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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental
relationship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis, but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.

vii



viii ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time-frequency and

Numerical partial differential equations time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
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adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor



Preface

One of the impacts of the trifecta Technology, Engineering, and Mathematics
(TEM) on our daily life is the enormous amount of data we generate. For example,
Technology and Engineering are increasingly becoming the main source of “big
data” production. To analyze, organize, process, and act upon these data, researchers
in both academia and industry are devising new paradigms. These include powerful
machine learning algorithms, especially deep learning models such as convolutional
neural networks (CNNs), which have recently achieved outstanding predictive
performance in a wide range of multimedia applications, including visual object
classification, scene understanding, speech recognition, and activity prediction.
Many of these new applications are generally based on advances in mathematics,
and particularly, mathematical modeling, optimization, numerical analysis and
simulations, mathematical signal processing, and computer sciences.

From the modern engineering point of view, the forthcoming digital trans-
formation also triggers opportunities in new and growing fields including big
data analytics, artificial intelligence, automation, and imaging. Advances in digital
technologies for industries like augmented reality, virtual reality, and mixed reality
will also see valuable changes and developments in education and training delivery
using modern mathematics.

To offer a forum for researchers working in these fields to discuss the advances
and the challenges created by these new paradigms, the first edition of the
Technology, Engineering and Mathematics Conference (TEM18) was organized,
March 26 and 27, 2018, in Kenitra, Morocco (see http://ensa.uit.ac.ma/tem2018/ for
more details). It brought together a group of renowned researchers and professionals
both from academia and industries who presented their work on topics that were
thematically divided as follows:

• Big Data Analytics and Applications
• Biomathematics
• Computer Engineering and Applications
• Economics and Financial Engineering
• Harmonic Analysis

xi
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xii Preface

• Medical Imaging and Non-Destructive Testing
• Numerical Analysis and Modeling
• Optimization and Control
• Smart Technologies and Engineering
• Stochastic and Statistics

This volume grew out of the conference and includes papers based on some of the
presentations. It is designed to broadly engage the “Computer Sciences and Smart
Technologies” and the “Mathematical Modeling” communities on the problems and
challenges presented by the aforementioned paradigms.

Keeping with the theme of the conference, the volume is divided into the
following three parts:

• Part I entitled Mathematical modeling contains three papers/chapters centered
around harmonic analysis and differential equations both deterministic and
stochastic.

• Part II entitled Advanced mathematics for imaging is made up of three
papers/chapters dealing with image processing in general, and applications
to Non-Destructive Testing (NDT) and medical imaging (US and MRI) in
particular.

• Part III entitled Computer Sciences and Smart Technologies assembles four
papers/chapters dealing with applications in smart technologies such as improve-
ment of network lifetime or improvement of e-learning processes with fuzzy
logic and artificial intelligence.

To close, we would like to thank Professors Mohammed El Fatini and Hanaa El
Hachimi, both members of the organizing committee, for their help putting together
a successful conference. We also acknowledge the generous support of Professor
Nabil Hmina, Director of the National School of Applied Sciences, and Professor
Azeddine EL Midaoui, President of Ibn Tofail University Morocco.

Blois, France Serge Dos Santos
Kenitra, Morocco Mostafa Maslouhi
College Park, MD, USA Kasso A. Okoudjou
April 2019
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Part I
Mathematical Modeling

In this first part, we present the papers that are more mathematical in nature. In
particular, the first chapter written by M. El Kassim and S. Fahlaoui introduces a
two-sided Gabor Quaternic Fourier transform and develops some related uncertainty
principles. In Chap. 2, K. Akdim investigates the existence and the uniqueness of
solution for a family of reflected backward stochastic differential equations in a
convex polyhedron. Finally, in the last chapter of this part, M. D. Aouragh and
A. El Boukili analyze the decay of energy of a non-homogeneous hybrid systems of
elasticity.



Chapter 1
The Two-Sided Gabor Quaternionic
Fourier Transform and Uncertainty
Principles

Mohammed El Kassimi and Saïd Fahlaoui

Abstract In this paper, we define a new transform called the Gabor quaternionic
Fourier transform (GQFT), which generalizes the classical windowed Fourier
transform to quaternion-valued signals, and we give several important properties
such as the Plancherel formula and inversion formula. Finally, we establish the
Heisenberg uncertainty principles for the GQFT.

Keywords Quaternion algebra · Quaternionic transform · Gabor transform ·
Heisenberg uncertainty · Logarithmic uncertainty

1.1 Introduction

As it is known, the quaternion Fourier transform (QFT) is a very useful mathe-
matical tool. It has been discussed extensively in the literature and has proved to
be powerful and useful in some theories. In [1, 4, 7] the authors used the (QFT)
to extend the color image analysis. Researchers in [3] applied the QFT to image
processing and neural computing techniques. The QFT is a generalization of the
real and complex Fourier transform (FT), but it is ineffective in representing and
computing local information about quaternionic signals. A lot of papers have been
devoted to the extension of the theory of the windowed FT to the quaternionic case.
Recently Bülow and Sommer [4, 5] extend the WFT to the quaternion algebra.
They introduced a special case of the GQFT known as quaternionic Gabor filters.
They applied these filters to obtain a local two-dimensional quaternionic phase. In
[2] Bahri et al. studied the right-sided windowed quaternion Fourier transform.
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In [9] the authors studied two-sided windowed (QFT) for the case when the
window has a real value. In this paper, we study the two-sided quaternionic Gabor
Fourier transform (GQFT) with the window quaternionic value and some important
properties are derived. We start by reminding some results of two-sided quaternionic
Fourier transform (QFT), we give some examples to show the difference between
the GQFT and WFT, and we establish important properties of the GQFT like
inversion formula, Plancherel formula, using a version of Heisenberg uncertainty
principle for two-sided QFT to prove a generalized uncertainty principle for GQFT.

1.2 Definition and Properties of Quaternion H

The quaternion algebra H is defined over R with three imaginary units i, j, and k
that obey the Hamilton’s multiplication rules,

ij = −ji = k, jk = −kj = i, ki = −ik = j (1.1)

i2 = j2 = k2 = ijk = −1 (1.2)

According to (1.1) H is non-commutative, and one cannot directly extend various
results on complex numbers to a quaternion. For simplicity, we express a quaternion
q as the sum of scalar q1, and a pure 3D quaternion q. Every quaternion can be
written explicitly as

q = q1 + iq2 + jq3 + kq4 ∈ H, q1, q2, q3, q4 ∈ R

The conjugate of quaternion q is obtained by changing the sign of the pure part,
i.e.

q = q1 − iq2 − jq3 − kq4

The quaternion conjugation is a linear anti-involution

p = p, p + q = p + q, pq = qp, ∀p, q ∈ H

The modulus |q| of a quaternion q is defined as

|q| = √
qq =

√
q2

1 + q2
2 + q2

3 + q2
4 , |pq| = |p||q|.

It is straightforward to see that

|pq| = |p||q|, |q| = |q|, p, q ∈ H
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In particular, when q = q1 is a real number, the module |q| reduces to the
ordinary Euclidean modulus, i.e., |q| = √

q1q1. A function f : R2 → H can be
expressed as

f (x, y) := f1(x, y)+ if2(x, y)+ jf3(x, y)+ kf4(x, y)

where (x, y) ∈ R× R.

We introduce an inner product of functions f, g defined on R
2 with values in H

as follows:

< f, g >L2(R2,H)=
∫

R2
f (x)g(x)dx

If f = g we obtain the associated norm by

‖f ‖2
2 =< f, f >2=

∫

R2
|f (x)|2dx

The space L2(R2,H) is then defined as

L2(R2,H) = {f |f : R2 → H, ‖f ‖2 <∞}

And we define the norm of L2(R2,H) by

‖f ‖2
L2(R2,H)

= ‖f ‖2
2

1.3 The Two-Sided Gabor Quaternionic Fourier Transform
(GQFT)

The quaternion Fourier transform (QFT) is an extension of Fourier transform
proposed by Ell [8]. Due to the non-commutative properties of quaternion, there
are three different types of QFT: the left-sided QFT, the right-sided QFT, and the
two-sided QFT [12]. In this paper we only treat the two-sided QFT. We now review
the definition and some properties of the two-sided QFT[11].

Definition 1.1 (Quaternion Fourier Transform) The two-sided quaternion
Fourier transform (QFT) of a quaternion function f ∈ L1(R2,H) is the function
Fq(f ) : R2 → H defined by
for ω = (ω1, ω2) ∈ R× R

Fq(f )(w) =
∫

R2
e−2πix1.ω1f (x)e−2πjx2.ω2dx (1.3)

where dx = dx1dx2
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This transform can be inverted by means of

Theorem 1.1 If f,Fq(f ) ∈ L2(R2,H), then,

f (x) = F−1
q Fq(f )(x) =

∫

R2
e2πix1.ω1Fq(f )(ω)e2πjx2.ω2dω (1.4)

Theorem 1.2 (Plancherel Theorem for QFT) If f ∈ L2(R2,H) then

‖f ‖2 = ‖Fq(f )‖2 (1.5)

Proof See [11]. �	
Definition 1.2 A quaternion window function is a non-null function ϕ ∈
L2(R2,H)

Based on the above formula (1.3) for the QFT, we establish the following
definition of the two-sided Gabor quaternionic Fourier transform (GQFT).

Definition 1.3 We define the GQFT of f ∈ L2(R2,H) with respect to non-zero
quaternion window function ϕ ∈ L2(R2,H) as,

Gϕf (ω, b) =
∫

R2
e−2πix1ω1f (x)ϕ(x − b)e−2πjx2.ω2dx (1.6)

Note that the order of the exponentials in (1.6) is fixed because of the non-
commutativity of the product of quaternion.

The energy density is defined as the modulus square of GQFT (Definition 1.3)
given by

|Gϕf (ω, b)|2 = |
∫

R2
e−2iπx1ω1f (x)ϕ(x − b)e−2jπx2ω2dx|2 (1.7)

Equation (1.7) is often called a spectrogram which measures the energy of a
quaternion-valued function f in the position-frequency neighborhood of (ω, b).

1.3.1 Examples of the GQFT

For illustrative purposes, we shall discuss examples of the GQFT. We begin with a
straightforward example.

Example 1.1 Consider the two-dimensional window function defined by
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ϕ(x) =
⎧
⎨

⎩

1, for − 1 ≤ x1 ≤ 1 and − 1 ≤ x2 ≤ 1;

0, otherwise
(1.8)

f (x) =
⎧
⎨

⎩

e−x1−x2, 0 ≤ x1 ≤ +∞ and 0 ≤ x2 ≤ +∞;

0, otherwise
(1.9)

we start by explaining that we have b = (b1, b2) ∈ R
2, then,

ϕ(x − b) =
⎧
⎨

⎩

1, for − 1 ≤ x1 − b1 ≤ 1 and − 1 ≤ x2 − b2 ≤ 1;

0, otherwise

from which we give

ϕ(x − b) =
⎧
⎨

⎩

1, for − 1+ b1 ≤ x1 ≤ 1+ b1 and − 1+ b2 ≤ x2 ≤ 1+ b2;

0, otherwise

By applying the definition of the GQFT we have

Gϕf (ω, b) =
∫

R2
e−i2πx1ω1f (x)ϕ(x − b)e−j2πx2ω2dx,

=
∫ 1+b1

m1

∫ 1+b2

m2

e−i2πx1ω1e−x1−x2e−j2πx2ω2dx1dx2,

with m1 = max(0,−1+ b1);m2 = max(0,−1+ b2),

=
∫ 1+b1

m1

e−x1(1+i2πω1)dx1

∫ 1+b2

m2

e−x2(1+j2πω2)dx2,

=
[

e−x1(1+i2πω1)

(−1− i2πω1)

]1+b1

m1

[
e−x2(1+j2πω2)

(−1− j2πω2)

]1+b2

m2

,

= 1

(−1− i2πω1)(−1− j2πω2)

(
e−(1+b1)(1+i2πω1) − e−m1(1+i2πω1)

)

(
e−(1+b2)(1+j2πω2) − e−m2(1+j2πω2)

)

Example 1.2 Given the window function of the two-dimensional Haar function
defined by
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ϕ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, for 0 ≤ x1 ≤ 1
2 and 0 ≤ x2 ≤ 1

2 ;

−1, for 1
2 ≤ x1 ≤ 1 and 1

2 ≤ x2 ≤ 1;

0, otherwise

(1.10)

find the GQFT of the Gaussian function f (x) = e−(x2
1+x2

2 ).
By the definition of the function ϕ in (1.10), we have

ϕ(x − b) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, for b1 ≤ x1 ≤ 1
2 + b1 and b2 ≤ x2 + b2 ≤ b2 + 1

2 ;

−1, for 1
2 + b1 ≤ x1 ≤ 1+ b1 and 1

2 + b2 ≤ x2 ≤ 1+ b2;

0, otherwise

From Definition 1.3 and by the separation of the variables, we obtain

Gϕ{f }(ω, b) =
∫

R2
e−i2πx1ω1f (x)ϕ(x − b)e−j2πx2ω2dx,

=
∫ 1

2+b1

b1

e−i2πx1ω1e−x2
1dx1

∫ 1
2+b2

b2

e−x2
2 e−j2πx2ω2dx2,

−
∫ 1+b1

1
2+b1

e−i2πx1ω1e−x2
1dx1

∫ 1+b2

1
2+b2

e−x2
2 e−j2πx2ω2dx2

by completing squares, we have

Gϕ{f }(ω, b) =
∫ 1

2+b1

b1

e−(x1+iπω1)
2
e−(ω1π)2

dx1

∫ 1
2+b2

b2

e−(x2+jπω2)
2
e−(ω2π)2

dx2

−
∫ 1+b1

1
2+b1

e−(x1+iπω1)
2
e−(ω1π)2

dx1

∫ 1+b2

1
2+b2

e−(x2+jπω2)
2
e−(ω2π)2

dx2

we factorize and we get

Gϕ{f }(ω, b) = e−ω2
1π

2

(∫ 1
2+b1

b1

e−(x1+iπω1)
2
dx1

)

e−ω2
2π

2

(∫ 1
2+b2

b2

e−(x2+jπω2)
2
dx2

)

− e−ω2
1π

2

(∫ 1+b1

1
2+b1

e−(x1+iπω1)
2
dx1

)

e−ω2
2π

2

(∫ 1+b2

1
2+b2

e−(x2+jπω2)
2
dx2

)
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making the substitutions y1 = x1 + iπω1 and y2 = x2 + jπω2 in the above
expression we immediately obtain

Gϕ{f }(ω, b) = e−ω2
1π

2

(∫ 1
2+b1+iπω1

b1+iπω1

e−y2
1dy1

)

e−ω2
2π

2

(∫ 1
2+b2+jπω2

b2+jπω2

e−y2
2dy2

)

− e−ω2
1π

2

(∫ 1+b1+iπω1

1
2+b1+iπω1

e−y2
1dy1

)

e−ω2
2π

2

(∫ 1+b2+jπω2

1
2+b2+jπω2

e−y2
2dy2,

)

= e−ω2
1π

2

(∫ b1+iπω1

0
(−e−y2

1 )dy1 +
∫ 1

2+b1+iπω1

0
e−y2

1dy1

)

× e−ω2
2π

2

(∫ b2+jπω2

0
(−e−y2

2 )dy2 +
∫ 1

2+b2+jπω2

0
e−y2

2dy2

)

− e−ω2
1π

2

(∫ 1
2+b1+iπω1

0
(−e−y2

1 )dy1 +
∫ 1+b1+iπω1

0
e−y2

1dy1

)

× e−ω2
2π

2

(∫ 1
2+b2+jπω2

0
(−e−y2

2 )dy2 +
∫ 1+b2+jπω2

0
e−y2

2dy2

)

(1.11)

we can write the Eq. (1.11) in the form

Gϕ{f }(ω, b) = e−ω2
1π

2
[
−qf (b1 + iπω1)+ qf (

1

2
+ b1 + iπω1)

]

× e−ω2
2π

2
[
−qf (b2 + jπω2)+ qf (

1

2
+ b2 + jπω2)

]

− e−ω2
1π

2
[
−qf (

1

2
+ b1 + iπω1)+ qf (1+ b1 + iπω1)

]

× e−ω2
2π

2
[
−qf (

1

2
+ b2 + jπω2)+ qf (1+ b2 + jπω2)

]

where, qf (x) = ∫ x

0 e−t2
dt

1.4 Properties of GQFT

In this section, we are going to give some properties for the Gabor quaternionic
Fourier transform.
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Theorem 1.3 Let f ∈ L2(R2,H); and ϕ ∈ L2(R2,H) be a non-zero quaternionic
window function. Then, we have

(Gϕ{Tyf }(ω, b) = e−2iπy1ω1(Gϕf )(ω, b − y)e−2jπx2.ω2 (1.12)

where Tyf (x) = f (x − y); and y = (y1, y2) ∈ R
2

Proof We have

Gϕ{Tyf }(w, b) =
∫

R2
e−2πix1ω1f (x)ϕ(x − b)e−2πjx2.ω2dx

we take t = x − y, then

Gϕ{Tyf }(w, b) =
∫

R2
e−2iπ(t1+y1)ω1f (x)ϕ(t + y − b)e−2jπ(t2+y2)ω2dt

= e−2iπy1ω1

∫

R2
e−2iπt1ω1f (x)ϕ(t + y − b)e−2jπt2ω2dt e−2iπy2ω2

= e−2iπy1ω1Gϕ{f }(ω, b − y)e−2jπx2.ω2

�	
Theorem 1.4 Let ϕ ∈ L2(R2,H) be a quaternion window function. Then we have

Gϕ̃(f̃ )(ω, b) = Gϕ{f }(−ω,−b) (1.13)

where ϕ̃(x) = ϕ(−x); ∀ϕ ∈ L2(R2,H)

Proof A direct calculation allows us to obtain for every f ∈ L2(R2,H)

Gϕ̃(f̃ )(ω, b) =
∫

R2
e−2iπx1ω1f (−x)ϕ(−(x − b))e−2jπx2ω2dx

=
∫

R2
e−2iπ(−x1)(−ω1)f (−x)ϕ(−x − (−b))e−2jπ(−x2)(−ω2)dx

= Gϕ{f }(−ω,−b)

�	
For establishing an inversion formula and Plancherel identity for GQFT, we use

the fact that the GQFT can be expressed in terms of two-sided quaternion Fourier
transform.

Gϕ{f }(ω, b) = Fq{f (.)ϕ(.− b)}(ω) (1.14)
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Theorem 1.5 (Inversion Formula) Let ϕ be a quaternion window function. Then
for every function f ∈ L2(R2,H) can be reconstructed by

f (x) = 1

‖ϕ‖2
2

∫

R2

∫

R2
e2iπx1ω1Gϕf (w, b)e2jπx2ω2ϕ(x − b)dωdb (1.15)

Proof We have

Gϕ{f }(ω, b) =
∫

R2
e−2iπx1ω1f (x)ϕ(x − b)e−2jπx2ω2dx

then

Gϕ{f }(ω, b) = Fq(f (x)ϕ(x − b)) (1.16)

Taking the inverse of two-sided QFT of both sides of (1.16) we obtain

f (x)ϕ(x − b) = F−1
q Gϕf (ω, b)(x)

=
∫

R2
e2iπx1ω1Gϕ{f }(ω, b)e2jπx2ω2dω (1.17)

Multiplying both sides of (1.17) from the right and integrating with respect to db

we get

f (x)

∫

R2
|ϕ(x − b)|2db =

∫

R2

∫

R2
e2iπx1ω1Gϕf (w, b)e2jπx2ω2ϕ(x − b)dωdb

(1.18)
then,

f (x) = 1

‖ϕ‖2
2

∫

R2

∫

R2
e2iπx1ω1Gϕf (w, b)e2jπx2ω2ϕ(x − b)dωdb

Set Cϕ = ‖ϕ‖2
R2 and assume that 0 < Cϕ <∞. Then the inversion formula can

also written as

f (x) = 1

Cϕ

∫

R2

∫

R2
e2iπx1ω1Gϕf (w, b)e2jπx2ω2ϕ(x − b)dωdb

Theorem 1.6 (Plancherel Theorem) Let ϕ be quaternion window function and
f ∈ L2(R2,H), then we have

‖Gϕ{f }‖2
2 = ‖f ‖2

2‖ϕ‖2
2 (1.19)
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Proof We have

‖Gϕ{f }‖2
2 = ‖Fq(f (x)ϕ(x − b))‖2

2

= ‖f (x)ϕ(x − b)‖2
2 (1.20)

=
∫

R2

∫

R2
|f (x)|2|ϕ(x − b)|2dxdb

=
∫

R2
|f (x)|2dx

∫

R2
|ϕ(t)|2dt (1.21)

= ‖f ‖2
2‖ϕ‖2

2

where in line (1.20) we apply the Plancherel theorem of QFT (Theorem 1.2);
in (1.21) we use a substitution and Fubini’s theorem. �	

1.5 Uncertainty Principles For the GQFT

In this section we demonstrate some versions of uncertainty principles and inequal-
ities for the two-sided quaternion windowed Fourier transform.

1.5.1 Heisenberg Uncertainty Principle

Before proving the Heisenberg uncertainty principle for GQFT, first, we are giving a
version of Heisenberg uncertainty for the QFT, which we will use it to demonstrate
our result.

Theorem 1.7 Let f ∈ L2(R2,H) be a quaternion-valued signal such that
xkf,

∂
∂xk

f ∈ L2(R2,H) for k = 1, 2, then,

(∫

R2
x2
k |f (x)|2dx

) 1
2
(∫

R2
ω2
k |Fq(f )(ω)|2dω

) 1
2 ≥ 1

4π
‖f ‖2

2 (1.22)

To prove this theorem, we need the following result:

Lemma 1.1 Let f ∈ L1 ∩ L2(R2,H). If ∂
∂xk

f exist and belong to L2(R2,H) for
k = 1, 2. Then

(2π)2
∫

R2
ω2
k |F(f (x))(ω)|2dω =

∫

R2
| ∂

∂xk
f (x)|2dx (1.23)

Proof See [6]. �	
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We are going to prove the first theorem 1.7.

Proof For k ∈ 1, 2. First, by applying Lemma 1.1 and Plancherel theorem (1.19),
we obtain

∫
R2 x

2
k |f (x)|2dx ∫

R2 ω
2
k |Fq(f )(ω)|2d2ω

∫
R2 |f (x)|2dx ∫

R2 |Fq(f )(ω)|2dω

=
1

(2π)2

∫
R2 x

2
k |f (x)|2dx ∫

R2 | ∂
∂xk

f (x)|2dω
∫
R2 |f (x)|2dx ∫

R2 |Fq(f )(ω)|2dω

=
1

(2π)2

∫
R2 x

2
k |f (x)|2dx ∫

R2 | ∂
∂xk

f (x)|2dω
(
∫
R2 |f (x)|2dx)2

≥ 1

16π2

(
∫
R2(

∂
∂xk

f (x)xkf (x)+ xkf (x) ∂
∂xk

f (x))dx)2

‖f (x)‖4
2

= 1

16π2

(
∫
R2 xk

∂
∂xk

(f (x)f (x))dx)2

‖f (x)‖4
2

Second, using integration par parts, we further get,

= 1

16π2

([∫
R
xk|f (x)|2dxl]xk=+∞xk=−∞ −

∫
R2 ‖f (x)‖2dx)2

‖f (x)‖4
2

= 1

16π2

then,

∫

R2
x2
k |f (x)|2dx

∫

R2
ω2
k |Fq(f )(ω)|2d2ω≥ 1

16π2

∫

R2
|f (x)|2dx

∫

R2
|Fq(f )(ω)|2dω

(1.24)
Applying the Plancherel formula (1.2), we obtain our result,

(∫

R2
x2
k |f (x)|2dx

) 1
2
(∫

R2
ω2
k |Fq(f )(ω)|2dω

) 1
2 ≥ 1

4π
‖f ‖2

2

Applying the Plancherel theorem for the QFT (1.2) to the right-hand side of
Theorem 1.7, we get the following corollary:

Corollary 1.1 Under the above assumptions, we have

(∫

R2
x2
k |F−1

q {Fq(f )}(x)|2dx
) 1

2
(∫

R2
ω2
k |Fq(f )(ω)|2dω

) 1
2 ≥ 1

4π
‖Fq(f )‖2

2

(1.25)
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Now, we are going to establish a generalization of the Heisenberg type uncer-
tainty principle for the GQFT.

Theorem 1.8 (Heisenberg for GQFT) Let ϕ ∈ L2(R2,H) be a quaternion
window function and let Gϕ{f } ∈ L2(R2,H) be the GQFT of f such that
ωkGϕ{f } ∈ L2(R2,H), k = 1, 2. Then for every f ∈ L2(R2,H) we have the
following inequality:

(∫

R2
x2
k |f (x)|2dx

) 1
2
(∫

R2

∫

R2
ω2
k |Gϕ{f }(ω, b)|2dωdb

) 1
2 ≥ 1

4π
‖f ‖2

2‖ϕ‖2

(1.26)

In order to prove this theorem, we need to introduce the following lemmas. The
first lemma called the Cauchy–Schwartz inequality,

Lemma 1.2 Let f, g ∈ L2(R2,H) be two quaternion on valued functions. Then the
Cauchy–Schwartz inequality takes the form

|
∫

R2
f (x)g(x)dx|2 ≤

∫

R2
|f (x)|2dx

∫

R2
|g(x)|2dx

Lemma 1.3 Under the assumptions of Theorem 1.8, we have

‖ϕ‖2
2

∫

R2
x2
k |f (x)|2dx =

∫

R2

∫

R2
x2
k |F−1

q {Gϕ{f }(ω, b)}(x)|2dxdb (1.27)

for k = 1, 2.

Proof Applying elementary properties of quaternion, we get

‖ϕ‖2
2

∫

R2
x2
k |f (x)|2dx =

∫

R2
x2
k |f (x)|2dx

∫

R2
|ϕ(x − b)|2db

=
∫

R2

∫

R2
x2
k |f (x)|2|ϕ(x − b)|2dxdb

=
∫

R2

∫

R2
x2
k |f (x)ϕ(x − b)|2dxdb

=
∫

R2

∫

R2
x2
k |F −1(Gϕ{f }(ω, b))(x)|2dxdb

�	
Now, we are going to prove the Theorem 1.26.

Proof (Of Theorem 1.26) Replacing the QFT of f by the GQFT of the left-hand
side of (1.25) in Corollary 1.1, we obtain
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(∫

R2
x2
k |F−1

q {Gϕ{f }(ω, b)}(x)|2dx
)(∫

R2
ω2
k |Gϕ{f }(ω, b)|2dω

)
≥

1

16π2

(∫

R2
|Gϕf (ω, b)|2dω

)2

(1.28)

we have

F−1(Gϕ{f }(ω, b))(x) = f (x)ϕ(x − b)

Taking the square root on both sides of (1.28) and integrating both sides with
respect to db we get

∫

R2

(∫

R2
x2
k |F−1

q {Gϕ{f }(ω, b)}(x)|2dx
) 1

2
(∫

R2
ω2
k |Gϕ{f }(ω, b)|2dω

) 1
2

db ≥

1

4π

∫

R2

∫

R2
|Gϕ{f }(ω, b)|2dωdb

(1.29)

Applying the Cauchy–Schwartz inequality (Lemma 1.2) to the left-hand side
of (1.29) we obtain

(∫

R2

∫

R2
x2
k |F−1

q {Gϕ{f }(ω, b)}(x)|2dxdb
) 1

2
(∫

R2

∫

R2
ω2
kGϕ{f }(ω, b)|2dωdb

) 1
2

≥ 1

4π

∫

R2

∫

R2
|Gϕ{f }(ω, b)|2dωdb

(1.30)

Using Lemma 1.27 into the second term on the left-hand side of (1.30), and using
the Plancherel formula (1.6) into the right-hand side of (1.30), we obtain that

(
‖ϕ‖2

2

∫

R2
x2
k |f (x)|2dx

) 1
2
(∫

R2

∫

R2
ω2
k |Gϕ{f }(ω, b)|2dωdb

) 1
2 ≥ 1

4π
‖f ‖2

2‖ϕ‖2
2

(1.31)
Now, simplifying both sides of (1.31) by ‖ϕ‖2, we get our result.

1.5.2 Logarithmic Inequality

Definition 1.4 A couple α = (α1, α2) of non-negative integers is called a multi-
index. One denotes
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|α| = α1 + α2 and α! = α1!α2!

and, for x ∈ R
2

xα = x
α1
1 x

α2
2

Derivatives are conveniently expressed by multi-indices

∂α = ∂ |α|

∂x
α1
1 ∂x

α2
2

Next, we obtain the Schwartz space as [10]

S(R2,H) = {f ∈ C∞(R2,H) : supx∈R2(1+ |x|k)|∂αf (x)| <∞}

where C∞(R2,H) is the set of smooth function from R
2 to H.

We have the logarithmic uncertainty principle for the QFT [11] as follows:

Theorem 1.9 (QFT Logarithmic Uncertainty Principle) For f ∈ S(R2,H), we
have

∫

R2
ln|x||f (x)|2dx +

∫

R2
ln|ω||Fq{f }(ω)|2dω ≥

(
�′(t)
�(t)

− lnπ

)∫

R2
|f (x)|2dx

(1.32)
where �′(t) = (

d
dt

)
and �(t) is Gamma function.

Remark 1.1 If we apply Plancherel theorem for QFT (1.2) to the right-hand side
of (1.32), we get

∫

R2
ln|x||f (x)|2dx+

∫

R2
ln|ω||Fq{f }(ω)|2dω≥

(
�′(t)
�(t)

−lnπ

)∫

R2
|Fq{f }(ω)|2dωdx

(1.33)

Lemma 1.4 Let ϕ ∈ S(R2,H) a windowed quaternionic function and f ∈
S(R2,H). We have

∫

R2

∫

R2
ln|x||F−1

q {Gϕf (ω, b)}(x)|2dxdb = ‖ϕ‖2
L2(R2,H)

∫

R2
ln|x||f (x)|2dx

(1.34)

Proof By a simple calculation we get

∫

R2

∫

R2
ln|x||F−1

q {Gϕf (ω, b)}(x)|2dxdb =
∫

R2

∫

R2
ln|x||f (x)ϕ(x − b)|2dxdb

=
∫

R2

∫

R2
ln|x||f (x)|2|ϕ(x − b)|2dxdb
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=
∫

R2
ln|x||f (x)|2

∫

R2
|ϕ(x − b)|2dbdx

= ‖ϕ‖2
L2(R2,H)

∫

R2
ln|x||f (x)|2dx

Corollary 1.2 For f ∈ S(R2,H), and ϕ ∈ S(R2,H), we have

∫

R2
ln|x||F−1

q Fq(f )(x)|2dx +
∫

R2
ln|ω||Fq{f }(ω)|2dω ≥

(
�′(t)
�(t)

− lnπ

)∫

R2
|Fq(ω)|2dω (1.35)

Theorem 1.10 Let f ∈ S(R2,H) and ϕ ∈ S(R2,H) a quaternion windowed
function, we have the following algorithmic inequality:

‖ϕ‖2
L2(R2,H)

∫

R2
ln|x||f (x)|2dx +

∫

R2

∫

R2
ln|ω||Gϕf (ω, b)|2dωdb ≥

‖ϕ‖2
L2(R2,H)

(
�′(t)
�(t)

− lnπ

)∫

R2

∫

R2
|f (x)|2dx

(1.36)

Proof For classical two-sided quaternionic Fourier transform, by Theorem 1.9,

∫

R2
ln|x||f (x)|2dx +

∫

R2
ln|ω||Fq{f }(ω)|2dω ≥

(
�′(t)
�(t)

− lnπ

)∫

R2
|f (x)|2dx,

(1.37)
we replace f by Gϕf on both sides of (1.37), we get

∫

R2
ln|ω||Gϕf (ω, b)|2dω +

∫

R2
ln|x||Fq{Gϕf }(x)|2dx ≥

(
�′(t)
�(t)

− lnπ

)∫

R2
|Gϕf (ω, b)|2dx (1.38)

Integrating both sides of this equation with respect to db, we obtain

∫

R2

∫

R2
ln|ω||Gϕf (ω, b)|2dωdb +

∫

R2

∫

R2
ln|x||Fq{Gϕf }(x)|2dxdb ≥

(
�′(t)
�(t)

− lnπ

)∫

R2

∫

R2
|Gϕf (ω, b)|2dxdb

(1.39)
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Applying Lemma 1.4 into the second term on the left-hand side of (1.39), yields

∫

R2

∫

R2
ln|ω||Gϕf (ω, b)|2dωdb + ‖ϕ‖2

L2(R2,H)

∫

R2
ln|x||f (x)|2dx (1.40)

≥
(
�′(t)
�(t)

− lnπ

)
‖ϕ‖2

L2(R2,H)

∫

R2

∫

R2
|Gϕf (ω, b)|2dxdb (1.41)

On applying the Plancherel formula in the right side of (1.40), we obtain our
desired result,

‖ϕ‖2
L2(R2,H)

∫

R2
ln|x||f (x)|2dx +

∫

R2

∫

R2
ln|ω||Gϕf (ω, b)|2dωdb

≥ ‖ϕ‖2
L2(R2,H)

(
�′(t)
�(t)

− lnπ

)∫

R2

∫

R2
|f (x)|2dx
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Chapter 2
Reflected Backward SDEs in a Convex
Polyhedron

Khadija Akdim

Abstract A backward stochastic differential equation is forced to stay within a d-
dimensional bounded convex polyhedral domain, thanks to the action of oblique
reflecting process at the boundary. The Lipschitz continuity on the reflection
directions together with the Lipschitz continuity of the drift gives the existence and
uniqueness of the solution.

Keywords Vector field · Gaussian process · Random field · Covariance operator

2.1 Introduction

This paper is concerned with the oblique reflection problems that have application in
queuing theory. We consider a backward stochastic differential equation in the case
of d-dimensional convex bounded region with oblique reflecting conditions. Using
a modification of the framework of Ouknine [8], Menaldi and Robin [7] as well
Gegout-Petit and Pardoux [3], we prove the existence and uniqueness of the solution
by a contraction mapping argument, our result generalize to oblique reflection case
Theorem 2.1 given in [8]. Let us mention that the penalization approach for reflected
backward stochastic differential equations without jumps is given in Gegout-Petit
and Pardoux [3], with jumps and normal reflection in Ouknine [8]. This kind of
problem, that has applications in queuing and storage theory, has also been studied
in the case of forward stochastic differential equations by a direct approach based on
the Skorokhod problem in Watanabé [11], Tanaka [10], Chaleyat-Maurel et al. [1],
Menaldi and Robin [7] for reflected forward stochastic differential equations driven
by Lévy processes; their results hold under the restriction that the jumps of the Lévy
process place the solution process inside the domain, Lions and Sznitmann [6] and
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also in some books like Liptser and Shiryayev [5] with some application in queueing
models, Ikeda and Watanabe [4]. We treat only the case of regular convex domain;
the case of general domain is an open and interesting problem.

The aim of this article is to study a reflected backward stochastic differential
equation (RBSDE) in convex polyhedral domains with oblique reflection at the
boundary. The drift vector and the reflection matrix can be time and space
dependent; existence and uniqueness are established under Lipschitz continuity on
the reflection matrix and Lipschitz continuity of the drift.

The rest of the paper is organized as follows. Next section is devoted to the
notations we use during this text, setting of the problem, some known proprieties
of regular convex domain. In the last section, we claim our main that we prove in
the sequel.

2.2 Statement of the Problem

2.2.1 Notations

Let (Wt , t ∈ [0, T ] ) be a d-dimensional standard Brownian motion process defined
on a probability space (	,F ,P); let (Ft , t ∈ [0, T ] ) be the natural filtration
generated by (Wt , t ∈ [0, T ] ) with F0 containing all P-null sets.

Let us introduce some notation:

1. A subset O of Rd such that O is an bounded convex polyhedral domain assumed
to be non-empty, O = {

x ∈ R
d : ni.x > ci, i = 1, . . . , N

}
; where ni is a unit

vector normal to the hyperplane Hi and ni.x denotes the inner product of the
vector ni and x.

2. The hyperplane Hi=
{
x ∈ R

d : ni.x = ci
}
, i = 1, . . . , N .

3. The faces Fi of the polyhedron O which has dimension n− 1, with

Fi=
{
x ∈ O : ni.x = ci

}

i = 1, . . . , N. We define:
4. M2

d the set of Ft -progressively measurable process (wt ) taking values in R
d×d

such that E

[∫ T

0 |ws |2 ds
]
<∞.

5. S2 be the set of Ft -progressively measurable continuous process (vt ) taking
values in R

d such that E[sup0≤t≤T |vt |2] <∞.

Finally, we define

B(2,N)
d � S2 ×M2

d × R
N. (2.1)

Now, we are given the following objects:

(H1) a terminal value ξ ∈ L2 (	,FT ,P) such that ξ ∈ O;
(H2) a function process f , which is map
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f : 	× [0, T ]× R
d −→ R

d (2.2)

such that

(a) ∀y ∈ R
d : (ω, t) −→ f (ω, t, y) is Ft − progressively measurable.

(b) E
∫ T

0 ‖f (ω, t, 0)‖2 dt < +∞,

(c) ∃ α > 0, such that for any y and y′ ∈ R
d and (ω, t) ∈ 	× [0, T ]

∥∥f (ω, t, y)− f (ω, t, y′)
∥∥ ≤ α

∥∥y − y′
∥∥ ;

(H3) the vector νk , k = 1, . . . , N , is defined for each x ∈ Hk . By this vector
is meant the reflection direction at the point x, x ∈ Hk . We shall need to
extend vector-valued function νk for arbitrary values x ∈ R

d . Trivially, we define
νk (t, x) = νk

(
t, pr Hk (x)

)
, x ∈ R

d which is map

νk : 	× [0, T ]×O −→ R
d (2.3)

such that

(a) nk.νk (t, x) = 1, x ∈ Hk , k = 1, . . . , N , this condition of normalization of
the length of the vector νk will considerably simplify the presentation of the
main results;

(b) ∃ γ > 0, for all 1 ≤ k ≤ N such that for any x, x′ ∈ O; (ω, t) ∈
	× [0, T ];

∥∥νk (w, t, x)− νk(w, t, x′)
∥∥ ≤ γ

∥∥x − x′
∥∥ , (2.4)

(H4) for each x ∈ ∂O we require the existence of positive numbers a1, . . . aN , λ

with 0 < λ < 1, see, for example, [9], such that we have

N∑

i=1,i �=k

ai |ni.νk(ω, t, x)| < λak, k = 1, . . . , N. (2.5)

2.2.2 Main Definition

Let us now introduce our BSDE in a convex polyhedron with oblique reflection.

Definition 2.1 The solution of our BSDE associated with (ξ, f,O, ν) is a triple
{(Yt , Zt ,Kt ) , 0 ≤ t ≤ T } of Ft -progressively measurable processes taking values
in R

d , R
d×d , and R

N , respectively, and satisfying:
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1. Z ∈M2
d is a predictable processes, in particular

E

(∫ T

0
‖Zt‖2 dt

)
< +∞, (2.6)

2. Y ∈ S2 with instantaneous reflection at the boundary ∂O in the direction
ν = (νi)1≤i≤N ;

3. for every 0 ≤ t ≤ T

Yt = ξ +
∫ T

t

f (s, Ys)ds +
N∑

i=1

∫ T

t

νi(s, Ys)dK
i
s −

∫ T

t

ZsdWs;

4. Yt ∈ O, for all 0 ≤ t ≤ T ;
5. K ∈ S2 such that every component-function Ki

t , i = 1, . . . , N , is nondecreasing
continuous process, with Ki

0 = 0, i = 1, . . . , N , and

Ki
t =

∫ t

0
�(ni .Ys = ci)dK

i
s , i = 1, . . . , N, (2.7)

where �(ni .Ys = ci) denotes the characteristic function of the face Fi .

2.3 Existence and Uniqueness

Proposition 2.1 Assume (H1)−(H4) and suppose (Yt , Zt ,Kt )0≤t≤T solve RBSDE
(ξ, f,O, ν). Then

0 ≤ dKi
t ≤

(
(I− V)−1C

)

i
dt i = 1, . . . N. (2.8)

Such that V = (vij )0≤ij≤N for i, j ∈ {1, . . . , N} where vij is a constant for i �= k

and vii = 0, in the other hand C = (ci)0≤i≤N for all i = 1, . . . , N where ci is a
constants.

In particular, for each i = 1, . . . N , Ki
. is absolutely continuous with respect to

the Lebesgue measure.

Proof By (iv) we have

Yt = ξ +
∫ T

t

f (s, Ys)ds +
N∑

k=1

∫ T

t

νk(s, Ys)dK
k
s −

∫ T

t

ZsdWs.

Taking the inner product with vectors ni, i = 1, . . . N , we obtain the following
auxiliary problem:
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ni.Yt − ci = ni.ξ − ci +
∫ T

t

ni .f (s, Ys)ds +
N∑

k=1,k �=i

∫ T

t

ni .νk(s, Ys)dK
k
s

+
∫ T

t

ni .νi(s, Ys)dK
i
s −

∫ T

t

ni .ZsdWs.

By (H3)− (a) we get

ni.Yt−ci = ni.ξ − ci+
∫ T

t

ni .f (s, Ys)ds +
N∑

k=1,k �=i

∫ T

t

ni .νk(s, Ys)dK
k
s+Ki

T −Ki
t

−
∫ T

t

ni .ZsdWs. (2.9)

Proceeding as in the proof of Proposition 4.2 and Remark 4.3 of El Karoui and al [2]
we get for each i = 1, . . . N :

0 ≤ dKi
t ≤ 1{ni .Yt−ci }(Y i

t )

⎧
⎨

⎩
|ni.f (s, Ys)|dt +

N∑

k=1,k �=i

|ni.νk(s, Ys)|dKk
s

⎫
⎬

⎭

≤ |ni.f (s, Ys)|dt +
N∑

k=1,k �=i

|ni.νk(s, Ys)|dKk
s .

Since the set O is a compact subset of Rd , it is not a serious restriction to suppose
that the functions ni.f (s, Ys) and ni.νk(s, Ys), k = 1, . . . , N are bounded in the set
O, respectively, by a constant ci and vik .
Hence we can write

0 ≤ dKi
t ≤ cidt + vik

N∑

k=1,k �=i

dKk
s .

So we obtain

dKi
t − vik

N∑

k=1,k �=i

dKk
s ≤ cidt, i = 1, . . . , N.

This inequality can be expressed as

{(I− V)dK}i (t) ≤ (C)idt, i = 1, . . . , N.

�	
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If we assume that σ(V ) < 1, where σ(V ) denotes the spectral radius of V ,
therefore,

(I − V )−1 = I + V + V 2 + V 3 + . . .

Which complete the proof.
Clearly for i = 1, . . . , N Ki

. is of bounded variations a.s.; in fact, by the preced-
ing Proposition (2.1) Ki

. are absolutely continuous, let Dt = (D1
t , . . . D

N
t )0≤t≤T

denote the matrix valued Ft -progressively measurable process of their derivatives
where

0 ≤ Di
t ≤

{
(I− V)−1C

}

i
a.s and Ki

t =
∫ t

0
Di

sds for all 0 ≤ t ≤ T .

Now, let H stands for the space of all Ft -progressively measurable, continuous
pairs of processes (Yt )0≤t≤T and (Kt )0≤t≤T such that

1. ni.Yt − ci ≥ 0 for all 0 ≤ t ≤ T ,

2. Ki
0 = 0,Ki

. is nondecreasing and can increase only when ni.Yt = ci ,

3. E

(∑N
i=1

∫ T

0 eβtai |ni.Yt |dt
)
<∞,

4. E

(∑N
i=1

∫ T

0 eβtaiϕt (K
i)dt

)
<∞,

where ϕt (x) denotes the total variation of x over [t, T ] and β > 0 is a fixed constant
which will be chosen suitably later.
For (Y,K), (Y ′,K ′) ∈ H, we define the metric

d
(
(Y,K), (Y ′,K ′)

) = E

N∑

i=1

∫ T

0
eβtai |ni.Yt − niY

′
t |dt

+E

N∑

i=1

∫ T

0
eβtaiϕt (K

i −K ′i )dt. (2.10)

It is not difficult to see that (H, N) is a complete metric space.
Before starting our main result, let us remark that if (Y,K), (Y ′,K ′) ∈ H with

Di,D′i being, respectively, the derivatives of Ki,K ′i then

ϕt (K
i −K ′i ) =

∫ T

t

|Di
s −D′is |ds.

If we consider the space R
N with the norm

‖y‖ =
N∑

i=1

ai |yi |,
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therefore, using integration by parts in (2.10), we have

d
(
(Y,K), (Y ′,K ′)

) = E

N∑

i=1

∫ T

0
eβtai |ni.Yt − ni.Y

′
t |dt

+E

N∑

i=1

∫ T

0

(eβt − 1)

β
ai |Di

t −D′it |dt

= E

∫ T

0
eβt‖Yt − Y ′t ‖dt + E

∫ T

0

(eβt − 1)

β
‖Dt −D′t‖dt.

(2.11)

Remark 2.1 As the norm ‖y‖ is equivalent to the Euclidean norm in R
N . So, we

may assume that the Lipschitz continuity is with respect to this norm.

Now, let us state the principal result of this paper:

Theorem 2.1 Under the assumptions on data, the RBSDE associated with
(ξ, f,O, ν) has one and only one solution {(Yt , Zt ,Kt ) 0 ≤ t ≤ T }.
Proof Let f and ν satisfy, respectively, (H2) − (c) and (H3) − (b). For a given
process (Y,K) ∈ H, we consider the following reflected BSDE:

ni.Yt − ci = ni.ξ − ci +
∫ T

t

ni .f (s, Ys)ds +
N∑

k=1,l �=k

∫ T

t

ni .νk(s, Ys)D
k
s ds

+Ki
T −Ki

t −
∫ T

t

ni .ZsdWs, (2.12)

if we set

gi(t) = ni.f (t, Yt )+
N∑

k=1,l �=k

ni .νk(t, Yt )D
k
s i = 1, . . . ..N; (2.13)

we get the following one-dimensional RBSDE:

1. for i = 1, . . . ..N

ni.Yt − ci = ni.ξ − ci +
∫ T

t

gi(s)ds +Ki
T −Ki

t −
∫ T

t

ni .ZsdWs, (2.14)

2. ni.Yt − ci ≥ 0 for all 0 ≤ t ≤ T ,

3. Ki
0 = 0,Ki

. is nondecreasing, Ki
. can increase only when ni.Yt = ci .
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Then under our assumption and in view of Proposition 5.1 of [2], for all

1 ≤ i ≤ N there exists a unique vector (ni .Y t , ni .Zt ,K
i

t ) solves the following
system:

ni.Y t − ci = ni.ξ − ci +
∫ T

t

gi(s)ds +K
i

T −K
i

t

−
∫ T

t

ni .ZsdWs, k = 1, . . . ..N. (2.15)

Now, introduce the mapping φ from H into itself as follows. Given (Y,K); (Y ′,K ′) ∈
H, let (Y ,K) = φ(Y,K) and (Y

′
,K

′
) = φ(Y ′,K ′), where (Y ,K), (Y

′
,K

′
) be

obtained by solving the associated one-dimensional problems (2.15); see (2.13). So
there exist matrix valued Ft -progressively measurable square integrable processes
Z, Z

′
such that

ni.Y t − ci = ni.ξ − ci +
∫ T

t

ni .f (s, Ys)ds

+
N∑

k=1,k �=i

∫ T

t

ni .νk(s, Ys)D
k
s ds +K

i

T −K
i

t

−
∫ T

t

ni .ZsdWs, k = 1, . . . ..N (2.16)

and

ni.Y
′
t − ci = ni.ξ − ci +

∫ T

t

ni .f (s, Y ′s)ds

+
N∑

k=1,k �=i

∫ T

t

ni .νk(s, Y
′
s)D

′k
s ds +K

′i
T −K

′i
t

−
∫ T

t

ni .Z′sdWs, k = 1, . . . ..N, (2.17)

where dK ′i
t = D′it dt and dK

′i
t = D

′i
t dt

Let Ŷ = Y − Y ′, K̂ = K −K ′.
It follows from Itô’s formula that for any β > 0,

E

∫ T

0
eβsβ|̂ni.Y s |ds + E

∫ T

0
eβsβϕs(

̂
K

i
)ds

= E

∫ T

0
eβsβ|n̂i .Ys |ds + E

∫ T

0
(eβs − 1)|D̂i

s |ds
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≤ E

∫ T

0
(eβs − 1)

∣∣ni.f (s, Ys)− ni.f (s, Y ′s)
∣∣ ds

+ E

∫ T

0
(eβs − 1)

∣∣∣∣∣∣

N∑

k=1,k �=i

ni .νk(s, Ys)D
k
s −

N∑

k=1,k �=i

ni .νk(s, Y
′
t )D

′k
s

∣∣∣∣∣∣
ds

≤ E

∫ T

0
(eβs − 1)

∣∣ni.f (s, Ys, )− ni.f (s, Y ′s)
∣∣ ds

+ E

∫ T

0
(eβs − 1)

N∑

k=1,k �=i

∣∣ni.νk(s, Ys)− ni.νk(s, Y
′
s)
∣∣Dk

s ds

+ E

∫ T

0
(eβs − 1)

N∑

k=1,k �=i

∣∣ni.νk(s, Y
′
s)
∣∣ |Dk

s −D′ks |ds.

Multiplying the above inequality by ai and then taking the sum, we deduce that

βd
(
(Y ,K), (Y

′
,K

′
)
)

≤ E

∫ T

0
(eβs − 1)‖f (s, Ys, )− f (s, Y ′s)‖ds

+E

∫ T

0
(eβs − 1)

N∑

i=1

ai

⎛

⎝
N∑

k=1,k �=i

∣∣ni.νk(s, Ys)− ni.νk(s, Y
′
s)
∣∣Dk

s

⎞

⎠ ds

+E

∫ T

0
(eβs − 1)

N∑

i=1

ai

⎛

⎝
N∑

k=1,k �=i

∣∣ni.νk(s, Y
′
s)
∣∣ |Dk

s −D′ks |
⎞

⎠ ds

≤ E

∫ T

0
(eβs − 1)‖f (s, Ys, )− f (s, Y ′s)‖ds

+E

∫ T

0
(eβs − 1)

N∑

k=1

‖νk(s, Ys)− νk(s, Y
′
s)‖Dk

s ds

+E

∫ T

0
(eβs − 1)

N∑

k=1

⎛

⎝
N∑

i=1,i �=k

ai
∣∣ni.νk(s, Y

′
s)
∣∣

⎞

⎠ |Dk
s −D′ks |ds.

In view of the Proposition (2.1) we get
∑N

k=1 D
k ≤∑N

k=1

(
(I− V)−1C

)
k
≤ C for

some constant C and by using the Lipschitz condition we get
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βd
(
(Y ,K), (Y

′
,K

′
)
)
≤ (α + Cγ )E

∫ T

0
(eβs − 1)‖Ŷs‖ds

+E

∫ T

0
(eβs−1)

N∑

k=1

⎛

⎝
N∑

i=1,i �=k

ai
∣∣ni.νk(s, Y

′
s)
∣∣

⎞

⎠|Dk
s−D′ks |ds,

by using the inequalities (2.5) we get

βd
(
(Y ,K), (Y

′
,K

′
)
)
≤ (α + Cγ )E

∫ T

0
(eβs − 1)‖Ŷs‖ds

+λE

∫ T

0
(eβs − 1)‖Ds −D′s‖ds. (2.18)

Choose β large enough that 1
β
(α + Cγ ) ≤ λ. Then we get using (2.11) and (2.18)

d
(
(Y ,K), (Y ′,K ′)

)
≤ λd

(
(Y,K), (Y ′,K ′)

)
. (2.19)

Hence as λ < 1, the mapping φ is a strict contraction establishing thus the existence
and uniqueness of the solution. �	

Let {(Yt , Zt ,Kt ) 0 ≤ t ≤ 1} and
{(
Y ′t , Z′t , K ′

t

)
0 ≤ t ≤ 1

}
denote two solutions

of our RBSDE. For every t ≥ 0 define

(�Yt ,�Zt ,�Kt ,�Dt) = (Yt − Y ′t , Zt − Z′t , Kt −K ′
t , Dt −D′t ).

Then applying Ito’s formula

E|�(ni.Yt )|2 + E

∫ T

0
|�(ni.Zs)|2ds

= 2E
∫ T

0
|�(ni.Ys)|

∣∣∣ni.f (s, Y s)− ni.f (s, Y
′
s)

∣∣∣ ds

+ 2E
∫ T

0
|�(ni.Ys)|

∣∣Di(s)−D′i (s)
∣∣ ds

+ 2E
∫ T

0
|�(ni.Ys)|

∣∣∣∣∣∣

N∑

k=1,k �=i

ni .νk(s, Y s)D
k

s−
N∑

k=1,k �=i

ni .νk(s, Y
′
t )D

′k
s

∣∣∣∣∣∣
ds.

Multiplying by ai and adding leads to the existence of C such that
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E

(
N∑

i=1

ai |�(ni.Yt )|2
)

+ E

(∫ T

0

N∑

i=1

ai |�(ni.Zs)|2ds
)

≤ CE

(∫ T

0

N∑

i=1

ai |�(ni.Ys)|ds
)

.

Therefore

Z = Z′.
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Chapter 3
On the Energy Decay of a
Nonhomogeneous Hybrid System of
Elasticity

Moulay Driss Aouragh and Abderrahman El Boukili

Abstract In this paper, we study the boundary stabilizing feedback control problem
of well-known Scole model that has nonhomogeneous spatial parameters. By
using an abstract result of Riesz basis, we show that the closed-loop system is a
Riesz spectral system. The asymptotic distribution of eigenvalues, the spectrum-
determinded growth condition and the exponential stability are concluded.

Keywords Euler-Bernoulli beam · Boundary control · Stabilization · Riesz basis

3.1 Introduction

The boundary and internal control problem of flexible structure has recently
attracted much attention with the rapid development of high technology such as
space science and flexible robots. In this paper, we study the boundary feedback
stabilization of the nonuniform Scole model. Consisting of an elastic beam, linked
to a rigid antenna, this dynamical system is governed by the nonuniform Euler–
Bernoulli equation for the vibration of the elastic beam and the Newton–Euler rigid
body equation for the oscillation of the antenna. The nonuniform Scole model in the
case of a hinged (or “pinned”) beam, correspond to the following hybrid system:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ(x)ytt (x, t)+ (EI (x)yxx(x, t))xx = 0 , 0 < x < 1, t > 0,

yx(0, t) = 0, (y + (EI (.)yxx)x + ayt )(0, t) = 0, t > 0,

(mytt − (EI (.)yxx)x)(1, t) = −byt (1, t) t > 0,

(Jyxtt + EI (.)yxx)(1, t) = −cyxt (1, t), t > 0,

y(x, 0) = y0(x) , yt (x, 0) = y1(x) , 0 < x < 1,
(3.1)

where y represents the transversal displacement of the beam, x denotes the position,
and t denotes the time. ρ(x) is the mass density of the beam and EI (x) is its flexural
rigidity. m is the mass of the antenna and J is its moment of inertia. a, b, and c, are
constants feedback gains.

For further description of the physical structure of the system, we refer to
Littman–Markus [5]. Furthermore, the coefficients are supposed to be variable
because it is common in engineering, to adopt problems with nonhomogeneous
materials such as smart materials [4]. Notice that the boundary feedbacks can be
realized by means of passive mechanical systems of springs-dampers similar to
those used in [1]. The stabilization problem of system (3.1) has been the subject
of many studies. When the coefficients ρ,EI are supposed to be constants, Rao in
[9] establish the uniform energy decay by using energy multiplier method [6]. It
seems to be difficult to extend this method to the nonuniform case. In this paper, we
extend the results obtained in [9] to variable coefficients. By using the Riesz basis
approach, we show that the generalized eigenfunctions of the system form a Riesz
basis for the state Hilbert space. As a consequence, the asymptotic expressions of
eigenvalues together with exponential stability are obtained.

The rest of this paper is organized as follows. In Sect. 3.2, the well-posedness
and the asymptotic stability of the closed-loop system are established. Section 3.3
is devoted to the asymptotic analysis for the eigenpairs of the closed-loop system.
Finally, in Sect. 3.4, we prove the Riesz basis property, the spectrum determined
growth condition and the optimal decay rate.

Throughout this paper, we assume that

(EI (.), ρ(.)) ∈ [C4(0, 1)]2, ρ, EI > 0, m, J > 0, (3.2)

and the constants a, b, and c satisfy the dissipation condition

a > 0, b ≥ 0, c > 0. (3.3)

3.2 Well-Posedness and Asymptotic Stability

We consider system (3.1) on the following complex Hilbert space:

H=V×L2(0, 1)× C
2, (3.4)
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where

V = {f ∈ H 2(0, 1)/f ′(0) = 0}, (3.5)

equipped with the inner product defined as
∀(F = (f1, g1, ζ1, δ1),G = (f2, g2, ζ2, δ2)) ∈ H

2

(F,G)H =
∫ 1

0
(ρ(x)g1(x)g2(x)+ EI (x)f ′′1 (x)f ′′2 (x))dx + f1(0)f2(0)

+ 1

m
ζ1ζ2 + 1

J
δ1δ2. (3.6)

Then, we define an operator as follows: A : D(A) ⊂ H→H

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D(A) = {(f, g, ζ, δ) ∈ (H 4(0, 1) ∩ V)× V× C
2/f (0)+ (EI (.)f ′′)′(0)+ ag(0) = 0,

ζ = mg(1), δ = Jg′(1)}

A(f, g, ζ, δ)=
(
g,
−(EI (.)f ′′(.))′′

ρ(.)
, (EI (.)f ′′)′(1)−bg(1),−(EI (1)f ′′(1)+ cg′(1))

)
,

(3.7)

with the initial condition Y0 =
(
y0, y1,my1(1), Jy′1(1)

)
, the system (3.1) can be

written as an evolutionary equation in H :
⎧
⎪⎨

⎪⎩

dY (t)

dt
= AY (t),

Y (t) = (y(., t), yt (., t),myt (1, t), Jyxt (1, t)), Y (0) = Y0.

(3.8)

We have the following Lemma

Lemma 3.1 Let the operator A defined by (3.7). Then A is a densely defined,
closed dissipative operator in H, and A

−1 exists and is compact on H. Moreover,
A generates a C0 semigroup of contractions eAt on H and the spectrum σ(A) of A
consists only of the isolated eigenvalues.

Proof Let (f, g, ζ, δ) ∈ D(A), then we have

Re(AY, Y )H = −a |g(0)|2 − b |g(1)|2 − c
∣∣g′(1)

∣∣2 . (3.9)

Thus A is dissipative in H. Next, we show that A−1 exists. Let (u, v, ω, ξ) ∈ H, we
will find (f, g, ζ, δ) ∈ D(A) such that

A(f, g, ζ, δ) = (u, v, ω, ξ) ∈ H,
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which yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g = u, ζ = mg(1) = mu(1), δ = Jg′(1) = Ju′(1),

(EI (.)f ′′)′′(x) = −ρ(x)v(x),

f ′(0) = 0, f (0)+ (EI (.)f ′′)′(0)+ au(0) = 0,

(EI (.)f ′′)′(1)− bu(1) = ω,

− (EI (1)f ′′(1)+ cu′(1)) = ξ.

After a simple calculation, we show that

f (x) = f (0)−
∫ x

0

∫ y

0
drdy

[
β(1− r)+ α

EI (r)
+ 1

EI (r)

∫ 1

r

∫ 1

s

ρ(x)v(x)dtds

]
,

where

⎧
⎪⎨

⎪⎩

f (0) = −(β + au(0)+
∫ 1

0

∫ 1

r

ρ(x)v(x)dsdr),

α = ξ + cu′(1), β = ω + bu(1).

Thus, A
−1 exists and is bounded in H. Furthermore, the Sobolev embedding

theorem, implies that A−1 is compact on H and the Lumer–Phillips theorem [8]
can be applied to conclude that A generates a C0 semigroup of contractions eAt in
H. The Lemma is proved. �	

Now, we turn our attention to the asymptotic stability of the system.

Lemma 3.2 Let A be the operator defined by (3.7). Then �e(A) < 0 and hence the
system (3.1) is asymptotically stable.

Proof It suffices to show that {iγ, γ ∈ R} ⊂ ρ(A). Assume that this is false. This
together with Lemma 3.1 implies that there exists nonzero γ ∈ R such that iγ ∈
σ(A), where σ(A) is the point spectrum, i.e., there exists φ = (f, g, ζ, δ) ∈ D(A)

satisfying without loss of generality, the conditions ‖φ‖H = 1 and (iγ − A)φ = 0
i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(EI (.)f ′′)′′(x)− γ 2ρ(x)f (x) = 0,

f ′(0) = 0, −(EI (.)f ′′)′(0) = (1+ iγ a)f (0),

(EI (.)f ′′)′(1) = (−γ 2m+ iγ b)f (1),

− EI (1)f ′′(1) = (−γ 2J + iγ c)f ′(1),

g = iγf, ζ = iγmf (1), δ = iγ Jf ′(1).

(3.10)
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Using (3.9), we obtain g′(1) = f ′(1) = 0 and f (0) = 0, which further implies by
means of (3.10) that f ′′(1) = 0 and the system (3.10) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(EI (.)f ′′)′′(x)− γ 2ρ(x)f (x) = 0,

f (0) = f ′(0) = (EI (.)f ′′)′(0) = 0,

f ′(1) = f ′′(1) = 0,

(EI (.)f ′′)′(1) = (−γ 2m+ iγ b)f (1).

(3.11)

1. If b > 0, then from (3.9), g(1) = f (1) = 0, by means of (3.11), we have

(EI (.)f ′′)′(1) = 0

and the system (3.11) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(EI (.)f ′′)′′(x)− γ 2ρ(x)f (x) = 0,

f (0) = f ′(0) = (EI (.)f ′′)′(0) = 0,

f (1) = (EI (.)f ′′)′(1) = 0,

EI (1)f ′′(1) = 0.

(3.12)

It has been proved in [3] that the above system has only the trivial solution, i.e.,
f = 0. Then φ = 0, which contradict the first that ‖φ‖H = 1.

2. If b = 0. First, assume that

f (1) > 0 (the negative case is similar),

which implies by the last boundary condition in (3.11) that

(EIf ′′)′(1) < 0.

Let [c, 1] be a subspace of [0, 1] so that f (x) > 0 for each x ∈ (c, 1], f (c) = 0.
Then,

(EI (.)f ′′)′′(x) > 0, for any x ∈ (c, 1].

Hence, (EI (.)f ′′)′ is increasing in (c, 1]. Since

(EI (.)f ′′)′(1) < 0,

we have

(EI (.)f ′′)′(x) < 0, for any x ∈ (c, 1].
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It follows that EI (x)f ′′(x) is decreasing in (c, 1]. Since

EI (1)f ′′(1) = 0,

we have

f ′′(x) > 0, for any x ∈ (c, 1).

So, f ′(x) is increasing in (c, 1). Since f ′(1) = 0, we have

f ′(x) < 0, for any x ∈ (c, 1).

Hence, f (x) is decreasing in (c, 1), and so,

f (c) > f (1) > 0,

contradicts the assumption that f (c) = 0. Therefore, f (1) = 0. Now, (3.11) implies
that f satisfies system (3.12). We can conclude as in 1. The Lemma 3.2 (in the end
of proof of Lemma 3.2) is proved. �	

3.3 Asymptotic Expressions of Eigenfrequencies

Note that

Aφ = λφ, φ = (f, g, ζ, δ), (3.13)

yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(EI (.)f ′′)′′(x)+ λ2ρ(x)f (x) = 0, 0 < x < 1,

f ′(0) = 0, f (0)+ (EI (.)f ′′)′(0)+ ag(0) = 0,

(EI (.)f ′′)′(1) = (λ2m+ λb)f (1),

− EI (1)f ′′(1) = (λ2J + λc)f ′(1),

g(x) = λf (x), ζ = mg(1), δ = Jg′(1).

(3.14)

Writing (3.14) in the standard form of a linear differential operator with homoge-
neous boundary conditions, we obtain
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f (4)(x)+ 2EI ′(x)
EI (x)

f ′′′(x)+ EI ′′(x)
EI (x)

f ′′(x)+ λ2 EI (x)

ρ(x)
f (x) = 0, 0 < x < 1,

f ′(0) = 0, λf (0)+ a1f
′′′(0)+ a2f

′′(0)+ a3f (0) = 0,

λ2f (1)+ a4λf (1)− a5f
′′′(1)− a6f

′′(1) = 0,

λ2f ′(1)+ a7λf
′(1)+ a8f

′′(1) = 0,
(3.15)

where

⎧
⎪⎪⎨

⎪⎪⎩

a1 = EI (0)

a
, a2 = EI ′(0)

a
, a3 = 1

a
, a4 = b

m
,

a5 = EI (1)

m
, a6 = EI ′(1)

m
, a7 = c

m
, a8 = EI (1)

J
.

(3.16)

In order to simplify the computations, we introduce a spatial scale transformation
in x.

�(z) = f (x), z = z(x) = 1

p

∫ x

0

( ρ(s)

EI (s)

)1/4
ds, p =

∫ 1

0

( ρ(s)

EI (s)

)1/4
ds,

(3.17)
then � satisfies the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�(4)(z)+ a(z)�′′′(z)+ b(z)�′′(z)+ c(z)�′(z)+ λ2p4�(z) = 0,

�′(0) = 0, λ�(0)+ b1�
′′′(0)+ b2�

′′(0)+ b3�
′(0)+ a3�(0) = 0,

λ2�(1)+ a4λ�(1)− b4�
′′′(1)− b5�

′′(1)− b6�
′(1) = 0,

λ2�′(1)+ a7λ�
′(1)+ b7�

′′(1)+ b8�
′(1) = 0,

(3.18)

where a(z), b(z), and c(z) are the smooth functions defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(z) = 6z′′

z′2
+ 2EI ′(x)

z′EI (x)
,

b(z) = 3z′′2

z′4
+ 6z′′EI ′(x)

z′3EI (x)
+ EI ′′(x)

z′2EI (x)
+ 4z′′′

z′3
,

c(z) = z′′′′

z′4
+ 2z′′′EI ′(x)

z′4EI (x)
+ z′′EI ′′(x)

z′4EI (x)
,

(3.19)

and
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = a1z
′3(0), b2 = 3a1z

′(0)z′′(0)+ a2z
′2(0),

b3 = a1z
′′′(0)+ a2z

′′(0), b4 = a5z
′3(1),

b5 = 3a5z
′(1)z′′(1)+ a6z

′2(1), b6 = a5z
′3(1)+ a6z

′′(1),

b7 = a8z
′(1), b8 = a8z

′′(1)
z′(1)

.

(3.20)

Equation (3.18) can be simplified by applying another invertible transformation

ϕ(z) = e1/4
∫ z

0 a(s)ds �(z), (3.21)

which allows one to cancel the term a(z)�′′′(z) in (3.18); hence, ϕ satisfies the
following equivalent eigenvalue problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(4)(z)+ a1(z)ϕ
′′(z)+ a2(z)ϕ

′(z)+ a3(z)ϕ(z)+ λ2p4ϕ(z) = 0,

ϕ′(0)− a(0)

4
ϕ(0) = 0, λϕ(0)+ b1ϕ

′′′(0)+ F1(ϕ(0), ϕ
′(0), ϕ′′(0)) = 0,

λ2ϕ(1)+ a4λϕ(1)− b4ϕ
′′′(1)+ F2(ϕ(1), ϕ

′(1), ϕ′′(1)) = 0,

λ2(ϕ′(1)− a(1)

4
ϕ(1))+ a7λ(ϕ

′(1)− a(1)

4
ϕ(1))+ F3(ϕ(1), ϕ

′(1), ϕ′′(1)) = 0,

(3.22)
where a1(z), a2(z) and a3(z) are the smooth functions defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1(z) = −3a′(z)
2

− 3a2(z)

8
+ b(z),

a2(z) = a3(z)

8
− a′′(z)− a(z)b(z)

2
+ c(z),

a3(z) = 3a′2(z)
16

− a′′′(z)
4

− 3a4(z)

256
+ 3a2(z)a′(z)

32

+ b(z)(
a2(z)

16
− a′(z)

4
)− a(z)c(z)

4
,

(3.23)

and F1(x1, x2, x3), F2(x1, x2, x3), and F3(x1, x2, x3) are linear combinations of
x1, x2, and x3.

To estimate asymptotically the solutions to the eigenvalue problem (3.22), we
proceed as in [7]. First due to Lemma 3.2 and the fact that eigenvalues of A are
symmetric with respect to the real axis, we only need to consider those λ ∈ σ(A)

that satisfy
π

2
≤ arg λ ≤ π , which we assume in the sequel. Next, we set λ = τ 2

and hence
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π

4
≤ arg τ ≤ π

2
.

Now, let us choose ωj , j = 1, 2, 3, 4 as follows:

ω1 = −1+ i√
2

, ω2 = 1+ i√
2

, ω3 = −ω2, ω4 = −ω1,

consequently, we have for τ ∈ S =
{
τ/

π

4
≤ arg τ ≤ π

2

}

⎧
⎪⎪⎨

⎪⎪⎩

Re(τω1) = − | τ | sin(arg τ + π

4
) ≤ −

√
2 | τ |

2
< 0,

Re(τω2) =| τ | cos(arg τ + π

4
) ≤ 0.

(3.24)

In order to analyze the asymptotic distribution of eigenpairs for (3.22), we need the
following result [10].

Lemma 3.3 For | τ | large enough and τ ∈ S, there are four linearly independent
asymptotic fundamental solutions ϕj , j = 1, 2, 3, 4, to

ϕ(4)(z)+ a1(z)ϕ
′′(z)+ a2(z)ϕ

′(z)+ a3(z)ϕ(z)+ τ 4p4ϕ(z) = 0, (3.25)

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕj (z, τ ) = eτωj z

(
1+ ϕj1(z)

τ
+O

(
τ−2

))
,

ϕ′j (z, τ ) = τωj e
τωj z

(
1+ ϕj1(z)

τ
+O

(
τ−2

))
,

ϕ′′j (z, τ ) = (τωj )
2eτωj z

(
1+ ϕj1(z)

τ
+O

(
τ−2

))
,

ϕ′′′j (z, τ ) = (
τωj

)3
eτωj z

(
1+ ϕj1(z)

τ
+O

(
τ−2

))
,

(3.26)

where

ϕj1(z) = − 1

4ωj

∫ z

0
a1(s)ds.

Hence, for j = 1, 2, 3, 4,

ϕj1(0) = 0, ϕj1(1) = − 1

4ωj

∫ 1

0
a1(s)ds = 1

ωj

μ, μ = −1

4

∫ 1

0
a1(s)ds.
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For convenience, we introduce the notation [r]j = r +O
(
τ−j

)
for j = 1, 2. From

Lemma 3.3, one can write the asymptotic solution of (3.22) as follows:

ϕ(z) = d1ϕ1(z)+ d2ϕ2(z)+ d3ϕ3(z)+ d4ϕ4(z), (3.27)

where ϕj , j = 1, 2, 3, 4 are defined by Lemma 3.3 and dj , j = 1, 2, 3, 4 are
chosen so that ϕ satisfy the boundary conditions of (3.22). Note that λ = τ 2 �= 0, is
the eigenvalue of (3.22) if and only if τ satisfies the characteristic determinant

�(τ) =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

τω1[1− a0
τω1
]2 τω2[1− a0

τω2
]2

τ 3ω3
1[b1 − ω1

τ
]2 τ 3ω3

2[b1 − ω2

τ
]2

τ 4[1+ μ+ b4

τω1
]2eτω1 τ 4[1+ μ+ b4

τω2
]2eτω2

τ 5[ω1 + b9

τ
]2eτω1 τ 5[ω2 + b9

τ
]2eτω2

(3.28)

τω3[1− a0
τω3
]2

τ 4ω3
3[b1 − ω3

τ
]2

τ 4[1+ μ+ b4

τω3
]2eτω3

τ 5[ω3 + b9

τ
]2eτω3

τω4[1− a0
τω4
]2

τ 3ω3
4[b1 − ω4

τ
]2

τ 4[1+ μ+ b4

τω4
]2eτω4

τ 5[ω4 + b9

τ
]2eτω4

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

,

where

a0 = a(0)

4
, b9 = μ− a(1)

4
.

Noting that from (3.24)

|eτω2 | ≤ 1, |eτω1 | = O(e−q|τ |) as |τ | → +∞,

for some constant q > 0, then each element of the matrix in (3.28) is bounded, we
may rewrite (3.28) as
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τ−13eτ(ω1+ω2)�(τ) =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

ω1(1− a0
τω1

) ω2(1− a0
τω2

) −ω2(1+ a0
τω2

)eτω2

ω3
1(b1 − ω1

τ
) ω3

2(b1 − ω2

τ
) −ω3

2(b1 + ω2

τ
)eτω2

0 (1+ μ+ b4

τω2
)eτω2 (1− μ+ b4

τω2
)

0 (ω2 + b9

τ
)eτω2 (−ω2 + b9

τ
)

(3.29)
0
0

(1− μ+ b4

τω1
)

(−ω1 + b9

τ
)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

+O
(
τ−2

)
.

A direct calculation gives

τ−13eτ(ω1+ω2)�(τ)

= b1(ω1ω
3
2 − ω3

1ω2)

[
ω2 − ω1 + (μ+ b4)

(
ω1ω

−1
2 − ω2ω

−1
1

)
τ−1

]

+ (ω2 − ω1)(ω
3
1 − ω3

2)(ω1ω2 + a0b1)τ
−1 + e2τω2

{
b1(ω

3
1ω2 − ω1ω

3
2)

×
[
ω1 + ω2 + (μ+ b4)(ω2ω

−1
1 − ω1ω

−1
2 )τ−1

]
+ (ω1 + ω2)(ω

3
1 + ω3

2)

× (b1a0 − ω1ω2)τ
−1
}
+O

(
τ−2

)
.

A straightforward simplification will arrive at the following result.

Theorem 3.1 Let λ = τ 2 where τ ∈ S.

1. The characteristic determinant �(τ) of the eigenfunction problem (3.22) has the
following asymptotic expression in the sector S

τ−13eτ(ω1+ω2)�(τ) = 2
[
−√2ib1 + (b10 − 1)τ−1

]

+ 2e2τω2
[
−√2b1 + (−b10 − 1)τ−1

]
+O

(
τ−2

)
,

(3.30)
where b10 = b1[2(μ+ b4)+ a0].

2. Let σ(A) = {λn, λn, n ∈ N}, be the eigenvalues of A, then for k = n − 1

4
and

τn ∈ S, the following asymptotic expression holds
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τn = 1

ω2
kπi − 1

2
√

2b1

[
(1− i)b10 + (1+ i)

kπi

]
+O

(
n−2

)

λn = − 1

b1
+ (kπ)2i + b10i

b1
+O

(
n−1

)
,

(3.31)

for sufficiently large positive integer n. Moreover, by (3.16) and (3.20), we obtain

lim
n→+∞Re(λn) = − 1

b1
= − a

EI (0)z′3(0)
< 0. (3.32)

3. λn is geometrically simple when n is large enough.

Proof Note that λ = τ 2 ∈ σ(A), where τ ∈ S if and only if

−√2ib1e
−τω2 −√2b1e

τω2 + (b10 − 1)

τ
e−τω2 − (b10 + 1)

τ
eτω2 +O

(
τ−2

)
= 0,

(3.33)
which can be written as

−√2ib1e
−τω2 −√2b1e

τω2 +O
(
τ−1

)
= 0. (3.34)

Obviously, the equation

ie−τω2 + eτω2 = 0, (3.35)

has solutions

τ̃n = 1

ω2
kπi, n ∈ N, k = n− 1

4
. (3.36)

Applying Rouche’s theorem to (3.34), we obtain

τn = τ̃n + αn = 1

ω2
kπi + αn, αn = O

(
n−1

)
, n = N,N + 1 . . . , (3.37)

where N is large positive integer.
Substituting τn into (3.33) and using the fact that eτ̃nω2 = −ie−τ̃nω2 , we obtain

−√2ib1e
−αnω2 +√2ib1e

αnω2 + (b10 − 1)̃τ−1
n e−αnω2 + i(b10 + 1)̃τ−1

n eαnω2

+ O
(
τ̃−2
n

)
= 0.

On the other hand, expanding the exponential function according to its Taylor series,
we obtain

αn = − 1

2
√

2b1

[
b10(1− i)+ (1+ i)

kπi

]
+O

(
n−2

)
. (3.38)
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Substituting this estimate in (3.37), we have,

τn = kπi

ω2
− 1

2
√

2b1

[
b10(1− i)+ (1+ i)

kπi

]
+O

(
n−2

)
, n = N,N + 1, . . . .

(3.39)

Finally, recall that λn = τ 2
n , ω2 = 1+ i√

2
, ω2

2 = i, and hence the last estimate yields

λn = − 1

b1
+ (kπ)2i + b10i

b1
+O

(
n−1

)
, n = N,N + 1, . . . ,

where N is sufficiently large.
Since the matrix in (3.29) has rank 3 for each sufficiently large n, there is only

one linearly independent solution ϕn to (3.22) for τ = τn. Hence, each λn is
geometrically simple for n sufficiently large. The theorem is proved. �	
Theorem 3.2 Let λn = τ 2

n where τn ∈ S is given by (3.31). Then the corresponding
eigenfunction {φn = (fn, λnfn, ζn, δn), φn = (fn, λn fn, ζn, δn)} has the following
asymptotic:

λnfn(x) = e−1/4
∫ z

0 a(s)ds

[√
2cos(n−1/4)πz−(−1)ne−(n−1/4)π(1−z)+O

(
n−1

) ]
,

(3.40)

f ′′n (x) =
1

p2

(
ρ(x)

EI (x)

)1/2

e−1/4
∫ z

0 a(s)ds

[√
2icos(n− 1/4)πz+ i(−1)n

×e−(n−1/4)π(1−z) +O
(
n−1

) ]
, (3.41)

ζn = O
(
n−1

)
, δn = O

(
n−2

)
. (3.42)

Proof From (3.25), (3.26), (3.28), and a simple fact of linear algebra, the eigen-
function ϕn corresponding to λn is given by

ϕn(z) =

⏐⏐⏐⏐⏐⏐⏐⏐

τnω1[1]1 τnω2[1]1 τnω3[1]1 τnω4[1]1
eτnω1z[1]1 eτnω2z[1]1 eτnω3z[1]1 eτnω4z[1]1
τ 4
n e

τnω1 [1]1 τ 4
n e

τnω2 [1]1 τ 4
n e

τnω3 [1]1 τ 4
n e

τnω4 [1]1
τ 5
nω1e

τnω1 [1]1 τ 5
nω2e

τnω2 [1]1 τ 5
nω3e

τnω3 [1]1 τ 5
nω4e

τnω4 [1]1

⏐⏐⏐⏐⏐⏐⏐⏐

,

(3.43)
then
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ω2
2e

τn(ω1+ω2)ϕn(z) = τ 10
n

⏐⏐⏐⏐⏐⏐⏐⏐

−[1]1 i[1]1 −ieτnω2 [1]1 eτnω1 [1]1
eτnω1z[1]1 eτnω2z[1]1 eτnω2(1−z)[1]1 eτnω1(1−z)[1]1
eτnω1 [1]1 eτnω2 [1]1 [1]1 [1]1
−eτnω1[1]1 ieτnω2 [1]1 −i[1]1 −[1]1

⏐⏐⏐⏐⏐⏐⏐⏐

= τ 10
n

⏐⏐⏐⏐⏐⏐⏐⏐

−1 i −ieτnω2 0
eτnω1z eτnω2z eτnω2(1−z) eτnω1(1−z)

0 eτnω2 1 1
0 ieτnω2 −i 1

⏐⏐⏐⏐⏐⏐⏐⏐

+O
(
τ−1
n

)

= τ 10
n

{
− (1+ i)eτnω2z + (1− i)eτnω2(1−z)eτnω2 + 2ieτnω1(1−z)eτnω2

+ (1− i)eτnω1z − (i + 1)eτnω1ze2τnω2

}
+O

(
τ−1
n

)
.

It follows from (3.35) that e2τnω2 = −i + O
(
τ−1
n

)
, and hence the last estimate

yields

−ω2
2e

τn(ω1+ω2)ϕn(z)

(1+ i)τ 10
n

=
{
eτnω2z + ieτnω2(1−z)eτnω2 − (i + 1)eτnω1(1−z)eτnω2

}
+O

(
n−1

)
.

Similarly

−ω2
2e

τn(ω1+ω2)ϕ′′n(z)
(1+ i)τ 12

n

=

⏐⏐⏐⏐⏐⏐⏐⏐

−[1]1 i[1]1 −ieτnω2 [1]1 eτnω1 [1]1
−ieτnω1z[1]1 ieτnω2z[1]1 ieτnω2(1−z)[1]1 −ieτnω1(1−z)[1]1
eτnω1[1]1 eτnω2 [1]1 [1]1 [1]1
−eτnω1 [1]1 ieτnω2 [1]1 −i[1]1 −[1]1

⏐⏐⏐⏐⏐⏐⏐⏐

=
{
ieτnω2z − eτnω2(1−z)eτnω2z + (i − 1)eτnω1(1−z)eτnω2z

}
+O

(
n−1

)
.

Moreover,

−ω2
2e

τn(ω1+ω2)ϕ′n(z)
(i + 1)τ 11

n

= 1√
2

{
(i + 1)eτnω2z + (1− i)eτnω2(1−z)eτnω2

− 2eτnω2eτnω1(1−z)

}
+O

(
n−1

)
.
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We note from (3.31) that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

eτnω2 = ei(n−1/4)π +O
(
n−1

)
= (1− i)(−1)n√

2
+O

(
n−1

)
,

eτnω2z = ei(n−1/4)πz +O
(
n−1

)
,

eτnω1z = e−(n−1/4)πz +O
(
n−1

)
.

(3.44)

By setting

fn(x) = −ω2
2e
−1/4

∫ z
0 a(s)dseτn(ω1+ω2)ϕn(z)

(1+ i)τ 12
n

, (3.45)

the expression (3.40) can then be concluded. Furthermore,

−ω2
2e

τn(ω1+ω2)ϕ′n(z)
(i + 1)τ 12

n

= O
(
n−1

)
,

then

f ′′n (x) =

(
ρ(x)

EI (x)

)1/2

ω2
2e
−1/4

∫ z
0 a(s)dseτn(ω1+ω2)ϕ′′n(z)

p2(1+ i)τ 12
n

, (3.46)

then the expression (3.41) is obtained. Also, from (3.40), we have

ζn = mλnfn(1) = me−1/4
∫ 1

0 a(s)ds
[√

2cos(n− 1/4)π − (−1)n +O
(
n−1

)]

= O
(
n−1

)
, (3.47)

also, we have from the boundary condition of (3.14), λnJf
′
n(1) = −

EI (1)f ′′n (1)
λnJ

−
cf ′n(1), we obtain δn = Jλnf

′
n(1) = O

(
n−2

)
. The theorem is proved. �	

3.4 Riesz Basis Property

Definition 3.1 Let A be a closed-loop operator in a Hilbert space H. A nonzero
element x �= 0 ∈ H is called a generalized eigenvector of A corresponding to an
eigenvalue λ (with finite algebraic multiplicity) of A if there exists a nonnegative
integer n such that (λ− A)nx = 0.
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Definition 3.2 A sequence (xn)n≥1 in H is called a Riesz basis for H if there exists
an orthonormal basis (zn)n≥1 in H and a linear bounded invertible T ∈ L(H) such
that T xn = zn for any n ∈ N

∗.

Theorem 3.3 (See [2]) Let (λn)n≥1 ⊂ σ(A) be the spectrum of A. Assume that
each λn has a finite algebraic multiplicity mn and mn = 1 as n > N for some integer
N , then there is a sequence of linearly independent generalized eigenvectors {xn}mn

1
corresponding to λn. If

{{xn}mn

1

}
n≥1 forms a Riesz basis for H, then A generates a

C0 semigroup eAt which can be represented as

eAt x =
+∞∑

n=1

eλnt
mn∑

i=1

ani

mn∑

j=1

fnj (t)xnj ,

for any x = ∑+∞
n=1

∑mn

i=1 anixni ∈ H where fnj (t) is a polynomial of t with order
less than mn. In particular, if a∗ < Reλ < b∗ for some real numbers a∗ and b∗, then
A generates a C0 group on H. Moreover, the spectrum-determined growth condition
holds eAt : ω(A) = S(A), where

ω(A)= lim
t→+∞

1

t
|| eAt|| is the growth order of eAt and S(A)= sup{Reλ/ λ ∈ σ(A)}

is the spectral bound of A.

In order to remove the requirement of the estimation of the low eigenpairs of
the system, a corollary of Bari’s theorem is recently reported in [2], which provides
a much less demanding approach in generating a Riesz basis for general discrete
operators in the Hilbert spaces. The result is cited here.

Theorem 3.4 (See [2]) Let A be a densely defined discrete operator, that is, (λ −
A)−1 is compact for some λ in a Hilbert space H. Let {zn}+∞1 be a Riesz basis for
H. If there are an N ≥ 0 and a sequence of a generalized eigenvectors {xn}+∞N+1 of
A such that

+∞∑

n=N+1

‖xn − zn‖2 < +∞,

then

1. There are an M > N and generalized eigenvectors
{
xn0

}M
1 ∪ {xn}+∞M+1 form a

Riesz basis for H.

2. Consequently, let
{
xn0

}M
1 ∪ {xn}+∞M+1 correspond to eigenvalues {σn}+∞1 of A,

then σ(A) = {σn}+∞1 where σn is counted according to its algebraic multiplicity.
3. If there is an M0 > 0 such that σn �= σm for all m, n ≥ M0, then there is an

N0 > M0 such that all σn, n > N0 are algebraically simple.
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In order to apply Theorem 3.4 to the operator A when we consider {xn} in
Theorem 3.4 as the eigenfunctions of A, we need a referring Riesz basis {zn}1+∞
as well. For the system (3.1), this is accomplished by collecting (approximately)
normalized eigenfunctions of the following free conservative system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x)ytt (x, t)+ (EI (.)yxx)xx(x, t) = 0, 0 < x < 1, t > 0,

yx(0, t) = y(0, t)+ (EI (.)yxx)x(0, t) = 0, t > 0,

(mytt − (EI (.)yxx)x)(1, t) = 0, t > 0,

(Jyxtt + EI (.)yxx)(1, t) = 0, t > 0,

y(x, 0) = y0(x), yt (x, 0) = y1(x), 0 < x < 1.

(3.48)

The system operator A0 associated with (3.48) is nothing but the operator A with

b = c = 1

a
= 0.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A0(f, g, ζ, δ) = (g,− 1

ρ(.)
(EI (.)f ′′)′′, (EI (.)f ′′)′(1),−EI (1)f ′′(1)),

D(A0) = {(f, g, ζ, δ) ∈ (H 4(0, 1) ∩ V)× V× C
2/f (0)+ (EI (.)yxx)x(0) = 0,

ζ = Jg′(1), δ = mg(1)}.
(3.49)

A0 is skew-adjoint with compact resolvent in H. It is seen that all the analyses in
the previous sections for the operator A are still true for the operator A0. Therefore,
we have the following counterpart of Theorem 3.2 for the operator A0:

Lemma 3.4 Each eigenvalue υn0 of A0 with sufficiently large module is geometri-
cally simple hence algebraically simple.

The eigenfunctions
−→
�n0 = (fn0, υn0fn0 ,mυn0fn0(1), Jυn0f

′
n0
(1)) of υn0 have

the following asymptotic expressions:

υn0fn0(x) = e−1/4
∫ z

0 a(s)ds

[√
2cos(n−1/4)πz−(−1)ne−(n−1/4)π(1−z)+O

(
n−1

) ]
,

(3.50)

f ′′n0
(x) = 1

p2

(
ρ(x)

EI (x)

)1/2

e−1/4
∫ z

0 a(s)ds

[√
2icos(n− 1/4)πz+ i(−1)n

×e−(n−1/4)π(1−z) +O
(
n−1

) ]
,

(3.51)

ζn0 = O
(
n−1

)
, δn0 = O

(
n−2

)
, (3.52)

where all (υn0 , υn0), but possibly a finite number of other eigenvalues, are composed
of all the eigenvalues of A0.
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The eigenfunctions
−→
�n0 = (fn0 , υn0fn0 ,mυn0fn0(1), Jυn0f

′
n0
(1)) are normal-

ized approximately.
From a well-known result in functional analysis, we know that the eigenfunctions

of A0 form an orthogonal basis for H, particularly, all
−→
�n0 and their conjugates form

an (orthogonal) Riesz basis for H.
Then there exists a positive integer large enough N such that

+∞∑

n=N+1

∥∥∥
−→
�n −−→� n0

∥∥∥
2

H

=
+∞∑

n=N+1

O(n−2) < +∞. (3.53)

The same result is verified for their conjugates. We can now apply Theorem 3.4 to
obtain the main results of the present paper.

Theorem 3.5 Let the operator be A defined by (3.7).

1. There is a sequence of generalized functions properly normalized of A which
forms a Riesz basis of the Hilbert space H.

2. The eigenvalues of A have the asymptotic behavior (3.31).
3. All λ ∈ σ(A) with sufficiently large modulus are algebraically simple. Therefore,

A generates a C0 semigroup on H. Moreover, for the semigroup eAt generated
by A, the spectrum-determined growth condition holds.

As a consequence of Theorem 3.5, we have a stability result for system (3.1).

Corollary 3.1 The system (3.1) is exponentially stable for any a > 0, b ≥ 0, and
c > 0.

Proof Theorem 3.5 ensures the spectrum-determined growth condition: ω(A) =
sup{Reλ : λ ∈ σ(A)}, Lemma 3.2 (in the proof of Corollary 3.1), say that Reλ < 0
provided λ ∈ σ(A) and Theorem 3.1 shows that imaginary axis is not an asymptote
of σ(A). Therefore sup{Reλ : λ ∈ σ(A)} < 0. �	
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Part II
Advanced Mathematics for Imaging

In this second part, we collect three chapters dealing with some applications of
advanced mathematics to the broad area of signal processing and imaging.

The first chapter written by Serge Dos Santos begins with a review of some
relevant mathematical tools such as Lie groups, correlation functions, and Fourier
analysis, with focus on applications to Non-Destructive Testing (NDT) and har-
monic medical imaging. The second chapter written by Thomas Deregnaucourt,
Chafik Samir, Abdelmoujib Elkhoumri, Jalal Laassiri, and Youssef Fakhri describes
a geometrically constrained manifold embedding for an extrinsic Gaussian process
applied in the medical context where Ultrasound (US ) and Magnetic Resonance
Imaging (MRI) techniques are noninvasive testing (NIT). The third chapter written
by Houda Salmi, Khalid El Had, Hanan El Bhilat, and Abdelilah Hachim gives a
numerical analysis of the stress intensity factor for a crack in P265GH steel.



Chapter 4
Advanced Ground Truth Multimodal
Imaging Using Time Reversal (TR) Based
Nonlinear Elastic Wave Spectroscopy
(NEWS): Medical Imaging Trends Versus
Non-destructive Testing Applications

Serge Dos Santos

Abstract An innovative pragmatic approach is described using a symbiosis of
modern signal processing techniques coming from nonlinear science and multiscale
global analysis usually considered for the characterization of nanoscale systems
with complex mesoscopic properties. The basis of this systemic approach comes
from ultrasound imaging of the complexity with examples coming from the
non-destructive testing (NDT) industry and from the medical harmonic imaging
research. Modeling uses basic tools derived from the analysis of nonlinear dynam-
ics, such as spectrum representations coming from harmonic analysis and multiscale
analysis, in association with advanced signal processing such as similarity and
invariance analysis based on group theory. Experimentation is based on multimodal
imaging using time reversal (TR) based nonlinear elastic wave spectroscopy
(NEWS). Practical implementation in the aeronautic industry and the biomedical
imaging field is taken as a demonstration of feasibility of such advanced engineering
TR-NEWS methods for imaging complex systems with an advanced ground truth
approach including round robin tests. This new class of multiscale materials is
studied with phenomenological approaches like the Preisach–Mayergoyz space (PM
space), where some physical properties like hysteresis, end-point memory, and odd
harmonic generations are extracted from the noise. As a consequence, this approach
is proposed for including phenomenological tools to any organizations’ strategies
in order to monitor the vulnerability in a societal emergency management context.
These results could be applied for the organizational side of innovation, cognition,
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and practices for novelty and disruption in political organizations, social monitoring,
and any system which will involve big data or artificial intelligence.

Keywords Signal processing · Symmetry · Invariance · Nondestructive testing
(NDT) · Ultrasonic imaging · Multiscale · Pragmatic probability law ·
Integritology · Hierarchical analysis · Decision theory · Ground truth ·
TR-NEWS

4.1 Introduction to Non-invasive and Non-destructive (NDT)
Testing

Monitoring multiscale systems with multimodal imaging is now recognized to
be a keystone for understanding aging and degradation processes in complex
modern materials and biological media. After more than 90 years of non-destructive
testing (NDT) applications, significant progress has been made from the research
laboratory to the manufacturing floor [1–5]. Today, there are numerous excellent
NDT capabilities available to the user. In many cases, these capabilities are not
necessarily being utilized appropriately due to lack in education and training or in
the culture of NDT. NDT is and will continue to be a key science in addressing
the complex needs for reliability and safety in the construction and service life
of structures. Consequently, it directly impacts people and their daily life. Design
engineers who develop projects need a priori knowledge of NDT technology.
They need to determine the appropriate NDT method to be performed during
construction and incorporate them into their designs. During their service life,
most constructions are subject to different types of degradation of their structural
integrity, such as corrosion, fatigue, aging, etc. In many cases, the consequences
have been catastrophic resulting in train derailments, mid-air aircraft failures, bridge
collapses, pipelines and refinery explosion, and offshore platform petroleum spills.
NDT integrity engineering is a discipline to develop non-destructive testing and
evaluation involving materials science, fracture mechanics, and other sciences that
would guarantee and enhance the reliability and safety by ensuring integrity of
structures in everyday life.

The understanding of the complexity of the aging of biological media is still
a challenge. Improved imaging and non-invasive testing (NIT) devices need to be
continuously proposed in order to extract physical information from applications
of image processing that gives the best knowledge of the complex system. Image
thresholding techniques are used in both medical imaging area and NDT [6–8].
In these contexts, advanced ground truth should be applied. Ground truth allows
image data to be related to real features and materials on the ground (Fig. 4.1). The
collection of ground-truth data enables calibration of remote-sensing data, and aids
in the interpretation and analysis of what is being measured. Other applications
include cartography, meteorology, analysis of aerial photographs, satellite imagery,
and other techniques in which complex data are gathered at a distance. In the case of
a classified image, it allows supervised classification [9] to determine the accuracy
of the classification performed using various algorithms.
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Fig. 4.1 Ground truth images applied in NDT with an example of round robin tests. As ground
truth images for the training, validation, and evaluation of slit and hole, complex imaging methods
should be used in symbiosis with signal and image processing

In this engineering area devoted to complexity, the high number of parameters
(and their associated precision and uncertainty) induces an increase of the stochastic
part of the physical information, decreasing consequently the deterministic part [10].

Accurate analysis of complex systems needs the use of new and powerful
methods of signal processing [11], dealing with stochastic data. Another property
that is commonly related to complex systems is that it shows nonlinearities, which
is closely related to the concept of chaos. In biological systems with nonlinear
signatures, small causes might have large effects. Such systems might be very
sensitive to the initial conditions and/or very sensitive to the excitation properties,
i.e., stability, vulnerability, or accuracy, for example. Consequently, a small initial
difference in excitation might lead to large differences in the subsequent response
of the system. This is frequently referred to as deterministic chaos. A given initial
system state might lead to several different final states, impossible in principle to
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know in advance which of the states the system ends up. Most of systems used
in engineering presents a level of nonlinearity that was considered negligible and
included in the small stochastic part of the noise. Now, modern engineering is
developed by considering this stochastic part of the nonlinear signature as a new
vector of information coming from the complex system under study [12]. With
the current innovations in big data sciences and artificial intelligence (AI), these
signatures should be used as a new family of information.

Consequently, since the structure of complex biological, social, and professional
organizations is known to exhibit memory effects, conditioning, local and global
synchronization, hysteresis, threshold effects, amplitude dependence, and saturation
at various states, an extension of a mesoscopic signal processing could be introduced
in order to quantify the new proportion of stochasticity in the (nonlinear) response of
any complex system. Since stochastic signals are actually produced by deterministic
mesoscopic systems that are capable of nonlinear stochastic responses, their behav-
ior should be associated with invariant properties, such as symmetries like time
invariance and stationarity. For example, the stability of such mesoscopic system is
also conditioned by a complex skeleton of elementary rules or elements which are
necessary for synchronized behavior. Under external excitations, nonlinear systems
(or complex organizations) can produce nondeterministic responses which increase
the stochastic part with a non-intuitive proportion that needs to be considered
in biology, modern engineering organizations, and social monitoring, in order to
understand the breaking of synchronized states.

The huge variety of information extracted from this small stochastic part of the
response coming from a complex system induces an increase of the uncertainty
associated with the linear part. This linear part, with its underlying hypothesis
of stationarity and determinism, should be consequently associated with a greater
uncertainty if the system under study presents intrinsically a complex structure with
mesoscopic properties, memory effects, conditioning, and aging processes [13, 14],
including the conservation and rehabilitation of pieces of the historical and cultural
heritage like stones, paintings, frescos, mosaics, jewelry, or any objects fabricated
by our ancient civilization [15]. Of course, these properties are breaking now the
stationarity hypothesis implicitly assumed in any linear signal processing, since
linear systems theory dominates the field of engineering.

Since the last two decades, the NDT community developed, at the research
level first but now at the industrial level, a new class of signal processing tools
for extracting the nonlinear signature of damaged materials [16, 17]. The nonlinear
elastic waves spectroscopy (NEWS) methods were developed with signal processing
improved for extracting, from the complex materials and systems, new nonlinear
deterministic signatures [18, 19]. These signatures resulting from a nonlinear mixing
of waves (Fig. 4.2) allow information about the nonlinearity of medium: harmonics
and modulation for weak (classical) nonlinearity [20–22]; slow dynamics, sub-
harmonics, hysteresis and memory effects for strong (non-classical) nonlinearity
observed in mesoscopic materials [23, 24].

Recently, the use of methods, approaches, and results coming from the huge
domain of nonlinear physics has increased the number of industrial applications in
the engineering industry. In order to illustrate this approach, this fruitful domain
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Fig. 4.2 Representation of the nonlinear mixing of waves (optic/acoustic)

of NDT and particularly the improvement of modern methods using nonlinear
ultrasound has be taken as an example of a complex system which needs systemic
approaches that could be transposed for defining new emerging entrepreneur.
Systemic analysis is a systems-based framework devoted to the structured analysis
of complex systems understanding. With a systemic view, complex systems can be
described with succinct parameters which are intrinsically linked to its generalized
symmetries (Fig. 4.2). For example, fractal and multifractal concepts, usually used
in the analysis of nonlinear systems [25] provide a systemic description of the
complex dynamic of nonlinear waves.

During the last 10 years, the principle of an a priori use of symmetries and
similarity properties seems to have an increase interest for signal processing applied
to nonlinear acoustics phenomena [26]. Furthermore, several models and equations
have been analyzed with theoretical methods, intrinsically based on Lie groups
properties, like in quantum physics and nonlinear optics as represented in Fig. 4.2.
For example, new signal processing methods have been validated in NDT and for
harmonic imaging using an ultrasound contrast agent (UCA) [27]. Among them,
pulse inversion (PI) techniques have been extended and generalized using symmetry
analysis [28].

Invariance with respect to time is one of the properties of a more general
algebraic approach that is applied in physics which uses intrinsic symmetries for
the simplification and the analysis of complex systems. Symmetry analysis [29] is
the framework of a systemic approach aimed at using absolute symmetries like time
reversal (TR), reciprocity between emitters and receivers, and others. The idea of
including advantages of TR and reciprocity invariance in NEWS was motivated by
experimental results obtained on bubbly liquids [30, 31]. In recent years there has
been a considerable development of TR based NEWS methods using invariance
with respect to TR and reciprocity, both in numerical and experimental settings [1].
As a fruitful example, TR-NEWS systemic methods have the potential to become
a powerful and promising tool for the NDT industry. They provide the objective
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to detect and image structural damages in complex medium, thanks to the use of
advanced signal processing techniques based on multiscale analysis applied to a big
amount of data. Such nonlinear TR methods are now recognized in other domains
such as cryptography [32] and ultrasonography for dentistry [33] for localization or
the elastic nonlinearity in complex medium [34]. These concepts were practically
elaborated as the TR-NEWS methods [35, 36]. Using symbiosis of these systems,
TR-NEWS fundamental experimental demonstrations [35] have been conducted
with applications in the improvement of nonlinear scatterers identification, such as
bubbles [30], landmines [37], cracks in complex aeronautic materials [36] and is
now highly recognized as extremely reliable [38, p. 14]. New excitations are now in
progress in order to give to TR-NEWS methods the practicability needed for both
the NDT and the medical imaging community [39] where the term NIT is preferred.

Finally, symmetry preservation is one of the most important properties that
a turbulence model should possess, since the symmetry group translates mathe-
matically the physical properties of the flow. In fluid mechanics, the symmetry
theory helps to exhibit similarity properties and to deduce scaling laws, such
as algebraic, logarithmic (wall), or exponential laws. For example, Burgers and
Earnshaw equations, which describe one- dimensional propagation of acoustic
waves, have been studied with symmetry analysis and well-known transformation
(such as Hopf–Cole for Burgers). The study can be revisited with the symmetry
analysis point of view. In this paper, the methodology of symmetry analysis
is presented. Some simple demonstration of calculation conducted on nonlinear
acoustics equation such as Burgers and non-classical model describing the acoustic
propagation of a pulse in a medium with nonclassical nonlinearity confirms the
interest of this method in signal processing. For example, it was shown [40] that
the symmetry properties of a general Lienard type equation exhibit TR symmetry
within the contributions of Lie infinitesimals. The discrete Lie symmetries related
to TR will be presented from the theoretical and the experimental point of view.

The objective of this paper is to establish or maintain a fruitful network among
scientists coming from basic sciences of complex system engineering (Technology,
Engineering, and Mathematics), but also with researchers coming from social
sciences and natural sciences where NDT and NIT are the basic stones of the
integrity discipline, i.e., the integritology. Thanks to these collaborations, a good
understanding of complex systems will lead to an increase of information, leading
to new methods, new techniques, and new equipment with their multimodality
property. Examples will concern the research conducted in the field of nonlinear
acoustics for NDT applied to damaged materials of the aeronautic industry, and
convey the potential of advanced signal processing for understanding complex
systems. Some new results concerning the ultrasound based NEWS multimodal
imaging and its improvement will be considered as an example of multimodality
and complexification of instrumentation for nonlinear imaging of biological media
with the non-invasive requirement.

The systemic analysis proposed in this paper can be seen as a world-view where
standard linear approaches are supplemented by the framework of multiscale and
nonlinear analysis. The final motivation of these results is to promote complex
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system engineering encouraging the application of the findings in the field of
NDT integrity engineering [41]; in engineering departments, medical centers and
institutions, and other relevant structures throughout the world. Finally, an extension
is proposed for applying pragmatic approaches for organization’s strategies and the
study of social behavior. This non-classical analysis consists in assuming a high
level of stochastic hierarchy in real situations: these real cases being frequently
observed in complex organizations, climatology, and social sciences.

4.2 Memory Effects, Aging, and Nonlinear Viscoelastic
Multiscale Behavior

In soft matter physics, environmental mechanics, non-Newton fluid mechanics,
viscous elastic mechanics, porous media dynamics, and anomalous diffusion,
fractional order differential research have attracted lots of interest like wavelet
methods [42–44]. Moreover, it has been reported that the diseased and pathological
tissues have larger nonlinear response than corresponding normal tissues, and the
methods of nonlinearity measurements were further extensively investigated in
many works, including fractional modeling of multiscale viscoelasticity [42].

One of the most difficult properties in biomaterial to measure, evaluate, and
model is the multiscale viscoelastic effect. Several authors tried to extract some local
properties using specific experimental setup: uniaxial loadings, biaxial protocols,
1D, 2D, 3D modeling. Furthermore, several effects such as Mulling effects or relax-
ation were identified in all the communities and seem to be connected all together.
For example, in [45], the viscous property of the skin is shown to be influenced by
the stress relaxation process. In our approach, all these viscoelastic effects could
be associated with multiscale pragmatic and phenomenologic parameters that could
be modeled by fractional models where viscoelasticity appears naturally as a direct
consequence of the multiscale property of the skin [46, 47]. A basic consequence
of viscoelasticity is the energy losses which are difficult to evaluate in biological
medium. Not only the absolute amplitude of energy is difficult to measure, but also
the nature of this energy: mechanical, thermal, chemical, etc. Since the multiscale
properties are assumed in our approach (Fig. 4.3), energy transfer flux should also
be present at all scales, and should induce physical phenomenon at all scales, from
the mechanical domain (at low frequency) to the acoustical domain (at 20 MHz,
involving solid–solid, solid–fluid, and fluid–fluid interaction at the mesoscopic
scale). Energy losses appear also in all medium showing hysteresis effects [48, 49].
Losses are usually associated with the hysteresis area describing the excitation-
response curve of the material (Fig. 4.4). The analogy between the memory effects
of the memristor [50, 51] and hysteresis effects in the skin allows us to suggest the
same physical origin of aging [52–55]. In [56, 57], we consider memristors as a
plausible solution for the realization of transducers as an autonomous linear time
variant system for TR-NEWS applications, especially for measuring non-classical
nonlinearities.
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Fig. 4.3 Multimodality in the imaging of multiscale properties of a third molar human tooth
surface with a Polytec laser vibrometer, scanning electron microscope (ESM), and Hirox 3D
digital microscope (left) showing the complex distribution of the cracks which connect the
1–5µm cylindrical tubules. Size, distribution, and statistical properties of cracks of the healthy
tooth (top) are compared with those of the damaged tooth (bottom)
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Fig. 4.4 Force–displacement curve characteristics of the studied skin samples versus the velocity
of the loadings (V =0.1; 0.5 and 1 mm/s). All samples are 100× 30× 2 mm size

Such highly nonlinear behavior produces strongly nonlinear frequency spectrum
broadening inducing low frequency effects equivalent to long time like reverberation
and slow dynamics. This consequence induces naturally the problem of duration
of any experiment showing this phenomenon. This phenomenon could explain the
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high number of relaxation parameters present in any uniaxial loading [58]. In our
approach, by including memory effects (or memristive effects) in the multiscale
phenomenological model, it is assumed that long time behavior could be naturally
evaluated by assuming a statistical distribution of parameters [59]. Consequently,
all slow dynamic phenomena are considered even if their measurements cannot
be practically conducted in experiments. This multiscale approach focuses on the
creation of the intelligent agent based reporting multiscale experiments that produce
the ground truth necessary for data fusion to analyze the multiscale memristive
properties of any aged medium [60, 61]. This reporting experimental process is a
crucial first step in the construction of a wide big data system to produce a data
fusion support tool for evaluating the aging of any system.

4.3 Multiscale Analysis and Hierarchical Structure

In this part, we will present an example of a multiscale NEWS analysis with
signal processing methods for NDT applications. Complex properties of damaged
materials can be presented with the Preisach–Mayergoyz space (PM space) phe-
nomenological approach [16]. The consequences of the PM space modeling of
mesoscopic materials will be highlighted with several examples [59, 62]: ultra-
sonic measurements in damaged materials, electronic characterizations of complex
network of hysteresis relays, and skin identification (Fig. 4.5). This phenomeno-
logically based approach is under investigation for the conception of new kinds of
system identification, validated and patented for complex biological systems such
as bone, tooth [63], or complex manufactured products coming from the bio and
agronomy industries. The objective to extend this modern approach to skin [58, 64]

Fig. 4.5 Identification of the PM space along the mixture of Guyer 1 and Guyer 2 distribution,
value of the L2-distance is equal to 0.814
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and human brain, from whose memory effects are currently admitted, gives to this
big data analysis a promising future for modern engineering and medical imaging.

The consequence is a pragmatic analysis swarming by phenomenological
approaches in the family of PM models. The accurate extracted information coming
from such systems needs to be associated with the symmetry of the underlying
mesoscopic structure with respect to scaling effects responses. In order to extract
nonlinear signatures of such hierarchical structure, complex loadings (chirp-coded
excitations or pulse compression [65]) are needed for their analysis which is highly
multiscale in the frequency domain. Advanced and optimized signal processing is
consequently mandatory for an accurate extraction of the information [66]. Modern
ultrasonic imaging [67] inducing multimodality is finally requested for end-users
and also demands speed and accurate embedded digital signal and image processors.
Multimodal imaging coming from the modern medical imaging is now a universal
project inducing new approaches [68] and new imaging strategies (Fig. 4.6).

Fig. 4.6 Schematic process of the memristor based TR-NEWS with the virtual memory (time-
delays) transducer concept. (a) The initial broadband excitation Tx(t) propagates in a medium. (b)
Additional echoes coming from interfaces and scatterers in its response Rx could be associated
with a virtual source T

(2)
x . (c) Applying reciprocity and TR process to Rx . (d) The time reversed

new excitation Tx = Rx(−t) produces a new response Rx (the TR-NEWS coda yTR(t)) with a
spatiotemporal focusing at z = 0; y = 0; t = tf and symmetric side lobes with respect to the
focusing. This is a physical interpretation of the cross-correlation function of the medium under
test
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4.3.1 TR-NEWS Signal Processing

The roles of the transducers are not changed during the experiment: the focusing of
the ultrasonic wave relies on the TR-NEWS signal processing [69]. This is a two-
pass method where the receiving and transmitting transducers do not change their
roles. In this sense, the “Time Reversal” describes the signal processing method
which accounts for internal reflections of the material as virtual transducers, used
for focusing the wave in the second pass of the wave transmission. The placement
of the transducers is not important from the signal processing standpoint: in NDT
investigation they could be placed arbitrarily and they do not have to be in line with
each other, but the configuration must remain fixed during the complete TR-NEWS
procedure. Figure 4.6 outlines the TR-NEWS signal processing steps for an initial
pulse excitation using the memosducer concept [56]. In order to increase the signal-
to-noise ratio [70], a chirp excitation is sent instead of a pulse of figure (a), inducing
the same “frequency content” in the signal. Then this chirp-coded excitation c(t) is
transmitted through the medium, with

c(t) = A sin (ψ(t)) , (4.1)

where ψ(t) is linearly changing instantaneous phase. Typically, a linear sweep from
0 to 10 MHz is used. Then the chirp-coded coda response y(t) with a time duration
T is recorded at the receiver

y(t, T ) = h(t) ∗ c(t) =
∫

R

h(t − t ′, T )c(t ′)dt ′, (4.2)

where h(t − t ′, T ) is the impulse response of the medium. The y(t, T ) is the direct
response from the receiving transducer when the chirp excitation c(t) is transmitted
through medium. Next the correlation �(t) between the received response y(t, T )

and chirp-coded excitation c(t) is computed during some time period �t , with

�(t) =
∫

�t

y(t − t ′, T )c(t ′)dt ′ � h(t) ∗ c(t) ∗ c(T − t, T ), (4.3)

where the h(t)∗c(t)∗c(T−t, T ) is the pseudo-impulse response. Assuming �c(t) =
c(t) ∗ c(T − t) = δ(t − T ), it is proportional to the impulse response h(t) if using
linear chirp excitation for c(t). Therefore the actual correlation �(t) ∼ h(t) contains
information about the wave propagation paths in complex media.

Time reversing the correlation �(t) from the previous step results in �(−t) used
as a new input signal. Re-propagating �(−t) in the same configuration and direction
as the initial chirp yields

yTR(t, T ) = �(T − t) ∗ h(t) ∼ δ(t − T ), (4.4)
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where yTR ∼ δ(t − T ) is now the focused signal under receiving transducer where
the focusing takes place at time T . Due to the fact that �(t) contains information
about the internal reflections of the complex media, its time reversed version
�(T−t) will eliminate these reflection delays by the time signal reaches the receiver,
resulting in the focused signal yTR (Eq. (4.4)). The test configuration must remain
constant during all of these steps [71]; otherwise, the focusing is lost. The steps of
this focusing process in a physical experiment are shown in Fig. 4.6. In this case,
pulse inversion (PI) is an established method for detecting nonlinearities [28]. The
procedure used here involves conducting TR-NEWS measurements with positive
and negative sign for A in Eq. (4.1) and comparing the focused signals. Differences
could indicate the presence of nonlinearities.

In terms of signal processing, applying the PI method by changing c(t) into−c(t)

preserves the response yTR(t, T ) invariant. Combining both PI and TR processes,
intrinsic nonlinear signatures can be extracted experimentally by the symmetry of
discrete processes. All this theory is valid under linear behavior of the medium
represented by its impulse response h21(t). Any source of nonlinearity in the
system will result in a perturbation of this method, and will induce additional
terms in Eqs. (4.3)–(4.4). When advanced signal processing methods have extracted
the nonlinear signature, the next step consist in assuming it as coming from set
of localized sources. Moreover, discrete symmetries, i.e., symmetries associated
with a discrete finite group, are very important in quantum mechanics. In this
field one speaks of parity, charge conjugation, rotations, and by TR and one uses
discrete symmetries to provide selection rules. We will now discuss two methods
of determining the discrete symmetries of differential equations. One of them was
proposed by Hydon [72] and it is essentially the classical method of constructing
the normalizer of a group. The other is a modification of Lie’s method, defining a
discrete symmetry as a discretization of the parameter of a continuous symmetry.

4.4 Lie Groups and Symmetries for Nonlinear Systems

Lie group theory (or Lie symmetry analysis) is used in many different areas of
nonlinear sciences due to its practical applications and the insight that it brings
to describe physical systems [73–75]. In this regard, one of the main advantages of
symmetry analysis is that symmetry properties of linear or nonlinear equations can
be exploited to achieve simplifications for finding solutions or properties. In the case
of differential equations, these simplifications could be in the forms of order and/or
dimension reduction. In terms of signal processing and system analysis, symmetries
also represent fundamental information regarding conservation laws that describe a
physical phenomenon. As a result, knowledge of symmetry properties of equations
describing nonlinear and complex systems often opens alternative pathways to
define optimized excitations for approaching problems when looking for solutions.
Therefore, it is usually a good practice to analyze symmetry properties of equations
before a solution strategy (whether it is analytic or numeric) is decided.
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Hydon [72] provides a clear method for calculating all of the discrete symmetries
of a given differential equation. Hydon’s methodology works as follows: first, find
the Lie algebra of point symmetry transformation generators for the differential
equation in question. These symmetry generators will give all of the symmetries
continuously connected to the identity component but will not directly give the
discrete symmetries.

In order to suggest a generalization to nonlinear systems [76], let us consider
examples from linear and nonlinear propagations/diffusion of acoustic/thermal
fields in a simple medium. As a first example, let us consider normalized tempera-
ture T (t, x) in a one-dimensional semi-infinite medium is given by the heat equation

E(T , t, x) = Tt − Txx = 0. (4.5)

A transformation x̃ = F(x, a) with x = F(x, a0), with the group parameter a, its
infinitesimals ξ(x) have the property F(x, a) = e(a−a0)ξ(x). For a partial derivative
equation or a differential derivative equation at order n > 1, it is possible to find
a set of infinitesimals using symmetry properties of equation E [29]. Infinitesimals
ξi (resp. ηi) correspond to independent (resp. dependent) generators of E which
verify dx1/ξ1 = . . . = dxp/ξp = dy1/η1 = .. = dyq/ηq , where xi are
independent variables and yi are dependent ones. Extraction of n − 1 invariants
of equation E simplifies the equation by decreasing its order or its number of
independent variables. Applying symmetry analysis [66] to the heat equation leads
to infinitesimals given by

ξ1(t, x, T ) = C1 + C2t + C3t
2, (4.6)

ξ2(t, x, T ) = C2x/2+ C3tx + C4 + C5t, (4.7)

η(t, x, T ) = C3(−tT /2− x2T/4)− C5xT /2+ C6T + g(t, x), (4.8)

where Ci’s are constants and g(t, x) a solution of (4.5). The associated Lie
generators are

X1 = ∂t ; X2 = ∂x, (4.9)

X3 = T ∂T ;X5 = t∂x + xT /2∂T , (4.10)

X6 = t2∂t + tx∂x −
(
t − x2/2

)
T/2∂T , (4.11)

X4 = t∂t + x/2∂x. (4.12)

With X4 one obtain dt
t
= dx

x/2 , which is related to the invariant ζ = x√
t
. The

partial derivative equation E(T , t, x) is reduced to an ordinary differential equation
v′′(ζ ) + ζv′(ζ ) = 0 with the new variable T (t, x) = v(ζ ), where ζ is extracted

with symmetry properties, and where v(ζ ) = A
∫ ζ/2

0 e−y2
dy = A

∫ x

2
√
t

0 e−y2
dy =

T (t, x). The similarity variables are then given by x = x
1−at

, t = t
1−at

, and
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T = T
√

1− at exp
(
− ax2

4(1−at)

)
which can be used, for generating the nontrivial

solution T = T0√
1+at

exp
(
− ax2

4(1+at)

)
from the trivial constant solution T0 and by

replacing a by −a analogue to a TR process. It is also used to determine particular
solutions, called invariant solutions, or generate new solutions, once a special
solution is known, in the case of ordinary or partial differential equations. The name
similarity variables is due to the fact that the scaling invariance, i.e., the invariance
under similarity transformations, was one of the first examples where this procedure
has been used systematically. For each ordinary or partial differential equation (E),
one can find intrinsic symmetries. For example, linear equations E(x) = 0 like
the Heat equation have a symmetry F(x) = Cx, thanks to superposition principle.
The interest of symmetry analysis comes for its invariance with respect to group
properties.

As a second example, let us consider Lie group properties of acoustic wave
propagation in hysteretic media [66]. Applying the Moran method of Lie reduction
[77] to the hysteretic equation:

H(V , Vi, VM, θ, ξ) = (Vξ )
2+VMVξVθ +V (VM −V )(Vθ )

2 = 0 where i ∈ {θ, ξ},
(4.13)

where V, Vi, VM, θ, ξ are given in reduced variables. One begins to build a one-
parameter (a) group transformation S = Cs(a)S + Ks(a), where the letter S

relates to all variables θ, ξ , and functions V, VM , and Cs(a), Ks(a) are group
functions only dependent on the group parameter a. The derivative transformations
give Si = Cs/CiSi , and Sij = Cs/CiCjSij . Any equation H(S, Si, Sij ) of

variables S and its derivatives Si, Sij , . . . is said to be invariant if H(S, Si, Sij ) =
F [a]H(S, Si, Sij ), where F [a] is a function which depends only on the group
parameter a. This transformation forms a local group of point transformations
establishing a diffeomorphism on the space of independent and dependent variables,
mapping solutions of the equation to other solutions. Any transformation of the
independent and dependent variables in turn induces a transformation of the
derivatives. If we suppose that the solution of hysteretic equation is given by
V (ξ, θ) = VM(ξ)g(η, θ)Kθ , with K constant, then and after tremendous calculus
involving implicit expressions [66], the solution V (ξ, θ) satisfies hysteretic equation
if

−Kαθ + (β + αξ)V (ξ, θ)

(
K + α

(
(β + αξ)−

γ
α V (ξ, θ)

) α
γ

)
= 0. (4.14)

This new equation is expressed as a polynomial expression. For n = α
γ
= 1, a trivial

exact explicit solution is obtained as follows: V (ξ, θ) = −α+Kαθ
K(β+αξ)

= αθ−α/K
αξ+β

, and
can be used to generate an infinite number of solutions by applying a “nonlinear
superposition principle.”

Finally, generalized experimental TR based NEWS methods and their associated
discrete symmetries can be taken as generic examples. These methods, already
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adopted as a powerful tool for several applications (NDT and medicine), are
efficient approaches for focusing acoustic energy or energy localization [78] in
a complex propagation medium: noisy, scattering, and complex shape medium
[79]. Nonlinear Time Reversal acoustics is now an efficient technique for the
improvement of localization of nonlinear scatterer coming from structural defects
[1, 80–82]. Improvement of TR-NEWS is conducted with coded excitation using
chirp frequency excitation and the concept was presented and validated in the
context of NDE imaging [12]. The chirp-coded TR-NEWS method uses TR for
the focusing of the broadband acoustic chirp-coded excitation.

4.4.1 Symmetries for Nonlinear TR Discrete Processes

As a first example, let us consider the Burger’s equation

B(u, t, x) = ut + uux − uxx = 0, (4.15)

which has a five-dimensional Lie algebra where the associated Lie generators are
X1 = ∂t ; X2 = ∂x , X3 = x∂x + 2t∂t − u∂u; X4 = 2t∂x + 2∂u, X5 = tx∂x +
4t2∂t + 4 (x − tu) ∂u. Again, it can be shown [72] that the inequivalent complex
discrete symmetries of Burgers’ equation form a group which is generated by

�1 : (x, t, u) �−→ (−ix,−t, iu) and �2 : (x, t, u) �−→(x/(2t),−1/(4t), 2(tu−x)) ,

(4.16)
where the TR discrete process generated by �1 can be seen as a Lie group
transformation.

As a second example of discrete symmetries, modeling of ultrasound contrast
agents (UCA) was done in order to define optimized excitations for TR-NEWS
experiments applied to harmonic imaging [26, 83]. We analyzed UCA like oscil-
lators coupled to their nearest neighbors. They form a lattice or chain with step h,
supporting waves. Consider that the lattice is subjected to a parametric forcing with
amplitude A and frequency ωe, its motion is described by

U(u, t, x) = utt + (ω2
0 + η cosωet) sinu− k2(u+ − 2u+ u−) = 0, (4.17)

where u is the position of the ith element, u± = u(x ± h, t), η = 4ω2
eA/L is

the forcing parameter, and k is a constant denoting the strength of the coupling.
For example, it has been shown [84] that for the Toda equation T (u, t, x) = utt −
exp(u+ − u)− exp(u− u−) = 0, the associated Lie generators are

X1 = ∂u ; X2 = ∂x, (4.18)

X3 = ∂t ;X4 = t∂u, (4.19)
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X5 = t∂t − 2x

h
∂u. (4.20)

By using X5, it can be shown that the transformations t = μt + α, x = μνx + β,
and u = μνu+ γ induce the only admissible solutions given by μ = ±1, μν = ±1
inducing the TR invariance when μ = −1, ν = +1 and the discrete symmetry given
by the transformation t = −t , x = x, and u = u. Consequently, there is a need in
considering discrete symmetries involving nonlinear time reversal processes.

4.4.2 Universality of Nonlinear Systems and the Associated
Signal Processing

In many of classical nonlinear systems, the distinction between prediction and
explanation is often blurred. It makes perfectly sense that some phenomena are
impossible, in principle, to predict, e.g., due to inherent stochasticity or chaos, but
still being possible to explain or understand the underlying principles that govern
the systems. A pragmatic view needs to be proposed: given the symmetries of the
parts and the hierarchical laws of their interactions, it could be possible to extract
the properties of the whole.

As an example, the multiscale properties of the tooth (Fig. 4.3) are analyzed
with the bi-modal TR-NEWS imaging system [85]. The associated symmetrized
nonlinear signal processing using TR invariance, reciprocity, and optimized exci-
tations such as PI and ESAM [28], chirp-coded, or bi-solitonic signals has been
included to standard NDT analysis [86]. Now, several experimental tests associated
with advanced ultrasonic instrumentations are conducted in several laboratories
around the world. Despite its original objective for industrial applications devoted to
complex materials like composite [4], it opens also new perspectives in the context
of medical imaging of complex media such as human tooth, bones, skin and, more
ambitiously, the human brain evolution and its diseases.

Universality which consists in considering occurrences of structures or mech-
anism (protocol or politics in governing) in a great variety of systems, and
diversity which consists in considering occurrences of structures or mechanism
in many situations, commonly linked to a particular functionality, should be the
keystone of the new development of a strategic governing of a complex and
multiscale structure. This strategy will probably induce innovation in the design
of self-adaptive structure and autonomous systems. The consideration of diverse
hierarchical structures enables the development of functional sub-groups unique to
a particular system despite the presence of few universal building groups (diver-
sity/universality paradigm). The design of self-adaptive structure and autonomous
systems of engineering is the natural consequence of such strategy: the design of
self-replicating systems is based on the mother system, self-regenerating and self-
healing enterprises and companies.
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4.5 The Systemic Gold Proportion of a Complex System:
Determinism Versus Stochasticity Evaluation

4.5.1 Multiscale Analysis and Stochastic Aspects in NDT 4.0

As shown above in the specific area of medical imaging, the increase of structure
complexity is observed in all areas such as aeronautics or the nuclear power plant
industry and its associated NDT and NIT. Furthermore, there is, in parallel, a need
in the increase of accuracy of physical and technical parameters describing the
complex structure under test, or under certification process. These two antinomical
effects should be considered seriously with the same degree of interest, inducing the
evidence of considering the problem with stochastic and multiscale analysis, and
phenomenological approaches for simplicity of applicability. The systemic NDT
optimal design considering these requirements should be generalized in the industry
in the sense that new signal processing approaches are ready to be implemented in
complex automated devices using suitable artificial intelligence. NDT engineering is
going through a radical change of its intrinsic complexity, even though such a trend
is far from being accepted by the community. Stochastics involving uncertainty in
complex systems is a positive feature that should be considered as an openness of
these systemic approaches, for modern industry 4.0 or NDT 4.0 [87].

The systemic NDT optimal design should be at the skeleton of NDT 4.0, the
key component of the smart factory described in the emerging Industry 4.0 [88]. It
consists in producing methods and systems capable of adaptation and robustness, no
longer systems defined by stability and control. The robustness of modern NDT 4.0
methods should consider the ability of the method to maintain specific features
when facing complex environment with several internal and external parameters,
including human factor [89]. The systemic NDT 4.0 optimal design is also defined
by the capability of developing the following attributes: resilience, adaptation,
robustness, and scalability involving multiscality and multimodality. Regardless of
how the concept of system is defined or specified by the different paradigms and
approaches, the notion of complexity is based on the idea that information coming
from such NDT complex systems could be accurately known (determinist) or could
contain uncertainty (stochasticity). The degree of complexity could be estimated
as the proportion of the stochastic part with respect to the deterministic one. This
stochastic proportion should measure the multiscale property of any system, and
constitutes the skeleton of an artificial intelligence associated with NDT 4.0.

This new information coming from the ratio between Stochasticity to deter-
minism ratio (SDR) needs to be evaluated for all complex systems. The SNR for
electronic measurements is also derived through SDR for generalized complex
organizations. The first (linear) approach consisted in considering that the main
deterministic part is the result of a linear superposition of other deterministic sub-
parts, coming also from other sub-sub-parts; all this multiscale approach being
limited by the bandwidth of the measurement system. This analysis induces finally a
measurement of the information coming from the system which is generally affected
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by a stochastic information well-known as the noise, and being hopefully negligible
with respect to the calibrated deterministic quantity. However, as explained in
introduction, the stochastic part is naturally increased when the complexity of the
system is increased too, and should be taken into account. The stochastic part
induces consequently uncertainty. Nevertheless, uncertainty is a pregnant concept
in the science of complexity and a promising future in the sense that uncertainty
should be included in the study of complex systems for analyzing it with robustness.

In the future, NDT will not only be focused on “just testing,” NDT 4.0 will be
sorting, characterizing, monitoring, and checking as well, imitating the human brain
that uses a multimodal and multiscale sensory system to extract information from
noise and/or adapt its responses to the complex stochastic environment. As a result,
NDT 4.0 has to develop cognitive and self-adapting sensor systems that will be
able to decide for themselves what they measure when, where, and how, along with
monitoring and characterization processes, etc. That is the standard we ought to be
aiming for in NDT 4.0.

4.5.2 Dynamic of Nonlinear Systems: The Elementary
Stochastic Cell of the Complexity

Nonlinear dynamics coming from nonlinear physics is nowadays introduced in
many domains in science and engineering. During the last decades, many results
have been found, and industrial applications concern most of modern systems and
devices present in our society. Furthermore, the global way of thinking include now
the nonlinear behavior as an evidence in terms of consequences. The example of
the butterfly effect is now well understood and universally accepted as a nontrivial
but possible event. In order to understand the concept of elementary cell of the
complexity, the approach can be compared to kernel principal component analysis
[90]. Each nonlinear system is defined in order to perform dimensionality reduction
where linear methods were insufficient for identifying nonlinear signature in the
data. The results of this linear dimensionality reduction are visualizations of the high
dimensional data in a lower dimensional space (the elementary stochastic cell) that
makes it possible to uncover patterns within the data using the nonlinear signatures
of the resulting dynamic in the low dimensional space.

Multiplicity in initial states implies that a system can be very insensitive to
changes in system input over a range of different hierarchical levels of the input,
but once the level reaches a certain threshold the system is transformed into a
completely different state with a modified hierarchy. The effect of nonlinearities
is that a system future behavior might be difficult or impossible to predict, even
in principle. The system future behavior is undetermined and analyses of such
systems are therefore challenging. A concrete example of this complexity related
to fluctuations is the observation of 1/f noise [25]. According to the measurements,
some dynamical systems, many of them existing in nature, are organized into critical
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states where only a minor effect (in the probability sense) can cause disastrous
consequences. The resultant consequences can be described as a 1/f power-
law distribution, which is characteristic of the density spectrum. This power-law
distribution is characterized by a heavy-tail, where the probability of extremely large
effects cannot be neglected. According to this ubiquitous power law property, many
systems are designed to be extremely robust against known perturbation, i.e., the
ones that are known at the time of the design. The downside is that the system can
become extremely fragile against perturbations it was not planned for to handle. The
point to make here, however, is only that for many systems of interest in the present
paper, the severity of the effects does not necessarily have to be linearly proportional
to the magnitude of the causes.

4.5.3 Multiscality of Complex Systems: The Elementary
Determinism Pattern of the Complexity

The structural complexity of these concepts is intrinsically associated with the
increase of the complexity of experimental setup, or investigation protocol for
social sciences, for example. The multiscale aspect of complex nonlinear systems
is also present in synchronization processes. Some interesting regular behaviors
were experimentally confirmed with the observation of invariants intrinsically
identified using concepts coming from number theory [25]. This global property
of synchronization is associated with a local one by the study of smaller elementary
cells under simple nonlinear interaction.

Such analysis was proved with an experimental verification of the increase
of fluctuations which associates 1/f noise to nonlinearity, autosimilarity, and
regularity, represented here by the invariance property of the synchronization. In
optical experiments, 1/f noise also appears in nonlinear multistable systems having
many attractors with fractal properties. The 1/f noise resulted from interaction
between attractors that are stable states of nonlinear dynamics. Synchronization
zones are examples of stable states or invariant of nonlinear systems. Oscillators
also exhibit multiscale characteristics (Fig. 4.7) of the synchronization involving
arithmetical rules [91, 92]. For nonlinear measurements, the necessity to reach
and acquire which was called in the past “hidden information in the noise” has
conducted to think about calibrated advanced electronic systems as it was done
for the ubiquitous 1/f noise previously described [25]. Generally, the experimental
setup used for analyzing this complexity of 1/f noise (see Fig. 4.7) is designed
using multiscale mixing electronic devices involving complex phase locked loops
(PLL) cells. These mixing properties (Fig. 4.2) are the elementary cells of any
measurements of a complex nonlinear systems [68]. This multiscale properties
coming from the 1/f behavior has been also observed during the DNA denaturation
process around the temperature transition [93]: the collective behavior of DNA bases
being responsible of these fluctuation properties and DNA dissociation being at the
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Fig. 4.7 A generic approach of complexity and vulnerability with their multiscale symmetries
generated by arithmetical rules

origin of life evolution and the memory effect associated with genetic mutation. The
link between memory effects and multiscale effects is again present in this case, as
described in Part I.

Most of modeling of complex medium such as micro-inhomogeneized materials
have shown some memory properties induced by the nonclassical nonlinearity
[79] coming from structure degradation due to cracks [94], weak bonding, etc.
In nonlinear NDT, the modeling of the hysteretic nonlinearity is based on the
multiscale Preisach–Mayergoyz approach (PM space), as represented in Fig. 4.5. In
this PM model, no analytical expression of the bulk modulus is given. It is calculated
by summation of the strain contribution of a large number of elementary hysteretic
elements (elementary cells). Each of these hysteretic element unit is described
by two characteristic pore pressures corresponding to the transition between two
states when the pore pressure is increased or decreased. The implementation of
the PM space model is based on the multiscale approach. For each cell of the
calculation grid (representing a mesoscopic level of the medium description),
hysteretic units are considered with different values of the two characteristic
stresses. This representation is commonly termed PM space and can be described
mathematically by its density distribution using statistical decision tools [95]. In
these examples, the multiscale properties should be associated with nonlinearity in
order to take into account some memory properties in this complex system (Fig. 4.4).
Again, two ingredients are mandatory: nonlinearity and multiscale properties.

4.6 Determinism Versus Stochasticity: A Pragmatic
Approach for Engineering Organization’s Strategies

Considering all the experiments and results described above, the consideration of
nonlinear aspects in any system increases the complexity of any analysis. Further-
more, the wish to take into account the complexity of any system induces the need
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Fig. 4.8 The multiscale approach of a hierarchically connected system. If another cells (n − 1,
n − 2, n − 3, etc.) are in multiscale interactions with the master cell N , then the iterative phe-
nomenological scheme induces a gold proportion coming from gold number between deterministic
information coming from the (n, n − 1) interaction (ρ − 1 = 62%) and stochastic information
coming from other (complex) interactions from other cells (38%). Any information coming as an
output of system (represented by master cell N ) contains a major deterministic part (62%) which
is logically representative of the system and a minor stochastic part (38%) which comes from other
“non-classical” paths

to use the tools developed and presented above. In this case, the knowledge of this
complexity forces scientists, engineers, and social researchers to include a greater
part of stochasticity as it was done previously: this stochasticity coming from the
difficult knowledge to predict the deterministic part of complexity. Consequently,
a phenomenological approach (like those used for PM space analysis described
previously) could be extended to the evaluation of the multiscale property of a
hierarchically connected system (Fig. 4.8) where input/output analysis is performed.

Let us try to describe and analyze the reasons which are at the origin that
sometimes, a decision coming from a complex and structured organization is in
contrary with the internal rules which are supposed to be followed. On the other side,
it is frequently observed that the result of an action (the input) applied to a complex
system induces a response (the output) which is on the contrary of any prediction
made on this system. We are typically in the case where the severity of effects
does not have a linear proportion with the magnitude of the causes. Surprisingly,
we can find in our societies several examples of such nonsense: political elections,
student’s jury decisions, administrative board resolutions, champion’s league, and
any sports results. Even if these nonsense events constitute a small “stochastic”
part with respect to the “deterministic” events, the complexity of the sub-elements
that constitute the system needs to be taken into account in order to propose a
phenomenological modeling of such “nonsense” responses in complex systems.
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4.6.1 Excitation and Responses of Hierarchically Multiscale
Complex Systems

The basic steps of the phenomenological construction described previously [10] is
to assume the following properties of the system (Fig. 4.8):

1. The system contains a part of stochasticity, i.e., it is not fully deterministic.
2. The system, in its autonomous state, tries to find itself the best configuration

with respect to the stochastic part: the autonomous state needs to be reached at a
certain level.

3. The system is composed of several sub-systems which follow the same objective
of robustness at different scales. The robustness is one of the multiscale proper-
ties that should be reached at all scales, but certainly with different properties.

4. At least one sub-system develops a nonlinear behavior. For example, threshold,
saturation, and memory effects should be observed independently of the state of
the system.

5. There is a hierarchical law between the sub-systems in the sense that actions
performed to the whole system is not symmetrically distributed to the system,
but hierarchically connected. On the contrary, the response given by the system
comes hierarchically from sub-systems. The degree of hierarchy is increasing
with respect to the complexity of the system, starting completely symmetrical
for elementary cells.

Indeed, the multiscale approach of a hierarchically connected system can be
useful for evaluating the deterministic/stochasticity ratio SDR defined previously.
The approach of complexity could start assuming that there exists an elementary
cell of complexity which contains the highest symmetry. If we assume that a system
is simply characterized by the single subsystem I (Fig. 4.9a), one has the classical
input/output relation with the system represented by a square. If we consider that the
system contains two (N = 2) sub-systems (cells) with the same properties having
symmetric rules, two squares with different size could represent the two-element
subsystem (Fig. 4.9b). After considering that the length of the side [a, b] represents
the interaction between the two sub-systems X and Y , the optimal, stable, and robust
configuration is obtained with the symmetric configuration. Consequently, the
complexity could start from two elementary cells (X and Y ) supposed to be identical
and symmetrically connected. This hypothesis is of course well adapted for human
interactions too, symbolized by letters representing chromosomes. Consequently,
the optimal response coming from a system modeled with two sub-systems X and
Y is those coming from 50% from X and 50% from Y . This initial state presents the
advantage to be symmetric. This simple system with two degrees of freedom can be
considered as the last case of a non-chaotic system inducing full deterministic and
robust behavior.

The analysis of the first complex system is the 3-body system containing N = 3
hierarchically connected sub-systems. If we assume that the resulting system should
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Fig. 4.9 The multiscale approach of a hierarchically connected system. The complexity modeling
starts from two elementary cells (X and Y ) supposed to be identical and symmetrically connected,
and finishes with level N at the head of the system. (a) N = 1, (b) N = 2, (c) N = 3, (d) N = 4,
(e) N = 5

contain the previous two-element case and preserve the hierarchical properties, the
connection between the three sub-systems is given by Fig. 4.9c. If such system is
excited by an external input, the response is given through the highest sub-system N ,
in the sense of the hierarchy supposed as an internal rule. It means that the response
will be given by sub-system N taking into account (with a symmetrical ratio) both
X and Y internal responses. The difference between the previous states is that the
final decision will also contain its own response. This configuration maintains the
symmetric interaction between cell N and lower cells X and Y with half of size
[c, d] for each of them, and preserves a kind of the symmetry between the three
sub-systems N , X, and Y . In social organized systems with such configuration
where N is the greatest element, any information coming from N (the manager)
will come from the same symmetric interactions between sub-cells X and Y . Note
that the length of side [c, d] is doubled taking into account that the greatest element
N should contain itself additional connections represented by a greater square size.
This greater size could represent a kind of superiority of element N with respect to
elements X and Y , giving the starting point of the hierarchical property. This metric
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relation associated with a distance (or a norm in the mathematical sense) has several
equivalent for pragmatic situations: age, experience in social sciences, knowledge,
etc.

For N = 4, N = 5, etc., the same iterative process could be proposed
(as shown in Fig. 4.9d and e). In the four-element hierarchically connected case,
cell N is supposed to provide the main “representability” of the whole system.
Any information coming from N comes hierarchically from interaction with cell
N − 1 (50%), and interactions with cell X or Y , in this 2D representation case.
This iterative process can be extended as the complexity increases and induces
interesting conclusions. Some basic and phenomenological pragmatic rules can be
extracted from this systemic analysis of any complex system structured hierarchi-
cally (Fig. 4.8) leading to the golden number ρ = 1.618. If a hierarchical property
is supposed in the complex system, some interesting behaviors could be extracted
following this multiscale approach of this engineering organization’s strategy:

1. ρ − 1 = 62% of decision taken by sub-system N is coming from the sub-system
N − 1 (in the optimal multiscale limit). This is a guarantee of the confidence
between N and N − 1 interactions.

2. The simplest case of a complex system contains two elementary cells (X and Y

in Fig. 4.9) with a hierarchical cell (N − 4 in Fig. 4.8) is logically characterized
by the fact that half of decision comes from cell Y and half comes from cell X.
This proportion is schematically measured by the common side (or interaction)
of the square associated with the cell.

3. A non-negligible part of decision taken by sub-system N could be given by
interaction between sub-system N and sub-system N − 4 for example (Fig. 4.4),
which could have a small interaction (minority). This induces a potentiality that
minority could take part of strategic decisions at a high level of organized struc-
tures, shunting the “logical” hierarchy between N and N − 1. This consequence
is interesting in the sense that it allows the possibility of a dynamical property
between cells Ni . If cell N−4 is at the origin of a positive decision (not validated
by cell N − 3), cell N − 2 can decide to permute cell positions N − 4 and N − 3.
This can be seen as a kind of recognition leading to an increase in the hierarchical
level, or a dynamical hierarchy.

4. Any elementary cell in increasing evolution should satisfy the proportion of 62%
of the internal rules governing the sub-system where it is included. The 38%
complement is the result (or the objective!) of an opposite rule being against the
internal rules of the sub-system.

5. Proportions of 100% and 0% constitute some extreme conditions leading to,
respectively, totally deterministic behavior and totally stochastic behaviors of the
whole system.

6. The multiscale properties of the whole system is a fundamental key of this
proportion. Multiscality should be present in the excitation, the modeling, and
the analysis of the system. Without any limitation in the scale of the analysis,
the proportion between N and N − 1 interaction and between N and

∑
(N − i)

should reach the golden number ρ as shown by the classical Fig. 4.8.
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7. Multiscality of a complex system containing multiscale sub-systems where the
previous rules are applied is a guarantee of the optimal robustness of the whole
system itself. Any breaking of this multiscale symmetry will lead to global
instability.

This approach could be pragmatically applied to engineering organization’s
strategies for innovation and social monitoring:

1. ρ − 1 = 62% of decided actions should follow the global strategy of any
organization (the majority)

2. 2 − ρ = 38% of decided actions should be against the global strategy of any
organization (the minority)

Consequently, decided actions that follow strategic decisions (or decisions
approved by the majority) is a guarantee of the stability (or the legitimacy) of
any organization or social community. Decided actions that are against strategic
decisions is a guarantee of the innovative potentiality and creativity of any orga-
nization. These actions against the “evidence” is the basis for any “disruption” or
breakthrough observed in our societies. Any 0% in one of these parts will conduct
to extreme behavior known as totalitarianism and anarchy in political organizations.

Finally, since the basic output (decision) of a democratic system is presently con-
ditioned by the majority, this hierarchically multiscale approach could improve any
democratic system by considering some decisions coming from minority (Fig. 4.10),
which are usually responsible of large actions in order to force the “democratic”
system to include their point of view [10, 97]. The multiscale pragmatic probability
law could be also used in order to take into account the protest vote (or the “blank
vote”). For example, a single candidate obtaining 51.01% of positive votes and
49.99% of “blank vote” would only have ρ − 1 = 62% of probability of success
(Fig. 4.10). Conducted at all scales of any hierarchical structured organization, this
could be a proposal to avoid the well-known concept of the tyranny of the majority,
reported few centuries ago by Alexis de Toqueville [98].

Fig. 4.10 The multiscale
pragmatic probability law.
Any democratic decision
taken with a proportion of
50.01% should be applied
only with a probability of
ρ − 1 = 62%. If this rule is
applied at all scales of
subsystems, the multiscale
pragmatic probability law is
given by the Devil’s staircase
also observed in complex
systems [92, 96]
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4.6.2 Mutability, Tunability, Optimality, Evolvability Coming
from the Nano-scale Science

Multiscale analysis is consequently necessary to our understanding of how com-
plex engineering and social systems rules contribute to a better implementation
of innovation of strategic governing and entrepreneurship. Hierarchical structure
should be identified with the different levels of connections. Such complex and also
nonlinear behavior like mutability, tunability, optimality, evolvability, universality,
and diversity is coming from the nanoscale science. It should be applied practically
to define the new engineering entrepreneur with the objective to propose new
strategic innovations and optimized entrepreneurship for the engineering of complex
systems and complex structures, human and social organizations, clearly compatible
with the fourth industrial revolution Industry 4.0 [87].

For example, two opposite aspects like mutability (the capacity to change
functional properties of a system based on external excitations) and tunability (the
capacity to change the system reversibly during use) should be taken into account
at all scales of the system [99]. Both should be clearly considered for strategic
governing. The adaptation to reach a desired characteristic while respecting a set of
restrictions in the excitation (optimality) should also be included and put in balance
hierarchically with the evolvability, which is the ability to acquire new functions or
features in response to changed excitations.

4.6.3 Vulnerability of Stochastic Data and Cascade of
Uncertainty

The present part concerns methods and knowledge that are useful when analyzing
the risks and vulnerabilities of complex systems in a societal emergency man-
agement context. Operational definitions of vulnerability and emergency response
capabilities are suggested and two methods for analyzing the vulnerability of
critical infrastructure networks, based on the suggested definition, are presented.
An empirical study of people values and preferences regarding different attributes
of potential disaster scenarios is also presented, since knowledge about values also
is crucial for adequate risk and emergency management.

Most of studies conducted are done with judgments under certainty. However,
when the cell N is making decisions regarding future possible risk scenarios, one
cannot know for sure which scenario will occur. Therefore, it should be interesting
to study how the other values (coming from cells N − i) and preferences for the
attributes would change if the trade-offs are framed in terms of judgments under
uncertainty. This is done for example in the context of climatology. Explicitly
modeling the SDR in making decisions enables adequate recommendations to be
drawn regarding the effect of these uncertainties on the political decision made.
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4.6.4 Multilevel Approach in Social and Epidemiological
Sciences

Because many technological systems, political decisions today are complex sys-
tems, understanding their susceptibility to collective failure is a critical problem.
Understanding vulnerability in complex systems requires an approach that char-
acterizes the coupled interactions at multiple scales of cascading failures [100]. It
is important to develop a multiscale processing pipeline that can characterize the
vulnerability of complex systems in order to improve the evidence of its presence
in any systems. The vulnerability of any information could help anyone to accept
errors, suggest forgiveness, and develop pragmatism. Spatiotemporal analysis and
dimensional reduction techniques are the keystones in order to find symmetries of
the system leading to collective behavior and extreme events.

This multilevel signal processing is designed to explore and analyze data that
come from populations which have a complex structure. In any complex structure
we can identify atomic units, like HEU defined in the PM-space approach (see
Fig. 4.5). These are the units at the lowest level of the system (Fig. 4.11). The
response of each y variable is measured on the atomic units. Often, but not always,
these atomic units are individuals. Individuals are then grouped into higher level
units, for example, neighborhoods. By convention, we say that individuals are
at level 1, households are at the level 2, neighborhoods are at level 3 in our
structure, etc. A level (e.g., pupils, schools, households, areas) is made up of a
number of individuals units (e.g., particular pupils, schools, etc.). The term level can
be used somewhat interchangeably. Nevertheless, the term level implies a nested
hierarchical relationship of units (in which lower units nest in one, and one only,
higher level unit), whereas classification does not. Since the global hierarchy is

Fig. 4.11 Hierarchical structure of social data into levels that are connected nonlinearly with local
rules



82 S. Dos Santos

defined, local rules between levels should be defined with a systemic and pragmatic
way. It means that some basic elementary components such as threshold, limits,
and proportionality should be preferred for local interactions, including of course
nonlinear responses.

4.7 Conclusion

As a pragmatic conclusion, if we consider any complex system as a hierarchically
structured system with multiscale three- or four-parameters simple nonlinear local
rules, the presented tools of big data processing can be used for defining the
dynamic of the complexity. This paper provides important insight into some of the
issues related to the methods and materials for monitoring risks, vulnerabilities, and
integrity of complex systems; investigated in NDT and biomedical imaging areas.
In order to generalize these methods in all domains of sciences, more research is
needed to address this difficult and comprehensive task. A real interaction should be
established between scientists from engineering sciences that are applying nonlinear
tools and results, and researchers from social sciences that are measuring effects in
our complex society. In modern NDT or NDT 4.0, such approaches are now stated
including human factors [89].

Concerning our research in this domain, generalized multiscale nonlinear inno-
vations have been presented, including advanced ground truth multimodal applica-
tions:

• New perspectives for multimodal medical imaging and NDT in complex samples.
• TR-NEWS is presented as a progressive method, which uses energy focusing

during the time-reversal process, and the influence of nonlinearity on the TR
system response.

• Connection of TR techniques represents powerful technique for extraction of
nonlinear signatures in a medium using symmetry properties.

• Improvement of TR-NEWS sensitivity with optimized excitations is validated in
order to activate nonlinear signature and memory properties.

• More generally, nonlinear time reversal based methods can have new applications
in many areas of research: non-Invasive testing (NIT) of biomaterials (bone,
skin, tooth, human brain, etc.), cryptography, non-destructive testing (NDT) of
complex media, etc.

• Symmetry analysis including theoretical and mathematical tools like Lie groups
is necessary for understanding the structural skeleton of the complexity.

A generic process for studying aging of complex systems is also described with
the objective to be applicable practically in the domain of modern multimodal
medical imaging and in the industrial domain of non-destructive testing. Both
of these areas where academic sciences such as modern mathematics, nonlinear
physics, modern technology, and stochastic aspects of human sciences should
be introduced in order to evaluate disruptive potential applications of big data
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sciences and artificial intelligence. Starting from the deterministic modeling of
material sciences, the linear ultrasonic characterization of materials and biological
medium is improved in order to take into account the evidence of inhomogeneity,
nonstationarity, and nonlinearity of any complex medium under analysis. From the
technical point of view, such an evidence induced a complete optimization of the
instrumentation, including modern numerical devices, high speed microprocessors,
multimodal and multiphysics sensors and actuators associated with an accurate
metrology and noise analysis, and a huge capacity for the big data storage and
digital processing processors. From the theoretical point of view, the huge area of
linear physics associated with stationarity and deterministic systems is completed
with the increasing area of nonlinear and stochastics new tools. The results are in the
extraction of a new family of multiscale data, considered as undesired noise 20 years
ago, but now enhanced as potential big data inputs, having the intrinsic signature of
new statistical properties like memory, nonstationarity, ergodic, chaotic signatures.
These new data are considered as strong candidates for accurate evaluation of aging
processes, including the conservation and rehabilitation of pieces of the historical
and cultural heritage like stones, paintings, jewelry, or any objects fabricated by our
ancient civilization.

This review paper has the objective to convince researchers, engineers, profes-
sionals, physicians, and end-users to follow the latest developments experienced
by different methods in ultrasonic experimentations, including the use of modern
mathematical models. The objective is to extend the concept of “optimization of
excitations” by recent researches with applications in several domains (electrical
engineering, mechanical engineering, computer engineering, industrial engineering,
telecommunications engineering, finance, social sciences, etc.) by the various
multiscale and multimodal imaging and signal processing tools, including of course
some perspectives with the use of artificial intelligence, the merged disciplines of
science, technology, engineering, and mathematics.
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Chapter 5
A Geometrically Constrained Manifold
Embedding for an Extrinsic Gaussian
Process

Thomas Deregnaucourt, Chafik Samir, Abdelmoujib Elkhoumri,
Jalal Laassiri, and Youssef Fakhri

Abstract We introduce a new framework of local and adaptive manifold embed-
ding for Gaussian regression. The proposed method, which can be generalized
on any bounded domain in R

n, is used to construct a smooth vector field from
line integral on curves. We prove that optimizing the local shapes from data set
leads to a good representation of the generator of a continuous Markov process,
which converges in the limit of large data. We explicitly show that the properties
of the operator with respect to a geometry are influenced by the constraints and the
properties of the covariance function. In this way, we make use of Markov fields
to solve a registration problem and place them in a geometric framework. Finally,
this locally adaptive embedding can be used with the help of the linear operator to
construct conformal mappings or even global diffeomorphisms.

Keywords Vector field · Gaussian process · Random field · Covariance operator

5.1 Introduction

Statistical analysis and modeling of shapes of objects take their origin in works
established by Kendall in 1984 [1] where the shape of an object in Euclidean space
is defined as all the geometrical information that remains when location, scale, and
rotational effects are filtered out from an object. Many different methods for fitting
geodesics in Kendall shape space have been proposed. While Kendall’s definition
of shape space took major strides in shape analysis, it admits some limitations due
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to the use of landmarks to define shape space. Therefore, much work has been done
in order to find a convenient representation of shapes that enables simple physical
interpretations of deformations of shapes and efficient method for fitting curves and
geodesics. Klassen et al. [2–5] propose a new geometric representation of curves
based on computational differential geometry. First, they were restricted to arc-
length parametrization of curves [2]. Therefore, shapes are represented as elements
of infinite-dimensional spaces. Then, they propose a square-root velocity (SRV)
representation for analyzing shapes of curves in Euclidean spaces under an elastic
metric and compute geodesics between closed curves using path-straightening
approach. Other authors have also presented other variational techniques for finding
diffeomorphic deformation vector fields between curves [6, 7, 13].

The recent advances in imaging have led to an increased need for image regis-
tration methods which are used in a large number of applications including medical
imaging, computer vision, graphics, etc. The image registration problem consists of
mapping a target image to a reference image under certain constraints. The estimated
deformation can be based on intensity (gray-scale level correspondences), geometry
(features or landmarks), or both. The registration problem can be rephrased as a
variational or statistical problem where several different models are available to
predict the deformation vector field on the whole image domain. Thus, one has
to build an efficient model that best matches the given landmarks (points, curves,
surfaces, etc.) accurately, e.g., been smooth enough on the rest of the domain [14].

Generally, one looks for the deformation field that best maps one image (or a part
of it) onto another one. This is a classical variational (ill-posed) problem, which is
usually solved by adding a regularization term [11]. Thin plate spline image regis-
tration [15] is the standard method for matching points under the assumption that the
point-wise and full deformations are small. For example, in [12], the deformation
field was driven by a minimization flow toward a harmonic map corresponding to
the solution of a coupling of data and regularization terms. For large deformations,
a diffeomorphic matching approach was developed by Grenander et al. [13]; it was
followed by other deformable template-based approaches [8, 9].

Landmark-based image registration is based on finite sets of landmarks, usually
not uniformly distributed, where each landmark in the source image has to be
mapped onto the corresponding landmark in the target image. The landmark-based
registration problem can be formulated in the context of multivariate random fields,
and solved by different numerical methods [10]. Despite its popularity, two of
its main issues are sensitivity to landmark locations and dependency on point
correspondences. Recently, several methods have been proposed to deal with these
disadvantages. These statistical techniques, giving rise to compactly supported or
local mappings, handle locally deformed images. Moreover, they are generally
stable and the computational effort to determine transformations is low. Thus, they
can deal with a large number of landmarks.

For large deformations, a diffeomorphic matching approach was developed
by Grenander et al. [13]; it was followed by other deformable template-based
approaches such as the large deformation diffeomorphic metric mapping (LDDMM)
method to solve for large deformations when the landmark correspondences are
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known [9]. Other approaches can be found, where the deformation fields are defined
on smooth regions with distinct “anatomical” landmark points. In this respect,
geometric regularization and stochastic formulations offer some nice advantages.
Specifically, deformable image registration can be formulated as a stochastic
optimization problem, in which the likelihood term is coupled with regularization
prior to ensure smooth solutions. In this work, geometric landmarks are given
as curves without any correspondences between points (correspondences are only
given at the curve level). In this setting, previous methods are not directly applicable,
and one has to develop a unified framework that can efficiently compute point
correspondences across curves and the full deformation fields jointly. This motivates
us to focus on curve-based diffeomorphic image registration, and to develop a novel
probabilistic model that encodes shape variability of the landmark curves [17].

This paper proposes a new framework to solve point correspondences across
curves using shape analysis and the full deformation fields jointly using a Gaussian
process. Gaussian processes (GP) or Markov random fields are a state-of-the-
art probabilistic non-parametric regression method. In order to capture a smooth
deformation vector field between two observed set of curves, build a probabilistic
model, and perform optimal predictions for non-observed data on the image domain
	, we aim to study a GP as a distribution over the geodesic deformation field U

between landmark curves. In fact, U ∼ GP(μ,C) on 	 and is fully defined by
a mean function μ (in our case μ = 0) and a covariance function C. To reach
such goal we will present properties of the Gaussian process. In this work, we will
first show that a local basis can be constructed as eigenfunctions of a differential
(Sobolev) operator and make connection with covariance parametric functions of
the form {Cθ | θ ∈ �}. It is important to highlight that the choice of such
operator, as detailed in Sect. 5.3.1, permits to control the intrinsic properties of
U [19, 21]. Moreover, the popularity of GP stems primarily from two essential
properties. First, a Gaussian process is completely determined by its mean and
covariance functions. This property facilitates model fitting as only the first- and
second-order moments of the process require specification. Second, solving the
prediction problem is straightforward since the optimal predictor at an unobserved
position/time is a linear function of the observed values. Without loss of generality,
we briefly present some definitions and properties of the eigenfunctions and propose
a method to compute optimal parameters [24].

The rest of the paper is organized as follows. In Sect. 5.2 we review the
representation of curves and we present some necessary geometrical tools for
shape analysis including the construction of geodesics vector field between two
corresponding curves. In Sect. 5.3 we formulate the problem of extending the
deformation field to the whole domain as searching for eigenfunction of a Sobolev
operator L. Then, we propose to search for the optimal parameters of L using a
Gaussian process. Experiment results and the conclusion will be given in the last
two sections.
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5.2 Notations and Background

Let I be the unit interval and let L2(I,R2) be the set of square integrable functions
from I to R

2. Let η : I = [0, 1] −→ R
2 denotes a parametrized curve in L

2(I,R2)

satisfying: (1) η is absolutely continuous and (2) η̇ ∈ L
2(I,R2). Note that absolute

continuity is equivalent to requiring that η̇(t) exists for almost t ∈ I , that η̇(t) is
summable, and that η(t) = ∫ t

0 η̇(s)ds. In this section we are interested in studying
the geometry of shapes using the q-function representation of continuous curves in
R

2. It is shown that it is an efficient representation for analyzing shapes of curves [3].
Furthermore, it is the representation in which the elastic metric reduces to a simple
L2 metric and the space of unit length curves becomes the unit Hilbert sphere.

Now, we shall take a finite set of parametrized curves η0, . . . , ηn satisfying all
conditions and consider the shape representation of each ηi , i = 0, . . . , n by their
q-functions q0, . . . , qn. Let M denote the space of these shapes. Indeed, M is an
infinite-dimensional manifold with a Riemannian structure on it as will be detailed
next. The first goal is to compute the geodesic deformation vector field between any
two parametrized curves on M.

5.2.1 Curve Representation and Shape Space

Let η : I = [0, 1] −→ R
2 denotes a parametrized curve in L

2(I,R2) satisfying all
the conditions. For the purpose of studying its shape, we will represent it using its
q-function q : I −→ R

2 defined as

q(s) = η̇(s)√||η̇(s)|| ∈ R
2. (5.1)

Here ‖.‖ denotes the Euclidean 2-norm in R
2. This vector valued function q is

the tangent vector normalized by the square-root of the instantaneous speed along
the curve and is a local descriptor of the geometry of the curve. The original
curve η can be reconstructed using η(s) = ∫ s

0 ||q(t)|| q(t) dt . The scale-invariant
shape representation is given by normalizing the function q by its magnitude as

q√∫ 1
0 ‖q(s)‖2ds

. Therefore, it becomes an element of a unit sphere in the Hilbert

manifold L
2(I,R2) that we will denote as M. This is an infinite-dimensional Hilbert

manifold and represents the shape space of all translation and scale-invariant elastic
curves. More precisely, we can define the manifold M in the form

M ≡
{
q ∈ L

2(I,R2)|
∫ 1

0
(q(s), q(s))R2ds = 1

}
. (5.2)

Here and subsequently, (, )R2 stands for the standard Euclidean inner product in R
2.



5 A Geometrically Constrained Embedding 93

5.2.2 Geodesics in Shape Space, Exponential Map, and
Parallel Transport

An important geometrical construct for the analysis of shapes is the definition of
the tangent space. Since M is a Hilbert sphere in L

2(I,R2), at any curve q ∈ M,
we define the tangent space and we denote TqM. We equip the tangent space of
M with a smoothly varying Riemannian metric that measures infinitesimal lengths
on the shape space. This inner product is first defined generally on L

2 and then
induced on the tangent space of M. The metric defined on M has a nice physical
interpretation in being an elastic metric. More precisely, let f and g be two tangent
vectors in TqM, the metric is defined as,

〈f, g〉 =
∫ 1

0
(f (s), g(s))R2ds. (5.3)

Another important step in our shape analysis is to compute geodesic paths between
shapes with respect to the chosen metric. With respect to the q-function, M is
represented as the Hilbert sphere in L

2(I,R2) and obviously lot is known about
the geometry of a sphere, including geodesics and exponential map. Therefore,
geodesics between any two points q1 and q2 (not antipodal to q1) on M are great
circles and it is expressed in terms of a tangent direction f ∈ Tq1M as,

χt (q1; f ) = cos (t‖f ‖〉) q1 + sin (t‖f ‖〉) f

‖f ‖ . (5.4)

This equation gives the constant-speed parametrization of the geodesic passing
through q1 with velocity vector f at t = 0. As a result, the exponential map
exp : Tq1M −→M is defined as

expq1
(f ) = q2 = cos(‖f ‖)q1 + sin(‖f ‖) f

‖f ‖ . (5.5)

The length of the geodesic determines an elastic quantitative distance between two
shapes q1 and q2 in M given by

dQ(q1, q2) = cos−1 (〈q1, q2〉) . (5.6)

From Eq. 5.4, the velocity vector along the geodesic path χt is obtained as χ̇t . It
is also noted that χ0(q1) = q1 and χ1(q1) = expq1

(f ) = q2. Conversely, given
two shapes q1 and q2, the inverse exponential map (also known as the logarithmic
map) allows the recovery of the tangent vector f between them, and is computed as
follows:

exp−1
q1

(q2) = f = cos−1 〈q1, q2〉
sin(cos−1 〈q1, q2〉) (q2 − 〈q1, q2〉 q1). (5.7)
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For any two points q1 and q2 on M, the map � : Tq1M −→ Tq2M parallel
transports a vector f from q1 to q2 and is given by

�q1−→q2(f ) = f − 2
(q1 + q2)

∫ 1
0 (f, q2)ds

∫ 1
0 (q1 + q2, q1 + q2)ds

. (5.8)

To summarize, the exponential map takes points in the tangent plane to points on the
sphere, preserving distance from q; it also preserves the tangential direction from q.
Concretely, the exponential map only preserves angles and distances for points in the
tangent plane which have distance � π from q; however, we shall implicitly assume
this condition holds whenever it is needed. Given the above tools for constructing
geodesics and inverse exponential maps on the shape space, we will indicate in the
next section how these equations may be used to solve the problem of estimating a
deformation vector field outside the landmark curves.

5.3 The Geometric Constraints on the Embedded Manifold

Let 	 be the bounded domain on R
2 (usually [0, 1]2), {βj , j = 1, . . . , Nl} a finite

set of Nl landmark curves on the target image I2, and {αj , j = 1, . . . , Nl} a set of
corresponding curves on the reference image I1. Let � ∈W(	,R2) be the required
deformation vector field representing the registration and W a Sobolev space of
sufficiently smooth vector fields over 	 with appropriate boundary conditions. We
note that this method is easily generalized to R

n, but the current application only
warrants registration of 2D and 3D images. Using properties from the previous
section, we note the restriction of � on βj as the geodesic deformation field bringing
βj to αj in the corresponding shape space.

We begin by introducing a compact linear operator to ensure that the regis-
tration outside βj s is constructed by Gaussian process regression. The goal is
to find a locally smooth deformation φ that maps any small neighborhood in 	

uniformly [17]. Thus, the registration problem can be formulated as follows: find an
optimal deformation vector field � : 	 �→ 	 within a suitable function space W
by minimizing the following functional:

E :W→ R
+

� �→ E(�) = λ

2
‖�‖W + 1− λ

2Nl

Nl∑

j=1

d2(αj ,�(βj )), (5.9)

where λ ∈ [0, 1] and d is a geodesic distance between αj and �(βj ). We use an elas-
tic Riemannian framework to compute the geodesics between corresponding curves.
The main advantages of this choice are that it is invariant to re-parametrizations of
curves and the resulting geodesic distance has an intuitive interpretation in terms of
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the amount of stretching and bending needed to deform one curve into another. We
refer the reader to [18] for more details.

5.3.1 Local Solutions as Eigenfunctions of the Covariance
Operator

Here, for simplicity, we restrict our attention to the case of one landmark curve per
image. In practice, each landmark curve is represented using a collection of points
{p1

i , i = 1, . . . , N} ∈ α on I1 and points {p2
i , i = 1, . . . , N} ∈ β on I2. Let U

denote the shooting (geodesic) vector field taking curve β to curve α. Then, Ui is
the displacement vector bringing point p2

i to point p1
i : Ui(p

2
i ) = p1

i . Let L be a
linear operator such that L = P∗P, where P is a differential operator with adjoint
P∗. Then, the first term of Eq. 5.9 can be written as ‖�‖W = ∫

	
‖P�‖ and the

solution of minimizing Eq. 5.9 such that ∇E(�) = 0 is given by

⎧
⎨

⎩

� =∑N
i=1 biφi , bi ∈ R

�(p2
i ) = p1

i

Liφj = δij ;Li = (−�+ εiI )
m, m ≥ 1

(5.10)

To maintain the constraint
∑N

i=1 b
2
i = 1 we use a truncated version of the

Karhunen–Loève expansion. We will briefly recall some related notions of the K-L
expansion to make connection with the proposed formulation. Let (φj )j be a set of
orthonormal functions in L

2
([0, 1]), i.e.,

〈
φk, φj

〉
L2 =

∫ 1

0
φk(t)φj (t)dt = δkj (5.11)

where δkj denotes the Kronecker index function satisfying δkj =
{

1, if k = j

0, if k �= j
.

Furthermore, the eigenvalues λj and the eigenfunctions φj of the operator L can
be obtained by solving the Fredholm integral

(Lφj )(t) = λjφj (t) (5.12)

To show examples of the link between Hilbert–Schmidt and Sturm–Liouville
eigenvalue problems we give a list of specific examples. The choice of a covariance
operator as well as the corresponding eigen-expansion has a key role in constructing
local solutions. Illustrative examples are given in Fig. 5.1.

• Case 1, εi = 0: P = ∂x , L reduces to a Laplacian operator, and the solution
is given by thin plate splines (TPS). Note that this makes the proposed method
more general than TPS [19].
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Fig. 5.1 Illustrative examples in R
3 with different values of the local parameter ε. (a) ε = 0.25,

(b) ε = 2, (c) ε = 5, (d) ε = 8, (e) ε = 11, (f) ε = 14

• Case 2, m = 1: L = (ε2
i I − d2

dx2 ) and the local solution is given by

φi(x) = 1
2ε2

i

exp(−εix) where εi is a parameter that determines the shape of

the covariance function φi [20].
• Case 3, m = 2: L = (ε2

i I − d2

dx2 )
2 and the local solution is given by φi(x) =

1
8ε3

i

(1+ εix) exp(−εix).

• General Case: The solution with respect to L is given by

φi(x) = 21−m− 1
2

π
1
2 �(m)ε2m−1

i

(εi‖x‖)m− 1
2 K 1

2−m
(εi‖x‖),

where K is the modified Bessel function. We note that in all cases, Nφ = {φi}
is the native space of φis endowed with a Riemannian metric. For simplicity, we
use U = [U1, U2, . . . , UN ]� and b = [b1, b2, . . . , bN ]�. Let Aij =

〈
φi, φj

〉

be the covariance matrix with A positive definite determined by the choice of
eigenfunctions φi .

It is now clear that the better solution depends on different parameters, but all
of them are related to the choice of L. In fact, controlling the parameters allows us
to take into consideration additional constraints derived from the properties of Nφ ,
i.e., the convergence of the finite approximation and the stability of its numerical
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implementation. Especially, the solution reduces to an exponential for small εi and
to a Gaussian for large εi . Therefore, the solution includes a large class (family) of
functions making it very flexible, which presents a big advantage for the proposed
method [16]. Next we will use a non-deterministic formulation to compute the
optimal parameters that determine the eigenfunctions which is the same as choosing
the Sobolev operator L.

5.3.2 Global Solution as a Random Field

Assuming we are only interested in the optimal solution at certain points p2
i , say

positions (x1, x2, . . . , xn) on 	. If we go back to the embedding problem from
the previous section and rewrite it in a natural probabilistic setting, the solution
of Eq. 5.10 turns out to have important optimality properties. Like in the previous
section, we assume that we want to find the response U(x) = �(x) − x of an
unknown model function � at a new point x of a set 	, provided that we have a
sample of input-response pairs (xj , Uj ) = (xj ,�(xj)) given by points on curves.
But now we assume that the whole setting is non-deterministic, i.e., the response Uj

at xj is a realization of a Gaussian process U(xj).
The short description in this section is limited to necessary notions that enable

statistical inference on partial realization of random field, as it is usually the case
in features-based registration as well as prediction problems. Indeed, spatial data
contain information about both the attribute of interest as well as its location. The
location may be a set of coordinates, such as the latitude and longitude, or it may be
a small region such as curves.

Given a parameter space 	, a random field U over 	 is a collection of random
variables {U(X),X ∈ 	}. Since multivariate distributions are determined by their
means and covariances, it is straightforward that random fields are determined by
their mean and covariance functions, defined by

μ(X) = E{U(X)}

and

C(X, S) = E{(U(X)− μ(X))T (U(S)− μ(S))}

so that the elements of C are given by

Ci,j (X, S) = E{(Ui(X)− μi(X))T (Uj (S)− μj (S))}.
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5.3.3 Numerical Solution

Let U be a Gaussian random field (as defined in the previous paragraph), i.e., for
X ∈ 	:

U(X) ↪→ N(μX,CX) = μX +N(0, CX),

where μX and CX are the mean and the covariance function of U , respectively.
When μX is often determined by the given conditions (here Ui(p

2
i ) = p1

i ), CX must
be estimated as has been detailed in the previous section. There is a large choice of
covariance functions in the literature, see [22]. Note that an important consequence
of this is that the mathematical properties and the quality of the estimated field will
change accordingly. In this work, we choose C to be the family of Matérn covariance
functions (see the general solution of Eq. 5.9 for more details), i.e.:

CX(h) = σ 2 21−ν

�(ν)
(||h||l)νKν(||h||l) (5.13)

which is the spatial correlation at distance ||h||, where K is the modified Bessel
function of the second kind. Generally, σ 2 > 0 is referred to as a (marginal)
variance parameter, l > 0 as a (spatial) scale parameter, and ν > 0 as a smoothness
parameter. If ν = 1

2 + k, k ∈ N, Eq. 5.13 reduces to the product of an exponential
function and a polynomial [23]:

CX(h) = σ 2e−||h||l
k∑

j=0

(k + j)!
(2k)!

(
k

j

)
(2||h||l)k−j

To make connection with the eigenfunctions of L operator in Eq. 5.9, we remind
that for ν = 1

2 , C becomes an exponential, and for ν = +∞ it becomes a Gaussian.
In this work, parameters σ and l are determined using a maximum likelihood
estimator (MLE): minimizing the negative log likelihood function [19, 24]:

− ln(L(X|l, σ 2)) = n

2
ln(2π) + n

2
ln(σ 2) + ln|VX,l |

2
+ XT V −1

X,l X

2σ 2 , (5.14)

where

σ 2VX,l(h) = CX(h).

To find the minimizer of Eq. 5.14 we use a Newton-based method to determine σ̂

and l̂ as well as a cross-validation technique to choose ν̂. Once all parameters are
evaluated, Û at an unobserved position is computed with the help of the circulant
embedding method [25].
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5.4 Numerical Examples

In the medical context, ultrasound (US) and magnetic resonance imaging (MRI)
techniques are noninvasive diagnostic test that take detailed images of the soft
tissues of the body in order to highlight area of interest. In the following example,
the goal is to register images of different modalities (intensity distributions) in
order to be able to fuse complementary information. Since no correspondence is
available, the only solution is to exploit boundaries of apparent organs and use
them as landmark curves. Thus, given US and MRI images, practitioners select a
set of corresponding curves that define organ boundaries in both images. Without
additional information, we use these curves for registering data. In the case of one
landmark curve M = 1, we first register the corresponding two curves and then
discretize them for a numerical solution. In the case of a set of curves, we apply
the same idea to each pair of corresponding curves. First, we assume that the curve
β1 is sampled with a finite set of points X = {Xi, i = 1, . . . , N = 100} with
corresponding deformations Ui ; these deformations are estimated using the elastic
geodesic path from β1 to α1 as detailed in Sect. 5.2. The goal is to estimate Û

outside the given landmark curves (i.e., for the entire bounded domain 	) using
the methodology of random fields. An example is shown in Fig. 5.2 top row where
β1 represents the curve in US (a) and α1 represents the reference curve on MRI (b).
In this example, we first compute the geodesic deformation vector field U such that

Fig. 5.2 Results of the proposed method applied to two examples. (a) Original US image before
deformation, (b) MRI slice, (c) overlap of MRI image and the registered US, and (d) the Laplacian
of the deformation vector field on the whole image domain (embedding)
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U(β1) = α1 on the curve domain I = [0, 1], and then use the proposed method
to compute � or (U = � − id) on 	 \ I . The same idea is applied in the case of
two corresponding curves M = 2 in Fig. 5.2 bottom. In both examples, we show the
Laplacian of the deformation to check the smoothness of the solution.

For a more general idea when using eigenfunctions of a linear operator and for
comparative solutions, we use five different methods to perform the registration:
the proposed method (M), thin plate splines (TPS), multi-quadratic (MQ), inverse
multi-quadratic (IMQ), and Gaussian (G). We compute the initial displacement U
by first finding the optimal correspondence (re-parametrization) between continuous
landmark curves, and then the geodesic deformation vector field. Furthermore, for
each method, we computed the optimal parameters. For fairness of comparisons,
we provided the optimal parameters and the optimal correspondences between
landmark curves for all methods (which improved their performance). All results
are summarized in Table 5.1.

For illustration, Fig. 5.3 shows the original US and MRI images, the result-
ing deformed US image, the deformed grid, the deformation vector field and
its corresponding Laplacian map, and two views of the MRI–US overlap after
registration. First, the proposed registration process provides more precision (MRI–
US overlap or fusion in Fig. 5.3f and g) about the locations around structures of
interest, which consequently simplifies and improves the clinical diagnosis. As can
be seen, the proposed method almost uniformly outperforms all of the other methods
confirming that using the linear operator L makes our solution more general than
TPS, exponential, and Gaussian-based methods.

To better visualize the smoothness of the resulting deformation vector fields
in (d), we show their Laplacian maps in panel (h). If the deformation is smooth,
we expect the Laplacian to be constant with values close to 0. It is evident that

Table 5.1 Registration accuracy on data of ten patients for different methods: our method (M),
thin plate splines (TPS), inverse multi-quadratic (IMQ), multi-quadratic (MQ), and Gaussian (G)

M TPS MQ IMQ G

P ν RMSE SE RMSE SE RMSE SE RMSE SE RMSE SE

1 7/2 0.288 0.044 0.413 0.050 0.346 0.048 0.366 0.050 3.495 0.092

2 3/2 0.076 0.021 0.077 0.021 0.209 0.051 0.604 0.298 6.046 0.021

3 3/2 0.015 0.014 0.017 0.014 0.021 0.015 0.763 0.046 0.824 0.046

4 5/2 0.027 0.013 0.042 0.020 0.028 0.017 0.044 0.021 0.0560 0.023

5 5/2 0.066 0.017 0.068 0.020 0.091 0.025 0.066 0.020 0.099 0.019

6 7/2 0.025 0.020 0.036 0.021 0.360 0.110 0.028 0.020 0.037 0.025

7 5/2 0.093 0.030 0.099 0.030 0.110 0.035 0.102 0.033 0.155 0.043

8 11/2 0.033 0.011 0.062 0.017 0.067 0.021 0.048 0.016 0.066 0.015

9 3/2 0.069 0.019 0.073 0.019 0.093 0.029 0.071 0.020 0.090 0.023

10 5/2 0.029 0.020 0.033 0.020 0.110 0.063 0.035 0.024 0.048 0.027

The best performance is highlighted in bold and the second best is italicized. The performance is
given by root mean square error (RMSE) and shape error (SE) coefficients between the reference
(MRI) and target (US) curves
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Fig. 5.3 Registration results for same patient computed using the proposed method (M), thin plate
splines (TPS), and inverse multi-quadratic (IMQ). For each method, we show (a) the US image, (b)
the deformed US image, (c) the deformed grid, (d) the deformation vector field, (e) the MRI image,
(f) the MRI–US overlap, (g) a zoom-in of (f) for improved visualization, and (h) the Laplacian of
the deformation vector field
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Fig. 5.3 (continued)

overall the proposed method generates smoother deformations with a higher level
of accuracy than the other two methods. Even with small values, we expect that
a part of the errors that occurred are due to numerical approximations on grids,
especially when data points are very close.
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Chapter 6
Numerical Study of SIF for a Crack
in P265GH Steel by XFEM

Houda Salmi, Khalid El Had, Hanan El Bhilat, and Abdelilah Hachim

Abstract The analytical solving of fracture mechanics equations remains insuffi-
cient for complex mechanisms, hence the use of finite element numerical methods
(FEM). But the presence of singularities strongly degrades the FEM convergence
and refining the mesh near the singularities is not enough to obtain an accurate
solution, hence the use of the extended finite element method (XFEM). With
XFEM, the standard finite element approximation is locally enriched by enrichment
functions to model the crack. The present work focuses on the numerical study of
the defects harmfulness in the P265GH steel of a Compact Tension (CT) specimen.
A stress intensity factor (SIF) was calculated by CAST3M code, using XFEM and
the G-Theta method in the FEM; the objective is to simulate a CT sample with
XFEM in 3D and to calculate the critical length of crack leading to the fracture
as well as the evolution of stress concentration coefficient. An integration strategy
and a definition of level sets have been proposed for cracks simulation in XFEM. A
weak loading was considered to ensure elastic behavior. A comparative study of the
numerical SIF values with the theory was performed. The result shows that XFEM
is a precise tool for modeling crack propagation.
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6.1 Introduction

The analytical solving of the equations remains limited to simple problems whereas
in reality there are complex mechanisms hence the use of finite element method
(FEM). This method consists of splitting the spatial domain into smaller, simpler
parts (finite elements) and looking for a simplified formulation of the problem
on each element. The simple equations that model these finite elements are then
assembled into a larger system of equations that models the entire problem [1].
Many studies suggest that crack propagation occurs over approximately 90% of
the life of a component [2, 3]. Therefore, it is necessary to be able to evaluate the
evolution of defects during the loading as well as their critical sizes, this knowledge
will allow the establishment of adequate inspection and maintenance programs. The
problem of defects harmfulness is approached by global parameters such as the
stress intensity factor (SIF) in elasticity or the J integral in plasticity [4, 5]. The
Linear Elastic Fracture Mechanics (LEFM) [5, 6] is the basic theory of fracture
for characterizing the stress fields near the crack tip. The analysis of the materials
fracture remains one of the most difficult problems for numerical computational
mechanical methods, the need for adequate design of high performance and reliable
structural components highlights the importance of accurate modeling of crack
initiation and propagation in numerical fracture analysis. The finite element method
(FEM), as an effective numerical method in computational mechanics, remains
limited in terms of modeling crack growth, mainly due to the incremental re-
meshing of the crack and other convergence considerations. Over the last few
decades, several methods have been introduced to replace the FEM, hence the
development of the Extended Finite Element Method (XFEM), which was inspired
by the partition of the unit finite element method (PUFEM) [7]. In this method,
the finite element basis is enriched by functions that describe the separation of
the material and the singularity, the elements cut by the crack are presented by
special elements with additional degrees of freedom. In XFEM the geometry of
the crack can be located arbitrary through the mesh, and crack growth simulations
can be performed without any required re-meshing [8]. XFEM was originally
introduced by Belytschko and Black [9] for modeling elastic crack growth. Moes
et al. [10] and Dolbow [11] have improved this method by constructing an enriched
approximation that allows representing the crack independently of the mesh. The
XFEM has presented advantages over the competing methods like the methods
of elimination, re-meshing, etc. However, the XFEM presents certain difficulties.
In fact, the presence of discontinuous functions in an element requires a specific
integration strategy to describe the associated fields correctly. The most widespread
integration strategy has been proposed by Moes et al. [12], it consists of cutting
the enriched elements into sub-triangles and then applying a standard integration
scheme to these triangles. Samaniego et al. [13] used this method in the case of
a material with nonlinear behavior for shear bands modeling but this method does
not ensure the conservation of energy around the crack tip. In order to maintain
this energy, Elguedj [14] and Benoit Prabel [15] proposed in their work to use only
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quadrature elements during the calculation. For an effective advance of the crack,
Prabel [15] defined also the level set on a finer intermediate grid not connected to
the mesh.

The purpose of this study is to examine, in the elastic case, the defects harmful-
ness in the P265GH steel (this type of steel mainly used for pressurized equipment).
In three-dimensional case, a numerical study using the FEM and the XFEM solver
CAST3M [16] was performed considering tensile stress. The numerical method
XFEM was illustrated by mathematical analysis using matrix form.

We modified the level set definition and the integration strategy to facilitate the
use of the XFEM within CAST3M. The propagation is managed in a simple way
by extending the mesh of the crack. We carried out a low load to ensure elastic
behavior , we then compared the numerical stress factor intensity values with the
theory and determined the critical length of the crack leading to the fracture. We
finally presented the evolution of the stress concentration coefficient according to
the axis of the specimen in 3D.

6.2 FEM Methodology

In numerical analysis, the finite element method (FEM) is used to solve partial
differential equations, CAST3M is a structure calculation code using the finite
element method to solve equations with boundary conditions, giving as solution the
displacement function u, for an imposed tension, the system to be solved is reduced
to Eq. (6.1):

Ku = f,

Cu = q (boundary conditions), (6.1)

• with K: stiffness matrix,
• q: Vector column of imposed forces (nodal force),
• f : Vector of generalized forces,
• C: Elastic model tensor.

In FEM the displacement approximation u can be written as:

u(x) =
∑

iεN

Ni(x)ui, (6.2)

with

• N: set of all nodes in the domain,
• Ni(x): standard finite element shape functions of node i,
• ui : unknown of the standard finite element part at node i.
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6.2.1 Local Approach: Stress Intensity Factor

The stress intensity factor characterizes the stress fields at crack tip. Stress in the
vicinity of a crack admits an asymptotic development in the form [17]:

σr = KI
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σrθ = KI
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With (r, θ) are polar coordinates of a point in the vicinity of the crack tip (Fig. 6.1).
The stress intensity factor is, therefore, expressed as a function of the stress field

in the vicinity of the crack and its geometry, this stress field is numerically accessible
by finite element, but (FEM) alone does not allow a precise approximation. We must,
therefore, pay particular attention to the crack tip by using a particular finite element,
type Barsoum [18], to force the singularity, Barsoum [18] proposes a finite element
by displacing the nodes of the medium corresponding to the tip of the crack (edges
1–2 and 1–4) to a quarter of the length (Fig. 6.2).

6.2.2 Global Approach G-Theta Method (Gθ)

Energy release rate (G) represents the energy required to advance the crack at a unit
length. It corresponds to the decrease of the total potential energy Pe to go from an

Fig. 6.1 Crack
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Γ
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length
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initial configuration with a length of crack a, to another where the crack has spread
a length �a:

lim
�Pe

�a
= ∂Pe

∂a
, (6.4)

with Pe = F − U represents the potential energy.

• F: the work of external forces,
• U: the energy of elastic deformation of the solid [17].

The numerical calculation of Energy Release Rate consists in putting the
expression of the Eq. (6.4) in the form of a contour integral.

Let � be a contour encircling the crack tip, if the lips of the crack are free of
loading we have

J = G =
∫

�

(
1

2
T r[σε(u)]n1 − σn

∂u

∂x1

)
dS, (6.5)

with

• u: displacement vector in a point M of the contour,
• n1 and x1: The coordinates of the point M of the integration contour relative of

the crack front.
• dS: Contour element,
• σ : stress,
• ε: strain.
• n: normal vector in the point M.

6.2.3 Numerical Calculation of the Stress Intensity Factor (K)

Energy release rate (G) is related to the stress intensity factor of the mode I, in plane
strain by Eq. (6.6):

G = (1− ν2)K2

E
, (6.6)

where E is the Young’s modulus and υ is the Poisson’s ratio.

6.2.4 Geometry

The study considered elastic behavior of the material in P265GH steel, this steel is
especially used in pressure equipment with the following properties:
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Fig. 6.3 Loading and boundary conditions

E(Young modulus) = 200.000 MPa,

υ(Poisson’s ratio) = 0.3,

σn(nominal stress) = 148 MPa,

σe(yield stress) = 320 MPa,

σu(Breaking stress) = 470 Mpa.

We consider a Compact Tension P265 GH steel sample containing a crack and
extracted from cylindrical pressure equipment (Fig. 6.3), initial length of crack is
a0 = 11 mm (

a0
W
= 0.55). The sample is subjected to a tensile stress . The average

value of the fracture toughness is Kc = 96 Mpa
√
m [21]. The dimensions of the

compact tension sample as per Fig. 6.4 are: B = 10 mm, W = 2 × B, W1 =
2.5× B,a = 0.5×W , H = 1.2× B, H1 = 0.65× B, D = 0.5× B.

The movements of the mesh of the red segment in Fig. 9.3 are blocked. We
applied a load of 166 Mpa to ensure elastic deformation. The loading is applied
on the CT sample by means of a pin in the form of a rigid triangle to avoid any
bending or torsion and to ensure that the tensile force is perfectly axial.
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Fig. 6.4 Dimensions of the
CT specimen
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6.2.5 Meshing of the CT Specimen

The specimen has a plane of symmetry, so only half is modeled. In CAST3M, in
3D, to generate surfaces, we used the operator Dall. It is necessary that the opposite
sides have the same number of elements. We use the operator Volu to generate the
volume. Moreover to avoid the risk of tearing the meshes, we used the operator cout,
which generates triangular elements of small surface. This surface makes it possible
to weld the elements of the structure. For an exact approximation we used elements
of Barsoum [18] at the crack tip. For a fine mesh, our model comprises eight slices
(Nt = 16), this parameter does not influence the results too much, we took the
radius of the circle capping the crack tip Rc = 0.2 mm, the model also contains
Nc = 5 of concentric circles, the parameter Nc has a lot of influence on the results.
The angle of the crack α

2 is 60; the more α
2 increases, the more the stress at the crack

tip increases (Fig. 6.5).
We chose a mesh size of the crack tip of 0.15. In 3D the crack is a plane (Fig. 6.3)

and the mesh is made up of 10,880 finite elements CUB8 containing eight Gauss
points.

6.3 XFEM Methodology

6.3.1 Mathematical Formulation of XFEM

In XFEM, the standard finite element approximation is locally enriched to model the
discontinuities. At a particular node of interest xi , the displacement approximation
u can be written as [10]:
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Fig. 6.5 Crack meshing

u(x) =
∑

iεN

Ni(x)ui +
∑

iεNd

Ni(x)(H(x)− (H(xi))ai

+
∑

iεNp

[Ni(x)(

4∑

α=1

(β(x)− β(xi))b
α
i )], (6.7)

with

Ni(x): standard finite element shape functions of node i,
ui : unknown of the standard finite element part at node i,
N: set of all nodes in the domain,
Nd ⊂ N: Nodal subset of the Heaviside enrichment function H(x) which is defined

for those elements entirely cut by the crack surface:

H(x) = −1, if φ ≤ 0 (6.8)

H(x) = 1, if if φ > 0

Where φ(x) is the level set function.
ai : unknown of the enrichment H(x) at node i. These nodes are surrounded by a

square in Fig. 6.6.
Np ⊂N: Nodal subset of the βα(x) enrichment which are defined for those elements

partly cut by the crack front, four enrichment functions are used [19]:
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Fig. 6.6 Description of the
enrichment strategy
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(6.9)

bi : unknown of the enrichment βα(x) at node i. These nodes are surrounded by a
circle in Fig. 6.6.

We consider an elastic solid subjected to surface forces or displacements, as
well as volume forces, we look to determine the stresses and strains at each
point. These quantities are expressed by tensors that are written in matrix form.
These are determined from the different relationships that link stresses, strains, and
displacements. This approach leads to a system of partial differential equations that
must be integrated taking into account the boundary conditions expressed in terms
of force and/or displacements on the surface of the solid (Fig. 6.7).



114 H. Salmi et al.

The governing equations in static in the Cartesian coordinate system are

� σ + b = 0 or (σij,j + bi = 0) on 	 = 	+ ∪	− (6.10)

σij,j n = ti on �g (6.11)

Ui = ui on �u (6.12)

σij,j n = 0 on �c (6.13)

εij = 1

2
(ui,j + uj,i) (6.14)

εik,j l + εjl,ik − εil,jk − εjk,il = 0 (6.15)

σij,j = cij,klεkl, (6.16)

where

• 	εR3 and n is a unit normal vector on the surface, bi is the body force per unit
volume, and �g , �u, and �c are the traction, displacement, and crack boundaries,
respectively.

• Equation (6.10) corresponds to the equilibrium equation where σij is the Cauchy
stress tensor at any point of the studied solid.

• Equations (6.11), (6.12) and (6.13) are obtained from the equilibrium on the
surfaces (boundary conditions), ti is the tensile force applied to the considered
surface, u is the displacements field of displacements at any point of the solid, U
is the displacement imposed on the point x of the surface.

• Equation (6.14) is a geometric equation that defines the deformations in the
hypothesis of small perturbations, εij is the strain tensor at any point of the solid.

• Equation (6.15) is the equation of compatibility so that we obtain six equations
by circular permutation of indices (ijkl).

• Equation (6.16) is a constitutive law of linear elastic type where cij,kl is tensor
coefficient of the elastic constants.

• In numerical computation, we often look to minimize the elastic potential energy
by defining the optimal stresses and strains.

• Multiplying the equation of equilibrium Eq. (6.10) by a test function δu and the
integration on the domain of study 	 lead to:

∫

	

�(σ.δu)d	−
∫

	

σ : �(δu)d	+
∫

	

bδud	 = 0. (6.17)

Using the divergence theorem and the law of conservation of angular momentum:
∫

�g∪�u

tδud� +
∫

�c

tδud� −
∫

	

σ : (δε)d	+
∫

	

bδud	 = 0. (6.18)
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Because σij,j n = ti on �g denotes the prescribed traction, σij,j n = 0 on �c denotes
the traction-free surface of the crack, and, knowing that test functions vanish on
�u, we have the weak form of the linear momentum equation for the continuum
problem:

∫

	

σ : (δε)d	 =
∫

�g

tδud� +
∫

	

bδud	 = Rext . (6.19)

Equation (6.19) can be further simplified as [20]:

δuT Ku =
∫

�g

tδud� +
∫

	

bδud	 (6.20)

= Rext (6.21)

With Rext =
∫

�g

tδud� +
∫

	

bδud	 = δuT fext (6.22)

Then the equation to resolve by CAST3M is

Ku = fext . (6.23)

u is the displacement vector, fext is the external force vector, and K is the material
stiffness matrix such that

K =
∫

	

BTDBd	 (6.24)

fext =
∫

	

bd	+
∫

�g

td�. (6.25)

The sub-matrices Kij and fi are obtained by substituting the approximation function
defined in Eqs. (6.7), (6.24) and (6.25) [20]:

Kij =
⎡

⎢
⎣

Kuu
ij Kua

ij Kub
ij

Kau
ij Kaa

ij Kab
ij

Kbu
ij Kba

ij Kbb
ij

⎤

⎥
⎦ andf h

iext = [f u
i , f

a
i , f

b1
i , f

b2
i , f

b3
i , f

b4
i ]T . (6.26)

The sub-matrices and vectors that appear in the foregoing Eq. (6.26) are given as:

Kkl
ij =

∫

	

(Bk
i )

T D(Bl
j )d	 where k, l = a, u, b (6.27)

f u
i =

∫

	

Nibid	+
∫

�g

Nitid� (6.28)

f a
i =

∫

	

Ni(H(x)−H(xi))bid	+
∫

�g

Ni(H(x)−H(xi))tid� (6.29)
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f bα
i =

∫

	

Ni(βα(x)−βα(xi))bid	+
∫

�g

Ni(βα(x)−βα(xi))tid� (α = 1, 2, 3, 4)

(6.30)

with Bu
i =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

0 Ni,z Ni,y

Ni,z 0 Ni,x

Ni,y Ni,x 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(6.31)

Ba
i =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Ni(H(x)−H(xi)),x 0 0
0 Ni(H(x)−H(xi)),y 0
0 0 Ni(H(x)−H(xi)),z
0 Ni(H(x)−H(xi)),z Ni(H(x)−H(xi)),y

Ni(H(x)−H(xi)),z 0 Ni(H(x)−H(xi)),x
Ni(H(x)−H(xi)),y Ni(H(x)−H(xi)),x 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(6.32)

Bαb
i = [Bb1

i , B
b2
i , B

b3
i , B

b4
i ] (6.33)

Bb
i =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Ni(βα(x)− βα(xi)),x 0 0
0 Ni(βα(x)− βα(xi)),y 0
0 0 Ni(βα(x)− βα(xi)),z
0 Ni(βα(x)− βα(xi)),z Ni(βα(x)− βα(xi)),y

Ni(βα(x)− βα(xi)),z 0 Ni(βα(x)− βα(xi)),x
Ni(βα(x)− βα(xi))),y Ni(βα(x)− βα(xi)),x 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(6.34)

D = E

(1+ υ)(1− 2υ)

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

(1− υ) υ υ 0 0 0
υ (1− υ) υ 0 0 0
υ υ (1− υ) 0 0 0
0 0 0 1−2υ

2 0 0
0 0 0 0 1−2υ

2 0
0 0 0 0 0 1−2υ

2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

(6.35)
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where

Ni(x) are the standard finite element shape functions of node i.
Bi are the matrix of shape function derivatives, it is calculated at the Gauss points

of each element.
bi(x) are the body force components.
ti (x) is the tensile force applied to surface.
	 is the volume of the solid.
g is the area of the solid on which the tensile stress is applied.
�g is the traction boundary.
H(x) is the Heaviside function. βα(xi)is crack tip asymptotic enrichment functions.
D is the Hooke tensor in plane strain. K is the matrix of material rigidity.
E is the Young’s modulus and υ is the Poisson’s ratio.

6.3.2 Numerical Integration

The integration strategy is the use of triangular elements [12] (Fig. 6.8a) but in
our integration strategy we looked for multiplying the Gauss points, so, we used
quadrangle elements (Fig. 6.8b). The integration strategy in our numerical study
is a simplified version of that proposed in the work of Prabel [15], which used
quadrangle elements. This set of points is here introduced from the beginning of
the calculation in CAST3M, in fact for a precise integration, the approach most
used in most industrial calculation codes including CAST3M, is to split the initial
element into several sub-elements each containing several Gauss points.

Fig. 6.8 Regular sub-division: (a) quadrangle elements; (b) Triangle elements [12]
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Notes
For quadrangle elements, we use in XFEM (XQ4R) element, containing 4
Gauss points in two dimensions, and (XC8R) element, containing 8 Gauss
points in three dimensions.

For triangular elements, we use (TRI3) containing 3 Gauss points in
two dimensions, and (TRI6) element, containing 6 Gauss points in three
dimensions.

6.3.3 Crack Meshing

In order to compare the XFEM with FEM we studied the same P265GH steel
CT specimen with the same dimensions, the same mesh, the same loading, and
boundary conditions. Except that in the XFEM modeling we have changed the type
of element in the vicinity of the crack and we defined the level set function and the
enrichment zone.

In order to minimize the simulation time, we used 280 quadrangle elements
(XC8R) (orange, Fig. 6.9) from the crack tip to the end of the specimen. It should be
noted that it is better not to extend the enrichment zone to the whole structure since
it adds many additional degrees of freedom so the calculation may stop abruptly
because of zero pivots. For the rest of the meshed domain, we used 10,800 standard
elements CUB8 in the form of hexahedron with eight nodes. We choose a mesh size
of crack tip of 0.15.

Fig. 6.9 Enrichment zone
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Fig. 6.10 Auxiliary grid method for calculating levels sets: (a) Mesh of the structure, (b) Auxiliary
grid [15]

In order to compare between integration strategy using quadrangle elements and
triangle elements, we use 280 triangle elements (TRI6) from the crack tip to the end
of the specimen and 10,800 standard elements CUB8 for the rest of the mesh.

6.3.4 Enrichment and Level Sets

In order to effectively reproduce the advance of the crack Prabel [15] has defined
the level set on a finer intermediate grid not connected to the mesh of the structure
(Fig. 6.10).

We modified the definition of the level set by calculating them directly from the
crack mesh without the need for an intermediate grid to reproduce the crack advance
as proposed by Prabel [15] (Fig. 6.10), that is to say from a crack mesh, we define
the normal level set from the crack front and the tangential level set from the crack
lip (Figs. 6.11b and 6.12), such as the normal level set φ (PHI) gives the distance
of a point x to the surface of the crack and the tangential level set ψ (PSI) gives
the distance of a point x to the crack tip (Fig. 6.11), these level functions define the
crack by (Fig. 6.13)

x ∈ crack  ⇒ φ(x) = 0 and ψ(x) ≤ 0

with (| ∇φ |=| ∇ψ |= 1). (6.36)
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Fig. 6.11 Crack mesh: (a) Meshing of CT sample, (b) Definition of level set from crack mesh

Fig. 6.12 Level sets in CASTEM (a) Normal level set φ (PHI), (b) Tangential level set ψ (PSI)
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Fig. 6.13 Representation of
a crack with level sets
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6.4 Results and Discussion

6.4.1 Calculation of Stress Intensity Factor (K)

The CAST3M 2017 software was used for modeling and simulation. It incorporates
G-Theta method for calculating G in elasticity along the crack front, for plane strain
we have

G = K2

E′
and E′ = E

(1− ν2)
. (6.37)

In order to validate the integration strategy and the modification of the level set
definition in XFEM, we calculated numerically the stress intensity factor (Fig. 6.14)
with the G-theta method using FEM and XFEM for a mesh of the crack by quadratic
and triangular elements. The results were compared to the analytical solution
presented in Eq. (6.38)[22].
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w
)

9
2 ],

(6.38)

where F is the force applied in N , K is the stress intensity factor in Mpa
√
m, t is

the thickness of the CT sample and w its width in mm, a is the length of the crack
in mm.

To know the precision and the convergence of XFEM calculations in the CT
sample, we calculated the relative error eK between KXFEM calculated with XFEM
and Ka calculated with the analytical solution according the formula:
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Fig. 6.14 Evolution of stress intensity factor versus the advanced crack

eK1 =
(KXFEM,Quad elemt −Ka)

Ka

× 100

eK2 =
(KFEM,Quad elemt −Ka)

Ka

× 100 (6.39)

eK3 =
(KXFEM,T riangle elemt −Ka)

Ka

× 100.

Figure 6.15 shows that the absolute value of the relative difference between XFEM
results and the corresponding values of the analytical solution are between 0 and 1%
for quadrangle elements and between 0.5 and 3% for triangle elements, while the
difference between the FEM results and analytical values is between 0.5 and 7%,
which proves that our proposition of integration strategy and our modification of the
level sets definition are valid and that its error is lower than 1%, so our modification
in XFEM approaches the solution precisely.

Figure 6.16 presents the evolution of the stress intensity factor calculated by
XFEM according to the progress of the crack for the applied stresses σ = 166 MPa
and σ = 183 MPa.

Figure 6.16 shows that the stress intensity factor increases with the increase of
the crack size and the applied loading, this result is due to the stress intensity factor
definition where K depends on the applied stress and the size of the crack a, as
per the relationship K = ασ

√
πa. The numerical values are comparable to the

analytical solution except that the XFEM method is more accurate compared to the
FEM (Fig. 6.15), this fact is due to the enrichment of the finite elements field at
the crack successively with the enrichment functions H and βj . XFEM is therefore



6 Numerical Study of SIF for a Crack in P265GH Steel by XFEM 123

0 1 2 3

da en mm

R
elative erro

r in
 %

4 5

eK1(%) eK2(%) eK3(%)

0
1
2
3
4
5
6
7
8
9

Fig. 6.15 Relative error of the XFEM and FEM compared to the theory

0

0

50

100

150

200

250

300

1 2 3 4 5
ac(183)

da in mm

KcS
tr

es
s 

in
te

n
si

ty
fa

ct
o

r 
in

 M
p

a 
÷m

ac(166)

Numeric Stress intensity factor with XFEM in Mpa√m (183 Mpa)

Numeric Stress intensity factor with XFEM in Mpa√m (166 Mpa)

Fig. 6.16 Evolution of stress intensity factor versus applied loading and the advanced crack

more accurate than FEM thanks to the asymptotic enrichment term βj at the crack.
βj improves the local description of the stress field σ so the FEM solution without
enrichment βj makes it difficult to approach the local characteristics of the crack tip
solution.

We also note that XFEM with quadrangle elements is more accurate than XFEM
with triangle elements, which is due to the fact that quadrangle elements in 2D and
XC8R elements in 3D contain Gauss points higher than triangular elements TRI3 in
2D and TRI6 in 3D. The more Gauss points we have, the more the integration will
be exact and the result will be more precise.

Figure 6.16 shows that the valueacdepends on the structure and the applied
loading, for σ = 166 MPa: ac = 4 mm equivalent to a final crack length af =
17 mm (

af
W
= 0.85) knowing that the initial crack a0 = 11 mm (

a0
W
= 0.55).

Where ac is the critical length of the crack advance corresponds to the critical stress
intensity factor Kc leading to the fracture.
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6.4.2 Comparison of CPU Times of Numerical Methods

The comparison of the process time for each numerical method is performed using
the CPU time calculated by CAST3M Code. CPU time is the amount of time for
which a central processing unit (CPU) was used for processing instructions in a
computer program or operating system (Table 6.1).

Table 6.1 shows that the CPU calculation time in the XFEM using quadran-
gle elements (14,453 ms) is less compared to other numerical methods, namely
FEM with quadratic elements (14,578 ms) and XFEM with triangular elements
(16,147 ms), which proves that our modification of the integration strategy in XFEM
is useful and has accelerated the execution of the system. The computation time
of the FEM with quadratic elements is also comparable to that of XFEM with
quadrangle elements, so the FEM is also a fast method, but it gives less precise
results compared to XFEM, finally the integration with triangular elements in
XFEM is slow but gives accurate results (Fig. 6.15).

6.4.3 Stress Concentration Coefficient Kt

In order to quantify the importance of the local stress increase, we calculated the
values of the numerical stress concentration coefficient Ktnum along the axis of the
3D CT sample by the Peterson relationship [23] according to Eq. (6.41), then we
compared it to the analytical value [24] according to Eq. (6.40):

Ktanal = 1+ 2

√
a

r
(6.40)

Ktnum = σmax

σnom
, (6.41)

where

σmax : the actual stress at the notch tip, σnom: the nominal stress observed in the
far-field of a notch, a: depth of notch,r: radius of notch.

We have a = 0.7 mm and r = 0.3 mm. So the analytical value of Ktanal is 4.05.

Figure 6.17 shows a decrease in the value of the stress concentration coefficient
Kt according to the horizontal axis of the CT sample, then a stabilization starting
from 4 mm. The value obtained for Kt at the notch tip is maximum and is equal
to 4.5 mm. This value is in accordance with that found analytically. The stress
concentration coefficient far from the notch tends towards a limit value equal to 1.
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Table 6.1 CPU times

CPU times (ms)

Description Operators number Operators XFEMQUADR XFEMT RI FEMQUA

Mesh operators 26 OPTI 0 0 0

FIN 0 0 0

DENS 0 0 0

DROI 0 0 0

CERC 0 0 0

INTE 0 0 0

ET 0 0 0

POIN 0 0 0

Boundary conditions. . . 7 PSCA 0 0 0

REGL 0 0 0

BLOQ 0 0 0

TEXT 0 0 0

Math operators 43 MAXI 0 0 0

> 0 0 0

< 0 0 0

OU 0 0 0

EGA 0 0 0

SIN 0 0 0

COS 0 0 0

Processing of results 22 NON 15 15 0

XTX 15 15 0

MODE 15 15 31

GRAD 15 15 187

VOLU 31 62 46

PROG 31 31 31

SI 31 31 93

INTG 46 62 93

+ 62 46 62

ENVE 62 62 218

CHAN 109 0 109

WORK 109 93 46

SIGM 140 140 140

* 156 124 124

ELIM 171 280 249

MENA 187 187 140

.... 218 358 499

PSIP 218 343 0

ELEM 296 468 46

RIGI 1388 1648 1123

TRAC 2496 3697 2683

RESO 8611 8424 8658

Sum 98 14,453 16,147 14,578
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6.5 Conclusion and Perspective

This work presents the numerical modeling of the elastic behavior in 3D of a
Compact Tension (CT) specimen in P265GH steel with extended finite element
method (XFEM) by CASTEM code. We have simplified the definition of level sets
and modified the integration strategy to facilitate the use of XFEM in CAST3M.
The choice was to use quadrangle elements instead of triangle elements and to
calculate the level sets from the crack mesh without the need for an intermediate
grid to reproduce the advance of the crack. Harmfulness defect was modeled
using the stress intensity factor. The evaluation of the stress intensity factors with
XFEM and FEM and their comparison with the analytical solution was performed.
The accuracy of XFEM using quadrangle elements compared to FEM and XFEM
using triangle elements was highlighted. We also evaluated the stress concentration
coefficient along the axis of the sample as well. On the basis of these simulations, we
determined the value of the critical length leading to the fracture. We concluded that
XFEM is an effective tool for modeling the crack growth in ductile materials which
allows us to extend this work to simulate the elastic and elastoplastic problems of
the pressure equipment when the crack path is not known a priori.
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Part III
Computer Sciences and Smart

Technologies

The third and final part of this volume is comprised of four chapters that can be
viewed as applied mathematics to the broad area of “Computer Sciences and Smart
Technologies”. Chapter 7 written by Ilham Amezzane, Youssef Fakhri, Mohamed
El Aroussi, and Mohamed Bakhouya gives an overview of a hardware acceleration
of Supported Vector Machine training for real-time Embedded systems. In Chap. 8,
Fatima-Zohra Hibbi, Otman Abdoun, and El Khatir Haimoudi present the require-
ments to integrate Artificial Intelligent (AI) in E-Learning Systems. Connected
vehicles internet architecture is investigated by Zakaria Sabir and Aouatif Amine
in Chap. 9. Finally, in Chap. 10, Amine Rghioui and Abdelmajid Oumnad describe
a method using big data analysis for Internet of Things (IoT).



Chapter 7
Hardware Acceleration of SVM Training
for Real-Time Embedded Systems:
Overview

Ilham Amezzane, Youssef Fakhri, Mohamed El Aroussi,
and Mohamed Bakhouya

Abstract Support vector machines (SVMs) have proven to yield high accuracy
and have been used widespread in recent years. However, the standard versions
of the SVM algorithm are very time-consuming and computationally intensive,
which places a challenge on engineers to explore other hardware architectures than
CPU, capable of performing real-time training and classifications while maintaining
low power consumption in embedded systems. This paper proposes an overview of
works based on the two most popular parallel processing devices: GPU and FPGA,
with a focus on multiclass training process. Since different techniques have been
evaluated using different experimentation platforms and methodologies, we only
focus on the improvements realized in each study.

Keywords SVM · GPU · FPGA

7.1 Introduction

Many recent works highlight the importance of human activity recognition (HAR)
applications in different areas of smart cities such as in healthcare and smart
homes. For example, data collected from mobile devices to support healthcare
diagnosis is a hot research topic, because it may facilitate health monitoring for
elderly people at home, in real-time. While modern mobile devices are generally
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equipped with multi-core CPUs and graphics processing units (GPUs) that have
powerful computation capabilities, complex tasks such as online machine learning
(ML) are still challenging. Since they can help develop fast user-dependent and
adaptive applications, HAR systems in some cases need to perform both the training
and classification processes on the device itself. However, the training process is
generally performed offline (i.e., on the server or the cloud) because traditional
learning is based on large datasets, which is very time-consuming and power
demanding. Therefore, needs of accelerating the training speed arise in order to
meet time and resource constraints.

In a previous work [2], we conducted a comparison study exploiting feature
selection (FS) approaches in order to reduce the computation and training time
needed for the discrimination of six targeted physical activities while maintaining
significant accuracy. The support vector machines (SVM) classifier offered the best
compromise between accuracy and training time using different feature subsets.
Moreover, with parallel execution over two CPU cores, we managed to reduce the
number of data samples needed to reach the same significant training accuracy in
less time than sequential execution.

Actually, SVMs have proven to yield high accuracy and have been used
widespread in recent years especially for HAR applications. However, the training
phase of SVM is a computational expensive problem, more particularly in online
training problems where the time constraints are tight. Actually, sparse linear
algebra, causing a huge computational load, is the main field of SVM, because
the SVM solves the support vector by means of quadratic programming (QP)
problem whose size is equivalent to the number of training samples. Due to the
QP complexity, several decomposition methods have been proposed, among them
is sequential minimal optimization (SMO). Nonetheless, conventional methods
suitable for CPUs such as the well-known LibSVM, cannot be used for training
large datasets in real-time embedded systems, as the available memory cannot store
all elements of a kernel-value matrix and because intensive computations are both
time and power consuming.

There are currently many accelerated libraries designed for multi-core CPUs and
other accelerators. However, one of the increasingly popular trends in accelerating
the SVM algorithm is the use of GPUs because they allow for a distribution of small
single tasks among a large number of GPU cores, which should result in higher
performance compared to CPU computation. Actually, GPU architecture is special-
ized for computer intensive, highly parallel computation, and therefore is designed
such that more resources are devoted to data processing than caching and flow
control. NVIDIA has developed their own programming framework for their GPUs,
called Compute Unified Device Architecture (CUDA). It can be used to exploit the
advantages of GPU architecture. On the other hand, OpenCL (Open Computing
Language) framework is supported by AMD (CPUs, GPUs), Intel (CPUs, GPUs),
Nvidia (GPUs that support CUDA), and Qualcomm (embedded/mobile CPUs),
which make it a promising choice for parallelizing SVM because it allows the
generated solution to be portable to a wide range of GPU manufacturers and allows
making optimal use of the different computational components in one system.
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Another alternative to CPUs is the use of field programmable gate array (FPGA)
platforms. FPGAs are emerging in many areas of high performance computing,
either as tailor-made signal processor, embedded algorithm implementation, soft-
ware accelerator, or application specific architecture. Unlike traditional general
processor, FPGA provides a facility of on-chip parallelism and pipelining. These
two features highly increase the data throughput of FPGA-based system [1].

In this paper, we propose an overview of the works based on the most popular
parallel processing devices: GPU and FPGA devices, with a focus on multiclass
training process. Since different techniques have been evaluated using different
experimentation platforms and methodologies, we only focus on the improvements
realized in each study. The remainder of the paper is organized as follows: Sect. 7.2
reviews works on SVM using GPUs and FPGAs. Section 7.3 presents a comparison
analysis on GPU and FPGA performances. Finally, conclusion and perspectives are
presented in Sect. 7.4.

7.2 Research Works

7.2.1 Accelerating SVM Training with GPU

Catanzaro et al. [6] were the first who proved the effectiveness of implementing the
modified SMO algorithm on GPUs. Their algorithm, called GPUSVM, was based
on radial basis function (RBF) kernel. Evaluation was performed by examining a
variety of different data structures. Authors reported a speedup in the range of 9–35
times for the training process and in the range of 81–138 times for the classification
process.

In [9], Herrero et al. proposed the MultiSVM algorithm, where the potential
of GPU computing was proved again. A multiclass SVM classifier based on
the SMO algorithm was implemented. The training GPU model was realized by
decomposition of the initial multiclass problem to many one-versus-all (OVA)
classifications. The main achievement of the MultiSVM was the ability to execute
all those processes in parallel over the same global memory. The algorithm was
tested for the most popular datasets in SVM classification. Results showed dataset
dependent speedups, while maintaining the accuracy, in the range of 3–57 times for
training and 3–112 times for classification.

In [8], Cotter et al. presented a GPU-tailored SVM method for multiclass kernel
SVMs, which can efficiently handle sparse datasets. Experimental results showed a
speedup in the range of 38–78 times faster than CPU implementations, and in the
range of 14–56 times faster than previous GPUSVM [6] implementations.

In [3], Athanasopoulo et al. proposed a modification of the LibSVM that pre-
calculates the kernel matrix elements, using both CPU and GPU, in order to
accelerate the training time without altering the performance. Experimental eval-
uation highlights how the GPU enables more efficient handling of large problems
and shows higher impact than the CPU in the total processing time.
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In [11], Li et al. introduced a new GPUSVM package which consists of a CUDA
based parallel SMO. The core package includes a cross-validation (CV) tool, a fast
training tool, and a predicting tool. Moreover, authors developed the algorithms
in a way that they can be ported to other platforms such as OpenCL. GPUSVM
showed better performance on medium to large datasets (binary and multiclass) as
it achieved a speedup in the range of 2.27–77 times, compared to original LibSVM.
However, the speed performance of CV was not done due to the difficulties of setting
a base line.

Later, in [12], same authors proposed a novel parallel SVM training imple-
mentation to accelerate the CV procedure by running multiple training tasks
simultaneously on a GPU. Therefore, redundant computations of kernel values
across different training tasks are reduced. Consequently, the total time cost
decreases significantly in the training process. Comparison tests have shown that the
proposed method is 10–100 times faster compared to the state-of-the-art LibSVM
tool.

In [16], Peters et al. proposed an accelerated implementation of SVM using a
heterogeneous computing system programmed with OpenCL. The proposed frame-
work was evaluated in terms of speed and accuracy for training and classification.
The training was accelerated by a factor ranging from 9 to 22, and the classification
by a factor of up to 12. This work only supports binary classification though.

In [5], Cagnin et al. proposed a GPU-based approach using OpenCL to improve
the efficiency of parallelizing binary classification tasks. LibSVM’s original source
code computes the dot product as a double loop over the dataset objects, hence
being of O(N2) complexity, where N is the number of dataset objects. The proposed
GPU-based parallel implementations compute dot products much faster than a CPU
due to its stream processors. Results show that the proposed solution achieved a
speedup of about 36 times the LibSVM’s original version. This approach is capable
of running in CPUs, GPUs, and even in mobile architectures.

In [7], Codreanu et al. described a novel approach for parallelizing multiclass
SVM algorithm that converts a gradient-ascent CPU-based algorithm to an efficient
GPU implementation. They have performed extensive comparisons between their
algorithm and CPU and GPU implementations. The results of these comparisons
show that their method is the fastest of all evaluated methods, especially if the
examples consist of high-dimensional feature vectors.

In [13], Nan et al. proposed a modified LibSVM through the OpenCL framework
for multiclass SVM. The approach speeds up the training time through improving
the CV process. The proposed optimization method was applied in a mobile device
without reduction in the accuracy rate. The parallel computing was 3.3 times faster
than the serial computing in the PC, and 1.5 times faster in the mobile device.

In [22], Vanek et al. introduced a novel approach called Optimized Hierarchi-
cal Decomposition SVM (OHD-SVM) based on several known algorithms. The
OHD-SVM implementation supports both dense and sparse datasets. Performance
evaluation shows that dense datasets match better to the GPU architecture and that
speedup over standard LibSVM may be significant. However, they performed only
binary class RBF-SVM.
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Finally, it should be noted that the most important limitations of the majority of
the existing solutions in the literature are the use of: (1) dense matrix only format for
storing datasets, (2) RBF only kernel without the possibility of changing the used
kernel easily, and (3) binary only classification.

It is also worth noting that Google has recently introduced a framework called
TensorFlow (TF) [21] which implements many ML algorithms using CUDA.
Basically, TF was developed to perform computations based on the concept of data
flow graphs. The graphs can be executed in parts or fully on available low-level
devices such as CPU and GPU. TF offers other particularities: it is open source
and can be implemented on Android smartphones. Moreover, TF implements a
variant of SVM whose solution is obtained by a gradient descent, which is computed
automatically (instead of a QP solver). Currently, only linear binary class SVMs are
supported, but it is possible to code from scratch non-linear kernels and extend to
multiclass.

7.2.2 Accelerating SVM Training with FPGA

FPGAs are reprogrammable hardware (HW) devices that offer an extremely
promising source of HW acceleration. The power of FPGA lies in processing
data in a parallel and pipelined way. Moreover, FPGA runtime reconfigurability
allows the design to be scalable and adaptive to different types of input data [1].
In existing research works there are two typical approaches to speed up the SVM
computations using FPGAs: (1) increase the level of parallelism by exploiting the
inherent parallelism of the SVM algorithm, (2) reduce the bit width of the data
representation which reduces the resource usage. In the following, we review some
key works dealing with HW acceleration using at least one of the abovementioned
approaches. We will focus on the multiclass SVM classifiers.

In [14], Papadonikolakis et al. proposed a scalable FPGA architecture which
targets a geometric approach based on Gilbert’s algorithm. The architecture is
partitioned into floating-point and fixed-point domains in order to efficiently exploit
the FPGA’s available resources for the acceleration of the non-linear SVM training.
Implementation results showed a speedup factor up to three orders of magnitude
for the most computational expensive part of the algorithm, compared to a software
implementation.

Later in [15], same authors focused on a performance comparison between
a GPU implementation and the FPGA implementation of the previous work.
Their motivation was to identify the most favorable one under different input
configurations and resource constraints. The final speedup depended on the training
set size.

Kuan et al. [10] proposed an architecture which consists of three main circuit
modules functioning for the SMO process. The modules are a memory block and a
cache block controlled by a designed finite-state machine (FSM) based controller.
Experimental results showed a decrease in processing time from using the cache.
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In [24], Wang et al. improved the modular design, proposed in [10], for realizing
the computational bottleneck SMO on HW, while other processes were implemented
in software. Compared to an ARM embedded C code, the proposed system achieved
90% reduction in training time with a slight decrease in classification performance.

Peng et al. [17] proposed a novel reconfigurable chip design for accelerating
SMO-based SVM learning. Two novel methods were used in order to remove kernel
cache design: (1) the first one targets the baseline SMO design, proposed in [10],
by developing reconfigurable architectures with parallel and pipeline computing
capabilities; and (2) the second one provides dynamic scheduling for an efficient
reconfiguration. Simulation results achieved improvements in power consumption
(17-fold improvement) and training speed (16-fold improvement) with satisfactory
recognition accuracy (85%).

Shao et al. [19] introduced a novel optimized dataflow architecture that exploits
the performance of incremental SVM training on FPGA. The proposed design is
suitable for scenarios in which online SVM training is needed. Three challenges
were addressed: random memory access, numerical accuracy, and list manipulation.
Experimental evaluation achieved up to 40.97 times speedup against LibSVM
software.

Zhao et al. [25] presented a multiclass SVM-based classification architecture
that takes both FPGA acceleration approaches into account (i.e., reducing the bit
width and increasing the parallelism). Moreover, the data type of the SVM model
coefficients is configurable in order to support the trade-off between model accuracy
and design parallelism. Performance evaluation results showed at least 14.2 times
speedup and lower power consumption compared to two CPU platforms.

In [18], Bin rabieh et al. introduced FPGASVM framework, which aim is to
tackle large-scale SVM problems that require frequent retraining. Ensemble learn-
ing is used to transform the overall training dataset into smaller datasets allowing
each training subproblem to fully realize the parallelization potential. Moreover,
cascaded multi-precision training flow is proposed by exploiting FPGA reconfig-
urability. Performance evaluation results showed that the system is an order of
magnitude better than state-of-the-art CPU and GPU-based implementations, with
low power consumption. This work supports only binary classification however.

Finally, Sirkunan et al. [20] proposed parameterizable linear kernel architecture
in order to study the effect of varying the number of features and support vectors
on the HW performance. Performance evaluation results showed that the number
of features affects the maximum operating frequency, while the number of support
vector affects the memory usage and the overall throughput.

7.3 GPU vs FPGA Performance Comparison

Although GPUs are cost efficient and benefit from shorter development time
compared to FPGAs, the latter are power efficient. But taking a design decision
is not straightforward. FPGAs are designed to perform fixed-point operations with
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Table 7.1 Performance
comparison: FPGA vs
GPU [4]

Feature Winner

Floating-point processing GPU

Timing latency FPGA

Processing/Watt FPGA

Backward compatibility GPU

Flexibility GPU

Development time GPU

Size FPGA

a close-to-hardware programming approach taking massive benefit of bit-wise
operations to maximize efficiency. GPUs on the other hand are designed for parallel
processing of floating-point operations simplifying code adaptation from high-level
programming languages. In addition, GPUs performance is measured in GFLOPS;
while FPGAs processing power is measured in GMACS [4].

One of the most important limitations of existing embedded GPUs is the
limited available resources (less power, memory, registers, cache, and cores).
Accordingly, GPUs are difficult to be deployed in embedded environments, and
this has motivated a move towards FPGA implementations. Therefore, power
management techniques are extremely important to ensure longevity and reliability
of GPUs in embedded systems. On the other hand, one of the most important
limitations of existing embedded FPGAs is their significant HW development effort
and consequently time-to-market. However, modern development tools that have
been recently released allow simplified embedded systems design by using high-
level languages. It can shorten time-to-market with no need for expert HW designers
(e.g., Xilinx Vivado HLS tool [23]). Accordingly, FPGA offers a good promise
for substantially accelerating SVM intensive computations with more flexibility at
lower cost, while meeting hard constraints of embedded real-time systems. Table 7.1
summarizes this qualitative analysis for a faster understanding of the technology
trade-offs.

7.4 Conclusion and Perspectives

In conclusion, both GPUs and FPGAs can offer significant improvements to the
SVM training time. However, more research is required for FPGAs, taking into
account the challenging trade-off between high classification accuracy and meeting
real-time constraints. More research is also required for GPUs, taking into account
the energy efficiency, which will have a crucial role in deciding their adoption in
the context of embedded HAR systems. As far as we know, there is no work in
the literature that implements GPU-based SVM training process for smartphone-
based HAR. Therefore, in our ongoing research, we aim to experiment the TF
framework, in order to facilitate the implementation of GPU-based multiclass SVM
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for online smartphone-based HAR, and in order to evaluate the training time,
memory usage, and energy consumption in comparison to our previous multi-core
CPU implementation.
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Chapter 8
Integrating an Intelligent Tutoring
System into an Adaptive E-Learning
Process

Fatima-Zohra Hibbi, Otman Abdoun, and El Khatir Haimoudi

Abstract With the emergence of new technologies, a new way of learning called
“e-learning” has appeared, based on interactive training. This helps learners to
develop their skills, while making the learning process independent of time and
place. Artificial intelligence (AI) techniques in education were tested to increase
learning experience. AI researchers look for domain applications, beginning to
apply their ideas by tracking students on a course. Intelligent systems apply artificial
intelligence techniques to meet the needs of their users; these methods allow the
performance of an e-learning system to be increased by analyzing and adapting
the profile of learning behavior and learning styles. Therefore, the objective of this
chapter is to present the requirements for integrating AI into e-learning systems. The
results showed significant advantages when including AI techniques, specifically
intelligent tutoring system, in the learning process.

Keywords Artificial intelligence · E-learning system · Learning process ·
Intelligent tutoring system

8.1 Introduction

In classical e-learning, we observe that the learner is isolated and depressed with
regard to the system, because there is no interaction in real time between the
learner and the applications. The learner is passive according to the simple page,
which contains a passive course and ends with a list of questions or exercises.
For that reason, most learners have a negative feeling during or after their use of
the system. Another point is that the system cannot extract the needs of learners;
along with the problem of inelasticity, there is an absence of two very important
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things in the learning process: the flexibility and learning between teacher and
learner. The e-learning system comprises intelligent tools for analysis, evaluation,
and evaluation of the user’s knowledge and skills in addition to the monitoring and
supervision of the e-learning process. AI allows use of its techniques to implement
better performing education systems, such as the genetic algorithm, the intelligent
tutoring system, and neural networks. Environments that use teachable agents and
animated interfaces encourage and motivate student learning. The main challenges
currently facing the use of educational agents and systems concentrate on how to
make them useful and how best to include them in the learning experience [1].
In this regard, we propose the integration of an intelligent tutoring system into an
adaptive e-learning process. This integration provides immediate and customized
feedback, and it can also measure students’ motivations produced to attract their
interest. Furthermore, it can resolve the problem of inelasticity and adaptability of
the learner’s requirements, replacing them with flexibility and analysis, which can
investigate the student’s strategies.

8.2 Limitations of a Classical E-Learning

E-learning is not a panacea for training, a positive feature of e-learning is that it is
virtual, but this can also be negative: it prevents any human contact face to face.
For those who work in an open space, this does not pose a problem a priori, but
for people who are already isolated, this may be difficult. Faced with the large
abandonment of modules, some participants may be afraid, or not dare to use them,
or not know how to use them, and therefore spend more time on this technical aspect.
The real problem is to adapt the content depending on the type of audience. It is
usually created in advance. However, any trainer who intervenes knows that he will
have to adapt the vocabulary or deepen this or that part, depending on his audience.
In e-learning, it is fixed. Figure 8.1 presents the limitations of classical e-learning.

8.3 Intelligent Tutoring System

8.3.1 Definition

An intelligent tutoring system (ITS) is a system that provides feedback on the
actions of learners without the intervention of a human being. It provides learners
with the opportunity to practice their skills by executing tasks in highly interactive
learning environments. On the other hand, an ITS evaluates the actions of each
learner in these interactive environments and develops a model of their knowledge,
skills, and expertise. Using the learner model, it can adapt teaching strategies,
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with regard to either content or style, and provide explanations, advice, examples,
demonstrations, and concrete problems relevant to the individual learner.

8.3.2 Architecture

In this section, we present the architecture of an ITS and its components. Figure 8.2
shows the interface of a model ITS. It consists of an expert model, an instructional
model, and a learner model. An ITS consists of four different modules.

The interface module is important for use as a method of communication and
as a learning environment that can help the learner with a task. It can also provide
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an external representation of the expert model and the pedagogical model. These
kinds of tutoring systems can provide the learner with a large selection of practice
database case studies along with individualized feedback, to solve each case study.
In addition, it is very practical for learners who need to practice and learn at
their own speed [5] and problem-solving capacity (procedural knowledge). This
knowledge allows the ITS to compare the learner’s actions and selections with an
expert’s to evaluate what he or she does and does not know [3, 5].

The expert model is a computation representation of the knowledge of an expert
in the field (declarative knowledge). The learner model is a state of knowledge
of the learner as he/she interacts with the tutoring system. The model evaluates
each learner’s performance based on their behavior while interacting with the
tutoring system to determine their knowledge, perceptual capacities, and reasoning
capacities. The model generates evidence and uses inference to give a number of
relevant instructions to each learner [5].

The instructional model (pedagogical) model includes knowledge to make
decisions about teaching techniques. It is based on the diagnostic processes of the
learner’s model to make decisions. For example, if a learner has been considered a
beginner in a specific procedure, this model presents step-by-step demonstrations
of the procedure before asking the user to perform the procedure on his or her
own. When a learner obtains expertise, this model may decide to stage increasingly
complex scenarios. In addition, this model can choose topics, simulations, and
examples appropriate to a learner’s level of knowledge [3].

8.3.3 Application of ITS

In this part, we illustrate some applications of ITS such as an “adaptive intelligent
tutoring system for an e-learning system.” This work is based on the combination
of an ITS and adaptive hypermedia and was a natural starting point for research
on adaptive educational hypermedia into adaptive intelligent tutoring systems [5].
The second application is “Using a behavioral analysis system in an ITS.” The
aim of this work is to integrate a behavioral analysis system that provides the
creation of a profile that includes learners with the same behavior in a student
model of the ITS. The goal was to help the pedagogical assistance to create more
specification for all learners even though others did not pass the test [4]. The third
application is “integrating affect sensors into an intelligent tutoring system.” The
objective of this work is to develop an agile learning environment that is sensitive
to a learner’s affective state and to integrate state-of-the-art, non-intrusive, affect-
sensing technology with Auto Tutor in an endeavor to classify emotions on the bases
of facial expressions, gross body movements, and conversational cues.



8 Integrating an Intelligent Tutoring System into an Adaptive E-Learning Process 145

8.4 Related Work

8.4.1 Implicit Strategies for Intelligent Tutoring Systems

The implicit strategies of a new approach based on an unconscious process
that addresses the automatic mechanisms associated with learning and cognitive
processing. This integration provides tutors with new implicit strategies relying on
indirect interventions. This strategy integrates more complex coaching techniques
using realistic characters, allowing real-time emotional interactions between virtual
pedagogical agents and learners. Figure 8.3 describes the proposed approach, which
includes the exciting ITS, and an implicit tutor is added, based on implicit interven-
tions and the use of an implicit toolbox that contains a subliminal perception, an
interface interaction. Figure 8.3 presents the model of an implicit strategy.

8.4.2 Explicit Strategies for Intelligent Tutoring Systems

There are different techniques of direct intervention. The first strategy is based on
a variety of tasks and support, and uses a form of examples or definitions to help
the student to understand specific concepts. The second strategy uses techniques
addressing frustrated and bored learners to measure their stress levels by skin
conductance. Burleson provides an agent that uses the learner’s facial expressions
and movements. For example, he can smile if he sees the learner smiling [9]
(Fig. 8.4).
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toolbox
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auditory, text, etc.)

Sensory channels (haptic
devices, auditory strimuli, etc.)

Interface interactions(subtle
changes in visual elements
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Signal
processing
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Existing ITS

Learner
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Fig. 8.3 Model of an implicit strategy for ITS [8]
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Fig. 8.4 Mimics agent

8.5 Model of Smart Tutoring

8.5.1 Proposed Approach

In this section, we present our model of smart tutoring, which is based on the
integration of implicit and explicit interventions in an ITS. We are interested in
a tutor that integrates both implicit and explicit strategies. This tutor selects the
appropriate strategy according to three criteria: the learner’s profile, data from
learning progress, and affective reactions. Figure 8.5 illustrates our proposed
approach, which includes the existing ITS. The development of this approach
involved two components: the student model and the instructional model. This latter
is where we will make the decision and use one of these tutors (implicit/explicit).
Each tutor uses his or her own strategies and tool box. The selection of one of
the tutors is based on the following criteria: data from learning progress (we can
extract these data from the pedagogical tool); the learner’s profile (we can use the
integration of a behavioral analysis system into the ITS); and affective reactions
(with interaction of a stimulus evaluation check system).
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8.6 Smart Tutoring System: Developed Platform

In this part, we present the context of the developed platform, the proposed solution,
and the result, which can be the integration of our proposed approach into the smart
tutoring system.

8.6.1 The Context and Proposed Solution

The aim of this smart tutoring system is to improve high-quality learning, to
facilitate communication between the teacher and the learner, to track student
progress, and to provide advice, guidance, and feedback. In this regard, we propose
a smart tutoring system. This system is an e-learning space characterized by
its portability and compatibility with different media (tablet, smartphone, and
computer), and is aimed at learners and teachers. The space is endowed by several
collaborative workspaces, including:

The teacher space allows teachers to create courses, drop off their course materi-
als and practical and/or directed assignments in different formats (PowerPoint, PDF,
World, etc.); thus, it contains a white examination creation area and space to enter
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notes. This workspace also includes a section for discussion between the teachers
and students or teachers among themselves.

The student space allows students to consult the course, write their (TD/TP), and
to take a mock examination to verify his or her understanding and to ensure that he
or she prepares for the final examination. It also contains a space for communication
with their teachers (Fig. 8.6).

8.6.2 Results

The model of smart tutoring that we are developing will be applied in the e-
learning platform of the Polydisciplinary Faculty of Larache. We chose to use the
“Moodle” platform because it is one of the most popular open-source platforms
in the world, with its large Francophone and international community. It is clear,
well-structured, useful documentation, and its many discussion forums are focused
on all the problems generated by the complexity of distance learning. Moodle
is extremely modular, it has several collaboration tools and a good follow-up to
training, statistics, multi-criteria reporting, and it supports several languages, even
Arabic. In Fig. 8.7 we present the consulting interface of the course, which contains
several pages and is presented as a slide. The student can also add notes or remarks
on the content. In Fig. 8.8, we illustrate the passing interface of the examination. The
student take this type of examination in real mode. This means that the teacher must
determine the time and date of the examination so that all students are connected. If
everyone is ready, the teacher launches question after question and each question is
of limited duration. Access to this type of examination requires the presence of the
teacher in connected mode.
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Fig. 8.7 The consulting interface of the course

Fig. 8.8 The passing interface of the examination

8.7 Conclusion and Perspectives

Intelligent e-learning systems are knowledge-based systems that imitate the human
mind. The principal characteristics of these systems are inference capacity, rea-
soning, perception, and learning [2, 3]. This system provides the student with an
automatic learning process and a list of suitable activities. Thus, we can say that
ITS are different from traditional methods because while we study, the learning is
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not only by listening and writing passively, but also provides significant learning
activities in an individual and independent way [6, 7].

This paper presents the limitations of classical e-learning systems, analyzing an
existing ITS, the synthesis work of implicit/explicit strategies for an ITS and we
propose a new approach named model of smart tutoring.

The next step is the practical implementation of the new approach in our smart
tutoring system and integration of the learning analytical mechanisms into the first
desired criterion: “Data from learner progress”.
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Chapter 9
NDN vs TCP/IP: Which One Is the Best
Suitable for Connected Vehicles?

Zakaria Sabir and Aouatif Amine

Abstract Current Internet architecture is based on the TCP/IP model and has been
developed several years ago. So far, it is the main architecture used in different fields
of science and technology. This architecture however may need to be reconstructed
to fulfill future aims and domains, such as connected vehicles, which is our field
of study. For this reason, we suggest in this paper a comparison of the current
architecture with NDN (named data networking), a future Internet architecture, in
order to help the reader distinguish the characteristics of the two architectures, and
thus choosing the best one depending on his field of study.

Keywords NDN · TCP/IP · CCN · ITS · V2V · V2I · Connected vehicles ·
Road safety

9.1 Introduction

In the last few years, improving road safety using science and technology is
considered as one of the most important issues. Thus, researchers have become
interested in intelligent transportation systems (ITS) as a promising way to reduce
the accident rate. In this context, the connected vehicle system, which is one of the
most important components of ITS and smart technologies, has been proposed as a
hopeful technology. This technology uses wireless communication and brings into
focus supporting mobility, safety, and environmental applications used, for example,
in smart cities.

Most connected vehicle applications are IP-based network protocol, which
influence both quality of service (QoS) and latency. Nevertheless, the IP protocol is
designed for host-to-host connection which is low effective for information dissem-
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ination. Moreover, IP protocol is unsatisfactory in supporting direct communication
in connected vehicles with high mobility and in absence of Road Side Units (RSU).

Recently, many researchers begin to test NDN in connected vehicles applications.
NDN belongs to content-centric networking (CCN). Its concept suggests focussing
on the content (what to send) rather than the address (where to send). This new
approach supports the caching of data in the network in order to satisfy future
requests. This gives an advantage to NDN in terms of data transfer.

This work presents a comparative study between TCP/IP (Transmission Control
Protocol/Internet Protocol), the current Internet model, and NDN, the future Internet
architecture. It attempts to show basic functioning components of both the systems
in a simplified manner. By the end of this paper, the most important differences of
the two architectures will be clear to the reader. To be noted this work is financed
by the ministry of equipment transport logistics and water in collaboration with
the national center of scientific and technical research under the project named
“SafeRoad: Multi-platform for Road Safety (MRS).”

The remainder of the paper is organized as follows: Sect. 9.2 discusses the
fundamental limitations of the current Internet architecture. Section 9.3 is devoted
to a presentation of NDN. Our comparative study is presented in Sect. 9.4. Finally,
Sect. 9.5 concludes the paper.

9.2 Limitations of the Current Internet (TCP/IP)

The TCP/IP is the current Internet model providing end-to-end connectivity and
specifying the transmission, routing, addressing, formatting, and receiving of data
at the destination. IP is handling datagram routing while TCP is responsible for
higher-level functions like error detection and segmentation [1].

However, research has consistently shown that the current Internet architecture
has limitations. Researchers of FIA (Future Internet Architecture) discussed funda-
mental limitations of this architecture [2, 3] in terms of processing/handling of data,
storage, transmission, and control.

In processing/handling of data, which refers to forwarders, computers, CPUs,
etc., hosts are unable to run appropriate actions and the failures are not identified.
There is also an absence of some useful services like transportation and health
care. In storage, which refers to disks, buffers, caches, memory, etc., problems like
availability of information while transferring, storage management and retrieval,
loss of integrity and storage encrypted data, are faced due to attacks and break-
downs. Transmission of data, which refers to the exchange of data, also suffers
from problems of security, since it is not built in the architecture, but only given
by different extensions. In control and supporting mobility (which we are interested
in), that refers to analysis, observation, and decision, there is a lack of congestion
control, as current schemes are based on collaboration between the network and end
systems which causes more expenses. We have recapitulated the limitations of the
TCP/IP architecture in Fig. 9.1.
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Fig. 9.1 Limitations of the current Internet architecture according to researchers of FIA

Shang et al. analyzed some challenges in IoT networking via TCP/IP architecture
in different points [4]. They indicated that the design of the TCP/IP protocol stack
is not a good fit for the IoT environment, since it faces a lot of issues, in terms of
the network layer, transport layer, and application layer.

The TCP protocol cannot support a variety of communication patterns. Devices
may activate sleep mode due to the energy constraints; therefore, the point-to-point
connection cannot continue to be maintained. Another difficulty is caching. The
model of TCP/IP necessitates that both the client and the server are connected at
the same time, which is challenging due to the intermittent and dynamic network
environment. The IoT applications (like connected vehicles), however, are based
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on caching and request–response communication model in order to accomplish
effective diffusion of data. The cached content can serve future requests from
other consumers. This can help in reducing response latency and saving network
bandwidth.

9.3 Presentation of Named Data Networking (NDN)

In this section we will introduce named data networking briefly, focusing on the
system architecture and the forwarding process. The NDN is considered as an
evolution of the current Internet architecture. Its main idea is to find data through
naming data packets instead of source and destination address [5–7]. Instead of the
IP address, the name prefix is used by NDN-based routers to forward packets [8].
Figure 9.2 depicts the layered hourglass architectures of IP and NDN. As can be
seen from the figure, NDN changes the global ingredient of the network stack from
IP to blocks of named content [9].

Email WWW Phone ...

SMTP HTTP RTP ...

TCP UDP ...

IP packets

Ethernet PPP ...

CSMA async sonet ...

Copper Fiber Radio ...

Browser chat ...

File Stream ...

Security

Content chunks

Strategy

IP UDP P2P BCast ...

Copper Fiber Radio ...

TCP/IP VS NDN

Fig. 9.2 IP vs NDN hourglass architectures [9]



9 NDN vs TCP/IP: Which One Is the Best Suitable for Connected Vehicles? 155

Name

Selectors
(order preference, publisher

filter, exclude filter, ...)

Nonce

Guiders
(scope, Interest lifetime)

Interset packet

Name

MetaInfo
(content type, freshness

period...)

Content
Signature

(signature type, key locator,
signature bits, ...)

Data packet

Fig. 9.3 Interest and Data packets in the NDN architecture [14]

Face 1 Face 2

CS

PIT

Applications

File, Stream, ...

Security

Content
chunks

Narrow
waist

Strategy Tables

Access

FTB

Face 3

Face 0

Fig. 9.4 Forwarding structures in NDN [15]

9.3.1 NDN System Architecture

Two different types of packets are used in NDN communication: “Interest packet”
and “Data packet” [10] as illustrated in Fig. 9.3. In order to get a specific content,
a consumer broadcasts an Interest packet, that carries the name of the desired piece
of data, over the available network interfaces. This name is used by the routers to
forward the packet in the network [11]. Once the Interest reaches the provider, i.e.,
the original data owner or any other node that keeps a cached copy, will replay
with a Data packet that contains both the name and the content [12] in addition to
a signature by the producer’s key [13]. To get back to the requesting consumer, the
Data packet will pursue in reverse the path taken by the Interest.

The processing of Interests is done using the following structures that are
managed by every NDN node, as depicted in Fig. 9.4: the CS (content store) which
is responsible for caching incoming Data, the PIT (Pending Interest Table) that
stores the Interests forwarded by the router and still not satisfied yet, and the FIB
(forwarding information base) which is populated by a specific routing protocol and
used to forward Interest packets towards possible corresponding Data sources.
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9.3.2 Forwarding Process

When an Interest packet arrives at an NDN node, the node runs the following
algorithm in order to find the desired Data, this is illustrated in Fig. 9.5:

• First, it checks the CS. If there is a matching entry, the node replays with a Data
packet, using the same interface the Interest came from.

• Else, it looks in the PIT. If a matching entry is found, the existing PIT entry
is updated with the Interest packet’s incoming interface and the Interest is
discarded.

• If the matching was not found in the PIT, the content is looked up in the FIB
through performing a longest prefix match. If a matching FIB entry exists, the
Interest is transmitted to the specified outgoing interface(s) and a new PIT entry
will be created for the packet. Otherwise, depending on the forwarding policy,
the interest will be forwarded to all outgoing interfaces or deleted.

When the data arrives, the NDN node forwards it to the interfaces recorded in the
corresponding PIT entry, caches the data in its CS, and removes that PIT entry.

9.4 Comparative Study

In this section, we will present a comparative study of the two models: TCP/IP
(current Internet architecture) and NDN (future Internet architecture) in a simplified
way, in order to determine the best suitable architecture for connected vehicles.
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The TCP/IP model has a host-to-host communication pattern. It maintains the
FIB entity and identifies the end host using IP prefixes. NDN is based content-
centric, uses name prefixes, and maintains three entities: CS, PIT, and FIB. In
Internet, packets are not registered in the routing table, while in NDN, routers save a
copy of each Interest packet transiting through them until the expiry of the packet’s
lifetime.

In the TCP/IP, using congestion management schemes explicitly is needed, since
packets can pursue any direction to reach the destination, causing congestion in
dynamic environments. But in NDN, adjusting packet rate by permitting one Data
packet for each Interest packet could solve this problem. NDN routers use nonce
with packet name to avoid loops, whereas TCP/IP routers rely on routing protocols.
To provide security, a secure medium is used between hosts on the Internet, while
NDN include security in the architecture, as every Data packet is signed by the
original provider.

While TCP/IP cannot monitor data rendering, since the packets are not recorded
in the routing table, NDN can do it thanks to PIT state and calculation of round
trip time (RTT). In-network caching is not supported on the Internet, whereas, NDN
architecture support caching of the solicited data. In NDN, examining interfaces
regularly, allows controlling failures in packet forwarding. In the TCP/IP, this is
done via routing protocols which use coherent routing tables. However, this may
generate extra charges in the network. We summarized the characteristics of each
architecture as can be found in Table 9.1.

Table 9.1 Comparison of TCP/IP and NDN

Characteristics TCP/IP NDN

Communication pattern Host-to-host Content-centric

Identification of end host IP address Content name

Type of packets IP packet Interest and Data Packets

Supporting caching No Yes

Use of DNS Mandatory Not needed

Packets registration No Yes

Entities FIB CS, PIT and FIB

Packet failures management Yes Yes

Forwarding packets IP prefixes Name prefixes

Type of connection Point-to-point Multipoint-to-multipoint

Monitoring data rendering No Yes

Information dissemination Ineffective Wide-ranging

Congestion management Using some schemes explicitly Adjusting Interest packet rate

FIB storage Next hop information only Multiple hope status

Avoiding loops Routing protocol Nonce and packet name

Security Securing channel Inherent
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9.5 Conclusion

The aim of this work is to give a clear comparison of two Internet architectures
TCP/IP and NDN. This comparison will help the reader making sense of the future
Internet. From the outcome of our comparative study, it is possible to conclude
that named data networking appears to be the best suitable approach for connected
vehicles, since it has the advantage in different points, especially supporting in-
network caching and providing an architecture with inherent security.

On the basis of the comparisons presented in this paper, work on the remaining
issues is continuing and will be presented in future papers. We will conduct a study
in order to identify the consequence of all the characteristics that we compared in the
last part of this paper, in terms of cost and security for connected vehicles end-users.
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Chapter 10
Predictive Analysis for Diabetes Using
Big Data Classification

Amine Rghioui and Abdelmajid Oumnad

Abstract The Internet of Things (IoT) relies on physical objects interconnected
between each other’s, creating a mesh of devices producing information. In this
context, sensors are surrounding our environment (e.g., Healthcare’s, buildings,
and smartphones) and continuously collect data about our living environment. The
explosive growth in the number of devices connected to the Internet of Things (IoT)
in smart Healthcare only reflects how the growth of big data perfectly overlaps with
that of IoT. Predictive analytics helps the physicians, doctors to identify the patient
admission to hospital at an early stage. To perform predictive analytics in the health
field, several factors must be considered: demographic data, hospital parameters,
patient history and several other indicators for specific diseases. In this paper, we
propose a predictive model for diabetic patients using Naive Bayes, Random Forest,
Naive Bayes, and j48 classification algorithm from the diabetes data set to test the
most powerful to determine the patient’s level of risk.

Keywords Internet of Things · Big data · Classification · Healthcare

10.1 Introduction

The Internet of Things (IoT) is a computing concept that describes a future where
every day physical objects will be connected to the Internet and be able to identify
themselves to other devices. Over the last two decades, we have seen an enormous
amount of growth in data. Because of this technological revolution, the big data is
becoming increasingly an important issue in the sciences. The term “Big Data” was
first used in 1997 by Cox and Ellsworth in [1] to refer to “input data sets arising in
scientific visualization that are quite large.” A conservative definition given by IDC
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is that BD refers to “a new generation of technologies and architectures designed
to economically extract value from very large volumes of a wide variety of data
by enabling high-velocity capture, discovery, and/or analysis.” With the increasing
cost for healthcare services and increased health insurance premiums, there is a
need for proactive healthcare management and wellness. This shift from reactive to
proactive healthcare can result in improved quality of care, decrease in healthcare
costs, and eventually lead to economic growth. In recent times, technological
breakthroughs have played a significant role in empowering proactive healthcare.
For instance, real-time remote monitoring of vital signs through embedded sensors
(attached to patients) allows health care providers to be alerted in case of an
anomaly. Furthermore, healthcare digitization with integrated analytics is one of
the next big waves in healthcare. The goal is to understand population health for
disease control and predictive analysis. For instance, predictive analysis can help
understand aggravating health conditions and could prevent adverse health events
from occurring (e.g., chronic diseases such as diabetes). The vision of connected
healthcare is growing because of the availability of new technological tools. By
the application of the IoT and new technologies, it is possible to create a health
application that appears every morning to request reading the level of glucose in
the blood and collects data from the patient automatically [2]. In the vision of
connected healthcare, patients are those who take control of their health and being
in good physical and mental health due to this application. In addition, this leads to
a good responsibility and control of heath by allowing a real scenario for the IoT
in healthcare. IoT will help doctors to respond quickly in emergencies and allow
them to cooperate with international hospitals to track the status of a patient. There
are also other applications of IoT such as patient identification; this application
aims to reduce adverse events for patients, maintenance of comprehensive electronic
medical records [3, 4].

10.2 Big Data in Healthcare

Big data was defined as early as 2001. Doug Laney, an analyst at META (currently
Gartner), has defined the challenges and opportunities generated by data growth
with a 3Vs (that is, increasing volume, velocity, and variety [5]), 4Vs (we can add
the veracity), and 5V models (we can also add the valeur) (Fig. 10.1).

Volume: refers to the huge amounts of data generated every second in the
Healthcare field. Just think of all the emails, tweets, photos, videos, sensor data that
we produce and share every second. We no longer speak Terabytes but Zettabytes or
Brontobytes. Variety: refers to the different types of data we can use. In the past, we
relied primarily on structured data. The type we can table and carefully organize,
such as patient appointments, visits, etc. Less structured data, such as text files,
analytic, photos, etc., were largely ignored. Today, we have the ability to use and
analyze a wide variety of data, including written text, photos, ultrasound, as well
as biometric data, and video content. Velocity: refers to the speed at which new
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Fig. 10.1 Big data: the three
V’s

data is generated and moves. Just think of messages exchanged between doctors
and also between patients who become viral in seconds, banking transactions done
in minutes, or the time that software takes to analyze patient states and capture
behaviors, must be milliseconds! Big data today allows us to analyze the data as it
is generated, without having to analyze it in databases. The veracity and accuracy
of data remains today the main challenge of big data. At present, these data are not
yet sufficiently controlled, and the accuracy of the analyses is affected. The lack
of veracity and quality of data costs about 3.1 trillion dollars a year in the United
States. Value: it is the last V to consider when talking about big data. It is nice to
have access to big data but still need to turn them into value; otherwise, it is useless!
In this case, we can say that the value is a very important V!

10.2.1 Existing Technologies

The big data technologies involve commercial and open-source platforms and
services for storage, security, access, and processing of data, many of them are based
on the widely used open-source Hadoop framework. Hadoop is an independent Java-
based programming framework that enhances the computation of large data sets in a
distributed computing environment. Hadoop has two components [6] (Fig. 10.2):

• Hadoop distributed file system
• MapReduce

HDFS: HDFS is a distributed file system that provides high-performance access
to data distributed in Hadoop clusters. MapReduce: MapReduce is one of the most
adopted frameworks in the field of batch processing, and it is a programming model
in which a MapReduce program can have two functions [6]: the map and the
reduction, which requires moving data across the nodes. The map and the reduction,
each defining a mapping of one set of key-value pairs to another. MapReduce is
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Fig. 10.2 Components of
Hadoop

Table 10.1 Classification algorithms apply in Big Data

Algorithms Application in Big Data

Decision Tree Image classification, text categorization

Naïve Bayes Text classification, sentiment analysis, opinion mining

K-NN Face recognition, medical imaging data

SVM Image classification, pattern recognition, hand-written recognition

based on the divide and conquer method, and works by recursively breaking down a
complex problem into many sub-problems, until these sub-problems is scalable for
solving directly [7].

10.2.2 Classification Data

Data classification is a process with many types of existing data sets for analysis,
and the same type of data entities is extracted and divides the new and unknown
data types according to the extracted data function [8]. There are six main
classification models integrated in recent Weka tools, namely decision tree, ripper
rule, neural networks, Naive Bayes, k-nearest neighbor, and support vector machine
[7] (Table 10.1).

• Decision tree (J48) is a decision support system that uses a tree-shaped graph
and its possible consequences. A decision tree, or a classification tree, is used
to learn a classification function that concludes the value. A decision tree is a
model that can predict the value of a target attribute (dependent variable) from the
known values for a set of input attributes (independent variables) [9]. Decision
trees are the most powerful approaches to knowledge discovery and data mining.
It includes mass search technology and the complex mass of data to discover
useful models. Decision trees are very effective tools in many areas such as data
mining and text mining, information extraction, machine learning, and pattern
recognition.

• The support vector machine (SVM) is a statistic-based learning method, which
avoids the problems of difficult to determine, overlearning and underlearning,
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and local minimum of network structure in the artificial neural networks [10, 11].
It shows many unique advantages in solving the classification and regression
problems in terms of small sample, nonlinear and high dimension, which is
considered as the best theory for the small sample classification, regression, and
other issues [12].

• Ripper rule (JRIP) is used to generate various rules by adding repetitive data sets
until the rules cover all data configurations according to the set of learning data.
In addition, once all the rules are generated, some of them will be merged to
reduce the size.

• Neural networks (MLPs—multilevel perceptron) have a distinctive feature as a
three-layer feed-forward neural network: an input layer, a hidden layer, and an
output layer. In order to link each node in each level, it may include additional
weight to properly adjust the traversing path selection process.

• Naïve Bayes is derived from Bayes’ theorem by applying the probabilistic
learning knowledge for classification, assuming that the predictive attribute
is conditionally independent according to each individual class. Naive Bayes
classifier is a popular algorithm in machine learning. It is a supervised learning
algorithm used for classification. It is particularly useful for text classification
issues. An example of using Naive Bayes is that of the anti-spam filter.

• K-nearest neighbor (IBK) is used to perform the classification considering
k subsets of data, each of them has similar characteristics by applying the
Euclidean distance to understand the group, and here, IBK is the one of the k-
nearest-simplified-neighbor classifiers.

• Vector support (sequential minimal optimization (SMO)) is basically a linear
classifier (two classes) used to determine the largest distance between two sets,
and SMO is the minimum sequential optimization algorithm for SVM training
using polynomial or Gaussian kernels.

As shown in Fig. 10.3, the glucose sensor is used to sense the glucose values
in the blood of the diabetic patient, and transfer the sensed data over short-range
wireless communication to the patient’s Android smartphone. The smartphone then
aggregates and stores the sensed data, provides the healthcare monitoring interface
to the patients for logging, and sends the physiological data to the medical server at
a specified time interval whereby the physicians can directly have access for further
analysis, diagnosis, and intervention. Today, the need for optimal management of the
patient’s health is very important and it becomes even more crucial if management
is done remotely when the patient is at home [13]. That is why we tried to work on
this system for diabetics.

Wearable sensors are the key components in the WBAN as they collect the
vital data of the human body for further usage [14]. However, the blood glucose
signs information can also be captured with the help of RFID technology and
sensors through wearable devices [14]. A glucose concentration value ≤70 mg/dl is
defined as hypoglycemic and a glucose concentration value ≥180 mg/dl is defined
as hyperglycemic. If ever the threshold set is reached, an alarm is triggered whereby
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Fig. 10.3 Illustration of Blood Glucose measurement

Table 10.2 Glucose
measurement

Day Morning Evening

1 1.34 0.78

2 2.34 0.87

3 1.11 1.02

4 1.45 0.55

5 0.88 1.43

6 1.00 0.78

7 0.99 1.43

the patient will receive a warning message on his mobile phone and similarly the
physician will receive a warning message on the remote server.

10.3 Result and Discussion

In this section, we discuss the results of the testing system. The analysis is focused
on the blood glucose data communication device as well as the performance of
communication with Arduino GSM modem to send a short message service.

From the test results as shown in Table 10.2, it can be stated that the measurement
data was successfully sent. When referring to the GSM communication the test
results only showing text messages can show a waiting time difference or delay
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Fig. 10.4 Measurement of the level of Glucose in the blood

Table 10.3 The accuracy level

Algorithms Correctly classified instances Incorrectly classified instances

Naïve Bayes 91.8301% 8.1699%

RandomTree 99.6732% 0.3268%

ZeroR 69.6078% 30.3922%

J48 99.3464% 0.6536%

between sending and receiving SMS. Of 24 times of testing, the range of delay
between transmitting and receiving SMS was from 33 to 122 s, and the average
was 48.27 s. This result was related to the relatively slower data processing in the
microcontroller as the microcontroller must acquire data from sensors in advance
before being processed into a short message format and sent to the medical side.
Figure 10.4 shows a graph that shows the measurement of the level of glucose in the
blood.

The data set during this work is tested and analyzed with four classification
algorithms those are Naïve Bayes, J48, ZeroR, and RandomTree (using training
set). In addition, a comparison of accuracy of all classifiers is done and finally it has
been investigated that RandomTree technique performs best with accuracy 99.6732
the accuracy level of all the algorithms are given in Table 10.3.

Table 10.3 summarizes performance measures for all classifiers; J48, ZeroR,
RandomTree, and Naive Bayes. Figure 10.5 shows the comparative analysis of
various classifiers in terms of correctly and incorrectly classified instances. The
graph shows that the highest ranked is RandomTree, 99.67 and the lowest for ZeroR,
69.60. Figure 10.6 analyzes the study between accuracy and area under ROC and
PRC. The accuracy is high for J48 with a value of 0.996 and low for ZeroR with a
value of 0.696. The area under ROC is the highest for Naive Bayes with a value of
0.993 and low for the ZeroR with a value of 0.5. The area under PRC is the highest
for RandomTree with a value of 0.993 and low for the ZeroR with a value of 0.696.
Figure 10.7 shows the time graph of various classification algorithms. ZeroR takes
the longest time with 0.05 s, RandomTree taking only 0.01 s.
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Fig. 10.5 The graph of correctly and incorrectly classified instances of algorithms
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Fig. 10.6 Comparison of true classifiers based on area under ROC, PRC area, and precision
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Fig. 10.7 The graph for training time results for top four classifiers

10.4 Conclusion

In this paper, we have discussed the issue of the classification of data in the
healthcare field, especially in diabetic patients, our case study is based on one
diabetic person, we measured the level of glucose for 30 days. We have raised
the database of test measurements, we worked with four methods, the experimental
analyses show that the Trees Random forest gives good results with very satisfactory
detection rates. In perspective of this work we will perform the method of Trees
Random forest and we will thus generalize both classes studied at once. The study
compared the accuracy of the results obtained through four algorithms J48, ZeroR,
Naive Bayes, and RandomTree. Even though the four algorithms were good enough
in predicting the blood glucose using various parameters, RandomTree was found to
be the best. It gave the most accurate result whether the patient had the possibility of
blood glucose disease. This system can also be used in future projects to detect the
specific type of blood glucose in particular. Thereby the diagnosis and management
of blood glucose disease can be made simpler.
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