
Subverting Decryption in AEAD

Marcel Armour1(B) and Bertram Poettering2

1 Royal Holloway, University of London, Egham, UK
marcel.armour.2017@rhul.ac.uk

2 IBM Research, Zurich, Switzerland
poe@zurich.ibm.com

Abstract. This work introduces a new class of Algorithm Substitution
Attack (ASA) on Symmetric Encryption Schemes. ASAs were introduced
by Bellare, Paterson and Rogaway in light of revelations concerning mass
surveillance. An ASA replaces an encryption scheme with a subverted
version that aims to reveal information to an adversary engaged in mass
surveillance, while remaining undetected by users. Previous work posited
that a particular class of AEAD scheme (satisfying certain correctness
and uniqueness properties) is resilient against subversion. Many if not all
real-world constructions – such as GCM, CCM and OCB – are members
of this class. Our results stand in opposition to those prior results. We
present a potent ASA that generically applies to any AEAD scheme,
is undetectable in all previous frameworks and which achieves success-
ful exfiltration of user keys. We give even more efficient non-generic
attacks against a selection of AEAD implementations that are most used
in practice. In contrast to prior work, our new class of attack targets the
decryption algorithm rather than encryption. We argue that this attack
represents an attractive opportunity for a mass surveillance adversary.
Our work serves to refine the ASA model and contributes to a series of
papers that raises awareness and understanding about what is possible
with ASAs.

Keywords: Algorithm substitution attacks · Privacy · Symmetric
encryption · Mass surveillance

1 Introduction

The Snowden revelations in 2013 exposed that mass surveillance is a reality.
They also showed that even sophisticated adversaries with large resources have
been unable to break well established cryptographic primitives and hardness
assumptions, shifting their focus to circumventing cryptography. Together, these

The research of Armour was supported by the EPSRC and the UK government as part
of the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of
London (EP/P009301/1). The research of Poettering was supported by the European
Union’s Horizon 2020 project FutureTPM (779391). The full version of this article is
available at https://eprint.iacr.org/2019/987 [3].

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 22–41, 2019.
https://doi.org/10.1007/978-3-030-35199-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_2&domain=pdf
http://orcid.org/0000-0001-6525-5141
https://eprint.iacr.org/2019/987
https://doi.org/10.1007/978-3-030-35199-1_2

Subverting Decryption in AEAD 23

two facts suggest that the study of subverted implementations of cryptographic
primitives and protocols is a fruitful area of research; Rogaway has gone so far as
to call it a moral imperative [23]. The reader is referred to the survey by Schneier
et al. [28], which provides a broad overview of subversion of cryptography, with
some useful case studies. The idea that an adversary may embed a backdoor or
otherwise tamper with the implementation or specification of a cryptographic
scheme or primitive predates the Snowden revelations, and was initiated in a line
of work by Young and Yung that they named kleptography [30,31]. This area of
study can be traced back to Simmons’ work on subliminal channels, e.g. [29],
undertaken in the context of nuclear non-proliferation during the Cold War. In
the original conception, kleptography considered a saboteur who designs a cryp-
tographic algorithm whose outputs are computationally indistinguishable from
the outputs of an unmodified trusted algorithm. The saboteur’s algorithm should
leak private key data through the output of the system, which was achieved using
the same principles as Simmons’ earlier subliminal channels.

Preceding Work. Post-Snowden, work in this area was reignited by Bellare,
Paterson and Rogaway (BPR) [8], who formalised study of so-called algorithm
substitution attacks (ASAs) through the specific example of symmetric encryp-
tion schemes. In abstract terms, the adversary’s goal in an ASA is to create
a subverted implementation of a scheme that breaks some aspect of security
(such as IND-CPA) while remaining undetected by the user. There is a ten-
sion for ‘Big Brother’ between mounting a successful attack and being detected;
clearly an attack that simply replaces the encryption algorithm with one that
outputs the messages in plaintext would be devastating yet trivially detectable.
BPR stipulate that subverted schemes should at the very least decrypt correctly
(according to the unmodified specification) in order to have some measure of
resistance to detection, going on to define the success probability of a mass
surveillance adversary in carrying out a successful attack, as well as the advan-
tage of a user in detecting that an attack is taking place. BPR [8] demonstrate
an attack against randomized schemes that relies on influencing the random-
ness generated in the course of encryption. Their attack applies to a sub-class
of randomized schemes satisfying a property they call ‘coin-injectivity’. Lastly,
BPR also establish a positive result that shows that under certain assumptions,
it is possible for authenticated encryption schemes to provide resistance against
subversion attacks.

Degabriele, Farshim and Poettering (DFP) [12] critiqued the definitions
and underlying assumptions of BPR. Their main insight is that perfect
decryptability—as mandated by BPR—is a very strong requirement and arti-
ficially limits the adversary’s set of available strategies. In practice, a subver-
sion with negligible failure probability should be considered effectively correct.1

As DFP note, decryption failures may happen for reasons other than sub-
verted encryption, and if they occur sporadically may easily go unnoticed. DFP

1 This is analogous to the fundamental notion in cryptography that a symmetric
encryption scheme be considered secure even in the presence of adversaries with
negligible advantage.

24 M. Armour and B. Poettering

demonstrate how this can be achieved with an input-triggered subversion, where
the trigger is some input (message, associated data, nonce, or a combination
thereof) that is difficult to guess, making detection practically impossible.

Bellare, Jaeger and Kane (BJK) [6] improved on the attack of BPR, giving
an attack which is effective against all randomized schemes. Whereas the attack
of BPR is stateful and so vulnerable to detection through state reset, the BJK
attack is stateless. BJK furthermore formalised that the desired outcome of an
ASA from the point of view of a mass surveillance adversary is successful key
recovery.

In concurrent work, we study the effects of subverting the receiver in the
setting of message authentication codes [1,2]. Using similar techniques as in the
current report, we provide ASAs that result in successful key exfiltration and
thus universal forgeries.

Contributions. Our work continues a line of investigation that serves to raise
awareness of what is possible with ASAs, and highlights the importance of work
countering subverted implementations. We consider ASAs from a new perspec-
tive that leads to results of practical importance. Recall that BPR established a
covert channel through ciphertexts by manipulating the randomness generation;
their model stipulated perfect decryptability, which resulted in their definitions
being fragile. DFP identified this and proposed tolerating a (minimal) compro-
mise of correctness, allowing trigger messages. We note that attacks employing
trigger messages appear trivial to plant in formal security abstractions like IND-
CPA where the adversary has full control over encrypted messages, associated
data, and nonces. In practice, however, it is certainly questionable that adver-
saries have enough influence on any of the three to conduct DFP style attacks,
as messages are chosen in special formats mandated by applications, nonces are
implemented via counters, etc. We remove these dependencies, complementing
the DFP approach, by attacking from a different angle: leaving perfect cor-
rectness intact, we (minimally) limit ciphertext integrity and establish a covert
channel through decryption error events. Concretely, we manipulate the decryp-
tion algorithm to accept certain bogus ciphertexts. This requires the surveillance
adversary to be able to observe whether a decryption implementation outputs
a message or rejects the ciphertext. In many practical scenarios this is a mild
assumption, for example if a decryption error results in a packet being dropped
and automatically retransmitted. Furthermore, a subverted decryption algorithm
could go beyond this by e.g. influencing timing information in future messages
sent to the network. We conclude that this attack represents an attractive and
easy to implement opportunity for a mass surveillance adversary.

Our results stand in opposition to previous work [6,8,12] which proposed
subversion resilience of a large class of AEAD schemes to which many if not
all real-world constructions such as GCM, CCM and OCB belong, as long as
their nonces are generated deterministically via a shared state maintained by
both encryptor and decryptor.2 The key observation to resolve this apparent
2 The members of this class of schemes are deterministic and satisfy certain technical

correctness and uniqueness properties.

Subverting Decryption in AEAD 25

contradiction is that previous work has assumed, besides explicitly spelled out
requirements like uniqueness of ciphertexts and perfect decryptability, implicit
notions such as integrity of ciphertexts. In the ASA setting for AEAD where
undermining the confidentiality of a scheme is the key goal of an adversary, it
seems just as natural to assume that the adversary is also willing to compromise
the integrity guarantees as well.

Related Work. We outlined the key publications on ASAs against symmetric
encryption schemes above. Other works, briefly described here, consider subver-
sion on different primitives and in different contexts. Berndt and Liskiewicz [9]
reunite the fields of cryptography and steganography. Ateniese, Magri and Ven-
turi [4] study ASAs on signature schemes. In a series of work, Russell, Tang, Yung
and Zhou [24–27] consider ASAs on one-way functions, trapdoor one-way func-
tions and key generation as well as defending randomized algorithms against
ASAs. Goh, Boneh, Pinkas and Golle [18] show how to add key recovery to
the SSL/TLS and SSH protocols. Dodis, Ganesh, Golovnev, Juels and Risten-
part [13] provide a formal treatment of backdooring PRGs, another form of
subversion. Armour and Poettering [1,2] study subversion options for message
authentication schemes (MAC). Cryptographic reverse firewalls [14,20,21] rep-
resent an architecture to counter ASAs via trusted code in network perimeter
filters. Fischlin and Mazaheri show how to construct ASA-resistant encryption
and signature algorithms given initial access to a trusted base scheme [17]. Fis-
chlin, Janson and Mazaheri [16] show how to immunize (keyed and unkeyed)
hash functions against subversion. Bellare, Kane and Rogaway [7] explore using
large keys to prevent key exfiltration in the symmetric encryption setting. Bel-
lare and Hoang [5] give public key encryption schemes that defend against the
subversion of random number generators.

Camenisch, Drijvers and Lehmann [11] consider Direct Anonymous Attesta-
tion (DAA) in the presence of a subverted Trusted Platform Module (TPM).
We note that subversion attacks on cryptographic primitives (on DAA, but just
as well on message authentication as considered in the present article) manifest
a major attack vector in particular against embedded cryptographic hardware
modules like TPMs. This is because the main goal of such modules is to serve
as a root of trust in exposed devices for which losing system integrity could be
fatal. Subverting a TPM can thus have severe implications. As TPMs are widely
available today, including for being embedded into virtually every modern PC,
subverting them seems to be a promising option to conduct mass surveillance.

Structure. We first recall (Sect. 2) standard definitions for symmetric encryp-
tion schemes and their security. We next give definitions (Sect. 3) that provide
a general framework in which to study ASAs. These have been refined and
extended from prior work, crucially including the decryption oracle which had
been ignored by previous work. Section 4 details our new type of attack, together
with formal theorems quantifying the ability of an adversary to exfiltrate keys
and the ability of the subversion to go undetected. We give two versions of
our ASA: one for a passive adversary (the adversarial model considered by pre-
vious work), which we extend to a second ASA requiring an active trigger: a

26 M. Armour and B. Poettering

modified ciphertext provided to the decryption algorithm. We discuss the results
of a proof-of-concept implementation in Sect. 5. Lastly, Sect. 6 explains how
our attacks can be leveraged to compromise the security of popular practical
schemes even more effectively, demonstrating how powerful ASAs become when
conducted outside the clearly demarcated boundaries of a formal model. Con-
cretely, we give evidence that ASAs against standardized AEAD constructions
like GCM or OCB3 can be even more damaging than our attacks from Sect. 4.

2 Notation and Definitions

Notation. For a natural number k ∈ N, we let [k] = {0, 1, . . . , k − 1}. We refer
to an element x ∈ {0, 1}∗ as a string, and denote its length by |x|. By ε we
denote the empty string. The set of strings of length � is denoted {0, 1}�. In
addition we denote by ⊥ /∈ {0, 1}∗ a reserved special symbol. For x ∈ {0, 1}∗,
we let x[i] denote the i-th bit of x, with the convention that we count from 0,
i.e., we have x = x[0] . . . x[|x|−1]. For two strings x, x′ we denote by x ‖ x′ their
concatenation. If S is a finite set, then s ←$ S denotes choosing s uniformly at
random from S. If A is a randomized algorithm, we write y ←$ A(x) to indicate
that it is invoked on input x (and fresh random coins), and the result is assigned
to variable y. In security games we write AO1,...,Oc =⇒ 1 to denote the event
that the adversary outputs 1 after being given access to the c oracles.

In Appendix A, we recall standard definitions for (length-preserving) pseudo-
random functions and permutations.

2.1 Symmetric Encryption

We focus on the likely most widespread and practically useful encryption prim-
itive: Authenticated Encryption with Associated Data (AEAD). We recall stan-
dard definitions of (deterministic) nonce-based AEAD, as per [22].

AEAD. A symmetric encryption scheme Π providing authenticated encryption
with associated data is a triple of algorithms (Π.Gen,Π.Enc,Π.Dec). Associated
to Π are two parameters, Π.kl and Π.nl, representing the key length and the
nonce length. The key generation algorithm Π.Gen is a probabilistic algorithm
that takes as input the key length Π.kl and returns a key k ∈ {0, 1}Π.kl. Often
Π.Gen is taken as the algorithm choosing k uniformly at random from {0, 1}Π.kl.
The encryption algorithm Π.Enc is deterministic and takes key k, message m,
associated data d and nonce n ∈ {0, 1}Π.nl to deterministically obtain cipher-
text c ← Π.Enc(k,m, d;n). Decryption algorithm Π.Dec is deterministic and
Π.Dec(k, c, d;n) returns either a message m or the special symbol ⊥. For simplic-
ity, we assume that |Π.Enc(k,m, d;n)| is an affine function of the form |m| + τ
where τ is some constant associated to the encryption scheme (all practical
encryption schemes are of this type). We call τ the stretch of the encryption
scheme. Lastly, where the context is clear, we drop the prefix Π.

Subverting Decryption in AEAD 27

Definition 1. A symmetric encryption scheme Π is said to be δ-correct if for
all tuples (m, d;n) it holds that:

Pr [m �= m′ | k ←$ Gen(kl), c ← Enc(k,m, d;n),m′ ← Dec(k, c, d;n)] ≤ δ.

If δ = 0 the scheme is referred to as being perfectly correct.

The classic privacy notion used for AEAD is indistinguishability from random
bits under an adaptive chosen-plaintext-and-nonce attack, utilising standard
game-based definitions. For the authenticity notion, we consider adversaries that
aim to create (strong) forgeries. Security notions are as in [22]. Intuitively, the
scheme provides confidentiality if the privacy advantage of any realistic adversary
is negligible and authenticity if the forging advantage of any realistic adversary
is negligible.

Definition 2. The privacy advantage of an adversary A is given by

Advpriv
Π (A) = Pr

[
AEnc(k,·,·;·) =⇒ 1 | k ←$ Gen(kl)

]
− Pr

[
A$(·,·;·) =⇒ 1

]
,

where the $ oracle returns c ←$ {0, 1}|m|+τ for any query $(m, d;n). We assume
that A is nonce-respecting; that is, A does not make two queries with the same
nonce.

Definition 3. The authenticity advantage of an adversary A is given by

Advauth
Π (A) = Pr

[
AEnc(k,·,·;·),Dec(k,·,·;·) forges | k ←$ Gen(kl)

]
,

where we say that A forges if it receives any m′ �= ⊥ from Dec where we require
that (c, d;n) is not the result of an encryption query (m, d;n). We assume that
A is nonce-respecting; that is, A does not make two encryption queries with the
same nonce.

3 ASAs on Symmetric Encryption Schemes

We now outline the framework which will allow us to describe our concrete ASAs
in Sect. 4. The aim of an ASA is to replace a given (symmetric encryption) scheme
with a compromised version; if the original scheme is denoted Π, we write Π̃ for
its subversion. The attacker may choose to replace one component of the scheme,
or multiple. We model the subverted scheme as having an embedded attacker key
which is shared with an external (mass surveillance) adversary. This approach
was first used by BPR [8]. From the attacker’s perspective, the ASA should be
undetectable by the user and result in effective surveillance. We formalise these
notions as detectability and key recovery. Our definitions are inherited from
prior work [6,8,12]. Whereas previous work assumed that only the encryption
algorithm might be subverted, we have generalised the definitions to reflect the
possibility that any component (one or multiple) of the symmetric encryption

28 M. Armour and B. Poettering

Fig. 1. Game to define the detectability advantage of D with respect to ˜Π, Π.

scheme could be subverted, and adapted to explicitly consider AEAD schemes.
We broadly follow the notational choices of BJK [6].

ASA Syntax. An algorithm substitution attack A on a scheme Π consists of a
triple (A.Gen,A.Ext, Π̃), where:

1. The attacker key generation algorithm A.Gen returns an attacker key kA ∈
{0, 1}A.kl for some constant A.kl.

2. Π̃ = (Π̃.Gen, Π̃.Enc, Π̃.Dec) is a subverted symmetric encryption scheme.
(a) The subverted key generation algorithm Π̃.Gen is a probabilistic algorithm

that takes as input the key length Π̃.kl and the attacker key kA, returning
a key k ∈ {0, 1}˜Π.kl.

(b) The subverted encryption algorithm Π̃.Enc takes the attacker key kA, user

key k, message m, associated data d and nonce n ∈ {0, 1}˜Π.nl, outputting
ciphertext c ← Π̃.Enc(kA, k,m, d;n).

(c) The subverted decryption algorithm Π̃.Dec(kA, k, c, d;n) returns either a
message m or the special symbol ⊥.

3. The key extraction algorithm A.Ext takes as input kA and has oracle access
to both encryption and decryption oracles in the case of an active adversary,
or to a transcript of ciphertexts in the case of a passive adversary. These
notions are formalised in the key recovery game in Fig. 2. The output of this
algorithm is a key k ∈ {0, 1}˜Π.kl.

We require that Π̃.kl = Π.kl and Π̃.nl = Π.nl, as the subverted algorithm would
otherwise be trivially detected. As in previous work, we assume throughout that
the key generation is unsubverted, but we retain a syntax that allows for the
more general case.

Detectability. In the formal notion of detectability, we allow a distinguisher D
to interact with subverted encryption, subverted decryption and (for generality)
subverted key generation. We assume that the distinguisher has access to its
own reference copy of the unsubverted algorithms. It wins if it can distinguish

Subverting Decryption in AEAD 29

between the base scheme and the subverted scheme in the game defined in Fig. 1.
The detectability advantage of D with respect to Π, Π̃ is given by

Advdet
Π,˜Π

(D) = 2 · Pr
[
DetΠ,˜Π(D)

]
− 1.

This definition is adapted from strong undetectability of [6]. Notice that (infor-
mally) a ‘hard-to-detect’ subversion of a perfectly correct base scheme necessarily
satisfies some correctness condition. To see this, suppose that the subversion does
not satisfy δ-correctness: it is detectable with probability at least δ.

Key Recovery. Following [6], recovering the user’s secret key is a strong prop-
erty for an attacker. We give two flavours of the key recovery game, one for
passive adversaries PassiveKR and one for active adversaries ActiveKR, as given
in Fig. 2. In the passive case, we allow the adversary to observe ciphertexts and
whether they are rejected. This is formalised through the transcript oracle OTrans.
For the active case, we allow the attacker to generate valid ciphertexts via OEnc

and interact with a decryption oracle ODec that reveals whether a submitted
ciphertext is rejected. Both games are parametrised by a message sampler algo-
rithm M. Given its current state σ, M returns the next message with associated
data (m, d) to be encrypted, together with a nonce n ∈ {0, 1}Π.nl and an updated
state. It represents the choice of messages made by the sender. For simplicity,
we model M as non-adaptive and nonce-respecting. It could be argued that a
more realistic model might take into account that the adversary could influence
the user’s choice of messages to be encrypted. However, in constructing attacks
we assume the weakest properties of the attacker.

Adversary A wins if A.Ext recovers the user’s key k after interacting with the
subverted encryption scheme. The key recovery advantage of A with respect to
Π̃ and M is given by

Advkr
˜Π,M(A) = Pr

[
KR

˜Π,M(A)
]
,

where KR
˜Π,M(A) refers to the appropriate key recovery game according to

whether the adversary is passive or active.

4 Mounting Attacks via Decryption Subversion

We now detail our ASAs, first for a passive surveillance adversary and then in the
active case. It is easy to see that the attacks are undetectable according to the
models in the literature [6,8,12], as the encryption algorithm is not subverted.

Imagine that Alice communicates with Bob. A passive adversary can observe
ciphertexts from Alice to Bob. In addition, an active adversary can replace
ciphertexts in transmission and submit its own (forged) ciphertexts to Bob.
In the passive attack, the decryption algorithm is subverted so that it rejects
a fraction of valid ciphertexts, bounded by an attacker controlled parameter.
In the active attack, the decryption algorithm is subverted so that it accepts a
(similarly bounded) fraction of invalid ciphertexts. The active attack requires the

30 M. Armour and B. Poettering

Fig. 2. Game to define the key recovery advantage of A with respect to ˜Π and M.

adversary to send Bob bogus ciphertexts (derived from genuine ciphertexts) that
reveal Bob’s secret key using decryption errors. Normally, these bogus cipher-
texts are unlikely to decrypt correctly, i.e., they would be rejected. In both cases,
if the decryptor is subverted then either real ciphertexts (in the passive case) or
bogus ciphertexts (in the active case) can either be accepted or rejected, creating
via the acceptance/rejection pattern a covert channel that will allow the key to
be exfiltrated.

From the point of view of a mass surveillance adversary this is an attractive
prospect: having passively collected all communications, triggered by some sus-
picion they can now target Alice and Bob’s communication. By recovering Bob’s
key they may now decrypt all of the stored communication between Alice and
Bob (and indeed from Bob to Alice as well).

We note that both of our attacks are stateless, which not only allows for much
easier backdoor implementation from a technical perspective but also should
decrease the likelihood that an implemented attack is detected through code
review or observing memory usage.

4.1 Attack 1: Passive

Consider the following subversion of a given symmetric encryption scheme
(Π.Gen,Π.Enc,Π.Dec). Let Π̃.Gen = Π.Gen and Π̃.Enc = Π.Enc. Let A.Gen

choose a key kA by kA ←$ {0, 1}A.kl. Algorithms Π̃.Dec and A.Ext are then spec-
ified in Fig. 3. The subverted decryptor Π̃.Dec takes the same input as Π.Dec
together with the attacker key, and utilises a pseudo-random function3 F with
F : {0, 1}A.kl×{0, 1}∗ → [Π.kl]×{0, 1}. In A.Ext, we use the symbol � as a ternary

3 See Appendix A for definitions of pseudo-random functions and length-preserving
pseudo-random permutations.

Subverting Decryption in AEAD 31

Fig. 3. Passive ASA against AEAD

symbol (neither 0 nor 1) to keep track of which key bits have been collected. In
line 2 of the algorithm for Π̃.Dec, we write B(δ) to denote a Bernoulli trial which
returns 1 with probability δ. Key extractor A.Ext takes as input the attacker key
and the transcript, consisting of triples (c, d, n, v) where v is a bit representing
whether or not the ciphertext decrypts to ⊥.

Theorem 1. Let Π be a perfectly-correct symmetric encryption scheme and let
� = Π.kl. Let Π̃.Dec and A.Ext be defined as in Fig. 3. Let M be a message
sampling algorithm, and F : {0, 1}A.kl × {0, 1}∗ → [�] × {0, 1} be a PRF with
Advprf

F (F) < ε for all efficient adversaries F . Then

(1) Advkr
˜Π,M(A) ≥ 1 − �e− qδ

2� , where q is the number of queries that A.Ext makes
to the transcript oracle.

(2) For all distinguishers D, Advdet
Π,˜Π

(D) ≤ δq
2 (1 + ε) where D makes q queries

to its decryption oracle.

Proof of (1). We use a combinatorial argument. Notice that this is essentially
a coupon collection problem. We are looking for the probability that every key
bit has been exfiltrated. If we fix i key bits that are not exfiltrated, there are(
�
i

)
ways to choose those fixed key bits. The probability that (at least) i of the

key bits have not been exfiltrated is given by
(
�
i

)
(1 − iδ

2�)
q. Using the principle

of inclusion exclusion, the probability that no key bit has not been exfiltrated is
given by

Advkr
˜Π,M(A) =

�∑
i=0

(−1)i

(
�

i

)(
1 − iδ

2�

)q

≥ 1 − �

(
1 − δ

2�

)q

≥ 1 − �e− qδ
2� .

��

32 M. Armour and B. Poettering

Proof of (2). Clearly, the only way to distinguish between Π and Π̃ is to observe
Π̃.Dec output ⊥. Thus in order to distinguish, D must find (m, d;n) such that
⊥ = ODec(k, c, d;n) for c ← Π.Enc(k,m, d;n). This reduces to D finding some
c ‖ d such that F (kA, c ‖ d) = i ‖ k[i] for some index i. Call this event W . Notice
that for any F it holds that for all kA, c, d we have F (kA, c ‖ d) = i ‖ b for some
index i and bit b.

We note that Pr [W] ≤ Pr [PRFF (F)] for all PRF adversaries F . If not, it
would be possible for F to act as a challenger to D and win its prf game whenever
W occurs. Thus,

Advdet
Π,˜Π

(D) = Pr
[
DetΠ,˜Π(D) | b = 1

]
+ Pr

[
DetΠ,˜Π(D) | b = 0

]
− 1

= 1 − (1 − δ · Pr [W])q

≤ 1 − (1 − δ · Pr [PRFF (D)])q

≤ 1 −
(

1 − δ

2
(1 + Advprf

F (D))
)q

≤ 1 −
(

1 − δ

2
(1 + ε)

)q

≤ δq

2
(1 + ε).

��
Remark. Whereas (un)detectability does depend on the security of the PRF, the
PRF can be quite weak without much impacting the adversary’s key recovery
advantage. If the base scheme Π’s ciphertexts are indistinguishable from ran-
dom (IND$), then the PRF could simply choose the first
log(�)� + 1 many bits
of the ciphertext. This seems paradoxical, as strong privacy security is usually a
desirable property but here it allows a simpler ASA to be successful.

We note that in practice, the subverted decryption algorithm Π̃.Dec can be
made more effective in a number of ways. Indeed, the model is very conservative
and in practice it may be possible for A.Ext to observe a number of distinguish-
able error messages following [10].

4.2 Attack 2: Active

Consider algorithms Π̃.Dec and A.Ext as specified in Fig. 4. The adversary A.Ext
crafts special messages using a length-preserving pseudo-random permutation E
under the attacker key4. We let E : {0, 1}A.kl ×{0, 1}∗ → {0, 1}∗. The security of
E will determine how easily the distinguisher D will be able to recreate a special
message to trigger Π̃. Furthermore, as in the passive attack, Π̃.Dec makes use of
a PRF F to determine whether or not to reject submitted ciphertexts. We let
F : {0, 1}A.kl×{0, 1}∗ → [Π.kl]×{0, 1}. Although the notation implies keys are the

4 See Appendix A for the definition of a length-preserving PRP.

Subverting Decryption in AEAD 33

Fig. 4. Active ASA against AEAD

same, we assume independent behaviour of F,E.5 We analyse this construction
in the formal model defined by game ActiveKR

˜Π,M in Fig. 2.

Theorem 2. Let Π be a perfectly-correct symmetric encryption scheme and let
� = Π.kl. Let Π̃.Dec and A.Ext be defined as in Fig. 4. Let M be a message
sampling algorithm. Let � = Π.kl and Advauth

Π < ε. Let F : {0, 1}A.kl × {0, 1}∗ →
[�] × {0, 1} be a PRF with Advprf

F (F) < 1 for all efficient adversaries F . Let E

be a lp-PRP with E : {0, 1}A.kl × {0, 1}∗ → {0, 1}∗ and Advprp
E (F ′) < ε′ for all

efficient PRP adversaries F ′. Then

(1) Advkr
˜Π,M(A) ≥ 1 − �e− q

� (1−ε), where A.Ext makes exactly Π.kl calls to the
decryption oracle and q calls to the encryption oracle.

(2) For every distinguisher D, Advdet
Π,˜Π

(D) ≤ q
2τ + ε′, where D makes q queries

to its decryption oracle.

Proof of (1). We use the same combinatorial argument as in Theorem 1. This
time, the probability that (at least) i of the key bits have not been cor-
rectly exfiltrated is given by

(
�
i

) [
(1 − i

�) + αi
2�

]q
. Here α is the probability that

Π.Dec(k, c̃, d;n) �= ⊥ given that F−1(kA, c̃) = j ‖ k[j] for j in the set of indices
being counted. We note that Advauth

Π ≥ α.

Advkr
˜Π,M(A) =

�∑
i=0

(−1)i

(
�

i

)[
(1 − i

�
) +

αi

2�

]q

≥ 1 − �

(
1 +

1
�
(
α

2
− 1)

)q

≥ 1 − �e− q
� (1− α

2)

≥ 1 − �e− q
� (1−ε).

��
5 Using only one key is just a trick to keep the notation compact.

34 M. Armour and B. Poettering

Proof of (2). As in Theorem 1, the only way to distinguish between Π and
Π̃ is by observing Π̃.Dec accepting a forged ciphertext. To do this, the dis-
tinguisher D must find some ciphertext c with associated data d such that
F (kA, c̃ ‖ d) = i ‖ k[i] for some i ∈ [�] and where c̃ = E−1(kA, c). Noting that
Advprf

F (F) < 1, we thus obtain

Pr
[
DetΠ,˜Π(D) | b = 0

]
≤ Pr

[D finds c with E−1(kA, c) = c̃ for some c̃
with Π.Dec(k, c̃, d;n) �= ⊥, for some d, n

]

Consider the following game, which we will refer to as the pre-image game. For
b ∈ {0, 1} we define experiment b as follows:

1. The challenger initially sets C ← ∅ and responds to query ci in the following
way:

– if (b = 0) then set c′
i ←$ {0, 1}|ci| \ C, update C ∪← c′

i and return c′
i

– if (b = 1) then return c′
i ← E−1(kA, ci).

2. The adversary D submits a sequence of queries c1, c2, . . . , cq to the challenger
and receives c′

i for i ∈ [q].

For b ∈ {0, 1}, let Wb be the event that D outputs 1 in experiment b; D outputs 1
if for some d, n, Π.Dec(k, c′

i, d;n) �= ⊥. The advantage of D in the pre-image game
is clearly less than its advantage in distinguishing a lp-PRP from a random length
preserving permutation. To see this, given D with some advantage playing the
pre-image game we can construct an adversary B acting as a challenger to D
such that B outputs 1 in the distinguishing game PRPE(B) whenever D does in
the pre-image game. Thus,

Pr [W0] − Pr [W1] ≤ Advprp
E (B).

Noting that Pr [W1] = q
2τ , where τ is the stretch of the encryption scheme, we

conclude that

Advdet
Π,˜Π

(D) ≤ Pr [W0] ≤ Pr [W1] + Advprp
E (B) ≤ q

2τ
+ ε′.

��

5 Implementation

We implemented our attacks in proof-of-concept Python code to verify their
functionality and effectiveness.6 The particular AEAD scheme we attack is AES-
GCM [15], using black-box access to the implementation provided by [32]. We
simulated both active and passive attacks 10,000 times, and recorded the num-
ber of queries for successful extraction of a 128-bit key (thus, � = 128). Mes-
sages, nonces and associated data were generated using the random.getrandbits

6 We are happy to share our source code. Please contact the authors.

Subverting Decryption in AEAD 35

method from the Crypto.Random library. The plots below (Figs. 5 and 6) show
the distribution (in blue) of the recorded number of queries q, and (in red) the
cumulative success probability as a function of q. Our results confirm the theoret-
ical estimates from Theorems 1 and 2; in particular, the exponential success rate.
While the attacks have different application and success profiles, both reliably
recover keys.

Passive. The expected number of calls to the transcript oracle for successful
exfiltration is given by 2�

δ

∑�
i=1

1
i (see proof of Theorem 1). We set δ = 0.1

for illustration. This gives us an expected value of q = 13910 compared to the
recorded mean of 13920.59. Alternatively, the result from Theorem 1 gives a key
recovery advantage of ≈1/2 with q = 14000, compared to the recorded median
of 13380. The discrepancy is due to the exponential approximation in the proof.

Fig. 5. Results of running an implementation of the passive attack 10,000 times. Key
length � = 128, and parameter δ = 0.1. Left axis: The blue histogram shows the dis-
tribution of the number of queries required for successful key exfiltration. The data has
been sorted into 50 bins. Right axis: The red curve shows the cumulative probability
of successful key exfiltration against q. (Colour figure online)

Active. We assume that for AES-GCM, Advauth
Π ≈ 0 and set ε = 0. The

expected number of encryption calls for successful exfiltration is then �
∑�

i=1
1
i

(see proof of Theorem 2). This gives an expected value of q = 696 compared to

36 M. Armour and B. Poettering

the recorded mean of 695.05. Alternatively, the result from Theorem 2 gives a
key recovery advantage of ≈ 1/2 with q = 710 compared to the recorded median
of 670. Again, the difference is due to exponential approximation.

Fig. 6. Results of running an implementation of the active attack 10,000 times with
key length � = 128. Left axis: The blue histogram shows the distribution of the
number of queries required for successful key exfiltration. The data has been sorted
into 50 bins. Right axis: The red curve shows the cumulative probability of successful
key exfiltration against q. (Colour figure online)

6 Breaking Security Without Extracting the Full Key

The attacks presented in Sect. 4 are generic in that they are independent of
the targeted AEAD scheme. Our approach, in common with previous work, was
to extract the full key with which the AEAD instance is operated. Message
recovery follows immediately by the definition of correctness. From this it is
tempting to conclude that choosing longer keys, e.g. 256 bits instead of 128 in
the case of AES-based encryption, gives better security against ASAs. (This
approach is generally explored in big key cryptography [7].). In this section we
show that this intuition is not necessarily correct. As we detail, many current
AEAD schemes have inner building blocks that maintain their own secret values,

Subverting Decryption in AEAD 37

and scaling up key sizes does not automatically also increase the sizes of these
internal values. Note that ASAs in the style proposed in the previous section
could easily be adapted to leak this internal information instead of the key.
As the recovery of such values might not always directly lead to full message
recovery, the assessment of whether the resulting overall attack is more or less
effective than our generic attacks has to be made on a per scheme basis. We
exemplify this on the basis of two of the currently best-performing AES-based
AEAD schemes: GCM [15] and OCB3 [19]. In both cases, the size of the crucial
internal value and the block size of the cipher have to coincide and the latter
value is fixed to 128 bits for AES (independently of key size).

AES-GCM. We consider the following abstraction of GCM. The AEAD key
k is used directly to create an instance E of the AES blockcipher. To encrypt
a message m with respect to associated data d and nonce n, E is operated
in counter mode, giving a pad E(n + 1) ‖ E(n + 2) ‖ . . . , where a specific
nonce encoding ensures there are no collisions between counter values of different
encryption operations. The first part c1 of the ciphertext c = c1c2 is obtained by
XORing the pad into the message, and finally the authentication tag c2 is derived
by computing c2 ← E(n) + Hh(d, c1). Here Hh is an instance of a universal
hash function H indexed (that is, keyed) with the 128-bit value h = E(0128).
Concretely, Hh(d, c1) =

∑l
i=1 vih

l−i+1, where coefficients v1, . . . , vl are such that
a prefix v1 . . . vj is a length-padded copy of the associated data d, the middle part
vj+1 . . . vl−1 is a length-padded copy of ciphertext component c1, and the last
item vl is an encoding of the lengths of d and c1. The addition and multiplication
operations deployed in this computation are those of a specific representation of
the Galois field GF(2128).

In executing a practical algorithm substitution attack against AES-GCM, it
might suffice to leak the value h (which has length 128 independently of the AES
key length, and furthermore stays invariant across encryption operations). The
insight is that if the key of a universal hash function is known, then it becomes
trivial to compute collisions. Concretely, assume the adversary is provided with
the AES-GCM encryption c = c1c2 = Enc(k,m, d;n) for unknown k,m but
chosen d, n. Then by the above we have c2 = R +

∑j
i=1 vih

l−i+1 where the
coefficients v1 . . . vj are an encoding of d and R is some residue. If, having been
successfully leaked by the ASA, the internal value h is known, by solving a linear
equation it is easy to find an associated data string d′ �= d, |d′| = |d|, such that for
its encoding v′

1 . . . v′
j we have

∑j
i=1 v′

ih
l−i+1 =

∑j
i=1 vih

l−i+1. Overall this means
that we have found d′ �= d such that Enc(k,m, d′;n) = c = Enc(k,m, d;n). In a
CCA attack the adversary can thus query for the decryption of c with associated
data d′ and nonce n, and thus fully recover the target message m. We finally
note that this attack can be directly generalized to one where also the c1 and c2

components are modified, resulting in the decryption of a message m′ �= m for
which the XOR difference between m = m′ is controlled by the adversary.

OCB3. Multiple quite different versions of the OCB encryption scheme exist,
but a common property is that the associated data input is incorporated via

38 M. Armour and B. Poettering

‘ciphertext translation’ [22]. To encrypt a message m under key k with asso-
ciated data d and nonce n, in a first step the message m is encrypted with a
pure AE scheme (no AD!) to an intermediate ciphertext c∗ ← Enc∗(k,m;n).
Then to obtain the final ciphertext c, a pseudo-random function value Fk(d) of
the associated data string is XORed into the trailing bits of c∗. Concretely, in
OCB3 we have Fk(d) =

∑l
i=1 E(vi +Ci) where all addition operations are XOR

combinations of 128 bit values, E(·) stands for AES enciphering with key k,
values v1, . . . , vl represent a length-padded copy of associated data d, and coeffi-
cients C1, . . . , Cl are (secret) constants deterministically derived from the value
L = E(0128).

In the context of an ASA we argue that it is sufficient to leak the 128 bit
value L. The attack procedure is, roughly, as in the AES-GCM case. Assume the
adversary is provided with the OCB3 encryption c = Enc(k,m, d;n) for unknown
k,m but chosen d, n, and assume the adversary knows L and thus C1, . . . , Cl.
Now let 1 ≤ s < t ≤ l be any two indices, let Δ = Cs + Ct and let d′ �= d,
|d′| = |d|, be the associated data string with encoding v′

1, . . . , v
′
l such that we have

v′
s = vt+Δ and v′

t = vs+Δ and v′
i = vi for all i �= s, t. Then we have E(v′

s+Cs) =
E(vt+Δ+Cs) = E(vt+Ct) and E(v′

t+Ct) = E(vs+Δ+Ct) = E(vs+Cs), which
leads to Fk(d) = Fk(d′) and ultimately Enc(k,m, d′;n) = Enc(k,m, d;n). In a
CCA attack environment, this can immediately be leveraged to the full recovery
of m. As in the AES-GCM case, we note that many variants of our attack exist
(against all versions of OCB), including some that manipulate message bits in a
controlled way.

7 Conclusion

This work examines subversion attacks against decryption only, providing two
examples of a new class of Algorithm Substitution Attack that provides a mass
surveillance adversary with a powerful and attractive strategy to compromise the
confidentiality of mass communication. Previous models of ASA against symmet-
ric encryption only considered subverting the encryption algorithm, and seemed
to suggest that decryption could only be subverted together with encryption
(and that analysing such “total subversion” is uninteresting, as this gives an
adversary too much power).

Acknowledgements. Thanks to Jeroen Pijnenburg and Fabrizio De Santis for their
early comments on this paper. Thanks also to the anonymous reviewers.

A Pseudo-Random Functions and Permutations

We recall standard notions of pseudo-random functions and permutations.

Definition 4. A keyed pseudo-random function (PRF) for range R is an effi-
ciently computable function F : {0, 1}� × {0, 1}∗ → R taking a key L ∈ {0, 1}�

Subverting Decryption in AEAD 39

and input s ∈ {0, 1}∗ to return an output F (L, s) ∈ R. Consider game PRFF (F)
in Fig. 7 associated to F and adversary F . Let

Advprf
F (F) = 2 · Pr [PRFF (F)] − 1

be the prf advantage of adversary F against function F . Intuitively, the function
is pseudo-random if the prf advantage of any realistic adversary is negligible.

Definition 5. A keyed length-preserving pseudo-random permutation (lp-PRP)
is an efficiently computable function E where E : {0, 1}�×{0, 1}∗ → {0, 1}∗ takes
a key L ∈ {0, 1}� and input s ∈ {0, 1}∗ to return an output E(L, s) ∈ {0, 1}|s|.
We require that any keyed instance of E is a permutation on {0, 1}n for all n ∈ N

and also that its inverse E−1 is efficiently computable. Consider game PRPE(F)
in Fig. 7 associated to E and adversary F . Let

Advprp
E (F) = 2 · Pr [PRPE(F)] − 1

be the prp advantage of adversary F against function E. Intuitively, the per-
mutation is pseudo-random if the prp advantage of any realistic adversary is
negligible.

Fig. 7. Game to define prf and prp advantage of F with respect to F, E.

References

1. Armour, M., Poettering, B.: Substitution attacks against message authen-
tication. IACR Trans. Symmetric Cryptol. 2019(3), 152–168 (2019).
https://tosc.iacr.org/index.php/ToSC/article/view/8361

2. Armour, M., Poettering, B.: Substitution attacks against message authentication.
Cryptology ePrint Archive, Report 2019/989 (2019). http://eprint.iacr.org/2019/
989

https://tosc.iacr.org/index.php/ToSC/article/view/8361
http://eprint.iacr.org/2019/989
http://eprint.iacr.org/2019/989

40 M. Armour and B. Poettering

3. Armour, M., Poettering, B.: Subverting decryption in AEAD. Cryptology ePrint
Archive, Report 2019/987 (2019). http://eprint.iacr.org/2019/987

4. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015: 22nd Conference on Computer
and Communications Security, pp. 364–375. ACM Press, October 2015

5. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 627–656. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 21

6. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015: 22nd Conference on Computer and Communications Security, pp.
1431–1440. ACM Press, October 2015

7. Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption: resisting key
exfiltration. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 373–402. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 14

8. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44371-2 1

9. Berndt, S., Liskiewicz, M.: Algorithm substitution attacks from a steganographic
perspective. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017: 24th Conference on Computer and Communications Security, pp. 1649–
1660. ACM Press (2017)

10. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 367–390. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43933-3 19

11. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted
TPMs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol.
10403, pp. 427–461. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 15

12. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 28

13. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 5

14. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4 13

15. Dworkin, M.J.: SP 800–38D: recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC. US National Institute of Standards and
Technology (2007)

16. Fischlin, M., Janson, C., Mazaheri, S.: Backdoored hash functions: immunizing
HMAC and HKDF. In: 2018 IEEE 31st Computer Security Foundations Sympo-
sium (CSF), pp. 105–118. IEEE (2018)

http://eprint.iacr.org/2019/987
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-53018-4_13

Subverting Decryption in AEAD 41

17. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: 2018 IEEE 31st Computer Security Foundations Sympo-
sium (CSF), pp. 76–90. IEEE (2018)

18. Goh, E.-J., Boneh, D., Pinkas, B., Golle, P.: The design and implementation
of protocol-based hidden key recovery. In: Boyd, C., Mao, W. (eds.) ISC 2003.
LNCS, vol. 2851, pp. 165–179. Springer, Heidelberg (2003). https://doi.org/10.
1007/10958513 13

19. Krovetz, T., Rogaway, P.: The OCB authenticated-encryption algorithm (2014).
https://tools.ietf.org/html/rfc7253

20. Ma, H., Zhang, R., Yang, G., Song, Z., Sun, S., Xiao, Y.: Concessive online/offline
attribute based encryption with cryptographic reverse firewalls—secure and effi-
cient fine-grained access control on corrupted machines. In: Lopez, J., Zhou,
J., Soriano, M. (eds.) ESORICS 2018, Part II. LNCS, vol. 11099, pp. 507–526.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1 25

21. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657–686.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

22. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002: 9th Conference on Computer and Communications Security, pp.
98–107. ACM Press, November 2002

23. Rogaway, P.: The moral character of cryptographic work. Cryptology ePrint
Archive, Report 2015/1162 (2015). http://eprint.iacr.org/2015/1162

24. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6 2

25. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Destroying steganography via amal-
gamation: kleptographically CPA secure public key encryption. Cryptology ePrint
Archive, Report 2016/530 (2016). http://eprint.iacr.org/2016/530

26. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against
a kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications
Security, pp. 907–922. ACM Press, October/November 2017

27. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 241–271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 9

28. Schneier, B., Fredrikson, M., Kohno, T., Ristenpart, T.: Surreptitiously weaken-
ing cryptographic systems. Cryptology ePrint Archive, Report 2015/097 (2015).
http://eprint.iacr.org/2015/097

29. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D.
(ed.) Advances in Cryptology – CRYPTO’83, pp. 51–67. Plenum Press, New York
(1983)

30. Young, A., Yung, M.: The dark side of “’black-box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

31. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

32. Zhu, B.: AES-GCM-Python (2013). https://github.com/bozhu/AES-GCM-
Python/blob/master/aes gcm.py

https://doi.org/10.1007/10958513_13
https://doi.org/10.1007/10958513_13
https://tools.ietf.org/html/rfc7253
https://doi.org/10.1007/978-3-319-98989-1_25
https://doi.org/10.1007/978-3-662-46803-6_22
http://eprint.iacr.org/2015/1162
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
http://eprint.iacr.org/2016/530
https://doi.org/10.1007/978-3-319-96881-0_9
http://eprint.iacr.org/2015/097
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6
https://github.com/bozhu/AES-GCM-Python/blob/master/aes_gcm.py
https://github.com/bozhu/AES-GCM-Python/blob/master/aes_gcm.py

	Subverting Decryption in AEAD
	1 Introduction
	2 Notation and Definitions
	2.1 Symmetric Encryption

	3 ASAs on Symmetric Encryption Schemes
	4 Mounting Attacks via Decryption Subversion
	4.1 Attack 1: Passive
	4.2 Attack 2: Active

	5 Implementation
	6 Breaking Security Without Extracting the Full Key
	7 Conclusion
	A Pseudo-Random Functions and Permutations
	References

