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On the Energy Decay of a
Nonhomogeneous Hybrid System of
Elasticity
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Abstract In this paper, we study the boundary stabilizing feedback control problem
of well-known Scole model that has nonhomogeneous spatial parameters. By
using an abstract result of Riesz basis, we show that the closed-loop system is a
Riesz spectral system. The asymptotic distribution of eigenvalues, the spectrum-
determinded growth condition and the exponential stability are concluded.
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3.1 Introduction

The boundary and internal control problem of flexible structure has recently
attracted much attention with the rapid development of high technology such as
space science and flexible robots. In this paper, we study the boundary feedback
stabilization of the nonuniform Scole model. Consisting of an elastic beam, linked
to a rigid antenna, this dynamical system is governed by the nonuniform Euler–
Bernoulli equation for the vibration of the elastic beam and the Newton–Euler rigid
body equation for the oscillation of the antenna. The nonuniform Scole model in the
case of a hinged (or “pinned”) beam, correspond to the following hybrid system:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ(x)ytt (x, t) + (EI (x)yxx(x, t))xx = 0 , 0 < x < 1, t > 0,

yx(0, t) = 0, (y + (EI (.)yxx)x + ayt )(0, t) = 0, t > 0,

(mytt − (EI (.)yxx)x)(1, t) = −byt (1, t) t > 0,

(Jyxtt + EI (.)yxx)(1, t) = −cyxt (1, t), t > 0,

y(x, 0) = y0(x) , yt (x, 0) = y1(x) , 0 < x < 1,

(3.1)
where y represents the transversal displacement of the beam, x denotes the position,
and t denotes the time. ρ(x) is the mass density of the beam and EI (x) is its flexural
rigidity. m is the mass of the antenna and J is its moment of inertia. a, b, and c, are
constants feedback gains.

For further description of the physical structure of the system, we refer to
Littman–Markus [5]. Furthermore, the coefficients are supposed to be variable
because it is common in engineering, to adopt problems with nonhomogeneous
materials such as smart materials [4]. Notice that the boundary feedbacks can be
realized by means of passive mechanical systems of springs-dampers similar to
those used in [1]. The stabilization problem of system (3.1) has been the subject
of many studies. When the coefficients ρ,EI are supposed to be constants, Rao in
[9] establish the uniform energy decay by using energy multiplier method [6]. It
seems to be difficult to extend this method to the nonuniform case. In this paper, we
extend the results obtained in [9] to variable coefficients. By using the Riesz basis
approach, we show that the generalized eigenfunctions of the system form a Riesz
basis for the state Hilbert space. As a consequence, the asymptotic expressions of
eigenvalues together with exponential stability are obtained.

The rest of this paper is organized as follows. In Sect. 3.2, the well-posedness
and the asymptotic stability of the closed-loop system are established. Section 3.3
is devoted to the asymptotic analysis for the eigenpairs of the closed-loop system.
Finally, in Sect. 3.4, we prove the Riesz basis property, the spectrum determined
growth condition and the optimal decay rate.

Throughout this paper, we assume that

(EI (.), ρ(.)) ∈ [C4(0, 1)]2, ρ, EI > 0, m, J > 0, (3.2)

and the constants a, b, and c satisfy the dissipation condition

a > 0, b ≥ 0, c > 0. (3.3)

3.2 Well-Posedness and Asymptotic Stability

We consider system (3.1) on the following complex Hilbert space:

H=V×L2(0, 1) × C
2, (3.4)
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where

V = {f ∈ H 2(0, 1)/f ′(0) = 0}, (3.5)

equipped with the inner product defined as
∀(F = (f1, g1, ζ1, δ1),G = (f2, g2, ζ2, δ2)) ∈ H

2

(F,G)H =
∫ 1

0
(ρ(x)g1(x)g2(x) + EI (x)f ′′

1 (x)f ′′
2 (x))dx + f1(0)f2(0)

+ 1

m
ζ1ζ2 + 1

J
δ1δ2. (3.6)

Then, we define an operator as follows: A : D(A) ⊂ H→H

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D(A) = {(f, g, ζ, δ) ∈ (H 4(0, 1) ∩ V) × V × C
2/f (0) + (EI (.)f ′′)′(0) + ag(0) = 0,

ζ = mg(1), δ = Jg′(1)}

A(f, g, ζ, δ)=
(

g,
−(EI (.)f ′′(.))′′

ρ(.)
, (EI (.)f ′′)′(1)−bg(1),−(EI (1)f ′′(1) + cg′(1))

)

,

(3.7)

with the initial condition Y0 = (
y0, y1,my1(1), Jy′

1(1)
)
, the system (3.1) can be

written as an evolutionary equation in H :
⎧
⎪⎨

⎪⎩

dY (t)

dt
= AY (t),

Y (t) = (y(., t), yt (., t),myt (1, t), Jyxt (1, t)), Y (0) = Y0.

(3.8)

We have the following Lemma

Lemma 3.1 Let the operator A defined by (3.7). Then A is a densely defined,
closed dissipative operator in H, and A

−1 exists and is compact on H. Moreover,
A generates a C0 semigroup of contractions eAt on H and the spectrum σ(A) of A
consists only of the isolated eigenvalues.

Proof Let (f, g, ζ, δ) ∈ D(A), then we have

Re(AY, Y )H = −a |g(0)|2 − b |g(1)|2 − c
∣
∣g′(1)

∣
∣2

. (3.9)

Thus A is dissipative in H. Next, we show that A−1 exists. Let (u, v, ω, ξ) ∈ H, we
will find (f, g, ζ, δ) ∈ D(A) such that

A(f, g, ζ, δ) = (u, v, ω, ξ) ∈ H,
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which yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g = u, ζ = mg(1) = mu(1), δ = Jg′(1) = Ju′(1),

(EI (.)f ′′)′′(x) = −ρ(x)v(x),

f ′(0) = 0, f (0) + (EI (.)f ′′)′(0) + au(0) = 0,

(EI (.)f ′′)′(1) − bu(1) = ω,

− (EI (1)f ′′(1) + cu′(1)) = ξ.

After a simple calculation, we show that

f (x) = f (0) −
∫ x

0

∫ y

0
drdy

[
β(1 − r) + α

EI (r)
+ 1

EI (r)

∫ 1

r

∫ 1

s

ρ(x)v(x)dtds

]

,

where

⎧
⎪⎨

⎪⎩

f (0) = −(β + au(0) +
∫ 1

0

∫ 1

r

ρ(x)v(x)dsdr),

α = ξ + cu′(1), β = ω + bu(1).

Thus, A
−1 exists and is bounded in H. Furthermore, the Sobolev embedding

theorem, implies that A−1 is compact on H and the Lumer–Phillips theorem [8]
can be applied to conclude that A generates a C0 semigroup of contractions eAt in
H. The Lemma is proved. 	


Now, we turn our attention to the asymptotic stability of the system.

Lemma 3.2 Let A be the operator defined by (3.7). Then �e(A) < 0 and hence the
system (3.1) is asymptotically stable.

Proof It suffices to show that {iγ, γ ∈ R} ⊂ ρ(A). Assume that this is false. This
together with Lemma 3.1 implies that there exists nonzero γ ∈ R such that iγ ∈
σ(A), where σ(A) is the point spectrum, i.e., there exists φ = (f, g, ζ, δ) ∈ D(A)

satisfying without loss of generality, the conditions ‖φ‖H = 1 and (iγ − A)φ = 0
i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(EI (.)f ′′)′′(x) − γ 2ρ(x)f (x) = 0,

f ′(0) = 0, −(EI (.)f ′′)′(0) = (1 + iγ a)f (0),

(EI (.)f ′′)′(1) = (−γ 2m + iγ b)f (1),

− EI (1)f ′′(1) = (−γ 2J + iγ c)f ′(1),

g = iγf, ζ = iγmf (1), δ = iγ Jf ′(1).

(3.10)



3 On the Energy Decay of a Nonhomogeneous Hybrid System of Elasticity 37

Using (3.9), we obtain g′(1) = f ′(1) = 0 and f (0) = 0, which further implies by
means of (3.10) that f ′′(1) = 0 and the system (3.10) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(EI (.)f ′′)′′(x) − γ 2ρ(x)f (x) = 0,

f (0) = f ′(0) = (EI (.)f ′′)′(0) = 0,

f ′(1) = f ′′(1) = 0,

(EI (.)f ′′)′(1) = (−γ 2m + iγ b)f (1).

(3.11)

1. If b > 0, then from (3.9), g(1) = f (1) = 0, by means of (3.11), we have

(EI (.)f ′′)′(1) = 0

and the system (3.11) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(EI (.)f ′′)′′(x) − γ 2ρ(x)f (x) = 0,

f (0) = f ′(0) = (EI (.)f ′′)′(0) = 0,

f (1) = (EI (.)f ′′)′(1) = 0,

EI (1)f ′′(1) = 0.

(3.12)

It has been proved in [3] that the above system has only the trivial solution, i.e.,
f = 0. Then φ = 0, which contradict the first that ‖φ‖H = 1.

2. If b = 0. First, assume that

f (1) > 0 (the negative case is similar),

which implies by the last boundary condition in (3.11) that

(EIf ′′)′(1) < 0.

Let [c, 1] be a subspace of [0, 1] so that f (x) > 0 for each x ∈ (c, 1], f (c) = 0.

Then,

(EI (.)f ′′)′′(x) > 0, for any x ∈ (c, 1].

Hence, (EI (.)f ′′)′ is increasing in (c, 1]. Since

(EI (.)f ′′)′(1) < 0,

we have

(EI (.)f ′′)′(x) < 0, for any x ∈ (c, 1].
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It follows that EI (x)f ′′(x) is decreasing in (c, 1]. Since

EI (1)f ′′(1) = 0,

we have

f ′′(x) > 0, for any x ∈ (c, 1).

So, f ′(x) is increasing in (c, 1). Since f ′(1) = 0, we have

f ′(x) < 0, for any x ∈ (c, 1).

Hence, f (x) is decreasing in (c, 1), and so,

f (c) > f (1) > 0,

contradicts the assumption that f (c) = 0. Therefore, f (1) = 0. Now, (3.11) implies
that f satisfies system (3.12). We can conclude as in 1. The Lemma 3.2 (in the end
of proof of Lemma 3.2) is proved. 	


3.3 Asymptotic Expressions of Eigenfrequencies

Note that

Aφ = λφ, φ = (f, g, ζ, δ), (3.13)

yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(EI (.)f ′′)′′(x) + λ2ρ(x)f (x) = 0, 0 < x < 1,

f ′(0) = 0, f (0) + (EI (.)f ′′)′(0) + ag(0) = 0,

(EI (.)f ′′)′(1) = (λ2m + λb)f (1),

− EI (1)f ′′(1) = (λ2J + λc)f ′(1),

g(x) = λf (x), ζ = mg(1), δ = Jg′(1).

(3.14)

Writing (3.14) in the standard form of a linear differential operator with homoge-
neous boundary conditions, we obtain
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f (4)(x) + 2EI ′(x)

EI (x)
f ′′′(x) + EI ′′(x)

EI (x)
f ′′(x) + λ2 EI (x)

ρ(x)
f (x) = 0, 0 < x < 1,

f ′(0) = 0, λf (0) + a1f
′′′(0) + a2f

′′(0) + a3f (0) = 0,

λ2f (1) + a4λf (1) − a5f
′′′(1) − a6f

′′(1) = 0,

λ2f ′(1) + a7λf
′(1) + a8f

′′(1) = 0,

(3.15)
where

⎧
⎪⎪⎨

⎪⎪⎩

a1 = EI (0)

a
, a2 = EI ′(0)

a
, a3 = 1

a
, a4 = b

m
,

a5 = EI (1)

m
, a6 = EI ′(1)

m
, a7 = c

m
, a8 = EI (1)

J
.

(3.16)

In order to simplify the computations, we introduce a spatial scale transformation
in x.

(z) = f (x), z = z(x) = 1

p

∫ x

0

( ρ(s)

EI (s)

)1/4
ds, p =

∫ 1

0

( ρ(s)

EI (s)

)1/4
ds,

(3.17)
then  satisfies the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)(z) + a(z)′′′(z) + b(z)′′(z) + c(z)′(z) + λ2p4(z) = 0,

′(0) = 0, λ(0) + b1
′′′(0) + b2

′′(0) + b3
′(0) + a3(0) = 0,

λ2(1) + a4λ(1) − b4
′′′(1) − b5

′′(1) − b6
′(1) = 0,

λ2′(1) + a7λ′(1) + b7
′′(1) + b8

′(1) = 0,

(3.18)

where a(z), b(z), and c(z) are the smooth functions defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(z) = 6z′′

z′2 + 2EI ′(x)

z′EI (x)
,

b(z) = 3z′′2

z′4 + 6z′′EI ′(x)

z′3EI (x)
+ EI ′′(x)

z′2EI (x)
+ 4z′′′

z′3 ,

c(z) = z′′′′

z′4 + 2z′′′EI ′(x)

z′4EI (x)
+ z′′EI ′′(x)

z′4EI (x)
,

(3.19)

and
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = a1z
′3(0), b2 = 3a1z

′(0)z′′(0) + a2z
′2(0),

b3 = a1z
′′′(0) + a2z

′′(0), b4 = a5z
′3(1),

b5 = 3a5z
′(1)z′′(1) + a6z

′2(1), b6 = a5z
′3(1) + a6z

′′(1),

b7 = a8z
′(1), b8 = a8z

′′(1)

z′(1)
.

(3.20)

Equation (3.18) can be simplified by applying another invertible transformation

ϕ(z) = e1/4
∫ z

0 a(s)ds (z), (3.21)

which allows one to cancel the term a(z)′′′(z) in (3.18); hence, ϕ satisfies the
following equivalent eigenvalue problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(4)(z) + a1(z)ϕ
′′(z) + a2(z)ϕ

′(z) + a3(z)ϕ(z) + λ2p4ϕ(z) = 0,

ϕ′(0) − a(0)

4
ϕ(0) = 0, λϕ(0) + b1ϕ

′′′(0) + F1(ϕ(0), ϕ′(0), ϕ′′(0)) = 0,

λ2ϕ(1) + a4λϕ(1) − b4ϕ
′′′(1) + F2(ϕ(1), ϕ′(1), ϕ′′(1)) = 0,

λ2(ϕ′(1) − a(1)

4
ϕ(1)) + a7λ(ϕ′(1) − a(1)

4
ϕ(1)) + F3(ϕ(1), ϕ′(1), ϕ′′(1)) = 0,

(3.22)
where a1(z), a2(z) and a3(z) are the smooth functions defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1(z) = −3a′(z)
2

− 3a2(z)

8
+ b(z),

a2(z) = a3(z)

8
− a′′(z) − a(z)b(z)

2
+ c(z),

a3(z) = 3a′2(z)
16

− a′′′(z)
4

− 3a4(z)

256
+ 3a2(z)a′(z)

32

+ b(z)(
a2(z)

16
− a′(z)

4
) − a(z)c(z)

4
,

(3.23)

and F1(x1, x2, x3), F2(x1, x2, x3), and F3(x1, x2, x3) are linear combinations of
x1, x2, and x3.

To estimate asymptotically the solutions to the eigenvalue problem (3.22), we
proceed as in [7]. First due to Lemma 3.2 and the fact that eigenvalues of A are
symmetric with respect to the real axis, we only need to consider those λ ∈ σ(A)

that satisfy
π

2
≤ arg λ ≤ π , which we assume in the sequel. Next, we set λ = τ 2

and hence
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π

4
≤ arg τ ≤ π

2
.

Now, let us choose ωj , j = 1, 2, 3, 4 as follows:

ω1 = −1 + i√
2

, ω2 = 1 + i√
2

, ω3 = −ω2, ω4 = −ω1,

consequently, we have for τ ∈ S =
{
τ/

π

4
≤ arg τ ≤ π

2

}

⎧
⎪⎪⎨

⎪⎪⎩

Re(τω1) = − | τ | sin(arg τ + π

4
) ≤ −

√
2 | τ |

2
< 0,

Re(τω2) =| τ | cos(arg τ + π

4
) ≤ 0.

(3.24)

In order to analyze the asymptotic distribution of eigenpairs for (3.22), we need the
following result [10].

Lemma 3.3 For | τ | large enough and τ ∈ S, there are four linearly independent
asymptotic fundamental solutions ϕj , j = 1, 2, 3, 4, to

ϕ(4)(z) + a1(z)ϕ
′′(z) + a2(z)ϕ

′(z) + a3(z)ϕ(z) + τ 4p4ϕ(z) = 0, (3.25)

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕj (z, τ ) = eτωj z

(

1 + ϕj1(z)

τ
+ O

(
τ−2

))

,

ϕ′
j (z, τ ) = τωj e

τωj z

(

1 + ϕj1(z)

τ
+ O

(
τ−2

))

,

ϕ′′
j (z, τ ) = (τωj )

2eτωj z

(

1 + ϕj1(z)

τ
+ O

(
τ−2

))

,

ϕ′′′
j (z, τ ) = (

τωj

)3
eτωj z

(

1 + ϕj1(z)

τ
+ O

(
τ−2

))

,

(3.26)

where

ϕj1(z) = − 1

4ωj

∫ z

0
a1(s)ds.

Hence, for j = 1, 2, 3, 4,

ϕj1(0) = 0, ϕj1(1) = − 1

4ωj

∫ 1

0
a1(s)ds = 1

ωj

μ, μ = −1

4

∫ 1

0
a1(s)ds.
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For convenience, we introduce the notation [r]j = r + O
(
τ−j

)
for j = 1, 2. From

Lemma 3.3, one can write the asymptotic solution of (3.22) as follows:

ϕ(z) = d1ϕ1(z) + d2ϕ2(z) + d3ϕ3(z) + d4ϕ4(z), (3.27)

where ϕj , j = 1, 2, 3, 4 are defined by Lemma 3.3 and dj , j = 1, 2, 3, 4 are
chosen so that ϕ satisfy the boundary conditions of (3.22). Note that λ = τ 2 �= 0, is
the eigenvalue of (3.22) if and only if τ satisfies the characteristic determinant

�(τ) =

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

τω1[1 − a0
τω1

]2 τω2[1 − a0
τω2

]2

τ 3ω3
1[b1 − ω1

τ
]2 τ 3ω3

2[b1 − ω2

τ
]2

τ 4[1 + μ + b4

τω1
]2e

τω1 τ 4[1 + μ + b4

τω2
]2e

τω2

τ 5[ω1 + b9

τ
]2e

τω1 τ 5[ω2 + b9

τ
]2e

τω2

(3.28)

τω3[1 − a0
τω3

]2

τ 4ω3
3[b1 − ω3

τ
]2

τ 4[1 + μ + b4

τω3
]2e

τω3

τ 5[ω3 + b9

τ
]2e

τω3

τω4[1 − a0
τω4

]2

τ 3ω3
4[b1 − ω4

τ
]2

τ 4[1 + μ + b4

τω4
]2e

τω4

τ 5[ω4 + b9

τ
]2e

τω4

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

,

where

a0 = a(0)

4
, b9 = μ − a(1)

4
.

Noting that from (3.24)

|eτω2 | ≤ 1, |eτω1 | = O(e−q|τ |) as |τ | → +∞,

for some constant q > 0, then each element of the matrix in (3.28) is bounded, we
may rewrite (3.28) as
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τ−13eτ(ω1+ω2)�(τ) =

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

ω1(1 − a0
τω1

) ω2(1 − a0
τω2

) −ω2(1 + a0
τω2

)eτω2

ω3
1(b1 − ω1

τ
) ω3

2(b1 − ω2

τ
) −ω3

2(b1 + ω2

τ
)eτω2

0 (1 + μ + b4

τω2
)eτω2 (1 − μ + b4

τω2
)

0 (ω2 + b9

τ
)eτω2 (−ω2 + b9

τ
)

(3.29)
0
0

(1 − μ + b4

τω1
)

(−ω1 + b9

τ
)

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

+ O
(
τ−2

)
.

A direct calculation gives

τ−13eτ(ω1+ω2)�(τ)

= b1(ω1ω
3
2 − ω3

1ω2)

[

ω2 − ω1 + (μ + b4)
(
ω1ω

−1
2 − ω2ω

−1
1

)
τ−1

]

+ (ω2 − ω1)(ω
3
1 − ω3

2)(ω1ω2 + a0b1)τ
−1 + e2τω2

{

b1(ω
3
1ω2 − ω1ω

3
2)

×
[

ω1 + ω2 + (μ + b4)(ω2ω
−1
1 − ω1ω

−1
2 )τ−1

]

+ (ω1 + ω2)(ω
3
1 + ω3

2)

× (b1a0 − ω1ω2)τ
−1

}

+ O
(
τ−2

)
.

A straightforward simplification will arrive at the following result.

Theorem 3.1 Let λ = τ 2 where τ ∈ S.

1. The characteristic determinant �(τ) of the eigenfunction problem (3.22) has the
following asymptotic expression in the sector S

τ−13eτ(ω1+ω2)�(τ) = 2
[
−√

2ib1 + (b10 − 1)τ−1
]

+ 2e2τω2
[
−√

2b1 + (−b10 − 1)τ−1
]

+ O
(
τ−2

)
,

(3.30)
where b10 = b1[2(μ + b4) + a0].

2. Let σ(A) = {λn, λn, n ∈ N}, be the eigenvalues of A, then for k = n − 1

4
and

τn ∈ S, the following asymptotic expression holds
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τn = 1

ω2
kπi − 1

2
√

2b1

[
(1 − i)b10 + (1 + i)

kπi

]

+ O
(
n−2

)

λn = − 1

b1
+ (kπ)2i + b10i

b1
+ O

(
n−1

)
,

(3.31)

for sufficiently large positive integer n. Moreover, by (3.16) and (3.20), we obtain

lim
n→+∞ Re(λn) = − 1

b1
= − a

EI (0)z′3(0)
< 0. (3.32)

3. λn is geometrically simple when n is large enough.

Proof Note that λ = τ 2 ∈ σ(A), where τ ∈ S if and only if

− √
2ib1e

−τω2 − √
2b1e

τω2 + (b10 − 1)

τ
e−τω2 − (b10 + 1)

τ
eτω2 + O

(
τ−2

)
= 0,

(3.33)
which can be written as

− √
2ib1e

−τω2 − √
2b1e

τω2 + O
(
τ−1

)
= 0. (3.34)

Obviously, the equation

ie−τω2 + eτω2 = 0, (3.35)

has solutions

τ̃n = 1

ω2
kπi, n ∈ N, k = n − 1

4
. (3.36)

Applying Rouche’s theorem to (3.34), we obtain

τn = τ̃n + αn = 1

ω2
kπi + αn, αn = O

(
n−1

)
, n = N,N + 1 . . . , (3.37)

where N is large positive integer.
Substituting τn into (3.33) and using the fact that eτ̃nω2 = −ie−τ̃nω2 , we obtain

−√
2ib1e

−αnω2 + √
2ib1e

αnω2 + (b10 − 1)̃τ−1
n e−αnω2 + i(b10 + 1)̃τ−1

n eαnω2

+ O
(
τ̃−2
n

)
= 0.

On the other hand, expanding the exponential function according to its Taylor series,
we obtain

αn = − 1

2
√

2b1

[
b10(1 − i) + (1 + i)

kπi

]

+ O
(
n−2

)
. (3.38)
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Substituting this estimate in (3.37), we have,

τn = kπi

ω2
− 1

2
√

2b1

[
b10(1 − i) + (1 + i)

kπi

]

+ O
(
n−2

)
, n = N,N + 1, . . . .

(3.39)

Finally, recall that λn = τ 2
n , ω2 = 1 + i√

2
, ω2

2 = i, and hence the last estimate yields

λn = − 1

b1
+ (kπ)2i + b10i

b1
+ O

(
n−1

)
, n = N,N + 1, . . . ,

where N is sufficiently large.
Since the matrix in (3.29) has rank 3 for each sufficiently large n, there is only

one linearly independent solution ϕn to (3.22) for τ = τn. Hence, each λn is
geometrically simple for n sufficiently large. The theorem is proved. 	

Theorem 3.2 Let λn = τ 2

n where τn ∈ S is given by (3.31). Then the corresponding
eigenfunction {φn = (fn, λnfn, ζn, δn), φn = (fn, λn fn, ζn, δn)} has the following
asymptotic:

λnfn(x) = e−1/4
∫ z

0 a(s)ds

[√
2cos(n−1/4)πz−(−1)ne−(n−1/4)π(1−z)+O

(
n−1

) ]

,

(3.40)

f ′′
n (x) = 1

p2

(
ρ(x)

EI (x)

)1/2

e−1/4
∫ z

0 a(s)ds

[√
2icos(n − 1/4)πz + i(−1)n

×e−(n−1/4)π(1−z) + O
(
n−1

) ]

, (3.41)

ζn = O
(
n−1

)
, δn = O

(
n−2

)
. (3.42)

Proof From (3.25), (3.26), (3.28), and a simple fact of linear algebra, the eigen-
function ϕn corresponding to λn is given by

ϕn(z) =

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

τnω1[1]1 τnω2[1]1 τnω3[1]1 τnω4[1]1

eτnω1z[1]1 eτnω2z[1]1 eτnω3z[1]1 eτnω4z[1]1

τ 4
n eτnω1 [1]1 τ 4

n eτnω2 [1]1 τ 4
n eτnω3 [1]1 τ 4

n eτnω4 [1]1

τ 5
nω1e

τnω1 [1]1 τ 5
nω2e

τnω2 [1]1 τ 5
nω3e

τnω3 [1]1 τ 5
nω4e

τnω4 [1]1

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

,

(3.43)
then
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ω2
2e

τn(ω1+ω2)ϕn(z) = τ 10
n

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

−[1]1 i[1]1 −ieτnω2 [1]1 eτnω1 [1]1

eτnω1z[1]1 eτnω2z[1]1 eτnω2(1−z)[1]1 eτnω1(1−z)[1]1

eτnω1 [1]1 eτnω2 [1]1 [1]1 [1]1

−eτnω1[1]1 ieτnω2 [1]1 −i[1]1 −[1]1

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

= τ 10
n

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

−1 i −ieτnω2 0
eτnω1z eτnω2z eτnω2(1−z) eτnω1(1−z)

0 eτnω2 1 1
0 ieτnω2 −i 1

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

+ O
(
τ−1
n

)

= τ 10
n

{

− (1 + i)eτnω2z + (1 − i)eτnω2(1−z)eτnω2 + 2ieτnω1(1−z)eτnω2

+ (1 − i)eτnω1z − (i + 1)eτnω1ze2τnω2

}

+ O
(
τ−1
n

)
.

It follows from (3.35) that e2τnω2 = −i + O
(
τ−1
n

)
, and hence the last estimate

yields

−ω2
2e

τn(ω1+ω2)ϕn(z)

(1 + i)τ 10
n

=
{

eτnω2z + ieτnω2(1−z)eτnω2 − (i + 1)eτnω1(1−z)eτnω2

}

+ O
(
n−1

)
.

Similarly

−ω2
2e

τn(ω1+ω2)ϕ′′
n(z)

(1 + i)τ 12
n

=

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

−[1]1 i[1]1 −ieτnω2 [1]1 eτnω1 [1]1

−ieτnω1z[1]1 ieτnω2z[1]1 ieτnω2(1−z)[1]1 −ieτnω1(1−z)[1]1

eτnω1[1]1 eτnω2 [1]1 [1]1 [1]1

−eτnω1 [1]1 ieτnω2 [1]1 −i[1]1 −[1]1

⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

=
{

ieτnω2z − eτnω2(1−z)eτnω2z + (i − 1)eτnω1(1−z)eτnω2z

}

+ O
(
n−1

)
.

Moreover,

−ω2
2e

τn(ω1+ω2)ϕ′
n(z)

(i + 1)τ 11
n

= 1√
2

{

(i + 1)eτnω2z + (1 − i)eτnω2(1−z)eτnω2

− 2eτnω2eτnω1(1−z)

}

+ O
(
n−1

)
.
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We note from (3.31) that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

eτnω2 = ei(n−1/4)π + O
(
n−1

)
= (1 − i)(−1)n√

2
+ O

(
n−1

)
,

eτnω2z = ei(n−1/4)πz + O
(
n−1

)
,

eτnω1z = e−(n−1/4)πz + O
(
n−1

)
.

(3.44)

By setting

fn(x) = −ω2
2e

−1/4
∫ z

0 a(s)dseτn(ω1+ω2)ϕn(z)

(1 + i)τ 12
n

, (3.45)

the expression (3.40) can then be concluded. Furthermore,

−ω2
2e

τn(ω1+ω2)ϕ′
n(z)

(i + 1)τ 12
n

= O
(
n−1

)
,

then

f ′′
n (x) =

(
ρ(x)

EI (x)

)1/2

ω2
2e

−1/4
∫ z

0 a(s)dseτn(ω1+ω2)ϕ′′
n(z)

p2(1 + i)τ 12
n

, (3.46)

then the expression (3.41) is obtained. Also, from (3.40), we have

ζn = mλnfn(1) = me−1/4
∫ 1

0 a(s)ds
[√

2cos(n − 1/4)π − (−1)n + O
(
n−1

)]

= O
(
n−1

)
, (3.47)

also, we have from the boundary condition of (3.14), λnJf ′
n(1) = −EI (1)f ′′

n (1)

λnJ
−

cf ′
n(1), we obtain δn = Jλnf

′
n(1) = O

(
n−2

)
. The theorem is proved. 	


3.4 Riesz Basis Property

Definition 3.1 Let A be a closed-loop operator in a Hilbert space H. A nonzero
element x �= 0 ∈ H is called a generalized eigenvector of A corresponding to an
eigenvalue λ (with finite algebraic multiplicity) of A if there exists a nonnegative
integer n such that (λ − A)nx = 0.
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Definition 3.2 A sequence (xn)n≥1 in H is called a Riesz basis for H if there exists
an orthonormal basis (zn)n≥1 in H and a linear bounded invertible T ∈ L(H) such
that T xn = zn for any n ∈ N

∗.

Theorem 3.3 (See [2]) Let (λn)n≥1 ⊂ σ(A) be the spectrum of A. Assume that
each λn has a finite algebraic multiplicity mn and mn = 1 as n > N for some integer
N , then there is a sequence of linearly independent generalized eigenvectors {xn}mn

1
corresponding to λn. If

{{xn}mn

1

}

n≥1 forms a Riesz basis for H, then A generates a

C0 semigroup eAt which can be represented as

eAt x =
+∞∑

n=1

eλnt

mn∑

i=1

ani

mn∑

j=1

fnj (t)xnj ,

for any x = ∑+∞
n=1

∑mn

i=1 anixni ∈ H where fnj (t) is a polynomial of t with order
less than mn. In particular, if a∗ < Reλ < b∗ for some real numbers a∗ and b∗, then
A generates a C0 group on H. Moreover, the spectrum-determined growth condition
holds eAt : ω(A) = S(A), where

ω(A)= lim
t→+∞

1

t
|| eAt|| is the growth order of eAt and S(A)= sup{Reλ/ λ ∈ σ(A)}

is the spectral bound of A.

In order to remove the requirement of the estimation of the low eigenpairs of
the system, a corollary of Bari’s theorem is recently reported in [2], which provides
a much less demanding approach in generating a Riesz basis for general discrete
operators in the Hilbert spaces. The result is cited here.

Theorem 3.4 (See [2]) Let A be a densely defined discrete operator, that is, (λ −
A)−1 is compact for some λ in a Hilbert space H. Let {zn}+∞

1 be a Riesz basis for
H. If there are an N ≥ 0 and a sequence of a generalized eigenvectors {xn}+∞

N+1 of
A such that

+∞∑

n=N+1

‖xn − zn‖2 < +∞,

then

1. There are an M > N and generalized eigenvectors
{
xn0

}M

1 ∪ {xn}+∞
M+1 form a

Riesz basis for H.

2. Consequently, let
{
xn0

}M

1 ∪ {xn}+∞
M+1 correspond to eigenvalues {σn}+∞

1 of A,

then σ(A) = {σn}+∞
1 where σn is counted according to its algebraic multiplicity.

3. If there is an M0 > 0 such that σn �= σm for all m, n ≥ M0, then there is an
N0 > M0 such that all σn, n > N0 are algebraically simple.
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In order to apply Theorem 3.4 to the operator A when we consider {xn} in
Theorem 3.4 as the eigenfunctions of A, we need a referring Riesz basis {zn}1

+∞
as well. For the system (3.1), this is accomplished by collecting (approximately)
normalized eigenfunctions of the following free conservative system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x)ytt (x, t) + (EI (.)yxx)xx(x, t) = 0, 0 < x < 1, t > 0,

yx(0, t) = y(0, t) + (EI (.)yxx)x(0, t) = 0, t > 0,

(mytt − (EI (.)yxx)x)(1, t) = 0, t > 0,

(Jyxtt + EI (.)yxx)(1, t) = 0, t > 0,

y(x, 0) = y0(x), yt (x, 0) = y1(x), 0 < x < 1.

(3.48)

The system operator A0 associated with (3.48) is nothing but the operator A with

b = c = 1

a
= 0.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A0(f, g, ζ, δ) = (g,− 1

ρ(.)
(EI (.)f ′′)′′, (EI (.)f ′′)′(1),−EI (1)f ′′(1)),

D(A0) = {(f, g, ζ, δ) ∈ (H 4(0, 1) ∩ V) × V × C
2/f (0) + (EI (.)yxx)x(0) = 0,

ζ = Jg′(1), δ = mg(1)}.
(3.49)

A0 is skew-adjoint with compact resolvent in H. It is seen that all the analyses in
the previous sections for the operator A are still true for the operator A0. Therefore,
we have the following counterpart of Theorem 3.2 for the operator A0:

Lemma 3.4 Each eigenvalue υn0 of A0 with sufficiently large module is geometri-
cally simple hence algebraically simple.

The eigenfunctions
−→
�n0 = (fn0, υn0fn0 ,mυn0fn0(1), Jυn0f

′
n0

(1)) of υn0 have
the following asymptotic expressions:

υn0fn0(x) = e−1/4
∫ z

0 a(s)ds

[√
2cos(n−1/4)πz−(−1)ne−(n−1/4)π(1−z)+O

(
n−1

) ]

,

(3.50)

f ′′
n0

(x) = 1

p2

(
ρ(x)

EI (x)

)1/2

e−1/4
∫ z

0 a(s)ds

[√
2icos(n − 1/4)πz + i(−1)n

×e−(n−1/4)π(1−z) + O
(
n−1

)
]

,

(3.51)

ζn0 = O
(
n−1

)
, δn0 = O

(
n−2

)
, (3.52)

where all (υn0 , υn0), but possibly a finite number of other eigenvalues, are composed
of all the eigenvalues of A0.
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The eigenfunctions
−→
�n0 = (fn0 , υn0fn0 ,mυn0fn0(1), Jυn0f

′
n0

(1)) are normal-
ized approximately.

From a well-known result in functional analysis, we know that the eigenfunctions
of A0 form an orthogonal basis for H, particularly, all

−→
�n0 and their conjugates form

an (orthogonal) Riesz basis for H.
Then there exists a positive integer large enough N such that

+∞∑

n=N+1

∥
∥
∥
−→
 n − −→

� n0

∥
∥
∥

2

H

=
+∞∑

n=N+1

O(n−2) < +∞. (3.53)

The same result is verified for their conjugates. We can now apply Theorem 3.4 to
obtain the main results of the present paper.

Theorem 3.5 Let the operator be A defined by (3.7).

1. There is a sequence of generalized functions properly normalized of A which
forms a Riesz basis of the Hilbert space H.

2. The eigenvalues of A have the asymptotic behavior (3.31).
3. All λ ∈ σ(A) with sufficiently large modulus are algebraically simple. Therefore,

A generates a C0 semigroup on H. Moreover, for the semigroup eAt generated
by A, the spectrum-determined growth condition holds.

As a consequence of Theorem 3.5, we have a stability result for system (3.1).

Corollary 3.1 The system (3.1) is exponentially stable for any a > 0, b ≥ 0, and
c > 0.

Proof Theorem 3.5 ensures the spectrum-determined growth condition: ω(A) =
sup{Reλ : λ ∈ σ(A)}, Lemma 3.2 (in the proof of Corollary 3.1), say that Reλ < 0
provided λ ∈ σ(A) and Theorem 3.1 shows that imaginary axis is not an asymptote
of σ(A). Therefore sup{Reλ : λ ∈ σ(A)} < 0. 	
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