the
diffusion coefficient, which is m?*s. An example
of free isotropic diffusion at multiple time points
is visualized in Fig. 3.1.

It is a fortunate coincidence that the length
scale we can probe with dMRI is approximately
the same as the scale of cells, enabling us to
probe tissue architecture on a scale of 1-100 pm.
An early discovery that propelled MRI as a
clinical tool for imaging of brain function dem-
onstrated that DWI was a sensitive tissue altera-
tion in cerebral ischemia at an earlier stage than
other imaging techniques such as computed
tomography or morphological MRI (Moseley
et al. 1990). Soon after, the anisotropy of diffu-
sion was connected to the structural configura-
tion of anisotropic tissue, such as the
cylinder-like myelin sheaths that surround
axons (Beaulieu 2002), giving rise to quantifi-
cation of normal and pathological processes in
neuronal tissue (Tuch et al. 2003; Assaf and
Pasternak 2008; Le Bihan and Iima 2015), and
the description of white matter pathways
through diffusion tractography (Mori et al.
1999; Farquharson et al. 2013; Jeurissen et al.
2014). Since then, the application of dMRI in
clinical research has been explosive (Bodini
and Ciccarelli 2014; White and Lim 2010;



3 Microstructure Imaging by Diffusion MRI

57

Sundgren et al. 2004), and a comprehensive
overview of how it is used in psychiatric dis-
eases can be found in Chap. 4.

3.2 Diffusion Weighted Imaging

(DWI)

Magnetic resonance diffusion spectroscopy was
proposed in the 1960s (Stejskal and Tanner
1965), and later generalized from spectroscopy to
imaging in the late 1980s (Le Bihan et al. 1986),
which made it an imaging tool with considerable
promise in the clinical setting. The underlying
principles of diffusion MRI and the history of its
first 25 years have been reviewed in detail by Le
Bihan and Johansen-Berg (2012).

dMRI employs magnetic field gradients to sen-
sitize the MR signal to incoherent movement of
signal carrying particles. For the purposes of this
chapter, we consider the hydrogen atoms in water
molecules, but other nuclei can be used in much
the same way (Konstandin and Schad 2014). The
most common DWI sequence is the spin-echo
with echo-planar imaging (EPI) readout, although
a multitude of alternatives exist (Holdsworth et al.
2019; Le Bihan 1995; Pipe 2014). In a spin-echo,
diffusion weighting is achieved by applying a pair
of identical pulsed-field gradients one on either
side of the refocusing pulse such that the first gra-
dient pulse induces a spatially dependent phase
shift for all spin within each voxel, and the second
pulse reverts the phase shift in proportion to how
far the spin traveled during the experiment (Pipe
2014; Price 1997). Stationary spins are perfectly
restored to their original phase, whereas spins
that moved exhibit a residual phase shift. Taken
over a large number of spins, groups that
remained stationary or moved in unison have a
high phase coherence (collaborate to create a
large signal), whereas groups that moved ran-
domly will have a large dispersion of phases (sig-
nal reduced in proportion to the gradient magnitude
and rate of diffusion). Mathematically, the normal-
ized diffusion-weighted signal (s) can be described
as the average over all spin phases

)

where ¢ is a distribution of phases and the angle
brackets, (-), denote averaging over all spins.
This signal can be described using an expansion
in powers of the natural logarithm of the
diffusion-weighted signal.

o) =o()) S ), = H0) L)

where (-). are the cumulants of which the odd
cumulants are zero if we assume that there is no
flow, i.e., {(¢) = 0 This is called the cumulant
expansion; a comprehensive introduction can be
found in (Kiselev 2010). This expansion is pow-
erful because the cumulants map directly to
quantities such as diffusivity and diffusional kur-
tosis, as discussed below. In the simplest case, we
may assume that the diffusion process is approxi-
mately Gaussian, retaining only the second
cumulant, and resulting in an approximation of
the diffusion-weighted signal

1

In(s)= —5<¢2>C =—bD (3.2)

where b is the b-value, a parameter summarizing
the combined effect of the applied diffusion gra-
dient and the diffusion time (Le Bihan et al.
1986). Equation 3.2 is more commonly written as

S(b)/S,=e". (3.3)

Qualitatively, Eq. 3.3 tells us that strong diffu-
sion encoding (large b-value) and/or fast diffu-
sion (large D) cause a large signal reduction,
whereas turning the diffusion encoding off
(b =0) or observing particles with negligible ran-
dom movement (D = 0) means that the signal is
not affected by diffusion encoding. Since the
b-value is controlled as part of the experiment,
two unique b-values (here we assume zero and b)
are enough to estimate the diffusivity by solving
for D = — 1In (S(b)/S,)/b, which is simply the
slope of the natural logarithm of the signal-vs-b
curve (Fig. 3.2). When measured in complex sys-
tems, D is called the apparent diffusion coeffi-
cient (ADC) to emphasize that it depends on a
non-trivial interaction between the experimental
parameters and the tissue microstructure.

Imagine that a lesion has a very densely packed
cell matrix, such that the diffusing particles are
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Fig. 3.2 The slope of the diffusion-weighted signal at
low b-values defines the apparent diffusion coefficient
(ADCQ). In an isotropic medium, the ADC values are the
same in every direction. If, however, the ADC varies as a
function of direction, the subject is said to be anisotropic.
In this example, the direction indicated by the red arrow
exhibits a faster diffusivity compared to the blue direction.
Since the dephasing is faster in the red direction, the sig-
nal at any given non-zero b-value will be lower along that
direction, and a higher ADC is observed compared to the
blue direction

highly restricted and exhibit a low ADC. From
Eq. 3.3 we can see that such a region would appear
hyperintense on diffusion-weighted images,
whereas regions with no restrictions attenuate
more rapidly, and yield hypointense regions in the
image. An overview of studies that investigate the
relationship between diffusivity and cell density
was presented by (Chen et al. 2013). Even without
introducing quantitative analysis, DWI can reveal
relevant radiological information (Tang and Zhou
2019). For example, images are hyperintense in
regions of abnormally high tissue density, for
example, in spinal tumors (Bammer et al. 2000)
and in regions affected by acute stroke, where cell
swelling is thought to cause a substantial reduction
to the ADC (Moseley et al. 1990).

Notably, Eq. 3.3 does not include any infor-
mation on the direction of the diffusion. It is,
however, implicit that the ADC is attributed to
the direction along which the diffusion encoding
was applied. Since tissue may exhibit anisotro-
pic diffusion characteristics—most prominently
in the central nervous system (Beaulieu 2002)—
it is useful to create a metric that reflects the
apparent diffusivity independent of the direction
of the encoding and the orientation of the sub-

ject. The most practical approach is to measure
the ADC in three mutually orthogonal direc-
tions, and calculate the mean diffusivity (MD) as
the average, so that MD = (D, + D, + D,)/3,
where the subscripts indicate the direction in
which the ADC was measured. It should be obvi-
ous from Fig. 3.2 that neither the ADC nor the
MD can provide a metric for how much the dif-
fusivity varies as we measure it along different
directions. For this, we require a technique that
can capture the anisotropy of the diffusion pro-
cess, as discussed below.

3.3  Diffusion Tensor Imaging

(DTI)

Diffusion tensor imaging (DTI) (Basser et al.
1994) refers both to a signal representation as
well as to the way that the diffusion process is
measured. Unlike measurements that capture
only the diffusivity (as described above), DTI
also aims to capture the direction and anisotropy
of the diffusion. To do this, the mathematical rep-
resentation must contain information about how
the diffusion depends on the direction in which
the encoding is applied, and the measurements
must be performed in a way that the model can be
inverted. In practice, this means that at least six
well-distributed directions at » > 0 must be mea-
sured along with a non-weighted image. The
optimization of sampling schemes for DTI is dis-
cussed in (Jones 2010).

The DTI signal model is closely related to
Eq. 3.3, but replaces the scalar values D and b,
with the tensor-valued diffusion tensor (D)
(Basser et al. 1994) and b-matrix or b-tensor (B)
(Westin et al. 2014, 2016), where MD = Trace
(D)/3 and b = Trace (B). The signal representa-
tion now incorporates directional information

S(B)/S, =™, (3.4)

where in the standard Stejskal-Tanner (Stejskal
and Tanner 1965) diffusion encoding, B = bn'n,
n is a unit vector pointing along the diffusion
encoding direction and the double inner product
is denoted by (:). The diffusion tensor is most
commonly written as a 3 x 3 matrix
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D, D, D,
D=\D, D, D_|, (3.5)
D x D zy D z

where the diagonal elements are the diffusivity
along the frame of reference axis, and the off-
diagonal elements show their correlations. An
extensive description of this formalism can be
found in (Kingsley 2006a). The diffusion tensor
contains six unique elements (due to the symmetry
D; = D;) that depend on the orientation of the
investigated tissue. In order to get a rotation invari-
ant parameterization of the tensor, as well as its
shape parameters, we can compute its eigenvec-
tors (e;) and eigenvalues (4;) The eigenvalues
describe the apparent diffusivity along three ortho-
normal axes, where 4, is usually chosen to be the
largest value. Therefore, in principle, the eigenval-
ues carry information about the size and shape of

Particle position
at 100 ms

z
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p)y

Tensor glyph

y
k. )0 |
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2~=[0.30.30.3] [1.01.01.0]

Fig. 3.3 Visualization of distributions of particles for
four different microenvironments (top) with varying lev-
els of diffusivity and anisotropy. If these distributions are
Gaussian, they can be described (perfectly) by diffusion
tensors (bottom). The eigenvalues carry information about

the diffusion tensor, and the eigenvectors capture
its orientation or direction. In Fig. 3.3, we visual-
ize isotropic and anisotropic diffusion processes
and their corresponding diffusion tensors glyphs.
When scaled with the square root of its eigenval-
ues, the diffusion tensor glyphs show a close
resemblance to the plume of diffusing particles,
assuming their general shape and direction.

From the eigenvalues, we may calculate sev-
eral rotation invariant scalar quantities (Kingsley
2006b). In Table 3.1, we have stated the defini-
tions of the most frequently used DTI parameters
and their values for the diffusion tensors seen in
Fig. 3.3. Note that we have also included the ‘rel-
ative anisotropy’ as a complement to the frac-
tional anisotropy, to remind the reader that the
derived parameters may have many variants and
that there is no general consensus on what param-
eter definitions are optimal for any particular
application.

[280.10.1]  umZms

the size and shape of the diffusion tensor, and the eigen-
vectors define its orientation. (The figure was adapted
from Szczepankiewicz (2016) with permission, published
by Lund University)
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Table 3.1 Examples of rotational invariant scalar measures that can be derived from the diffusion tensor (Kingsley

2006b)
Name Definition from eigenvalues Values for tensors in Fig. 3.3
Mean diffusivity MD = (1) = (A4, + A + 43)/3 0.30 1.00 1.00 1.00
Radial diffusivity RD = (4, + 43)/2 0.30 1.00 0.60 0.10
Axial diffusivity AD =1, 0.30 1.00 1.80 2.80
Fractional anisotropy 5 5 > 1 0.00 0.00 0.60 0.96
J3<«—<z>> ~(=(2) +(3=(2))
2 AEAS AL
Relative anisotropy 5 3 > 1 0.00 0.00 0.40 0.90
. \/1 (=) + (= (1)) + (3~ (2))
6 ()

These measures only depend on the shape or size of the diffusion tensor, not its orientation. Note that MD, AD and RD
are given in units of pm?/ms, whereas FA and RA are unitless. Furthermore, we stress that eigenvalue decomposition is
not necessary to calculate these metrics (Kingsley 2006b), although they provide the most transparent definitions

3.4 Limitations of DTI

Although the diffusion tensor is capable of cap-
turing the major features of the diffusion in tis-
sue, it also has several well-known limitations
(Jones and Cercignani 2010; Alexander et al.
2001; Szczepankiewicz et al. 2015). These can be
broadly described as limited specificity, and lim-
ited capability of capturing heterogeneity on the
sub-voxel scale. Since DTI is a representation
rather than a biophysical model (Novikov et al.
2018a), it is primarily used to describe the diffu-
sion weighted signal as a function of the b-tensor
rather than making direct statements about the
configuration of the underlying tissue micro-
structure. The tenuous connection between DTI
parameters and the actual tissue microstructure is
frequently overinterpreted and has led to inaccu-
rate and misleading terminology. For example,
promoting the FA as a metric of “white matter
integrity” (Jones et al. 2013). Several papers have
stressed that the interpretation of parameters can
be challenging (Jones et al. 2013), including con-
founding effects caused by complex white matter
architecture (Douaud et al. 2011; Vos et al. 2012;
Jeurissen et al. 2013) and spatial resolution and
partial volume effects (Vos et al. 2011;
Szczepankiewicz et al. 2013). We illustrate this
issue in Fig. 3.4, where particles are traced from
two orthogonal anisotropic compartments. In this
configuration, a single diffusion tensor is unable
to accurately capture the behavior of the system,

and the overlapping distributions of particle dis-
placements are prominently non-Gaussian.

DTI is also limited in that it is designed to
describe the average behavior of the content of
each voxel. The implication of this is that
nuances that exist on a sub-voxel scale are lost in
the averaging process. For example, DTI cannot
capture the presence of multiple diffusion rates
within a single voxel. In a voxel that contains a
mixture of fast and slow diffusivity, DTI will
report an intermediate value depending on the
signal fraction of each compartment. The same
averaging also causes the observed diffusion
anisotropy to depend on the orientation coher-
ence of the tissue that causes it (Pierpaoli et al.
1996). For example, disordered or crossing
white matter will exhibit low anisotropy, as will
white matter afflicted by disease, making the two
underlying mechanisms difficult to distinguish.
In fact, there exist many tissue configurations
that are dramatically different on the micro-
scopic scale, but that result in identical diffusion
tensors as a direct consequence of the signal
being averaged across the whole voxel. To visu-
alize this, we may extend the example in Fig. 3.4
from two underlying diffusion tensors to arbi-
trary distributions of diffusion tensors. Figure 3.5
shows six distributions of diffusion tensors that
can not be distinguished by DTI.

Importantly, the limitations stated above
should not be taken to mean that DTI produces
“true” parameters only on the rare occasion that
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Fig. 3.4 Diffusing
particles in two isolated
anisotropic
compartments (red and
black). Each
compartment, by itself,
exhibits Gaussian
diffusion, and could be
well-described by a
single diffusion tensor.
However, if both
contribute to the
diffusion weighted
signal in a voxel, a
single diffusion tensor
can no longer capture
the diffusion process
accurately. Furthermore,
the total distribution of
particles (solid black
lines in histograms)
differs markedly from
the Gaussian distribution
(broken line), which
means that the
distribution is “non-
Gaussian” (Jensen et al.
2005) because it is a
mixture of multiple
Gaussian distributions
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Fig. 3.5 The top row shows six diffusion tensor distribu-
tions that represent the content of individual voxels, and
the bottom row shows the average (or voxel-scale) diffu-
sion tensor estimated by DTI. Examples A and D are per-
fectly reproduced by the voxel-scale diffusion tensor since
the underlying systems exhibit no heterogeneity (identical
tensors) and no orientation dispersion. However, exam-

ples B and E show that the diffusion anisotropy on the
microscopic scale can be entirely (B), or partially (E), lost
in the averaging over multiple directions. Finally, exam-
ples C and F show that any information about the hetero-
geneity within the voxel is lost. (The figure was adapted
from Szczepankiewicz (2016) with permission, published
by Lund University)
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we investigate a homogeneous medium with no
orientation dispersion. Instead, DTI is correct
when used at sufficiently low b-values, regardless
of the complexity of the underlying tissue, but its
parameters must be interpreted with its original
design in mind! If we aim to uncover more subtle
and specific features of the tissue, such as hetero-
geneity, orientation dispersion, microscopic
anisotropy, diffusion time dependence or cell
sizes, we must go beyond DTI and use more
involved modeling and experimental design.

3.5 Beyond the Diffusion Tensor
Diffusion tensor imaging is capable of capturing
the average behavior of diffusion in any one
voxel, and is a comprehensive description only of
very simple systems. Looking at biological tis-
sues under the microscope often reveals a vast
range of subtle features that cannot be captured
with this simple approach (Jeurissen et al. 2013;
Tuch et al. 2002). The challenge then, is to evolve
both the way that diffusion-weighted data is ana-
lyzed to capture all the relevant features encoded
in the signal (Novikov et al. 2019), as well as to
develop diffusion weighting techniques that can
probe ever more specific features of the micro-
structure (Nilsson et al. 2018).

3.6 Advanced Analysis Methods

Diffusion kurtosis imaging (Jensen et al. 2005) is
a direct extension of DTI that fully encompasses
DTI, and adds to it the capability to probe so-
called non-Gaussian diffusion. The concept of
kurtosis is used in probability theory and statis-
tics. The word originates from the greek word
“kyrtos,” or “kurtos,” meaning “curved,” or “arch-
ing,” and, in statistics, is a measure of the “tailed-
ness” of a probability distribution. Kurtosis can
vaguely be described as the movement of proba-
bility mass from the shoulders of a distribution
into its center and tails (Balanda and MacGillivray
1988). A Gaussian distribution has zero kurtosis,
and with increasing kurtosis, the peak of the dis-
tribution gets more pronounced compared to a

Gaussian, while the tails get longer and decay
slower (Fig. 3.6). We may simplify DKI to one
dimension (Jensen et al. 2005; Yablonskiy et al.
2003) to provide some insight into how this repre-
sentation differs from those that assume monoex-
ponential decay

S(b)/SO _ e—bD+sz2K/6’ (3.6)

where the first part of the exponential is identical
to that in Eq. (3.3); it differs only by the addition
of the apparent kurtosis term (K) The logarithm of
the signal is therefore a quadratic function in b. As
before, the initial slope captures the ADC, and the
kurtosis term captures its curvature. The curvature
indicates that the diffusion is non-Gaussian,
which can be caused by two main contributions:
“multi-Gaussian systems” that contain compart-
ments with varying diffusivity (Fig. 3.6); and
“intracompartmental kurtosis” where the move-
ment of water is restricted such that the distribu-
tion of particles assumes a non-Gaussian shape
(Jensen et al. 2005; Jespersen et al. 2019).

So when can we expect non-Gaussian diffusion
in biological tissue? The answer: almost always!

Mixture of two compartments

100 - with low and high diffusivity A
o
n
=
=3
n
0
406 96’/) .
é}@ %‘/\ / Non-gaussian diffusion
indicated by divergence from
L mono-exponential decay
107"

0 1000 2000

b-value [s/mm?]

Fig. 3.6 Diffusion weighted signal in substrate that con-
tains equal parts of compartments with low (0.5 pm?ms)
and high (1.5 pm?/ms) apparent diffusivity. As in Fig. 3.2,
the initial slope (at b = 0) corresponds to the apparent dif-
fusion coefficient, or average diffusivity along diffusion
encoding direction, but the signal-vs-b diverges from the
monoexponential line (broken line), which indicates that
the content is not purely Gaussian. The histogram shows
the distribution of particle positions at an arbitrary time.
The distribution of particles is the sum distributions from
compartments with low and high diffusivities (solid black
line), and is clearly non-Gaussian (compare to broken line
showing a Gaussian distribution with the same area)
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Although the magnitude of the effect depends on
the architecture of the microstructure and the
experimental design (Novikov and Kiselev 2010;
de Swiet and Mitra 1996), diffusion is generally
non-Gaussian (Jensen et al. 2005). In spite of this,
the signal detected in the brain parenchyma up to
moderate b-values (<1000 s/mm? = 1 ms/pm?) can
be remarkably well approximated by a single diffu-
sion tensor. One important exemption is in orienta-
tionally dispersed white matter, such as crossing
fibers. Although, individually, each fiber may be
well-described by a single diffusion tensor, the sum
of such components are markedly non-Gaussian
(Fig. 3.4). This is another interesting facet of
DKI—it captures non-Gaussianity from the local
tissue characteristics, but also kurtosis that arises
from orientation dispersion. As such, it conflates
the presence of multiple average diffusivities and
the presence of anisotropic compartments that are
orientationally dispersed (Westin et al. 2016;
Szczepankiewicz et al. 2015). In fact, examples A
and B in Fig. 3.5 are indistinguishable by both DTI
and DKI.

An alternative approach to representations is
to assume that we have a priori knowledge of the
tissue composition. For example, we may assume
that it is a sum of specific Gaussian compart-
ments, and we estimate how much of each com-
partment is present in the tissue. This approach
is used in biophysical modelling, and its major
benefit is that its parameters are relatable to
physical quantities—for example, the volume
fraction of intracellular water, the axonal diam-
eter, or the density of dendrites. A simple exam-
ple can be found in free water mapping (Pasternak
et al. 2009), where the tissue is modelled by two
compartments, each described by a diffusion
tensor; the first represents freely diffusing water
(D), the second represents the remaining tissue
(D,), such that

S(B)/S, = fie ™ +(1-f)e ™™, (3.7)

where the free water fraction (f}) is the fraction of
signal that originates from pools of freely diffusing
water. By constraining the relationship between
the compartments and signal, the fitting procedure
should return e.g. values of the fraction of each
tissue type. The obvious benefit of biophysical

models is that they instantly generate parameters
that appear to have a clear interpretation. However,
a major pitfall of biophysical models is that such
models are only accurate if the model assumptions
are true, which is rarely the case in biological tis-
sue. For example, the biexponential model in
Eq. 3.7 may as well capture the behaviour of intra
and extracellular water, with no way of telling
which interpretation should be used. Therefore,
such models are likely to be inaccurate and exceed-
ingly difficult to validate, leading to frequent over-
interpretation of their parameters (Lampinen et al.
2019). Simply extending these models to include
compartments with all possible characteristics is
also not feasible (Mulkern et al. 2017), since the
inclusion of more free parameters in the model
creates more severe degeneracies (Jelescu et al.
2016). Thus, the model must be parsimonious and
contain only relevant features that can be robustly
estimated from the available data (Novikov et al.
2018b; Stanisz et al. 1997).

Regardless of what approach is used to trans-
late the measured signal into useful information,
certain features of the tissue may remain hidden.
For example, cases A from B in Fig. 3.5 are
designed to yield identical signal, regardless of
the diffusion encoding direction or b-value. It is
therefore true that DTT and DKI are both unable to
distinguish these cases; what is more striking is
that this is true for all methods based on conven-
tional diffusion encoding, regardless of the analy-
sis (Mitra 1995). This illustrates a situation in
which the underlying truth may be vastly different
in two cases, yet it would remain for ever indistin-
guishable if we were to limit ourselves to use only
conventional diffusion encoding. The solution to
this problem, and others like it, is to explore alter-
native modes of performing the diffusion-
weighted acquisition, as discussed below.

3.7 Advanced Encoding

Methods

The diffusion weighted experiment is most com-
monly described by the b-value and the diffusion
encoding direction. Indeed, these are the default
parameters used to design diffusion-weighted
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experiments at clinical MRI equipment and they
allow the user to adjust the experiment to collect
the most relevant data for several applications,
even beyond DTI. For example, high b-values at
a high directional resolution are beneficial for
tractography (Mori et al. 1999; Behrens et al.
2014), whereas low b-values and few directions
are preferential for imaging of intravoxel inco-
herent motion (Le Bihan et al. 1986; Fournet
et al. 2018). However, even if directions and
b-values are the most prevalent description of the
diffusion-weighted experiment, they are by no
means comprehensive and should not give users
the impression that there is nothing else we can
do. In the same sense that we can develop com-
plex signal models, it is possible to design experi-
ments which weight the signal, not only by its
diffusivity proportional to the b-value, but rather
features that go beyond what is accessible by
conventional encoding. In this section, we will
briefly survey multidimensional diffusion encod-
ing, variable diffusion times and the inclusion of
T1 and T2 relaxation.

A major breakthrough to diffusion encoding
was proposed in 1990 by Cory et al. (1990) who
showed that the local shape of compartments
could be probed, even if the compartments were
orientationally disordered. This was achieved by
extending the conventional Stejskal-Tanner
experiment to include a second pair of pulsed
field gradients, or so-called double diffusion
encoding. The nomenclature concerning these
experiments is described by (Shemesh et al.
2016). By independently varying the direction of
the first and second encoding, a correlation
between diffusion along multiple spatial dimen-
sions can be probed, and from it the microscopic
diffusion anisotropy can be estimated, even if the
sample appears to be isotropic on the voxel scale
(Shemesh et al. 2010; Lawrenz and Finsterbusch
2011; Jespersen et al. 2013; Avram et al. 2013).
This provides a unique tool to probe the anisot-
ropy in tissue such as crossing white matter or
gray matter without the confounding effects of
orientation dispersion (Szczepankiewicz et al.
2015; Jespersen et al. 2013; Lawrenz and
Finsterbusch 2015, 2019). To distinguish this fea-
ture from the anisotropy that is observable on the

voxel scale (captured by FA), it is frequently
called the microscopic anisotropy or compart-
ment eccentricity.

The concept of diffusion encoding along mul-
tiple directions in each shot was generalized to
arbitrary diffusion weighting waveforms, where
the diffusion encoding is described by a diffusion
encoding b-tensor (Westin et al. 2016;
Szczepankiewicz et al. 2019). The b-tensor car-
ries information on the diffusion encoding direc-
tion and b-value, but also the shape of the
encoding. At sufficient b-values, the inclusion of
b-tensors with multiple shapes can distinguish the
problematic cases A and B in Fig. 3.5. The theo-
retical framework of g-space trajectory imaging
(QTI) (Westin et al. 2016) expands on the DKI
model to leverage tensor-valued diffusion encod-
ing. By doing so, it can quantify novel parameters
such as the microscopic fractional anisotropy
(WFA) (Jespersen et al. 2013; Lasic et al. 2014),
and it can distinguish between kurtosis caused by
variable isotropic diffusivities and anisotropic
compartments thatare dispersed (Szczepankiewicz
et al. 2016) if the tissue is multi-Gaussian and
intracompartmental ~ kurtosis is  negligible
(Jespersen et al. 2019; de Swiet and Mitra 1996).
The inclusion of DDE or QTE can therefore
improve the interpretability of, for example, DKI
parameters in terms of relevant structural charac-
teristics, which has been identified to be a limita-
tion in several studies (Szczepankiewicz et al.
2016; Van Cauter et al. 2012).

Diffusion encoding can also be designed to
probe variable diffusion times to access informa-
tion on the sizes of the microscopic restrictions,
for example, by modifying the distance between
the diffusion encoding pulses in the Stejskal-
Tanner sequence. However, a more efficient and
common approach is to use oscillating gradient
waveforms (Mallett and Strange 1997; Does
et al. 2003) (Fig. 3.7). As seen in Eq. 3.1 and
Fig. 3.1, the diffusion time determines the dis-
tances probed by diffusing particles. At suffi-
ciently short diffusion times, the particles have
yet to interact with surrounding tissue, and there-
fore appear to be diffusing freely. As the diffu-
sion time increases, the environment hinders or
restricts the particles to a larger degree, and the
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Fig. 3.7 There exist a multitude of gradient waveform
designs intended to probe various features of tissue micro-
structure. The top plot shows the canonical Stejskal-
Tanner design from 1965 (Stejskal and Tanner 1965),
commonly used in a spin-echo sequence (Pipe 2014).
Double diffusion encoding (DDE) was proposed almost
three decades later (Cory et al. 1990) to probe the local
geometry of compartments, also called microscopic
anisotropy, by modulating the orientation of the first and
second encoding blocks independently. It is frequently
used in a double-spin-echo to avoid artifacts caused by
concomitant gradients (Baron et al. 2012). A similar set of
experiments can be performed in a single spin-echo by
g-trajectory encoding (QTE) where optimized gradient

waveforms with arbitrary shapes are used to achieve effi-
cient diffusion encoding in multiple directions per shot
(Westin et al. 2016; Eriksson et al. 2013; Sjolund et al.
2015). Both DDE and QTE can be used to render tensor-
valued diffusion encoding, and are capable of probing
microscopic anisotropy, and can therefore disentangle
cases A and B in Fig. 3.5. Oscillating gradients are used to
modulate the diffusion time so that the size of restrictions
can be estimated from the relation between the ADC and
the diffusion time (Mallett and Strange 1997; Does et al.
2003). Notably, oscillating gradients are relatively ineffi-
cient (low b-values per unit time), and the example above
yields only a tenth of the b-value compared to the other
examples
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diffusion coefficient appears to be reduced. The
transition from free to restricted diffusion can be
probed by measuring the ADC at multiple diffu-
sion times, and the size of the restrictions can be
estimated (Clark et al. 2001). Modulating the dif-
fusion time also makes the signal sensitive to the
rate at which water exchanges over cell mem-
branes (Callaghan and Furé 2004; Lasi¢ et al.
2011; Ning et al. 2018). For example, DDE
experiments can be designed to suppress the sig-
nal from compartments with high diffusivity, fol-
lowed by a mixing time during which signal
carrying particles can exchange over membranes
and re-enter the regions where the diffusion is
fast. By measuring the ADC for variable mixing
times, the apparent exchange rate can be esti-
mated (Lasic et al. 2011; Nilsson et al. 2013).

So far we have assumed that the effects of
relaxation can be ignored. However, it is clear that
any tissue in which multiple relaxation times are
present will render a signal that depends on the
repetition time or echo time. Consider, for exam-
ple, that we measure the ADC in a sample that
contains compartments that have either high dif-
fusivity and high transverse relaxation rates, or
low diffusivity and low transverse relaxation rates.
In this example, the ADC would decrease with
increasing echo times, since the fraction of signal
coming from the rapidly relaxing compartment
would decrease, and therefore contributes less of
its high diffusivity to the average diffusivity. This
confounder is present for all methods that do not
explicitly address it, but can be remedied by com-
bining the diffusion-weighted experiment with
relaxation weighted experiments (Benjamini and
Basser 2018; de Almeida Martins and Topgaard
2018). Although the experimental design becomes
more involved (Hutter et al. 2018; De Santis et al.
2016), this approach has two major benefits. First,
whatever quantification is performed can be
related to relative volume fractions, rather than
fractions of signal. Second, it allows the separation
of compartments that are similar with respect to
their diffusion if they show a sufficient difference
in relaxation (Lampinen et al. 2019; Veraart et al.
2018). Together, relaxation-diffusion correlation
experiments are promising a more comprehensive
description of the tissue.

F.Szczepankiewicz and C.-F. Westin

Summary

e Diffusion MRI sensitizes the signal to
the random movement of water mole-
cules and serves as a non-invasive probe
of the microscopic structure of tissue.

e Methods based on analysis and encod-
ing that go beyond DTI can probe ever
more specific features of the tissue.

e The connection between diffusion
weighted images and microstructure is
indirect. Therefore, parameters and bio-
markers rendered by dMRI must be
interpreted with their limitations in
mind—understanding both the underly-
ing tissue and the experimental design.
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4.1 The Significance of White
Matter Pathology

in Schizophrenia

Early neurobiological conceptions of schizophre-
nia, informed by descriptions of the illness pro-
posed by Kraepelin, Bleuler and other pioneering
investigators in the early 1900s, attempted to local-
ize pathology to specific brain cells or sites (Berrios
2003; Collin et al. 2016). However in 1912, Alfred
Hoche described this localization approach as the
“hunt for phantom” and instead emphasized the
synthesis between multiple sites and systems
(Hoche et al. 1991). This notion was supported by
Geschwind’s early work, which demonstrated links
between white matter injury and a variety of behav-
ioural deficits (Absher and Benson 1993), provid-
ing an impetus for future research.

The emphasis on white matter re-emerged by
way of the disconnection hypothesis in the 1990s
through the work of Friston and Frith, who ele-
gantly argued that complex symptoms associated
with schizophrenia might arise from abnormal
functional integration between distinct brain
structures (Friston 1998). They pointed to evi-
dence of post-mortem anomalies in myelin and
cytoarchitecture, as well as to functional abnor-
malities shown through electrophysiology and
PET imaging (Friston 1998). They further sug-
gested that such alterations may result in associa-
tive changes in synaptic efficacy and may also
underlie the more complex behavioral and cogni-
tive deficits of schizophrenia, as opposed to dis-
ruptions within specific gray matter loci. For
example, auditory hallucinations are proposed to
arise from deficits in memory, and sensorimotor
and imagery processing (Allen et al. 2008), which

may reflect a failure to integrate these mental
functions. Friston and Frith conceptualized the
disconnection hypothesis in terms of abnormal
functional integration between functionally spe-
cialized systems, possibly owing to aberrant, con-
text-dependent regulation of synaptic plasticity
(Friston 1998; Friston and Frith 1995). They
explicitly dissociated the hypothesis from struc-
tural (anatomical) causes of abnormal integration,
such as a disruption to cortico-cortical white mat-
ter pathways, stating that the evidence for white
matter pathology in schizophrenia was not
remarkable (Friston 1998). However, white mat-
ter pathology is nowadays recognized as a core
feature of the disorder, and thus contemporary
conceptualizations of the disconnection hypothe-
sis often encompass a lack of both structural and
functional integration. Indeed, disrupted white
matter architecture, which facilitates integration
between gray matter regions, may be integral and
even sufficient to produce the characteristic symp-
toms of schizophrenia. This conceptualization has
shifted thinking about the pathophysiology of
schizophrenia, away from a localized approach, to
a global and circuit-based approach.

Early studies used the size of the white matter
compartment (volume or thickness measures) as
a way to index the integrity of white matter
(Walterfang et al. 2011), and provided important
initial findings indicating a disturbance of white
matter from before the onset of psychosis, includ-
ing thinning of the corpus callosum (Walterfang
et al. 2008a, b; Haijma et al. 2012). However, the
advent of diffusion imaging has propelled this
endeavor in new directions allowing for a detailed
examination of white matter disturbances across
stages of psychosis and schizophrenia.



4 White Matter Pathology in Schizophrenia

73

4.2 Interpreting White Matter
Pathology Detected

with Diffusion Imaging

Before considering the extent of diffusion imag-
ing studies investigating white matter pathology
in schizophrenia, it is first instructive to consider
some key factors that impact our interpretation
of the findings. Diffusion imaging measures the
diffusion of water molecules, which is sensitive
to microstructural changes in white matter archi-
tecture (Fig. 4.1a). To achieve this, multiple
image volumes are acquired, each with a distinct
diffusion gradient. Examining any volume in
isolation is generally not informative. A mathe-
matical model is required to combine all vol-
umes and yield a single image offering a
meaningful contrast. The simplest and earliest
model considered in diffusion imaging is the dif-
fusion tensor model (Basser et al. 1994a, b;
Basser and Pierpaoli 1998). Diffusion tensor
imaging (DTI) fits an ellipsoid (tensor) to each
voxel in the brain, where the ellipsoid shape and
orientation provides information about the
underlying white matter microstructure and the
direction of any white matter fibers (See also
Chap. 3). Each ellipsoid is parameterized by six
components: three eigenvectors and three corre-
sponding eigenvalues (Fig. 4.1b, c). The eigen-

V4

Fig. 4.1 Diffusion tensor imaging. (a) Diffusion trajec-
tory of a water molecule (black line) that is parallel to the
fiber bundle orientation. Diffusion tensor imaging uses
multiple diffusion directions (b), to fit a tensor defined by
three eigenvectors (lines) and three corresponding eigen-
values (A, A, A3). Ellipsoids can be fitted to each voxel to
generate an anisotropy map (d). Elongated ellipsoids indi-
cate constrained (anisotropic) diffusion and are found

vector with the largest eigenvalue is called the
principal eigenvector and is aligned with the ori-
entation of white matter fibers traversing the
voxel. However, in voxels with multiple, inter-
secting fiber populations, the orientation of the
principal eigenvector is ambiguous. This is con-
sidered one of the major limitations of the diffu-
sion tensor model (Basser et al. 2000; Alexander
et al. 2007), given that a large proportion of
white matter voxels comprise intersecting fibers.
The shape of the ellipsoid fitted to each voxel is
determined by the three eigenvalues and pro-
vides insight into white matter microstructure
(Fig. 4.1d). Elongated, cigar-shaped ellipsoids
indicate constrained diffusion and are associated
with a single, well-myelinated fiber population.
At the other extreme, spherical ellipsoids indi-
cate unconstrained diffusion and are typical of
unmyelinated structures such as gray matter, or
white matter regions where multiple fiber popu-
lations intersect (Fig. 4.1d).

The three eigenvalues can be combined to
yield a variety of scalar measures that quantify
the degree of diffusion and enable inference
about putative microstructural changes in white
matter (See also Table 3.1 in Chap. 3). Fractional
anisotropy (FA) is the most commonly used sca-
lar measure derived from the diffusion tensor
model. While the precise microstructural corre-

Fractional anisotropy Map

within ~ single, well-myelinated fiber populations.
Spherical ellipsoids indicate unconstrained (isotropic) dif-
fusion, found in gray matter or white matter regions where
multiple fiber populations intersect. [Figure adapted from
Fornito and colleagues (2016). Panel (a) is from Johansen-
Berg and Rushworth (Johansen-Berg and Rushworth
2009) and panels (b—d) from Mori and Zhang (Mori and
Zhang 2006)]
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lates of FA remain only partially resolved,
abnormally low FA is typically thought to indi-
cate microstructural changes in myelin sheath,
microtubules or neurofilaments (Beaulieu 2002).
While FA is the most commonly used diffusion
metric, other measures, including mean, axial
and radial diffusivity enable more nuanced infer-
ence and may provide specificity in differentiat-
ing between distinct microstructural alterations.
In particular, mean (total) diffusivity (MD) is
sensitive to myelination (Alexander et al. 2007);
axial (parallel) diffusivity to axonal degenera-
tion (Alexander et al. 2007; Song et al. 2003);
and radial (perpendicular) diffusivity (RD) to
myelin injury (Table 3.1; Alexander et al. 2007,
Song et al. 2003).

While these scalar metrics have made it pos-
sible to delineate changes in white matter, it is
crucial to appreciate the limitations of these tech-
niques, which cannot resolve specific cellular
mechanisms. Instead, the variation in diffusion
metrics reflects a combination of factors govern-
ing these indices, including biological mecha-
nisms (e.g., demyelination or axonal injury),
spatial orientation of the fiber population, cross-
ing and other fiber geometries that cannot be
well-modeled by the diffusion tensor, partial vol-
ume effects, as well as multiple confounding fac-

tors that affect diffusivity signals, including body
weight, smoking status, drug use and cortisol lev-
els (Keshavan et al. 2011). The interpretation of
diffusion studies in schizophrenia is further com-
plicated by different methods used across studies.
Four major methods can be identified:

1. Region-of-interest (ROI) analysis involves
averaging the diffusion metric of interest
across a group of voxels spanning a white
matter tract or region and then performing
inference on the ROI-averaged metric
(Fig. 4.2a). While this is the simplest infer-
ence method, the averaging process may con-
ceal focal effects that are circumscribed to a
portion of the tract or region of interest.

2. Voxel-based analysis such as tract-based spa-
tial statistics (TBSS; Smith et al. 2006)
involves independently testing the same
hypothesis about the diffusion metric of
interest for each voxel comprising a white
matter mask. Cluster-based  statistics
(Nichols and Holmes 2002) are then used to
correct for multiple comparisons, thereby
identifying clusters of voxels showing sig-
nificant effects (Fig. 4.2b). The white matter
mask can be confined to a white matter skel-
eton delineating the core of all fiber bundles

Fig. 4.2 Methods to perform group inference on diffu-
sion MRI data. (a) ROI analysis involves averaging the
diffusion metric of interest across a group of voxels span-
ning a white matter tract or region and then performing
inference on the ROI-averaged metric. (b) Voxel-based
analysis involves independently testing the same hypoth-
esis for each voxel comprising a white matter mask, and
then using cluster-based statistics to correct for multiple
comparisons, thereby identitying clusters of voxels show-

ing significant effects. (¢) Fiber-tracking or tractography
utilizes the fiber orientations estimated for each voxel to
infer trajectories of white matter fiber bundles and enables
estimation of the putative connectivity strength between
cortical and subcortical regions. (d) Connectomic analysis
involves reconstructing a network representation of white
matter connectivity between all pairs of regions compris-
ing a gray matter parcellation and formulating hypotheses
about the topological attributes of the network
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(Smith et al. 2006) or comprise all white
matter voxels (Zalesky et al. 2011).

3. Fiber-tracking or tractography utilizes the
fiber orientations estimated for each voxel
(e.g., principal eigenvector) to infer trajecto-
ries of white matter fiber bundles and enables
estimation of the putative connectivity
strength between cortical and subcortical
regions. Hypotheses can be tested with respect
to interregional connectivity strength and fiber
geometry (Fig. 4.2¢).

4. Connectomic analysis involves reconstructing
a network representation of white matter con-
nectivity between all pairs of regions compris-
ing a gray matter parcellation and formulating
hypotheses about the topological attributes of
the network (Fig. 4.2d).

The regional averaging inherent to the ROI
approach produces higher signal-to-noise ratios
(SNR), resulting in more robust estimates of dif-
fusion metrics. However, this gain in SNR is at
the expense of poorer spatial localization and the
possibility of overlooking strong, but spatially
circumscribed effects (Friston et al. 1996). In
contrast, voxel-based analysis does not require a
regional hypothesis and provides improved sensi-
tivity to effects that do not conform to the spatial
extent of a predefined ROI. However, the disad-
vantages of voxel-based analysis are the need for
multiple comparison corrections across the set of
all voxels tested, and diffusion metrics are inher-
ently noisier for individual voxels than for ROIs
(Friston et al. 1996).

Thus, while ROI and voxel-based
approaches provide estimates of local white
matter structure, they do not provide insight
into long-range cortico-cortical connectivity.
Tractography enables reconstruction of indi-
vidual fiber trajectories and the investigation
of diffusion metrics as a function of a fiber’s
length (Yeatman et al. 2012). Tractography
can also be used to estimate interregional con-
nectivity strength between all pairs of regions
comprising a whole-brain gray matter parcel-
lation. This results in a network representation
of white matter connectivity called the connec-
tome (Fornito et al. 2016; Sporns et al. 2005).

4.3 Diffusion Tensor Imaging

Studies

In the largest, multisite analysis of DTI measures
in schizophrenia to date, comprising data for
2359 healthy controls and 1963 schizophrenia
patients, Kelly and colleagues (2018) observed
significant and widespread reductions in FA
(effect size range: 0.04-0.42), in 20 of 25 white
matter regions examined using a TBSS-like anal-
ysis (See also Chap. 21 for further discussion
about this study and other meta-analyses). In
addition, no significant effects of age at onset of
schizophrenia or medication dosage were
detected. This study established robust evidence
for white matter pathology in schizophrenia.
However, nuances with regard to age (range:
18-86 years), illness duration, symptoms, and
medication exposure were not examined in detail.
This may reflect incomplete and disparate patient
information across the 29 sites included.
Therefore, a significant limitation of this multi-
site study is the heterogeneity in the patient sam-
ple with respect to stage of illness, age, medication
history, image acquisition and inter-site scanner
differences.

In concordance with this study, many earlier
DTI studies of smaller but more homogeneous
and well-characterized schizophrenia samples
have reported reductions in FA and signifi-
cant abnormalities in other diffusion metrics
(Samartzis et al. 2014; Fusar-Poli et al. 2013;
Bora et al. 2011). Kubicki and colleagues (2007)
provide a review of diffusion tensor imag-
ing studies in schizophrenia and conclude that
decreased FA (and increased MD) within pre-
frontal and temporal lobes, as well as abnor-
malities within the fiber bundles connecting
these regions are the most frequent findings in
schizophrenia. More recently, Ellison-Wright
and Bullmore (Ellison-Wright and Bullmore
2009) completed a meta-analysis of 15 diffusion
tensor imaging studies in schizophrenia (407
patients, 383 healthy comparison subjects) and
reported FA reductions in the frontal and tempo-
ral cortices in schizophrenia. However, discrep-
ancies among the 15 studies are substantial and
the precise location of white matter pathology in
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the disorder remains obscured by the inconsis-
tencies across studies. The inconsistency across
studies in the loci of white matter pathology may
be due to intrinsic heterogeneity within the diag-
nostic construct of schizophrenia, to differences
in image analysis methodologies between stud-
ies and/or to spurious heterogeneity introduced
by false positive findings owing to small sample
sizes and lack of judicious statistical practices.
Furthermore, heterogeneity in patient sample
characteristics, including stage of illness and
chronicity, cannot be underplayed given that
white matter microstructure and connectivity
changes throughout the lifespan.

4.3.1 Diffusion Tensor Imaging

in Chronic Schizophrenia

Most studies have been conducted in chronic
schizophrenia patients, with consistent reports
of reduced FA and increased MD in patients
compared to controls. The most commonly
implicated fiber bundles include the superior
longitudinal fasciculus (SLF), uncinate fas-
ciculus, cingulum bundle, and corpus callosum
(Fitzsimmons et al. 2013; Wheeler and Voineskos
2014). For example, Holleran and colleagues
(2014) detected lower FA in 19 individuals with
chronic schizophrenia compared to 19 healthy
controls in fiber bundles within the genu, body,
and splenium of the corpus callosum, as well
as in temporal and frontal regions. However,
some studies have failed to replicate findings of
reduced FA in the corpus callosum (Agartz et al.
2001; Collinson et al. 2014; Foong et al. 2000),
whereas other studies identified reduced FA in
the anterior portion, but not the body or sple-
nium of the corpus callosum (Shergill et al. 2007,
Kong et al. 2011; Lener et al. 2015), whilst a few
studies have reported widespread reductions in
FA (Bai et al. 2009; Kanaan et al. 2009; Reading
et al. 2011; Asami et al. 2014; Fujino et al. 2014;
Roalf et al. 2015; Di Biase et al. 2017; Hubl et al.
2004). These findings are interesting given ear-
lier findings of thinning of the anterior portion
of the corpus callosum early in the illness with
more widespread reduction in chronic schizo-

phrenia (Walterfang et al. 2008b). However, three
FA studies were unable to detect any between-
group differences (Foong et al. 2002; Boos et al.
2013; Steel et al. 2001). Notably, negative find-
ings were reported in early studies employing
ROI approaches compared to voxel-based analy-
ses (such as with TBSS). Hence, voxel-based or
whole-brain methods may be more sensitive to
diffusion abnormalities in schizophrenia (Snook
et al. 2007). While studies in chronic patients
have yielded more consistent results than stud-
ies at earlier illness stages, they are confounded
by epiphenomena unrelated to illness, including
stress associated with prolonged or chronic ill-
ness, cumulative medication consumption, and
normative aging effects (Ozcelik-Eroglu et al.
2014; Hasan et al. 2007). Thus, it is difficult
to disambiguate primary white matter changes
linked to disease origins from epiphenomena
when studying chronic patients.

4.3.2 Diffusion Tensor Imaging
in First Episode Psychosis

Studies examining antipsychotic-naive, first epi-
sode patients (Cheung et al. 2008, 2011; Zou
et al. 2008; Gasparotti et al. 2009; Guo et al.
2012; Mandl et al. 2013; Filippi et al. 2014;
Alvarado-Alanis et al. 2015; Sun et al. 2015)
have identified reduced FA, particularly in the
callosal fibers and in the cingulum bundle, sug-
gesting that white matter pathology may reflect a
primary disease process in schizophrenia.
However, treatments with atypical antipsychotic
medication may modulate the extent of damage
(Szeszko et al. 2014; Marques et al. 2014), which
might contribute to the mixed findings.

DTI studies following the initial onset of
psychosis in medicated patients (refer to recent
reviews: Samartzis et al. 2014; Wheeler and
Voineskos 2014) implicate similar fiber bundles
affected in chronic illness, however these findings
are less consistent. While the majority of studies
suggest that white matter pathology emerges early
in the illness, little consensus exists regarding
specific tracts and regions affected. Furthermore,
some studies report no between-group differences
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in diffusivity measures (Kong et al. 2011; Price
et al. 2005; Peters et al. 2008; Friedman et al.
2008; Mendelsohn et al. 2006; Qiu et al. 2009;
Begré et al. 2003). Inconsistencies across studies
might reflect methodological discrepancies related
to image acquisition and post-processing, limita-
tions of FA as a measure of white matter integrity,
inadequate sample sizes leading to underpowered
studies (Poldrack et al. 2017), as well as to het-
erogeneity in the sample population (Pantelis et al.
2009; Cropley and Pantelis 2014). For example,
studies reporting negative findings included small
sample sizes (<15 patients; Kong etal. 2011; Peters
et al. 2008; Mendelsohn et al. 2006), or applied a
ROI approach (Price et al. 2005; Friedman et al.
2008; Qiu et al. 2009). While these studies did
not detect differences in FA, some found differ-
ences in alternative diffusivity measures (reviewed
below; Mendelsohn et al. 2006; Price et al. 2008).

In addition to methodological factors, incon-
sistencies might reflect different points in illness
trajectories between studies such that white matter
alterations are less severe or not as widely distrib-
uted in earlier illness. In line with this proposi-
tion, cross-sectional studies report greater white
matter disruption in older patients with longer
illness durations, compared to younger patients
with schizophrenia (Di Biase et al. 2017; Di Biase
et al. 2019; Cropley et al. 2016; Schneiderman
et al. 2011), possibly indicating progressive
white matter changes or accelerated white mat-
ter decline in schizophrenia (Cropley et al. 2016).
In addition, it is possible that the timing or age
of patients confers selective vulnerability to par-
ticular regions or fibers undergoing development
or normal aging processes (Kyriakopoulos et al.
2009; Gogtay et al. 2011). For example, the SLF
is the most common tract associated with altered
FA in individuals at ultra-high risk (UHR) for
developing psychosis (Clemm von Hohenberg
et al. 2013; Karlsgodt et al. 2009; Carletti et al.
2012). This association fiber tract undergoes
accelerated maturation during healthy late ado-
lescence and early adulthood—corresponding to
the typical age of UHR patients examined across
these studies (Peters et al. 2012). However, previ-
ous DTI studies examining the effect of timing
and age (Cropley et al. 2016; Schneiderman et al.

2011) have not included patients recently diag-
nosed with psychosis, thus precluding full char-
acterization of illness course in schizophrenia.

4.3.3 Ultra-High or Clinical Risk
of Developing Psychosis

Few studies have examined diffusion metrics
prior to psychosis onset (Begré et al. 2003;
Clemm von Hohenberg et al. 2013; Karlsgodt
et al. 2009; Carletti et al. 2012; Peters et al. 2009;
Bloemen et al. 2010; Cho et al. 2016). With the
exception of two ROI studies (Peters et al. 2008,
2010), these studies provide preliminary evi-
dence that the UHR state is associated with white
matter deficits. While these studies indicate dif-
ferences, particularly in the SLF and the corpus
callosum, precise trajectories of these deficits as
a function of illness course and transition to psy-
chosis, remain unclear. For example, Bloemen
and colleagues (2010) found decreased FA in
UHR patients, who later transitioned to psychosis
(UHR-P), compared to UHR individuals who did
not develop full-threshold psychosis (UHR-NP)
and healthy controls. On the other hand, Carletti
and colleagues (2012) did not detect baseline dif-
ferences between UHR-P and UHR-NP, but rather
found longitudinal FA reductions in the internal
capsule, corona radiata, fronto-occipital fascicu-
lus and anterior corpus callosum in the UHR-P
group, notably localized to regions previously
found to be disrupted in first episode patients.
The absence of significant baseline reductions
in FA may reflect insufficient power, as Carletti
and colleagues (2012) studied only eight UHR-P
individuals. Alternatively, treatment with anti-
psychotic medication may have contributed to
differences, with some UHR participants treated
in Bloemen’s cohort, whereas all UHR partici-
pants were unmediated in Carletti’s cohort at
baseline. Longitudinal changes may also relate to
the initiation and cumulative effects of antipsy-
chotic medication. However, a previous report
found that FA reductions over time occurred in
a medication-free subset of UHR patients (Mittal
et al. 2013), indicating that illness-related fac-
tors influence longitudinal white matter changes.
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In particular, they found that neurological soft
signs were predictive of white matter integrity
after 1 year within cerebellar-thalamic circuits.
Interestingly, the normative pattern of white mat-
ter development in these tracts was character-
ized by an increase in FA over time, in contrast
to UHR patients who displayed FA decline over
time, which may point to progressive white mat-
ter deterioration, rather than stunted neurodevel-
opment, during this prodromal period.

4.3.4 White Matter Trajectories
in Schizophrenia

While longitudinal studies are needed to assess
the extent to which white matter pathology is
progressive in schizophrenia, cross-sectional evi-
dence from different illness stages can provide
crucial insight and inform the design of prospec-
tive studies. For example, diffusion studies have
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examined FA in both recently diagnosed and
chronic schizophrenia cohorts (Collinson et al.
2014; Kong et al. 2011; Friedman et al. 2008;
White et al. 2011). These studies identified wide-
spread FA reductions in chronic illness, while
less severe (Friedman et al. 2008) or no altera-
tions (Collinson et al. 2014; Kong et al. 2011,
White et al. 2011) in FA were observed at illness
onset. Thus, illness onset might be characterized
by subtle and regionally localized white matter
pathology. These findings accord with a recent
study that modelled the influence of age on FA
across a wide age range in 326 individuals with a
schizophrenia-spectrum disorder and 197 healthy
controls (Cropley et al. 2016; Fig. 4.3).
Interestingly, significant FA reductions only
emerged after age 35 in schizophrenia relative to
controls, and the decline in FA was 60% steeper
in the patient group. The findings of this study
aligns with an earlier machine learning study,
which found that predicted “brain age” was about
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3 years greater than a patient’s chronological age
(Schnack et al. 2016). However, discrepant find-
ings exist. For example, a longitudinal diffusion
study identified lower baseline FA in chronic
schizophrenia patients within frontoparietal
white matter compared to healthy controls,
whereas at (~4-year) follow-up, FA, on average,
declined faster in healthy controls (n = 13) rela-
tive to patients (n = 34) (Mitelman et al. 2009).
This finding contradicts accelerated white matter
ageing in schizophrenia (Kochunov et al. 2013);
and rather, suggests that pathological white mat-
ter changes are premorbid or confined to the early
course of illness, after which the rate of change
decelerates with advancing age. As such, little
consensus exists regarding the prospective course
of pathological white matter changes in schizo-
phrenia. Future longitudinal studies that serially
map the timing of anisotropy changes from early
to prolonged illness will assist in clarifying white
matter trajectories in schizophrenia. Importantly,
anomalous white matter trajectories may differ
across patient subsets, which could further be
addressed by this work.

4.3.5 Summary of Diffusion Tensor
Imaging in Schizophrenia

In summary, marked heterogeneity can be found
across DTI studies with respect to the spatial
extent, loci, topographic distribution and trajec-
tories of white matter pathology in schizophre-
nia. Aside from patient heterogeneity associated
with antipsychotic treatment, illness chronicity,
general health, lifestyle and age factors, incon-
sistent findings across studies likely reflect
methodological differences. For example, ROI
approaches limit direct comparison across DTI
studies due to inconsistency in the choice of
ROIs. Furthermore, marked variability in early
psychosis may indicate reduced sensitivity of
DTI measures to detect subtle pathology, par-
ticularly in white matter with complex structure
and geometry. Despite variability, a consensus is
beginning to emerge: (1) microstructural abnor-
malities are evident across many schizophrenia
populations; (2) at the group-level, white matter

pathology is diffuse, widespread and cannot be
localized to individual tracts; and (3) white matter
pathology may be underpinned by changes in RD
rather than AD, pointing to myelin, rather than
axonal alterations in schizophrenia.

4.4 Beyond the Tensor:
Advanced Diffusion Imaging

in Schizophrenia

The information provided by conventional DTI
indices measured locally (i.e., voxels or regions),
or along the extent of fibers, provide a useful and
simple means to detect microstructural changes
in white matter. However, these measures cannot
distinguish between changes in specific micro-
structural features such as CSF, axons, myelin, or
immunoreactive cells and, therefore, lack speci-
ficity. Advanced diffusion imaging approaches
attempt to shed new light on the nature of white
matter pathology in schizophrenia. These more
advanced approaches include free-water imaging
(Pasternak et al. 2009), kurtosis imaging, diffu-
sion spectrum imaging (DSI), and neurite orien-
tation dispersion and density imaging (NODDI,
Rae et al. 2017). Below we primarily focus on the
first three methods, since these have been the
most widely studied to date in schizophrenia.

4.4.1 Free-Water Studies

As discussed above, many microstructural fea-
tures contribute to the signal measured with dif-
fusion imaging. One way of increasing tissue
specificity is to minimize non-tissue-related sig-
nals. Free-water or partial volume contamination
represents one potential source of variance.
Free-water constitutes unrestricted water mole-
cules found in CSF, blood, or the extracellular
space. A voxel containing free-water would
result in lower anisotropy estimates (increased
isotropy). Hence, reduced FA, particularly in
fibers adjacent to ventricles, may simply reflect
increased free-water pools, due to partial volume
effects. A recently developed MRI method
applies a bi-tensor (two-compartment) model
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(Pasternak et al. 2009) to separate the contribu-
tion of free-water from that of tissue-specific dif-
fusivity, in order to eliminate partial volume and
other free-water effects. This method has been
applied to diffusion imaging studies in schizo-
phrenia in order to examine tissue-specific dif-
fusivity (after free water elimination using the
tensor model) and free water fractions, which
may be linked to atrophy and neuroinflammation
(Pasternak et al. 2016).

In the first free-water imaging study, Pasternak
and colleagues (2012) compared conventional
DTI measures with free-water corrected indices
in 18 first episode patients and 20 healthy con-
trols. Widespread FA abnormalities and increased
MD were detected with DTI, whereas, free-
water-corrected FA (FA;) revealed a localized
decrease in frontal white matter (Fig. 4.4). In
contrast, the free-water compartment showed
widespread increases in patients compared to
controls. This study suggests that most of the FA
abnormalities in this FEP group were not associ-
ated with changes in the tissue but, rather, were
accounted for by increased free-water in the
extracellular compartment. Consistent findings
were reported in a further study by Lyall and col-
leagues (2018), which included a larger sample
of 63 first episode patients and 70 healthy con-
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trols and also found that globally increased free-
water values were associated with better cognitive
performance after 12 weeks of treatment with
antipsychotic medication.

In contrast to these aforementioned studies
undertaken in recently diagnosed patients, later
studies (Pasternak et al. 2015; Oestreich et al.
2016a, 2017) in chronic patients with schizophre-
nia found minimal free-water abnormalities,
along with a global pattern of decreased FA;. In
particular, Oestreich and colleagues (2017)
reported reduced FA; in the (bilateral) anterior
limb of the internal capsule, the (bilateral) poste-
rior thalamic radiation, and the genu of the cor-
pus callosum in 281 chronic schizophrenia
patients, compared to 188 controls. In contrast,
no significant free-water changes were detected.
It is possible that excess free-water parallels
acute or exacerbated psychosis, which may
explain increased free-water in FEP patients, as
they are experiencing, or recently experienced
acute psychosis. Consistent with this hypothesis,
excess free-water in the left cingulum bundle was
specifically found in chronic schizophrenia
patients with present (state-related) delusions,
compared to chronic patients with remitted delu-
sions and healthy controls (Oestreich et al.
2016b). In this study, FA; deficits were observed

Fig. 4.4 Increased free-water values in first-episode
patients. Conventional FA, free-water (FW) and free-
water corrected FA (FA;) were compared between first-
episode patients and healthy controls. A widespread

increase in free-water values (dark to light blue) was
found throughout the white matter skeleton (green),
whereas, reduced FA; (red to yellow) was localized to
frontal white matter (Pasternak et al. 2012)



4 White Matter Pathology in Schizophrenia

81

in both patients with present and remitted delu-
sions, compared to healthy controls (Oestreich
et al. 2016b).

In summary, free-water imaging enables the
differentiation between the contributions of two
separate compartments that contribute to DTI
indices. These studies indicate widespread
increases in extracellular free water in early and
acute psychosis, together with localized decreases
in tissue-specific FA in chronic schizophrenia.
Free-water and tissue-specific components of the
diffusion signal potentially enable differentiation
of distinct microstructural changes associated
with the disorder. However, the microstructural
correlates of each compartment remain unclear.

4.4.2 Kurtosis Imaging

Conventional DTI assumes that the surrounding
microstructural environments permit free, unre-
stricted diffusion of water molecules, resulting in
a Gaussian (normal) distribution profile. In con-
trast, it is possible that diffusion is restricted by
cell membranes and organelles, for example,
within fiber bundles. Furthermore, the underlying
white matter structure may not align with the ten-
sor model (e.g., crossing/kissing fibers), even if
more than one tensor is modelled, which may
obscure resulting signals (Jones et al. 2013).
These limitations are overcome to a certain extent
by diffusion kurtosis imaging (DKI), which
quantifies the non-Gaussian distribution of water
molecules, and thus captures molecule displace-
ment where diffusion is restricted. The scalar dif-
fusion metrics derived from kurtosis imaging
(mean, axial and radial kurtosis), thus provide
measures of microstructural restriction in com-
plex structures.

In an initial study, Zhu and colleagues (2015)
compared conventional DTI measures (FA, MD
and AD), kurtosis-derived diffusion measures
(FA, MD and AD obtained from kurtosis data),
and kurtosis-specific parameters (mean, radial
and axial kurtosis) in 94 chronic schizophrenia
patients, as well as 91 healthy controls. Using
TBSS, they identified white matter impairments
in patients with diffusion metrics derived from

all three models. Conventional DTT and kurtosis-
derived diffusion estimates yielded similar find-
ings: widespread reductions in FA (derived
from DKI data) and mean Kkurtosis (derived
from DKI), particularly in frontal and tempo-
ral regions. Nevertheless, the conventional DTI
measures were sensitive to pathology in differ-
ent white matter regions compared to the kurto-
sis-specific measures. Specifically, FA and MD
abnormalities were found in regions with coher-
ent fiber arrangement (e.g., the corpus callosum),
whereas, kurtosis-specific abnormalities, includ-
ing reduced mean kurtosis, were found in regions
with complex fiber arrangement (e.g., corona
radiata). Thus, kurtosis-specific and conventional
diffusion measures may provide complemen-
tary information and may enable differentiation
between distinct white matter pathologies in
schizophrenia.

A later study compared voxel-wise FA and
mean kurtosis metrics in 31 chronic schizophre-
nia patients and 31 healthy controls (White et al.
2011). These authors identified more widespread
mean kurtosis (MK) reductions, compared to FA
reductions, which were localized to the corona
radiata. These findings would seem to complicate
the interpretation offered by Zhu and colleagues
(2015) and challenge the suggestion that DTI
estimates are more sensitive to pathology in
coherent commissural fibers compared to com-
plex, projection fibers. Moreover, reduced MK
was also observed in the corona radiata by Narita
and colleagues (2016), suggesting that white
matter impairments of the corona radiata are
detectable with conventional FA, as well as MK
measures.

A recent study by Docx and colleagues (2017)
compared voxel-wise DTI (FA and MD) to DKI
(MK) metrics in 20 schizophrenia patients and 16
healthy controls in terms of their sensitivity to voli-
tional motor activity (a proxy for avolition, which
is one of the negative symptoms of schizophrenia).
Increasing motor activity was positively correlated
with MK in the inferior, medial and superior lon-
gitudinal fasciculus, corpus callosum, posterior
fronto-occipital fasciculus, and posterior cingu-
lum in patients, but not in controls. Importantly,
this association was not found with DTI metrics,
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suggesting increased sensitivity of MK to reveal
associations with schizophrenia-specific symp-
tomatology. However, in contrast to Zhu and col-
leagues (2015), Docx and colleagues (2017) did
not detect significant differences in MK between
patients and healthy controls, but did identify a
widespread MD increase in patients. Discrepancies
may be explained by the different methods used to
analyse the diffusion metrics: Zhu and colleagues
(2015) employed TBSS, which examines voxels
within a white matter skeleton, whereas Docx and
colleagues (2017) employed voxel-based analysis
(VBA), which examines all white matter voxels.
While these studies differed with respect to case-
control findings, both studies point to complemen-
tary information provided by tensor and kurtosis
metrics. Thus, kurtosis—a measure more sensi-
tive to intracellular restriction and myelin content
within complex fibers—may provide supplemen-
tary information to DTI metrics regarding micro-
structural variation in schizophrenia.

4.4.3 Diffusion Spectrum Imaging

Another tensor-free imaging approach used in
schizophrenia research is diffusion spectrum
imaging (DSI; Pasternak et al. 2015). With DSI, a
probability density function (PDF) is fitted to the
diffusion signals measured at each voxel. The
PDF spatially characterizes the local diffusion
profile, without restriction to a particular model
such as the tensor. An advantage of this model-
free approach is that arbitrarily complex diffu-
sion profiles can be characterized, which are only
limited by the angular and spatial resolution of
the acquisition. Generalized FA (gFA) is a metric
that is commonly used to summarize the isotropy
of the PDF fitted to each voxel. In practice, gFA
reflects the anisotropy of a voxel (similar to FA).
However, it is computed using a model-free
framework, and thus results in superior charac-
terization of complex white matter architecture.
Using DSI, Wu and colleagues (2015) found
that gFA between first-episode and chronic
patients differed only within callosal fibers inter-
connecting the dorsolateral prefrontal cortices
bilaterally. Specifically, gFA in these fibers was

significantly decreased in chronic but not in first
episode patients compared to controls. They con-
cluded that white matter pathology remained
largely static after illness onset. Notably, this
contrasts with some DTI studies, which did not
detect differences, or which identified subtle dif-
ferences in first-episode patients. It is therefore
possible that advanced, free-model methods pro-
vide greater sensitivity to detect subtle pathology
occurring in the early stages of psychosis. For
example, a pilot study comparing measures
derived from a model-free approach (g-ball imag-
ing) to conventional diffusivity measures found
an overall decrease in white matter microstruc-
ture measured with high b-value DWI in first-
episode patients compared to controls, in the
absence of any corresponding abnormalities in
FA (Mendelsohn et al. 2006).

Taken together, advanced diffusion imaging
methods show great potential for addressing the
limitations of conventional DTI and for isolating
the contribution of distinct biological compart-
ments, including free-water and tissue-specific
changes. Furthermore, these distinct biological
compartments may provide insight into distinct
pathological processes, and thus provide insight
into the cellular and microstructural underpinnings
of conventional diffusion metrics such as FA. Thus
far, these data implicate a predominantly free-water
increase in early or acute stages of psychosis, but a
predominantly tissue-specific deficit in later or
chronic illness stages. Furthermore, advanced dif-
fusion methods may offer greater sensitivity than
conventional DTI: DKI for pathology in complex
white matter architecture and DSI for subtle or
early white matter changes in schizophrenia, since
the gFA measure was shown to detect pathology
even in the absence of FA deficits.

4.4.4 UsingTractography
to Parameterize White Matter
Pathology Along
the Trajectory of Fiber
Bundles

Diffusion indices measured locally cannot iden-
tify tract-specific deficits along the trajectory of
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fiber bundles and, hence, do not fully account
for fiber bundle geometry and connectivity.
Tractography-based methods enable measure-
ment of diffusion properties along the course of
fiber bundles. To this end, tensor-based (determin-
istic) or model-free (probabilistic) frameworks
can be used to estimate the local orientation of
maximum diffusion at each voxel (i.e., the orien-
tation of the fiber bundle), which is used to map
coherently oriented fiber bundles.

Most tractography studies have employed
deterministic methods in chronic patient cohorts.
Once deterministic tractography has been used to
reconstruct a fiber bundle of interest, the fiber
bundle’s trajectory is parameterized, and diffu-
sion measures are then computed for each point
along the parameterized trajectory. This enables
evaluation and comparison of diffusion measures
such as FA for each point along the trajectory,
thereby yielding a tract-specific parameterization
of diffusion measures (Fig. 4.5).

0.60
>
Q.
o
3
B2
g 0.45
©
c
S
5
©
i
10 20 30 40 50 60 70 80 90 100
0.30

Location

Fig. 4.5 Tract-measured fractional anisotropy of the cor-
pus callosum. After fiber reconstruction, tract FA was
measured along the y-axis at each of 100 equidistant
points (x-axis). The group mean is shown as a bold line,
colored-coded based on the group mean FA value at that
point. Gray lines refer to individual FA estimates. Tract
FA shows consistent peaks and valleys across individuals
(Yeatman et al. 2012)

The most commonly identified tracts show-
ing reduced FA include the cingulum bundle
(Voineskos et al. 2010; Nestor et al. 2008, 2010;
Rosenberger et al. 2008; Kubicki et al. 2009;
Kunimatsu et al. 2012; Whitford et al. 2015), the
arcuate (Whitford et al. 2011, 2015; De Weijer
et al. 2011; Phillips et al. 2009), the uncinate fas-
ciculus (Voineskos et al. 2010; De Weijer et al.
2011; Mclntosh et al. 2008; Singh et al. 2016),
the fornix (Kunimatsu et al. 2012; Fitzsimmons
et al. 2009; Oestreich et al. 2016c¢), and the corpus
callosum (Whitford et al. 2010, 2015; Kitis et al.
2011; Choi et al. 2011), particularly the anterior
corpus callosum. However, discrepancies exist
even for the most consistently identified tracts,
with negative findings also reported for the cingu-
lum bundle and arcuate fasciculus (Fitzsimmons
et al. 2014). For example, Fitzsimmons et al.
(Fitzsimmons et al. 2014) found decreased FA
in the cingulum bundle in FEP but not chronic
schizophrenia patients compared to separate,
aged-matched controls, suggesting that diffusiv-
ity abnormalities in the cingulum bundle may,
in some cases, normalize with illness course.
The authors proposed that, given abnormali-
ties involved mean, radial and axial diffusiv-
ity, the initial deficit related to an acute process
unrelated to myelin or axon abnormalities, but
rather an increase in free-water content, which
may reflect inflammatory processes. Preliminary
free-water studies have since partially supported
this hypothesis (as described above), such that
first-episode patients display increased free-
water content compared to controls (Pasternak
et al. 2016). However, other reports have iden-
tified widespread tissue-specific deficits in later
illness stages (Pasternak et al. 2015), in contrast
to Fitzsimmons et al. (Fitzsimmons et al. 2014).
Future studies that combine tractography with
free-water methods could clarify the contribution
of free-water to tract-specific deficits.

Tract-specific FA deficits have been associ-
ated with schizophrenia symptomatology: the
cingulum bundle with delusions (Whitford et al.
2015), executive functioning, generalized intelli-
gence and visual memory (Nestor et al. 2008;
Kubicki et al. 2009); the fornix and uncinate fas-
ciculus with memory (Nestor et al. 2008; Singh
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et al. 2016; Fitzsimmons et al. 2009), attention
and sensorimotor deficits (Singh et al. 2016); the
arcuate fasciculus with positive symptoms (De
Weijer et al. 2011; Choi et al. 2011); and the cor-
pus callosum with general psychopathology
(Kitis et al. 2011) and positive symptoms
(Whitford et al. 2010). Localizing symptoms to
particular tracts provides opportunities to person-
alize therapies such as transcranial magnetic
stimulation (TMS; Cocchi and Zalesky 2018) to
suit the symptom profile of individual patients.

Cellular and Molecular
Insights into Diffusion
Imaging Findings

4.5

Cellular and molecular techniques for character-
izing neuropathology provide a complementary
means to examine white matter pathology in
schizophrenia and point to potential sources
underlying diffusion related deficits in schizo-
phrenia (Walterfang et al. 2006). To this end,
Uranova and colleagues (2014) used electron
microscopy and morphometric analysis to reveal
similar oligodendrocyte and myelin densities in
schizophrenia compared to healthy controls.
However, qualitative inspection revealed mor-
phological alterations in oligodendrocytes, char-
acterized by dystrophic changes (e.g., swelling)
in the prefrontal white matter of schizophrenia
patients (Uranova et al. 2011). A previous study
from the same group reported increased volume
density of heterochromatin in layer VI and myelin
abnormalities in adjacent white matter in a
schizophrenia subset with predominantly nega-
tive symptoms (Uranova et al. 2011). This study
points to links between oligodendrocyte and
myelin pathology in schizophrenia, which may
contribute to macroscopic diffusion and connec-
tivity deficits through, for example, slowing of
the conduction velocity and inducing synaptic
changes.

Postmortem and diffusion imaging studies are
also consistent with genetic and molecular evi-
dence implicating altered oligodendrocyte and
gene expression in schizophrenia. Gene candi-
date studies have implicated oligodendrocyte and

myelin related genes in schizophrenia risk loci,
most commonly involving Neuregulin 1 (NRG1)
genotypes and haplotypes and the Disrupted-in-
schizophrenia 1 (DISC1) gene [For review, refer
to Roussos and Haroutunian (Roussos and
Haroutunian 2014)]. In addition, microarray and
quantitative PCR analyses have shown reduced
expression of multiple genes associated with
myelin, oligodendrocytes, and integrity of the
nodes of Ranvier [For review, refer to Takahashi
et al. (Takahashi et al. 2011)]. It is important to
note that altered oligodendrocyte function occurs
across many neurodevelopmental and psychiatric
illnesses, and the functional influences of oligo-
dendrocyte and myelin-related risk genes involve
normal developmental processes, including syn-
aptic function and myelination. Thus, oligoden-
drocyte and myelin deficits may not represent a
primary pathological process in schizophrenia
(Weinberger 1987).

Irrespective of the pathological origins of
white matter deficits in schizophrenia, they
appear central to the pathophysiology and symp-
toms associated with the illness. This conclu-
sion is supported by animal models showing
that white matter deficits influence the expres-
sion of key neurotransmitter systems involved
in schizophrenia. For example, a study by Roy
and colleagues (Ramani et al. 2007), revealed
that decreased NRG-1-erB signalling not only
alters myelin and oligodendrocyte number and
morphology, but also increases dopamine recep-
tors and transporters (Ramani et al. 2007). In
addition, these transgenic mice displayed behav-
ioural abnormalities consistent with neuropsy-
chiatric conditions (Ramani et al. 2007). The
clinical relevance of white matter deficits is fur-
ther established through evidence that pediatric
demyelinating diseases (Sibbitt et al. 2002) and
white matter injury (Turkel et al. 2007) are asso-
ciated with increased risk for developing psy-
chosis (Walterfang et al. 2005). Notably, there is
often delay between the initial injury, which may
take place at any time during development, and
the onset of psychosis (Turkel et al. 2007).

Taken together, data across multiple biological
scales converge on a critical role for white mat-
ter deficits in schizophrenia. Neuropathological
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data point to myelin deficits, which may under-
lie tissue-specific changes observed in diffusion
imaging studies. While the origin of white matter
deficits remains unclear, genetic and molecular
evidence implicates early developmental biol-
ogy in white matter disruption. Given the ubiq-
uitous role of oligodendrocytes in supporting
myelination, neuronal and synaptic integrity,
the functional impact of their disruption is likely
dynamic. Cellular and molecular modalities
should be considered in conjunction with in vivo
diffusion imaging studies, which will be crucial
to reconcile and expand our knowledge of white
matter trajectories, plasticity and treatment in
schizophrenia.

Conclusions and Future
Directions

4.6

Our understanding of white matter pathology in
schizophrenia has dramatically increased in
recent years due primarily to advances in diffu-
sion imaging. Unlike two or three decades ago
when the evidence for white matter involvement
in schizophrenia remained equivocal, there can
be no doubt now that white matter abnormalities
are a core pathological feature of schizophrenia
and may be present before the onset of symp-
toms. White matter pathology affects widespread
networks in chronic patients but may be confined
to select callosal and fronto-temporal fibers early
in the disorder. These fibers are connected by
regions that are also disproportionately affected
in the disorder (frontal and temporal regions) and
functionally mature in early adulthood, coincid-
ing with the time of peak risk for schizophrenia.
Thus, developmental timing may confer increased
susceptibility to disruption of particular tracts.
Following the initial onset of psychosis, some
diffusion tensor imaging studies hint at a pattern
of white matter decline over illness at a rate faster
than attributable to healthy aging. However, so
far, cross-sectional studies have not distinguished
primary progressive events from epiphenomena
owing to illness chronicity and cumulative treat-
ment. Longitudinal studies that serially map the
timing of brain changes will aid in clarifying tra-

jectories in the context of healthy brain matura-
tion and aging factors, as well as illness factors,
such as cumulative treatment. Irrespective of the
prospective course, the presence of connectivity
impairments in early medication naive cohorts
and prior to psychosis points to a central role for
white matter pathology in schizophrenia.

Advanced free-water and tensor-free diffusion
imaging methods have improved sensitivity to
detect these subtle abnormalities early in the
course of illness and are, moreover, shedding
new light on the nature of these deficits, which
may dynamically evolve over the course of ill-
ness. In addition, preliminary studies employing
DKI and DSI methods may provide complemen-
tary information to DTI metrics within complex
white matter architecture (e.g., crossing/kissing
fibers). These methods have further leveraged
tractography approaches to reveal structural con-
nectivity deficits in schizophrenia.

While these advanced models are paving
the way forward, it is important to remember
that diffusion indices represent mathematical
descriptions that are governed by a multitude
of variables, and hence cannot be straightfor-
wardly ascribed to specific biological mecha-
nisms. Neuropathological evidence points to a
myelin deficit, which may underlie microstruc-
tural changes in white matter tissue structure and
organization. Furthermore, molecular evidence
implicates developmental factors in myelin dis-
ruption. Bridging the gap across biological scales
and improving characterization of white matter
pathology will depend upon validating neuroim-
aging techniques through concurrent measure-
ment with PET radioligands that pinpoint specific
cellular mechanisms, as well as by combining in
vivo diffusion imaging with histological methods
in postmortem and animal studies.

Lastly, it is important to remark that patient
heterogeneity complicates the investigation and
interpretation of white matter findings across the
extent of neuroimaging studies. Thus, future
study designs should focus on elucidating links
to specific symptoms, general health, lifestyle, as
well as illness severity and chronicity factors,
rather than examining broad, group-level differ-
ences (controls versus all patients), since these
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may reflect the combined effect of heterogeneous
patient populations. Of course, along with efforts
to identify potential therapeutic targets, it is
equally important to assess whether white matter
biomarkers are clinically valuable in predicting
disease progression or outcome, and potentially
treatment response.

Summary

e White matter abnormalities are a core
pathological feature of schizophrenia
and may be present before the onset of
Symptoms.

* Advanced free-water and tensor-free
diffusion imaging methods have
improved sensitivity to detect subtle
abnormalities early in the course of psy-
chosis and schizophrenia.

* Some diffusion tensor imaging studies
indicate a pattern of white matter decline
over the course of schizophrenia.

e Patient heterogeneity and variation in
image analysis methodologies compli-
cate the interpretation of white matter
findings across the extent of neuroimag-
ing studies.

e Neuropathological evidence points to a
myelin deficit, which may underlie
microstructural changes in white matter
tissue structure and organization.
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5.1 Introduction Resonance Imaging (fMRI) modality currently

The number of neuroimaging research studies
has grown tremendously over the past 20 years,
producing over 30,000 papers. In terms of num-
ber of publications per year, functional Magnetic
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dominates the landscape of neuroimaging.
Attempts to integrate the results of individual
fMRI studies for larger-scale interpretation as
well as more recent efforts to aggregate neuroim-
aging data through public sharing, however, have
faced many challenges, due to heterogeneity of
this data resulting from the variability in experi-
mental design, data acquisition parameters and
data processing. Recognizing the need for the
generation of interpretable results and to facili-
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tate the transition of neuroimaging research from
individual to large-scale multi-site projects, the
Organization for Human Brain Mapping Council
has created the Committee on Best Practices in
Data Analysis and Sharing (COBIDAS; Nichols
et al. 2017) providing guidelines on best prac-
tices of data analysis and data sharing in the brain
mapping community. Responding to the current
need of the neuroimaging community to ensure
(1) data quality, (2) the possibility to pool data
across several imaging sites (Hibar et al. 2015;
Thompson et al. 2014), and (3) the capability to
derive neural signatures from fMRI data to aid
clinical translation (early detection and predic-
tion), the goal of this chapter is threefold. First,
to acquaint the neuroimaging community with
the fMRI signal, experimental design and data
acquisition methods; then to introduce vari-
ous data processing strategies with an emphasis
on data quality assurance (QA), demonstrating
examples of its utility in increasing data valid-
ity and sensitivity; and finally, a discussion on
advanced topics such as realtime-fMRI neuro-
feedback, complex networks, early detection and
prediction using machine learning approaches to
aid clinical translation.

5.1.1 fMRI Contrast

fMRI relies on the intrinsic contrast mechanism
called the blood oxygenation level dependent
(BOLD) changes elicited during task performance
or spontaneously at the resting-state. Whenever
there is a local increase in neural activity, there
is a local increase in Cerebral Blood Flow (CBF)
and Cerebral Blood Volume (CBV) and magnetic
properties of hemoglobin (Hb) change when
bound with oxygen molecule. In a milestone pub-
lication in 1990, Ogawa and colleagues were the
first to demonstrate that the BOLD contrast can
be maneuvered in rodent brains by changing the
oxygen proportion in the air breathed by the ani-
mals (Ogawa et al. 1990). Since oxygenated Hb
(HbO,) is diamagnetic and deoxygenated Hb is
paramagnetic, T2 relaxation time for deoxygen-
ated Hb is shorter (less BOLD signal) than that of
HbO,. Hence increase in neural activity induces

reductions in local magnetic field susceptibility
changes leading to increases in MR signal. T2x
weighted MR pulse sequences, gradient-echo
echo planar imaging (EPI), has therefore become
the workhorse for fMRI. Currently, majority of
fMRI research is carried out at 3-T. The field is in
a constant chase for improvements in spatiotem-
poral resolution. Spatial resolution refers to the
ability to distinguish elementary units of neuro-
nal activity and temporal resolution refers to the
ability to discern time course of various neural
events. The former is limited by voxel volume
and the latter is limited by repetition time (TR;
the time interval between successive acquisition
of brain volumes).

5.1.2 Experimental Design

Study design is of utmost importance in fMRI. This
is because fMRI BOLD data is only a representa-
tion of local changes in neuronal activity and is not
absolute neural activity. Neither does fMRI data
capture fine-grained temporal information. All
study designs must therefore provide the opportu-
nity to statistically contrast the neuronal activity of
interest with a suitable rest or baseline condition.
Typical types of task-designs are “block design”,
“event-related design” and “mixed design”. In
all these design scenarios, the percent change in
BOLD signal (effect size) is calculated from the
differences in BOLD contrast between the two
states (“activation” and “baseline”). The BOLD
signal changes obtained from local T2# changes
following a single brief activation event—the
Hemodynamic Response Function (HRF)—has
to be convolved with the task design vector (a
vector containing the onset times of the blocks
or events) to derive the regressor of interest that
can be modeled and used to test for significant
activation in any voxel’s time series. While block
designs are optimal for activation detection, event
related designs are favored for fMRI time course
characterization. Since the resting-state design is
task free, it is suited for a wide range of pediatric
and clinical population who might not be able to
perform the task demands (e.g. low functioning
patients with Autism Spectrum Disorder (ASD) or
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infants). Furthermore, if clinical populations were
able to perform the task there could still be task
performance confounds.

Some of the experimental considerations also
include what part of the brain to look at (e.g.,
partial brain coverage vs. whole brain cover-
age), what head coil to use, and how many times
to toggle between conditions within a scan.
How to optimize data acquisition protocols that
yield a combination of high spatial and tempo-
ral resolution is another question of paramount
importance. This is because, typically as image
resolution increase (smaller voxels), the signal-
to-noise ratio (SNR) and functional contrast to
noise ratio (CNR) decrease. Using thicker voxels
is not an ideal solution to improve SNR because
of signal drop out (through-plane dephasing)
increase with slice thickness. Furthermore, time-
series SNR (tSNR) reach an asymptote at big-
ger voxel volumes indicating the dominance of
physiological noise (cardiac, respiratory, CBF
and CBV changes) at big voxel volumes (Kruger
and Glover 2001). tSNR increase can be brought
about by using multi-channel array coils thereby
providing improved sensitivity to BOLD sig-
nal and enhanced BOLD CNR (Triantafyllou
et al. 2011). It is important to note however that
decreasing slice thickness to minimize drop out
will require increasing the number of slices to
maintain same brain-coverage, again increasing
TR and acquisition time (decreasing temporal
resolution). There are strategies to address this
by adding in-plane parallel imaging schemes, but
they come with SNR penalty. A game changer to
this has been the implementation of simultaneous
multi-slice (SMS) imaging strategies (Setsompop
et al. 2012). SMS can improve temporal resolu-
tion (L1 s) in fMRI, is compatible with in-plane
acceleration techniques, can provide whole brain
coverage at high spatial resolution (<2.5 mm)
and in general there is no SNR penalty for multi-
band acceleration (Glasser et al. 2013).

5.1.3 Noise Considerations in fMRI

Noise in fMRI signal arises from multiple
sources, including those due to subject motion,

such as spin-history effects (Friston et al.
1996) or motion-by-susceptibility interactions
(Wu et al. 1997), sources due to physiological
variation (Birn et al. 2006; Frank et al. 2001;
Kruger and Glover 2001), as well as scanner
hardware-related sources. Subject motion,
however, is the most prominent source of arti-
fact and the one that has the greatest deleteri-
ous impact on fMRI signal. Even small head
movements have been shown to cause arti-
facts in activation maps, particularly when the
motion is correlated with the experimental par-
adigm (Field et al. 2000; Hajnal et al. 1994).
Moreover, group differences in the propensity
to move (e.g. in young versus older cohorts or
psychiatrically disordered versus healthy con-
trols) are well documented (Satterthwaite et al.
2012; Van Dijk et al. 2012). These group dif-
ferences in motion can and do contribute to
erroneously drawn conclusions if not properly
controlled (Bullmore et al. 1999).

5.2  Data Processing Strategies

5.2.1 Data Pre-processing

Data Realignment: During motion correction
or realignment, a six degrees-of-freedom (three
rotation, three translation) rigid body transforma-
tion is typically used to align or register volumes
from a time series. In performing realignment,
one typically assumes that EPI distortion or
warping is fixed relative to the head and that the
influence of slice-specific de-phasing in proxi-
mal slices is not a concern with typical times of
repetitions (TR) used to acquire fMRI data. Most
realignment algorithms register each scan vol-
ume (also referred to as ‘time point’) indepen-
dently to a reference volume (typically the first
or middle volume of a run) or perform a two-pass
operation where they calculate a mean motion-
corrected volume and register all time points
independently to that volume. Many MRI data
acquisition software tools now implement pro-
spective on-line motion correction (e.g. PACE
on Siemens scanners) by estimating the change
in position of a participant’s head and realign-
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ing gradients from time point to time point such
that the slice prescription is close to the original
(Thesen et al. 2000).

Unwarping/Field-map Correction: Distortion
related to susceptibility difference between air
and tissue boundaries (medial temporal and
orbito-fronal cortices for example) is inevitable
in T2 weighted funcational images. Unwarping
step corrects susceptibility by motion artifacts
(plus baseline susceptibility artifacts). Warping
in phase-encoding direction caused by scanner
inhomogeneity can also be corrected if fieldmaps
have been acquired and voxel displacement maps
(VDM) computed (Jezzard and Balaban 1995).

Slice-time Correction (STC): Each slice
(along slice-select direction; e.g. axial slices)
is acquired at a slightly different time, depend-
ing on slice-acquisition order (e.g. ascend-
ing/descending/interleaved/etc.)  within  the
TR. Temporal changes in BOLD signal can get
projected into spatial changes in BOLD signal.
The goal of STC is to resample each voxel time-
series to compensate for the slice-dependent
relative delay of the BOLD signal. STC is rec-
ommended especially when the TR is greater
than or equal to 2 s.

Coregistration: Structural and functional
images do not match in terms of MR contrast,
spatial resolution and image distortion. By align-
ing these between modality volumes from the
same individual (within subjects), coregistration
allows anatomical localization of single subject
activations. The steps involved are:

(1) registration to determine the six param-
eters of the rigid body transformation between
each source image (e.g. structural) and a refer-
ence image (e.g. functional), (2) transforma-
tion—the actual movement as determined by
registration (i.e. rigid body transformation), (3)
reslicing—the process of writing the “altered
image” according to the transformation (“re-
sampling”), (4) interpolation—way of con-
structing new data points from a set of known
data points (i.e. voxels). Reslicing uses inter-
polation to find the intensity of the equivalent
voxels in the current “transformed” data, and
changes the position without changing the value
of the voxels and give correspondence between

voxels. Different methods of interpolation that
are typically used include nearest neighbour,
linear, and B-spline interpolation.

Spatial Normalization: This step normalizes
anatomical differences between subjects with
the goal of increasing inter-subject reliability
by reducing the influence of anatomical differ-
ences between subjects. The goal is to bring indi-
vidual brains to standard template coordinates
so that functional correspondence is established
at a voxel-to-voxel level thereby enabling data
pooling across subjects to maximize sensitivity.
Template fitting is a kind of coregistration during
which images are stretched/squeezed/warped to
match a standardized template.

Smoothing: This step involves the spa-
tial blurring of functional data by convolution
with Gaussian smoothing kernel. The goal is to
increase inter-subject reliability by increasing
SNR and reducing influence of residual anatomi-
cal/functional localization differences between
subjects.

There are two important pre-processing
steps to be included in addition to the above
while processing task-free data: (1) tem-
poral-filtering and (2) de-noising of physi-
ological signal. The former is accomplished
by band-pass filtering to remain confined to
the frequencies of interest (0.01-0.1 Hz).
Successful approaches to denoising appear to
be ANATICOR (Jo et al. 2010) and aCompCor
(Behzadi et al. 2007), both of which remove
non-gray-matter nuisance signals (white mat-
ter, CSF and other locations). Also useful are
median angle shift, based on the geometric
view of the additive global signal (He and Liu
2012), a biophysically-based model called
Functional Image Artifact Correction Heuristic
(FIACH) (Tierney et al. 2016), and removal of
the gray matter global signal (Power et al. 2015;
Satterthwaite et al. 2012; Yan et al. 2013).

5.2.2 Data Analysis: fMRI Task

After data pre-processing, the next step is to
test the research hypothesis H;. experimental
condition # control condition, against its null
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hypothesis Hy: experimental condition = control
condition. The General Linear Model (GLM)
analysis is commonly used to test how well the
experimentally collected data lines up with pre-
dicted responses (Friston et al. 1995). Statistical
testing that follows estimate how well each vox-
el’s time series is fit by the linear combination of
predicted responses. The model definition can be
mathematically represented as:

Ynm = Xnk : Bkm + Nnm

k

Y can be considered as a collection of depen-
dent variables, in this case the different time-
points across a scan in the fMRI experiment
(observed data). X, the collection of predicted
task responses (modeled effects) is scaled by
parameter weights B, which are estimated by

Y X

Effects

Subjects
Subjects

ConditiE)hs/Sources

the linear model to best fit the observed data
Y. N represents the residual values—difference
between observed values (Y) and fitted values
(X%xB), and is ideally as small as possible. For
hypothesis testing, -, or F-statistics is employed
to assess the significance of each model factor’s
contribution to Y (Friston et al. 1995; Worsley
and Friston 1995). A likelihood ratio (ratio
between likelihood of Y given a reduced “null-
hypothesis” model compared to the likelihood of
Y given the full model X) test is carried out to
derive associated p-values. A schematic is pre-
sented in Fig. 5.1.

If p-value is smaller than a user defined sig-
nificance level a, the null hypothesis is rejected
and the voxel is labeled as ‘active’. It is of utmost
importance to account for multiple-comparisons
in fMRI because a standard analysis involving

noise

B
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One value for each subject
(rows) and each measure
(columns)
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Fig. 5.1 The general linear model: definition, estimation and hypothesis testing
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whole-brain 2 mm voxels have about 250,000
voxels. Under the null hypothesis, with o = 0.05,
~12,500 voxels may be falsely considered as
‘active’ by random chance. This reduces to
250 voxels, when o = 0.001 (for recommenda-
tions on acceptable statistical thresholds see
(Eklund et al. 2016)). There are two widely used
practices to address such false-positives errors
multiple-comparisons (1) Family-wise Error
(FWE) correction, (Nichols and Hayasaka 2003)
and (2) False Discovery Rate (FDR) correction,
(Genovese et al. 2002).

5.2.3 Task-Based Connectivity/
Effective Connectivity

While functional connectivity analysis captures
whether signals from ROIs are correlated over
time, it provides no information on the causal-
ity. To capture notions of causality among time
series, effective connectivity analysis can be car-
ried out. Two time signals are causally related
if a change in one signal causes a change in
the other. Causality can be captured purely in
a statistical context, commonly studied based
on Granger Causality, or based on assumptions
of an underlying model, most commonly stud-
ied through Dynamic Causal Modeling (DCM,
Friston et al. 2003; Friston et al. 2013). Dynamic
Causal Modeling in its most basic form assumes
that hidden neuronal states influence each other
in a linear fashion, which is dependent on the task
being performed by the patient as well as exter-
nal inputs (Friston et al. 2003). While the original
formulation is task dependent, DCM can also be
used for resting state data by treating the under-
lying neuronal system as driven by noise (Razi
et al. 2017). The primary limitation of DCM is
the relatively small number of ROI’s that it can
capture for a given model (Stephan et al. 2010),
though new techniques have extended the size of
DCMs to dozens of ROIs (Razi et al. 2017).
Generalized Psycho-Physiological Interaction
(gPPI): gPPI measures represent the level of task-
modulated effective connectivity between two ROIs
(i.e. changes in functional association strength
covarying with the external or experimental factor).

gPPI is computed using a separate multiple regres-
sion model for each target ROI timeseries (out-
come). Each model includes as predictors: (a) all of
the selected task effects convolved with a canonical
hemodynamic response function (main psychologi-
cal factor in PPI nomenclature); (b) each seed ROI
BOLD timeseries (main physiological factor in PPI
nomenclature); and (c) the interaction term speci-
fied as the product of (a) and (b) (PPI term). gPPI
output is defined as the regression coefficients asso-
ciated with the interaction term in these model.

5.2.4 Resting State Functional
Connectivity Analyses

5.2.4.1 Seed-to-Voxel Analyses

Seed-based correlation (SBC) maps represent
the level of functional connectivity between the
seed/ROI and every location in the brain. SBC
is defined as the Fisher-transformed bivariate
correlation coefficients between an ROI BOLD
timeseries (averaged across all voxels within an
ROI) and an individual voxel BOLD timeseries.
The default behavior for functional connectivity
analyses is to use a weighted GLM for weighted
regression/correlation measures of the condition-
specific association between the seed/source
BOLD timeseries and each voxel or target ROI
BOLD timeseries. In addition to the standard
bivariate correlation measure for functional con-
nectivity analyses, one may also select regression
measures, as well as define whether one wants
to compute bivariate measures—analyzing indi-
vidual seed/sources separately-, or semipartial/
multivariate—where all of the sources/ROls are
entered jointly into the GLM to estimate their
unique contributions.

5.2.4.2 ROI-to-ROI Analyses

While whole-brain connectome analysis allow
looking at the entire network of functional con-
nectivity, and for effects beyond specific subset of
a priori seeds/ROIs, controlling family-wise false
positive level on this many connections (connec-
tions on the order of 30 billion at 2 mm isotropic)
leads to extremely poor sensitivity. One solution
is to perform ROI-to-ROI analysis by looking at
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larger parcellations of the brain volume such as
Brodmann areas (86 ROIs; 3655 connections),
AAL atlas (116 ROIs; 6670 connections) Large-
voxel parcellations (20—-10 mm voxels; 304-2186
ROIs; 46,056-2,388,205 connections).

ROI-to-ROI Correlation (RRC) matrices
represent the level of functional connectivity
between each pair of ROIs. RRC is defined as
the Fisher-transformed bivariate correlation coef-
ficients between two ROIs (Regions Of Interest)
BOLD timeseries (ROI BOLD timeseries are
computed by averaging voxel timeseries across
all voxels within each ROI). Results emerging
from such analyses can be reported using cluster-
ing algorithm that sorts ROIs so that two ROIs
are placed nearby if they show similar effects.
For example, hierarchical clustering (ROIs that
show similar connectivity effects are contigu-
ous/near), minimum degree algorithm (ROIs
that are in same sub network are contiguous),
or reverse Cuthill-McKee algorithm (mini-
mize connection lengths) could be employed
to group ROIs resulting in meaningful clusters.
Inferences could then be made at the connection-
level (specific connections between two ROIs
e.g. Connectivity between MPFC and PCC is
stronger in X compared to controls), seed-level
(pattern of connectivity of specific ROIs (not
individual connections) e.g. altered MPFC func-
tional connectivity in X compared to controls),
or network-level (networks of connected ROIs
(not individual ROIs, or individual connections)
e.g. Altered functional connectivity network in X
compared to controls).

5.2.4.3 Graph Analyses

Functional correlations between all ROIs in
the brain can be treated as a network, or func-
tional connectome (Sporns 2010). The study
of how network structure affects behavior over
that network is commonly referred to as the
study of complex networks or network science,
(Barabasi 2016; Newman 2018), which is based
on graph theoretic analysis (Diestel 2018). As
it is possible to find a correlation coefficient
between the time signals of all ROIs, the anal-
ysis of a functional connectome begins with
thresholding, which removes edges (which

here represent correlations between ROIs) that
have a value less than the given threshold. Once
the network is thresholded, then it can be ana-
lyzed based on a number of measures. These
include degree and cost (the number (degree)
or proportion (cost) of other ROIs that a given
ROI has a strong correlation with), clustering
coefficient (whether ROIs share neighbors),
efficiency (whether information can move effi-
ciently through the network) and average path
distance (how many steps it takes between
ROIs on average) (Sporns 2010). Definitions of
each of these are given below:

Degree and Cost: Number (degree) or pro-
portion (cost) of edges for each node. Degree and
Cost represent both measures of network central-
ity at each node/ROI, characterizing the degree
of local connectedness of each ROI within the
graph. Network cost represents the proportion
of edges among all possible node pairs, and this
is typically fixed to allow meaningful between-
network comparisons.

Clustering Coefficient: Fraction of edges
among all possible edges in the local neighboring
sub-graph for each node/ROI. Clustering coef-
ficient represents a measure of local integration,
characterizing the degree of inter-connectedness
among all nodes within a node neighboring sub-
graph. Network clustering coefficient represents a
measure of network locality (e.g. grid topologies
have comparatively high clustering coefficients).

Global Efficiency: average of inverse-
distances between each node and all other nodes
in the graph. Global efficiency represents a mea-
sure of node centrality within a network, char-
acterizing the degree of global connectedness
of each ROI within the graph. Network global
efficiency represents a measure of graph inter-
connectedness/radius (e.g. random graphs have
comparatively high/compact global efficiency).

Local Efficiency: Global efficiency of neigh-
boring sub-graph. Local efficiency represents a
measure of local integration, characterizing the
degree of inter-connectedness among all nodes
within a node neighboring sub-graph. Network
local efficiency represents a measure of network
locality (e.g. grid topologies have comparatively
high local efficiency).
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Average path distance: Average minimum
path distance between each node and all other
nodes in the graph. Average path distance rep-
resents a measure of node centrality within a
network, characterizing the degree of global
connectedness of each ROI within the graph.
Network average path distance represents a mea-
sure of graph inter-connectedness/radius (e.g.
random graphs have comparatively low/compact
average path distances).

It is also common to compare brain graphs to
canonical random graph models, such as Erdos-
Renyi graphs (Erdos and Rényi 1960), scale free
networks (Barabasi and Albert 1999), and small
world networks (Watts and Strogatz 1998). Past
results have found that functional connectomes
tend to have short average path length and high
clustering, a characteristic of small world net-
works, as well as having hubs with large degree
(Bullmore and Sporns 2012).

(5=, (10, (3) 0, (x)
P, (%).0, (xy)|min 25, (xy)
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5.2.4.4 Multi-voxel Pattern Analysis
(MVPA)

These analyses are a type of voxel-to-voxel
analyses that create, separately for each voxel, a
low-dimensional multivariate representation char-
acterizing the connectivity pattern between this
voxel and the rest of the brain (this representation
is defined by performing separately for each voxel
a Principal Component Analysis (PCA) of the
variability in connectivity patterns between this
voxel and the rest of the brain across all subjects
and conditions). The resulting representation opti-
mally characterizes the observed connectivity pat-
terns across subjects/conditions, and it allows for
the investigation of connectivity differences across
subjects directly using second-level multivariate
analyses. MVPA maps are defined using Singular
Value Decomposition, separately for each seed-
voxel, of the patterns of seed-based correlations
across all subjects (see equations below).

r, (x,y) : correlation coefficients between voxelsx and y for the n-th subject

0, (x,y) : group-level i-th orthogonal Principal Component spatial map for seed-

voxel x, normalized to unit norm

p,.; (x):i" Multivariate Connectivity spatial map for seed-voxel x and n" subject

For dimensionality reduction, group-MVPA
estimates a multivariate representation of the
connectivity pattern by computing the pairwise
connectivity pattern between each voxel and the
rest of the brain, and using PCA to characterize
those patterns using a small number of com-
ponents in a two-step process. In the first PCA
step, separately for each subject, 64 PCA com-
ponents are retained while characterizing each
subject voxel-to-voxel correlation structure. This
is a form of subject-level dimensionality reduc-
tion typically used in independent component
analysis (ICA) applications. In the second PCA
step, jointly across all subjects but separately for
each voxel, the three strongest components were

retained from a principal component decomposi-
tion of the between-subjects variability in seed-
to-voxel connectivity maps between this voxel
and the rest of the brain. An F-test was performed
on all three MVPA components (that explain the
maximum inter-subject variability) simultane-
ously in a single second-level analysis to iden-
tify the voxels that show significant differences
in connectivity patterns between the two groups.
This is an omnibus test (equivalent to seed-level
F-test in ROI-to-ROI analyses) to identify the
abstract multivariate representation.

group-ICA: ICA maps represent a measure of
different networks expression and connectivity at
each voxel, characterized by the strength and sign
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of connectivity between a given network time-
series and the rest of the brain. It is defined as
the multivariate regression coefficients between
each component/network timeseries and an indi-
vidual voxel BOLD timeseries. These analyses
identify a number of networks of highly func-
tionally-connected areas (Calhoun et al. 2001),
with variance normalization pre-conditioning,
optional subject-level dimensionality reduction,
subject/condition concatenation of BOLD sig-
nal data along temporal dimension, group-level
dimensionality reduction (to the target number of
dimensions/components), fastiCA for estimation
of independent spatial components, and GICA1
backprojection for individual subject-level spa-
tial map estimation.

group-PCA: These analyses are identical to
group-ICA above, but skipping the fastICA reori-
entation of group-level components and using
instead the maximal-variance spatial components
determined by the group-level dimensionality
reduction step. All other steps, including backpro-
jection, are performed identically to group-ICA.

Intrinsic Connectivity (Intrinsic Connectivity
Contrast, ICC, Martuzzi et al. 2011) is a mea-
sure of network centrality at each voxel. It char-
acterizes the strength of the connectivity pattern
between each voxel and the rest of the brain (root
mean square of the correlation coefficient values).

Global Correlation is another measure of
network centrality at each voxel. It character-
izes the strength and sign of the connectivity pat-
tern between each voxel and the rest of the brain
(average of the correlation coefficient values).

Local Correlation (Integrated Local
Correlation, ILC, Deshpande et al. 2009) is a
measure of local coherence at each voxel. It
characterizes the average correlation between
each voxel and its neighbors. Neighbourhood
is defined as a probabilistic region (isotropic
Gaussian with user-defined width).

Radial Correlation Contrast (RCC,
Goelman 2004) characterizes the spatial asym-
metry of the local connectivity pattern between
each voxel and its neighbors (a 3d vector for each
voxel).

Radial Similarity characterizes the global
similarity (Kim et al. 2010) between the connec-

tivity patterns of neighboring voxels (a 3d vector
for each voxel).

5.2.4.5 Dynamic Connectivity

Measures
Dynamic connectivity analyses explore dynamic
properties (temporal modulation) of the ROI-to-
ROI connectivity matrix identifying a number of
circuits of similarly-modulated connections.

Sliding window: Every connectivity mea-
sure in CONN, including seed-based, ROI-to-
ROI, network and graph measures, can also be
estimated from windowed BOLD timeseries
using a series of sequential sliding windows.
Each individual window is treated as a separate
condition, and weighted GLM is used to com-
pute the corresponding condition-/time-specific
measures. Variability of these measures across
time is then computed as the main measure
of interest characterizing dynamic connectiv-
ity properties. One example of such sliding-
window measures of connectivity is dynamic
variability in seed-based or ROI-to-ROI con-
nectivity measures:

Dynamic variability in seed-based con-
nectivity (dvSBC): dvSBC maps represent the
degree of temporal variability in functional con-
nectivity between a seed/ROI and every location
in the brain. They are defined as the standard
deviation in bivariate, multivariate, or semipar-
tial correlation or regression measures between
seed ROI and each target voxel, computed using
weighted Least Squares (WLS) within a discrete
set of temporal sliding windows.

Dynamic variability in ROI-to-ROI con-
nectivity (dvRRC): dvRRC matrices rep-
resent the degree of temporal variability in
functional connectivity between pairs of ROIs.
They are defined as the standard deviation in
bivariate, multivariate, or semipartial corre-
lation or regression measures between two
ROIs, computed using weighted Least Squares
(WLS) within a discrete set of temporal sliding
windows.

Dynamic Independent Component
Analyses (dyn-ICA): ROI-to-ROI connectivity
matrix identifying a number of circuits of simi-
larly-modulated connections. Dynamic ICA per-
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forms an Independent Component Analysis of the
connectivity timeseries (strength of connectivity
between each pair of ROIs at any given time-
point), returning a number of independent com-
ponents/circuits best characterizing the observed
functional connectivity modulation across time.
Dyn-ICA matrices represent a measure of dif-
ferent modulatory circuits expression and rate of
connectivity change between each pair of ROIs,
characterized by the strength and sign of con-
nectivity changes covarying with a given com-
ponent/circuit timeseries. Dyn-ICA matrices are
defined as the gPPI interaction terms between
each component/circuit timeseries (data-driven
gPPI psychologial factors) and a series of ROI
BOLD timeseries (user-defined gPPI physiologi-
cal factors).

An overview of the resting state functional
connectivity analysis is summarized in Fig. 5.2.

Prepares data
(realignment,
unworp? field-map
correct? slice-timing

correction?
coregistration/
indirect
normalization/direct Removes
normalization? physiological,
outlier identification, artifacts, residual
smoothing) subject movement
effects
Functional ,
& Structural =—» Preprocess Denoise
data
Experiment
design
ROIs

5.2.5 Quality Assurance, Artifact
Detection and Rejection

Although motion correction is a routine step in
fMRI preprocessing, there still exists consider-
able residual motion-related variance in the time
series (Friston et al. 1996). The sources of this
variance may arise from: (1) interactions between
movement, susceptibility and distortion; (2) inter-
actions between movement, susceptibility and
signal dropout; (3) spin history effects (residual
magnetization effects of previous scans); and (4)
intra-volume movement. One accepted approach
to mitigating the effect of this residual motion-
related variance is to include motion parameter
estimates as nuisance regressors in the single-
subject GLM analyses (Friston et al. 1996). This
approach assumes a linear effect between the
amount of subject motion and the fMRI signal,

Seed-based
connectivity

ROI-to-ROI

Hypothesis testing
population-level
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analyses
2nd-Jevel
ICC analyses
LCOR
GCOR second-level
ALFF Results
Task-based
gPPI
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Component
Analyses
first-level
Analyses
Dynamic Computes connectivity measures
connectivity

Fig. 5.2 Overview of resting state functional connectivity analysis. QA Quality Assurance
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which can be expected to offer an acceptable
approximation for small levels of motion. Many
fMRI studies drop subjects or sessions where
the estimated subject motion exceeds a given
threshold, under the implicit understanding that
this approximation fails in the presence of exces-
sive subject motion. While the approach of drop-
ping sessions and/or subjects due to excessive
motion is perfectly valid, an alternative method
of omitting, de-weighting or interpolating the
time points with excessive motion may be a more
appropriate, timely and cost-effective approach
towards quality assurance in fMRI. We recom-
mend omitting session specific outliers in the
global mean intensity signal and motion, for the
reasons outlined below.

While noise is inherent to any measurement
process and it is often either explicitly (e.g.
motion regression, temporal autocorrelation) or
implicitly (e.g. restricted maximum likelihood
(ReML) estimation) addressed in standard fMRI
analyses, artifactual sources of variability can
often also result in isolated outliers in the mea-
sured fMRI time series. Individual outliers, or
observations that lie outside the overall pattern
of a distribution (Moore and McCabe 1999), can
have, by their nature, considerable influence in
both parameter estimation and statistical infer-
ence. The presence of outliers can increase the
likelihood of Type II errors (decreasing sensitiv-
ity) as well as Type I errors (affecting the validity
of the analyses). Some analysis techniques (e.g.
functional connectivity analyses) are particularly
sensitive to some of the most deleterious effects
of outliers, where they can act as confounds
affecting both the validity and the interpretability
of the fMRI analysis results.

The importance of rigorous artifact detection/
rejection and quality assurance has long been
noted in the field of Electroencephalography
(EEG), in which artifacts are often orders of mag-
nitude larger than the Event-Related Potential
(Thompson et al. 2014) signal researchers are
attempting to measure. A number of leading ERP
experts emphasized the critical role of quality
assurance in a paper entitled “Guidelines for using
human event-related potentials to study cogni-
tion: Recording standards and publication crite-

ria” (Picton et al. 2000). We, and others (Ashby
2011; Luo and Nichols 2003), propose that a
similar level of quality assurance (QA) scrutiny
is beneficial in fMRI data and analyses. Similar
to EEG, fMRI suffers from low SNR. Despite
prior work that highlights the importance of
QA in fMRI tasks and the availability of tools
(e.g., statistical parametric mapping diagnosis
(SPMd); (Luo and Nichols 2003)), such methods
are not routinely implemented by the imaging
community.

It has been demonstrated that motion
(Satterthwaite et al. 2012; Van Dijk et al. 2012)
and artifacts (Yan et al. 2013) in resting state
functional time series may result in substantial
and structured changes in functional connectivity
data despite standard compensatory spatial regis-
tration and regression of motion estimates from
the data (Power et al. 2012). In addition to motion
related artifact in the global intensity time series,
there may be artifacts due to other sources related
to the scanner. These findings suggest that rigor-
ous artifact rejection in addition to motion regres-
sion is especially prudent for valid interpretation
of resting state fMRI (rs-fMRI).

Artifacts in imaging data due to subject
motion or scanner problems present a great con-
cern for statistical analysis. Data quality assur-
ance is of paramount importance to the validity
of results (Ardekani et al. 2001; Grootoonk et al.
2000; Morgan et al. 2001; Stocker et al. 2005;
Ward et al. 2000). Several studies that have
been published appeared before attributing head
movement for the introduction of spurious cor-
relations, especially in older adults compared to
younger adults (Power et al. 2012; Van Dijk et al.
2012). In addition, global signal regression was
found to artificially introduce anti-correlations
(Murphy et al. 2009) and to alter inter-regional
correlations (Saad et al. 2012), leaving open
the question of the direction (positive, negative
or both) of the correlations. The use of Artifact
Detection Tools; ART [http://www.nitrc.org/
projects/artifact_detect] (that is not based on
global signal regression) increases the validity
of the analysis, preventing false results without
obscuring meaningful anti-correlations (Keller
et al. 2015). Importantly, using ART allows one
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to investigate anti-correlations (Fox et al. 2009;
Weissenbacher et al. 2009), as no global signal
regression is performed (Chai et al. 2012).

5.2.6 Quality Assurance for fMRI
Task

Quantifying Stimulus Correlated Motion (SCM),
the degree of stimulus-correlated motion based
on the task onsets and motion parameters may be
useful when deciding on whether or not to include
motion parameters as nuisance regressors in the
first level GLM. Including parameters as covari-
ates can increase sensitivity, especially in event
related designs. However, if the motion parameters
are correlated with the task conditions, including
the parameters as covariates could eliminate task
activation because one regresses out the variance
associated with the task. It has been shown that a
modest degree of SCM (e.g. r =0.2) may result in
a significant decrease in spatial extent and T sta-
tistics (Johnstone et al. 2006). The SCM is also
critical to evaluate between group comparisons
regardless of whether or not motion parameters
are included in the first level GLM. There may
be artifactual between group differences that are
merely between group differences in SCM. For
example, persons with schizophrenia have been
shown to have more SCM than typical partici-
pants (Bullmore et al. 1999). One possible solu-
tion to this problem would be to invoke a second
level ANCOVA, where the amount of SCM for
each subject is entered as a nuisance regressor.
Another solution would be to match groups based
on the degree of SCM. Either solution requires
assessing the degree of SCM per subject and
between groups.

5.2.7 Quality Assurance for Resting-
State fMRI

In the context of resting-state fMRI, the impor-
tance of data quality assurance and the necessity
to account for motion and other artifacts is rec-

ognized in the field (Power et al. 2015). There
is, however, less agreement on the methods to
adequately deal with artifacts, including ways
of ensuring quality control and excluding con-
taminated trials. Among the available post-hoc
correction options, several methods have been
suggested to detect nuisance signals, including
the realignment estimates and non-gray-matter
and gray matter ‘scrubbing’/‘censoring’, i.e.
removing motion-contaminated time points and
concatenating unaffected volumes. For a detailed
discussion of the various methods for dealing
with motion artifacts, see the review by Power
(Power et al. 2015). Note, however that most of
the available correction methods are optimized
for resting state data analysis, while rigorous
artifact detection is currently not routinely imple-
mented for task related data.

In short, regressing six rigid body realign-
ment parameters has been implemented as
a standard in most imaging analysis work-
flows but recently has been shown to not fully
remove motion artifacts (Power et al. 2012;
Satterthwaite et al. 2012; Van Dijk et al. 2012).
Further expanding the realignment estimates to
include the adjacent 2 or 3 time points to remove
spin-history related aspects (Friston et al. 1996)
of motion-related artifacts has been shown to be
insufficient for artifact removal with the addi-
tional consequence that expanding the number
of motion regressors up to 36 (when 3 time
points are included) results in a loss of degrees
of freedom. Although deleting preceding and
subsequent time points around an artifact is
implemented in the commonly used ‘scrubbing’
method (Power et al. 2015). Alternative and
complementary approaches to artifact detec-
tion in the past included using Independent
Component Analysis (ICA) (Mowinckel et al.
2012; Pruim et al. 2015; Tyszka et al. 2014; Xu
et al. 2014) or wavelet despiking (Patel et al.
2014) to identify motion-sensitive variance in
the signal. In addition to these methods, removal
of individual artifactual time points has been
recommended based on the measures of relative
displacement of the head, i.e. from one volume
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of data to the next volume, often called frame-
wise displacement (FD) (Jenkinson et al. 2002;
Power et al. 2012; Van Dijk et al. 2012). FD is
also recommended as a covariate for group com-
parisons. However, these approaches have not
proven to remove motion artifacts completely
either (Power et al. 2015).

The most effective way of removing motion
contamination as suggested by Power and col-
leagues (2015) is global signal regression in com-
bination with scrubbing, in addition to using the
differences in FD values as covariates in group
analyses (e.g. ANCOVA). This recommended
method provides adequate removal of artifacts
and as such is a reliable way of performing rest-
ing state data analysis. The specifics of data cen-
soring (or time point deletion) implementation
(i.e. scrubbing) have been criticized for several
reasons. First, removing time points results in
the loss of frequency information due to discon-
tinuous data and also introduces concerns about
the degrees of freedom. While both of these
limitations can be addressed e.g., via the single-
time point regression rather than deletion of time
points (Power et al. 2015), the main denoising
step, i.e., global signal regression, presupposes
the removal of the global signal which has been
shown to artificially introduce anticorrelations in
the data. This limits the possibility of meaning-
fully interpreting anticorrelations (Murphy et al.
2009) and should not be used when studying rs-
fMRI because it biases correlations differently
in different regions depending on the underlying
true inter-regional correlation structure (Saad
et al. 2012).

5.3  Advanced Topics

5.3.1 Realtime-fMRI Neurofeedback

Previous studies have reported the benefits of
realtime-fMRI  (rt-fMRI) neurofeedback in
chronic pain syndrome (deCharms et al. 2005)
and chronic tinnitus (Haller et al. 2010).In the
context of schizophrenia where aberrations in the

default mode network are involved (for review
see Whitfield-Gabrieli and Ford 2012), neuro-
feedback may provide a cognitive intervention
that might be used to augment current treatment
programs. By explicitly giving feedback by the
online monitoring of brain states while perform-
ing “mental noting” (Fig. 5.3), the participant
can attempt to regulate the connectivity based
on meditation excercises such as noting practice
(effortless awareness). One simply “notes” what
is more predominant in the current experience
from moment to moment and based on the neuro-
feedback they are receiving, the individual learns
to adjust or diminish ruminating thoughts.

5.3.2 Simultaneous EEG/fMRI

A strength of fMRI is the spatial localization
of activation, which identifies functional neuro-
anatomy, but a limitation of fMRI is that it has
low temporal resolution. EEG has the high tem-
poral resolution (see Chaps. 13 and 14 for more
details), but because the scalp EEG signal reflects
activity in a multitude of brain areas, an EEG
signature of brain networks may best be identi-
fied through simultaneous EEG/fMRI recording.
There has been substantial progress in overcom-
ing the technical problems of simultaneous EEG/
fMRI, so progress can be made in measuring the
neural dynamics underlying the brain’s sponta-
neous rhythmic activity (Ford et al. 2016). The
infraslow (<0.1 Hz) EEG rhythms (e.g., direct
current potentials) are most likely to correlate
with slowly changing DMN-spontaneous BOLD
fluctuations, but they are not often recorded due
to technical issues related to amplifiers and arti-
facts (Khader et al. 2008). Other EEG frequen-
cies, however, may also provide insight into the
more rapidly changing neural activity.

5.3.3 Towards Clinical Translation

Neuroimaging has greatly enhanced the cognitive
neuroscience understanding of the human brain
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Fig. 5.3 Schematic of a realtime-fMRI (rt-fMRI) neuro-
feedback system. (A) Baseline resting state (RS-pre) scan.
(B) Functional Localization of the default mode network
(DMN) and the central executive network (CEN). (C)
rt-fMRI feedback process showing the online monitoring
of brain states while performing “mental noting”. If

and its variation across individuals in both health
and disease. Neuromarkers often provide better
predictions alone or in combination with other
measures, than traditional behavioral measures.
With further advances in study designs and analy-
ses, neuromarkers may offer opportunities to per-
sonalize educational and clinical practices that lead

rt-fMRI analysis resulted in a Positive Diametric Activity
(PDA) score (red shadowing) the central white dot of the
feedback display moved in the upper direction and
towards the red circle. The contrary was the case when a
negative PDA score was triggered (blue shadowing). (D)
Post rt-fMRI resting state

to better outcomes for people. Regardless of the
neuropsychiatric condition that is under investiga-
tion, prediction, early detection and novel interven-
tions are the three major pathways to accomplish
clinical translation. The term prediction can refer
to: (1) a correlation between two contemporane-
ous values, (2) the correlation of one variable in
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Fig. 5.4 Three stages of predictive model identification.
(1) Discovery phase. Explore and evaluate associations
between baseline neuromarkers and behavioral outcomes.
(2) Cross-validation phase. A cross-validation routine is
used to separate data into training and test sets. The model
is built using training data and tested on out-of-sample test

a group at an initial time-point to another vari-
able in the same group at a future time-point (an
in-sample correlation) or (3) a generalizable model
that applies to out-of-sample individuals. Research
geared towards clinical translation can be concep-
tualized as comprising three stages beginning with
within-sample correlations to discover relations
of interest, progressing to predictive analyses in
which predictions for individuals are derived from
data from other in-sample individuals, and culmi-

data. Upon successful evaluation of the performance of
the model and features, all data are used to build a
prediction model. (3) Generalization phase. A prediction
model built via cross-validation is applied to a new data
set. The new data are then used to update the model.
[From Gabrieli et al. (2015)]

nating in predictive analyses using machine learn-
ing approaches in which a model from one sample
is used to predict outcomes in an independent sam-
ple (Gabrieli et al. 2015). Each stage requires more
participants, so that prior stages may justify larger-
scale studies. This approach could be extremely
useful in the context of schizophrenia where large-
scale longitudinal studies may be suitable for gaug-
ing disease mechanism, progression, and prognosis
(Birur et al. 2017) (Fig. 5.4).
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Fig. 5.5 Predictive analytics in mental health is moving
from the description of patients (hindsight) and the
investigation of statistical group differences or associations
(insight) toward models capable of predicting current or
future characteristics for individual patients (foresight),
thereby allowing for a direct assessment of a model’s
clinical utility. [From Hahn et al. (2017)]
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In contrast to the vast majority of investiga-
tions employing group-level statistics, predictive
analytics aims to build models which allow for
individual (that is, single subject) predictions,
thereby moving from the description of patients
(hindsight) and the investigation of statistical
group differences or associations (insight) toward
models capable of predicting current or future
characteristics for individual patients (‘fore-
sight’), thus allowing for a direct assessment of
a model’s clinical utility (Fig. 5.5) (Hahn et al.
2017). Key concepts in predicting individual
differences in behavior from brain features is
illustrated in Fig. 5.6 (Rosenberg et al. 2018). A
specific example of how functional changes in
brain network organization predicts the onset of
psychosis in a clinically high risk-group is pro-
vided in Fig. 5.7 (Collin et al. 2018).
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Fig.5.6 Schema of key concepts in predicting individual
differences in behavior from brain features. (a) Feature
selection. Feature selection techniques: hypothesis-driven
(top-down) and data-driven (bottom up) approaches. (b)
Model building. Machine-learning algorithms can be used
to predict categorical measures, such as clinical diagnoses,
or dimensional measures, such as task performance or
symptom severity. Here, the dark blue line shows the
relationship between a single hypothetical brain feature
and a behavioral score. The light blue line illustrates a
classifier that divides individuals into categories based on

this brain feature. (¢) Model validation. Predictive models
are evaluated on previously unseen data—either left-out
individuals from the initial data set (internal validation) or
individuals from a completely new sample (external
validation). (d) Prediction evaluation. Continuous
predictions (bottom and left axes) are evaluated by
comparing observed and predicted behavioral measures.
Categorical predictions (top and right axes) are evaluated
with percent correct; binary predictions can be assessed
with sensitivity and specificity and/or positive and
negative predictive value. [From Rosenberg et al. (2018)]
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Fig. 5.7 Modular organization of the functional connec-
tome. (a) Modular partitions of group-networks, plotted
on cortical surface from superior, lateral, medial, and infe-
rior angle, and subcortical structures (top to bottom row
respectively). Colors indicate separate modules, with the
prefrontal central-executive (CE) module in dark blue, the
central sensorimotor (SM) module in green, the posterior
visual (VIS) module in red, the (para)limbic (LIM) mod-

5.4 Conclusions

In this chapter, we reviewed task and resting-state
functional MRI data acquisition methods, vari-
ous data processing strategies with an emphasis
on data quality assurance, and suggested some
advanced topics that may aid clinical transla-
tion. Future studies taking a multi-dimensional
approach may improve and complement the
behavioral characterization of schizophrenia, and
may improve diagnosis, prognosis, and prediction.

Summary

e The primary goal of this chapter was to
acquaint the neuroimaging community
with the fMRI signal, experimental
design and data acquisition methods.
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ule in orange, the medial default mode (DM) module in
light blue, and the cingulo-opercular (CO) module in yel-
low. (b) Degree of similarity to average healthy network
(SR) for individual subjects. Jittered data are plotted for
each group, with mean (sd) [95% CI] values represented
by the box behind the raw data. = indicates significant
group-difference. [From Collin et al. (2018)]

e We have discussed data processing
strategies for task-based and resting-
state fMRI with an emphasis on data
quality assurance, demonstrating exam-
ples of its utility in increasing data
validity and sensitivity.

e Further advances in study designs and
predictive analyses using machine-
learning approaches may offer opportu-
nities to personalize educational and
clinical practices that lead to better out-
comes for people.

e Realtime-fMRI neurofeedback is pro-
vided as an example for a behavioral
intervention that might be used to aug-
ment current treatment programs for
schizophrenia.
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6.1 Introduction rest of medicine, including neurology. That

The construction of DSM-V and the process of
assembling the NIH Research Domain Criteria
(RDoC) have opened up a number of use-
ful debates in psychiatry. Some of the issues
raised include reminders that psychiatry lacks
valid diagnostic tests for the majority of its
diagnostic entities, in contrast to most of the
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restricts us to clinical phenomenology and ill-
ness course with which to define the majority
of our disorders, including schizophrenia. For
major psychiatric illnesses in general we are
still startlingly ignorant with regard to etiol-
ogy, and treatments overlap across diagnoses, as
unfortunately do clinical symptoms, risk genes
and familial co-occurrence of illnesses. What
psychiatrists would like more than anything
would be a straightforward biological test that
would provide for an individual patient, rather
than a group of them, an accurate diagnosis, a
prediction of optimal medication response and a
prognosis. Since major psychiatric disorders are
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conditions of the brain and involve disordered
function, then functional MRI abnormalities
would seem suitable candidates for such biolog-
ical tests. Unfortunately, thus far they are not.
An assumption in the neuroimaging com-
munity is that psychotic illnesses in general are
disorders of distributed brain circuits. There is
certainly little evidence to suggest that functional
abnormalities in one particular brain region cor-
respond to any psychiatric syndrome, including
schizophrenia. Therefore our focus has been
on measures of functional brain connectivity,
whether these assess measures from region-to-
region within defined neural circuits, across cir-
cuits, or how connectivity varies within or across
circuits as a function of time. Since Friston’s
initial 1995 review (Friston and Frith 1995) a
leading hypothesis has been that schizophrenia is
fundamentally a disorder of abnormal brain con-
nectivity, although what constitutes such “dys-
connectivity” or how best to operationalize it are
seldom discussed in detail. Some recent papers
have probed the concept in more detail (e.g.,
Scariati et al. 2016). Models of schizophrenia
risk hypothesize that abnormal brain connections
are determined by schizophrenia risk genes that
build deviant brain micro circuitry, in turn under-
pinned by abnormal cell-to-cell communica-
tion, perhaps via unbalanced neurotransmitters.
However these presumed precursors and their
relationship to what is actually measured inside
a functional MRI experiment is not clear. Some
of these issues are beginning to be explored, for
example by examining consequences of neural
pharmacologic probe experiments by computa-
tional modeling techniques (Stephan et al. 2015)
or by groups using theoretically-derived predic-
tions about functional MRI patterns derived from
computational modeling (Anticevic et al. 2015).
Let us begin with a broad, big picture view of
a series of caveats and under-addressed issues
in the field. One major problem is that currently
“schizophrenia” is defined only by symptoms and
illness outcome but its underlying pathophysiology
is unknown. First, this diagnostic reliability in the
absence of valid biological criteria makes it very
likely that this is a very heterogeneous syndrome,
not meeting criteria for a disease and thus akin to
other broad syndrome entities such as congestive

cardiac failure or fever. This state of affairs is indeed
suggested by recent structural imaging studies
(Wolfers et al. 2018). Second, just as for the known
significant overlap of familial co-occurrence, risk
genes, treatment response and symptomatology
between schizophrenia, bipolar disorder, schizo-
affective disorder and autism spectrum cases, it is
important to establish the specificity of functional
MRI findings seen in schizophrenia, to determine
whether or not there is significant overlap among
these syndromes. For example, findings in multiple
domains resulting from the Bipolar-Schizophrenia
Network on Intermediate Phenotypes (BSNIP)
(Tamminga et al. 2017) have cast considerable
doubt on the exclusivity of functional MRI and
other biological abnormalities in schizophrenia
relative to other psychotic disorders (Khadka et al.
2013; Meda et al. 2014). Also broadly unresolved
is whether fMRI findings reported in schizophrenia
are primarily state-or trait-related, and when they
begin relative to overt illness onset versus for exam-
ple the prodrome or the ultra-high risk state. This
latter question is addressed later in the concluding
section.

Many functional MRI investigations of
schizophrenia have been straightforward com-
parisons between patients diagnosed with
schizophrenia and healthy controls. While some
such studies have been primarily motivated by
hypotheses such as dysconnection or neurode-
velopmental models, the majority have not. If
there are indeed “dysconnections,” i.e. abnormal
connections within and between brain circuits,
an important issue is when these first manifest.
For example, are they identifiable in some form
at birth in high-risk cohorts, and if so can we
relate their presence to that of aberrant genes,
altered molecular biology, abnormal develop-
ment/pruning, abnormal structure and diffusion
tensor imaging (DTI) in the same individuals?
Investigations in adults with the disorder that
examined the relationship between polygenic risk
scores for schizophrenia and the presence and
severity of functional MRI abnormalities would
be useful in addressing one of these questions.
Another important issue that could bear greater
examination is whether the fMRI abnormalities
detected in schizophrenia affect all brain circuits
equally or are restricted to certain key networks.
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Other areas deserving of more clarification are
how fMRI changes relate to important clinical
symptoms of the disorder, e.g., typical clinical
symptomatology (e.g., hallucinations or negative
symptoms) versus cognitive or affective abnor-
malities. Thus, while undoubtedly informative,
the majority of fMRI reports often are isolated
from these other areas of inquiry, i.e., they center
on signals in brain systems/distributed circuits
and allied connectivity relationships, but do not
probe further into underlying intrinsic causes,
whether these be genetic, cellular or physi-
ologic. For example, are circuit abnormalities
reflected in function such as compromised syn-
aptic efficiency? The field has just recently been
able to address some of these issues using novel
approaches such as pharmacologic probes allied
with fMRI (Khalili-Mahani et al. 2017; Driesen
et al. 2013). Sometimes the studies are allied
with computational modeling designs (Joules
et al. 2015). Related results suggest that frontal
parietal connectivity may be related to NMDA-
receptor related plasticity (Schmidt et al. 2015)
and the default mode network, strongly influ-
enced by dopaminergic networks.

Another basic question is what constitutes con-
nectivity? Connectivity is most often defined as
activity, which is defined as neuronal firing that
fluctuates on a millisecond scale and in a predict-
able manner that is both temporally and spatially
correlated. In space, identifiable brain regions con-
stitute networks that synchronize independently,
and whose profiles can be distinguished either
locally or dispersed. The key measure in fMRI,
blood oxygen level dependent (BOLD) signal, rep-
resents aspects of both blood flow and metabolism
changes on a scale of seconds, differing tempo-
rally by several orders of magnitude compared to
electrical brain activity, and representing distinctly
different physiologic processes. Fundamental
introductory concepts for fMRI are detailed in a
recent review paper (Pearlson 2017) as well as
in Chap. 5. In general, searches employing fMRI
in schizophrenia have been directed to quantify-
ing connectional relationships among distributed
brain networks. Thus, the focus has been on how
these neural systems “talk to each other” under a
variety of circumstances. The major measurement
approaches include both resting state and task-

related studies, some of which have then examined
network relationships to common symptoms and
other clinical variables.

One difficulty in making straightforward com-
parisons across different studies is due to wide
differences in data analysis approaches. Such
diversity is not just a result of different choices
in analytic strategy, for example seed voxel ver-
sus independent component analysis approaches,
but also a result of fundamental differences in
analytic design choice such as connectomics,
functional connectivity versus functional net-
work connectivity, regional homogeneity, and
dynamic/temporal techniques. It is often hard to
know how reports in one domain relate to those
in another. With these caveats in mind, let us
review resting state versus task-based connectiv-
ity findings in schizophrenia.

6.2  Resting State (RS)
Connectivity Findings

in Schizophrenia

RS is defined operationally as an fMRI time-
series collected in the absence of a task, while
patients are awake and alert. It is believed to
reflect intrinsic neural activity and manifests as
spontaneous, low-frequency bold signal fluctua-
tions that are correlated at a time scale of sec-
onds. These patterns are unceasing and consume
much of the brain’s energy. Although the brain’s
default mode network (DMN) circuitry is most
manifest during these resting conditions, and its
activity diminished proportionately by cogni-
tive tasks, analysis methods such as independent
component analysis reveal that all of the brain’s
intrinsic connectivity networks are active to
some extent and detectable during resting con-
ditions. Such highly reproducible circuits such
as a frontoparietal network mediating cognitive
control or reward system regions come to the
foreground with regard to activity as evoked by
specific cognitive or other tasks with propor-
tionate diminution in DMN signal. The brain is
not truly “at rest” during RS paradigms but in
an unconstrained state of active consciousness.
This has both advantages and disadvantages as
discussed below.
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The usual RS paradigm is to acquire fMRI
timeseries over a 5—-10 min time period, while
the subject remains awake (hopefully with eyes
open to help ensure that they are not asleep),
but cognitively unengaged except for “mind
wandering” or typically looking at an unchang-
ing visual fixation stimulus. Schizophrenia
researchers have favored studies of RS fMRI
functional connectivity because acquisitions
are quick and straightforward and sidestep the
issue of needing to administer cognitive para-
digms in patients who have challenges remain-
ing relatively immobile and comfortable inside
the scanner and whose cognitive issues neces-
sitate careful task design. In addition, analysis
of RS timeseries is relatively uncomplicated.
Typically either independent component analy-
sis or seed voxel analytic designs are favored.
While some investigations have focused pri-
marily on the DMN, others have examined
resting relationships within a broader range of
independent networks (functional connectiv-
ity) or across pairs of such networks. Resting
state network analyses have looked beyond
simple connectivity within or between brain
networks to include such additional measures
as regional homogeneity (ReHo), ampli-
tude of low-frequency fluctuations (ALFF)
and fractional ALFF, and graph theory-based
connectivity and small-world topology mea-
sures. Some recent articles (Ding et al. 2019a;
Mwansisya et al. 2017; Hu et al. 2017) review
these findings in schizophrenia. As summa-
rized comprehensively by Hu et al. (2017), the
most frequently reported finding in schizophre-
nia patients compared to healthy controls is
one of default mode functional hyper-connec-
tivity. This observation is reasonably consis-
tent across both different analysis approaches
and clinical diagnostic groups, comprising
first-episode and chronic patients. It is also
reported in individuals at clinical high-risk for
psychosis and unaffected first-degree relatives
of schizophrenia patients. Another observation
is one of disturbed anti-correlation between
the DMN and so-called task-positive networks
(TPNs) (Whitfield-Gabrieli et al. 2009; Bluhm
et al. 2007).

Some authors have used independent compo-
nent analysis-based approaches (Calhoun et al.

2001) to examine multiple RSNs in schizophrenia
compared to other psychotic disorders using both
FC and FNC approaches (Khadka et al. 2013;
Meda et al. 2014, 2012, 2015). These attempts
from the Bipolar-Schizophrenia Network for
Intermediate Phenotypes (B-SNIP), aimed to
identify whether or not schizophrenia-related RS
changes were diagnosis-specific, and their find-
ings are complex to parse. Clearly schizophrenia
and psychotic bipolar subjects share common
abnormalities, although some RS differences
from controls were seen only in schizophrenia
probands. Some of the shared abnormalities were
also detectable in unaffected first-degree relatives
of the study probands. As in several of the studies
discussed in the prior paragraph, disrupted rela-
tionships between DMN and TPN’s were broadly
evident in the B-SNIP sample across psychotic
disorders.

Ding et al. (2019a), reviewing both structural
fMRI and resting state fMRI studies, emphasize
the presence of functional abnormalities within
multiple cerebellar regions. Mwansisya et al.
(2017) examined studies that had assessed both
task and RS fMRI in first episode schizophrenia
patients and concluded that the two sets of abnor-
malities overlapped in prefrontal regions includ-
ing dorsolateral prefrontal and orbitofrontal
cortices plus the left superior temporal gyrus. Lo
and coworkers (2015) compared directly RS FC
measures in schizophrenia versus healthy con-
trol comparisons to small-world topology met-
rics derived from a graph theoretical approach in
those subjects. They determined that schizophre-
nia patients not only manifested reduced FC, but
also concominant disruption in all global topol-
ogy measures assessed. They also found disrup-
tion in global topology measures in unaffected
close relatives of patients, but to a lesser extent.

Other approaches to resting state analyses have
included dynamic functional connectivity, ampli-
tude of low-frequency fluctuations (ALFF) and
regional homogeneity measures, as discussed next.

6.2.1 Dynamic FNC (DFNC)

Calhoun and coworkers (2014) varied from the
usual analytic approach that averages BOLD sig-
nal variation across the entire acquisition period.
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However, that approach assumes stable con-
nectivity patterns across time. Instead, using a
sliding time window or other approaches, DFNC
assesses temporal coordination of large-scale
brain networks on a finer time scale of tens of sec-
onds, capturing time-varying fluctuations. Early
use of this technique in schizophrenia and bipo-
lar disorder (Du et al. 2017; Rashid et al. 2014)
showed that healthy controls enter several cor-
relationally-defined temporary brain configura-
tions or “states” that have their own metrics such
as “dwell time,” i.e., typical length of time spent
in a particular state and “fractional time,” i.e.,
how long an individual spends in a state across
the entire measurement epoch. Patients with
psychotic disorders clearly differ from healthy
controls in a way that was not well explained
by current medication status, and to a greater
extent than was captured by traditional static
FC metrics. Abnormal fractional dwell times in
schizophrenia tend to normalize following treat-
ment with antipsychotic medications (Lottman
et al. 2017). One recent publication applying
similar techniques (Reinen et al. 2018) mapped
such cortical dynamic patterns in patients with
schizophrenia and psychotic bipolar disorder.
Here investigators were able to show convinc-
ingly that dynamic profiles remained consistent
within individual study participants, and that
patients showed “intermittent disruptions within
cortical networks previously associated with
the disease.” Of particular interest was that for
patients, within “states,” the above-mentioned
individual connectivity profiles were clearly
correlated temporarily with current psychotic
symptoms. The dynamic relationship between
the manifestation of such symptoms and of tran-
sient cortical network disruptions suggest that
dynamic, time-varying relationships underpin
syndrome-related features.

6.2.2 Amplitude of Low-Frequency
Fluctuations (ALFF)

Amplitude of low-frequency fluctuations and their
fractional amplitude (fALFF) constitute a means
of quantifying the low-frequency oscillations that
are intrinsic to the resting brain. Strictly they are
not connectivity estimates, although allied with

them. Some initial studies (Meda et al. 2015)
have used these measures to compare resting
state fMRI studies in the B-SNIP dataset across
DSM psychotic disorders and in empirically-
derived biologic psychosis classifications known
as “Biotypes” (Clementz et al. 2016).

6.2.3 Regional Homogeneity

Finally, among RS fMRI metrics regional homo-
geneity (ReHo) deserves mention. This func-
tional measure assesses local brain connectivity
expressed as the synchronization of a particular
voxel and its nearest neighbors. The underlying
assumption is that such relationships are a proxy
for regional integration of information processing
or for local synchronization of fMRI signals, and
thus more informative regarding finer-grained
regional information about local FC imbalances.
Abnormal ReHo patterns are reported for schizo-
phrenia, but also in bipolar illness and individu-
als at risk for psychosis (Liang et al. 2013; Wang
et al. 2018, 2016). In one study, drug-naive,
young-onset individuals with schizophrenia
showed increased ReHo in medial prefrontal,
superior temporal, and inferior parietal regions,
and were well discriminated from healthy con-
trols using a support vector machine approach
(Wang et al. 2018).

6.2.4 Resting State Studies: Pros
and Cons

Advantages of employing RS techniques in
schizophrenia include signal that is not made
more complex by effects of variable task perfor-
mance and relative task difficulty, or by subjec-
tive task-evoked anxiety or discouragement in
the face of a syndrome generally characterized
by cognitive deficits, including attentional diffi-
culties. Particularly when challenged by difficult
tasks, schizophrenia patients can become dis-
engaged or demoralized, which confounds both
performance and the associated brain response.
Additionally, cognitive-related responses can be
complicated by intrusion of psychotic symptoms
and failure to comprehend or retain complex
instructions.
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Resting state patterns seem consistent within
single individuals, and at least for DMN are clearly
significantly heritable (Glahn et al. 2010; Richiardi
et al. 2015). Some investigations (Meda et al. 2014)
used parallel independent component analysis to
identify genetic networks that were significantly cor-
related with fMRI sub-networks within the DMN.

Signal acquisition is quick and straightfor-
ward, and analysis generally uncomplicated.
Dynamic measures of resting state are now
available and informative (Calhoun et al. 2014).
Disadvantages, as summarized by Weinberger
and Radulescu (2016), include the fact that rest-
ing state studies are confounded by variables that
differ systematically between patients and con-
trols. Such variables include those attributable to
medication, use of tobacco and caffeine, abused
substances, environmental-related anxiety, heart
and respiration rates, head movement, restless-
ness and drowsiness (that may be related to pre-
scribed medications). Between-group differences
that may be attributed to disease-related abnor-
malities may in actuality be epi-phenomena of
these systematic differences. The degree to which
resting state studies are compromised overall by
these factors was discussed in a comment on the
Weinberger and Radulescu paper by Calhoun
et al. (2016). This is not to say however, that task-
based paradigms are immune from many of the
same potential confounds. Conversely however,
task-based designs have their own problems.

6.3 Task-Based Connectivity

Findings in Schizophrenia

Tasks induce BOLD changes typically of magni-
tude around 5% whose functional connectivity pat-
terns differ from those observed at rest. Whether
these differences are underpinned by similar
event types is uncertain (Gonzalez-Castillo and
Bandettini 2018). How to optimize data-gathering
choices between task versus resting fMRI para-
digms in studying schizophrenia has been the sub-
ject of prior reviews (e.g., Pearlson and Calhoun
2009). Typical task-based designs are based on
cognitive challenges typically in domains affected
by the disorder such as executive functioning or

theory of mind. Other designs rely on responses
to non-cognitive areas of disease-related impair-
ment such as presentation of emotional, reward,
or social stimuli. The cognitive paradigm does not
have to be especially challenging to elicit marked
differences between patients and controls. For
example performance accuracy on straightfor-
ward auditory oddball tasks is not typically diver-
gent between schizophrenia patients and healthy
controls, yet the associated BOLD signal patterns
differ markedly. Although cognitive-based para-
digms are essentially designed as stress tests to
uncover underlying illness-impacted brain cir-
cuitry, it is difficult to disambiguate variant brain
responses from different cognitive performance.
Various solutions to this include employment
of parametrically-based tasks where difficulty
level can be manipulated across a wide range,
allowing for comparisons between patients
and controls at equal performance levels. Other
proposed solutions are employment of stan-
dardized cognitive tasks or assessment across
several cognitive domains within a given study
(Sheffield and Barch 2016). These points have
much to commend them. Because of the consid-
erable variety of task designs, acquisition param-
eters, and analysis methods, only very broad
general overview statements can be made that
capture commonalities across task-based stud-
ies in schizophrenia. Generally, and unsurpris-
ingly, patients tend to perform more poorly and
to activate task-relevant circuitry differently than
healthy controls. Perhaps a more apt question is
whether schizophrenia patients show consistent
circuit abnormalities across both resting state and
task-based paradigms for both FC and FNC, and in
the case of task designs whether the abnormalities
are of a general rather than task-specific nature.
These interlinked issues are addressed both by
Sheffield and Barch (2016) and by Mwansisya
et al. (2017) with the former stressing a pattern
of consistent connectivity disruption across corti-
cal task-positive and task-negative networks and
a cortico-cerebellar-striatal-thalamic loop. This
pattern is consistent across cognitive domains,
and is compatible with the disorder’s generalized
pattern of cognitive deficits. Sheffield and Barch
(2016) further elaborate these observations by
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providing evidence that the latter may be under-
pinned by functional connectivity abnormalities
that exist both within and between task-positive
and task-negative brain circuits, that proceed from
FC disruptions between multiple cortical areas. In
some respects this hypothesis is a helpful elabora-
tion of “dysconnection,” and one that is consis-
tent with other observations (Mwansisya et al.
2017; Repovs et al. 2011; Unschuld et al. 2014).
Some of these studies extend the pattern of dis-
ruption to thalamus, cerebellum and striatum, or
alternatively restrict it to disturbed fronto-parietal
connectivity (Schmidt et al. 2015). Publications
from B-SNIP are also consistent with this gen-
eral hypothesis in showing similar cognitive
abnormalities and many common FC and FNC
disruptions across multiple psychotic illnesses
(Tamminga et al. 2014).

6.3.1 Are”Key Circuits” Involved?

A related question is whether there are “key cir-
cuits” at the hub of the FC disruptions. A com-
mon hypothetical candidate here is the thalamus,
as reviewed in Acsady (2017), Giraldo-Chica
and Woodward (2017), Woodward et al. (2012),
Anticevic et al. (2014), and Woodward and
Heckers (2016). The essential argument is that
as a connection hub with multiple connections
to and from cortical regions underpinning doz-
ens of sensory, motor, cognitive, and emotional
functions, damage to one or more of its numerous
nuclei would widely disrupt cortical connectivity.
Murray and Anticevic (2017) further complement
this discussion of thalamic disorganization with
the use of computational modeling and employ-
ment of pharmacological probes of the glutamate
system (Anticevic et al. 2013).

6.3.2 Are fMRI Findings Specific to
Schizophrenia, and are they
Linked to Symptoms?

The issue of specificity of task-based fMRI
abnormalities to schizophrenia as opposed to
other psychoses, particularly psychotic bipo-
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lar illness, is important. Outside of the B-SNIP
group, pertinent reviews across multiple disor-
ders include that of Birur et al. (2017). As is the
case for schizophrenia alone, the wide disparity
of tasks and designs interferes with the ability to
extract common patterns, but there is support-
ive evidence for similar abnormalities across
schizophrenia and bipolar disorder, as indeed has
been shown for resting state studies (Anticevic
et al. 2015). Another important strand in the
scientific literature explores the links between
typical schizophrenia clinical symptoms and FC
and FNC disturbances. Conducting such studies
adds another layer of difficulty, because consid-
erations of stage of illness, treatment respon-
siveness, symptom assessment approaches and
inclusion criteria make comparison across dif-
ferent reports challenging (Karbasforoushan
and Woodward 2012). For verbal hallucinations,
symptom capture studies of active hallucinators
show increased FC between the basal ganglia and
auditory/language regions, while comparisons
of patients with and without such symptoms are
generally characterized by altered connectivity
between language association regions across
the two hemispheres (Curcic-Blake et al. 2017).
Disturbed left superior temporal gyral FC may
be linked to reports of auditory verbal halluci-
nations across multiple studies (Alderson-Day
et al. 2015). Other groups both examined spa-
tial FC and temporal coupling in relation to both
clinical and cognitive symptoms in schizophre-
nia, finding that both relate to globally disturbed
ALFF (Northoff and Duncan 2016; Northoff
2018).

6.4 Unaddressed Problems That
Future Studies Need

to Contend with and Some
Recommendations

for Improved Design

This section focuses on some of the issues iden-
tified above, and reviews recent studies that in
one way or another have attempted to address
them. The overarching issue to be dealt with is
the lack of clarity on exactly how the network



120

G. D. Pearlson

connectional abnormalities identified in fMRI
relate to important, superordinate, broader etio-
logic and functional concepts such as abnormal
brain development and impairments in synap-
tic efficiency and neural plasticity. The cur-
rent broad hypothesis is that schizophrenia is
a neuro-developmental disorder, originating in
an interaction between genetic predisposition
and environmental abnormalities, that trans-
lates into altered molecular biology, which, in
turn, has developmental consequences for neu-
ral circuitry resulting in a pattern of charac-
teristically disordered behavior. However it is
unclear in practice how such hypothesized eti-
ologic events might relate directly to disturbed
connections among brain networks, or how
those disturbances are related to symptoms. In
general, investigators at these different levels
of inquiry do not cross disciplines sufficiently
to communicate effectively with one another to
resolve these issues.

As noted, another major issue is the clear
need to establish the uniqueness of reported
findings to schizophrenia as opposed narrowly
to other psychotic disorders, and more generally
to all serious mental illnesses. One useful per-
spective that addresses this issue is the frame-
work articulated by Craddock and Owen (2010)
where major psychiatric disorders are conceived
of as arrayed on a continuum, successively from
intellectual disability (ID) through autism spec-
trum disorder, schizophrenia, schizo-affective
disorder, psychotic bipolar disorder, non-psy-
chotic bipolar disorder, to major depressive dis-
order. The underlying hypothesis is that those
disorders closest to ID are most developmental
in nature, display significant cognitive involve-
ment and are most driven by significant genetic
deletions or duplications such as copy number
variants. These features diminish as one moves
towards MDD. Disorders in the conceptual cen-
ter of the spectrum such as schizophrenia and
psychotic bipolar involve more positive symp-
toms, while disorders at the furthest end of the
spectrum display more affective involvement.
In line with this mode of thinking, fMRI abnor-
malities in schizophrenia would be predicted to
display more similarities with other psychotic

disorders as has been demonstrated in B-SNIP
(Khadka et al. 2013; Meda et al. 2014) and is
straightforwardly testable in an adult autism
spectrum sample. Some efforts have already
been made in this direction (Foss-Feig et al.
2017).

Multi-center group collaborations such as the
Enhancing Neuro Imaging Genetics Through
Meta Analysis (ENIGMA) consortium (van Erp
et al. 2018) demonstrate the power of merg-
ing large imaging samples derived from mul-
tiple centers in the structural domain. Parallel
efforts aimed at functional standardization, e.g.,
the Human Connectome Project (Barch 2017)
that incorporate a standardized analytic pipeline
will likely be adopted increasingly over the next
5 years.

The role of machine learning and computa-
tional modeling have been mentioned earlier.
Both supervised machine learning models (often
applied usefully to classification outcome) and
unsupervised approaches (that show utility in
highlighting subgroups) are effective. Recent
useful reviews of this field are these from Murray
et al. (2018) and Pinaya et al. (2019).

Individualized prediction/identification 1is
another analytic approach that has received insuf-
ficient attention, given its obvious importance to
clinical decision-making, and questions asked
most often by patients and their families. Other
recent approaches have used a variety of the ele-
ments above to derive novel techniques that will
undoubtedly see increased use in our arena. For
example, Yip et al. (2019) employed fully data-
driven machine learning approaches such as
connectome-based predictive modeling, that use
alterations within neural components, to identify
brain “fingerprints” that allow actual prediction.
For example diagnostic entities, responses to
treatment, or other metrics can be theoretically
derived from individual differences in whole
brain functional connectivity data.

Studies such as North American Prodrome
Longitudinal Study (NAPLS) have shown the
feasibility of capturing individuals at risk and
using functional MRI memory paradigms to help
determine who will convert to psychosis (2019).
In that publication, the authors compared 155
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clinical high-risk individuals 12% of whom later
converted to full psychosis and 108 healthy con-
trols on a fMRI paired-associate memory para-
digm. Converters 2 years later had shown more
marked abnormalities in prefrontal, parietal, and
bilateral temporal cortices. Similar study designs
are useful as they are potentially uncontaminated
by treatment effects. Larger-scale studies of anti-
psychotic naive patients with schizophrenia are
another important set of investigations; some
have explicitly compared first-episode subjects
to those at clinical high-risk (Wang et al. 2019;
Ding et al. 2019b; Zhu et al. 2019).

In summary, both resting state and task-
based fMRI have been informative to the field
of schizophrenia research, but many important
questions remain to be answered. On the plus
side, those questions can now be articulated and
many of them can be addressed with larger scale
studies of improved design, as I have tried to
summarize here.

Summary

» Schizophrenia is widely assumed to be a
developmental disorder characterized
by cortical dysconnectivity, but fMRI
studies have only partially addressed the
etiology of this abnormality, it specific-
ity to schizophrenia, and its relationship
to treatment effects.

* Both task-based and resting state fMRI
abnormalities have been documented in
schizophrenia but the relationship of
such differences from healthy controls
in both relationship to each other and to
major features of the disorder, e.g., to
symptoms, are hard to summarize eas-
ily. In part this state of affairs results
from a plethora of both study designs
and particularly of analysis methods
applied to such data.

e FMRI abnormalities are only beginning
to be linked to such superordinate con-
cepts such as synaptic efficiency or neu-
ral plasticity.

121

e As the field moves forward, the role of
more focused patient samples (such as
ultra-risk and drug-naive patient popu-
lations), more standardized collection
and analysis approaches (for example
Human Connectome Project), and use
of novel analysis methods (including
machine learning and individual-level
prediction algorithms), will likely prove
increasingly important.

e Such approaches will allow for trans-
diagnostic comparison of findings,
reduce over-reliance on small, not nec-
essarily typical patient samples, and
address broader disease-related ques-
tions including relationships between
fMRI findings and relevant underlying
risk genes, molecular biology, other
physiological abnormalities such as
electroencephalography, and clinical
expression of the disorder.
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7.1 Introduction kinetic methods that are used to image and quan-

Positron Emission Tomography (PET) is an imag-
ing tool designed to measure biological processes
at the molecular and cellular levels. PET obtains
functional information related to the state of a par-
ticular physiologic process in a non-invasive man-
ner. PET imaging agents are administered in trace
amounts that do not perturb the process under
study and make use of a radioactive molecular
probe that can be followed, mapped and measured
using suitable radiation detectors. Because of the
high sensitivity of radioactive assays, PET can
measure picomolar concentrations. However, the
spatial resolution of PET is limited by physical
factors and the difficulty of acquiring sufficient
counting statistics. Structural magnetic resonance
(MR) imaging (or MRI) is often performed in tan-
dem with PET as this modality provides high
resolution anatomical information to guide PET
image analysis and interpretation.

Although oncology remains the most frequent
clinical application worldwide, PET has been
extensively used to study the brain, neurodegen-
eration and neuropsychiatric disorders. For
example, early PET studies provided evidence of
dysregulation of the dopaminergic system in
patients with schizophrenia and of the associa-
tion between antipsychotic response and block-
ade of dopamine D2 receptors (Wong et al. 1986;
Farde et al. 1987; Okubo et al. 1997).

This chapter provides an overview of PET
imaging principles and methods that are important
for its successful application in humans. This
review describes PET in terms of its characteris-
tics as a molecular imaging tool, with a particular
focus on in vivo imaging of protein targets using
PET tracers or radioligands that are relevant to
schizophrenia and neuropsychiatric disorders.
This includes a brief description of PET methods
of data acquisition, data correction, and pharmaco-

tify radioligand-protein binding. The emergence
of simultaneous PET/MR imaging is also reviewed
in the context of key advantages and limitations of
the individual and combined technologies and
examples of research advances in this area.

7.2 Positron Emission
Tomography
7.2.1 Basic Principles of PET

Imaging

After a positron is emitted from the nucleus of an
atom inside the body, it travels a few mm in the sur-
rounding tissue and interacts with an electron. As
the positron is an antimatter electron, the pair anni-
hilates emitting two 511 keV photons that move
away from the annihilation point in nearly 180°
opposing directions (annihilation radiation). PET is
based on the detection of the two photons coming
from each single radioactive decay. The PET scan-
ner (or tomograph) is typically formed by multiple
rings of radiation detectors that encircle the organ
under study (e.g., brain) and collect the emitted
photons. Only pairs of photons recorded by oppo-
site detectors within a narrow few nanosecond time
window are considered as coming from the same
radioactive decay and, consequently, considered
valid for the purpose of image formation (coinci-
dent events). Thus each pair of detectors measures
the number of coincident events or positron annihi-
lations that occurred somewhere along the line
joining them (line of response).

During a PET study, millions of coincidence
events are recorded. Through the application of
mathematical algorithms, the distribution of the
radionuclide inside the organ under study can be
reconstructed. If the distribution changes over time,
one can capture this by reconstructing the PET data
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into multiple time frames throughout the study (i.e.,
a dynamic study, see Sect 7.5). In order to obtain
quantitatively accurate 3D images, several correc-
tions need to be performed to account for lost pho-
tons (e.g. due to photon attenuation and to detector
dead time) or photons that do not contribute to the
signal but instead create background noise (e.g.
scatter and random coincidences). For an in-depth
explanation of the principles and technology of PET
imaging, see (Townsend 2004; Bailey 2003).

The most common design of PET scanners
consists of multiple rings of radiation detectors
that encircle the subject under study. The axial
coverage of the system depends on the number of
detector rings and spans from organ specific cov-
erage, e.g., brain (Grogg et al. 2016) to total body
coverage (Badawi et al. 2019). Most PET scan-
ners use scintillator crystals for detecting the
511 keV annihilation photons. Scintillators such
as bismuth germinate (BGO) or lutetium oxyor-
thosilicate (LSO) provide high detection effi-
ciency and good energy resolution. Scintillators
convert incident gamma photons (such as those
produced by positron annihilation) into visible
light. The size of the scintillator crystals is opti-
mized as a trade-off between detector spatial
resolution and the collection of sufficient count-
ing statistics. The scintillators are coupled to
light-detection devices (photodetectors) that con-
vert the visible scintillation light into an electrical
signal that is subsequently processed by the sys-
tem electronics. Until recently, photomultiplier
tubes (PMTs) were generally used. However,
their incompatibility with magnetic fields have
led to their replacement by solid-state photode-
tectors in state-of-the-art PET systems.

PET spatial resolution is poor compared to other
imaging modalities such as CT or MR imaging,
with the spatial resolution of current PET tomo-
graphs on the order of 3-6 mm at best (de Jong
et al. 2007; Zhang et al. 2018; Rausch et al. 2017;
Michopoulou et al. 2019; Pan et al. 2019). This is
because of several factors. In PET tomographs that
use scintillator-photodetector coupling, the size of
the individual crystals generally determines the
detector spatial resolution. Another factor is the
distance the positron travels in tissue (positron
range) prior to annihilation, and this depends on the
particular radionuclide. Since PET maps the distri-

bution of annihilation points instead of the distribu-
tion of positron emission points, the positron range
will result in image blurring. For common PET
radionuclides (e.g.: fluorine-18, carbon-11, and
oxygen-15), this effect is less than 2.5 mm (Moses
2011). Acolinearity (photons emitted slightly less
than 180°) also degrades spatial resolution (typi-
cally about 1.5 mm full-width at half-maximum for
fluorine-18). Overall, physical effects contribute
around 2 mm or less (Townsend 2004).

Photons emitted in the body interact with tis-
sue and this results in photon scatter (introduces
noise) and attenuation (causes signal reduction).
The PET data must be corrected for these effects.
As an example, correction for attenuation has tra-
ditionally required measurement of the subject’s
attenuation characteristics using an external radi-
ation source (transmission source) or X-ray com-
puted tomography (CT). These topics are
discussed at length in prior publications (Watson
2000; Zaidi and Montandon 2007).

7.3 Image Processing:
Additional Corrections
and Applications

7.3.1 Motion Correction

Head motion during long PET acquisitions can
degrade image quality and cause artifacts. Inter-
frame motion can cause PET frames to displace
over time and lead to errors in generated regional
measurements. Several methods have been sug-
gested to correct for motion artifacts before any
PET quantification is performed. The simplest of
these methods involves registration of individual
frames to a reference frame (Picard and
Thompson 1997). With the introduction of com-
bined PET/MR scanners, more sophisticated
motion correction methods have been proposed
that utilize simultaneously acquired MR data to
derive motion estimates with high temporal reso-
lution that are then used to correct for motion
during image reconstruction (Catana et al. 2011).
MR guided motion correction methods were
shown to improve the quality of the PET images
and to positively impact image quantification in
dementia patients (Chen et al. 2018).
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7.3.2 Partial Volume Correction

As described above, PET tomographs have lim-
ited spatial resolution due to physical factors and
the detection process. In addition, PET image
reconstruction methods sample an activity distri-
bution into a finite voxel grid that causes a
three-dimensional blurring throughout the image.
The limited spatial resolution of the tomograph
can be characterized using a point spread func-
tion (PSF), which represents the response of the
PET system to a radioactivity point source
(Erlandsson et al. 2012).

As a result, PET images suffer from partial vol-
ume (PV) effects that can lead to spill-in or spill-out
of the activity in one voxel to neighboring voxels.
Spill-in effects from neighboring high activity areas
can cause overestimation of the radioactivity in
regions of interest (ROI). Similarly, spill-out effects
of the radioactivity in the target region to back-
ground regions can cause underestimation of the
tracer uptake in the target ROI. Therefore, it is often
advised to account for these effects using a suitable
partial volume correction (PVC) technique before
any quantitative PET measurement is performed,
particularly when small ROIs are studied.

A number of methods have been proposed to
correct for PV effects. Most of these methods rely
on anatomical information obtained from co-
registered structural MR images to recover the
PET radioactivity concentrations in the
ROIs. Three common methods are described. The
Meltzer method segments the brain into two com-
partments (Meltzer et al. 1990). One is a combi-
nation of grey (GM) and white matter (WM), and
the second is cerebrospinal fluid (CSF). No uptake
is assumed in the CSF. The PV correction recov-
ers the brain tissue signal by correcting for spill
over signal in the CSF. This method is limited to
correct for CSF and atrophy-related PV effects.
The Muller-Gartner method (Muller-Gartner et al.
1992) extends this method and also accounts for
spill-over effects between GM and WM. Here, a
co-registered MR image is segmented into GM,
WM and CSF. The two latter regions are treated
as the background regions. Similar to the Meltzer
method, CSF is assumed to be devoid of any
uptake and WM is assumed to have a homoge-
neous tracer distribution. The correction is applied
to account for spill out effects from GM to back-

ground regions and spill-in effects from WM to
GM. Muller-Gartner method is sensitive to GM
and WM segmentation errors that can propagate
into noise in the corrected images. This correction
is restricted to voxels in the target region only.

The Geometric Transfer Matrix (GTM)
method (Rousset et al. 1998) utilizes an MR
image segmented (or parcellated) into a group of
ROIs. Each ROI is assumed to contain uniform
activity and is represented by its mean value.
Each ROl is convolved with the PSF and the con-
tribution of each region to the neighboring
regions is calculated. These data are then used to
construct the GTM matrix and its inverse is used
to calculate the true regional mean values. The
main limitation of the GTM method is that it pro-
vides regional mean values rather than a PV cor-
rected image, and hence it is only useful if the
analysis is performed on regional basis.

7.3.3 Image Registration

and Normalization

Image registration is the process of geometrically
aligning two or more images of the same subject
that can be obtained at different times or using dif-
ferent imaging modalities. During the registration
of two images, an optimization procedure is per-
formed to find the best transformation to spatially
align the “input” image to a “reference” image.
The types of transformations that are commonly
used in intramodal image registration are rigid and
affine transformations. Rigid transformation has 6
degrees of freedom and involves translation and
rotation of the image around each axis. Application
of rigid registration includes PET inter-frame
motion correction where PET frames are regis-
tered to a reference frame, e.g., the first time frame
of the series. Affine transformation has extra
parameters to apply scaling and shearing on the
input images and is often used to perform inter-
modality registrations, such as registering PET
images to MR images. Non-rigid transformation is
often used to register images obtained from differ-
ent subjects, where a local warping is applied to
image features. An example use of non-rigid trans-
formation is warping of brain images to a common
template space, such as the MNI template (Collins
et al. 1995), before performing inter-subject com-
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parisons. Normalization refers to the spatial trans-
formation of an individual’s PET and/or MR
image (native space) to an anatomical MR
image template (template space). This is often
performed to enable automatic regional labeling
or parcellation of an MR image using pre-defined
template regions and non-rigid registration
methods. Region delineation is also possible
through manual region tracing or automatic par-
cellation of the native space MR image. The
extracted regions can be then used to sample co-
registered PET images to obtain regional PET
uptake values or to generate time activity curves
(TAC) of the regional uptake collected over sev-
eral time frames (Fig. 7.1). Software packages
such as Freesurfer (Fischl 2012), FSL (Jenkinson
et al. 2012) and SPM (Friston 2007) include
tools for image registration and normalization.

7.4  Molecular Imaging with PET

7.4.1 Positron-Emitting
Radionuclides

The most commonly used positron-emitting
radionuclides for PET have short characteristic
half-lives (t;,), where t,,, is the time that it takes
for a radioactive sample to reduce to half of its
original value. The most important positron emit-
ters in PET brain imaging are fluorine-18
(typ, = 109.8 min), carbon-11 (t;, = 20.36 min),
nitrogen-13 (t;, = 9.97 min) and oxygen-15
(tip, = 2.03 min). These radionuclides must be
generated using a cyclotron, which is generally
located within or near the PET center as a result
of the short half-lives of these atoms. Because of
the longer half-life of fluorine-18 PET radiotrac-
ers, these may be produced by off-site cyclotrons
and regionally distributed.

In vivo imaging with PET can be performed at
high sensitivity enabling the detection of low
in vivo concentrations. With respect to protein tar-
gets, PET can also be performed with high molec-
ular specificity and selectivity. A multitude of
molecular imaging options that are important tar-
gets for the study of schizophrenia and other neu-
ropsychiatric disorders are possible using PET
(Table 7.1). Examples include numerous neurore-

Table 7.1 Examples of PET radioligands applied in neu-

ropsychiatric disorders

Neuroreceptor/transporter

GABA,

["'C]flumazenil, ['*F]
flumazenil,

Glutamate (mGIuRS5)

[''C]ABP688, ["*F]FPEB

Acetylcholine
Muscarinic [""CINMPB
Nicotinic 2-['8F]-FA-85380 (a4/32)

Vesicular monoamine
transporter-2

[''"CIDTBZ, [*F]AV-133

Dopamine
DA synthesis ["*FIFDOPA
Dy ["'C]FLB 457, ['"*F]fallypride
["'C]raclopride
[""CINPA, [''C]PHNO
(agonists)
Transporter/ ["CICFT, [''C]

reuptake site

methylphenidate, [!!C]
cocaine, [''Claltropane
['F]FP-CIT, ["*F]FECNT

Serotonin
5-HT A [M"CIWAY 100635, ["*FIMPPF
5-HT;, [""CIMDL 100907, ['*F]
altanserin
5-HT [M'C]AZ10419369
5-HT, ["'C]SB207145
Transporter/ [""C]DASB, [''"C]McN5652
reuptake site
Norepinephrine [""C]MEeNER, ['*)F]MeNER,
transporter [""CIMRB

Cannabinoid (CB-1)

['""CIOMAR, [*FIMK9470

Purinergic receptor

P2X;

[''C]A-740003, [''C]
SMW139, [''C]INJ-54173717

Enzyme activity

Acetylcholinesterase | [''C]PMP
Monoamine oxidase | [''C]clorgyline (A), [''C]
(MAO-A, MAO-B) | deprenyl (B)

Histone deacetylase

["'C]martinostat

Phosphodiesterase
(PDE)
PDE4 ["'C]rolipram
PDE10 ["CIIMA107, ['"CIMNI659

Fatty acid amide
hydroxylase (FAAH)

["'C]curb

Cyclooygenase

[''CIPS13 (COX-1); [''C]
MC1(COX-2)

Microglial activation (TSPO)

["'CIPK11195, ['"C]PBR28,
[''CJER176,

[''CTPBROG, ['"*F]PBROG,

["*FIDPA-714, ["*FIFEPPA

See (Gunn et al. 2015) and (Narayanaswami et al. 2018)
for a detailed description of PET protein targets, relevance
to disease, and corresponding literature references
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ceptor system targets (e.g., presynaptic and post-
synaptic sites, transporter/reuptake sites, vesicular
transporters, ion channels), enzymes, and translo-
cator proteins (TSPO). Multiple intra-subject
PET imaging studies can provide a rich assess-
ment of patient status that can inform on neurore-
ceptor system status in health and disease,
complementary assessments of neuroinflamma-
tory processes (e.g., TSPO, COX-1/COX-2,
P2X;), or enzyme activity (e.g., MAO-B, HDAC).

Further detail on PET protein targets relevant
to schizophrenia and neuropsychiatric disorders
are available in prior publications (Gunn et al.
2015; Narayanaswami et al. 2018).

7.5 PET Pharmacokinetics

7.5.1 Tracer Principle

PET methods enable quantitative in vivo imaging
of ligand-binding interactions through application
of the tracer principle. As mentioned above, a tracer
molecule follows a substance through a process-of-
interest (Lassen and Perl 1979). Tracer studies are
conducted at high radioligand molar activity (A,,),
where A,, is proportional to GBg/pumol (or mCi/
pmol). High A, ensures minimal binding site occu-
pancy by non-radioactive (or unlabeled) mass. The
term tracer or radiotracer refers to the general class
of PET probes that include blood flow and glucose
metabolism, whereas the term radioligand specifi-
cally refers to a ligand-protein binding interaction
(e.g., neuroreceptor) (Fig. 7.1).

A fully dynamic tracer kinetic PET study fol-
lows the tracer behavior from its injection (deliv-
ery kinetics) to the end of the study (dominated by
process-of-interest), and thus, enables multiple
parameters to be studied. Validated simplifica-
tions of fully dynamic methods can be more fea-
sible to apply but fewer parameters can be studied
(Carson 2003). In a tracer kinetic PET study, the
radiotracer is administered to the subject, the
radiotracer concentration is measured in blood (or
plasma) and in brain over time, and tracer kinetic
modeling methods are applied to analyze the
kinetic data and obtain estimates of the physiolog-
ical parameters (Fig. 7.2). There are various meth-
odological assumptions that apply to these studies

(Carson 2003; Laruelle et al. 2003). One such
assumption is tracer linearity, i.e., the observed
kinetics of the tracer are directly related to the
dynamics of the process under study (e.g., at high
A,). From this point on, we will assume that
radioligand-protein binding is the process-of-
interest and studies are conducted at high A,,..

7.5.2 Radiotracer/Radioligand
Administration

There are two principal modes of tracer administra-
tion commonly used in PET imaging of brain.
Bolus injection is the rapid delivery of tracer into
the system and the system response is included in
the tracer kinetics (Erlandsson et al. 2012). In con-
trast, bolus plus infusion (B + I) administration is a
combination of an initial bolus injection followed
by infusion of the radiotracer. The B + I method
yields radiotracer concentrations that eventually
reach a constant value, consistent with a spatially
invariant distribution of tracer (Lassen and Perl
1979; Carson 2003; Huang et al. 1986). When
tracer levels in blood and brain become constant,
equilibrium conditions are assumed. The bolus
method can provide multiple parameters associated
with the process-of-interest, while the B + I method
generally provides a single equilibrium measure.

7.5.3 Data Collection: Blood/Plasma
and PET

For tracer kinetic modeling studies, blood data are
commonly collected from a radial artery (arterial
blood sampling) in an effort to approximate capil-
lary concentration. The blood collection schedule
depends on the particular method (fully quantita-
tive or simplified). Blood data can be collected
continuously using a flow-through monitoring
system that measures radioactivity concentration
or by discrete sampling (e.g., hand-drawn sam-
ples) with subsequent assay of plasma samples in
a gamma well counter. Radioactivity concentra-
tion units are proportional to MBg/mL (or Ci/mL.).

After injection, radioligands can be broken down
by the body to create radiolabeled metabolic prod-
ucts (radiometabolites). In these cases, additional



7 PET and PET/MRI Methods

131

MNI152 template
MR image

v

Dynamic PET

b

|Motion correction I

Nonlinear warp of
template and atlas

v

to subject MR |Alignment to MR |
CIC Atlas
(MNI 152)
Dynamic PET aligned to subject MR
............................... ’ 7
Native space *
|, 525 p% -
Parcellation Manual ROIs £ %
T 35 %
Q gy
v 1.75 Xy
Regional 0
TAC/SUV Generation 0 15 30 45 60

Fig. 7.1 Flowchart representation of ROI delineation and
PET sampling methods to derive regional TAC and SUV
(standardized uptake value) measurements. ROIs can be
defined on a brain image template or in the subject’s native
image space. ROIs can be defined manually or automatically
derived with the help of a brain atlas (e.g., CIC atlas, Tziortzi

blood is collected and analyzed using chromato-
graphic methods to determine the fraction of the
total radioactivity in blood, or plasma, that corre-
sponds to the parent radioligand (parent fraction) at
different times over the study interval. The concen-
tration of parent radioligand in blood or plasma
(input function) over time is determined by correct-

Time (minutes)

et al. 2011). ROIs can also be defined using imaging tool-
boxes to automatically parcellate (e.g. Freesurfer software)
the brain into cortical and subcortical regions in the native
space. The PET image data (static or dynamic) can be sam-
pled in native space or template/atlas space provided that the
MR, PET, and ROIs are in the same space

ing the total radioactivity concentration for the
radiometabolite fraction. It is important also to con-
sider and evaluate whether radiometabolites can be
produced in brain or pass into brain. Other measures
include the extent that a radioligand may bind to
plasma proteins (f,) and partitioning of the radio-
tracer in the red cell fraction (Innis et al. 2007).
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Fig. 7.2 Kinetic analysis steps for a dynamic PET
radioligand-protein binding study conducted in control
and patient groups. (a) Co-registration of anatomical MR
and functional PET images with ROI labels. (b) Example
of the total measured radioactivity concentration in
plasma (i.e., unmetabolized parent (decreases over
time) + radiolabeled metabolites (increases over time)).
The total plasma radioactivity is corrected to yield a

For a dynamic PET study, data are acquired in
multiple time frames. As an example, a 90 min
dynamic PET acquisition can consist of 34 time
frames (e.g., 4 x 25, 8 x 30, 9 x 60, 2 x 180,
8 x 300, and 3 x 600 s). Short frames at early

metabolite-corrected plasma input function (c, left) that is
used for kinetic modeling analyses of the TACs with
examples shown for target and reference ROIs (¢, middle
and right). (d) Application of a 2-tissue 4 parameter model
(left) using the metabolite corrected plasma input function
results in a curve fit (solid line) to the in vivo kinetics in
target and reference ROIs (right) and estimates of the vol-
ume of distribution measure, V1

times can capture rapid changes in radioligand
uptake and distribution when counting statistics
are high. Longer time frames at later times are
appropriate when the kinetics are changing less
rapidly and higher counting statistics are sought
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to offset the impact of radioactive decay. The
units of the PET scanner image data, or voxels,
can be basic scanner units (scanner counts/s/
pixel) or units of radioactivity concentration kBqg/
mL, depending on the calibration approach
(Geworski et al. 2002, 2003).

7.5.4 Kinetic Modeling Methods:
Radioligand-Protein Binding

Mathematical and statistical methods are used to
determine parameters-of-interest from the kinetic
data. These methods can be generally categorized
as compartmental and non-compartmental
approaches (Gunn et al. 2015; Carson 2003;
Koeppe 2002; Landaw and DiStefano 1984); this
section will focus on compartmental modeling
techniques. These PET methods have evolved
from early studies of blood flow and
metabolism.

Compartmental methods involve the formula-
tion of a compartmental model that is configured
based on a priori knowledge of the chemical and
physiological characteristics associated with the
process-of-interest. A compartment represents a
space, or volume, that the tracer is distributed in
that can be of physical (precursor pool) or chemi-
cal relevance (metabolized tracer) (Huang and
Phelps 1986). Rate constants (internal parame-
ters) link compartments and represent the various
rates of inter-compartmental tracer exchange. In
this chapter, it is generally assumed that the
amount of tracer leaving a compartment is pro-
portional to the total amount in the compartment,
all injected tracer exists in one or multiple com-
partments, and the tracer is uniformly distributed
within any given compartment. The validity of a
compartmental approach rests on the validity of
such assumptions, and others that may involve
tracer administration, pharmacological and meta-
bolic properties of the radiotracer, and tracer
extraction from vasculature into tissue.
Compartmental modeling allows for the study and
prediction of process behavior through computer
simulation studies that essentially solve the model
equations over a series of rate constant values that
correspond to different system responses.

PET pharmacokinetic modeling studies pro-
vide in vivo outcome measures that are theoreti-
cally related to the total concentration of binding
sites and inversely related to the affinity of the
tracer for the binding site (i.e., B, and Kp,
respectively). The nomenclature used herein is
that published for reversible radioligand binding
(Gunn et al. 2015; Innis et al. 2007). In reality the
outcomes are related to the concentration of bind-
ing sites not occupied by endogenous ligands and/
or freely available for ligand-binding (B,.;). The
quantitative evaluation of the in vivo kinetics of a
novel PET radioligand is generally performed
using a bolus injection compartmental modeling
approach that requires arterial sampling of the
radioligand concentration in plasma to determine
the model input (drives in vivo brain kinetics).
The most commonly applied model for reversible
radioligand binding is a 2-tissue 4-parameter (2T-
4k) configuration that describes (1) non-displace-
able (ND) uptake of free (FT) and nonspecifically
(NS) bound ligand in tissue, with summed con-
centration of Cyp and (2) specifically bound
ligand in tissue, with concentration Cs. The con-
centration of free radioligand in tissue is Cgr and
Cxp = Cgr + Cys with compartmental rate con-
stants of K; (mL ¢cm™ min~") and k, (min™") that
represent bidirectional blood-brain barrier (BBB)
transport of radiotracer, while k; (min~') and k4
(min~!) are respectively reflective of the bimolec-
ular association to and unimolecular dissociation
from the binding site. When k; = 0, the radioli-
gand exhibits irreversible binding. The total radio-
ligand distribution volume is Vy = Vyp + Vs,
defined as the tissue:plasma concentration ratio at
equilibrium. A 3-tissue configuration is the most
comprehensive approach commonly applied for
which FT and NS tracer kinetics are assumed to
be distinguishable (Cy = Cgr + Cys + Cs), while a
2T assumes these are indistinguishable
(Cr = Cgrans + Cy), and a 1-tissue model does not
distinguish either (Cgryns 4 5)-

Specific binding measures include the total
volume of distribution (Vr) and binding potential
(BP, unitless). The 2T-4k model V; = K,/
ko#(1 + ks/ky), k3 = fup Kon Bavar, and BPyp = ks/
k, = fap Bavai/Kp. The fyp parameter, or tissue free
fraction, is the fraction of radioligand free from
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nonspecific binding. The BP can also be derived
from the regional Vr values. Expression of the V1
of binding regions relative to Vyp results in a dis-
tribution volume ratio, or DVR = V/Vyp, where
BPyxp = DVR — 1. The Vyp is estimated in a refer-
ence region for which specific radioligand bind-
ing is assumed to be negligible and concentrations
of FT and NS radioligand are representative of
other brain regions, e.g., cerebellum is commonly
used for neuroreceptor studies. Gunn et al. pro-
vide further discussion of reference region appli-
cations (Gunn et al. 2015).

7.5.5 Non-compartmental Methods

Non-compartmental methods do not involve spe-
cific assumptions as to the internal behavior of
the tracer. These techniques include those that
mathematically unfold (deconvolve) the input
function from the total brain kinetics to obtain the
tissue response curve (e.g., spectral analysis).
Non-compartmental techniques generally do not
require as many assumptions as compartmental
methods but are limited if specific information
about the kinetic parameters (Gunn et al. 2015;
Cunningham and Jones 1993). Graphical analy-
ses offer linear alternatives for neuroreceptor
binding studies, using either plasma or reference
region data, provided steady-state conditions are
established. The Patlak analysis is applied to
obtain measures of the overall uptake for an irre-
versibly binding radioligand, K; = K k;/(k, + k3)
(mL cm™ min™"), but this outcome can be con-
founded by blood flow. The Logan analysis pro-
vides a measure of the total distribution volume
(V) and is applied to reversible radiotracers to
obtain DVR or BPyp measures (Logan 2000).
Bias can arise in the outcomes determined using
the Logan analysis as a result of noise in the
regression variables (Slifstein and Laruelle
2000). Smoothing of the data prior to analysis
can address this bias (Logan et al. 2001), although
alternative methods that are less vulnerable to
noise have been implemented (Ichise et al. 2002).
Simple  ratios, i.e., tissue:plasma  and
target:reference, have also been used as outcome
measures when strongly related to kinetic bind-

ing measures. The SUV, standardized uptake
value, is often used in clinical settings and is the
average tissue uptake (over a pre-defined post-
injection period) normalized to injected dose and
body mass (unitless, assuming 1 g cm™ tissue
density). The SUV ratio (or SUVR) is simply the
target:reference tissue ratio.

7.5.6 Image Derived Input

Functions

Kinetic analysis of PET data requires an accurate
knowledge of the concentration of the free tracer
in the blood plasma, known as the arterial input
function (AIF). The current gold standard
method to obtain the AIF involves collection of
serial blood samples during the course of the PET
scan. However, this method’s invasiveness makes
it not feasible for routine clinical imaging. A non-
invasive alternative is the use of an image derived
input function (IDIF), which involves extraction
of the AIF by measuring the tracer activity in the
blood from PET images. This can simply be per-
formed by placing an ROI on a suitable artery and
calculating the mean activity within the ROI at
each time frame. However, particularly in brain
imaging, arteries can be very small in diameter
compared to the resolution of the reconstructed
PET images and can severely suffer from partial
volume effects. Therefore, IDIF methods often
utilize registered MR images with higher spatial
resolution to obtain an accurate segmentation of
the carotid arteries and perform spill-in and spill-
out correction based on the geometry of the seg-
mented arteries. See (Fig. 7.3). Fung and Carson
(2013) and Su et al. (2013) showed that MR
defined carotid arteries could be used to derive an
accurate IDIF in [“O]water PET studies.
Similarly, a PV corrected IDIF based on MR seg-
mentations may be accurately used to estimate
cerebral metabolic rates of glucose (CMRGIc)
from ["®F]JFDG PET images with a comparable
accuracy to using AIFs measured from arterial
samples (Sari et al. 2017; Sundar et al. 2018).
IDIFs might have limited application for a high
number of PET radiotracers, particularly when
radiolabeled metabolite products are present in
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Fig. 7.3 Illustration of a method used to obtain image
derived input functions from PV corrected PET images.
Carotid arteries are segmented from time-of-flight MR
angiography (TOF MRA) images. PV correction is per-

Dynamic PET

the blood plasma. One alternative method to
obtain the metabolite-free AIF is the simultaneous
estimation method (SIME), which models the AIF
using a parametric model and tries to estimate the
input function while fitting multiple tissue TACs
at once (Feng et al. 1997; Ogden et al. 2010). As a
result of high number of parameters and its com-
putational complexity, SIME can introduce some
bias on the estimated kinetic parameters and is
usually complemented with a few arterial samples
to aid the AIF estimation (Feng et al. 1997; Wong
et al. 2001). More recent work proposed that
information from an image derived whole blood
measurement can be used as a prior information
to improve the accuracy of the estimated AIF and
kinetic parameters (Sari et al. 2018).

7.5.7 Challenge Paradigms
and Target Engagement

A challenge paradigm may be pharmacological
(e.g., amphetamine, agonist or antagonist), task-
oriented (e.g., reward to induce increases in extra-
cellular dopamine), or physical (e.g. pain to
induce changes in the opioid receptor system
(Wey et al. 2014)). As recently reviewed (Gunn
et al. 2015), these paradigms usually require a
baseline PET study and a challenge PET study
that may be performed on the same day (for
C-labeled radioligands) or within a few days.

"o g . °

0 12.5 25 375 50
Minutes

formed on co-registered dynamic PET data using the
carotid artery mask as the only region of interest. The
mean activity in carotids is computed to derive the IDIF

For studies investigating receptor or protein target
engagement (or occupancy), these studies may be
conducted over several days, often in non-human
primates. These paradigms (Laruelle 2000) have
been widely applied to probe the dopamine
hypothesis and the monoamine hypothesis of
depression which, in the context of schizophrenia,
motivated investigations of neuroreceptor system
function as PET radioligands became available
with sufficient in vivo selectivity and specificity
and varying pharmacologic properties (e.g., ago-
nists and antagonists). Radiotracers for mono-
amine transporters have also been effectively used
in drug development for in vivo estimates of the
occupancy of therapeutic agents (Gunn et al.
2015; Laruelle 2000; Talbot and Laruelle 2002).

7.6 Multimodal PET/CT and PET/

MR Systems

One of the main difficulties in PET imaging is the
limited anatomical information, which makes
interpretation of the precise location of radio-
tracer accumulation challenging. Non-specific
tracers such as ["*F]FDG provide limited anatom-
ical reference from uptake in brain, muscle, etc.,
but frequently is not enough to differentiate nor-
mal from pathological accumulation. This limita-
tion can be overcome by combining PET with
another imaging technology able to provide high-
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resolution anatomical reference, such as CT or
MR imaging.

Multimodal PET/CT scanners were intro-
duced commercially in 2001 and turned into a
huge success that led to the cease of production
of PET stand-alone systems. In addition to the
obvious advantage of precise co-registration of
functional and anatomical images, PET/CT pro-
vides two other major advantages: reduced scan
duration and reduced noise of the PET images
(Kinahan et al. 1998; Valk et al. 2003). As men-
tioned above, a number of annihilation photons
lose energy due to scattering or are absorbed in
the body before reaching the detectors, resulting
in photon attenuation. In stand-alone PET sys-
tems, an external 511 keV radiation source is
rotated around the subject (transmission scan).
By measuring the number of transmission counts
both in the presence and absence of the patient,
the attenuation can be measured for each line of
response and its effect corrected in the PET
images. The transmission scan is lengthy and
increases the total scan time. This correction is in
principle exact, as it employs gamma rays of the
same energy (or very similar) as those emitted
from positron annihilations. However, as the
measurement involves photon counting statistics,
the correction introduces additional noise into the
PET data. In PET/CT, the attenuation correction
is performed by substituting the transmission
scan by a CT scan. Although the underlying prin-
ciples are the same, the CT scan is acquired at
lower energy, typically at 120 keV instead of at
511 keV. Because the attenuation of the photons
is dependent on their energy, the correction fac-
tors obtained with low-energy CT photons must
be scaled to 511 keV for accurate correction of
the PET images. The scaling is based on piece-
wise linear functions that cannot account for non-
linear effects, such as those occurring when CT
photons are fully absorbed at metal and/or dental
implants. On the other hand, the CT produces a
very high flux of photons, which in turn dramati-
cally reduces the noise associated with the mea-
surement, and is very fast (Kinahan et al. 1998,
2003).

Even though combined PET/CT systems were
introduced almost two decades ago, the technol-

ogy has undergone continued development with
the goal to achieve higher sensitivity and higher
resolution capabilities. New scintillator crystals,
new solid-state photodetectors and electronics,
new detector designs, increased number of detec-
tor rings, the introduction of time-of-flight (TOF)
information, new reconstruction algorithms, and
sophisticated corrections have transformed the
technology and led to the achievement of
increased signal and exceptional image quality.
Some examples of systems incorporating
advanced technology are described in (Badawi
et al. 2019; Daube-Witherspoon et al. 2010;
Jakoby et al. 2011; van Sluis et al. 2019).

However, for brain imaging applications, struc-
tural MR offers advantages over CT imaging such
as higher gray/white matter contrast. Some MR
imaging sequences can, furthermore, provide infor-
mation about physiology, metabolism, or function
by making use of a number of endogenous contrasts
and physical properties of matter (Pyatigorskaya
et al. 2014). These include sequences to measure
water diffusion, blood oxygenation level dependent
contrast (BOLD), spectroscopic analysis of brain
metabolites, and blood flow/perfusion using
dynamic susceptibility contrast (DSC) or arterial
spin labeling methods (Catana 2017). As an addi-
tional advantage over CT imaging, MR imag-
ing does not employ ionizing radiation thus avoiding
risks associated with radiation exposure. Although
the combined visualization of PET and MR images
acquired separately has been possible for a long
time with the aid of co-registration software, the
simultaneous acquisition of the two imaging modal-
ities offers additional advantages such as the tempo-
ral correlation of the measurements, improved
spatial registration, potential for MR-based motion
correction of PET data, and improved workflow and
patient’s comfort.

Simultaneous PET/MR scanners for human
imaging were introduced commercially in 2010
by Siemens (Biograph mMR (Delso et al. 2011)),
followed more recently by General Electric
(SIGNA PET/MR (Levin et al. 2016)). Both sys-
tem designs include a 60-cm bore 3 tesla (3T)
superconductive magnet with the PET compo-
nents inserted between the body radiofrequency
coil and the gradient set. Both PET/MR systems
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are based on solid-state photodetectors, but only
the SIGNA has TOF capability. Although the
incorporation of TOF results in improved signal-
to-noise ratio compared to the standard non-TOF
images, the benefit is dependent on the size of the
object being imaged and is, therefore, limited in
the brain compared to other body areas such as
the abdomen (Lois et al. 2010).

The development of simultaneous PET/MR
systems had to overcome a number of technical
challenges comprising both the PET and MR sub-
systems (Rausch et al. 2017; Catana 2017; Beyer
et al. 2010). Traditionally, most PET scanners
used photomultiplier tubes (PMTs) to convert the
scintillation light into an electrical signal. PMTs
are, however, very sensitive to magnetic fields and
thus do not work properly inside a MR device.
Current simultaneous PET/MR systems have cir-
cumvented this issue by substituting PMTs by
MR-compatible  solid-state ~ photodetectors
(Pichler et al. 1977; Catana et al. 2008; Judenhofer
et al. 2008; Yamamoto et al. 2011; Hong et al.
2008), such as avalanche photodiodes (APDs) in
the Biograph mMR and silicon photomultipliers
(SiPMs or Geiger mode APDs) in the Signa PET/
MR. In addition, solid-state photodetectors are
very small compared to standard PMTs and facili-
tate the design of compact detector modules. This
characteristic is of great importance, as simulta-
neous PET/MR systems require the placement of
the PET detectors in the MR bore. Due to this
localization, the PET and MR sub-systems can
cause mutual interference if not carefully
designed: the PET performance can be affected
by the high static magnetic field, gradient fields,
and radiofrequency fields; the MR performance
can be affected by electromagnetic interference in
the radiofrequency by the PET electronics or
magnetic field inhomogeneities caused by the
PET components. As an additional consideration,
the MR radiofrequency coils have to be designed
to minimally attenuate the 511 keV PET photons
since they are located in the PET field of view.

Finally, a major challenge in combined PET/
MR is determining the necessary attenuation cor-
rection factors for the PET emission data. Due to
lack of space, PET/MR scanners cannot fit the
transmission hardware inside the MR bore, and

transmission data from a CT is not available
either. Therefore, the correction factors have to
be derived from the MR data. However, since the
MR signal depends on proton density and tissue
relaxation and does not provide the information
needed for attenuation correction (electron den-
sity), the attenuation correction factors have to be
derived by other means. Among the different
methods proposed to perform attenuation correc-
tion in PET/MR, there are algorithms based on
segmentation, on atlases, machine learning, and
on the simultaneous reconstruction of emission
and attenuation data (Izquierdo-Garcia and
Catana 2016; Chen and An 2017). Clinical scan-
ners favor segmentation methods: a segmentation
of the anatomical MR scan assigns each voxel to
a tissue type and each tissue type to a predeter-
mined attenuation value. Current clinical scans
use only a few tissue types and often misclassify
bone as soft tissue (Martinez-Moller et al. 2009).
Ladefoged et al. recently published a comprehen-
sive comparison of different attenuation correc-
tion methods in brain PET/MR (Ladefoged et al.
2017). A total of 11 different algorithms, includ-
ing two used clinically, were compared using
CT-based attenuation correction as the reference
standard. The authors found that the evaluated
methods provided results very similar to a
CT-based attenuation correction (within £5% in
about 80% of the brain volume). The authors
concluded that the challenge of improving the
accuracy of MR-based attenuation correction in
adult brains with normal anatomy was solved to a
quantitatively acceptable degree.

The potential to leverage the strengths of both
PET and MR amid the limitations of each imag-
ing modality is the unique advantage of simulta-
neous PET/MR imaging, particularly for brain
(Fig. 7.4). The combined modality enables a high
degree of spatial registration between the PET
and MR images and application of advanced
MR-guided motion and partial volume correction
methods for PET, as mentioned above. Figure 7.5
shows example PET images of the histone
deacetylase inhibitor, [!!C]martinostat, acquired
in a healthy control subject, as part of a study of
epigenetics in schizophrenia (Gilbert et al. 2019).
The images were acquired on the dedicated
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Positron Emission Tomography (PET)

Advantages:

. Sensitivity and molecular specificity of PET coupled with rational radiotracer design and
kinetic modeling methods enable quantification of physiological parameters in brain, from
BBB transport to specific ligand—protein binding interactions (nM to pM concentrations)

Limitations:
. Limited spatial and temporal resolution (relative to MRI).
. Expense and labor needed to generate positron-emitting radionuclides on-site (mitigated

somewhat by radiopharmaceutical distributors)

Magnetic Resonance Imaging (MRI)

Advantages:

. Excellent soft tissue contrast and exquisite spatial resolution for anatomical imaging and
capability to assess function, e.g. diffusion-weighted imaging, dynamic contrast-enhanced
imaging, fMRI, MR spectroscopy

Limitations:

. Limited sensitivity for direct imaging of physiological processes using basic hydrogen proton
MRI contrasts because of the abundance of hydrogen in water in the body (relative to PET)

. Expense of cryogen-based imaging systems

Fig. 7.4 Key advantages and limitations of PET and MR imaging

Fig.7.5 Example of PET/MR imaging of histone deacy-
telase activity (HDAC) using ['!C] martinostat. Orthogonal
views of the [''C] martinostat SUV images (averaged
60-90 min post-injection) are overlaid on the T1-weighted
3 T structural MR image (MPRAGE). Also shown are
edges of the regional Freesurfer parcellations determined

using the MPRAGE image data. The PET and MR images
were simultaneously acquired on the Siemens BrainPET
that is a dedicated PET/MR system for brain imaging
(Schlemmer et al. 2008). The images were acquired in a
57 year old female control study participant. [Courtesy of
Dr. Hooker, MGH (Gilbert et al. 2019)]
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Siemens BrainPET system (image resolution
3—4 mm).

An early example of innovative simultaneous
PET/MR imaging is the work of Sander et al.
(2013) to demonstrate relationships between
changes in dopamine receptor drug occupancy
(with PET) and hemodynamics (with fMRI) in
the basal ganglia (Fig. 7.6). This study is one of
the earliest demonstrations of the power of simul-
taneous molecular, functional and structural neu-
roimaging, in its combined capacity to link
neurovascular response to the level of drug bind-
ing to dopamine receptors in vivo, with informa-
tion about temporal dynamics and spatial
distribution. These findings were important also
for the development of an advanced physiologi-
cal model for pharmacologic fMRI that described
the fMRI response to drug-induced elevations in
synaptic dopamine within a multi-receptor
framework (Mandeville et al. 2013). This
advanced model is innovative and an interesting
melding of modeling methodology used in both
fMRI and PET research that is potentially exten-

Fig. 7.6 Example of
simultaneous PET/MR
imaging of dopamine
D2/D3 antagonist ([''C]
raclopride) drug
challenge and its
functional response on
cerebral blood volume
(CBYV) are correlated in
space. [Reproduced with
permission (Sander et al.
2013)]

N

4.5 pg/kg
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sible to other applications. Other novel work in
the simultaneous PET/fMRI field includes imag-
ing of agonist-induced dopamine D,/D; receptor
desensitization and internalization using graded
doses of a dopamine D, receptor agonist (Sander
et al. 2016) and studies of the opioid system in
pain (Wey et al. 2014). Table 7.2 outlines consid-
erations important in the design of such com-
bined studies whilst other factors, such as relevant
timescales for PET and fMRI signal detectability,
are discussed by Sander and Hesse (2017).

In summary, PET is a powerful tool when
combined with rational radioligand design to tar-
get protein sites with high molecular specificity
and selectivity. Many targets that range from neu-
roreceptors to enzymes have been applied for
human use and complement the large investiga-
tions performed to date applying PET to the study
pre- and post-synaptic dopaminergic system
changes in schizophrenia. The combination of
PET and MR imaging is highly complementary
and synergistic, and empowers neuroimaging
research. PET has excellent sensitivity and can

Increasing raclopride mass dose

16 pg’kg 40 pg/kg

Radiotracer competes w/ cold mass

H\,\

Localized POSITIVE CBYV response
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Table 7.2 Considerations for human PET and MR mul-

timodality brain imaging

Corrections

Test-retest

Experimental
design

Resolution

Timing
issues

Confounds

PET (s to min)

Attenuation, dead
time, decay,
motion
Flow, metabolism,
ligand binding
(baseline, drug
challenge)
outcomes
Bolus or
bolus + constant
infusion
Dynamic or static
ROI or voxel level
Scanner limited,
detector
parameters,
spillover
HR+ ~6 mm; PET/
CT ~5 mm;
BrainPET PET/
MR ~3 mm;
HRRT ~3 mm
Half-life
Measurement
steady state
Image over min,
hours?
— Age, gender,
medication
— Atrophy
— Endogenous
neurotransmitter
levels
(baseline receptor
occupancy—
Molar activity)

BOLD fMRI (ms)
Shim, bias,

signal drift,
motion

Task response,
resting state
(baseline, drug
challenge)

Block design or
event related
Complexity of
task

Ability to
estimate timing
of neuronal
activity from
measured
hemodynamic
changes

~2-3 mm

Hemodynamic
response
Measurement
steady state

— Age, gender,
medication
— Atrophy

C.Lois etal.

Summary

PET imaging measures biological pro-
cesses at the molecular and cellular lev-
els through the measurement of the
spatial and temporal radioactivity distri-
butions of imaging agents labeled with
positron-emitting radionuclides.

PET offers a wide range of molecular
probes to image different brain targets
such as numerous neuroreceptor sys-
tems, translocator proteins, amyloid
plaques and glucose metabolism.

Main strength of PET imaging: allows
quantitative in vivo imaging of ligand-
binding interactions at low nM to pM
concentration levels through application
of tracer kinetic principles

Main limitations of PET imaging: lim-
ited spatial resolution, limited anatomi-
cal information, scatter/attenuation,
partial volume effects

Simultaneous PET/MR brain imaging
offers acquisition of multimodal neuro-
imaging measures during the same
physiologic condition, leverages sensi-
tivity and molecular specificity of PET
with exquisite MRI anatomical resolu-
tion and fMRI measures of brain
activity

measure quantitatively picomolar concentrations
but lacks the spatial resolution provided by
MR imaging. On the other hand, structural MR
imaging provides high-resolution anatomical
information but lacks sensitivity and quantifica-
tion. Compared to CT, MR imaging offers higher
gray/white matter contrast and no damage from
ionizing radiation. Simultaneous PET/MR
enables for novel combinations of PET molecular
imaging capabilities with structural and func-
tional MR imaging sequences that together can
uniquely inform about in vivo physiology in
health and disease.
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