
Martin Albrecht (Ed.)
LN

CS
 1

19
29

17th IMA International Conference, IMACC 2019
Oxford, UK, December 16–18, 2019
Proceedings

Cryptography
and Coding

Lecture Notes in Computer Science 11929

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Martin Albrecht (Ed.)

Cryptography
and Coding
17th IMA International Conference, IMACC 2019
Oxford, UK, December 16–18, 2019
Proceedings

123

Editor
Martin Albrecht
Royal Holloway, University of London
London, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-35198-4 ISBN 978-3-030-35199-1 (eBook)
https://doi.org/10.1007/978-3-030-35199-1

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-35199-1

Preface

The International Conference on Cryptography and Coding is the biennial conference
of the Institute of Mathematics and its Applications (IMA) on cryptography and coding
theory. The conference series has been running for more than three decades and the
17th edition was held December 16–18, 2019, at St Anne’s College, University of
Oxford.

The Program Committee selected 17 submissions for presentation at the conference
and inclusion in these proceedings. The review process was double-blind and rigorous.
Each submission was reviewed independently by at least two reviewers in an individual
review phase, and subsequently considered by the Program Committee in a discussion
phase. Feedback from the reviews and discussions was given to the authors and their
revised submissions are included in the proceedings.

In addition to the presentations of accepted papers, the conference also featured four
keynote talks by internationally leading scientists on their research. I am grateful to Cas
Cremers, Nadia Henninger, Clémentine Maurice, and Francesca Musiani for accepting
our invitation and sharing the insights gathered from their exciting research. Finally,
the conference featured several contributed presentations. However, these were not
finalised by the time this preface went to print.

Running a conference like IMACC requires the effort of many people and many
thanks are due. I would like to thank the Steering Committee for their trust and support.
I thank the authors for their submissions and the Program Committee and the external
reviewers for their effort in selecting the scientific program. Thanks also goes to the
IACR for their cooperation. Finally, I am thankful to the conferences team – Maya
Everson, Cerys Thompson, Pamela Bye, and colleagues – at the Institute of
Mathematics and its Applications for handling all the practical matters of the
conference.

September 2019 Martin Albrecht

Organization

Program Committee

Martin Albrecht Royal Holloway, University of London, UK
Alex Davidson Cloudflare Portugal, Portugal
Benjamin Dowling ETH Zurich, Switzerland
Caroline Fontaine CNRS (LSV), France
Julia Hesse IBM Research Zurich, Switzerland
Christian Janson TU Darmstadt, Germany
Cong Ling Imperial College, UK
Emmanuela Orsini Katholieke Universiteit Leuven, Belgium
Daniel Page University of Bristol, UK
Christophe Petit University of Oxford, UK
Rachel Player Royal Holloway, University of London, UK
Elizabeth Quaglia Royal Holloway, University of London, UK
Ciara Rafferty Queen’s University Belfast, UK
Christian Rechberger TU Graz, Austria
Adeline Roux-Langlois Univ Rennes, CNRS, IRISA, France
Christoph Striecks AIT, Austria
Thyla van der Merwe Mozilla, UK
Roope Vehkalahti Aalto University, Finland
Carolyn Whitnall University of Bristol, UK

Additional Reviewers

Bert, Pauline
Costache, Ana
Dalskov, Anders
Davies, Gareth
Dinur, Itai
Eaton, Edward
Fraser, Ashley
Garms, Lydia
Gryak, Jonathan
Howe, James
Kales, Daniel
Kutas, Peter

Kwiatkowski, Kris
Martindale, Chloe
Merz, Simon-Philipp
Persichetti, Edoardo
Qian, Chen
Ramacher, Sebastian
Renes, Joost
Slamanig, Daniel
van de Pol, Joop
Wen, Weiqiang
Yu, Yang

Contents

A Framework for UC-Secure Commitments from Publicly
Computable Smooth Projective Hashing. 1

Behzad Abdolmaleki, Hamidreza Khoshakhlagh, and Daniel Slamanig

Subverting Decryption in AEAD. 22
Marcel Armour and Bertram Poettering

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 42
Karim Baghery

Classification of Self-dual Codes of Length 20 over Z4 and Length
at Most 18 over F2 þ uF2. 64

Rowena Alma L. Betty and Akihiro Munemasa

A Framework for Universally Composable Oblivious Transfer
from One-Round Key-Exchange . 78

Pedro Branco, Jintai Ding, Manuel Goulão, and Paulo Mateus

Efficient Fully Secure Leakage-Deterring Encryption 102
Jan Camenisch, Maria Dubovitskaya, and Patrick Towa

Sharing the LUOV: Threshold Post-quantum Signatures. 128
Daniele Cozzo and Nigel P. Smart

Commodity-Based 2PC for Arithmetic Circuits . 154
Ivan Damgård, Helene Haagh, Michael Nielsen, and Claudio Orlandi

Improved Low-Memory Subset Sum and LPN Algorithms
via Multiple Collisions. 178

Claire Delaplace, Andre Esser, and Alexander May

Forgery Attacks on FlexAE and FlexAEAD. 200
Maria Eichlseder, Daniel Kales, and Markus Schofnegger

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 215
Terry Shue Chien Lau, Chik How Tan, and Theo Fanuela Prabowo

On the Security of Multikey Homomorphic Encryption 236
Hyang-Sook Lee and Jeongeun Park

RLWE-Based Zero-Knowledge Proofs for Linear
and Multiplicative Relations . 252

Ramiro Martínez and Paz Morillo

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data. . . . 278
Shyam Murthy and Srinivas Vivek

Quantum-Secure (Non-)Sequential Aggregate Message
Authentication Codes. 295

Shingo Sato and Junji Shikata

SO-CCA Secure PKE in the Quantum Random Oracle Model
or the Quantum Ideal Cipher Model . 317

Shingo Sato and Junji Shikata

Distributing Any Elliptic Curve Based Protocol . 342
Nigel P. Smart and Younes Talibi Alaoui

Author Index . 367

viii Contents

A Framework for UC-Secure
Commitments from Publicly Computable

Smooth Projective Hashing

Behzad Abdolmaleki1(B), Hamidreza Khoshakhlagh2, and Daniel Slamanig3

1 University of Tartu, Tartu, Estonia
behzad.abdolmaleki@ut.ee

2 Aarhus University, Aarhus, Denmark
hamidreza@cs.au.dk

3 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. Hash proof systems or smooth projective hash functions
(SPHFs) have been proposed by Cramer and Shoup (Eurocrypt’02) and
can be seen as special type of zero-knowledge proof system for a language.
While initially used to build efficient chosen-ciphertext secure public-key
encryption, they found numerous applications in several other contexts.
In this paper, we revisit the notion of SPHFs and introduce a new feature
(a third mode of hashing) that allows to compute the hash value of an
SPHF without having access to neither the witness nor the hashing key,
but some additional auxiliary information. We call this new type publicly
computable SPHFs (PC-SPHFs) and present a formal framework along
with concrete instantiations from a large class of SPHFs.

We then show that this new tool generically leads to commitment
schemes that are secure against adaptive adversaries, assuming erasures
in the Universal Composability (UC) framework, yielding the first UC
secure commitments build from a single SPHF instance. Instantiating our
PC-SPHF with an SPHF for labeled Cramer-Shoup encryption gives the
currently most efficient non-interactive UC-secure commitment. Finally,
we also discuss additional applications to information retrieval based on
anonymous credentials being UC secure against adaptive adversaries.

1 Introduction

Hash proof systems or smooth projective hash functions (SPHFs) were intro-
duced by Cramer and Shoup [18] and can be considered as implicit designated-
verifier proofs of membership [3,10]. Similarly to zero-knowledge proofs, SPHFs
are defined for a NP language L and one considers membership of words x ∈ L.
In SPHFs, a verifier can generate a secret hashing key hk and for any word x
she can compute a hash value H by using the hashing key hk and x. In addition,

H. Khoshakhlagh—Majority of this work was done while working at the University of
Tartu.
c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 1–21, 2019.
https://doi.org/10.1007/978-3-030-35199-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_1

2 B. Abdolmaleki et al.

the verifier can derive a projection key hp from the hashing key hk and send it
to the prover. By knowing a witness w for membership of x ∈ L and having the
projection key hp, the prover is able to efficiently compute the projected hash
pH for the word x such that it equals the hash H computed by the verifier. The
smoothness property says that if x �∈ L one cannot guess the hash value H by
knowing hp, or in other words, H looks completely random.

One of the very fundamental tools in cryptographic protocols are commit-
ment schemes. They allow a committer C to pass an analogue of a sealed envelope
of his message m to a receiver R. When the committer C then later reveals m
with some additional opening information, R can verify whether the envelop con-
tains m. It should be guaranteed that C cannot change the committed message
m to some m′ �= m later (binding property) and that R must not learn any
information about the committed message m in the commit phase before the
opening (hiding property). Some well known perfectly binding commitment are
the Cramer-Shoup (CS) [18] and ElGamal [19] encryption schemes, or Pedersen
commitments [28] for the case of perfectly hiding commitments.

To be suitable for the use within the universal composability (UC) frame-
work [15], commitment schemes need to provide strong properties and in par-
ticular extractability and equivocability. The first one states that the simulator
Sim can recover the committed value m by knowing a trapdoor and the latter
means that Sim can open a commitment to any message m′ �= m by means of a
trapdoor. Satisfying both properties turns out to be a rather difficult task. In gen-
eral, constructing efficient equivocable and extractable commitments falls into
two categories: the one following the ideas of Canetti and Fischlin [15] includ-
ing [2–4,6], and the ones using non-interactive zero-knowledge proofs as the
opening information as the Fischlin-Libert-Manulis schemes [21] and improve-
ments thereof [23]. In this paper, we go into latter direction, but instead of
non-interactive zero-knowledge proofs, we use the PC-SPHF which allows us to
improve the communication complexity.

Our Contribution. We first introduce an extension of classical SPHFs which we
call publicly computable SPHFs (PC-SPHFs) in Sect. 3. Our focus is on SPHFs
for languages of ciphertexts Laux, parametrized by aux, instantiated in the source
groups of a bilinear group, i.e., which are itself pairing-free. This covers many
schemes such as (linear) ElGamal or (linear) CS. A PC-SPHF is such an SPHF
with the following additional property: there is a third mode of hashing which
allows to compute the hash value in the target group GT of a bilinear group when
neither having access to the hashing key hk nor the witness w. This is achieved
by adding some representations of the hashing key hk in the projection key hp
such that by using aux, hp, and some public values (crsLaux), one can compute
the hash value in GT .

We then in Sect. 4 show how one can use PC-SPHFs built from any suit-
able SPHF for a labeled IND-CCA encryption scheme to construct a generic
UC-secure commitment scheme. Following this approach, we construct the
most efficient non-interactive UC-secure commitment by using the labeled CS
encryption scheme (PC-SPHFCS). We compare the efficiency of PC-SPHFCS with

A Framework for UC-Secure Commitments 3

existing non-interactive UC-secure commitments in Table 11 and, as we discuss
in Sect. 4.2, this gives us an improvement of around 30% over the UC-secure
commitments in [2], which to the best of our knowledge represent the most effi-
cient UC-secure commitments to date. Compared to the most efficient UC-secure
commitments in bilinear groups, we obtain an improvement in the opening of a
factor 4.

Table 1. Comparison with some existing non-interactive UC-secure commitments with
a single global CRS when committing to a single message.

Scheme |Commitment| |Opening| Assumption

[16] 9 × G 2 × Zp Plain DDH
[21], 1 5 × G1 16 × G1 DLIN
[21], 2 37 × G1 3 × G1 DLIN
[23] 4 × G1 3 × G1 + 2 × G2 SXDH
[23] 4 × G1 4 × G1 DLIN
[1] 8 × G1 +G2 Zp SXDH
[2] 7 × G 2 × Zp Plain DDH
PC-SPHFCS 4 × G1 G1 XDH

Finally, in Sect. 5 we show how PC-SPHFs help to improve the efficiency
of information retrieval based on anonymous credentials (as proposed in [9]),
which is UC secure against adaptive adversaries. In a nutshell, such protocols
use anonymous credentials to securely retrieve a message without revealing the
identity of the receiver to the sender.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security param-
eter. All adversaries will be stateful. By y ← A(x; r) we denote the fact that A,
given an input x and randomness r, outputs y. By x ←$ D we denote that x is
sampled according to distribution D or uniformly random if D is a set. We denote
by negl(λ) an arbitrary negligible function. A bilinear group generator Pgen(1λ)
returns (p,G1,G2,GT , ē), where G1, G2, and GT are three cyclic groups of prime
order p, and ē : G1 ×G2 → GT is a non-degenerate efficiently computable bilin-
ear pairing. We use the implicit bracket notation of [20], that is, we write [a]ι to
denote agι where gι is a fixed generator of Gι. We denote ē([a]1, [b]2) as [a]1• [b]2.
Thus, [a]1 • [b]2 = [ab]T . We denote s[a]ι = [sa]ι for s ∈ Zp and ι ∈ {1, 2, T}.
We freely use the bracket notation together with matrix notation, for example,
if AB = C then [A]1 • [B]2 = [C]T .
1 We note that we follow existing literature and thus focus on the size of commitments

and openings and exclude the message(s) in the opening information.

4 B. Abdolmaleki et al.

Labeled Public-Key Encryption. Labeled encryption is a variant of the
public-key encryption notion where encryption and decryption take an addi-
tional label. Decryption should only work if the label used for decryption is
identical to the one used when producing the ciphertext. More formally:

Definition 1. A labeled (tagged) public-key encryption scheme Π =
(KGen,Enc,Dec), is defined by three algorithms:

– KGen(1λ) given a security parameter λ, generates a public key pk and a secret
key sk.

– Enctpk(M) given the public key pk, a label t and a message M , outputs a
ciphertext c.

– Dectsk(c) given a label t, the secret key sk and a ciphertext c, with c =
Enctpk(M), then outputs M .

For correctness it is required that for all (pk, sk) ∈ KGen(1λ), all labels t and all
messages M , Dectsk(Enc

t
pk(M)) = M . Henceforth, we use public-key encryption

schemes that provide indistinguishability under chosen plaintext and adaptive
chosen ciphertexts attacks, i.e., provide IND-CPA or IND-CCA security respec-
tively.

Decisional Diffie-Hellman (DDH) Assumption. Let ι ∈ {1, 2, T}. DDH
holds relative to Pgen, for all λ, all PPT adversaries A, |ExpDDH

A (pars)−1/2| ≈λ 0,
where ExpDDH

A (pars) :=

Pr
[
pars ←$Pgen(1λ);u, v, w ←$Zp; b ←$ {0, 1};
b∗ ← A(pars, [u]ι, [v]ι, [b · uv + (1 − b)w]ι)

: b = b∗
]

.

Smooth Projective Hash Functions. Smooth projective hash functions
(SPHFs) [18] are families of pairs of functions (hash, projhash) defined on a lan-
guage L. They are indexed by a pair of associated keys (hk, hp), where the
hashing key hk may be viewed as the private key and the projection key hp
as the public key. On a word x ∈ L, both functions need to yield the same
result, that is, hash(hk,L, x) = projhash(hp,L, x, w), where the latter evaluation
additionally requires a witness w that x ∈ L. Thus, they can be seen as a tool
for implicit designated-verifier proofs of membership [3]. Formally SPHFs are
defined as follows (cf. [6]).

Definition 2. A SPHF for a language L is a tuple of PPT algorithms
(Pgen, hashkg, projkg, hash, projhash), which are defined as follows:

Pgen(1λ): Takes a security parameter λ and generates the global parameters pars
(we assume that all algorithms have access to pars).

hashkg(L): Takes a language L and outputs a hashing key hk for L.
projkg(hk,L, x): Takes a hashing key hk, L, and a word x and outputs a projection

key hp, possibly depending on x.

A Framework for UC-Secure Commitments 5

hash(hk,L, x): Takes a hashing key hk, L, and a word x and outputs a hash H.
projhash(hp,L, x, w): Takes a projection key hp, L, a word x, and a witness w for

x ∈ L and outputs a hash pH.

A SPHF needs to satisfy the following properties:

Correctness. It is required that hash(hk,L, x) = projhash(hp,L, x, w) for all x ∈ L
and their corresponding witnesses w.

Smoothness. It is required that for any pars and any word x �∈ L, the following
distributions are statistically indistinguishable:

{(hp,H) : hk ← hashkg(L), hp ← projkg(hk,L, x),H ← hash(hk,L, x)}
{(hp,H) : hk ← hashkg(L), hp ← projkg(hk,L, x),H ←$ Ω} .

where Ω is the set of hash values.
Depending on the definition of smoothness, there are three types of SPHFs

(cf. [6]):

GL-SPHF. The projection key hp can depend on word x and so the smoothness
is correctly defined only if x is chosen before having seen hp.

KV-SPHF. hp does not depend on word x and the smoothness holds even if x is
chosen after having seen hp.

CS-SPHF. hp does not depend on word x but the smoothness holds only if x is
chosen before having seen hp.

Trapdoor Smooth Projective Hash Functions. Benhamouda et al. [6] pro-
posed an extension of a classical SPHF, called TSPHF. Their construction has
an additional algorithm tsetup, which takes as input the CRS crs (output by
Pgen) and outputs an additional CRS crsτ with trapdoor τ , which can be used
to compute the hash value of words x knowing hp and the trapdoor τ . We refer
the reader to [6] for a rigorous formal definition of TSPHFs, and only briefly
discuss their computational smoothness property.

Smoothness is the same as for SPHFs, except that after calling Pgen the
trapdoor τ of the crsτ is dropped, but crsτ is forwarded to the adversary
(together with crsL and even its trapdoor tds). Notice that since hp now needs
to contain enough information to compute the hash value of any word x, the
smoothness property of TSPHFs is no longer statistical but computational.

2.1 SPHFs on Languages of Ciphertexts

In this paper we mainly focus on SPHFs for languages of ciphertexts, whose
corresponding plaintexts verify some relations. The language parameters parse
in two parts (crsL, aux): the public part crsL, known in advance, and the pri-
vate part aux, possibly chosen later. More concretely, crsL represents the public
values: it will define the (labeled) encryption scheme (and will thus contain the

6 B. Abdolmaleki et al.

global parameters and the public key of the (labeled) encryption scheme) with
the global format of both the tuple to be encrypted and the relations it should
satisfy, and possibly additional public coefficients. While aux represents the pri-
vate values: it will specify the relations, with more coefficients or constants that
will remain private, i.e,. the message encrypted in the ciphertext in such lan-
guages. We will henceforth denote such languages by Laux. Since in this paper
we mostly focus on constructing a UC-secure commitment scheme where the
crs is independent of the ciphertext (the word of the language), we focus on
KV-SPHFs as used in [6,7,25].

Language Representation. Similar to [6], for a language Laux, we assume
there exist two positive integers k and n, a function Γ : S → G

k×n, and a family
of functions Θaux : S → G

1×n, such that x ∈ S (x ∈ Laux) iff ∃λ ∈ Z
1×k
p such

that Θaux(x) = λΓ (x). In other words, we assume that x ∈ Laux, if and only if,
Θaux(x) is a linear combination of (the exponents in) the rows of some matrix
Γ (x). For a KV-SPHF, Γ is supposed to be a constant function (independent of
the word x). Otherwise, one gets a GL-SPHF. We furthermore require that when
knowing a witness w of the membership x ∈ Laux, one can efficiently compute
the above linear combination λ. This may seem a quite strong requirement, but
this is actually satisfied by very expressive languages over ciphertexts such as
ElGamal, CS and variants.

In the following, we briefly illustrate it on a KV-SPHF for the language of
(labeled) CS ciphertexts encrypting a message [m]1 ∈ G1 and aux := [m]1.

(Labeled) CS Ciphertext Language. The CS IND-CCA2 secure public-key
encryption scheme in an abelian cyclic group G1 of order p is defined as fol-
lows: the secret key sk is (x1, x2, y1, y2, z) ←$Z

5
p. Assume [g1]1, [g2]1 are two dif-

ferent independent generators of G1. Let H be a collision-resistant hash func-
tion. The public key is pk = ([g1, g2, h, c, d]1,H), where [c]1 = x1[g1]1 + x2[g2]1,
[d]1 = y1[g1]1 + y2[g2]1, h = z[g1]1. The encryption of [m]1 with randomness
r ←$Zp is defined as [c]1 = [u1, u2, e, v]1 where [u1]1 = r[g1]1, [u2]1 = r[g2]1,
[e]1 = [m]1+r[h]1, [v]1 = r([c]1+ξ[d]1), where ξ = H([u1]1, [u2]1, [e]1). In case of
labeled CS with label t, the hash value is computed as ξ = H(t, [u1]1, [u2]1, [e]1).

Smooth Projective Hash Function for (Labeled) CS Ciphertexts. With
the notation introduced earlier, the hashing key is a vector hk = α ←$Z

n
p , while

the projection key is, for a word x, hp = [Γ (x)]1α ∈ G
k
1 (if Γ depends on x, this

leads to a GL-SPHF, otherwise, one obtains a KV-SPHF). We have:

hash(hk,Laux, x) = Θaux · α = λ · hp = projhash(hp,Laux, x, w)

The parameters Γ , λ and, Θ[m]1 immediately lead to the KV-SPHF on (labeled)
CS, introduced in [6]: with hk = (η1, η2, θ, μ, ι) ←$Z

5
p, the product with Γ leads

A Framework for UC-Secure Commitments 7

to, hp = (hp1 = η1[g1]1 + θ[g2]1 + μ[h]1 + ι[ι]1, hp2 = η2[g1]1 + ι[d]1) and,

H = hash(hk, (pk, [m]1), [c]1) = (η1 + ξη2)[u1]1 + θ[u2]1 + μ([e]1 − [m]1) + ι[v]1
= r[hp1]1 + rξ[hp2]1 = projhash(hp, (pk, [m]1), [c]1, r) = pH.

The analysis showing perfect smoothness can be found in [7].

3 Publicly Computable SPHFs

In this section we show how to construct Publicly Computable SPHFs (PC-
SPHFs) in a bilinear group from SPHFs. Our PC-SPHF framework is similar
to the generic framework for SPHFs in [6] with some slight modifications. Con-
ceptually, the construction of PC-SPHF is inspired by TSPHFs [7], but with
completely different motivations and algorithms. A PC-SPHF is an extension
of a classical SPHF and in particular based upon an SPHF which can be con-
structed in the source groups of a bilinear group, i.e., the SPHF itself is pairing-
free. The PC-SPHF builds upon the SPHF and is then instantiated in a bilinear
group (p,G1,G2,GT , ē). The third mode of hashing provides a means to publicly
compute a representation of the hash of the underlying SPHF in GT without
having access to secret information hk and w. Also for PC-SPHFs, the algorithm
projkg takes a hashing key hk, a language Laux, and a word x and outputs a
projection key hp = (hp1, hp2) ∈ G

k
ι × G

n
3−ι, where hp1 is the projection key

of the underlying SPHF and hp2 is some representation of the hashing key hk.
We note the the PC-SPHF is actually defined with respect to a family of lan-
guages {Laux}aux∈AUX parametrized by aux, i.e., the message encrypted using the
encryption scheme associated to the SPHF, but we will not make this explicit
for the sake of readability and will always write Laux as well as aux.

Definition of PC-SPHFs. In the following we assume an SPHF on languages of
ciphertexts (cf. Sect. 2.1 for the notation) instantiated in the source groups of
a bilinear group (p,G1,G2,GT , ē) and let ι ∈ {1, 2} (depending on the concrete
SPHF). We recall that the hashing key of the SPHF is a vector hk = α ←$Z

n
p ,

while the projection key is, for a word x, hp = [Γ (x)]ια ∈ G
k
ι .

Definition 3. A PC-SPHF for language Laux based upon SPHF is defined by
the following algorithms:

Pgen(1λ,Laux): Takes a security parameter λ and language Laux and generates
the global parameters pars, and the crsLaux . It outputs (pars, aux, crsLaux).

hashkg(Laux): Takes a language Laux and outputs a hashing key hk = α ←$Z
n
p

for the language Laux of the underlying SPHF.
projkg(hk, crsLaux , x): Takes a hashing key hk, a CRS crs, and possibly a word x

and outputs a projection key hp = (hp1, hp2) ∈ G
k
ι ×G

n
3−ι, possibly depending

on x, where hp1 is the projection key of the underlying SPHF and hp2 is some
representation of hk.

8 B. Abdolmaleki et al.

hash(hk, crsLaux , aux, x): Takes a hashing key hk, a CRS crs, aux, and a word x
and outputs a hash H ∈ Gι, being the hash of the underlying SPHF.

projhash(hp, crsLaux , aux, x, w): Takes a projection key hp, a CRS crsLaux , aux, a
word x, and a witness w for x ∈ Laux and outputs a hash pH ∈ Gι, being the
projective hash of the underlying SPHF.

pchash(hp, crsLaux , aux, x): Takes a projection key hp, a CRS crsLaux , aux, and a
word x, and outputs a hash pcH ∈ GT .

A PC-SPHF must satisfy the following properties:

Perfect Correctness. For any (pars, aux, crsLaux) ← Pgen(1λ,Laux) and any
word x ∈ Laux with witness w, for any hk ← hashkg(Laux) and for hp ←
projkg(hk, crsLaux , x):

pH • [1]3−ι = pcH.

The (t, ε)-Soundness Property. For any (pars, aux, crsLaux) ← Pgen(1λ,Laux),
given crsLaux and the projection key hp, no adversary running in time at
most t can produce a value aux, a word x and valid witness w such that
projhash(hp, crsLaux , aux, x, w) �= hash(hk, crsLaux , aux, x), with probability at
least ε. Perfect soundness requires that this holds for any t and any ε > 0.

Computational Smoothness. The computational smoothness experiment is
provided in Fig. 1. For a language Laux and adversary A, the advantage is
defined as follows:

Advcsmooth
Laux,A (λ) = |Pr[Expcsmooth−0(A, λ) = 1] − Pr[Expcsmooth−1(A, λ) = 1]|.

and we require that Advcsmooth
Laux,A (λ) ≤ negl(λ).

Fig. 1. Experiments Expcsmooth-b for computational smoothness.

Security Analysis. The correctness and the perfect soundness are easy to verify
from the construction, and so the resulting PC-SPHF is correct and sound.
Subsequently, we prove the computational smoothness of the PC-SPHF under
the XDH assumption, i.e., the DDH assumption in Gι. For the sake of exposition,
we assume that the SPHF is instantiated in G1 below, i.e., ι = 1.

A Framework for UC-Secure Commitments 9

Fig. 2. Experiment Expint
B (pars) for the proof of smoothness in Theorem 1.

Theorem 1. Let XDH hold, then PC-SPHF is computationally smooth.

Proof. We first reduce the smoothness to the following computational assump-
tion: for all λ, pars ∈ Pgen(1λ), and PPT adversaries B, |Expint

B (pars)−1/2| ≈λ 0,
where Expint

B (pars) is depicted in Fig. 2. Let B be allowed to make only one query
to the oracle O to obtain a tuple (([Γα]1, [α]1, [x]1, [x′

iαi]1, [x′
iαixi]1; [α]2))i∈[n].

Let A be the adversary against computational smoothness. We now construct
the following adversary B against the intermediate assumption.

– (([Γα]1, [α]1, [x]1, [zi]1, [zixi]1; [α]2))i∈[n] ← Ob([Γ]1); where if b = 0, zi =
x′

iαi and zi ←$Zp otherwise;
– hp1 ← [Γα]1; hp2 ← [α]2;
– crsLaux = [Γ]1;
– H ← ∑n

i=1[zi]1; x ← [x]1;
– bA ← A(crsLaux , hp, x,H);
– returnb′ ← bA.

Thus, A is successful in breaking the soundness game iff B is successful in
breaking the intermediate assumption.

We now show that the intermediate assumption can be reduced to the XDH
problem, i.e., it is hard to distinguish the two distributions, {[1, a, b, ab]1, [1]2}
and {[1, a, u, ab]1, [1]2} where a, b, u ←$Zp. Let D be the adversary against this
problem, such that given T = {[1, a, z, ab]1, [1]2} it outputs 0 if z = b and 1
otherwise. Given the tuple T , D uses B as a subroutine. In particular, D plays
the role of the challenger for B in the experiment Expint

B (pars) in Fig. 2 and on
input ([Γ]1) works as follows:

1. By random self-reducibility of DDH, generate n DDH challenges [ui, vi, wi]1,
for i ∈ [1 .. n].

2. Let [u]1 = ([u1]1, . . . , [un]1) ∈ G
n, [v]1 = ([v1]1, . . . , [vn]1) ∈ G

n, and [w]1 =
([w1]1, . . . , [wn]1) ∈ G

n.
3. Choose α ←$Z

n
p and set R ← (([Γα]1, [α]1, [ui]1, [viαi]1, [αiwi]1; [α]2))i∈[n].

10 B. Abdolmaleki et al.

4. When B([Γ]1) calls the oracle Ob, the adversary D answers with R.
5. Return B’s output.

Thus, D is successful in breaking the XDH problem iff B is successful in breaking
the intermediate assumption. This concludes the proof. 	

3.1 PC-SPHF on ElGamal Ciphertexts

We design a PC-SPHF for the ElGamal language,

L[m]1 =
{
[c]1 = ([u]1, [v]1) ∈ G

2
1 : ∃r ∈ Zp : ([u]1 = r[g]1, [v]1 = [m]1 + r[h]1)

}
.

The CRS crsLaux contains the ElGamal encryption public key pk = [g, h]1 ∈
G

2
1. With the hashing key hk = (η, θ) ←$Z

2
p and the projection key hp =

([hp1]1, [hp2]2), where [hp1]1 = η[g]1 + θ[h]1, and [hp2]2 = [η, θ]2 ∈ G
2
2, and

aux = [m]1, the hash values of the PC-SPHF are defined as follows:

H = hash(hk, crsLaux , [m]1, [c]1) = η[u]1 + θ([v]1 − [m]1) ∈ G1

pH = projhash(hp, crsLaux , [m]1, [c]1, r) = r[hp1]1 ∈ G1

pcH = pchash(hp, crsLaux , [m]1, [c]1) = [u]1 • [hp21]2 + ([v]1 − [m]1) • [hp22]2 ∈ GT

where we observe that H • [1]2 = pH • [1]2 = pcH.

3.2 PC-SPHF on (Labeled) Cramer-Shoup Ciphertexts

We show how to extend the SPHF on (labeled) CS ciphertexts into a PC-SPHF.
The CRS crsLaux contains the encryption public key pk. With the hashing key
hk = (η1, η2, θ, μ, ι) ←$Z

5
p and the projection key hp = ([hp1]1, [hp2]2), where

[hp11]1 = η1[g1]1+θ[g2]1+μ[h]1+ι[c]1, and [hp12]1 = η2[g1]1+ι[d]1, and [hp2]2 =
[η1, η2, θ, μ, ι]2 ∈ G

5
2, and aux = [m]1, the hash values of the PC-SPHF are defined

as follows:

H = hash(hk, crsLaux , [m]1, [c]1)
= (η1 + ξη2)[u1]1 + θ[u2]1 + μ([e]1 − [m]1) + ι[v]1 ∈ G1

pH = projhash(hp, crsLaux , [m]1, [c]1, r) = r[hp11]1 + rξ[hp12]1 ∈ G1

pcH = pchash(hp, crsLaux , [m]1, [c]1)
= [u1]1 • [hp21]2 + [u1]1 • ξ[hp22]2 + [u2]1 • [hp23]2 + ([e]1 − [m]1) • [hp24]2

+ [v]1 • [hp25]2 = [u1]1 • [η1]2 + [u1]1 • ξ[η2]2 + [u2]1 • [θ]2
+ ([e]1 − [m]1) • [μ]2 + [v]1 • [ι]2 ∈ GT

This PC-SPHF construction for labeled CS ciphertexts will be the core of con-
structing UC secure commitment scheme in the next section.

A Framework for UC-Secure Commitments 11

4 UC-Secure Commitment Scheme from PC-SPHFs

In this section, we introduce a direct application of the previous PC-SPHF on
labeled CS ciphertexts to construct an efficient UC-secure commitment. Intu-
itively, the commit phase contains a labeled CS ciphertext. The projective hash
pH will be revealed in the opening phase. The verification phase can be done
by computing pcH. Finally, the simulator by having access to the trapdoor hk,
computes the hash H as the simulated proof pH. Before presenting our concrete
construction, we describe a generic UC-secure commitment scheme from any
IND-CCA secure labeled encryption scheme with an associated PC-SPHF. Our
efficient UC-secure commitment is an instantiation of this generic commitment.

4.1 Generic UC-Secure Commitment

The ideal functionality of a commitment scheme is depicted in Fig. 3. It has
been proposed by Canetti and Fischlin [16]. Note that the functionality now
takes another unique “commitment identifier” cid, which may be used if a sender
commits to the same receiver multiple times within a session. We assume that
the combination of sid and cid is globally unique. Our generic commitment,
depicted in Fig. 4, is secure in the UC framework against adaptive corruptions
(assuming reliable erasure), with a common reference string for any PC-SPHF
on the language of a valid ciphertext on a message M under a labeled IND-CCA-
secure encryption scheme. More formally, we show the following:

Fig. 3. Functionality Fmcom for committing multiple messages

Theorem 2. The commitment scheme in Fig. 4 securely realizes Fmcom in the
CRS model against adaptive corruptions (assuming reliable erasure), provided
that (i) Π = (KGen,Enc,Dec), is an IND-CCA labeled PKE; (ii) the PC-SPHF
is (t, ε)-sound and computationally smooth.

12 B. Abdolmaleki et al.

Fig. 4. Generic UC-Secure Commitment from PC-SPHFs.

For the proof we note that the simulator Sim first generates the CRS, with an
encryption key pk, while knowing the decryption key sk for an IND-CCA-secure
labeled encryption scheme, and the parameters for the PC-SPHF.

Proof. Intuitively, we construct an ideal-world adversary Sim that runs a black-
box simulation of the real-world adversary A by simulating the protocol execu-
tion and relaying messages between A and the environment Z. Sim proceeds as
follows in experiment IDEAL:

– Upon the environment Z requires some uncorrupted party Pi to send
(commit, sid, cid, Pi, Pj ,M) to the functionality, Sim is informed that a com-
mitment operation took place, without knowing the committed message M .
Thus, Sim selects a fake random message M ′ ←$G1, and computes an encryp-
tion c of M ′ ∈ G1. Upon P ′

j outputs (receipt, sid, cid, Pi, Pj), the adversary
A is given (commit, sid, cid, c). Sim allows Fmcom to proceed with the delivery
of message (commit, sid, cid, Pi, Pj) to Pj .

– If Z requires some uncorrupted party Pi to open a previously generated com-
mitment c to some message M ∈ G1, Sim learns M from Fmcom and, using
the trapdoor hk of the simulated PC-SPHF hp, generates a simulated proof H
that satisfies the verification algorithm Ver for the message M obtained from
Fmcom. The internal state of P ′

i is modified to be H, which is also given to A
as the real-world opening.

– When A delivers (commit, sid′, cid′, c′) for P ′
i to P ′

j , (and P ′
j still has not

received a commitment with cid′ from P ′
i), Sim proceeds as follows:

A Framework for UC-Secure Commitments 13

(a) If P ′
i is uncorrupted, Sim notifies Fmcom that the commitment (sid′, cid′)

can be delivered. The receipt message from Fmcom is delivered to the
dummy Pj as soon as the simulated P ′

j outputs his own receipt message.
(b) If Pi is a corrupted party, then c′ has to be extracted. Indeed, Sim checks

if c′ is well-formed. It uses sk corresponding to pk to decrypt c′.
(c) For an invalid c′, the commitment is ignored. Otherwise, Sim receives M

and sends (commit, sid′, cid′, Pi, Pj ,M) to Fmcom, which causes Fmcom to
prepare a receipt message for Pj . The latter is delivered by Sim as soon
as P ′

j produces his own output.
– If A gets a simulated corrupted P ′

i to correctly open a commitment
(commit, sid′, cid′, c′) to M ′, Sim compares M ′ to M that was previ-
ously extracted from c′ and aborts if M �= M ′. Otherwise, Sim sends
(open, sid, cid, Pi, Pj ,M) on behalf of Pi to Fmcom. If A provides an incor-
rect opening, Sim ignores this opening.

– If A decides to corrupt some party P ′
i , Sim corrupts the corresponding party

Pi in the ideal world and obtains all his internal information. In order to match
the received opening information of Pi, Sim modifies all opening information
about the unopened commitments generated by P ′

i . This modified internal
information is given to A. For each commitment intended for Pj but for
which Pj did not receive (commit, sid, cid, Pi, Pj), the newly corrupted P ′

i is
allowed to decide what the committed message will be. A new message M is
thus provided by A and Sim informs Fmcom that M supersedes the message
chosen by Pi before his corruption.

We consider a sequence of hybrid games between the real and ideal worlds
and show that the commitment scheme emulates the ideal functionality against
adaptive corruptions with erasures. This is a general approach which one can
follow to prove the security of a commitment scheme in the UC model. The
games starts from the real game, adversary A interacts with real parties, and
ends up with the ideal game. In the ideal game, we build Sim that interfaces
between adversary A and ideal functionality Fmcom.

Game0: This is called real game (HybridFmcom), which corresponds to the real
world in the CRS model. In this game, the real protocol is executed between
committer Pi and receiver Pj . Environment Z adaptively chooses the input for
honest committer Pi and receives output of the honest parties. Naturally, there is
an adversary A that attacks the real protocol in the real world, i.e., it can corrupt
some parties and see all flows from parties. In the case of corruption, A can read
the current inner state of the corrupted party and also can fully control it. In
this game, environment Z can control adversary A and see exchanged messages
among all honest parties, and all of A’s interactions with other parties.

Game1: In the setup phase of this game, simulator Sim chooses hk ←$Z
n
p , and

generates hp ← projkg(hk, crs), crsLaux and sets crs = (crsLaux , hp). In the
commit phase, upon receiving a query (commit, sid, cid, Pi, Pj ,M) from Z, cor-
rupted party P ′

i computes c using the labeled IND-CCA encryption scheme
and sends (commit, sid, cid, c) to receiver Pj . In the commit phase, after receiv-
ing (commit, sid, cid, Pi, Pj , c), Sim decrypts and stores M ′ = Dectsk(c), where

14 B. Abdolmaleki et al.

t ← (sid, cid, Pi). In the opening phase, when P ′
i successfully opens to message

M , simulator Sim outputs (reveal, t,M ′) to environment Z.

Lemma 1. If Π = (KGen,Enc,Dec), the labeled PKE is IND-CCA secure, and
PC-SPHF is computationally smooth, the output of Z in Game0 and Game1 is
computationally indistinguishable.

Proof. In Game1, we observed that after P ′
i opened commitment to message M ,

Sim reveals decrypted message M ′. Suppose that bad defines the case that sender
P ′

i successfully opened message M but M �= M ′. Now, the claim states that if
bad happens, that is the smoothness of PC-SPHF is broken; which it happens
with a negligible probability. More precisely, let M ′ �= M . Then, in the opening
phase it uses π = pH and successfully opens the commitment to M ′. The case
impels party P ′

i comes up with a valid proof for PC-SPHF where it turns that
smoothness of PC-SPHF is broken.

Hence, the case bad happens only with a negligible probability and two games
Game0 and Game1 are computationally indistinguishable in a view of Z. 	

Game2: This game is the same with Game1, the only difference is that simulator
Sim modifies the simulation of an honest sender Pi. In the commit phase, after
receiving a query (commit, sid, cid, Pi, Pj ,M) from Z, the simulator Sim computes
[c]1 and sends (commit, sid, cid, c) to Pj (note that we assume that Sim knows M).
In the opening phase, upon getting an Open query, Sim uses simulates a proof π
by computing the hash value H. Finally, simulator Sim outputs (reveal, π,M)
to the environment Z.

Lemma 2. The output of Z in Game1 and Game2 is computationally indistin-
guishable.

Proof. The proof of this lemma is straightforward and lies in the soundness
property of the PC-SPHF. Following the mentioned property, Z’s views are
statistically close in both games. 	

Game3: In this game, similar to last one, Sim again modifies the simulation of
an honest sender Pi. But, in the commitment phase, Sim commits to message
M = [0]1 = 1. Accurately, upon receiving a query (commit, sid, cid, Pi, Pj ,M)
from Z, the simulator Sim computes c with M = 1 and sends (commit, sid, cid, c)
to Pj . In the opening phase, similar to Game2, upon getting Open query, Sim
simulates a π by computing the hash value H using the trapdoor keys (hk, τ).
Finally, simulator Sim outputs (reveal, π,M) to the environment Z.

Lemma 3. Let Π = (KGen,Enc,Dec), a labeled PKE, be IND-CCA. Then, the
Z’s view in Game2 is computationally indistinguishable from Game3.

Proof. From the description of Game3, we observe that the only difference with
Game2 is that, in this game the simulator Sim computes c with 1 instead of M .
Actually, by having the trapdoor keys of the PC-SPHF, Sim can commit 1 in the
commitment phase, and opens to M in the opening phase. Also by considering

A Framework for UC-Secure Commitments 15

the IND-CCA property, we can say that Game2 and Game3 are statically close.
As analyzed in Game1, Pr[bad0] = Pr[bad1] = negl(λ). Similarly, in analysis of
Game2, we observed that Game1 and Game2 are statistically indistinguishable,
so Pr[bad2] = Pr[bad1] = negl(λ). As already Game2 and Game3 are statically
close, we conclude that the Pr[bad2] ≈ Pr[bad3] = negl(λ). 	

Game4: This game corresponds to the ideal world in the CRS model. In the
ideal world, there exists an ideal functionality Fmcom and the task of the honest
parties in the ideal world simply convey inputs from environment Z to the ideal
functionalities and vice versa. In ideal word, the ideal honest parties interact
only with the environment Z and the ideal functionalities. In this game, the
ideal-world adversary Sim proceeds as follows:

– Initialization step: Sim chooses hk ←$Z
n
p , and generates hp ← projkg(hk, crs),

crsLaux and sets crs = (crsLaux , hp). In addition, it chooses a collision-
resistant hash function H.

– Simulating the communication with Z: Every input value that Sim receives
from Z is written on A’s input tape (as if coming from Z) and vice versa.

– Simulating the commit phase when committer Pi is honest: Upon receiving
the receipt message (receipt, sid, cid, Pi, Pj) from Fmcom, Sim computes c
with M = [0]1 and sends (commit, sid, cid, c) to Pj .

– Simulating the opening phase when Pi is honest: Upon receiving input
(open, sid, cid, Pi, Pj ,M) from Fmcom, simulator computes proof π = pH, and
sends (sid, cid, Pi,M, π) to Pj .

– Simulating adaptive corruption of Pi after the commit phase but before the
opening phase: When Pi is corrupted, Sim can immediately read ideal Pi’s
inner state and obtain M . Then, Sim produces c as in the case of the opening
phase when Pi is honest and outputs (reveal, sid, cid, c, π,M) to the Pj .

– Simulating the commit phase when committer P̂i is corrupted and the receiver
Pj is honest: After receiving (commit, sid, cid, c) from P̂i controlled by A in
the commit phase, Sim decrypts M ′ = Dectsk(c), where t ← (sid, cid, Pi) and
sends (com, t, Pj ,M

′) to Fmcom.
– Simulating the opening phase when committer P̂i is corrupted and receiver Pj

is honest: Upon receiving, (open, sid, cid,M, π) from corrupted committer P̂i

controlled by A, as it expects to send to Pj , Sim sends (open, sid, cid) to Fmcom.
(Fmcom follows its codes: If a tuple (sid, cid, P ′

i , Pj ,M
′) with the same (sid, cid)

was previously stored by Fmcom, Fmcom sends (reveal, sid, cid, P ′
i ,M

′) to ideal
receiver Pj and Sim. Then, ideal receiver Pj convey it to Z).

– Simulating adaptive corruption of Pj after the commit phase but before the
opening phase: When Pj is corrupted, Sim simply outputs (reveal, sid, cid, c).

By construction, Game4 is identical to the Game3. 	

4.2 Efficient Instantiation

Let us now instantiate this generic commitment with the labeled CS encryption
scheme and our PC-SPHF on labeled CS ciphertexts. The resulting scheme is

16 B. Abdolmaleki et al.

depicted in Fig. 5. The commitment consists of 4 elements in G1 and the opening
of one element in G1, which, to the best of our knowledge, makes it the most
efficient non-interactive UC-secure commitment scheme.

For concrete figures, we compare our instantiation to the most efficient instan-
tiation under the plain DDH assumption in [2]. For the comparison let us assume
a type 3 bilinear group with a desired security level of 128 bit. A popular choice
are Baretto-Naehrig (BN) or Barreto-Lynn-Scott (BLS) curves. A conservative
estimate for this security level yields elements in G1, G2 and GT of size 2 · 384,
4 · 384 and 12 · 384 bits for BN and BLS12 and 2 · 320, 4 · 320 and 24 · 320
for BLS24 (without point compression) respectively [26]. Assuming that we use
elliptic curves over prime fields to instantiate the plain DDH setting, elements
of G will have at least 2 · 256 bits (without point compression) when target-
ing 128 bit security. Consequently, assuming point compression is used in both
schemes, the commitment and opening size of the UC-commitment in [2] is 1799
and 512 bits respectively. Our UC-secure commitment has a commitment and
opening size of 1284 and 321 bit respectively, improving [2] by about 30%. Fur-
thermore, compared to the most efficient construction in bilinear groups (i.e.,
[1]), we obtain an improvement in the opening size of a factor 4.

Fig. 5. UC-Secure commitment from PC-SPHF for the labeled CS encryption scheme.

A Framework for UC-Secure Commitments 17

5 Anonymous Credential System-Based Message
Transmission

Anonymous credentials (ACs) were introduced in the seminal work of
Chaum [17], and allow users to anonymously authenticate to a variety of services.
Typical use-cases of ACs involve three main parties, users, authorities (organi-
zations), and verifiers (servers). Each user can receive credentials (which can be
a set of attributes) from authorities, and register pseudonyms with authorities
and verifiers. Then users can prove to verifiers that a subset of their attributes
verifies some policy P . The pseudonyms associated to the identity of the user
should be unlinkable to its exact identity, i.e., another entity should not be able
to check whether two pseudonyms are associated with the same identity. Due to
their wide range of real-world applications, anonymous credentials have received
a lot of attention from the cryptographic community, e.g., [5,11–14,17,22].

Fig. 6. UC-Secure Anonymous Credential System-Based Message Transmission from
an PC-SPHF.

In this section, we revisit the use of anonymous credentials for message recov-
ery proposed in [9]. Similar to [9], we present a constant-size, round-optimal pro-
tocol that allows to use an anonymous credential to retrieve a message without
revealing the identity of the receiver in a UC secure way, but more efficient than
the one proposed in [9]. We follow the scenario of [9], and assume that different
organization issue credentials to users. The full construction is shown in Fig. 6.

18 B. Abdolmaleki et al.

For the security analyzing, we first describe the ideal functionality Fac

for Anonymous Credential-Based Message Transmission proposed by [9]. It is
depicted in Fig. 7. The user Ui received Doc form the server S when her creden-
tials Cred comply with the policy P .

Fig. 7. Functionality Fac for Ideal Functionality for Anonymous Credential-Based Mes-
sage Transmission

Theorem 3. The Anonymous Credential System-Based Message Transmission
protocol described in Fig. 6 is UC secure in the presence of adaptive adversaries,
assuming reliable erasures and authenticated channels.

Proof. From a high level point of view, in the case of adaptive corruptions and
for the simulating procedure we use an extractable and equivocable commitment,
which allows the simulator Sim to simply open the commitment to any message
(credential). Intuitively, the equivocability property of the commitment enables
Sim to adapt the incorrect credential and the used randomness such that they
seem to be in the language. By extractability property, when simulating the
sever, Sim knows whether it has to send the correct message. Recall that by
adaptive corruption we mean the adversary A is able to corrupt any player at
any time during the execution of the protocol. Notice that the simulator Sim first
generates the CRS crs and the PC-SPHF parameters. As usual, we can construct
an ideal-world adversary Sim that runs a black-box simulation of the real-world
adversary A by simulating the protocol execution and relaying messages between
A and the environment Z. Sim proceeds as follows in experiment IDEAL. The
sketch of the proof is as follows,

– In pre-flow phase, upon receiving the send query from Fac, Sim generates a
key pair (pk, sk) (he knows it from an honest sender has sent a pre-flow).

A Framework for UC-Secure Commitments 19

– Upon receiving receivequery from Fac, by using an equivocable commit-
ment, Sim computes the tuple (pH, [c]1, cm) with label (sid, cid, Pi, Pj) and
a ciphertext cJ ← Enccpa

pk (J) where JF is a random value. Note that Sim
already has received a pre-flow pk from an honest or a corrupted sender.

– If Z requires uncorrupted server S who received the tuple (cJ , [c]1, cCred) from
a corrupted Ui, Sim decrypts the ciphertexts cJ , and cCred, and obtains J
and [Credi]1. Sim, and then computes F (J). It extracts the committed values
(Cred) and check if it is correct and sends receive to Fac.

– When Z requires uncorrupted user Ui who received the tuple (cS , hpS) from
a corrupted S, Sim computes pHD and obtains Doc and uses this value in a
send query to Fac.

– In the case of an honest server, when Sim receives a receive query and Doc
from Fac, it sends Doc to the corrupted user.

– When Z requires uncorrupted server S who is interacting with an uncorrupted
user Ui, Sim sets Doc = 0 and choose JF randomly instead of computing it
correctly by F (J). It computes the commitment (cJ , [c]1, cCred). In case of
corruption afterwards, due to equivocability property of the commitment the
value JF can be adapted during the simulation such that it gives the message
Doc received by the user in case his credentials comply with the policy. 	

6 Open Problem

In [24], Katz and Vaikuntanathan constructed the first (approximate) SPHF
for a lattice-based language: the language of ciphertexts of some given plain-
text for an LWE-based IND-CCA encryption scheme. Later, by using harmonic
analysis, Benhamouda et al. [8] improved the Katz-Vaikuntanathan construc-
tion, where the construction is over a tag-based IND-CCA encryption scheme
a la Micciancio-Peikert [27]. An interesting open question is the construction of
PC-SPHFs for the class of lattice-based languages.

Acknowledgments. This work was supported by the EU’s Horizon 2020 ECSEL
Joint Undertaking project SECREDAS under grant agreement n◦783119, the Aus-
trian Science Fund (FWF) and netidee SCIENCE project PROFET (grant agreement
P31621-N38) and the Estonian Research Council grant PRG49.

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-
friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part I. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-42033-7_12

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Removing erasures with explain-
able hash proof systems. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp.
151–174. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-
8_7

https://doi.org/10.1007/978-3-642-42033-7_12
https://doi.org/10.1007/978-3-642-42033-7_12
https://doi.org/10.1007/978-3-662-54365-8_7
https://doi.org/10.1007/978-3-662-54365-8_7

20 B. Abdolmaleki et al.

3. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for con-
ditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 671–689. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03356-8_39

4. Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zając, M.: DL-extractable
UC-commitment schemes. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung,
M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 385–405. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21568-2_19

5. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_7

6. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_25

7. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. Cryptology ePrint
Archive, Report 2015/188 (2015). http://eprint.iacr.org/2015/188

8. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lat-
tices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol.
10770, pp. 644–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5_22

9. Blazy, O., Chevalier, C.: Structure-preserving smooth projective hashing. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp.
339–369. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-
6_12

10. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-preserving proto-
cols with smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 94–111. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28914-9_6

11. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman,
O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6_1

12. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6_7

13. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_20

14. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

16. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8_2

https://doi.org/10.1007/978-3-642-03356-8_39
https://doi.org/10.1007/978-3-642-03356-8_39
https://doi.org/10.1007/978-3-030-21568-2_19
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-40041-4_25
http://eprint.iacr.org/2015/188
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-662-53890-6_12
https://doi.org/10.1007/978-3-662-53890-6_12
https://doi.org/10.1007/978-3-642-28914-9_6
https://doi.org/10.1007/978-3-642-28914-9_6
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2

A Framework for UC-Secure Commitments 21

17. Chaum, D.: Showing credentials without identification. In: Pichler, F. (ed.) EURO-
CRYPT 1985. LNCS, vol. 219, pp. 241–244. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39805-8_28

18. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7_4

19. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2

20. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1_8

21. Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally
composable string commitments with adaptive security. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25385-0_25

22. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019). https://doi.org/10.1007/s00145-018-9281-4

23. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1

24. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7_37

25. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_18

26. Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS
advances on the security of pairing-based cryptography. In: Phan, R.C.-W., Yung,
M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 83–108. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61273-7_5

27. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_41

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

https://doi.org/10.1007/3-540-39805-8_28
https://doi.org/10.1007/3-540-39805-8_28
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-25385-0_25
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-319-61273-7_5
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/3-540-46766-1_9

Subverting Decryption in AEAD

Marcel Armour1(B) and Bertram Poettering2

1 Royal Holloway, University of London, Egham, UK
marcel.armour.2017@rhul.ac.uk

2 IBM Research, Zurich, Switzerland
poe@zurich.ibm.com

Abstract. This work introduces a new class of Algorithm Substitution
Attack (ASA) on Symmetric Encryption Schemes. ASAs were introduced
by Bellare, Paterson and Rogaway in light of revelations concerning mass
surveillance. An ASA replaces an encryption scheme with a subverted
version that aims to reveal information to an adversary engaged in mass
surveillance, while remaining undetected by users. Previous work posited
that a particular class of AEAD scheme (satisfying certain correctness
and uniqueness properties) is resilient against subversion. Many if not all
real-world constructions – such as GCM, CCM and OCB – are members
of this class. Our results stand in opposition to those prior results. We
present a potent ASA that generically applies to any AEAD scheme,
is undetectable in all previous frameworks and which achieves success-
ful exfiltration of user keys. We give even more efficient non-generic
attacks against a selection of AEAD implementations that are most used
in practice. In contrast to prior work, our new class of attack targets the
decryption algorithm rather than encryption. We argue that this attack
represents an attractive opportunity for a mass surveillance adversary.
Our work serves to refine the ASA model and contributes to a series of
papers that raises awareness and understanding about what is possible
with ASAs.

Keywords: Algorithm substitution attacks · Privacy · Symmetric
encryption · Mass surveillance

1 Introduction

The Snowden revelations in 2013 exposed that mass surveillance is a reality.
They also showed that even sophisticated adversaries with large resources have
been unable to break well established cryptographic primitives and hardness
assumptions, shifting their focus to circumventing cryptography. Together, these

The research of Armour was supported by the EPSRC and the UK government as part
of the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of
London (EP/P009301/1). The research of Poettering was supported by the European
Union’s Horizon 2020 project FutureTPM (779391). The full version of this article is
available at https://eprint.iacr.org/2019/987 [3].

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 22–41, 2019.
https://doi.org/10.1007/978-3-030-35199-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_2&domain=pdf
http://orcid.org/0000-0001-6525-5141
https://eprint.iacr.org/2019/987
https://doi.org/10.1007/978-3-030-35199-1_2

Subverting Decryption in AEAD 23

two facts suggest that the study of subverted implementations of cryptographic
primitives and protocols is a fruitful area of research; Rogaway has gone so far as
to call it a moral imperative [23]. The reader is referred to the survey by Schneier
et al. [28], which provides a broad overview of subversion of cryptography, with
some useful case studies. The idea that an adversary may embed a backdoor or
otherwise tamper with the implementation or specification of a cryptographic
scheme or primitive predates the Snowden revelations, and was initiated in a line
of work by Young and Yung that they named kleptography [30,31]. This area of
study can be traced back to Simmons’ work on subliminal channels, e.g. [29],
undertaken in the context of nuclear non-proliferation during the Cold War. In
the original conception, kleptography considered a saboteur who designs a cryp-
tographic algorithm whose outputs are computationally indistinguishable from
the outputs of an unmodified trusted algorithm. The saboteur’s algorithm should
leak private key data through the output of the system, which was achieved using
the same principles as Simmons’ earlier subliminal channels.

Preceding Work. Post-Snowden, work in this area was reignited by Bellare,
Paterson and Rogaway (BPR) [8], who formalised study of so-called algorithm
substitution attacks (ASAs) through the specific example of symmetric encryp-
tion schemes. In abstract terms, the adversary’s goal in an ASA is to create
a subverted implementation of a scheme that breaks some aspect of security
(such as IND-CPA) while remaining undetected by the user. There is a ten-
sion for ‘Big Brother’ between mounting a successful attack and being detected;
clearly an attack that simply replaces the encryption algorithm with one that
outputs the messages in plaintext would be devastating yet trivially detectable.
BPR stipulate that subverted schemes should at the very least decrypt correctly
(according to the unmodified specification) in order to have some measure of
resistance to detection, going on to define the success probability of a mass
surveillance adversary in carrying out a successful attack, as well as the advan-
tage of a user in detecting that an attack is taking place. BPR [8] demonstrate
an attack against randomized schemes that relies on influencing the random-
ness generated in the course of encryption. Their attack applies to a sub-class
of randomized schemes satisfying a property they call ‘coin-injectivity’. Lastly,
BPR also establish a positive result that shows that under certain assumptions,
it is possible for authenticated encryption schemes to provide resistance against
subversion attacks.

Degabriele, Farshim and Poettering (DFP) [12] critiqued the definitions
and underlying assumptions of BPR. Their main insight is that perfect
decryptability—as mandated by BPR—is a very strong requirement and arti-
ficially limits the adversary’s set of available strategies. In practice, a subver-
sion with negligible failure probability should be considered effectively correct.1

As DFP note, decryption failures may happen for reasons other than sub-
verted encryption, and if they occur sporadically may easily go unnoticed. DFP

1 This is analogous to the fundamental notion in cryptography that a symmetric
encryption scheme be considered secure even in the presence of adversaries with
negligible advantage.

24 M. Armour and B. Poettering

demonstrate how this can be achieved with an input-triggered subversion, where
the trigger is some input (message, associated data, nonce, or a combination
thereof) that is difficult to guess, making detection practically impossible.

Bellare, Jaeger and Kane (BJK) [6] improved on the attack of BPR, giving
an attack which is effective against all randomized schemes. Whereas the attack
of BPR is stateful and so vulnerable to detection through state reset, the BJK
attack is stateless. BJK furthermore formalised that the desired outcome of an
ASA from the point of view of a mass surveillance adversary is successful key
recovery.

In concurrent work, we study the effects of subverting the receiver in the
setting of message authentication codes [1,2]. Using similar techniques as in the
current report, we provide ASAs that result in successful key exfiltration and
thus universal forgeries.

Contributions. Our work continues a line of investigation that serves to raise
awareness of what is possible with ASAs, and highlights the importance of work
countering subverted implementations. We consider ASAs from a new perspec-
tive that leads to results of practical importance. Recall that BPR established a
covert channel through ciphertexts by manipulating the randomness generation;
their model stipulated perfect decryptability, which resulted in their definitions
being fragile. DFP identified this and proposed tolerating a (minimal) compro-
mise of correctness, allowing trigger messages. We note that attacks employing
trigger messages appear trivial to plant in formal security abstractions like IND-
CPA where the adversary has full control over encrypted messages, associated
data, and nonces. In practice, however, it is certainly questionable that adver-
saries have enough influence on any of the three to conduct DFP style attacks,
as messages are chosen in special formats mandated by applications, nonces are
implemented via counters, etc. We remove these dependencies, complementing
the DFP approach, by attacking from a different angle: leaving perfect cor-
rectness intact, we (minimally) limit ciphertext integrity and establish a covert
channel through decryption error events. Concretely, we manipulate the decryp-
tion algorithm to accept certain bogus ciphertexts. This requires the surveillance
adversary to be able to observe whether a decryption implementation outputs
a message or rejects the ciphertext. In many practical scenarios this is a mild
assumption, for example if a decryption error results in a packet being dropped
and automatically retransmitted. Furthermore, a subverted decryption algorithm
could go beyond this by e.g. influencing timing information in future messages
sent to the network. We conclude that this attack represents an attractive and
easy to implement opportunity for a mass surveillance adversary.

Our results stand in opposition to previous work [6,8,12] which proposed
subversion resilience of a large class of AEAD schemes to which many if not
all real-world constructions such as GCM, CCM and OCB belong, as long as
their nonces are generated deterministically via a shared state maintained by
both encryptor and decryptor.2 The key observation to resolve this apparent
2 The members of this class of schemes are deterministic and satisfy certain technical

correctness and uniqueness properties.

Subverting Decryption in AEAD 25

contradiction is that previous work has assumed, besides explicitly spelled out
requirements like uniqueness of ciphertexts and perfect decryptability, implicit
notions such as integrity of ciphertexts. In the ASA setting for AEAD where
undermining the confidentiality of a scheme is the key goal of an adversary, it
seems just as natural to assume that the adversary is also willing to compromise
the integrity guarantees as well.

Related Work. We outlined the key publications on ASAs against symmetric
encryption schemes above. Other works, briefly described here, consider subver-
sion on different primitives and in different contexts. Berndt and Liskiewicz [9]
reunite the fields of cryptography and steganography. Ateniese, Magri and Ven-
turi [4] study ASAs on signature schemes. In a series of work, Russell, Tang, Yung
and Zhou [24–27] consider ASAs on one-way functions, trapdoor one-way func-
tions and key generation as well as defending randomized algorithms against
ASAs. Goh, Boneh, Pinkas and Golle [18] show how to add key recovery to
the SSL/TLS and SSH protocols. Dodis, Ganesh, Golovnev, Juels and Risten-
part [13] provide a formal treatment of backdooring PRGs, another form of
subversion. Armour and Poettering [1,2] study subversion options for message
authentication schemes (MAC). Cryptographic reverse firewalls [14,20,21] rep-
resent an architecture to counter ASAs via trusted code in network perimeter
filters. Fischlin and Mazaheri show how to construct ASA-resistant encryption
and signature algorithms given initial access to a trusted base scheme [17]. Fis-
chlin, Janson and Mazaheri [16] show how to immunize (keyed and unkeyed)
hash functions against subversion. Bellare, Kane and Rogaway [7] explore using
large keys to prevent key exfiltration in the symmetric encryption setting. Bel-
lare and Hoang [5] give public key encryption schemes that defend against the
subversion of random number generators.

Camenisch, Drijvers and Lehmann [11] consider Direct Anonymous Attesta-
tion (DAA) in the presence of a subverted Trusted Platform Module (TPM).
We note that subversion attacks on cryptographic primitives (on DAA, but just
as well on message authentication as considered in the present article) manifest
a major attack vector in particular against embedded cryptographic hardware
modules like TPMs. This is because the main goal of such modules is to serve
as a root of trust in exposed devices for which losing system integrity could be
fatal. Subverting a TPM can thus have severe implications. As TPMs are widely
available today, including for being embedded into virtually every modern PC,
subverting them seems to be a promising option to conduct mass surveillance.

Structure. We first recall (Sect. 2) standard definitions for symmetric encryp-
tion schemes and their security. We next give definitions (Sect. 3) that provide
a general framework in which to study ASAs. These have been refined and
extended from prior work, crucially including the decryption oracle which had
been ignored by previous work. Section 4 details our new type of attack, together
with formal theorems quantifying the ability of an adversary to exfiltrate keys
and the ability of the subversion to go undetected. We give two versions of
our ASA: one for a passive adversary (the adversarial model considered by pre-
vious work), which we extend to a second ASA requiring an active trigger: a

26 M. Armour and B. Poettering

modified ciphertext provided to the decryption algorithm. We discuss the results
of a proof-of-concept implementation in Sect. 5. Lastly, Sect. 6 explains how
our attacks can be leveraged to compromise the security of popular practical
schemes even more effectively, demonstrating how powerful ASAs become when
conducted outside the clearly demarcated boundaries of a formal model. Con-
cretely, we give evidence that ASAs against standardized AEAD constructions
like GCM or OCB3 can be even more damaging than our attacks from Sect. 4.

2 Notation and Definitions

Notation. For a natural number k ∈ N, we let [k] = {0, 1, . . . , k − 1}. We refer
to an element x ∈ {0, 1}∗ as a string, and denote its length by |x|. By ε we
denote the empty string. The set of strings of length � is denoted {0, 1}�. In
addition we denote by ⊥ /∈ {0, 1}∗ a reserved special symbol. For x ∈ {0, 1}∗,
we let x[i] denote the i-th bit of x, with the convention that we count from 0,
i.e., we have x = x[0] . . . x[|x|−1]. For two strings x, x′ we denote by x ‖ x′ their
concatenation. If S is a finite set, then s ←$ S denotes choosing s uniformly at
random from S. If A is a randomized algorithm, we write y ←$ A(x) to indicate
that it is invoked on input x (and fresh random coins), and the result is assigned
to variable y. In security games we write AO1,...,Oc =⇒ 1 to denote the event
that the adversary outputs 1 after being given access to the c oracles.

In Appendix A, we recall standard definitions for (length-preserving) pseudo-
random functions and permutations.

2.1 Symmetric Encryption

We focus on the likely most widespread and practically useful encryption prim-
itive: Authenticated Encryption with Associated Data (AEAD). We recall stan-
dard definitions of (deterministic) nonce-based AEAD, as per [22].

AEAD. A symmetric encryption scheme Π providing authenticated encryption
with associated data is a triple of algorithms (Π.Gen,Π.Enc,Π.Dec). Associated
to Π are two parameters, Π.kl and Π.nl, representing the key length and the
nonce length. The key generation algorithm Π.Gen is a probabilistic algorithm
that takes as input the key length Π.kl and returns a key k ∈ {0, 1}Π.kl. Often
Π.Gen is taken as the algorithm choosing k uniformly at random from {0, 1}Π.kl.
The encryption algorithm Π.Enc is deterministic and takes key k, message m,
associated data d and nonce n ∈ {0, 1}Π.nl to deterministically obtain cipher-
text c ← Π.Enc(k,m, d;n). Decryption algorithm Π.Dec is deterministic and
Π.Dec(k, c, d;n) returns either a message m or the special symbol ⊥. For simplic-
ity, we assume that |Π.Enc(k,m, d;n)| is an affine function of the form |m| + τ
where τ is some constant associated to the encryption scheme (all practical
encryption schemes are of this type). We call τ the stretch of the encryption
scheme. Lastly, where the context is clear, we drop the prefix Π.

Subverting Decryption in AEAD 27

Definition 1. A symmetric encryption scheme Π is said to be δ-correct if for
all tuples (m, d;n) it holds that:

Pr [m �= m′ | k ←$ Gen(kl), c ← Enc(k,m, d;n),m′ ← Dec(k, c, d;n)] ≤ δ.

If δ = 0 the scheme is referred to as being perfectly correct.

The classic privacy notion used for AEAD is indistinguishability from random
bits under an adaptive chosen-plaintext-and-nonce attack, utilising standard
game-based definitions. For the authenticity notion, we consider adversaries that
aim to create (strong) forgeries. Security notions are as in [22]. Intuitively, the
scheme provides confidentiality if the privacy advantage of any realistic adversary
is negligible and authenticity if the forging advantage of any realistic adversary
is negligible.

Definition 2. The privacy advantage of an adversary A is given by

Advpriv
Π (A) = Pr

[
AEnc(k,·,·;·) =⇒ 1 | k ←$ Gen(kl)

]
− Pr

[
A$(·,·;·) =⇒ 1

]
,

where the $ oracle returns c ←$ {0, 1}|m|+τ for any query $(m, d;n). We assume
that A is nonce-respecting; that is, A does not make two queries with the same
nonce.

Definition 3. The authenticity advantage of an adversary A is given by

Advauth
Π (A) = Pr

[
AEnc(k,·,·;·),Dec(k,·,·;·) forges | k ←$ Gen(kl)

]
,

where we say that A forges if it receives any m′ �= ⊥ from Dec where we require
that (c, d;n) is not the result of an encryption query (m, d;n). We assume that
A is nonce-respecting; that is, A does not make two encryption queries with the
same nonce.

3 ASAs on Symmetric Encryption Schemes

We now outline the framework which will allow us to describe our concrete ASAs
in Sect. 4. The aim of an ASA is to replace a given (symmetric encryption) scheme
with a compromised version; if the original scheme is denoted Π, we write Π̃ for
its subversion. The attacker may choose to replace one component of the scheme,
or multiple. We model the subverted scheme as having an embedded attacker key
which is shared with an external (mass surveillance) adversary. This approach
was first used by BPR [8]. From the attacker’s perspective, the ASA should be
undetectable by the user and result in effective surveillance. We formalise these
notions as detectability and key recovery. Our definitions are inherited from
prior work [6,8,12]. Whereas previous work assumed that only the encryption
algorithm might be subverted, we have generalised the definitions to reflect the
possibility that any component (one or multiple) of the symmetric encryption

28 M. Armour and B. Poettering

Fig. 1. Game to define the detectability advantage of D with respect to ˜Π, Π.

scheme could be subverted, and adapted to explicitly consider AEAD schemes.
We broadly follow the notational choices of BJK [6].

ASA Syntax. An algorithm substitution attack A on a scheme Π consists of a
triple (A.Gen,A.Ext, Π̃), where:

1. The attacker key generation algorithm A.Gen returns an attacker key kA ∈
{0, 1}A.kl for some constant A.kl.

2. Π̃ = (Π̃.Gen, Π̃.Enc, Π̃.Dec) is a subverted symmetric encryption scheme.
(a) The subverted key generation algorithm Π̃.Gen is a probabilistic algorithm

that takes as input the key length Π̃.kl and the attacker key kA, returning
a key k ∈ {0, 1}˜Π.kl.

(b) The subverted encryption algorithm Π̃.Enc takes the attacker key kA, user

key k, message m, associated data d and nonce n ∈ {0, 1}˜Π.nl, outputting
ciphertext c ← Π̃.Enc(kA, k,m, d;n).

(c) The subverted decryption algorithm Π̃.Dec(kA, k, c, d;n) returns either a
message m or the special symbol ⊥.

3. The key extraction algorithm A.Ext takes as input kA and has oracle access
to both encryption and decryption oracles in the case of an active adversary,
or to a transcript of ciphertexts in the case of a passive adversary. These
notions are formalised in the key recovery game in Fig. 2. The output of this
algorithm is a key k ∈ {0, 1}˜Π.kl.

We require that Π̃.kl = Π.kl and Π̃.nl = Π.nl, as the subverted algorithm would
otherwise be trivially detected. As in previous work, we assume throughout that
the key generation is unsubverted, but we retain a syntax that allows for the
more general case.

Detectability. In the formal notion of detectability, we allow a distinguisher D
to interact with subverted encryption, subverted decryption and (for generality)
subverted key generation. We assume that the distinguisher has access to its
own reference copy of the unsubverted algorithms. It wins if it can distinguish

Subverting Decryption in AEAD 29

between the base scheme and the subverted scheme in the game defined in Fig. 1.
The detectability advantage of D with respect to Π, Π̃ is given by

Advdet
Π,˜Π

(D) = 2 · Pr
[
DetΠ,˜Π(D)

]
− 1.

This definition is adapted from strong undetectability of [6]. Notice that (infor-
mally) a ‘hard-to-detect’ subversion of a perfectly correct base scheme necessarily
satisfies some correctness condition. To see this, suppose that the subversion does
not satisfy δ-correctness: it is detectable with probability at least δ.

Key Recovery. Following [6], recovering the user’s secret key is a strong prop-
erty for an attacker. We give two flavours of the key recovery game, one for
passive adversaries PassiveKR and one for active adversaries ActiveKR, as given
in Fig. 2. In the passive case, we allow the adversary to observe ciphertexts and
whether they are rejected. This is formalised through the transcript oracle OTrans.
For the active case, we allow the attacker to generate valid ciphertexts via OEnc

and interact with a decryption oracle ODec that reveals whether a submitted
ciphertext is rejected. Both games are parametrised by a message sampler algo-
rithm M. Given its current state σ, M returns the next message with associated
data (m, d) to be encrypted, together with a nonce n ∈ {0, 1}Π.nl and an updated
state. It represents the choice of messages made by the sender. For simplicity,
we model M as non-adaptive and nonce-respecting. It could be argued that a
more realistic model might take into account that the adversary could influence
the user’s choice of messages to be encrypted. However, in constructing attacks
we assume the weakest properties of the attacker.

Adversary A wins if A.Ext recovers the user’s key k after interacting with the
subverted encryption scheme. The key recovery advantage of A with respect to
Π̃ and M is given by

Advkr
˜Π,M(A) = Pr

[
KR

˜Π,M(A)
]
,

where KR
˜Π,M(A) refers to the appropriate key recovery game according to

whether the adversary is passive or active.

4 Mounting Attacks via Decryption Subversion

We now detail our ASAs, first for a passive surveillance adversary and then in the
active case. It is easy to see that the attacks are undetectable according to the
models in the literature [6,8,12], as the encryption algorithm is not subverted.

Imagine that Alice communicates with Bob. A passive adversary can observe
ciphertexts from Alice to Bob. In addition, an active adversary can replace
ciphertexts in transmission and submit its own (forged) ciphertexts to Bob.
In the passive attack, the decryption algorithm is subverted so that it rejects
a fraction of valid ciphertexts, bounded by an attacker controlled parameter.
In the active attack, the decryption algorithm is subverted so that it accepts a
(similarly bounded) fraction of invalid ciphertexts. The active attack requires the

30 M. Armour and B. Poettering

Fig. 2. Game to define the key recovery advantage of A with respect to ˜Π and M.

adversary to send Bob bogus ciphertexts (derived from genuine ciphertexts) that
reveal Bob’s secret key using decryption errors. Normally, these bogus cipher-
texts are unlikely to decrypt correctly, i.e., they would be rejected. In both cases,
if the decryptor is subverted then either real ciphertexts (in the passive case) or
bogus ciphertexts (in the active case) can either be accepted or rejected, creating
via the acceptance/rejection pattern a covert channel that will allow the key to
be exfiltrated.

From the point of view of a mass surveillance adversary this is an attractive
prospect: having passively collected all communications, triggered by some sus-
picion they can now target Alice and Bob’s communication. By recovering Bob’s
key they may now decrypt all of the stored communication between Alice and
Bob (and indeed from Bob to Alice as well).

We note that both of our attacks are stateless, which not only allows for much
easier backdoor implementation from a technical perspective but also should
decrease the likelihood that an implemented attack is detected through code
review or observing memory usage.

4.1 Attack 1: Passive

Consider the following subversion of a given symmetric encryption scheme
(Π.Gen,Π.Enc,Π.Dec). Let Π̃.Gen = Π.Gen and Π̃.Enc = Π.Enc. Let A.Gen

choose a key kA by kA ←$ {0, 1}A.kl. Algorithms Π̃.Dec and A.Ext are then spec-
ified in Fig. 3. The subverted decryptor Π̃.Dec takes the same input as Π.Dec
together with the attacker key, and utilises a pseudo-random function3 F with
F : {0, 1}A.kl×{0, 1}∗ → [Π.kl]×{0, 1}. In A.Ext, we use the symbol � as a ternary

3 See Appendix A for definitions of pseudo-random functions and length-preserving
pseudo-random permutations.

Subverting Decryption in AEAD 31

Fig. 3. Passive ASA against AEAD

symbol (neither 0 nor 1) to keep track of which key bits have been collected. In
line 2 of the algorithm for Π̃.Dec, we write B(δ) to denote a Bernoulli trial which
returns 1 with probability δ. Key extractor A.Ext takes as input the attacker key
and the transcript, consisting of triples (c, d, n, v) where v is a bit representing
whether or not the ciphertext decrypts to ⊥.

Theorem 1. Let Π be a perfectly-correct symmetric encryption scheme and let
� = Π.kl. Let Π̃.Dec and A.Ext be defined as in Fig. 3. Let M be a message
sampling algorithm, and F : {0, 1}A.kl × {0, 1}∗ → [�] × {0, 1} be a PRF with
Advprf

F (F) < ε for all efficient adversaries F . Then

(1) Advkr
˜Π,M(A) ≥ 1 − �e− qδ

2� , where q is the number of queries that A.Ext makes
to the transcript oracle.

(2) For all distinguishers D, Advdet
Π,˜Π

(D) ≤ δq
2 (1 + ε) where D makes q queries

to its decryption oracle.

Proof of (1). We use a combinatorial argument. Notice that this is essentially
a coupon collection problem. We are looking for the probability that every key
bit has been exfiltrated. If we fix i key bits that are not exfiltrated, there are(
�
i

)
ways to choose those fixed key bits. The probability that (at least) i of the

key bits have not been exfiltrated is given by
(
�
i

)
(1 − iδ

2�)
q. Using the principle

of inclusion exclusion, the probability that no key bit has not been exfiltrated is
given by

Advkr
˜Π,M(A) =

�∑
i=0

(−1)i

(
�

i

)(
1 − iδ

2�

)q

≥ 1 − �

(
1 − δ

2�

)q

≥ 1 − �e− qδ
2� .

��

32 M. Armour and B. Poettering

Proof of (2). Clearly, the only way to distinguish between Π and Π̃ is to observe
Π̃.Dec output ⊥. Thus in order to distinguish, D must find (m, d;n) such that
⊥ = ODec(k, c, d;n) for c ← Π.Enc(k,m, d;n). This reduces to D finding some
c ‖ d such that F (kA, c ‖ d) = i ‖ k[i] for some index i. Call this event W . Notice
that for any F it holds that for all kA, c, d we have F (kA, c ‖ d) = i ‖ b for some
index i and bit b.

We note that Pr [W] ≤ Pr [PRFF (F)] for all PRF adversaries F . If not, it
would be possible for F to act as a challenger to D and win its prf game whenever
W occurs. Thus,

Advdet
Π,˜Π

(D) = Pr
[
DetΠ,˜Π(D) | b = 1

]
+ Pr

[
DetΠ,˜Π(D) | b = 0

]
− 1

= 1 − (1 − δ · Pr [W])q

≤ 1 − (1 − δ · Pr [PRFF (D)])q

≤ 1 −
(

1 − δ

2
(1 + Advprf

F (D))
)q

≤ 1 −
(

1 − δ

2
(1 + ε)

)q

≤ δq

2
(1 + ε).

��
Remark. Whereas (un)detectability does depend on the security of the PRF, the
PRF can be quite weak without much impacting the adversary’s key recovery
advantage. If the base scheme Π’s ciphertexts are indistinguishable from ran-
dom (IND$), then the PRF could simply choose the first log(�)� + 1 many bits
of the ciphertext. This seems paradoxical, as strong privacy security is usually a
desirable property but here it allows a simpler ASA to be successful.

We note that in practice, the subverted decryption algorithm Π̃.Dec can be
made more effective in a number of ways. Indeed, the model is very conservative
and in practice it may be possible for A.Ext to observe a number of distinguish-
able error messages following [10].

4.2 Attack 2: Active

Consider algorithms Π̃.Dec and A.Ext as specified in Fig. 4. The adversary A.Ext
crafts special messages using a length-preserving pseudo-random permutation E
under the attacker key4. We let E : {0, 1}A.kl ×{0, 1}∗ → {0, 1}∗. The security of
E will determine how easily the distinguisher D will be able to recreate a special
message to trigger Π̃. Furthermore, as in the passive attack, Π̃.Dec makes use of
a PRF F to determine whether or not to reject submitted ciphertexts. We let
F : {0, 1}A.kl×{0, 1}∗ → [Π.kl]×{0, 1}. Although the notation implies keys are the

4 See Appendix A for the definition of a length-preserving PRP.

Subverting Decryption in AEAD 33

Fig. 4. Active ASA against AEAD

same, we assume independent behaviour of F,E.5 We analyse this construction
in the formal model defined by game ActiveKR

˜Π,M in Fig. 2.

Theorem 2. Let Π be a perfectly-correct symmetric encryption scheme and let
� = Π.kl. Let Π̃.Dec and A.Ext be defined as in Fig. 4. Let M be a message
sampling algorithm. Let � = Π.kl and Advauth

Π < ε. Let F : {0, 1}A.kl × {0, 1}∗ →
[�] × {0, 1} be a PRF with Advprf

F (F) < 1 for all efficient adversaries F . Let E

be a lp-PRP with E : {0, 1}A.kl × {0, 1}∗ → {0, 1}∗ and Advprp
E (F ′) < ε′ for all

efficient PRP adversaries F ′. Then

(1) Advkr
˜Π,M(A) ≥ 1 − �e− q

� (1−ε), where A.Ext makes exactly Π.kl calls to the
decryption oracle and q calls to the encryption oracle.

(2) For every distinguisher D, Advdet
Π,˜Π

(D) ≤ q
2τ + ε′, where D makes q queries

to its decryption oracle.

Proof of (1). We use the same combinatorial argument as in Theorem 1. This
time, the probability that (at least) i of the key bits have not been cor-
rectly exfiltrated is given by

(
�
i

) [
(1 − i

�) + αi
2�

]q
. Here α is the probability that

Π.Dec(k, c̃, d;n) �= ⊥ given that F−1(kA, c̃) = j ‖ k[j] for j in the set of indices
being counted. We note that Advauth

Π ≥ α.

Advkr
˜Π,M(A) =

�∑
i=0

(−1)i

(
�

i

)[
(1 − i

�
) +

αi

2�

]q

≥ 1 − �

(
1 +

1
�
(
α

2
− 1)

)q

≥ 1 − �e− q
� (1− α

2)

≥ 1 − �e− q
� (1−ε).

��
5 Using only one key is just a trick to keep the notation compact.

34 M. Armour and B. Poettering

Proof of (2). As in Theorem 1, the only way to distinguish between Π and
Π̃ is by observing Π̃.Dec accepting a forged ciphertext. To do this, the dis-
tinguisher D must find some ciphertext c with associated data d such that
F (kA, c̃ ‖ d) = i ‖ k[i] for some i ∈ [�] and where c̃ = E−1(kA, c). Noting that
Advprf

F (F) < 1, we thus obtain

Pr
[
DetΠ,˜Π(D) | b = 0

]
≤ Pr

[D finds c with E−1(kA, c) = c̃ for some c̃
with Π.Dec(k, c̃, d;n) �= ⊥, for some d, n

]

Consider the following game, which we will refer to as the pre-image game. For
b ∈ {0, 1} we define experiment b as follows:

1. The challenger initially sets C ← ∅ and responds to query ci in the following
way:

– if (b = 0) then set c′
i ←$ {0, 1}|ci| \ C, update C ∪← c′

i and return c′
i

– if (b = 1) then return c′
i ← E−1(kA, ci).

2. The adversary D submits a sequence of queries c1, c2, . . . , cq to the challenger
and receives c′

i for i ∈ [q].

For b ∈ {0, 1}, let Wb be the event that D outputs 1 in experiment b; D outputs 1
if for some d, n, Π.Dec(k, c′

i, d;n) �= ⊥. The advantage of D in the pre-image game
is clearly less than its advantage in distinguishing a lp-PRP from a random length
preserving permutation. To see this, given D with some advantage playing the
pre-image game we can construct an adversary B acting as a challenger to D
such that B outputs 1 in the distinguishing game PRPE(B) whenever D does in
the pre-image game. Thus,

Pr [W0] − Pr [W1] ≤ Advprp
E (B).

Noting that Pr [W1] = q
2τ , where τ is the stretch of the encryption scheme, we

conclude that

Advdet
Π,˜Π

(D) ≤ Pr [W0] ≤ Pr [W1] + Advprp
E (B) ≤ q

2τ
+ ε′.

��

5 Implementation

We implemented our attacks in proof-of-concept Python code to verify their
functionality and effectiveness.6 The particular AEAD scheme we attack is AES-
GCM [15], using black-box access to the implementation provided by [32]. We
simulated both active and passive attacks 10,000 times, and recorded the num-
ber of queries for successful extraction of a 128-bit key (thus, � = 128). Mes-
sages, nonces and associated data were generated using the random.getrandbits

6 We are happy to share our source code. Please contact the authors.

Subverting Decryption in AEAD 35

method from the Crypto.Random library. The plots below (Figs. 5 and 6) show
the distribution (in blue) of the recorded number of queries q, and (in red) the
cumulative success probability as a function of q. Our results confirm the theoret-
ical estimates from Theorems 1 and 2; in particular, the exponential success rate.
While the attacks have different application and success profiles, both reliably
recover keys.

Passive. The expected number of calls to the transcript oracle for successful
exfiltration is given by 2�

δ

∑�
i=1

1
i (see proof of Theorem 1). We set δ = 0.1

for illustration. This gives us an expected value of q = 13910 compared to the
recorded mean of 13920.59. Alternatively, the result from Theorem 1 gives a key
recovery advantage of ≈1/2 with q = 14000, compared to the recorded median
of 13380. The discrepancy is due to the exponential approximation in the proof.

Fig. 5. Results of running an implementation of the passive attack 10,000 times. Key
length � = 128, and parameter δ = 0.1. Left axis: The blue histogram shows the dis-
tribution of the number of queries required for successful key exfiltration. The data has
been sorted into 50 bins. Right axis: The red curve shows the cumulative probability
of successful key exfiltration against q. (Colour figure online)

Active. We assume that for AES-GCM, Advauth
Π ≈ 0 and set ε = 0. The

expected number of encryption calls for successful exfiltration is then �
∑�

i=1
1
i

(see proof of Theorem 2). This gives an expected value of q = 696 compared to

36 M. Armour and B. Poettering

the recorded mean of 695.05. Alternatively, the result from Theorem 2 gives a
key recovery advantage of ≈ 1/2 with q = 710 compared to the recorded median
of 670. Again, the difference is due to exponential approximation.

Fig. 6. Results of running an implementation of the active attack 10,000 times with
key length � = 128. Left axis: The blue histogram shows the distribution of the
number of queries required for successful key exfiltration. The data has been sorted
into 50 bins. Right axis: The red curve shows the cumulative probability of successful
key exfiltration against q. (Colour figure online)

6 Breaking Security Without Extracting the Full Key

The attacks presented in Sect. 4 are generic in that they are independent of
the targeted AEAD scheme. Our approach, in common with previous work, was
to extract the full key with which the AEAD instance is operated. Message
recovery follows immediately by the definition of correctness. From this it is
tempting to conclude that choosing longer keys, e.g. 256 bits instead of 128 in
the case of AES-based encryption, gives better security against ASAs. (This
approach is generally explored in big key cryptography [7].). In this section we
show that this intuition is not necessarily correct. As we detail, many current
AEAD schemes have inner building blocks that maintain their own secret values,

Subverting Decryption in AEAD 37

and scaling up key sizes does not automatically also increase the sizes of these
internal values. Note that ASAs in the style proposed in the previous section
could easily be adapted to leak this internal information instead of the key.
As the recovery of such values might not always directly lead to full message
recovery, the assessment of whether the resulting overall attack is more or less
effective than our generic attacks has to be made on a per scheme basis. We
exemplify this on the basis of two of the currently best-performing AES-based
AEAD schemes: GCM [15] and OCB3 [19]. In both cases, the size of the crucial
internal value and the block size of the cipher have to coincide and the latter
value is fixed to 128 bits for AES (independently of key size).

AES-GCM. We consider the following abstraction of GCM. The AEAD key
k is used directly to create an instance E of the AES blockcipher. To encrypt
a message m with respect to associated data d and nonce n, E is operated
in counter mode, giving a pad E(n + 1) ‖ E(n + 2) ‖ . . . , where a specific
nonce encoding ensures there are no collisions between counter values of different
encryption operations. The first part c1 of the ciphertext c = c1c2 is obtained by
XORing the pad into the message, and finally the authentication tag c2 is derived
by computing c2 ← E(n) + Hh(d, c1). Here Hh is an instance of a universal
hash function H indexed (that is, keyed) with the 128-bit value h = E(0128).
Concretely, Hh(d, c1) =

∑l
i=1 vih

l−i+1, where coefficients v1, . . . , vl are such that
a prefix v1 . . . vj is a length-padded copy of the associated data d, the middle part
vj+1 . . . vl−1 is a length-padded copy of ciphertext component c1, and the last
item vl is an encoding of the lengths of d and c1. The addition and multiplication
operations deployed in this computation are those of a specific representation of
the Galois field GF(2128).

In executing a practical algorithm substitution attack against AES-GCM, it
might suffice to leak the value h (which has length 128 independently of the AES
key length, and furthermore stays invariant across encryption operations). The
insight is that if the key of a universal hash function is known, then it becomes
trivial to compute collisions. Concretely, assume the adversary is provided with
the AES-GCM encryption c = c1c2 = Enc(k,m, d;n) for unknown k,m but
chosen d, n. Then by the above we have c2 = R +

∑j
i=1 vih

l−i+1 where the
coefficients v1 . . . vj are an encoding of d and R is some residue. If, having been
successfully leaked by the ASA, the internal value h is known, by solving a linear
equation it is easy to find an associated data string d′ �= d, |d′| = |d|, such that for
its encoding v′

1 . . . v′
j we have

∑j
i=1 v′

ih
l−i+1 =

∑j
i=1 vih

l−i+1. Overall this means
that we have found d′ �= d such that Enc(k,m, d′;n) = c = Enc(k,m, d;n). In a
CCA attack the adversary can thus query for the decryption of c with associated
data d′ and nonce n, and thus fully recover the target message m. We finally
note that this attack can be directly generalized to one where also the c1 and c2

components are modified, resulting in the decryption of a message m′ �= m for
which the XOR difference between m = m′ is controlled by the adversary.

OCB3. Multiple quite different versions of the OCB encryption scheme exist,
but a common property is that the associated data input is incorporated via

38 M. Armour and B. Poettering

‘ciphertext translation’ [22]. To encrypt a message m under key k with asso-
ciated data d and nonce n, in a first step the message m is encrypted with a
pure AE scheme (no AD!) to an intermediate ciphertext c∗ ← Enc∗(k,m;n).
Then to obtain the final ciphertext c, a pseudo-random function value Fk(d) of
the associated data string is XORed into the trailing bits of c∗. Concretely, in
OCB3 we have Fk(d) =

∑l
i=1 E(vi +Ci) where all addition operations are XOR

combinations of 128 bit values, E(·) stands for AES enciphering with key k,
values v1, . . . , vl represent a length-padded copy of associated data d, and coeffi-
cients C1, . . . , Cl are (secret) constants deterministically derived from the value
L = E(0128).

In the context of an ASA we argue that it is sufficient to leak the 128 bit
value L. The attack procedure is, roughly, as in the AES-GCM case. Assume the
adversary is provided with the OCB3 encryption c = Enc(k,m, d;n) for unknown
k,m but chosen d, n, and assume the adversary knows L and thus C1, . . . , Cl.
Now let 1 ≤ s < t ≤ l be any two indices, let Δ = Cs + Ct and let d′ �= d,
|d′| = |d|, be the associated data string with encoding v′

1, . . . , v
′
l such that we have

v′
s = vt+Δ and v′

t = vs+Δ and v′
i = vi for all i �= s, t. Then we have E(v′

s+Cs) =
E(vt+Δ+Cs) = E(vt+Ct) and E(v′

t+Ct) = E(vs+Δ+Ct) = E(vs+Cs), which
leads to Fk(d) = Fk(d′) and ultimately Enc(k,m, d′;n) = Enc(k,m, d;n). In a
CCA attack environment, this can immediately be leveraged to the full recovery
of m. As in the AES-GCM case, we note that many variants of our attack exist
(against all versions of OCB), including some that manipulate message bits in a
controlled way.

7 Conclusion

This work examines subversion attacks against decryption only, providing two
examples of a new class of Algorithm Substitution Attack that provides a mass
surveillance adversary with a powerful and attractive strategy to compromise the
confidentiality of mass communication. Previous models of ASA against symmet-
ric encryption only considered subverting the encryption algorithm, and seemed
to suggest that decryption could only be subverted together with encryption
(and that analysing such “total subversion” is uninteresting, as this gives an
adversary too much power).

Acknowledgements. Thanks to Jeroen Pijnenburg and Fabrizio De Santis for their
early comments on this paper. Thanks also to the anonymous reviewers.

A Pseudo-Random Functions and Permutations

We recall standard notions of pseudo-random functions and permutations.

Definition 4. A keyed pseudo-random function (PRF) for range R is an effi-
ciently computable function F : {0, 1}� × {0, 1}∗ → R taking a key L ∈ {0, 1}�

Subverting Decryption in AEAD 39

and input s ∈ {0, 1}∗ to return an output F (L, s) ∈ R. Consider game PRFF (F)
in Fig. 7 associated to F and adversary F . Let

Advprf
F (F) = 2 · Pr [PRFF (F)] − 1

be the prf advantage of adversary F against function F . Intuitively, the function
is pseudo-random if the prf advantage of any realistic adversary is negligible.

Definition 5. A keyed length-preserving pseudo-random permutation (lp-PRP)
is an efficiently computable function E where E : {0, 1}�×{0, 1}∗ → {0, 1}∗ takes
a key L ∈ {0, 1}� and input s ∈ {0, 1}∗ to return an output E(L, s) ∈ {0, 1}|s|.
We require that any keyed instance of E is a permutation on {0, 1}n for all n ∈ N

and also that its inverse E−1 is efficiently computable. Consider game PRPE(F)
in Fig. 7 associated to E and adversary F . Let

Advprp
E (F) = 2 · Pr [PRPE(F)] − 1

be the prp advantage of adversary F against function E. Intuitively, the per-
mutation is pseudo-random if the prp advantage of any realistic adversary is
negligible.

Fig. 7. Game to define prf and prp advantage of F with respect to F, E.

References

1. Armour, M., Poettering, B.: Substitution attacks against message authen-
tication. IACR Trans. Symmetric Cryptol. 2019(3), 152–168 (2019).
https://tosc.iacr.org/index.php/ToSC/article/view/8361

2. Armour, M., Poettering, B.: Substitution attacks against message authentication.
Cryptology ePrint Archive, Report 2019/989 (2019). http://eprint.iacr.org/2019/
989

https://tosc.iacr.org/index.php/ToSC/article/view/8361
http://eprint.iacr.org/2019/989
http://eprint.iacr.org/2019/989

40 M. Armour and B. Poettering

3. Armour, M., Poettering, B.: Subverting decryption in AEAD. Cryptology ePrint
Archive, Report 2019/987 (2019). http://eprint.iacr.org/2019/987

4. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015: 22nd Conference on Computer
and Communications Security, pp. 364–375. ACM Press, October 2015

5. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 627–656. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 21

6. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015: 22nd Conference on Computer and Communications Security, pp.
1431–1440. ACM Press, October 2015

7. Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption: resisting key
exfiltration. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 373–402. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 14

8. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44371-2 1

9. Berndt, S., Liskiewicz, M.: Algorithm substitution attacks from a steganographic
perspective. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017: 24th Conference on Computer and Communications Security, pp. 1649–
1660. ACM Press (2017)

10. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 367–390. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43933-3 19

11. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted
TPMs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol.
10403, pp. 427–461. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 15

12. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 28

13. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 5

14. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4 13

15. Dworkin, M.J.: SP 800–38D: recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC. US National Institute of Standards and
Technology (2007)

16. Fischlin, M., Janson, C., Mazaheri, S.: Backdoored hash functions: immunizing
HMAC and HKDF. In: 2018 IEEE 31st Computer Security Foundations Sympo-
sium (CSF), pp. 105–118. IEEE (2018)

http://eprint.iacr.org/2019/987
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-53018-4_13

Subverting Decryption in AEAD 41

17. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: 2018 IEEE 31st Computer Security Foundations Sympo-
sium (CSF), pp. 76–90. IEEE (2018)

18. Goh, E.-J., Boneh, D., Pinkas, B., Golle, P.: The design and implementation
of protocol-based hidden key recovery. In: Boyd, C., Mao, W. (eds.) ISC 2003.
LNCS, vol. 2851, pp. 165–179. Springer, Heidelberg (2003). https://doi.org/10.
1007/10958513 13

19. Krovetz, T., Rogaway, P.: The OCB authenticated-encryption algorithm (2014).
https://tools.ietf.org/html/rfc7253

20. Ma, H., Zhang, R., Yang, G., Song, Z., Sun, S., Xiao, Y.: Concessive online/offline
attribute based encryption with cryptographic reverse firewalls—secure and effi-
cient fine-grained access control on corrupted machines. In: Lopez, J., Zhou,
J., Soriano, M. (eds.) ESORICS 2018, Part II. LNCS, vol. 11099, pp. 507–526.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1 25

21. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657–686.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

22. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002: 9th Conference on Computer and Communications Security, pp.
98–107. ACM Press, November 2002

23. Rogaway, P.: The moral character of cryptographic work. Cryptology ePrint
Archive, Report 2015/1162 (2015). http://eprint.iacr.org/2015/1162

24. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6 2

25. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Destroying steganography via amal-
gamation: kleptographically CPA secure public key encryption. Cryptology ePrint
Archive, Report 2016/530 (2016). http://eprint.iacr.org/2016/530

26. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against
a kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications
Security, pp. 907–922. ACM Press, October/November 2017

27. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 241–271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 9

28. Schneier, B., Fredrikson, M., Kohno, T., Ristenpart, T.: Surreptitiously weaken-
ing cryptographic systems. Cryptology ePrint Archive, Report 2015/097 (2015).
http://eprint.iacr.org/2015/097

29. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D.
(ed.) Advances in Cryptology – CRYPTO’83, pp. 51–67. Plenum Press, New York
(1983)

30. Young, A., Yung, M.: The dark side of “’black-box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

31. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

32. Zhu, B.: AES-GCM-Python (2013). https://github.com/bozhu/AES-GCM-
Python/blob/master/aes gcm.py

https://doi.org/10.1007/10958513_13
https://doi.org/10.1007/10958513_13
https://tools.ietf.org/html/rfc7253
https://doi.org/10.1007/978-3-319-98989-1_25
https://doi.org/10.1007/978-3-662-46803-6_22
http://eprint.iacr.org/2015/1162
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
http://eprint.iacr.org/2016/530
https://doi.org/10.1007/978-3-319-96881-0_9
http://eprint.iacr.org/2015/097
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6
https://github.com/bozhu/AES-GCM-Python/blob/master/aes_gcm.py
https://github.com/bozhu/AES-GCM-Python/blob/master/aes_gcm.py

Subversion-Resistant Simulation
(Knowledge) Sound NIZKs

Karim Baghery(B)

University of Tartu, Tartu, Estonia
karim.baghery@ut.ee

Abstract. In ASIACRYPT 2016, Bellare, Fuchsbauer and Scafuro stud-
ied security of non-interactive zero-knowledge (NIZK) arguments in the
face of parameter subversion. They showed that achieving subversion
soundness (soundness without trusting to the third party) and stan-
dard zero-knowledge is impossible at the same time. On the positive
side, in the best case, they showed that one can achieve subversion
zero-knowledge (zero-knowledge without trusting to the third party)
and soundness at the same time. In this paper, we show that one can
amplify their best positive result and construct NIZK arguments that can
achieve subversion zero-knowledge and simulation (knowledge) sound-
ness at the same time. Simulation (knowledge) soundness is a stronger
notion in comparison with (knowledge) soundness, as it also guarantees
non-malleability of proofs. Such stronger security guarantee is a must
in practical systems. To prove the result, we show that given a NIZK
argument that achieves Sub-ZK and (knowledge) soundness, one can use
an OR-based construction to define a new language and build a NIZK
argument that will guarantee Sub-ZK and simulation (knowledge) sound-
ness at the same time. We instantiate the construction with the state-
of-the-art zk-SNARK proposed by Groth [Eurocrypt 2016] and obtain
an efficient SNARK that guarantees Sub-ZK and simulation knowledge
soundness.

Keywords: NIZK · Subversion zero knowledge · zk-SNARK ·
Simulation extractability · CRS model

1 Introduction

Non-Interactive Zero-Knowledge (NIZK) proofs are one of the central design
tools in cryptographically secure systems, allowing one to verify the veracity
of statements without leaking extra information. Technically speaking, a NIZK
allows a prover to prove that, for a public statement x she knows a witness
w which hold in a relation R, (x,w) ∈ R, without leaking any information
about her witness w. In the Common Reference String (CRS) model [BFM88],
a NIZK requires a setup phase which is supposed to be done by a trusted third
party. Under a trusted setup phase, usually a NIZK is required to guarantee

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 42–63, 2019.
https://doi.org/10.1007/978-3-030-35199-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_3

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 43

three essential properties known as completeness, zero-knowledge and sound-
ness. The property completeness guarantees that a honest prover always con-
vinces a honest verifier. The soundness ensures that a malicious prover cannot
convince the honest verifier except with negligible probability. Zero-knowledge
property assures that the proof generated by prover does not leak any infor-
mation about the witness w. Moreover, following some stronger requirements
in practical systems, there have been various constructions for NIZKs that
can achieve more stronger notions than bare soundness. The notions knowledge
soundness and simulation knowledge soundness (a.k.a.simulation extractability)
are two flavours of soundness that guarantee more security than what soundness
achieves. Knowledge-soundness guarantees that if an adversarial prover man-
ages to come out with an acceptable proof, there exists an efficient extrac-
tor which given some secret information can efficiently extract the witness
from the proof. Zero-knowledge Succinct Non-interactive Arguments of Knowl-
edge (zk-SNARKs) [Gro10,Lip12,PHGR13,BCTV13,Gro16,GM17,Lip19] are
the most known and practically-interested NIZK arguments that guarantee
knowledge soundness. By the date, the most efficient zk-SNARK is proposed
by Groth [Gro16] in Eurocrypt 2016, which is constructed for Quadratic Arith-
metic Programs (QAPs) and works in a biliner group. As an stronger notion,
simulation knowledge soundness guarantees that knowledge-soundness is satis-
fied even if adversary already has seen arbitrary number of simulated proofs
for any statements. Roughly speaking, simulation extractability guarantees that
the proofs are also non-malleable and consequently secure against man-in-the-
middle attacks. In Crypto 2017, Groth and Maller [GM17] proposed the first
zk-SNARK in the CRS model for Square Arithmetic Programs (SAPs) that
achieves (non-black-box) simulation extractability. Recently, Atapoor and Bagh-
ery [AB19] used a folklore OR technique [BG90] with a particular instantiation
from C∅C∅ framework [KZM+15]1 and presented a variation of the state-of-
the-art zk-SNARK proposed by Groth [Gro16] and showed that it can achieve
(non-black-box) simulation extractability and outperforms Groth and Maller’s
zk-SNARK [GM17] considerably [AB19]. Concurrently, Lipmaa [Lip19] pro-
posed several (non-black-box) simulation-extractable zk-SNARKs in the CRS
model for different languages including QAPs, SAPs, Quadratic Span Programs
(QSPs) and Square Span Programs (SSPs). By deploying zk-SNARKs in some
bigger cryptographic systems that should guarantee universal composability
(UC), some studies construct zk-SNARKs with black-box simulation extractabil-
ity [KZM+15,Bag19a] which is a necessary requirement for using zk-SNARKs
in the UC-secure protocols.

Importance of Setup Phase in the CRS Model. By deploying crypto-
graphic primitives in various applications, recently there have been various
attacks or flaw reports on the setup phase of cryptographic systems that rely on
public parameters supposed to be generated honestly. In some cases, attacks are

1 A framework with practically optimized primitives which given a sound NIZK lifts
it to a universally composable or more precisely a black-box simulation extractable
NIZK argument [KZM+15].

44 K. Baghery

caused from maliciously (or incorrectly) generated public parameters or modify-
ing cryptographic protocol specifications to embed backdoors, with intent to vio-
late security of the main system [BBG+13,PLS13,Gre14,Gab19,LPT19,Hae19].
Specially, after the Snowden revelations, there have been various endeavours in
constructing cryptographic primitives and protocols secure against active sub-
version. The primitives constructed in this setting, guarantee their pre-defined
security with trusted parameters, even in the case that the public parameters are
subverted. Initiated by Bellare et al. [BPR14] for symmetric encryption schemes,
there have been various studies about subversion resistant of various crypto-
graph ic primitives, including signature schemes [AMV15], non-interactive zero-
knowledge proofs [BFS16], public-key encryption schemes [ABK18] and commit-
ment schemes [Bag19b].

Subversion Security in NIZK Arguments. In the context of NIZKs,
in [BFS16], Bellare, Fuchsbauer and Scafuro tackled the discussed problem by
studying how much security one can still achieve when the CRS generator can-
not be trusted. They first defined three new notions called subversion witness
indistinguishability (Sub-WI), subversion zero-knowledge (Sub-ZK) and subver-
sion soundness (Sub-SND) as a variant of the standard notions witness indis-
tinguishability (WI), zero-knowledge (ZK) and soundness (SND) in NIZK argu-
ments. The main difference of proposed notions with the standard ones is that
in the new ones the setup phase is compromised and the parameters can be gen-
erated maliciously. For instance, the notion Sub-ZK guarantees that even if an
adversary generates the CRS elements, still the NIZK proof does not leak any
information about the witness of the prover. Intuitively, Sub-ZK implies that the
ZK is guaranteed even if an adversary generates the CRS. In the rest, Bellare
et al. showed that the definitions of Sub-SND and ZK are not compatible; as
the former requires that a prover should not be able to generate a fake proof
even if he generates the CRS, but the later implies that there exists a simu-
lation algorithm that given trapdoors of CRS can generate a (fake) simulated
proof indistinguishable from the real ones. This resulted a negative result that
we cannot construct a NIZK argument which will guarantee ZK and Sub-SND
simultaneously.

The above negative result opened two possible directions for positive results
on subversion-resistant proof systems. One direction was achieving Sub-ZK and a
version of soundness (i.e. one of notions soundness, knowledge soundness or simu-
lation knowledge soundness) and the second direction was achieving Sub-WI (the
best notion weaker than ZK) and a notion of Sub-SND (one of notions subversion
soundness, subversion knowledge soundness or subversion simulation knowledge
soundness). Along the first direction, Bellare et al. showed that one can construct
NIZK arguments which achieve Sub-ZK and SND at the same time [BFS16].
Their main idea to achieve Sub-ZK is to use a knowledge assumption in the
proof of zero-knowledge to extract the trapdoors of CRS from untrusted CRS
and then use them to simulate the argument. After this positive result, Abdol-
maleki et al. [ABLZ17] showed that the state-of-the-art zk-SNARK [Gro16] can
achieve Sub-ZK and knowledge soundness with minimal changes in the CRS

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 45

and executing an efficient public algorithm to check the well-formedness of CRS
elements. In a concurrent work, Fuchsbauer [Fuc18] showed that most of paring-
based zk-SNARKs including Groth’s scheme can achieve Sub-ZK and knowledge
soundness simultaneously. In the same direction, Abdolmaleki et al. [ALSZ18]
showed that one can achieve Sub-ZK and SND in the Quasi-Adaptive NIZK
arguments which are a particular type of NIZK proof systems.

In the second direction of possible positive results, Bellare et al. [BFS16]
showed that Zap schemes proposed by Groth, Ostrovsky and Sahai [GOS06]
achieves Sub-WI and Sub-SND at the same time; as such proof systems do
not require particular CRS (consequently they do not require a tru-sted setup
phase) but provides weaker security guarantee than ZK. Recently, Fuchsbauer
and Orru [FO18] showed that one can achieve even more in this direction, by
presenting a Sub-WI and knowledge sound Zap scheme.

Problem Statement. By considering the summarized subversion-resistant con-
structions, one may ask if we can construct NIZK arguments with more stronger
security guarantees in the face of subverted CRS. For instance, can we con-
struct NIZK arguments that can guarantee Sub-ZK and simulation knowledge
soundness at the same time, such that the prover will not trust a third party
to achieve ZK and the verifier will obtain more security guarantee (more pre-
cisely non-malleable proofs) than knowledge soundness. In comparison with non-
subversion-resistant simulation-extractable zk-SNARKs, our target construc-
tions can eliminate the trust on CRS generators from prover side.

Our Contribution. We answer the question discussed above positively by con-
structing NIZK arguments that can achieve Sub-ZK and simulation knowledge
soundness at the same time. Such construction guarantees that the prover does
not need to trust a third party to achieve ZK, on the other side, extra from
knowledge soundness verifier will get sure that the proofs are non-malleable. To
construct such NIZK arguments, inspired by a folklore OR technique [BG90],
we use a part of the C∅C∅ framework [BG90,DDO+01,KZM+15] that recently
is also used by Atapoor and Baghery [AB19] to achieve simulation (knowledge)
soundness in Gorth’s zk-SNARK [Gro16]. We show that using such construction,
given NIZK arguments that guarantees Sub-ZK and (knowledge) soundness, we
can construct Sub-ZK and simulation (knowledge) sound NIZK arguments.

As an instantiation, we show that a recent variation of Groth’s zk-SNARK
proposed by Atapoor and Baghery [AB19] can achieve Sub-ZK with minimal
extra computational cost. The cost is that similar to NIZK arguments that
achieve Sub-ZK and (knowledge) soundness [ABLZ17,Fuc18], the prover only
needs to execute an efficient algorithm (CRS verification) to check the well-
formedness of CRS elements before using them. If CRS verification passed, the
protocol ensures that the generated proof does not leak any information about
the witnesses even if CRS generators collude with the verifier. This allows prover
to achieve ZK without trusting to the CRS generators.

Table 1 summarizes current subversion-resistant constructions and compares
with an instantiation of our result. First row shows the negative result that
achieving Sub-SND and ZK at the same time is impossible as their definitions

46 K. Baghery

Table 1. A comparison of our results with current subversion-resistant non-interactive
proof systems and their security guarantees. WI: Witness Indistinguishable, ZK: Zero-
Knowledge, SND: Soundness, KS: Knowledge Soundness, SS: Simulation Soundness,
SKS: Simulation Knowledge Soundness, Sub-WI: Subversion Witness Indistinguishable,
Sub-ZK: Subversion Zero-Knowledge, Sub-SND: Sub-Soundness, Sub-KS: Subversion
Knowledge Soundness.

Achievable? ‖ Result in Standard Subversion resistant

WI ZK SND KS SS SKS Sub-WI Sub-ZK Sub-SND Sub-KS

NO ‖ [BFS16] � �
YES ‖ [BFS16] � � � �
YES ‖ [FO18] � � � � � �
YES ‖ [BFS16] � � � �
YES ‖ [BFS16] � � � � �
YES ‖ [ALSZ18] � � � � �
YES ‖ [ABLZ17,Fuc18] � � � � � �
YES ‖ This work � � � � � � � �

are incompatible [BFS16]. Next rows indicate the notions achieved in various
presented non-interactive proof systems [ABLZ17,Fuc18,FO18,ALSZ18].

Our Technique. In the proposed construction, we use a part of the C∅C∅
framework and show that this part can be used to construct non-interactive
arguments that will satisfies Sub-ZK and (non-black-box) simulation (knowl-
edge) soundness. We define a new language L′ based on an OR construction
(that is added to achieve non-malleability) and the original language L in the
input non-interactive argument that guarantees Sub-ZK. Then we use the basic
property of an OR construction, i.e. that OR proofs can be simulated using the
trapdoors of one branch. We show that if the input NIZK argument achieves
Sub-ZK, then the lifted non-interactive argument also guarantees Sub-ZK. As in
the notion of Sub-ZK the prover does not trust to the CRS generators and con-
sequently the simulator does not trust to the simulation trapdoors, so in proof
of Sub-ZK, different form C∅C∅ framework, we use a technique in subversion-
resistant schemes and simulate the protocol. In this road, a key point is that the
proofs for an OR-based language can be simulated by trapdoors of either first
or second branch. Next, as an instantiation, we use the above result and show
that since the state-of-the-art zk-SNARK proposed by Groth [Gro16] achieves
Sub-ZK after some verifications on CRS elements [ABLZ17,Fuc18], its recent
variation proposed in [AB19] (which uses the same OR construction) can achieve
Sub-ZK after some efficient verifications on CRS elements.

Rest of the paper is organized as follows; Sect. 2 introduces notations and nec-
essary preliminaries for the paper. The proposed transformation for constructing
subversion-resistant simulation (knowledge) sound NIZK arguments is described
in Sect. 3. In Sect. 4, we show that recent variation of Groth’s zk-SNARK [Gro16]
proposed by Atapoor and Baghery [AB19] can achieve Sub-ZK and simulation

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 47

knowledge soundness with minimal extra computational cost. Finally, we con-
clude the paper in Sect. 5.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the information-
theoretic security parameter, say λ = 128. All adversaries will be stateful. For
an algorithm A, let im(A) be the image of A, i.e. the set of valid outputs of
A, let RND(A) denote the random tape of A, and let r ←r RND(A) denote
sampling of a randomizer r of sufficient length for A’s needs. By y ← A(x; r)
we denote the fact that A, given an input x and a randomizer r, outputs y. For
algorithms A and extA, we write (y ‖ y′) ← (A‖ extA)(x; r) as a shorthand for
“y ← A(x; r), y′ ← extA(x; r)”. We denote by negl(λ) an arbitrary negligible
function. For distributions A and B, A ≈c B means that they are computation-
ally indistinguishable. In pairing-based groups, we use additive notation together
with the bracket notation, i.e., in group Gμ, [a]μ = a [1]μ, where [1]μ is a fixed
generator of Gμ. A bilinear group generator BGgen(1λ) returns (p,G1,G2,GT , ê,
[1]1 , [1]2), where p (a large prime) is the order of cyclic abelian groups G1, G2,
and GT . Finally, ê : G1×G2 → GT is an efficient non-degenerate bilinear pairing,
s.t. ê([a]1 , [b]2) = [ab]T . Denote [a]1 • [b]2 = ê([a]1 , [b]2).

Next we review QAPs that defines NP-complete language specified by a
quadratic equation over polynomials and have reduction from the language
Circuit-SAT [GGPR13,Gro16].

Quadratic Arithmetic Programs. QAP was introduced by Gennaro et al.
[GGPR13] as a language where for an input x and witness w, (x,w) ∈ R
can be verified by using a parallel quadratic check. Consequently, any efficient
simulation-extractable zk-SNARK for QAP results in an efficient simulation-
extractable zk-SNARK for Circuit-SAT.

An QAP instance Qp is specified by the so defined (Zp,m0, �, {uj , vj , wj}m
j=0),

where m0 is the length of the statement (e.g. public inputs and outputs in an
arithmetic circuit), � is a target polynomial (defined based on the number of
constraints, e.g. number of multiplication gates in an arithmetic circuit), and
uj , vj , wj are three set of polynomials that encodes the wires in the target arith-
metic circuit. More discussions about encoding an arithmetic circuit to an QAP
instance can be found in [GGPR13]. A QAP instance Qp defines the following
relation, where we assume that A0 = 1:

R =

⎧
⎨

⎩

(x,w) : x = (A1, . . . , Am0)
� ∧ w = (Am0+1, . . . , Am)�∧

(∑m
j=0 Ajuj(X)

)(∑m
j=0 Ajvj(X)

)
≡ ∑m

j=0 Ajwj(X) (mod �(X))

⎫
⎬

⎭
.

Alternatively, (x,w) ∈ R if there exists a (degree ≤ n− 2) polynomial h(X), s.t.
⎛

⎝
m∑

j=0

Ajuj(X)

⎞

⎠

⎛

⎝
m∑

j=0

Ajvj(X)

⎞

⎠ −
m∑

j=0

Ajwj(X) = h(X)�(X)

48 K. Baghery

where �(X) =
∏n

i=1(X−ωi−1) is a polynomial related to Lagrange interpolation,
and ω is an n-th primitive root of unity modulo p.

Roughly speaking, the goal of the prover of a zk-SNARK for QAP [GGPR13]
is to prove that for public (A1, . . . , Am0) and A0 = 1, she knows (Am0+1, . . . , Am)
and a degree ≤ n − 2 polynomial h(X), such that above equation holds.

2.1 Definitions

We use the definitions of subversion secure and standard NIZK arguments
from [ABLZ17,Gro16,GM17]. Let R be a relation generator, such that R(1λ)
returns a polynomial-time decidable binary relation R = {(x,w)}. Here, x is the
statement and w is the witness. Security parameter λ can be deduced from the
description of R. The relation generator also outputs auxiliary information ξ that
will be given to the honest parties and the adversary. As in [Gro16,ABLZ17], ξ is
the value returned by BGgen(1λ), so ξ is given as an input to the honest parties;
if needed, one can include an additional auxiliary input to the adversary. Let
LR = {x : ∃w, (x,w) ∈ R} be an NP-language. A (subversion-resistant) NIZK
argument system Ψ for R consists a tuple of PPT algorithms (K,CV,P,V,Sim),
such that:

CRS Generator: K is a PPT algorithm that, given (R, ξ) where (R, ξ) ∈
im(R(1λ)), outputs crs := (crsP, crsV) and stores trapdoors of crs as ts. We
distinguish crsP (needed by the prover) from crsV (needed by the verifier).

CRS Verifier: CV is a PPT algorithm that, given (R, ξ, crs), returns either 0
(the CRS is incorrectly formed) or 1 (the CRS is correctly formed).

Prover: P is a PPT algorithm that, given (R, ξ, crsP, x,w) for CV(R, ξ, crs) = 1
and (x,w) ∈ R, outputs an argument π. Otherwise, it outputs ⊥.

Verifier: V is a PPT algorithm that, given (R, ξ, crsV, x, π), returns either 0
(reject) or 1 (accept).

Simulator: Sim is a PPT algorithm that, given (R, ξ, crs, x, ts), outputs a sim-
ulated argument π.

Strictly speaking, a zk-SNARK system is required to be complete, (compu-
tationally) knowledge-sound, (statistically) ZK, and succinct as in the following
definitions.

Definition 1 (Perfect Completeness). A non-interactive argument Ψ is per-
fectly complete for R, if for all λ, all (R, ξ) ∈ im(R(1λ)), and (x,w) ∈ R,
Pr [crs ← K(R, ξ), π ← P(R, ξ, crsP, x,w) : V(R, ξ, crsV, x, π) = 1] = 1.

Definition 2 (Computationally Knowledge-Soundness [Gro16]). A non-
interactive argument Ψ is computationally (adaptively) knowledge-sound for R,
if for every PPT A, there exists a PPT extractor extA, s.t. for all λ,

Pr

[
crs ← K(R, ξ), r ←r RND(A), ((x, π) ‖w) ← (A‖ extA)(R, ξ, crs; r) :
(x,w) ∈ R ∧ V(R, ξ, crsV, x, π) = 1

]

≈λ 0.

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 49

Here, ξ can be seen as a common auxiliary input to A and extA that is generated
by using a benign [BCPR14] relation generator.

Definition 3 (Statistically Zero-Knowledge (ZK) [Gro16]). A non-
interactive argument Ψ is statistically ZK for R, if for all λ, all (R, ξ) ∈
im(R(1λ)), and for all PPT A, εunb

0 ≈λ εunb
1 , where

εb = Pr[(crs ‖ ts) ← K(R, ξ) : AOb(·,·)(R, ξ, crs) = 1].

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) ∈ R, and otherwise it returns
P(R, ξ, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) ∈ R, otherwise
it returns Sim(R, ξ, crs, ts, x). Ψ is perfect ZK for R if one requires that ε0 = ε1.

Definition 4 (Succinctness [GM17]). A non-interactive argument Ψ is suc-
cinct if the proof size is polynominal in λ and the verifier’s computation time is
polynominal in security parameter λ and the size of instance x.

In the rest, we recall the definition of (non-black-box) (or simulation knowl-
edge soundness) and Sub-ZK [ABLZ17] that we aim to achieve in new construc-
tions.

Definition 5 ((Non-Black-Box) Simulation Extractability [GM17]). A
non-interactive argument Ψ is (non-black-box) simulation-extractable for R, if
for any PPT A, there exists a PPT extractor extA s.t. for all λ,

Pr

[
crs ← K(R, ξ), r ←r RND(A), ((x, π) ‖w) ← (AO(.) ‖ extA)(R, ξ, crs; r) :

(x, π) �∈ Q ∧ (x,w) �∈ R ∧ V(R, ξ, crsV, x, π) = 1

]
≈λ 0.

Here, Q is the set of (x, π)-pairs generated by the adversary’s queries to O(.).
Note that (non-black-box) simulation extractability implies knowledge-soundness
(given in Definition 2), as the former additionally allows the adversary to send
query to the proof simulation oracle.

Definition 6 (Statistically Subversion Zero-Knowledge [ABLZ17]). A
non-interactive argument Ψ is statistically Sub-ZK for R, if for any PPT sub-
verter X there exists a PPT extractor extX, such that for all λ, all (R, ξ) ∈
im(R(1λ)), and for all PPT A, ε0 ≈λ ε1, where

Pr

[
r ←r RND(X), (crs, ξX ‖ ts) ← (X ‖ extX)(R, ξ; r) :

CV(R, ξ, crs) = 1 ∧ AOb(·,·)(R, ξ, crs, ts, ξX) = 1

]

.

Here, ξX is auxiliary information generated by subverter X, and the ora-
cle O0(x,w) returns ⊥ (reject) if (x,w) ∈ R, and otherwise it returns
P(R, ξ, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) ∈ R, and oth-
erwise it returns Sim(R, ξ, crs, ts, x). Ψ is perfectly Sub-ZK for R if one requires
that ε0 = ε1.

50 K. Baghery

3 Subversion-Resistant Simulation-Extractable NIZKs

As we discussed in the introduction, currently we have NIZK constructions that
can achieve Sub-ZK (defined in Definition 6) and knowledge soundness (defined
in Definition 2) at the same time [ABLZ17,Fuc18], which means prover achieves
ZK without trusting to a third party and verifier achieves knowledge soundness
but with trusting to the CRS generator. On the other hand, currently there are
simulation knowledge sound (defined in Definition 5) NIZK arguments [GM17,
Lip19,AB19] but none of them are known to achieve Sub-ZK, which means both
prover and verifier needs to trust the CRS generators.

In this section, we aim to construct NIZK arguments that similar to NIZKs
studied in [ABLZ17,Fuc18], the prover does not need to trust CRS generators
to achieve ZK, but the protocol will guarantee simulation knowledge soundness,
as in simulation-extractable zk-SNARKs [GM17,Lip19]. Recently, the scheme
proposed in [Lip19] also was updated to achieve Sub-ZK. However, in the rest,
we will observe that our proposed construction can be instantiated with any of
current subversion-resistant NIZKs which basically allows to use it as a frame-
work to achieve simulation (knowledge) soundness in all NIZKs that guarantee
Sub-ZK and (knowledge) soundness. Subversion ZK in new constructions guar-
antees that even an adversary generates the CRS, still it cannot break the ZK
of protocol. To mitigate the level of trust or to improve security in the setup
phase even more, particularly for verifier, one can use Multi-Party Computation
(MPC) protocols for CRS generation [BCG+15,ABL+19].

3.1 Construction

In this section, we presented the proposed construction which can act as a com-
piler that transforms Sub-ZK and (knowledge) sound NIZKs into ones that
satisfy Sub-ZK and simulation (knowledge) soundness. We use a folklore OR
technique with a particular instantiation proposed in [KZM+15,AB19]. Indeed,
the proposed OR compiler can be viewed as using the Bellare-Goldwasser
paradigm [BG90], which is proposed to construct signatures from NIZK argu-
ments, in a non-black-box way.

Consider a subversion-resistant NIZK argument Ψ for RL which consists
of PPT algorithms (K,CV,P,V,Sim) and guarantees Sub-ZK and (knowledge)
soundness. Let (KGen,Sign,SigVerify) be a one-time secure signature scheme and
(Com,ComVerify) be a perfectly binding commitment scheme. Using a variation
of a construction proposed by Bellare-Goldwasser [BG90] (used in [KZM+15,
AB19], given the language L with the corresponding NP relation RL, we define
a new language L′ such that ((x, μ, pkSign, ρ), (w, s, r)) ∈ RL′ iff:

((x,w) ∈ RL ∨ (μ = fs(pkSign) ∧ ρ = Com(s, r))) ,

where {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ is a pseudo-random function family. Due
to OR-based construction of new language L′, a user to be able to generate
an acceptable proof will require either the witness w or the trapdoors of CRS,

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 51

Fig. 1. An extension of the proposed construction in [AB19] that outputs a Sub-ZK
and simulation (knowledge) sound NIZK argument Ψ ′. Note that in our construction,
we assumed that the input NIZK Ψ guarantees Sub-ZK and (knowledge) soundness.
Due to this fact, we have a new algorithm CV′ to verify the well-formedness of CRS
elements, and a new simulation procedure by Sim′ to simulate the proofs without
trusting to the CRS generators.

and since it is assumed that the CRS trapdoors are kept secret, so soundness
is guaranteed as long as CRS trapdoors are secret. We note that due to using
the pseudo-random function fs with a random secret trapdoor s, the output of
fs is indistinguishable from the outputs of a truly random function. By consid-
ering new language, the subversion-resistant NIZK argument Ψ for the relation
RL with PPT algorithms (K,CV,P,V,Sim) that achieves Sub-ZK and (knowl-
edge) soundness, can be lifted to a subversion-resistant NIZK Ψ ′ with PPT
algorithms (K′,CV′,P′,V′,Sim′) that guarantees Sub-ZK and simulation (knowl-
edge) soundness. Based on the language L′, the construction of NIZK Ψ ′ and
the corresponding algorithms are described in Fig. 1.

Recently, Atapoor and Baghery [AB19] used the same construction to achieve
simulation knowledge soundness in Groth’s zk-SNARK [Gro16] which led to
the most efficient zk-SNARK which also guarantees non-malleability of proofs.
Here, we show that such OR-based language can be extended and used to
build subversion-resistant NIZK arguments which will also guarantee simulation
(knowledge) soundness.

52 K. Baghery

Recall that one of two main differences between a Sub-ZK NIZK argument
and a common NIZK argument is the existence of a public CRS verification algo-
rithm CV in the former ones. Basically, given a CRS crs the algorithm CV veri-
fies the well-formedness of its elements. Additionally, in simulation of a Sub-ZK
NIZK argument there exists a (non-black-box) extractor extX that can extract
the simulation trapdoors from a (possibly malicious) CRS generator X. More
detailed discussions can be found in [BFS16,ABLZ17,Fuc18,ALSZ18].

So similar to other subversion-resistant NIZK arguments, as we aim to achieve
Sub-ZK (not standard ZK) and simulation (knowledge) soundness in our con-
structions, so there are two key differences between new proposed constructions
and the one presented in [AB19] (that are shown in highlighted form in Fig. 1).
The first key difference is that we have an extra algorithm CV′ which will be
used by prover to check the well-formedness of CRS elements before using them.
This is actually the cost that prover needs to pay insted of trusting to the CRS
generators. The second key difference is that in new constructions, the simulator
Sim′ does not get simulation trapdoors directly, as the prover does not trust to
the CRS generators in this setting. Instead, the simulator Sim′ calls the extrac-
tion algorithm extX constructed for the input NIZK argument Ψ and extracts
simulation trapdoors ts of it, and then uses them for the rest of simulation.

3.2 Efficiency

In the rest, by considering Fig. 1, we consider efficiency of new constructions for
different important metrics in (subversion-resistant) NIZK arguments.

Setup Phase. The setup needs to be done for a new language L′. Roughly
speaking, it means the setup phase of original NIZK Ψ needs to be executed
for a new arithmetic circuit that has slightly larger number of gates. Again
with a particular instantiation [KMS+16,AB19], new changes will add around
52.000 multiplication gates to the QAP-based arithmetic circuits that encode L.
The number of gates comes from the case that both commitment scheme and
pseduo-random function used in construction are instantiated with a SHA512
hash function [KMS+16,AB19]. Implementations show that this will add a con-
stant amount (e.g. 10 megabyte) to the size of original CRS, that for arithmetic
circuits with large number of gates (that usually is the case in practical appli-
cation) the overhead is negligible [AB19].

CRS Verification. In new construction, in order to verify the well-formedness of
CRS elements one needs to execute CV′ algorithm which almost has the same
efficiency as CV algorithm in original NIZK argument Ψ . In practice, it is shown
that running time of CV can be less than running time of P [ABLZ17].

Prover. In new schemes, prover needs to give a proof for the new language L′ and
sign the proof with a one-time secure signature scheme. Empirical performances
presented in [AB19] show that the overhead for a QAP-based zk-SNARK is
very small in practical cases. For instance, in the fixed setting, for an arithmetic

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 53

circuit that prover already needed 83 s to generate a proof, in new construction
the proof generation took 90.1 s.

Proof Size. In new constructions the size of new proof π′ := (z0, π, pkSign, σ)
will be equal to the size of original proof π plus the size of three elements (z0,
pkSign, σ). Similarly, with a particular instantiation for 128-bit security (e.g. the
one in [AB19]), these three elements totally can add less than 128 bytes to the
size of original proof π.

Verifier. Extra from the verification of NIZK argument Ψ , the verifier of argu-
ment Ψ ′ will verify the validity of a one-time secure signature. Similarly, for
a particular instantiation [AB19], verification of the signature scheme adds 1
equation to the verification of original scheme that needs two parings and one
exponentiation. They show that a proper instantiation can even give a verifica-
tion faster than the verification of current simulation knowledge sound NIZKs
arguments in the CRS model [GM17,Lip19].

3.3 Security Proofs

In this section, we show that the given a subversion-resistant NIZK argu-
ment that guarantees completeness, Sub-ZK, and (knowledge) soundness, the
described construction in Sect. 3.1 results a NIZK argument that achieves com-
pleteness, Sub-ZK and simulation (knowledge) soundness.

Theorem 1 (Completeness). If the NIZK argument Ψ ensures complete-
ness, Sub-ZK, and (knowledge) soundness, and the one-time signature scheme
(KGen,Sign,SigVerify) is secure, then the proposed construction in Fig. 1 guar-
antees completeness.

Proof. By considering the completeness of NIZK argument Ψ and the fact that
SigVerify(pkSign,m,Sign(m, skSign)) = 1, we conclude that the output NIZK argu-
ment Ψ ′ guarantees completeness. ��
Theorem 2 (Subversion Zero-Knowledge). If the NIZK argument Ψ guar-
antees completeness, Sub-ZK, and (knowledge) soundness, the pseudo-random
function family is secure, and the one-time signature scheme is secure, then the
proposed construction in Fig. 1 achieves Sub-ZK.

Before going through the proof, it is worth to mention that proving Sub-
ZK of a subversion-resistant NIZK argument is a bit tricky than proving stan-
dard notion of ZK. The reason is that in the proof of standard ZK, CRS
generator is trusted and the CRS trapdoors (simulation trapdoors) are hon-
estly provided to the simulator Sim. But in proving Sub-ZK, since the prover
does not trust to the CRS generator any more, consequently the simulator Sim
cannot trust to the provided trapdoors. To address this issue, the proposed
solution [BFS16] is that the prover checks the well-formedness of CRS ele-
ments before using them and in simulating proofs, the simulator uses a non-
black-box extraction procedure to extract the simulation trapdoors directly

54 K. Baghery

from the (possibly malicious) CRS generator and then uses them for the
simulation [BFS16,ABLZ17,Fuc18,ALSZ18,Bag19b]. The non-black-box extrac-
tion usually is done using various knowledge assumptions [Dam92,BFS16]. For
instance [ABLZ17] used Bilinear Diffie-Hellman Knowledge of Exponents (BDH-
KE) assumption2 to prove Sub-ZK of Groth’s zk-SNARK [Gro16], while Fuchs-
bauer [Fuc18] did the same but with the Square Knowledge of Exponent (SKE)
assumption3 which led to prove Sub-ZK of Groth’s zk-SNARK [Gro16] without
modifying its CRS. But, intuitively in all cases one relies on the fact that if a
(malicious) CRS generator manages to come out with some well-formed CRS
elements, there exists a non-black-box extractor that given access to the source
code and random coins of the (malicious) CRS generator, it can extract the sim-
ulation trapdoors. Once the simulation trapdoors are extracted, the simulator
Sim can simulate the proofs. It is worth to mention that the well-formedness
of CRS elements are checked by a public efficient CRS verification algorithm
known as CV. Using different knowledge-assumptions in proving Sub-ZK of par-
ticular NIZK arguments might lead to different CV algorithms, as Abdolmaleki
et al. [ABLZ17] and Fuchsbauer [Fuc18] proposed two different CV algorithms
for Groth’s zk-SNARK [Gro16].

Proof. Sub-ZK in the input NIZK implies that there exists a simulation algo-
rithm Sim which first uses extraction algorithm extX and extracts the simulation
trapdoors from (malicious) CRS generator X and then uses the extracted trap-
doors to simulate the argument. We note that due to OR-based construction
of new language L′, the proofs for new language can be simulated using either
simulation trapdoors of NIZK argument Ψ (first branch) or simulation trapdoors
(s, r) of that are hidden in the committed value ρ := Com(s, r) (second branch).
Here for simulation we use simulation trapdoors of NIZK argument Ψ which can
be extracted by extX. Now, consider the following experiences,

EXPzk
1 (simulator)

– Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s, r ←r {0, 1}λ; ρ := Com(s, r); and
output crs′ := (crs, ρ); where ts contains trapdoors of CRS crs and (s, r) are
hidden trapdoors of the committed value ρ.

– Define function O(x,w): Abort if (x,w) ∈ RL; call the extraction algo-
rithm extX constructed in simulation of subversion-resistant NIZK Ψ and
extract simulation trapdoors ts of Ψ from CRS generator X; gener-
ate (pkSign, skSign) ← KGen(1λ); sample z0 ←r {0, 1}λ; generate π ←
Sim(RL′ , ξ, crs, (x, z0, pkSign, ρ), ts); sign σ ← Sign(skSign, (x, z0, π)); return
π′ := (z0, π, pkSign, σ).

– b ← AO(x,w)(crs′)
2 It states that in an asymetric bilinear group, given [1]1 and [1]1, if an adversary

manages to come out with [a]1 and [a]2, he must know a. Knowing a is formalized
by showing that there exists an efficient non-black-box extractor that given access
to source code and random coins of the adversary, it can extract a [Dam92].

3 It states that in a symmetric bilinear group, given [1]1, if an adversary manages to
come out with [a]1 and

[
a2

]
1
, he must know a.

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 55

EXPzk
2 (prover)

– Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s, r ←r {0, 1}λ; ρ := Com(s, r); and
output crs′ := (crs, ρ); where ts contains trapdoors of CRS crs and (s, r) are
hidden trapdoors of the committed value ρ.

– Define function O(x,w): Abort if (x,w) ∈ RL; generate
(pkSign, skSign) ← KGen(1λ); sample z0, z1, z2 ←r {0, 1}λ; generate
π ← P(RL′ , ξ, crs, (x, z0, pkSign, ρ), (w, z1, z2)) ; sign σ ← Sign(skSign, (x, z0,
π)); return π′ := (z0, π, pkSign, σ).

– b ← AO(x,w)(crs′)

Lemma 1. If the NIZK argument Ψ guarantees Sub-ZK, and the one-time
signature scheme is secure, for two above experiments we have Pr[EXPzk

1] ≈
Pr[EXPzk

2].

Proof. Two experiments EXPzk
2 and EXPzk

1 model the real prover and simulator
of new construction described in Fig. 1. As the NIZK argument Ψ guarantees
Sub-ZK it, consequently it guarantees ZK, so one can conclude that the proof
generated by prover in experiment EXPzk

2 is indistinguishable from the proof
generated by the simulator in EXPzk

1 . Intuitively, this is because of OR-based
construction of new language L′, and consequently the fact that all new elements
added to the new construction are chosen randomly and independently. ��
This results that the constructed NIZK arguments in Sect. 3.1 ensures
Sub-ZK. ��
Theorem 3 ((Non-black-Box) Simulation Knowledge Soundness). If
the NIZK argument Ψ is complete, Sub-ZK, and knowledge sound, then the
proposed construction in Fig. 1 guarantees (non-black-box) simulation knowledge
soundness.

Before going through the proof of theorem, recall that simulation knowledge
soundness states that given a honestly generated CRS crs, an adversary cannot
come out with a valid fresh proof, even if he access to an oracle which returns
simulated proofs for an arbitrary statement, unless he knows the witness. The
existing of an oracle which returns simulated proofs shows that the protocol is
simulatable, so the proofs should be zero-knowledge. In the last theorem, we
observed that the constructed NIZK argument in Sect. 3.1 guarantees Sub-ZK
and consequently ZK. In proving this theorem, as verifier trusts to the CRS
generator and as Sub-ZK implies ZK, so we use the simulator of standard ZK
to prove this theorem.

Proof. The proof is simplified and generalized version of the proof of simula-
tion knowledge soundness presented in [KZM+15] and in [AB19], respectively,
but for all (Sub-)ZK and (knowledge) sound NIZK arguments. For the sake of
completeness, we provide the proof in the rest. The proof is for the case that
the input NIZK argument guarantees knowledge soundness. Similarly, we write
consecutive hybrid experiments and at the end show that success probability of

56 K. Baghery

an adversary to break the simulation knowledge soundness of new constructions
are negligible. Consider the following experiments,

EXPSimExt
1 (main experiment)

– Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s, r ←r {0, 1}λ; ρ := Com(s, r); and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, r))); where ts′ is new CRS trapdoor.

– Define function O(x): (pkSign, skSign) ← KGen(1λ); set μ = fs(pkSign); gener-
ate π ← P(RL′ , ξ, crs, (x, μ, pkSign, ρ), (s, r)); sign σ ← Sign(skSign, (x, μ, π));
return π′ := (μ, π, pkSign, σ).

– (x, π′) ← AO(x)(crs′).
– Parse π′ := (μ, π, pkSign, σ); w ← extA(crs′, x, π, ξ).
– Return 1 iff ((x, π′) ∈ Q) ∧ (V′(RL, ξ, crs′, x, π′) = 1) ∧ ((x,w) ∈ RL);

where Q shows the set of statment-proof pairs generated by O(x).

EXPSimExt
2 (relaxing the return checking)

– Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s, r ←r {0, 1}λ; ρ := Com(s, r); and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, r))); where ts′ is new CRS trapdoor.

– Define function O(x): (pkSign, skSign) ← KGen(1λ); set μ = fs(pkSign); gener-
ate π ← P(RL′ , ξ, crs, (x, μ, pkSign, ρ), (s, r)); sign σ ← Sign(skSign, (x, μ, π));
return π′ := (μ, π, pkSign, σ).

– (x, π′) ← AO(x)(crs′).
– Parse π′ := (μ, π, pkSign, σ); w ← extA(crs′, x, π, ξ).
– Return 1 iff ((x, π′) ∈ Q) ∧ (V′(RL, ξ, crs′, x, π′) = 1) ∧ (pkSign ∈ PK) ∧

(μ = fs(pkSign)) ; where Q is the set of statment-proof pairs and PK is the
set of signature verification keys, both generated by O(x).

Lemma 2. If the underlying one-time signature scheme is strongly unforgeable,
and the NIZK argument guarantees knowledge-soundness, then Pr[EXPSimExt

2] ≤
Pr[EXPSimExt

1] + negl(λ).

Proof. We note that if (x, π′) ∈ Q and “pkSign from (x, π′), has been generated by
O(·)”, then the (x, μ, π) is a valid message/signature pair. Therefore by security
of the signature scheme, we know that (x, π) ∈ Q and “pkSign has been generated
by O(·)” happens with negligible probability, which allows us to focus on pkSign ∈
PK.

Now, due to knowledge soundness of the original scheme (there is an extractor
extA where can extract witness from A), if some witness is valid for L′ and
(x,w) ∈ RL, so we conclude it must be the case that there exists some s′, such
that ρ is valid commitment of s′ and μ = fs′(pkSign), which by perfectly binding
property of the commitment scheme, it implies μ = fs(pkSign). ��

EXPSimExt
3 (simulator)

– Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s, r ←r {0, 1}λ; ρ := Com(s, r); and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, r))); where ts′ is new CRS trapdoor.

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 57

– Define function O(x): (pkSign, skSign) ← KGen(1λ); set μ = fs(pkSign); gener-
ate π ← Sim(RL′ , ξ, crs, (x, μ, pkSign, ρ), (ts ‖ (s, r))) ; sign σ ← Sign(skSign, (x,
μ, π)); return π′ := (μ, π, pkSign, σ).

– (x, π′) ← AO(x)(crs′).
– Parse π′ := (μ, π, pkSign, σ); w ← extA(crs′, x, π, ξ).
– Return 1 iff ((x, π′) ∈ Q) ∧ (V′(RL, ξ, crs′, x, π′) = 1) ∧ (pkSign ∈ PK) ∧

(μ = fs(pkSign)); where Q is the set of statment-proof pairs and PK is the
set of signature verification keys, both generated by O(x).

Lemma 3. If the NIZK argument Ψ guarantees zero-knowledge, then for
two experiments EXPSimExt

3 and EXPSimExt
2 , we have Pr[EXPSimExt

3] ≤
Pr[EXPSimExt

2] + negl(λ).

Proof. As the NIZK argument Ψ ensures Sub-ZK and consequently ZK, so it
implies no polynomial time adversary can distinguish a proof generated by the
simulator from a proof that is generated by the prover. So, as we are running in
polynomial time, thus two experiments are indistinguishable. ��

EXPSimExt
4 (separating secret key of pseudo random function)

– Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s′, s, r ←r {0, 1}λ ; ρ := com(s′, r) ; and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, s′, r))); where ts′ is new trapdoor.

– Define function O(x): (pkSign, skSign) ← KGen(1λ); set μ = fs(pkSign); gener-
ate π ← Sim(RL′ , ξ, crs, (x, μ, pkSign, ρ), (ts ‖ (s, r))); sign σ ← Sign(skSign, (x,
μ, π)); return π′ := (μ, π, pkSign, σ).

– (x, π′) ← AO(x)(crs′).
– Parse π′ := (μ, π, pkSign, σ); w ← extA(crs′, x, π, ξ).
– Return 1 iff ((x, π′) ∈ Q) ∧ (V′(RL, ξ, crs′, x, π′) = 1) ∧ (pkSign ∈ PK) ∧

(μ = fs(pkSign)); where Q is the set of statment-proof pairs and PK is the
set of signature verification keys, both generated by O(x).

Lemma 4. If the commitment scheme used in the CRS generation is computa-
tionally hiding, then Pr[EXPSimExt

4] ≤ Pr[EXPSimExt
3] + negl(λ).

Proof. Computationally hiding of a commitment scheme implies that
Com(m1, r) and Com(m2, r) are computationally indistinguishable, as in this
lemma. ��

EXPSimExt
5 (replace pseudo random function fs(·) with true random function

F (·)):
– Setup: Sample (crs||ts) ← K(RL′ , ξ); s′, s/, r ←r {0, 1}λ; ρ := Com(s′, r); and

output (crs′||ts′) := ((crs, ρ)||(ts, (s/ , s′, r))); where ts′ is new CRS trapdoor.

– Define function O(x): (pkSign, skSign) ← KGen(1λ); set μ = F (pkSign); gener-
ate π ← Sim(RL′ , ξ, crs, (x, μ, pkSign, ρ), (ts||(s, r))); sign σ ← Sign(skSign, (x,
μ, π)); return π′ := (μ, π, pkSign, σ).

58 K. Baghery

– (x, π′) ← AO(x)(crs′).
– Parse π′ := (μ, π, pkSign, σ); w ← extA(crs′, x, π, ξ).
– Return 1 iff ((x, π′) ∈ Q) ∧ (V′(RL, ξ, crs′, x, π′) = 1) ∧ (pkSign ∈ PK) ∧

(μ = F (pkSign)); where Q is the set of statment-proof pairs and PK is the
set of signature verification keys, both generated by O(x).

Lemma 5. If the underlying truly random function F (·) is secure, then
Pr[EXPSimExt

4] ≤ Pr[EXPSimExt
5].

Proof. By assuming function F (·) is secure, we can conclude no polynomial time
adversary can distinguish an output of the true random function F (·) from an
output of the pseudo random function fs(·). Indeed, experiment EXPSimExt

5 can
be converted to an adversary for the game of a true random function. ��
Claim. For experiment EXPSimExt

5 , we have Pr[EXPSimExt
5] ≤ 2−λ.

Proof. From verification we know pkSign ∈ PK, therefore F (pkSign) has not been
queried already. Thus, we will see F (pkSign) as a newly generated random string
independent from μ, which implies adversary only can guess. ��

This completes proof of the main theorem. ��

4 A Sub-ZK Simulation-Extractable SNARK

In this section, we aim to instantiate the construction proposed in Sect. 3.1, and
achieve a NIZK argument that can guarantee Sub-ZK and simulation knowledge
soundness. In such a scheme, the prover will get sure that the proof is ZK without
trusting to the CRS generators but to achieve simulation knowledge soundness
they will trust the CRS generators. Based on discussions in Sect. 3.1 and Fig. 1,
we need to instantiate some primitives including the pseudo-random function,
the commitment scheme, and the one-time secure signature scheme and also use
a subversion-resistant NIZK argument as a subroutine.

A Subversion-Resistant NIZK. Currently Groth’s zk-SNARK is the most
efficient subversion-resistant NIZK argument that is proven to achieve Sub-
ZK [ABLZ17,Fuc18] and knowledge soundness [Gro16] in the generic group
model. While proving Sub-ZK, Abdolmaleki et al. [ABLZ17] and Fuchs-
bauer [Fuc18] have proposed two different CRS verification CV algorithms for
Groth’s zk-SNARK, which the later works for original version but the first one
requires some changes in the CRS of Groth’s zk-SNARK.

Instantiation of Primitives. As mentioned before, recently Atapoor and Bagh-
ery [AB19] used a similar construction to achieve simulation knowledge sound-
ness in Groth’s zk-SNARK [Gro16]. Their main goal was to construct an effi-
cient version of Groth’s zk-SNARK that can also guarantee non-malleability of
proofs and outperforms Groth and Maller’s zk-SNARK [GM17]. They instan-
tiate pseudo-random function and commitment scheme with SHA512 hash

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 59

Fig. 2. A CRS verification algorithm for the variation of Groth’s zk-SNARK [Gro16]
proposed by Atapoor and Baghery [AB19]. Note that crs′ := (crs, ρ), where ρ :=
Com(s, r) and crs is the CRS of Groth’s zk-SNARK that is shown above the figure.

function which requires an arithmetic circuit with ≈26.000 multiplication
gates [KMS+16]. They used Boneh and Boyen’s signature scheme [BB08] to
instantiate the one-time secure signature scheme which is a paring-based signa-
ture scheme and works as follows:

Key Generation, (pkSign, skSign) ← KGen(1λ): Given a bilinear group descrip-
tion (p,G1,G2,GT , ê, [1]1 , [1]2), selects sk ←r Z

∗
p, and returns (pkSign, skSign) :=

([sk]1 , sk).

Signing, [σ]2 ← Sign(skSign,m): Given the group description, skSign, and a mes-
sage m, returns [σ]2 = [1/(m + sk)]2.

Verification, {1, 0} ← SigVerify(pkSign, [σ]2): Given pkSign, m, and [σ]2, checks
whether [m + sk]1 • [1/(m + sk)]2 = [1]T and returns either 1 or 0.

Subversion-Resistant Simulatioo-Extractable SNARK. In the rest, we use the
instantiations used in [AB19] and the CV algorithm proposed by Fuchs-
bauer [Fuc18] to construct a variation of Groth’s zk-SNARK that will guarantee

60 K. Baghery

Sub-ZK and simulation knowledge soundness. In Fig. 2 we presented a CRS ver-
ification algorithm CV′ which basically is a minimally changed version of the CV
algorithm proposed by Fuchsbauer [Fuc18]. In CV′ we also check whether ρ = 0,
and basically this is the only difference between CV′ and CV algorithms.

Finally, as we used the same instantiations used in [AB19], so the other three
algorithms (K′,P′,V′) will be the same as in the variation of Groth’s zk-SNARK
proposed in [AB19]. Basically, we propose to add the new algorithm CV′ to
their variation and with minimal computational cost, achieve Sub-ZK as well.
To this end, the prover first needs to check the well-formedness of CRS elements
with executing the algorithm CV′ (shown in Fig. 2) and if it returned 1 (the
CRS is well-formed) it continues and generates the proof as described in Fig. 1.
Abodlmaleki et al. [ABLZ17] showed that using batching techniques a similar
CV′ algorithm can be executed very efficiently; specially faster than running time
of prover.

5 Conclusion

Recently, Atapoor and Baghery [AB19] used a folklore OR technique [BG90] with
a particular instantiation [KZM+15,AB19] to construct a variation of Groth’s
zk-SNARK [Gro16] that achieves simulation knowledge soundness; consequently
it guarantees non-malleability of proofs.

In this paper, we showed that the same technique can be used to amplify
the best result in constructing subversion-resistant NIZK arguments [BFS16,
ABLZ17,Fuc18,FO18,ALSZ18]. Technically speaking, we proved that if the
input NIZK argument already achieves Sub-ZK (ZK without trusting to a third
party) and (knowledge) soundness, by applying the mentioned technique, the
lifted NIZK argument will also guarantee Sub-ZK and simulation (knowledge)
soundness. Simulation knowledge soundness (a.k.a. simulation-extractability)
ensures non-malleability of proofs which is a necessary requirement in practi-
cal applications.

We emphasize that, the used compiler can be applied on any subversion-
resistant NIZK argument, e.g. the ones studied in [Fuc18], but we focused on
the state-of-the-art zk-SNARK which is proposed by Groth in [Gro16]. From a
different perspective, basically we showed that the recent construction proposed
by Atapoor and Baghery [AB19] can also achieve Sub-ZK with minimal efficiency
loss. The cost is that prover will check the well-formedness of CRS elements by
an efficient CRS verification algorithm before using them.

To sum up, we note that as currently Atapoor and Baghery’s variation [AB19]
of Groth’s zk-SNARK is the most efficient simulation-extractable zk-SNARK in
the CRS model, so adding Sub-ZK to their scheme will result the most efficient
SNARK that can guarantee Sub-ZK and simulation-extractability.

Acknowledgement. This work was supported in part by the Estonian Research
Council grant PRG49.

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 61

References

[AB19] Atapoor, S., Baghery, K.: Simulation extractability in groth’s zk-SNARK.
In: Pérez-Solá, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) DPM/CBT-2019. LNCS, vol. 11737, pp. 336–354. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31500-9 22

[ABK18] Auerbach, B., Bellare, M., Kiltz, E.: Public-key encryption resistant
to parameter subversion and its realization from efficiently-embeddable
groups. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol.
10769, pp. 348–377. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-76578-5 12

[ABL+19] Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zaj ↪ac, M.: UC-secure
CRS generation for SNARKs. In: Buchmann, J., Nitaj, A., Rachidi, T.
(eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 99–117. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23696-0 6

[ABLZ17] Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-
resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part III. LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70700-6 1

[ALSZ18] Abdolmaleki, B., Lipmaa, H., Siim, J. and Zajac, M.: On QA-NIZK in the
BPK model. IACR Cryptology ePrint Archive, 2018:877 (2018). http://
eprint.iacr.org/2018/877

[AMV15] Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signatures: defi-
nitions, constructions and applications. Cryptology ePrint Archive, Report
2015/517 (2015). http://eprint.iacr.org/2015/517

[Bag19a] Baghery, K.: On the efficiency of privacy-preserving smart contract sys-
tems. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2019. LNCS, vol. 11627, pp. 118–136. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-23696-0 7

[Bag19b] Baghery, K.: Subversion-resistant commitment schemes: definitions and
constructions. Cryptology ePrint Archive, Report 2019/1065 (2019).
http://eprint.iacr.org/2019/1065

[BB08] Boneh, D., Boyen, X.: Short signatures without random oracles and the
SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

[BBG+13] Ball, J., Borger, J., Greenwald, G., et al.: Revealed: how us and uk spy
agencies defeat internet privacy and security. The Guardian 6, 2–8 (2013)

[BCG+15] Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sam-
pling of public parameters for succinct zero knowledge proofs. In: 2015
IEEE Symposium on Security and Privacy, pp. 287–304. IEEE Computer
Society Press (2015)

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC,
pp. 505–514. ACM Press, May/June 2014

[BCTV13] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
arguments for a von neumann architecture. Cryptology ePrint Archive,
Report 2013/879 (2013). http://eprint.iacr.org/2013/879

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM
Press, May 1988

https://doi.org/10.1007/978-3-030-31500-9_22
https://doi.org/10.1007/978-3-319-76578-5_12
https://doi.org/10.1007/978-3-319-76578-5_12
https://doi.org/10.1007/978-3-030-23696-0_6
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
http://eprint.iacr.org/2018/877
http://eprint.iacr.org/2018/877
http://eprint.iacr.org/2015/517
https://doi.org/10.1007/978-3-030-23696-0_7
https://doi.org/10.1007/978-3-030-23696-0_7
http://eprint.iacr.org/2019/1065
http://eprint.iacr.org/2013/879

62 K. Baghery

[BFS16] Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS:
security in the face of parameter subversion. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 26

[BG90] Bellare, M., Goldwasser, S.: New paradigms for digital signatures and mes-
sage authentication based on non-interactive zero knowledge proofs. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 19

[BPR14] Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption
against mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 1

[Dam92] Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-
540-46766-1 36

[DDO+01] De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.:
Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44647-8 33

[FO18] Fuchsbauer, G., Orrù, M.: Non-interactive zaps of knowledge. In: Pre-
neel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 44–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 3

[Fuc18] Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 11

[Gab19] Gabizon, A.: On the security of the BCTV pinocchio zk-SNARK variant.
IACR Cryptology ePrint Archive, 2019:119 (2019)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GM17] Groth, J., Maller, M.: Snarky Signatures: minimal signatures of knowl-
edge from simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 581–612. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 20

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 6

[Gre14] Greenwald, G.: No Place to Hide: Edward Snowden, the NSA, and the US
Surveillance State. Macmillan, London (2014)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 19

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 11

https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-319-93387-0_3
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11

Subversion-Resistant Simulation (Knowledge) Sound NIZKs 63

[Hae19] Haenni, R.: Swiss post public intrusion test: undetectable attack against
vote integrity and secrecy (2019). https://e-voting.bfh.ch/app/download/
7833162361/PIT2.pdf?t=1552395691

[KMS+16] Kosba, A., Miller, A.: The blockchain model of cryptography and privacy-
preserving smart contracts. In: 2016 IEEE Symposium on Security and
Privacy, pp. 839–858. IEEE Computer Society Press, May 2016

[KZM+15] Kosba, A.E., et al.: A framework for building composable zero-knowledge
proofs. Technical report 2015/1093, 10 November 2015. http://eprint.iacr.
org/2015/1093. Accessed 9 Apr 2017

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28914-9 10

[Lip19] Lipmaa, H.: Simulation-extractable SNARKs revisited. Cryptology ePrint
Archive, Report 2019/612 (2019). http://eprint.iacr.org/2019/612

[LPT19] Lewis, S.J., Pereira, O., Teague, V.: Trapdoor commitments in the swis-
spost e-voting shuffle proof (2019). https://people.eng.unimelb.edu.au/
vjteague/SwissVote

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical
verifiable computation. In: 2013 IEEE Symposium on Security and Privacy,
pp. 238–252. IEEE Computer Society Press, May 2013

[PLS13] Perlroth, N., Larson, J., Shane, S.: NSA able to foil basic safeguards of
privacy on web. The New York Times, 5 (2013)

https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691
https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691
http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2015/1093
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
http://eprint.iacr.org/2019/612
https://people.eng.unimelb.edu.au/vjteague/SwissVote
https://people.eng.unimelb.edu.au/vjteague/SwissVote

Classification of Self-dual Codes
of Length 20 over Z4 and Length at Most

18 over F2 + uF2

Rowena Alma L. Betty1(B) and Akihiro Munemasa2

1 Institute of Mathematics, University of the Philippines-Diliman,
Quezon City 1101, Philippines
rabetty@math.upd.edu.ph

2 Graduate School of Information Sciences, Tohoku University,
Sendai 980–8579, Japan

munemasa@math.is.tohoku.ac.jp

Abstract. In this paper, we give a precise description of Rains’ algo-
rithm for classifying self-dual Z4-codes with a given residue code. We will
use this to classify self-dual Z4-codes of length 20. A similar method is
used to classify self-dual codes over F2 + uF2. We will update the table
given by Han, Lee and Lee, of the data regarding the classification of
self-dual codes over F2 + uF2.

Keywords: Self-dual code · Self-orthogonal code · Automorphism
group

1 Introduction

In recent years, the study of self-dual codes over rings had been of great inter-
est to many researchers. This was ignited by the work of Hammons, Kumar,
Calderbank, Sloane and Solé [7], who showed that some famous classes of binary
nonlinear codes can be obtained as the image under the Gray map from linear
codes over Z4. As in the case for codes over finite fields, it is a fundamental prob-
lem to classify self-dual codes of a given length. In [13], Rains studied self-dual
codes over Z4, via their residue codes, that is, their reduction modulo 2. We will
give a precise description of Rains’ algorithm (see [13, Theorem 3]) for classify-
ing self-dual codes with a given binary doubly-even residue code, and use this
to classify self-dual Z4-codes of length 20. Classification of self-dual Z4-codes of
lengths up to 9 were given in [3], and [5] gave a classification for lengths 10 up to
15. Type II codes over Z4 of length 16 were classified in [12], while classification
for Type I codes of length 16, as well as self-dual codes over Z4 of lengths 17
up to 19 have been established in [9].

We can use a similar method to classify self-dual codes over F2 + uF2 up to
lengths 17 and 18, with binary self-orthogonal residue code. Self-dual codes over

R. A. L. Betty—Partially supported by Philippine National Oil Company.

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 64–77, 2019.
https://doi.org/10.1007/978-3-030-35199-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_4

Classification of Self-dual Codes 65

F2+uF2 were classified for lengths up to 8 in [4]. Classification of Type II codes
of lengths 12 and 16 are given in [1].

The organization of the paper is as follows. In Sect. 2, we recall basic results.
In Sect. 3, we investigate how the automorphism group of the residue codes acts
on the set of self-dual Z4-codes having the same residue. In Sect. 4, we will
describe Rains’ algorithm for self-dual Z4-codes as our main theorem, and give a
classification of self-dual Z4-codes of length 20. In Sect. 5, we give a classification
of self-dual codes over F2 + uF2.

2 Preliminaries

Let R denote the ring Zm of integers modulo m or the commutative ring F2 +
uF2 = {0, 1, u, 1 + u}, with u2 = 0. A (linear) R-code of length n is an R-
submodule of Rn. Two codes C and C′ over Zm (respectively, over F2 + uF2)
are equivalent if there exists a monomial (±1, 0)-matrix (respectively, monomial
(1, 1+u, 0)-matrix) P such that C′ = C ·P = {c ·P | c ∈ C}. An automorphism of
C is a monomial matrix P with C = C · P , and the automorphism group Aut(C)
of C is the group of all automorphisms. A matrix G ∈ Mk×n(R) whose rows
generate the code C is called a generator matrix of C. We denote by RkG the
R-code with generator matrix G.

The Hamming weight of x ∈ Rn denoted by wt(x) is the number of its
nonzero components. The Lee weight wtL(x) of an element x ∈ Z4 is defined by
wtL(0) = 0, wtL(1) = wtL(3) = 1 and wtL(2) = 2. The Lee weight wtL(x) of
an element x ∈ F2 + uF2 is defined by wtL(0) = 0, wtL(1) = wtL(1 + u) = 1
and wtL(u) = 2. The Lee weight of a vector in Rn is the integral sum of the Lee
weights of its components. The minimum Hamming and Lee weight of a code C
are the smallest Hamming and Lee weights among all nonzero codewords of C,
respectively. The symmetrized weight enumerator for Lee weights of a code C of
length n over F2 + uF2 is defined as

swe(a, b, c) =
∑

x∈C
an0(x)bn1(x)cn2(x),

where n0(x) is the number of xi = 0, n2(x) is the number of xi = u, and
n1(x) = n − n0(x) − n2(x), for x = (x1, . . . , xn) ∈ C.

We equip Rn with the standard inner product x · y =
∑n

i=1 xiyi, for x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. The dual of an R-code C is defined as
C⊥ = {v ∈ Rn | u · v = 0 for all u ∈ C}. We say that a code C is self-orthogonal
if C ⊆ C⊥, and self-dual if C = C⊥. We say that a self-dual code is Hamming-
optimal if it has the largest possible minimum Hamming weight among self-dual
codes of the same length, and Lee-optimal self-dual codes are defined in a similar
manner.

66 R. A. L. Betty and A. Munemasa

3 The Automorphism Group of the Residue Code
of a Self-dual Z4-code

There are two binary codes res(C) and tor(C) associated with every Z4-code C:
res(C) = {c mod 2 | c ∈ C} and tor(C) = {c mod 2 | c ∈ Z

n
4 , 2c ∈ C}.

The codes res(C) and tor(C) are called the residue and torsion codes of C, respec-
tively. A Z4-code C is said to be free if res(C) = tor(C). If C is self-dual, then
res(C) is a binary doubly-even code with tor(C) = res(C)⊥ [3]. In this section, we
investigate how the automorphism group of res(C) acts on the set of all self-dual
Z4-codes having the residue code res(C).

Let k and n be positive integers with 2k ≤ n, and set M = Mk×n(Z2). Let
C be a doubly-even binary [n, k] code with generator matrix A ∈ M and

[
A
B

]

be a generator matrix of C⊥, where B ∈ M(n−2k)×n(Z2). Therefore, we have

AA� = 0, (1)

BA� = 0. (2)

We denote by ι : Z2 → Z4 the section defined by ι(0) = 0 and ι(1) = 1. Note
that for x, y ∈ Z2, 2ι(xy) = 2ι(x)ι(y) and 2ι(x + y) = 2ι(x) + 2ι(y). Therefore,
for matrices X,Y over Z2, we have

2ι(X + Y) = 2ι(X) + 2ι(Y),
2ι(XY) = 2ι(X)ι(Y) = ι(X) · 2ι(Y).

We shall use these properties of ι freely.
Let Ã be a k × n matrix over Z4 such that the code generated by Ã is

self-orthogonal and Ã mod 2 = A. Then

ÃÃ� = 0, (3)

2Ã = 2ι(A). (4)

In particular, the Z4-code generated by
[

Ã
2ι(B)

]

is self-dual.
Let

V0 = {M ∈ M | MA� + AM� = 0}, (5)

W0 = 〈{M ∈ M | MA� = 0}, {AEii | 1 ≤ i ≤ n}〉, (6)
V = V0 ⊕ Z2, (7)
W = W0 ⊕ {0}, (8)

Classification of Self-dual Codes 67

where matrix Eij has 1 in the (i, j)-entry and zeros in all other entries. Observe
that W0 ⊂ V0, and hence W ⊂ V .

Suppose P ∈ Aut(C). Recall that GL(k,Z2) denote the group of invertible
k × k matrices over Z2. Since A has full row rank, there exists a unique matrix
E1(P) ∈ GL(k,Z2) such that

AP = E1(P)A. (9)

Clearly,
E1(PQ) = E1(P)E1(Q) (P,Q ∈ Aut(C)). (10)

Since Aut(C) consists of permutation matrices, we have

ι(PQ) = ι(P)ι(Q) (P,Q ∈ Aut(C)). (11)

Also, there exists a unique matrix E2(P) ∈ M such that

2ι(E2(P)) = ι(E1(P)−1)Ãι(P) − Ã. (12)

Note that
E1(I) = I and E2(I) = 0. (13)

Lemma 1. Let P ∈ Aut(C) and M ∈ V0. Then

E1(P)−1MP ∈ V0, (14)
E2(P) ∈ V0. (15)

Proof. Set N = E1(P)−1MP + E2(P). Then

Ã + 2ι(N) = Ã + 2ι(E2(P)) + 2ι(E1(P)−1MP)

= ι(E1(P)−1)Ãι(P) + 2ι(E1(P)−1MP) (by (12)). (16)

From (11), we have
ι(P)ι(P)� = I. (17)

Since

2ι(NA� + AN�)

= 2ι(N)Ã� + Ã · 2ι(N)� (by (4))

= (Ã + 2ι(N))(Ã + 2ι(N))� (by (3))

= (ι(E1(P)−1)Ãι(P) + 2ι(E1(P)−1MP))

· (ι(E1(P)−1)Ãι(P) + 2ι(E1(P)−1MP))� (by (16))

= ι(E1(P)−1)Ãι(P)(2ι(E1(P)−1MP))�

+ 2ι(E1(P)−1MP)(ι(E1(P)−1)Ãι(P))� (by (3), (17))

= 2ι(E1(P)−1AM�(E1(P)−1)�)

+ 2ι(E1(P)−1MA�(E1(P)−1)�) (by (4))

= 2ι(E1(P)−1(AM� + MA�)(E1(P)−1)�) = 0,

68 R. A. L. Betty and A. Munemasa

we have NA� +AN� = 0. This implies N ∈ V0. Setting M = 0, we obtain (15).
Since N ∈ V0, we also obtain (14).
�
Lemma 2. Let P ∈ Aut(C). If M ∈ W0, then E1(P)−1MP ∈ W0.

Proof. Suppose first MA� = 0. Since AP−1 = E1(P−1)A by (9), we have
PA� = A�E1(P−1)�. Thus

E1(P)−1MPA� = E1(P)−1MA�E1(P−1)� = 0.

This implies E1(P)−1MP ∈ W0.
Next, suppose M = AEii, where i ∈ {1, . . . , n}. Then there exists a unique

j ∈ {1, . . . , n} such that Pij = 1. Now, by (9), we have

E1(P)−1MP = E1(P)−1APEjj = AEjj ∈ W0.

�
Lemma 3. Let P,Q ∈ Aut(C). Then E1(Q)−1E2(P)Q+E2(Q)+E2(PQ) ∈ W0.

Proof. From (10), we have 2ι(E1(PQ)−1) = 2ι(E1(Q)−1)ι(E1(P)−1). This
implies that there exists X ∈ Mk(Z2) such that

ι(E1(PQ)−1) = ι(E1(Q)−1)ι(E1(P)−1) + 2ι(X). (18)

Then

2ι(E2(PQ))

= ι(E1(PQ)−1)Ãι(PQ) − Ã (by (12))

= (ι(E1(Q)−1)ι(E1(P)−1) + 2ι(X))Ãι(PQ) − Ã (by (18))

= ι(E1(Q)−1)ι(E1(P)−1)Ãι(P)ι(Q)

+ ι(X) · 2Ãι(PQ) − Ã (by (11))

= ι(E1(Q)−1)(Ã + 2ι(E2(P)))ι(Q) + 2ι(XAPQ) − Ã (by (4), (12))

= ι(E1(Q)−1)Ãι(Q) + 2ι(E1(Q)−1E2(P)Q) + 2ι(XAPQ) − Ã

= 2ι(E2(Q) + E1(Q)−1E2(P)Q + XAPQ) (by (12)).

Hence

E2(PQ) = E1(Q)−1E2(P)Q + E2(Q) + XAPQ.

Since APQA� = E1(PQ)AA� = 0 by (1), we have XAPQ ∈ {M ∈ M |
MA� = 0} ⊂ W0. The result then follows.
�
Lemma 4. Let M,M ′ ∈ M. Then

Z
n−k
4

[
Ã + 2ι(M)

2ι(B)

]
= Z

n−k
4

[
Ã + 2ι(M ′)

2ι(B)

]
(19)

if and only if
(M + M ′)A� = 0. (20)

Classification of Self-dual Codes 69

Proof. If (19) holds, then there exist matrices P,Q,R, S over Z4 such that
[
Ã + 2ι(M)

2ι(B)

]
=

[
P Q
R S

] [
Ã + 2ι(M ′)

2ι(B)

]
.

Thus
2ι(M) = (P − I)Ã + 2Pι(M ′) + 2Qι(B). (21)

Moreover, this implies Ã ≡ PÃ (mod 2), hence A = (P mod 2)A. Since A ∈
Mk×n(Z2) has rank k, this implies

P ≡ I (mod 2). (22)

Thus we have

2ι((M + M ′)A�)

= ι(M + M ′) · 2ι(A�)

= ι(M + M ′) · 2Ã� (by (4))

= (2ι(M) + 2ι(M ′))Ã�

= ((P − I)Ã + 2Pι(M ′) + 2Qι(B) + 2ι(M ′))Ã� (by (21))

= 2(P + I)ι(M ′)Ã� + 2Qι(B)Ã� (by (3))

= Qι(B) · 2Ã� (by (22))

= Qι(B) · 2ι(A�) (by (4))

= Q · 2ι(BA�)
= 0 (by (2)).

Therefore, (20) holds.
Conversely, suppose (20) holds. Then

Z
k
2(M + M ′) ⊂ C⊥ = Z

n−k
2

[
A
B

]
.

This implies

2Zk
4ι(M + M ′) ⊂ 2Zn−k

4

[
ι(A)
ι(B)

]
= Z

n−k
4

[
2(Ã + 2ι(M ′))

2ι(B)

]
,

and hence

Z
n−k
4

[
Ã + 2ι(M)

2ι(B)

]
⊂ Z

n−k
4

[
Ã + 2ι(M ′)

2ι(B)

]
+ 2Zn−2k

4 ι(M + M ′)

= Z
n−k
4

[
Ã + 2ι(M ′)

2ι(B)

]
.

Switching the roles of M and M ′, we obtain the reverse containment. Therefore,
(19) holds.
�

70 R. A. L. Betty and A. Munemasa

Lemma 5. Let M ∈ M and P ∈ Aut(C). Then

Z
n−k
4

[
Ã + 2ι(M)
2ι(BP)

]
= Z

n−k
4

[
Ã + 2ι(M)

2ι(B)

]
.

Proof. Since P ∈ Aut(C) = Aut(C⊥), there exists F ∈ GL(n − k,Z2) such that
[
AP
BP

]
= F

[
A
B

]
.

Since A has full row rank, (9) implies that

F =
[
E1(P) 0

E3 E4

]

for some matrix E3 and some nonsingular matrix E4. Then BP = E3A + E4B,
so

Z
n−k
4

[
Ã + 2ι(M)
2ι(BP)

]
= Z

n−k
4

[
Ã + 2ι(M)

2ι(E3A + E4B)

]

= Z
n−k
4

[
I 0

2ι(E3) ι(E4)

] [
Ã + 2ι(M)

2ι(B)

]

= Z
n−k
4

[
Ã + 2ι(M)

2ι(B)

]
.

�
We define matrices Fij over Z4 by Fij = I + 2Eij . Note that the matrices

Fij are pairwise commutative, that is,

FijFkl = FklFij = I + 2(Eij + Ekl). (23)

Note also that the matrix Fii is the diagonal matrix whose diagonal entries are
all 1 except its (i, i)-entry which is −1. For a subset Λ of {1, 2, . . . , n} and a
permutation matrix P , we denote by ΛP the subset satisfying

P−1
∑

i∈Λ

EiiP =
∑

i∈ΛP

Eii.

Lemma 6. For M ∈ M, P ∈ Aut(C) and Λ ⊂ {1, 2, . . . , n}, we have

Z
n−k
4

[
Ã + 2ι(M)

2ι(B)

] (
∏

i∈Λ

Fii

)
ι(P)

= Z
n−k
4

[
Ã + 2ι(E1(P)−1MP + E2(P) + A

∑
i∈ΛP Eii)

2ι(B)

]
.

Classification of Self-dual Codes 71

Proof. Since

(Ã + 2ι(M))
∏

i∈Λ

Fiiι(P) = Ã
∏

i∈Λ

Fiiι(P) + 2ι(MP)

= (Ã + 2Ã
∑

i∈Λ

Eii)ι(P) + 2ι(MP)

= Ãι(P) + 2ι(A
∑

i∈Λ

EiiP + MP)

= Ãι(P) + 2ι(AP
∑

i∈ΛP

Eii + MP),

we have

ι(E1(P)−1)(Ã + 2ι(M))
∏

i∈Λ

Fiiι(P)

= ι(E1(P)−1)(Ãι(P) + 2ι(AP
∑

i∈ΛP

Eii + MP))

= Ã + 2ι(E2(P) + E1(P)−1AP
∑

i∈ΛP

Eii + E1(P)−1MP) (by (12))

= Ã + 2ι(E1(P)−1MP + E2(P) + A
∑

i∈ΛP

Eii) (by (9)).

Thus

Z
n−k
4

[
Ã + 2ι(M)

2ι(B)

] (
∏

i∈Λ

Fii

)
ι(P)

= Z
n−k
4

[
ι(E1(P)−1)(Ã + 2ι(M))

∏
i∈Λ Fiiι(P)

2ι(BP)

]

= Z
n−k
4

[
Ã + 2ι(E1(P)−1MP + E2(P) + A

∑
i∈ΛP Eii)

2ι(B)

]

by Lemma5.
�
Lemma 7. For M,M ′ ∈ M and P ∈ Aut(C), there exists a subset Λ of
{1, 2, . . . , n} such that

Z
n−k
4

[
Ã + 2ι(M)

2ι(B)

](
∏

i∈Λ

Fii

)
ι(P) = Z

n−k
4

[
Ã + 2ι(M ′)

2ι(B)

]
(24)

if and only if
M ′ + E1(P)−1MP + E2(P) ∈ W0. (25)

Proof. By Lemmas 4 and 6, (24) is equivalent to

(M ′ + E1(P)−1MP + E2(P) + A
∑

i∈Λ0

Eii)A� = 0, (26)

72 R. A. L. Betty and A. Munemasa

where Λ0 = ΛP . Assuming (26), we obtain (25) using (6).
Conversely, if (25) holds, then there exists a subset Λ0 of {1, 2, . . . , n} such

that (26) holds. Setting Λ = ΛP−1

0 , we recover (24) by Lemmas 4 and 6.
�

4 Classification of Self-dual Z4-codes with Given Residue

In this section, we state and prove our main theorems about classification of self-
dual Z4-codes with given residue, in terms of the action of the automorphism
group of the residue code.

Theorem 1. Let C be a binary doubly-even [n, k] code with generator matrix A.
Define V0,W0, V,W by (5)–(8). Then the group Aut(C) acts on V/W linearly by

((M,a) + W)P = (E1(P)−1MP + aE2(P), a) + W, (27)

for P ∈ Aut(C). Moreover, Aut(C) leaves the subset

Ω = {(M, 1) + W | M ∈ V0}

invariant, and the orbits of Aut(C) on Ω are in one-to-one correspondence with
the equivalence classes of self-dual codes over Z4 with residue code C.

Proof. Suppose (M1, a1), (M2, a2) ∈ V and (M1, a1)+W = (M2, a2)+W . Then
M1 − M2 ∈ W0 and a1 − a2 = 0. We have

(E1(P)−1M1P + a1E2(P), a1) − (E1(P)−1M2P + a2E2(P), a2)

= (E1(P)−1(M1 − M2)P, 0) ∈ W,

by Lemma2.
Observe that for P,Q ∈ Aut(C),

(((M,a) + W)P)Q

=
(
(E1(P)−1MP + aE2(P), a) + W

)Q

= (E1(Q)−1(E1(P)−1MP + aE2(P))Q + aE2(Q), a) + W

= (E1(Q)−1E1(P)−1MPQ + a(E1(Q)−1E2(P)Q + E2(Q)), a) + W

= (E1(Q)−1E1(P)−1MPQ + aE2(PQ), a) + W

by Lemma3, while

((M,a) + W)PQ = (E1(PQ)−1MPQ + aE2(PQ), a) + W

= (E1(Q)−1E1(P)−1MPQ + aE2(PQ), a) + W

by (10). Thus, ((M,a) + W)PQ = (((M,a) + W)P)Q.
Also, (13) implies ((M,a) + W)I = (M,a) + W . Therefore, (27) defines an

action of Aut(C) on V/W . Moreover, it is easy to see that this action is linear.

Classification of Self-dual Codes 73

Next, we show that Aut(C) leaves Ω invariant. By Lemma1, for P ∈ Aut(C)
and M ∈ V0, E1(P)−1MP + E2(P) ∈ V0. Therefore, if (M, 1) + W ∈ Ω, then

((M, 1) + W)P = (E1(P)−1MP + E2(P), 1) + W ∈ Ω.

Let (M, 1) + W, (M ′, 1) + W ∈ Ω. Note that two codes

Z
n−k
4

[
Ã + 2ι(M)

2ι(B)

]
and Z

n−k
4

[
Ã + 2ι(M ′)

2ι(B)

]

are equivalent if and only if (24) holds for some subset Λ of {1, 2, . . . , n} and a
permutation matrix P . Reducing modulo 2, we see that P ∈ Aut(C). Then by
Lemma7, this is equivalent to (25), or (M ′, 1)+W = ((M, 1)+W)P . Therefore,
the orbits of Aut(C) on Ω are in one-to-one correspondence with the equivalence
classes of self-dual codes over Z4 with residue code C.
�

By modifying the proof of Theorem1, we can determine the order of the
automorphism group of a Z4-code. For x, y ∈ Z

n
2 , we denote by x∗y the entrywise

product of x and y. The linear span of all x∗y, for x, y ∈ C, is denoted by C ∗C.
Note that by Theorem1, we have an action of Aut(C) on Ω, so we can speak
of the stabilizer in Aut(C) of an element (M, 1) +W ∈ Ω. This is the subgroup
of Aut(C) consisting of elements fixing (M, 1) + W ∈ Ω, and is denoted by
StabAut(C)((M, 1) + W).

Theorem 2. For M ∈ V0, let

C = Z
n−k
4

[
Ã + 2ι(M)

2ι(B)

]
.

Then

|Aut(C)| = |StabAut(C)((M, 1) + W)||(C ∗ C)⊥|, (28)

where C = res(C).
Proof. We consider the homomorphism

π : Aut(C) → Aut(C)
P̃ �→ P̃ mod 2,

so that |Aut(C)| = |Imπ||Kerπ|. Note that Imπ = StabAut(C)((M, 1) + W) by
Lemma 7.

Observe that, by Lemma6,

Z
n−k
4

[
Ã + 2ι(M)

2ι(B)

] (
∏

i∈Λ

Fii

)
= Z

n−k
4

[
Ã + 2ι(M + A

∑
i∈Λ Eii)

2ι(B)

]
.

Then, by Lemma 4,
∏

i∈Λ Fii ∈ Aut(C) is equivalent to A
∑

i∈Λ EiiA
� = 0.

The latter is equivalent to λ ∈ (C ∗ C)⊥, where λ =
∑

i∈Λ ei. Hence |Kerπ| =
|(C ∗ C)⊥|, and (28) holds.
�

74 R. A. L. Betty and A. Munemasa

By Theorem1, we can classify self-dual Z4-codes with given residue code C.
Letting C run through all doubly-even binary codes of length 20, a complete
classification of self-dual Z4-codes of length 20 can be obtained. To this end, we
use a database of doubly-even binary codes found in [10]. Let C be a doubly-even
code of length 20 and dimension k with generator matrix A. Let Ã, B be as in
Sect. 3. Define V0,W0, V,W by (5)–(8). Let

{(Mi, 1) + W | 1 ≤ i ≤ Mr}

be a set of representatives for the action of Aut(C) on Ω. The proof of Theorem1
shows that the codes

Z
n−k
4

[
Ã + 2ι(Mi)

2ι(B)

]
(1 ≤ i ≤ r)

form a complete set of representatives for equivalence classes of self-dual Z4-codes
with residue code C.

We also obtain inequivalent self-dual Hamming-optimal codes and inequiv-
alent self-dual Lee-optimal codes over Z4 of length 20 from three inequivalent
doubly-even binary residue codes with highest possible dual distance 4 (see [13,
Theorem 2]). All computer calculations in this paper were done with the help of
MAGMA [2].

Theorem 3. There are 183,948 inequivalent self-dual Z4-codes of length 20,
where 596 of these codes are Hamming-optimal and 237 of these codes are Lee-
optimal.

It is well known that every self-dual code gives rise to a unimodular lattice
[9]. More precisely, given a self-dual Z4-code of length 20,

A4(C) = 1
2
{(x1, . . . , x20) ∈ Z

20 | (x1 mod 4, . . . , x20 mod 4) ∈ C}

is a unimodular lattice of rank 20. This construction of lattices from codes is
called Construction A. The number of isomorphism classes of unimodular lattices
of rank 20 is significantly smaller than the number 183,948 of self-dual Z4-codes
of length 20. This means that the set of these codes are partitioned into equiva-
lence classes according to the associated lattice. In Table 1, we give the number
of inequivalent self-dual Z4-codes C, with A4(C) � L for each unimodular lattice
L of rank 20, having a given dimension k of the binary doubly-even residue codes
res(C).

5 Classification of Self-dual F2 + uF2-codes with Given
Residue

In the previous sections, we considered self-dual codes over the ring Z4. The ring
F2 + uF2 is very similar to Z4, where u in F2 + uF2 plays almost the same role

Classification of Self-dual Codes 75

Table 1. Number of inequivalent self-dual Z4-codes of length 20

L\k 0 1 2 3 4 5 6 7 8 9 Total

D20 0 1 1 2 5 9 13 20 19 12 82

D12E8 0 0 1 4 13 38 86 143 160 86 531

D12D8 0 0 2 8 30 97 259 516 649 378 1939

E2
7D6 0 0 0 2 15 81 308 794 1191 780 3171

A15D5 0 0 0 0 2 13 61 195 352 263 886

D2
8D4 0 0 1 9 57 284 1085 2913 4732 3306 12387

A11E6A3 0 0 0 0 2 26 190 804 1770 1475 4267

D3
6A

2
1 0 0 0 3 33 274 1583 5874 11964 9780 29511

A2
9A

2
1 0 0 0 0 1 14 129 688 1844 1831 4507

A2
7D5O1 0 0 0 0 5 74 671 3591 9772 9600 23713

D5
4 0 0 0 2 20 152 930 3762 8486 7362 20714

A4
5 0 0 0 0 2 31 340 2172 6931 7374 16850

E3
6O1 ⊕ Z 0 0 0 1 8 49 216 610 955 590 2429

A11D7O1 ⊕ Z 0 0 0 1 9 66 332 1044 1762 1114 4328

A2
7D5 ⊕ Z 0 0 0 1 14 130 828 3239 6288 4158 14658

A17A1 ⊕ Z
2 0 0 0 0 1 6 27 71 101 53 259

D10E7A1 ⊕ Z
2 0 0 1 9 53 229 733 1609 2074 1123 5831

D3
6 ⊕ Z

2 0 0 1 7 56 348 1576 4487 7023 4234 17732

A2
9 ⊕ Z

2 0 0 0 0 2 22 170 674 1272 750 2890

A11E6 ⊕ Z
3 0 0 0 1 10 75 351 950 1238 527 3152

E2
8 ⊕ Z

4 0 0 1 4 16 46 98 154 155 70 544

D16 ⊕ Z
4 0 1 3 9 24 54 106 157 153 66 573

D2
8 ⊕ Z

4 0 0 2 14 80 347 1097 2321 2808 1375 8044

Z
20 1 1 2 4 7 10 15 16 12 3 71

E8 ⊕ Z
12 0 1 3 9 25 54 95 122 94 27 430

D12 ⊕ Z
8 0 1 4 16 52 140 291 436 382 131 1453

E2
7 ⊕ Z

6 0 0 1 7 37 140 395 713 728 283 2304

A15 ⊕ Z
5 0 0 0 1 7 32 107 225 239 81 692

as 2 in Z4. Therefore, the method we used in Z4 can also be used for F2 + uF2.
For a code C over F2 + uF2, we define its residue code and torsion code as

res(C) = {x ∈ F
n
2 | ∃y ∈ F

n
2 , x + uy ∈ C} ,

tor(C) = {x ∈ F
n
2 | ux ∈ C} .

If C is self-dual, then res(C) is a binary self-orthogonal code with tor(C) = res(C)⊥
(see [6]). Thus, instead of specifying a doubly-even binary codes as a residue code
of a Z4-code, we fix a binary self-orthogonal code C and classify self-dual codes C

76 R. A. L. Betty and A. Munemasa

over F2 + uF2 with res(C) = C. Classification of binary maximal self-orthogonal
codes of length up to 18 were given in [11], from which all binary self-orthogonal
codes of length up to 18 can be enumerated.

A self-dual code over F2+uF2 is Type II if the Lee weight of every codeword
is divisible by 4, and Type I otherwise. Type II self-dual codes over F2 + uF2

exist only for lengths a multiple of 4 (see [4]).
Table I of [4] shows 10 inequivalent Type II codes of length 8, but the code

whose automorphism group of order equal to 29 · 3 has symmetrized weight
enumerator given by

12a4b4 + 12a5b2c + 4a6c2 + 16b8 + 64ab6c + 72a2b4c2 + 40a3b2c3 + 6a4c4

+ 12b4c4 + 12ab2c5 + c8 + 4a2c6 + a8.

Table IV of [4] gives 20 inequivalent Type I codes of length 8 which contain no
code with generator matrix (u) as a subcode of length 1, but there are in fact
only 19 such codes. Table 2 lists the order of their automorphism groups and
symmetrized weight enumerators.

Table 2. Type I codes of length 8 without trivial component

Group Order Symmetrized Weight Enumerators

b2 c b4 b2c c2 b6 b4c b2c2 c3

211 · 32 · 5 2 0 0 0 16 32 0 30 0

213 · 32 0 0 0 0 12 0 64 0 0

211 · 3 0 0 4 0 8 32 16 0 16

211 · 3 4 0 12 0 8 32 0 28 0

210 · 3 2 0 0 8 8 16 32 14 0

211 · 3 0 0 4 0 8 32 0 32 0

210 · 3 0 0 0 4 8 16 32 16 0

29 · 3 2 0 12 0 4 24 24 6 8

29 0 0 4 4 4 24 24 8 8

211 0 0 8 0 4 0 64 0 0

211 · 3 8 0 24 0 4 32 0 24 0

210 4 0 8 8 4 16 32 12 0

29 2 0 4 8 4 16 32 14 0

29 · 3 2 0 12 0 4 32 0 30 0

210 0 0 8 0 4 16 32 16 0

29 0 0 0 8 4 16 32 16 0

29 0 0 4 4 4 16 32 16 0

211 0 0 8 0 4 32 0 32 0

27 · 3 0 0 12 0 0 0 64 0 0

Classification of Self-dual Codes 77

Table 3 shows the current status of the classification of self-dual codes over
F2 + uF2, including our results, for length n, 8 ≤ n ≤ 18. The data is an update
of [8, Table 1], where they gave a lower bound for the number of inequivalent self-
dual codes for lengths 9 and 10. Note that an incorrect number for the number
of Type I codes of length 8 was given in [4].

Table 3. Number of inequivalent self-dual codes over F2+uF2 of length n, 8 ≤ n ≤ 18

n Type I Type II n Type I Type II

8 33 10 14 5,768

9 46 (≥46 in [8]) 15 7,611

10 158 (≥157 in [8]) 16 68,649 1,894

11 179 17 107,479

12 725 82 18 1,680,292

13 960

References

1. Bannai, E., Harada, M., Munemasa, A., Ibukiyama, T., Oura, M.: Type II codes
over F2 + uF2 and applications to Hermitian modular forms. Abh. Math. Semin.
Univ. Hambg. 73, 13–42 (2003)

2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user
language. J. Symb. Comput. 24, 235–265 (1997)

3. Conway, J.H., Sloane, N.J.A.: Self-dual codes over the integers modulo 4. J. Comb.
Theory Ser. A 62, 30–45 (1993)

4. Dougherty, S.T., Gaborit, P., Harada, M., Solé, P.: Type II codes over F2 + uF2.
IEEE Trans. Inf. Theory 45, 32–45 (1999)

5. Fields, J., Gaborit, P., Leon, J.S., Pless, V.: All self-dual Z4 codes of length 15 or
less are known. IEEE Trans. Inf. Theory 44, 311–322 (1998)

6. Gaborit, P.: Mass formulas for self-dual codes over Z4 and Fq + uFq. IEEE Trans.
Inf. Theory 42, 1222–1228 (1996)

7. Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The
Z4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf.
Theory 40, 301–319 (1994)

8. Han, S., Lee, H., Lee, Y.: Construction of self-dual codes over F2 + uF2. Bull.
Korean Math. Soc. 49, 135–143 (2012)

9. Harada, M., Munemasa, A.: On the classification of self-dual Zk-codes. In: Parker,
M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 78–90. Springer, Heidelberg (2009)

10. Miller, R.L.: Doubly-Even Codes. https://rlmill.github.io/de codes/
11. Pless, V.: A classification of self-orthogonal codes over GF (2). Discrete Math. 3,

209–246 (1972)
12. Pless, V., Leon, J.S., Fields, J.: All Z4 codes of Type II and length 16 are known.

J. Comb. Theory, Ser. A. 78, 32–50 (1997)
13. Rains, E.M.: Optimal self-dual codes over Z4. Discrete Math. 203, 215–228 (1999)

https://rlmill.github.io/de_codes/

A Framework for Universally Composable
Oblivious Transfer from One-Round

Key-Exchange

Pedro Branco1,2(B), Jintai Ding3, Manuel Goulão1,2, and Paulo Mateus1,2

1 SQIG-Instituto de Telecomunicações, Lisbon, Portugal
pmbranco@math.tecnico.ulisboa.pt

2 Department of Mathematics, IST-University of Lisbon, Lisbon, Portugal
3 University of Cincinnati, Cincinnati, USA

Abstract. Oblivious transfer is one of the main pillars of modern cryp-
tography and plays a major role as a building block for other more com-
plex cryptographic primitives. In this work, we present an efficient and
versatile framework for oblivious transfer (OT) using one-round key-
exchange (ORKE), a special class of key exchange (KE) where only one
message is sent from each party to the other. Our contributions can be
summarized as follows:

– We analyze carefully ORKE schemes and introduce new security def-
initions. Namely, we introduce a new class of ORKE schemes, called
Alice-Bob one-round key-exchange (A-B ORKE), and the definitions
of message and key indistinguishability.

– We show that OT can be obtained from A-B ORKE schemes fulfilling
message and key indistinguishability. We accomplish this by design-
ing a new efficient, versatile and universally composable framework
for OT in the Random Oracle Model (ROM). The efficiency of the
framework presented depends almost exclusively on the efficiency of
the A-B ORKE scheme used since all other operations are linear
in the security parameter. Universally composable OT schemes in
the ROM based on new hardness assumptions can be obtained from
instantiating our framework.

Examples are presented using the classical Diffie-Hellman KE, RLWE-
based KE and Supersingular Isogeny Diffie-Hellman KE.

Keywords: Oblivious transfer · Universal Composability · Key
exchange

1 Introduction

Oblivious transfer (OT), introduced in the 80s by Rabin [33], is one of the
main pillars of modern cryptography. It involves two parties: the sender, which
receives as input two messages M0 and M1, and the receiver, which receives
as input a bit b ∈ {0, 1}. Security for the receiver is guaranteed if the sender
c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 78–101, 2019.
https://doi.org/10.1007/978-3-030-35199-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_5

A Framework for Universally Composable Oblivious Transfer 79

gets no information on b whereas security for the sender is guaranteed if the
receiver gets Mb but no information on M1−b. Despite its simplicity, OT can
be employed as a building block to construct other more complex cryptographic
primitives [26], such as secure multiparty computation (MPC) [35], privacy-
preserving keyword search [22], or private information retrieval [27]. However,
for practical purposes, the efficiency and number of OT executions needed to
perform these tasks, specially MPC protocols, is a clear bottleneck, even using
optimizations, such as OT extensions [3]. Hence, the development of efficient OT
protocols is crucial to make MPC protocols ubiquitous, which is the motivation
of this work.

Recall that key-exchange (KE) allows two parties, usually called Alice and
Bob, to share a key while preventing an eavesdropper to get any information
about the key. It is probably the oldest public-key cryptographic primitive and
its study goes back to the seminal paper of Diffie and Hellman [19]. In this work,
we consider a special type of KE, called one-round key-exchange (ORKE), where
only one message is sent from each party to the other (see, for example, [7,25]).
That is, to share a key using an ORKE scheme, Alice sends one message to Bob
and Bob sends one message back.

Our main result is the construction of a new efficient and Universally Com-
posable [12] framework for OT from ORKE, with very low overhead. Since, it
is impossible to achieve universally composable OT in the plain model [13], our
framework is proven secure in the random oracle model (ROM). In order to
design the framework, we carefully analyze ORKE schemes to understand which
are the additional conditions required to construct OT.

1.1 Related Work

Although it is quite difficult to come up with UC-secure OT protocols, several
proposals have been made in recent years. We highlight the ones which use
public-key encryption (PKE) schemes as a building block [5,11,17,18,32] (an
idea firstly presented in [6]). However, the use of PKE schemes to perform OT
is, in most cases, too inefficient, especially in a scenario where one has to create a
new pair of public and secret keys for each execution of the OT. This also affects
the communication complexity since, for example, post-quantum PKE schemes
have very large public keys, and all the above mentioned OT protocols require
a public key to be sent from one party to the other. Our approach is to use a
special type of key exchange and symmetric-key primitives to implement an OT
protocol. To this end, we adapt some techniques of [5] to the symmetric setting,
as it is discussed in the next section.

In real life applications, key exchange (KE) schemes are often used to
exchange keys in order to securely communicate using a symmetric-key encryp-
tion (SKE) scheme. Hence, the idea of using KE and SKE schemes to design
OT protocols seems to follow naturally. This idea was introduced in [16,30] and
applied in [8,21,23], using the Diffie-Hellman protocol and, later, post-quantum
versions were presented using the Supersingular Isogeny Diffie-Hellman (SIDH)
protocol [4] and using RLWE-based KE [9]. The main advantage of using KE

80 P. Branco et al.

over PKE schemes to construct OT is that exchanging keys and communicating
via SKE is usually much more efficient than communicating using PKE schemes
(many times, the decryption algorithm of PKE schemes is much more inefficient
than the encryption algorithm. By using KE and SKE over PKE, we avoid the
use of the decryption algorithm of PKE). We remark that both the schemes [4,16]
do not provide UC-security.

1.2 Our Contribution

A-B ORKE. Our first contribution is the definition of a new class of key-
exchange protocols, called Alice-Bob one-round key-exchange (A-B ORKE). An
A-B ORKE is an ORKE where the message sent by one party (say Bob) might
depend on the message previously sent by the other party (Alice). The specific
case when Bob’s message does not depend on Alice’s is the standard ORKE
(as in [7]). Thus, it is obvious that ORKE is a particular case of A-B ORKE.
More precisely, it is the non-interactive case of A-B ORKE. To encompass more
instances of our OT framework, we work with A-B ORKE schemes. However,
we remark that any vanilla ORKE scheme with the same security properties can
also be used in our construction.1

We introduce new security definitions for A-B ORKE: (i) key indistinguish-
able, meaning that, if Alice sends a uniformly random message (instead of mes-
sage computed using her secret key), then the shared key computed by Bob is
indistinguishable from a uniformly chosen value to her; and (ii) message indis-
tinguishable, which means that Alice’s message should be indistinguishable from
a uniformly random value from Bob’s point-of-view. These concepts cannot be
trivially defined in a formal way since Alice’s message may be composed by sev-
eral smaller messages, some of them indistinguishable from uniformly random
values, but others not.

Hence, consider the set of messages M that can be computed by Alice. Sup-
pose that there is a group M and a set M such that M ⊆ M and consider a
group action ψ : M×M → M. We define message indistinguishability to be the
incapability of an adversary in distinguishing m ∈ M from m′ = ψ(m,h) where
h was sampled uniformly from M. Key indistinguishability is defined similarly
as the infeasibility of a adversary to distinguish a key computed by Bob using
m′ sent by Alice (instead of m) from a uniformly chosen value.

A New Framework for OT. As our main result, we present a new framework for
building an OT from any A-B ORKE scheme. Our construction shows that it is
possible to construct OT from an A-B ORKE that is message and key indistin-
guishable. The framework is proven to be universally composable in the Random
Oracle Model (ROM), and can be seen as a generalization of the protocol in [9].

The framework has four rounds and it is extremely efficient, as the overhead
is very low. It only requires: (i) three messages of the A-B ORKE scheme to
1 Remark that a Key Encapsulation Mechanism (KEM) is an A-B ORKE, however

the opposite is not known to be true. Note that Key Exchanges (KE) and KEM are
not comparable primitives and that some KE are A-B ORKE.

A Framework for Universally Composable Oblivious Transfer 81

be created, and exchanged; (ii) a challenge that takes linear-time to create in
the security parameter; and (iii) two ciphertexts of SKE to be exchanged. Thus,
the efficiency of the framework depends almost exclusively on the A-B ORKE
scheme used.

Comparing with other recently proposed frameworks [5,32], we conclude our
construction is more efficient, since we rely on ORKE and SKE, while they rely
on PKE schemes. Moreover, our framework can be used to create OT proto-
cols based on hard problems which cannot be achieved when using the frame-
works of [5,32] (such as Supersingular Isogeny-based OT), making our proposal
extremely versatile.

Concretely, in our OT framework, the sender and the receiver use, in an
ingenious way, the A-B ORKE such that the sender is able to compute two
keys k0 and k1, one of them (kb) shared with the receiver. The messages are
encrypted by the sender with these keys using a SKE scheme and the receiver
can only decrypt one of them.

More precisely, the receiver computes mb
R, where b is its input, and chooses

a random seed t. It computes m1−b
R such that m1

R = ψ(m0
R,H1(t)), where H1 is

a random oracle with range M, and sends t and m0
R to the sender. The sender

recovers m1
R from both t and m0

R and computes two shared keys. The messages
M0 and M1 are encrypted using these keys. A challenge has to be sent from
the sender to the receiver in order to guarantee security in the UC-framework
(we give a detailed explanation for this in the next paragraph). As mentioned
before, this paradigm was firstly used to design the simplest OT protocol [16].
However, unlike [4,16], in our protocol the interaction starts with the receiver
which allows to save one round. We remark that this strategy was already used
in [9].

By now, it is well-known that the protocol of [16] does not guarantee security
in the UC-framework due to subtle timing attacks [5,11,21] (in particular, it
does not guarantee security against a corrupted receiver). Here, to achieve UC-
security, we have to extract the inputs when only the sender and when only the
receiver are corrupted. The extraction of the inputs of the sender is done by
programming the random oracle in such a way that the simulator will be able to
compute both keys. The extraction of the input of the receiver is a more subtle
problem. We solve it using a similar strategy as the one used in [5], where a
challenge is made to the receiver in such a way that it needs to ask the random
oracle for information that reveals the input bit to the simulator. However, in
[5], PKE schemes are used to make this challenge. In our protocol we use SKE
schemes, so we adapt the technique of [5] using symmetric primitives. To this end,
we add two more rounds where a challenge is sent from the sender to the receiver,
which can only answer correctly if it queries the random oracle. These queries
will be fundamental to design the simulator and avoid attacks from a corrupted
receiver. These two extra rounds do not reveal any information about the bit b
to the sender since the receiver is able to answer correctly to the challenge no
matter its input. On the other hand, the receiver only gets information on the
outputs of the secret keys by a random oracle. Observe that the output of the

82 P. Branco et al.

secret key k1−b by the random oracle is not correlated at all with the key. Thus,
the receiver does not get any information on the key it does not have.

2 Preliminaries

If A is an algorithm, we denote by y ← A(x) the output of the experiment of
running A on input x. If S is a set and χ is a probabilistic distribution over
S, we denote by x ←$ S the experiment of choosing uniformly at random an
element x from S and by x ←$ χ the experiment of choosing x from S according
to χ. If x and y are two binary strings, we denote by x|y their concatenation
and by x ⊕ y their bit-wise XOR. If X and Y are two probability distributions,
X ≈ Y means that they are computationally indistinguishable. A negligible
function negl(n) is a function such that negl(n) < 1/poly(n) for every polynomial
poly(n) and sufficiently large n. By a PPT algorithm we mean a probabilistic
polynomial-time algorithm. By Pr[A : B1, . . . , Bn] we mean the probability of
event A given that events B1, . . . , Bn happened sequentially. Throughout this
work, the security parameter will be denoted by κ.

In this work, we use symmetric-key encryption schemes. Below, we present
the definition of a symmetric-key encryption scheme.

Definition 1. A symmetric-key encryption (SKE) scheme Δ = (EncΔ,DecΔ)
is a pair of algorithms such that:

– c ← EncΔ(k,M ; r) is a PPT algorithm that takes as input a shared key
k, a message to encrypt M and randomness r and outputs a ciphertext c.
Whenever r is omitted, it means that it was chosen uniformly at random;

– M/ ⊥← DecΔ(k, c) is a PPT algorithm that takes as input a key k and a
ciphertext c and outputs a message M , if c was encrypted using k, or an error
message ⊥, otherwise.

A SKE scheme must be sound, that is, M ← DecΔ (k,EncΔ (k,M ; r)) for any
message M and any r. Also, it should be secure, that is, it should be infeasible
for an adversary, without knowledge of the secret key, to recover a message from
its ciphertext. The security notion that we consider in this work is the one of
IND-CPA secure.

Let Δ be a SKE and consider the following game between a challenger C and
an adversary A: (i) C creates a key k. (ii) A has access to an encryption oracle
that it can query a polynomial number of times. (iii) At some point, A outputs
two messages M0 and M1. (iv) A bit b is chosen uniformly by C and it encrypts
Mb and returns the corresponding ciphertext to A. (v) Again, A has access to
an encryption oracle that it can query a polynomial number of times. (vi) The
game ends with A outputting a bit b′.

We say that Δ is IND-CPA secure if the advantage of A in the game above,
defined as

∣
∣Pr [b = b′] − 1

2

∣
∣, is negligible in the security parameter.

A Framework for Universally Composable Oblivious Transfer 83

2.1 One-Round Key-Exchange

One-round key-exchange (ORKE) is a cryptographic primitive that allows two
parties to agree on a shared key while an eavesdropper gets no information on
that key, by sending only one message from each party to the other. We present
the definition of ORKE as a variant of the one presented in [7].

Definition 2. A one-round key-exchange (ORKE) scheme Π is defined by a
tuple of algorithms (GenΠ ,MsgΠ , KeyΠ) where:

– sk ← GenΠ(1κ, r) is an algorithm that takes as input a security parameter κ
and a random value r and outputs a secret keys sk. Whenever r is omitted,
it means that it is chosen uniformly at random.

– mi ← MsgΠ(ri, ski) is an algorithm that takes as input a random value ri

and secret key ski, and outputs a message mi.
– k ← KeyΠ(ri, ski,mj) is an algorithm that takes as input a secret key ski, a

random ri and a message mj and outputs a key k.

A ORKE scheme Π should be sound. That is, if for all ski ← GenΠ(1κ) and
skj ← GenΠ(1κ) and for all ri, rj ← {0, 1}κ, it holds that

KeyΠ(ri, ski,mj) = KeyΠ(rj , skj ,mi)

where mi ← MsgΠ(ri, ski) and mj ← MsgΠ(rj , skj).

ORKE structure

Alice Bob

rA ←$ {0, 1}κ rB ←$ {0, 1}κ

skA ← GenΠ(1κ) skB ← GenΠ(1κ)

mA ← MsgΠ(rA, skA) mA mB ← MsgΠ(rB, skB)

mB

kA ← KeyΠ(rA, skA,mB) kB ← KeyΠ(rB, skB,mA)

We want our framework to be as general as possible, so we define a new type
of ORKE scheme which we call Alice-Bob one-round key-exchange (A-B ORKE).
An A-B ORKE scheme is an ORKE scheme where Alice sends her message mA

first. So, Bob’s message mB can depend on mA. An A-B ORKE can be seen as a
generalization of the concept of ORKE. It is obvious that every ORKE scheme
is an A-B ORKE scheme. However, the converse is not true in general: in Ding’s
KE [20] or in New Hope KE [1], Bob’s message depends on Alice’s, and thus,
they are A-B ORKE schemes but not ORKE schemes.

Definition 3. An Alice-Bob one-round key-exchange (A-B ORKE) scheme Π is
defined by three algorithms (GenΠ ,MsgΠ ,KeyΠ), where MsgΠ = (MsgA

Π ,MsgB
Π),

such that

84 P. Branco et al.

– sk ← GenΠ(1κ, r) is an algorithm that takes as input a security parameter κ
and a random value r and outputs a secret key sk.

– mi ← MsgA
Π(ri, ski) is an algorithm that takes as input a random value ri

and secret key ski, and outputs a message mi.
– mj ← MsgB

Π(rj , skj ,mi) is an algorithm that takes as input a random value
ri, and secret key ski and a message mi previously sent by the other party
and outputs a message mj .

– k ← KeyΠ(ri, ski,mj) is an algorithm that takes as input a secret key ski, a
random ri and a message mj and outputs a key k.

A-B ORKE structure

Alice Bob

rA ←$ {0, 1}κ rB ←$ {0, 1}κ

skA ← GenΠ(1κ, rA) skB ← GenΠ(1κ, rB)

mA ← MsgA
Π(rA, skA) mA

mB mB ← MsgB
Π(rB, skB,mA)

kA ← KeyΠ(rA, skA,mB) kB ← KeyΠ(rB, skB,mA)

To design our framework for OT, we need that the A-B ORKE scheme used
fulfills certain properties which we have called message indistinguishability and
key indistinguishability.

First, we need to introduce the notion of non-redundant message for key
generation. Intuitively, a non-redundant message output by the algorithm MsgΠ

is a message such that every part of it is used to construct the shared key. We
define such property for messages sent by Alice:

Definition 4. Let κ be the security parameter, Π = (GenΠ ,MsgΠ ,KeyΠ) be
an A-B ORKE scheme and a ∈ N. Let m = (m1, . . . , ma) ← MsgA

Π(rA, skA),
and mB ← MsgB

Π(rB, skB,m). Let m′ = (mi1 , . . . , mib) for any proper subset
{i1, . . . , ib} = S ⊂ {1, . . . , a}. We say that m = (m1, . . . , ma) is non-redundant
for key generation (NRKG) if

Pr [kB
= k′
B ∧ kB = kA : kB ← KeyΠ(rB, skB,m),

k′
B ← KeyΠ(rB, skB,m′), kA ← KeyΠ(rA, skA,mB)] ≥ 1 − negl(κ)

for skA ← GenΠ(1κ), skB ← GenΠ(1κ), rA, rB ←$ {0, 1}κ.

We introduce the concept of message indistinguishable for an A-B ORKE
scheme. Again, we define this property for messages sent by Alice.

Recall that, if (G, ∗) is a group with operation ∗ and X is a set, then a right
group action ψ : X ×G → X is a function that satisfies: (i) ψ(x, e) = x for every
x ∈ X and the identity element e of G; and (ii) ψ(ψ(x, g), h) = ψ(x, g ∗ h) for
every x ∈ X and g, h ∈ G.

A Framework for Universally Composable Oblivious Transfer 85

In the following, let (M, ∗) be a group and M be the space of non-redundant
messages for key generation outputted by the algorithm MsgA

Π . Let ψ : M ×
(M, ∗) → M be a right group action of (M, ∗) on M, where M is a set such that
M ⊆ M.

Definition 5. Let κ be the security parameter, Π = (GenΠ ,MsgΠ ,KeyΠ) be
an A-B ORKE scheme that is NRKG and ψ, M and M be as described above.
We say that an A-B ORKE protocol is ψ-message indistinguishable (or fulfills
the ψ-message indistinguishability property) if, for any PPT adversary A, we
have that

Pr
[

1 ← A(x, skB, h) : x ← MsgA
Π(rA, skA), h ←$M

]

−Pr
[

1 ← A(x, skB, h) : y ← MsgA
Π(rA, skA), h ←$M, x ← ψ(y, h)

]

≤ negl(κ)

where skA ← GenΠ(1κ), skB ← GenΠ(1κ), rA ←$ {0, 1}κ.

The intuition behind this definition is that we need x = ψ(y, h) to be indis-
tinguishable from uniformly chosen elements from some set, where y ∈ M and
h is an element in a set M. We also need h to have inverse in M, to be able to
recover y. One possible solution is to consider A-B ORKE schemes for which the
set M (the set of outputs of MsgA

Π) forms a group, and consider M to be M. This
happens when we consider the Diffie-Hellman KE, for example. However, there
are cases where the set M may not have inverses or, even worse, it may not be
closed under any operation (e.g., consider M to be the set of LWE samples [34],
as in the A-B ORKE schemes of [1,20,31]). But observe that cases like these
LWE-based schemes also have some type of indistinguishability (see Example 6).
From this example, we conclude that we only need the elements in M to be
indistinguishable from elements in M, where M is a set such that M ⊆ M.
Again, for the framework to be as general as possible, we define message indis-
tinguishability as the incapability to distinguish elements of M from elements
of M. This definition also includes the cases where m = (m1, . . . , ma) ∈ M is
composed by several smaller messages mi and where only part of these coordi-
nates are affected by the action of the group (M, ∗) (while the other coordinates
remain the same).

Example 6. Consider M to be the the set of LWE samples in Z
n
q = (Z/qZ)n for

some n ∈ N and some q ∈ N, as in several lattice-based A-B ORKE schemes [1,
20,31]. Now consider M and M to be Z

n
q and the operation ∗ to be the sum + in

Z
n
q . Observe that, when the action ψ : M× (Zn

q ,+) → M is defined as ψ(x, h) =
x + h, then ψ(x, h) is uniformly chosen at random in Z

n
q when h ←$M. From

the LWE assumption [34], which states that LWE samples are indistinguishable
from uniformly chosen values from Z

n
p , we conclude that the schemes [1,20,31]

are ψ-message indistinguishable. The definition above generalizes this notion of
indistinguishability of messages.

Finally, we also need that the key obtained by Bob is indistinguishable from
a uniformly chosen value, when it is given a uniformly chosen value instead of
the message obtained by Alice when running MsgA

Π .

86 P. Branco et al.

Definition 7. Let κ be the security parameter, Π = (GenΠ ,MsgΠ ,KeyΠ) be
an A-B ORKE scheme that is NRKG, ψ, M and M be as above and K =
{0, 1}β , where β is the length of the key output by the KeyΠ algorithm. We
say that an A-B ORKE protocol is ψ-key indistinguishable (or fulfills the ψ-key
indistinguishability property) if, for any PPT adversary A, we have that

Pr [1 ← A(k, skA,m,m′, h) : k ← KeyΠ(rB, skB,m′)]
−Pr[1 ← A(k, skA,m,m′, h) : k ←$ K] ≤ negl(κ)

where skA ← GenΠ(1κ), skB ← GenΠ(1κ), m′ ← ψ(m,h) with m ←
MsgA

Π(rA, skA) and h ←$M.

As an example, KE protocols fulfilling AM security, as in [14], also fulfill key
indistinguishability. However, we remark that AM security is stronger than key
indistinguishability.

Examples of A-B ORKE schemes that fulfill both of these conditions are
Diffie-Hellman [19], the lattice-based protocols of [1,20], and the Supersingular
Isogeny Diffie-Hellman [24] (we discuss these cases in Sect. B).

3 A Framework for OT Using ORKE

In this section, we present the framework for OT. Let κ be the security param-
eter. Let M and ψ : M × (M, ∗) → M be the right group action as defined in
Sect. 2.1, where M is the set of outputs of algorithm MsgA

Π and let (M, ∗) be
a group. We assume that, given x, y ∈ M, it is computationally easy to find
h ∈ M such that x ← ψ(y, h). Let Π = (GenΠ ,MsgΠ , KeyΠ) be an A-B ORKE
protocol that is ψ-message indistinguishable and ψ-key indistinguishable, and
Δ = (EncΔ,DecΔ) be an IND-CPA secure symmetric-key encryption protocol.
Suppose that the sender S wants to obliviously send M0 and M1, and that the
receiver R wants to receive the message Mb, where b ∈ {0, 1} is its input. Both
S and R start by generating a secret key, skS ← GenΠ(1κ) and skR ← GenΠ(1κ),
respectively.

Let Hi, for i = 1, . . . , 4 be four different instances of the random oracle
functionality FRO. More precisely, H1 : {0, 1}∗ → M is used to create a random
message from a honestly created message (for the receiver), H2 : {0, 1}∗ → K =
{0, 1}β where β is the size of the keys outputted by the KeyΠ algorithm, and
H3 : {0, 1}∗ → {0, 1}2κ+β and H4 : {0, 1}∗ → {0, 1}κ for a challenge-response
interaction.

The Framework. The scheme has four communication rounds and the receiver
R sends the first message.

A Framework for Universally Composable Oblivious Transfer 87

1. When activated with its input, the receiver R:
– Chooses at random t, rR ←$ {0, 1}κ;
– Queries H1 on (sid, t) and sets the output to h ∈ M;
– Computes mb

R ← MsgA
Π(rR, skR);

– If b = 1, it computes m0
R ← ψ(m1

R, h−1). Else, it continues;
– Sends (sid, t,m0

R) to S.
2. Upon receiving (sid, t,m0

R) from R, the sender S:
– Chooses rS ← {0, 1}κ;
– Queries H1 on (sid, t) and sets the output to h′ ∈ M;
– Computes m1

R ← ψ(m0
R, h′);

–
Computes m0

S ← MsgB
Π(rS, skS,m

0
R) and

m1
S ← MsgB

Π(rS, skS,m
1
R);

–
Computes the keys k0

S ← KeyΠ(rS, skS,m
0
R) and

k1
S ← KeyΠ(rS, skS,m

1
R);

– Chooses w0, z0, w1, z1 ← {0, 1}κ;
– Queries H2 on (sid, k0

S) setting the output to k̄0
S, and on (sid, k1

S)
setting the output to k̄1

S;
– Queries H3 on (sid, w0) setting the output to w̄0, and on (sid, w1)

setting the output to w̄1;
– Computes a0 ← EncΔ(k̄0

S, w0; z0) and a1 ← EncΔ(k̄1
S, w1; z1);

– Sets u0 ← w̄0 ⊕ (w1|k̄1
S|z1) and u1 ← w̄1 ⊕ (w0|k̄0

S|z0);
– Queries H4 on (sid, w0, w1, z0, z1) setting the output to ch;
– Sends (sid,m0

S,m
1
S, a0, a1, u0, u1) to R.

3. Upon receiving (sid,m0
S,m

1
S, a0, a1, u0, u1) from S, the receiver R:

– Computes kR ← KeyΠ(rR, skR,mb
S);

– Queries H2 on (sid, kR) setting the output to k̄R;
– Decrypts xb ← DecΔ(k̄R, ab);
– Queries H3 on (sid, xb) setting the output to x̄b;
– Computes (x1−b|k̄1−b

R |y1−b) = ub ⊕ x̄b;
– Queries H3 on (sid, x1−b) setting the output to x̄1−b;
– Recovers (x′

b|k̄b
R|yb) = u1−b ⊕ x̄1−b;

– Checks if a0 = EncΔ(k̄0
R, x0; y0), if a1 = EncΔ(k̄1

R, x1; y1), if k̄b
R = k̄R

and if x′
b = xb. It aborts if any of these conditions fail;

– Queries H4 on (sid, x0, x1, y0, y1) and sets the output to ch ′;
– Sends (sid, ch ′) to S.

4. Upon receiving (sid, ch ′) from R, the sender S:
– Checks if ch = ch ′. It aborts, if the test fails;
– Encrypts c0 ← EncΔ(k0

S,M0) and c1 ← EncΔ(k1
S,M1);

– Sends (sid, c0, c1) to R and halts.
5. Upon receiving (sid, c0, c1) from S, the receiver R:

– Decrypts Mb ← DecΔ(kR, cb);
– Outputs Mb and halts.

88 P. Branco et al.

We call this framework πOT. In the first two rounds, a key exchange is used in
a ingenious way that allows the sender and the receiver to share a common key
such that: (i) the sender does not know which of the two keys it has computed
is shared with the receiver; and (ii) the receiver has no information about the
other key.

In the proof of security in the UC-framework, the extraction of the inputs
of the sender (the messages M0 and M1) is done by programming the random
oracle H1 in such a way that the simulator has both keys and is able to decrypt
both ciphertexts c0 and c1.

The challenge that the sender sends to the receiver is necessary to extract
the input bit b of the receiver. The extraction is possible when the receiver
asks kR to the random oracle. Here, the simulator is able to know the bit b
by comparing this value with the keys the dummy sender has computed. Note
that this challenge does not carry any information about the key k1−b

S : the only
values that the receiver gets from this challenge are random values x0, x1, y0, y1
and the output of the secret keys by the random oracle, which, by definition, are
completely uncorrelated with the keys.
Extension to

(
N
1

)

-OT. It is straightforward to extend the framework above to
an

(
N
1

)

-OT, where S’s input is composed by N messages M0, . . . MN−1 and R’s
input is b ∈ {0, . . . , N − 1} such that R receives Mb.

In the first message, the receiver R, instead of just sending t, sends
t1, . . . , tN−2 along with m0

R. S computes h′
i ← H1(ti) and the messages mi

R ←
ψ(m0

R, h′
i) for i = 1, . . . , N − 1. From these messages, S computes N keys such

that one of them is shared with R.
Also, S chooses w0, . . . , wN−1, z0, . . . , zN−1 ←$ {0, 1}κ and sets the challenge

to be
ch ← H4(sid, w0, . . . , wN−1, z0, . . . , zN−1),

instead of just (sid, w0, w1, z0, z1). Furthermore, S needs to compute

ai ← SEncΔ(s̄ki
S, wi; zi)

and
ui ← w̄i ⊕ (wi+1 mod N |s̄ki+1 mod N

S |zi+1 mod N)

for i = 0, . . . , N − 1. Finally, it sends (a0, · · · , aN−1, u0, · · · , uN−1) to R. The
remaining steps can be easily adapted from the version presented above.

Security for the Receiver. Security for R is guaranteed by the ψ-message indistin-
guishability of the A-B ORKE scheme used. Note that S receives two messages
from R. In the first one, it receives m0

R (from which it can recover m1
R) but,

by the ψ-message indistinguishability property, S has no information on which
message was the one computed using the MsgA

Π algorithm and which one is a
random value. Thus, it does not know which message R uses to compute its key.

The second message sent by R to S is ch ′, but note that R can compute ch ′

regardless of its input, given that S has behaved honestly. Observe that when S
does not behave honestly, then R aborts the execution. We conclude that it is
infeasible for S to know the input of the receiver.

A Framework for Universally Composable Oblivious Transfer 89

Security for the Sender. The first message that S sends to R is
(m0

S,m
1
S, a0, a1, u0, u1). By the ψ-key indistinguishability of the A-B ORKE

scheme used, R is not able to derive a key from m1−b
S , since this key looks

uniform to R. Otherwise, it could break the ψ-key indistinguishability property
of the underlying A-B ORKE. To see this, consider the following hybrid game
where S replaces k1−b

S by a uniformly random value a ←$ K. It is easy to see that
if R can distinguish these two games with non-negligible probability ε, then we
can break the ψ-key indistinguishability of the underlying A-B ORKE with the
same probability.

Moreover, the only information R gets from a0, a1, u0, u1 about k1−b
S is its

output by H2, that is k̄1−b
S . Since H2 is modeled as a random oracle, the values

k1−b
S and k̄1−b

S are not correlated.
The second message sent from S to R is composed by the ciphertexts c0, c1.

Given that the SKE scheme Δ is secure, it is infeasible for R to get information
about M1−b if it does not have the corresponding secret key. We conclude that
it is infeasible for the receiver to get both messages.

UC-Security. We prove the main result of this paper which guarantees the UC-
security of the proposed OT protocol πOT.2

Theorem 8. The protocol πOT UC-realizes FOT in the FRO-hybrid model
against static malicious adversaries, given that Δ is IND-CPA secure and the
A-B ORKE scheme used is ψ-message indistinguishable and ψ-key indistinguish-
able.

We begin with the trivial case: When the adversary is corrupting both the
sender and the receiver then the simulator just runs internally the adversary
which generates the messages for both the sender and the receiver.

When the adversary is not corrupting any party, then the simulator just
follows the protocol with the random inputs, forwarding every message to A.
Observe that the obtained transcript is indistinguishable from any other tran-
script (with other inputs) from the point-of-view of A and thus, E .

Lemma 9. Given any PPT adversary A(R) corrupting the receiver R, there is
a PPT simulator Sim such that for every PPT environment E we have

IDEALFOT,Sim,E ≈ EXECFRO

πOT,A(R),E ,

given that Δ is IND-CPA secure and the A-B ORKE scheme used is ψ-message
indistinguishable and ψ-key indistinguishable.

Proof. To prove security against a corrupted receiver, we have to construct a
simulator that is able to extract the input of a corrupted receiver, given any
adversary A(R) corrupting the receiver.

2 The full proof of the theorem is thoroughly described in the full version [10].

90 P. Branco et al.

1. Upon activating the adversary, the simulator Sim simulates the random
oracles H1, H2, H3 and H4 in the following way: Sim keeps a list Li for
each Hi, for i = 1, . . . , 4, which is initially empty. Whenever A(R) queries
Hi on (sid, q), Sim checks if there is (q, h) ∈ Li. If so, it returns h. Else, it
chooses h uniformly at random, records the pair (q, h) in Li and returns h.

2. Upon receiving (sid, t,m0
R) from the adversary A(R), the simulator Sim:

– Follows the protocol and sends (sid,m0
S,m

1
S, a0, a1, u0, u1) to A;

– Sets b ←⊥. When kb̄
S is asked to the random oracle H2, it sets b ← b̄;

– Aborts, if w1−b is asked to the random oracle H3 before wb or if k1−b
S

is asked to H2.
3. Upon receiving (sid, ch ′) from the adversary A(R), the simulator Sim:

– Aborts, if ch
= ch ′;
– If b =⊥, sets b ←$ {0, 1};
– Sends (sid, b) to the ideal functionality FOT.

4. Upon receiving (sid,Mb) from FOT, the simulator Sim:
– Encrypts cb ← EncΔ(kb

S,Mb) and c1−b ← EncΔ(k1−b
S , 0λ);

– Sends (sid, c0, c1) to A(R);
– Halts whenever A(R) halts.

The executions differ when Sim aborts if A asks the key k1−b
S to H2, or if it

asks w1−b to H3 before wb, or even if none of the keys k0
S and k1

S are queried.
The first two cases happen with a negligible probability. The last case also has
negligible probability of happening since, without asking any of the keys, the
adversary has negligible probability of guessing ch. ��
Lemma 10. Given any adversary A(S) corrupting the sender S, there is a sim-
ulator Sim such that for every environment E we have

IDEALFOT,Sim,E ≈ EXECFRO

πOT,A(S),E ,

given that Δ is IND-CPA secure and the A-B ORKE scheme used is ψ-message
indistinguishable and ψ-key indistinguishable.

Proof. The goal of the simulator is, given any adversary A(S) corrupting the
sender, to extract the messages M0 and M1. Recall that, by assumption, given
x, y ∈ M, it is computationally easy to find h ∈ M such that x ← ψ(y, h).

1. Before activating the adversary, the simulator Sim:
– Chooses r0R ←$ {0, 1}κ and r1R ←$ {0, 1}κ;
– Computes m0

R ← MsgΠ(r0R, skR) and m1
R ← MsgΠ(r1R, skR).

A Framework for Universally Composable Oblivious Transfer 91

2. Upon activating the adversary, the simulator Sim sends (sid, t,m0
R):

– Simulates H2, H3 and H4 in the following way: Sim keeps a list Li

for each Hi, for i = 2, 3, 4, which is initially empty. Whenever A(S)
queries Hi on (sid, q), Sim checks if there is (q, h) ∈ Li. If so, it returns
h. Else, it chooses h uniformly at random, records the pair (q, h) in
Li and returns h.

– Simulates H1 in the following way: when the adversary queries H1

with (sid, t), the simulator answers h such that m1
R = ψ(m0

R, h). For
all other queries to H1, it answers as the ideal functionality would.

3. Upon receiving (sid,m0
S,m

1
S, a0, a1, u0, u1) from A, the simulator Sim:

–
Computes the keys k0

R ← KeyΠ(r0R, skR,m0
S) and

k1
R ← KeyΠ(r1R, skR,m1

S);
– Proceeds as the honest receiver would do and computes ch ′;
– Sends (sid, ch ′) to A.

4. Upon receiving (sid, c0, c1) from A, the simulator Sim:
– Computes M0 ← DecΔ(k0

R, c0) and M1 ← DecΔ(k1
R, c1);

– Sends (sid,M0,M1) to the ideal functionality FOT.
5. Upon receiving (sid, receipt) from FOT, the simulator Sim halts whenever

the adversary halts.

Note that the executions differ in the outputs given by the random oracle H1.
But the value h, returned by the simulator to the adversary, is computationally
indistinguishable from uniformly chosen values since the A-B ORKE scheme
used is message indistinguishable. ��

4 Efficiency and Comparison

Efficiency of the Framework. Let κ be the security parameter. To ease the pre-
sentation, we assume the SKE protocol Δ has keys of size κ and ciphertexts are
of the same size as plaintexts. Suppose the messages being sent by the sender
are of size λ. Let α be the size of the binary representation of elements of M.

Although our scheme has four rounds, it has a low communication complexity
since it only requires the exchange of 2α + 2λ + 10κ bits of information, per
iteration of the protocol. The first message by the sender carries α + κ bits of
information, the second 2α + 2κ + 6κ bits of information, the third message is
just the answer to the challenge which is of size κ and, finally, the fourth message
carries 2λ bits of information.

Our protocol is also very efficient in terms of computational complexity since
it only requires to run twice the GenΠ algorithm and the MsgΠ algorithm and
three times the KeyΠ algorithm. It requires 11 calls to the random oracle. All
other operations (sum modulo 2 and concatenation of strings) are linear in the
security parameter and should be quite fast to perform (Table 1).

92 P. Branco et al.

Table 1. Comparison between different composable OT frameworks.

Rounds Building block Assumption

[32] 2 Dual-Mode PKE CRS

[5] 3 PKE ROM

Ours 4 ORKE + SKE ROM

Comparison with Other Frameworks. The framework of [32] requires the use of a
dual-mode public-key encryption (PKE) scheme. However, very few dual-mode
PKE are known. For example, finding a dual-mode RLWE PKE scheme is stated
as an open problem in [28]. Their framework has just two rounds. However, since
it relies on PKE schemes, a public key needs to be sent from the receiver to
the sender. For post-quantum PKE schemes, this key can be too large, which
makes the communication and the computational complexity rather cumbersome
and the scheme impractical for real-life uses. Another bottleneck regarding the
framework of [32] is that it relies its security in the Common Reference String
(CRS) model. In practice, the common reference string needs to be generated
using a third party (which always raises security issues) or by some multiparty
computation protocol, which is too inefficient.

The work of Barreto et al. [5] presents a framework for OT in the ROM,
which can be instantiated using a PKE scheme with certain properties. One of
these properties is that the space of public keys of the PKE scheme used must
have a group structure for a certain operation. This property is too exclusive and
immediately discards some of the most important post-quantum PKE schemes
such as LWE [34] or RLWE [29] PKE schemes. Note that both the public keys
of these schemes do not have a group structure for any operation (e.g., this set is
not closed under addition). However, we think that this condition is too strong
and, perhaps, it could be weaken to accept LWE and RLWE-based instances.
The framework of [5] has three rounds. But again, a public key needs to be sent
from the receiver to the sender which will be reflected in a high communica-
tion complexity. Besides that, the framework requires six encryptions and two
decryptions, which is usually more expensive than exchanging a symmetric key.

Since it is difficult to compare frameworks generically as the building blocks
are different, we compare these frameworks when instantiated from the Deci-
sional Diffie-Hellman assumption. The framework of [32] needs 7 exponentiations
to be carried in a execution of the protocol, and the framework of [5] needs 14.
On the other hand, our framework needs only 3 exponentiations.

Acknowledgment. The first author thanks the support from DP-PMI and FCT (Por-
tugal) through the grant PD/BD/ 135181/2017. This work was done while visiting the
University of Cincinnati. The third author thanks the support from DP-PMI and FCT
(Portugal) through the grand PD/BD/135182/2017. This work was funded by the
project UID/EEA/50008/2019.

A Framework for Universally Composable Oblivious Transfer 93

Appendix

A UC-Security and Ideal Functionalities

The Universal Composability (UC) framework, firstly introduced by Canetti [12],
allows us to analyze the security of protocols, not just per se, but also when
composed with other protocols. Due to the lack of space, only a brief introduction
on the UC-framework is presented. For more details on this subject we refer the
reader to [12].

In a nutshell, to prove UC security of a protocol π (usually called the real-
world execution) one compares it to an ideal version of the primitive, defined
a priori (usually called the ideal-world execution). The entities involved in the
ideal-world execution are dummy parties which interact via an ideal functionality
F . These dummy parties may or may not be corrupted by an ideal adversary
Sim, usually called the simulator. The functionality works as a trusted party: it
receives inputs from all the entities involved and returns to each one something,
depending on the primitive being implemented. In this way, each of the parties
learns nothing but its own input and output. In the real-world execution, several
parties interact between them via some protocol π, which implements the desired
primitive. These parties may or may not be corrupted by some adversary A. An
entity E , often called the environment, oversees the executions in both the ideal
and the real worlds. At the end of the executions, the environment is asked to
distinguish them. The intuition of the UC-framework is that a protocol π is
secure if the environment E is not able to distinguish the real-world execution of
π from the ideal-world execution of F . If this happens, we can conclude that a
real-world adversary A does not have more power than an ideal-world adversary
Sim. Hence, whatever strategy a real-world adversary A uses to cheat in the
execution of π, it can also be used by an ideal-world adversary Sim. Since we
define the ideal functionality in order to avoid attacks from any adversary, we
can conclude that there is no strategy for the real-world adversary A that allows
it to know more than its own input and output.

Formally, let π be a protocol where n parties and an adversary A are involved.
We denote the output of the environment E in the end of the real-world exe-
cution of π with adversary A by EXECπ,A,E . The output of E at the end of
the ideal-world execution of a functionality F with adversary Sim is denoted
by IDEALF,Sim,E . The following definition introduces the notion of a protocol
emulating (in a secure way) some ideal functionality.

Definition 11. We say that a protocol π UC-realizes F if for every PPT adver-
sary A there is a PPT simulator Sim such that for all PPT environments E ,

IDEALF,Sim,E ≈ EXECπ,A,E

where F is an ideal functionality.

Oblivious transfer (OT), firstly introduced by Rabin [33], is a crucial prim-
itive in cryptography. We describe the

(
2
1

)

-OT ideal functionality FOT, as pre-
sented in [15]. Let λ ∈ N be a fixed value known to both parties, M0,M1 ∈ {0, 1}λ

94 P. Branco et al.

and b ∈ {0, 1}. The value sid represents the session ID and the ID of the parties
involved in the protocol.

FOT functionality

Parameters: sid, λ ∈ N known to both parties.

– Upon receiving (sid,M0,M1) from S, FOT stores M0,M1 and
ignores future messages from S with the same sid;

– Upon receiving (sid, b) from R, FOT checks if it has recorded
(sid,M0,M1). If so, returns (sid,Mb) to R and (sid, receipt) to S
and halts. Else, it sends nothing but continues running.

Unfortunately, it is impossible to design universally composable OT protocols
in the plain model, that is, without any setup assumption [13]. Hence, we use
the random oracle model (ROM) to construct our UC-secure OT protocol. To
this end, we work on the FRO-hybrid model in order to model random oracles
in the UC framework. The random oracle ideal functionality FRO is presented
below.

FRO functionality

Parameters: Let D be the range of FRO and L be a list initially
empty.

– Upon receiving a query (sid, q) from a party P or from an adversary
A, FRO proceeds as follows:

• If there is a pair (q, h) ∈ L, it returns (sid, h);
• Else, it chooses h ←$ D, stores the pair (q, h) ∈ L and returns

(sid, h).

The idea behind the FRO-hybrid model is that every party involved in both
the ideal-world execution of F and the real-world execution of the protocol
π (including the adversary) have access to an ideal functionality FRO, which
behaves as a random oracle. The environment can access this ideal functionality
through the adversary. We denote by EXECFRO

π,A,E the output of the environment
after the real-world execution of the protocol π with an adversary A in the
real-world, with the ideal functionality FRO. The notion of a protocol securely
emulating an ideal functionality can be adapted to this model.

Definition 12. We say that a protocol π UC-realizes F in the FRO-hybrid model
if for every PPT adversary A there is a PPT simulator Sim such that for all PPT
environments E ,

IDEALF,Sim,E ≈ EXECFRO
π,A,E .

In this work, we consider static malicious adversaries. That is, an adversary
corrupting any of the parties can deviate arbitrarily as it wishes from the pro-
tocol. However the parties are corrupted by the adversary before the beginning
of the protocol and they remain so until the end of the protocol.

A Framework for Universally Composable Oblivious Transfer 95

B Framework Instantiations

In the following section we provide relevant cases of ORKE schemes that can be
used to instantiate our framework. More concretely, we show that our framework
can be used with Diffie-Hellman, Ding’s KE and Supersingular Isogeny Diffie-
Hellman.

B.1 DH-Based OT

Consider the Diffie-Hellman (DH) KE protocol [19]. Let p be a prime and con-
sider the group Zp = Z/pZ. Let g ∈ Zp be a generator of the multiplicative
group Z

∗
p. We assume g to be a public parameter of the system (e.g. a standard

one), known by all parties. The DH KE is defined by three algorithms:

– GenDH(1κ) outputs a secret key sk = x ∈ Z
∗
p and a public key pk ← g.

– MsgDH(ri, ski)[= MsgA
DH(ri, ski) = MsgB

DH(rj , skj , ·)] which takes as input the
secret ski = xi and generator g and outputs gxi .

– KeyDH(ri, ski,mj) which takes as input a message mj ← gxj and a secret key
ski = xi and outputs mxi

j .

Note that DH KE is an ORKE scheme, which means that MsgDH is the same
for both parties.

Recall that the Decisional Diffie-Hellman (DDH) assumption assumes that
(g, gx, gy, gxy) is computationally indistinguishable from (g, gx, gy, z) when
z ←$Z

∗
p.

Using the notation of Sect. 2.1, consider M = M = M = Z
∗
p, the operation

∗ to be the product modulo p and ψ : Z∗
p × (Z∗

p, ∗) → Z
∗
p to be the action group

defined as ψ(y, h) = y ∗ h mod p.
The properties of ψ-message indistinguishability and ψ-key indistinguishabil-

ity follow directly from the hardness of DDH of base g in the group Z
∗
p. Consider

the notation of Definition 5.

Lemma 13. The DH KE protocol is ψ-message indistinguishable.

Proof. Since g is a generator of Z∗
p, the message sent by Alice to Bob is a random

element from Z
∗
p when it is computed using MsgΠ or using ψ. ��

Lemma 14. The DH KE protocol is ψ-key indistinguishable, given that the
DDH assumption holds.

Proof. Any key obtained using the KeyDH algorithm should be of the form gxy,
where gx is the output of the other party’s MsgDH, and y is the secret key of the
party running this algorithm. As before, gxy is a random element in Z

∗
p, and so

indistinguishable from a uniform chosen values from Z
∗
p, given that the hardness

of the DDH assumption holds. ��
Therefore, we conclude that the DH KE can be used to instantiate the frame-

work presented in this paper.

96 P. Branco et al.

B.2 RLWE-Based OT

The instantiation of this framework using Ding’s KE was presented previously
in [9] and this framework can be viewed as a generalization of their work. Here,
we present a more generic instantiation using any RLWE-based KE scheme, such
as [1,20,31].

Let q > 2 be a prime such that q ≡ 1 mod 2n, n ∈ N be a power of 2
and Rq = Zq[x]/〈(xn + 1)〉. Let χα be a discrete Gaussian distribution with
parameter α.

Let s ←$ Rq. The RLWE assumption asks to distinguish (a, as + e) where
e ←$ χα from (a, u) where u ←$ Rq [29]. The HNF-RLWE assumption is similar
to the RLWE assumption, but s ←$ χα [2].

Consider an RLWE-based KE scheme, which is secure given that the HNF-
RLWE problem is hard. Let (recMsg, recKey) be any reconciliation mechanism,
as the ones presented in [20,31], where recMsg receives as input a value x1 ∈ Rq

and outputs the signal w of x1 and a key K, and recKey receives as input a value
x2 ∈ Rq and a signal w and it outputs a key K. Recall that a reconciliation
mechanism is parameterized by a bound ξrec such that if x1 and x2 are close
(meaning that |x1 − x2| ≤ ξrec), then

Pr [K1 = K2 : (w,K1) ← recMsg(x1),K2 ← recKey(x2, w)] ≥ 1 − negl(κ).

It is also required that, if x1 is uniform, then K1 is indistinguishable from a
uniform value, even when given w, where (w,K1) ← recMsg(x1).

Let a ←$ Rq be a public polynomial. The four algorithms that define any
RLWE-based KE based are the following:

– GenRLWE(1κ) chooses s ←$ χα and outputs a secret key sk ←$ s and a public
key pk ← as + 2e mod q where e ←$ χα.

– MsgA
RLWE(rA, skA) outputs the message mA = pkA.

– MsgB
RLWE(rB, skB,mA) computes (w,K) ← recMsg(mAskB + 2e′), where

e′ ←$ χα, and outputs mB = (pkB, w).
– KeyRLWE(ri, ski,mj) computes ki ← sipkj +2e′

i, where e′ ←$ χα, and outputs
the shared key K ← recKey(ki, w).

RLWE-based KE schemes [1,20,31] are A-B ORKE scheme since Bob’s mes-
sage depends on Alice message.

Using the notation of Sect. 2.1, consider M to be the set of RLWE samples,
that is, M = {x : x = as + e ∧ s, e ←$ χα}, and M = M = Rq, the operation ∗
to be the sum in Rq and ψ : Rq × (Rq,+) → Rq to be the action group defined
as ψ(y, h) = y + h.

Lemma 15. RLWE-based KE is ψ-message indistinguishable given that the
HNF-RLWE assumption holds.

Proof. The message algorithm of Alice (MsgA
RLWE) in this key exchange protocol

outputs messages which are HNF-RLWE samples, thus, it is trivial to reduce the
problem of breaking ψ-message indistinguishability of an RLWE-based KE to the
problem of deciding the HNF-RLWE problem. ��

A Framework for Universally Composable Oblivious Transfer 97

For the ψ-key indistinguishability property, let KA and KB be the output of
the algorithm KeyDingKE when run by party A and B respectively.

Lemma 16. RLWE-based KE protocol is ψ-key indistinguishable, given that the
HNF-RLWE assumption holds.

Proof. This follows directly from the security of the KE protocol. As proved
in [20, Theorem 3], to computationally distinguish KA or KB from uniformly
random in Rq reduces to the HNF-RLWE assumption. Thus, if the HNF-RLWE
assumption holds, the protocol is ψ-key indistinguishable. ��

We conclude that RLWE-based KE schemes [1,20,31] can be used to instan-
tiate the framework of this article.

B.3 SIDH-Based OT

Following the work of [4], where it is presented an OT protocol based on the
Supersingular Isogeny Diffie-Hellman (SIDH) of [24], we adapt the same tech-
niques to achieve the first UC OT based on Supersingular Isogeny cryptography.
Although we use the same techniques to instantiate our framework using this
key exchange, we work in the ROM instead of using the secure coin flip they
use.

As defined in [24], let p = eA

A eB

B · f ± 1 where A, B are small primes and f
is a cofactor such that p is prime. Let E0 be a supersingular curve defined over
Fp2 , and let PA, QA be a basis generating E0[eA

A] and PB , QB a basis generating
E0[eB

B], where E[] is the -torsion group of E, i.e. the set of all points P ∈ E(Fq)
such that P is the identity. As in [4], we consider (PA, QA), (PB , QB) as public
parameters of the cryptosystem.

Like the DH scheme, this is a vanilla ORKE scheme, since MsgSIDH is the
same for both parties, and does not depend on the message previously exchanged
by the other party. The three algorithms that define the KE are:

– GenSIDH(1κ, r) pick mi, ni ∈ Z/ei
i Z, where at most one of them is divis-

ible by i, and compute an isogeny φi : E0 → Ei with kernel Ki =
〈[mi]Pi + [ni]Qi〉. Set sk ← (mi, ni, φi).

– MsgSIDH(ri, ski)[= MsgA
SIDH(rA, skA) = MsgB

SIDH(rB , skB , ·)] compute
images

{φi(Pj), φi(Qj)} ⊂ Ei

and outputs the message m = (Ei, φi(Pj), φi(Qj)).
– KeySIDH(ri, ski,mj) since mj ← (Ej , φj(Pi), φj(Qi)), compute an isogeny

φ′
i : Ej → Eij considering its kernel 〈[mi]φj(Pi) + [ni]φj(Qi)〉. Return the

j-invariant of

EAB = φ′
A(φB(E0)) = φ′

B(φA(E0))

= E0
/

〈[mA]PA + [nA]QA, [mB]PA + [nB]QB〉.

98 P. Branco et al.

Now, we prove that there exists the group action ψ as stated in Definition 5.
Again, we base our group action on the assumptions of [4] and follow their
notation. Consider M = M to be the set of elements of the form (E,G,H),
where G and H are elements of the -torsion group of E. In [4], it is assumed
that (E,G,H) is computationally indistinguishable from (E,G+U,H+V) when
U, V are randomly chosen among E[] such that the Weil paring of (G,H) and
(G+U,H+V) coincides. Moreover, they also show that such U, V can be sampled
in polynomial time among the elements of E[], namely U ← αGB + βHB ,
V ← −(α/β)U , where GB ← φB(PA), HB ← φB(QA), and α, β ∈ Z/Z.

We are now able to propose the required group action ψ. Let M be the group
of elements of the form (U, V) ∈ E[] with group law ∗ being the coordinate-wise
usual sum of the ellipic curve points. This group acts on M, ψ : M×(M, ∗) → M,
by modifying G and H, as ψ(y, h) = (E,G + U,H + V), where y is of the form
of (E,G,H) and h of the form (U, V), and G,H,U, V are all elements in E[],
such that U, V are sampled accordingly with [4].

Lemma 17. The SIDH KE protocol is ψ-message indistinguishable given the
security assumptions in [24, Section 5] and the parameters are chosen as to pre-
vent any distinguisher based attack [4].

Proof. In order to achieve the property of ψ-message indistinguishability, we
must prevent any distinguisher from figuring out if the first message from the
receiver is (E,G,H) or (E,G+U,H+V). As in [4], we can choose the parameters
to avoid the paring-based distinguisher using the Weil pairing, and so prevent
the sender from finding out the secret bit of the receiver. If their conjecture that
there is no other polynomial-time distinguisher for schemes of this form holds,
then our OT protocol is ψ-message indistinguishable. ��

Note that, differently from [4], in our proposal the receiver sends either
(E,G,H) or (E,G + U,H + V), together with the nounce t such that (U, V) ←
H(t). In fact, [4] uses a secure coin flip procedure to generate U, V , while in this
work we obtain U, V from the random oracle. This means that the receiver has
the ability to try a polynomial number of queries to the RO in order to choose
U, V , in contrast to the single possibility of [4]. Notwithstanding, if it would be
possible for the receiver to obtain a good U, V in polynomial many tries, then
the probability of the secure coin flip would be non-negligible. Therefore, the
two approaches are equivalent with regard to the security of this procedure.

Lemma 18. The SIDH KE is ψ-key indistinguishable given the assumptions
in [24, Section 5].

Proof. This follows from the proof of security of the key exchange in [24]. The
shared key must be a j-invariant uniformly random in the set j-invariants, i.e. a
random curve in the isogeny graph, which according to the assumptions in [24,
Section 5] is difficult to compute without knowledge of the private isogenies. ��

Therefore, we conclude that SIDH KE protocol of [24] can be used to instan-
tiate the framework in this article.

A Framework for Universally Composable Oblivious Transfer 99

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange—
a new hope. In: 25th USENIX Security Symposium (USENIX Security 16),
pp. 327–343. USENIX Association, Austin, TX (2016). https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/alkim

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions. J. Cryptol. 30(3), 805–858 (2017)

4. Barreto, P., Oliveira, G., Benits, W.: Supersingular isogeny oblivious transfer.
Cryptology ePrint Archive, Report 2018/459 (2018). https://eprint.iacr.org/2018/
459

5. Barreto, P.S.L.M., David, B., Dowsley, R., Morozov, K., Nascimento, A.C.A.:
A framework for efficient adaptively secure composable oblivious transfer in the
ROM. Cryptology ePrint Archive, Report 2017/993 (2017). https://eprint.iacr.
org/2017/993

6. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 48

7. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
an efficient and generic construction in the standard model. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 21

8. Blazy, O., Chevalier, C., Germouty, P.: Almost optimal oblivious transfer from
QA-NIZK. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS,
vol. 10355, pp. 579–598. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61204-1 29

9. Branco, P., Ding, J., Goulão, M., Mateus, P.: Universally composable oblivious
transfer protocol based on the RLWE assumption. Cryptology ePrint Archive,
Report 2018/1155 (2018). https://eprint.iacr.org/2018/1155

10. Branco, P., Ding, J., Goulão, M., Mateus, P.: A framework for universally compos-
able oblivious transfer from one-round key-exchange. Cryptology ePrint Archive,
Report 2019/726 (2019). https://eprint.iacr.org/2019/726

11. Byali, M., Patra, A., Ravi, D., Sarkar, P.: Fast and universally-composable obliv-
ious transfer and commitment scheme with adaptive security. Cryptology ePrint
Archive, Report 2017/1165 (2017). https://eprint.iacr.org/2017/1165

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, FOCS 2001, p. 136. IEEE Computer Society, Washington, DC, USA
(2001). http://dl.acm.org/citation.cfm?id=874063.875553

13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

14. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://doi.org/10.1007/978-3-642-03356-8_35
https://eprint.iacr.org/2018/459
https://eprint.iacr.org/2018/459
https://eprint.iacr.org/2017/993
https://eprint.iacr.org/2017/993
https://doi.org/10.1007/0-387-34805-0_48
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-319-61204-1_29
https://doi.org/10.1007/978-3-319-61204-1_29
https://eprint.iacr.org/2018/1155
https://eprint.iacr.org/2019/726
https://eprint.iacr.org/2017/1165
http://dl.acm.org/citation.cfm?id=874063.875553
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28

100 P. Branco et al.

15. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: Proceedings of the Thiry-fourth Annual
ACM Symposium on Theory of Computing, STOC 2002, pp. 494–503. ACM, New
York, NY, USA (2002). http://doi.acm.org/10.1145/509907.509980

16. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 3

17. David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable oblivious
transfer based on a variant of LPN. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.
(eds.) CANS 2014. LNCS, vol. 8813, pp. 143–158. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12280-9 10

18. David, B.M., Nascimento, A.C.A., Müller-Quade, J.: Universally composable obliv-
ious transfer from lossy encryption and the McEliece assumptions. In: Smith, A.
(ed.) ICITS 2012. LNCS, vol. 7412, pp. 80–99. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32284-6 5

19. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

20. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012). https://eprint.iacr.org/2012/688

21. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party thresh-
old ECDSA from ECDSA assumptions. In: 2018 IEEE Sympo-
sium on Security and Privacy (SP), vol. 00, pp. 595–612 (2018).
doi.ieeecomputersociety.org/10.1109/SP.2018.00036

22. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

23. Hauck, E., Loss, J.: Efficient and universally composable protocols for oblivious
transfer from the CDH assumption. Cryptology ePrint Archive, Report 2017/1011
(2017). https://eprint.iacr.org/2017/1011

24. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

25. Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220–232. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24852-1 16

26. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC 2088, pp. 20–
31. ACM, New York, NY, USA (1988). http://doi.acm.org/10.1145/62212.62215

27. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings 38th Annual Sym-
posium on Foundations of Computer Science, pp. 364–373, October 1997

28. Liu, M.m., Krämer, J., Hu, Y.p., Buchmann, J.: Quantum security analysis of a
lattice-based oblivious transfer protocol. Front. Inf. Technol. Electron. Eng. 18(9),
1348–1369 (2017). https://doi.org/10.1631/FITEE.1700039

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

30. Parakh, A.: Oblivious transfer based on key exchange. Cryptologia 32(1), 37–44
(2008). https://doi.org/10.1080/01611190701593228

http://doi.acm.org/10.1145/509907.509980
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-319-12280-9_10
https://doi.org/10.1007/978-3-319-12280-9_10
https://doi.org/10.1007/978-3-642-32284-6_5
https://doi.org/10.1007/978-3-642-32284-6_5
https://eprint.iacr.org/2012/688
https://doi.ieeecomputersociety.org/10.1109/SP.2018.00036
https://doi.org/10.1007/978-3-540-30576-7_17
https://eprint.iacr.org/2017/1011
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-540-24852-1_16
https://doi.org/10.1007/978-3-540-24852-1_16
http://doi.acm.org/10.1145/62212.62215
https://doi.org/10.1631/FITEE.1700039
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1080/01611190701593228

A Framework for Universally Composable Oblivious Transfer 101

31. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

32. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

33. Rabin, M.O.: How to exchange secrets with oblivious transfer (1981)
34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of
Computing, STOC 2005, pp. 84–93. ACM, New York, NY, USA (2005). http://
doi.acm.org/10.1145/1060590.1060603

35. Yao, A.C.C.: How to generate and exchange secrets. In: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, SFCS 1986, pp. 162–167.
IEEE Computer Society, Washington, DC, USA (1986). https://doi.org/10.1109/
SFCS.1986.25

https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
http://doi.acm.org/10.1145/1060590.1060603
http://doi.acm.org/10.1145/1060590.1060603
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

Efficient Fully Secure Leakage-Deterring
Encryption

Jan Camenisch1, Maria Dubovitskaya1, and Patrick Towa2,3(B)

1 DFINITY, Zurich, Switzerland
{jan,maria}@dfinity.org

2 IBM Research – Zurich, Rüschlikon, Switzerland
tow@zurich.ibm.com

3 ENS and PSL Research University, Paris, France

Abstract. Encryption is an indispensable tool for securing digital infra-
structures as it reduces the problem of protecting the data to just pro-
tecting decryption keys. Unfortunately, this also makes it easier for users
to share protected data by simply sharing decryption keys.

Kiayias and Tang (ACM CCS 2013) were the first to address this
important issue pre-emptively rather than a posteriori like traitor trac-
ing schemes do. They proposed leakage-deterring encryption schemes
that work as follows. For each user, a piece of secret information valu-
able to her is embedded into her public key. As long as she does not share
her ability to decrypt with someone else, her secret is safe. As soon as she
does, her secret is revealed to her beneficiaries. However, their solution
suffers from serious drawbacks: (1) their model requires a fully-trusted
registration authority that is privy to user secrets; (2) it only captures
a CPA-type of privacy for user secrets, which is a very weak guarantee;
(3) in their construction which turns any public-key encryption scheme
into a leakage-deterring one, the new public keys consist of linearly (in
the bit-size of the secrets) many public keys of the original scheme, and
the ciphertexts are large.

In this paper, we redefine leakage-deterring schemes. We remove the
trust in the authority and guarantee full protection of user secrets under
CCA attacks. Furthermore, in our construction, all keys and ciphertexts
are short and constant in the size of the secrets. We achieve this by taking
a different approach: we require users to periodically refresh their secret
keys by running a protocol with a third party. Users do so anonymously,
which ensures that they cannot be linked, and that the third party cannot
perform selective failure attacks. We then leverage this refresh protocol
to allow for the retrieval of user secrets in case they share their decryp-
tion capabilities. This refresh protocol also allows for the revocation of
user keys and for the protection of user secrets in case of loss or theft of
a decryption device. We provide security definitions for our new model
as well as efficient instantiations that we prove secure.

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 102–127, 2019.
https://doi.org/10.1007/978-3-030-35199-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_6

Efficient Fully Secure Leakage-Deterring Encryption 103

1 Introduction

Encryption is a powerful instrument to ensure data confidentiality and to ease
data protection: only decryption keys need to be protected. However, it makes
sharing protected data much easier as well, just by sharing secret keys only.
Users might share decryption keys for different reasons: out of convenience or
malice, or accidentally due to poor key management. For example, malicious
users might share access to paid services or sell access to company confidential
information. Therefore, preventing users from sharing their secret keys, either
in the clear or by providing a possibly obfuscated decryption algorithm, is an
important problem in deploying cryptographic systems, in particular in corpo-
rate environments.

To address this issue, one could use pieces of tamper-proof hardware. How-
ever, these are expensive and strenuous to build, deploy and manage. A better
approach is a software only solution as proposed by Kiayias and Tang: Leakage-
Deterring Encryption (LDE) schemes [17]. The main idea behind LDE schemes
is to have an authority embed into each user’s public key some valuable secret
information that she would rather keep private, and which is revealed as soon as
she shares her decryption capabilities. Such secret information could for instance
be bitcoin-account secret key [18]. In addition to the secrecy of messages against
chosen-ciphertext attacks, an LDE scheme should at least satisfy the following
properties:

Privacy of user secrets: provided that a user does not share her decryption
capabilities, her secret must not be recoverable from her public key, even if all
other parties (including the registration authority which embeds the secrets)
are malicious. Ideally, privacy should hold even under CCA attacks.

Recoverability: anyone with a device capable of decrypting, with non-negligible
probability, a non-negligible amount of ciphertexts of a user should be able
to retrieve her secret.

There precisely lies the complexity of designing LDE schemes: two seemingly
antagonistic properties must be bridged, in a context in which users are adver-
sarial and have knowledge of secret information. In cryptography, to overcome
apparent paradoxes, one usually assumes the adversary not to be privy to cru-
cial secret information. In the present case, an adversarial user does not only
know her secret information but also the device meant to be used against her.
She could implement a decryption device that rejects any decryption query that
results in the secret, and this rejection would not contradict the fact that her
device decrypts a non-negligible amount of ciphertext computed with her pub-
lic key. Given this observation, to hope to recover user secrets, recovery queries
made to decryption devices must be indistinguishable from decryption queries
accepted by rogue devices; hence the difficulty to design LDE schemes.

Kiayias and Tang provide schemes [17,18] that partially satisfy those require-
ments. Namely, they provide two constructions of LDE schemes which turn
any public-key encryption scheme into an LDE scheme. The first construction
requires the original encryption scheme to be additively homomorphic and is

104 J. Camenisch et al.

efficient, and the second one applies to any encryption scheme (i.e., is generic)
but is prohibitively inefficient. Indeed, the public keys of their generic construc-
tion of LDE schemes grow linearly (even with the use of error-correcting codes)
in the bit-size of the secrets, and the ciphertexts grow with a factor (log of the
inverse) that depends on the assumed minimal correctness rate of pirate decryp-
tion devices. It already means that if a user designs a pirate decryption device
with a decryption success probability that is non-negligibly smaller than the
assumed minimal correctness rate though non-negligible, recoverability is not
assured. In addition to that, for secrets of sensible length (e.g., 128 bits) and a
decryption device with a conceivable correctness rate (e.g., 50%), the scheme is
impractical. Moreover, their model only captures a CPA-type of privacy of user
secrets: an attacker that can launch a chosen-ciphertext attacks on a user can
also recover her secret. Lastly, in their model of LDE schemes, the registration
authority is privy to user secrets, which weakens even further user privacy.

1.1 Contributions

We redefine LDE schemes and design a new model that encompasses all the
security properties that an LDE scheme should satisfy. The new model captures
a CCA-type of privacy of user secrets (even with respect to the registration
authority), recoverability and secrecy of messages under CCA attacks:

– We first show that a CCA-type of privacy of user secrets and recoverability
can simultaneously be achieved. As noted by Kiayias and Tang, the fact that
recovery queries made must be indistinguishable from standard decryption
queries implies that a CCA-type of privacy of user secrets and recoverability
cannot a priori coexist: any decryption oracle in a privacy security game could
be used to perform recovery queries and surely win the game. It comes as a
disappointment as it means that an honest user would put her secret at risk
under CCA attacks for the sake of protecting the data of a company or of a
service provider; data which would withstand those same attacks. A sensible
user would clearly not want to use such a system as it does not guarantee
the same protection for user secrets as for the encrypted data. Except that
this observation is not entirely true: we point out that a CCA-type of privacy
and recoverability can coexist if recovery queries involve a step that cannot
be performed with a definition oracle. We point that since adversaries do not
control the randomness of oracles in security definitions, CCA privacy and
recoverability1 can actually be bridged: if recovery queries require to control
the randomness of rogue decryption devices, the previous impossibility result
does not apply.
In our construction, the idea is to leverage rewinding to extract secrets from
decryption devices. Note that rewinding an algorithm, which solely consists

1 Of course, if adversaries were to know the randomness used by security-game oracles,
the outputs of those would be deterministic in the view of the adversaries, and even
simple properties like IND-CPA would not be satisfiable.

Efficient Fully Secure Leakage-Deterring Encryption 105

in controlling randomness and not reverse-engineering it, is a black-box tech-
nique [2,4]. Rewinding is used in the context of zero-knowledge proofs to
extract witnesses, hence our idea of introducing a third party (which may
as well be the embedding authority) that assists users with decryption. To
decrypt ciphertexts, users are required to perform a zero-knowledge proof
involving their secrets. We prove that any partially functional decryption
device needs to do so as well with non-negligible probability, and can there-
fore be employed to extract secrets.
To reduce communication, we introduce leakage-deterring systems that oper-
ate in time periods. We call them time-based leakage-deterring encryption
(TB-LDE) schemes. The first time (and only the first time) a user wishes to
decrypt a ciphertext in a given time period, she needs to request from the
third party a key for the time period by executing a key-derivation protocol.
The frequency at which the key-derivation protocol is to be executed (i.e., the
length of a time period, e.g., a week) can be adjusted by the system manager.
A rogue decryption device that can decrypt ciphertexts in a time period must
then also hold the key for it.
Note that a minimal requirement to ensure recoverability via interaction while
guaranteeing CCA privacy is that the device must be able to decrypt a cipher-
text for a future time period, i.e., for which the user does not have the key
yet2. Indeed, if a user already has the key for a time period, she can hard-code
it in the device and avoid any interaction for this period; making the recovery
of her secret with ciphertexts encrypted for the period impossible. To ensure
recoverability via interaction, users must not always possess all the informa-
tion required to decrypt. It is an aspect inherent to any LDE scheme that
leverages interaction to bridge CCA privacy and recoverability. In Sect. 4, we
construct a TB-LDE scheme that satisfies both properties under this minimal
requirement.
Despite the introduction of a third party that assists users with decryption,
in our model, users remain anonymous and untraceable when they request
keys to the third party. The presence of a third party also allows for the
revocation of user keys in case of misconduct, or loss or theft of a decryp-
tion device. These untraceability and revocation properties are also properly
modelled and formally defined in Sects. 3 and 8 respectively.

– Secondly, in comparison to Kiayias and Tang’s model [17], we do not assume
the authority to be privy to the secrets (it only receive commitments), and
thus guarantee more privacy. The authority is only used to ensure that the
secrets are correctly integrated into the public keys and to vouch for the
latter. One may however think that only seeing a commitment prevents the
authority from making sure that the secret is indeed valuable to the user and
not just garbage. In fact, the same issue already arises when the authority
sees the secrets in the clear. If the secret is a bitcoin-account secret key, the
authority can check that it is the valid secret key for a given account, but
cannot know whether the money is later moved from the account without

2 If time periods are short, then any useful device should be able to do so.

106 J. Camenisch et al.

resorting to a form of tracing scheme (e.g., by regularly checking a public
ledger). However, deterring schemes exactly aim to avoid tracing. Moreover,
even if the authority were to see secrets in clear, value lies in the eyes of
the beholder: the authority cannot tell if the user is concerned about the
money in that account, if she has for instance other sources of income. We
therefore assume that there is higher-level mechanism that ascertains the
value of the secret. In the case of a bitcoin account, it could for example be a
mechanism that verifies that the commitment the authority receives is indeed
a commitment to the secret key of an account on which the user will receive
her future salary, assuming that the user cares about it. (Using future salary
frees the authority from the need to regularly check a public ledger since the
money is yet to come.)

– Lastly, we provide efficient constructions that fulfill all these security require-
ments. The first time-based construction (in Sect. 4) is proved secure in the
plain model, and the second one (in Sect. 6), which is even more efficient,
is proved secure in the Random Oracle Model (ROM). In Sect. 7, we give
a definition of LDE schemes which satisfy CCA privacy of user secrets and
recoverability thanks to interaction, but which require users to interact every
time a ciphertext is to be decrypted. Such schemes are relevant when only
few ciphertexts are to be decrypted compared to the provided bandwidth, as
the burden of interaction would not be prohibitive.
Furthermore, we show in Sect. 9 how, in combination with revocation, inter-
action with the key-derivation party in the recovery process can be enforced
and leveraged to protect a user’s secret and prevent misuse of her legitimate
decryption device in case she was simply lost it or was stolen. Those are
critical functionalities for deploying such a system.

1.2 Related Work

Kiayias and Tang were the first to consider typical public-key-infrastructure
functionalities such as encryption, signatures and identification [17] in the con-
text of leakage-deterrence. Nevertheless, deterring users from sharing their keys
has been prominently considered in the context of broadcast encryption, in which
malicious accredited users might implement pirate decoders. In such a scenario,
traitor-tracing schemes [13] were introduced. They aim at identifying at least
one of possibly many users that colluded to produce a pirate decryption device.
Several efficiency improvements have been proposed thereupon [7–9,19,20], and
variants such as public traitor tracing or anonymous traitor tracing [23] have also
been considered. Contrary to traitor-tracing schemes, leakage-deterring schemes
follow a proactive approach rather than rely on the identification of malicious
users to enforce penalties.

A concept closer to the leakage-deterrence paradigm is that of self enforce-
ment [15], which also involves private user pieces of information. In a multi-user
encryption system, the adversary controls a set of malicious-user keys, and wishes
to redistribute a plaintext. A self-enforcing schemes ensures that the adversary
has to either send a message as long as the plaintext or leak some information

Efficient Fully Secure Leakage-Deterring Encryption 107

about the private information of the traitors. However, recovery in those sys-
tems assumes direct access to user keys, i.e., white-box access, and the proposed
construction relies on an unfalsifiable assumption.

2 Preliminaries

This section introduces the notations and the building blocks used in the paper.
See Appendix A for hardness assumptions and instantiations.

2.1 Notations

Unless stated otherwise, p is a prime number, and Zp denotes the p-order field.
For an integer n ≥ 1, GLn(Zp) denotes the set of invertible n×n Zp-matrices, and
In its neutral element. Given an n-dimensional Zp vector space V ∼= Z

n
p , (ei)i

denotes its canonical basis. For a family Vk of Nk-dimensional vector spaces,
the canonical basis of Vk is denoted by (ek,i)i. For g ∈ G, diag(g) represents
the matrix with g on the diagonal and 1G elsewhere. Besides, for x ∈ Zp and
g ∈ G

n, define xg := gx. For an integer k ≥ 1, a matrix A ∈ G
n×k and a

vector x ∈ Z
k
p, (Ax)i =

(∏
j xjAij

)
i
=

(∏
j A

xj

ij

)
i
. Likewise, for y ∈ Z

n
p ,

(yA)j = (
∏

i yiAij)j =
(∏

i A
yi

ij

)
j
. To indicate that a random variable X has

a distribution D, the notation X ← $ D is used. When D is the uniform distri-
bution over a finite set X , the notation X ∈R X is used instead. The predictive
probability p(D) of a distribution D is defined as maxx∈X px, with px being the
probability that a D-distributed random variable takes value x ∈ X . Given a
relation R, the notation PoK{w : (x,w) ∈ R} is used for a Proof of Knowledge
(PoK) for the corresponding language; and its extractor is denoted K .

2.2 Ciphertext-Policy Attribute-Based Encryption Schemes

Formally, a CP-ABE scheme is a tuple of algorithms (Setup,KeyDer,Enc,Dec)
such that

Setup(1λ, aux) → (PP , pk ,msk) : takes as an input a security parameter 1λ and
an auxiliary input aux (used to define attribute sets), and outputs public
parameters, a public key and a master secret key;

KeyDer(msk ,A) → skA : takes as an input a master secret key and a set of
attributes, and outputs a corresponding secret key;

Enc(pk ,m,S) → ct : takes as an input a public key pk , a plaintext m and an
access structure S, and outputs a ciphertext ct ; and

Dec(skA, ct) → m : takes as an input a secret key corresponding to a set of a
attributes A and a ciphertext, and outputs a plaintext m or ⊥.

The CP-ABE schemes considered herein are required to be correct and adap-
tively Payload Hiding against Chosen-Plaintext Attacks [25, Definition 9] (or
adaptively PH-CPA secure).

108 J. Camenisch et al.

3 Definitions and Security Model

Leakage-deterring encryption (LDE) schemes are encryption schemes that deter
users from sharing their decryption capabilities. To do so, user secrets are embed-
ded into their public keys by an authority. As long as a user is honest, her secret
remains private, but as soon as she produces a decryption device, anyone with
access to it can recover her secret.

More precisely, we introduce Time-Based Leakage-Deterring Encryption
(TB-LDE) schemes in which a third party T (which may as well be the embed-
ding authority) assists users with decryption. The first time a user U wishes to
decrypt a ciphertext in a given time period, she needs to request from T a key
for the time period by executing a key-derivation protocol KeyDer. From then on
until the end of the time period, the decryption process is non-interactive. The
frequency at which the key-derivation protocol KeyDer is to be executed (i.e.,
the length of a time period, e.g., a week) can be adjusted at will by the system
manager.

Yet, this does not affect in any way the ability to recover U’s secret from a
rogue decryption device B at any time: recovering a secret from an algorithm
B will only be considered if it can decrypt ciphertexts for at least one time
period subsequent to the current one, i.e., one for which U does not yet have
a key. To recover a secret from a rogue algorithm B, one need not wait until
that future time period, it suffices to locally submit (i.e., without involving T)
to B ciphertexts encrypted for that future time period. This will prompt B to
interact, and perform, with non-negligible probability, a valid zero-knowledge
proof on secret of the user who owns B, allowing for the extraction of her secret.

3.1 Time-Based Leakage-Deterring Encryption Schemes

We now formally define TB-LDE schemes. Let T ⊆ N denote a non-empty time-
period set. Assume that all parties are roughly synchronized, i.e., that there is
always a consensus among them on the current time period tc ∈ T (to make sure
that users cannot obtain keys for future time periods from the third-party). A
TB-LDE scheme E consists of the following algorithms:

Setup(1λ, aux) → (PP , ck) : an algorithm that generates public parameters and
a commitment key on the input of a security parameter 1λ and of an auxiliary
input aux (used to define a time-period set T and other parameters)

KeyGen.U(PP) → (pkU , skU) : a user key-generation algorithm
KeyGen.T(PP) → (pk T , sk T) : a user third-party key-generation algorithm
KeyEn = (KeyEn.U(ck , c, s, o, pkU , skU),KeyEn.A(ck , c, pkU)) → ((epk , esk),

epk) : a key-enhancement protocol between a user key-enhancement algorithm
KeyEn.U and an authority key-enhancement algorithm KeyEn.A. In addition
to cryptographic keys, these algorithms take as an input a commitment c to
a secret s, the secret s itself and an opening o. At the end of the protocol,
KeyEn.U outputs a pair of “enhanced” keys (epk , esk), and KeyEn.A outputs
epk

Efficient Fully Secure Leakage-Deterring Encryption 109

Enc(epk , pk T ,m ∈ M, t ∈ T) → ct : a probabilistic encryption algorithm
KeyDer = (KeyDer.U(esk , t),KeyDer.T(sk T , ck , tc)) → (sk t,U

T ,⊥) : an interactive
protocol between a user key-derivation algorithm KeyDer.U and a third-party
key-derivation algorithm KeyDer.T. For every current time period tc, if t > tc,
then sk t,U

T ← ⊥ (i.e., users cannot obtain keys for future time periods). Oth-
erwise, at the end of the protocol, KeyDer.U outputs a third-party decryption
key sk t,U

T
Dec(esk , sk t,U

T , ct) → m : a deterministic decryption algorithm
Rec(B, epk , pk T ,D, t) → s : a recovery algorithm that takes as input an algorithm

B (a “decryption box”), two keys epk and pk T , the description of a distribution
D and a time period t, and outputs a secret s or ⊥.

Commitment c may at first seem superfluous to the syntax, but the authority
needs to receive some information bound to s (so that it can later be recovered
given a decryption device) and that hides it (to ensure the privacy of s). Such
information is nothing but a commitment.

3.2 Security Definitions

In this section, we define the security properties that an LDE scheme should
satisfy. The security definitions are first given in a single-user case for simplicity,
and are straightforwardly extended to the multi-user case in the full version. In
every security experiment, the adversary is assumed to be stateful.

Correctness. Correctness states that the decryption of a plaintext encrypted
for a certain time period, on the input of secret key for that time period, results
in the plaintext with probability one.

To model algorithms which can decrypt only certain ciphertexts, a “partial”-
correctness definition must be given. In the following, for any two functions f
and g of λ, the notation f � g means that there exists a negligible function negl
such that f ≥ g − negl.

Definition 1 (δ-Correctness). For δ ∈ [0, 1], given public keys epk and pk T ,
an algorithm B is said to be δ-correct in time period t with respect to a distribution
D if for m ← $ D,

Pr
[
BKeyDer.T(sk T ,ck ,t)(Enc(epk , pk T ,m, t)) = m

]
� δ.

Note that the clock of algorithm KeyDer.T is here set to time period t (so that it
does not systematically reject every key request for future time periods).

To define privacy and untraceability, consider the experiments in Fig. 1.

Privacy. Privacy guarantees that not even the authority that the user interacts
with in the key-enhancement protocol can infer any information about her secret.

110 J. Camenisch et al.

Fig. 1. Privacy and traceability experiments for a TB-LDE scheme E . In the privacy
experiment, oracle OU(esk) can be requested to execute either KeyDer.U(esk , ·) on arbi-
trary time periods or Dec(esk , ·, ·) on arbitrary third-party derived keys and ciphertexts,
and return the outputs to A. In the traceability experiment, oracle OU(eskβ , t) runs
KeyDer.U(eskβ , t).

Definition 2 (Privacy (of the User Secret)). E satisfies privacy of user
secrets if for every efficient adversary A(1λ), there exists a negligible function
negl such that

Advpriv
E,λ (A) =

∣∣∣Pr
[
Exppriv−0

E,λ (A) = 1
]

− Pr
[
Exppriv−1

E,λ (A) = 1
]∣∣∣ ≤ negl (λ) .

LD-IND-CCA Security. As for classical cryptosystems, the secrecy of the
user’s messages should be retained even when the key-enhancement protocol is
taken into account. This requirement is captured by the LD-IND-CCA property.

Definition 3 (LD-IND-CCA Security). E satisfies Leakage-Deterring Indis-
tinguishability under Chosen-Ciphertext Attacks (LD-IND-CCA) if for every effi-
cient adversary A(1λ), there exists a negligible function negl such that

Advld−cca
E,λ (A) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b′ = b :

(PP , ck) ← Setup(1λ), (pkU , skU) ← KeyGen.U(PP),
(c, s, o) ← A(ck , pkU),

(·, (epk , esk)) ← (A(c), KeyEn.U(ck , c, s, o, pkU , skU)),

(m0, m1, t, pk T) ← AOU1 (esk)(epk), b ∈R {0, 1},

ct∗ ← Enc(epk , pk T , mb, t), b′ ← AOU2 (esk,ct∗)(ct∗)

⎤

⎥
⎥
⎥
⎥
⎦

−1

2

∣
∣
∣
∣
≤ negl (λ) ,

with OU1(esk) an oracle that can be requested by A to execute either
KeyDer.U(esk , ·) or Dec(esk , ·, ·) and return the outputs to A, and OU2(esk , ct∗)
an oracle that can be requested by A to execute either KeyDer.U(esk , ·) or
Dec(esk , ·, ·) on arbitrary ciphertexts ct such that ct0
= ct∗

0 (only the first part of
the ciphertext, the one that the user can decrypt on her own, must be different)
and return the outputs.

Untraceability. Untraceability ensures that the protocol in which the third
party helps the user decrypt ciphertexts should preserve her anonymity.

Efficient Fully Secure Leakage-Deterring Encryption 111

Definition 4 (Untraceability). E satisfies untraceability if for every efficient
adversary A(1λ), there exists a negligible function negl such that

Advtrace
E,λ (A) =

∣∣∣Pr
[
Exptrace−0

E,λ (A) = 1
]

− Pr
[
Exptrace−1

E,λ (A) = 1
]∣∣∣ ≤ negl (λ) .

Recoverability. Given that the authority correctly executes its key-
enhancement algorithm and that the third party keys are correctly generated, a
TB-LDE scheme should ensure that the secret output by the recovery algorithm
is the one the user committed to during the key-enhancement protocol. Note
that the truthful generation of third party keys is necessary to enforce that the
user, to decrypt ciphertexts, must to interact at least once per time period.

Definition 5 (Recoverability (of the User Secret)). E satisfies (rewinding
black-box) recoverability of the user secret (with respect to a distribution class
D) if for every efficient adversary A(1λ), for every current time period tc, there
exists a negligible function negl such that

Pr [s
= s′,D ∈ D , t > tc,B is δ-correct in time period t w.r.t. D :

(PP , ck) ← Setup(1λ), (pk T , sk T) ← KeyGen.T(PP),
(s, pkU) ← A(PP , ck , pk T), (c, o) ← Com(ck , s),

(·, epk) ← (A(c, o), KeyEn.A(ck , c, pkU)),
(B,D, t) ← AKeyDer.T(sk T ,ck ,tc), s′ ← Rec(B, epk , pk T ,D, t)

⎤
⎥⎥⎦ ≤ negl (λ) .

Remark 1. The maximal class D for which it is possible to successfully deter
users from delegating their decryption capabilities is the class of distributions
D such that δ > p(D) and δ − p(D) is non-negligible. Indeed, for a distribution
D such that p(D) > δ or δ − p(D) is negligible, any decryption algorithm B
can merely output a message with probability mass p(D), and readily satisfy δ-
correctness as pointed out by Kiayias and Tang [17]; in which case recoverability
cannot be achieved since the user secret is not involved in the decryption process.

Remark 2. The restriction t > tc is crucial. Would it not be the case, an adver-
sary could request a decryption key for a time period t ≤ tc from third-party T ,
hard-code it in B, and thereby achieve 1-correctness for time period t without
ever having to interact.

4 Generic Construction of a TB-LDE Scheme

In this section, we give a generic construction which turns any PKE scheme into a
TB-LDE scheme. The main ideas are as follows. We use the original PKE scheme
to encrypt a one-time-pad encryption of the plaintext, and encrypt the one-
time-pad key with a CP-ABE scheme for which third party T holds the master
secret key. The CP-ABE allows to specify a recipient user and a time-period
in which the whole ciphertext can be decrypted. Users are thereby compelled
to interact with the third party at least once per time-period to obtain the

112 J. Camenisch et al.

secret key corresponding to the time period indicated by the ciphertext policy.
This interaction requires users to perform a proof on the secrets to which they
committed during the key-enhancement protocol, and it allows, via rewinding,
for the recoverability of those secrets by anyone with a decryption device.

In more detail, during the key-enhancement protocol, a user U commits to
a secret, sends a commitment to the authority, and after proving knowledge of
the secret to the latter, she receives a random identity and a signature on it and
the commitment. Ciphertexts consist of two parts: a first that U can decrypt
on her own and another (the CP-ABE part) that she can only decrypt with
a key derived from T ’s master secret key. To obtain such a key, U encrypts
her identity and must prove, to T , knowledge of a signature on the encrypted
identity and on a commitment to which she knows an opening. As the signature
scheme is assumed unforgeable, U has to use the commitment that she sent
to the authority during the key-enhancement protocol. Any pirate decryption
algorithm B that can decrypt a non-negligible amount of ciphertexts generated
with U’s key must perform the same proof with non-negligible probability. The
extractor of the proof system can then recover U’s secret.

Formal Description. Let T be a set of natural integers, the time-period set,
and ID a non-empty identity set. Our construction uses as building blocks

– C a commitment scheme with which users commit to their secrets,
– S a signature scheme used to sign user commitments and identities
– E0 a public-key encryption scheme to compute ciphertext parts that the user

can decrypt on her own,
– E1 a CP-ABE scheme with attribute space T × ID and equality as access

policy used to compute the ciphertext parts for which U needs assistance
from T ,

– E2 a PKE scheme with message space ID is used to encrypt U’s identity when
she interacts with T .

Suppose that E0 and E1 share the same message space M, on which there
exists an internal composition law ⊕ such that for all m ∈ M, the map · ⊕ m is
a permutation of M. Let · � m stand for its inverse. To turn the key-derivation
algorithm of CP-ABE E1 into an interactive protocol between U and T , assume
that there exists probabilistic algorithms Der0 and Der2 (Der2 will be used for
simulation in the proof of recoverability – see Theorem 5), and a deterministic
algorithm Der1 such that

1. for all sk T , t, (ek , dk) ← E2.KeyGen(PP), id , ct id ← E2.Enc(ek , id ; rU), vari-
ables (ek , dk , rU ,Der0(sk T , t, ek , ct id)) and (ek , dk , rU ,Der2(sk

t,id
T , ek)) have

the same distribution; and
2. for all sk T , t, (ek , dk) ← E2.KeyGen(PP), id , ct id ← E2.Enc(ek , id), sk ′t,id

T ←
Der0(sk T , t, ek , ct id), Der1(dk , sk ′t,id

T) = E1.KeyDer(sk T , {t, id}).

We then construct a TB-LDE scheme E , parametrized by the time-period set
T and the identity set ID, such that

Efficient Fully Secure Leakage-Deterring Encryption 113

Setup(1λ, (T , ID)) → (PP , ck) : generates public parameters, by running algo-
rithms E0.Setup(1λ), E1.Setup(1λ, (T , ID)), C.Setup(1λ), S.Setup(1λ), and
computes a commitment key ck ← ComKeyGen(PP)

KeyGen.U(PP) → (pkU , skU) : runs E0.KeyGen(PP)
KeyGen.T(PP) → (pk T , sk T) : runs (pk T , sk T) ← (pk ,msk) ← E1.KeyGen(PP)
KeyEn = (KeyEn.U(ck , c, s, o, pkU , skU),KeyEn.A(ck , c, pkU)) → ((epk , esk),

epk) : is the following protocol between KeyEn.U and KeyEn.A:
1. KeyEn.U and KeyEn.A run protocol PoK{(s, o) : Open(ck , c, s, o) = 1} as

prover and verifier respectively. If it fails, the overall key-enhancement
protocol is aborted, i.e., epk ← esk ← ⊥, otherwise

2. KeyEn.A generates (sk , vk) ← S.KeyGen(PP), id ∈R ID, computes σ =
Sign(sk , (c, id)), sets epk ← (pkU , c, id , σ), and sends id and σ to KeyEn.U

3. KeyEn.U sets epk as KeyEn.A, and sets esk ← (skU , c, s, o, id , σ).
Enc(epk , pk T ,m ∈ M, t ∈ T) → ct : generates m1 ∈R M, sets m0 ← m ⊕ m1,

and outputs ct ← (E0.Enc(pkU ,m0), E1.Enc(pk T ,m1,S = {t, id}))

KeyDer = (KeyDer.U(esk , t),KeyDer.T(sk T , ck , vk , tc)) → (sk t,id
T ,⊥) : is a two-

party interactive equivalent of algorithm E1.KeyDer(sk T , {t, id}). More pre-
cisely, it is a protocol in which KeyDer.U and KeyDer.T proceed as follows.
1. KeyDer.U generates and stores a pair of keys (ek , dk) ← E2.KeyGen(PP) if

none was priorly stored (otherwise reuses such a pair), computes ct id ←
E2.Enc(ek , id ; rU), and sends (ek , t, ct id) to KeyDer.T

2. if t > tc, then KeyDer.T returns ⊥, and KeyDer.U outputs ⊥; otherwise
algorithms KeyDer.U and KeyDer.T run protocol

PoK{(c, s, o, id ,σ, rU) : Open(ck , c, s, o) = 1,

Verify(vk , (c, id), σ) = 1, ct id = E2.Enc(ek , id ; rU)} (1)

as prover and verifier respectively. If protocol PoK fails, the overall pro-
tocol is aborted, i.e., sk t,id

T ← ⊥; otherwise
3. KeyDer.T computes sk ′t,id

T ← Der0(sk T , t, ek , ct id) and sends it to
KeyDer.U

4. KeyDer.U outputs sk t,id
T = Der1(dk , sk ′t,id

T).
Dec(esk , sk t,id

T , ct) → m : returns m = E0.Dec(sk , ct0) � E1.Dec(sk
t,id
T , ct1) (out-

puts ⊥ instead if either E0.Dec(sk , ct0) = ⊥ or E1.Dec(sk
t,id
T , ct1) = ⊥)

Rec(B, epk , pk T ,D, t) → s : generates messages m ← $ D, computes Enc(epk , pk T ,
m, t) and runs B on it until the latter engages in protocol PoK as prover,
and succeeds in it. Once this event occurs (it is yet to be proved that it
does indeed occur), algorithm Rec runs extractor K , which can rewind B, to
extract a witness that contains a secret s to which c is a commitment. Note
that algorithm Rec runs B locally, i.e., B does not interact with KeyDer.T,
but rather Rec which plays the role of the verifier. Importantly, Rec does not
reject the key-request from B if it is for a time period t > tc. This allows for
recoverability without having to wait until a future time period in which B is
claimed to be δ-correct.

114 J. Camenisch et al.

Correctness & Security. We now state the security properties achieved by
our construction.

Theorem 1 (Correctness). E is correct if E0 and E1 are correct and if PoK
is complete.

Proof. If PoK is complete, then, for any ciphertext, KeyDer.U successfully obtains
a secret key corresponding to the time period indicated in the access structure
of the ciphertext. The correctness of E0 and E1 then implies that of E . �

Complete proofs for Theorems 2, 3 and 4 are given in the full version.

Theorem 2 (Privacy). E satisfies privacy if C is hiding, protocol PoK is zero
knowledge, and E2 is IND-CPA secure.

Proof (Sketch). If the commitment scheme is hiding, the authority cannot infer
any information about user secrets. If PoK is zero-knowledge and E2 is IND-
CPA, the third-party cannot infer any information about the user identities
related which are related to commitments to user secrets. �
Theorem 3 (LD-IND-CCA Security). E is LD-IND-CCA secure if E0 is
IND-CCA secure.

Proof (Sketch). Reducing the LD-IND-CCA security of E to the IND-CCA secu-
rity of E0 is straightforward since without the user public key, even the third party
can tell apart an encryption of m ⊕ m0 from an encryption of m ⊕ m1, where m
is a uniformly random bit-string, only with non-negligible probability.

Theorem 4 (Untraceability). E satisfies untraceability if proof system PoK
is zero knowledge and E2 is IND-CPA secure.

Proof (Sketch). As users encrypt their identities to request keys, if E2 is IND-
CPA secure and PoK is ZK, then the third-party cannot infer any information
about the user identities during protocol KeyDer. �
Theorem 5 (Recoverability). E satisfies recoverability with respect to the
class of distributions D such that δ > p(D) and δ−p(D) is non-negligible assum-
ing C to be binding, S to be existentially unforgeable and E1 to be adaptively
PH-CPA secure.

Proof (Sketch). It suffices to prove that with a probability close to δ, when given
ciphertexts generated for the time period and the identity for which Rec is δ-
correct, and encrypting messages with distribution D, algorithm B requests the
third-party secret key corresponding to the time period and the identity. This is
the crucial part of the proof.

As soon as this event occurs, algorithm Rec runs extractor K to extract
a secret. Since the commitment and the identity used in the witness for the
proof are signed by the key-enhancement authority, algorithm Rec must send,
with overwhelming probability, the commitment and an encryption of the iden-
tity that are in the user enhanced public key. As the commitment scheme is
binding, the extracted secret is the one that was used in the key-enhancement
protocol. �

Efficient Fully Secure Leakage-Deterring Encryption 115

5 Instantiation

We now instantiate each of the building blocks of the construction in Sect. 4.
Let (p,G1 = 〈P1〉,G2 = 〈P2〉,GT , e) be a pairing group such that the DLOG

assumption holds in G1, the Decisional Diffie–Hellman (DDH) assumption holds
in G2 and GT , the DLIN assumption holds in G1 and G2, and the qSDH problem
in intractable in (G1,G2) (see Appendix A.1). Set

– C as the standard Pedersen commitment scheme over G1

– E0 as the Cramer–Shoup encryption scheme [14] with message space GT

– E1 as the Okamoto–Takashima CP-ABE scheme (Appendix A.4)
– E2 as the Elgamal encryption scheme with message space Zp and S as the

BBS+ signature scheme (Appendix A.2) in the case n = 3 (to sign a secret s,
an opening o and an identity id).

Note that the Okamoto–Takashima scheme remains PH-CPA secure under
the same assumptions if generator Gob outputs matrices Vk instead of matri-
ces B∗

k, and its setup algorithm includes matrices V̂k (defined similarly to B̂∗
k)

instead of matrices B̂∗
k in the master secret key. In this section, the Okamato–

Takashima scheme is considered with this modification.
It remains to provide algorithms Der0, Der1, Der2 for protocol KeyDer and

a proof system (P,V) for the language of Eq. 1. Consider then the following
algorithms:

Der0(sk T , t, ek = (P2, Q2), ct id = (Cid
0 , Cid

1)) → sk ′t,id
T : generate λ1, . . . , λ7, α,

y0 ∈ Zp, y1,y2 ∈R Z
2
p, compute k∗

0 =
[
α 1 y0

]
B̂∗

0, k∗
1 =

[
αx1 y1

]
B̂∗

1,

k′∗
2 =

[(
P

λj

2

(
Cid

0

)αV̂2,2,j
, Q

λj

2 P
αV̂2,1,j
2

(
Cid

1

)αV̂2,2,j
P

y2,1V̂2,3,j
2 P

y2,2V̂2,4,j
2

)]

j

,

and return sk ′t,id
T = (k∗

0,k
∗
1,k

′∗
2)

Der1(dk = q = dlogP2
(Q2), sk

′t,id
T) → sk t,id

T : parse k′∗
2 as

[(
k′∗
2,j,0,k

′∗
2,j,1

)]
j
,

compute k∗
2 =

[
k′∗
2,j,1/

(
k′∗
2,j,0

)q]
j
, and return sk t,id

T = (k∗
0,k

∗
1,k

∗
2)

Der2(sk
t,id
T , ek) → sk ′t,id

T : generate λ1, . . . , λ7 ∈R Zp, compute a vector k′∗
2 =[(

P
λj

2 , Q
λj

2 k∗
2,j

)]
j
, and return sk ′t,id

T = (k∗
0,k

∗
1,k

′∗
2).

Notice that requirements in Sect. 4 for Der0, Der1 and Der2 are met.
Moreover, in the key-derivation protocol KeyDer, protocol PoK should be a

ZKPoK protocol for the language

(s, o,
id︷︸︸︷
x2,2 ,

σ︷ ︸︸ ︷
W, y, z,

rU︷︸︸︷
γ) : e(W,UP y

2) = e(P1H
z
0Hr

1Hs
2H

x2,2
3 , P2),

Cid
0 = P γ

2 , Cid
1 = Qγ

2P
x2,2
2 .

A standard ZK protocol for proving knowledge of a preimage of a group homo-
morphism is then a suitable ZKPoK protocol.

Theorems 1, 2, 3, 4, 5 imply that this instantiation satisfies correctness,
privacy, LD-IND-CCA security, untraceability and recoverability (Fig. 2).

116 J. Camenisch et al.

Fig. 2. Efficiency of our instantiation. On the left, for keys and ciphertexts, the figures
represent the number of elements they comprise. As for the protocols, it is their band-
width that is represented, i.e., the number of elements exchanged between the parties.
The table on the right indicates the number of operations (multi-exponentiation and
pairing) performed by each of the algorithms.

Comparison with Kiayias and Tang’s Generic Construction. The only
existing leakage-deterring scheme in the literature is Kiayias and Tang’s. They
did not provide an instantiation of their generic construction of an LD-IND-CPA
scheme [17, Section 4]. Yet, it can naturally be instantiated with the Elgamal
encryption scheme. In that case, for secrets of 128 bits, a partial correctness
δ = 4/23 = 50% and the error correcting code that they propose [16, Figure 1,
No 1], their enhanced public keys consist of 162 = 2∗81 Elgamal public keys and
ciphertexts consist of 30 = 2 ∗ 15 Elgamal ciphertexts (i.e., 60 group elements).
To make their scheme LD-IND-CCA secure, they compose it with a standard
CCA-secure scheme which must then encrypt a vector of group elements, and
the keys of which must be accounted for in the overall enhanced public key.

Section 6 gives construction a more efficient construction of our scheme in
the ROM. The message space of E0 is G1 and the ciphertexts consist of 2 Zp

elements, 23 G1 and 1 GT elements. Our enhanced public keys and ciphertexts
in the ROM are therefore much shorter than those of Kiayias and Tang. How-
ever, computing our ciphertexts is more expensive because of the pairings of the
Okamoto–Takashima CP-ABE scheme.

6 Construction in the Random Oracle Model

The main drawback, in terms of computation time and ciphertext size, of the
Sect. 4 construction is that the message spaces of E0 and E1 must match. As a
result, the Sect. 5 instantiation requires the Cramer–Shoup encryption scheme
(with ciphertexts consisting of 4 plaintext-group elements) to have GT as mes-
sage space since the message space of the Okamoto–Takashima CP-ABE is GT .
However, target group elements are typically large (around 10 times larger than
G1 elements) and operations in GT are much slower than in G1. It would thus

Efficient Fully Secure Leakage-Deterring Encryption 117

be preferable to have G1 as a message space for E0. Consider then the following
construction which is proved secure in the ROM. The RO is further denoted by
Hash). It is identical to that of Sect. 4 except for its message space that is now
{0, 1}n(λ), the message space M0 of E0, the message space M1 of E1, and for
algorithms Enc and Dec. Those latter algorithms are now3

Enc(epk , pk T ,m ∈ {0, 1}n, t ∈ T) → ct : that generates KU ∈R M0, KT ∈R M1,
and outputs a ciphertext ct = (E0.Enc(pkU ,KU), E1.Enc(pk T ,KT , {t, id}),m⊕
Hash(KU ,KT));

Dec(esk , ct) → m : an algorithm that parses ct as (ct0, ct1, ct2), and computes
and outputs ct2 ⊕ Hash(E0.Dec(skU , ct0), E1.Dec(sk

t,id
T , ct1)).

With this alteration, the proofs of correctness, privacy and untraceability are
straightforwardly adapted from those of the scheme in Sect. 4. As for LD-IND-
CCA security and recoverability, their proofs require a more elaborate (although
simple) argumentation, and are given in the full version. Note that still no proof
of knowledge on the ciphertexts is required (only on an encrypted identity at
the beginning of each time period). Therefore, no proof of circuit satisfiability
for the RO must be computed.

7 Non–Time-Based LDE Schemes

In case only few ciphertexts are expected to be decrypted, communication during
decryption might not be a major hindrance. LDE schemes in which users need to
interact whenever they wish to decrypt a ciphertext are conceivable, and could
spare the need for a CP-ABE scheme which incurs larger keys and ciphertexts
than regular encryption schemes. Time periods and synchronization would then
be unnecessary. In such a system, compared to the Sect. 3 definition of a TB-
LDE scheme, T does not send a key to U (i.e., protocol KeyDer is obsolete), and
Dec = (Dec.U(esk , ct),Dec.T(sk T , ck)) is an interactive protocol between a user
decryption algorithm Dec.U and a third-party decryption algorithm Dec.T, at
the end of which Dec.U outputs a plaintext m or ⊥, and Dec.T outputs ⊥.

7.1 Security Definitions

The privacy definition remains the same, the traceability experiments and the
LD-IND-CCA security game are only modified not to incorporate a time period
t in the challenge tuples, and the oracles are redefined to execute Dec.U.

In the traceability experiment, the adversary now outputs a tuple ((epk0,
esk0), (epk1, esk0),m), the challenger computes Enc(epkβ , pk T ,m), and the
adversary can request the challenger to run Dec.U.

δ-correctness is not defined with respect to a time period anymore, and con-
cerning recoverability, A need then not specify a time period t > tc in which B
is δ-correct (equivalently, A could specify any dummy time period so long as tc
is set to −∞), and algorithm B does not receive a time period t as an input.

The multi-user-case definitions are derived accordingly.
3 ⊕ here denotes the traditional XOR operation.

118 J. Camenisch et al.

7.2 Generic Construction

Let Rand be a commitment re-randomization algorithm. Following the notation
of Sect. 4, except that E1 is now an encryption scheme supporting labels (from
every ciphertext of which the corresponding label can be efficiently computed),
let E be an LDE scheme such that

KeyEn = (KeyEn.U(ck , c, s, o, pkU , skU),KeyEn.A(ck , c, pkU)) → ((epk , esk),
epk) : is a protocol between KeyEn.U and KeyEn.A, which proceed as
follows.
1. KeyEn.U(ck , c, s, o, pkU , skU) and KeyEn.A(ck , c, pkU) run the interactive

protocol PoK{(s, o) : Open(ck , c, s, o) = 1} as prover and verifier respec-
tively. If the protocol fails, the overall protocol is aborted, i.e., epk =
esk ← ⊥; otherwise

2. both algorithms set epk = (pkU , c), and KeyEn.U sets esk = (skU , c, o)
Enc(epk , pk T ,m ∈ M) → ct : generates m1 ∈R M, sets m0 = m ⊕ m1, and

outputs ct = (E0.Enc(pkU ,m0), E1.Enc(pk T ,m1, l = Rand(ck , c; r)), r)
Dec = (Dec.U(esk , ct),Dec.T(sk T , ck)) : is an interactive protocol between Dec.U

and Dec.T which proceed as follows.
1. Algorithm Dec.U sends (ct1, l) to Dec.T
2. algorithms Dec.U and Dec.T run protocol

PoK{(c, s, o, r) : Open(ck , c, s, o) = 1, l = Rand(ck , c; r)}

as prover and verifier respectively. If the protocol fails, Dec.U outputs ⊥;
otherwise

3. Dec.T sends m1 = E1.Dec(sk T , ct1, l) to Dec.U; and
4. Dec.U outputs E0.Enc(sk , ct0) � m1 if m1
= ⊥ (outputs ⊥ otherwise).

The other algorithms remain the same up to the omission of time periods.
Observe that E2 and S are not used since the user need not encrypt her identity
and prove that she knows a signature on it.

Similar proofs to those of Sect. 4 entail that E is correct if E0 and E1 are
correct and if PoK is complete; that it satisfies privacy if C is hiding, and pro-
tocol PoK is ZK; that E is LD-IND-CCA secure if E0 is IND-CCA secure; and
that untraceability is also satisfied if PoK is ZK. Scheme E also satisfies recov-
erability with respect to the class of distributions D such that δ > p(D) and
δ − p(D) is non-negligible assuming C to be binding and E1 to be secure against
chosen-ciphertext attacks [12, Section 2.4]. To prove it, it suffices to prove, as in
Theorem 5 that with non-negligible probability, a δ-correct algorithm B sends
the (third-party part of the) ciphertext and the label that it was given, and suc-
ceeds in the subsequent proof of knowledge. The knowledge extractor can then
be used to retrieve the user secret.

7.3 Instantiation

Set C as the standard Pedersen commitment scheme and Rand as the algorithm
that generates r ∈r Zp, and maps c = gs

1g
o
2 to cgr

3 for pairwise distinct g1, g2

Efficient Fully Secure Leakage-Deterring Encryption 119

and g3. Let E0 be the Cramer–Shoup encryption scheme, and E1 be the Cramer–
Shoup encryption scheme supporting labels [14]. Both schemes may have any
group (in which the DDH assumption holds) with short representation as a
common message space. The resulting ciphertexts are then composed of 9 group
elements (one of which is a re-randomized commitment as a label), and decryp-
tion only requires exponentiations and two hash computations.

8 Revocation

Besides the scenario in which a decryption box was intentionally distributed by
a user, the scenario in which a decryption device was stolen from an honest user
or in which a user simply lost it is also relevant. In this case, the user should be
able to prevent misuse of her device, i.e., unauthorized decryption. This can be
achieve by adding a revocation functionality to LDE schemes. The interaction
with the third party allows to easily add such a functionality: the third party
need only also verify that the user’s public key was not revoked without putting
her anonymity at risk. Camenisch et al. [11] proposed a generic key-revocation
component, which can be added to any system to enable a privacy-preserving
revocation functionality. It is referred to as an Anonymous Revocation Compo-
nent (ARC).

An ARC requires an entity called Revocation Authority (RA). In the present
case, the RA can be the key-enhancement authority itself, the decryption third
party or any other party in the system. The RA partakes in the key-enhancement
protocol, maintains some revocation information, and changes the revocation
status of the enhanced public keys.

Camenisch et al. [11, Section 4.4] provided definitions and a description of
interfaces of an ARC, and instantiated it with the revocation scheme of Nakanishi
et al. [22]. Baldimtsi et al. [3] gave an instance with accumulators. Both those
instances are suitable for LDE schemes.

We first recall the definition of an ARC as proposed by Camenisch et al. [11],
then we show how to add an ARC to our constructions without compromising
the privacy of users’ secrets or their anonymity.

8.1 Anonymous Revocation Components

In an ARC, revocation is achieved via a revocation handle rh ∈ RH that is
embedded into the key to be revoked. An ARC ARC is a tuple of algorithms
(SPGen,RKGen,Revoke,RevTokenGen,RevTokenVer) such that

SPGen(1λ) → PP r : is an algorithm that generates revocation parameters PP r

RKGen(PP r) → (rpk , rsk ,RI) : is an algorithm that generates the RA’s secret
and public keys, and an initial revocation information RI

Revoke(rsk ,RI , rh) → RI ′ : is an algorithm that revokes rh, and outputs an
update RI ′ of the revocation information RI

120 J. Camenisch et al.

RevTokenGen(rpk ,RI , c, rh, o) → rt : is an algorithm which generates a publicly-
verifiable revocation token proving that handle rh has not been revoked and
that c is a commitment to rh

RevTokenVer(rpk ,RI , c, rt) → {0, 1} : is a revocation token verification algo-
rithm.

The security requirements of an ARC can be informally stated as follows. Cor-
rectness states that any revocation token rt generated with a non-revoked han-
dle rh and an honestly computed information RI is accepted by RevTokenVer.
Soundness ensures that RevTokenVer accepts rt and c on input RI and rpk only
if rt was computed with rh and a valid opening o to c. Moreover, no party other
than the RA can publish a valid revocation information RI , i.e., it is always
authentic. Revocation privacy guarantees that given a revocation token rt , no
information about the underlying revocation handle rh can be inferred.

8.2 Revocable (TB-)LDE Schemes

To add an ARC to the generic constructions of Sects. 4, 6 and 7, it suffices to
have the RA – recall that it partakes in the key-enhancement protocol – assign
to each user, in addition to her secret, a revocation handle. In the case of TB-
LDE schemes, this handle is signed by the key-enhancement authority together
with the user’s identity and commitment to her secret. To revoke a key, the cor-
responding handle is added to the publicly available revocation information. In
(non–time-based) LDE schemes, the handle is also included in the computation of
the label. During the key-derivation protocol for TB-LDE schemes or the decryp-
tion protocol for LDE schemes, the user computes a fresh (to be untraceable)
commitment to the handle of her enhanced public key, and a revocation token,
both sent to the third party. In addition to the proofs of those constructions,
the user also proves that the handle of which she just sent a fresh commitment
is not revoked, and that it was signed with the encrypted identity (for TB-LDE
schemes) or used for the computation of the label (for LDE schemes).

Generic Construction of a Revocable TB-LDE Scheme. Let E be either
of the Sect. 4 or the Sect. 6 TB-LDE scheme. Consider ER, a revocable TB-LDE
scheme that has the same algorithms as E , except for ER.Setup(1λ) which also
runs ARC.SPGen(1λ), for an additional algorithm ER.Revoke = ARC.Revoke,
and for its KeyEn and KeyDer protocols. Assuming, without loss of generality,
the key-enhancement authority to also be the RA, those protocols are now

KeyEn = (KeyEn.U(ck , c, s, o, pkU , skU),KeyEn.A(ck , c, pkU)) → ((epk , esk),
epk) : a protocol between KeyEn.U and KeyEn.T, which proceed as follows.
1. KeyEn.U and KeyEn.T run protocol PoK{(s, o) : Open(ck , c, s, o) = 1} as

prover and verifier respectively. If it fails, the overall key-enhancement
protocol is aborted, i.e., epk = esk ← ⊥; otherwise

Efficient Fully Secure Leakage-Deterring Encryption 121

2. KeyEn.A generates (sk , vk) ← S.KeyGen(PP), id ∈R ID, rh ∈R RH,
computes σ = Sign(sk , (c, id , rh)), sets epk = (pkU , c, id , rh, σ), and
sends id and σ to KeyEn.U, which sets epk as KeyEn.A and esk =
(skU , c, s, o, id , rh, σ)

KeyDer = (KeyDer.U(esk , t),KeyDer.T(sk T , ck , vk , rpk ,RI)) → (sk t,id
T ,⊥) : a

protocol between KeyDer.U and KeyDer.T, which proceed as follows.
1. Algorithm KeyDer.U generates and stores a pair of encryption keys

(ek , dk) ← E2.KeyGen(PP) if none was priorly stored, and otherwise reuses
such a pair, computes a ciphertext ct id = E2.Enc(ek , id ; rU), a commit-
ment and an opening (crh , orh) = Com(ck , rh), and a revocation token
rt = ARC.RevTokenGen(rpk ,RI , crh , rt), and sends (ek , t, ct id , crh , rt) to
algorithm KeyDer.T

2. if t > tc, then KeyDer.T returns ⊥, and KeyDer.U outputs ⊥; otherwise,
algorithms KeyDer.U and KeyDer.T run protocol

PoK{(c,s, o, id , rh, orh , σ, rU) : Open(ck , c, s, o) = 1,
Open(ck , crh , rh, orh) = 1, Verify(vk , (c, id , rh), σ) = 1,

ct id = E2.Enc(ek , id ; rU), RevTokenGen(rpk ,RI , crh , rh, orh) = 1}

as prover and verifier respectively. If protocol PoK fails, the overall pro-
tocol is aborted, i.e., sk t,id

T ← ⊥; otherwise
3. KeyDer.T computes sk ′t,id

T ← Der0(sk T , t, ek , ct id), and sends it to
KeyDer.U.
Finally, KeyDer.U outputs sk t,id

T = Der1(dk , sk ′t,id
T).

In the full version, we show how to add recovaction to the construction of
Sect. 7.

9 Interactive Recoverability

A key-revocation component only allows a user to prevent further use of her
device in case of loss or theft.7 Nevertheless, as the Sect. 4 Rec algorithm is not
interactive, a user’s secret can still be recovered by anyone in possession of her
device even if she has requested to have her public key revoked. To also protect
user secrets in case she lost her device, local recoverability must be prevented,
i.e., recoverability without interaction with the decryption third party T which
checks that user public keys are not revoked.

To add interaction soundness to Sects. 7 and 4 (TB-)LDE scheme, it suffices
to make the Dec.T (KeyDer.T) algorithm sign the first messages sent by Dec.U
(KeyDer.U) and its challenges with an existentially unforgeable scheme S ′. Before
answering the challenge, algorithm Dec.U (KeyDer.U) verifies the signature with
the public verification key. It follows that unless an adversary, which does not
possess the third-party signing key, can forge a signature, protocol PoK will
never terminate, and algorithm Rec will never produce any output, and the user
secret cannot be recovered. The existential unforgeability of S ′ then implies the
interaction soundness of the (TB-)LDE scheme.

122 J. Camenisch et al.

10 Conclusion

We first argued that in leakage-deterring schemes, a CCA type of privacy of user
secrets is compatible with their recoverability. We therefore redefined leakage-
deterring schemes with security guarantees stronger than existing ones. We then
gave a construction that turns any CCA-secure encryption scheme into a leak-
age deterring one that achieves those stronger guarantees and has constant-size
ciphertexts in the size of user secrets.

The main drawback of our construction is the need to interaction once per
epoch (e.g., a week) with a party that helps users decrypt. However, this very
same interaction is needed to guarantee a CCA type of privacy of user secrets
together with their recoverability, and can even be leveraged to revoke user keys
and protect their secrets in case or loss or theft.

Acknowledgements. This work supported by the ERC Grant PERCY #321310, and
was done while the first two authors were at IBM Research – Zurich.

A Preliminaries

We here give the hardness assumptions and instantiations of the building blocks
on which our constructions rely.

A.1 Pairing Groups and Hardness Assumptions

This section introduces pairing groups and classical hardness assumptions under-
lying our constructions.

Asymmetric Bilinear Pairing Groups. An asymmetric bilinear pairing
group (or simply pairing group) consists of a tuple (p,G1 = 〈P1〉,G2 =
〈P2〉,GT , e) such that p is a prime number, G1,G2 and GT are (cyclic) p-order
groups, and e : G1 ×G2 → GT is an efficiently-computable non-degenerate bilin-
ear map (also called pairing), i.e., e(P1, P2)
= 1GT

, and ∀a, b ∈ Zp, e(P a
1 , P b

2) =
e(P1, P2)ab. Let Gbpg(1λ) denote an algorithm that takes as an input a security
parameter 1λ, and outputs the description PPG of a pairing group.

q-Strong Diffie–Hellman Assumption. Let G1 = 〈P1〉 and G2 = 〈P2〉 be two
p-order groups. The q-Strong Diffie–Hellman (qSDH) problem [5] in (G1,G2)
consists in computing a pair

(
y, P

1/(u+y)
1

)
∈ Zp\{−u} × G1 given a (p + 3)-

tuple (P1, P
u
1 , Pu2

1 , . . . , Puq

1 , P2, P
u
2) ∈ G

p+1
1 × G

2
2. The qSDH assumption over

(G1,G2) is that no efficient algorithm has a non-negligible probability to solve
the qSDH problem in (G1,G2).

Decisional Linear Assumption. The (2-)Decisional Linear (DLIN) assump-
tion [6] over a p-order group G = 〈P 〉 is that, for a, b, x, y, z ∈R Zp, the distri-
butions of (P, P a, P b, P ax, P by, P x+y) and (P, P a, P b, P ax, P by, P z) are compu-
tationally indistinguishable.

Efficient Fully Secure Leakage-Deterring Encryption 123

A.2 BBS+ Signature Scheme

The BBS+ signature scheme (as described by Au et al. [1] and inspired by
a group signature [6] introduced by Boneh et al.) is a tuple of algorithms
(SignSetup,SignKeyGen,Sign,Verify) with

SignSetup(1λ) → PP : output PP = PPG the description of a pairing group
(p,G1 = 〈P1〉,G2 = 〈P2〉,GT , e) calling on Gbpg(1λ)

SignKeyGen(PP , n) → (sk , vk) : generate H0, . . . , Hn ∈R G1, u ∈R Zp, computes
U = Pu

2 , and output sk = u, vk = (U,H0, . . . , Hn)
Sign(sk ,m ∈ Z

n
p) → σ : generate y, z ∈R Zp, compute V = P1H

z
0

∏
i≥1 Hmi

i and
W = V 1/(u+y), and outputs σ = (W, y, z)

Verify(vk ,m, σ) → b ∈ {0, 1} : output 1 if m ∈ Z
n
p , σ can be parsed as (W, y, z)

and e(W,UP y
2) = e

(
P1H

z
0

∏
i≥1 Hmi

i , P2

)
, and otherwise 0.

Camenisch et al. [10, Lemma 1] proved that the BBS+ signature scheme is exis-
tentially unforgeable against chosen-message attacks under the qSDH assump-
tion over (G1,G2). They showed [10, Section 4.5] how to prove knowledge of a
BBS+ signature. We recall it in the full version.

A.3 Dual Pairing Vector Spaces

Dual Pairing Vector Spaces (DPVSs) were introduced by Okamoto and
Takashima [24]. They provide a mechanism for parameter hiding [21] in prime-
order pairing groups. The latter feature allows to proves the full security of
functional encryption schemes in prime-order settings.

Definition 6 (Dual Pairing Vector Space). Let N ≥ 1 be an integer. A dual
pairing vector space by direct product of a pairing group (p,G1 = 〈P1〉,G2 =
〈P2〉,GT , e) is a tuple (p,V,V∗,GT ,A,A∗, e) such that V = G

N
1 and V

∗ = G
N
2

are two N -dimensional Zp vector spaces, A = (a1, . . . ,aN) is the canonical basis
of V (i.e., ai = (1

G
i−1
1

, P1,1G
N−i
1

)), A∗ = (a∗
1, . . . ,a

∗
N) is the canonical basis of

V
∗ (i.e., a∗

i = (1
G

i−1
2

, P2,1G
N−i
2

)) and

e : V × V
∗ → GT

(x = (X1, . . . , XN),y = (Y1, . . . , YN)) �→
∏

i

e(Xi, Yi)

(note the abuse of notation) is a pairing, i.e., x = 1GN
1

if e(x, ·) is the 1GT
map,

and ∀a, b ∈ Zp,x ∈ V,y ∈ V
∗, e(xa,yb) = e(x,y)ab.

Note that for all 1 ≤ i, j ≤ N, e(ai,a∗
j) = e(P1, P2)δij , with δij being the Kro-

necker delta, i.e., δij = 1 if i = j, and otherwise 0.
Let Gdpvs(1λ, PPG, N) denote an algorithm that takes as an input a secu-

rity parameter 1λ, the description PPG of a pairing group (p,G1 = 〈P1〉,G2 =
〈P2〉,GT , e) and an integer N , and outputs the description PPV of a DPVS
(p,V,V∗,GT ,A,A∗, e).

124 J. Camenisch et al.

A.4 Okamoto–Takashima Adaptively-Secure CP-ABE Scheme

Let Gob(1λ,n = (d;n1, . . . , nd)) be a dual-orthonormal-basis generator which
proceeds as follows:
1. it generates a pairing group PPG = (p,G1 = 〈P1〉,G2 = 〈P2〉,GT , e) ←

Gbpg(1λ), a value ψ ∈R Z
∗
p, and sets N0 = 5 and Nk = 3nk + 1 for 1 ≤ k ≤ d

2. for 0 ≤ k ≤ d, it generates a Dual Pairing Vector Space (DPVS) (see
Appendix A.3) PPVk

= (p,Vk,V∗
k,GT ,Ak,A∗

k, e) ← Gdpvs(1λ, PPG, Nk), gen-
erates a matrix Xk ∈R GLNk

(Zp), and computes Vk = ψ
(
XT

k

)−1. Let MAk

and MA∗
k

respectively denote the diagonal matrices diag(P1) ∈ G
Nk×Nk
1

and diag(P2) ∈ G
Nk×Nk
2 . Generator Gob computes Bk =

⎡
⎢⎣
bk,1

...
bk,n

⎤
⎥⎦ =

XkMAk
∈ G

Nk×Nk
1 and B∗

k =

⎡
⎢⎣
b∗

k,1
...

b∗
k,n

⎤
⎥⎦ = VkMA∗

k
∈ G

Nk×Nk
2 with

bk,i = (ei · Xk)MAk
=

[
P

Xk,i,1
1 · · · P

Xk,i,Nk
1

]
and b∗

k,i = (ei · Vk)MA∗
k
=[

P
Vk,i,1
2 · · · P

Vk,i,Nk
2

]

3. it computes GT = e(P1, P2)ψ, sets PPn = {PPVk
}0≤k≤d, and eventually out-

puts (GT , PPn, {Bk,B∗
k}0≤k≤d).

Notice that for all i, k,GT = e(bk,i,b∗
k,i). Indeed,

e(bk,i,b∗
k,i) = e

⎛
⎝∏

j

aXij

j ,
∏

l

a∗Vil

l

⎞
⎠ =

∏
j,l

e(aj ,a∗
l)

XijVil

=
∏
j,l

e(P1, P2)δjlXijVil = e(P1, P2)ψ = GT .

Consider now the (monotone-span-program) Okamato–Takashima CP-ABE
scheme [25, Section 7.1] in the case d = 2. The access structure associated to
a ciphertext is determined by two 2-dimensional vectors v1 and v2. A pair
of attributes (a pair of Zp-lines) represented by a pair of vectors (x1,x2) is
“accepted” by the structure if and only if xk · vT

k = 0: that is, the structure
specifies two accepted Zp-lines. Their CP-ABE scheme is defined as follows:
Setup(1λ,n = (2;n1 = 2, n2 = 2)) → (pk ,msk) : generate an orthonormal basis

(GT , PPn, {Bk,B∗
k}0≤k≤2) ← Gob(1λ,n), set B̂0 =

⎡
⎣
b0,1

b0,3

b0,5

⎤
⎦ , B̂∗

0 =

⎡
⎣
b∗
0,1

b∗
0,3

b∗
0,4

⎤
⎦,

B̂k =

⎡
⎣
bk,1

bk,2

bk,7

⎤
⎦ , B̂∗

k =

⎡
⎢⎢⎣

b∗
k,1

b∗
k,2

b∗
k,5

b∗
k,6

⎤
⎥⎥⎦ for k = 1, 2, and then output pk = (GT , PPn,

{B̂k}k=0,...,2),msk = (pk , {B̂∗
k}k=0,...,2)

Efficient Fully Secure Leakage-Deterring Encryption 125

KeyDer(msk ,A = {xk=1,2 ∈ Z
2
p : xk,1 = 1}) → skA : generate α, y0 ∈R Zp,

yk ∈R Z
2
p for k = 1, 2, compute vectors k∗

0 =
[
α 0 1 y0 0

]
B∗

0 =
[
α 1 y0

]
B̂∗

0,
k∗

k =
[
αxk 0Z2

p
yk 0

]
B∗

k =
[
αxk yk

]
B̂∗

k, and output secret key skA = (pk ,A,
{k∗

k}k=0,...,2)
Enc(pk ,M ∈ GT ,S = (v1,v2)) → ct : generate uniformly random values a1, a2, ζ,

η0, ηk, θk for k = 1, 2 from Zp, computes a = a1 + a2,

c0 =
[
−a 0 ζ 0 η0

]
B0 =

[
−a ζ η0

]
B̂0,

ck =
[
akek,1 + θkvk 0Z4

p
η1

]
Bk =

[
akek,1 + θkvk η1

]
B̂k for k = 1, 2,

c3 = Gζ
T M,

and output ct = (S, c0, c1, c2, c3) ∈ Z
4
p × G

19
1 × GT and

Dec(skA, ct) → M : output M = c3/e(c0,k∗
0)e(c1,k

∗
1)e(c2,k

∗
2) if the key and the

ciphertext can be properly parsed and xk · vT
k = 0 mod p for k = 1, 2, and

otherwise output ⊥.

Since attribute vectors have their first coordinates set to 1, (the second coor-
dinates specify the slopes of the Zp-lines accepted by the access structure), the
attribute set may be identified with Z

2
p. Okamoto and Takashima proved that

this CP-ABE scheme is correct and adaptively payload-hiding against chosen-
message attacks under the DLIN assumption over G1 and G2 [25, Theorem 2].

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. Cryptology ePrint
Archive, Report 2008/136 (2008). http://eprint.iacr.org/2008/136

2. Backes, M., Müller-Quade, J., Unruh, D.: On the necessity of rewinding in secure
multiparty computation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
157–173. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-
7_9

3. Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revo-
cation. In: EuroS&P (2017)

4. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS,
pp. 106–115. IEEE Computer Society Press, October 2001

5. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8_3

7. Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1_22

8. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679_34

http://eprint.iacr.org/2008/136
https://doi.org/10.1007/978-3-540-70936-7_9
https://doi.org/10.1007/978-3-540-70936-7_9
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/3-540-48405-1_22
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34

126 J. Camenisch et al.

9. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2_27

10. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
Diffie Hellman assumption revisited. Cryptology ePrint Archive, Report 2016/663
(2016). http://eprint.iacr.org/2016/663

11. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman,
O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6_1

12. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8

13. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5_25

14. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

15. Dwork, C., Lotspiech, J.B., Naor, M.: Digital signets: self-enforcing protection of
digital information (preliminary version). In: 28th ACM STOC, pp. 489–498. ACM
Press, May 1996

16. Guruswami, V., Indyk, P.: Expander-based constructions of efficiently decodable
codes. In: 42nd FOCS, pp. 658–667. IEEE Computer Society Press, October 2001

17. Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-key cryp-
tosystems. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp.
943–954. ACM Press, New York (2013)

18. Kiayias, A., Tang, Q.: Traitor deterring schemes: using bitcoin as collateral for
digital content. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 231–242.
ACM Press, New York (2015)

19. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_30

20. Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmetric schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054123

21. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. Cryptology ePrint Archive, Report 2011/490 (2011). http://
eprint.iacr.org/2011/490

22. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1_26

23. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to embed
arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5_14

https://doi.org/10.1007/978-3-662-44371-2_27
http://eprint.iacr.org/2016/663
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_30
https://doi.org/10.1007/BFb0054123
http://eprint.iacr.org/2011/490
http://eprint.iacr.org/2011/490
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/978-3-662-49896-5_14

Efficient Fully Secure Leakage-Deterring Encryption 127

24. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol.
5209, pp. 57–74. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85538-5_4

25. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7_11

https://doi.org/10.1007/978-3-540-85538-5_4
https://doi.org/10.1007/978-3-540-85538-5_4
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11

Sharing the LUOV: Threshold
Post-quantum Signatures

Daniele Cozzo1 and Nigel P. Smart1,2(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
{daniele.cozzo,nigel.smart}@kuleuven.be

2 University of Bristol, Bristol, UK

Abstract. We examine all of the signature submissions to Round-2 of
the NIST PQC “competition” in the context of whether one can trans-
form them into threshold signature schemes in a relatively straight for-
ward manner. We conclude that all schemes, except the ones in the
MQ family, have significant issues when one wishes to convert them
using relatively generic MPC techniques. The lattice based schemes are
hampered by requiring a mix of operations which are suited to both
linear secret shared schemes (LSSS)-based and garbled circuits (GC)-
based MPC techniques (thus requiring costly transfers between the two
paradigms). The Picnic and SPHINCS+ algorithms are hampered by
the need to compute a large number of hash function queries on secret
data. Of the nine submissions the two which would appear to be most
suitable for using in a threshold like manner are Rainbow and LUOV,
with LUOV requiring less rounds and less data storage.

1 Introduction

Ever since the late 1980s there has been interest in threshold cryptography [13].
Constructions for threshold signatures have received particular interest; these
allow the distribution of signing power to several authorities using different access
structures. For example, the 1990s and early 2000s saw work on threshold RSA
signatures [11,48] and DSA/EC-DSA signatures [19,38].

The case of distributed EC-DSA signature gathered renewed interest [8,16–
18,33–35], due to applications in blockchain. Furthermore, general distributed
solutions for decryption and signature operations are attracting more attention,
such as the recent NIST workshop in this space1.

However, solutions for distributed RSA and EC-DSA signatures do not pro-
vide resistance against quantum computers. Thus if one is to provide threshold
signatures in a post-quantum world, then one needs to examine how to “thresh-
oldize” post-quantum signatures. The techniques to create threshold versions of
RSA and EC-DSA signatures make strong use of the number-theoretic structure

1 https://www.nist.gov/news-events/events/2019/03/nist-threshold-cryptography-
workshop-2019.

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 128–153, 2019.
https://doi.org/10.1007/978-3-030-35199-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_7&domain=pdf
http://orcid.org/0000-0001-5289-3769
http://orcid.org/0000-0003-3567-3304
https://www.nist.gov/news-events/events/2019/03/nist-threshold-cryptography-workshop-2019
https://www.nist.gov/news-events/events/2019/03/nist-threshold-cryptography-workshop-2019
https://doi.org/10.1007/978-3-030-35199-1_7

Sharing the LUOV: Threshold Post-quantum Signatures 129

of such schemes; however this structure is not available for many of the proposed
post-quantum signature algorithms.

The NIST post-quantum cryptography “competition” aims to find replace-
ment public key encryption and signature algorithms for the current number-
theoretic solutions based on integer factoring and discrete logarithms. There are
nine solutions which have been selected for the second round of this process, and
these can be divided into four classes, according to the underlying hard problem
on which they are based:

– Lattice-based: there are three submissions in this category; Dilithium [37],
qTesla [4], and Falconal [44]

– Hash-based: there is one submission in this category, SPHINCS+ [27].
– MPC-in-the-Head (MPC-in-H)-based: here there is also one submission Picnic

[51].
– Multivariate Quadratic-based: here we have four submissions GeMSS [5],

LUOV [3], MQDSS [47] and Rainbow [14].

Generic MPC techniques are now developed enough that one could simply
apply them here in a black-box manner, but not all proposed post-quantum
schemes would be equally suited to this approach. In this work we therefore
examine the proposed post-quantum signature schemes submitted to Round 2
of the NIST project in the context of this problem.

Our Contribution: Looking only at the underlying assumptions one would
suspect Picnic would be the algorithm which best lends itself to being converted
into an MPC threshold version; after all it is based on MPC-in-the-Head. How-
ever, closer examination reveals that this is not the case. Indeed we examine all
the post-quantum signature submissions from the point of view of whether one
can easily turn them into threshold versions. It turns out that the ones which
are most amenable to “thresholdizing” are those based on the MQ family of
problems, in particular Rainbow and LUOV, see Table 1 for a summary.

In this version we discuss in detail Crystal-Dilithium, Picnic, SPHINCS+,
Rainbow and LUOV. In the full version we cover the other Round-2 submissions.

The main issues with lattice-based techniques are the need to perform rejec-
tion sampling, which means intermediate values need to be kept secret until after
the rejection sampling has been accomplished, and they need to be compared
to given constants. This results in a number of operations suitable for garbled
circuit operation to be performed. However, the rest of the algorithms require
operations which are linear. Thus one has both a large number of garbled cir-
cuits (GC)-based operations to perform, as well as conversions to-and-from linear
secret sharing scheme (LSSS) based representations to help mitigate the number
of GC operations needed. This conversion turns out to be a major bottleneck.

Picnic on the other hand requires the signer to privately evaluate a set of
PRFs and then reveal the associated keys for a given subset of the PRFs when
obtaining the challenge value. This means that the PRFs need to be securely

130 D. Cozzo and N. P. Smart

Table 1. Summary of NIST Round 2 post-quantum signature schemes

Name Underlying
assumption

Issues in obtaining a threshold variant

Dilithium Lattice A mix of linear operations (suitable for LSSS-based
MPC) and non-linear operations (suitable for
GC-based MPC) requires costly transferring between
the two representations. We expect this to take
around 12 s to execute

qTesla Lattice A mix of linear operations (suitable for LSSS-based
MPC) and non-linear operations (suitable for
GC-based MPC) requires costly transferring between
the two representations. We expect to take at least
16 s to execute

Falcon Lattice A mix of linear operations (suitable for LSSS-based
MPC) and non-linear operations (suitable for
GC-based MPC) requires costly transferring between
the two representations. We expect to take at least
6 s to execute

Picnic MPC-in-H Applying SHA-3 to obtain the necessary randomness
in the views of the MPC parties

SPHINCS+ Hash Applying SHA-3 to obtain the data structures needed

MQDSS MQ Applying SHA-3 to obtain the commitments

GeMSS MQ Potential for threshold implementation,
implementation is tricky due to need to extract
polynomial roots via Berlekamp algorithm

Rainbow MQ Simple LSSS based MPC solution which requires 12
rounds of communication. We expect a signature can
be generated in around three seconds

LUOV MQ Simple LSSS based MPC solution which requires 6
rounds of communication. We expect a signature can
be generated in just over a second

evaluated in a threshold manner. Since the PRFs used in Picnic are not specif-
ically designed to be evaluated in this way one is left applying generic MPC
techniques. These become very expensive due to the gate counts of the underly-
ing PRFs specified by the proposal.

The hash-based signature scheme SPHINCS+ has a similar issue in that one
needs to securely evaluate the underlying hash functions in a threshold manner;
this again leads to huge gate counts.

One of the MQ schemes (MQDSS) also requires to evaluate hash functions
on secret data, and so suffers from the same problems as the previous schemes.
One MQ scheme (GeMSS) is a plausible candidate to be implemented via MPC,
but any implementation would be highly non-trivial due to the need to evaluate
Berlekamps’ algorithm to extract roots of a univariate polynomial.

Sharing the LUOV: Threshold Post-quantum Signatures 131

This leaves us with the two remaining MQ schemes (LUOV and Rainbow).
These are based on the FDH signature construction and hence the main issue
is implementing generic MPC for arithmetic circuits over the given finite fields.
This would lead to threshold variants relatively easily. In this case Rainbow
requires more rounds of interaction than LUOV, on the other hand Rainbow
requires less secure multiplications. In addition, LUOV requires less data to
store the shared secret key state.

In all of our analyses we try to give a best estimate as to the minimum amount
of time a threshold implementation would take for each of the candidates. This is
assuming the current best run-times for evaluating the SHA-3 internal function
in an MPC system. These estimates are given for the schemes at the security
level denoted Level 3 by NIST; when a scheme does not have parameters at Level
3 we pick the set at Level 4. Level 3 corresponds to the difficulty of breaking
AES-192 on a quantum computer. This provides less than 192-bits of quantum
security (due to Grover’s algorithm), and hence seems a reasonable compromise
since current (classical) security levels are usually picked to be equivalent to
AES-128.

2 Preliminaries

In this section we define various notations and notions which will be needed in
future sections. In particular we describe the underlying MPC systems which we
will assume ‘as given’. In particular our focus will be on MPC solutions which
are actively secure (with abort) against static corruptions.

We assume that all involved parties are probabilistic polynomial time Turing
machines. Given a positive integer n, we denote by [n] the set {1, . . . , n}. We
let x ← X denote the uniformly random assignment to the variable x from
the set X, assuming a uniform distribution over X. We also write x ← y as
shorthand for x ← {y}. If D is a probability distribution over a set X, then we
let x ← D denote sampling from X with respect to the distribution D. If A is a
(probabilistic) algorithm then we denote by a ← A the assignment of the output
of A where the probability distribution is over the random tape of A.

Signature Schemes: Digital signature schemes which are defined by

Definition 2.1. A digital signature scheme is given by a tuple of probabilistic
algorithms (KeyGen,Sign,Verify):

– KeyGen
(
1λ

)
is a randomized algorithm that takes as input the security param-

eter and returns the public key pk and the private key sk.
– Sign (sk, μ) is a randomized signing algorithm that takes as inputs the private

key and a message and returns a signature on the message.
– Verify (pk, (σ, μ)) is a deterministic verification algorithm that takes as inputs

the public key and a signature σ on a message μ and outputs a bit which is
equal to one if and only if the signature on μ is valid.

132 D. Cozzo and N. P. Smart

Correctness and security (EU-CMA) are defined in the usual manner, and all
signature scheme submitted to NIST in Round-2 meet this security definition.

A threshold signature scheme with respect to some access structure Γ is
defined by the following definition

Definition 2.2. A threshold digital signature scheme is given by a tuple of
probabilistic algorithms (KeyGen,Sign,Verify):

– KeyGen
(
1λ

)
is a randomized algorithm that takes as input the security param-

eter and returns the public key pk and a set of secret keys ski, one secret key
for every party in the access structure.

– Sign (sk, μ) is a randomized signing algorithm that takes as inputs a qualified
set of private keys and a message and returns a signature on the message.

– Verify (pk, (σ, μ)) is a deterministic verification algorithm that takes as inputs
the public key and a signature σ on a message μ and outputs a bit which is
equal to one if and only if the signature on μ is valid.

Informally security for a threshold signature scheme is that an unqualified set
of parties cannot produce a signature. An additional requirement is often that a
valid output signature should be indistinguishable from the signature produced
by the signing algorithm of equivalent the non-thresholdized scheme with the
same public key.

Multi-party Computation: As mentioned above we consider actively secure
(with abort) MPC for static adversaries in this work. We assume a generic black

The ideal functionality MPC for MPC over Fq

Initialize: On input (init,K) from all parties, the functionality stores
(domain,K).

Input: On input (input, Pi, varid, x) from Pi and (input, Pi, varid, ?) from all
other parties, with varid a fresh identifier, the functionality stores (varid, x).

Random: On input of (random, varid), if varid is not present in memory then
the functionality picks a random value in K and stores it in varid.

Add: On command (add, varid1, varid2, varid3) from all parties, if varid1 and
varid2 are present in memory and varid3 is not then the functionality retrieves
(varid1, x) and (varid2, y) and stores (varid3, x + y). Otherwise does nothing.

Multiply: On input (multiply, varid1, varid2, varid3) from all parties, if varid1

and varid2 are present in memory and varid3 is not then retrieve (varid1, x)
and (varid2, y) and store (varid3, x · y). Otherwise do nothing.

Output: On input (output, varid, i) from all honest parties, if varid is present in
memory then retrieve (varid, y) and output it to the environment. It then waits
for an input from the environment. If this input is Deliver then y is output to
all players if i = 0, or y is output to party i if i �= 0. If the input is not equal
to Deliver then ⊥ is output to all parties.

Fig. 1. The ideal functionality FMPC for MPC over Fq

Sharing the LUOV: Threshold Post-quantum Signatures 133

box for MPC, abstracted in the functionality FMPC of Fig. 1, which defines MPC
over a given finite field K (or indeed sometimes a finite ring). When instantiat-
ing this abstract MPC functionality with state-of-the-art protocols one needs to
consider aspects such as the access structure, the field used K, and the compu-
tational/communication model. We summarize many of the state-of-the-art of
MPC protocols in Table 2.

Table 2. Summary of main practical MPC protocols

Protocol
name

Field
K

Access
structure

Pre-Proc
model

Rounds Example
reference

SPDZ family Large K Full threshold ≈ depth(C) [12]

Tiny-OT family F2 Full threshold ≈ depth(C) [32,42]

SPDZ-2k (Z/2k
Z) Full threshold ≈ depth(C) [9]

n-party GC family F2 Full threshold constant [25,50]

General Q2 Any Q2 ≈ depth(C) [49]

General Q2 Any Q2 – ≈ depth(C) [7]

Special GC F2 (t, n) = (1, 3) – constant [41]

In terms of access structures the main ones in use are full threshold (for
example in the SPDZ protocol family [12]) and Q2-access structures (which
includes standard threshold protocols for which t < n/2). A Q2-access structure
is one in which the union of no two unqualified sets cover the entire set of players.
In terms of the field K for evaluating binary circuits one usually utilizes MPC
over K = F2. However, for some applications (in particular the MQ signature
schemes considered later) it is better to take K to be a specific finite field taylored
to the application. Some protocols are tailored to very specific access structures
(for example using threshold (t, n) = (1, 3)).

The functionality has a command to produce random values in K. This can
always be achieved using interaction (via the input command), however, for
LSSS based protocols in the Q2 setting (with small numbers of parties) such a
command can be executed for free using a PRSS.

To make it simpler to describe MPC protocols, in what follows we use the
notation 〈x〉 for x ∈ K to denote a value x stored in the MPC engine (the reader
can think of this as 〈x〉 being the secret sharing of x). The MPC functionality
Fig. 1 enables one to compute 〈x〉 + 〈y〉, λ · 〈x〉 and 〈x〉 · 〈y〉. We extend this
notation to vectors and matrices of elements in K in the obvious manner.

In terms of computational model we find the set of practical MPC protocols
divided into distinct classes. In some protocols there is a function-independent
offline phase, and then a fast offline phase. Other protocols have no offline phase
but then pay a small cost in the online phase. In some instances one can choose
which class one wants to be in. For example, for Q2 access structures over a
general finite field one can use the protocol of [49] if one wishes to utilize an

134 D. Cozzo and N. P. Smart

offline phase, but the protocol in [7] if ones wants to avoid the offline phase (but
have a slightly slower “online” phase). Although the performance of [7] degrades
considerably for small finite fields, whereas that of [49] does not degrade at all
(however [49]’s offline phase performance degrades if the finite field is small).
Note [7] is expressed in terms of t < n/2 threshold adversaries but it can be
trivially extended to any Q2 access structure.

The communication model also plays a part with protocols based on Gar-
bled Circuits using a constant number of rounds, whereas protocols based on
linear-secret sharing (LSSS) requiring rounds (roughly) proportional to the cir-
cuit depth. In all cases the total amount of communication, and computation, is
roughly proportional to the number of multiplication gates with the arithmetic
circuit over K which represents the function to be computed2. The LSSS based
protocols cost (essentially) one round of communication per each multiplicative
depth, and communication cost linear in the number of multiplication gates.

It is possible to mix GC and LSSS based MPC in one application, and pass
between the two representations. For special access structures one can define
special protocols for this purpose, see [30] for example. For general access struc-
tures one can apply the technique of doubly-authenticated bits (so called daBits)
introduced in [46]. This latter method however comes with a cost. Assuming we
are converting � bit numbers, then not only does one need to generate (at least)
� daBits, but when transforming from the LSSS to the GC world one requires
to evaluate a garbled circuit with roughly 3 · � AND gates. The more expensive
part is actually computing the daBits themselves. The paper [30] claims a cost
of 0.163 ms per daBit, for fields of size 2128. Whilst the fields used in the lattice
based post-quantum signature algorithms are much smaller (of the order of 220)
we use the same estimate3.

Of course one could execute bitwise operations in an LSSS-based MPC for
an odd modulus q using the methods described in [6,10]. But these are generally
slower than performing the conversion to a garbled circuit representation and
then performing the garbled circuit based operation. Especially when different
operations are needed to be performed on the same bit of data.

MPC of Standard Functionalities: A number of the signature schemes sub-
mitted to NIST make use of keyed (and unkeyed) symmetric functions which
need to be applied in any threshold implementation to secret data. Thus any
threshold implementation will need to also enable a threshold variant of these
symmetric primitives. Here we recap, from the literature, the best timings and
costs one can achieve for such primitives. We will use these estimates to examine
potential performance in our discussions which follow.

In [30] the authors give details, also within the context of thresholdizing
a NIST PQC submission (this time an encryption algorithm), of an MPC

2 This is not strictly true as one often does not represent the function as a pure
arithmetic circuit. But as a first order approximation this holds.

3 Arithmetic modulo a prime of size 220 is faster, but on the other hand one then has
to perform more work to obtain the same level of active security.

Sharing the LUOV: Threshold Post-quantum Signatures 135

implementation of the SHA-3 round function (within the context of execut-
ing the KMAC algorithm). The round function f for SHA-3 requires a total
of 38,400 AND gates, and using a variant of the three party honest majority
method from [41], the authors were able to achieve a latency of 16 ms per exe-
cution of f , for a LAN style setting. This equates to around 0.4µs per AND
gate. Any actual application of SHA-3 requires multiple executions of the round
function f ; depending on how much data is being absorbed and how much is
being squeezed.

In [50] give timings for a full-threshold garbled circuit based evaluation of
various functions. Concentrating on the case of AES and SHA-256, and three
party protocols, the authors obtain a latency of 95 ms (13 ms online) for the 6800
AND gate AES circuit, and 618 ms (111 ms online) for the 90825 AND gate SHA-
256 circuit, again for a LAN setting. These times correspond to between 1µ and
2µs per AND gate, thus the three party full threshold setting is slightly slower
than the honest majority setting (as is to be expected).

For general arithmetic circuits the estimates in [7] in the honest majority
three party setting for a 61-bit prime field give a time of 826 ms to evaluate a
depth 20 circuit with one million multiplication gates, in a LAN setting. Thus
we see that when using arithmetic circuits over such a finite field one can deal
we obtain a similar throughput, in terms of multiplications per second, as one
has when looking at binary circuits using garbled circuit techniques. However,
the fields are of course much larger and we are performing more “bit operations”
per second in some sense.

However, the protocol in [7] for 61-bit prime fields assumes a statistical secu-
rity of 61-bits, i.e. the adversary can pass one of the checks on secure multi-
plications probability 1/261 = 1/#K. For smaller finite fields the performance
degrades as one needs to perform more checks. A back-of-the-envelope calcula-
tion reveals one would expect a throughput of roughly 250,000 multiplications
per second in the case of F28 .

Whilst these times are comparing apples and oranges, they do give an order
of magnitude estimate of the time needed to compute these functions. Generally
speaking, one is looking for operations which involve a few number of multipli-
cations. Almost all NIST signature submissions make use of SHAKE-256, as a
randomness expander, or hash-function. The SHAKE-256 algorithm is based on
SHA-3. Recall that an application of SHA-3/SHAKE-256 on an input of �i bits,
to produce an output of �o bits, will require (ignoring issues when extra padding
results in more blocks being processed) a total of

rounds(�i, �o) :=
⌈ �i

1088

⌉
+

⌈ �o

1088

⌉
− 1

iterations of the main Keccak round function, since the rate of SHA3-256 is
r = 1088 bits. In what follows we use the current best MPC evaluation time
for this function (of 16 ms from [30]) to obtain an estimate of how a specific
application of SHAKE-256/SHA-3 will take.

136 D. Cozzo and N. P. Smart

3 Lattice Based Schemes

Lattice based signature schemes have a long history, going back to the early
days of lattice based cryptography. Early examples such as NTRUSign [26] were
quickly shown to be insecure due to each signature leaking information about
the private key [21]. In recent years following the work of Lyubashevsky [36]
the standard defence against such problems has been to adopt a methodology
of Fiat–Shamir-with-aborts. All of the three lattice based submissions to NIST
Round-2 follow this paradigm. However, we shall see that this means that they
are all not particularly tuned to turning into threshold variants; for roughly
the same reasons; although Falcon is slightly better in this regard. In all our
lattice descriptions we will make use of a ring Rq, which one can take to be the
cyclotomic ring Z[X]/(XN + 1) reduced modulo q.

3.1 Crystals-Dilithium

The Dilithium [37] signature scheme is based on the Module-LWE problem. The
secret key is two “short” vectors (s1, s2) with s1 ∈ Rl

q and s2 ∈ Rk
q , and the

public key is a matrix A ∈ Rk×l
q and a vector t ∈ Rk

q such that t = A · s1 + s2.
The high-level view of the signature algorithm for signing a message μ is given
in Fig. 2, for precise details see the main Dilithium specification. We do not
discuss the optimization in the Dilithium specification of the MakeHint function,
to incorporate this will involve a few more AND gates in our discussion below.
To aid exposition we concentrate on the basic signature scheme above. At the
Level-3 security level the main parameters are set to be N = deg Rq = 256,
q = 223 − 213 + 1 and (k, l) = (5, 4). There are a number of other parameters
which are derived from these, in particular γ1 = (q − 1)/16 and γ2 = (q − 1)/32.

The Dilithium Signature Algorithm

1. z ←⊥
2. While (z =⊥) do

(a) Sample a “short” y ∈ Rl
q with ‖y‖∞ ≤ γ1.

(b) v ← A · y.
(c) Let w be the topbits of v.
(d) c ← H(μ‖w) ∈ Rq.
(e) z ← y + c · s1.
(f) If z or the lower bits of v − c · s2 are too big then set z ←⊥.

3. Return σ ← (z, c).

Fig. 2. The Dilithium signature algorithm

From our point of view we see that Dilithium is a signature scheme in the
Fiat-Shamir-with-aborts family. If we did not have the while-loop in the signature

Sharing the LUOV: Threshold Post-quantum Signatures 137

algorithm, then the values of z and v − c · s2 would leak information to the
adversary. Thus it is clear that any distributed version of Dilithium signatures
should maintain the secrecy of these intermediate values. Only values which pass
the size check and are output as a valid signature, can be revealed.

The parameters of the algorithm are selected so that the probability of need-
ing two iterations of the while loop is less than one percent. Thus we can con-
centrate on the case of only executing one iteration of the loop. We assume that
the secret key has been shared in an LSSS scheme over Fq which supports one of
the MPC algorithms for LSSS schemes discussed in the introduction. The main
issue with Dilithium, and indeed all the other lattice based schemes, is that
some operations are best suited to linear secret sharing based MPC over the
underlying finite field Fq (e.g. lines 2b and 2e), whereas some are more suited to
evaluation using a binary circuit (e.g. lines 2c and 2d). The main cost therefore
comes in switching between the two types of MPC systems. For full details see
the full version.

3.2 qTesla

qTesla is a signature scheme based on the ring-LWE problem, and like the pre-
vious one it too uses rejection sampling to avoid information leakage from signa-
tures. The secret key is a pair s, e ∈ Rq, where e is small and Rq has degree N .
The public key is a value a ∈ Rq in Rq along with the value t = a ·s+e. The high
level view of the signature algorithm is given in Fig. 3. For the Level-3 security
level we have the parameters N = deg Rq = 1024, B = 221 − 1, q = 8404993,
and d = 22.

The qTesla Signature Algorithm

1. z ←⊥.
2. While (z =⊥) do

(a) Sample a “short” y ∈ Rq with ‖y‖∞ ≤ B.
(b) b ← [a · y]M ∈ Rq.
(c) c ← H(b‖G(μ)) ∈ Rq.
(d) z ← y + s · c.
(e) If z is not short or a · y − e · c is not “well-rounded” then set z ←⊥.

3. Return σ ← (z, c).

Fig. 3. The qTesla signature algorithm

The operation [x]M applied to x ∈ Rq provides a rounding operation akin
to taking the top (log2 q − d) bits of x in each coefficient. We define [x]M = (x
(mod q)−x (mod 2d))/2d where the two modular operations perform a centered
reduction (i.e. in the range (−q/2, . . . , q/2]. The values of [x]M are stored in one
byte per coefficient.

138 D. Cozzo and N. P. Smart

The function G is a hash function which maps messages to 512 bit values,
and H is a hash function which maps elements in Rq × {0, 1}512 to a 512-bit
string c, which is then treated as a trinary polynomial. The functions H and
G being variants of SHAKE-256 (or SHAKE-128 for the low security variants).
Again much like the Dilithium, due to the rejection sampling the computation
of y and the evaluation of H must be done in shared format.

The analysis of the cost of qTesla in a threshold system follows much the
same as the analysis done above for Crystals-Dilithium, thus we leave the full
discussion to the full version.

3.3 Falcon

Falcon [44] is another lattice based scheme, and the only one to have NTRU-like
public keys. It is based on the GPV framework [20]. The private key is a set of
four “short” polynomials f, g, F,G ∈ Rq such that f · G = g · F in the ring Rq.
The public key is the polynomial h ← g/f , which will have “large” coefficients
in general. Associated to the private key is the private lattice basis in the FFT
domain

B =
(

FFT(g) −FFT(f)
FFT(G) −FFT(F)

)
.

There is also a data structure T , called the Falcon Tree associated to the private
key, which can be thought of as a set of elements in the ring Rq. At the Level-3
security level one has N = deg Rq = 768 and q = 18435. A high level view of
the signature algorithm is given in Fig. 4.

The Falcon Signature Algorithm

1. r ← {0, 1}320.
2. c ← H(r‖μ).
3. t ← (FFT(c), FFT(0)) · B

−1
.

4. z ←⊥.
5. While (z =⊥) do

(a) z ← ffSamplingn(t, T).
(b) s ← (t − z) · B.
(c) If s is not short then set z =⊥.

6. (s1, s2) ← FFT−1(s).
7. s ← Compress(s2).
8. Return σ = (r, s).

Fig. 4. The Falcon signature algorithm

Again, we assume that the secret key has been shared in an LSSS scheme over
Fq, and we go through each line in turn. The specification document says that
how the discrete Gaussian is evaluated is “arbitrary” and “outside the scope of

Sharing the LUOV: Threshold Post-quantum Signatures 139

this specification” [44], bar needing to be close in terms of the Rényi divergence.
However, a Gaussian sampler is defined within the specification, [44, Section 4.4],
for use in the reference implementation. It turns out that this sampler is the main
impediment to producing an efficient threshold version of Falcon. We leave the
details to the full version.

4 MPC-in-the-Head Based Scheme

The MPC-in-the-Head paradigm for producing zero-knowledge proofs was devel-
oped in [28]. The prover, to prove knowledge of a preimage x of some function
Φ(x) = y (where Φ and y are public), simulates an MPC protocol to compute
the functionality Φ, with the input x shared among the simulated parties. The
prover executes the protocol (in it’s head), then commits to the state and the
transcripts of all players. Then it sends the verifier these commitments and ran-
domly opens a (non-qualified) subset of them (the precise subset is chosen by
the verifier). The verifier checks that the simulated protocol was correctly exe-
cuted using the opened values. If everything is consistent, it then accepts the
statement that the prover knows x, otherwise it rejects. Typically, the proof has
to repeated several times in order to achieve high security. Clearly to obtain
a signature scheme we apply the Fiat–Shamir transform so that the verifier’s
choices are obtained by hashing the commitments with the message.

4.1 Picnic

Picnic is a digital signature scheme whose security entirely relies on the security
only of symmetric key primitives, in particular the security of SHA-3 and a
low-complexity block cipher called Low-MC [1]. The core construction is a zero-
knowledge proof of knowledge of a preimage for a one-way function y = fk(x),
where f is the Low-MC block cipher, the values x and y are public and the
key k is the value being proved. Using the Fiat–Shamir and MPC-in-the-Head
paradigms we obtain a signature scheme with public key (x, y) and private key k.

The Picnic Signature Algorithm (High Level)

1. Generate 3 · T secret seeds seedi,j for i = 0, . . . , T − 1 and j = 0, 1, 2.
2. Using a KDF expand the seedi,j values to a sequence of random tapes randi,j .
3. For each i use the three random tapes randi,j as the random input to a player

Pj for an MPC protocol to evaluate the function fk(x).
4. Commit to the resulting views, and hash them with a message to obtain a set

of challenges e0, . . . , et ∈ {0, 1, 2}.
5. Reveal all seeds seedi,j bar seedi,ei .

Fig. 5. The Picnic signature algorithm (high level)

140 D. Cozzo and N. P. Smart

In this paper we concentrate on Picnic-1, but a similar discussion also applies
to the Picnic-2 construction. The specific proof system that implements the
MPC-in-the-Head for Picnic-1 is ZKBoo++ [1], which is itself an extension of the
original ZKBoo framework from [22]. The simulated MPC protocol is between
three parties, and is executed at a high level as in Fig. 5.

In our analysis we will ignore any hashing needed to produce commitments
and the challenge, and we will simply examine the operation of the key derivation
in step 2 of Fig. 5. It is clear that in the MPC-in-the-Head paradigm the seeds
need to be kept secret until the final reveal phase, thus the derivation of the
random tape from the seed needs to be done in a secure manner in a any threshold
implementation.

In Picnic the precise method used to derive the random tape is to use

randi,j = KDF (H2 (seedi,j) ‖salt‖i‖j‖length)

where

– The seeds are S bits long.
– The salt is 256 bits long.
– The integers i, j and length are encoded as 16-bit values.
– The output length (length), of the KDF, is n+3 ·r ·s when j = 0, 1 and 3 ·r ·s

when j = 2.

We again concentrate on the NIST security Level-3, which is instantiated with
the parameters S = n = 192, T = 329, s = 10 and r = 30. The hash function H2

is SHAKE-256 based with an output length of 384 bits. Thus the execution of H2

requires only two executions of the SHA-3 round function. Each KDF operation
is also cheap, requiring either two or three rounds. The problem is we need to
execute these operations so many times. The total number of executions of the
round function of SHA-3 is given by

T ·
(
2 + 2 · rounds(384 + 256 + 32 + 32, n + 3 · r · s)

+ rounds(384 + 256 + 32 + 32, 3 · r · s)
)

= 329 ·
(
2 + 2 · rounds(704, 1092) + rounds(704, 900)

)

= 329 · (2 + 2 · (3 − 1) + (2 − 1)) = 2303.

Thus given our estimate of a minimum of 16 ms for a SHA-3 round execution
in MPC we see that even this part of the Picnic algorithm is expected to take
16 · 3290 ms, i.e. 37 s!

5 Hash Based Scheme

Hash based signatures have a long history going back to the initial one-time sig-
nature scheme of Lamport [31]. A more efficient variant of the one-time signature

Sharing the LUOV: Threshold Post-quantum Signatures 141

attributed to Winternitz is given in [40], where a method is also given to turn
the one-time signatures into many-time signatures via so-called Merkle-trees.
The problem with these purely Merkle tree based constructions is that they are
strictly a stateful signature scheme. The signer needs to maintain a changing
state between each signature issued, and the number of signatures able to be
issued is bounded as a function of the height of the Merkle tree.

To overcome these issues with state the SPHINCS signature scheme was
introduced in 2015 [2], which itself builds upon ideas of Goldreich elaborated
in [24], and going back to [23]. In the SPHINCS construction messages are still
signed by Winternitz one-time signatures, but the public keys of such signatures
are then authenticated via another (similar) structure called a Forest of Random
Subsets (which is itself based on earlier work in [45]).

5.1 SPHINCS+

The only hash based signature scheme to make it into the second round of the
NIST competition is SPHINCS+ [27]. We refer the reader to the design document
[27] for a full description. For our purposes we recall that messages are signed
using Winternitz one-time signatures which are then authenticated using a FORS
tree. The parameters which are of interest to us are: n the security parameter
in bytes, w a parameter related to the underlying Winternitz signature, h the
height of the hypertree, d the number of layers in the hypertree, k the number of
trees in a FORS, t the number of leaves in a FORS tree. From these two length
functions are defined4

len1 =
⌈ 8 · n

log2 w

⌉
, len2 =

⌊ log(len1 · (w − 1))
log w

⌋
+1, and len = len1 + len2.

The scheme uses (essentially) four hash functions labelled F, H, PRF and Tlen.
The function F is used as the main function in the Winternitz signature scheme,
as well as the FORs signature. The underlying expansion the secret key into
secret keys of the trees is done via the function PRF. The function H is used to
construct a root of the associated binary trees, where as Tlen is used to compress
the len Winternitz public key values into a single n-bit value for use as a leaf
in the Merkle tree. The evaluation of the F and PRF calls within a single
signature needs to be performed on secret data, even though eventually some of
the input/outputs become part of the public signature. The calls to H and Tlen

appear to be able to be performed on public data, and will not concern us here.
In what follows we concentrate on the SHAKE-256 based instantiation of

SPHINCS+ (to be comparable with other signature schemes in this paper). In
the SHAKE instantiation the execution of the function F requires two calls to the
underlying SHA-3 permutation, where as H requires three calls to the underlying
SHA-3 permutation, and PRF requires one call to the SHA-3 permutation.

4 Note the definition of len1 in the specification is wrong and need correcting which
we do below.

142 D. Cozzo and N. P. Smart

To sign a message requires k ·t+d·w ·len·2h/d calls to F and k ·t+d·len·2h/d+
1 calls to PRF. When instantiated with the parameters at the NIST Level-3
security level (for fast signing) we have (n,w, h, d, k, t) = (24, 16, 66, 22, 33, 256).
Leading to len1 = 48, len2 = 3 and len = 51. This leads to a grand total of 152064
calls to F and 17425 calls to PRF. This leads to a total of 321553 calls to the
SHA-3 internal permutation which need to be performed securely. With current
best garbled circuit implementations this on its own would require 85 min to
execute. Of course a complete threshold implementation would take longer as
we have not looked at other aspects of the signature algorithm.

6 MQ Based Schemes

The history of MQ cryptography, is almost as old as that of hash-based signa-
tures. The first MQ based scheme was presented in 1988 [39]. In terms of signa-
ture schemes based on the MQ problem, the original works were due to Patarin
and were given the name “Oil and Vinegar” [29,43]. The basic idea is to define
a set of multivariate quadratic equations (hence the name MQ) P : Fm

q −→ F
n
q

and the hard problem is to invert this map, where q is a power of two5. The
intuition being that inverting this map is (for a general quadratic map P) is an
instance of the circuit satisfiability problem, which is known to be NP-Complete.

In three of the NIST candidate signature schemes the function P is generated
so that there is an efficient trapdoor algorithm which allows the key holder to
invert the map P using the secret key. In such situations the secret key is usually
chosen to be two affine transforms S : Fn

q −→ F
n
q and T : Fm

q −→ F
m
q , plus an

easy to invert map P ′ : F
m
q −→ F

n
q consisting of quadratic functions (note

any function can be expressed in terms of quadratic functions by simple term
rewriting). Then the public map is defined by P = S ◦ P ′ ◦ T . Of course the
precise definition of this construction implies that one is not using a generic
circuit satisfiability problem. However, for specific choices of P ′, q, n and m the
construction is believed to provide a trapdoor one-way function.

Given we have a trapdoor one way function the standard Full Domain Hash
construction gives us a signature scheme. Namely to sign a message μ, the signer
hashes μ to an element y ∈ F

m
q and then exhibits a preimage of y under P as

the signature s. To verify the signature the verifier simply checks that P (s) = y.
Note, that many preimages can exist for y under P , thus every message could
have multiple valid signatures. From this basic outline one can define a number
of signature scheme depending on the definition of the “central map” P ′. All
of the Round-2 MQ based signature schemes, with the exception of MQDSS,
follow this general construction method. In this version we discuss Rainbow and
LUOV, leaving MQDSS and GeMSS to the full version.

5 To enable comparison with the NIST submissions we use the same notation in the
sections which follow as used in the submissions. We hope this does not confuse the
reader.

Sharing the LUOV: Threshold Post-quantum Signatures 143

Method for solving 〈A〉 · 〈x〉 = 〈b〉

Input: 〈A〉, 〈b〉 with A ∈ Fn×n
q and b ∈ F

n
q .

Output: ⊥ or 〈x〉 such that A · x = b.

1. Generate a random n × n shared matrix 〈R〉. Generation of random elements
in LSSS based MPC systems can usually be done for free in the online phase
with no communication costs.

2. Compute 〈T 〉 ← 〈A〉 · 〈R〉. This requires one round of communication and the
secure multiplication of n3 elements.

3. Open the matrix 〈T 〉. This requires one round of communication.
4. In the clear, compute T −1. If det(T) = 0 then we return ⊥.
5. Compute 〈t〉 ← T −1 · 〈b〉, which is a linear operation and hence free.
6. Finally compute 〈x〉 ← 〈R〉 · 〈t〉 = 〈R · T −1 · b〉 = 〈R · R−1 · A−1 · b〉 =

〈A−1 · b〉. This step requires one round of communication, and n2 secure
multiplications.

Fig. 6. Method for solving 〈A〉 · 〈x〉 = 〈b〉

Inverting Linear Systems in MPC. Before proceeding we present a trick which
enables us to efficiently solve linear systems in an LSSS based MPC system.
We will use this in our analysis of two of the submissions, so we present it here
first. Suppose we have a shared n × n matrix 〈A〉 over Fq and an n-dimensional
shared vector 〈b〉. We would like to determine 〈x〉 such that A · x = b. We
do this using the algorithm in Fig. 6. This algorithm either returns the secret
shared solution or the ⊥ symbol. This latter either happens because the input
matrix has determinant zero, or the random matrix used in the algorithm has
determinant zero (which occurs with probability 1/q). The algorithm requires a
total of three rounds of communication and n3 + n2 secure multiplications.

6.1 Rainbow

The Rainbow signature scheme can be seen as a multilayer version of the original
UOV. In its original version, the number of layers is determined by a parameter
u. For u = 1 this is just the basic UOV scheme, whereas the candidate submis-
sion chooses u = 2. As described earlier we pick for the secret key two affine
transforms S : Fm

q → F
m
q and T : Fn

q → F
n
q . Along with a function F , called

the central map, which can be defined by quadratic functions. The public key is
then the map P = S ◦ F ◦ T : Fn

q → F
m
q .

In the Rainbow specification the affine maps S and T are chosen to be given
by matrix multiplication by upper triangular matrices S and T . This means that
the inverse matrices S−1 and T−1 are also upper triangular. In particular the
inverses are selected to have the following block form

S−1 =
(

1o1 So1×o2

0o2×o1 1o2

)
and T−1 =

⎛

⎝
1v1 Tv1×o1 T ′

v1×o2

0o2×v1 1o1 T ′′
o1×o2

0o2×v1 0o2×o1 1o2

⎞

⎠

144 D. Cozzo and N. P. Smart

where Sa×b etc. denotes a matrix of dimension a × b, 0a×b denotes the zero
matrix of dimension a × b and 1a denotes the identity matrix of dimension a.

To define the central map we define three constants (v1, o1, o2), which at
the Level-3 security level are chosen to be (68, 36, 36). From these we define
further parameters given by v2 = v1 + o1, n = v3 = v2 + o2 and m = o1 + o2.
Note this means that n = v1 + m. We then define the sets Vi = {1, . . . , vi} and
Oi = {vi + 1, . . . , vi+1}, for i = 1, 2, which will be referred to as the vinegar
(resp. oil) variables of the ith layer.

The Rainbow central map F : Fn
q → F

m
q can then be defined by the set of m

quadratic polynomials f (v1+1), . . ., f (n) having the form

f (k) =

{∑
i,j∈V1,i≤j α

(k)
ij xi · xj +

∑
i∈V1

∑
j∈O1

β
(k)
ij xi · xj k = v1 + 1, . . . , v2,∑

i,j∈V2,i≤j α
(k)
ij xi · xj +

∑
i∈V2

∑
j∈O2

β
(k)
ij xi · xj k = v2 + 1, . . . , n,

where the coefficients α
(k)
i,j , β

(k)
i,j are randomly chosen from Fq.

Inversion of the Rainbow central map

Input: The central map =
(
f (v1+1), . . . , f (n)

)
, a vector x ∈ F

m
q

Output: A vector y ∈ F
n
q satisfying (y) = x.

1. Choose random values for the variables ŷ1, . . . , ŷv1 and substitute these values
into the polynomials f (v1+1), . . . , f (v2).

2. Perform Gaussian elimination on the system

f (v1+1)(ŷ1, . . . , ŷv1 , yv1+1, . . . , yn) = xv1+1

...
f (v2)(ŷ1, . . . , ŷv1 , yv1+1, . . . , yn) = xv2

to obtain the values of the variables yv1+1, . . . , yv2 , say ŷv1+1, . . . , ŷv2 .
3. Substitute the values ŷv1 , . . . , ŷv2 into the polynomials f (v2+1), . . . , f (n).
4. Perform Gaussian elimination on the system

f (v2)(ŷ1, . . . , ŷv2 , yv2+1, . . . , yn) = xv2+1

...
f (n)(ŷ1, . . . , ŷv2 , yv2+1, . . . , yn) = xn

to obtain the values of the variables yv2+1, . . . , yn, say ŷv2+1, . . . , ŷn.
5. Return y = (ŷ1, . . . , ŷn).

Fig. 7. Inversion of the Rainbow central map

Signature generation (for the EUF-CMA scheme) is done by the steps

1. Compute the hash value h ← H (H (μ) ‖salt) ∈ F
m
q , where μ is the message,

salt is a random l-bit string and H : {0, 1} → F
m
q is an hash function.

Sharing the LUOV: Threshold Post-quantum Signatures 145

2. Compute x ← S−1 · h ∈ F
m
q ,

3. Compute a preimage y ∈ F
n
q of x under the central map F .

4. Compute z ← T−1 · y ∈ F
n
q .

5. Output (z, salt).

The main work of the signing algorithm occurs in step 3 which is done using
the method described in Fig. 7. As all the components f (k) of the central map are
homogeneous polynomials of degree two, we can represent them using matrices.
Specifically, substituting the first layer of the vinegar variables ŷ1, . . . , ŷv1 into
the first o1 components of F is equivalent to computing

(ŷ1, . . . , ŷv1) ·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

α
(k)
11 . . . α

(k)
1v1

. . .
...

α
(k)
v1v1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

ŷ1

...
ŷv1

⎞

⎟
⎟
⎟
⎠

+ (ŷ1, . . . , ŷv1) ·

⎛

⎜
⎜
⎝

β
(k)
1v1+1 . . . β

(k)
1v2

...
...

β
(k)
v1v1+1 . . . β

(k)
v1v2

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎜
⎝

yv1+1

...
yv2

⎞

⎟
⎟
⎟
⎠

,

for k = v1 + 1, . . . , v2. With a similar equation occurring for the second layer,
namely,

(ŷ1, . . . , ŷv2) ·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

α
(k)
11 . . . α

(k)
1v2

. . .
...

α
(k)
v1v2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

ŷ1

...
ŷv2

⎞

⎟
⎟
⎟
⎠

+ (ŷ1, . . . , ŷv2) ·

⎛

⎜
⎜
⎝

β
(k)
1v2+1 . . . β

(k)
1n

...
...

β
(k)
v2v2+1 . . . β

(k)
v2n

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎜
⎝

yv2+1

...
yn

⎞

⎟
⎟
⎟
⎠

for k = v2+1, . . . , n. We call the 2·(n−v1) matrices in these equations A(k), B(k).
So (abusing notation a bit) we write the equations as fk = ŷ·A(k)·ŷT+ŷ·A(k)·yT.
Recall at any stage we know ŷ and we want to solve the equations for y.

It is clear that signing, given h ∈ F
m
q , is a purely algebraic operation over Fq.

Thus it can be accomplished in a threshold manner via any LSSS based MPC
protocol which evaluates arithmetic circuits over Fq, such as those mentioned
earlier. We assume that the private key already exists in secret shared form, i.e.
we have sharings 〈S−1〉, 〈T−1〉, 〈α(k)

i,j 〉 and 〈β(k)
i,j 〉.

We now look at the signing algorithm’s complexity from the point of view of
MPC evaluation. We count both the multiplicative depth, as well the number of
secure Fq multiplications needed.

146 D. Cozzo and N. P. Smart

– The first two operations of the signing algorithm come for free, as they are a
public hash calculation, followed by the linear operation 〈x〉 ← 〈S−1〉 · h.

– We then need to evaluate the map F . This executes in a number of phases.
– We generate shared values 〈y1〉, . . . , 〈yv1〉 at random.
– We then translate the first level of o2 equations fk = x(k) for k = v1 +

1, . . . , v2 into a linear system to solve for y1 = (yv1+1, . . . , yv2). Thus we
find an o1 × o1 shared matrix 〈C〉 and a vector 〈b〉 such that C · y1 = b.
To determine this system requires two rounds of communication and

M1 = o1 ·
(

v1∑

i=1

i + v1 + (v2 − v1) · v1

)

= o1 · (v1 · (v1 + 1)/2 + v1 + o1 · v1)
= o1 · (o1 · v1 + v1 · (v1 + 3)/2) = 175032

secure multiplications.
– Solving our linear system to obtain 〈y1〉 using our method from Fig. 6,

which requires three rounds of communication and M2 = o31 +o21 = 47952
secure multiplications.

– We then repeat with the second layer of the central map, which requires

M3 = o2 ·
(

v2∑

i=1

i + v2 + (n − v2) · v2

)

= o2 · (v2 · (v2 + 1)/2 + v2 + o2 · v2)
= o2 · (o2 · v2 + v2 · (v2 + 3)/2) = 335088.

secure multiplications, and another two rounds of communication.
– We now solve this new linear system to obtain 〈y2〉 using Fig. 6. Again

this requires three rounds of communication and M4 = M2 secure multi-
plications.

– We then compute 〈z〉 ← 〈T−1〉 · 〈y〉. This requires one round of communica-
tion, and due to the special form of T−1 it requires M5 = v1 ·(o1+o2)+o1 ·o2 =
6192 secure multiplications.

– Finally we need to open 〈z〉 to obtain the signature in the clear which takes
one round of communication.

In summary we require 2 + 3 + 2 + 3 + 1 + 1 = 12 rounds of communication and
M1 + M2 + M3 + M4 + M5 = 612216 secure multiplications. Note the last two
steps could be computed by opening the last o2 variables (one round), and then
computing v1 ·o1 = 2448 secure multiplications (one round), with another round
of communication to open the first v1 + o1 variables. In practice we expect the
extra round to be more costly than the extra multiplications.

If the above algorithm aborts, which can happen if the linear systems have
zero determinant, or the random matrices in the trick to solve the linear systems
also have zero determinant, then we simply repeat the signing algorithm again.
The probability of an abort is bounded by 4/q. The Rainbow specification uses

Sharing the LUOV: Threshold Post-quantum Signatures 147

q = 28, thus we expect to need to repeat the signing process with probability
about 1.5%. As mentioned in the introduction a LSSS based MPC protocol can
process at least a 250,000 secure multiplications per second over the field F28 in
the honest majority setting. Thus we expect an implementation of a threshold
version of Rainbow to take around three seconds. A major disadvantage of this
threshold variant of Rainbow is the need to store so much data in secret shared
form, namely 〈S−1〉, 〈T−1〉, 〈α(k)

i,j 〉 and 〈β(k)
i,j 〉.

6.2 LUOV

Here we present the LUOV signature scheme [3]. As we shall see this is almost
entirely made up of low depth algebraic operations, making this scheme a prefect
candidate for a threshold variant. The main non-linear component is a map
F : Fn

2r → F
m
2r with components (f1, . . . , fm) where

fk (x) =
v∑

i=1

n∑

j=1

αi,j,kxixj +
n∑

i=1

βi,kxi + γk,

with the coefficients αi,j,k, βi,k and γk being chosen from the field F2r by expand-
ing a seed which forms part of the secret key. The integers n, m and v are related
by the v = n − m. The elements in {x1, . . . , xv} are called the vinegar variables
and that the ones in {xv+1, . . . , xn} are the oil variables. Note that the poly-
nomials f1, . . . , fm contain no quadratic terms xi · xj with both xi and xj oil
variables.

The central map F has to be secret and in order to hide the structure of F
in the public key, one composes F with an affine map T : Fn

2r → F
m
2r . The public

key consisting of composition P = F ◦ T : Fn
2r → F

m
2r , and the private key being

P. At the Level-4 security level (Level-3 is not provided for LUOV) there are
two sets of parameters (r,m, v) = (8, 82, 323) and (64, 61, 302).

The LUOV signature generation

Input: The message to be signed μ, and the data C,L,Q1 and T.
Output: A signature (s, salt) on the message μ.

1. salt ← {0, 1}16·8.
2. h ← H (μ‖0x00‖salt)
3. While no solution s′ for the system (s) = h is found

(a) v ← F
v
2r .

(b) RHS‖LHS ← BuildAugmentedMatrix (C,L,Q1,T,h,v)
(c) If det(LHS) �= 0 set o ← LHS−1 · RHS.

4. s ←
(
1v −T
0 1m

)
·
(
v
o

)

5. Return (s, salt).

Fig. 8. The LUOV signature generation

148 D. Cozzo and N. P. Smart

The LUOV public and private keys are in practice expanded from a ran-
dom seed to define the actual data defining the various maps. However, for our
threshold variant we assume this expansion has already happened and we have

the following data values C ∈ F
m
2r , L ∈ F

m×n
2r , Q1 ∈ F

m×(
v(v+1)

2 +v·m)
2r , and

T ∈ F
v×m
2r , where C, L, and Q1 are public values and the matrix T is a secret

parameter. In our threshold variant the parameter T will be held in secret shared
form 〈T〉. There is another matrix Q2, but that will not concern us as it is only
related to verification. The signing algorithm is given in Fig. 8, and makes use
of an auxilary algorithm given in Fig. 9 and a hash function H : {0, 1}∗ −→ F

m
2r

The auxiliary algorithm builds a linear system LHS · o = RHS which we solve
to obtain the oil variables.

BuildAugmentedMatrix

Input: The data C,L,Q1 and T, the hashed message h ∈ F
m
2r , and an assignment

to the vinegar variables v ∈ F
v
2r .

Output: LHS‖RHS ∈ F
m×m+1
2r , the augmented matrix for (v‖o) = h.

1. RHS ← h − C − L ·
(
v
0

)

2. LHS ← L ·
(−T

1m

)

3. For k from 1 to m
(a) From Q1 build a public matrix Pk,1 ∈ F

v×v
2 (for details see the LUOV

specification).
(b) From Q1 build Pk,2 ∈ F

v×m
2 (again see the specification).

(c) RHS[k] ← RHS[k] − vT · Pk,1 · v.
(d) Fk,2 ← − Pk,1 +PT

k,1

) · T+Pk,2.
(e) LHS[k] ← LHS[k] + v · Fk,2.

4. Return LHS‖RHS

Fig. 9. BuildAugmentedMatrix

We now examine the above algorithm from the point of view of how one
could implement it in a threshold manner given a generic MPC functionality for
arithmetic circuits over F2r . We assume that the secret matrix T is presented
in secret shared form 〈T〉. First note that the hash function is only called to
compute the hash digest, which does not involve any shared input.

In the main while loop we assume the vinegar variables are generated in a
shared manner in secret shared form 〈v〉. Thus the main call to the BuiltAug-
mentedMatrix routine has two secret shared input 〈T〉 and 〈v〉, with the other
values being public. The key lines in this algorithm then requiring secure multi-
plications are lines 3c and 3e to compute 〈v〉T ·Pk,1 ·〈v〉 and 〈v〉·Fk,2 respectively.
The first of these takes v secure multiplications, whereas the latter requires v ·m

Sharing the LUOV: Threshold Post-quantum Signatures 149

secure multiplications. Giving a total of v · m · (m + 1) secure multiplications in
total, which can be performed in parallel in one round of communication.

Solving the nonlinear system in line 3c is done using the method in Fig. 6,
which requires three rounds of interaction and m3 + m2 secure multiplications.
Note the probability that this procedure fails is roughly 2−r+1, which can be
essentially ignored for the parameter set with r = 64 and is under one percent
for the parameter set with r = 8. But if it does fail, then we simply repeat the
signing algorithm with new shared vinegar variables.

We then need to compute the matrix multiplication 〈T〉 · 〈o〉. However, note
that we can save some secure multiplications by opening the oil variables o after
the matrix inversion (since they are going to be released in any case in the clear).
This will require anyway a round of interaction, but we are then able to save the
v · m secure multiplications required to multiply T by o, since that operation
then becomes a linear operation. Finally, we open the resulting shared signature
in order to transmit it in the clear. This requires one round of interaction.

Thus the overall cost of LUOV signature algorithm is 1+3+1+1 = 6 rounds
of interaction and (m3+m2)+v ·m ·(m+1) secure multiplications. Choosing the
Level-4 parameter set with (r,m, v) = (8, 82, 323) this gives a total of 2756430
secure multiplications. Whereas for the parameter set (r,m, v) = (64, 61, 302)
this gives us 1372866 secure multiplications. In the former case, where arithmetic
is over F28 and we expect to perform 250,000 secure multiplications per second,
signing will take about 10 s. In the latter case, where arithmetic is over F264

and we expect to perform 1,000,000 secure multiplications per second, signing
will take about 1.3 s. Another advantage of LUOV is that our threshold variant
requires less storage of secret key material. We only need to store 〈T〉 in secret
shared form.

It is worth mentioning that at the NIST second PQC Standardization Con-
ference a new attack has been presented [15] against LUOV. This attack crucially
exploits the existence intermediate subfields in F2r . Consequently, the authors
proposed new sets of parameters to ensure the extension degree r is prime. Our
expected run times above are likely to be similar for the new prime power finite
fields. However, the other parameters are now a little smaller, resulting in the
need for fewer secure multiplications. Thus we expect the new version of LUOV
will be more efficient as a threshold variant.

Acknowledgments. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contracts No. N66001-15-C-4070 and FA8750-19-C-0502, and by the FWO under an
Odysseus project GOH9718N. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the ERC, United States Air Force, DARPA or FWO. The authors
would like to thank Cyprien Delpech de Saint Guilhem and Dragos Rotaru for helpful
discussions whilst this work was carried out.

150 D. Cozzo and N. P. Smart

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 17

2. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp.
368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 15

3. Beullens, W., Preneel, B., Szepieniec, A., Vercauteren, F.: LUOV (2019). Submis-
sion to NIST PQC “competition” Round-2

4. Bindel, N., et al.: Lattice-based digital signature scheme qTESLA (2019). Submis-
sion to NIST PQC “competition” Round-2

5. Casanova, A., Faugère, J.C., Patarin, G.M.R.J., Perret, L., Ryckeghem, J.: GeMSS:
a great multivariate short signature (2019). Submission to NIST PQC “competi-
tion” Round-2

6. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 13

7. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993,
pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

8. Cogliati, B., et al.: Provable security of (tweakable) block ciphers based
on substitution-permutation networks. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 722–753. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96884-1 24

9. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPD Z2k : effi-
cient MPC mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 26

10. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 15

11. Damg̊ard, I., Koprowski, M.: Practical threshold RSA signatures without a trusted
dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 10

12. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

13. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

14. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow (2019).
Submission to NIST PQC “competition” Round-2

15. Ding, J., Zhang, Z., Deaton, J., Schmidt, K., Vishakha, F.: New attacks on lifted
unbalanced oil vinegar. In: The 2nd NIST PQC Standardization Conference (2019)

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96884-1_24
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/3-540-44987-6_10
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28

Sharing the LUOV: Threshold Post-quantum Signatures 151

16. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy,
pp. 980–997. IEEE Computer Society Press, May 2018

17. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp.
1179–1194. ACM Press, New York (2018)

18. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi,
A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 9

19. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 31

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, New York (2008)

21. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 20

22. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083.
USENIX Association, Berkeley (2016)

23. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 8

24. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

25. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70694-8 21

26. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

27. Hulsing, A., et al.: SPHINCS+ (2019). Submission to NIST PQC “competition”
Round-2

28. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press, New York (2007)

29. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

30. Kraitsberg, M., Lindell, Y., Osheter, V., Smart, N.P., Talibi Alaoui, Y.: Adding Dis-
tributed Decryption and Key Generation to a Ring-LWE Based CCA Encryption
Scheme. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp.
192–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4 11

31. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979

https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-47721-7_8
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/978-3-030-21548-4_11

152 D. Cozzo and N. P. Smart

32. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1 28

33. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 21

34. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: Lie, D., Mannan, M.,
Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1837–1854. ACM Press, New
York (2018)

35. Lindell, Y., Nof, A., Ranellucci, S.: Fast secure multiparty ECDSA with practi-
cal distributed key generation and applications to cryptocurrency custody. IACR
Cryptology ePrint Archive 2018, 987 (2018). https://eprint.iacr.org/2018/987

36. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

37. Lyubashevsky, V., et al.: Crystals-dilithium (2019). Submission to NIST PQC
“competition” Round-2

38. MacKenzie, P., Reiter, M.K.: Two-party generation of DSA signatures. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 137–154. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 8

39. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-45961-8 39

40. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

41. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015,
pp. 591–602. ACM Press, New York (2015)

42. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

43. Patarin, J.: The oil and vinegar signature scheme. In: Presentation at the Dagstuhl
Workshop on Cryptography (1997)

44. Prest, T., et al.: Falcon: fast-Fourier lattice-based compact signatures over NTRU
(2019). Submission to NIST PQC “competition” Round-2

45. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384,
pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-
0 11

46. Rotaru, D., Wood, T.: Marbled circuits: mixing arithmetic and boolean circuits
with active security. IACR Cryptology ePrint Archive 2019, 207 (2019). https://
eprint.iacr.org/2019/207

47. Samardjiska, S., Chen, M.S., Hulsing, A., Rijneveld, J., Schwabe, P.: MQDSS
(2019). Submission to NIST PQC “competition” Round-2

https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-319-63715-0_21
https://eprint.iacr.org/2018/987
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/3-540-44647-8_8
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/3-540-45450-0_11
https://eprint.iacr.org/2019/207
https://eprint.iacr.org/2019/207

Sharing the LUOV: Threshold Post-quantum Signatures 153

48. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

49. Smart, N.P., Wood, T.: Error detection in monotone span programs with appli-
cation to communication-efficient multi-party computation. In: Matsui, M. (ed.)
CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-12612-4 11

50. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
39–56. ACM Press, New York (2017)

51. Zaverucha, G., et al.: The picnic signature scheme (2019). Submission to NIST
PQC “competition” Round-2

https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/978-3-030-12612-4_11
https://doi.org/10.1007/978-3-030-12612-4_11

Commodity-Based 2PC for Arithmetic
Circuits

Ivan Damg̊ard, Helene Haagh, Michael Nielsen, and Claudio Orlandi(B)

Department of Computer Science, DIGIT, Aarhus University, Aarhus, Denmark
{ivan,orlandi}@cs.au.dk

Abstract. We revisit the framework of Commodity-based Cryptogra-
phy presented by Beaver (STOC’97) with a focus on updating the frame-
work to fit with modern multiparty computation (MPC) protocols. We
study the possibility of replacing the well-known preprocessing model
with a commodity-based setting, where a set of independent servers
(some of which may be corrupt) provide clients with correlated ran-
domness. From this, the clients then distill correct and secure correlated
randomness that they can use during the online phase of the MPC pro-
tocol. Beaver showed how to do OT with semi-honest security in the
commodity setting. We improve on Beaver’s result as follows: In a model
where one of two clients and a constant fraction of the servers may be
maliciously corrupted, we obtain unconditionally secure multiplication
triples and oblivious linear evaluations (OLEs) such that the amortized
communication cost of one triple/OLE is a constant number of field ele-
ments (when the field is sufficiently large). We also report on results from
an implementation of the OLE protocol. Finally, we suggest an approach
to practical realization of a commodity based system where servers need
no memory and can be accessed asynchronously by clients, but still a
maliciously corrupt client cannot get data he should not have access to.

Keywords: Secure two-party computation · Information theoretic
security · Oblivious linear evaluation · Commodity-based cryptography

1 Introduction

In commodity-based cryptography as defined in [Bea97], we have a set of clients
(typically 2) and a set of servers. The clients want to use the servers to help them
implement some cryptographic primitive in a way that is faster or more secure

Research funded by: the Concordium Blockhain Research Center, Aarhus University,
Denmark; the Carlsberg Foundation under the Semper Ardens Research Project CF18-
112 (BCM); the European Research Council (ERC) under the European Unions’s
Horizon 2020 research and innovation programme under grant agreement No. 669255
(MPPRO), No. 803096 (SPEC) and No. 731583 (SODA); the Danish Independent
Research Council under Grant-ID DFF-6108-00169 (FoCC).

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 154–177, 2019.
https://doi.org/10.1007/978-3-030-35199-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_8

Commodity-Based 2PC for Arithmetic Circuits 155

than if the clients were on their own – even if some of the servers and clients
are corrupted. The primitive we focus on here is secure function evaluation, or
primitives that are complete for this purpose, such as creation of random Beaver
triples or oblivious linear evaluations (OLEs) (see more details on these below).

While the client-server model has been used multiple times to improve per-
formances of MPC protocols (e.g. [BLW08,BCD+09,JNO14]), the commodity-
based model is significantly different. In particular, what sets the commodity-
based model apart from other client-server models are the requirements made on
the communication between servers and clients (we recall the formal definition
in AppendixB.2):

– Each server should be oblivious to the existence, identities and number of
other servers, so no communication takes place between servers.

– The interaction between client i and server j should take the form of a 2-
message protocol where the client sends a request qi,j and the server returns
a response ri,j .

– qi,j should be independent of the client’s input (apart from its length) and of
any previous communications with the servers.

The idea behind the commodity-based model is that it should be easy for a
server to set up a business where it provides resources to anyone who is willing
to pay, and on the other hand clients can decide to access as many servers as
they see fit in order to gain confidence that at least some fraction of the material
received is securely and correctly generated.

In [Bea97] it was shown how to do 2-party OT and hence 2-party secure
computation in the commodity model, assuming only passive corruption of one
client and a minority of the servers.1 Note that in [Bea97] it is also claimed that
the protocol can be modified to tolerate active corruptions, but no full protocol
description nor security proof is provided.

In this paper, we revisit the commodity-based model and improve on Beaver’s
original result in several ways.2 We present two protocols: one that produces
batches of OLEs for two clients over any field. The protocol has statistical secu-
rity against a bounded number of maliciously corrupted servers and 1 maliciously
corrupted client. This improves on Beaver’s result since: we can deal with arbi-
trary fields, the mechanism for dealing with active security is more efficient and
(crucially) proven secure and, we modify the protocol so that it allows to pro-
duce batches of OLEs at the price of tolerating fewer corruptions, thus allowing
for meaningful security-efficiency tradeoff. Our second protocol produces mul-
tiplication triples over any field for two clients with statistical security against
a bounded number of maliciously corrupted servers or 1 maliciously corrupted
client. While the security guarantees of this protocol are weaker than the first
1 This corruption bound is clearly optimal for information theoretic security: if one of

the two clients and half the servers could be corrupt, then we would immediately get
a 2-party information theoretically secure OT which is well known to be impossible.

2 In 2015, Tonicelli et al. [TND+15] proposed a protocol which they claim to be in
the commodity-based model. However, their construction assumes that the servers
are trusted, as oppose to our constructions and the original paper by Beaver.

156 I. Damg̊ard et al.

one, the protocol is more efficient and therefore it could provide an interest-
ing security-efficiency tradeoffs in some application. In AppendixA we illustrate
how our constructions fit in the bigger picture of performing secure 2-party
computation. Furthermore, we suggest an approach to practical realization of a
commodity-based system where servers can be fully stateless and can be accessed
asynchronously by clients.

Constructing Commodity-Based OLEs. Our first contribution (in Sect. 2)
is a novel protocol that produces batches of m OLEs3 over any field for two
clients with statistical security against t maliciously corrupted servers and one
client assuming that there are n = 2t + 2m + 1 servers. This protocol works
in the commitment hybrid model. We also show how to do without commit-
ments if we assume n = 2t + 2m + 3 servers. Thus, we can achieve essentially
the optimal corruption threshold by setting the batch size to be m = 1, while
if one is willing to assume a larger number of honest players it is possible to
achieve higher amortized efficiency. When the underlying field is large (of size
exponential in the security parameter), our protocol requires each server to sup-
ply just one OLE to the clients, and sending a constant number of field elements
between the clients. This means that we can set both t and m to be Θ(n) and
obtain an amortized communication cost per OLE corresponding to a constant
number of field elements while still tolerating a constant fraction of corrupted
servers. The computational work is dominated by polynomial interpolation, so
by standard FFT techniques the computational complexity for m ∈ Θ(n) OLEs
is n · polylog(n) elementary field operations.

We emphasize that the protocol between the clients and each individual
server is independent of n, t and m. Thus the clients can collect data from any
number of servers and later decide on the fly how many OLE’s they think it
will be secure to extract. Concretely, the clients may agree on number of servers
n and corruption threshold t which determine the maximum m by our main
theorem. Now, to obtain a total of M OLEs, the clients run l = M/m parallel
instances of the whole protocol, which is secure by parallel UC composition.

Although the goal of our protocol is OLE, we construct an equivalent but
randomized version, called ROLE. This randomized primitive outputs to the
clients random a, b as well as cA and cB where ab = cA + cB (see Appendix B.4).
This is sufficient for 2-party computation with good concrete efficiency: ROLE
trivially implies passively secure multiplication. But we can also use the ROLEs
to produce authenticated multiplication triples allowing us to achieve malicious
(and information theoretic) security.

In [DGN+17], it was shown that actively secure 2-party computation can be
built from actively secure OLE at an amortized price of 22 OLEs per multiplica-
tion. It was recently announced that this has been now improved to 144. Using

3 The OLE (Oblivious Linear Evaluation) primitive is defined as follows: Alice inputs
values a and b in some field F and Bob inputs x ∈ F. Alice learns nothing and Bob
learns y = ax + b.

4 Personal communication.

Commodity-Based 2PC for Arithmetic Circuits 157

our protocol, this translates to asking for 14 ROLEs from each server per secure
multiplication (Given our ROLE protocol, it is also possible to implement secure
computation for more than two parties, by having each pair of parties construct-
ing the necessary number of ROLEs with the help of the commodity servers).
The construction from [DGN+17] works by building authenticated multiplica-
tion triples from OLE. Such a triple consists of random values x, y, z with xy = z
as well as additive sharings among Alice and Bob of the three values. Moreover,
the shares are authenticated using an unconditionally secure MAC scheme to
prevent cheating.

In more details, our protocol for ROLE works as follows: the clients ask each
server for a ROLE (ai, bi, cA,i, cB,i), where Alice holds (ai, cA,i) and Bob holds
(bi, cB,i). Alice and Bob then create two polynomials A(X) and B(X) of degree
d by using some of the ai’s and bi’s. Then they jointly create two polynomials
CA(X) and CB(X) of degree 2d by using some of the cA,i’s and cB,i’s, and to get
the rest of the points they use the remaining unused ROLEs from the servers to
multiply A(X) and B(X). If every party behaved honestly, then Alice and Bob
will now hold four polynomials that satisfy the following equation:

A(x) · B(x) = CA(x) + CB(x) for all x ∈ F.

However, if one of the servers provided a bad ROLE or one of the clients behaved
inconsistently during the protocol, then some of the polynomials might not be
well defined, and hence the input/output is not be well defined either. To be
able to detect cheating, we introduce a check phase, where each client chooses
a random challenge (a random field element), where the other client must prove
that the equation holds when evaluating the polynomials on the challenge value.
The non-trivial part of our proof is to show that just one such check in each
direction is sufficient to ensure that well-defined polynomials exist for a corrupt
client (whenever the protocol does not abort). If the protocol does not abort, then
the clients can output a valid ROLE by computing A(σ) ·B(σ) = CA(σ)+CB(σ)
where σ is a predefined and unused field element. The check for dealing with
active adversaries, as well as its analysis, are the main changes we introduce to
the original protocol by Beaver, which was only proved to be passive secure.

Implementation of Commodity-Based OLEs. We experimentally validate
our OLE protocol in Sect. 3, by implementing it and testing it on Amazon Cloud.
The servers were spread over different locations (5 different continents). We give
detailed timings for different settings of parameters. As an example, when we
want to tolerate 5 corrupt servers and hence involve 13 servers in total, the
latency for generating an OLE is about 1 ms. The amortized time for one OLE
ranges from 0.02 ms to 0.5 ms when the field size in bits ranges from 32 to 2048.
Note that a growth in wall clock time when the field size grows is to be expected:
although the number of field elements to send is constant in the field size, we
need to send and process more bits when the field size is larger. These timings
are for the case where each instance of the protocol runs with m = 1, so we can
increase m and decrease t and get better amortized times. For instance, if we

158 I. Damg̊ard et al.

are willing to assume at most 1 corrupted server out of 13, one instance of the
same protocol can produce batches of 5 OLEs at the time and the amortized
times instead vary between 0.004 and 0.1 ms.

With the known reductions from multiplication triples to OLE, our perfor-
mance numbers show that we can preprocess a secure multiplication triple in
amortized time between 0.08 and 0.4 ms for a field size of 128 bits, depending
on the assumed corruption threshold. For a very rough comparison, the recent
“Overdrive” protocol [KPR18], which does the same task using only commu-
nication between the two clients, takes roughly 0.03 ms per multiplication in a
LAN setting. We emphasize that it does not make sense to compare the timings
directly because the hardware set-ups are different and the achieved types of
security are different: computational security in the “Overdrive” protocol versus
unconditional security assuming an honest server majority in our protocol. Nev-
ertheless, we believe the numbers show that our protocol is indeed applicable in
a practical setting.

Constructing Commodity-Based Multiplication Triples. As an addi-
tional contribution (in the full version [DHNO19]) we present a novel protocol
for constructing multiplication triples directly (instead of producing OLE first
and then using known reductions). For malicious (and information theoretic)
security the standard goal is to produce authenticated multiplication triples. So
it may seem natural to ask the servers for such triples and try to extract a secure
triple from what we get. However, this does not work: the authentication in a
triple involves unconditionally secure MACs and a server will of course know
the MAC keys involved in its own triples. If this server as well as, say, Alice is
corrupt, then Alice can cheat with those MACs. This problem can be solved in
a weaker corruption model where either some servers or a client can be corrupt
(but not both).

The high-level idea of the triple protocol closely follows the structure of the
OLE protocol with some variation. The clients obtain random triples authen-
ticated under different global keys from the servers, which means that the
triples cannot be combined. To solve this, we observe that the MACs are key-
homomorphic, which allows the clients to adjust the global MAC key with one
round of interaction. Once the MACs are adjusted to use the same key, the
clients can combine the triples in a similar manner as the OLE protocol.

Allowing Servers to Be Memoryless. As a final contribution, we suggest an
approach for the practical realization of a commodity based system. For the sake
of presentation, we assume in most of the paper that there are secure channels
between each pair of client and server. Also, we allow servers to remember which
clients they talked to and what was sent (so that output to different clients
can be properly correlated). Those assumptions are inconvenient in practice and
therefore, in AppendixD, we show how to get rid of both requirements. It will
clearly be an advantage if the servers do not need memory in the sense that they
do not have to remember who they talked to or what was sent. This would mean

Commodity-Based 2PC for Arithmetic Circuits 159

that a server will not have to administrate identities and log-in credentials, and
could simply generate the required data on the fly, say, against payment in some
cryptocurrency.

An obvious problem with this goal is that the data sent to two clients Alice
and Bob must be correlated and a memoryless server cannot make this happen
on its own. We solve this by letting Alice and Bob interact before talking to the
severs, in order to choose a common nonce nAB . Then Alice can send (“Alice”,
nAB) to the server who will use this and a private PRF key to generate Alice’s
data. We can do something similar for Bob. However, this is not secure: if Alice
is corrupt, she can send both (“Alice”, nAB) and (“Bob”, nAB) to each honest
server, get Bob’s data and break the protocol. We show how this can be solved
by generating the nonce such that Alice and Bob each know different secrets
relating to the nonce and hence cannot impersonate the other party towards the
server.

Alternatives to the Commodity Model. The commodity model has not
received much attention since its introduction, but a very large amount of work
has been done on secure computation in general. So we should of course ask
ourselves, if some of this work has made the model redundant. Now, if two
clients want to do secure computation, two obvious alternatives are well known
that allow the clients to do it themselves: first, one could use garbled circuits.
This will be constant round, but introduces an overhead on communication that
depends on security parameter and also grows with the size of the underlying
field (if the goal is arithmetic computation). A second alternative is to do GMW
style arithmetic computation using authenticated multiplication triples that the
clients generate themselves. If the underlying field is not too large, the triples
can be built very efficiently using OT extension [KOS16], but we get an over-
head that grows linearly with the bit-size of a field element. Another recent
approach generates OLEs from noisy encoding-style assumptions with constant
overhead [ADI+17], but only with passive security. For specific applications that
use scalar-vector multiplication with long vectors, one may consider the gener-
ation of vector-OLE5 as in [ADI+17] obtaining rate 1/3. This primitive was
recently improved to rate 1/2 using compression [BCGI18], that utilize function
secret-sharing to enable a small “sparse” vector-OLE to be locally expanded to
larger width.

Since it is clear that any solution involving only the two clients must be based
on some intractability assumption, such solutions are incomparable to the com-
modity model with respect to security: we are replacing trust in a computational
assumption by trust in some fraction of the servers. But even if we ignore this
issue, what we can do in the commodity model seems to be competitive because
our protocol has active security and the overhead of doing a secure multiplica-
tion is constant as the field size grows. We do not know any solution with these
properties that the clients could execute themselves.

5 In the width-w vector-OLE primitive, Alice inputs a, b ∈ F
w and Bob x ∈ F. Alice

learns nothing and Bob learns y = ax + b.

160 I. Damg̊ard et al.

The commodity model is somewhat related to the idea of combiners: for
instance, an Oblivious Transfer (OT) combiner [HIKN08,HKN+05] is a protocol
that gets (black-box) access to a number of OT implementations, some of which
may be faulty, and the goal is now is to build a secure OT. One may think of
the given OT implementations as corresponding to the servers in the commodity
model. However, the models are incomparable: on one hand, the combiner model
is more restrictive since its “servers” are assumed to only implement a certain
primitive. On the other hand, a combiner may make many correlated calls to
the “servers”.

2 Commodity-Based Oblivious Linear Evaluation

In this section, we present a commodity-based protocol for ROLE, which will
combine commodities in the form of ROLE’s from n servers into a secure ROLE
(see Appendix B.4 for the formal definition). We consider the setting where one
client and up to t of the servers are maliciously corrupt. The protocol is pre-
sented in the commitment-hybrid model. In AppendixC, we show as a corollary
a protocol that does not use commitments, at the expense of slightly worse
parameters. In the appendix, we furthermore discuss the concrete efficiency of
the protocol and how to deal with smaller fields.

The high-level idea of the protocol is to first obtain the ROLE commodities
from each server. The clients will use d + 1 of these to fully define two degree d
polynomials A(X) and B(X) held by each party respectively and define points on
two degree 2d polynomials C1(X) and C2(X), which shall form a secret sharing
of A(X) · B(X). The clients will use the remaining ROLEs to securely compute
A(X) · B(X) on agreed upon points until we have obtained enough points to
fully define C1(X) and C2(X). After constructing these polynomials, the clients
perform a check that with high probability reveals whether the polynomials are
valid, that is the equation A(γ) · B(γ) = C1(γ) + C2(γ) holds for all γ ∈ F.
The resulting ROLEs of the protocol will be defined by a fixed set of points
σ1, ..., σm ∈ F on these polynomials:

u = (A(σ1), ..., A(σm)) v = (B(σ1), ..., B(σm))
w1 = (C1(σ1), ..., C1(σm)) w2 = (C2(σ1), ..., C2(σm))

Here, one client will output u,w1 ∈ F
m and the other v,w2 ∈ F

m such that
u ∗ v = w1 + w2. The complete protocol πrole is presented in Protocol 1.

Theorem 1. Assume that n = 2t + 2m + 1 and that |F| is exponential in the
security parameter. Then protocol πm

role is an implementation of Fm
role in the

Fcommit-hybrid model with statistical UC-security. The protocol tolerates a static
adversary corrupting one client and at most t ≤ n−2m−1

2 servers. The simulation
is perfect unless an error event occurs, which has probability at most n

|F|−(n+m) .

Commodity-Based 2PC for Arithmetic Circuits 161

Protocol πm
role

Public: Let d = t + m and n = 2d + 1 and let U = {γ1, . . . , γn}, V = {σ1, ..., σm}
be sets of publicly known distinct points in F. Let {S1, . . . , Sn} be the servers and
{Alice, Bob} the clients.
Output: Alice gets u,w1 ∈ F

m and Bob get v,w2 ∈ F
m such that u ∗ v =

w1 + w2.
Protocol:
Stateless oblivious RPC:

1. Alice and Bob: send a request to each server Si for i ∈ [n];
2. Server Si for i ∈ [n]:

– creates a ROLE (ai, bi, c1,i, c2,i)
$←F

4 such that ai · bi = c1,i + c2,i;
– sends (ai, c1,i) to Alice and sends (bi, c2,i) to Bob;

Computation phase:

3. Alice:
– interpolates polynomial A of degree d by setting A(γi) = ai for i ∈ [d+1];
– prepares polynomial C1 of degree 2d by setting C1(γi) = c1,i for i ∈ [d+1];

4. Bob:
– interpolates polynomial B of degree d by setting B(γi) = bi for i ∈ [d+1];
– prepares polynomial C2 of degree 2d by setting C2(γi) = c2,i for i ∈ [d+1];

5. For i = d + 2, . . . , n
a. Alice: sends ki = A(γi) − ai to Bob;
b. Bob:

• sends �i = B(γi) − bi to Alice;
• sets C2(γi) = c2,i + B(γi) · ki;

c. Alice: sets C1(γi) = c1,i + A(γi) · �i − ki · �i;
6. Alice: interpolates polynomial C1 by the 2d + 1 defined points;
7. Bob: interpolates polynomial C2 by the 2d + 1 defined points;

Check phase:

8. Alice: draw tA
$←F\(U ∪ V) uniformly at random and send tA to Bob;

9. Bob:
– draw tB

$←F\(U ∪ V) uniformly at random;
– Execute commit(B(tA), C2(tA)) and send tB to Alice;

10. Alice: once commitment has been done, send (A(tB), C1(tB)) to Bob;
11. Bob:

– check if A(tB) · B(tB) = C1(tB) + C2(tB) and abort if not;
– execute open(B(tA), C2(tA));

12. Alice:
– receive (B(tA), C2(tA)) from the opening of the commitment, abort if

nothing is received;
– check if A(tA) · B(tA) = C1(tA) + C2(tA) and abort if not;

Output phase:

13. Alice: output u = (A(σ1), ..., A(σm)) and w1 = (C1(σ1), ..., C1(σm));
14. Bob: output v = (B(σ1), ..., B(σm)) and w2 = (C2(σ1), ..., C2(σm)).

Protocol 1: Protocol for commodity-based ROLE

162 I. Damg̊ard et al.

Proof. The environment corrupts one client and a subset of the servers C ⊂ [n]
with |C| ≤ t. Thus, the environment learns at most t points on all polynomials,
and one extra from the check phase. After seeing these points, the environment
still cannot distinguish whether it is interacting with the ideal world or the real
world – that is, the output of the computation (which is m extra points on
the polynomial) is compatible with the points that it already received from the
simulator (which does not learn the output of the honest party). In other words,
a necessary condition for being able to prove unconditional security is to set the
degree to d = t + m (since a random such polynomial has t + m + 1 random
coefficients). The protocol uses 2d + 1 ROLEs in total and thus we need the
number of servers to be at least n ≥ 2d + 1 = 2t + 2m + 1. In other words, we
have that t ≤ n−2m−1

2 .
The protocol is essentially symmetric, i.e. the only difference is that in the

proof for corrupt Bob we need to exploit that Bob has to commit to his answer to
Alice’s challenge before he sees A(tB), and hence a corrupt Bob also knows only
t points of Alice’s polynomial. Thus, in the following we prove security against
corrupt Alice.

Let C ⊂ [n] denote the set of corrupt servers and H ⊆ [n] the set of honest
servers. For these sets it hold that |C| ≤ t, C ∪ H = [n], and C ∩ H = 0. Note
that the servers play two different roles in the protocol: the first d + 1 servers
are used to define the polynomials A(x) and B(x), and the last n−d− 1 servers
are used to compute the remaining points on C1(x) and C2(x).

We start by presenting some facts about the protocol.

Definition 1. For an honest server i ∈ H, Alice gets ai from the server and
(if i ≥ d + 2) sends a value ki to Bob. Note that if Alice follows the protocol,
then the values {ai}i∈H,i≤d+1 and {ki + ai}i∈H,i≥d+2 are all consistent with a
polynomial of degree at most d (namely A(x) if Alice was honest). We say that
Alice behaves consistently if such a polynomial A∗(x) of degree at most d exists.

Lemma 1. If Alice is corrupt, but behaves consistently, then from her interac-
tion with honest servers and Bob, one can compute a uniquely defined view for
Alice and all corrupt servers that is consistent with them having followed the
protocol up to (but not including) the check phase. This includes polynomials
A∗(x), C∗

1 (x) of degree at most d and 2d respectively, where if Alice is honest we
have A∗(x) = A(x) and C∗

1 (x) = C1(x).

Proof. Since Alice behaves consistently this uniquely defines a polynomial A∗(x)
of degree at most d, by the above definition. Now we define a view (ai, bi, c1,i, c2,i)
for each corrupt server i ∈ C: The server sent bi, c2,i to honest Bob, so these are
fixed. Then if 1 ≤ i ≤ d + 1, there is no interaction between Alice and Bob so
we set ai = A∗(γi) and c1,i = aibi − c2−i. If d + 2 ≤ i ≤ n, Alice sent ki and
received �i from Bob. So we set ai = A∗(γi) − ki, and c1,i = aibi − c2−i. This
gives a view for each corrupt server which is consistent with A∗(x) and honest
behaviour. Each honest server i, has sent ai, c1,i to Alice and (if i ≥ d + 2) she
has received a value �i from Bob and has sent ki to Bob.

Commodity-Based 2PC for Arithmetic Circuits 163

In particular, c1,i is now defined for all i and ki, �i are defined for i ≥ d + 2.
Therefore we can define the polynomial C∗

1 (x) by simply following the speci-
fication of the protocol, namely we set C∗

1 (γi) = c1,i for 1 ≤ i ≤ d + 1 and
otherwise C∗

1 (γi) = c1,i + A∗(γi)�i − ki�i, and finally we interpolate C∗
1 (x) from

these values.
�
Lemma 2. If Alice is corrupt and does not behave consistently, then the protocol
aborts in the check phase except with probability at most n

|F|−(m+n) .

Proof. Consider the values Q = {ai}i∈H,i≤d+1 ∪ {ki + ai}i∈H,i≥d+2 (see
Definition 1). Since Alice does not behave consistently these values are not all
consistent with a polynomial of degree at most d. We nevertheless define a poly-
nomial A′(x) by interpolating from the first d + 1 values in Q.6 For all the
remaining values in Q, we define δi by

ki + ai = A′(γi) + δi.

Note that, by assumption, there exists an index j ∈ H and j > d + 2 such
that δj �= 0. To simplify the notation, let H1 be the first d + 1 indexes of the
honest servers, i.e. those used for defining polynomial A′(x), and let H2 be the
remaining honest servers.

On the other hand, for the corrupt servers, one can always fix a view that is
consistent with A′(x) and with the interaction with (honest) Bob, exactly as in
the proof of the previous lemma. Thus we assume (for notational convenience)
that ai for i ∈ C is defined this way such that A′(γi) = ai.

Now, from the communication in the computation phase, for each index i
the outcome for Alice and Bob consists of two field elements C1(γi) and C2(γi)
(of course, corrupt Alice does not necessarily store the C1(γi)’s, all we mean to
say is that they can be computed from the adversary’s view). Now, from our
definition of A′(x) and δi and the protocol specification, it is easy to see that
C1(γi) + C2(γi) = A′(γi)B(γi) if i ∈ C ∪ H1, and otherwise C1(γi) + C2(γi) =
(A′(γi)+δi)B(γi) = A′(γi)B(γi)+δiB(γi) if i ∈ H2. For notational convenience,
we will define δi = 0 for i ∈ C ∪ H1, so we have

C1(γi) + C2(γi) = A′(γi)B(γi) + δiB(γi) for i ∈ [n]

We can now interpolate polynomials of degree at most 2d from the C1(γi)’s,
the C2(γi)’s and the C1(γi) + C2(γi) = A′(γi)B(γi) + δiB(γi)-values. Because
interpolation is linear, this results in polynomials C1(x), C2(x) such that

C1(x) + C2(x) = A′(x)B(x) + Δ(x), where Δ(γi) = B(γi)δi for i ∈ [n].

6 The choice to interpolate from the first d + 1 values is completely arbitrary, the
following argument will work no matter the choice of subset.

164 I. Damg̊ard et al.

In the test phase, Bob sends a point tB and Alice returns two field elements,
that are “supposed to be” A′(tB) and C1(tB). We can always write what she
actually sends as α + A′(tB) and β + C1(tB), for some α, β that the adversary
can compute. Bob will check the equation

(β + C1(tB)) + C2(tB) = (α + A′(tB))B(tB)

which easily simplifies to β + Δ(tB) = αB(tB).
So what we need to argue is that the adversary can guess α, β satisfying

this equation with only negligible probability. This will turn out to be because
he does not have sufficient information about the polynomial B(x). Note that
the adversary has seen t values of B(x) from Bob’s interaction with the corrupt
servers (B(tA) has been committed to but is not revealed yet). Since the degree
is d = t + m and m ≥ 1, the adversary is at least 2 points short of being able to
determine B(x). We can therefore assume that the values B(tB) and B(γj) are
independent and uniform in the view of the adversary, namely γj is the index
of an honest server and tB is chosen such that it is never the index of a corrupt
server. To emphasize that the values are unknown, we will write X = B(tB) and
Y = B(γj).

We can imagine giving the adversary extra points so he knows exactly d − 1
points on B(x), this can only help him. Therefore, using the formulas of interpo-
lation, the adversary can write any value of B(x) as an affine linear combination
of X and Y with known coefficients. In particular, this means there exist field
elements ωi, ηi, σi such that Δ(γi) = B(γi)δi = ωiX + ηiY +σi. From the values
ω1, ..., ωn we can interpolate exactly one polynomial of degree at most 2d, which
we call F (x). Likewise we interpolate G(x) from the ηi’s and H(x) from the σi’s.
This immediately implies that

Δ(x) = F (x)X + G(x)Y + H(x)

The meaning of this equation is that the polynomials F (x), G(x) and H(x) are
fixed in the sense that they do not depend on the choice of B(x) (and hence of
X,Y). So in the adversary’s view, the polynomial Δ(x) depends linearly on the
two (random) values X,Y as described by the equation.

Note that for i = j, we have δjB(γj) = δjY = ωjX + ηjY + σj which can
only be true for random X and Y if ωj = σj = 0 and ηj = δj �= 0. So this implies
that G(x) is not the 0-polynomial. Hence the above equation that the adversary
must try to satisfy becomes:

β + F (tB)X + G(tB)Y + H(tB) = αX

Which can be rewritten as (F (tB) − α)X + G(tB)Y + β + H(tB) = 0.
Note that we can think of the experiment done as follows: first we choose tB

at random from a set of size |F| − (m + n), then the adversary chooses α, β and
then we choose X,Y independently and uniformly at random in F. It is then

Commodity-Based 2PC for Arithmetic Circuits 165

clear that if (F (tB) − α) �= 0 then the left-hand side is uniformly random and
so is 0 with probability 1/|F|. On the other hand, if (F (tB) − α) = 0, we can
use the fact that G(x) is non-zero and has degree at most 2d to conclude that
G(tB) = 0 with probability at most 2d/(|F| − (m + n)). But if G(tB) �= 0, then
again the left-hand side is uniformly random and is 0 with probability 1/|F|. We
conclude that the equation is satisfied with probability at most

2d

|F| − (m + n)
+

1
|F| ≤ n

|F| − (m + n)

�
Having proved the lemmas, we present a simulator SA (see Simulator 1) which

provides statistically indistinguishable simulation of the protocol πrole against
a malicious adversary that corrupts Alice and t servers. The simulator basically
runs its own instance of the protocol with corrupt Alice and servers, playing
honestly for Bob and the honest servers. There is, however, an important differ-
ence: During the check phase, the simulator aborts under a different condition
than in the real protocol: While an honest Bob in the real protocol aborts only
if the values sent by Alice do not satisfy the right relation with the polynomials
held by Bob, the simulator will also abort if Alice does not behave consistently.
Now, there two cases to consider:

1. Alice behaves consistently: in this case, the simulator follows the protocol until
the end, so it is clear that simulation of the adversary’s view of the protocol
is perfect. Furthermore, it follows by Lemma 1 that the simulator extracts the
only possible candidate for Alice’s output shares, given the interaction with
honest players, so what it sends to the functionality is correct. Hence the only
difference between the real and the ideal process is that in the real process,
Bob’s output is extracted from his view of the protocol, whereas in the ideal
process it is chosen by the functionality (but consistently with Alice’s shares).
This makes no difference: Alice has seen t + 1 points on the polynomial B(x)
and since the degree is d = t + m this leaves m degrees of freedom which
means that the values B(σ1), ..., B(σm) are random and independent of the
adversary/environment’s view of the protocol. So in this case, the real and
ideal process are perfectly indistinguishable.

2. Alice does not behave consistently: in this case the ideal process always aborts,
but by Lemma 2 the real process does the same, except with negligible prob-
ability. Thus in this case, the processes are statistically indistinguishable.
�

166 I. Damg̊ard et al.

Simulator 1: Simulator SA against corrupt Alice
The simulator starts by initializing copies of the code for the honest servers, for
honest Bob, and for Fcommit. Then the simulation proceeds as follows:

Stateless oblivious RPC and Computation phase:
1. Let the simulator’s copies of the honest servers and Bob interact with corrupt

Alice and the corrupt servers (which are controlled by the environment).
2. When the computation phase is done, check whether Alice has acted consis-

tently (see Definition 1).
3. If Alice has not acted consistently, set a flag will-abort = true. Else (Alice

has acted consistently), do as follows:
(a) Compute polynomials A∗(x), C∗

1 (x) as guaranteed by Lemma 1.
(b) Compute û = (A∗(σ1), ..., A

∗(σm)). ŵ1 = (C∗
1 (σ1), ..., C

∗
1 (σm)).

Send (corrupt, A, (û, ŵ1)) to the ideal functionality Fm
role;

Check phase:

1. Let the simulator’s copies of Bob and Fcommit do the check phase with corrupt
Alice. If the test done by Bob fails, set the flag will-abort = true.

Output phase:

1. If will-abort = true, abort the protocol.
Else, send (deliver, A) and (deliver, B) to the ideal functionality Fm

role.

3 Implementation

We implement and measure timings for the commodity-based OLE protocol.7

The two clients Alice and Bob are set up on a basic LAN and will connect to some
number of servers around the world. Since the experiments are identical up to
the output for different tradeoff choices of t and m, we implement the setting of
generating one OLE m = 1 with maximum adversarial threshold t ≤ n−3

2 .

Instantiations. We use a basic OpenSSL (version 1.1.0) setup to implement
a public key infrastructure for the clients to authenticate servers. Our setting
consists of a single root certificate authority, trusted by each client, and who have
signed certificates to each server. This setup is easily used in the real world, as
two clients can simply agree on some domain name and rely on root certificates
already included in the system to do hostname validation.

All finite fields are implemented using GNU Multiple Precision Arithmetic
Library and when testing a b-bit prime field, we refer to Zp for the largest p < 2b.
We instantiate the hash function H as SHA256. For sampling random numbers,
we construct a PRG by using the AES instruction set in counter mode. This
PRG takes a seed s of arbitrary length and set the AES key to be the 128 first
bits of H(s). To generate a random field element from Zp, we sample b = log2 p�
random bits from the PRG repeatedly until it represents a valid element.

7 The sources used for the benchmark implementation are available at [source hidden

for anonymity].

Commodity-Based 2PC for Arithmetic Circuits 167

We fix the polynomial evaluation points γ1, . . . , γn to be 1, . . . , n, and set the
extraction point σ1 = 0. We use the following preprocessed variant of Lagrange
interpolation to fast8 evaluate f(x) where f is a degree d polynomial represented
by d + 1 points y1, . . . , yn and yi = f(i). First preprocess δij = (i − j)−1 and
λij = j · δij for i, j ∈ [d + 1], and then compute the point f(x) as:

f(x) =
d+1∑

i=1

yi

d+1∏

j=1
j �=i

xδij − λij

Set-Up and Results. The two clients are tested on a basic LAN setup con-
sisting of two identical machines each with a i7-3770K CPU running at 3.5 GHz,
32 GB of RAM and connected via 1 GbE with a 0.15 ms delay. The servers are set
up on Amazon Cloud using m4.large instances with 2 vCPUs and are spread
across five continents namely North America (N. Virginia), South America (São
Paulo), Europe (Ireland), Asia (Mumbai) and Australia (Sydney). The Internet
connection for all servers and clients was measured to vary between 200–500
Mbps up and down at the time of testing.

We test the protocol with different field sizes ranging from 32 to 2048 bit
and tolerating up to 1, 5 or 10 malicious servers colluding with one malicious
client. This implies the number of servers used in each setting being 5, 13 and 23
respectively. Both clients run a producer-consumer program where the producer
is connected to all servers and produce batches of shares from each server to be
used for the protocol. The consumer is connected to the other client and con-
sumes a batch by running the protocol in parallel for each OLE to be corrected.
All measurements are done as an average over 30 s.

First we measure sequential timings for protocol, namely how long time a
single consumer (thread) takes to compute a corrected ROLE given the raw
material. We test this in two versions, one where the clients are only interested
in a single ROLE and another where they want a batch of 1000. The first version
(Table 1) may be interesting in a real-world application where clients wants a
single OLE, and serves well as a baseline for OLE protocol comparison. The
second version (Table 2) on the contrary shows what to expect, if our protocol is
to be used in a subsequent protocol requiring 1000 OLEs. Here, one would expect
a batch of 1000 to take 1000 times as long – however the numbers show that
this vary between roughly 200 to 900 depending on the field size and number of
servers, which is partly due to less network delay. Finally, amortized timings for
the protocol are measured (Table 3). These timings show how many ROLEs we
can generate per second. We simply let the machines generate as many ROLEs
as possible by turning up the number of consumers. Note that our tests was done
on a university network and on shared cloud nodes, which meant inconsistency in
available resources. This, together with different parameter choices to maximize
parallelization (number of threads and batch size), means that we can expect to
8 Fast in practice for low-degree polynomials, but theoretically inferior to the Fast

Fourier Transform.

168 I. Damg̊ard et al.

see jumps in the amortized table, for example for 23 servers and b = 256 and
b = 512.

Table 1. Sequential timings for one
OLE

n = 5 n = 13 n = 23

t = 1 t = 5 t = 10

b = 32 0.301ms 0.460ms 0.930ms

b = 64 0.317ms 0.465ms 1.162ms

b = 128 0.333ms 0.803ms 1.294ms

b = 256 0.980ms 1.388ms 2.311ms

b = 512 1.372ms 1.891ms 3.301ms

b = 1024 1.491ms 2.625ms 5.228ms

b = 2048 1.856ms 4.252ms 9.311ms

Table 2. Sequential timings for batch of 1000
OLEs

n = 5 n = 13 n = 23

t = 1 t = 5 t = 10

b = 32 13.450ms 86.103ms 370.984ms

b = 64 13.356ms 136.978ms 405.691ms

b = 128 15.334ms 171.623ms 468.540ms

b = 256 24.716ms 317.403ms 829.741ms

b = 512 51.997ms 410.123ms 1792.491ms

b = 1024 151.008ms 858.411ms 2820.248ms

b = 2048 371.269ms 2188.804ms 7970.499ms

Using the tradeoff, one can increase m and decrease t to get a protocol with
same sequential running time, but with higher throughput i.e. lower amortized
timings. For example, the second column for the amortized timings represent
n = 13, t = 5 and m = 1 – but we can get a five time increase in throughput
by running the protocol with n = 13, t = 1 and m = 5. Likewise, for the case of
m = 2, one can decrease t by one to obtain a column with half the amortized
timings.

Table 3. Amortized timing for generating one OLE

n = 5 n = 13 n = 23

t = 1 t = 5 t = 10

b = 32 3.570µs 23.657µs 89.055µs

b = 64 5.801µs 23.362µs 105.628µs

b = 128 16.867µs 28.201µs 106.868µs

b = 256 33.101µs 56.197µs 191.985µs

b = 512 69.297µs 115.180µs 2160.664µs

b = 1024 118.353µs 230.487µs 4938.348µs

b = 2048 249.018µs 516.934µs 7709.943µs

In the case of 128-bit fields, existing protocols providing computational secu-
rity like the “Overdrive” LowGear protocol [KPR18] achieve a secure 128-bit
multiplication in roughly 0.03 ms. To compare our protocol roughly, one can set

Commodity-Based 2PC for Arithmetic Circuits 169

n = 13 and assume a 14 times overhead by using the optimized9 TinyOLE vari-
ant, we can compute roughly a secure multiplication between 0.4 and 0.08 ms
with a choice of (t = 5,m = 1) and (t = 1,m = 5) respectively. We stress
the difference between the models used by us and “Overdrive”: ours provide
unconditional security (assuming ≤ t malicious servers colluding) rather than
computational security - and we believe these numbers show that our protocol
is indeed applicable in a practical setting.

A Our Constructions in the Big Picture

In this section we present a graphical overview of how our constructions fits in
the bigger picture of performing secure 2-party computation (Fig. 1).

Fig. 1. An overview of how our constructions (the blue boxes with dashed lines) fits
in the bigger picture of performing secure 2-party computation. (Color figure online)

Construction 1: Commodity-Based OLEs. We construct commodity-based
OLEs in the commitment-hybrid model with active, statistical security and in
the standard model with active, information theoretic security (with slightly
worse parameter). In this construction we allow a corrupt client to collude with
a minority of the servers. Using the result from [DGN+17], we can use the
commodity-based OLEs to construct authenticated multiplication triples, which
are complete for multiparty computation.

Construction 2: Commodity-Based Multiplication Triples. We con-
struct commodity-based authenticated multiplication triples in the standard
model with active, information theoretic security. This construction has a slightly
weaker corruption model: we do not allow collusion between clients and servers.
Thus, the adversary can corrupt either one client or a minority of the servers.
9 Which requires 14 OLEs to produce a secure multiplication, by personal communi-

cation.

170 I. Damg̊ard et al.

B Preliminaries

Let [n] be the set of integers {1, . . . , n}. Denote a field of size q as Fq and the
set of all polynomials over such field as Fq[X]. All variables and operations
are over Fq unless stated otherwise. v denotes a vector with entries in Fq, the
entries are usually denoted v1, v2... If u,v are vectors of the same length, say m,
then v ∗ u denotes the vector containing the coordinate-wise products, v ∗ u =
(v1u1, v2u2, ..., vmum). As a shorthand, we denote F to be a field of arbitrary
size.

B.1 Security Model

We will use the UC framework of Canetti [Can01] to prove our protocols secure.
Informally, we compare a real protocol π between the parties to a setting in
which the parties only talk with an ideal functionality F , which by definition
is secure. To model the information the adversary learns during the protocol
execution, each ideal functionality is given a leakage port on which it leaks
all the information the adversary is allowed to learn. Furthermore, to model
the adversary’s influence over the protocol and the corrupt players, each ideal
functionality is given a influence port on which it can receive messages from the
adversary. To prove the real protocol secure, we construct a simulator S such
that no adversary controlling all malicious players can make an environment
distinguish between the real protocol execution and the simulator’s transcript.
Intuitively, the adversary gains nothing from controlling the malicious players,
that he could not have simulated himself offline. In particular we use the variant
in which the environment plays the role of the adversary and will prove our
protocols secure under static corruption for malicious adversaries.

B.2 Commodity Model

Commodity-based cryptography works in a client-server model, where a group
of clients obtain some information (called commodities) from a set of servers. In
the basic setting, the clients will send a request to a server, who will reply with
a single response computed from the request, whereas other settings may extend
this to multiple rounds.

Following the work of Beaver, we define a two-tiered (c, n)-protocol π = (C,S)
as a collection of c + n probabilistic interactive Turing machines (PTM), which
are divided into two groups: the clients C and the servers S. The clients must be
polynomial time PTM’s and are assigned a unique id i ∈ [c], and the servers are
likewise assigned a unique id j ∈ [n]. We consider the basic form of two clients
c = 2 and a variable number of servers n, with the servers being polynomial
time PTM’s. Other settings, which we shall not consider, may include a variable
number of clients, computationally unbounded servers, multiple rounds between
clients and servers or even allowing communication between servers.

Commodity-Based 2PC for Arithmetic Circuits 171

Definition 2 (Stateless Oblivious RPC, [Bea97]). Given a two-pass protocol
between client Ci ∈ C and server Sj ∈ S, where the Ci sends a request qi,j to the
Sj, who send back the response ri,j. This protocol is called a stateless oblivious
remote procedure call (RPC) if qi,j is independent of Ci’s input xi (apart from
the length) and of any previous communications with Sj or any other servers
(apart from including tags for identifying and authenticating Ci and Sj).

Definition 3 (Commodity-based Protocol, [Bea97]). A two-tiered protocol
π is commodity-based if

1. No communication between servers is necessary.
2. Servers do not need to know the identities, numbers of, or existence of other

servers.
3. For each client Ci ∈ C and server Sj ∈ S, Ci interacts with Sj only through

stateless oblivious RPC’s.

B.3 Commitments

Some of our protocol make use of a UC-secure commitment scheme, which is
modelled by an ideal functionality Fcommit. Committing to a value x is denoted
commit(x) and means that the committer sends x to the commit functionality
which notifies the other party that the commitment has been made. Opening
is denoted open(x) and means the committer sends an open command to the
functionality which then sends x to the other party. In a practical implemen-
tation, Fcommit can be implemented using a random oracle (it is well known,
and trivial to prove, that applying a random oracle to the string to commit to,
concatenated by random coins, gives a UC-secure commitment scheme).

B.4 Oblivious Linear Evaluation

An oblivious linear evaluation (OLE) over the finite field F is a primitive in which
Alice inputs a, b ∈ F and Bob inputs x ∈ F. Alice learns nothing and Bob learns
y = ax + b. This primitive can be seen as a natural generalization of Oblivious
Transfer (OT) [Rab05] for the case F = F2 or as a special case of Oblivious
Polynomial Evaluation (OPE) [NP99] for the case of degree 1 polynomials. The
ideal UC-functionality Fm

ole is defined in Fig. 2. It implements m OLEs in parallel.
A variant called random oblivious linear evaluation (ROLE) is a similar prim-

itive, but where Alice receives random values u,w1
$←F and Bob v, w2

$←F such
that uv = w1+w2. The ideal UC-functionality Fm

role is defined in Fig. 3. We show
that a random oblivious linear evaluation (ROLE) is equivalent to an oblivious
linear evaluation (OLE) in the same way oblivious transfer is shown to be equal
to a random oblivious transfer. We define a protocol πm

ole that realizes Fm
ole with

access to Fm
role. This protocol (which is folklore) is formally given in Fig. 4 and

can be proven secure as stated in the following:

Lemma 3. The protocol πm
ole UC-realizes Fm

ole in the Fm
role-hybrid model.

172 I. Damg̊ard et al.

Correctness of the protocol can be trivially checked. Security can be proven
similarly to other protocols in the correlated randomness model [IKM+13]: if
Bob is corrupted, the simulator emulates the ROLE by picking random v,w2,
extracts x from e and v and feeds it to the ideal functionality to receive y.
Finally the simulator chooses a random s and computes d = v−1 ∗ (y − w2 −
s), thus producing a view which is distributed identically as in the real world.
Here, v−1 means the vector with entries v−1

1 , v−1
2 , ... In the case where Alice is

corrupted, the simulator emulates the ROLE by picking random u,w1 and sends

Functionality m
ole

1. Upon receiving message (inputA, a, b) from Alice with a, b ∈ F
m: if there al-

ready is a stored tuple from Alice, then ignore the message. Otherwise, store a
and b and send message (inputA) on leakage port.

2. Upon receiving message (inputB,x) from Bob with x ∈ F
m: if there already is

a stored tuple from Bob, then ignore the message. Otherwise, store x and send
message (inputB) on leakage port.

3. Upon receiving message (deliver, A) on influence port: if a, b and x have been
stored, then send (delivered) to Alice. Otherwise, ignore the message.

4. Upon receiving message (deliver, B) on influence port: if a, b and x have been
stored, then set y = a ∗ x+ b and send (output,y) to Bob. Otherwise, ignore
the message.

Fig. 2. Ideal functionality Fm
ole for Oblivious Linear Evaluation (OLE).

Functionality m
role

1. Upon receiving message (init) from both Alice and Bob, store init = true
and send message (init) on leakage port.

2. Upon receiving message (corrupt, A, (u,w1)) on influence port with u,w1 ∈
F
m: if no values for u,w1 have been stored, draw and store uniformly random

v ∈ F
m and compute and store w2 := u ∗ v − w1.

3. Upon receiving message (corrupt, B, (v,w2)) on influence port with v,w2 ∈
F
m: if no values for v,w2 have been stored, draw and store uniformly random

u ∈ F
m and compute and store w1 := u ∗ v − w2.

4. Upon receiving message (deliver, A) on influence port, if init = true: if no
values for u,v,w1 and w2 have been stored, draw and store uniformly random
u,v,w1 ∈ F

m and compute and store w2 := u∗v−w1. Send (output, (u,w1))
to Alice.

5. Upon receiving message (deliver, B) on influence port, if init = true: if no
values for u,v,w1 and w2 have been stored, draw and store uniformly random
u,v,w1 ∈ F

m and compute and store w2 := u∗v−w1. Send (output, (v,w2))
to Bob.

Fig. 3. Ideal functionality Fm
role for Random Oblivious Linear Evaluation (ROLE).

It chooses random outputs for the parties, but lets a corrupt party choose his own
outputs.

Commodity-Based 2PC for Arithmetic Circuits 173

a random e. Then, upon receiving d and s the simulator extracts a = d+u and
b = s − w1 − a ∗ e and feeds them to the ideal functionality.

Protocol πm
ole

Input: Alice inputs a, b ∈ F
m and Bob inputs x ∈ F

m

Output: Bob outputs y such that y = a ∗ x+ b

Protocol:
1. Both run m

role such that Alice gets u,w1 and Bob v,w2

2. Bob computes and sends e = x − v;
3. Alice computes and sends d = a − u and s = w1 + a ∗ e+ b;
4. Bob returns y = w2 + x ∗ d − d ∗ e+ s.

Fig. 4. Protocol for OLE in the Fm
role-hybrid model.

C More Details on Commodity-Based OLE

Concrete Efficiency. We remark on the overall communication of the OLE
protocol: For a single OLE instance, the oblivious RPC’s consist of one tuple F

2

sent from each server to each client totaling 4n log2 |F| bits. In the computation
phase, both parties send to each other one field element for each evaluation
point from d + 2, . . . , n, which totals 2(n − (t + m + 2) + 1) field elements as
d = t+m. In the check phase, each party sends 3 field elements to the other, and
in addition we send a commitment (and its decommitting information). Let κ
be the security parameter (e.g., if SHA256 is used for the commitment κ = 256).
Then, the overall communication complexity (including the communication from
the servers to the clients, and the communication between the two clients) for
generating m OLEs using n servers tolerating up to t corruptions boils down to

2(3n − t − m + 2) log2 |F| + 2κ.

Doing Without Commitments. The only reason we use a commitment is
that if Bob would immediately send B(tA) to Alice, the proof of Lemma 2 would
break down because Alice would now know t+1 and not t points on B(x), at the
time where she has to answer Bob’s challenge. Therefore, in the view of Alice,
there is only 1 degree of freedom for B(x) instead of 2, as we need in the proof.
We can even show that there is an attack on the protocol in this case.

However, this is easy to fix, we just set the degree of polynomials A(x), B(x)
to be d = t + m + 1 instead of t + m, and change the protocol such that in the
Check Phase, Bob sends B(tA), C2(tA) in the clear along with tB . Alice can now
do her check immediately and return her answer A(tB), C1(tB) to Bob. We can
prove the equivalent of Lemma 2 for the modified protocol using the same proof:
even if Alice now learns B(tA) before she has to answer she is still at least 2

174 I. Damg̊ard et al.

points short of being able to determine B(x), and this is the crucial property
that makes the proof go through. The simulation for the modified protocol and
the proof that it works is the same as before. The price we pay for this is that
we need n = 2d + 1 = 2t + 2m + 3, so we need 2 servers more than before. In
summary, we have

Corollary 1. Assume that n = 2t + 2m + 3 and that |F| is exponential in the
security parameter. Then protocol πm

role is an implementation of Fm
role with sta-

tistical UC-security. The protocol tolerates a static adversary corrupting one
client and at most t ≤ n−2m−3

2 servers. The simulation is perfect unless an
error event occurs, which has probability at most n

|F|−(n+m) .

Smaller Fields. The protocol can be modified to work even with small fields
where |F| is not exponentially large in the security parameter: the argument that
the check phase makes a mistake with probability a most n/(|F|−(m+n)) holds
for any field. In particular, we will get at most constant error probability p as
long as |F| > n/p + m + n. Then we can get negligible error probability if we
repeat the check phase κ times where κ is the security parameter. This will give
error probability at most pκ.

D Allowing Servers to Be Memoryless

We now look at practical aspect of the commodity model. As mentioned in the
introduction, it will clearly be an advantage if the servers in our model do not
need memory in the sense that they do not have to remember who they talked to
or what was sent. This would mean that a server will not have to administrate
identities and log-in credentials, and could simply generate the required data on
the fly, say, against payment in some cryptocurrency. An obvious problem with
this goal is that the data sent to two clients Alice and Bob must be correlated
and a memoryless server cannot make this happen on its own. We now infor-
mally sketch a solution to this: We will assume that clients can communicate
with servers such that clients can authenticate the identity of servers, but not
necessarily the other way around (in practice, one may think of 1-way TLS here).

We also assume that Alice and Bob interact before talking to the servers –
indeed this is necessary to create any correlation if the servers have no memory.
We assume a 2-way authenticated channel for this, indeed this seems necessary
if there are several clients, otherwise an honest Alice could not know with whom
she is doing secure computation. Alice and Bob would then agree on a common
nonce nAB , as well as a parameter par specifying what they will request from
the server, as well as the identity id of the server. For the case of our protocol,
we would have par = (F, s, id) where F is the field to use for the OLEs, s is the
number of OLEs to request and id is the server identifier.

Commodity-Based 2PC for Arithmetic Circuits 175

In a naive solution, Alice would send (“A”, par, nAB) to the server who will
use this and a private PRF key K to generate Alice’s data, and something similar
is done for Bob. However, this is clearly not secure: if Alice is corrupt, she can
send both (“A”, par, nAB) and (“B”, par, nAB) to each honest server, get Bob’s
data and break the protocol.

We solve this by generating the nonce such that Alice and Bob each know
different secrets relating to the nonce and hence cannot impersonate the other
party towards the server. In the simplest case where a nonce is used for only one
server, a straightforward way to do this is to make use of a one-way function
f : {0, 1}k �→ {0, 1}k where k is a security parameter. Then Alice chooses xA ∈
{0, 1}k at random, similarly Bob chooses xB and we let nA,B = f(xA)||f(xB)
where || denotes concatenation.

Now, party P ∈ {A,B} would send (“P”, par, xP , nAB). The server checks
that xP is correct with respect to nAB and only then will it send data to P . In
this case we can instantiate f efficiently using a hash function, for instance.

For the security of this solution, note that we just need to make sure that
the data sent from an honest server to an honest client is secure, since all other
data is known and can be modified by the adversary anyway. So assume Alice is
honest and agrees on nonce nAB and par with corrupt Bob, and let dA be the
data that honest server S will returns to Alice. Now, if Bob sends any request to
S that contains something different from par, nAB then S will return something
that is (pseudo)uncorrelated to dA. If the request does contain par, nAB , then S
may return either nothing or the data Bob is allowed to get, which is fine. It will
only return dA if the request contains xA, and this happens only with negligible
probability since f is one-way.

It is also possible to use one nonce for all servers. In that case we cannot let
Alice simply reveal a preimage to the server. If the server is corrupt it can send xA

to Bob who can then do the same attack as before on honest servers. Instead we
can let Alice generate a public key vkA for a secure signature scheme, while Bob
generates vkB. Now, the request sent by Alice will be of form (“A”, par, σA, nAB),
where σA is a signature on nAB and par, and where par = (F, s, id, vkA, vkB).
The server only sends back data if the signature verifies under the public key
found in par, and if its own name occurs in par. Note that this last checks
prevents a corrupt server from replaying a request to an honest server, and
hence security can be argued in a similar way as before.

We remark that a practical implementation of any information theoretically
secure MPC needs to implement the secure channels using encryption and (usu-
ally) a PKI, which is only computationally secure. We are in a similar situation,
only we consider also the authentication aspect: if we assumed ideal authentic
channels, the servers could generate data based on the ID’s of the parties they
know they are talking to. If we do not assume this, we have to use computational
assumptions.

176 I. Damg̊ard et al.

References

[ADI+17] Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure
arithmetic computation with constant computational overhead. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 8

[BCD+09] Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingle-
dine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4 20

[BCGI18] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October
2018, pp. 896–912 (2018)

[Bea97] Beaver, D.: Commodity-based cryptography (extended abstract). In: Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of
Computing, El Paso, Texas, USA, 4–6 May 1997, pp. 446–455 (1997)

[BLW08] Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88313-5 13

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145 (2001)

[DGN+17] Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: Tinyole: effi-
cient actively secure two-party computation from oblivious linear function
evaluation. In: CCS, pp. 2263–2276. ACM (2017)

[DHNO19] Damg̊ard, I., Haagh, H., Nielsen, M., Orlandi, C.: Commodity-based 2PC
for arithmetic circuits. Cryptology ePrint Archive, Report 2019/705 (2019).
https://eprint.iacr.org/2019/705

[HIKN08] Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via
secure computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 393–411. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 22

[HKN+05] Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust com-
biners for oblivious transfer and other primitives. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 6

[IKM+13] Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 34

[JNO14] Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing
of secure computation. In: Proceedings of the 6th Edition of the ACM
Workshop on Cloud Computing Security, CCSW 2014, Scottsdale, Arizona,
USA, 7 November 2014, pp. 81–92 (2014)

[KOS16] Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic
secure computation with oblivious transfer. In: ACM Conference on Com-
puter and Communications Security, pp. 830–842. ACM (2016)

[KPR18] Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822,
pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78372-7 6

https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://eprint.iacr.org/2019/705
https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6

Commodity-Based 2PC for Arithmetic Circuits 177

[NP99] Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In:
Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, Atlanta, Georgia, USA, 1–4 May 1999, pp. 245–254 (1999)

[Rab05] Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryp-
tology ePrint Archive 2005:187 (2005)

[TND+15] Rafael, T., et al.: Information-theoretically secure oblivious polynomial
evaluation in the commodity-based model. Int. J. Inf. Secur. 14(1), 73–
84 (2015)

Improved Low-Memory Subset Sum
and LPN Algorithms via Multiple

Collisions

Claire Delaplace, Andre Esser(B), and Alexander May

Ruhr University Bochum, Bochum, Germany
{claire.delaplace,andre.esser,alex.may}@rub.de

Abstract. For enabling post-quantum cryptanalytic experiments on a
meaningful scale, there is a strong need for low-memory algorithms. We
show that the combination of techniques from representations, multiple
collision finding, and the Schroeppel-Shamir algorithm leads to improved
low-memory algorithms.

For random subset sum instances (a1, . . . , an, t) defined modulo 2n,
our algorithms improve over the Dissection technique for small memory
M < 20.02n and in the mid-memory regime 20.13n < M < 20.2n.

An application of our technique to LPN of dimension k and con-
stant error p yields significant time complexity improvements over the
Dissection-BKW algorithm from Crypto 2018 for all memory parameters

M < 2
0.35 k

log k .

Keywords: Time-memory trade-off · Representations · Parallel
Collision Search

1 Introduction

We are now in a transition phase to post-quantum cryptography, where we have
to determine reliably strong parameters for prospective schemes (e.g. for the
2nd round candidates of NIST’s post-quantum standardization process [1]). This
requires mid-scaled cryptanalytic experiments from which we can safely extrap-
olate to the desired security levels. However, a major drawback for cryptana-
lytic analysis of most post-quantum systems, for example in comparison to their
number-theoretic counterparts, is the large memory consumption of today’s best
attack algorithms.

For instance, the famous BKW algorithm [10] for attacking coding/lattice-
based schemes [3,16,18,23] as well as lattice sieving [2,8] require huge memory,
which prevents their application even for medium-sized parameters. Thus, there
is a strong need for developing general techniques that sacrifices a bit of run
time at the sake of having a manageable memory consumption. These time-
memory trade-offs are well-studied for the subset sum problem [4,6,7,13], which
usually serves as a meta-problem to sharpen our tools and techniques. Then,

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 178–199, 2019.
https://doi.org/10.1007/978-3-030-35199-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_9

Improved Low-Memory Subset Sum and LPN Algorithms 179

these techniques are often transferred to the coding and lattice world [5,8,9,25],
where we solve similar vectorial versions of the subset sum problem.

In the subset sum context, the best memory-saving techniques are
Schroeppel-Shamir [28] and the elegant Dissection technique from Dinur,
Dunkelman, Keller, Shamir [13]. The Schroeppel-Shamir algorithm is a remark-
able technique that allows to save memory without sacrificing time at all.
Namely, solving subset sum via the usual Meet-in-the-Middle technique using
the Horowitz-Sahni algorithm [20] requires time and space Õ(2n/2), whereas the
Schroeppel-Shamir algorithm needs the same time but only Õ(2n/4) memory.
The Dissection technique can be seen as a natural generalization of Schroeppel-
Shamir, where Schroeppel-Shamir is the special case of a 4-Dissection. Indeed,
one of the original applications of Dissection in [13] is the today’s best time-
memory trade-off for subset sum. More recently, Esser et al. [15] used Dissection
for also designing time-memory trade-offs for the LPN (and LWE) problem.

Without memory restrictions, the currently best algorithm for solving ran-
dom subset sum instances a = (a1, . . . , an) ∈ Z

n
2n , t ∈ Z2n—with some weight-n

2
solution e ∈ {0, 1}n satisfying 〈a, e〉 = t mod 2n—is the Becker-Coron-Joux algo-
rithm [7] with time and space complexity 20.291n. The core idea of this algorithm
is the so-called representation technique, where the search space for e is enhanced
by R redundant representations of e. Then one enumerates a 1

R -fraction of the
search space such that on expectation one representation survives.

Moreover, Becker, Coron and Joux also provide a polynomial memory algo-
rithm that solves random subset sum instances in time 20.72n. This low-memory
algorithm represents e = e1 + e2 with weight-n

4 vectors and samples (via a ran-
dom walk) weight-n

4 vectors e′
1, e

′
2 until one finds a collision 〈a, e′

1〉 = t−〈a, e′
2〉.

Thus, the low-memory algorithm uses collision finding to recover a 2-sum repre-
sentation e′

1 + e′
2 = e of the solution.

Our Contribution. First, we show that multiple collision finding easily pro-
vides a time-memory trade-off for the low-memory 2-sum Becker-Coron-Joux
algorithm. We benefit basically from the well-known fact that multiple collision
finding algorithms like Parallel Collision Search (PCS) [30] provide 2m collisions
for an r-bit function f : Fr

2 → F
r
2 in time only 2

r+m
2 instead of the trivial 2m · 2 r

2

for 2m applications of simple collision finding.
Second, we develop a more involved 4-sum subset sum algorithm that rep-

resents e = e1 + . . . + e4 with weight-n
8 vectors ei, thereby profiting from the

increased amount of representations. We sample all candidates e′
i for ei via PCS

as the sum of two weight- n
16 vectors, again exploiting the benefits of represen-

tations. When having sampled sufficiently many candidate tuple (e′
1, . . . , e

′
4),

one of them is a representation of e with high probability. We then efficiently
construct this solution e using the Schroeppel-Shamir algorithm.

Our improved algorithms’ time-memory behaviours are depicted in Fig. 1.
Our 2-sum subset sum algorithm provides some improvement in the small mem-
ory regime M < 20.02n, whereas our 4-sum algorithm improves on the Dissection
technique in the mid-size memory regime 20.13n < M < 20.2n.

180 C. Delaplace et al.

Fig. 1. Comparison of our trade-offs and the previous best trade-offs. The dotted line
represent the trade-off obtained via Dissection [13], while the dashed one was obtained
in [21] using representations. Our new trade-offs are depicted as solid lines.

Third, for the LPN problem with dimension k and constant error probability
p, we build on the Dissection-BKW algorithm proposed by Esser et al. [15].
The authors of [15] show that any algorithm for a certain c-sum problem can
be turned into an LPN algorithm. The c-sum problem is solved in [15] via the
Dissection framework to obtain efficient time-memory trade-offs.

In this work, we express the c-sum problem from [15] as a multiple collision
problem of two c

2 -sums, which again is solved via sampling collisions with PCS.
This results in quite significant time improvements for the whole memory region
M < 20.35 k

log k when compared to the Dissection technique (see Fig. 2). For small
memory regimes, the time complexity of our new PCS-BKW algorithm even comes
close to the best quantum algorithm Quantum-BKW, which makes use of a highly
memory-efficient Grover search.

In the commonly used time-memory notion, we achieve the results from
Table 1. Notice that our PCS-BKW algorithm has the same linear dependency on
c as Quantum-BKW.

Table 1. Our LPN-trade-off PCS-BKW in comparison to [15].

Tradeoff 2
log c· k

log k

PCS-BKW T · M
c−2
4

Dissection-BKW [15] T · M
√

c

Quantum-BKW [15] T · M
c−2
2

Improved Low-Memory Subset Sum and LPN Algorithms 181

Fig. 2. The dotted marks depict our trade-off PCS-BKW, which improves for memory

M < 2
0.35 k

log k on the so far best classical algorithm Dissection-BKW from [15]. The
triangle marks depict the best known quantum trade-off [15].

Related Work. Parallel Collision Search (PCS), introduced by van Oorschot
and Wiener [30], is a widely applied tool in cryptanalysis for achieving good
time-memory trade-offs [12,17,22,26,27]. It has been thoroughly analyzed in
the context of finding multiple collisions [17,24,29].

Nikolić and Sasaki [26] applied PCS sampling in a similar scenario to ours,
namely for constructing improved time-memory trade-offs for the Generalized
Birthday Problem based on Wagners k-tree algorithm [31]. Dinur [12] later gen-
eralized the Nikolić-Sasaki approach using the Dissection technique.

2 Preliminaries

Let us denote by Zq the ring of integers modulo q. US is the uniform distribution
over a finite set S. Berp is the Bernoulli distribution with parameter p, i.e. for
X ∼ Berp we have Pr [X = 1] = p and Pr [X = 0] = 1 − p. We denote by Geop

the geometric distribution with parameter p, which is the amount of independent
Bernoulli trials needed for the first success.

We define lists L = {�1, �2, . . . , �n} as multisets over some universe S. For
x ∈ {0, 1}n we refer to the i-th coordinate of x by xi. By wt(x) we refer to the
Hamming weight of x.

For complexity statements we use soft-Oh notation, where Õ(f(k)) is a short-
hand for O(log(f(k))i · f(k)) for some constant i. An algorithm succeeds with
high probability p(n) if p(n) ≥ 1 − 1

poly(n) .
We refer to the binary entropy function by H(α), α ∈ [0, 1]. We also make

use of the approximation of binomial coefficients derived from Stirlings formula,
which is

(
n
m

)
� 2n·H(m

n), where � is used to suppress polynomial factors in n.

182 C. Delaplace et al.

More precisely we have

2n·H(m
n)

n + 1
≤

(
n

m

)
≤ 2n·H(m

n).

For finding multiple collisions between functions f, g : F
r
2 → F

r
2 we apply

the Parallel Collision Search algorithm [30], denoted PCS. We call procedure
PCS(f, g, αr) for finding 2αr, 0 ≤ α ≤ 1 distinct collisions. The following theorem
states PCS’s complexities.

Theorem 2.1 (Parallel Collision Search). Let r ∈ N, 0 ≤ α ≤ 1, and
m := αr. Given two independent random functions f : {0, 1}r → {0, 1}r and
g : {0, 1}r → {0, 1}r, Parallel Collision Search returns 2m distinct collisions
between f and g using expected time T = Õ

(
2

r+m
2

)
and memory M = Õ (2m) .

For more details on PCS the reader is referred to [29,30]. A complexity analysis
for multiple collisions is given in [17,24,29]. As we apply PCS several times to
the same functions, we technically get some dependency problems between the
returned collisions of multiple executions. To mitigate this issue, we introduce
the notion of flavours, similar to [7,14].

Definition 2.1 (Flavour of a function). Let f be a function with f : T → T ,
where T ⊆ {0, 1}n. Let Pk : T → T be a family of bijective functions addressed
by k. Then the kth flavour of f is defined as

f [k](x) := Pk(f(x)).

Note that any collision (x, y) in f [k] is also a collision in f . However, flavoured
versions f [k] invoke different function graphs. Therefore we heuristically treat dif-
ferent flavours f [k] of f as independent functions, which yields the independence
of output collisions of multiple executions of PCS on different flavours of the same
function.

We apply PCS on random subset sum, defined as follows.

Definition 2.2 (Random Subset Sum). Let a ∈ (Z2n)n be chosen uniformly
at random. For a random e ∈ F

n
2 with wt(e) = n

2 compute t = 〈a, e〉 mod 2n.
Then (a, t) ∈ (Z2n)n+1 is called a random subset sum instance, while each e′ ∈
F

n
2 with 〈a, e′〉 = t is called a solution.

Following Howgrave-Graham and Joux [21], we represent a subset sum solu-
tion in a redundant manner as sums of vectors, called representations.

Definition 2.3 (Representation). Let e ∈ {0, 1}n with wt(e) = βn. Any
tuple (e1, e2, . . . , ek) ∈

(
{0, 1}n

)k with wt(ei) = βn
k for all i = 1, . . . , k is called

a representation of e if e = e1 + e2 + . . . + ek.

Improved Low-Memory Subset Sum and LPN Algorithms 183

The Schroeppel-Shamir Algorithm [28]. We use the algorithm by Schroeppel and
Shamir to solve the following problem: Given four lists L1, . . . , L4 of equal size
2m containing uniformly at random drawn elements from Z2n together with a
target t ∈ Z2n , compute the solution set

C = {(xi1 , . . . , xi4) ∈ L1 × . . . × L4 | xi1 + . . . + xi4 = t mod 2n}.

While the original algorithm uses involved data structures to guarantee worst
case complexities, we use a heuristic simplification by Howgrave-Graham and
Joux [21] at the cost of obtaining only expected complexities. However, we still
refer to the algorithm as Schroeppel-Shamir.

Schroeppel-Shamir merges two lists at a time. The lists L1 and L2 are
merged into a new list

L12 = {x + y | x ∈ L1, y ∈ L2, x + y = R mod 2m} for some R ∈ Z2m .

The constraint R enforces expected size |L12| = 2m. Similarly, we merge L3, L4

into L34 with the constraint t − R mod 2m. Eventually, we merge L12, L34 such
that their elements sum up to t mod 2n. To compute the complete solution set
C the algorithm iterates over all R ∈ Z2m .

Since the elements in L1, . . . , L4 are uniformly distributed, we have E[|C|] =
24m−n. Thus E[|C|] ≤ 2m if n ≥ 3m. Since each merge can be performed in
expected time and memory Õ(2m) the total expected time complexity by iter-
ating over all constraints is Õ(22m), while the expected memory complexity is
Õ(2m).

Lemma 2.1 (Schroeppel-Shamir). Let m,n ∈ N with n ≥ 3m. Given four
lists L1, . . . , L4 of equal size 2m containing uniformly at random drawn elements
from Z2n together with a target t ∈ Z2n , Schroeppel-Shamir returns the solution
set C in expected time Õ

(
22m

)
and memory Õ (2m).

We also apply multiple collision search to the LPN problem, which is defined
as follows.

Definition 2.4 (Search LPN Problem). Let k ∈ N, s ∈ F
k
2 and p ∈ [0, 1

2) be
a constant. Let Sample denote an oracle that, when queried, samples a ∼ UFk

2
,

e ∼ Berp and outputs a sample of the form (a, b) := (a, 〈a, s〉 + e). The LPNk

problem consists of recovering s given access to Sample.

3 New Subset-Sum Trade-Offs Using PCS

We introduce two new trade-offs for the random subset sum problem from
Definition 2.2. The first one, SS-PCS, uses the representation technique together
with the PCS algorithm and provides time improvements in the sparse mem-
ory area with memory M < 20.02n. The second one, SS-PCS4, combines repre-
sentations with Schroeppel-Shamir and PCS to achieve time improvements in
the (quite large) memory regime 20.13n < M < 20.2n. Notice that a memory
M = 20.291n is sufficient to run the best algorithm by Becker-Coron-Joux [7]
with time T = M . All in all, we achieve improvements in a large parameter
range of M (for roughly a third of the meaningful exponents).

184 C. Delaplace et al.

3.1 Algorithm SS-PCS

Our algorithm SS-PCS builds on the memoryless BCJ-algorithm [7] for which we
replace its simple collision search procedure by PCS.

The idea of the BCJ-algorithm is to split the solution vector e with wt(e) = n
2

in two vectors e1, e2 ∈ F
n
2 each of weight n

4 . Let (a, t) be a random subset sum

instance and T := {x ∈ F
n
2 | wt(x) = n

4 }, where |T | � 2H(1
4)n and define the

two functions.

g, gt : T → Z2H(1/4)n ,where

g(x) =
n∑

i=1

xiai mod 2H(1
4)n and gt(x) = t −

n∑

i=1

xiai mod 2H(1
4)n.

Note that any representation (e1, e2) of our solution e satisfies g(e1) = gt(e2).
The algorithm now simply searches for collisions (e′

1, e
′
2) between g and gt until

e′
1 + e′

2 yields a solution to the subset sum instance.
We expect to have 2H(1/4)n collisions between g and gt, whereas the num-

ber of representations (e1, e2) is
(
n/2
n/4

)
� 2

n
2 . Thus, a random collision solves

the subset sum instance with probability p = 2(1/2−H(1/4))n. Equivalently, we
need to compute on expectation 2(H(1/4)−1/2)n = 20.31n collisions before we find
the solution. The BCJ-algorithm uses standard cycle-finding for computing a
collision in 2H(1/4)n

2 , resulting in total run time 2
3H(1/4)−1

2 n = 20.717n.
Since we have to compute an exponential amount of collisions, obviously PCS

can be utilized to improve on run time if we are willing to spend some memory.
In the following, we show that (under some mild heuristic assumption) algorithm
SS-PCS (Algorithm 1) solves random subset sum instances in time 2(0.717− γ

2)n

using memory Õ(2γn).

Algorithm 1. SS-PCS((a, t), γ)
Input: subset sum instance (a, t), memory parameter γ
Output: solution e ∈ F

n
2 to instance (a, t) or ⊥

1: for i = 1 to n3 · 2(H(1
4)− 1

2 −γ)n do
2: choose random flavour k
3: L ← PCS(g[k], g

[k]
t , γn)

4: if ∃(e1, e2) ∈ L, such that e = e1 + e2 ∈ {0, 1}n and 〈a, e〉 = t then
5: return e
6: return ⊥

Notice that for rigorously analyzing the time complexity of SS-PCS, we have to
lower bound the probability p for success in each iteration. This in turn requires
an upper bound on the number of collisions between g and gt, which is shown
in the following lemma.

Improved Low-Memory Subset Sum and LPN Algorithms 185

Lemma 3.1 (Number of collisions between g and gt). Let n ∈ N and
(a, t) be a random subset sum instance. Then with high probability the number
of collisions between g and gt is at most n · 2H(1/4)n.

Proof. By definition a collision between g and gt is a tuple (x1,x2) ∈ T 2 with
g(x1) + g(x2) = t mod 2H(1/4)n. Let us define indicator variables Xi,j with
Xi,j = 1 iff g(xi) + g(xj) = t mod 2H(1/4)n and let X =

∑
1≤i,j≤|T | Xi,j .

Let i �= j and c = xi + xj ∈ {0, 1, 2}n. Then c contains at least one 1-
coefficient, wlog c1 = 1. By the randomness of a in our subset sum instance we
have.

Pr [Xi,j = 1 | i �= j] = Pr
[
〈a, c〉 = t mod 2H(1/4)n

]

= Pr

[

a1 = t −
n∑

i=2

ciai mod 2H(1/4)n

]

=
1

2H(1/4)n
.

Thus, Xi,j ∼ Ber2−H(1/4)n for i �= j. Using |T | =
(

n
n/4

)
≤ 2H(1/4)n, we obtain

E[X] ≤ (|T |2 − |T |) · 2−H(1/4)n + |T | ≤ 2H(1/4)n+1.

An application of Markov’s inequality yields

Pr
[
X > n2H(1/4)n

]
≤ E[X]

n2H(1/4)n
≤ 2

n
.

�

Assumptions of the Analysis. For the proof of the complexity of SS-PCS
we rely on commonly used heuristics in the context of PCS [13,30] and collision
search [7].

Heuristic 1.

(1) PCS returns uniformly random collisions.
(2) PCS behaves on input functions g and gt as on independent random functions.

We validate Heuristic 1 experimentally in Sect. 5.

Theorem 3.1 (Complexity of SS-PCS). Let (a, t) be a random subset sum
instance and let 0 ≤ γ ≤ 0.31. Then under Heuristic 1 with high probabil-
ity SS-PCS finds a solution to (a, t) in expected time 2(0.717− γ

2)n and memory
Õ(2γn).

Proof. The time complexity of one iteration of the loop is dominated by the
execution of PCS. By Theorem 2.1 PCS finds 2γn collisions between g and gt in

186 C. Delaplace et al.

expected time Õ
(
2

H(1/4)+γ
2 n

)
. Therefore the overall expected time complexity

is

T = n3 · 2
2H(1/4)−1−2γ

2 n · Õ
(
2

H(1/4)+γ
2 n

)

= Õ
(

2
3H(1

4)−1−γ

2 n

)

= 2(0.717− γ
2)n.

Here, the restriction γ ≤ 0.31 ensures that the exponent H(14) − 1
2 − γ of the

number of iterations of the for-loop is positive. Regarding memory, we need to
store |L| = 2γn elements.

It remains to show that SS-PCS succeeds with high probability. An iteration
is successful whenever list L contains a representation (e1, e2) of the desired
solution e. Let us denote by Rn

2 ,2 the number of representations of e with weight
n
2 as a decomposition in two vectors (e1, e2). Via Definition 2.3 and Stirling’s
formula we obtain

Rn
2 ,2 =

(
n/2
n/4

)
≥ 2

n
2

n
.

By construction, each representation (e1, e2) forms a collision between g and
gt. Thus, a collision sampled uniformly at random from the whole set of collisions
Cg,gt

is a solution with probability

q :=
Rn

2 ,2

|Cg,gt
| .

Since by Lemma 3.1 with high probability the total amount of collisions is
|Cg,gt

| ≤ n · 2H(1
4)n, we obtain

q ≥ 1
n2

· 2−(H(1
4)− 1

2)n.

Let Y denote the amount of sampled collisions until we hit a solution, where
Y ∼ Geoq. Then

E[Y] =
1
q

≤ n2 · 2(H(1
4)− 1

2)n.

In total, SS-PCS samples 2γn ·n3 ·2(H(1
4)− 1

2−γ)n = n3 ·2(H(1
4)− 1

2)n collisions.
Under Heuristic 1 these are independently and uniformly at random drawn from
the whole set of collisions.

Thus, by Markov’s inequality SS-PCS does not recover the solution with prob-
ability at most

Pr
[
Y > n3 · 2(H(1

4)− 1
2)n

]
≤ E[Y]

n3 · 2(H(1
4)− 1

2)n
≤ 1

n
.

�

Improved Low-Memory Subset Sum and LPN Algorithms 187

Fig. 3. Comparison of our trade-off and the previous best trade-off for small available
memory. The dotted line represents the trade-off obtained in [13], while the solid line
is our trade-off achieved by using PCS.

The achieved trade-off is illustrated in Fig. 3. As discussed before, it contains
as special case the memoryless algorithm by Becker et al. [7] and is superior to
the previously best trade-off based on a combination of PCS and the Dissection
framework [13] for any memory M ≤ 20.0174n.

3.2 Algorithm SS-PCS4

In this section we introduce a more involved trade-off based on a combination
of PCS, the representation technique and the Schroeppel-Shamir algorithm that
achieves time improvements for an available memory of 20.13n < M < 20.2n.

Idea of SS-PCS4. We represent our solution e as a sum of four vectors e =
e1 + · · · + e4, such that wt(ej) = n

8 for all j. We choose random restrictions
R1, R2, R3 ∈ Z2λn and R4 = t − (R1 + R2 + R3) mod 2λn, for some 0 < λ < 1.

Using PCS, we compute four lists Li ⊆ Zi, i = 1, . . . , 4, where

Zi =
{

ui = 〈a, e′
i〉 | wt(e′

i) =
n

8
, ui = Ri mod 2λn

}
.

Note that by construction every (u1, u2, u3, u4) ∈ L1 × L2 × L3 × L4 satisfies
u1 +u2 +u3 +u4 = t mod 2λn. We now use the Schroeppel-Shamir algorithm to
search for (u1, u2, u3, u4) ∈ L1 ×L2 ×L3 ×L4, such that also u1 +u2 +u3 +u4 =
t mod 2n, which yields

〈a, e′
1〉 + 〈a, e′

2〉 + 〈a, e′
3〉 + 〈a, e′

4〉 = 〈a, e′
1 + e′

2 + e′
3 + e′

4〉 = t mod 2n.

This implies that e′
1+e′

2+e′
3+e′

4 ∈ {0, 1, 2, 3, 4}n solves our subset sum instance
iff it defines a vector in {0, 1}n. We iterate our process until we find a solution.

188 C. Delaplace et al.

Remark 3.1. In order to be able to reconstruct the solution, the Schroeppel-
Shamir algorithm has to keep track of the vectors e′

i that were used to produce
the corresponding list elements ui ∈ Li. For ease of notation, we ignore this in
the following.

Let us elaborate a bit on how we construct L1, . . . , L4 using PCS. We denote
by S the set S := {x ∈ F

n
2 | wt(x) = n/16} with |S| =

(
n

n/16

)
� 2H(1/16)n and

define the function f as

f : S → Z2H(1/16)n

x �→
n∑

i=1

xiai mod 2H(1/16)n = 〈a,x〉 mod 2H(1/16)n.

Analogously, given an arbitrary value R ∈ Z2H(1/16)n we define

fR : S → Z2H(1/16)n

x �→ R −
n∑

i=1

xiai mod 2H(1/16)n = R − 〈a,x〉 mod 2H(1/16)n.

Thus, any collision (x,y) ∈ S2 between f and fR satisfies.

f(x) = fR(y) ⇔
n∑

i=1

xiai = R −
n∑

i=1

yiai mod 2H(1/16)n

⇔
n∑

i=1

(xi + yi)ai = R mod 2H(1/16)n.

Since eventually we look for a solution e ∈ {0, 1}n, we filter out non-binary
vectors x + y in every iteration of our algorithm.

Definition 3.1. Let x,y ∈ {0, 1}n. We call (x,y) consistent if x+y ∈ {0, 1}n,
otherwise we call (x,y) inconsistent.

Notice that for consistent (x,y) we have wt(x + y) = wt(x) + wt(y).
Now, our algorithm proceeds as follows (see also Fig. 4). We fill all lists Li

with collisions provided by PCS, where we filter out inconsistent collisions imme-
diately. Notice that this filter does not discard any representation of the desired
solution, since representations are consistent by definition. The whole algorithm
is summarized in Algorithm 2.

For the analysis, we use a heuristic similar to Heuristic 1, where we addi-
tionally assume that representations of a solution are sufficiently uniform, as
commonly done in the context of the representation technique [7,19,21].

Improved Low-Memory Subset Sum and LPN Algorithms 189

Fig. 4. One iteration of the SS-PCS4 Algorithm.

Algorithm 2. SS-PCS4((a, t), γ)
Input: subset sum instance (a, t), memory parameter γ
Output: solution e ∈ F

n
2 to instance (a, t) or ⊥

1: for i = 1 to n4 · 2(3·H(1/16)−1)n do
2: choose R1, R2, R3 ∈ Z2H(1/16)n uniformly at random
3: R4 ← t − R1 − R2 − R3 mod 2H(1/16)n

4: for i = 1 to n9 · 2(4H(1/16)− 1
2 −4γ)n do

5: choose random flavour k
6: Li ← PCS(f [k], f

[k]
Ri

, γn) for i = 1, 2, 3, 4
7: Filter(Li) for i = 1, 2, 3, 4 � Filter out inconsistent vectors.
8: L ← Schroeppel-Shamir(L1, L2, L3, L4, t)
9: if ∃(u1, u2, u3, u4) ∈ L, such that e = e′

1 + e′
2 + e′

3 + e′
4 is in {0, 1}n then

10: return e
11: return ⊥

Heuristic 2.

(1) PCS returns uniformly random collisions.
(2) PCS behaves on input functions f and fR as on independent random func-

tions.
(3) Let (e1, . . . , e4) be a representation of the solution e of a random subset

sum instance (a, t). Then the values of 〈a, ei〉 mod 2H(1/16)n, i = 1, 2, 3, are
independently and uniformly distributed.

Theorem 3.2 (Complexity of SS-PCS4). Let (a, t) be a random subset sum
instance and let 1

8 ≤ γ ≤ 0.21. Then under Heuristic 2 with high probability
SS-PCS4 finds a solution to (a, t) in expected time 2(0.849−2γ)n and memory Õ(2γn).

Proof. We start by analyzing the time complexity of the algorithm. The running
time Tit of each iteration of the second for-loop of Algorithm 2 (steps 6–10)
is dominated by creating L1, . . . , L4 via PCS and checking for a solution with

190 C. Delaplace et al.

Schroeppel-Shamir. In the following we show that by our choice of γ the run
time Tit is solely dominated by Schroeppel-Shamir.

According to Theorem 2.1, computing 2γn collisions between f and fRi
can

be done in expected time

TPCS = Õ(2
(H(1/16)+γ)n

2).

By Heuristic 2, PCS gives us random collisions (x,y) ∈R S2, where S := {x ∈
F

n
2 | wt(x) = n/16}. We obtain

Pr
[
(x,y) ∈R S2 is consistent

]
=

(15
16n
1
16n

)

(
n
1
16n

) = Θ̃
(
2(

15
16H(1/15)−H(1/16))n

)
.

Let δ = (H(1/16) − 15
16H(1/15))n. Thus, the input lists for Schroeppel-Shamir

have expected size Õ(2(γ−δ)n). An easy calculation shows that the prerequi-
site of Lemma 2.1 is met. Therefore, an application of Lemma 2.1 yields that
Schroeppel-Shamir takes expected time TSS = Õ(22(γ−δ)n). One also easily ver-
ifies that our restriction γ ≥ 1

8 from Theorem 3.2 implies TSS ≥ TPCS, which
entails that TSS dominates Tit. Moreover, the prerequisite γ ≤ 0.21 guarantees
that the exponent 4H(1/16) − 1

2 − 4γ of the number of iterations of the second
for-loop is positive.

Therefore, the total expected time complexity is

T = Õ(2(7·H(1/16)−3/2−4γ)n · Tit) = Õ(2(7·H(1/16)−3/2−2γ−2δ)n) = 2(0.849−2γ)n.

Concerning memory, we require to store |Li| = 2γn elements.
It remains to show that Algorithm 2 succeeds with high probability. Let us

define the event E1 that we find within the first for-loop a choice of R1, . . . , R3

for which a representation (e1, . . . , e4) of our solution e exists. Further, let E2

be the event that (e1, . . . , e4) is found within the second for-loop. We show that
E1 ∩ E2 happens with high probability in at least one of the iterations of the
algorithm.

Let us start with event E1. Let Rn
2 ,4 denote the number of representations

of a vector with weight n
2 into four vectors, i.e.

Rn
2 ,4 =

(
n/2

n/8, n/8, n/8, n/8

)
≥ 2n

n3
.

By Heuristic 2 for a representation (e1, e2, e3, e4) the values 〈a, ei〉
mod 2H(1/16)n, for i = 1, 2, 3 are independently and uniformly distributed over
Z2H(1/16)n . Thus, a fixed choice of R1, R2, R3 ∈ Z2H(1/16)n does not yield a repre-
sentation with probability.

Pr [R1, R2, R3 bad] = (1 − 2−3H(1/16)n)R n
2 ,4 ≤ (1 − 2−3H(1/16)n)

2n

n3 .

Using 1 − x ≤ e−x, in all n4 · 2(3·H(1/16)−1)n iterations of the first for-loop
we find no representation with probability.

Pr
[
Ē1

]
≤ (1 − 2−3H(1/16)n)n·23H(1/16)n ≤ e−n.

Improved Low-Memory Subset Sum and LPN Algorithms 191

It remains to show that E2|E1 happens with high probability. As we condi-
tion on E1, we already fixed R1, R2, R3 for which there exist a representation
(e1, . . . , e4) with 〈a, ei〉 = Ri mod 2H(1/16)n for i = 1, 2, 3. We now have to
lower bound the probability that (e1, . . . , e4) ∈ L1 × . . . × L4.

Each element from Li is constructed via PCS, where by Heuristic 2 PCS returns
independently and uniformly at random drawn collisions. Let us represent ei as
(e(1)i , e(2)i), which can be done in Rn

8 ,2 =
(

n/8
n/16

)
≥ 1

n · 2
n
8 many ways.

Moreover, similar to the proof of Lemma 3.1 we know that with high probabil-
ity the number of collisions between f and fRi

is upper-bounded by n ·2H(1/16)n.
Hence, a random collision from PCS yields ei with probability.

q ≥
Rn

8 ,2

n · 2H(1/16)n
≥ 1

n2
· 2(−H(1/16)+1/8)n.

As an execution of PCS provides us 2γn collisions we obtain

p := Pr [Li contains ei] = 1 − (1 − q)2
γn

.

It follows that

Pr [(e1, . . . , e4) ∈ L1 × . . . × L4] = p4 =
(
1 − (1 − q)2

γn
)4

.

Let Y ∼ Geop4 be a random variable for the number of iterations until
(e1, . . . , e4) ∈ L1 × . . . × L4. Using Bernoulli’s inequality (1 − x)n ≥ 1 − xn
we obtain

E[Y] =
1

((1 − q)2γn − 1)4
≤ 1

(1 − q · 2γn − 1)4
≤ n8 · 2(4H(1/16)− 1

2−4γ)n.

Using Markov’s inequality, SS-PCS4 does not succeed to find a solution to the
random subset sum instance (a, t) in its n9 · 2(4H(1/16)− 1

2−4γ)n iterations of the
second for-loop with

Pr
[
Ē2 | E1

]
= Pr

[
Y > n9 · 2(4H(1/16)− 1

2−4γ)n
]

≤ E[Y]
n9 · 2(4H(1/16)− 1

2−4γ)n
≤ 1

n
.

�

Our new trade-offs are illustrated in Fig. 5. By Theorem 3.2, SS-PCS4 gives
us for memory 2γn within the interval 1

8 ≤ γ ≤ 0.21 a line with slope −2 (solid
line in Fig. 5). For γ ≥ 0.132 our algorithm improves on the trade-off based on
the Dissection framework obtained in Dinur et al. [13] (dotted lines in Fig. 5).
Moreover, for γ ≤ 0.2, our algorithm improves on a trade-off by Howgrave-
Graham and Joux [21] (dashed line in Fig. 5).

Remark 3.2. We also generalized our 4-sum algorithm SS-PCS4 to a 7- and 11-
sum algorithm in a natural way, thereby replacing Schroeppel-Shamir with
a 7- respectively 11-Dissection. While our 7-sum algorithm gave us an addi-
tional (tiny) improvement, the 11-sum algorithm could no longer provide any
improvements.

192 C. Delaplace et al.

Fig. 5. Comparison of our trade-offs and the previous best trade-offs. The dotted line
represent the trade-off obtained in [13], while the dashed one was obtained in [21]. Our
new trade-offs are depicted as solid lines.

4 Application to LPN

The results from Sect. 3 show that the subset sum problem formulated as a 4-
sum problem in combination with PCS leads to improved time-memory trade-offs.
This technique is even superior to the quite involved time-memory Dissection
framework for many parameter sets.

Since c-sum applications appear quite often in cryptanalysis, it is natu-
ral to ask whether other problems enjoy similar advantages. At Crypto’18,
Esser et al. [15] proposed time-memory trade-offs for the LPN problem of dimen-
sion k using c-sums in combination with Dissection. In the following, we show
that the combination of c-sums with PCS also for LPN provides significant
improvements for the whole memory region M < 20.35 k

log k .
The BKW algorithm [10] achieves for LPNk time and memory complexity of

2
k

log k (1+o(1)) using 2-sums. Esser et al. [15] achieved time-memory trade-offs for
LPNk by using BKW in combination with c-sums for c > 2 and the Dissection
technique. The resulting algorithm is called Dissection-BKW in [15]. Let us
define the c-sum problem underlying LPNk more formally.

Definition 4.1 (The c-Sum-Problem (c-SP)). Let b, c,N ∈ N with c ≥ 2.
Let L := {�1, . . . , �N}, where each list element �i ∼ UFb

2
. A single-solution of the

c-SPb is a size-c set L ⊂ {1, . . . , N} such that
∑

j∈L
�j = 0b.

A solution is a set of at least N distinct single-solutions. The c-sum-problem
c-SPb consists in finding a solution when given L.

Hence, we have to find N different combinations of c out of all N b-bit vectors
in L such that each of them sums up to the all-zero vector. In the BKW algorithm

Improved Low-Memory Subset Sum and LPN Algorithms 193

applied to LPNk, the block-size b is chosen as b := log c · k
log k . Esser et al. [15]

showed that the running time of their Dissection-BKW on LPNk is dominated by
the time to solve the c-SPb, as formulated in the next theorem.

Here, we use the following heuristic from Esser et al. [15] for analyzing c-sum
algorithms. This heuristic is backed up theoretically for c = 2 by results in [11]
and experimentally for c > 2 in [15].

Independence Heuristic [15]. We treat c-sums as independent in the run time
analysis.

Algorithm 3. c-sum-PCS(L)

Input: list L = {�1, . . . �N} with �i ∈ F
b
2, where N = c · 2

2b
c

Output: solution S to the c-SPb instance L

1: split L in c lists Li of equal size 2
2b
c

2: S ← PCS(f0, f1, log N)
3: return S

Theorem 4.1 [15, Theorem 3.2]. Let k, c ∈ N and 0 < ε < 1. Let us define
b := log c

1−ε · k
log k . Under the Independence Heuristic the following holds: If there is

an algorithm solving the c-SPb for an input list of size N in expected time T and
memory M , then it is possible to solve the LPNk problem with high probability in
time T 1+o(1) and memory M1+o(1) using N1+o(1) samples, as long as log(N) ≥
b+c log c+1

c .

Theorem 4.1 states that N (roughly) denotes the number of samples from our
LPNk oracle. By Definition 2.4, N can be freely chosen, since we are given full
access to Sample. However, Lemma 4.1 provides a lower bound on N , which
basically guarantees the existence of a solution to the c-SPb as specified in
Definition 4.1.

4.1 Computing c-sums with PCS

We choose list size N = |L| = c · 2
2b
c , which satisfies the constraint from

Lemma 4.1. For simplicity of notation, we assume in the following that c ∈ N

is even. We first split L in c lists of equal size |Li| = 2
2b
c , i = 1, . . . , c. Let us

denote by Li[k] the kth element in list Li. For j = 0, 1 we define the functions

fj :
(
F

2b
c
2

) c
2 → F

b
2,

(x1, . . . , x c
2
) �→ L1+j c

2
[x1] + L2+j c

2
[x2] . . . + L(1+j) c

2
[x c

2
].

Hence, f0 maps c
2 indices to a c

2 -sum over the first half of all lists, where f1
computes a c

2 -sum over the second half. Therefore a collision f0(x1, . . . , x c
2
) =

f1(x c
2+1, . . . , xc) yields a c-sum satisfying.

L1[x1] + . . . + Lc[xc] = 0b,

194 C. Delaplace et al.

as desired for a single-solution in Definition 4.1. A solution to the c-SPb requires
according to Definition 4.1 N distinct single-solutions. Thus, we apply PCS to
find N = c · 2

2b
c different collisions between f0 and f1. The resulting procedure

is given in Algorithm 3.

Lemma 4.1 (Complexity of c-sum-PCS). Let c be even, and let L be a c-SPb-
instance with |L| = N := c · 2

2b
c . Under the Independence Heuristic c-sum-PCS

solves the c-SPb in expected time T = Õ
(
2(

1
2+

1
c)b

)
and memory M = Õ(2

2b
c).

Proof. The time complexity of c-sum-PCS is dominated by the application of PCS.
Since list elements from L are from UFb

2
, under the Independence Heuristic the

functions f0 and f1 behave like independent random functions. By Theorem 2.1
the PCS algorithm finds N = c · 2 2b

c collisions between f0 and f1 with range F
b
2

using memory M = Õ(N) = Õ(2
2b
c) and expected time.

T = Õ(N
1
2 · 2

b
2) = Õ(2

b
c · 2

b
2) = Õ(2(

1
2+

1
c)b).

Since PCS by definition returns N distinct collisions, this solves the c-SPb. �

Putting Theorem 4.1 with its choice b := log c
1−ε · k

log k and Lemma 4.1 together,
we immediately obtain the following LPN trade-off.

Theorem 4.2 (PCS-BKW). Let ε > 0, c ∈ N be even and k ∈ N be sufficiently
large. Under the Independence Heuristic LPNk can be solved with high probability
in time

T = 2(1
2+

1
c)·log c· k

log k (1+ε) using M = 2
2
c ·log c· k

log k (1+ε)

memory and samples.

Fig. 6. The dotted marks depict our trade-off PCS-BKW, which improves for memory

M < 2
0.35 k

log k on the so far best classical algorithm Dissection-BKW from [15]. The
triangle marks depict the best known quantum trade-off [15].

Improved Low-Memory Subset Sum and LPN Algorithms 195

Table 2. Our LPN-trade-off PCS-BKW in comparison to [15].

Tradeoff 2
log c· k

log k =

PCS-BKW T · M
c−2
4

Dissection-BKW [15] T · M
√

c

Quantum-BKW [15] T · M
c−2
2

In Fig. 6, we compare our new trade-off, called PCS-BKW, to Dissection-BKW
and Quantum-BKW from Esser et al. [15]. In comparison to the so far best clas-
sical trade-off Dissection-BKW, based on the Dissection technique, our PCS-BKW
improves on the run-time for any memory less than 20.35 k

log k , or in other words
it improves over any Dissection larger than an 11-Dissection. For very small
memory we even come close to the time requirement of the quantum version
Quantum-BKW with its highly memory-efficient Grover search.

In the commonly used time-memory trade-off notation, we obtain Table 2. We
see that PCS-BKW shares with Quantum-BKW the linear dependency on c, whereas
the previously best classical trade-off Dissection-BKW had only a square root
dependency on c. In comparison with Quantum-BKW, for fixed T our algorithm
needs only a square of the space requirement.

5 Experimental Verification of Heuristic 1

In this section we present experimental results that verify the used heuristic
assumptions.

Distribution of Collisions. Our analyses assume that collision sampling via
PCS yields independently and uniformly distributed collisions. Let C be the set
of all collisions of some function g and let S ⊆ C be a distinguished subset. By
our assumption we hit S with probability p = |S|

|C| .
We tested this heuristic for functions with domain size 2n, where n ∈

{14, 18, 22} by measuring the amount of collisions until we hit S for the first
time, which exactly determines the running time of our algorithms in Sect. 3
and should be geometrically distributed with parameter p. To this end we gener-
ated a random subset sum instance (a, t) and constructed a function g mapping
x ∈ F

n
2 to 〈a,x〉 mod 2n. We then enumerated all collisions C of g and randomly

chose S ⊆ C.
We experimentally observed that the distribution of required collisions until

we first hit S is indeed geometric. Moreover, for various different functions gi we
compared the experimentally observed geometric parameters pi to the expected
p. Let �i = p

pi
denote their quotient, so �i should be close to 1. In Fig. 7 we show

the distribution of the �i in our experiments, where the dots represent the relative
frequencies of the �i. The �i closely follow a logarithmic-normal distribution –
depicted as a solid line – centered around the desired value of one. Moreover,

196 C. Delaplace et al.

Fig. 7. Distribution of the �i for (n, log |S|) ∈ {(14, 4), (18, 5), (22, 6)}.

we see that for increasing n the variance of the distribution decreases. Thus, �i

becomes sharply centred around one.

Complexity of PCS Algorithm Applied to Subset Sum Functions.
According to Theorem 2.1, the PCS algorithm performs on independent ran-
dom functions (roughly) 2

r+m
2 evaluations for finding 2m collisions. This implies

on average 2
r−m

2 evaluations per collision.
We verify this asymptotic behaviour experimentally for our subset sum func-

tions g and gt from Sect. 3.1. We implemented g, gt for n ∈ {28, 40} and measured
the average amount of function evaluations to obtain a specific number of col-
lisions via PCS. Figure 8 shows the results in logarithmic scale, where the dots
represent the experimental data averaged over multiple executions. The solid
line represents the asymptotic prediction of r−m

2 (shifted by a small additive

Improved Low-Memory Subset Sum and LPN Algorithms 197

Fig. 8. Average number of function evaluations per collision (in logarithmic scale, y-
axis) for generating 2m collisions (x-axis) for n ∈ {28, 40}.

constant that stems from the Õ-notion). We see that the average cost of multi-
ple collision finding in g and gt closely matches the prediction from Theorem 2.1,
and thus g, gt behave with respect to multiple collision finding like independent
random functions.

References

1. http://csrc.nist.gov/groups/ST/post-quantum-crypto/
2. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the short-

est vector problem in 2n time using discrete Gaussian sampling: extended abstract.
In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual ACM Symposium on Theory
of Computing, Portland, OR, USA, 14–17 June 2015, pp. 733–742. ACM Press
(2015)

3. Albrecht, M.R., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: On the com-
plexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)

4. Austrin, P., Kaski, P., Koivisto, M., Määttä, J.: Space-time tradeoffs for sub-
set sum: an improved worst case algorithm. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M.Z., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 45–56.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1 5

5. Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. LMS J. Comput. Math.
19(A), 146–162 (2016)

6. Bansal, N., Garg, S., Nederlof, J., Vyas, N.: Faster space-efficient algorithms for
subset sum and k-sum. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th Annual
ACM Symposium on Theory of Computing, Montreal, QC, Canada, 19–23 June
2017, pp. 198–209. ACM Press (2017)

7. Becker, A., Coron, J.S., Joux, A.: Improved generic algorithms for hard knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 21

8. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th
Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, USA, 10–
12 January 2016, pp. 10–24. ACM-SIAM (2016)

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://doi.org/10.1007/978-3-642-39206-1_5
https://doi.org/10.1007/978-3-642-20465-4_21

198 C. Delaplace et al.

9. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

10. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: 32nd Annual ACM Symposium on Theory of
Computing, Portland, OR, USA, 21–23 May 2000, pp. 435–440. ACM Press (2000)

11. Devadas, S., Ren, L., Xiao, H.: On iterative collision search for LPN and subset
sum. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 729–746.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 24

12. Dinur, I.: An algorithmic framework for the generalized birthday problem. Des.
Codes Crypt. 27(8), 1–30 (2018)

13. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of compos-
ite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 42

14. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Memory-efficient algorithms for
finding needles in haystacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9815, pp. 185–206. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 7

15. Esser, A., Heuer, F., Kübler, R., May, A., Sohler, C.: Dissection-BKW. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 638–
666. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 22

16. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 17

17. Fouque, P.A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, Even-Mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 22

18. Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice
codes. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 23–42. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 2

19. Helm, A., May, A.: Subset sum quantumly in 1.17∧n. In: 13th Conference on
the Theory of Quantum Computation, Communication and Cryptography (TQC
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

20. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
problem. J. ACM (JACM) 21(2), 277–292 (1974)

21. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 12

22. Joux, A., Lucks, S.: Improved generic algorithms for 3-collisions. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 347–363. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10366-7 21

23. Kirchner, P., Fouque, P.A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 3

https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-319-70503-3_24
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-662-53008-5_7
https://doi.org/10.1007/978-3-662-53008-5_7
https://doi.org/10.1007/978-3-319-96881-0_22
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-642-10366-7_21
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-662-47989-6_3

Improved Low-Memory Subset Sum and LPN Algorithms 199

24. Kuhn, F., Struik, R.: Random walks revisited: extensions of Pollard’s rho algorithm
for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M. (eds.)
SAC 2001. LNCS, vol. 2259, pp. 212–229. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45537-X 17

25. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

26. Nikolić, I., Sasaki, Y.: Refinements of the k -tree algorithm for the generalized
birthday problem. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9453, pp. 683–703. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 28

27. Nikolić, I., Sasaki, Y.: A new algorithm for the unbalanced meet-in-the-middle
problem. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 627–647. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6 23

28. Schroeppel, R., Shamir, A.: A t = o(2n/2), s = o(2n/4) algorithm for certain NP-
complete problems. SIAM J. Comput. 10(3), 456–464 (1981). https://doi.org/10.
1137/0210033

29. Trimoska, M., Ionica, S., Dequen, G.: Time-memory trade-offs for parallel collision
search algorithms. Cryptology ePrint Archive, Report 2017/581 (2017). https://
eprint.iacr.org/2017/581

30. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

31. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-48800-3_28
https://doi.org/10.1007/978-3-662-48800-3_28
https://doi.org/10.1007/978-3-662-53887-6_23
https://doi.org/10.1007/978-3-662-53887-6_23
https://doi.org/10.1137/0210033
https://doi.org/10.1137/0210033
https://eprint.iacr.org/2017/581
https://eprint.iacr.org/2017/581
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

Forgery Attacks on FlexAE and FlexAEAD

Maria Eichlseder, Daniel Kales(B), and Markus Schofnegger

Graz University of Technology, Graz, Austria
{maria.eichlseder,daniel.kales,markus.schofnegger}@iaik.tugraz.at

Abstract. FlexAEAD is one of the round-1 candidates in the ongoing
NIST Lightweight Cryptography standardization project and an evolu-
tion of the previously published FlexAE scheme. For each data block, the
mode performs multiple calls to a permutation in an Even-Mansour con-
struction. The designers argue that the mode permits using a permuta-
tion with slightly suboptimal properties in order to increase performance,
such as allowing differential distinguishers which cannot be extended to
attacks on the full construction.

We first show that this claim is incorrect since differences can not
only be introduced via the processed data, but also via the mode’s con-
trol flow. Second, by exploiting a strong differential clustering effect in
the permutation, we propose several forgery attacks on FlexAEAD with
complexity less than the security bound given by the designers, such as
a block reordering attack on full FlexAEAD-128 with estimated success
probability about 2−54. Additionally, we discuss some trivial forgeries
and point out domain separation issues.

Keywords: Authenticated encryption · NIST LWC · Forgery ·
Differential

1 Introduction

FlexAEAD [13] is one of the round-1 candidate algorithms of the ongoing NIST
Lightweight Cryptography (LWC) standardization project [15]. The FlexAEAD
family of authenticated encryption (AEAD) algorithms is based on the previously
published authenticated encryption design FlexAE [10–12]. Compared to FlexAE,
FlexAEAD was modified to also handle associated data blocks, and the generation
of the ciphertext blocks was amended by an additional call to their internal keyed
permutation to better resist reordering attacks.

One noteworthy property of the FlexAEAD design is its use of a primitive with
certain non-ideal properties, in particular the possibility to find differential dis-
tinguishers. This primitive, the Even-Mansour-keyed permutation PFK , is essen-
tially used in a triple-encryption construction with different keys K0,K1,K2 to
encrypt plaintext blocks into ciphertext blocks, while the intermediate encryp-
tion results are accumulated to later derive the tag. For this reason, the design-
ers argue that it is sufficient to ensure that no differential distinguishers can be
found for the combined number of rounds. They derive corresponding bounds
c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 200–214, 2019.
https://doi.org/10.1007/978-3-030-35199-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_10

Forgery Attacks on FlexAE and FlexAEAD 201

on the maximum expected differential probability of differential characteristics
based on the excellent properties of the underlying AES S-box and the (weaker)
diffusion properties of the (more lightweight) linear layer.

This approach deviates from the classical separation of mode and primitive,
where the security proof of the first relies on well-defined security assumptions
regarding the latter. However, related ideas have for example enjoyed consid-
erable popularity in the CAESAR competition for authenticated encryption
schemes, since they allow secure designs with a very lightweight footprint (e.g.,
[1]) or very high performance (e.g., [18]), and can also be found in several other
NIST LWC submissions. In these examples, unlike FlexAEAD, the reduced primi-
tives typically serve as state update functions where the state size is considerably
larger than the absorbed data block size.

Contributions. We show that all proposed variants of FlexAEAD are vulnerable
to different forgery attacks with complexity below the claimed security level.
We propose forgeries which reorder the associated data blocks, truncate the
ciphertext, or reorder the ciphertext blocks. These attacks work despite several
countermeasures included by the designers against such reordering attacks when
developing FlexAEAD based on FlexAE.

Our two main observations are (1) that the designers’ rationale to combine
the mode with a non-ideal primitive and to rely on multiple encryption to hide
distinguishing properties is not sound, and (2) that the attacks can be made
significantly more efficient by taking advantage of the strong clustering effect of
the sparse differential characteristics permitted by the non-ideal primitive. We
also discuss applicability to the original FlexAE design, as well as several domain
separation problems in FlexAEAD.

Related Work. This note was originally posted on NIST’s LWC mailing list [4].
Independent observations on this list include an iterated truncated differential
attack and Yoyo distinguisher on the underlying block cipher by Rahman et al.
[16,17] and a trivial padding domain separation attack for associated data by
Mège [8] that we also mention in Sect. 4.1. The designers of FlexAEAD have
responded to these observations with a series of suggested tweaks intended to
mitigate all attacks. We briefly discuss these new tweaks in Sect. 4.5.

Outline. We first recall the FlexAEAD and FlexAE designs in Sect. 2. In Sect. 3,
we first propose a differential characteristic for the keyed permutation. Then, we
show how to apply the resulting counter differential to obtain several forgery
attacks on FlexAEAD-64, FlexAEAD-128, and FlexAEAD-256. In Sect. 4, we dis-
cuss some additional issues with the FlexAEAD mode of operation that are
independent of the underlying primitive PF, as well as the applicability of our
results to FlexAE, their practical verification, and the designers’ proposed tweaks.
Finally, we conclude in Sect. 5.

202 M. Eichlseder et al.

2 Description of FlexAE and FlexAEAD

In this section, we summarize the construction of FlexAEAD [13].
The main building block of FlexAE and FlexAEAD is a keyed permutation

PFK . PFK is an Even-Mansour construction with whitening keys KA,KB , where
the master key is K = KA || KB . The inner permutation is built using a nib-
ble shuffling layer reminiscent of Tree-Structured SPNs [7] and several parallel
applications of the 8-bit AES S-Box [2]. The full construction of PFK is given
in Fig. 1. For a more detailed description of the building blocks, we refer to the
NIST submission document [13].

Input

KA K = KA || KB

Block Shuffle Layer

L R

S-Box Layer

S-Box Layer

S-Box Layer

State

KB

Output

R
ep

ea
t

r
ti

m
es

.

Fig. 1. Keyed permutation PFK [13] with r ∈ {5, 6, 7} for FlexAEAD-{64, 128, 256}.

PFK is used with four different keys in the FlexAEAD construction. These
four keys are derived from a master key K∗ by applying PFK∗ three times to
an initial state of 0n, iterating this process to generate enough bits for the four
subkeys K0,K1,K2,K3. A base counter is generated by applying PFK3 to the
nonce. This base counter is then used to generate the sequence (S0, . . . , Sn+m−1)
by repeatedly applying the increment step INC32 to the base counter, which
treats each 32-bit block of the base counter as an 32-bit little-endian integer and
increases it by one. PFK3 is then again applied to the result of INC32, yielding
the block S0. Further blocks Si can be generated by calling INC32 on the base
counter i + 1 times before finally applying PFK3 , as shown in Fig. 2a.

Forgery Attacks on FlexAE and FlexAEAD 203

Public Nonce

PFK3

INC32

PFK3

Si
c
a
ll

i+
1
ti
m
e
s

(a) Generation of the sequence S.

Public Nonce

PFK3

INC32

PFK3

S0

INC32

PFK3

S1

Δin

Δout

(b) Differential Δin → Δout.

Fig. 2. Counter-based differences in the generation of the sequence S.

The sequence S0, . . . , Sn−1, Sn, . . . , Sn+m−1 is then used to mask the asso-
ciated data blocks A0, . . . , An−1 and plaintext blocks P0, . . . , Pm−1, as well as
intermediate results of the ciphertext generation process. This construction is
inspired by the Integrity Aware Parallelizable Mode (IAPM) [5,6]. To compute
the tag T , PFK0 is applied to the Xor of the intermediate results after the first
application of PFK2 to each masked block, plus a constant indicating whether
the last plaintext block was a full or a partial block. The full construction is
illustrated in Fig. 3.

A0

S0

PFK2

st0

· · ·

· · ·

An−1

Sn−1

PFK2

stn−1

P0

Sn

PFK2

stn

PFK1

Sn

PFK0

C0

· · ·

· · ·

· · ·

Pm−1

Sn+m−1

PFK2

stn+m−1

PFK1

Sn+m−1

PFK0

Cm−1

const.

PFK0

MSB

T

Fig. 3. The FlexAEAD mode for authenticated encryption (simplified, from [13]).

204 M. Eichlseder et al.

3 Forgery Attacks on FlexAEAD

In this section, we first propose a differential characteristic for PFK3 . Then, we
show how to apply the resulting counter differential to obtain several forgery
attacks on FlexAEAD-64, FlexAEAD-128, and FlexAEAD-256.

3.1 Differential Characteristic for the Counter Sequence

Recall the generation of the sequence S, as shown in Fig. 2a. The intermediate
state is updated by calling INC32, incrementing each 32-bit block of the state.
Consider the difference between two states Si and Si+1: The only difference
between the input to the final call to PFK3 is one additional call to INC32. A
little-endian addition by 1 behaves like an Xor operation with probability 1

2
(exactly when the least significant bit of the state is zero). Therefore, the call
INC32 behaves like an Xor with a probability of 2−2 (2−4, 2−8) for FlexAEAD-64
(FlexAEAD-128, FlexAEAD-256). This process is shown in Fig. 2b.

Consider the input difference Δin = 01000000 01000000 FlexAEAD-64
(repeated twice for FlexAEAD-128 and four times for FlexAEAD-256). We are
interested in differential characteristics for PF starting with this input differ-
ence, and use a combined Mixed-Integer Linear Programming (MILP) [9,19]
and Constraint Programming (CP)/Satisfiability (SAT) model of the cipher for
our search: We first find characteristics truncated to nibble activity with the
minimum number of active S-boxes using a MILP model for solvers such as IBM
CPLEX or Gurobi. Then, we try to find compatible bitwise differences leading to
the highest expected differential probability of the resulting differential charac-
teristic using a precise model of valid transitions in the Differential Distribution
Table (DDT) of the AES S-box expressed in the Constraint Programming syntax
of the Z3 solver. We remark that the resulting characteristic is not necessarily
optimal with respect to its exact probability, but this is not our aim.

For the MILP model, we use binary decision variables for each nibble of the
state after each relevant step (S-box layers, Xors, etc.). The nibble permutation
can then be modelled trivially, the Xors between the state halves can be mod-
elled using a helper variable per nibble Xor and the branch number of 2, and
each S-box can be modelled in a similar way using a helper variable per S-box
and the bijectivity of the S-box (i.e., at least one input nibble is active if and
only if at least one output nibble is active). Additionally, we use the fixed input
difference Δin as initial constraints. The objective function to be minimized is
the number of active S-boxes, which is an easy task for various MILP solvers.
The resulting nibble-truncated characteristic can be extended to a full bitwise
differential characteristic by modelling the DDT using Constraint Programming.
More specifically, we simply list all possible transitions from 8-bit input differ-
ences to 8-bit output differences as “hard constraints” and punish transitions
with lower probability using Z3’s “soft constraints” with appropriate costs. The
solver yields a solution that satisfies all hard constraints and minimizes the cost
for violating soft constraints, i.e., choosing suboptimal transitions. The resulting
differential characteristics for PF are illustrated in Fig. 4.

Forgery Attacks on FlexAE and FlexAEAD 205

0100000001000000

0011000000000000

00000000
S S S S

00110000

00400000
S S S S

00400000

0040000000100000
S S S S

S

S

0000410000000000

00000000
S S S S

00004100

0000e000
S S S S

0000e000

0000e00000004000
S S S S

S

S

00000000e4000000

0a000000
S S S S

0a000000

0a000000
S S S S

00000000

0a00000000000000
S S S S

S

S

00a0000000000000

00000000
S S S S

00a00000

00600000
S S S S

00600000

0060000000400000
S S S S

S

S

0000640000000000

00000000
S S S S

00006400

00002000
S S S S

00002000

000020000000d400
S S S S

S

S

(a) F-64: 2−66

01000000010000000100000001000000

00110000000000000011000000000000

0011000000000000
S S S S S S S S

0000000000000000

0000000000000000
S S S S S S S S

0011000000000000

00000000000000000050000000000000
S S S S S S S S

S

S

00000500000000000000000000000000

0000000000000000
S S S S S S S S

0000050000000000

0000e00000000000
S S S S S S S S

0000e00000000000

0000e000000000000000400000000000
S S S S S S S S

S

S

00000000e40000000000000000000000

0000000000000000
S S S S S S S S

00000000e4000000

000000000a000000
S S S S S S S S

000000000a000000

000000000a0000000000000004000000
S S S S S S S S

S

S

000000000000000000a4000000000000

0050000000000000
S S S S S S S S

0050000000000000

0050000000000000
S S S S S S S S

0000000000000000

00500000000000000000000000000000
S S S S S S S S

S

S

00005000000000000000000000000000

0000000000000000
S S S S S S S S

0000500000000000

0000060000000000
S S S S S S S S

0000060000000000

000006000000000000000c0000000000
S S S S S S S S

S

S

00000000006c00000000000000000000

0000000000000000
S S S S S S S S

00000000006c0000

0000000000330000
S S S S S S S S

0000000000330000

00000000003300000000000000a00000
S S S S S S S S

S

S

(b) FlexAEAD-128: 2−79

0100000001000000010000000100000001000000010000000100000001000000

0011000000000000001100000000000000110000000000000011000000000000

00a00000000000000011000000000000
S S S S S S S S S S S S S S S S

00b10000000000000000000000000000

00a00000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000000011000000000000

00a000a0000000000000
S S S S S S S S S S S S S S S S

S S

S

S

0000a00000000000000000000000000000000a00000000000000000000000000

00007000000000000000000000000000
S S S S S S S S S S S S S S S S

0000d000000000000000000000000000

00007000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000000000000000000000

00007000
S S S S S S S S S S S S S S S S

S

S

000000007000

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000700000000000000000000000

00000000050000000000000000000000
S S S S S S S S S S S S S S S S

00000000050000000000000000000000

0000000005000000000000000000000000000000080000000000000000000000
S S S S S S S S S S S S S S S S

S

S

0000000000000000005800

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000000058000000000000

00000000000000000009000000000000
S S S S S S S S S S S S S S S S

00000000000000000009000000000000

0000000000000000000900000000000000000000000000000002000000000000
S S S S S S S S S S S S S S S S

S

S

0000000000000000000000000000000000000092000000000000000000000000

0000000f000000000000000000000000
S S S S S S S S S S S S S S S S

0000000f000000000000000000000000

0000000f000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000000000000000000000

0000000f00
S S S S S S S S S S S S S S S S

S

S

00000000000000f000

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000f00000000000000000

000000000000000a0000000000000000
S S S S S S S S S S S S S S S S

000000000000000a0000000000000000

000000000000000a000000000000000000000000000000040000000000000000
S S S S S S S S S S S S S S S S

S

S

000000000000000000000000000000a400000000000000000000000000000000

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

000000000000000000000000000000a4

00000000000000000000000000000050
S S S S S S S S S S S S S S S S

00000000000000000000000000000050

0000000000000000000000000000005000000000000000000000000000000030
S S S S S S S S S S S S S S S S

S

S

(c) FlexAEAD-256: 2−108

Fig. 4. Differential characteristics for full-round PFK in FlexAEAD variants.

206 M. Eichlseder et al.

0100000001000000

0011000000000000

00000000
S S S S

00110000

00*00000
S S S S

00*00000

00*0000000*00000
S S S S

S

S

0000**0000000000

00000000
S S S S

0000**00

0000*000
S S S S

0000*000

0000*0000000*000
S S S S

S

S

00000000**000000

**000000
S S S S

**000000

0*000000
S S S S

**000000

0*0000000*000000
S S S S

S

S

S

00**000000000000

00000000
S S S S

00**0000

00*00000
S S S S

00*00000

00*0000000*00000
S S S S

S

S

0000**0000000000

00000000
S S S S

0000**00

0000xx00
S S S S

0000xx00

0000xx000000zz00
S S S S

S

S

(a) F-64: 2−46

01000000010000000100000001000000

00110000000000000011000000000000

00**000000000000
S S S S S S S S

00**000000000000

00*0000000000000
S S S S S S S S

00**000000000000

00*000000000000000*0000000000000
S S S S S S S S

S

S

S

0000**00000000000000000000000000

0000000000000000
S S S S S S S S

0000**0000000000

0000*00000000000
S S S S S S S S

0000*00000000000

0000*000000000000000*00000000000
S S S S S S S S

S

S

00000000**0000000000000000000000

0000000000000000
S S S S S S S S

00000000**000000

000000000*000000
S S S S S S S S

000000000*000000

000000000*000000000000000*000000
S S S S S S S S

S

S

000000000000000000**000000000000

00**000000000000
S S S S S S S S

00**000000000000

00*0000000000000
S S S S S S S S

00**000000000000

00*000000000000000*0000000000000
S S S S S S S S

S

S

S

0000**00000000000000000000000000

0000000000000000
S S S S S S S S

0000**0000000000

00000*0000000000
S S S S S S S S

00000*0000000000

00000*000000000000000*0000000000
S S S S S S S S

S

S

0000000000**00000000000000000000

0000000000000000
S S S S S S S S

0000000000**0000

0000000000xx0000
S S S S S S S S

0000000000xx0000

0000000000xx00000000000000zz0000
S S S S S S S S

S

S

(b) FlexAEAD-128: 2−54

0100000001000000010000000100000001000000010000000100000001000000

0011000000000000001100000000000000110000000000000011000000000000

00**00000000000000**000000000000
S S S S S S S S S S S S S S S S

00**00000000000000**000000000000

00*000000000000000*0000000000000
S S S S S S S S S S S S S S S S

00**00000000000000**000000000000

00*000000000000000*000000000000000*000000000000000*0000000000000
S S S S S S S S S S S S S S S S

S S

S S

S S

0000**000000000000000000000000000000**00000000000000000000000000

0000**00000000000000000000000000
S S S S S S S S S S S S S S S S

0000**00000000000000000000000000

0000*000000000000000000000000000
S S S S S S S S S S S S S S S S

0000**00000000000000000000000000

0000*0000000000000000000000000000000*000000000000000000000000000
S S S S S S S S S S S S S S S S

S

S

S

00000000**00

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000**0000000000000000000000

000000000*0000000000000000000000
S S S S S S S S S S S S S S S S

000000000*0000000000000000000000

000000000*0000000000000000000000000000000*0000000000000000000000
S S S S S S S S S S S S S S S S

S

S

000000000000000000**00

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

000000000000000000**000000000000

0000000000000000000*000000000000
S S S S S S S S S S S S S S S S

0000000000000000000*000000000000

0000000000000000000*0000000000000000000000000000000*000000000000
S S S S S S S S S S S S S S S S

S

S

00000000000000000000000000000000000000**000000000000000000000000

000000**000000000000000000000000
S S S S S S S S S S S S S S S S

000000**000000000000000000000000

0000000*000000000000000000000000
S S S S S S S S S S S S S S S S

000000**000000000000000000000000

0000000*0000000000000000000000000000000*000000000000000000000000
S S S S S S S S S S S S S S S S

S

S

S

00000000000000*000

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

00000000000000*00000000000000000

000000000000000*0000000000000000
S S S S S S S S S S S S S S S S

000000000000000*0000000000000000

000000000000000*0000000000000000000000000000000*0000000000000000
S S S S S S S S S S S S S S S S

S

S

000000000000000000000000000000**00000000000000000000000000000000

00000000000000000000000000000000
S S S S S S S S S S S S S S S S

000000000000000000000000000000**

000000000000000000000000000000xx
S S S S S S S S S S S S S S S S

000000000000000000000000000000xx

000000000000000000000000000000xx000000000000000000000000000000zz
S S S S S S S S S S S S S S S S

S

S

(c) FlexAEAD-256: 2−70

Fig. 5. Clustered characteristics for full-round PFK in FlexAEAD variants.

Forgery Attacks on FlexAE and FlexAEAD 207

In the following, we always denote the input difference of this characteristic
as Δin and the output difference as Δout. Under the Markov assumption, the
probability of these differential characteristics is 2−66 (Fig. 4a for FlexAEAD-64),
2−79 (Fig. 4b for FlexAEAD-128), and 2−108 (Fig. 4c for FlexAEAD-256), respec-
tively. We remark that the Markov assumption is clearly not well-suited for this
keyless construction with limited diffusion.

The round function construction is very prone to clustering of characteris-
tics, as illustrated by the corresponding partially truncated characteristics in
Fig. 5, where * denotes a nibble with an unspecified difference, xx is an arbi-
trary fixed nonzero difference, and zz is the high-probability S-box output dif-
ference with P[xx → zz] = 2−6. Using the estimate that P[11 → **] = 1,
P[{**, *0, 0*} → *0] = P[{**, *0, 0*} → 0*] = 2−4, and P[** → xx] = 2−8, we
obtain estimated probabilities of 2−46 (FlexAEAD-64), 2−54 (FlexAEAD-128), and
2−70 (FlexAEAD-256). Similar clusters for different input differences with max-
imal probability by updating the cost function of the previous MILP model:
For any S-box, let x0, x1 ∈ {0, 1} denote the activity of its input nibbles,
y0, y1 ∈ {0, 1} its output nibbles, and s ∈ {0, 1} the S-box activity helper vari-
able. Instead of summing over s for each S-box for the cost function, minimize
the sum over 4 · (2 ·s−y0 −y1), which contributes a cost of 4 (probability 2−4) if
the S-box is active and requires one inactive output nibble, and cost 0 otherwise.
Additionally, the probability of producing the specific bitwise output difference
after the last round needs to be taken into account, which can be approximated
by a cost of 4 per active nibble at the output (disregarding small optimizations
as used in the final rounds in Fig. 5).

Furthermore, these clusters work not only for a fixed starting difference of 01
in the least significant byte of each counter, but for any single-nibble differences
{01, 03, 07, 0f}. As a consequence, the transition from modular difference +1 in
each counter to a suitable Xor difference works with high success probability
close to 1. A more precise probability estimate could be obtained using tools
such as semi-truncated characteristics [3] and exploiting the lack of round keys,
but we expect a very similar result. Practical experiments on up to 3 rounds
confirm this estimate, see Sect. 4.4.

3.2 Forgery Attacks for FlexAEAD Using the Counter Difference

We can now use these differentials Δin → Δout in the counter sequence to mount
forgery attacks on the full FlexAEAD-64, FlexAEAD-128, and FlexAEAD-256
schemes. In the following, we describe several different approaches.

Changing Associated Data. We query a tag for some plaintext P with associated
data A = A0 || A1, where A0 ⊕ A1 = Δout. With a probability of about 2−46

(FlexAEAD-64), 2−54 (FlexAEAD-128), or 2−70 (FlexAEAD-256), the sequence
blocks S0 and S1 follow the cluster of differential characteristics, and therefore
also fulfill S0 ⊕ S1 = Δout. Then, A0 ⊕ A1 ⊕ S0 ⊕ S1 = 0, so S0 ⊕ A0 = S1 ⊕ A1,
resulting in a contribution of the two associated data blocks to the checksum of
PFK2(S0 ⊕ A0) ⊕ PFK2(S1 ⊕ A1) = 0.

208 M. Eichlseder et al.

Now, if we swap A0 and A1, with the same reasoning, the contribution to the
checksum will again be 0, so the original tag is valid for the modified associated
data with swapped blocks.

Although the example above assumes a distance of 1 between associated data
blocks, we can generalize this property and also find similar differential charac-
teristics for higher distances j. Distances with lower hamming weight and with
several suitable Xor differences following the same truncated difference gener-
ally result in a better probability. In practical experiments on round-reduced
FlexAEAD, we observed an even higher success probability than expected when
swapping associated data blocks, such as examples with a non-zero, but constant
contribution to the checksum.

Truncating Ciphertext. In a similar fashion to the previous attack, we can also
use this strategy to create a forgery targeting the plaintext.

Again, consider the generation of the sequence S, using the same strategy and
differential characteristics as in Sect. 3.1. Now query a tag with a plaintext P =
P0 || · · · || Pm−2 || Pm−1, where Pm−2 ⊕ Pm−1 = Δout. With the same reasoning
and success probability as before, the combined contribution to the checksum of
Pm−2 and Pm−1 is 0, since, like in the previous attack, Pm−2⊕Sn+m−2 = Pm−1⊕
Sn+m−1, and therefore PFK2(Sn+m−2 ⊕ Pm−2) ⊕ PFK2(Sn+m−1 ⊕ Pm−1) = 0.

We can now produce a forgery by truncating the last two ciphertext blocks,
since the contribution of the corresponding plaintext blocks to the checksum and
therefore the tag is 0, and the number of blocks does not influence the tag.

Reordering Ciphertext. For their submission to the NIST Lightweight Cryptog-
raphy standardization project, the designers of FlexAEAD updated their design
from the previous version FlexAE in order to include associated data and prevent
trivial reordering attacks. In this section, we show a forgery based on reordering
ciphertexts of a chosen-plaintext query. Again, this attack is based on the same
property of the sequence S as the two previous attacks.

Consider a chosen plaintext P = P0 || P1, where P0 ⊕ P1 = Δout, and the
corresponding ciphertext C = C0 || C1 and tag T . As before, this difference of
1 in the block index results in the differential characteristics depicted in Fig. 5.
In FlexAEAD, the sequence values S0 and S1 are added at two points during
the encryption process, so that the internal difference Δout propagates as shown
in Fig. 6. By now swapping the ciphertext blocks C0 and C1, we have a valid
forgery using the original tag T . If the sequence generation followed the chosen
characteristic, the two swapped ciphertext blocks will again have a checksum
contribution of 0 during the decryption process. However, the resulting plaintext
blocks are unpredictable.

Forgery Attacks on FlexAE and FlexAEAD 209

P0

S0

PFK2

st0

PFK1

S0

PFK0

C0

P1

S1

PFK2

st1

PFK1

S1

PFK0

C1

const.

PFK0

MSB

T

Δout

0

0

0

Δout

Δfin

Fig. 6. Propagation of differences in the FlexAEAD encryption function, assuming S0⊕
S1 = Δout.

4 Discussion and Further Observations on the Mode

The forgery attacks proposed in Sect. 3 exploit high-probability differential char-
acteristics for the primitive PF, and are best prevented by increasing the number
of rounds or replacing this primitive entirely. We remark that the designers were
aware of the low bounds for PF, but argued that only the bounds for the multiple
application PF3 = PF ◦ PF ◦ PF as used to compute Ci from Pi are relevant. As
demonstrated in Sect. 3, this is not the case.

In the following, we discuss additional issues with the FlexAEAD mode of
operation. These issues are independent of the underlying primitive PF and can
be fixed with small tweaks to the mode or by phrasing the security claim for more
restrictive message lengths. Finally, we discuss the applicability of our results to
FlexAE and their practical verification.

4.1 Domain Separation and Length Issues

Domain Separation between Associated Data and Plaintext. In Fig. 3, observe
that the first step of the encryption (i.e., producing part of the checksum) is
exactly the same for associated data and the plaintext. Using this observation,
we can create a trivial forgery with probability 1 by redeclaring some part of the
plaintext to be associated data instead. As an example, given a nonce-associated
data-ciphertext-tag tuple (N,A,C, T) with a known plaintext P = P0 || P1 (and
a corresponding ciphertext C = C0 || C1), we can craft a second valid tuple
(N∗, A∗, C∗, T ∗) with probability 1 by setting

N∗ = N, A∗ = A || P0, C∗ = C1, T ∗ = T.

This forgery attack works for all versions of FlexAEAD.

210 M. Eichlseder et al.

Zero-Length Associated Data and Plaintext. During encryption, the nonce is
used to generate the sequence S for each block of associated data and plaintext.
If the combined length of associated data and plaintext is 0, the sequence is never
used during encryption at all and the final tag does not depend on the nonce.
Thus, a forgery is obtained by querying the static tag for empty associated data
and plaintext under an arbitrary nonce and then combining it with a different
nonce.

To fix this issue, the nonce needs to be included in the computation of the
tag, for example by prepending the nonce N before the first associated data
block A0 in the associated data processing phase.

Padding of Associated Data. The associated data is padded using zeros, but the
original length of the last associated data block does not influence the tag. Thus,
there is no way to distinguish between valid associated data ending in 0 and a
padded associated data block. In contrast, the padding of the plaintext has an
influence on the final tag value; it appears this was omitted for associated data
by mistake, and can easily be fixed. This issue was also observed by Mège [8].

4.2 Other Observations

Overflow of the Internal Counter. During the generation of the sequence S, an
internal state is updated repeatedly using the INC32 function. The internal state
repeats after 232 calls, therefore limiting the size of the encrypted payload to 232

blocks. Otherwise, if the associated data or plaintext length is larger than 232,
any two blocks (Ai, Ai+232) or (Ci, Ci+232) can be swapped to produce a forgery.

This can be addressed by either explicitly imposing a corresponding data
length limit as part of the security claim, or by choosing a counter size that does
not overflow within the data length limit.

4.3 Applicability to FlexAE

FlexAE, published at IEEE ICC 2017 [11], is the predecessor design of FlexAEAD.
It features a slightly simpler mode that omits the step PFK1(·) ⊕ Sj in the
computation of ciphertext block Cj and does not support associated data A.
The primitive also shows minor differences, such as 3 slightly different S-boxes,
which have no significant impact on the security analysis. The additional steps in
FlexAEAD were added by the designers to fix problems in FlexAE; in particular,
the ciphertext reordering attack of Sect. 3.2 works with probability 1 for FlexAE.

FlexAE even permits forgeries with zero encryption queries, as illus-
trated in Fig. 7. The following is a forgery with probability about 2−54 for
FlexAE-64–128 (or, with similar characteristics, 2−86 for FlexAE-128–256, 2−150

for FlexAE-256–512, or 2−278 for FlexAE-512–1024): Take an arbitrary nonce
N and single-block ciphertext C, and select T = C ⊕ Δout with Δout =
xx000000 zz000000, where xx is an arbitrary nonzero difference and zz is the
high-probability S-box output difference with P[xx → zz] = 2−6. This works
based on the differential with input difference Δin = 10101010 10101010 for

Forgery Attacks on FlexAE and FlexAEAD 211

1010101010101010

1100110011001100

0000
S S S S

0000

*000*000
S S S S

0000

*000*000*000*000
S S S S

S

S

S

S

S

S

1

2−8

2−8

000000000000

**000000
S S S S

**000000

*0000000
S S S S

**000000

*0000000*0000000
S S S S

S

S

S

1

2−4

2−4

**00000000000000

00000000
S S S S

**000000

*0000000
S S S S

*0000000

*0000000*0000000
S S S S

S

S

2−4

2−4

**00000000000000

00000000
S S S S

**000000

*0000000
S S S S

*0000000

*0000000*0000000
S S S S

S

S

2−4

2−4

**00000000000000

00000000
S S S S

**000000

xx000000
S S S S

xx000000

xx000000zz000000
S S S S

S

S

2−8

2−6

1010101010101010

1100110011001100

0000
S S S S

0000

0*000*00
S S S S

0000

0*000*000*000*00
S S S S

S

S

S

S

S

S

1

2−8

2−8

00**000000**0000

00**0000
S S S S

00**0000

00*00000
S S S S

00**0000

00*0000000*00000
S S S S

S

S

S

1

2−4

2−4

0000**0000000000

00000000
S S S S

0000**00

0000*000
S S S S

0000*000

0000*0000000*000
S S S S

S

S

2−4

2−4

00000000**000000

**000000
S S S S

**000000

*0000000
S S S S

**000000

*0000000*0000000
S S S S

S

S

S

1

2−4

2−4

**00000000000000

00000000
S S S S

**000000

xx000000
S S S S

xx000000

xx000000zz000000
S S S S

S

S

2−8

2−6

P0

S0

PFK2

st0

PFK0

C0

101010...10

PFK0

MSB

T

Δin

Δout

Fig. 7. Zero-query forgery for full FlexAE-64–128 with clusters of probability 2−54.

PFK0 due to the constant addition between the computation of tag T and a
single-block ciphertext C. The actual success probability is likely higher; there
are several similar clusters contributing to the same differential (see Fig. 7), and
the alternative padding constant (01)∗ instead of (10)∗ gives an alternative com-
patible Δin to double the probability.

4.4 Practical Verification

All our practical tests use the reference implementation of FlexAEAD. We success-
fully verified the domain separation issue (Sect. 4.1) using the full-round version,
and we could also confirm that for inputs with zero-length associated data and
plaintext blocks, the final tag does not depend on the nonce (Sect. 4.2).

212 M. Eichlseder et al.

Moreover, we practically verified the estimated probabilities of our differ-
ential characteristics for reduced-round versions of both FlexAEAD-128 and
FlexAEAD-256. More specifically, on average we are able to find the required
output difference for FlexAEAD-128 with 3-round PFK using about 230 sam-
ples, and that for FlexAEAD-256 with 2-round PFK using about 224 samples, as
expected.

4.5 Tweaks Suggested by FlexAEAD’s Designers

In response to observations by several authors (see Sect. 1), the designers of
FlexAEAD have informally proposed a number of tweaks to mitigate the issues
[14]. Proposed tweaks include, in chronologic order,

1. Changing the increment in INC32 from 0x00000001 to 0x11111111 in order
to preclude low-weight Xor-distances between close blocks;

2. Reducing data limits to at most 232 blocks per encryption (message plus
associated data) with additional, stricter limits on associated data length
(228 blocks for FlexAEAD-128, 223 blocks for FlexAEAD-256) – note that this
does not seem compatible with the NIST LWC guidelines;

3. Modifying the associated data padding to 10 . . . 0 and executing PFK2 twice
for the last block unless the original length was exactly a multiple of the block
length, in which case the padding is omitted;

4. Significantly strengthening the linear layer with an additional diffusion step;
5. Including a function of the final counter after associated data processing,

PFK2(PFK2(Sn)), in the checksum computation.

Changes (3) and (5) appear to mitigate the issues in Sect. 4.1, but a more detailed
analysis is advisable. Change (2) mitigates the overflow described in Sect. 4.2,
but does not appear sufficient against the attacks in Sect. 3 in combination with
(1). For example, consider associated data blocks A0 and Aj with j = 228 =
0x10000000 for FlexAEAD-64. The corresponding counter increment between
these blocks is j · 0x11111111 ≡ j (mod 232), which will correspond to an input
Xor difference of Δin = 000000*0 000000*0 with very high probability. This
leads to an attack with the same success probability as the one in Sect. 3 using
a truncated characteristic closely related to the one in Fig. 5a (with mirrored
truncated difference patterns at the input to each round). Unless more significant
changes such as (4) are considered, it is necessary to apply smaller data limits
(a) for all variants and (b) for both associated data and plaintext. In addition,
a more detailed analysis of potential tradeoffs with a slightly higher number of
active nibbles in Δin with a lower success probability, but also a sufficiently low
distance between the swapped data blocks, is recommended.

Due to the very recent proposal, we have not analyzed the impact of the most
significant change (4) in detail, but it appears to significantly improve resistance
against differential cryptanalysis and thus against attacks similar to the ones we
proposed in Sect. 3.

Forgery Attacks on FlexAE and FlexAEAD 213

5 Conclusion

We showed several forgery attacks against the first-round NIST LWC candi-
date FlexAEAD (also applying to its predecessor FlexAE). Except for the trivial
forgery based on domain separation issues, these forgery variants are based on
high-probability clusters of differential characteristics in the generation of the
internal sequence S. The resulting success probabilities per forgery attempt are
summarized as follows. Using a single encryption query with a fixed difference
between two consecutive associated data or plaintext blocks, a forgery attempt
with swapped or truncated blocks is successful with probability about 2−46

(FlexAEAD-64), 2−54 (FlexAEAD-128), or 2−70 (FlexAEAD-256). Furthermore, we
proposed forgery attacks on FlexAE with zero encryption queries and arbitrary
single-block ciphertexts with success probability about 2−54 (FlexAE-64–128),
2−86 (FlexAE-128–256), 2−150 (FlexAE-256–512), or 2−278 (FlexAE-512–1024).

The set of design tweaks proposed in response by FlexAEAD’s designers,
including a significantly strengthened linear layer and improved domain sepa-
ration in the mode, addresses these issues. Further dedicated analysis will be
required for a potential final tweaked proposal to validate its improved security
properties.

Acknowledgements. We thank the designers of FlexAE and FlexAEAD for their com-
ments on a preliminary version of this analysis on the NIST LWC mailing list.

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Ketje v2. Sub-
mission to CAESAR: Competition for Authenticated Encryption. Security, Appli-
cability, and Robustness (Round 3) (2014). http://competitions.cr.yp.to/round3/
ketjev2.pdf

2. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

3. Eichlseder, M., Kales, D.: Clustering related-tweak characteristics: application to
MANTIS-6. IACR Trans. Symmetric Cryptol. 2018(2), 111–132 (2018). https://
doi.org/10.13154/tosc.v2018.i2.111-132

4. Eichlseder, M., Kales, D., Schofnegger, M.: Official Comment: FlexAEAD. Posting
on the NIST LWC mailing list. https://groups.google.com/a/list.nist.gov/d/msg/
lwc-forum/cRjs9x43G2I/KsBQLdDODAAJ

5. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6 32

6. Jutla, C.S.: Encryption modes with almost free message integrity. J. Cryptol. 21(4),
547–578 (2008). https://doi.org/10.1007/s00145-008-9024-z

7. Kam, J.B., Davida, G.I.: Structured design of substitution-permutation encryption
networks. IEEE Trans. Comput. 28(10), 747–753 (1979). https://doi.org/10.1109/
TC.1979.1675242

http://competitions.cr.yp.to/round3/ketjev2.pdf
http://competitions.cr.yp.to/round3/ketjev2.pdf
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.13154/tosc.v2018.i2.111-132
https://doi.org/10.13154/tosc.v2018.i2.111-132
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/cRjs9x43G2I/KsBQLdDODAAJ
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/cRjs9x43G2I/KsBQLdDODAAJ
https://doi.org/10.1007/3-540-44987-6_32
https://doi.org/10.1007/s00145-008-9024-z
https://doi.org/10.1109/TC.1979.1675242
https://doi.org/10.1109/TC.1979.1675242

214 M. Eichlseder et al.

8. Mège, A.: Official Comment: FlexAEAD. Posting on the NIST LWC mailing list.
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/DPQVEJ5oBeU/
YXW0QjfjBQAJ

9. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

10. do Nascimento, E.M.: Algoritmo de Criptografia Leve com Utilização de
Autenticação. Ph.D. thesis, Instituto Militar de Engenharia, Rio de Janeiro
(2017). http://www.comp.ime.eb.br/pos/arquivos/publicacoes/dissertacoes/2017/
2017-Eduardo.pdf

11. do Nascimento, E.M., Xexéo, J.A.M.: A flexible authenticated lightweight cipher
using Even-Mansour construction. In: IEEE International Conference on Commu-
nications - ICC 2017, pp. 1–6. IEEE (2017). https://doi.org/10.1109/ICC.2017.
7996734

12. do Nascimento, E.M., Xexéo, J.A.M.: A lightweight cipher with integrated
authentication. In: Simpósio Brasileiro em Segurança da Informação e de Sis-
temas Computacionais - SBSEG, pp. 25–32. Sociedade Brasileira de Com-
putação (2018). https://portaldeconteudo.sbc.org.br/index.php/sbseg estendido/
article/view/4138

13. do Nascimento, E.M., Xexéo, J.A.M.: FlexAEAD. Submission to Round 1 of the
NIST Lightweight Cryptography Standardization Process (2019). https://csrc.
nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/
spec-doc/FlexAEAD-spec.pdf

14. do Nascimento, E.M., Xexéo, J.A.M.: Official Comment: FlexAEAD. Posting on
the NIST LWC mailing list (2019). https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/official-comments/FlexAEAD-
official-comment.pdf

15. National Institute of Standards and Technology (NIST): Lightweight cryptog-
raphy standardization process (2019). https://csrc.nist.gov/projects/lightweight-
cryptography

16. Rahman, M., Saha, D., Paul, G.: Attacks against FlexAEAD. Posting on the NIST
LWC mailing list. https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/
VLWtGnJStew/X3Fxexg1AQAJ

17. Rahman, M., Saha, D., Paul, G.: Interated truncated differential for internal keyed
permutation of FlexAEAD. IACR Cryptology ePrint Archive, Report 2019/539
(2019). https://eprint.iacr.org/2019/539

18. Wu, H., Preneel, B.: AEGIS v1.1. Submission to CAESAR: Competition for
Authenticated Encryption. Security, Applicability, and Robustness (Round 3 and
Final Portfolio) (2014). http://competitions.cr.yp.to/round3/aegisv11.pdf

19. Wu, S., Wang, M.: Security evaluation against differential cryptanalysis for block
cipher structures. IACR Cryptology ePrint Archive, Report 2011/551 (2011)

https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/DPQVEJ5oBeU/YXW0QjfjBQAJ
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/DPQVEJ5oBeU/YXW0QjfjBQAJ
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
http://www.comp.ime.eb.br/pos/arquivos/publicacoes/dissertacoes/2017/2017-Eduardo.pdf
http://www.comp.ime.eb.br/pos/arquivos/publicacoes/dissertacoes/2017/2017-Eduardo.pdf
https://doi.org/10.1109/ICC.2017.7996734
https://doi.org/10.1109/ICC.2017.7996734
https://portaldeconteudo.sbc.org.br/index.php/sbseg_estendido/article/view/4138
https://portaldeconteudo.sbc.org.br/index.php/sbseg_estendido/article/view/4138
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/FlexAEAD-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/FlexAEAD-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/FlexAEAD-official-comment.pdf
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/VLWtGnJStew/X3Fxexg1AQAJ
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/VLWtGnJStew/X3Fxexg1AQAJ
https://eprint.iacr.org/2019/539
http://competitions.cr.yp.to/round3/aegisv11.pdf

Key Recovery Attacks on Some Rank
Metric Code-Based Signatures

Terry Shue Chien Lau, Chik How Tan(B), and Theo Fanuela Prabowo

Temasek Laboratories, National University of Singapore,
5A Engineering Drive 1, #09-02, Singapore 117411, Singapore

{tsltlsc,tsltch,tsltfp}@nus.edu.sg

Abstract. Designing secure Code-based signature schemes remains an
issue today. In this paper, we focus on schemes designed with the Fiat-
Shamir transformations rationale (commit and challenge strategy). We
propose two generic key recovery attacks on rank metric code-based sig-
nature schemes Veron, TPL and RQCS. More specifically, we exploit the
weakness that a support basis or an extended support basis of the secret
key could be recovered from the signatures generated in these schemes
through different techniques. Furthermore, we are able to determine a
support matrix or an extended support matrix for the secret key if the
number of equations over the base field is greater than the number of
unknown variables in the support matrix. We show that both the design
of TPL and RQCS schemes contain these weaknesses, and no reparation
of parameters for these schemes is possible to resist our two attacks.
Moreover, we show that we can recover a support basis for the secret key
used in Veron and that our first attack is successful due to the choice of
its proposed parameters. We implement our attacks on Veron, TPL and
RQCS signature schemes and manage to recover the secret keys within
seconds.

Keywords: Post-quantum cryptography · Digital signature ·
Code-based cryptography · Key recovery attack

1 Introduction

Post-quantum cryptography has drawn a lot of attention since the discovery of
Shor’s algorithm to factorize integers in polynomial time [14]. More recently, the
National Institute of Standards and Technology (NIST) has initiated a standard-
ization process for quantum-safe key exchange protocols, public-key encryption
and digital signature schemes. Code-based cryptography stands as one of the
most promising quantum-safe approaches, accounting for 6 out of 17 candidates
for encryption and key-establishment. Unfortunately, if we focus on the design
of digital signature schemes, none of the code-based schemes made it to Round
2. The design of an efficient and secure signature scheme remains a challenging
task in code-based cryptography.

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 215–235, 2019.
https://doi.org/10.1007/978-3-030-35199-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_11

216 T. S. C. Lau et al.

Recently, the Fiat-Shamir (FS) transformation [7] has been used to construct
several new rank metric signature schemes. For instance, Bellini et al. [4] adapted
the Veron [17] and CVE [6] identification schemes in the rank metric setting and
converted them into signature schemes via the FS transformation. On the other
hand, FS rank metric signature schemes such as the TPL signature scheme [16],
RQCS signature scheme [15], and Durandal [3] were constructed by adapting the
Schnorr approach [13].

Our Contributions. This paper is a generalization of the works published in
[2,11]1. More specifically, we propose two generic key recovery attacks on FS
rank metric signature schemes.

Generally for a FS rank metric code-based signature scheme, a signature of
length n is generated with some ephemeral keys and the secret key during the
signature generation. In order to avoid signature forgery, the secret key and
ephemeral keys were chosen such that the rank of the signature generated is less
than min{n,m}. Our two attacks exploit two weaknesses in which how these FS
rank metric code-based signature schemes are designed:

1. Whether the generated signature of low rank would leak any information
on a support basis (or extended support basis) for the secret key (or the
ephemeral key). If yes, then we are able to determine a support basis (or
extended support basis) for the secret key (or the ephemeral key).

2. Let t be the dimension of the support (or dimension of the extended support)
for the secret key (or the ephemeral key). If tn ≤ (n − k)m, then the number
of unknown variables (for the support matrix or extended support matrix) is
less than or equal to the number of equations available over Fq. Thus, we are
able to solve for a support matrix (or an extended support matrix) for the
secret key (or the ephemeral key) in polynomial time.

For the first generic attack, we consider the fact that a secret key e ∈ F
n
qm of

rank r can be written as e = xM , where coordinates of x form a support basis for
e and M is an r×n matrix over Fq. We first try to extract a support basis for the
secret key e from the signature, and form the vector x. Secondly, if e was chosen
such that r ≤ (n − k)m

n , then the number of equations in s = eHT = xMHT

over Fq is greater than or equal to the number of unknown variables for its
support matrix M : (n − k)m ≥ rn. So we are able to recover a support matrix
M , and thus determine e.

Our second generic attack is a twist of the first generic attack. Instead of
recovering the secret key directly, it first aims to recover the ephemeral key
used in the signature generation, and uses this ephemeral key to determine the
secret key. This can be achieved by determining a basis of the vector space
spanned by the coordinates of the ephemeral key, which is of dimension t. Using
the information available from the public key and the signature, if the number
1 We first published our attack (Algorithm 4 + 1AS) on RQCS signature scheme in

[10] on 1 Feb 2019. Xagawa independently published a similar attack on RQCS in
[18] on 5 Feb 2019. Later on, we have combined our works with Aragon et al.’s work
in [2]. We include the attack on RQCS in this paper for completeness.

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 217

of equations is greater than or equal to the number of unknown variables for
the extended support matrix, i.e., (n − k)m ≥ tn, then we are able to recover
an extended support matrix for the ephemeral key. Finally, we can compute the
ephemeral key using the recovered extended support basis and extended support
matrix, and thus recover the secret key.

Using these two generic attacks, we propose some polynomial time attacks
on some FS rank metric signature schemes: TPL, RQCS and Veron. For each of
these signature schemes, we use different techniques to recover a support basis (or
extended support basis) for the secret key (or the ephemeral key). Furthermore,
the TPL and RQCS signature schemes are designed such that r ≤ ⌊

n−k
4

⌋
<

(n − k)m
n (or t ≤ ⌊

n−k
2

⌋
< (n − k)m

n) and r <
m+2k−

√
(m−2k)2+4km

2 < (n − k)m
n

(or t <
m+2k−

√
(m−2k)2+4km

2 < (n − k)m
n) respectively. Hence, no reparation of

parameters is possible for these two schemes to resist our two attacks. For Veron,
all the parameters were proposed such that r ≤ n−k

2 < (n − k)m
n , therefore our

first attack works well on Veron. Our practical simulations of the two attacks
show that the secret key for all the parameters proposed in TPL, RQCS and
Veron can be recovered within seconds.

Organization of the Paper. This paper is organized as follows: Sect. 2 reviews
some basic results in rank metric coding theory, and provides an overview for
TPL, RQCS and Veron signature schemes. Section 3 presents our first polynomial
time attack on TPL, RQCS and Veron, while Sect. 4 presents our second polyno-
mial time attack on TPL and RQCS. The simulation results of these attacks are
shown in Sect. 5. We conclude our paper in Sect. 6.

2 Background on Rank Metric Code-Based Cryptography

We recall some definitions and basic results in rank metric coding theory. We also
review some rank metric FS signature schemes: TPL, RQCS and Veron signature
schemes.

Let Fqm be a finite field with qm elements where q is a prime power. We
denote the row space of a matrix M by 〈M〉. We now define the rank of a vector
on F

n
qm :

Definition 1. Let {β1, . . . , βm} be a basis of Fqm over Fq and x =
(x1, . . . , xn) ∈ F

n
qm . The rank of x in Fq, denoted by rk(x), is the rank of the

matrix X = [xij] ∈ F
m×n
q where xj =

∑m
i=1 xijβi.

We recall the following result for a vector x of rank r:

Lemma 1 [9, Proposition 3.1]. Let x ∈ F
n
qm such that rk(x) = r. There exists

x̂ = (x̂1, . . . , x̂r) ∈ F
r
qm with rk(x̂) = r and U ∈ F

r×n
q with rk(U) = r such that

x = x̂U . We call Supp(x) = 〈x1, . . . , xn〉 the support of x, U a support matrix
for x, and {x̂1, . . . , x̂r} a support basis for x.

Equivalently, the rank of x is the dimension of Supp(x) over Fq.

218 T. S. C. Lau et al.

Notation. We use the following notations in this paper:

– HA,B : A → B denotes a collision-resistant hash function.
– Sn denotes the set of all n × n permutation matrices.
– Denote Em,n,r = {g ∈ F

n
qm | rk(g) = r}.

– Let x = (x0, . . . , xn−1) ∈ F
n
qm . The n × n circulant matrix generated by x is

denoted by Cirn(x) =
[
x(i−j) mod n

]
i,j

∈ F
n×n
qm .

– (·) : F
n
qm × F

n
qm → F

n
qm denotes the rotational product between two vec-

tors, i.e., for a, b ∈ F
n
qm , we have a · b = a [Cirn(b)]T =

[
Cirn(a)bT

]T =
b [Cirn(a)]T = b · a.

– Let i ≥ 1 and ai , b ∈ F
n
qm . Define the operator (�i) : Fin

qm × F
n
qm → F

in
qm as

(a1, . . . ,ai) �i b = (a1 · b, . . . ,ai · b).

– Let X be a finite set. We write x
$← X to denote assigning x an element

randomly sampled from the uniform distribution on X.
– sizepk, sizesk, and sizeσ denotes the public key size, secret key size, and signa-

ture size respectively.
– Let F be a field. Suppose A = 〈a1, . . . , ad1〉 and B = 〈b1, . . . , bd2〉 are vector

subspaces of F of dimension d1 and d2 respectively. The product vector space
is defined as A.B = 〈a1b1, . . . , ad1bd2〉.

– Denote
[

n
k

]

q

=
k−1∏

i=0

qn − qi

qk − qi
.

A digital signature scheme is defined as follows.

Definition 2 (Digital Signature Scheme). A digital signature scheme consists
of four polynomial-time algorithms:

– Setup: Taking a security parameter 1λ as input, it outputs the public param-
eters param.

– Gen: Taking param as input, it outputs a public key pk and a secret key sk.
– Sign: Taking (sk, pk,m) as input, where m is a message to be signed, it

outputs a signature σ.
– Vrfy: Taking (pk, σ,m) as input, it outputs a bit b where b = 1 indicates

“accept the signature” and b = 0 indicates “reject the signature”.

We now recall the rank metric FS signature schemes of our interest in this paper:

1. TPL Signature Scheme

TPL.Setup: Taking the security parameter 1λ as input, generate the public
parameters param = (m,n, k, d, r1, r2, l, lH) such that m > n > k, lH ≥ m ≥⌈

lH
l

⌉
and r2 ≤ r1 ≤ ⌊

d−1
4

⌋
. Let q = 2.

TPL.Gen: Taking param as input. Let HA,B be a collision-resistant hash function

where A =
(
F

n−k
qm

)l × {0, 1}∗ × F
(n−k)×n
qm × (

F
n−k
qm

)l
and B = {0, 1}lH . Let H ∈

F
(n−k)×n
qm be a parity check matrix of a random linear code C with minimum

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 219

distance at least d. For 1 ≤ i ≤ l, choose random ei
$← Em,n,r1 where r1 ≤ ⌊

d−1
4

⌋
.

Compute si = eiH
T . Output public key, pk = (H, s1, . . . , sl) and the secret key,

sk = (e1, . . . ,el).

TPL.Sign: To sign a message m, choose random ui
$← Em,n,r2 for 1 ≤ i ≤ l.

Compute c = (c0, c1, . . . , clH−1) = H(u1HT , . . . ,ulH
T ,m,H, s1, . . . , sl) where

cj ∈ Fq for 0 ≤ j ≤ lH − 1. For 1 ≤ i ≤ l, define

ĉi :=
(
c(i−1)m mod lH , c(i−1)m+1 mod lH , . . . , c(i−1)m+m−1 mod lH

)

and consider ĉi as an element in Fqm . Then compute ti := ui + ĉiei . If the last
k coordinates of ti are all zero for all 1 ≤ i ≤ l, then repeat the whole signature
generation above. Otherwise output the signature as (c, t1, . . . , tl).

TPL.Vrfy: To verify a signature (c, t1, . . . , tl) with pk = (H, s1, . . . , sl), the ver-
ifier first checks whether the last k coordinates of ti are all zero for 1 ≤ i ≤ l. If

it is true, then reject the signature. Otherwise, check whether rk(ti)
?≤ r1 + r2

for 1 ≤ i ≤ l. If one of them is false, then reject the signature. Otherwise, pro-
ceed to compute ĉi ∈ Fqm from c = (c0, . . . , clH−1) for 1 ≤ i ≤ l, and compute

vi = tiH
T − ĉisi . Check whether c

?= H(v1, . . . ,vl ,m,H, s1, . . . , sl). If it is
true, then accept the signature, otherwise, reject the signature.

2. RQCS Signature Scheme

RQCS.Setup: Taking the security parameter 1λ as input, generate the public
parameters param = (m,n,w,wr, wg).

RQCS.Gen: Taking param as input, randomly pick h
$← F

n
qm and x,y

$← Em,n,w.
Let HA,Em,n,wg

be a collision-resistant hash function, where A = {e1 + h · e2 |
e1,e2

$← Em,n,wr
} × {0, 1}∗. Compute s = x + h · y and output a pair of keys

(pk, sk). The public key pk is (h, s) and the secret key sk is (x,y).

RQCS.Sign: Taking a secret key sk = (x,y) and a message m as input, choose

randomly r = (r1, r2) where r1, r2
$← Em,n,wr

. Compute I = r1 + h · r2 and
g = HA,Em,n,wg

(I,m) ∈ Em,n,wg
, followed by u = (u1,u2) = (x,y) �2 g + r =

(x · g,y · g) + (r1, r2). Then output the signature (g,u).

RQCS.Vrfy: Taking a public key pk = (h, s), a message m, and a signature (g,u)
as input. Compute I = u1 + h · u2 − s · g. Accept the signature if and only if
HA,Em,n,wg

(I,m) = g, rk(u1) ≤ wwg + wr, and rk(u2) ≤ wwg + wr.

3. Veron Signature Scheme

Veron.Setup: Taking the security parameter 1λ as input, generate the public
parameters param = (m,n, k, r).

Veron.Gen: Taking param as input, randomly pick x
$← F

k
qm and e

$← Em,n,r. Let
HA,B be a collision-resistant hash function, where A = Sn×F

n
qm×{0, 1}δh×{0, 1}∗

220 T. S. C. Lau et al.

and B = {0, 1}h. Let f(v, w) be the function that maps the bits v, w to the set
{0, 1, 2} following the rule:

00
→ 0, 01
→ 1, 10
→ 2, 11
→ either 0, 1, 2 in a cyclic fashion.

Randomly pick G
$← F

k×n
qm . Compute y = xG + e and output a pair of keys

(pk, sk). The public key pk is (y, G, r) and the secret key sk is (x,e).

Veron.Sign: Let δ be the number of rounds for the Veron signature. Taking a secret
key sk = (x,y) and a message m as input, for i = 1, . . . , δ, choose randomly

ui
$← F

k
qm and Pi

$← Sn. Compute

ci,1 = HA,B(Pi), ci,2 = HA,B(((ui + x)G)Pi), ci,3 = HA,B((uiG + y)Pi).

Let cmt = (c1,1, c1,2, c1,3, . . . , cδ,1, cδ,2, cδ,3). Then ch = HA,B(cmt,m). For i =
1, . . . , δ, let bi = f(ch2i, ch2i+1). If bi = 0, then rspi = (Pi,ui + x). If bi = 1,
then rspi = (((ui + x)G)Pi,ePi). If bi = 2, then rspi = (Pi,ui). Then output
the signature (cmt, rsp).

Veron.Vrfy: Taking a public key pk = (y, G, r), a message m, and a signature
(cmt, rsp) as input. Compute ch = HA,B(cmt,m). For i = 1, . . . , δ and j = 1, 2, 3,
compute ci,j = cmt[(3(i−1)+(j−1))h+1,...,(3(i−1)+j)h] and bi = f(ch2i, ch2i+1).
For bi = 0, if ci,1 �= HA,B(rspi,1) or ci,2 �= HA,B((rspi,2G)rspi,1), then reject
the signature. For bi = 1, if ci,2 �= HA,B(rspi,1) or rk(rspi,2) �= r or ci,3 �=
HA,B(rspi,1 + rspi,2), then reject the signature. For bi = 2, if ci,1 �= HA,B(rspi,1)
or ci,3 �= HA,B((rspi,2G + y)rspi,1), then reject the signature. Else, accept the
signature.

Security of TPL, RQCS and Veron Signature Schemes. For these signature
schemes, the secret key is a vector of low rank and the syndrome of this secret
key is published as the public key. The security of these signature schemes relies
on the following problem:

Definition 3 (Rank Syndrome Decoding Problem). Let H be a full rank (n −
k) × n matrix over Fqm , s ∈ F

n−k
qm and w be an integer. The Rank Syndrome

Decoding problem RSD(q,m, n, k, w) is to determine x ∈ F
n
qm such that rk(x) =

w and s = xHT .

Classical and Post-quantum Security Level. The security level for a rank
metric signature schemes depends on the complexity of solving the underlying
RSD problem which the scheme is based on. This complexity contains an expo-
nential term, which should be reduced to its square root when Grover’s algorithm
is applied using a quantum computer [5]. Therefore, the post-quantum security
for rank metric signature schemes were evaluated by taking square root of the
exponential term in the (classical) complexity of solving the RSD problem.

Table 1 summarizes the parameters for TPL, RQCS and Veron signature
schemes.

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 221

Table 1. Proposed parameters for TPL, RQCS and Veron signature schemes. Sec and
PQSec refers to the classical and post-quantum security level of the proposed schemes
respectively. Note that the sizes are in bits.

3 First Polynomial Time Attack on Rank Metric FS
Signature Schemes

Notice that the public key of all the rank metric FS signature schemes in Sect. 2
consists of a component of syndrome (or its equivalent form) which is computed
using a secret key of low rank. This secret key is used to generate a valid signa-
ture. If we are able to recover the secret key, then we are able to forge a valid
signature.

3.1 Idea of Attack

We now describe the general idea of our first generic attack on the rank metric
signature scheme. Generally, given a syndrome s ∈ F

n−k
qm , we want to determine

a vector e ∈ Em,n,r such that s = eHT , where H ∈ F
(n−k)×n
qm is used in the

signature scheme. Since rk(e) = r, recall from Lemma 1 that there exist ê =
(ê1, . . . , êr) ∈ Em,r,r and E ∈ F

r×n
q with rk(E) = r such that e = êE. There are

two main steps in our attack:

1. Recover a support basis {ê1, . . . , êr} for e. This can be achieved by determin-
ing a vector subspace spanned by 〈ê1, . . . , êr〉 through appropriate manipula-
tion of the information retrieved from the signature.

2. Recover a support matrix E for e from s = êEHT . This can be achieved by
considering the linear system over Fq. We have m(n − k) equations over Fq

and r × n unknown variables of E over Fq. If m(n − k) ≥ rn, we can recover
the support matrix E in polynomial time.

222 T. S. C. Lau et al.

We now propose our first polynomial time attack on TPL, RQCS, and Veron
signature schemes.

3.2 First Attack on TPL Signature Scheme

We first state a generalized version of [12, Lemma 3]. The proof can be found in
Appendix A.

Lemma 2. Let u1, . . . , uk be integers such that 0 < u =
∑k

i=1 ui ≤ m
2 . For

1 ≤ i, j ≤ k, let Ui be a ui-dimensional subspace of Fqm and Ui ∩ Uj = {0}. Let
r0 ≤ m − u, w =

∑k
i=1 ri and v = r0 + w =

∑k
i=0 ri, where each 0 ≤ ri ≤ ui for

1 ≤ i ≤ k. The number of v-dimensional subspace that intersects each Ui in an

ri-dimensional subspace is

(
∏k

i=1

[
ui

ri

]

q

)[
m − u

r0

]

q

qr0(u−w).

We need the following results for our first attack on TPL scheme:

Proposition 1. Let rx, ry be integers such that rx + ry ≤ min{m,n} and x ∈
Em,n,rx

. Randomly pick a vector y
$← Em,n,ry

and form z = x + y. Suppose
that Supp(x) ∩ Supp(y) = {0}, then the probability that rk(z) = rx + ry is
[

n − rx

ry

]

q

qryrx

([
n
ry

]

q

)−1

.

Theorem 1. Let rx, ry be integers such that rx + ry ≤ min{m,n} and x ∈
Em,n,rx

. The probability that the vector z = x + y has rank rk(z) = rx + ry for

a random y
$← Em,n,ry

is
[

m − rx

ry

]

q

[
n − rx

ry

]

q

q2ryrx

([
m
ry

]

q

[
n
ry

]

q

)−1

.

Proposition 2. Let rx, ry be integers such that rx + ry ≤ min{m,n}, x ∈
Em,n,rx

, y ∈ Em,n,ry
and z = x + y with rk(z) = rx + ry. Then Supp(x) ⊂

Supp(z).

Now, we describe our first attack on TPL signature scheme. There are two parts
in our attack on TPL. The first part is to recover a support basis for the vector
ei from ti for i = 1, . . . , l using multiple signatures. The second part is to recover
a support matrix for ei from the public key component H and si . Once we have
recovered a support basis and a support matrix for ei , we can then recover the
secret key component ei .

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 223

Algorithm 1: First Attack on TPL

Data: w (the number of signatures collected), signatures
σj = (cj , tj,1, . . . , tj,l) for 1 ≤ j ≤ w, pk = (H, s1, . . . , sl)

Result: The secret key vector e1, . . . ,el

// Step 1: Recover a support basis for e1, . . . ,el

1 for i ← 1 to l do
2 for j ← 1 to w do
3 Compute t̂j,i = (t̂j,i,1, . . . , t̂j,i,n) = (ĉj,i)−1tj,i

4 Compute Fi =
⋂w

j=1〈t̂j,i,1, . . . , t̂j,i,n〉 and a basis {êi,1, . . . , êi,r1} for Fi

// Step 2: Recover a support matrix for e1, . . . ,el

5 for i ← 1 to l do
6 Solve for Ei from the equation si = (êi,1, . . . , êi,r1)EiH

T over Fq

7 Compute ei ← (êi,1, . . . , êi,r1)Ei

8 return e1, . . . ,el

Correctness of Algorithm 1. Let σ1 = (c1, t1,1, . . . , t1,l) be a signature gen-
erated in TPL.Sign. Let ei = (ei,1, . . . , ei,n). Notice that

t1,i = u1,i + ĉ1,iei ⇒ t̂1,i = (t̂1,i,1, . . . , t̂1,i,n) = (ĉ1,i)−1t1,i = (ĉi)−1u1,i + ei .

By Theorem 1, for 1 ≤ i ≤ l, the probability that rk(t1,i) = r1 + r2 is

p′
1 =

[
m − r1

r1

]

q

[
n − r1

r2

]

q

q2r1r2

([
m
r2

]

q

[
n
r2

]

q

)−1

. If rk(t1,i) < r1 + r2 (prac-

tically this will rarely happen since p′
1 is high), then consider another signature

which gives us rk(t1,j) = r1 + r2. By Proposition 2, we have 〈ei,1, . . . , ei,n〉 ⊂
〈t̂1,i,1, . . . , t̂1,i,n〉. Similarly, for another signature σ2 = (c2, t2,1, . . . , t2,l), we
have 〈ei,1, . . . , ei,n〉 ⊂ 〈t̂2,i,1, . . . , t̂2,i,n〉.

By collecting signatures σ1, . . . ,σw where w ≥ 2, we have 〈ei,1, . . . , ei,n〉 =⋂w
j=1〈t̂j,i,1, . . . , t̂j,i,n〉. Since rk(ei) = r1, we can deduce a basis {ê1, . . . , êr1} for

the vector space 〈ei,1, . . . , ei,n〉.
With a support basis computed, we consider the vector si from the public key

and form the linear system si = (ê1, . . . , êr1)EiH
T . Consider the linear system

over Fq. Since the number of equations, m(n− k), is greater than the number of
unknown variables, r1n, then we can solve for a support matrix Ei, thus giving
us ei = (ê1, . . . , êr1)Ei.

Probability of Failure for Algorithm 1. Notice that Algorithm will be suc-
cessful if rk(tj,i) = r1 + r2 for 1 ≤ j ≤ w. Therefore, the probability of failure
for Algorithm 1 is at most p1 = 1 − (p′

1)
wl.

3.3 First Attack on RQCS Signature Scheme

There are two parts in our first attack on RQCS. The first part is to recover a
support basis for the vector x and y from u1 and u2 respectively. The second
part is to recover a support matrix for x and y from pk = (h, s), since nm ≥ 2wn.

224 T. S. C. Lau et al.

Once we have recovered a support basis and a support matrix for x and y, we
can then recover the secret key sk = (x,y).

We are given u1 = x [Cirn(g)]T + r1, u2 = y [Cirn(g)]T + r2, and g with
rk(g) = wg. Here, we present two different algorithms to determine a support
basis for Supp(x): the first one, Algorithm 1ARSR+ applies the Rank Support
Recover (RSR) algorithm [1, Algorithm 1] (refer to Appendix F for its speci-
fication) on multiple signatures to recover the support basis; the second one,
Algorithm 1AS requires only one signature to recover the support basis by mod-
ifying RSR algorithm.

Algorithm 2: 1ARSR+(t, g1,u1, . . . , gt ,ut , w, wr)
Data: t, (gi ,ui) for 1 ≤ i ≤ t, w = dim(Supp(a)), wr = dim(Supp(r))
Result: A support of a, Supp(a)

1 for i ← 1 to t do
2 Compute a basis {λi,1, . . . , λi,wg

} for Supp(gi)
3 Compute G′

i = 〈1, λi,1, . . . , λi,wg
〉

4 Compute Fi,a ← RSR(G′
i,ui , w + wr)

5 Compute Fa =
⋂t

i=1 Fi,x

6 return Fa

Algorithm 3: 1AS(g,u, w, wg)
Data: (g,u), w = dim(Supp(a)), wg = dim(Supp(g))
Result: A support of a, Supp(a)

1 Compute a basis {λ1, . . . , λwg
} for Supp(g)

2 for j ← 1 to wg do
3 Compute Uj = 〈λ−1

j u1, . . . , λ
−1
j un〉

4 Compute Fa =
⋂wg

i=1 Uj

5 return Fa

Correctness of Algorithm 4. In Step 1(a), Fx can be recovered by 1ARSR+-
Algorithm or 1AS-Algorithm.

For 1ARSR+ -Algorithm, t signatures are collected. For 1 ≤ i ≤ t, let Fi,x =
Supp(x, ri,1). Since G′

i = 〈λi,1, . . . , λi,wg
, 1〉, then the coordinates of ui,1 and ui,2

generate a subspace of Fi,x.G′
i. As a consequence, the RSR Algorithm will give

the desired Fi,x = Supp(x, ri,1). Note that for each 1 ≤ i ≤ t, Fx = Supp(x) ⊂
Fi,x. The vector space Fx can be computed by taking the intersections Fx =⋂t

i=1 Fi,x. We can then compute a basis {α1, . . . , αw} for Fx.
For 1AS-Algorithm, only 1 signature is required. The probability that

rk(x ·g) < wwg is q−(n−wwg+1) [8, Theorem 1]. This implies that rk(x ·g) = wwg

with high probability. By Theorem 1, the probability that rk(x ·g+r1) = wwg +

wr is high, i.e., p′′
3 =

[
m − wwg

wr

]

q

[
n − wwg

wr

]

q

q2wwgwr

([
m
wr

]

q

[
n
wr

]

q

)−1

.

By Proposition 2, we have 〈α1λ1,1, . . . , αwλ1,wg
〉 ⊂ 〈u1,1,1, . . . , u1,1,n〉, where

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 225

Algorithm 4: First Attack on RQCS

Data: t signatures, σi = (gi , ui,1, ui,2) for 1 ≤ i ≤ t, R = [Cirn(h)]T ,
wg = dim(Supp(g)), w = dim(Supp(x)) = dim(Supp(y)),
wr = dim(Supp(r1)) = dim(Supp(r2))

Result: The secret key vector x and y
// Step 1(a): Recover a support basis for x

1 Fx ← 1ARSR+(t, g1, u1,1, . . . , gt , ut,1, w, wr) or Fx ← 1AS(g1, u1,1, w, wg)
2 Compute a basis {α1, . . . , αw} for Fx

// Step 1(b): Recover a support basis for y
3 Fy ← 1ARSR+(t, g1, u1,2, . . . , gt , ut,2, w, wr) or Fy ← 1AS(g1, u1,2, w, wg)
4 Compute a basis {β1, . . . , βw} for Fy

// Step 2: Recover support matrices for x and y
5 α ← (α1, . . . , αw), β ← (β1, . . . , βw)
6 Solve for X and Y from the equation s = αX + βY R over Fq

7 Compute x ← αX and y ← βY
8 return x, y

u1,1 = (u1,1,1, . . . , u1,1,n). This gives us 〈α1, . . . , αw〉 ⊂ 〈α1λ1,1λ
−1
1,j , . . . ,

αwλ1,wg
λ−1
1,j〉 ⊂ U1,1,j for 1 ≤ j ≤ wg. Therefore, Fx = 〈α1, . . . , αw〉 =

⋂wg

j=1 U1,1,j .
Note that the correctness of Step 1(b) follows analogously.
In Step 2, let α = (α1, . . . , αw), β = (β1, . . . , βw). Consider s from the public

key and form the linear system s = x + h · y = x + yR = αX + βY R. The
linear system consists of nm equations over Fq with a total of 2wn unknown
variables (from X and Y) to be solved. Since the inequality m ≥ 2w is always
true in RQCS, we have nm ≥ 2wn, the number of equations is greater than the
number of unknown variables. Then we are able to recover the matrices X and
Y in polynomial time.

Probability of Failure for Algorithm 4. If 1ARSR+-Algorithm is used, Step
1(a) and 1(b) of the attack might fail whenever the RSR algorithm fails. It
follows that the probability of failure is at most p2 = 1 − (1 − p′

2)
2t, where

p′
2 = max{q(2−w−wr)(wg−2) × q−(n−(w+wr)wg+1), q−2(n−(w+wr)wg+2)}.

If 1AS-Algorithm is used, Step 1(a) and 1(b) of the attack might fail when
Fx �⊂ U1,1,j . Note that the probability that Fx ⊂ U1,1,j occurs is at least p′

3 =(
1 − q−(n−wwg+1)

)
p′′
3 . Thus, the probability of failure is at most p3 = 1 − (p′

3)
2.

Therefore, the probability of failure for Algorithm 4 is at most max{p2, p3}.

3.4 First Attack on Veron Signature Scheme

There are two parts in our attack on Veron. The first part is to recover a support
basis for the vector e from rspj,2 when bj = 1. The second part is to recover a
support matrix for e from the public key component G and y, if m(n−k) ≥ rn.
Once we have recovered a support basis and a support matrix for e, we can
recover the secret key component e and x.

226 T. S. C. Lau et al.

We now describe our first attack on Veron.

Algorithm 5: First Attack on Veron

Data: signature sgn = (cmt, rsp), public key pk = (y, G, r), message m,
number of rounds for Veron, δ

Result: The secret key vector x and e
// Step 1: Precomputation steps

1 Compute ch = HA,B(cmt,m)
2 i ← 1, tmp ← 0
// Step 2: Recover a support basis for e

3 while tmp = 0 do
4 Compute bi = f(ch2i, ch2i+1)
5 if bi = 1 then
6 tmp ← 1, e′ ← rspi,2

7 Compute F = 〈e′
1, . . . , e

′
n〉 and a basis {ê1, . . . , êr} for F

8 break

9 else
10 i ← i + 1

// Step 2: Recover support matrix for e
11 ê ← (ê1, . . . , êr)
12 Compute a parity check matrix H for G and s ← yHT

13 Solve for E from the equations s = êEHT under Fq

14 Compute e ← êE
// Step 3: Recover the secret vector x

15 Compute z ← y − e and solve for x from the equation z = xG over Fqm

16 return x, e

Correctness of Algorithm 5. Let (cmt, rsp) be a signature generated in
Veron.Sign. Following the procedures in Veron.Vrfy, we can compute the challenge
ch = HA,B(cmt,m). Notice that there exists an index i such that bi = 1. For such
i, consider the rspi from the signature, we have rspi,2 = ePi. Let e = (e1, . . . , en)
and ePi = (e′

1, . . . , e
′
n). Since Pi ∈ Sn, then we have 〈e1, . . . , en〉 = 〈e′

1, . . . , e
′
n〉.

From F = 〈e′
1, . . . , e

′
n〉, we can compute a basis {ê1, . . . , êr}, which is a support

basis for e.
With a support basis computed, we consider the matrix G from pk and

compute a parity check matrix H ∈ F
(n−k)×n
qm for G. Using y from pk, compute

s = yHT = (xG + e)HT = eHT . Let E ∈ F
r×n
q be a support matrix for e,

then we can form the linear system s = (ê1, . . . , êr)EHT . Consider the linear
system over Fq. Note that the number of equations, m(n − k), is greater than
the number of unknown variables, rn. Therefore, we can solve for the matrix E,
thus giving us e = (ē1, . . . , ēr)E. Finally, z = y − e = xG. Since n > k, we can
solve for x.

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 227

4 Second Polynomial Time Attack on Rank Metric FS
Signature Schemes

We now introduce our second generic attack, which is a twist of the first attack.
Instead of recovering the secret key, sk for the signature scheme directly, this
attack aims to recover the ephemeral key used in signature generation, and then
determine the secret key from the generated signature.

4.1 Idea of Attack

We now describe the general idea of our second attack on the rank metric sig-
nature scheme. Typically, we are given an invertible function T , a signature
σ = t + T (e) ∈ F

n
qm and a syndrome s = T (e)HT ∈ F

n−k
qm where H ∈ F

(n−k)×n
qm

is used in the signature scheme. We need the following result for our attack:

Proposition 3. Let x ∈ Em,n,r and t > r be an integer. There exists a vector
y = (y1, . . . , yt) ∈ Em,t,t such that Supp(x) ⊂ Supp(y). We call such Supp(y) an
extended support of x and {y1, . . . , yt} an extended support basis for x. Moreover,
there exists a matrix V ∈ F

t×n
q of rk(V) = r satisfying x = (y1, . . . , yt)V . We

call such V an extended support matrix for x.

There are three main steps in our second attack:

1. Let σ = (σ1, . . . , σn) and t = (t1, . . . , tn) with rk(σ) = rσ < n and rk(t) =
rt respectively. Determine an extended support basis for t. This could be
achieved by determining a basis {σ̂1, . . . , σ̂rσ

} for Supp(σ).
2. Recover an extended support matrix E for t. Since Supp(t) ⊂ Supp(σ),

there exists an extended support matrix E ∈ F
rσ×n
q of rank rk(E) = rt

such that t = (σ̂1, . . . , σ̂rσ
)E. Then, compute v = σHT − s = tHT =

(σ̂1, . . . , σ̂rσ
)EHT . Considering the linear system over Fq, we have m(n − k)

equations over Fq and rσ × n unknown variables over Fq. If m(n − k) > rσn,
then we can recover the support matrix E, and thus compute the ephemeral
key t = (σ̂1, . . . , σ̂rσ

)E.
3. Recover the secret key e. From σ = t+T (e), compute T (e) = σ − t. Finally,

compute e = T−1 (T (e)).

Using this idea, we now propose some polynomial time attacks on TPL and RQCS
signature schemes.

Remark 1. The second generic attack aims to recover the ephemeral key, so
that the secret key can be determined. However, this attack does not apply on
Veron. More specifically, when bi = 0, the information (Pi,ui+x, (ui+x)GPi) is
available. Although ui +x is available, we are not able to determine an extended
support basis for the ephemeral key ui, as Supp(ui) �⊂ Supp(ui+x). When bi = 1,
the information (((ui +x)G)Pi,ePi, (uiG+y)Pi) is available. As Pi is unknown,
we are not able to further extract any useful information regarding the ephemeral
key. Whilst the first attack can be applied here as Supp(ePi) = Supp(e). When

228 T. S. C. Lau et al.

bi = 2, the information (Pi,ui, (uiG+y)Pi) is available. Although the ephemeral
key ui is known, we do not have any information on how ui interacts with the
secret key x. Therefore, the second generic attack is not applicable to Veron.

4.2 Second Attack on TPL Signature Scheme

There are three parts in our second attack on TPL. The first part is to determine
a support basis for the vector ti for i = 1, . . . , l. The second part is to recover an
extended support matrix for the ephemeral ui from the public key component
H and si . Once we have recovered the vector ui , we can then recover the secret
key component ei using ti .

Algorithm 6: Second Attack on TPL

Data: signature σ = (c, t1, . . . , tl) where ti = (ti,1, . . . , ti,n) for 1 ≤ i ≤ l,
pk = (H, s1, . . . , sl)

Result: The secret key vector e1, . . . ,el

// Step 1: Determine an extended support basis for t1, . . . , tl

1 for i ← 1 to l do
2 Compute rti

= rk(ti) and a basis {t̂i,1, . . . , t̂i,rti
} for Supp(ti)

// Step 2: Recover a support matrix for u1, . . . ,ul

3 for i ← 1 to l do
4 Compute vi = tiH

T − ĉisi

5 Solve for Ei from the equation vi = (t̂i,1, . . . , t̂i,rti
)EiH

T over Fq

6 Compute ui ← (t̂i,1, . . . , t̂i,rti
)Ei

// Step 3: Recover the secret key vector e1, . . . ,ek

7 for i ← 1 to l do
8 Compute ei ← ĉ−1

i (ti − ui)

9 return e1, . . . ,el

Correctness of Algorithm 6. Let σ = (c, t1, . . . , tl) be a signature generated
in TPL.Sign. Let ei = (ei,1, . . . , ei,n). By Proposition 2, the probability that
Supp(ui) ⊂ Supp(ti) is p′

1. Let {t̂i,1, . . . , t̂i,rti
} be a basis of Supp(ti), and t̂i =

(t̂i,1, . . . , t̂i,rti
). There exists Ei ∈ F

rti
×n

q such that ui = t̂iEi. Compute vi =
tiH

T − ĉisi = uiH
T = t̂iEiH

T . Then, consider the linear system over Fq. Note
that the number of equations, m(n−k), is greater than the number of unknown
variables, rti

n. Therefore, we can solve for a support matrix Ei, thus giving us
the ephemeral key ui = t̂iEi. Once ui is computed, we have ĉiei = ti − ui .
Finally, compute ei = ĉ−1

i (ĉiei).

Probability of Failure for Algorithm 6. Notice that the algorithm will be
successful if rk(ti) = r1 + r2 for 1 ≤ i ≤ l. Therefore, the probability of failure
for Algorithm 6 is p5 = 1 − (p1)

l.

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 229

4.3 Second Attack on RQCS Signature Scheme

There are three parts in our second attack on RQCS. The first part is to determine
a basis for the vector u1 and u2. The second part is to recover an extended
support matrix for the ephemeral vector r. Once we have recovered the vector
r, we can then recover the secret key components x and y using u and g. Here,
we propose two different methods to recover r: the first method is to apply the
RSR algorithm to recover an extended support basis for r; the second method
is to recover an extended support basis for r without the RSR algorithm.

Algorithm 7: Second Attack on RQCS

Data: 1 signature σ = (g,u1,u2), 〈λ1, . . . , λwg
〉 = Supp(g),

R = [In | Cirn(h)], w = dim(Supp(x)) = dim(Supp(y)),
wr = dim(Supp(r1)) = dim(Supp(r2))

Result: The secret key vector x and y
// Step 1: Recover an extended support basis for r

1 F ← RSR(〈1, λ1, . . . , λwg
〉,u, w + wr) or F ← Supp(u)

2 Compute v ← dim(F) and a basis {α1, . . . , αv} for F
// Step 2: Recover an extended support matrix for r

3 α ← (α1, . . . , αv) and compute I = u1 + h · u2 − s · g

4 Solve for X from the equation I = αXRT over Fq

5 Compute r = (r1, r2) ← αX
// Step 3: Recover the secret key x and y

6 Compute g′′ such that g · g′′ = (1, 0, . . . , 0) ∈ F
n
qm

7 Compute x ← (u1 − r1) · g′′ and y ← (u2 − r2) · g′′

8 return x, y

Correctness of Algorithm 7. Let G′ = 〈λ1, . . . , λwg
, 1〉, the coordinates of u

generate a subspace of F .G′. Therefore, the RSR Algorithm will give the desired
F = Supp(x,y, r), an extended support basis for r. Alternatively, the probability
that Supp(r1, r2) ⊂ Supp(u) is (p′

3)
2. Therefore, a basis {α1, . . . , αv} of Supp(u)

is an extended support basis for r, giving us Supp(r) ⊂ F .
Let α = (α1, . . . , αv), there exists X ∈ F

v×2n
q such that r = αX. Compute

I = u1 + h · u2 − s · g = rRT = αXRT . Consider the linear system over Fq.
Note that the number of equations, mn, is greater than the number of unknown
variables, 2nv. Therefore, we can solve for an extended support matrix X, thus
giving us the ephemeral key r = αX.

Let g′′ ∈ F
n
qm such that g · g′′ = (1, 0, . . . , 0) ∈ F

n
qm . Once r is computed,

we have (x,y) �2 g = u − r. Finally, compute (x,y) = ((x,y) �2 g) �2 g′′ =
(x · g,y · g) �2 g′′ = (x · g · g′′,y · g · g′′).

Probability of Failure for Algorithm 7. If F is computed using the RSR
Algorithm, then the probability of failure for Algorithm 7 is p7 = 1 − (1 − p′

2)
2.

Alternatively, if F = Supp(u), the attack might fail when 〈r1, . . . , r2n〉 �⊂ F .
Then, the probability of failure for Algorithm 7 is at most p8 = 1 − (p′

3)
2.

Therefore, the probability of failure for Algorithm 7 is at most max{p7, p8}.

230 T. S. C. Lau et al.

5 Experimental Results for Our Attacks

We consider all the parameters of TPL, RQCS and Veron signature schemes given
in [4,15,16] respectively and perform simulations for our attacks. The experimen-
tal results of our key recovery attacks are presented in Table 2. The experiments
were performed using Magma V2.20-5 running on a 3.4 GHz Intel(R) CoreTM
i7 processor with 16 GB of memory.

For each parameter, we recorded the time taken (denoted as “KRA Time”) to
recover the secret key using our algorithms. Table 2 presents the average timing
of 100 experiments for each parameter. The claimed classical and post-quantum
security level for the schemes are denoted as “Claimed Sec.” and “Claimed
PQSec.” respectively. We use pf to denote the probability of failure for the
attack algorithm used.

Table 2. Simulations results for our key recovery attacks on TPL, RQCS and Veron
signature schemes.

Schemes Number of

Signatures

Required

Attack

Algorithm

Claimed

Sec

Claimed

PQSec.

KRA Time pf

TPL-1 2 Algorithm 1 – 82 2.78 s 2−33

TPL-2 – 98 4.91 s 2−39

TPL-3 – 129 6.25 s 2−52

RQCS-1 2 Algorithm 4 + 1ARSR+ 128 – 3.34 s 2−36

RQCS-2 192 – 7.09 s 2−52

RQCS-3 256 – 8.23 s 2−60

RQCS-1 1 Algorithm 4 + 1AS 128 – 2.58 s 2−36

RQCS-2 192 – 5.48 s 2−54

RQCS-3 256 – 7.12 s 2−58

Veron-1 1 Algorithm 5 80 – 0.86 s 0

Veron-2 – 128 3.17 s 0

Veron-3 – 192 5.25 s 0

Veron-4 – 256 8.44 s 0

TPL-1 1 Algorithm 6 – 82 4.25 s 2−33

TPL-2 – 98 6.08 s 2−39

TPL-3 – 129 8.74 s 2−52

RQCS-1 1 Algorithm 7 with RSR 128 – 5.79 s 2−36

RQCS-2 192 – 12.15 s 2−52

RQCS-3 256 – 14.42 s 2−60

RQCS-1 1 Algorithm 7 without RSR 128 – 4.78 s 2−36

RQCS-2 192 – 10.82 s 2−54

RQCS-3 256 – 13.64 s 2−58

We manage to recover all the secret keys in TPL, RQCS and Veron signature
schemes within seconds. For the first generic attack, Algorithm 1 and Algorithm 4
with 1ARSR+-Algorithm require 2 signatures to recover the secret key. On the

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 231

other hand, Algorithm 4 with 1AS-Algorithm and Algorithm 5 require only one
signature to recover the secret key.

The second generic attack requires only one signature to recover the secret
key. However, our second attack takes slightly longer time to recover the secret
key for TPL and RQCS signature schemes as compared to the first attack.

6 Conclusion

We have presented two generic key recovery attacks on some rank metric signa-
ture schemes constructed via the Fiat-Shamir transformation. In particular, our
attacks recover the secret key of the signature scheme, by determining a support
basis (or extended support basis) for the secret key (or the ephemeral key). Then,
we use the determined basis to recover a support matrix (or extended support
matrix) from the signature and the public key. We have implemented our first
attack on TPL, RQCS and Veron signature schemes and managed to recover the
secret key in seconds. Furthermore, we have also implemented our second attack
on TPL and RQCS signature schemes and managed to recover the secret key in
seconds.

Overall, our attacks exploit the fact that a support basis or an extended
support basis can be recovered through the signature generated in these FS
signature schemes. Moreover, the design of TPL and RQCS signature schemes is
vulnerable to our attacks, as the rank of the secret key (or the ephemeral key)
are always chosen such that the number of equations is greater than the number
of unknown variables when solving the linear system for a support matrix or
an extended support matrix over the base field Fq. Therefore, the reparation
of these schemes by changing their parameters is not possible. However, both
our attacks are not applicable on other FS rank metric signature schemes such
as Durandal and CVE, as their signatures hide the information for the support
basis of their secret key or ephemeral key used in the signature. An interesting
open question is the existence of another technique or approach to recover the
support basis of the secret keys in these FS rank metric signature schemes.

Acknowledgement. We are grateful to Caroline Fontaine and the anonymous review-
ers for their careful reading of our manuscript and their many insightful comments and
suggestions which have greatly improved this manuscript.

Appendix

A Proof of Lemma 2.

Lemma 2. Let u1, . . . , uk be integers such that 0 < u =
∑k

i=1 ui ≤ m
2 . For

1 ≤ i, j ≤ k, let Ui be a ui-dimensional subspace of Fqm and Ui ∩ Uj = {0}. Let
r0 ≤ m − u, w =

∑k
i=1 ri and v = r0 + w =

∑k
i=0 ri, where each 0 ≤ ri ≤ ui for

1 ≤ i ≤ k. The number of v-dimensional subspace that intersects each Ui in an

ri-dimensional subspace is

(
∏k

i=1

[
ui

ri

]

q

)[
m − u

r0

]

q

qr0(u−w).

232 T. S. C. Lau et al.

Proof. We prove the statement by following the idea of the proof of [12, Lemma

3]. For each 1 ≤ i ≤ k, there are
[

ui

ri

]

q

subspaces U ′
i ⊆ Ui of dimension ri that

can be the intersection space. Now we have to complete the subspace
⊕k

i=1 U ′
i

to a v-dimensional vector space V , intersecting each Ui only in U ′
i . We have∑r0−1

j=1 (qm − qu+j) choices for the remaining basis vectors. For a fixed basis of
⊕k

i=1 U ′
i , the number of bases spanning the same subspace is given by the number

of v × v matrices of the form
[

Iw 0
A B

]
where A ∈ F

r0×w
q and B ∈ GLr0(Fq). This

number is equal to qr0w |GLr0(Fq)| = qr0w
∏r0−1

j=1 (qr0 −qj). Hence the final count
is given by

(
k∏

i=1

[
ui

ri

]

q

) ∏r0−1
j=1 (qm − qu+j)

qr0w
∏r0−1

j=1 (qr0 − qj)
=

(
k∏

i=1

[
ui

ri

]

q

)
qr0u

qr0w

⎛

⎝
r0−1∏

j=1

qm−u − qj

qr0 − qj

⎞

⎠

=

(
k∏

i=1

[
ui

ri

]

q

)[
m − u

r0

]

q

qr0(u−w).

��

B Proof of Proposition 1.

Proposition 1. Let rx, ry be integers such that rx + ry ≤ min{m,n} and x ∈
Em,n,rx

. Randomly pick a vector y
$← Em,n,ry

and form z = x + y. Suppose
that Supp(x) ∩ Supp(y) = {0}, then the probability that rk(z) = rx + ry is
[

n − rx

ry

]

q

qryrx

([
n
ry

]

q

)−1

.

Proof. By Lemma 1, we can rewrite x = (x̂1, . . . , x̂rx
)A and y = (ŷ1, . . . , ŷry

)B
where rk(x̂1, . . . , x̂rx

) = rx and rk(ŷ1, . . . , ŷry
) = ry. Then

z = (x̂1, . . . , x̂rx
)A + (ŷ1, . . . , ŷry

)B = (x̂1, . . . , x̂rx
, ŷ1, . . . , ŷry

)
[

A
B

]
.

Since Supp(x) ∩ Supp(y) = {0}, we have rk(x̂1, . . . , x̂rx
, ŷ1, . . . , ŷry

) = rx + ry.

Let W =
[

A
B

]
. If rk(W) = rx + ry, then rk(z) = rx + ry. Hence, we need to

calculate the probability that rk(W) = rx + ry. Let A ⊂ Fqn with dim(A) = rx

and B ⊂ Fqn with dim(B) = ry, where each of them is the vector subspace
generated by the row space of A and B respectively. If A ∩ B = {0}, then each
row of W is linearly independent with each other, giving us rk(W) = rx + ry.

By Lemma 2, the number of B such that A ∩ B = {0} is
[

n − rx

ry

]

q

qryrx .

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 233

So, the probability that A ∩ B = {0} is
[

n − rx

ry

]

q

qryrx

([
n
ry

]

q

)−1

. Therefore,

the probability that rk(z) = rx + ry is equal to the probability that rk(W) =

rx + ry, which equals to
[

n − rx

ry

]

q

qryrx

([
n
ry

]

q

)−1

. ��

C Proof of Theorem 1.

Theorem 1. Let rx, ry be integers such that rx + ry ≤ min{m,n} and x ∈
Em,n,rx

. The probability that the vector z = x + y has rank rk(z) = rx + ry for

a random y
$← Em,n,ry

is
[

m − rx

ry

]

q

[
n − rx

ry

]

q

q2ryrx

([
m
ry

]

q

[
n
ry

]

q

)−1

.

Proof. By Lemma 2, the number of y such that Supp(x) ∩ Supp(x) = {0}
is

[
m − rx

ry

]

q

qryrx . Thus, the probability that Supp(x) ∩ Supp(x) = {0} is

[
m − rx

ry

]

q

qryrx

([
m
ry

]

q

)−1

. Combining this with the result from Proposition

1, the probability that rk(z) = rx + ry for a random y
$← Em,n,ry

is

Pr[rk(z) = rx + ry] =
[

m − rx

ry

]

q

[
n − rx

ry

]

q

q2ryrx

([
m
ry

]

q

[
n
ry

]

q

)−1

.

��

D Proof of Proposition 2.

Proposition 2. Let rx, ry be integers such that rx+ry ≤ min{m,n}, x ∈ Em,n,rx
,

y ∈ Em,n,ry
and z = x + y with rk(z) = rx + ry. Then Supp(x) ⊂ Supp(z).

Proof. By Lemma 1, we can rewrite x = (x̂1, . . . , x̂rx
)A and y = (ŷ1, . . . , ŷry

)B
where rk(x̂1, . . . , x̂rx

) = rx and rk(ŷ1, . . . , ŷry
) = ry. Then

z = (x̂1, . . . , x̂rx
)A + (ŷ1, . . . , ŷry

)B = (x̂1, . . . , x̂rx
, ŷ1, . . . , ŷry

)
[

A
B

]
. (1)

Similarly, since rk(z) = rx + ry, we can rewrite

z = ẑZ = (ẑ1, . . . , ẑrx+ry
)Z (2)

where rk(ẑ) = rx + ry and rk(Z) = rx + ry. Equating (1)=(2), we have

(x̂1, . . . , x̂rx
, ŷ1, . . . , ŷry

)
[

A
B

]
= (ẑ1, . . . , ẑrx+ry

)Z,

which implies that 〈x̂1, . . . , x̂rx
, ŷ1, . . . , ŷry

〉 = 〈ẑ1, . . . , ẑrx+ry
〉 and

Supp(x) = 〈x̂1, . . . , x̂rx
〉 ⊂ 〈ẑ1, . . . , ẑrx+ry

〉 = Supp(z).

��

234 T. S. C. Lau et al.

E Proof of Proposition 3.

Proposition 3. Let x ∈ Em,n,r and t > r be an integer. There exists a vector
y = (y1, . . . , yt) ∈ Em,t,t such that Supp(x) ⊂ Supp(y). We call such Supp(y) an
extended support of x and {y1, . . . , yt} an extended support basis for x. Moreover,
there exists a matrix V ∈ F

t×n
q of rk(V) = r satisfying x = (y1, . . . , yt)V . We

call such V an extended support matrix for x.

Proof. Since x ∈ Em,n,r, by Lemma 1, there exists a vector x̂ = (x̂1, . . . , x̂r) ∈
Em,r,r and a matrix U ∈ F

r×n
q with rk(U) = r such that x = x̂U . Let

r′ = t − r, randomly pick r′ independent elements w1, . . . , wr′ ∈ Fqm \ Supp(x),
such that rk(x̂1, . . . , x̂r, w1, . . . , wr′) = t. Then we can rewrite the vector

x = x̂U = (x̂1, . . . , x̂r, w1, . . . , wr′)
[

U
0r′×n

]
. Finally, let P ∈ GLt(Fq) and

ŷ = (x̂1, . . . , x̂r, w1, . . . , wr′). Then there exists a vector y = ŷP and a matrix

V = P−1

[
U

0r′×n

]
of rk(V) = r such that x = yV . ��

F Rank Support Recovery Algorithm

Let f = (f1, . . . , fd) ∈ Em,d,d, e = (e1, . . . , er) ∈ Em,r,r and s = (s1, . . . , sn) ∈
F

n
qm such that S := 〈s1, . . . , sn〉 = 〈f1e1, . . . , fder〉. Given f , s and r as input, the

Rank Support Recover Algorithm will output a vector space E which satisfies
E = 〈e1, . . . , er〉. Denote Si := f−1

i .S and Si,j := Si ∩ Sj .

Algorithm 8: Rank Support Recover (RSR) Algorithm
Data: F = 〈f1, . . . , fd〉, s = (s1, . . . , sn) ∈ F

n
qm , r = dim(E)

Result: A candidate for the vector space E
1 Compute S = 〈s1, . . . , sn〉
2 Precompute every Si for i = 1 to d
3 Precompute every Si,i+1 for i = 1 to d − 1
4 for i ← 1 to d − 2 do
5 tmp ← S + F.(Si,i+1 + Si+1,i+2 + Si,i+2)
6 if dim(tmp) ≤ rd then
7 S ← tmp

8 E ← f−1
1 .S ∩ . . . ∩ f−1

d .S
9 return E

References

1. Aguilar Melchor, C., et al.: ROLLO - Rank-Ouroboros, LAKE & Locker. https://
pqc-rollo.org/doc/rollo-specification 2018-11-30.pdf

2. Aragon, N., et al.: Cryptanalysis of a rank-based signature with short public keys.
Designs, Codes and Cryptography (to appear)

https://pqc-rollo.org/doc/rollo-specification_2018-11-30.pdf
https://pqc-rollo.org/doc/rollo-specification_2018-11-30.pdf

Key Recovery Attacks on Some Rank Metric Code-Based Signatures 235

3. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank
metric based signature scheme. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 728–758. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 25

4. Bellini, E., Caullery, F., Hasikos, A., Manzano, M., Mateu, V.: Code-based signa-
ture schemes from identification protocols in the rank metric. In: Camenisch, J.,
Papadimitratos, P. (eds.) CANS 2018. LNCS, vol. 11124, pp. 277–298. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00434-7 14

5. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS,
vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12929-2 6

6. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19574-7 12

7. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

8. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: New results for rank-based cryptog-
raphy. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol.
8469, pp. 1–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-
6 1

9. Horlemann-Trautmann, A., Marshall, K., Rosenthal, J.: Extension of Overbeck’s
attack for Gabidulin based cryptosystems. Des. Codes Cryptogr. 86(2), 319–340
(2018)

10. Lau, T.S.C., Tan, C.H.: Key recovery attack on Rank Quasi-Cyclic code-based
signature scheme. arXiv preprint:1902.00241. https://arxiv.org/abs/1902.00241

11. Lau, T.S.C., Tan, C.H., Prabowo, T.F.: Analysis of TPL signature scheme. IACR
Cryptology Archive 2019:303. https://eprint.iacr.org/2019/303

12. Neri, A., Horlemann-Trautmann, A.-L., Randrianarisoa, T., Rosenthal, J.: On the
genericity of maximum rank distance and Gabidulin codes. Des. Codes Cryptogr.
86(2), 341–363 (2018)

13. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

14. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

15. Song, Y., Huang, X., Mu, Y., Wu, W.: A new code-based signature scheme
with shorter public key. Cryptology ePrint Archive: Report 2019/053. https://
eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/053&version=20190125:204017&
file=053.pdf

16. Tan, C.H., Prabowo, T.F., Lau, T.S.C.: Rank metric code-based signature. In: Pro-
ceedings of the International Symposium on Information Theory and Its Applica-
tion (ISITA 2018), pp. 70–74 (2018)

17. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8(1), 57–69 (1997)

18. Xagawa, K.: Cryptanalysis of a new code-based signature scheme with shorter
public key in PKC 2019. IACR ePrint:2019/120. https://eprint.iacr.org/2019/120.
pdf

https://doi.org/10.1007/978-3-030-17659-4_25
https://doi.org/10.1007/978-3-030-17659-4_25
https://doi.org/10.1007/978-3-030-00434-7_14
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-19574-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-06734-6_1
https://doi.org/10.1007/978-3-319-06734-6_1
https://arxiv.org/abs/1902.00241
https://eprint.iacr.org/2019/303
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/053&version=20190125:204017&file=053.pdf
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/053&version=20190125:204017&file=053.pdf
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/053&version=20190125:204017&file=053.pdf
https://eprint.iacr.org/2019/120.pdf
https://eprint.iacr.org/2019/120.pdf

On the Security of Multikey
Homomorphic Encryption

Hyang-Sook Lee and Jeongeun Park(B)

Department of Mathematics, Ewha Womans University, Seoul, Republic of Korea
hsl@ewha.ac.kr, jungeun7430@ewhain.net

Abstract. Multikey fully homomorphic encryption (MFHE) scheme
enables homomorphic computation on data encrypted under different
keys. To decrypt a result ciphertext, all the involved secret keys are
required. For multi decryptor setting, decryption is a protocol with min-
imal interaction among parties. However, all prior schemes supporting
the protocol are not secure in public channel against a passive external
adversary who can see any public information not joining the protocol.
Furthermore, the possible adversaries have not been defined clearly.

In this paper, we revisit the security of MFHE and present a secure
one-round decryption protocol. We apply it to one of existing schemes
and prove the scheme is secure against possible static adversaries. As an
application, we construct a two round multiparty computation without
common random string.

Keywords: Security of MFHE · MPC without CRS · Multikey
homomorphic encryption

1 Introduction

1.1 Multikey Fully Homomorphic Encryption Schemes

Fully homomorphic encryption (FHE) supports arbitrary computation on
encrypted data under the same key. Multikey fully homomorphic encryption
(MFHE) is a generalization of FHE, which allows arbitrary computation on
encrypted data under different keys. The important thing is that all relevant
secret keys are required to decrypt a ciphertext. This concept was first pro-
posed by Lopez, Tromer, and Vaikuntanathan [16] in 2012, which is intended to
apply to on-the-fly multiparty computation. In fact, MFHE has been an inter-
esting topic for round efficient secure computation with minimal communication
cost [4,8,15,17]. There are several results on MFHE [3,8,13,14,18], all of which
do not allow any interaction among associated parties before decryption proto-
col is started. All their schemes assume a common random string (CRS) model,
which additionally requires a trusted party who distributes the CRS to every
party and can be viewed as an ideal version of multikey homomorphic encryp-
tion. A CRS plays a role of linking all the parties’ ciphertexts under different
c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 236–251, 2019.
https://doi.org/10.1007/978-3-030-35199-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_12

On the Security of Multikey Homomorphic Encryption 237

keys to do correct computation on them. Kim, Lee and Park introduce another
scheme to get rid of a role of CRS, which is defined in [9] and also [15] implies
the same scheme for the first time. In their scheme, the parties share their public
keys after key generation step to relate their keys for their own sake like threshold
fully homomorphic encryption scheme [1], but keys are generated independently
by each user. On the other hand, each user generates key pair and encrypts its
own message using single key encryption then publishes together at once with-
out any interaction in the previous other schemes. Their scheme is for the fixed
number of users so that it might loose some dynamic property which lets users
join and leave the computation freely.

So far, there are at least two types of MFHE schemes: (1) non-interactive
MFHE which does not allow any interaction among parties before decryption
(note that the computation is done by a server), (2) interactive MFHE to share
public keys after key generation. We call a non-interactive scheme and an interac-
tive scheme to distinguish the two schemes in this paper. The interactive scheme
might loose a round efficiency for applying to multiparty computation (MPC)
since there is at least one interaction by default. On the other hand, it is pos-
sible to remove CRS. However, regardless of schemes, we can think of that the
decryption procedure can be divided into two cases. The first case is a single
decryptor setting like in [16], where a trusted decryptor exists and holds all par-
ties’ secret keys so that no interaction among users is required. Here, only the
decryptor gets the output value using all the secret keys. Then, each user just
needs to keep its input privacy against one another. The second one is a multi
decryptor setting, where all users jointly decrypt a common message with mini-
mal interaction among them. Here, they have to make sure that any information
about the function value should not be revealed until the joint decryption pro-
tocol is completed. Therefore, Kim, Lee and Park define a new security notion
for MFHE, which is called multikey IND-CPA security, for the first time. This
is a security for a multikey ciphertext (associated with different keys) against
one of users whose key is involved in the ciphertext. It is a reasonable security
since the ciphertext may leak some information before decrypted with all rele-
vant secret keys. However, it is not sufficient for MFHE itself. All the existing
MFHE schemes for multi decryptor setting employ a decryption protocol called
distributed decryption, which is also widely used in threshold FHE [1,2]. More
precisely, the distributed decryption protocol consists of two steps:

– Partial Decryption: Each user decrypts a common ciphertext partially with
its own secret key. It outputs a partial decryption.

– Final Decryption: Given all users’ partial decryptions, it outputs the plain-
text (or evaluated plaintext).

In the protocol, the final decryption algorithm takes only partial decryptions
without any key. In other words, the partial decryption is not a ciphertext any
more. The final message is decrypted only adding all the partial decryptions.
Therefore, anyone who is not joining the protocol but can get all partial decryp-
tions from a transmission channel easily gets the evaluated message by running
the final decryption algorithm for free. Indeed, this would cause a big problem in

238 H.-S. Lee and J. Park

industry. For example, there are three companies A, B and C, all of which want
to construct the best machine learning model using their clients’ information as
input. For clients’ privacy, each company encrypts each input data with its own
key. Then the three companies jointly compute a function to output the best
machine learning model via an MFHE scheme with multi decryptor. There is a
rival company D which does not join this computation, but also needs a good
machine learning model for the same type of data as A, B and C have. If A, B
and C use one of existing MFHE schemes, D can learn partial decryption shares
from a transmission channel and just run the public algorithm (final decryption)
to get the best machine learning model for free. If the above three companies
handle a private technique deserving patents, this can be a more critical issue.
As such, an MFHE scheme with the above decryption protocol is not secure in
a public channel. Up to our best knowledge, all the existing schemes have not
considered this situation since most of schemes are constructed for MPC hence
they can assume a private channel. In other words, MFHE schemes in public
channel have not been studied yet. In fact, it is worth consideration for MFHE
itself since “encryption” must protect a plaintext from at least a static adversary
in any public channel.

Likewise, an adversarial model and what should be protected from that
adversaries are different depending on the decryptor setting in MFHE. How-
ever, the existing security definition of MFHE is somewhat ambiguous and not
clear enough. Most of previous schemes just check their correctness and apply
the IND-CPA security of their base single key homomorphic encryption scheme,
even they do not clearly mention which decryptor setting they assume. That is,
no particular security definition for MFHE itself has been fully discussed yet.

1.2 Our Contribution

In this paper, we resolve the above problems as a main result. We revisit the
security of multikey homomorphic encryption scheme and construct a secure
decryption protocol based on an existing multikey homomorphic encryption
scheme [13] based on TFHE [5–7]. To do this, we define a possible static adver-
sary and semantic security for MFHE. Then we prove that a MFHE scheme
with our protocol is semantically secure. Our idea is that a partial decryption
remains a multikey ciphertext still encrypted under the other users’ keys even if
it is partially decrypted by a user. Therefore, it is still secure against an adver-
sary not holding any key. As an additional result, we obtain a round optimal
multiparty computation protocol without CRS. To do this, we convert the non-
interactive MFHE [13] with CRS to an interactive MFHE without CRS combin-
ing two MFHE schemes to get a hybrid scheme. In the hybrid scheme, we use
the original (leveled) MFHE of [13] for an encryption of message, and we use the
converted interactive scheme for bootstrapping part (encryption of secret key).
As a result, we construct a 2 round multiparty computation without CRS via
the hybrid scheme.

On the Security of Multikey Homomorphic Encryption 239

1.3 Organization

We review some important notions and pre-results in Sect. 2 and introduce a pos-
sible adversary and define the semantic security of MFHE in Sect. 3. In Sect. 4,
we present our distributed decryption protocol and apply it to a multikey TFHE
scheme. As an application of MFHE, we first modify a multikey TFHE to remove
CRS, allowing interaction among parties, then combine the two multikey TFHE
schemes to construct a 2 round MPC without CRS in Sect. 5.

2 Preliminaries

Notation: We denote λ as the security parameter. We define vectors and matri-
ces in lowercase bold and uppercase bold, respectively. Dot product of two vectors
v,w is denoted by < v,w >. For a vector x, x[i] denotes the i-th component
scalar. We denote that B as the set {0, 1} and T as the real torus R/Z, the set
of real number modulo 1. We denote ZN [X] and TN [X] by Z[X]/(XN + 1) and
R[X]/(XN + 1) mod 1, respectively. BN [X] denotes the polynomials in ZN [X]
with binary coefficients. For a real α > 0, Dα denotes the Gaussian distribution
of standard deviation α. In this paper, we use the same notation with [6] for
better understanding.

2.1 TFHE Scheme

We describe our base FHE scheme TFHE [6] and its multikey version [13]. The
multikey version of TFHE has smaller parameter and ciphertext size, leading to
better performance than previous GSW [12]-based multikey schemes [3,4,8,17,
18]. The TFHE scheme [6] is working entirely on real torus T and TN [X] based
on TLWE problem and TRLWE problem which are torus variant of LWE problem
and RLWE problem respectively, where N is a power of two. It is easy to see that
(T,+, ·) (resp. (TN [X],+, ·)) is Z (resp. ZN [X]) module.

A TLWE (resp. TRLWE) sample is defined as (a, b) ∈ T
kn+1 (resp. TN [X]k+1)

for any k > 0, where a is chosen uniformly over T
kn (resp. TN [X]k) and b =<

a, s > +e. The vector s is a secret key which is chosen uniformly from B
kn (resp.

BN [X]k) and the error e is chosen from Gaussian distribution with standard
deviation α ∈ R > 0. Furthermore, we follow the [6]’s definition of trivial sample
as having a = 0 and noiseless sample as having the standard deviation α = 0.
Here, we denote the message space to M ⊆ T. A TLWE ciphertext of μ ∈ M
is constructed by adding a trivial noiseless TLWE message sample (0, . . . , μ) ∈
T

kn+1 to a non-trivial TLWE sample. Therefore, the TLWE ciphertext of μ, say
c, which we will interpret as a TLWE sample (of μ) is (a, b) ∈ T

k+1, where
b = < a, s > +e + μ. To decrypt it correctly, we use a linear function ϕs called
phase, which results in ϕs(c) = b− < a, s >= μ + e and we round it to the
nearest element in M. We denote the error as Err(c), which is equal to ϕs(c)−μ.
For a TRLWE encryption, it follows the same way over TN [X] but a message μ
is a polynomial of degree N with coefficients ∈ M.

240 H.-S. Lee and J. Park

From the above definition, we can define the decisional TLWE (resp. TRLWE)
problem which is parametrized by an error distribution on TN [X] and a
function ϕs.

– Decision Problem: distinguish the uniform distribution on T
kn+1 (resp. Tk+1

N)
from TLWE (resp.TRLWE) samples for a fixed TLWE (resp. TRLWE) secret s.

The TLWE (resp. TRLWE) problem is a generalization of LWE (resp. RLWE)
problem which is as hard as approximating the shortest vector problem.

2.2 TGSW and an External Product

As we can see, TLWE and TRLWE samples have additive homomorphic property.
In order to have FHE scheme, [6] defined TGSW ciphertext which supports
external product with TLWE ciphertext to get a TLWE ciphertext encrypting
multiplication of messages. For TGSW samples in the ring mode, we use the
notation TRGSW which is working as TRLWE and also give the definition of a
TRGSW sample only. (for N = 1, we can think of TGSW sample).

For any positive integer Bg(≥ 2), �, k, a TRGSW sample is a matrix C =
Z+ μ ·H ∈ TN [X](k+1)�×(k+1), where each row of Z is a TRLWE sample of zero
and H is a gadget matrix which is defined by

H :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/Bg . . . 0
...

. . .
...

1/B�
g . . . 0

...
. . .

...
0 . . . 1/Bg

...
. . .

...
0 . . . 1/B�

g

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ TN [X](k+1)�×(k+1).

i.e. H = Ik+1 ⊗ g, where g = (1/Bg, . . . , 1/B�
g). There is a decomposition algo-

rithm g−1(·), which outputs the �-dimensional vector in Z ∩ (−Bg/2, Bg/2],
satisfying < g−1(a),g >≈ a for a ∈ R. The message μ is in ZN [X]. We denote
TLWE(μ),TRLWE(μ), and TRGSW(μ) as a ciphertext of each proper message μ of
TLWE,TRLWE, and TRGSW, respectively. We also denote a trivial TRGSW(1)
(resp. TGSW(1)) as Zt +H, where each row of Zt is a trivial TRLWE (resp.
TLWE) sample. An external product between a TGSW ciphertext and a TLWE
ciphertext, denoted as �, is defined as A�b = H−1(b) ·A, where A is a TGSW
sample of μA, b is a TLWE sample of μb and H−1(·) is the gadget decomposition
function DecH,β,ε of [6] with different notation. Then the output of the product
is a TLWE(μA ·μb). We denote the error as Err(A), which is a list of the (k +1)�
TLWE errors of each line of A. Then the error growth of the external product
between A and b is following:

‖Err(A � b)‖∞ ≤ (k + 1)�Nβ ‖Err(A)‖∞ + ‖μA‖1 (1 + kN)ε + ‖μA‖1 ‖Err(b)‖∞

On the Security of Multikey Homomorphic Encryption 241

2.3 Multikey Version of TFHE

We only describe the leveled fully homomorphic mode of Chen, Chillotti and
Song’s scheme since we focus on decryption algorithm so that we refer [13] for
more detail. Their scheme assumes a common random string (CRS) among users
and the CRS is used for generating a public key and evaluation keys so we do
not care of it in detail here. Their scheme is non-interactive before decryption.

– MTFHE1.Setup(1λ): It takes security parameter and outputs TLWE param-
eter params which consists of TLWE dimension n, key distribution χ, error
parameter α, and evaluation parameters evparam.

– MTFHE1.KeyGen(params):
• Sample s = (s0, . . . , sn−1) ← χ and set it as a TLWE secret key sk.
• construct a public key pk, evaluation keys evk from proper algorithms

in [13] with params and evparam.
– MTFHE1.Enc(m, s): Sample a = (a0, a1, . . . , an−1) from T

n uniformly at ran-
dom. Then take a message bit m ∈ {0, 1} and construct a TLWE sample
(a, b) ∈ T

n+1, where b = 1
4m− < a, s > +e (mod 1), e is chosen from the

Gaussian distribution Dα. Returns a ciphertext ct = (a, b).
– MTFHE1.Dec(ĉt, {skj}j∈[k]): Taking a (evaluated)ciphertext ĉt = (a1, . . . ,
ak, b) ∈ T

kn+1 and a concatenation of secret key vectors (s1, . . . , sk, 1) ∈
T

kn+1 as input and return the message bit m ∈ {0, 1}, which satisfies
b +

∑k
j=1 < aj , sj >≈ 1

4m (mod 1).
– MTFHE1.NAND(ĉt1, ĉt2): It takes two ciphertexts ĉt1 ∈ T

k1n+1, ĉt2 ∈ T
k2n+1,

where k1, k2 are the number of parties who joined the previous evaluations
to construct ĉt1, ĉt2, respectively, and the set [k] is the indices of parties who
are associated either ĉt1 or ĉt2.

• Extend ĉt1 and ĉt2 to make them the same dimensional vectors ĉt
′
1, ĉt

′
2

∈ T
kn+1 encrypted under the concatenated secret key ŝ = (s1, . . . , sk) ∈

Z
kn. Rearrange ajs giving each index to each user and putting zero in

the empty slots, for j ∈ [k].
• Return an evaluated ciphertext ĉt

′ = (0, . . . ,0, 5
8) − ĉt

′
1 − ĉt

′
2 (mod 1).

For the bootstrapping part with {evkj}j∈[k], we do not consider here, so we
refer the original paper. We call an evaluated ciphertext multikey ciphertext
in this paper. The dimension of a multikey ciphertext increases as a number
of homomorphic evaluation increases.

2.4 Distributed Decryption

A multikey homomorphic encryption scheme for multi decryptor setting includes
a decryption protocol in which all users jointly decrypt a common evaluated
message. The most round efficient distributed decryption [17] has been widely
adopted to recent schemes, which is following:

– PartDec(ĉt, ski) On inputs a multikey ciphertext ĉt under a sequence of k
users’ keys and the i -th secret key ski, outputs a partial decryption pi.

242 H.-S. Lee and J. Park

– FinDec(p1, . . . , pk) Given all parties’ partial decryptions {pi}i∈[k], outputs a
plaintext (or evaluated plaintext).

The decryption algorithm of MTFHE1 is defined for a single decryptor case. But,
they also suggest a distributed decryption protocol following the above for multi
decryptor case, hence it is not secure in a public channel.

3 Multikey Fully Homomorphic Encryption Security

Before we define the semantic security of MFHE, we observe possible static
(passive) adversaries first. The goal of MFHE for multi decryptor is to protect
each user’s individual message and the common evaluated message. Then we
can see that there are at least two types of static adversaries, one of which is an
internal adversary and the other is an external adversary. The internal adversary
is one of participants of computation but an external adversary is not. Both can
just see messages transmitted over any public channel but hope to learn any
information about each user’s message. However, the external adversary wants
to learn the evaluated message as well. Therefore, a MFHE with multi decryptor
has to consider a security for multikey ciphertext against both adversaries and
partial decryption against an external adversary. Thanks to the multikey IND-
CPA security [9], the multikey ciphertext is guaranteed to be secure against both
adversaries. Even if they only care of one of joint users, it is obvious that if a
multikey ciphertext is secure against one of secret key owners, it is secure against
one not holding any key. So we call it the internal security (of MFHE) in this
paper. Then we now define the external security (of MFHE).

For a probabilistic multikey fully homomorphic encryption algorithm, we
naturally extend the original indistinguishability under chosen plaintext attack
(IND-CPA) to any multikey FHE scheme by the following game between a PPT
static external adversary A and a challenger C. For any multikey FHE encryption
scheme Π = (KeyGen, Enc, Eval, Dec), any static external adversary A, and any
value λ for the security parameter, where Dec = (MFHE.PartDec,MFHE.FinDec)
is a distributed decryption protocol, MFHE security game is defined as:

1 A chooses a positive integer k and gives it to the challenger C.
2 C runs KeyGen(1λ) to generate k random key pairs {(ski, pki)}i∈[k] and k

evaluation keys {evki}i∈[k]. Then it publishes all the public keys {pki}i∈[k]

and {evki}i∈[k] to A and keeps all the secret keys {ski}i∈[k] in secret.
3 The adversary A is given input 1λ and oracle access to Enc() with all public

keys and its chosen messages. Then it chooses an index j ∈ [k] and outputs
a pair of message vectors m0,m1 of the same length and a function f (here,
each component of a vector is viewed as each user’s message). The message
vectors are m0 = (0, 0, . . . , 0) ∈ {0, 1}k and m1 = (1, 0, . . . , 0) ∈ {0, 1}k and a
funtion f is defined as f : {0, 1}k → {0, 1} which outputs the first component
of input vector. Then it gives m0,m1, f , and the index j to C.

4 C chooses a random bit b ← {0, 1}, computes a multikey ciphertext which is
an encryption of f(mb) under k public keys, running Eval. Then it partially

On the Security of Multikey Homomorphic Encryption 243

decrypts the ciphertexts using {ski}i∈[k]\{j}. It sends the partial decryption
messages to A.

5 The adversary is free to perform any number of additional computations,
encryptions by given keys (free access to Enc,Eval). Finally, it outputs a
guess for the value of b′. If b′ = b, A wins.

We define that for any multikey homomorphic encryption scheme, if the advan-
tage of A is negligible, then the scheme achieves the external security. As a
result, we define semantic security for a MFHE.

Definition 1. For a multikey homomorphic encryption scheme (KeyGen, Enc,
Eval, Dec), where Dec is run by a single decryptor, it is semantically secure if it
achieves the internal security. For a multikey homomorphic encryption scheme
for multi decryptor, where Dec is a protocol among users, it is semantically secure
if it achieves both internal and external security.

It is possible for a single decryptor who holds every associated secret keys
to decrypt a multikey ciphertext by itself. Therefore, achieving the only internal
security is enough for its semantic security.

4 Distributed Decryption for Only Joint Users

4.1 Distributed Decryption Protocol

We first formalize the distributed decryption protocol with general algorithms for
multikey homomorphic encryption scheme and then construct a specific protocol
applying TFHE scheme based on LWE problem. Such a protocol consists of
two steps: (1) each user first decrypts a common evaluated ciphertext partially
with its secret key and broadcast the partial information, (2) after gathering all
the partial decryption from all users, each user decrypts the correct evaluated
message finally with its secret key, independently. Let k be the number of users.

Definition 2. A distributed decryption for multikey homomorphic encryption
consists of two algorithms:

– MFHE.PartDec(ĉt, ski): It takes a common evaluated ciphertext ĉt and i-th
user’s secret key ski for i ∈ [k] on input. It returns partial decryptions pi,j

for j ∈ [k]. The user keeps pi,i secret and broadcasts pi,j for j ∈ [k]\{i}.
– MFHE.FinDec({pj,i}j∈[k], ski): It takes all the partial decrypted messages pj,i

for j ∈ [k]\{i} which are given to the i-th user and its own partial decryption
message pi,i and its secret key ski on input. It outputs the correct evaluated
message.

Comparing to previous protocol, the number of partial decryption increases
linearly on k while the previous one is constant. However, it seems inevitable
for keeping privacy. If a scheme is interactive before decryption protocol, it is
easy to think of an encryption of a partial decrypted message with other users’

244 H.-S. Lee and J. Park

public keys since users share their public keys before the computation. Hence
the MFHE.PartDec might have another input pkj for j ∈ [k]\{i}. For a non-
interactive scheme, server can give all required inputs for distributed decryption
such as joint users’ public keys and evaluation keys for users’ own sake, however,
it would not be straightforward to agree on sharing keys among users. Therefore,
we introduce a naive protocol preserving the optimal round without having other
users’ information.

4.2 Specific Protocol with Multikey TFHE Scheme

The multikey ciphertext of [13] scheme is ĉt = (a1, . . . ,ak, b) ∈ T
kn+1, which

satisfies b = 1
4m − ∑k

j=1 < aj , sj > +e (mod 1), where k is the number of joint
users, m ∈ {0, 1}. Then the distributed decryption protocol (of the i-th user) is
following:

– MTFHE1.PartDec(ĉt, si):
• compute pi,i = b+ < ai, si >= 1

4m − ∑k
j �=i < aj , sj > +e (mod 1)∈ T

• pi,i can be viewed as a one component of TLWE ciphertext of j-th user for
j ∈ [k]\{i}, i.e pi,i =< aj , sj > +mess + e, where mess = 1

4m − ∑k
t�=i,j <

at, st > for t ∈ [k]\{i, j}. Then the user does external product between
a TLWE sample (aj , pi,i) and a trivial TGSW(1) which is denoted as Aj

with noise ej from Dα by the user i.
• The output of the external product is a TLWE ciphertext of the same

message mess, which is pi,j = (ai,j , bi,j) ∈ T
n+1 and is given to each user

j for j ∈ [k]\i.
– MTFHE1.FinDec({pj,i}j∈[k], si):

• It parses pj,i into aj,i and bj,i and compute b′
j,i = bj,i+ < ai, si > for

every j ∈ [k]\{i}.
• It computes

∑k
j �=i b′

j,i − (k − 2)pi,i = 1
4m + ē.

• if the output is close to 1
4 the evaluate message 1, otherwise 0.

Note that for k = 2 (two users), b′
j,i = bj,i+ < ai, si > itself gives the result for

i �= j ∈ [2].

Correctness of Decryption. Fix a user i for i ∈ [k]. Then the correctness for
the user follows:

k∑

j �=i

b′
j,i − (k − 2)pi,i

=
k∑

j �=i

(
1

4
m −

∑

t �=i,j

< at, st > +ẽj) − (k − 2)pi,i

= (k − 1)
1

4
m −

k∑

j �=i

(
k∑

t �=i,j

< at, st > +ẽj) − (k − 2)(
1

4
m −

k∑

j �=i

< aj , sj > +e)

=
1

4
m − (k − 2)

k∑

j �=i

< aj , sj > +(k − 2)

k∑

j �=i

< aj , sj > +

k∑

j �=i

ẽj − (k − 2)e

=
1

4
m + ē

On the Security of Multikey Homomorphic Encryption 245

If the magnitude of the error term ē is less than 1
8 , the decryption works

correctly.

Error Growth Estimation. Note that e is Err(b) and also Err(pi,i). After the
external product, e becomes ẽj for each j ∈ [k]\{i} then we can say ẽj = e+eaddj

.
We can estimate the magnitude of the growth eaddj

from the external product
noise propagation formula. Finally,

ē =
k∑

j �=i

ẽj − (k − 2)e = (k − 1)e +
k∑

j �=i

eaddj
− (k − 2)e = e +

k∑
j �=i

eaddj
,

‖ē‖∞ ≤ ‖e‖∞ + (k − 1)maxj(
∥
∥eaddj

∥
∥

∞) = ‖e‖∞ + 2(k − 1)�βmaxj(‖Err(Aj)‖∞) + 2ε.

Therefore, the noise growth after partial decryption procedure is quite small
since Err(Aj) is the error of a fresh TGSW ciphertext Aj for j ∈ [k]\{i}.

Semantic Security of MTFHE1. We prove the semantic security of the above
multikey homomorphic encryption scheme.

Theorem 3. MTFHE1 scheme with the distributed decryption protocol is
semantically secure assuming the hardness of the underlying TLWE problem.

The security against an internal adversary is trivial. Since the evaluated multikey
ciphertext is a TLWE ciphertext (a1, . . . ,ak, b), where b = 1

4m−∑k
i=1 < ai, si >

+e which is semantically secure itself by TLWE assumption even if any user
partially decrypts it with its own secret key (i.e. b+ < ai, si > is also a TLWE
ciphertext for i ∈ [k]). We now prove the security of the above scheme against
external adversary.

Proof. The security game defined in Sect. 3 follows: After the step 4, all A has
got is a multikey ciphertext ĉt = (a1, . . . ,ak, b), pi,j = (ai,j , bi,j) for i ∈ [k]\{j}.
What A may perform is to do

∑k
i�=j pi,j −(k−2)(aj , b). The result is (a′

j ,
1
4m− <

a′
j , sj > +error), which is a TLWE ciphertext under sj . Then A gives the result

to a TLWE distinguisher D and A outputs whatever D outputs. By the TLWE
assumption, the advantage of D is negligible, so is A’s. �

We note that the same technique can be applied to the recent MFHE schemes
for batched ciphertext [14] in which the external product would be replaced with
a tensor product.

5 Round Optimal MPC Protocol Without a CRS via
Two MFHE Schemes

Multikey fully homomorphic encryption (MFHE) scheme is known as achiev-
ing a round efficient multi party compuation (MPC) [1,15,17]. Mukherjee and
Wichs [17] constructed a round optimal (2 round) MPC with CRS and Kim, Lee,
and Park [15] achieved a three round MPC without a CRS via interactive MFHE

246 H.-S. Lee and J. Park

scheme (against semi-malicious adversaries). There is a 2 round semi malicious
secure MPC protocol without CRS assuming the existence of two round oblivious
transfer (OT) [11]. Also, if there is a two round MPC protocol without CRS via
MFHE, and the ciphertexts and public keys are stored to reuse, it can be done
to get a correct output for one round assuming the adversaries are static. Such
scenario can be achieved in a hospital. For instance, authorized doctors want to
experiment using several patients’ data encrypted under individual keys. Once
their public keys and encrypted data are registered, doctors can do any compu-
tation on them to get a result executing one round MPC via MFHE. However,
achieving the full security without CRS takes at least 4 rounds, which is proved
in [10].

Assuming CRS in any protocol for multi parties might be a quite strong
assumption and does not fit in real situation. Like Kim, Lee and Park’s scheme,
it seems that alternating a role of CRS can be achieved sharing public keys
allowing an interaction among parties as a trade off. We construct an opti-
mal round (two round) MPC protocol without CRS against honest-but curious
adversaries, combining non-interactive MFHE scheme with CRS and interactive
MFHE scheme without CRS. First, we convert MTFHE1 to an interactive version
MTFHE2 then construct a MPC protocol.

5.1 MTFHE2 Scheme Without Common Random String

We convert the non-interactive scheme for bootstrapping part of MTFHE1 to
have an interaction before decryption. It means that all parties share their public
keys and relate keys to alter the role of common random string. In MTFHE1, a
common random string is the common random parameter a. Instead, each party
generates its public key independently, then publishes it. It suffices to show
how multikey TRGSW ciphertexts (Section 3.2 of [13]) are correctly constructed
substituting the common random parameter a to ai for i ∈ [k], where k is the
fixed number of parties, since the common random parameter only has an effect
on those procedure. Other algorithms are compatible with our modification.
After showing that, we construct MTFHE2 with multi decryptor.

– mTRGSW.Setup(1λ): It outputs evparam = (N,ψ, α,g, �), where N is TRLWE
dimension, ψ is a key distribution over ZN [X], α is an error parameter, and
g and � are TRGSW parameter.

– mTRGSW.KeyGen(evparam): Sample a secret z ← ψ and set a vector z =
(z, 1). Sample an error vector e ← D�

α over TN [X] and a random vector
a ← TN [X]�. Set the public key as P ← pk = [a,b] ∈ TN [X]�×2, where
b = −a · z + e (mod 1). It returns (z, pk).

– mTRGSW.Enc(μ, z, {pkj}j∈[k], i): It takes a plaintext μ ∈ ZN [X], a secret z,
and all involved parties’ public keys, (it is run by a party i) it returns a
multikey ciphertext Ĉi ∈ TN [X]�(k+1)×(k+1). And the procedure is following:

(1) Sample c0 ← TN [X]� and ec ← D�
α uniformly at random. Set Ci =

[c0,i|c1,i], where c1,i = −zi · c0,i + ec + μg (mod 1).

On the Security of Multikey Homomorphic Encryption 247

(2) Sample a randomness rj ← ψ and an error matrix Ej ← D�×2
α for

j ∈ [k]. Output Dj = [d0,j |d1,j] = rjPj+Ej+[μ·g|0] (mod 1)∈ TN [X]�×2

for j ∈ [k]. And for j ∈ [k]\{i}, set D̄j = [d̄0,j |d̄1,j] = rj ·Pi + Ēj , where
Ēj ← D�×2

α uniformly at random.
(3) Sample f0 ← TN [X]�, ef ← D�

α uniformly at random. Set a ciphertext
F = [f0|f1] ∈ TN [X]�×2 where f1 = −zi · f0 + ef (mod 1).

Ĉi :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0,1 · · · d̄0,1 + f0 · · · 0 f1 + d1,1 + d̄1,1

...
. . .

...
. . .

...
...

0 · · · d0,i · · · 0 d1,i

...
. . .

...
. . .

...
...

0 · · · d̄0,k + f0 · · · d0,k f1 + d1,k + d̄1,k

0 · · · c0,i · · · 0 c1,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ TN [X]�(k+1)×(k+1)

Note that the (j, j)-th component of Ĉi is d0,j for j ∈ [k]. The elements
other than the diagonal, the i-th column and k + 1 th column are zero
vectors.

– mTRGSW.Dec({skj}j∈[k], Ĉ): Given all the involved secret keys {skj} and a
multikey ciphertext Ĉ, it returns a message μ.

Correctness. Then we check the correctness i.e. Ĉiẑ ≈ μHẑ (mod 1), where ẑ
is a concatenation of each party’s secret vector (z1, . . . , zk, 1). The correctness
is done with the following equation:

– zi · c0 + c1+ = Cizi ≈ μ · g (mod 1).
– zi · d̄0,j + d̄1,j = D̄jzi ≈ 0 (mod 1).
– zi · f0 + f1 = Fzi ≈ 0 (mod 1).
– zj · d0,j + d1,j = Djzj ≈ μzjg (mod 1).

Theorem 4. The above MFHE scheme mTRGSW with a single decryptor is
semantically secure by the underlying TRLWE assumption.

Proof. For a single key ciphertext, the two distributions {(Pi,Ci,Di =
[d0,i|d1,i])} and {(Pu,Cu,Du), Pu,Cu,Du ← TN [X]�×2 uniformly at random}
are computationally indistinguishable by the underlying TRLWE problem. There-
for the single key ciphertext for i-th party is semantically secure. Then we
consider the internal security for the other information related with other
keys. For the j-th user holding zj and j ∈ [k]\{i}, what she can do is
zj ·d0,j + f1 +d1,j + d̄1,j . Then the result is μizj ·g+ f1d̄1,j , which looks totally
uniform random element for her. The reason follows:
(ai, d̄0,j = rj · ai + ē0,j) is computationally indistinguishable with (ai,u) by the
underlying TRLWE problem, where u ← TN [X]� uniformly at random, since rj

is a secret chosen by the i-th user. This implies that d̄0,j +f0 looks also uniformly
random. Thanks to this, f0 is not revealed at all so that f1 itself is considered as
a uniform element. Then it makes f1 + d̄1,j looks uniformly random. As a result,

248 H.-S. Lee and J. Park

no internal adversary can distinguish if the given multikey ciphertext encrypts
0 or 1. In other words, the mTRGSW scheme achieves the internal security so
that it is semantically secure by the underlying TRLWE assumption. �
Now, we construct an interactive MFHE scheme MTFHE2 from MTFHE1 and
mTRGSW scheme.

– MTFHE2.Setup(1λ) → (params): It runs MTFHE1.Setup(1λ) and we now spec-
ify the evparam is included in params. evparam ← mTRGSW.Setup(1λ).

– MTFHE2.KeyGen(params) → (z, pk, sk) : It runs MTFHE1.KeyGen(params) to
get sk and runs mTRGSW.KeyGen(evparam) to get (z, pk)

– MTFHE2.Enc(pk1, . . . , pkk, ski, z, μ): It runs MTFHE1.Enc(μ, ski) to get a
ciphertext ct and runs mTRGSW(ski[t], z, pk1, . . . , pkk, i) to get Ĉi,t for t ∈
[n]. Set {Ci,t}t∈[n] as evki. It outputs ct and evk

– MTFHE2.Dec(ĉt, sk1, . . . , skk) : It runs MTFHE1.Dec(ĉt, sk1, . . . , skk) and out-
puts the message μ.

– MTFHE2.Eval(ĉt1, ĉt2, {evkj}j∈[k]) : It runs MTFHE1.NAND(ĉt1, ĉt2) and
bootstrapping algorithm of [13] with {evkj}j∈[k] then outputs the evaluated
ciphertext ĉt

′.

Note that the decryption protocol is done by MTFHE1.PartDec and
MTFHE1.FinDec having an interaction with other parties defined in Sect. 4. We
do not cover how bootstrapping procedure works with evkj since it is exactly
the same procedure as the original paper [13]. We have already checked the
correctness of mTRGSW ciphertext so that all other algorithms work correctly.
This modification allows to get rid of the assumption of the common random
parameter (CRS) among all users. However, the number of users should be fixed
before the computation, which might be a negative point for some computation.

5.2 2 Round MPC Without a CRS via MTFHE2

We give an optimal round MPC protocol without CRS below. It is not necessary
to use our distributed decryption protocol in a MPC protocol for the last step
since traditional MPC only cares of input security. Applying what decryption
protocol depends on a purpose of a computation.

Let f : {0, 1}k → {0, 1} be the function to compute.

Preprocessing. Run params ← MTFHE2.Setup(1λ). Make sure that all the
parties have params.

Input: For i ∈ [k], each party Ui holds input mi ∈ {0, 1}, and wants to compute
f(m1, · · · ,mk).

Round I. Each party Ui executes the following steps:
– Generates its public key pki and secret keys by running

MTFHE2.KeyGen(params).
– Encrypts a message mi running MTFHE1.Enc to get a TLWE sample cti =

(ai, bi).

On the Security of Multikey Homomorphic Encryption 249

– Broadcasts the public key pki, cti.
Round II. Once receiving public keys {pkk}k �=i, each party Ui for i ∈ [k]

executes evaluation procedure with the following steps:
– Runs mTRGSW,Enc(ski[t], z, pk1, . . . , pkk, i) to get evki.
– Extends {ctj}j∈[k] to get {ĉtj}j∈[k].

• If the protocol is run for the first time, each party runs
MTFHE1.NAND(ĉtj1, ĉtj2) to get an evaluted ciphertext for j1,
j2 ∈ [k].

• else, runs MTFHE2.Eval(ĉtj1, ĉtj2, {evkj}j∈[k]) to get an evaluted
ciphertext for j1, j2 ∈ [k].

– Runs MTFHE2.PartDec(ĉt, ski) to get a partial decryption pi,j for j ∈ [k].
– broadcasts evki, pi,j .

Output: On receiving all the values {pj,i}j∈[k], each party Ui runs the final
decryption algorithm to obtain the function value f(m1, · · · ,mk):

y ← MTFHE2.FinDec({pj,i}j∈[k], ski),

and output y = f(m1, · · · ,mk).

The above protocol is limited to run a function which has a depth which guar-
antees that the decryption never fails only for the first time. After that, from
the second time, all parties can run the protocol with arbitrary function with-
out predefined depth since the parties share bootstrapping key{evkj}j∈[k] in the
second round. Therefore, once the keys {pkj}j∈[k], {evkj}j∈[k] are published, the
protocol does not generate keys for the same number of parties and the parties
reuse the keys.

Security. This 2 round MPC protocol is secure against honest but curious adver-
saries. Honest but curious adversary is a legitimate party in a communication
protocol who does not deviate from the defined protocol but will attempt to
learn all possible information from legitimately received messages. Then we can
see that the security is guaranteed by the semantic security of MTFHE2.

Acknowledgement. Hyang-Sook Lee and Jeongeun Park were supported by the
National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. NRF-2018R1A2A1A05079095).

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

2. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS,
vol. 10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 19

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19

250 H.-S. Lee and J. Park

3. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 8

4. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from Ring-LWE
with compact ciphertext extension. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017,
Part II. LNCS, vol. 10678, pp. 597–627. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70503-3 20

5. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 1

6. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 377–408. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70694-8 14

7. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homo-
morphic encryption over the torus. Cryptology ePrint Archive, Report 2018/421
(2018). https://eprint.iacr.org/2018/421

8. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 31

9. Kim, E., Hyang-Sook Lee, J.P.: Towards round-optimal secure multiparty computa-
tions: multikey FHE without a CRS. Cryptology ePrint Archive, Report 2018/1156
(2018). https://eprint.iacr.org/2018/1156

10. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 16

11. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 16

12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

13. Hao Chen, I.C., Song, Y.: Multi-key homomophic encryption from tfhe. Cryptology
ePrint Archive, Report 2019/116 (2019). https://eprint.iacr.org/2019/116

14. Hao Chen, Wei Dai, M.K., Song, Y.: Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference.
Cryptology ePrint Archive, Report 2019/524 (2019). https://eprint.iacr.org/2019/
524

15. Kim, E., Lee, H.-S., Park, J.: Towards round-optimal secure multiparty computa-
tions: multikey FHE without a CRS. In: Susilo, W., Yang, G. (eds.) ACISP 2018.
LNCS, vol. 10946, pp. 101–113. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93638-3 7

https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-319-70503-3_20
https://doi.org/10.1007/978-3-319-70503-3_20
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://eprint.iacr.org/2018/421
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://eprint.iacr.org/2018/1156
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-642-40041-4_5
https://eprint.iacr.org/2019/116
https://eprint.iacr.org/2019/524
https://eprint.iacr.org/2019/524
https://doi.org/10.1007/978-3-319-93638-3_7
https://doi.org/10.1007/978-3-319-93638-3_7

On the Security of Multikey Homomorphic Encryption 251

16. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) 44th Annual ACM Symposium on Theory of Computing, pp. 1219–1234.
ACM Press, New York, 19–22 May 2012. https://doi.org/10.1145/2213977.2214086

17. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 26

18. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 9

https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9

RLWE-Based Zero-Knowledge Proofs
for Linear and Multiplicative Relations

Ramiro Mart́ınez(B) and Paz Morillo

Universitat Politècnica de Catalunya, Barcelona, Spain
{ramiro.martinez,paz.morillo}@upc.edu

Abstract. We present efficient Zero-Knowledge Proofs of Knowledge
(ZKPoK) for linear and multiplicative relations among secret messages
hidden as Ring Learning With Errors (RLWE) samples. Messages are
polynomials in Zq[x]/ 〈xn + 1〉 and our proposed protocols for a ZKPoK
are based on the celebrated paper by Stern on identification schemes
using coding problems (Crypto’93). Our 5-move protocol achieves a
soundness error slightly above 1/2 and perfect Zero-Knowledge.

As an application we present Zero-Knowledge Proofs of Knowledge
of relations between committed messages. The resulting commitment
scheme is perfectly binding with overwhelming probability over the
choice of the public key, and computationally hiding under the RLWE
assumption. Compared with previous Stern-based commitment scheme
proofs we decrease computational complexity, improve the size of the
parameters and reduce the soundness error of each round.

Keywords: Zero-Knowledge Proofs of Knowledge · Commitment
scheme · Ring Learning With Errors

1 Introduction

The goal of this paper is to present new and more efficient ways of proving lin-
ear and multiplicative relations between elements hidden in lattice-based struc-
tures, such as commitment schemes, without revealing any additional informa-
tion about the elements themselves. These kind of proofs play an important role
in many applications, from authentication protocols to electronic voting.

Lattice-based cryptography offers a high level of security. Its assumptions
rely on the hardness of problems for which there is no known efficient quan-
tum algorithm. This contrasts with classical factorization and discrete loga-
rithm related problems, as they are quantum efficiently solvable by Shor’s algo-
rithm [20]. When long term privacy is concerned this is especially important, as
public communications could be stored until quantum computers are available.

This work is partially supported by the European Union PROMETHEUS project (Hori-
zon 2020 Research and Innovation Program, grant 780701) and the Spanish Ministry
of Economy and Competitiveness, through Project MTM2016-77213-R.

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 252–277, 2019.
https://doi.org/10.1007/978-3-030-35199-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_13&domain=pdf
http://orcid.org/0000-0003-0496-6462
http://orcid.org/0000-0002-0063-2716
https://doi.org/10.1007/978-3-030-35199-1_13

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 253

To handle this issue, new protocols whose security is based on post-quantum safe
assumptions are required. Code-based and lattice-based cryptography are two
families of primitives widely believed to be quantum-resistant, and extensively
used in the literature.

In this article we propose improvements on a classical code-based protocol
to use it in a lattice context based on the Ring Learning With Errors (RLWE)
problem. Then we apply this construction to build exact proofs of knowledge
of a valid opening for a commitment, and to prove that messages inside valid
openings of different commitments satisfy linear or multiplicative relations.

1.1 Related Work

In 1993 Stern proposed one of the first post-quantum protocols in his seminal
paper on a new identification scheme based on coding theory [24]. His identifica-
tion protocol was a Zero-Knowledge Proof of Knowledge (ZKPoK) of a solution
of an instance of the Syndrome Decoding problem (SD). The syndrome works as
a public key and the user can authenticate himself interacting with a verifier and
proving knowledge of a solution (a binary vector with small Hamming weight).

The original proposal by Stern was a 3-move protocol with a soundness error
of 2/3. Many variants and applications have been published since then, address-
ing this lack of efficiency and providing new features (different signature schemes,
possibility of building secrets with integers module q instead of only bits, appli-
cations to lattice-based cryptography, commitment schemes, . . .). We describe
some of them in the following paragraphs.

In 2007 the use of cyclic codes was proposed in [10], later implemented in [6].
It was adapted to lattices in [14] in 2008, preserving a binary secret. Efficiency
was improved in 2010 reducing the soundness error in [9]. And many applications
have used it [1,4,7,8,21].

Nevertheless we are particularly interested in the contributions of Jain
et al. in their paper [12] where they build a commitment scheme based on the
Learning Parity with Noise (LPN) problem, proving knowledge of openings, lin-
ear and multiplicative relations between committed messages using 3-move and
2/3 soundness error Stern-based protocols. Then in 2013 Ling et al. showed in
[17] how the original Stern protocol could be run several times in parallel to
prove that a solution has small infinity norm (and not only small Hamming
weight). Xie et al. [25] adapt these techniques to the commitment construction
of [12], to be able to prove linear and multiplicative relations between polynomi-
als with coefficients in Zq. However the size of their proofs require an overhead
proportional to log2(q). All of them still have a soundness error of 2/3.

In this paper we especially benefit from the adaptation of Stern’s protocol
to lattices from Ling et al. [17], the modification of Cayrel et al. [9] for reducing
the soundness error increasing the number of rounds and the proposals of Jain
et al. [12] and Xie et al. [25] for proving linear and multiplicative relations, that
we further improve.

It is also important to mention the contributions of Benhamouda et al. [3]
and Baum et al. [2], who generalized the commitment idea of [25] without using

254 R. Mart́ınez and P. Morillo

Stern’s approach. They instead use Fiat-Shamir with aborts, a technique that
requires relaxing the definition of commitment (so that the set of valid openings is
larger than the set of openings generated by an honest prover, with more elements
and less tighter bounds for the error terms) obtaining more efficient proofs with
the cost of having stronger restrictions that require larger parameters. Therefore
if the relaxed ZKPoK are used as a building block in a different protocol (for
example for proving that an encryption public key is well formed), then the
restrictions on the parameters imposed by the relaxation might have an impact
on the efficiency of other parts of the protocol.

Exact Lattice-Based ZKPoK are therefore an active field of research, with
very recent efficient constructions for some lattice statements including linear
equations with short solutions and matrix-vector relations [26] by Yang et al.,
new techniques when a cyclotomic polynomial fully splits in linear factors [5]
by Bootle et al. and new recent Stern-based contributions for proving integer
relations [15] and matrix-vector relations [16] by Libert et al.

1.2 Our Contribution

Our contribution is an improvement over the two Stern-based ZKPoK for linear
and multiplicative relations from [12,25]. Our ideas on proving multiplicative
relations can be easily adapted to any scenario where messages are encoded as
RLWE samples. We show how we are able to prove these relations for messages
commited using a commitment scheme with Benhamouda et al. notation, as it is
the most natural adaptation of [12] to the RLWE setting, encoding an element
as a lattice point and adding a perturbed random point from a different lattice.

We get rid of the relaxations and limitations that were necessary in Ben-
hamouda et al. commitment scheme without needing the quadratic logarithm
of q overhead from Xie et al. For the linear relation case we apply standard
improvements to the original Stern protocol, but adding some original modifi-
cations to carefully reduce some constants in the communication cost. For the
multiplicative relation we construct a new efficient proof. We achieve this by
asking the verifier for two challenges in order to get soundness. Honest-Verifier
Zero-Knowledge is obtained as we explicitly provide a perfect simulator for each
protocol. Notice that simulations can skip the generation of never opened aux-
iliary commitments, as they can just be computed as commitments to 0, indis-
tinguishable from honestly computed commitments.

Many applications demand to evaluate arbitrary arithmetic circuits on secret
elements. Fully Homomorphic Encryption could be a solution (which can be
achieved with lattices by means of the Gentry et al. scheme [11]). An alternative
is to apply our proofs for linear and multiplicative relations to prove knowledge of
valid evaluations of the gates. The first lattice-based Attributed Based Signature
scheme for unbounded circuits [13] uses this strategy with the ZKPoK from [25].
Directly replacing their construction with our proposal greatly improves the
efficiency of the signature scheme.

Our proposal is a 5-move protocol with a soundness error slightly above 1/2.
It allows us to prove exact knowledge of the secret inside a RLWE sample, that

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 255

is, the secret is a polynomial with coefficients in Zq. The proposed commitment
scheme is perfectly binding with overwhelming probability over the choice of
the public key and computationally hiding under the RLWE assumption, widely
believe to be post-quantum.

The organization of this paper is as follows. We explain the notation and the
basic primitives that we are going to use in Sect. 2. We present the commitment
in Sect. 3, along with a proof of knowledge of a valid opening in Subsect. 3.1. We
then give proofs of a linear relation and a multiplicative relation in Subsects. 3.2
and 3.3, respectively. We finally end with some comparisons and conclusions in
Sect. 4.

2 Preliminaries

2.1 Notation

Column vectors are denoted with lower-case bold letters a and row vectors as
transposed column vectors aT. We denote by 1n the vector of dimension n
with all its coordinates equal to 1. Matrices are represented using upper-case
bold letters M . Let q be prime, given a vector v ∈ Z

n
q we define the infinity

norm as ‖v‖∞ = max1≤i≤n |vi| where vi are the coordinates of vector v taking[− ⌊
q
2

⌋
, . . . , 0, . . . ,

⌊
q
2

⌋]
as representatives.

When a is sampled uniformly at random from set A we write a
$←− A, a

$←− D

when a is sampled according to a probability distribution D and a
$←− A when a

is the output of a probabilistic algorithm A.
PPT denotes the class of Probabilistic Polynomial-Time algorithms.
A function f is negligible if |f(n)| ∈ O (n−c) , ∀c ∈ Z

+.
A function f is overwhelming if |f(n) − 1| ∈ O (n−c) , ∀c ∈ Z

+.
When an honest prover should send an element a we denote by ã the element

actually disclosed by the (possibly malicious) prover and we call â to the element
alleged to play the same role in the simulated conversation.

2.2 Zero-Knowledge Proofs

In this paper we use Public Coin Honest-Verifier Zero-Knowledge Proofs of
Knowledge. Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation with one restric-
tion. If (x,w) ∈ R satisfies the relation then the size |w| is at most p(|x|) for
some fixed polynomial p.

Definition 1 (Zero-Knowledge Proofs of Knowledge). A (2n + 1)-move
Public Coin Honest-Verifier Zero-Knowledge Proof of Knowledge is a protocol
between a prover P and a verifier V in which, given an x, P tries to convince V
that he knows a witness w such that (x,w) ∈ R. We use the following notation
ZKP

[
w

∣
∣ (x,w) ∈ R]

.
P and V engage in an interaction where P consecutively sends a message ai

answered by V with a random challenge bi for i from 1 to n. Finally P gives
a final answer z and V accepts or rejects the proof checking the conversation
(x, {ai}i , {bi}i , z). And has the following properties:

256 R. Mart́ınez and P. Morillo

– Completeness: if an honest prover P knows a valid witness w such that
(x,w) ∈ R and follows the protocol, then an honest verifier V always accepts
the conversation.

– k-Special Soundness: from k accepted conversations
{(

x, {ai,j}i , {bi,j}i ,

z
)}k

j=1
, and {bi,j}i �= {bi,j′}i for j �= j′, it is possible to efficiently extract a

witness w such that (x,w) ∈ R.
– Honest-Verifier Zero-Knowledge: there exists a polynomial-time simula-

tor that takes as input x and random {bi}i and outputs an accepted conversa-
tion (x, {ai}i , {bi}i , z) with the same probability distribution as conversations
between honest P and V.

This is a variant of standard Σ-protocols, as it is also pointed out by of Jain
et al. [12] and Xie et al. [25].

k-Special Soundness means that a prover able to answer k challenges is hon-
est, as in this case a witness could be extracted. If the challenge space is large
enough we get the desired soundness in one shot. In Stern’s protocol and some of
its variants it is only possible to extract a valid witness from answers to all possi-
ble challenges (three in his particular protocol), then the prover could cheat with
all but one (and therefore the protocol has 2/3 soundness error). In our case,
increasing the number of challenges, we prove how to obtain a valid witness from
valid answers to approximately one half of the possible challenges, reducing the
soundness error and therefore reducing the number of repetitions required.

2.3 Ring Learning with Errors

Considering a ring R = Z [x] / 〈f(x)〉 and Rq = R/qR, principal ideals 〈a(x)〉 ⊆
Rq can be identified with lattices generated by structured matrices A that only
depend on polynomials a(x) and f(x), called ideal lattices [19].

The ideal lattice L(a) generated by a vector of polynomials a ∈ Rk
q is then

L(a) = {ar|r ∈ Rq}. We choose f(x) to be xn + 1, with n a power of 2, and
then Rq = Zq [x] / 〈xn + 1〉, as it gives nice security reductions.

Definition 2 (Ring Learning With Errors(RLWEn,q,χ)). Let χ be a distri-
bution over R (tipically a Gaussian distribution). The decisional ring learning
with errors assumption states that {(ai, ai · s + ei)} is indistinguishable from

{(ai, ui)} for any polynomial number of samples where ai
$←− Rq, ei

$←− χ,

ui
$←− Rq and s ∈ Rq is secret.
The search RLWE assumption states that no PPT adversary can recover s

from a polynomial number of samples with a non-negligible probability.

Hardness of RLWE. If parameters are chosen properly the RLWE problem
becomes as hard as well known hard ideal lattice problems such as the ideal
Shortest Vector Problem (SVP) [18]. With a discrete Gaussian error distribution
χ where its standard deviation σ ≥ ω(

√
log n), and for any ring, there exists a

quantum reduction from the γ(n)-SVP problem to the RLWE problem to within

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 257

an approximation factor γ(n) = O(
√

n · q/σ). Additionaly, RLWE becomes no
easier to solve even if the secret s is chosen from the error distribution, rather
than uniformly [18].

2.4 Stern Identification Scheme

The original Zero-Knowledge interactive identification scheme by Stern allows a
prover to convince a verifier that given a parity check matrix H ∈ F

n×m
2 and

a syndrome y ∈ F
n
2 he knows a binary vector e ∈ F

m
2 of small fixed Hamming

weight ‖e‖H = w such that it has this syndrome y = He.

The original Stern protocol [24] hides e with a masking vector x
$←− F

n
2 , a

masking syndrome y′ ∈ F
n−k
2 (an honest prover will compute y′ = Hx) and a

permutation π
$←− Sn. Notice that x + e reveals no information about e, while

π(e) only reveals its Hamming weight, which is already known.
Ling et al. [17] propose to use a bounded infinity norm secret. In order to

prove this restriction on the norm they show that the secret element has a fixed
length binary decomposition. To hide the binary decomposition they extend it
so that it has the same number of −1, 0 and 1. Then running the protocol in
parallel for each of the vectors of the decomposition allows to prove knowledge
of a solution of a general instance of the Inhomogeneous Short Integer Solution
(ISIS) problem. We have to adapt their setting to the dual version and prove
knowledge of a solution of a RLWE problem.

In order to prove that something has small norm we prove that it can be
written with a constant number of bits. An ad-hoc basis could be used, but we
prefer to keep notation simple and decompose the elements in binary assuming
that the bound is a power of two.

The paper of Cayrel et al. [9] combines the secret and the masking element
with a random challenge α ∈ Zq to obtain (π(x + αe)), reducing the commu-
nication cost and the soundness error. We extend their approach with more
challenges so that we can prove knowledge of linear and multiplicative relations.

3 Commitment Scheme

Definition 3 (Comitment Scheme). A commitment scheme consists of three
algorithms:

– Gen: the generator algorithm takes a security parameter 1λ and outputs a
public key pk. pk

$←− Gen
(
1λ

)

– Com: the commitment algorithm takes as input a message m and a public
key pk and produces a commitment c and an opening d. (c, d) $←− Com (m; pk)

– Ver: the verification algorithm takes as input a commitment c, a message m,
an opening d and a public key pk and accepts, returns 1, or rejects, returns
0. Ver : {(c,m, d; pk)} → {0, 1}

258 R. Mart́ınez and P. Morillo

We say that a commitment scheme is secure if it satisfies the following three
properties:

– Correctness: if the commitment has been built correctly and the valid mes-
sage and opening are published the verifier algorithm always accepts:

(
pk

$←− Gen
(
1λ

)
, (c, d) $←− Com (m; pk)

)
=⇒ 1 ← Ver (c,m, d; pk) .

– Perfectly Binding: a commitment can only be opened to one message:

1 ← Ver (c,m, d; pk) ∧ 1 ← Ver (c,m′, d′; pk) =⇒ m = m′.

– Computationally Hiding: a well constructed commitment c does not leak
any relevant information about the message m. For any PPT adversary
(A1,A2):

∣
∣
∣
∣
∣
Pr

[

b = b′
∣
∣
∣
∣
∣

pk
$←− Gen(1λ), (m0, m1, aux)

$←− A1(pk)

b
$←− {0, 1}, (c, d)

$←− Com(mb; pk), b′ $←− A2(c, aux)

]

− 1

2

∣
∣
∣
∣
∣
∈ negl(λ).

Now we define a lattice-based commitment scheme, for this we can encode
a message m ∈ Rq as the coordinates of a point in an ideal lattice defined by
a ∈ Rk

q . To hide this lattice point am we add a RLWE sample from another

lattice br + e, where b ∈ Rk
q defines this other lattice, the randomness r

$←− Rq

is chosen uniformly at random and the error term e
$←− χnk is chosen from the

appropriate bounded discrete Gaussian distribution.
This structure am + br + e is used by Benhamouda et al. in [3], and it is

very similar to the one proposed by Xie et al. in [25]. As we use their structure
we can use some of the parameters proposed by Benhamouda et al.

The degree of the polynomial n = 2κ is a power of two, usually κ = 9 or
κ = 10. γ is an integer parameter controlling the size of the modulus q, a prime
number such that q ≡ 3 mod 8 and q ≥ nγ . Integer k would be the multiplicative
overhead (the length of a as a vector of polynomials). Finally as in their case our
errors obtained from χ will have a standard deviation σ ∈ O(n3/4) and will be
bounded by n = 2κ. We will restrict our coefficients to [−2κ, . . . , 2κ) but abuse
notation and just write ‖e‖∞ < 2κ.

While the commitment algorithm Com we present in this paper is the same
as the one that was presented in [3] our proofs of openings and relations do not
require any relaxation (in our case the set of valid openings is exactly the set of
openings obtained following the commitment algorithm). Therefore our proposal
is different as a commitment scheme, our verification algorithm Ver is simpler
and our parameter conditions required to prove security are less strict.

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 259

Proposition 1. If n ≥ 16, γ ≥ 3 and k ≥ 8γ+4
2γ−5 then the following is a secure

commitment scheme under the assumption that RLWE is hard.

– Gen: the generator algorithm takes a security parameter 1λ and outputs a pub-
lic key pk = (a, b) ∈ (Rk

q)2, where Rq = Zq [x] / 〈xn + 1〉 and k are defined so
that the difficulty of solving the RLWE problem is related to 1λ. In particular
the size of n is also related to 1λ.
(a, b) $←− Gen

(
1λ

)

– Com: the commitment algorithm takes as input a message m ∈ Rq and a
public key pk = (a, b) and produces a commitment c = am + br + e and

an opening d = (m, r,e), where r
$←− Rq and e

$←− χnk conditioned to have
infinity norm smaller than n = 2κ.
(c = am + br + e, d = (m, r,e)) $←− Com (m; pk = (a, b))

– Ver: the verification algorithm takes as input a commitment c, a message
m, an opening d = (m, r,e) and a public key pk = (a, b) and accepts if
(c = am + br + e) ∧ (‖e‖∞ < 2κ), or rejects otherwise.
Ver : {(c,m, d; pk)} → {0, 1}

It satisfies the properties of a secure commitment scheme from Definition 3.

Proof. We can check that all properties are verified.

– Correctness: it immediate follows by the definitions of Com and Ver.
– Binding: a commitment can only be correctly opened to one message.

It is perfectly binding with overwhelming probability as:

1 ← Ver (c,m′, d′; pk) ∧ 1 ← Ver (c,m′′, d′′; pk) =⇒ m′ = m′′

We redo here the proof from [3] since our simpler verification algorithm implies
that we require less restrictions on the parameters.
Two accepted openings to the same commitment would be:

c = am′ + br′ + e′

c = am′′ + br′′ + e′′

Therefore if m′ �= m′′ we have that a(m′ − m′′) + b(r′ − r′′) + (e′ − e′′) = 0.
If q ≡ 3 mod 8, with overwhelming probability over the choice of a and b,
there are no m, r ∈ Rq and e ∈ Rk

q small such that am + br + e = 0 holds
and m �= 0.
We bound the probability that this solution exists. For a fixed m, r and e
we count the proportion of pairs (a, b) for which the equality holds. In order
to estimate the overall probability of choosing a pair (a, b) such that there
exists a solution we use a union bound adding up all previous probabilities.
We finally see that it is negligible if parameters are carefully selected.
Fixed m, r and e for each b we have am = −br − e. In each component
ajm = −bjr − ej . q ≡ 3 mod 8 implies that xn +1 splits into two irreducible

260 R. Mart́ınez and P. Morillo

polynomials p1(x), p2(x) of degree n/2 (lemma 3 in [22]). We know that m �≡ 0
mod xn + 1, therefore m �≡ 0 mod p1(x) or m �≡ 0 mod p2(x).
In either case we know that ajm takes at least qn/2 different values. There
are qn/2 equivalence classes mod pi(x) and only one of them is −bjr − ej

mod pi(x), therefore at most 1/qn/2 of the possible aj hold the equation. As
this is independently true for each j we have that the probability of (a, b) to
fit the equation for these particular m, r and e is at most 1/qnk/2.
If we want to consider the possibility that there exists a solution we can bound
this probability with a union bound. There are qn possible m, qn possible r

and (2n)nk possible e. Therefore if (a, b) $←− Gen(1λ):

Pr
(a,b)

[
∃m, r,e

∣
∣
∣
∣
am + br + e = 0

∧‖e‖∞ ≤ n

]
≤ q2n(2n)nk

qnk/2
∈ negl(1λ).

The condition n ≥ 16 implies (2n) ≤ n5/4:

q2n(2n)nk

qnk/2
≤ q2nn5nk/4

qnk/2

≤ q2nq5nk/(4γ)

qnk/2

= qn(2+5k/(4γ)−k/2)

because γ ≥ 3 and k ≥ 8γ+4
2γ−5 ≥ 8γ

2γ−5 we know that 2 + 5k/(4γ) − k/2 ≤ 0:

qn(2+5k/(4γ)−k/2) ≤ nnγ(2+5k/(4γ)−k/2)

because γ ≥ 3 and k ≥ 8γ+4
2γ−5 we know that γ(2 + 5k/(4γ) − k/2) ≤ −1:

nnγ(2+5k/(4γ)−k/2) ≤ n−n = 2−nκ

≤ 1
2n

– Hiding: a well constructed commitment c does not leak any relevant infor-
mation about the message m.
It is computationally hiding as br + e are k RLWE samples, indistinguish-
able from independent uniformly random polynomials under the RLWEn,q,χ

assumption. Any adversary able to break the hiding property would then
also be able to solve the decisional RLWEn,q,χ. Notice that the probability

that e
$←− χnk has ‖e‖∞ > n is negligible and then original and conditioned

probability distributions are statistically indistinguishable.

��

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 261

3.1 Knowledge of a Valid Opening

We first propose an Interactive Honest-Verifier Zero-Knowledge Proof of Knowl-
edge of a valid opening for the commitment presented before. The difficult part
is to prove that the error term is small enough, for which we adapt Stern-based
protocols to this particular RLWE based commitment. While SD problem and
ISIS problem are very similar, in order to prove that the commitment has been
constructed with a RLWE sample we need several auxiliary elements. What we
obtain is a 5-move protocol with a soundness error of q+1

2q , really close to 1/2 as
q is usually a very large prime.

Let a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Rk
q , a message m ∈ Rq, a random

element r in Rq and e ∈ Rk
q a vector of polynomials with their coefficients

sampled from a discrete Gaussian distribution conditioned to have norm smaller
than n = 2κ. We want to prove knowledge of a valid opening for the commitment
c = am + br + e.

We identify a polynomial u with a vector u that has as elements the coeffi-
cients of the polynomial. For convenience we also identify a vector of polynomials
with the concatenation of its associated vectors.

ϕ : Zn
q −→ Rq

u = (u0, u1, . . . , un−1) �−→ u = u0 + u1x + · · · + un−1x
n−1

φ : Znk
q −→ Rk

q

u = (u0, . . . , unk−1) �−→ u = (ϕ(u0, . . . , un−1), . . . , ϕ(un(k−1), . . . , unk−1))

Lets consider the vector ē = φ−1(e) + 2κ1nk and its binary decomposition
ē =

∑κ
j=0 2j ēj , ēj ∈ {0, 1}nk (notice that ē has only positive representatives

because we have added 2κ1nk). From now on index j will always belong to [0, . . . ,
κ]. Choose extensions e′

j = (ēj ||e′′
j) ∈ Bnk, where Bnk ⊂ {0, 1}2nk are vectors

with the same number of 0 and 1’s. The extended error term is e′ =
∑

j 2je′
j .

Let I ′ be an nk-identity matrix attached to nk columns of 0’s.
Then we have: c = am + br + φ((I ′ ∑

j 2je′
j) − 2κ1nk).

With this notation we can define an interactive protocol to prove knowledge
of a valid opening for commitment c. This extension is an adaptation of the
idea from Ling et al. in [17] to the dual ring setting (we also shift the error
to only have 0’s and 1’s, while their protocol also included −1’s, this way we
only have a factor two overhead instead of a factor three). Notice that each
error decomposition element in Bnk with the same number of 0 and 1’s can be
completely randomized with a permutation, as it was done in the original Stern
protocol with fixed Hamming weight vectors.

The complex structure of the commitment scheme requires more subtle
details than the original Stern proposal, but the underlying intuition is the same.
We want to prove knowledge of some elements m, r,e, of some masking elements
μ, ρ,f and a of vector of polynomials y such that:

262 R. Mart́ınez and P. Morillo

(a) πj(e
′
j) ∈ Bnk

(b) y = aμ + bρ + f
(c) y + c = a(μ + m) + b(ρ + r) + (f + e), where e = φ(I ′ ∑

j 2je′
j − 2κ1nk)

All three properties imply knowledge of a valid opening for the commitment.
In order to improve efficiency we can add one more round where we ask the
verifier for an element α ∈ Zq and then prove only these two properties:

(a) πj(e
′
j) ∈ Bnk

(b’) y + αc = a(μ + αm) + b(ρ + αr) + (f + αe), where e = φ(I ′ ∑
j 2je′

j − 2κ1nk)

Since the relevant elements were commited in the first round (using an auxil-
iary commitment scheme) before α was chosen we can ensure with high probabil-
ity that property (b’) implies both properties (b) and (c). This is an adaptation
of the idea used in [9] and allows us to reduce the soundness error to almost 1/2.

With this intuition in mind we can provide our protocol (1) for proving
knowledge of valid openings. Let (aCom, aVer) denote an auxiliary commitment
scheme that can be instantiated using our construction or a different one.

Proposition 2. Protocol 1 describes a Public Coin Honest-Verifier ZKPoK, as
it satisfies the properties of completeness, soundness and zero-knowledge.

Completeness: Immediate as all relations hold by construction.

Soundness: If a (possibly malicious) prover P̃ is able to provide accepted
answers to δ rounds of interaction with an honest verifier V with probability
(q + 1/2q)δ + ε, were ε is non-negligible, then he is able to efficiently extract a
witness with probability 2(ε/3)3.

Let ω ∈ Ω be the random coins used by the prover in its interaction with the
verifier. We call T (ω) to the execution tree of all possible interactions between
P̃ and V depending on the verifier challenges. Many authors [9] that face similar

problems simply argue that a probability larger than
(

q+1
2q

)δ

+ ε implies that
there is a node with at least q +2 accepted answers, meaning that there exist c1,
c2, two α, α′ and gj , g

′
j that induce accepted answers for both b = 0 and b = 1,

from which it is possible to extract a witness.
However, merely proving existence implies that the extractor should explore

the whole tree rewinding the prover P̃ until he finds this particular node. It is
possible to do so in polynomial-time if q is polynomial in the security parameter
and the number of nodes in T (ω) is O(qδ), but is very inefficient and provides
us bounds O(qδ/ε) that are far from tight.

ZKP

[
m,r,e

∣∣∣∣∣ c=am+br+e

‖e‖∞<2κ

]
(1)

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 263

P((a,b),c;m,r,e) V((a,b),c))

π0,...,πκ−1
$←−S2nk

f 0,...,f κ−1
$←−Z

2nk
q

μ,ρ
$←−Rq

(c1,d1)=aCom
(

{πj}j ,aμ+bρ+φ(I ′∑
j2

jf j)
)

(c2,d2)=aCom
(

{πj(f j)}j ,{πj(e
′
j)}j

)
c1,c2−−−−−−−−−−−−−→

α
$←−Zq

α←−−−−−−−−−−−−−
gj=πj(f j+αe′

j)

{gj}j−−−−−−−−−−−−−→
b

$←−{0,1}
b←−−−−−−−−−−−−−

if b=0

π̃j=πj

ỹ=aμ+bρ+φ(I ′∑
j2

jf j)

s̃=ρ+αr

d̃=d1

ans=({π̃j}j ,ỹ ,s̃,d̃)

if b=1

ẽ′
j=πj(e

′
j)

d̃=d2

ans=({ẽ′
j}j ,d̃)

ans−−−−−−−−−−−−−→
if b=0

1
?←−aVer

(
c1,({π̃j}j ,ỹ),d̃

)
ỹ+α(c+φ(2κ1nk))−bs̃−φ(I ′∑

j2
j π̃−1

j (gj))
?∈L(a)

if b=1

1
?←−aVer

(
c2,({gj−αẽ′

j}j ,{ẽ′
j}j),d̃

)
ẽ′

j

?∈Bnk

We prefer to analyze it as Stern did in an extension of its original paper [23],
that gives us a more detailed insight and requires at most an expected number
of O(1/ε3) attempts to find such a node and extract a witness. For this to be
true we have to assume that q is large enough so that log

(
q

q+1

)
> −1/9 (which

only implies q ≥ 13). We start defining a subset of the possible random coins:

X =
{

ω ∈ Ω
∣
∣
∣ T (ω) has at least (q + 1)δ +

ε

2
(2q)δ branches at level δ

}

Claim. X has probability at least ε/2.

Proof. Assume Pr[X] < ε
2 . Then we arrive at a contradiction with the fact that

P̃ has a success probability of more than
(

q+1
2q

)δ

+ ε.

264 R. Mart́ınez and P. Morillo

Pr
[

P̃(ω)
]

= Pr
[

P̃(ω)
∣
∣
∣ω ∈ X

]

Pr
[

X
]

+ Pr
[

P̃(ω)
∣
∣
∣ω �∈ X

]

Pr
[

Ω \ X
]

≤ Pr
[

X
]

+ Pr
[

P̃(ω)
∣
∣
∣ω �∈ X

]

We are under the assumption of Pr[X] < ε/2:

<
ε

2
+ Pr

[

P̃(ω)
∣
∣
∣ω �∈ X

]

If ω �∈ X there are less than (q + 1)δ + ε
2 (2q)δ branches and (2q)δ possible

challenges:

<
ε

2
+

(
q + 1

2q

)δ

+
ε

2

(
2q

2q

)δ

=

(
q + 1

2q

)δ

+ ε

And we have found the contradiction. Therefore Pr[X] ≥ ε/2. ��
From now on consider T (ω) with ω ∈ X. For any index 0 ≤ d ≤ δ we

denote by nd the number of vertices at level d, and for 0 ≤ d < δ we define
γd = nd+1/nd.

δ−1∏

d=0

γd ≥ (q + 1)δ +
ε

2
(2q)δ

Taking binary logarithms:
δ−1∑

d=0

log(γd) ≥ log
(
(q + 1)δ +

ε

2
(2q)δ

)

≥ log
((

1 − ε

2

)
(q + 1)δ +

ε

2
(2q)δ

)

By convexity of the log function:

≥ δ
((

1 − ε

2

)
log (q + 1) +

ε

2
log (2q)

)

This implies that there exists an 0 ≤ i ≤ δ − 1 such that:

log(γi) ≥
(
1 − ε

2

)
log(q + 1) +

ε

2
log(2q)

= log(q + 1) +
ε

2

(
1 + log

(q

q + 1

))

Given that log
(

q
q+1

)
≥ −1/9:

≥ log(q + 1) + 4ε/9

Undoing logarithms:

γi ≥ 2log(q+1)+4ε/9 = (q + 1)24ε/9

≥ (q + 1)(1 +
4ε

9
ln(2))

≥ (q + 1) +
8(q + 1)ε

27

≥ (q + 1) +
8(q − 1)ε

27

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 265

If we define ni,≤q+1 as the number of nodes on level i that have less or equal
than q+1 children and ni,>q+1 as the number of nodes on level i that have more
than q + 1 children we can also bound γi:

γi ≤ (q + 1)ni,≤q+1 + (2q)ni,>q+1

ni,≤q+1 + ni,>q+1

= (q + 1) + (q − 1)
ni,>q+1

ni,≤q+1 + ni,>q+1

Combining all we have:

(q + 1) +
8(q − 1)ε

27
≤ (q + 1) + (q − 1)

ni,>q+1

ni,≤q+1 + ni,>q+1

8ε

27
≤ ni,>q+1

ni,≤q+1 + ni,>q+1

That is, the fraction of nodes with q + 2 children or more is larger than 8ε/27.
Therefore, we know that ω belongs to X with probability at least ε/2. We know
that T (ω) has at least (q + 1)δ + ε/2(2q)δ branches, that is, the probability of

choosing a successful branch is
(

q+1
2q

)δ

+ ε
2 . Once we have chosen at random a

successful branch, if we look at its level i the probability of finding a node with
at least q + 2 children is at least 8ε/27. Combining all these probabilities we have
that the probability of a success is greater than (ε/2)(ε/2)(8ε/27) = 2(ε/3)3. By
the pigeonhole principle we can find commitments c1, c2, two α, α′ and gj , g

′
j

that induce accepted answers. Define Δα = α − α′ �= 0.
The binding property of c1, c2 ensures that openings to π̃j , ỹ and ẽ′

j are fixed.

at̃ = ỹ + α(c + φ(2κ1nk)) − bs̃ − φ(I ′ ∑
j 2j π̃−1

j (gj))

at̃′ = ỹ + α′(c + φ(2κ1nk)) − bs̃′ − φ(I ′ ∑
j 2j π̃−1

j (g′
j))

Δαc = a(t̃ − t̃′) + b(s̃ − s̃′) + φ(I ′ ∑
j 2j π̃−1

j (gj − g′
j) − Δα2κ1nk)

ẽ′
j = Δ−1

α (gj − g′
j)

c = a(Δ−1
α (t̃ − t̃′)) + b(Δ−1

α (s̃ − s̃′)) + φ(I ′ ∑
j 2j π̃−1

j (ẽ′
j) − 2κ1nk)

As these elements come from accepted answers we know that ẽ′
j ∈ Bnk ⊂

{0, 1}2nk and therefore φ(I ′ ∑
j 2j π̃−1

j (ẽ′
j) − 2κ1nk) has norm smaller than 2κ.

Then (Δ−1
α (t̃ − t̃′),Δ−1

α (s̃ − s̃′), φ(I ′ ∑
j 2j π̃−1

j (ẽ′
j) − 2κ1nk)) is a valid opening.

266 R. Mart́ınez and P. Morillo

Zero-Knowledge:

Case b = 0
t̂, ŝ

$←− Rq, ĝj
$←− Z

2nk
q , π̂j

$←− S2nk

c1 = aCom({π̂j}j ,at̂ + bŝ

+ φ(I ′ ∑

j

2j π̂−1
j (ĝj)) − α(c + φ(2κ1nk)))

P reveals {ĝj}j , {π̃j = π̂j}j , s̃ = ŝ,
ỹ = at̂+bŝ+φ(I ′ ∑

j 2j π̂−1
j (ĝj))−αc.

Indistinguishable from a real conver-
sation with the same πj = π̂j and
where μ = t̂ − αm, ρ = ŝ − αr and
f j = π̂−1

j (ĝj) − αe′
j .

Case b = 1
ê′

j
$←− Bnk, f̂ j

$←− Z
2nk
q , π̂j

$←− S2nk

c2 = aCom({π̂j(f̂ j)}j , {π̂j(ê
′
j)}j)

ĝj = π̂j(f̂ j + αê′
j)

P reveals {ĝj}j , {ẽ′
j = π̂j(ê

′
j)}j .

Equivalent to an honest conversation
were πj is such that πj(e′

j) = π̂j(ê
′
j)

and f j = π−1
j (π̂j(f̂ j)).

Notice that in both cases simulated conversations follow the same distribution
as honest conversations.

3.2 Linear Relation

The analyzed commitment scheme is not homomorphic, since the sum of two
commitments may not be a commitment to the sum as the errors may grow.
However it is possible to prove knowledge of openings to different commitments
proving that the committed messages satisfy a given linear relation. As in the
proof for the opening we have a, b ∈ Rk

q , messages m1,m2,m3 ∈ Rq such that
m3 = λ1m1 + λ2m2 with λ1, λ2 ∈ Rq, random elements r1, r2, r3 in Rq and
e1,e2,e3 ∈ Rk

q vectors of polynomials with their coefficients sampled from a
discrete Gaussian distribution conditioned to have norm smaller than n = 2κ.
We want to prove knowledge of valid openings for the commitments ci = ami +
bri + ei satisfying the relation. From now on index i will belong to {1, 2, 3}.

Consider the extended error decomposition terms e′
ij ∈ Bnk so that:

ci = ami + bri + φ(I ′ ∑
j 2je′

ij − 2κ1nk).
With this notation we can define the interactive protocol (2) to prove knowl-

edge of valid openings for commitments ci holding the required relation.
This can be done analogously as the previous case, reproducing protocol (1)

three times in parallel imposing that the message masking elements hold the
same linear relation. μ3 is computed as μ3 = λ1μ1 + λ2μ2 and in case b = 0 the
verifier needs to check whether t̃3 = λ1t̃1 + λ2t̃2.

Proposition 3. Protocol 2 describes a Public Coin Honest-Verifier ZKPoK, as
it satisfies the properties of completeness, soundness and zero-knowledge.

Completeness: The relation t̂3 = λ1t̂1 + λ2t̂2 is satisfied as t̂i = μi + αmi, mi

hold the relation and μ3 is computed such that it holds the relation too.

Soundness: If a (possibly malicious) prover P̃ is able to provide accepted
answers to δ rounds of interaction with an honest verifier V with probability

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 267

(q + 1/2q)δ + ε, were ε is non-negligible, then he is able to efficiently extract a
witness. The same argument for the knowledge of a valid opening applies here
and provides us with three valid openings

{(Δ−1
α (t̃i − t̃′i),Δ

−1
α (s̃i − s̃′

i), φ(I ′ ∑
j 2j π̃−1

ij (ẽ′
ij) − 2κ1nk))}i.

We know that t̃3 = λ1t̃1 + λ2t̃2 and the same applies to t̃′3 =
λ1t̃

′
1 + λ2t̃

′
2. Therefore we have that the required linear relation holds:

Δ−1
α (t̃3 − t̃′3) = λ1Δ

−1
α (t̃1 − t̃′1) + λ2Δ

−1
α (t̃2 − t̃′2).

Zero-Knowledge: The same simulator for protocol 1 works repeated 3 times,
with the only exception that in case b = 0 we randomly choose t̂1, t̂2

$←− Rq but
t̂3 is computed as t̂3 = λ1t̂1 + λ2t̂2.

3.3 Multiplicative Relation

In this subsection we present the main contribution of this paper, an efficient
proof of knowledge of a multiplicative relation. That is, index i belongs again to
{1, 2, 3} and we have ci = ami + bri + ei three valid commitments where m3 =
m1 · m2. We want to prove knowledge of valid openings for the commitments ci

satisfying this relation.
If we mask the messages (m1 +μ1) and (m2 +μ2) with random μ1, μ2

$←− Rq,
as we did before, and then multiply them, some crossed terms appear: (m1 +
μ1)(m2 +μ2) = m3 +(m1μ2 +m2μ1)+μ1μ2. Following the notation from [3] we
define m+ = m1μ2 + m2μ1 and m× = μ1μ2. If we want to get m3 = m1m2 we

need to prove a similar equality involving two challenges α, β
$←− Zq chosen by

the verifier. In [3] they use a challenge to prove the relation, while [9] introduces
the challenge to reduce the soundness error of each round as we did in Sect. 3.1.
The particular requirements of our proofs, where we try to achieve both goals
at the same time, imply that we need a much more involved analysis in order to
prove the soundness of this strategy. This efficient interactive protocol to prove
knowledge of a valid opening for commitments ci holding the required relation
is the main contribution of this paper.

The multiplicative relation protocol (3) can also be seen as parallel executions
of protocol (1), this time taking into account the crossed terms.

Proposition 4. Protocol 3 describes a Public Coin Honest-Verifier ZKPoK, as
it satisfies the properties of completeness, soundness and zero-knowledge.

Completeness: We should check the alternative openings of commitment c5.

βt̃× + αβt̃+ + α2t̃3 − βt̃1t̃2

= β(μ× + m× − μ1μ2) + αβ(μ+ + m+ − μ1m2 − μ2m1) + α2(μ3 + β(m3 − m1m2))

= (βμ×) + α(βμ+) + α2(μ3)

Soundness: If a (possibly malicious) prover P̃ is able to provide accepted
answers to δ rounds of interaction with an honest verifier V with probability(
(q2 + 3q − 2)/(2q2)

)δ + ε, were ε is non-negligible, then he is able to efficiently

268 R. Mart́ınez and P. Morillo

extract a witness. If q is such that log(q2/(q2 + 3q − 2)) ≥ −1/9 (which is true
if q ≥ 37) we should be able to find more than q2 + 3q − 2 accepted answers (by
an argument analogous to the one explained in Sect. 3.1).

ZKP

⎡

⎢
⎣mi,ri,ei

∣
∣
∣
∣
∣
∣
∣

ci=ami+bri+ei

‖ei‖∞<2κ,

m3=λ1m1+λ2m2

⎤

⎥
⎦ (2) ZKP

[

mi,ri,ei

∣
∣
∣
∣
∣

ci=ami+bri+ei

‖ei‖∞<2κ,m3=m1m2

]

(3)

P((a,b),ci;mi,ri,ei) V((a,b),ci))

πi0,...,πi(κ−1)
$←−S2nk

f i0,...,f i(κ−1)
$←−Z

2nk
q

μ1,μ2,ρ1,ρ2,ρ3
$←−Rq

μ3=λ1μ1+λ2μ2

(c1,d1)=aCom
(

{πij}i,j ,{aμi+bρi+φ(I′∑
j2

jf ij)}i

)

(c2,d2)=aCom
(

{πij(f ij)}i,j ,{πij(e′
ij)}i,j

)
c1,c2−−−−−−−−−−−−−→

α
$←−Zq

α←−−−−−−−−−−−−−
gij=πij(f ij+αe′

ij)
{gij}i,j−−−−−−−−−−−−−→

b
$←−{0,1}

b←−−−−−−−−−−−−−
if b=0

π̃ij=πij

ỹi=aμi+bρi+φ(I′∑
j2

jf ij)
s̃i=ρi+αri

d̃=d1

ans=({π̃ij}i,j ,{ỹi}i,{s̃i}i,d̃)
if b=1

ẽ′
ij=πij(e′

ij)
d̃=d2

ans=({ẽ′
ij}i,j ,d̃)

ans−−−−−−−−−−−−−→
if b=0

1 ?←−aVer
(

c1,({π̃ij}i,j ,{ỹi}i),d̃
)

ỹi+α(ci+φ(2κ
nk))−bs̃i−φ(I′∑

j2
j π̃−1

ij (gij))
?∈L(a)

t̃3
?=λ1 t̃1+λ2 t̃2

if b=1

1 ?←−aVer
(

c2,({gij−αẽ′
ij}i,j ,{ẽ′

ij}i,j),d̃
)

ẽ′
ij

?∈Bnk

P((a,b),ci;mi,ri,ei) V((a,b),ci)

πi0,...,πi(κ−1)
$←−S2nk

f i0,...,f i(κ−1)
$←−Z

2nk
q

μi,μ×,μ+,ρi
$←−Rq

m×=μ1μ2, m+=μ1m2+μ2m1

(c1,d1)=aCom {πij}i,j ,{aμi+bρi+φ(I′∑
j2

jf ij)}i

)
(c2,d2)=aCom μ3,μ×,μ+

)
(c3,d3)=aCom {πij(f ij)}i,j ,{πij(e′

ij)}i,j

)
(c4,d4)=aCom μ×+m×,μ++m+

)
c1,c2,c3,c4−−−−−−−−−−−−−→

α,β
$←−Zq

α,β←−−−−−−−−−−−−−
δ1=α, δ2=α, δ3=β

gij=πij(f ij+δie
′
ij)

(c5,d5)=aCom (βμ×)+α(βμ+)+α2(μ3)
)

{gij}i,j ,c5−−−−−−−−−−−−−→
b

$←−{0,1}
b←−−−−−−−−−−−−−

if b=0
π̃ij=πij

ỹi=aμi+bρi+φ(I′∑
j2

jf ij)
t̃×=μ×+m×, t̃+=μ++m+, s̃i=ρi+δiri

d̃1=d1, d̃4=d4, d̃5=d5

ans=({π̃ij}i,j ,{ỹi}i,t̃×,t̃+,{s̃i}i,d̃1,d̃4,d̃5)
if b=1

ẽ′
ij=πij(e′

ij)
μ̃3=μ3, μ̃×=μ×, μ̃+=μ+

d̃2=d2, d̃3=d3, d̃5=d5

ans=({ẽ′
ij}i,j ,μ̃3,μ̃×,μ̃+,d̃2,d̃3,d̃5)

ans−−−−−−−−−−−−−→
if b=0

1 ?←−aVer c1,({π̃ij}i,j ,{ỹi}i),d̃1
)

1 ?←−aVer c4,(t̃×,t̃+),d̃4
)

1 ?←−aVer c5,βt̃×+αβt̃++α2 t̃3−βt̃1 t̃2,d̃5
)

ỹi+δi(ci+φ(2κ
nk))−bs̃i−φ(I′∑

j2
j π̃−1

ij (gij))
?∈L(a)
if b=1

1 ?←−aVer c2,(μ̃3,μ̃×,μ̃+),d̃2
)

1 ?←−aVer c3,({gij−αẽ′
ij}i,j ,{ẽ′

ij}i,j),d̃3
)

1 ?←−aVer c5,(βμ̃×)+α(βμ̃+)+α2(μ̃3),d̃5
)

ẽ′
ij

?∈Bnk

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 269

Then the pigeonhole principle ensures that we can find six pairs (α(1), β(1)),
(α(2), β(2)), (α(3), β(3)), (α(4), β(4)), (α(5), β(5)), (α(6), β(6)), with all α(l) different
for l ∈ {1, 2, 3}, all α(l) different for l ∈ {4, 5, 6} and β(1) = β(2) = β(3) �= β(4) =
β(5) = β(6) that induce accepted answers for both b = 0 and b = 1.

Assume there only exist one β for which there exists at least 3 different α(i)

with accepted answers for b = 0 and b = 1. This particular β belongs to at most
2q answers, 2 for each possible α. All other β′ contribute each of them with at
most q + 2, only one b accepted for each possible α except two of them. If we
add everything up we get 2q + (q − 1)(q + 2) = q2 + 3q − 2, but we had strictly
more valid answers.

The binding property of all commitments ensures that openings to the same
elements are equal. Therefore we have fixed π̃ij , ỹi, μ̃3, μ̃×, μ̃+, ẽ′

ij , t̃× and t̃+.

For each pair (α(l), β(l)) we have g
(l)
ij .

We know that ỹi + δ
(l)
i (ci +φ(2κ1nk))−bis̃

(l)
i −φ(I ′ ∑

j 2j π̃−1
ij (g(l)

ij)) ∈ L(a)

and call t̃
(l)
i to its coordinates. Let l and l′ in {1, 2, 3, 4, 5, 6} such that Δδi

=
δ
(l)
i − δ

(l′)
i �= 0. Then we will be able to compute valid openings of ci:

at̃
(l)
i = ỹi + δ

(l)
i (ci + φ(2κ1nk)) − bs̃

(l)
i − φ(I ′ ∑

j 2j π̃−1
ij (g

(l)
ij))

at̃
(l′)
i = ỹi + δ

(l′)
i (ci + φ(2κ1nk)) − bs̃

(l′)
i − φ(I ′ ∑

j 2j π̃−1
ij (g

(l′)
ij))

Δδici = a(t̃
(l)
i − t̃

(l′)
i) + b(s̃

(l)
i − s̃

(l′)
i) + φ(I ′ ∑

j 2j π̃−1
ij (g

(l)
ij − g

(l′)
ij) − Δδi2

κ1nk)

ẽ′
ij = Δ−1

δi
(g

(l)
ij − g

(l′)
ij)

ci = a(Δ−1
δi

(t̃
(l)
i − t̃

(l′)
i)) + b(Δ−1

δi
(s̃

(l)
i − s̃

(l′)
i)) + φ(I ′ ∑

j 2j π̃−1
ij (ẽ′

ij) − 2κ1nk)

As these elements come from accepted answers we know that ẽ′
ij ∈ Bnk ⊂

{0, 1}2nk and therefore φ(I ′ ∑
j 2j π̃−1

ij (ẽ′
ij) − 2κ1nk) has norm smaller than 2κ.

This implies that (Δ−1
δi

(t̃(l)i − t̃
(l′)
i),Δ−1

δi
(s̃(l)i − s̃

(l′)
i), φ(I ′ ∑

j 2j π̃−1
ij (ẽ′

ij)−2κ1nk))
are valid openings.

We know that these openings do not depend on (l) and (l′), as the commit-
ment scheme is binding. Therefore we can call them (mi = Δ−1

δi
(t̃(l)i − t̃

(l′)
i), r̃i =

Δ−1
δi

(s̃(l)i − s̃
(l′)
i), ẽi = φ(I ′ ∑

j 2j π̃−1
ij (ẽ′

ij) − 2κ1nk)). It only remains to prove
that m3 = m1m2.

We can define μ
(l)
i = t̃

(l)
i − δ

(l)
i mi and ρ̃

(l)
i = s̃

(l)
i − δ

(l)
i r̃i.

Claim. This newly defined elements do not depend on l and we can omit the
superindex (l) as μi = μ

(l)
i = μ

(l′)
i and ρ̃i = ρ̃

(l)
i = ρ̃

(l′)
i for any pair l and l′.

Proof. Assume that we have l and l′ such that μ
(l)
i �= μ

(l′)
i or ρ̃

(l)
i �= ρ̃

(l′)
i .

We could rewrite the expression of at̃
(l)
i in terms of this new variables.

270 R. Mart́ınez and P. Morillo

at̃
(l)
i = ỹi + δ

(l)
i (ci + φ(2κ1nk)) − bs̃

(l)
i − φ(I ′ ∑

j 2j π̃−1
ij (g

(l)
ij))

a(μ
(l)
i + δ

(l)
i mi) = ỹi + δ

(l)
i (ami + br̃i + φ(I ′ ∑

j 2j π̃−1
ij (ẽ′

ij)))

− b(ρ̃
(l)
i + δ

(l)
i r̃i) − φ(I ′ ∑

j 2j π̃−1
ij (g

(l)
ij))

aμ
(l)
i + bρ̃

(l)
i = ỹi − φ(I ′ ∑

j 2j π̃−1
ij (g

(l)
ij − δ

(l)
i ẽ′

ij))

Notice that g
(l)
ij − δ

(l)
i ẽ′

ij is open to f̃ ij , that was commited before α(l) and β(l)

were chosen and therefore does not depend on l:

aμ
(l)
i + bρ̃

(l)
i = ỹi − φ(I ′ ∑

j 2j π̃−1
ij (f̃ ij)).

Since the right handside does not depend on l nor l′ from two equations we get:

a(μ(l)
i − μ

(l′)
i) + b(ρ̃(l)i − ρ̃

(l′)
i) = 0. (4)

We can apply a similar argument as we do in Proposition 1 to prove that the
commitment was binding. In this particular case there exist nonzero elements
satisfying equation (4) with probability:

Pr
(a,b)

[
∃μ, ρ (not both 0)

∣
∣
∣aμ + bρ = 0

]
≤ q2n

qkn/2
∈ negl(1λ).

Then both differences have to be 0 and the elements do not depend on l. ��
We can also define m̃× = t̃× − μ̃×, m̃+ = t̃+ − μ̃+. This time there is no

dependence with l as the elements were committed previously. With all these
discussions now we are ready to prove the relation m3 = m1m2.

α(l)2(μ̃3) + α(l)(β(l)μ̃+) + (β(l)μ̃×) = β(l) t̃× + α(l)β(l) t̃+ + α(l)2t̃3 − β(l)t̃1t̃2
⎛

⎜
⎝

α(l)2(μ̃3 − μ3 + β(l)(m1m2 − m3))

+α(l)(β(l)(μ1m2 + μ2m1 − m̃+))

+(β(l)(μ1μ2 − m̃×))

⎞

⎟
⎠ = 0

If we restrict ourselves to the cases with equal β we can see this expression
as a two degree polynomial in α (the coefficients were committed before the
challenges were chosen), that is equal to 0 for three evaluations α(1), α(2), α(3) or
α(4), α(5), α(6). This implies that it is the 0 polynomial and that all its coefficients
are 0, providing us with the equalities μ̃3−μ3+β(l)(m1m2−m3) = 0. Given that
this equality is satisfied by two different β we have that (β(l) − β(l′))(m1m2 −
m3) = 0 and finally m3 = m1m2 as we wanted to prove, the relation holds for
the extracted witness.

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 271

Zero-Knowledge:

Case b = 0
t̂i, ŝi

$←− Rq, t̂×, t̂+
$←− Rq

ĝij
$←− Z

2nk
q , π̂ij

$←− S2nk

c1 = aCom
(

{π̂ij}i,j , {at̂i + bŝi

+ φ(I ′ ∑
j 2j π̂−1

ij (ĝij))

− δi(ci + φ(2κ1nk))}i

)

c4 = aCom(t̂×, t̂+)

c5 = aCom(βt̂× + αβt̂+ + α2 t̂3 − βt̂1t̂2)

P reveals {ĝij}i,j , {π̃ij = π̂ij}i,j ,
{ỹi = at̂i+bŝi+φ(I ′ ∑

j 2j π̂−1
ij (ĝij))−

δi(ci + φ(2κ1nk))}i,t̃×,t̃+, {s̃i}i.
Indistinguishable from a real conver-
sation with the same πij = π̂ij and
where μi = t̂i − δimi, μ× = t̂× − m×,
μ+ = t̂+ − m+, ρi = ŝi − δiri and
f ij = π̂−1

ij (ĝij) − δie
′
ij .

Case b = 1
μ̂3,μ̂×, μ̂+

$←− Rq, ê′
ij

$←− Bnk

f̂ ij
$←− Z

2nk
q , π̂ij

$←− S2nk

c2 = aCom(μ̂3, μ̂×, μ̂+)

c3 = aCom({π̂ij(f̂ ij)}i,j , {π̂ij(ê
′
ij)}i,j)

c5 = aCom(βμ̂× + αβμ̂+ + α2μ̂3)

ĝij = π̂ij(f̂ ij + δiê
′
ij)

P reveals {ĝij}i,j , μ̃3 = μ̂3, μ̃× = μ̂×,
μ̃+ = μ̂+, {ẽ′

ij = π̂ij(ê
′
ij)}i,j .

Equivalent to an honest conversation
with equal μ3 = μ̂3, μ× = μ̂×, μ+ = μ̂+

and were πij is such that πij(e′
ij) =

π̂ij(ê
′
ij) and f ij = π−1

ij (π̂ij(f̂ ij)).
Notice again that simulated conver-

sations follow the proper distributions.

4 Comparisons and Conclusions

4.1 Comparisons with Other Proposals

In this subsection we compare our proposal of Zero-Knowledge proofs for com-
mitments with those presented by Xie et al. [25] and Benhamouda et al. [3].
All these commitments are adaptations of the LPN commitment scheme of Jain
et al. [12] to the RLWE problem.

We first compare the size of the commitments (Table 1). Benhamouda
et al. directly adapt the structure from [12], and we use their same notation
for commiting to a polynomial of degree n with coefficients in Zq. The commit-
ment is a vector of k polynomials. Xie et al. do not commit to a single polynomial
but to l polynomials of smaller degree d. Their commitment is made of m poly-
nomials of degree d, but as their construction requires m to be linear in l, the
size is asymptotically the same.

Table 1. Commitment size

Xie et al. Benhamouda et al. our proposal

Commitment Size (in bits) md log q kn log q kn log q

In order to be able to relate these sizes we have to compare the restrictions
on the parameters (Table 2). Xie et al. impose that the overhead factor (the ratio

272 R. Mart́ınez and P. Morillo

between the size of the commitment and the size of the original message) has
to be of the order of the logarithm of the security parameter. We can directly
compare our and Benhamouda et al. proposal as we both require this ratio k to
be greater than a quotient related to a constant γ, where q ≥ nγ . Our restriction
is weaker and we also require a smaller minimum value for γ. This is really
important as it allows us to choose the size of q with more flexibility.

Table 2. Parameter restrictions

Xie et al. Benhamouda et al. Our proposal

overhead factor m/l ∈ ω (log λ) k > 18γ
3γ−16

k > 8γ+4
2γ−5

n and q relation – γ ≥ 6 γ ≥ 3

In Fig. 1, for a fixed value n = 210, we represent the size of the commitment of
Xie et al., Benhamouda et al. and ours for different values of γ (that is, different
values of q since q ≥ nγ).

2 4 6 8 10 12 14 16 18 20

50

100

150

200

250

300

350

400

450

500

γ

(KiB)

Fig. 1. Commitment’s size of Xie et al. , Benhamouda et al. and our
proposal

Finally we can compare the communication cost of the Zero-Knowledge
Proofs of multiplicative relations (Table 3), as this is the most interesting case
and the major contribution of this paper. In Table 4 we compare soundness and
completeness properties for one round of each protocol.

We separately show what are the initial communication costs (in bits), the
cost per round (in bits), the number of auxiliary commitments, the number
of openings of these auxiliary commitments and the number of seeds for the

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 273

pseudorandom generation of the permutations. The last three items depend on
the final implementation. Random seeds could be 256 bit strings. If the auxiliary
commitment scheme is implemented using a hash function (secure in the random
oracle model) then the size of each of these auxiliary commitments could also
be 256 bits.

Table 3. Communication cost (in bits)

Benhamouda et al. Xie et al. our proposal

initial com. – md log3 q + 2md log2 q –

round cost (8k + 7)n log q + (12κ + 2)md log3 q + 8ld log3 q + (3(κ+1)k +1.5k +4)n log q +

n/2 + 16κ/3 − 8 κ2+2κ+3
3 (14md log q) 6(κ + 1)kn + 2 log q + 1

aux. com. 1 3(log2 q + 1) 5

openings 1 2(log2 q + 1) 3

seeds – 2(κ log2 q + log2 q + κ) 3(κ + 1)

Table 4. Soundness and completeness

Benhamouda et al. Xie et al. our proposal

soundness error negligible 2
3

q2+3q−2
2q2

extracted error gap O
(

n4/3/2
)

1 1

It should be taken into account that the cost per round has to be multiplied
by the number of rounds required to achieve soundness, that depends on the
desired level of soundness and the soundness error per round exposed in Table 4.
In this final table we also include what we call the extracted error gap, that is,
the quotient between the bound on the error of the RLWE samples obtained by
the extractor and the original bound on the error known by the prover.

Compared with the Stern-based protocol of Xie et al. we have a similar
commitment size but significantly reduce the cost of the proofs. Notice that md
is comparable to kn, therefore we reduce the size of the proof by a factor log2 q
and we also improve the constants. We also reduce the number of rounds, as our
soundness error per round is aproximately 1/2 instead of 2/3. Xie et al. needed
to decompose the original message into bits, while we only need to decompose
the error. Then we do not need any initial communication (they had to commit
to the decompositions of the messages before starting the rounds), and we also
reduce in the same proportion the number of auxiliar commitments, openings of
auxiliar commitments and random seeds for the permutations, that are common
in all Stern-based protocols.

274 R. Mart́ınez and P. Morillo

On the other hand our commitment scheme is smaller than Benhamouda
et al. for the same value of n and q, but they have a smaller communication
cost, as its proof has a smaller cost per round and only needs one round. There
is a trade-off between the size of the commitment and the communication cost.
The running time of their proofs depends on the secret elements that are used,
and that has to be taken into account in an interactive setting to avoid timing
attacks. We don’t have this issue, which makes the implementation more direct.
We only need the modulus q to be greater than n3 while they require q ≥ n6.

Just taking into account the size of the proofs it could still be more efficient
to use a larger q and their negligible soundness error technique, however, if these
proofs are just part of a different protocol then been forced to use a larger q for
the whole protocol might not be compensated by their more efficient commitment
proofs and our more flexible scheme could be the best option.

The same applies if the relation proofs are used not just for commitments but
for any messages hidden in RLWE samples where the bounds on the size of the
error matters (for example in proofs about public keys of encryption schemes).
One could increase the size of all parameters in order to take into account the
extracted error gap, or one could use our slightly more expensive but exact
ZKPoK and avoid modifications on the parameters of the rest of the protocol.

It would be interesting to study the benefits and costs of applying our proofs
to other constructions that currently use Fiat-Shamir with aborts, such as the
commitment scheme using more structured lattice assumptions (Module-LWE
and Module-SIS) from [2], and we left it as future work.

4.2 Final Conclusions

To sum up, we have proposed a new protocol for proving linear and multiplica-
tive relations between secret elements hidden inside RLWE samples. The direct
applications are new Zero-Knowledge Proofs for proving knowledge of the eval-
uations of arithmetic circuits with committed inputs.

Xie et al. [25] proposed exact Stern-based proofs for lattice-based commit-
ments, but they had a factor log(q)2 overhead to the messages. We are able to
build exact proofs with a constant factor overhead, thus further improving effi-
ciency. Besides that, our scheme is compatible with the techniques that reduce
the soundness error to 1/2, so that it requires less repetitions to achieve the same
confidence level. Several constructions using Xie et al. Zero-Knowledge Proofs for
relations between committed messages (as the recently presented lattice-based
Attributed Based Signature scheme for unbounded circuits [13]) could benefit
from this improvement directly replacing their proofs with our proposal.

Our scheme can be directly compared to the one proposed by Benhamouda
et al. [3]. While their proofs do not require repetitions our proposal achieves the
same security level with smaller commitments, as we do not generalize the defini-
tion of opening of the commitment. It is also more robust and easy to implement,
as in our protocol the prover is always able to answer with a valid response, with-
out any abort probability. And finally we require a significantly smaller modulus
q for our construction to be sound. This implies that our schemes can still be

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 275

used as a building block in larger protocols where it would be much less efficient
(or even unfeasible) to increase the modulus q for the whole protocol. That could
be the case for electronic voting, where heavy ZKPoK could be performed on
some servers but votes have to be encrypted using resource constrained voting
devices.

We think that these properties represent a major improvement on construc-
tions based on Stern protocol and might be useful in applications that heavily
require this kind of proofs, as electronic voting. We think that our ideas are
flexible enough to be applied as building blocks for other different construc-
tions besides commitment schemes. We consider that it would be interesting to
implement the protocol presented in this paper and leave it as future work.

References

1. Aguilar Melchor, C., Cayrel, P.L., Gaborit, P., Laguillaumie, F.: A new efficient
threshold ring signature scheme based on coding theory. IEEE Trans. Inf. Theory
57(7), 4833–4842 (2011). https://doi.org/10.1109/TIT.2011.2145950

2. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

3. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 305–325.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 16

4. Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme. In:
Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 34–51. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38616-9 3

5. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 7

6. Cayrel, P.-L., Gaborit, P., Prouff, E.: Secure implementation of the stern authenti-
cation and signature schemes for low-resource devices. In: Grimaud, G., Standaert,
F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 191–205. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85893-5 14

7. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: Improved zero-knowledge iden-
tification with lattices. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS,
vol. 6402, pp. 1–17. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16280-0 1

8. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring
signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14712-8 16

9. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19574-7 12

https://doi.org/10.1109/TIT.2011.2145950
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-642-38616-9_3
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-540-85893-5_14
https://doi.org/10.1007/978-3-642-16280-0_1
https://doi.org/10.1007/978-3-642-16280-0_1
https://doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/978-3-642-19574-7_12

276 R. Mart́ınez and P. Morillo

10. Gaborit, P., Girault, M.: Lightweight code-based identification and signature. In:
2007 IEEE International Symposium on Information Theory, pp. 191–195 (2007).
https://doi.org/10.1109/ISIT.2007.4557225

11. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

12. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 40

13. El Kaafarani, A., Katsumata, S.: Attribute-based signatures for unbounded circuits
in the ROM and efficient instantiations from lattices. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10770, pp. 89–119. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76581-5 4

14. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

15. Libert, B., Ling, S., Nguyen, K., Wang, H.: Lattice-based zero-knowledge argu-
ments for integer relations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10992, pp. 700–732. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 24

16. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge argu-
ments for matrix-vector relations and lattice-based group encryption. Theor. Com-
put. Sci. 759, 72–97 (2019). https://doi.org/10.1016/j.tcs.2019.01.003

17. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

19. Peikert, C., et al.: A decade of lattice cryptography. Found. Trends Theor. Comput.
Sci. 10(4), 283–424 (2016). https://doi.org/10.1561/0400000074

20. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

21. Silva, R., Cayrel, P.L., Lindner, R.: A lattice-based batch identification scheme. In:
2011 IEEE Information Theory Workshop, pp. 215–219, October 2011. https://doi.
org/10.1109/ITW.2011.6089381

22. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

23. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996). https://doi.org/10.1109/18.556672

24. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

https://doi.org/10.1109/ISIT.2007.4557225
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-34961-4_40
https://doi.org/10.1007/978-3-319-76581-5_4
https://doi.org/10.1007/978-3-319-76581-5_4
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1016/j.tcs.2019.01.003
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1561/0400000074
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/ITW.2011.6089381
https://doi.org/10.1109/ITW.2011.6089381
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1109/18.556672
https://doi.org/10.1007/3-540-48329-2_2

RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations 277

25. Xie, X., Xue, R., Wang, M.: Zero knowledge proofs from Ring-LWE. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 57–73.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5 4

26. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-319-02937-5_4
https://doi.org/10.1007/978-3-030-26948-7_6

Cryptanalysis of a Protocol for Efficient
Sorting on SHE Encrypted Data

Shyam Murthy(B) and Srinivas Vivek

IIIT Bangalore, Bangalore, India
shyam.sm@iiitb.org, srinivas.vivek@iiitb.ac.in

Abstract. Sorting on encrypted data using Somewhat Homomorphic
Encryption (SHE) schemes is currently inefficient in practice when the
number of elements to be sorted is very large. Hence alternate protocols
that can efficiently perform computation and sorting on encrypted data is
of interest. Recently, Kesarwani et al. (EDBT 2018) proposed a protocol
for efficient sorting on data encrypted using an SHE scheme in a model
where one of the two non-colluding servers is holding the decryption
key. The encrypted data to be sorted is transformed homomorphically
by the first server using a randomly chosen monotonic polynomial with
possibly large coefficients, and then the non-colluding server holding the
decryption key decrypts, sorts, and conveys back the sorted order to the
first server without learning the actual values except possibly for the
order.

In this work we demonstrate an attack on the above protocol that
allows the non-colluding server holding the decryption key to recover
the original plaintext inputs (up to a constant difference). Though our
attack runs in time exponential in the size of plaintext inputs and degree
of the polynomial but polynomial in the size of coefficients, we show that
our attack is feasible for 32-bit inputs, hence accounting for several real
world scenarios. Of independent interest is our algorithm for recovering
the integer inputs (up to a constant difference) by observing only the
integer polynomial outputs.

Keywords: Somewhat Homomorphic Encryption · Comparison ·
Sorting · Polynomial reconstruction · Low-depth circuit

1 Introduction

Cloud hosting solutions that offer pay-as-you-use models provide elasticity and
cost-efficiency thus attracting users from varied domains. Cloud providers also
offer services and computation capabilities on stored data thereby offloading
such overheads from their customers. However, these services can compromise
the privacy of the stored data. Hence while data has to be in encrypted form, to
be able to make use of the services offered by the cloud, there should be ways to
perform meaningful operations on encrypted data. One such service is to search
for k-Nearest Neighbours (k-NN) (according to a given metric) of an encrypted
c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 278–294, 2019.
https://doi.org/10.1007/978-3-030-35199-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_14&domain=pdf
http://orcid.org/0000-0002-0222-322X
http://orcid.org/0000-0002-8426-0859
https://doi.org/10.1007/978-3-030-35199-1_14

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 279

δ-tuple in a database containing n encrypted δ-tuples. k-NN is a basic algorithm
used in data mining, machine learning, pattern recognition, etc. Many efficient
solutions have been proposed for determining k-NN on private data [WCKM09,
XLY13,CGLB14,SHSK15,ZHT16], and [ESJ14], [KKN+18] give solutions based
on homomorphic encryption schemes.

Secure Sorting and k-NN Protocol from [KKN+18]. Suppose a (possi-
bly very large) data set consists of points in a multi-dimensional vector space
with the Euclidean distance as metric and that are stored in encrypted form in
the cloud for privacy reasons by a client. Also suppose that the client wishes the
server to compute k-NN on this encrypted data by providing an encrypted query
point. One obvious approach is to use Fully/Somewhat Homomorphic Encryp-
tion (F/SHE) schemes [Gen09,BGV12,GSW13,CGGI19] to perform the com-
puting of the Euclidean distances, sorting and then the computing of the indices
of the k-NNs on the encrypted data. But with the current F/SHE schemes it is
impractical to even handle data that merely consists of a few hundred elements
[ÇDSS15,CS15,ÇS19].

At EDBT 2018, Kesarwani et al. [KKN+18] proposed a secure way to solve
the k-NN problem on SHE encrypted data in a model where there is a non-
colluding pair of Cloud A and B, a.k.a. the federated cloud setting. In this
setting, the participating clouds do not collaborate with each other. A client uses
Cloud A as storage to store n data points encoded as integer values with each of
the δ coordinates encrypted in separate ciphertexts. A user (querier) provides an
encrypted query point in a similar format. Server A homomorphically computes
the square of the Euclidean distances between the query and the data points in n
different ciphertexts using an SHE scheme. The result of the computation is also
in encrypted form. Once the distances to the given query point are computed as
n ciphertexts, the Server A homomorphically evaluates a monotonic polynomial
p of degree d having positive integer coefficients, randomly permutes the order of
the ciphertexts and sends them to the Server B. The Server B has access to the
full decryption key, who decrypts the received data and sorts the (transformed)
plaintext distances, computes the indices of the k-NNs and sends back the indices
to Server A which then maps them back to the original encrypted indices and
sends the same to the client. The authors of [KKN+18] demonstrate that their
method takes only a few minutes when the number of elements is as large as
200,000 and the dimension is 2. It is also claimed in [KKN+18][Section 4.2] that
the Server B will not learn anything other than the value of k and the number of
equidistant points from the query point. Moreover, the authors claim that if the
size of squared plaintext distances is 16 bits, then a polynomial of degree d = 9
suffices to ensure that an adversary will only be able to recover the plaintext
distances with probability as small as 2−160.

It may be noted that though the protocol of [KKN+18] has been described
specifically in the context of securely evaluating k-NN, their technique of trans-
forming inputs through a random monotonic polynomial has applications in
many settings where sorting of SHE encrypted data is needed. Moreover, this
protocol may be of interest in scenarios where both computation and then sorting

280 S. Murthy and S. Vivek

on encrypted data is needed. It may be noted that if sorting is the only func-
tionality required, then order-preserving or order-revealing encryption schemes
would suffice for the purpose [BCLO09,BLR+15].

Polynomial Recovery from Only the Outputs. As is evident from the above
description of the k-NN (and the sorting) protocol from [KKN+18] on encrypted
data, one way of formalizing the cryptanalysis of this protocol is to formulate it
as the problem of recovering inputs of a randomly chosen monotonic polynomial
with positive coefficients by observing only the corresponding outputs. Here the
adversary is the Server B who is keen to learn more about the transformed input
distances than just their ordering. Formally, let p(x) = a0+a1 ·x+a2 ·x2+. . .+ad ·
xd be a polynomial of degree d, where each of the integer coefficients ai is picked
uniform randomly and independently in the range [1, 2α − 1]. The polynomial
is evaluated (homomorphically) on the (encrypted) unknown n integer inputs
xi ∈ [0, 2β − 1] (i = 1, 2, . . . , n). The adversary is provided only n outputs p(xi).
It may be assumed that it knows the parameters d, α and β as assumed in
[KKN+18]. The goal is to recover the inputs xi. In the context of Secure k-
NN problem, recovering xi would correspond to recovering the squares of the
Euclidean distances between the query point and data set points.

The problem of polynomial reconstruction, posed in different flavours, has
received good attention in the past. A well-known technique for this is the
Lagrange interpolation. The problem of polynomial reconstruction also occurs in
the context of decoding error-correcting codes with many well-known techniques
to recover polynomials even when a sufficiently small fraction of the input-output
pairs are error prone [Ber68,GS99,GRS00], and many follow up works. But we
would like to emphasize that, to the best of our knowledge, in all the previous
works both the input to and the output of the polynomials are given. But in
the present setting, only the outputs are provided and we are not provided the
inputs (except that we only know the range where the inputs come and the
degree of polynomial). The goal is to recover the inputs and, consequently, the
polynomial itself.

We observe that given only the polynomial outputs there may be many poly-
nomial/input combinations (in the given input range) that result in the same
outputs. This is because if p(x) and xi are the chosen polynomial and the n
integer inputs, respectively, then, any polynomial of the form p(x + c) (c, a con-
stant) will result in the same outputs for xi − c provided all the xi − c lie in
the given interval. So the best we could hope to recover for the current problem
is to recover the inputs up to a constant difference. Of course, there are other
possibilities too and the number of such equivalent solutions will likely be sig-
nificantly small if the number of outputs is much larger than the degree of the
polynomial. This is indeed the case for the secure k-NN problem when the input
data set is very large.

Our Contribution. We give an algorithm (cf. Algorithm 1) to the above defined
polynomial reconstruction problem where the goal is to recover the inputs (up to
a constant difference) of the randomly chosen monotonic polynomial with pos-
itive integer coefficients by observing only their outputs assuming the number

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 281

of evaluation points is much greater in number compared to the degree of the
polynomial. Once (d + 1) inputs are recovered, the degree d integer polynomial
can be reconstructed using the Lagrange interpolation technique. This result
invalidates the security claim in [KKN+18][Theorem 4.2] regarding the leakage
profile for Server B. In particular, the Server B will be able to learn the square
of the Euclidean distances (up to a constant difference) between the query point
and the data set points. It may not be able to tell the exact distance to a given
point due to random re-ordering but will be able to know all such values. Such
an information can potentially help the adversary to narrow down further if it
has access to extra information about the underlying data set or query point.

There can be many solutions to the above polynomial reconstruction prob-
lem, and hence we will output one solution that satisfies all the output points,
(there is also a possibility to enumerate all the solutions). But as discussed
above, when the number of output values is far bigger than the input degree,
the number of equivalent solutions will likely be small. Our algorithm readily
extends to recovering any integer polynomial (not necessarily a monotonic inte-
ger polynomial) and any input range (not necessarily [0, 2β − 1]). The proposed
algorithm (heuristically) runs in time exponential in the size of the inputs (β)
and degree (d) of the chosen polynomial, but polynomially dependent on the size
of the random coefficients (α). We would like to note that in many real world
scenarios the inputs are/can be encoded as integers of 16- or 32-bits length and
our method is feasible for inputs of such size. Note also that in SHE applications
d is required to be not large as well. This is because bigger values of d imply
deeper circuits w.r.t. homomorphic multiplications and hence more slow. For
the concrete parameters suggested in [KKN+18][Section 4.2], i.e., β = 16 and
d = 9, we can recover the inputs (up to a constant difference) for α = 16 in a
few seconds. We tested our attack using real-world data as well as with uniform
random data chosen within the input range, and this is described in detail in
Sect. 3.

Lastly, we investigate in Sect. 4 another variant of the protocol of [KKN+18]
where the (homomorphically) transformed polynomial outputs are perturbed by
a noise, yet maintaining the monotonicity. In this case our previously mentioned
attack will not work. But we show that it is still possible to recover ratios of the
inputs.

2 Cryptanalysis of a Secure k-NN Protocol

In Sect. 2.1 we describe the Secure k-Nearest Neighbour protocol from [KKN+18]
and formulate our attack as the polynomial reconstruction problem given only
the outputs. We describe our method for polynomial reconstruction and attack
on the k-NN protocol in Sect. 2.2. In Sect. 2.3 we provide a heuristic running
time analysis of our method. This is followed by an optimisation of our attack
in Sect. 2.4.

282 S. Murthy and S. Vivek

2.1 Protocol from [KKN+18]

The Secure k-Nearest Neighbour (Secure k-NN) protocol from [KKN+18] makes
use of a non-colluding federated two cloud setting (Fig. 1). The data owner out-
sources his/her database in an encrypted form using an SHE scheme for storage
in the Cloud A, whereby the cloud is not privy to the data, thus preserving
confidentiality of the data. Each of the n data points are of δ-dimensions. Cloud
A provides storage for the database and provides services on the encrypted
database homomorphically. One of these services is computation of k-NN of a
given δ-dimension query point. End users are clients who are trusted entities
for accessing the database and hence possess the secret decryption key shared
by the data owner. These users who wish to avail of the computation services
provided by Server A form a δ-dimensional query point q, encrypts the same and
provides it to Server A.

When Server A receives the query, it homomorphically computes the square
of the Euclidean Distances (ED) between the δ-dimensional query point and
each of the n data points; if the query point is of the form q = (q1, q2, . . . , qδ)
and the kth data point is of the form (k1, k2, . . . , kδ), then the Euclidean distance
between this kth data point and q is ED2

k = (q1−k1)2+(q2−k2)2+ . . . (qδ −kδ)2.
This needs to be computed for each of the n data points in an encrypted manner.
Because this ED computation is of multiplicative depth 1, it can be efficiently
evaluated using an SHE scheme. The plaintext data points and the query point
are encoded as tuples of integers. Note that in the context of F/SHE schemes,
fixed-point values too are (exactly) encoded using essentially the scaled-integer
representation [CSVW16]. Since the Server A does not possess the decryption
key, it will not be able to efficiently uncover the underlying plaintext information
of either the query point or the data points. It now picks a monotonic polynomial
p(x) of degree d of the form a0 + a1 · x + a2 · x2 + . . . + ad · xd for some chosen
d ∈ N, where each of the integer coefficients ai are picked uniform randomly and
independently in the range [1, 2α−1], for example in the range [1, 232−1] as done
in [KKN+18][Section 3.4]. This polynomial is then evaluated homomorphically
for each of the Euclidean distances and the output ciphertexts are re-ordered
using a permutation σ picked uniformly at random, before sending them to
Server B for sorting.

Server B possesses the decryption key using which it will decrypt the values
received from Server A and sorts them. As the decrypted values are outputs of a
random polynomial, the original distances as computed by Server A are “hidden”
from Server B. Server B would then send the indices of k-NNs to Server A which
would then apply σ−1 to the received ordering of the indices and forward the
same to the client. The client would decrypt the encrypted indices of the k-NNs
of the query point q.

The Server B (and also A) is assumed to be honest but curious. It will
perform the computations correctly but is keen to learn more about the distances
between the query point and the data set points. After decryption, the Server B
would observe only the outputs of the polynomial evaluation (and not the input

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 283

Fig. 1. Secure k-NN Setting from [KKN+18]

squared distances). That is, it only sees the values on the L.H.S. of the following
set of equations:

p(x1) = a0 + a1 · x1 + a2 · x2
1 + . . . + ad · xd

1

p(x2) = a0 + a1 · x2 + a2 · x2
2 + . . . + ad · xd

2

... (1)

p(xn) = a0 + a1 · xn + a2 · x2
n + . . . + ad · xd

n

It is assumed that the adversary B knows the degree d as it is usually small
since homomorphic evaluation of polynomials in encrypted form are efficient
only for small degree. It also knows the range [1, . . . , 2α − 1] for the unknown
coefficients ai, and the range [0, . . . , 2β − 1] for the unknown inputs xi. For our
attack, we need not know the exact values for the above three parameters, just
an upper bound on them would suffice. Also note that all the parameters above
take non-negative integer values.

As noted before, Server A evaluates the polynomial p(x) at n (squared
Euclidean distance) integer values x1, . . . , xn, and we can assume without loss
of generality that 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn. Since p(x) is monotonic the ordering
of p(xi) is identical to the ordering of xi (except possibly when there is equal-
ity). If a0 ≤ x1, then for any given tuple of coefficients (a0, a1, . . . , ad), there
will be a set of positive real roots (χ1, χ2, . . . , χd) to (1). Hence the authors of
[KKN+18] seem to argue that if the range for ai is large enough, then it will

284 S. Murthy and S. Vivek

be infeasible to search for all possible polynomials satisfying (1). The authors
claim that the probability that Server B successfully recovers the coefficients ai,
followed by xi, is approximately 1/2α·(d+1), which is negligible when α is large.
Referring to the example given in [KKN+18, Section 4.2], for α = 16 and d = 9,
this probability is approximately 2−160, which is negligible. Hence the protocol
leaks only negligible amount of information about either ai or xi to Server B
and nothing else other than the order of xi. We note here that the xi values may
never be uniquely recovered in (1) with probability = 1 since p(x + c) is also an
equivalent polynomial satisfying the equation for c ∈ Z and there may be many
values of c such that 0 ≤ xi − c < 2β . Hence the inputs and the polynomial may
only be recovered up to a constant difference. Other non-linear transformations
may also result in an equivalent solution. For instance, p(

√
x) can be a potential

solution when all the xi are perfect squares and p(x) contains only even powers.
But these possibilities will likely be significantly small when n � d, which indeed
is the scenario in [KKN+18].

2.2 Our Attack

Our key idea is to dramatically reduce the search space of xi by using the fact
that all the roots should be non-negative integers, not just non-negative real
values. The pseudocode of our method is given in Algorithm 1 on Page 10 and
is described in the steps below.

Step 1 - Guess the Differences (xi − xj): Consider the two equations from
(1) for p(xi) and p(xj), where i > j :

p(xi) − p(xj) = (xi − xj)(·). (2)

Let Li,j = (p(xi) − p(xj)) ≥ 0 (as p(xi) ≥ p(xj)), and Di,j be the set of positive
divisors of Li,j that are less than 2β . From (2) we have that (xi −xj) is a “small”
divisor of Li,j . Note that 0 ≤ |xi − xj |< 2β . So we can sieve all the divisors of
Li,j of value less than 2β . In the sieve method, the quotient of Li,j/(xi − xj) is
divided by its smallest prime factor and the process of dividing the quotient by
its smallest prime factor is continued until we get 1. This is where we crucially use
the fact that the inputs and the outputs are represented as integers, and that the
(plaintext) input space is small enough to enumerate. The list Di,j constitutes
the guesses for the differences of the (unknown but to be determined) values xi.
It turns out that for many values of Li,j there may be too many divisors that are
less than 2β , so we need to sample larger number of output values (i.e., larger
n) and carefully pick up d number of Li,j ’s such that the value of each Di,j

is a small positive integer (say, ≤ ψ) whereby the search space for the guesses
becomes feasible to enumerate. There is another condition on how we choose the
set of d many Li,j . Namely, we must be able to determine the required d + 1
many xi from the given guesses for the differences when one of the free variable,
say, x1 is assigned a value. In other words, the corresponding equations must
be linearly independent. Because of the existence of one free variable, the input

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 285

values can only be determined up to a constant difference. Hence we may assign
x1 = 0 if the coefficients of the resulting polynomial are within the given range
and this polynomial is consistent with the remaining output values.

Each of the Di,j sets can be visualized as entries of a lower triangular matrix
with element D[i][j] represented by the set Di,j . One way to determine the d
independent set of equations is to stick on to elements of Column 1 of the D
matrix for simplicity. We walk the elements of the matrix examining the number
of divisors of each of the Di,1 lists. As soon as Di,1 is greater than ψ, we discard
the elements in the particular row D[i]. This is continued until we get at least
d valid rows in the D matrix. We again note here that the ith row element
of Column 1 of D matrix contains sets of divisors for each of (p(xi) − p(x1))
for 2 ≤ i ≤ n respectively. In Step 2 we look for a consistent set of divisors
from Column 1 and in Step 3 we use these d guesses of xi together with x1

to compute the required degree d polynomial using Lagrange interpolation and
check whether this polynomial is consistent with the remaining n−d− 1 output
values.

Step 2 - Consistency Check of the Guessed Differences: In Step 1 we
would have obtained d rows of divisors of polynomial differences in the D matrix
that contains the set of guesses for each of the d differences among the unknown
inputs. In this step we try to filter out as many guessed tuples as possible before
executing the Step 3. This is because the Step 3 below consists of performing
Lagrange interpolation and then checking the validity of the constructed poly-
nomial on the remaining inputs and these steps are quite expensive to perform
for all the guessed tuples. We iterate over every d-tuple of divisors/guesses in
Column 1 of the D matrix and examine to check if that guessed divisor is con-
sistent as explained below. For integers i, j with Di,1, Dj,1 representing the set
of divisors in Rows i and j in Column 1 of D and given divisors di ∈ Di,1 and
dj ∈ Dj,1, then di and dj are said to be consistent if (di − dj) ∈ Di,j . This is
so because if (xi − x1) is a divisor of Li,1 and (xj − x1) is a divisor of Lj,1 then
(xi−xj) must be present in Di,j , which is evident in the way Li,j is obtained from
(2). Only the consistent values are considered and copied to an array state[]. In
summary, the output of this step is the array state where each of its elements
is a consistent divisor of Lj,1 obtained as above, and it is consistent with every
value of state[j], i �= j.

Step 3 - Find a Probable Polynomial and Verify Its Suitability:
Lagrange interpolation using the (d + 1) number of (x, y) tuples is used to com-
pute a degree d polynomial. The x values are based on values found in Step 2
and the corresponding y values are the corresponding polynomial outputs, such
that if xi is a divisor of Li,1 then yi is the ith polynomial output enumerated in
order. Since the x values are guesses based on differences of d values of (xi −x1),
the polynomial obtained by setting x1 to 0 can actually be a potential polyno-
mial solution. If the polynomial coefficients do not happen to lie within [1,2α),
we can iterate over successive integer values of x from 0 up to (2β − 1), using
it as an offset for each of the (d + 1) values of x to get solutions that indeed
satify the needed bounds. Once a candidate polynomial is identified, using the

286 S. Murthy and S. Vivek

remaining (n − d − 1) points we verify the correctness by computing the roots
of this polynomial and checking if they are all in the range [0, 2β). If these ver-
ification steps are successful, then the algorithm outputs the coefficients of a
polynomial that takes the same values as those of the n input points, and these
points are unique up to a constant difference. In other words, the differences of
the Euclidean distances are thus recovered in the most likely scenario.

2.3 Running Time Analysis

It looks difficult to do a tight analysis as we need to know the distribution of
the divisors of the polynomial outputs evaluated at independent and uniformly
random inputs. Hence we only provide a heuristic bound on the expected running
time.

Our method makes use of the sieving method to find divisors, in the given
range, of the polynomial differences. We then use Lagrange interpolation over
(d + 1) points to find a polynomial, and then find roots for c = (n − d − 1)
polynomials that satisfy the validity checks mentioned in Step 3 of Algorithm 1.
While the first polynomial output by Lagrange interpolation is very likely the
candidate polynomial, we may need to iterate over more values of x1 (bounded
by 2β) until the polynomial coefficients lie in the range [1,2α) and all the xi are
in [0,2β).

Suppose we consider ψ as a small integer bound on the number of divisors
for each of the d polynomial differences. Then the bound on the size of the
search space for the divisors is ψd. The number of divisors of an integer N is
bounded by NO(1

log log N); and on the average case it is log N [Tao08]. Though
we only consider divisors bounded by 2β , for ease of analysis we use the log N
expected bound. Based on this, we can set the value of ψ to be approximately
equal to α + dβ, whereby the expected value of search space size is O(α + dβ)d.
We then find the consistent set of divisors as described in Step 2 of Algorithm 1
and the worst case scenario to assume is that all the d-tuple divisors/guesses
are consistent. Using each of the ψd many d-tuple divisors/guesses, in the worst
case, we need to iterate over 2β values of x1 doing a Lagrange interpolation for
(d + 1) points and root finding for c polynomials. With Lagrange interpolation
being a O(d2 · (α + dβ)2) algorithm and so is the cost of a root finding, then the
total cost for Step 3 comes to Õ(α + dβ)d · 2β · n).

The heuristic expected running time of Algorithm 1 is Õ((α + dβ)d · 2β · n).

2.4 Further Optimisation

In Algorithm 1, in the worst case, we need to enumerate over ψd many d-tuples
of divisors/guesses. We provide here a way to choose the divisor sets such that
the enumeration complexity is as small as possible.

We refer to (1) giving the polynomial outputs. We compute differences p(xi)−
p(xj), where p(xi) ≥ p(xj) if xi ≥ xj . These nC2 values can be represented
as lower a triangular matrix L, with elements Li,j as described in Step 1 of
Algorithm 1, is given below :

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 287

Algorithm 1: Integer Polynomial Reconstruction From Only the Outputs
Procedure Main(Polynomial outputs : {p(x1), . . . , p(xn)}) :

D = GuessTheDifference({p(x1), . . . , p(xn)}, ψ)

state = CheckConsistency(D)

Q = FindCandidatePolynomial(state, {p(x1), . . . , p(xn)})

return Q

Procedure GuessTheDifference(Polynomial outputs : {p(x1), . . . , p(xn)}, ψ) :

for i = 2 to (n) do

for j = 1 to (i − 1) do

Use the sieve method to obtain all the (positive) divisors less than 2β of

Li,j = (p(xi) − p(xj)) /∗ p(xi) > p(xj) ∗/

Di,j := Set of all divisors of Li,j less than 2β

end

end

/∗ We now have D: a lower triangular matrix ∗/

valid row count = 0 /∗ Count rows in which all row elements have their divisor count

less than ψ ∗/

forall the Di do

forall the Di,j elements in Di do

if Sizeof(Di,j) > ψ then
/∗ Number of factors of Di,j more than threshold ∗/

Discard row Di /∗ Mark Di,1 as -1 ∗/

Break out of this loop and start enumeration on row Di+1

end

end

valid row count++

if valid row count == d then
/∗ We now have d valid rows in D matrix ∗/

break /∗ Out of outer loop ∗/

end

end

Compact D matrix by removing all rows having first element = -1.

/∗ First row of D contains 0s, next (d + 1) rows contain valid values ∗/

return D /∗ Set of divisors matrix ∗/

Procedure CheckConsistency(Set of positive divisors matrix D) :

for i = 3 to (d + 2) do

for j = (i − 1) downto 2 do
∀(di, dj) where di ∈ Di,1 and dj ∈ Dj,1 and di �= 0, dj �= 0

if (di − dj) /∈ Di,j then
Set di = 0 in Di,1

end

end

end

forall the dj �= 0 ∈ D2,1 do

for i = 3 to (d + 2) do

if di �= 0 and (di − dj) /∈ Di,1 then
Set dj = 0 in D2,1

end

end

end

Iterate over Di and populate state[i] with non-zero divisor of Di,0 where i is suitably

offset to populate state[] starting from index 0

return state[] /∗ Divisor set consistent over all elements ∈ L ∗/

/∗ Continued on next page ∗/

288 S. Murthy and S. Vivek

Procedure FindCandidatePolynomial(Consistent Divisor set {state},
Polynomial outputs {p(x1), . . . , p(xn)}) :

for ν = 0 to (2β − 1) do
for i = 0 to d do

Form a set of tuples G := {(a, b) : a = (ν + state[i]) and b = p(xi)}
end
Use Lagrange interpolation on G to get polynomial Q
Verify if 1 ≤ coefficient of Q < 2α is true for all coefficients of Q
Verify if Q has non-negative integer roots, which are < 2β , with respect
to the remaining (n − d − 1) polynomial outputs, namely, p(xd+2) to
p(xn).
If all the above verification steps are successful, return Q

end
return 0

L =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
p(x2) − p(x1) 0 0 . . . 0
p(x3) − p(x1) p(x3) − p(x2) 0 . . . 0

...
p(xn) − p(x1) p(xn) − p(x2) p(xn) − p(x3) . . . p(xn) − p(xn−1) 0

⎞
⎟⎟⎟⎟⎟⎠

The number of divisors for each of the differences up to a bound ψ are
obtained by sieving, represented as a matrix D where the element Dij represents
the set of divisors (with values < 2β) of (p(xi) − p(xj)).

D =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
D2,1 0 0 . . . 0
D3,1 D3,2 0 . . . 0

...
Dn,1 Dn,2 Dn,3 . . . Dn,n−1 0

⎞
⎟⎟⎟⎟⎟⎠

We now need to find the set of d many Dij elements of the matrix D such
that

∏
Dij is minimum, in other words, the product of the number of guesses is

minimum. This set of elements in the matrix D can be visualized as a complete
undirected graph on n vertices wherein the number of elements in Dij is the
edge cost between nodes Vi and Vj . Now finding the minimum

∏
Dij is akin

to finding the d-Minimum Spanning Tree (i.e., a minimum weight tree with d
edges only) in the graph, where the weight of the tree is represented by the
product of the weights. The requirement that the subgraph is a tree comes
from the linear independence requirement of the corresponding set of equations.
Essentially, we are transforming the problem of finding the small search space
of divisors to the problem of finding a d-minimum spanning tree having the

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 289

least cost (in terms of divisor product) across all divisors sets of matrix D yet
satisfying the linear independence condition. It is shown in [RSM+96] that the
d-MST problem is NP-hard for points in the Euclidean plane. The same paper
provides an approximation algorithm to find d-MST with performance ratio of
2
√

d for a general edge-weighted graph, with non-negative edge weights. Note
that this approximation algorithm also works for multiplication of edge weights
(weights greater than 1) since by extraction of logarithms this can be trivially
turned into addition of edge weights. Using this algorithm, we can carefully
select d < n nodes having close to the minimum enumeration complexity. In
order to make our search space feasible to guess the differences (xi − xj) with
xi ≥ xj . From the d-MST so obtained, we can now go on to find the set of
divisors (xi − xj) such that they are consistent as explained in Sect. 2.2 and
continue with finding the polynomial coefficients using Lagrange interpolation
as described in Algorithm 1. However, we did not implement this optimisation in
our code as the concrete running time was already small enough. But for larger
instances this optimisation will be useful.

3 Experiments and Results

We have performed two sets of experiments using the SAGE library [The19].
Our source code is available at [MV]. One set consists of choosing random val-
ues within given bounds for xi and ai, computing the outputs of a degree d
polynomial, and trying to recover the coefficients of the polynomial, namely the
ai values using only the polynomial output values. The second set consists of
using data available from the UCI Machine learning repository [DG17] which is
a real-world hospital data obtained from a hospital in Caracas, Venezuela.

All our experiments were run on a Lenovo ThinkStation P920 workstation
having a 2.3 GHz Intel R©Xeon R© processor with 12 cores. The algorithms for
sieving, consistency check and polynomial verification were exactly same in both
the cases, the only difference being in the datasets as described in the respective
sections below. As in [KKN+18], we have chosen the degree of the polynomial
d = 9.

3.1 Experiments with Random Values

We set the bound for ai and xi as given in Table 1 with the values being uniform
random and independently chosen from the respective ranges. We computed the
polynomial with ai as coefficients and computed n = 40 outputs for the xi values.
These n values were the input to our algorithm. The choice of n = 40 was based
on observations from the experiments; in majority of the instances we could
bound the number of divisors to less than 20 thereby making the search space
significantly less than 2010. We then used the divisor set and (d + 1) polynomial
outputs to compute a possible polynomial using Lagrange interpolation which
we then used to verify successfully against the remaining (n − d − 1) output
values. We note that our search space is significantly less than the estimate of

290 S. Murthy and S. Vivek

2160 in [KKN+18]. It looks like many further optimization could be done to
reduce the search space. When we increased β to 32 for xi, SAGE encountered
an out-of-memory error while performing Lagrange interpolation. But we think
it should still be feasible to run this instance too.

Table 1. Run times for polynomial reconstruction for random parameters.

α (in bits) β (in bits) Run time (in seconds)

16 16 4

16 24 288

16 28 552

24 16 8

24 24 374

24 28 1283

32 16 9

32 24 241

32 28 1676

3.2 Experiments with Real World Data

We used the cervical cancer (risk factors) data set, same as the one used by
[KKN+18], also available from the UCI Machine learning repository [DG17].
This data set consists of information pertaining to 858 patients, each consisting of
32 attributes comprising of demographic information, habits and historic medical
records. The dataset had a few missing values due to privacy concerns and these
were set to 0. Values with fractional part were rounded off to the nearest integer.
We repeated the experiment with different random polynomials and were able
to recover the polynomial successfully up to the differences. We also tested with
16, 24 and 32 bit values of α and have tabulated the time taken by SAGE to
compute the polynomial in each of the cases. β = 16 was suffice to encode this
data. Time for execution is given seconds and is averaged over 5 runs in each
case.

Our results invalidate the security claims in [KKN+18][Theorem 4.2] regard-
ing the leakage profile for Server B. For the parameters mentioned in [KKN+18]
[Sect. 4.2], i.e., d = 9 and the (squared plaintext) distances are in the range
[0, 2β), where, β = 16. For the parameters mentioned there, with only n = 40
output values, we could recover the coefficients of the polynomial (up to a con-
stant difference) within a few minutes as given in Table 2.

Because of the random re-ordering of the distances, Server B will not learn
the exact distance of the query point to a specified point (say the ith point in the
original order). Nevertheless, in many real world scenarios the data set is publicly
available and this, and perhaps other auxilliary information, may potentially be
used in combination with our results to leak information about the query point.

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 291

Table 2. Run times for polynomial reconstruction for a real world data.

α (in bits) β (in bits) Run time (in seconds)

16 16 2.25

24 16 73.81

32 16 109.87

4 Attack on the Secure k-NN Protocol in the Noisy
Setting

In this section we give another attack on the protocol of [KKN+18] if one tries
to overcome our attack from Sect. 2 by perturbing the polynomial outputs by
adding noisy error terms. This modified protocol is not mentioned in [KKN+18]
but we consider it here for completeness.

In the original solution given in [KKN+18], in order to hide the Euclidean
distance values, Server A chooses a monotonic polynomial and homomorphically
evaluates this polynomial on its computed distances and permutes the order
before sending them to Server B. Now, instead of sending these (encrypted)
polynomial outputs as it is, if they are perturbed with some noise such that
the ordering is still maintained, it will make our attack in Sect. 2 unsuccessful
in recovering the polynomial or the inputs, as the attack relies on the exact
difference of the polynomial outputs. It is easy to see that the error value can
only be as large as the sum of all the coefficients except the constant term. Let
P (x) = a0 + a1 · x + . . . + ad · xd be the chosen monotonic polynomial, then,
P (0) = a0, P (1) = a0 +a1 + . . .+ad and the maximum value of the added noise
needs to be less than (P (1) − P (0)) so as to maintain the original ordering of
polynomial outputs, meaning the perturbation error may only be chosen from
the set [0, 1, . . . , (a1 + . . . + ad)]. This safe choice of the error term is due to the
fact that the polynomial output values are encrypted and hence it is not possible
for the Server A to inspect the value and accordingly choose the error term. The
range of perturbation error terms still depends on the size of the coefficient space
that can potentially be very large (unlike the plaintext space as assumed). The
attack presented in the previous section will not work in this new setting because
in the attack we rely on the exact differences of the polynomial outputs.

In this new setting, we next show that it is still possible to leak ratios of the
inputs to the Server B, although recovering the exact values (even up to to a
constant difference) may be challenging. But still a lot more information about
the inputs is leaked than just a single bit. Let two of the values that the Adversary
B obtains after decryption be F (xi) = P (xi) + ei and F (xj) = P (xj) + ej ,
where ei and ej are the random error terms such that 0 ≤ ei, ej <

∑d
k=1 ak and

1 ≤ ak < 2α. Consider the ratio F (xi)/F (xj) with 0 ≤ xj ≤ xi < 2β :

F (xi)
F (xj)

=
(
∑d

k=0 ak) + a1 · xi + . . . + ad · xd
i

(
∑d

k=0 ak) + a1 · xj + . . . + ad · xd
j

. (3)

292 S. Murthy and S. Vivek

Note that each F (xk) > 0. When xi and xj are sufficiently large we obtain that
the ratio in (3) is approximately close to (xi/xj)d. By taking the dth root of
this value, we can recover the ratio (xi/xj). Note also that if the error terms ek

were not significantly small than the leading terms (which, fortunately, is not
the case), then we would not be able to recover the ratios.

5 Conclusion and Future Work

In this paper we give an attack on the protocol of [KKN+18] for Secure k-NN
on encrypted data. This attack is based on our algorithm for integer polynomial
reconstruction given only the outputs. While, by just using the outputs, it is not
possible to accurately determine the coefficients or the inputs, we show that we
can feasibly recover the inputs (up to a constant difference) of size about 32 bits
when the number of outputs is much bigger than the degree of the polynomial.
Our experiments were conducted both on uniformly randomly selected values
as well as a real-world dataset. Since many of the datasets are available in the
public domain it may possible for an adversary to derive more information about
the exact values using our method together with some other available metadata.

Our method for polynomial reconstruction runs in exponential time in plain-
text space β and degree d of the chosen polynomial. In many real-world sce-
narios both these parameters will be small. Future work can look at having a
better algorithm and/or have a lower bound analysis of the time required for
this polynomial reconstruction problem. Finally, an FHE solution that can per-
form efficient sorting and searching on large datasets would eliminate the need
for service providers to be entrusted with decryption keys, thereby providing a
more secure cloud computation environment.

Acknowledgements. We thank Sonata Software Limited, Bengaluru, India for fund-
ing this work. We also thank Debdeep Mukhopadhyay and Sikhar Patranabis for helpful
discussions.

References

[BCLO09] Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving sym-
metric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 224–241. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01001-9 13

[Ber68] Berlekamp, E.R.: Algebraic Coding Theory, vol. 8. McGraw-Hill, New
York (1968)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference, ITCS 2012, pp. 309–
325. ACM, New York (2012)

https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-01001-9_13

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 293

[BLR+15] Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman,
J.: Semantically secure order-revealing encryption: multi-input functional
encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 19

[ÇDSS15] Çetin, G.S., Doröz, Y., Sunar, B., Savaş, E.: Depth optimized efficient
homomorphic sorting. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LAT-
INCRYPT 2015. LNCS, vol. 9230, pp. 61–80. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22174-8 4

[CGGI19] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully
homomorphic encryption over the torus. J. Cryptol. (2019)

[CGLB14] Choi, S., Ghinita, G., Lim, H.-S., Bertino, E.: Secure kNN query process-
ing in untrusted cloud environments. IEEE Trans. Knowl. Data Eng. 26,
2818–2831 (2014)

[CS15] Chatterjee, A., Sengupta, I.: Searching and Sorting of Fully Homomor-
phic Encrypted Data on cloud. IACR Cryptology ePrint Archive 2015/981
(2015)

[ÇS19] Çetin, G.S., Sunar, B.: Homomorphic rank sort using surrogate polyno-
mials. In: Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS,
vol. 11368, pp. 311–326. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25283-0 17

[CSVW16] Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed-point arithmetic
in SHE schemes. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol.
10532, pp. 401–422. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-69453-5 22

[DG17] Dua, D., Graff, C.: UCI Machine Learning Repository (2017)
[ESJ14] Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor

query over encrypted data in outsourced environments. In: IEEE 30th
International Conference on Data Engineering, ICDE 2014, Chicago, IL,
USA, 31 March–4 April 2014, pp. 664–675 (2014)

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stan-
ford University, Stanford, CA, USA (2009). AAI3382729

[GRS00] Goldreich, O., Rubinfeld, R., Sudan, M.: Learning polynomials with
queries: the highly noisy case. SIAM J. Discrete Math. 13(4), 535–570
(2000)

[GS99] Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and
algebraic-geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767
(1999)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 5

[KKN+18] Kesarwani, M., et al.: Efficient secure k-nearest neighbours over encrypted
data. In: Proceedings of the 21th International Conference on Extending
Database Technology, EDBT 2018, Vienna, Austria, 26–29 March 2018,
pp. 564–575 (2018)

[MV] Murthy, S., Vivek, S.: http://github.com/shyamsmurthy/knn polynomial
recovery. Accessed 22nd Sept 2019. 15:30

https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-319-22174-8_4
https://doi.org/10.1007/978-3-030-25283-0_17
https://doi.org/10.1007/978-3-030-25283-0_17
https://doi.org/10.1007/978-3-319-69453-5_22
https://doi.org/10.1007/978-3-319-69453-5_22
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
http://github.com/shyamsmurthy/knn_polynomial_recovery
http://github.com/shyamsmurthy/knn_polynomial_recovery

294 S. Murthy and S. Vivek

[RSM+96] Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.S.:
Spanning trees - short or small. SIAM J. Discrete Math. 9(2), 178–200
(1996)

[SHSK15] Songhori, E.M., Hussain, S.U., Sadeghi, A.-R., Koushanfar, F.: Compact-
ing privacy-preserving k-nearest neighbor search using logic synthesis. In:
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp.
1–6 (2015)

[Tao08] Tao, T.: Blog: the divisor bound (2008). https://terrytao.wordpress.com/
2008/09/23/the-divisor-bound/. Accessed 19 July 2019. at 15:30

[The19] The Sage Developers: SageMath, the Sage Mathematics Software System
(Version 8.4) (2019). https://www.sagemath.org

[WCKM09] Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure kNN Com-
putation on encrypted databases. In: Proceedings of the 2009 ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2009,
pp. 139–152. ACM, New York (2009)

[XLY13] Xiao, X., Li, F., Yao, B.: Secure nearest neighbor revisited. In: Proceedings
of the 2013 IEEE International Conference on Data Engineering (ICDE
2013), ICDE 2013, pp. 733–744, Washington, DC, USA. IEEE Computer
Society (2013)

[ZHT16] Zhu, Y., Huang, Z., Takagi, T.: Secure and controllable k-NN query over
encrypted cloud data with key confidentiality. J. Parallel Distrib. Comput.
89(C), 1–12 (2016)

https://terrytao.wordpress.com/2008/09/23/the-divisor-bound/
https://terrytao.wordpress.com/2008/09/23/the-divisor-bound/
https://www.sagemath.org

Quantum-Secure (Non-)Sequential
Aggregate Message Authentication Codes

Shingo Sato1(B) and Junji Shikata1,2

1 Graduate School of Environment and Information Sciences,
Yokohama National University, Yokohama, Japan

sato-shingo-cz@ynu.jp, shikata-junji-rb@ynu.ac.jp
2 Institute of Advanced Sciences, Yokohama National University, Yokohama, Japan

Abstract. Recently, the post-quantum cryptography becomes the
object of attention, since quantum algorithms breaking the existing cryp-
tosystems have been proposed and the development of quantum comput-
ers has been promoted. In fact, quantum-secure systems have been stud-
ied in both areas of public key cryptography and symmetric key cryptog-
raphy. This paper studies quantum security of message authentication
codes (MACs) with advanced functionality of compressing multiple tags,
so-called aggregate message authentication codes (AMACs) and sequen-
tial aggregate message authentication codes (SAMACs).

In this paper, we present AMAC/SAMAC schemes meeting quantum
security in the model where adversaries can submit quantum queries.
Specifically, we first formalize the quantum security for AMAC/SAMAC
schemes. Second, we propose AMAC/SAMAC schemes satisfying the
quantum security. Regarding AMACs, we show that Katz-Lindell scheme
meets the quantum security. Regarding SAMACs, since the existing
schemes are insecure, we newly present two generic constructions: One
is constructed from quantum pseudorandom functions, and the other is
constructed from randomized pseudorandom generators and (classical)
pseudorandom functions.

1 Introduction

1.1 Background

Message authentication codes (MACs) are fundamental and important primi-
tives in symmetric cryptography for message authentication by generating MAC
tags on messages. Aggregate MACs (AMACs) are MACs that can compress mul-
tiple MAC tags on multiple messages into short tags. When many MAC tags
are sent to a receiver via a network, AMACs are effective since it is possible to
reduce the total size of MAC tags. In [13], Katz and Lindell formalized the model
and security of AMACs for the first time, and proposed a generic construction
starting from any MACs. Sequential aggregate MAC (SAMACs) are AMACs
that can check validity of the order of sequential messages. We can consider
several applications of SAMACs such as mobile ad-hoc networks (MANETs),
c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 295–316, 2019.
https://doi.org/10.1007/978-3-030-35199-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_15

296 S. Sato and J. Shikata

border gateway protocol security (BGPSec), and others for resource-constrained
devices. In [8], Eikemeier et al. defined the model and security of SAMACs, and
they proposed a generic construction from any MACs and pseudorandom permu-
tations. In [10], Hirose and Kuwakado formalized forward security of SAMACs
and proposed a generic construction from any pseudorandom function (PRF)
and any pseudorandom generator. Tomita et al. [19] defined sequential aggre-
gate authentication codes with information-theoretic (one-time) security, and
they proposed constructions of SAMACs.

Recently, the post-quantum cryptography becomes the object of attention,
since quantum algorithms breaking the existing cryptosystems have been pro-
posed and the development of quantum computers has been promoted. In fact,
quantum-secure systems have been studied in both areas of public key cryp-
tography and symmetric key cryptography. For public key cryptography, it is
known that by using quantum algorithms, we can break cryptographic systems
based on the integer factoring and discrete logarithm problems [16,17], and post-
quantum cryptography received much attention for this reason. In addition, the
post-quantum cryptography standardization project is currently in progress by
the NIST (National Institute of Standards Technology) [15]. In symmetric key
cryptography, it is also important to study quantum security. In particular, we
focus on the security model where adversaries are allowed to submit quantum
queries to oracles, which we call quantum query model, since we would like to
establish quantum-secure systems in a stronger sense. It is known that there
exist quantum attacks against MAC schemes such as CBC-MAC, PMAC, and
Carter-Wegman MAC in this model [4,12]. In prior work, various MAC schemes
satisfying the security in the quantum query model have been proposed. In [4],
Boneh and Zhandry defined the security of MACs in this model for the first
time. They also proposed several MAC schemes meeting this security: a vari-
ant of Carter-Wegman MAC, pseudorandom functions meeting the quantum
security defined in [21], and a q-time MAC scheme, where q is the number of
classical/quantum queries to the tagging oracle. In [18], Song and Yun showed
that NMAC and HMAC met the quantum security of pseudorandom functions
defined in [21], if the underlying pseudorandom functions meet the quantum
security. However, no paper reports about MACs with advanced functionality of
compressing multiple tags, AMACs and SAMACs.

1.2 Our Contribution

Our purpose in this paper is to propose quantum-secure AMAC/SAMAC
schemes, namely secure AMAC/SAMAC schemes in the quantum query model.
To the best of our knowledge, security of AMACs/SAMACs in this model has not
been dealt with in the literature. In this paper, we formalize a model and security
of AMACs/SAMACs in the quantum query model. Then, we show generic con-
structions of AMAC/SAMAC schemes that satisfy the security in the quantum
query model. Specifically, the contribution of this paper is described as follows.

1. In Sect. 3, we formalize quantum security of AMACs in the quantum query
model. In addition, we show that the generic construction of AMAC from any

Quantum-Secure (Non-)Sequential AMACs 297

MACs by Katz and Lindell [13] is quantum-secure, if the underlying MACs
meets quantum security defined in [4].

2. In Sect. 4, we formalize quantum security of SAMACs in the quantum query
model. Our security formalization includes the existing security definition in
[8] in the classical query model, and hence our formalization is considered to
be reasonable. In terms of quantum security, we analyze security of known
SAMACs, and the results are summarized in Table 1. In particular, we can
break the security of SAMACs of [8,19] by using quantum algorithms pro-
posed in [4,12] (see Appendix A for attacking algorithms).

3. In Sect. 5, we propose two generic constructions of SAMACs, SAMAC1 and
SAMAC2. SAMAC1 is constructed from any quantum secure pseudorandom
function (QPRF), while SAMAC2 is constructed from any randomized pseu-
dorandom generator (PRG) and any classical PRF. The features of those
constructions are explained as follows.
SAMAC1 uses a deterministic PRF satisfying the security in the quantum
query model. In particular, we can apply the quantum-secure PRF of [18,21]
to SAMAC1, since those are deterministic. More specifically, we can apply
NMAC/HMAC to SAMAC1 as a quantum PRF, since these MACs are shown
to be quantum PRFs in [18].
SAMAC2 uses a randomized function (i.e., PRG). The advantage of using
randomized primitives lies in constructing quantum-secure SAMAC schemes
based on assumed computationally hard problems for quantum computers
such as the learning parity with noise (LPN) problem. Since LPN-based cryp-
tography has been studied in constructing various cryptographic systems such
as public key encryption [7,14], oblivious transfer [5], symmetric key encryp-
tion [2], MACs [6], and randomized PRGs/PRFs [2,20], it is even interesting
to consider quantum-secure SAMACs from LPN-based primitives. LPN-based
primitives consist of randomized algorithms, and hence, those can be applied
to SAMAC2. In particular, we can apply randomized PRGs [2,20] based on
the LPN problem to SAMAC2 (see Appendix B for the detailed description).

2 Preliminaries

We use the following notation: For a positive integer n, let [n] := {1, 2, . . . , n}.
For positive integers n1, n2 such that n1 < n2, let [n1, n2] := {n1, n1+1, . . . , n2}.
For n values x1, x2, . . . , xn, let {xi}i∈n be a set {x1, . . . , xn} and let (xi)i∈[n] be
a sequence (x1, . . . , xn). For a set X , let |X | be the number of elements in X . For
a set X and an element x ∈ X , we write |x| as the bit-length of x. A function
ε = ε(λ) is negligible if for a large enough λ and all polynomial p(λ), it holds
that ε(λ) < 1/p(λ). In this paper, we write negl(λ) := ε(λ) for a negligible
function ε, and poly(λ) means a polynomial of λ. For a randomized algorithm A
and the input x of A, we write A(x; r) as a deterministic algorithm, where r is
randomness used by A. Probabilistic polynomial-time algorithm is abbreviated
as PPTA.

298 S. Sato and J. Shikata

Table 1. Security of SAMAC Schemes in the Quantum Query Model: The term “Primi-
tive” means cryptographic primitives required in the generic constructions, “Quantum
Security” means security in the quantum query model, and “Attacking algorithm”
means a quantum algorithm which makes the target scheme insecure in the quantum
query model. PRP means a pseudorandom permutation, A-code means an authentica-
tion code with information theoretic (one-time) security, (Q)PRF means a (quantum)
pseudorandom function, RPRG means a randomized pseudorandom generator, and
PIH means pairwise independent hashing.

Scheme Primitive Quantum
Security

Attacking algorithm

[8] MAC insecure Quantum algorithm against CBC-MAC

PRP (see Section 5.1 in [12])

[19] Scheme 1 A-code insecure Quantum algorithm against PIH

[19] Scheme 2 A-code (see the proof of Lemma 6.3 in [4])

SAMAC1 QPRF secure n/a

SAMAC2 RPRG secure n/a

PRF

In addition, we use the following notation for quantum computation as in
[4]. We write an n-qubit state |ψ〉 as a linear combination |ψ〉 =

∑
x∈{0,1}n ψx|x〉

with a basis {|x〉}x∈{0,1}n and amplitudes ψx ∈ C such that
∑

x∈{0,1}n |ψx|2 = 1.
When |ψ〉 is measured, the state x is observed with probability |ψx|2. Suppose
that we have superposition |ψ〉 =

∑
x∈X ,y∈Y,z∈Z ψx,y,z|x, y, z〉, where X and

Y are finite sets and Z is a work space. For an oracle O : X → Y, we write
quantum access to O as a mapping |ψ〉 �→

∑
x∈X ,y∈Y,z∈Z ψx,y,z|x, y + O(x), z〉,

where + : Y × Y → Y is a certain group operation on Y. Quantum polynomial-
time algorithm is abbreviated as QPA.

2.1 Pseudorandom Function and Pseudorandom Generator

A function PRF : K × X → Y, where for a security parameter λ, K = K(λ) is a
key space, X = X (λ) is a domain, and Y = Y(λ) is a range, is a pseudorandom
function (PRF), if the following AdvprD,PRF(λ) is negligible for any PPTA,

AdvprD,PRF(λ) :=
∣
∣
∣Pr

[
DPRFk(·)(1λ) → 1

]
− Pr

[
DRF(·)(1λ) → 1

]∣
∣
∣ ,

where PRFk(·) is an oracle which, on input x ∈ X , outputs PRF(k, x), and RF(·)
is an oracle which, on input x ∈ X , outputs a value RF(x) of a random function
RF : X → Y.

In addition, a quantum PRF (QPRF) is defined in a similar way as above by
assuming that D is any QPA allowed to issue quantum superposition of queries
to oracles.

Quantum-Secure (Non-)Sequential AMACs 299

Consider a function G : X → Y, where for a security parameter λ, X = X (λ)
is a domain, and Y = Y(λ) is a range. And, we assume that |x| < |y| holds
for all x ∈ X and all y ∈ Y, where |x| and |y| are the bit-lengths of x and
y, respectively. Then, G is said to be a pseudorandom generator (PRG), if the
following AdvprgA,G(λ) is negligible for any PPTA A,

AdvprgA,G(λ) :=
∣
∣
∣Pr[A(G(x)) → 1 | x

U← X] − Pr[A(y) → 1 | y
U← Y]

∣
∣
∣ .

In addition, a PRG G : X → Y with a randomness space R is called a
randomized PRG, if the following AdvprgA,G(λ) is negligible for any PPTA A,

AdvprgA,G(λ) :=
∣
∣
∣Pr[A(G(x; r)) → 1 | x

U← X ; r R← R] − Pr[A(y) → 1 | y
U← Y]

∣
∣
∣ .

Note that for a randomized PRG G with a randomness space R and any seed
x ∈ X , we write G(x; r) as a deterministic function, where randomness r ∈ R
might not be uniformly distributed.

2.2 Quantum Security of MAC

We describe a message authentication code (MAC) and its security in the quan-
tum query model following [4]. A MAC scheme consists of a tuple of three
polynomial-time algorithms (KGen,Tag,Vrfy): Let λ be a security parameter,
let K = K(λ) be a key space, let M = M(λ) be a message space, and let
T = T (λ) be a tag space.

Key Generation. KGen is a randomized algorithm which, on input a security
parameter 1λ, outputs a secret key k ∈ K.

Tagging. Tag is a deterministic or randomized algorithm which, on input a secret
key k ∈ K and a message m ∈ M, outputs a tag t ∈ T .

Verification. Vrfy is a deterministic algorithm which, on input a secret key
k ∈ K, a message m ∈ M, and a tag t ∈ T , outputs 1 (accept) or 0 (reject).

As correctness of MACs, we require that a MAC scheme (KGen,Tag,Vrfy)
meets the following: For all secret keys k ← KGen(1λ) and all messages m ∈ M,
it holds that 1 ← Vrfy(k,m, t), where t ← Tag(k,m).

As security of MACs in the quantum query model, the notion of existen-
tial unforgeability against quantum chosen message attacks called EUF-qCMA
security was formalized in [4].

Definition 1 (EUF-qCMA security [4]). A MAC scheme MAC = (KGen, Tag,
Vrfy) meets EUF-qCMA security, if for any QPA A against MAC, Advqcma

A,MAC(λ) :=
Pr[A wins] is negligible, where [A wins] is an event that A wins in the following
game:

Setup: A challenger generates a secret key k ← KGen(1λ).

300 S. Sato and J. Shikata

Queries: When A submits a quantum query (i.e., a superposition of messages)
|ψ〉 =

∑
m∈M,t∈T ,z ψm,t,z|m, t, z〉 to the tagging oracle, it chooses randomness

r used in Tag algorithm, where it does not need to choose randomness r if
Tag is deterministic. Then, it returns

∑

m∈M,t∈T ,z

ψm,t,z|m, t ⊕ Tag(k,m; r), z〉.

Let q be the number of queries which A submits to the tagging oracle.
Output: A outputs (q +1) message/tag pairs (m1, t1), . . . , (mq+1, tq+1). A wins

if the following holds:
– 1 ← Vrfy(k,mi, ti) for all i ∈ [q + 1].
– mi �= mj for any distinct i, j ∈ [q + 1].

3 Quantum-Secure AMAC

3.1 Quantum Security of AMAC

In this section, we formalize quantum security of AMACs by taking into account
the quantum security of MACs in [4] and (classical) security of AMACs in [13].
An AMAC scheme consists of four polynomial-time algorithms (KGen, Tag, Agg,
AVrfy): Let λ be a security parameter, and let n = poly(λ) be the number of
tagging users. ID = {idi}i∈[n] ∈

(
{0, 1}O(λ)

)n
is an ID space, K = K(λ) is a key

space, M = M(λ) is a message space, and T = T (λ) is a tag space.

Key Generation. KGen is a randomized algorithm which, on input a security
parameter 1λ and an ID id ∈ ID, outputs a secret key kid ∈ K. We write
kid ← KGen(1λ, id).

Tagging. Tag is an algorithm which, on input a secret key kid ∈ K and a message
m ∈ M, outputs a tag t ∈ T . We write t ← Tag(kid,m).

Aggregation. Agg is a deterministic algorithm which, on input a set of arbitrary
� pairs of IDs and tags T = {(idji

, ti)}i∈[�] (� ≤ n), outputs an aggregate tag
τ . We write τ ← Agg(T).

Verification. AVrfy is a deterministic algorithm which, on input a set of secret
keys K = {kidi

}i∈[n], a set of arbitrary � pairs of IDs and messages M =
{(idji

,mi)}i∈[�], and an aggregate tag τ , outputs 1 (accept) or 0 (reject). We
write 1/0 ← AVrfy(K,M, τ).

We require that an AMAC scheme AMAC = (KGen,Tag,Agg,AVrfy) meets
correctness as follows: For any set K = {kidi

}i∈[n] of secret keys (∀idi ∈ ID,
kidi

← KGen(1λ, idi)), and any set M of ID/message pairs, it holds that 1 ←
AVrfy(K,M, τ), where τ ← Agg({idji

, ti}i∈[�]), where ti ← Tag(kidji
,mi) for

i ∈ [�] (1 ≤ � ≤ n).
As security of AMACs in the quantum query model, we define aggre-

gate unforgeability against quantum chosen message attacks, which we call
aggUF-qCMA security, as follows.

Quantum-Secure (Non-)Sequential AMACs 301

Definition 2 (aggUF-qCMA security). An AMAC scheme AMAC = (KGen,
Tag, Agg, AVrfy) meets aggUF-qCMA security, if for any QPA A against AMAC,
Advagguf−qcma

A,AMAC (λ) := Pr[A wins] is negligible, where [A wins] is an event that A
wins in the following game:

Setup: Generate secret keys kidi ← KGen(1λ, idi) for all idi ∈ ID. Set a list
LCor ← {∅}.

Queries: A is allowed to submit queries to the following oracles OCor, OTag:
– OCor: Given a query id ∈ ID, it returns the corresponding key kid and sets

LCor ← LCor ∪ {id}.
– OTag: Given id ∈ ID and a query |ψ〉 =

∑
m∈M,t∈T ,z ψm,t,z|m, t, z〉 to

the tagging oracle OTag, it chooses randomness r used in Tag algorithm,
where it needs not to choose randomness r if Tag is deterministic. Then,
it returns

∑
m∈M,t∈T ,z ψm,t,z|m, t⊕Tag(kid,m; r), z〉. Let q be the number

of queries which A submits to OTag.
Output: A outputs q ID/message/tag triplets (id(1),m(1), t(1)), . . ., (id(q),

m(q), t(q)), where id(i) ∈ ID for all i ∈ [q], and (M, τ), where M =
{(idji

,mi)}i∈[�] (1 ≤ � ≤ n) is a set of arbitrary � pairs of IDs and mes-
sages and τ is an aggregate tag. Then, A wins if the following holds:
– 1 ← AVrfy(kid(i) , (id(i),m(i)), t(i)) for all i ∈ [q], and 1 ← AVrfy(K,M, τ).
– There exists some (id,m) ∈ M such that id /∈ LCor and

(id,m) /∈ {(id(1),m(1)), . . . , (id(q),m(q))}.

Definition 2 is regarded as an extension from both security notions of the
quantum security of MACs in [4] and (classical) security of AMACs in [13] from
the following reasons:

– Consider a special case n = � = 1 in Definition 2. Suppose that, in a
aggUF-qCMA security game, a QPA A finally outputs q ID/message/tag
triplets (id(1),m(1), t(1)), . . . , (id(1),m(q), t(q)) for the same ID, and (M, τ),
where M = {m} is a set consisting of a single element and τ is a sin-
gle tag. Then, A wins, if 1 ← AVrfy(kid(1) , (id

(1),m(i)), t(i)) for all i ∈ [q]
and 1 ← AVrfy(kid(1) ,m, t), and m �∈ {m(1), . . . ,m(q)}. This is the same as
Definition 1, and hence Definition 2 is regarded as an extension from quan-
tum security of MACs in [4].

– Consider a special case where PPTA A obtains valid q triplets
(id(1),m(1), t(1)), . . . , (id(q),m(q), t(q)) by having access to the oracle
OTag with classical queries (id(1),m(1)), . . . , (id(q),m(q)). Suppose that,
in aggUF-qCMA security game, A outputs q ID/message/tag triplets
(id(1),m(1), t(1)), . . . , (id(1),m(q), t(q)) which he obtained, and (M, τ), where
M = {(idji

,mi)}i∈[�] (1 ≤ � ≤ n) is a set of arbitrary � pairs of IDs and
messages and τ is an aggregate tag. Then, A wins, if 1 ← AVrfy(K,M, τ)
and there is some (id,m) ∈ M such that id /∈ LCor and (id,m) /∈
{(id(1),m(1)), . . . , (id(q),m(q))}. This is the same as the security definition
of AMACs in [13], and ours is an extension of it.

302 S. Sato and J. Shikata

3.2 Katz-Lindell Construction

We show that the Katz-Lindell construction [13] of AMACs meets aggUF-qCMA
security. Let MAC = (KGenMAC,TagMAC,VrfyMAC) be a deterministic MAC
scheme. The Katz-Lindell construction AMACKL = (KGen,Tag,Agg,AVrfy) is
described as follows:

– kid ← KGen(1λ, id): Generate a key k ← KGenMAC(1λ), and output kid := k
for an ID id ∈ ID.

– t ← Tag(kid,m): Given a message m ∈ M, output t ← TagMAC(kid,m) ∈ T .
– τ ← Agg({(idj1 , t1), . . . , (idj�

, t�)}): Output τ := t1 ⊕ · · · ⊕ t� ∈ T .
– 1/0 ← AVrfy(K,M, τ): Given an ID/message set M = {(idji

,mi)}i∈[�] and an
aggregate tag τ , do the following:
1. τ̃ ← Agg({(idj1 , t̃1), . . . , (idj�

, t̃�)}), where t̃i ← Tag(kidji
,mi).

2. Output 1 if τ = τ̃ , or output 0 otherwise.

We show the following theorem which states quantum security of the con-
struction AMACKL.

Theorem 1. If a deterministic MAC meets EUF-qCMA security, AMACKL sat-
isfies aggUF-qCMA security.

Proof. Let A be a QPA against AMACKL. We prove the theorem by constructing
a PPTA F breaking the EUF-qCMA security of MAC, in the following way: Given
a tagging oracle in EUF-qCMA game, it chooses id∗ ∈ ID uniformly at random
and generates kid for all id ∈ ID and a list LCor ← ∅. When A submits queries
to OCor and OTag, it simulates these oracles as follows:

– OCor: Take id as input. Abort this game if id = id∗. Return the corresponding
key kid and set LCor ← LCor ∪ {id} if id �= id∗.

– OTag: Take (id,
∑

m∈M,t∈T ,z ψm,t,z|m, t, z〉) as input. If id = id∗, submit the
given quantum query to the tagging oracle and return the received quantum
superposition. If id �= id∗, return

∑
m,t,z ψm,t,z|m, t ⊕ Tag(kid,m), z〉.

When A outputs (id(1),m(1), t(1)), . . . , (id(q),m(q), t(q)), and (M, τ), F checks the
following:

– For all id(i) �= id∗ (i ∈ [q]), we have 1 ← AVrfy(kid(i) , (id(i),m(i)), t(i)), and
– there exists some ID/message pair (id∗,m∗) ∈ M such that (id∗,m∗) /∈

{(id(1),m(1)), . . . , (id(q),m(q))}.

If the output of A meets these conditions, F sets t∗ ← τ and computes t∗ ←
t∗ ⊕ t(i) for all (id(i),m(i)) �= (id∗,m∗) (i ∈ [q]). Then, it outputs (m∗, t∗) and all
(m, t) such that (id∗,m′, t′) ∈ {(id(i),m(i), t(i))}i∈[q]. If the output of A does not
meet the conditions above, F aborts this game.

The output of F is a forgery in EUF-qCMA security game, since the one-
more forgery (m∗, t∗) is not in {(m(1), t(1)), . . . , (m(q), t(q))} and the other pairs
can be obtained in the straightforward way. Besides, the probability that A
wins without finding a forgery for MACs is at most 1/|T |. Thus, we obtain
Advagguf−qcma

A,AMACKL
(λ) ≤ n · Advqcma

F,MAC(λ) + 1/|T |, and the proof is completed. �

Quantum-Secure (Non-)Sequential AMACs 303

4 Quantum Security for SAMACs

We define a model of history-free SAMACs and formalize security in the quan-
tum query model, since all existing SAMACs [8,10,19] are history-free. The
ordinary SAMACs generate each aggregate tag depending on the local message
of a tagging user, a sequence of previous messages, and an aggregate-so-far tag.
On the other hand, history-free SAMACs generate each aggregate tag depending
only on a local message and an aggregate-so-far tag.

A SAMAC scheme consists of a tuple of three polynomial-time algorithms
(KGen,STag,SVrfy): Let λ be a security parameter, let n = poly(λ) be the num-
ber of tagging users, and a permutation σ : [n] → [n] denotes order information.
ID = {idi}i∈[n] ∈

(
{0, 1}O(λ)

)n
is an ID space, K = K(λ) is a key space,

M = M(λ) is a message space, and T = T (λ) is a tag space.

Key Generation. KGen is a randomized algorithm which, on input a security
parameter 1λ and an ID id ∈ ID, outputs a secret key kid ∈ K. We write
kid ← KGen(1λ, id).

Tagging. STag is an algorithm which, on input a secret key kid ∈ K, a message
m ∈ M, and an aggregate-so-far tag τ ′ ∈ T , outputs an aggregate tag τ ∈ T .
We write τ ← STag(kid,m, τ ′). Note that the first tagging user generates
an aggregate tag on a local message and an empty symbol ∅τ ∈ T as an
aggregate-so-far tag.

Verification. SVrfy is a deterministic algorithm which, on input a set of
secret keys K = {kidi

}i∈[n], a sequence of arbitrary � ID/message pairs
M = ((idσ(i),mi))i∈[�], an aggregate-so-far tag τ ′ ∈ T , and an aggregate tag
τ ∈ T , outputs 1 (accept) or 0 (reject). We write 1/0 ← SVrfy(K, (M, τ ′), τ).

We require that a SAMAC scheme SAMAC = (KGen,STag,SVrfy) meets
correctness in the following way: For any set K = {kidi

}i∈[n] of secret keys
(∀idi ∈ ID, kidi

← KGen(1λ, idi)), any sequence M of ID/message pairs, and
any aggregate-so-far tag τ ′ ∈ T , it holds that 1 = SVrfy(K, (M, τ ′), τ), where
τ ← STag(kidσ(�) ,m�,STag(. . . STag(kidσ(1) ,m1, τ

′) . . .)).
As security of SAMACs in the quantum query model, we define sequential

aggregate unforgeability against quantum chosen message attacks, which we call
saggUF-qCMA security.

First, we define a sequential aggregation algorithm SeqAggK and a clo-
sure Closure in order to define saggUF-qCMA security. For a SAMAC scheme
SAMAC = (KGen,STag,SVrfy), a deterministic or randomized algorithm
SeqAggK with secret keys K = {kidi

}i∈[n] is defined as follows:

Definition 3 (Sequential Aggregation Algorithm). Given a permutation
σ : [n] → [n], a sequence of messages m = (m1, . . . ,m�), and an aggregate-so-far
tag τ ′ ∈ T , a sequential aggregation algorithm outputs the aggregate tag

τ ← STag(kidσ(�) ,m�,STag(. . . m2,STag(kidσ(1) ,m1, τ
′) . . .))

on the given messages/tag sequence ((m1, . . . ,m�), τ ′). Then, we write τ ←
SeqAggK(σ,m, τ ′) as the sequential aggregation algorithm.

304 S. Sato and J. Shikata

And, we define Closure in the same way as the closure defined in [8].

Definition 4 (Closure). We introduce a set Trivial to define Closure. Let LTag

be a set of pairs ((M, τ ′), τ), where M = ((idσ(i),mi))i∈[�] is a sequence of
ID/message pairs, τ ′ is an aggregate-so-far tag, and τ is an aggregate tag on
(M, τ ′). Let LCor be a set of corrupted IDs. Trivial is defined as follows:

TrivialLTag,LCor
(M, τ) :={M} ∪

⋃

((M̂,τ),τ̂)∈LTag

TrivialLTag,LCor
(M ‖ M̂, τ̂)

∪
⋃

∀m̄∈M,τ̄∈T ,
id∈LCor

TrivialLTag,LCor
(M ‖ (id, m̄), τ̄).

Closure is defined as follows: Let ∅m be an empty symbol in M and let ∅τ be an
empty symbol in T , then define Closure(LTag,LCor) := {TrivialLTag,LCor

(∅m, ∅τ)}.

Then, we define saggUF-qCMA security by using SeqAggK and Closure.

Definition 5 (saggUF-qCMA security). A SAMAC scheme SAMAC = (KGen,
STag, SVrfy) meets saggUF-qCMA security, if for any QPA A against SAMAC,
Advsagguf−qcma

A,SAMAC (λ) := Pr[A wins] is negligible, where [A wins] is an event that A
wins in the following game:

Setup: Generate secret keys kidi
← KGen(1λ, idi) for all idi ∈ ID. Set a list

LCor ← {∅}.
Corrupt: When A submits a query id ∈ ID to corrupt oracle OCor, OCor returns

the corresponding key kid and sets LCor ← LCor ∪ {id}.
Tagging: A submits a permutation σ : [n] → [n] (classical data) and a superpo-

sition of message/previous-tag pairs
∑

m∈M�,τ ′∈T ,t∈T ,z

ψm ,τ ′,t,z|(m, τ ′), t, z〉

to tagging oracle OTag, where � is an integer such that 1 ≤ � ≤ n, a permuta-
tion σ : [n] → [n] is order-information of IDs, and m = (mi)i∈[�] is a sequence
of messages. Then, OTag chooses randomness r used in STag algorithm, where
it does not need to choose r if STag is deterministic, and returns

∑

m∈M�,τ ′∈T ,t∈T ,z

ψm ,τ ′,t,z|(m, τ ′), t ⊕ SeqAggK(σ,m, τ ′; r), z〉.

A submits at most q queries to OTag and it is not allowed to issue queries to
OCor after submitting queries to OTag.

Output: A outputs (q+1) tuples of ID/message pairs, aggregate-so-far tags, and
aggregate tags ((M1, τ

′
1), τ1), . . . , ((Mq+1, τ

′
q+1), τq+1). A wins if the following

holds:
– For all i ∈ [q + 1], 1 ← SVrfy(K, (Mi, τ

′
i), τi) holds.

Quantum-Secure (Non-)Sequential AMACs 305

– For all i ∈ [q + 1], (Mi, τ
′
i) /∈ Closure(L(i)

Tag,LCor) holds, where L(i)
Tag :=

{
((Mj , τ

′
j), τj)

}

j∈[q+1]
\{((Mi, τ

′
i), τi)}.

We explain that Definition 5 can be viewed as an extension from both of
the quantum security of MACs (Definition 1) in [4] and the classical security of
SAMACs in [8].

– Consider a special case where the number of IDs is 1 (i.e., n = 1) in
Definition 5. Suppose that, in an saggUF-qCMA security game, a QPA A
outputs q tuples of ID/message pairs, aggregate-so-far tags, and aggregate
tags ((id1,m1), τ ′

1, τ1), . . ., ((id1,mq+1), τ ′
q+1, τq+1) for the same ID id1. Then,

A wins if 1 ← SVrfy(kid1 , (mi, τ
′
i), τi) and ((id1,mi), τ ′

i) /∈ Closure(L(i)
Tag, ∅) for

all i ∈ [q + 1], where Closure(L(i)
Tag, ∅) = {(id1,mj), τ ′

j)}j∈[q+1]\{(id1,mi), τ ′
i)}.

This is the same as Definition 1 since we can view mi‖τ ′
i as messages for

all i ∈ [q + 1], and the outputted messages mi‖τ ′
i are different one another.

Hence, Definition 5 is regarded as an extension of the quantum security of
MACs in [4].

– Consider a special case where PPTA A obtains valid q tuples of
ID/message pairs, aggregate-so-far tags, and aggregate tags ((M1, τ

′
1), τ1),

. . ., ((Mq, τ
′
q), τq) by having access to the oracle OTag with classical queries

(M1, τ
′
1), . . . , (Mq, τ

′
q). Suppose that, in an saggUF-qCMA security game, a

PPTA A finally outputs q tuples of ID/message pairs, aggregate-so-far tags,
and aggregate tags ((M1, τ

′
1), τ1), . . ., ((Mq, τ

′
q), τq) which he obtained, and

((Mq+1, τ
′
q+1), τq+1), where Mq+1 = ((idσ(i),mi))i∈[�] (1 ≤ � ≤ n) is a

sequence of arbitrary � pairs of IDs and messages and τq+1 is an aggregate tag
on (Mq+1, τ

′
q+1). Then, A wins if we have 1 ← SVrfy(K, (Mq+1, τ

′
q+1), τq+1)

and (Mq+1, τ
′
q+1) /∈ Closure(L(q+1)

Tag ,LCor). This is the same as the security
definition of SAMACs in [8], and ours is an extension of it.

In terms of quantum security mentioned above, we analyze security of known
SAMACs, and the results are summarized in Table 1. In particular, we can break
the security of SAMACs of [8,19] by using quantum algorithms proposed in
[4,12], and this fact is explained in details in Appendix A. In the next section,
we propose secure constructions of SAMACs in terms of quantum security men-
tioned above.

5 Quantum-Secure Constructions of SAMACs

We propose two generic constructions SAMAC1 and SAMAC2 of (history-free)
SAMACs and show that these constructions meet saggUF-qCMA security.

5.1 SAMAC1

We construct a generic construction SAMAC1 starting from any QPRF. The idea
is as follows: Regarding [8], it is shown that there exists a SAMAC if there exists

306 S. Sato and J. Shikata

a partial invertible MAC which can recover partial messages from MAC tags and
the other parts of messages. The paper [8] generally presented a partial invertible
MAC from the ordinary MACs and pseudorandom permutations. However, in
order to construct SAMACs, it is enough to use a PRF. This is because it is
known that (quantum) PRFs can be used as EUF-(q)CMA secure MACs [3,4].
Hence, it is possible to construct a quantum-secure SAMAC if a PRF meets the
quantum security.

Let PRF : K × X → T be a QPRF. Then, SAMAC1 = (KGen,STag,SVrfy) is
constructed as follows:

– kid ← KGen(1λ, id): Choose a secret key k ∈ K uniformly at random, and
output kid := k.

– τ ← STag(kid,m, τ ′): Compute τ ← PRF(kid,m ‖ τ ′), and output τ .
– 1/0 ← SVrfy(K, (M, τ ′), τ): Given a sequence M = ((idσ(i),mi))i∈[�] and an

aggregate-so-far tag τ ′, do the following:
1. τ̃ ← STag(kidσ(�) ,m�,STag(. . . STag(kidσ(1) ,m1, τ

′) . . .)).
2. Output 1 if τ = τ̃ , or output 0 otherwise.

Theorem 2. If PRF is a quantum pseudorandom function, then SAMAC1 sat-
isfies saggUF-qCMA security.

Proof. Let A be a QPA against SAMAC1, let |τ | be the bit-length of aggregate
tags, and let q be the number of queries which A issues to OTag.

We consider any QPA A which outputs one-more forgery for an ID/message
sequence including a target subsequence M∗

j,k := ((id∗
j ,m

∗
j), . . . , (id

∗
k,m∗

k))
defined as follows: We assume that A outputs one-more forgery for a sequence
((Mi∗ , τ ′

i∗), τi∗) (i∗ ∈ [q + 1]). The target subsequence M∗
j,k is included in Mi∗

and satisfies the following:

– It is not in TrivialL(i∗)
Tag ,LCor

(∅m, ∅τ).

– It contains only not corrupted IDs.
– There do not exist j′, k′ such that 1 ≤ j ≤ j′ ≤ k′ ≤ k and

((id∗
j′ ,mj′), . . . , (id∗

k′ ,mk′)) ∈ TrivialL(i∗)
Tag ,LCor

(∅m, ∅τ).

– There do not exist j′, k′ such that 1 ≤ j′ ≤ j ≤ k′ and
((id∗

j′ ,mj′), . . . , (id∗
k′ ,mk′)) ∈ TrivialL(i∗)

Tag ,LCor
(∅m, ∅τ).

– There do not exist j′, k′ such that 1 ≤ j′ ≤ k ≤ k′ ≤ �∗ and
((id∗

j′ ,mj′), . . . , (id∗
k′ ,mk′)) ∈ TrivialL(i∗)

Tag ,LCor
(∅m, ∅τ), where �∗ is the maxi-

mum of the length of an ID/message sequence.

And then, we classify the event that A wins in the security game as some events
by using target subsequence, and prove that the probabilities that these events
occur are negligible. Regarding A’s output {((Mi, τ

′
i), τi)}i∈[q+1], we consider the

following events:

– [Coll]: A outputs {((Mi, τ
′
i), τi)}i∈[q+1] by finding a collision pair (m ‖ τ ′, m̂ ‖

τ̂ ′) of SAMAC1 for an ID id ∈ ID.

Quantum-Secure (Non-)Sequential AMACs 307

– [Suff]: A outputs {((Mi, τ
′
i), τi)}i∈[q+1] such that there exists a target sequence

M∗
j,k in a sequence Mi∗ (i∗ ∈ [q + 1]), which is a suffix of an ID/message

sequence in A’s output.
– [Pref]: A outputs {((Mi, τ

′
i), τi)}i∈[q+1] such that there exists a target sequence

M∗
j,k in a sequence Mi∗ (i∗ ∈ [q + 1]), which is a prefix of an ID/message

sequence in A’s output.
– [New]: A outputs {((Mi, τ

′
i), τi)}i∈[q+1] such that there exists a target

sequence M∗
j,k in a sequence Mi∗ (i∗ ∈ [q + 1]), which is neither suffix nor

prefix of an ID/message sequence in A’s output.

Then, we have the following advantage:

Advsagguf−qcma
A,SAMAC1

(λ) ≤ Pr[Coll] + Pr[Suff | Coll]

+ Pr[Pref | Coll ∧ Suff] + Pr[New | Coll ∧ Suff ∧ Pref].

Event [Coll]: By using A which outputs a forgery meeting the condition of [Coll],
we construct a PPT algorithm Dc breaking a PRF in the following way: It is
given the oracle OPRF in the security game of QPRFs.

Setup: Set secret keys as follows:
1. id∗ U← ID and assign OPRF to the PRF of id∗.
2. For all id ∈ ID\{id∗}, kid ← KGen(1λ, id).

Corrupt: For each query id, return the key kid and set LCor ← LCor ∪ {id}.
Tagging: For each query (σ,

∑
ψm ,τ ′,t,z|(m, τ ′), t, z〉), simulate as follows:

1. Compute each STag(kidσ(i) , ·, ·) algorithm, in the following way:
– If idσ(i) = id∗, generate a tag by using OPRF(·).
– If idσ(i) �= id∗, generate a tag by using PRF(kidσ(i) , ·).

2. Return
∑

ψm ,τ ′,t,z|(m, τ ′), t ⊕ SeqAggK(σ,m, τ ′), z〉.
Output: When A outputs {((Mi, τ

′
i), τi)}i∈[q+1], do the following:

1. For all (M, τ ′) including id∗, compute aggregate tags generated by id∗.
2. Find a pair (M, τ ′), (M̂j , τ̂

′) such that (M, τ ′) �= (M̂, τ̂ ′) and OPRF(M ‖
τ ′) = OPRF(M̂ ‖ τ̂ ′).

3. If there exists such a pair, output 1. Otherwise, output 0.

Dc simulates the environment of A completely since it has secret keys and the
oracle in the security game of PRFs. If A can find a collision of PRF, Dc can
also break the security of PRF obviously. Because the probability that A finds a
collision in the straightforward way is O

(
q3 · 2−|τ |) from [22], we have Pr[Coll] ≤

n(q + 1) · AdvqprDc,PRF(λ) + O
(
q3 · 2−|τ |). �

Event [Suff|Coll]: We consider the case where id∗
j−1 is corrupted for a target

sequence M∗
j,k, or the case where id∗

j is the first order of another sequence includ-
ing M∗

j,k. In these cases, M∗
j,k is not any suffix of other ID/message-sequences.

Thus, the event [Suff] does not happen. If id∗
j−1 is not corrupted, M∗

j−1,k must
be the target subsequence from the condition that event [Coll] does not happen.
By replying this, however, the obtained M∗

1,k does not meet the condition of

308 S. Sato and J. Shikata

target subsequences. From this contradiction, event [Suff|Coll] does not happen.
That is, Pr[Suff|Coll] = 0 holds. �
Event [Pref|Coll ∧ Suff]: We construct Dp breaking a QPRF in the same way
as the algorithm above Dc except for the process in Output phase. When A
outputs {((Mi, τ

′
i), τi)}i∈[q+1] in Output phase, it does the following:

1. Find a pair ((M∗, τ ′∗), τ∗) such that M∗ includes a target sequence M∗
j,k

meeting the condition of [Pref|Coll ∧ Suff], and id∗ equals to id∗
k of M∗

j,k.
2. Generate an aggregate tag τ̄∗ on (M∗, τ ′∗) by using OPRF.
3. If τ∗ = τ̄∗, output 1. Otherwise, output 0.

Dp simulates the view of A and breaks the quantum security of PRF. Then, we
have Pr[Pref|Coll ∧ Suff] ≤ n(q + 1) · AdvqprDp,PRF(λ) + 2−|τ |/2. �

Event [New|Coll∧Suff ∧Pref]: In the same way as the proof in [Pref|Coll∧Suff],
we can show that the event happens with negligible probability. It is possible to
construct a PPT algorithms Dn in the same way as Dp except for the way to
choose the target sequence. That is, Dn chooses a target sequence which is neither
suffix nor prefix of another ID/message-sequence and checks whether it is a valid
tag. Hence, we have Pr[New|Coll ∧ Suff ∧ Pref] ≤ n(q + 1) · AdvqprDn,PRF(λ) + 1

2|τ|/2 .
�

From the above, we obtain the following advantage:

Advsagguf−qcma
A,SAMAC1

(λ) ≤ 3n(q + 1) · AdvqprD,PRF(λ) + O
(
q3 · 2−|τ |

)
.

Therefore, the proof is completed. �

In order to obtain quantum-secure constructions of SAMACs based on
SAMAC1, we can apply the quantum-secure PRF of [18,21] to SAMAC1, since
those are deterministic. More specifically, we can apply NMAC/HMAC to
SAMAC1 as a quantum PRF, since these MACs are shown to be quantum PRFs
in [18].

5.2 SAMAC2

We construct an SAMAC scheme SAMAC2 starting from any randomized PRG
and any PRF. This scheme is based on the GGM (quantum) pseudorandom
function [9,21]. The difference between the GGM construction and ours is that
a deterministic PRG is used in the GGM construction, whereas a randomized
PRG is used in SAMAC2.

Although one may think that we can realize quantum-secure SAMAC
schemes by applying randomized PRGs to the GGM pseudorandom function,
there exists a problem. This problem is that each tagging user has to append a
randomness to his/her aggregate tag. Namely, a tagging user generates an aggre-
gate tag τ1 = (r1, GGM(k1,m1‖τ ′; r1)), and the next user generates his/her
tag τ2 = (r1, r2, GGM(k2,m2‖τ1; r2)) so that a verifier can check whether

Quantum-Secure (Non-)Sequential AMACs 309

(m1,m2, τ
′) and GGM(k2,m2‖τ1; r2) are valid. Here, a function GGM(·) is the

GGM pseudorandom function, r1, r2 are randomness used in underlying PRGs,
k1, k2 are the seeds of PRGs, m1,m2 are local messages, and τ ′ is an aggregate-
so-far tag. In this case, the size of aggregate tags increases every time tagging
users generate aggregate tags. Therefore, the size depends on the number of
tagging users.

In order to resolve this problem, we utilize a value r ← PRF(kPRF, c) as
randomness, where PRF(kPRF, ·) is a classical PRF, and c is a counter value
which is a component of tags. This counter value is shared among tagging users
and updated after sending an aggregate tag to a verifier. And, each counter value
is used only once for a sequential aggregate tag. The value r is used as follows: r
is the randomness used in randomized PRGs. The tag-size does not depend on
the number of tagging users, since it is possible to obtain each r from a counter
c and each PRF PRF.

Note that it is natural to use (counter) values shared among tagging users
in the model of SAMACs, since users are synchronized basically and the same
situation using common values has been considered in previous works such as
counter-based aggregate MACs [8], and synchronized aggregate signatures [1,11].
We use the following primitives and parameters:

– Let G : X ×R → X 2 be a randomized PRG with a set R of randomness used
in G. Then, we write G(x) = (G0(x), G1(x)), where G0, G1 are functions from
X to X .

– Let PRF : K × C → R be a (classical) PRF.
– Let c be a counter value in a space C.
– Lc ← ∅ is a list of counter values and shared among tagging users.

SAMAC2 = (KGen,STag,SVrfy) is constructed as follows:

– kid ← KGen(1λ, id): Choose x ∈ X and kPRF ∈ K uniformly at random. Output
kid := (x, kPRF).

– τ ← STag(kid,m, τ ′): Generate an aggregate tag as follows.
1. Split τ ′ into (c, y′).
2. (ri)i∈[μ] ← PRF(kPRF, c) ∈ Rμ.
3. (zi)i∈[μ] ← m ‖ y′ ∈ {0, 1}μ.
4. y ← Gz1(. . . Gzμ−1(Gzμ

(x; rμ); rμ−1) . . . ; r1).
5. Output τ := (c, y).

– 1/0 ← SVrfy(K, (M, τ ′), τ): Verify a message/previous-tag pair (M, τ ′) and
an aggregate tag τ , as follows.
1. τ̃ ← STag(kidσ(�) ,m�,STag(. . . STag(kidσ(1) ,m1, τ

′) . . .)).
2. Output 1 if τ = τ̃ and c /∈ Lc, or output 0 otherwise.

The following theorem holds regarding SAMAC2.

Theorem 3. If G is a randomized pseudorandom generator and PRF is a pseu-
dorandom function, then SAMAC2 satisfies saggUF-qCMA security.

310 S. Sato and J. Shikata

Proof. Let A be a QPA against SAMAC2. In the process of STag algorithm,
let F

(
x, (zi)i∈[μ]; (ri)i∈[μ]

)
:= Gz1(. . . Gzμ−1(Gzμ

(x; rμ); rμ−1) . . . ; r1) be a PRF,
where x is a key, and ((zi)i∈[μ]; (ri)i∈[μ]) is the input of F .

If F is a QPRF, the resulting SAMAC SAMAC2 meets saggUF-qCMA security
from Theorem 2. To this end, we show that the function F is a QPRF if G is a
randomized PRG.

First, we consider that for i ∈ [μ], APRF is given an oracle Fi

(
(zj , rj)j∈[μ]

)
:=

Gz1(. . . Gzi
(P ((zj , rj)j∈[i+1,μ]); ri) . . . ; r1), where P : {0, 1}μ−i × Rμ−i → X

is a random function. Notice that the case of i = μ is the same as
the game that APRF is given the truly PRF F . Let pi be the probability
Pr[AFi

PRF → 1] for i ∈ {0, 1, . . . , μ} and let ε := |p0 − pμ|. Then, we have

ε =
∣
∣
∣
∑

i∈{0,1,...,μ−1}(pi − pi+1)
∣
∣
∣.

Next, we construct an algorithm D which distinguishes a random function
RF : {0, 1}μ−1 × Rμ−1 → X 2 and a function G ◦ RF for a random function
RF : {0, 1}μ−1 × Rμ−1 → X × R. D breaking PRG G is as follows:

– Choose i ∈ {0, 1, . . . , μ − 1} at random.
– Let P (i) : {0, 1}μ−i−1 × Rμ−i−1 → X 2 be the oracle P (i)(z; r) = P (0iz; 0ir).
– Write P (i) as (P (i)

0 , P
(i)
1) where P

(i)
b : {0, 1}μ−i−1 × Rμ−i−1 → X for each

b ∈ {0, 1} is the left-hand side (b = 0) or the right-hand side (b = 1) of P (i)(·).
– Construct the oracle F ((zj)j∈[μ]) as follows: Choose (rj)j∈[μ] ∈ Rμ at random,

and compute Gz1(. . . , Gzi
(P (i)

zi+1

(
(zj)j∈[i+2,n]; (rj)j∈[i+2,n]

)
; ri) . . . ; r1).

– When AF
PRF outputs the guessing bit, output this bit.

Let Di be an algorithm D which chooses i ∈ {0, . . . , μ − 1}. We analyze the
algorithm Di. If the given P is a random function, then P (i)(z; r) = P (0iz; 0ir)
is also truly random, and Di simulates the environment of Gamei. If given oracle
P is G ◦ RF for a random function RF, Di simulates Gamei+1 since Pb is Gb ◦ RF
for b ∈ {0, 1}. For each i ∈ {0, . . . , μ − 1}, we have PrP=RF

[
DP

i (1λ) → 1
]

−
PrP=G◦RF

[
DP

i (1λ) → 1
]

= pi − pi+1. Then, we obtain the following advantage:

AdvprgD,G(λ) =
∣
∣
∣
∣ Pr
P=RF

[
DP (1λ) → 1

]
− Pr

P=G◦RF

[
DP (1λ) → 1

]
∣
∣
∣
∣

=
1
μ

∣
∣
∣
∣
∣
∣

∑

i∈{0,...,μ−1}

(

Pr
P=RF

[
DP

i (1λ) → 1
]
− Pr

P=G◦RF

[
DP

i (1λ) → 1
]
)

∣
∣
∣
∣
∣
∣

=
1
μ

∣
∣
∣
∣
∣
∣

∑

i∈{0,...,μ−1}
(pi − pi+1)

∣
∣
∣
∣
∣
∣
=

ε

μ
.

Therefore, ε = μ · AdvprgD,G(λ) holds, and F is a QPRF.
Thus, by using the standard hybrid argument, we can replace the QPRFs of

targeted tagging users by random functions, and it is possible to prove Theorem 3
in the same way as the proof of Theorem 2. Hence, we obtain Advsagguf−qcma

A,SAMAC2
(λ) ≤

3n2(q + 1)μ · AdvprgD,G(λ) + O
(
q3 · 2−|τ |/2). Therefore, the proof of Theorem 3 is

completed. �

Quantum-Secure (Non-)Sequential AMACs 311

The advantage of using randomized primitives lies in constructing quantum-
secure SAMAC schemes based on assumed computationally hard problems for
quantum computers such as the learning parity with noise (LPN) problem. Since
LPN-based cryptography has been studied in constructing various cryptographic
systems such as public key encryption [7,14], oblivious transfer [5], symmetric
key encryption [2], MACs [6], and randomized PRGs/PRFs [2,20], it is even
interesting to consider quantum-secure SAMACs from LPN-based primitives.
LPN-based primitives consist of randomized algorithms, and hence, those can
be applied to SAMAC2. In particular, we can apply randomized PRGs [2,20]
based on the LPN problem to our SAMAC2. The detailed description about it is
given in Appendix B.

6 Conclusion

In this paper, we have shown secure AMAC/SAMAC schemes in the quantum
query model. For this, we formalized the security of AMACs and SAMACs in the
quantum query model, which are called aggUF-qCMA security and saggUF-qCMA
security, respectively. Note that the existing SAMAC schemes in [8,19] are bro-
ken in our security model, and hence, we have investigated and shown AMAC
and SAMAC schemes that meet the security in the quantum query model. Specif-
ically, regarding AMACs, we have proved that the Katz-Lindel construction [13]
meets aggUF-qCMA security if the underlying MACs meet EUF-qCMA security.
Regarding SAMACs, we have proposed two generic constructions SAMAC1 and
SAMAC2: SAMAC1 is constructed from any quantum PRF, and SAMAC2 is con-
structed from any randomized PRG and any PRF. In particular, we can realize
concrete SAMAC1 schemes by applying NMAC/HMAC, while we can provide a
concrete SAMAC2 scheme from LPN-based randomized PRGs [20].

Acknowledgements. The authors would like to thank the anonymous referees for
their helpful comments. This research was conducted under a contract of Research
and Development for Expansion of Radio Wave Resources funded by the Ministry of
Internal Affairs and Communications, Japan.

Appendix A: Attacks against the Existing Schemes

We describe the attack against the existing sequential aggregate authentication
schemes of [8,19].

A.1: The Attack against the Scheme of [8]

The algorithm breaking the scheme of [8] follows the quantum attack against
CBC-MAC of [12]. First, we define Simon’s algorithm used by the one against
the scheme of [8]. Simon’s algorithm is a quantum algorithm solving the following
problem.

312 S. Sato and J. Shikata

Definition 6 (Simon’s Problem). Given a Boolean function f : {0, 1}n →
{0, 1}n and the promise that there exists s ∈ {0, 1}n such that for any (x, y) ∈
{0, 1}n, [f(x) = f(y)] ⇔ [x ⊕ y ∈ {0n, s}], the goal is to find s.

Simon’s algorithm is as follows:

1. Set the following 2n-qubit: 1√
2n

∑
x∈{0,1}n |x〉|0〉.

2. A quantum query to the function f maps this state to 1√
2n

∑
x∈{0,1}n |x〉

|f(x)〉.
3. Measure the second register in the computational basis and obtain a value

f(z). Then, from the promise f(x) = f(x ⊕ s), the first register is as follows:

1√
2
(|z〉 + |z ⊕ s〉).

4. Apply the Hadamard transformation to the first register and get

1√
2

1√
2n

∑

y∈{0,1}n

(−1)y·z(1 + (−1)y·s)|y〉.

5. Measure the register and obtain a vector y.

The obtained vector y meets y · s = 0 since if the amplitude of y such that
y · s = 1 is 0. By replying the above process, we have O (n) vectors y such that
y · s = 0. Therefore, we can recover s.

Let ε(f, s) := maxt∈{0,1}n\{0,s} Prx[f(x) + f(x ⊕ t)] for a function f :
{0, 1}n → {0, 1}n meeting the promise of Simon’s algorithm (f(x ⊕ s) = f(x)
for all x). From [12], the success probability of Simon’s algorithm is as follows.

Proposition 1 (Theorem 1 in [12]). Let f : {0, 1}n → {0, 1}n be a function
such that f(x ⊕ s) = f(x) for all x, and let c be a positive integer. If ε(f, s) ≤
p0 < 1 holds for probability p0, then Simon’s algorithm returns s with cn queries,
with probability at least 1 −

(
2
(
1+p0

2

)c
)n

.

Next, we describe the SAMAC scheme SAMACex = (KGen,STag,SVrfy) of
[8] as follows: Let (KGen,Tag,Vrfy) be a deterministic MAC with a tag space T ,
and let PRP : KPRP × T → T be a pseudorandom permutation.

– kid ← KGen(1λ, id): Generate keys kMAC ← MAC.KGen and kPRP
U← KPRP.

Output kid := (kMAC, kPRP).
– τ ← STag(kid,m, τ ′):

Compute t ← Tag(kMAC,m), and then output τ ← PRP(kPRP, t ⊕ τ ′).
– 1/0 ← SVrfy(K, (M, τ ′), τ):

Compute τ̃ ← STag(kidσ(�) ,m�,STag(. . . ,STag(kidσ(1) ,m1, τ
′) . . .)). Output 1

if τ = τ̃ , or output 0 otherwise.

Quantum-Secure (Non-)Sequential AMACs 313

Finally, we describe the attack against SAMACex. We fix two arbitrary mes-
sages m0,m1 ∈ M (m0 �= m1), and the function of Simon’s problem is defined
as follows:

f : {0, 1} × M → T
(b, τ ′) �→ PRP(kPRP, τ ′ ⊕ Tag(kMAC,mb))

For s = 1 ‖ Tag(kMAC,m0) ⊕ Tag(kMAC,m1), the function f meets the promise
of Simon’s problem:

f(0, x) = PRP(kPRP, τ ′ ⊕ Tag(kMAC,m1)),
f(1, x) = PRP(kPRP, τ ′ ⊕ Tag(kMAC,m0)),
f(b, x) = f(b ⊕ 1, x ⊕ Tag(kMAC,m0) ⊕ Tag(kMAC,m1)).

Then, we can generate the following forgery against SAMACex:

1. Fix m0,m1 as the messages of a message block, and let a previous tag τ ′ =
0n ∈ T denote a n-bit string of 0.

2. Submit a classical query m0 ‖ 0n to the tagging oracle of saggUF-qCMA
security game, and receive the aggregate tag τ .

3. By using Simon’s algorithm with O(n) quantum queries, we obtain s =
Tag(kMAC,m0) ⊕ Tag(kMAC,m1).

4. Output a forgery (m1 ‖ Tag(kMAC,m0) ⊕ Tag(kMAC,m1), τ) as a valid aggre-
gate tag.

The above forgery is valid, since m1 ‖ Tag(kMAC,m0)⊕Tag(kMAC,m1) has never
been queried.

A.2: The Attack against the Scheme of [19]

We describe two schemes presented in [19]. Let Fp be a finite field with a prime
power p. The first construction is given as follows:

– kid ← KGen(1λ, id): Output a secret key kid := (a, b) U← F
2
p.

– τ ← STag(kid,m, τ ′): On input a message m ∈ Fp and an aggregate-so-far tag
τ ′ ∈ Fp, output a tag τ := a · m + b + τ ′ ∈ Fp.

– 1/0 ← SVrfy(K, (M, τ ′), τ): Compute τ̃ ← STag(K, (M, τ ′)). Output 1 if
τ = τ̃ , or output 0 otherwise.

And, the second construction is described as follows:

– kid ← KGen(1λ, id): Output a secret key kid := (a, b, c) U← F
3
p.

– τ ← STag(kid,m, τ ′): On input a message m ∈ Fp, an ID id ∈ Fp, and an
aggregate-so-far tag τ ′ = (s′, t′) ∈ F

2
p, output a tag τ := (a ·m+ b+ s′, a · id+

c + t′) ∈ F
2
p.

– 1/0 ← SVrfy(K, (M, τ ′), τ): Compute τ̃ ← STag(K, (M, τ ′)). Output 1 if
τ = τ̃ , or output 0 otherwise.

314 S. Sato and J. Shikata

Regarding both schemes, we can view aggregate tags as the values of pairwise
independent hash functions h(x) = ax + b with a, b ∈ Fp. In the straightforward
way, we can apply the quantum algorithm in the proof of Lemma 6.3 in [4]. In this
case, adversaries can get secret keys (a, b) ∈ F

2
p with non-negligible probability

and generate forgeries obviously even if they submit only one quantum query.
Therefore, the schemes of [19] do not meet the one-time security formalized in
Sect. 4.

Appendix B: Concrete Construction of SAMAC2

We describe our concrete SAMAC2 scheme based on the learning parity with
noise (LPN) problem by using the randomized PRG of [20].

B.1: LPN Problem

We first define an oracle Λt,n(·) that outputs LPN samples in the following way:
Let Bert be the Bernoulli distribution over {0, 1} with bias t ∈ (0, 1/2). For
parameters t ∈ (0, 1/2) and n ≥ 1, an oracle Λt,n(s) takes s ∈ {0, 1}n as input
and outputs samples (a, a · s ⊕ e) ∈ {0, 1}n × {0, 1} by sampling a

U← {0, 1}n

and e ← Bert. In addition, an oracle Un outputs uniformly random samples over
{0, 1}n × {0, 1}. The LPN assumption is defined as follows:

Definition 7 (Learning Parity with Noise). The (decisional) LPNt,n

assumption holds if for any PPT algorithm D, the advantage
∣
∣
∣Pr

[
DΛt,n(s) → 1 | s

U← {0, 1}n
]

− Pr
[
DUn → 1

]∣∣
∣

is negligible.

B.2: Concrete Construction of SAMAC2

We describe a concrete scheme SAMACLPN = (KGen,STag,SVrfy). The random-
ized PRG based on LPN is Ga(s; e) = a · s ⊕ e, where a ∈ {0, 1}δn×n and
s ∈ {0, 1}n are uniformly random, and e ∈ {0, 1}δn is a sample drawn from the
Bernoulli distribution with a parameter t. We use the following public parame-
ters and primitives based on a security parameter λ.

– t ∈ (0, 1/2) is a parameter for the error distribution Bert.
– An integer n is a LPN parameter based on λ.
– An integer v = O (log n) denotes the block-size of messages, and then let

δ := 2v.
– A positive integer μ = dv denotes the bit-length of message/tag pairs, where

d is a positive integer.
– Ga : {0, 1}n → {0, 1}δn is a randomized PRG with a uniformly random

parameter a ∈ {0, 1}δn×n and a randomness space Berδn
t . Ga is described as

Ga(s; e) = a · s ⊕ e, where e is drawn from Berδn
t .

Quantum-Secure (Non-)Sequential AMACs 315

– SAMP : {0, 1}n → Berδ
2n

t denotes a (deterministic) sampling function which,
on input randomness in {0, 1}n, outputs a value over Berδn

t .
– PRF : K × X → {0, 1}n is a classical PRF.
– c is a counter value and Lc ← {∅} is a list of counter values.

SAMACLPN is constructed as follows:

– kid ← KGen(1λ, id): Generate a key as follows:
1. s

U← {0, 1}n, kPRF
U← K.

2. Output kid := (s, kPRF).
– τ ← STag(kid,m, τ ′): Split τ ′ into (c,y′) and generate an aggregate tag in the

following way:
1. e(0...00) ‖ e(0...01) ‖ · · · ‖ e(1...11) ← SAMP(PRF(kPRF, c)).
2. (zi)i∈[μ] ← m ‖ y′ ∈ {0, 1}μ.

3. y ← G
(z(d−1)v+1...zdv)
a (. . . G(zv+1...z2v)

a (G(z1...zv)
a

(
s; e(z1...zv)); e(zv+1...z2v)

)

. . .).
4. Output τ := (c, y).

– 1/0 ← SVrfy(K, (M, τ ′), τ): Verify ((M, τ ′), τ) in the following way:
1. Output 0 if c ∈ Lc.
2. τ̃ ← STag(kidσ(�) ,m�,STag(. . . STag(kidσ(1) ,m1, τ

′) . . .)).
3. Output 1 and set Lc ← Lc ∪ {c} if τ = τ̃ , or output 0 otherwise.

We can obtain the following result about security. The proof can be given in the
same way as that of Theorem 3.

Corollary 1. If LPNt,n assumption holds and PRF is a pseudorandom function,
then SAMACLPN meets saggUF-qCMA security.

References

1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new
definitions, constructions and applications. In: ACM Conference on Computer and
Communications Security, pp. 473–484. ACM (2010)

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

3. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

4. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 35

5. David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable oblivious
transfer based on a variant of LPN. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.
(eds.) CANS 2014. LNCS, vol. 8813, pp. 143–158. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12280-9 10

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-319-12280-9_10
https://doi.org/10.1007/978-3-319-12280-9_10

316 S. Sato and J. Shikata

6. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 22

7. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptog-
raphy based on a variant of the LPN problem. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 30

8. Eikemeier, O., et al.: History-free aggregate message authentication codes. In:
Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 309–328. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4 20

9. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS, pp. 464–479. IEEE Computer Society (1984)

10. Hirose, S., Kuwakado, H.: Forward-secure sequential aggregate message authentica-
tion revisited. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec
2014. LNCS, vol. 8782, pp. 87–102. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-12475-9 7

11. Hohenberger, S., Waters, B.: Synchronized aggregate signatures from the RSA
assumption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 197–229. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 7

12. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking sym-
metric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

13. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin, T.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79263-5 10

14. Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-
noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 1–18. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 1

15. NIST: Post-quantum cryptography: post-quantum cryptography standardzation
(2017)

16. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings of IEEE Symposium on Foundations of Computer Science, pp.
124–134. IEEE (1994)

17. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

18. Song, F., Yun, A.: Quantum security of NMAC and related constructions. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 283–309. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 10

19. Tomita, S., Watanabe, Y., Shikata, J.: Sequential aggregate authentication codes
with information theoretic security. In: CISS, pp. 192–197. IEEE (2016)

20. Yu, Y., Steinberger, J.: Pseudorandom functions in almost constant depth from
low-noise LPN. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 154–183. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 6

21. Zhandry, M.: How to construct quantum random functions. In: FOCS. pp. 679–687.
IEEE Computer Society (2012)

22. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7–8), 557–567 (2015)

https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-642-34961-4_30
https://doi.org/10.1007/978-3-642-15317-4_20
https://doi.org/10.1007/978-3-319-12475-9_7
https://doi.org/10.1007/978-3-319-12475-9_7
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-540-79263-5_10
https://doi.org/10.1007/978-3-642-54631-0_1
https://doi.org/10.1007/978-3-319-63715-0_10
https://doi.org/10.1007/978-3-662-49896-5_6
https://doi.org/10.1007/978-3-662-49896-5_6

SO-CCA Secure PKE in the Quantum
Random Oracle Model or the Quantum

Ideal Cipher Model

Shingo Sato1(B) and Junji Shikata1,2

1 Graduate School of Environment and Information Sciences,
Yokohama National University, Yokohama, Japan

sato-shingo-cz@ynu.jp, shikata-junji-rb@ynu.ac.jp
2 Institute of Advanced Sciences, Yokohama National University, Yokohama, Japan

Abstract. Selective opening (SO) security is one of the most impor-
tant securities of public key encryption (PKE) in a multi-user setting.
Even though messages and random coins used in some ciphertexts are
leaked, SO security guarantees the confidentiality of the other cipher-
texts. Actually, it is shown that there exist PKE schemes which meet
the standard security such as indistinguishability against chosen cipher-
text attacks (IND-CCA security) but do not meet SO security against
chosen ciphertext attacks. Hence, it is important to consider SO secu-
rity in the multi-user setting. On the other hand, many researchers have
studied cryptosystems in the security model where adversaries can sub-
mit quantum superposition queries (i.e., quantum queries) to oracles. In
particular, IND-CCA secure PKE and KEM schemes in the quantum
random oracle model have been intensively studied so far.

In this paper, we show that two kinds of constructions of hybrid
encryption schemes meet simulation-based SO security against chosen
ciphertext attacks (SIM-SO-CCA security) in the quantum random ora-
cle model or the quantum ideal cipher model. The first scheme is con-
structed from any IND-CCA secure KEM and any simulatable data
encapsulation mechanism (DEM). The second one is constructed from
any IND-CCA secure KEM based on Fujisaki-Okamoto transformation
and any strongly unforgetable message authentication code (MAC). We
can apply any IND-CCA secure KEM scheme to the first one if the
underlying DEM scheme meets simulatability, whereas we can apply any
DEM scheme meeting integrity to the second one if the underlying KEM
is based on Fujisaki-Okamoto transformation.

Keywords: Post-quantum cryptography · Simulation-based selective
opening security · Quantum random oracle model · Quantum ideal
cipher model

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 317–341, 2019.
https://doi.org/10.1007/978-3-030-35199-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-35199-1_16

318 S. Sato and J. Shikata

1 Introduction

1.1 Background

As one of the most important securities of public key encryption (PKE), securi-
ties against chosen ciphertext attacks, which is called CCA security, have been
studied. However, as the security of PKE in the multi-user setting, the notion
of securities against selective opening attacks, which is called SO security, was
introduced by Bellare, Hofheinz and Yilek in [4]. SO security guarantees that
even though an adversary gets secret information such as messages and random
coins used in some ciphertexts, the other ciphertexts meet confidentiality. In a
real world, there exist such situations where secret information of some cipher-
texts is leaked because of factors except for cryptosystems such as vulnerability
in implementation and side-channel attacks. Actually, it is shown that there
exist PKE schemes which meet CCA security but do not satisfy SO security
[3,22,23]. Hence, it is important to consider SO security. In particular, sev-
eral SO secure PKE schemes have been proposed so far: PKE [4,16,17,21,33],
hybrid encryption [14,18,32], identity-based encryption [7,30], and lattice-based
PKE [11,31]. SO security is roughly classified as simulation-based SO (SIM-SO)
security and indistinguishability-based SO (IND-SO) security. In this paper, we
consider SIM-SO security against chosen ciphertext attacks called SIM-SO-CCA
security, since it seems that it is harder to achieve SIM-SO security [8,21] and
several works aimed at proposing SIM-SO-CCA secure PKE schemes in the past
[14,17,18,21,31–33]. Hence, it is natural to consider SIM-SO-CCA security as our
goal in the multi-user setting.

On the other hand, we consider the model where adversaries can submit
quantum superposition queries (i.e., quantum queries) to oracles. In particular,
secure cryptosystems in the quantum random oracle model (QROM) have been
intensively studied. The QROM, whose notion was introduced by [9], is a model
where any users can issue quantum queries to random oracles. There exist sev-
eral works related to PKE schemes in the QROM: PKE [9,36], key encapsulation
mechanism (KEM) [20,25–28,35], digital signatures (DSs) [10,13,19,29]. More-
over, almost all PKE/KEM and DS schemes submitted to the post-quantum
cryptography standardization process of NIST (National Institute of Standards
and Technology) satisfy securities in the QROM. Therefore, it is interesting and
important to consider secure PKE schemes in the QROM. PKE/KEM schemes
in the QROM that have already been proposed are summarized as follows. A
PKE scheme constructed from trapdoor permutations meets indistinguishabil-
ity against chosen ciphertext attacks (called IND-CCA security) in the QROM
[9]. [36] proved that Fujisaki-Okamoto (FO) transformation [15] and OAEP [6]
with additional hash satisfy IND-CCA security in the QROM. [20] analyzed FO-
based KEM schemes. Based on the proof technique of [9,35] proposed a tightly
secure KEM scheme starting from any disjunct-simulatable deterministic PKE
scheme. [26] revisited FO-based KEM schemes with implicit rejection and proved
that they meet tighter IND-CCA security without additional hash. [27] pro-
posed IND-CCA secure KEM schemes with explicit rejection. [25] gave a tighter

SO-CCA Secure PKE in the QROM or the QICM 319

security proof for the KEM scheme based on FO transformation by utilizing the
proof techniques proposed in [2]. [28] also gave tighter security proofs for generic
constructions of KEM by utilizing the techniques in [2].

1.2 Our Contribution

Our goal is to present SIM-SO-CCA secure PKE schemes obtained from KEM
schemes in the QROM or the quantum ideal cipher model (QICM). Our main
motivation is that we would like to transform any PKE/KEM schemes submit-
ted to the post-quantum cryptography standardization to SIM-SO-CCA secure
PKE without loss of efficiency in terms of key-size, ciphertext-size, and time-
complexity.

In the classical random oracle model, classical ideal cipher model, or the stan-
dard model (i.e., the model without random oracles or ideal ciphers), several
SIM-SO-CCA secure PKE schemes constructed from KEM schemes have been
studied. Liu and Paterson proposed a SIM-SO-CCA secure PKE scheme con-
structed from KEM schemes secure against tailored constrained chosen cipher-
text attacks and strengthened cross authentication codes (XACs) [32]. Heuer
et al. proposed a SIM-SO-CCA secure construction by combining KEM secure
against plaintext checking attacks and message authentication codes (MACs)
[17]. Heuer and Poettering proved that a PKE scheme in the KEM/DEM frame-
work meets SIM-SO-CCA security in the classical ideal cipher model if a KEM
scheme satisfies IND-CCA security and a DEM scheme satisfies both of simu-
latability and one-time integrity of chosen ciphertext attacks, which is called
OT-INT-CTXT security [18]. Lyu et al. proposed a tightly secure PKE start-
ing from any KEM scheme meeting both of multi-encapsulation pseudorandom
security and random encapsulation rejection security, and any XAC [33]. Table 1
shows the above primitives and security models of the existing constructions.

In the QROM or QICM, how to construct PKE schemes meeting
SIM-SO-CCA security is not obvious because of the following reason: In the
classical random oracle model or classical ideal cipher model, the security proofs
of existing schemes [18,32] utilize the lists of query/response pairs submitted to
random oracles or ideal ciphers. In the QROM and QICM, we cannot use such
lists, since it is impossible to record query/response pairs in principle due to the
quantum no-cloning theorem. Hence, it is worth to consider secure PKE schemes
in the models where quantum queries are issued.

As for the PKE schemes obtained from KEM schemes in the standard model
[32,33], ciphertext-size and time-complexity of encryption and decryption algo-
rithms linearly depend on the bit-length of messages. Since we are aiming at con-
structing practical PKE schemes, we do not focus on these schemes in this paper
due to the lack of efficiency in terms of ciphertext-size and time-complexity.

In this paper, we propose two constructions of SIM-SO-CCA secure PKE
schemes from KEM schemes and symmetric key encryption (SKE) schemes. The
details are explained as follows:

1. The first scheme PKEhy
1 is the KEM/DEM scheme [12]. We prove that this

scheme meets SIM-SO-CCA security in the QICM if the underlying KEM

320 S. Sato and J. Shikata

Table 1. SIM-SO-CCA secure PKE constructed from KEM schemes: IND-tCCCA
means indistinguishability against tailored constrained chosen ciphertext attacks.
mPR-CCCA means multi-encapsulation pseudorandom security against constrained
chosen ciphertext attacks. RER means random encapsulation rejection security. XAC
means cross authentication code. IND-CPA means indistinguishability against cho-
sen message attacks. FO-based KEM means FO�⊥, FO�⊥

m, QFO�⊥, and QFO�⊥
m. Standard

model denotes the security model without random oracles and ideal ciphers.

Scheme Primitives Security Model

[32] IND-tCCCA secure
KEM

Standard Model

XAC

[17] OW-PCA secure
KEM

Random Oracle
Model

sUF-OT-CMA secure
MAC

[18] IND-CCA secure
KEM

Ideal Cipher Model

Simulatable DEM

[33] mPR-CCCA and
RER secure KEM

Standard Model

XAC

PKEhy
1 IND-CCA secure

KEM
Quantum Ideal
Cipher Model

Simulatable DEM

PKEhy
2 FO-based KEM (from

IND-CPA secure
PKE)

Quantum Random
Oracle Model

sUF-OT-CMA secure
MAC

scheme satisfies IND-CCA security, and the underlying DEM scheme satisfies
both of simulatability [18] and one-time integrity of chosen ciphertext attacks
(OT-INT-CTXT security) [5]. The advantage of this scheme is that we can
apply any IND-CCA secure KEM scheme such as any PKE/KEM schemes
submitted to the post-quantum cryptography standardization, and we can
obtain a SIM-SO-CCA secure PKE schemes in the QICM. In addition, almost
all standardized DEM schemes satisfy simulatability and OT-INT-CTXT secu-
rity. Hence, we can realize concrete PKE schemes in the QICM.

2. The second one PKEhy
2 is a concrete scheme constructed from any FO-based

KEM scheme such as FO �⊥, FO �⊥
m, QFO �⊥, and QFO �⊥

m, which are categorized
in [20], and any MAC meeting strong unforgetability against one-time chosen
message attacks called sUF-OT-CMA security. The underlying KEM scheme

SO-CCA Secure PKE in the QROM or the QICM 321

is FO-based KEM with implicit rejection. That is, these schemes output a
random key which is not encapsulated if a given ciphertext is invalid.
We require that the underlying PKE scheme in FO �⊥, FO �⊥

m, QFO �⊥, or QFO �⊥
m

is injective and satisfies indistinguishability against chosen plaintext attacks
called IND-CPA security. In addition, almost all KEM schemes submitted
to the NIST post-quantum cryptography standardization are classified as
FO �⊥, FO �⊥

m, QFO �⊥, or QFO �⊥
m. Hence, the advantage of PKEhy

2 is that a lot
of PKE/KEM schemes submitted to the post-quantum standardization can
satisfy SIM-SO-CCA security without demanding any special property such
as simulatability for the underlying SKE.

The difference between PKEhy
1 and PKEhy

2 is given as follows:

– Any IND-CCA secure KEM scheme can be applied to PKEhy
1 while a particular

KEM scheme (i.e., FO �⊥, FO �⊥
m, QFO �⊥, or QFO �⊥

m) can be applied to PKEhy
2 .

– PKEhy
1 requires that the underlying DEM scheme satisfies a special property

such as simulatability while PKEhy
2 does not require that the underlying MAC

satisfies such a special property.

In Sects. 3.1 and 3.2, we describe concrete primitives which can be applied to
PKEhy

1 and PKEhy
2 , respectively.

2 Preliminaries

For a positive integer n, let [n] be a set {1, 2, . . . , n}. For a set X , let |X | be
the number of elements in X (the size of X). For a set X and an element x ∈
X , we write |x| as the bit-length of x. We write that a function ε = ε(λ) is
negligible, if for a large enough λ and all polynomial p(λ), it holds that ε(λ) <
1/p(λ). For a randomized algorithm A and any input x of A, A(x; r) denotes
a deterministic algorithm, where r is a random coin used in A. In this paper,
probabilistic polynomial-time is abbreviated as PPT, and quantum polynomial-
time is abbreviated as QPT.

2.1 Quantum Computation

We define an n-qubit state as |ϕ〉 =
∑

x∈{0,1}n ψx|x〉 with a basis {|x〉}x∈{0,1}n

and amplitudes ψx ∈ C such that
∑

x∈{0,1}n |ψx|2 = 1. If |ϕ〉 =
∑

x∈{0,1}n ψx|x〉
is measured in the computational basis, |ϕ〉 will become a classical state |x〉
with probability |ψx|2. For a quantum oracle O : X → Y, submitting a quantum
query

∑
x∈X ,y∈Y ψx,y|x, y〉 to O (quantum access to O) is written as

∑

x∈X ,y∈Y
ψx,y|x, y〉 �→

∑

x∈X ,y∈Y
ψx,y|x, y ⊕ O(x)〉.

The quantum random oracle model (QROM) is defined as the model where
quantum adversaries can submit quantum queries to random oracles. The quan-
tum ideal (block) cipher model (QICM) which was introduced in [24] is defined

322 S. Sato and J. Shikata

as follows: A block cipher with a key space K and a message space X is defined
as a mapping E : K × X → X which is a permutation over X for any key in
K. In the QICM, quantum adversaries are allowed to issue quantum queries to
oracles E+ : K × X → X and E− : K × X → X such that for any k ∈ K and
any x, y ∈ X , the response of E−(k, y) is x meeting E+(k, x) = y. In this paper,
QROM (resp. QICM) denote the security model where quantum adversaries are
allowed to issue quantum queries to random oracles (resp. ideal ciphers), but
submit only classical queries to the other oracles.

Semi-classical Oracle. We describe semi-classical oracle which was introduced
in [2] and utilize this oracle for our security proofs. We consider quantum access
to an oracle with a domain X . A semi-classical oracle OSC

S for a subset S ⊆ X
uses an indicator function fS : X → {0, 1} with the subset S which evaluates 1 if
x ∈ S is given, and evaluates 0 otherwise. When OSC

S is given a quantum query∑
x∈X ψx|x〉|0〉 with the input register Q and the output register R, it maps

∑

x∈X
ψx,z|x〉|0〉 �→

∑

x∈X
ψx|x〉|fS(x)〉,

and measures the register R. Then, the quantum query
∑

x∈X ψx|x〉|0〉 collapses
to either

∑
x∈X\S ψ′

x|x〉|0〉 or
∑

x∈S ψ′
x|x〉|1〉. Let Find be the event that OSC

S

returns
∑

x∈S ψ′
x|x〉|1〉 for a quantum query

∑
x∈S ψx|x〉. For a quantum oracle

H with domain X and a subset S ⊆ X , let H\S be an oracle which first queries
OSC

S and then H.
By using semi-classical oracles, [2] proved the following propositions. We

notice that for query depth d and the number of queries q, we use q such that
q ≥ d in the same way as Theorem 2.8 in [25].

Proposition 1 (Theorem 1 in [2]). Let S ⊆ X be random. Let H : X → Y,
G : X → Y be random functions such that H(x) = G(x) for all x ∈ X\S, and let z
be a random bit-string (S, H, G and z may have an arbitrary joint distribution).
Let A be any quantum algorithm issuing at most q quantum queries to oracles.
Then, it holds that

∣
∣Pr[1 ← AH(z)] − Pr[1 ← AG(z)]

∣
∣ ≤ 2

√
q · Pr[Find | 1 ← AH\S(z)].

Proposition 2 (Corollary 1 in [2]). Let A be any quantum algorithm issuing
at most q quantum queries to a semi-classical oracle with domain X . Suppose
that S ⊆ X and z ∈ {0, 1}∗ are independent. Then, it holds that Pr[Find |
AOSC

S (z)] ≤ 4q · Pmax, where Pmax = maxx∈X Pr[x ∈ S].

2.2 Cryptosystems

Public Key Encryption. A public key encryption (PKE) scheme consists of a
tuple of three polynomial-time algorithms (KGen,Enc,Dec) with a message space
M = M(λ) for a security parameter λ.

SO-CCA Secure PKE in the QROM or the QICM 323

Key Generation KGen is a randomized algorithm which, on input a security
parameter 1λ, outputs a public key pk and a secret key sk.

Encryption Enc is a randomized or deterministic algorithm which, on input a
public key pk and a message m ∈ M, outputs a ciphertext c.

Decryption Dec is a deterministic algorithm which, on input a secret key sk
and a ciphertext c, outputs a message μ ∈ M or an invalid symbol ⊥.

A PKE scheme (KGen,Enc,Dec) meets δ-correctness [20] if the expectation
E[maxm∈M Pr[Dec(sk, c) �= m | c ← Enc(pk,m)]] taken over (pk, sk) ← KGen(λ)
is at most δ.

We define IND-CPA security as follows:

Definition 1 (IND-CPA security). A PKE scheme PKE = (KGen,Enc,Dec)
meets IND-CPA security if for any PPT adversary A against PKE, the advantage
Advind-cpaPKE,A (λ) := |2 · Pr[A wins] − 1| is negligible in λ, where [A wins] is the event
that A wins in the following game:

Key Generation: A challenger generates (pk, sk) ← KGen(λ).
Challenge: When A submits (m0,m1) such that |m0| = |m1|, the challenger

returns c∗ ← Enc(pk,mb) for b
U← {0, 1}.

Output: A outputs the guessing bit b′ ∈ {0, 1}. A wins if b = b′ holds.

SIM-SO-CCA security is defined as follows.

Definition 2 (SIM-SO-CCA security). A PKE scheme PKE = (KGen,Enc,
Dec) meets SIM-SO-CCA security if for any PPT algorithms A = (A0,A1),
S = (S0,S1) and any relation R, the advantage Advsim-so-cca

PKE,A,S,R(λ) is negligible
in λ. Advsim-so-cca

PKE,A,S,R(λ) is defined as follow:

Advsim-so-cca
PKE,A,S,R(λ) :=

∣
∣
∣Pr[Expreal-so-ccaPKE,A (λ) → 1] − Pr[Expideal-so-ccaPKE,S (λ) → 1]

∣
∣
∣ ,

where the two experiments Expreal-so-ccaPKE,A (λ) and Expideal-so-ccaPKE,S (λ) are defined in
Fig. 1.

Key Encapsulation Mechanism. A key encapsulation mechanism (KEM)
scheme consists of three polynomial-time algorithms (KGen,Encap,Decap) with
a key space K = K(λ) for a security parameter λ.

Key Generation. KGen is a randomized algorithm which, on input a security
parameter 1λ, outputs a public key pk and a secret key sk.

Encapsulation. Encap is a randomized algorithm which, on input a public key
pk, outputs a ciphertext c and a key k ∈ K.

Decapsulation. Decap is a deterministic algorithm which, on input a secret key
sk and a ciphertext c, outputs a key k ∈ K or an invalid symbol ⊥.

324 S. Sato and J. Shikata

Expreal-so-ccaPKE,A (λ)

I ← ∅
(pk, sk) ← KGen(1λ)

(MD, st) ← A0(pk)

(m1, . . . ,mn)
U← MD

(r1, . . . , rn)
U← R

∀i ∈ [n], ci = Enc(pk,mi; ri)

out ← AOPEN,DEC
1 (st, c1, . . . , cn)

return R(MD,m1, . . . ,mn, I, out)

OPEN(i)

I ← I ∪ {i}
return (mi, ri)

DEC(c)

if c ∈ {ci}i∈[n], return ⊥
m ← Dec(sk, c)

return m ∈ M ∪ {⊥}

Expideal-so-ccaPKE,S (λ)

I ← ∅

(MD, st) ← S0(1λ)

(m1, . . . ,mn)
U← MD

out ← SOPEN
1 (st, |m1|, . . . , |mn|)

return R(MD,m1, . . . ,mn, I, out)

OPEN(i)

I ← I ∪ {i}
return mi

Fig. 1. Experiments in Real-SIM-SO-CCA and Ideal-SIM-SO-CCA Games

A KEM scheme (KGen,Encap,Decap) meets δ-correctness if for any (pk, sk) ←
KGen(1λ), it holds that k = Decap(sk, c) with at least probability 1 − δ, where
(c, k) ← Encap(pk). Then, it is required that KEM schemes satisfy δ-correctness
with a negligible function δ for λ.

As a security of KEM, IND-CCA security is defined as follows.

Definition 3 (IND-CCA security). A KEM scheme KEM = (KGen,Encap,
Decap) meets IND-CCA security if for any PPT adversary A against KEM, the
advantage Advind-ccaKEM,A (λ) := |2 · Pr[A wins] − 1| is negligible in λ. [A wins] is the
event that A wins in the following game:

Setup: A challenger generates (pk, sk) ← KGen(λ) and sends pk to A.
Oracle Access: A is allowed to access the following oracles:

– Challenge(): Given a challenge request, the challenger computes (c∗, k0) ←
Encap(pk) and chooses k1 ∈ K uniformly at random. It returns (c∗, kb)
for b

U← {0, 1}.
– DEC(c): Given a ciphertext query c, a decapsulation oracle DEC(c) returns

k′ ← Decap(sk, c) ∈ K ∪ {⊥}. A is not allowed to submit c∗ to DEC(·).
Output: A outputs the guessing bit b′ ∈ {0, 1}. A wins if b = b′ holds.

Data Encapsulation Mechanism. A data encapsulation mechanism (DEM)
scheme consists of two polynomial-time algorithms (Enc,Dec) with a key space
K = K(λ) and a message space M = M(λ) for a security parameter λ.

Encapsulation. Enc is an algorithm which, on input a secret key k ∈ K and a
message m ∈ M, outputs a ciphertext c.

SO-CCA Secure PKE in the QROM or the QICM 325

Decryption. Dec is a deterministic algorithm which, on input a secret key k ∈ K,
a ciphertext c, outputs a message m ∈ M or an invalid symbol ⊥.

We require that DEM schemes meet correctness as follows: A DEM scheme
(Enc,Dec) meets correctness if for any k ∈ K and any m ∈ M, it holds that
m = Dec(k, c), where c ← Enc(k,m).

As a security of DEM, we define one-time integrity of chosen ciphertext
attacks which is called OT-INT-CTXT security [5].

Definition 4 (OT-INT-CTXT security). A DEM scheme DEM = (Enc,Dec)
meets OT-INT-CTXT security if for any PPT adversary A against DEM, the
advantage Advint-ctxtA,DEM (λ) := Pr[A wins] is negligible in λ, where [A wins] is the
event that A wins in the following game:

Setup: A challenger chooses a key k ∈ K uniformly at random, and sets win ← 0
and C ← ∅.

Oracle Access: A is allowed to the following oracles:
– ENC(m): If C �= ∅, an encryption oracle ENC(m) returns ⊥. Otherwise,

it returns c ← Enc(k,m), and sets C ← C ∪ {c}.
– VRFY(c): Given a ciphertext query c, a verification oracle VRFY(c) runs

m′ ← Dec(k,m). If m′ �= ⊥ and c /∈ C, it sets win ← 1. It returns 1 if
m′ �= ⊥, and returns 0 otherwise.

Final: A wins if win = 1.

In this paper, we view DEM as block cipher-based DEM which uses a block-
cipher as a black-box. In addition, we view the key space K of DEM schemes as
a product set K = K′ × K′′, where K′ is the key space of a block cipher, and K′′

is the key space of encryption using a block cipher as a black-box.
To define simulatable DEM, oracle DEM and permutation-driven DEM are

defined following [18].

Definition 5 (Oracle DEM). A DEM scheme (O.Encπ,O.Decπ) with a key
space K and a message space M is an oracle DEM scheme for a domain X if
(O.Enc,O.DEM) has access to a permutation π on D, and if for all permutations
π : X → X , all k ∈ K, and all m ∈ M, it holds that m = Decπ(k, c), where
c ← Encπ(k,m), as the correctness of the DEM (O.Encπ,O.Decπ).

Definition 6 (Permutation-Driven DEM). A DEM scheme DEM = (Enc,
Dec) with a key space K = K′ × K′′ and a message space M is a (K × X)-
permutation-driven DEM if the following conditions hold:

– DEM is an oracle DEM (O.Encπ,O.Decπ) for a domain X with a block cipher
{Ek′ : X → X}k′∈K′ as the permutation π over X .

– For any key (k′, k′′) ∈ K, any message m ∈ M, and any ciphertexts c, it holds
that Enc((k′, k′′),m) = O.EncEk′ (k′′,m) and Dec((k′, k′′), c) = O.DecEk′ (k′′, c).

Then, the simulatability of oracle DEM [18] is defined as follows.

326 S. Sato and J. Shikata

Definition 7 (Simulatability of Oracle DEM). Let DEM = (Enc,Dec) with
a key space K = K′ × K′′ and a message space M be an oracle DEM scheme for
a domain X . And, we assume that DEM has the following algorithms Fake and
Make:

– Fake: A randomized algorithm which, given a key k′′ ∈ K′′ and the bit-length
|m| of messages, outputs a ciphertext c and a state st.

– Make: A randomized algorithm which, given a state st and a message m ∈ M,
outputs a relation π̃ ∈ X ×X which has functions π̃+ : X → X and π̃− : X →
X such that if (α, β) ∈ π̃, α = π̃+(β) and β = π̃−(α) hold.

The oracle DEM scheme DEM meets ε-simulatablility if for all k = (k′, k′′) ∈
K, all m ∈ M, and the set Πm

k′′ := {π̃ | (c, st) ← Fake(k′′, |m|); π̃ ← Make(st,m)},
the following conditions hold:

– The set Πm
k′′ can be extended to a set of uniformly distributed permutations

on X .
– For any permutation π extended Πm

k′′ , it holds that Pr[c �= O.Encπ(k′′,m)] ≤ ε,
where c ← Fake(k′′, |m|).

– The time-complexity of algorithms Fake(k′, |m|) and Make(st,m) does not
exceed the time-complexity of algorithm Enc(k,m) without counting that of
oracles which is accessed by Enc(·).

Message Authentication Code. A message authentication code (MAC) con-
sists of two polynomial time algorithms (Tag,Vrfy) with a key space K = K(λ)
and a message space M = M(λ) for a security parameter λ.

–Tagging. Tag is an algorithm which, on input a secret key k ∈ K and a message
m ∈ M, outputs a tag τ .

–Verification. Vrfy is a deterministic algorithm which, on input a secret key
k ∈ K, a message m ,and a tag τ , outputs 1 or 0.

It is required that MAC schemes meet correctness as follows: A MAC scheme
MAC = (Tag,Vrfy) with a key space K and a message space M meets correctness
if for all k ∈ K and all m ∈ M, it holds that 1 = Vrfy(k,m, τ), where τ ←
Tag(k,m).

Strong unforgeability against one-time chosen message attacks (sUF-OT-CMA
security) of MACs is defined as follows.

Definition 8 (sUF-OT-CMA security). A MAC scheme MAC = (Tag,Vrfy)
meets sUF-OT-CMA security if for any PPT adversary A against MAC, the
advantage Advsuf-cma

A,MAC := Pr[A wins] is negligible, where [A wins] is the event
that A wins in the following game:

Setup: A challenger chooses a key k ∈ K uniformly at random and sets T ← ∅
and win ← 0.

Oracle Access: A is allowed to the following oracles:

SO-CCA Secure PKE in the QROM or the QICM 327

– TAG(m): If T �= ∅, a tagging oracle TAG(m) returns ⊥. Otherwise, it
returns τ ← Tag(k,m) and sets T ← T ∪ {(m, τ)}.

– VRFY(m, τ): Given a message and a tag (m, τ), a verification oracle
VRFY(m, τ) returns b ← Vrfy(k,m, τ). If b = 1 and (m, τ) /∈ T , it sets
win ← 1.

Final: A wins if win = 1.

3 SIM-SO-CCA Secure PKE from KEM Schemes

3.1 KEM/DEM Framework

In this section, we focus on the standard KEM/DEM scheme PKEhy
1 starting

from any IND-CCA secure KEM and any simulatable DEM, and prove that
PKEhy

1 meets SIM-SO-CCA security in the QICM. This security proof is based
on the proof of Theorem 2 in [18]. However, it is not obvious that it satisfies
SIM-SO-CCA security in the QICM because the proof in [18] uses the list of
query/response pairs issued to ideal cipher oracles and we cannot apply this
technique due to the quantum no-cloning theorem. To resolve this problem,
we utilize a semi-classical oracle to check whether quantum queries meeting a
condition are submitted to ideal cipher oracles or not, instead of using the list
of ideal cipher oracles.

It is possible to construct concrete SIM-SO-CCA secure PKE schemes in the
QICM. This is because several DEM schemes such as CTR-DEM, CBC-DEM,
CCM-DEM, and hidden-shift CBC-DEM meet simulatability [1,18]. As a quan-
tum (ideal) block cipher, hidden-shift Even-Mansour ciphers in [1] may be used.

To construct PKEhy
1 with a message space M, we use the following primitives:

Let KEM = (KGenasy,Encap,Decap) be a KEM scheme with a key space K =
K′ ×K′′ and a randomness space Rasy. Let DEM = (Encsym,Decsym) be a DEM
scheme with a key space K = K′ × K′′ and a message space M.

The PKE scheme PKEhy
1 = (KGen,Enc,Dec) is described as follows:

– (pk, sk) ← KGen(1λ): Generate (pkasy, skasy) ← KGenasy(1λ) and output
pk := pkasy and sk := skasy.

– c ← Enc(pk,m): Encrypt a message m ∈ M as follows:
1. (e, k) ← Encap(pkasy), and d ← Encsym(k,m).
2. Output c := (e, d).

– m/⊥ ← Dec(sk, c): Decrypt a ciphertext c = (e, d) as follows:
1. k ← Decap(skasy, e).
2. Output m′ ← Decsym(k, d) if k �= ⊥, and output ⊥ otherwise.

Theorem 1. If a KEM scheme KEM meets IND-CCA security, and a (K,X)-
permutation-driven DEM scheme DEM with an oracle DEM scheme (O.Enc,
O.Dec) for a domain X and a block cipher E meets both of εsim-simulatability
and OT-INT-CTXT security, then PKEhy

1 satisfies SIM-SO-CCA security in the
quantum ideal cipher model.

328 S. Sato and J. Shikata

Proof. Let A be a QPT adversary against PKEhy
1 . Let qd be the number of

accessing DEC(·), and qe be the total number of accessing E+(·) and E−(·). For
J ⊆ [n], let K ′

J := {k′
j | j ∈ J}. Let D1,D2 be PPT algorithms against KEM and

let F be a PPT algorithm against DEM. We write Ek′(·) = E(k′, ·) for an ideal
cipher E with a key k′.

For each i ∈ {0, 1, 2, 3, 4}, we consider a security game Gamei, and let Wi be
the event that A outputs out such that R(MD,m1, . . . ,mn, I, out) = 1 in Gamei.
Let ε be a probability that A distinguishes any two distinct games.

Game0: This game is the same as Real-SIM-SO-CCA security game. We have
Pr[Expreal-so-ccaPKEhy,A (λ) → 1] = Pr[W0]. �
Game1: This game is the same as Game1 except that DEC oracle returns ⊥ if a
query (e, d) such that e ∈ {ei}i∈[n]\I is submitted.

We show |Pr[W0] − Pr[W1]| ≤ n · (Advind-ccaKEM,D1
(λ)+Advint-ctxtDEM,F (λ)). Let Bad be

the event that A submits a ciphertext query (e, d) such that e ∈ {ei}i∈[n]\I and
Dec(sk, (e, d)) �= ⊥. Unless Bad occurs, Game1 is equal to Game0. Besides, we
consider the following events: Let Bad1 be the event that Bad happens in Game1,
and let Bad2 be the same event as Bad1 except that for i ∈ [n]\I, keys ki are
chosen uniformly at random.

To show |Pr[Bad1] − Pr[Bad2]| ≤ n ·Advind-ccaKEM,D1
(λ), we construct a PPT algo-

rithm D1 breaking the IND-CCA security of KEM in the following way: At the
beginning of the security game, D1 takes pkasy as input. It sets i∗ U← [n] and
chooses a random polynomial fE of degree 2qe − 1 over GF (2κ) uniformly at
random as a 2qe-wise independent hash function, where κ is the bit-length of
elements in K′ × X . Then, it sets I ← ∅ and sends pk := pkasy to A. When A
submits MD, it does the following for each i ∈ [n]:

1. If i = i∗, request a challenge (ei∗ , ki∗) in IND-CCA game. Otherwise, compute
(ei, ki) ← Encap(pk; ri), where ri ∈ Rasy is sampled at random.

2. di ← Encsym(ki,mi), where mi
U← MD.

Then, it returns ((ei, di))i∈[n] to A. D1 simulates oracles as follows:

– E+(k′, α): Return fE(k′ ‖ α).
– E−(k′, β): Compute the set R of all roots of the polynomial fE −β and return

α such that k′ ‖ α ∈ R.
– DEC(c): Take c = (e, d) as input. In the case of e = ei∗ , halt and output 1 if

⊥ �= Decsym(ki∗ , d), and return ⊥ otherwise. In the case of e �= ei∗ , submit
e to the given decapsulation oracle and receive k. Return ⊥ if k = ⊥, and
return Decsym(k, d) if k �= ⊥.

– OPEN(i): Set I ← I ∪ {i}. Abort if i = i∗. Return (mi, ri) if i �= i∗.

Note that quantum ideal ciphers E+ and E− can be simulated by using 2qe-wise
independent hash functions from Theorem 6.1 in [37]. When A outputs out, D1

outputs 0 if Bad does not happen.

SO-CCA Secure PKE in the QROM or the QICM 329

D1 simulates the view of A completely. If A submits a decryption query
meeting the condition of Bad, it can distinguish the two games, and D1 breaks
IND-CCA security with at least probability ε/n. Thus, we get the bound.

To show Pr[Bad2] ≤ n ·Advint-ctxtDEM,F (λ), we construct a PPT algorithm F break-
ing OT-INT-CTXT security as follows: It is given the two oracles ENC(·) and
VRFY(·) in OT-INT-CTXT game. At the beginning of the security game, F gen-
erates (pk, sk) ← KGen(1λ) and chooses i∗ ∈ [n] uniformly at random. When A
submits MD, it does the following for each i ∈ [n]:

1. (ei, ki) ← Encap(pk; ri), where ri ∈ Rasy is sampled at random.
2. mi

U← MD.
3. If i = i∗, di∗ ← ENC(mi∗). Otherwise, di ← Encsym(ki,mi).

Then, it returns ((ei, di))i∈[n]. F simulates oracles E+(·, ·), E−(·, ·), and OPEN(·)
in the same way as the above algorithm D1. DEC(·) is simulated as follows: If
e = ei∗ for a given c = (e, d), it submits (e, d) to VRFY(·). F halts if it returns 1,
and returns ⊥ otherwise. If e �= ei∗ , F computes k ← Decap(skasy, e) and returns
Decsym(k, d) ∈ M ∪ {⊥}. When A outputs out, F aborts this game if Bad does
not happen.

The success condition of F is identical to the condition that Bad occurs.
Hence, it wins in OT-INT-CTXT game if A outputs a ciphertext query (e, d)
such that e �= ei∗ and oracle VRFY(d) returns 1. The success probability of F is
at least Pr[Bad2]/n.

Therefore, we have |Pr[W0] − Pr[W1]| ≤ n · (Advind-ccaPKEhy,D1
(λ) + Advint-ctxtDEM,F (λ))

in the straightforward way. �
Ë+ (resp. Ë−) is an ideal cipher oracle such that Ë+(k′, α) (resp. Ë−(k′, β))

is sampled from X uniformly at random if k′ ∈ {k′
i}i∈[n]\I , and Ë+(k′, α) =

E+(k′, α) (resp. Ë−(k′, β) = E−(k′, β)) holds otherwise.

Game2: This game is the same as Game1 except that at the beginning of the
security game, the challenger computes (ei, ki) ← Encap(pk) for i ∈ [n] (ki =
(k′

i, k
′′
i)), and oracles E+ and E− are replaced by Ë+\S and Ë−\S for S =

{k′
i}i∈[n]\I , respectively.

We show |Pr[W1] − Pr[W2]| ≤ 2
√

nq · Advind-ccaKEM,D2
(λ) + 4q

√
n/ |K′|. Let Bad′

be the event that a semi-classical oracle OSC
S returns |1〉 when A submits a

query to an oracle E+(·, ·) or E−(·, ·). Besides, we consider the following events:
Let Bad′

1 be the event that Bad′ happens in Game′
2, and let Bad′

2 be the same
event as Bad′

1 except that for i ∈ [n]\I, keys ki are chosen uniformly at random.
From Proposition 1 and the hybrid argument, we have |Pr[W1] − Pr[W2]| ≤
2
√

q · Pr[Bad′
1] ≤ 2

√
q
∣
∣Pr[Bad′

1] − Pr[Bad′
2]

∣
∣ + q · Pr[Bad′

2].

We show
∣
∣Pr[Bad′

1] − Pr[Bad′
2]

∣
∣ ≤ n · Advind-ccaKEM,D2

(λ) by constructing a PPT
algorithm D2 breaking IND-CCA security. Notice that running (ei, ki) ←
Encap(pk; ri) at the beginning of the game is a conceptual modification. D2

is constructed as follows: Given (pkasy, e∗, k∗), it chooses i∗ ∈ [n] uniformly
at random, sets (ei∗ , ki∗) := (e∗, k∗), and generates (ei, ki) ← Encap(pkasy; ri)
for all i ∈ [n]\{i∗}, where ri is sampled from Rasy at random. And then, it

330 S. Sato and J. Shikata

sets I ← ∅ and sends pk := pkasy to A. When A submits MD, it computes
di ← Encsym(ki,mi), where mi

U← MD for i ∈ [n] and returns ((ei, di))i∈[n] to A.
When A issues a quantum query

∑
k′∈K′,x∈X ψk′,x|k′, x〉 to E+ or E−, D2 submits

∑
k′∈K′,x∈X ψk′,x|k′, x〉|0〉 to a semi-classical oracle OSC

S . It halts and outputs 1 if
OSC

S returns a quantum superposition state
∑

k′∈K′,x∈X ψ′
k′,x|k′, x〉|1〉. It returns

a quantum state by accessing E+ or E− otherwise. In addition, D2 simulates
the following oracles:

– DEC(c): Take c = (e, d) as input. If e ∈ {ei}i∈[n]\I , return ⊥. If e /∈ {ei}i∈[n]\I ,
submit e to the given decapsulation oracle and receive k. Return ⊥ if k = ⊥,
and return Decsym(k′, d) if k �= ⊥.

– OPEN(i): Set I ← I ∪ {i}. If i = i∗, abort this game. If i �= i∗, set Ek′
i

← ∅
and return (mi, ri) if i �= i∗.

When A outputs a value out, D2 aborts this game if Bad′ does not occur. Then,
D2 simulates the environment of A completely. If A submits a quantum query
including the valid key ki of ei to E+ or E−, A can distinguish the two games,
and D2 breaks the IND-CCA security of KEM. The success probability of D2 is
at least ε/n.

In addition, we have Pr[Bad′
2] ≤ 4nqe/ |K′| from Proposition 2. Therefore, we

obtain the following inequality

|Pr[W1] − Pr[W2]| ≤ 2

√

q

(

n · Advind-ccaKEM,D2
(λ) +

4qn

|K′|
)

≤ 2
√

nqe · Advind-ccaKEM,D2
(λ) + 4q

√
n

|K′| ,

and the proof is completed. �

Game3: This game is the same as Game2 except that the game is aborted if the
challenger generates (ei, (k′

i, k
′′
i)) ← Encap(pk) such that k′

i ∈ K ′
[i−1] for i ∈ [n].

The probability of choosing k′
i ∈ K ′

[i−1] by running Encap(pk) for i ∈ [n] is
at most n2/|K′|. Thus, we have |Pr[W2] − Pr[W3]| ≤ n2/|K′|. �

Game4: This game is the same as Game3 except that for all i ∈ [n], we replace
replace Encsym algorithm by (Fake,Make). Namely, the process of the chal-
lenger and OPEN oracle is modified as follows: Given MD, the challenger runs
(di, sti) ← Fake(k′′

i , |mi|) and returns (ei, di) for each i ∈ [n]. In addition, OPEN
oracle is modified as follows:

1. I ← I ∪ {i}.
2. mi

U← MD.
3. π̃ ← Make(sti,mi) and oracles Ë+(k′

i, ·), Ë−(k′
i, ·) follow this relation π̃.

4. Abort this game if di �= O.Enc
Ek′

i (k′′
i ,mi).

5. Return (mi, ri).

SO-CCA Secure PKE in the QROM or the QICM 331

We show |Pr[W3] − Pr[W4]| ≤ n · εsim. From the simulatability of DEM,
A cannot distinguish di in the two games. In the process of OPEN oracle, we
can define a relation π̃ in this phase since A cannot find k′

i ∈ {k′
i}i∈[n]\I from

the game-hop of Game2. In addition, for each i ∈ [n], the probability that the
aborting event happens in OPEN oracle is negligible in λ from the simulatability
of DEM. Hence, we have the inequality. �

Finally, we prove Pr[Expideal-so-ccaPKEhy,S (λ) → 1] = Pr[W4]. We construct a sim-
ulator S in the following way: It is given OPEN oracle in Ideal-SIM-SO-CCA
game. At the beginning of the security game, S generates (pk, sk) ← KGen(1λ)
and (ei, ki) ← Encap(pk; ri) for i ∈ [n]. When A submits MD, it receives |mi|
from the challenger of Ideal-SIM-SO-CCA game, generates di ← Fake(k′′

i , |mi|) for
i ∈ [n], and returns ((ei, di))i∈[n]. In the same way as the game-hop of Game4,
S simulates Ë+ and Ë− by using a 2qe-wise independent hash function and
algorithms (Fake,Make). It simulates oracles DEC(·) and OPEN(·) as follows:

– DEC(c): Take c = (e, d) as input and do the following.
1. Return ⊥ if e ∈ {ei}i∈[n]\I .
2. k ← Decap(sk, e).
3. Return ⊥ if k = ⊥. Return Decsym(k, d) ∈ M ∪ {⊥} otherwise.

– OPEN(i): Take i ∈ [n] as input and do the following:
1. I ← I ∪ {i}.
2. Receive mi ← OPEN(i).
3. π̃ ← Make(sti,mi) and oracles Ë+(k′

i, ·), Ë−(k′
i, ·) follow this relation π̃.

4. Abort this game if di �= O.Enc
Ek′

i (k′′
i ,mi).

5. Return (mi, ri).

When A outputs out, S halts and outputs R(MD,m1, . . . ,mn, I, out).
S completely simulates Game4 by using only the given oracle OPEN. Thus,

we have Pr[Expideal-so-cca
PKEhy

1 ,S
(λ) → 1] = Pr[W4].

Therefore, we obtain the following advantage

Advsim-so-cca
PKEhy

1 ,A,S,R
(λ) ≤ n · Advind-ccaKEM,D1

(λ) + 2

√
nqe · Advind-ccaKEM,D2

(λ) + n · Advint-ctxtDEM,F (λ)

+n · εsim + 4qe

√
n

|K′| +
n2

|K′| .

From the discussion above, the proof is completed. ��

3.2 PKE from FO-Based KEM Schemes

We describe a PKE scheme PKEhy
2 constructed from an FO-based KEM FO �⊥ and

a MAC, and prove that this scheme meets SIM-SO-CCA security in the QROM.
Concretely, we use the FO-based KEM scheme FO �⊥ and any sUF-OT-CMA secure
MAC. As KEM schemes, we can apply not only FO �⊥ but also other FO-based
schemes FO �⊥

m, QFO �⊥, and QFO �⊥
m, which are classified in [20]. In this paper,

we select FO �⊥ to construct PKEhy
2 . This is because PKEhy

2 does not need other

332 S. Sato and J. Shikata

primitives such as pseudorandom functions unlike FO �⊥
m. Besides, it does not

need to append additional hash [20,36] to ciphertexts while QFO �⊥ and QFO �⊥
m

need additional hash. Notice that in the same way as the security proof of
PKEhy

2 (Theorem 2), it is possible to prove the security of PKEhy
2 using FO �⊥

m,
QFO �⊥, or QFO �⊥

m, instead of FO �⊥.
Concretely, we can apply CRYSTALS-Kyber, SABER, SIKE, and LEDAkem

to the KEM scheme FO �⊥, and apply FrodoKEM, NewHope, ThreeBears, and
more other schemes [34] to FO �⊥

m, QFO �⊥, or QFO �⊥
m. As concrete MAC schemes,

we can use deterministic MACs standardized by NIST.
To construct PKEhy

2 with a message space M, we use the following primitives:
Let PKEasy = (KGenasy,Encasy,Decasy) be a PKE scheme with a message space
Masy, a randomness space Rasy, and a ciphertext space Casy. And, PKEasy

meets δ-correctness. Let MAC = (Tag,Vrfy) be a MAC scheme with a key space
Kmac. Let H : Masy × Casy → Ksym × Kmac, G : Masy → Rasy be random
oracles, where Ksym = M is a key space.

PKEhy
2 = (KGen,Enc,Dec) is constructed as follows:

– (pk, sk) ← KGen(1λ): Generate (pkasy, skasy) ← KGenasy(1λ) and s
U← Masy.

Then, output pk := pkasy and sk := (skasy, s).
– c ← Enc(pk,m): Encrypt m ∈ M as follows:

1. r
U← Masy.

2. e ← Encasy(pkasy, r;G(r)).
3. (ksym, kmac) ← H(r, e).
4. d ← ksym ⊕ m, τ ← Tag(kmac, d).
5. Output c := (e, d, τ).

– m/⊥ ← Dec(sk, c): Decrypt c = (e, d, τ) as follows:
1. r′ ← Decasy(skasy, e).
2. (ksym, kmac) ← H(s, e) if e �= Encasy(pkasy, r′;G(r′)).
3. (ksym, kmac) ← H(r′, e) otherwise.
4. Output m := d ⊕ ksym if Vrfy(kmac, d, τ) = 1, and output ⊥ otherwise.

As the security of PKEhy
2 , Theorem 2 holds.

Theorem 2. If a PKE scheme PKEasy with δ-correctness meets IND-CPA secu-
rity and a MAC scheme MAC meets sUF-OT-CMA security, then PKEhy

2 satisfies
SIM-SO-CCA security in the quantum random oracle model.

Proof. Let A be a QPT adversary against PKEhy
2 . Let qd be the number of access-

ing DEC(·), qh be the number of accessing H(·), qg be the number of accessing
G(·). For a subset J ⊆ [n], let Ksym

J := {ksym
j | j ∈ J}. Notice that we can view

FO �⊥ in Fig. 2 as the KEM scheme in PKEhy
2 .

SO-CCA Secure PKE in the QROM or the QICM 333

(pk, sk) ← KGen(1λ)

1 : (pkasy, skasy) ← KGenasy(1λ).

2 : s
U← Masy.

3 : return pk := pkasy and sk := (skasy, s)

(e, k) ← Encap(pk)

1 : r
U← Masy

2 : e ← Encasy(pkasy, r;G(r))

3 : k ← H(r, e)

4 : return (e, k)

k ← Decap(sk, e)

1 : r′ ← Decasy(skasy, e)

2 : if e �= Encasy(pk, r′;G(r′)) :

return k := H(s, e)

3 : return k := H(r′, e)

Fig. 2. KEM scheme FO�⊥ in PKEhy
2

For i ∈ {0, 1, . . . , 9}, we consider a security game Gamei, and let Wi be the
event that A outputs out such that R(MD,m1, . . . ,mn, I, out) = 1 in Gamei.
Let ε be a probability that A distinguishes any two distinct games.

Game0: This game is the same as Real-SIM-SO-CCA security game. Thus, we
have Pr[Expreal-so-cca

PKEhy
2 ,A

(λ) → 1] = Pr[W0]. �

Game1: This game is the same as Game0 except that DEC oracle com-
putes (ksym, kmac) ← H′

q(e) instead of (ksym, kmac) ← H(s, e) if e �=
Encasy(pk, r′;G(r′)), where H′

q : Casy → Ksym × Kmac is a random oracle. By
using Lemma 4 in [26], we have |Pr[W1] − Pr[W2]| ≤ 2qh/

√|Masy|. �
We define G′ : Masy → Rasy as a random oracle which, on input r ∈ Masy,

returns a value sampled from the uniform distribution over a set of “good” ran-
dom coins Rasy

good(pk
asy, skasy, r) = {r̂ ∈ Rasy | Decasy(skasy,Encasy(pk, r; r̂))}.

Let δ(pkasy, skasy, r) = |Rasy\Rasy
good(pk

asy, skasy, r)|/|Rasy| denote the fraction
of bad random coins, and let δ(pkasy, skasy) = maxr∈Masy δ(pkasy, skasy, r). And
then, we have δ = E[δ(pkasy, skasy)] as the expectation of δ(pkasy, skasy), which
is taken over (pkasy, skasy) ← KGenasy(1λ).

Game2: This game is the same as Game1 except that we replace the random
oracle G(·) by G′ : Masy → Rasy. In the same way as the proof of Theorem 1 in
[28], we get |Pr[W1] − Pr[W2]| ≤ 2qg

√
δ. �

Game3: This game is the same as Game2 except that the random oracle H(r, e)
returns Hq(Encasy(pk, r;G(r))) if e = Encasy(pk, r;G(r)), and returns H′(r, e)
otherwise. Hq : Casy → Ksym × Kmac and H′ : Masy × Casy → Ksym × Kmac are
random oracles.

Since G′(·) oracle returns “good” random coins, Encasy(pk, ·;G(·)) is injec-
tive. Hence, we can view Hq(Encasy(pk, ·;G(·))) as a perfect random oracle, and
Pr[W3] = Pr[W2] holds. �

Game4: This game is the same as Game3 except that DEC oracle is modified as
follows: Take c = (e, d, τ) as input and compute (ksym, kmac) ← Hq(e). Then,
return m ← ksym ⊕ d if Vrfy(kmac, d, τ) = 1, and return ⊥ otherwise.

334 S. Sato and J. Shikata

In the case where e = Encasy(pk, r;G(r)) holds, both Decap oracles in Hybrid3
and Hybrid4 return the same value. In the case where e �= Encasy(pk, r;G(r))
holds, A cannot distinguish Game3 and Game4 since both H oracles in the two
games return uniformly random values. Thus, we have Pr[W4] = Pr[W3]. �
Game5: This game is the same as Game4 except that we replace the random
oracle G′(·) by G(·). In the same way as the game-hop of Game2, we have
|Pr[W4] − Pr[W5]| ≤ 2qg

√
δ. �

We define G̈ (resp. Ḧ) as a random oracle such that for r ∈ {ri}i∈[n]\I , the
value G̈(r) (resp. Ḧ(r, e)) is sampled from Rasy (resp. Ksym × Kmac) uniformly
at random, and for r /∈ {ri}i∈[n]\I , G̈(r) = G(r) (resp. Ḧ(r, e) = H(r, e)) holds.

Game6: This game is the same as Game5 except that at the beginning of the
security game, the challenger computes (ei, ki) for i ∈ [n], and oracles H and G
are replaced by Ḧ\S and G̈\S for S = {ri}i∈[n]\I , respectively, before A queries
to OPEN oracle.

In the similar way as the proof of Theorem 1 in [28], the following lemma
holds.

Lemma 1. For any QPT algorithm A against PKEhy
2 that makes at most qg

queries to G and at most qh queries to H, there exists a PPT algorithm D against
PKEasy such that

|Pr[W5] − Pr[W6]| ≤ 2
√

n(qg + qh)Advind-cpaPKEasy,D(λ) + 4(qg + qh)
√

n

|Masy| .

For readability, the proof of Lemma 1 is given in Appendix A. |Pr[W5] − Pr[W6]|
is negligible in λ if PKEasy meets IND-CPA security. �
Game7: This game is the same as Game6 except that DEC oracle returns ⊥ if a
query (e, d, τ) such that e ∈ {ei}i∈[n]\I is submitted.

Let Bad be the event that A submits a ciphertext query (e, d, τ) such that
e ∈ {ei}i∈[n]\I and Vrfy(kmac, d, τ) = 1. Besides, we consider the following events:
Let Bad1 be the event that Bad happens in Game7, and let Bad2 be the same
event as Bad1 except that keys ki are chosen uniformly at random for all i ∈ [n].

In the similar way as the proof of Lemma 1, we have

|Pr[Bad1] − Pr[Bad2]| ≤ 4
√

n(qg + qh)Advind-cpaPKEasy,D′(λ).

Next, we show Pr[Bad2] ≤ n ·Advsuf-cma
MAC,F (λ). We construct a PPT algorithm F

breaking sUF-OT-CMA security as follows: It is given oracles TAG and VRFY
in sUF-OT-CMA game. At the beginning of the security game, F generates
(pk, sk) ← KGen(1λ) and chooses i∗ ∈ [n] uniformly at random. Then, it sets
I ← ∅ and sends pk to A. When A submits MD, it does the following for every
i ∈ [n]:

1. ei ← Encasy(pk; ri;G(ri)), where ri ∈ Masy is sampled at random.

SO-CCA Secure PKE in the QROM or the QICM 335

2. mi
U← MD and (ksym

i , kmac
i) ← H(ri, ei).

3. If i = i∗, choose di∗
U← Ksym and let τi∗ := TAG(di∗). Otherwise, di ←

ksym
i ⊕ mi and τi ← Tag(kmac

i , di).

Then, it returns {(ei, di, τi)}i∈[n]. F simulates oracles in the following way: From
Theorem 6.1 in [37], random oracles H and G can be simulated by using a 2qh-wise
pairwise independent hash function and 2qg-wise independent hash function,
respectively. The other oracles are simulated as follows:

– DEC(c): Take c = (e, d, τ) as input. If e = ei∗ , submit (d, τ) to VRFY oracle.
Halt if VRFY returns 1, and return ⊥ otherwise. If e �= ei∗ , return Dec(sk, c) ∈
M ∪ {⊥}.

– OPEN(i): Set I ← I ∪{i}. Abort this game if i = i∗. Return (mi, ri) if i �= i∗.

Finally, when A outputs out, F aborts if Bad does not occur. Then, the success
condition of F is identical to the condition that Bad occurs. Hence, F wins in
sUF-OT-CMA game if A submits a ciphertext query (e, d, τ) such that e = ei∗

and VRFY(d, τ) returns 1, and the success probability of F is at least Pr[Bad2]/n.
Therefore, we obtain

|Pr[W6] − Pr[W7]| ≤ 4
√

n(qg + qh)Advind-cpaPKEasy,D′(λ) + n · Advsuf-cma
MAC,F (λ),

and |Pr[W6] − Pr[W7]| is negligible in λ if PKEasy and MAC meet IND-CPA
security and sUF-OT-CMA security, respectively. �
Game8: This game is the same as Game7 except that the game is aborted if
for i ∈ [n], the challenger chooses ri ∈ Masy such that ksym

i ∈ Ksym
[i−1], where

(ksym
i , kmac

i) = H(ri, ei).
The probability of choosing ksym

i ∈ Ksym
[i−1] is at most n2/|Ksym| from the

collision resistance of random oracles. �
Game9: This game is the same as Game8 except that the challenge phase and
OPEN oracle are modified as follows: When A submits MD, the challenger
chooses di ∈ Ksym uniformly at random, computes τi ← Tag(kmac

i , di) and
returns (ei, di, τi) for i ∈ [n]. In addition, OPEN oracle does the following:

1. I ← I ∪ {i}.
2. mi

U← MD.
3. Let H(ri, ei) := (di ⊕ mi, k

mac
i).

4. Return (mi, ri).

Game9 is identical to Game8. Any QPT adversary A cannot distinguish di in
the two games since both ciphertexts in these games are uniformly random and
A cannot find r ∈ {ri}i∈[n]\I before querying OPEN oracle. For this reason, it
is possible to define H(ri, ei) when A submits i to OPEN oracle. Hence, we have
Pr[W9] = Pr[W8]. �

Finally, we prove Pr[Expideal-so-cca
PKEhy

2 ,S
(λ) → 1] = Pr[W9] by constructing a sim-

ulator S in the following way: It is given OPEN oracle. At the beginning of

336 S. Sato and J. Shikata

Ideal-SIM-SO-CCA security game, S generates (pk, sk) ← KGen(1λ) and ei for
i ∈ [n]. And then, it sets I ← ∅ and sends pk to A. When A submits MD, it
chooses di ∈ MD uniformly at random, and computes τi ← Tag(kmac

i , di) for
i ∈ [n]. And then it returns ((ei, di, τi))i∈[n]. It simulates random oracles by using
a 2qh-wise independent hash function and a 2qg-wise independent hash function.
Oracles DEC(·) and OPEN(·) are simulated as follows:

– DEC(c): Take c = (e, d, τ) as input and do the following.
1. Return ⊥ if e ∈ {ei}i∈[n]\I .
2. r′ ← Decasy(sk, e).
3. Return ⊥ if e �= Encasy(pkasy, r;G(r)).
4. (ksym, kmac) ← H(r′, e)
5. Return m ← ksym ⊕ d if Vrfy(kmac, d, τ) = 1. Return ⊥ otherwise.

– OPEN(i): Take i ∈ [n] as input and do the following:
1. I ← I ∪ {i}.
2. Receive mi by accessing the given OPEN(i).
3. Let H(ri, ei) := (di ⊕ mi, k

mac
i).

4. Return (mi, ri).

When A outputs out, S halts and outputs R(MD,m1, . . . ,mn, I, out). Because S
can simulate the view of A only with OPEN oracle, we have Pr[Expideal-so-cca

PKEhy
2 ,S

(λ) →
1] = Pr[W9].

From the discussion above, we obtain

Advsim-so-cca
PKEhy

2 ,A,S,R
(λ) ≤6

√
n(qg + qh)Advind-cpaPKEasy,D(λ) + n · Advsuf-cma

MAC,F (λ)

+ 4(qg + qh)
√

n

|Masy| +
2qh√|Masy| + 4qg

√
δ +

n2

|Ksym|
≤6

√
n(qg + qh)Advind-cpaPKEasy,D(λ) + n · Advsuf-cma

MAC,F (λ)

+ (4qg + 6qh)
√

n

|Masy| + 4qg

√
δ +

n2

|Ksym| ,

and complete the proof. ��

4 Conclusion

We presented two SIM-SO-CCA secure PKE schemes constructed from KEM
schemes in the quantum random oracle model or quantum ideal cipher model.
The first one PKEhy

1 meets the security in the quantum ideal cipher model. It
is constructed from any IND-CCA secure KEM and any simulatable DEM with
OT-INT-CTXT security. On the other hand, the second one PKEhy

2 meets the
security in the quantum random oracle model. It is constructed from an FO-
based KEM FO �⊥ and any sUF-OT-CMA secure MAC. The differences between
these schemes are as follows: It is possible to apply any IND-CCA secure KEM
scheme to PKEhy

1 , while PKEhy
2 uses a particular KEM scheme FO �⊥ to PKEhy

2 .

SO-CCA Secure PKE in the QROM or the QICM 337

In addition, it is possible to apply any deterministic MAC scheme to PKEhy
2 ,

while the underlying DEM scheme in PKEhy
1 needs to meet not only integrity

but also simulatability.

Acknowledgements. The authors would like to thank the anonymous referees for
their helpful comments.

Appendix A: Proof of Lemma 1

We prove Lemma 1. We use the same notations defined in the proof of Theorem 2.
For i ∈ {0, 1, . . . , 4}, we consider games Hybridi, and let Hi be the event that
A outputs out such that R(MD,m1, . . . ,mn, I, out) = 1 in Hybridi, Findi be
the event that a semi-classical oracle OSC

S returns
∑

x∈S,y∈Y ψ′
x,y|x, y〉|1〉 for a

quantum query
∑

x∈Masy,y∈Y ψx,y|x, y〉 to the random oracle G (resp. H), where
S = {ri}i∈[n]\I and Y = Rasy (resp. Y = Casy × Ksym × Kmac).

Furthermore, in the same way as the proof in Theorem 2, random oracles
G̈ and Ḧ are defined. Namely, G̈ (resp. Ḧ) is a random oracle such that G̈(r)
(resp. Ḧ(r, e)) is sampled from Rasy (resp. Ksym × Kmac) uniformly at random
if r ∈ {ri}i∈[n]\I , and G̈(r) = G(r) (resp. Ḧ(r, e) = H(r, e)) holds otherwise.

Hybrid0: This game is the same as Game5 in Theorem 2. Then, we have Pr[H0] =
Pr[W5]. �

Hybrid1: This game is the same as Hybrid0 except that we replace G and H by
G̈\S and Ḧ\S, respectively, where S = {ri}i∈[n]\I . From Proposition 1, we have
|Pr[H0] − Pr[H1]| ≤ 2

√
(qg + qh) Pr[Find1]. Notice that we also have Pr[H1] =

Pr[W6]. �

Hybrid2: This game is the same as Hybrid1 except that for all i ∈ [n], we
replace r̂i

U← Rasy and (ksym
i , kmac

i) U← Ksym × Kmac instead of r̂i ← G(ri) and
(ksym

i , kmac
i) ← H(ri, ei), respectively. We have Pr[Find2] = Pr[Find1] because we

do not focus on the output of A. �

Hybrid3: This game is the same as Hybrid2 except that we replace G̈ and Ḧ by G
and H, respectively. Because there is no difference between the view of A in the
two games by this change, Pr[Find3] = Pr[Find2] holds. �

Hybrid4: This game is the same as Hybrid3 except that we replace ri by r′
i for all

i ∈ [n]. Notice that we do not replace the set S = {ri}i∈[n]\I by {r′
i}i∈[n]\I .

From Proposition 2, we get Pr[Find4] ≤ 4n(qg + qh)/|Masy|. In addition,
We show |Pr[Find3] − Pr[Find4]| ≤ n ·Advind-cpaPKE,D (λ) by constructing the following
PPT algorithm D breaking IND-CPA security of PKEasy: Given a public key
pkasy, D chooses i∗ ∈ [n], ri∗ , r′

i∗ ∈ Masy, and ki∗ ∈ K uniformly at random. It

338 S. Sato and J. Shikata

submits (ri, r
′
i) to the challenger in IND-CPA game and receives ei∗ . And then, it

computes ei ← Encasy(pk, ri,G(ri)) and ki ← Hq(ei) for i ∈ [n]\{i∗}. In order to
simulate a random oracle G (resp. Hq), D chooses a 2qg-wise independent hash
function (resp. a 2qh-wise independent hash function) at random. It sets I ← ∅
and sends pk := pkasy to A.

When A submits MD, D chooses mi
U← MD and computes di ← ksym

i ⊕ mi

and τi ← Tag(kmac
i , di) for i ∈ [n]. Then, it returns ((ei, di, τi))i∈[n].

D simulates oracles in the following way: When A issues a quantum query∑
r∈Masy,y∈Y ψr,y|r, y〉 to the random oracle G (resp. H) for Y = Rasy (resp.

Y = Casy×Ksym×Kmac), D submits
∑

r∈Masy,y∈Y ψr,y|r, y〉|0〉 to a semi-classical
oracle OSC

S . It halts and outputs 1 if OSC
S returns the quantum superposition

state
∑

r∈Masy,y∈Y ψ′
r,y|r, y〉|1〉. It returns a quantum state by accessing G (resp.

H) otherwise.

– DEC(c): Take c = (e, d, τ) as input and do the following.
1. (ksym, kmac) ← Hq(e).
2. Return m ← ksym ⊕ d if Vrfy(kmac, d, τ) = 1. Return ⊥ otherwise.

– OPEN(i): Set I ← I ∪ {i}. Abort if i = i∗. Return (mi, ri) otherwise.

When A outputs a value out and halts, D outputs 0. D simulates the view of A
in Game3 (resp. Game4) if the challenger chooses ri (resp. r′

i). Then, the success
probability of D is at least ε/n, and we have the inequality.

Therefore, we obtain

|Pr[Find3] − Pr[Find4]| + Pr[Find4] ≤ n · Advind-cpaPKE,D (λ) +
4n(qg + qh)

|Masy| .

�
From the discussion above, we obtain the following inequality

|Pr[W5] − Pr[W6]| ≤ 2
√

(qg + qh) Pr[Find1]

≤ 2

√

n(qg + qh)Advind-cpaPKE,D (λ) + 4n
(qg + qh)2

|Masy|

≤ 2
√

n(qg + qh)Advind-cpaPKE,D (λ) + 4(qg + qh)
√

n

|Masy| .

Therefore, we complete the proof. ��

References

1. Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on
hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 65–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 3

https://doi.org/10.1007/978-3-319-56617-7_3
https://doi.org/10.1007/978-3-319-56617-7_3

SO-CCA Secure PKE in the QROM or the QICM 339

2. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7 10

3. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 38

4. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008)

6. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

7. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 15

8. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
IACR Cryptology ePrint Archive 2009/101 (2009)

9. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

10. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

11. Boyen, X., Li, Q.: All-but-many lossy trapdoor functions from lattices and appli-
cations. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp.
298–331. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 11

12. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. IACR Cryptology ePrint
Archive 2001/108 (2001)

13. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

14. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 20

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptology 26(1), 80–101 (2013)

https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-642-19571-6_15
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-319-63697-9_11
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-642-13190-5_20
https://doi.org/10.1007/978-3-642-13190-5_20

340 S. Sato and J. Shikata

16. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 4

17. Heuer, F., Jager, T., Kiltz, E., Schäge, S.: On the selective opening security of
practical public-key encryption schemes. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 27–51. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46447-2 2

18. Heuer, F., Poettering, B.: Selective opening security from simulatable data encap-
sulation. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 248–277. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 9

19. Hiromasa, R.: Digital signatures from the middle-product LWE. In: Baek, J.,
Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 239–257. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01446-9 14

20. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

21. Hofheinz, D., Jager, T., Rupp, A.: Public-key encryption with simulation-based
selective-opening security and compact ciphertexts. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 146–168. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 6

22. Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply indistinguisha-
bility under selective opening. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 121–145. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 5

23. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 25

24. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block
ciphers: Davies-Meyer and Merkle-Damg̊ard constructions. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 275–304. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 10

25. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. IACR Cryptology ePrint Archive
2018/928 (2018)

26. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 4

27. Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejection
in the quantum random oracle model. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11443, pp. 618–645. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 21

28. Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsulation
mechanism in the quantum random oracle model. In: Ding, J., Steinwandt, R.
(eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 227–248. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7 13

https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-53890-6_9
https://doi.org/10.1007/978-3-662-53890-6_9
https://doi.org/10.1007/978-3-030-01446-9_14
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-662-53644-5_6
https://doi.org/10.1007/978-3-662-53644-5_6
https://doi.org/10.1007/978-3-662-53644-5_5
https://doi.org/10.1007/978-3-662-53644-5_5
https://doi.org/10.1007/978-3-642-54242-8_25
https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-25510-7_13

SO-CCA Secure PKE in the QROM or the QICM 341

29. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 18

30. Lai, J., Deng, R.H., Liu, S., Weng, J., Zhao, Y.: Identity-based encryption secure
against selective opening chosen-ciphertext attack. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 77–92. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 5

31. Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor func-
tions and selective opening chosen-ciphertext security from LWE. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 332–364. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9 12

32. Liu, S., Paterson, K.G.: Simulation-based selective opening CCA security for PKE
from key encapsulation mechanisms. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 3–26. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-
2 1

33. Lyu, L., Liu, S., Han, S., Gu, D.: Tightly SIM-SO-CCA secure public key encryp-
tion from standard assumptions. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10769, pp. 62–92. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76578-5 3

34. NIST: National institute for standards and technology: post quantum crypto
project (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

35. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 17

36. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

37. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-642-55220-5_5
https://doi.org/10.1007/978-3-319-63697-9_12
https://doi.org/10.1007/978-3-662-46447-2_1
https://doi.org/10.1007/978-3-662-46447-2_1
https://doi.org/10.1007/978-3-319-76578-5_3
https://doi.org/10.1007/978-3-319-76578-5_3
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

Distributing Any Elliptic Curve Based
Protocol

Nigel P. Smart1,2(B) and Younes Talibi Alaoui2

1 University of Bristol, Bristol, UK
2 KU Leuven, Leuven, Belgium

{nigel.smart,younes.talibialaoui}@kuleuven.be

Abstract. We show how to perform a full-threshold n-party actively
secure MPC protocol over a subgroup of order p of an elliptic curve group
E(K). This is done by utilizing a full-threshold n-party actively secure
MPC protocol over Fp in the pre-processing model (such as SPDZ), and
then locally mapping the Beaver triples from this protocol into equivalent
triples for the elliptic curve. This allows us to transform essentially any
(algebraic) one-party protocol over an elliptic curve, into an n-party one.
As an example we show how to transform a general Σ-protocol over
elliptic curves and the shuffle protocol of Abe into an n-party protocol.
This latter application requires us to also give an MPC protocol to derive
the switches in a Waksman network from a generic permutation, which
may be of independent interest.

1 Introduction

Over the years there have been a number of protocols developed for elliptic
curves, starting with basic protocols such as encryption and signature, through
to zero-knowledge proofs, and secure shuffles. In some application instances one
wants to perform these protocols where the secret data of a party is not held
by a single party but held by a set of parties via a secret sharing scheme. Obvi-
ous examples include distributed decryption and distributed signing protocols.
Indeed the case of distributed signatures for EC-DSA has recently undergone a
renewed interest, see [8,14–16], due to applications to block-chain. In addition,
general distributed cryptographic solutions for decryption and signature opera-
tions are becoming more in vogue, as evidenced by the recent NIST workshop
in this space1.

There are however a large number of other protocols which applications may
require to be distributed in this manner. For example take a simple elliptic
curve based Sigma-protocol to prove equality of two discrete logarithms, see
[18][Chapter 21]. If the application requires the two discrete logarithms to be
secret shared, then the protocol to produce the proof must be executed in a

1 https://www.nist.gov/news-events/events/2019/03/nist-threshold-cryptography-
workshop-2019.

c© Springer Nature Switzerland AG 2019
M. Albrecht (Ed.): IMACC 2019, LNCS 11929, pp. 342–366, 2019.
https://doi.org/10.1007/978-3-030-35199-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35199-1_17&domain=pdf
http://orcid.org/0000-0003-3567-3304
http://orcid.org/0000-0002-7947-9450
https://www.nist.gov/news-events/events/2019/03/nist-threshold-cryptography-workshop-2019
https://www.nist.gov/news-events/events/2019/03/nist-threshold-cryptography-workshop-2019
https://doi.org/10.1007/978-3-030-35199-1_17

Distributing Any Elliptic Curve Based Protocol 343

distributed manner. In this work we present a simple method to produce n-party
actively secure distributed elliptic curve based protocols.

Our method applies to what we term algebraic protocols over E(K). These
are protocols which do not involve non-algebraic operations on secret data. Thus
EC-DSA signing is an algebraic protocol as the non-algebraic operation (the
hash-function operation) is performed on public data, but EC-IES decryption is
not as the key-derivation needs to be applied on secret data. Thus our technique
is unable to deal with the issues raised in [17]. Despite this restriction our model
captures a number of useful cryptographic protocols.

We take the underlying elliptic curve as E(K) where the (cryptographically
interesting) subgroup order is a prime p. For such protocols we need to secret
share both finite field elements in Fp, and elliptic curve group elements in E(K).
In both cases we do this via an additive secret sharing scheme. Linear operations
in Fp and in E(K) are then able to be performed for free, and the problem then
comes in performing the non-linear operations. For non-linear operations in Fp

(i.e. multiplication) we utilize the idea of Beaver triples from general Multi-
Party Computation (MPC) protocols (such as [7]), and thus our protocol is in
the offline/online paradigm. For non-linear operations in E(K), which are point
multiplications of a secret shared point by a secret shared field element, we
can utilize the same Beaver triples. Thus supporting additively secret shared
elements in E(K) can be accomplished using the same offline phase as is needed
to perform MPC over Fp.

To achieve active security we utilize the methodology of the SPDZ protocol
[7] and its improvements, e.g. [6]. This protocol is a so-called MPC-with-abort
system, in that if a dishonest party deviates from the protocol then the honest
parties will abort with overwhelming probability. In SPDZ for each field element
x ∈ Fp which is secret shared, we also secret share a MAC-value α · x for some
global secret shared MAC value α. We then translate this to the elliptic curve
sharing by not only additively sharing an element P ∈ E(K), but also additively
sharing its MAC value [α]P , for the same MAC key α as used to authenticate
the shares over Fp.

The first part of this paper is devoted to giving the details of this MPC
protocol over elliptic curves, and the associated security proofs. We then give
three applications, the first to show how distributed EC-DSA signing can be per-
formed using this protocol. The online time for this EC-DSA signing operation
will be very fast, the only drawback being the offline time inherited from the
SPDZ protocol for generating authenticated Beaver triples over Fp. Our second
application shows how to perform a simple distributed Sigma protocol for an
OR-proof, using the same methodology.

We then turn to a more complex application. In a number of applications one
has a set of ElGamal ciphertexts and one wishes to perform a secure shuffle on
them. The traditional method for doing this is to pass them through a sequence
of so-called Mix-Nets. Each mixer applies their own private shuffle, and provides
a zero-knowledge proof, that their mix has been performed correctly. The final
recipient of the mix needs to verify each individual zero-knowledge proof. Thus if

344 N. P. Smart and Y. Talibi Alaoui

we have n-mixers we have a proof n times larger than that produced by a single
mixer. Another way of achieving the same security, but with a smaller zero-
knowledge proof, would be for the mixers to produce the mix in a distributed
manner and generate a single joint proof of correctness of the mix. We show how
the mix protocol of Abe [2] can be performed in such a distributed manner using
our underlying MPC protocol.

Given a permutation as a Waksman network [20], with each Waksman switch
secret shared, we show how to generate in a distributed manner the proof pre-
sented by Abe. This is essentially a more complex version of the Sigma protocol
for equality of two discrete logarithms discussed earlier. We note, that more effi-
cient proofs of correct shuffle have been given since Abe’s work, see for example
[4,9–11], but we concentrate on this one as it shows how our elliptic curve MPC
protocol can be applied to more complex higher level protocols. Our solution is
more efficient than an equivalent solution to the problem of n-mixers discussed
by [1].

A problem with Abe’s mixer is how to generate the secret shared Waksman
network. Simply generating the switch values at random does not produce a
uniformly random permutation (as was noticed in [3]). We can easily produce
a secret shared uniformly random permutation, by each party Pi generating a
permutation σi, sharing it, and then using as the secret-shared final permuta-
tion the product permutation σ = σ1 · · · σn. However, the question then remains
how to convert the secret-shared permutation σ, given by (say) a permutation
matrix, into a set of switches for a Waksman network. There is a classical algo-
rithm to do this, which appears to require solving a set of non-linear equations.
However, by closely examining this algorithm we see that one can perform the
conversion from a permutation matrix to Waksman switches using a relatively
simple algorithm which is suitable for implementation via an MPC system. Our
algorithm for obtaining the Waksman switches in secret shared form is actively
secure, if the underlying MPC system used is actively secure (which is what we
assume throughout this work).

We end this introduction by re-iterating that our MPC system is in the full
threshold paradigm, where active security is obtained by authenticating a share
using a global shared MAC key. We note that our methodology can also be
applied in the case of Q2 access structures (for example honest majority thresh-
old access structures) if we accept MPC-with-abort. In such systems one can
obtain similar authentication of the shares by utilizing the error detection prop-
erties of the underlying error correcting code associated to the secret sharing
scheme, see [19] for a discussion of MPC for Q2 access structures in the case
of MPC-with-abort. It can be easily seen that minor adaptations to our MPC
protocol over elliptic curves will also enable one to support such Q2 access struc-
tures. Our methodology can also be applied to protocols over any finite abelian
group of prime order, and not just elliptic curves. We concentrate on elliptic
curves to make the presentation more down to earth.

Distributing Any Elliptic Curve Based Protocol 345

2 Preliminaries

In this section we present some basic notation and the underlying MPC protocols
we will make extensive use of.

Notation: We assume that all the parties P1, . . . ,Pn are probabilistic poly-
nomial time Turing machines. We let [n] denote the interval [1, . . . , n]. We let
a ← X denote randomly assigning a value a from a set X, where we assume a
uniform distribution on X. If A is an algorithm, we let a ← A denote assignment
of the output, where the probability distribution is over the random tape of A;
we also let a ← b be a shorthand for a ← {b}, i.e. to denote normal variable
assignment. If D is a probability distribution over a set X then we let a ← D
denote sampling from X with respect to the distribution D.

We let G ⊆ E(K) denote a subgroup of large prime order of an elliptic curve
E over a finite field K. Let the order of G be p. Any (non-zero) element of G
can be taken as a generator, however we assume that a specific generator P is
given as part of the group description. An element Q ∈ G can be multiplied by
an element x ∈ Fp to produce another element R ∈ G. We call this operation
the point multiplication between a point Q and a multiplier x, and we write it
as R ← [x] · Q.

The SPDZ Protocol: Our protocols will be built on top of a number of existing
functionalities/protocols. The main two being an ideal commitment functional-
ity FCommit (given in the full versioni) and the SPDZ MPC protocol [7] for per-
forming actively secure MPC over Fp for full-threshold adversaries. The SPDZ
protocol processes data using an authenticated secret sharing scheme defined
over a finite field Fp, where p is prime.

We describe the variant of authentication and checking presented in [6]. The
secret sharing scheme is defined as follows: Each party Pi holds a share of a
global MAC key αi ∈ Fp, where the global MAC key is defined to be α =

∑
i αi.

A data element x ∈ Fp is held in secret shared form as a tuple {xi, γi}i∈[n], such
that x =

∑
i xi and

∑
γi = α · x. We denote a value x held in such a secret

shared form as 〈x〉F . If we wish to denote the specific value on which γi is a
MAC share then we write γi[x].

The SPDZ protocol implements the functionality given in Fig. 1. The func-
tionality permits the secure computation of any function f on parties’ inputs,
assuming that any (reactive) function f is expressed in term of additions and
multiplications over a finite field. Parties can also choose to whom the output of
f is sent.

As explained earlier, SPDZ is an MPC-with-abort system. In such a system,
an adversary can always deviate from the protocol, however, honest parties will
abort when this happens with overwhelming probability. This behavior explains
why FOnline[SPDZ] is written as such. That is, within the output stage, an adver-
sary can choose between not sending Deliver, which translates the fact that they

346 N. P. Smart and Y. Talibi Alaoui

Functionality Online[SPDZ]

Initialize: On input (init , p) from all parties, the functionality stores (domain, p).
Input: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other

parties, with varid a fresh identifier, the functionality stores (varid , x).
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), the functionality retrieves (varid1, x),
(varid2, y) and stores (varid3, x + y).

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functionality re-
trieves (varid1, x), (varid2, y) and stores (varid3, x · y).

Triple: On input (triple, varid1, varid2, varid3) from all parties (if none of the
varid i are stored in memory), the functionality generates a uniformly random
a, b ∈ Fp and computes c = a · b and then stores (varid1, a), (varid2, b) and
(varid3, c)

Output: On input (output , varid , i) from all honest parties (if varid is present in
memory), the functionality retrieves (varid , y) and outputs it to the environ-
ment. The functionality waits for an input from the environment. If it is Deliver
then y is output to all players if i = 0, or y is output to player i if i �= 0. If the
adversarial input is not equal to Deliver then ∅ is output to all players.

Fig. 1. The ideal functionality for MPC over Fp

can deviate from protocol during the online phase, and sending Deliver, which
means that the adversary is following the protocol so far.

The SPDZ protocol works in an offline-online manner, the precise offline
protocol will not concern us in this work. The main goal of the SPDZ offline
phase is to produce random triples (〈a〉F , 〈b〉F , 〈c〉F) such that c = a · b. It is
convenient in some protocols to assume that the Beaver triples produced in the
offline phase are also available to the user of the online phase. Thus we have a
command in the online functionality that exports this data.

The online protocol ΠOnline[SPDZ] is given in Fig. 2, and can be shown (see
e.g. [6]) that it realises the FOnline[SPDZ] functionality in the (FOffline[SPDZ],
FCommit)-hybrid model. The online protocol makes use of a crucial sub-protocol,
called ΠMACCheck[SPDZ], which we have given in Fig. 3. This sub-protocol is exe-
cuted (in batches) on every opened value throughout the computation, in order
to check if the adversary is trying to deviate from the protocol without being
caught.

Since 〈·〉F is a linear secret sharing scheme it is easy to compute linear func-
tions on the share values. In particular given 〈x〉F and 〈y〉F and three field
constants a, b, c ∈ Fp we can compute the sharing of z = a · x + b · y + c locally
by each player computing

z1 ← a · xi + b · yi + c for i = 1
zi ← a · xi + b · yi for i �= 1

γi[z] ← a · γi[x] + b · γi[y] + αi · c for all i.

Distributing Any Elliptic Curve Based Protocol 347

Protocol ΠOnline[SPDZ]

Initialize: The parties call Offline to get the shares αi of the MAC key, a number of
multiplication triples (〈a〉F , 〈b〉F , 〈c〉F) and mask values (ri, 〈ri〉F) as needed for
the circuit being evaluated. If Offline aborts then abort, otherwise the operations
specified below are performed according to the circuit.

Input: To share his input xi, player i takes an available mask value (ri, 〈ri〉F) and
does the following:
1. Broadcast e ← xi − ri.
2. The players compute 〈xi〉F ← 〈ri〉F + e.

Add: On input (〈x〉F , 〈y〉F), the players locally compute 〈x + y〉F ← 〈x〉F + 〈y〉F .
Multiply: On input (〈x〉F , 〈y〉F), the players do the following:

1. Take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F) and open 〈x〉F −
〈a〉F , 〈y〉F − 〈b〉F to get s and t respectively.

2. Locally each player computes 〈z〉F ← 〈c〉F + s · 〈b〉F + t · 〈a〉F + s · t
Triple: Here the players simply take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F) off

the pre-computed list obtained in the offline phase.
Output: This procedure is entered once the players have finished the circuit eval-

uation, but still the final output 〈y〉F has not been opened.
1. The players call the MACCheck[SPDZ] protocol on input all opened values

so far.
2. The players open 〈y〉F and call MACCheck[SPDZ] on input y to verify its

MAC.

Fig. 2. Operations for secure function evaluation

Protocol ΠMACCheck[SPDZ]

Usage: Each player has input αi and (γi[aj]) for j = 1, . . . , t. All players have a
public set of opened values {a1, . . . , at}; the protocol either succeeds or outputs
failure if an inconsistent MAC value is found.

MACCheck({a1, . . . , at}):
1. All players Pi sample si and asks Commit to broadcast τs

i ← Comm(si).
2. Every player Pi calls Commit with Open(τs

i) all players obtain sj for all j.
3. Set s ← s1 ⊕ · · · ⊕ sn.
4. Players using s sample a random vector r from F

t
p; note all players obtain

the same vector as they have agreed on the seed s.
5. Each player computes the public value a ← ∑t

j=1 rj · aj .

6. Pi computes vi ← ∑t
j=1 rj · γi[aj], and wi ← vi − αi · a.

7. Pi asks Commit to broadcast τw
i ← Comm(wi).

8. Every player calls Commit with Open(τw
i), all players obtain wi for all i.

9. If w1 + · · · + wn �= 0Fp , the players output ∅ and abort.

Fig. 3. Method to check MACs on partially opened values

348 N. P. Smart and Y. Talibi Alaoui

Fig. 4. Waksman network of size 8 Fig. 5. A realization of the permuta-
tion π̃

Waksman Networks: A Waksman network [20] is a circuit with m input and
output wires, to make our discussion cleaner we will assume m is a power of
two. Within the circuit, inputs are shuffled with respect to a permutation. The
building blocks of a Waksman network are switches; where a switch is a circuit
with two input and output wires, with a hardwired bit called the control bit.
If the control bit equals one, the switch swaps its inputs, otherwise, the switch
simply forwards its inputs to the output wires.

The construction of a Waksman network follows a recursive structure (Fig. 4),
that is to say a Waksman network contains:

– One inward layer.
– One outward layer.
– Two parallel subnetworks of size m

2 , linked in a butterfly manner to the inward
and outward layers.

The inward layer contains m
2 switches, whereas the outward layer contains m

2 −1
switches. That is, the missing switch (switch 1∗) is fixed by setting its control bit
to be zero. The inner networks are constructed in a similar manner, and there
are 2 · log2(m) − 1 layers in total. Thus the total number of switches within the
whole network is m · log2(m)−m+1. Given any permutation, there is a classical
algorithm to determine a set of control bits realizing it. That is to say, this
algorithm takes as input the permutation, and outputs a control bit for every
switch, such that the resulting Waksman network realizes this permutation. In
our work (for ease of implementing the algorithm to create a Waksman network
in a data-oblivious manner) we use a more relaxed definition of a Waksman
network in which the first gate of the outer layer is not fixed to be an empty
switch. This increases the total number of switches in a network by m/2 − 1 to
the value m · log2(m) − m/2.

Distributing Any Elliptic Curve Based Protocol 349

As an example consider the permutation matrix

M̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

realizing the permutation π̃ ∈ S8. This can be represented by the Waksman net-
work in Fig. 5. One immediately sees an advantage of using a Waksman network
to represent a permutation on a vector v. Instead of evaluating π on v by a
matrix vector product, we apply a series of transpositions on v using the permu-
tation networks. This is more efficient in terms of operations performed. That is,
the matrix based approach requires m2 multiplications to apply a permutation
on a vector, whereas a network based approach using (our modified) Waksman
network, would require at most m · log2(m) − m/2 swaps. In terms of an MPC
based implementation of the network for secret shared control bits, one swap
consists of two multiplications.

3 Multiparty Computation Over Elliptic Curve Groups

Our goal in this section is to define a protocol to perform efficient actively secure
(with abort) MPC in the context of elliptic curve calculations. This will enable
us to efficiently transfer any algebraic ECC based cryptographic protocols into
the distributed domain. Such protocols require us to perform arithmetic not
only in the elliptic curve group, but also over the finite field given by the order
of the large prime subgroup (the so-called exponent group, even though it is a
field). Our basic strategy is to use the SPDZ protocol to conduct the MPC in
the exponent group, and to use a similar protocol with the same MAC key to
define the MPC protocol to work in the elliptic curve group itself.

The functionality we aim to produce a secure realisation of is FOnline[ECC],
given in Fig. 6. This functionality permits the parties to compute over elliptic
curve points, and as explained earlier, this essentially requires doing computa-
tion over a finite field, as well as over an elliptic curve group. Therefore, one
immediately notes that this is essentially an extension of the FOnline[SPDZ] func-
tionality in that we have added an additional set of variables corresponding to
elliptic curve points. Given this similarity it should not be surprising that we
utilize the same secret sharing as in SPDZ to share values in the exponent group.

In our realisation of this functionality, an elliptic curve data element Q ∈ G
is held in secret shared form as a tuple {Qi, Γi}i∈[n], such that Q =

∑
i Qi and∑

Γi = [α] · Q where α is the same MAC key as used in the secret sharing 〈·〉F .
We denote a value Q held in such a secret shared form as 〈Q〉E . Again if we want
to denote the specific value on which Γi is a MAC share we will write Γi[Q].

350 N. P. Smart and Y. Talibi Alaoui

Functionality Online[ECC]

Initialize: On input (init , G) from all parties, the functionality stores (domain, G).
Two lists of identifiers are established, one called field identifiers and one called
curve identifiers.

Input-F: On input (inputF , Pi, varid , x) with x ∈ Fp from Pi and
(input , Pi, varid , ?Fp) from all other parties, with varid a fresh identifier, the
functionality stores (varid , x) in the list of field identifiers.

Input-G: On input (inputG, Pi, varid , Q) with Q ∈ G from Pi and
(input , Pi, varid , ?G) from all other parties, with varid a fresh identifier, the
functionality stores (varid , P) in the list of curve identifiers.

Add-F: On command (addF , varid1, varid2, varid3) from all parties where
varid1, varid2 are in the list of field identifiers and varid3 is not, the func-
tionality retrieves (varid1, x), (varid2, y) from the list of field identifiers and
stores (varid3, x + y) in the list of field identifiers.

Add-G: On command (addG, varid1, varid2, varid3) from all parties where
varid1, varid2 are in the list of curve identifiers and varid3 is not, the func-
tionality retrieves (varid1, Q), (varid2, R) from the list of curve identifiers and
stores (varid3, Q + R) in the list of curve identifiers.

Multiply-F: On command (multiplyF , varid1, varid2, varid3) from all parties
where varid1, varid2 are in the list of field identifiers and varid3 is not, the
functionality retrieves (varid1, x), (varid2, y) from the list of field identifiers
and stores (varid3, x · y) in the list of field identifiers.

Triple: On input (triple, varid1, varid2, varid3) from all parties (if none of the
varid i are stored in memory), the functionality generates a uniformly random
a, b ∈ Fp and computes c = a · b and then stores (varid1, a), (varid2, b) and
(varid3, c) in the list of field identifiers.

Multiply-G-P: On command (multiplyGP , varid1, Q, varid2) from all parties
where varid1 is in the list of field identifiers, Q ∈ G, and varid2 is a fresh identi-
fier from the list of the curve identifiers, the functionality retrieves (varid1, x),
from the list of field identifiers and stores (varid2, [x] · Q).

Multiply-G-S: On command (multiplyGS , varid1, varid2, varid3) from all parties
where varid1 is in the list of field identifiers and varid2 is in the list of curve
identifiers and varid3 is not, the functionality retrieves (varid1, x), (varid2, Q)
from the respective lists and stores (varid3, [x] · Q).

Output-F: On input (outputF , varid , i) from all honest parties (if varid is present
in the list of field identifiers), the functionality retrieves (varid , y) from the set
of field identifiers and outputs it to the environment. The functionality waits
for an input from the environment. If this input is Deliver then y is output to
all players if i = 0, or y is output to player i if i �= 0. If the adversarial input is
not equal to Deliver then ∅ is output to all players.

Output-G: On input (outputG, varid , i) from all honest parties (if varid is present
in the list of curve identifiers), the functionality retrieves (varid , R) from the set
of curve identifiers and outputs it to the environment. The functionality waits
for an input from the environment. If this input is Deliver then R is output to
all players if i = 0, or R is output to player i if i �= 0. If the adversarial input
is not equal to Deliver then ∅ is output to all players.

Fig. 6. The ideal functionality for MPC over G ⊆ E(K) with #G = p

Distributing Any Elliptic Curve Based Protocol 351

Again, as 〈·〉E is a linear secret sharing scheme it is easy to compute linear
functions on the share values. In particular given 〈Q〉E and 〈R〉E , two field
constants a, b ∈ Fp and one public curve point S we can compute the sharing of
T = [a] · Q + [b] · R + S locally by each player computing

T0 ← [a] · Qi + [b] · Ri + S for i = 0
Ti ← [a] · Qi + [b] · Ri for i �= 0

Γi[T] ← [a] · Γi[Q] + [b] · Γi[R] + [αi] · S for all i.

One can also compute U = [a] · Q when a is shared and Q is public, with only
local computation. This can be done by having each player locally compute

Ui ← [ai] · Q for all i.

Γi[U] ← [γi[a]] · Q for all i.

Which we write as
〈U〉E ← [〈a〉F] · Q. (1)

The only complex part is then to perform non-linear operations, namely to com-
pute the point multiplication of a secret shared element in Fq by a secret shared
elliptic curve point. An operation which we write as

〈U〉E ← [〈a〉F] · 〈Q〉E . (2)

3.1 MACCheck Protocol

Before presenting our protocol for performing the arithmetic operation in Eq. (2),
we first modify the SPDZ MACCheck protocol so that it also checks the MAC
values on the authenticated sharings of elliptic curve points. This is done in
Fig. 7. The intuition behind correctness and soundness of this protocol, comes
from the fact that we took the MAC check protocol from SPDZ operating over
elements in Fp, and replicated it for elements of G. Then, we combined these two
checks in order to execute the protocol only once. So we perform the MAC check
in a single operation on both opened elements in Fp and opened elements in G.
Thus at step 7 we map the share vi −αi ·a of player i to the point [vi −αi ·a] ·P
over G. This makes the protocol inherit the correctness and soundness properties
from the one in SPDZ. This is captured in the following theorem, the proof of
which is given in the full version.

Theorem 1. The protocol ΠMACCheck[ECC] is correct and sound. That is, it
accepts if all values {a1, . . . , at} and {A1, . . . , Au} along with their corresponding
MACs were correctly computed, and it rejects except with negligible probability if
at least one value or MAC was not correctly computed.

352 N. P. Smart and Y. Talibi Alaoui

Protocol ΠMACCheck[ECC]

Usage: Each player has input αi, (γi[aj]) for j = 1, . . . , t and (Γi[Ak]) for k =
1, . . . , u. All players have two public sets of opened values : {a1, . . . , at} over
Fp, and {A1, . . . , Au} over G; the protocol either succeeds or outputs failure if
an inconsistent MAC value is found.

MACCheck({a1, . . . , at}, {A1, . . . , Au}):
1. Every player Pi samples a seed si and asks Commit to broadcast τs

i ←
Comm(si).

2. Every player Pi calls Commit with Open(τs
i) and all players obtain sj for

all j.
3. Set s ← s1 ⊕ · · · ⊕ sn.
4. Players using s sample a random vector r from F

t+u
p ; note all players obtain

the same vector as they have agreed on the seed s.
5. Each player computes the public values a ← ∑t

j=1 rj · aj and A ←∑u
k=1[rk+t] · Ak

6. Player i computes vi ← ∑t
j=1 rj · γi[aj], and Γi ← ∑u

k=1[rk+t] · Γi[Ak]
7. Player i computes Wi ← [vi − αi · a] · P + Γi − [αi] · A, where P is the

generator of G
8. Player i asks Commit to broadcast τW

i ← Comm(Wi).
9. Every player calls Commit with Open(τW

i), and all players obtain Wi for all
i.

10. If W1 + · · · + Wn �= 0G , the players output ∅ and abort.

Fig. 7. Method to check MACs on partially opened values

3.2 MPC Online Protocol

We introduce now in Fig. 8 our protocol for the online phase. Similar to
FOnline[ECC], which was constructed by extending FOnline[SPDZ], we do the same
here while realizing FOnline[ECC]. That is, the sub-functionalities Initialize,
Input-F, Add-F, and Multiply-F, will be realized the same way as in the
protocol ΠOnline[SPDZ]. For the remaining functionalities, we will realize them
using essentially the same techniques as in the SPDZ protocol.

– Input-G is realized using the same trick as used to implement Input-F. That
is, assuming player i holds (Ri, 〈Ri〉E), this player can share a point Qi ∈ G by
broadcasting E = Qi−Ri, then players compute 〈Qi〉E = 〈Ri〉E+E to obtain
a share of Qi. However, as we are using only the preprocessing of SPDZ, we
need to somehow provide (Ri, 〈Ri〉E) to player i, using only the generated
data from FOffline[SPDZ]. This can be done using the generator P , That is,
from a SPDZ input mask (ri, 〈ri〉F), one can obtain a mask (Ri, 〈Ri〉E) by
setting 〈Ri〉E ← [〈ri〉F] · P , which requires only local computation.

– Add-G is realized similarly to Add-F. That is, players will locally compute
〈Q + R〉E ← 〈Q〉E + 〈R〉E .

– Multiply-G-P is realized by having players locally compute 〈R〉E ← 〈x〉F ·Q.

Distributing Any Elliptic Curve Based Protocol 353

Protocol ΠOnline[ECC]

Initialize: The parties call Offline to get the shares αi of the MAC key, a num-
ber of multiplication triples (〈a〉F , 〈b〉F , 〈c〉F), and mask values (ri, 〈ri〉F) as
needed for the circuit being evaluated. If Offline aborts then abort, otherwise
the operations specified below are performed according to the circuit.

Input-F: To share his input xi, player i takes an available mask value (ri, 〈ri〉F)
and does the following:
1. Broadcast e ← xi − ri.
2. The players compute 〈xi〉F ← 〈ri〉F + e.

Input-G: To share his input Qi, Player i takes an available mask value (ri, 〈ri〉F)
and does the following:
1. Broadcast E ← Qi − [ri] · P .
2. The players compute 〈Qi〉E ← [〈ri〉F] · P + E using Multiply-G-P.

Add-F: On input (〈x〉F , 〈y〉F), the players locally compute 〈x+y〉F ← 〈x〉F +〈y〉F .
Add-G: On input (〈Q〉E , 〈R〉E), the players locally compute 〈Q + R〉E ← 〈Q〉E +

〈R〉E .
Multiply-F: On input (〈x〉F , 〈y〉F), the players do the following:

1. Take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F) and open 〈x〉F −
〈a〉F , 〈y〉F − 〈b〉F to get s and t respectively.

2. Locally each player sets 〈x · y〉F ← 〈c〉F + s · 〈b〉F + t · 〈a〉F + s · t
Triple: Here the players simply take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F) off

the pre-computed list obtained in the offline phase.
Multiply-G-P: On input (〈x〉F , Q), where Q is a public point in G, the players

locally compute 〈[x] · Q〉E ← [〈x〉F] · Q using the operation defined in () .
Multiply-G-S: On input (〈x〉F , 〈Q〉E), the players do the following:

1. Take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F), locally compute 〈U〉E ←
[〈b〉F] · P and 〈V 〉E ← [〈c〉F] · P using Multiply-G-P.

2. Open 〈x〉F − 〈a〉F , 〈Q〉E − 〈U〉E to get s and T respectively.
3. Locally each player sets 〈[x] · Q〉E ← 〈V 〉E + [s] · 〈U〉E + [〈a〉F] · T + [s] · T

Output-F: This procedure is entered once the players have finished the circuit
evaluation, but still the final output 〈y〉F has not been opened.
1. The players call the MACCheck[ECC] protocol on input all opened values

so far.
2. The players open 〈y〉F and call MACCheck[ECC] on input y to verify its

MAC.
Output-G: This procedure is entered once the players have finished the circuit

evaluation, but still the final output 〈R〉E has not been opened.
1. The players call the MACCheck[ECC] protocol on input all opened values

so far.
2. The players open 〈R〉E and call MACCheck[ECC] on input R to verify its

MAC.

1

Fig. 8. Operations for secure function evaluation

354 N. P. Smart and Y. Talibi Alaoui

– Multiply-G-S is realized using the Beaver trick. That is, assuming players
hold a triple (〈a〉F , 〈U〉E , 〈V 〉E) such that V = [a]·U , to compute [〈x〉F]·〈Q〉E ,
players open 〈x−a〉F and 〈Q−U〉E to obtain s and T . Then the product can
be obtained by setting 〈[x]·Q〉E ← 〈V 〉E+[s]·〈U〉E+[〈a〉F]·T+[s]·T . However,
the SPDZ preprocessing doesn’t provide this type of triples, nonetheless, we
still can obtain them locally by taking a SPDZ-triple (〈a〉F , 〈b〉F , 〈c〉F) and
having players locally compute 〈U〉E = 〈b〉F · P and 〈V 〉E = 〈c〉F · P . This
results in a triple (〈a〉F , 〈U〉E , 〈V 〉E), which is a valid triple since V = [c]·P =
[a · b] · P = [a] · U .

– Output-F and Output-G are realized the same way as in SPDZ, where we
call here the MAC check protocol ΠMACCheck[ECC] that we defined in the previ-
ous section, operating over all opened values in Fp and G so far, then we open
the final output y (resp. R) and call ΠMACCheck[SPDZ] (resp. ΠMACCheck[ECC]).

Thus we have the following theorem, the proof of which is given in the full
version.

Theorem 2. The protocol ΠOnline[ECC] securely implements FOnline[ECC] in the
FOffline[SPDZ] hybrid model.

4 Simple Example Applications

In this section we present two toy applications of our methodology to perform
MPC over elliptic curves, distributed EC-DSA signing and a distributed zero-
knowledge proof.

EC-DSA Signing

Given a secret key x ∈ Fp for a public key Q = [x] · P , for P an element of order
q in E(K), a hash function H with codomain Fp, and a message m, the EC-DSA
operation is given by:

1. k ← Fp.
2. R ← [k] · P .
3. r ← x − coord(R) (mod p).
4. e ← H(m).
5. s ← (e + x · r)/k (mod p).
6. Output (r, s).

Fig. 9. EC-DSA signing operation

Distributed EC-DSA: The EC-DSA signing operation is given in Fig. 9. To
produce a distributed version we assume that the secret key x is already secret

Distributing Any Elliptic Curve Based Protocol 355

shared 〈x〉F using our secret sharing scheme. For simplicity we ignore the unlikely
event that r = 0 in our description. The associated distributed version is given in
Fig. 10. The protocol requires three multiplication triples from the offline phase
(one to produce the initial sharings of (〈k〉F , 〈b〉F , 〈k · b〉F) and two to enable
the secure computation of 〈u〉F and 〈v〉F . Note, that we have correctness since
the s produced by the distributed EC-DSA protocol is equal to s = v/c =
(u · b)/(k · b) = (e + x · r)/k. The trivial simulation of the distributed protocol
appears to leak a minor amount of information. In particular the execution of
the distributed protocol reveals R, whereas the ideal functionality for distributed
signing will only reveal r = x − coord(R) (mod p). However, the verification
operation recovers R in any case, thus this is not an actual leak of information.

Distributed EC-DSA Signing

1. Call Triple on Online[ECC] so as to obtain (〈k〉F , 〈b〉F , 〈c〉F) where c = k · b.
2. Compute 〈R〉E ← [〈k〉F] · P by calling Multiply-G-P on Online[ECC].
3. Open 〈R〉E so all parties obtain R by calling Output-G on Online[ECC].
4. r ← x − coord(R) (mod p).
5. e ← H(m).
6. 〈u〉F ← e + 〈x〉F · 〈r〉F using Multiply-F.
7. 〈v〉F ← 〈u〉F · 〈b〉F using Multiply-F.
8. Open 〈c〉F using Output-F.
9. 〈s〉F ← 〈v〉F /c.

10. Open 〈s〉F using Output-F.
11. Output (r, s).

Fig. 10. Distributed EC-DSA signing operation

In practice the specialist threshold EC-DSA protocols of [8,14–16] may be
preferable than our general one. This is because whilst our protocol is especially
simple in the online phase, and so will be able respond to requests much faster
than the specialist protocols, the downside comes from needing to perform the
offline phase. Thus the preferred protocol depends on whether the application
supports offline processing. For intermittent signing operations, such as in an
individual crypto wallet, the offline costs could be prohibitive. But for appli-
cations on an crypto-currency exchange the offline cost could be a cost worth
bearing in order to respond faster to signing requests as they arise.

Distributed OR-Proof: The above EC-DSA application did not use the full
power of our MPC over elliptic curves, in particular we did not make use of
any non-linear operations on the elliptic curve. Here we present a more complex
example, which will be useful later when we consider the MixNet proof of Abe,
and which does present an application of these additional non-linear operations.

356 N. P. Smart and Y. Talibi Alaoui

Suppose we want to give a non-interactive zero-knowledge proof the state-
ment L =

{
xb : T0 = [x0] · P or T1 = [x1] · P

}
, where xb ∈ Fp, for b ∈ {0, 1}, is

the secret value. Non-interactive zero-knowledge proofs of such statements are
trivial to obtain, in the random oracle model, using the OR-proof technique for
Sigma protocols [5]. To fix notation for what follows it can make more sense
to consider the statement as being given by

{
b, xb : Tb = [xb] · P

}
, where

b ∈ {0, 1}, xb ∈ Fp are the secret values. In Fig. 11 we give the standard non-
interactive proof for such a statement, again we assume a hash function with
codomain Fp.

Non-Interactive Zero-Knowledge Proof of the Statement L.

Proof The proof proceeds as follows:
1. If b = 0 then

(a) k0, e1, s1 ← Fp.
(b) R0 ← [k0] · P .
(c) R1 ← [s1] · P − [e1] · T1.
(d) e ← H(R0, R1, T0, T1, P).
(e) e0 ← e − e1.
(f) s0 ← k0 + e0 · x0.

2. Else
(a) k1, e0, s0 ← Fp

(b) R0 ← [s0] · P − [e0] · T0.
(c) R1 ← [k1] · P .
(d) e ← H(R0, R1, T0, T1, P).
(e) e1 ← e − e0.
(f) s1 ← k1 + e1 · x1.

3. Output (e0, e1, s0, s1).
Verify Verification of the above proof is done as follows:

1. R0 ← [s0] · P − [e0] · T0, R1 ← [s1] · P − [e1] · T1.
2. e ← H(R0, R1, T0, T1, P).
3. Reject if e �= e0 + e1.

Fig. 11. Non-interactive ZKPoK for the statement L

If we assume the secret inputs to the zero-knowledge proof are now dis-
tributed via our secret sharing scheme 〈b〉F , 〈xb〉F , then we need to execute the
above protocol using our elliptic curve based MPC protocol. We make use of the
standard trick of multiplexing between two values depending on a hidden bit b,
via yb ← b · y1 + (1 − b) · y0. Our distributed protocol then can be described as
in Fig. 12. Note, that operations of the form 〈x〉F ← Fp can be performed by
utilizing the first two elements in a Beaver triple produced in the offline phase.
Notice how in lines 4, 5 and 6 we use non-linear secret-shared operations on the
curve.

Distributing Any Elliptic Curve Based Protocol 357

Distributed Non-Interactive Zero-Knowledge Proof of the Statement L.

1. 〈ku〉F , 〈ev〉F , 〈sv〉F ← Fp

2. 〈Ru〉E ← [〈ku〉F] · P .
3. 〈Tv〉E ← [〈b〉F] · T0 + [1 − 〈b〉F] · T1.
4. 〈Rv〉E ← [〈sv〉F] · P − [〈ev〉F] · 〈Tv〉E .
5. 〈R0〉E ← [〈b〉F] · 〈Rv〉E + [1 − 〈b〉F] · 〈Ru〉E
6. 〈R1〉E ← [〈b〉F] · 〈Ru〉E + [1 − 〈b〉F] · 〈Rv〉E
7. Open 〈R0〉E and 〈R1〉E .
8. e ← H(R0, R1, T0, T1, P).
9. 〈eu〉F ← e − 〈ev〉F .

10. 〈su〉F ← 〈ku〉F + 〈ev〉F · 〈xb〉F .
11. 〈e0〉F ← [〈b〉F] · 〈ev〉F + [1 − 〈b〉F] · 〈eu〉F
12. 〈e1〉F ← [〈b〉F] · 〈eu〉F + [1 − 〈b〉F] · 〈ev〉F
13. 〈s0〉F ← [〈b〉F] · 〈sv〉F + [1 − 〈b〉F] · 〈su〉F
14. 〈s1〉F ← [〈b〉F] · 〈su〉F + [1 − 〈b〉F] · 〈sv〉F
15. Open 〈e0〉F , 〈e1〉F , 〈s0〉F and 〈s1〉F .
16. Output (e0, e1, s0, s1).

Fig. 12. Distributed non-interactive ZKPoK for the statement L

5 Application to MixNets

The rest of the paper is devoted to applying the above techniques to providing
a more efficient (in terms of bandwidth and verification time) for a standard
ElGamal based shuffle due to Abe [2]. As remarked in the introduction more
efficient single party shuffles are now known, here we are focused on providing a
general n-party shuffle.

Secure shuffling consists of randomly shuffling a vector of m elements v using
a uniformly random permutation π ∈ Sm unknown to the adversary. Secure
shuffling is used in several contexts such as Oblivious-RAM, secure voting, etc.
Within any context, we can distinguish three sets of parties, the parties A that
provide input elements v, the parties B that shuffle v to get v′, and the parties
C that will use v′. These sets are not necessarily disjoint sets. That is, it depends
on the context whether a party is part of more than one set.

Prior MPC use in shuffles has primarily considered two cases: In the first
case, used in [13], the data donors A provide the sensitive data v to the comput-
ing parties (where here B = C) via secret sharing. The parties in B then shuffle
the secret shared data with respect to a uniformly random permutation π to get
v′, and then perform computation on v′ on behalf of a client. The permutation
π ∈ Sm is generated by each party i ∈ B locally generating their own permuta-
tion πi and then secret sharing this, with the final permutation being computed
via the product π =

∏
πi. If the permutations are represented as permutation

matrices this can be achieved by simply multiplying the secret shared permuta-
tion matrices. Active security being obtained by performing the obvious checks
on the final matrix representing π, i.e. that all entries are in {0, 1} and that the
row and column sums are all equal to one.

358 N. P. Smart and Y. Talibi Alaoui

In [12] the case of A = B = C is considered for an application of Oblivious-
RAM within an MPC calculation. Parties are already assumed to have secret
shares of the values to be shuffled. In order to hide the data access pattern
on v, that is which component of v is queried at any specific point, v is shuf-
fled with a uniformly random permutation. To generate π, every party i gen-
erates their own permutation πi and (locally) transforms it into control bits
for a Waksman network. Then every party secret shares its control bits among
the other parties, and all permutations are evaluated in sequence. The switch
with respect to a control bit being evaluated using the traditional multiplex
(x, y) −→ ((1 − b) · x + b · y, b · x + (1 − b) · y). To ensure active security, we
check whether control bits b are in {0, 1} by opening b · (b − 1).

In traditional MixNets one has that the sets A, B and C are disjoint. A
MixNet works by A entering a set of input ciphertexts, consider for example
ElGamal style ciphertexts over our elliptic curve group G, i.e. the vector v = (vi)
consists of values of the form

vi = (Mi + [ki] · Q, [ki] · P)

for some ElGamal public key Q = [x] · P . We then want to shuffle these cipher-
texts and output a new set of ciphertexts v′ which are the result of the shuffle.
Here we utilize the malleability of ElGamal ciphertexts to transform an encryp-
tion of a message Mi into another ciphertext encrypting the same message.
Traditionally each Mixer in the MixNet performs a shuffle and provides a zero-
knowledge proof that the resulting output ciphertexts are in fact the permuted
(and randomized) input ciphertexts. Then the data is passed onto another Mixer
which does the same operation. Thus B consists of a number of parties all of
whom operate in sequence. The receiving parties C need to verify all of the
zero-knowledge proofs from each Mixer.

In this work we examine whether one can treat B as a single multi-party
mixer, and thus end up with a single zero-knowledge proof. To do this we examine
the MixNet protocol of Abe [2], and cast it not as a single player protocol but as
a multi-party protocol. Our protocol consists of two stages. In the first stage we
generate a secret-shared permutation π, then in the second stage we utilize the
permutation π to shuffle the ciphertexts and produce the zero-knowledge proofs.

Stage 1: Producing the Shared Permutation: In this stage each of our
n parties generates a random permutation πi, represented as a permutation
matrix. They enter it into the MPC system, and the parties then multiply the
permutation matrices together to form a permutation π. We then need to derive
switches for a Waksman network producing the same permutation as π. We leave
this step to the next section. Note that we cannot generate shared random bits
and use these as the control bits for a Waksman network, as this does not result
in a uniformly random permutation, as was observed in [3].

Stage 2: Producing the Ciphertext Permutation and Proof: To perform
the second step we can concentrate on what happens at a single switching gate

Distributing Any Elliptic Curve Based Protocol 359

in the Waksman network. Let the control bit for this gate be secret shared as
〈b〉F , where b ∈ {0, 1}, and we assume the input ciphertexts are given by

v0 = (A0, B0) = (M0 + [k0] · Q, [k0] · P),
v1 = (A1, B1) = (M1 + [k1] · Q, [k1] · P).

for some unknown messages M0,M1 and ephemeral keys k0 and k1. In Abe’s
MixNet the output of the switching gate will be the values

v′
b = (Ab, Bb) = (A0 + [r0] · Q,B0 + [r0] · P),

v′
1−b = (A1−b, B1−b) = (A1 + [r1] · Q,B1 + [r1] · P),

plus a zero-knowledge proof of the statement that
(

logQ(A0 − A0) = logP (B0 − B0) = r0

AND logQ(A1 − A1) = logP (B1 − B1) = r1

)

OR
(

logQ(A0 − A1) = logP (B0 − B1) = r1

AND logQ(A1 − A0) = logP (B1 − B0) = r0

)

given the secret input r0 and r1. This is (again) a relatively standard Sigma
protocol proof, and we have already seen how to produce an (albeit simpler)
zero-knowledge proof for an OR statement of equality of discrete logarithms
in Sect. 4. For the values of r0 and r1 we take a Beaver triple (〈r0〉F , 〈r1〉F ,
〈r2〉F) from the pre-processing. These values of 〈r0〉F and 〈r1〉F are also used to
generate the zero-knowledge proof. Thus we only need to produce the values of
Ab, Bb etc., which can be derived from the assignments

〈C0〉E ← A0 + [〈r0〉F] · Q,

〈D0〉E ← B0 + [〈r0〉F] · P,

〈C1〉E ← A1 + [〈r1〉F] · Q,

〈D1〉E ← B1 + [〈r1〉F] · P,

〈A0〉E ← [1 − 〈b〉F] · 〈C0〉E + [〈b〉F] · 〈C1〉E ,

〈B0〉E ← [1 − 〈b〉F] · 〈D0〉E + [〈b〉F] · 〈D1〉E ,

〈A1〉E ← [1 − 〈b〉F] · 〈C1〉E + [〈b〉F] · 〈C0〉E ,

〈B1〉E ← [1 − 〈b〉F] · 〈D1〉E + [〈b〉F] · 〈D0〉E .

We can then open (〈A0〉E , 〈B0〉E , 〈A1〉E , 〈B1〉E), and produce the zero-
knowledge proof as well.

6 Generating the Waksman Control Bits

We are now left with the final problem of giving an algorithm which on input
of a secret-shared permutation matrix, outputs the secret-shared control bits

360 N. P. Smart and Y. Talibi Alaoui

of the associated Waksman network. Recall we simplify the algorithm, and the
network, by not having the fixed switch in the first gate of each output layer (thus
increasing the number of gates by m/2−1 from a traditional Waksman network).
There is a classical algorithm for this [20], but it is not obvious how to translate
this to work in a data-oblivious manner. Thus in this section we show how
to perform this transformation obliviously. We let M denote the permutation
matrix which we start with, whose i-th row and j-th column element we refer
to as Mi,j . We assume that (the shared value of) M is guaranteed on input to
be a permutation matrix; which can be checked by opening the column and row
sums and checking them to be equal to m, as well as opening Mi,j · (Mi,j − 1)
and verifying it is equal to zero for all i and j.

In what follows, to explain the algorithm used to do this conversion from the
matrix to control bits, and how we realized it with MPC, we will use a running
example which is the permutation π̃ of matrix given earlier:

M̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The high level idea behind the algorithm uses the fact that a Waksman network
has a recursive structure, hence finding the control bits for a given permutation
π can be done recursively. From π we determine two permutations π1, π2 for
the two subnetworks, as well as control bits for the inward and outward layers,
such that the composition of these realizes π. Then we apply the same process
on π1, π2 and so on, till a control bit is determined for every switch. The process
proceeds in the three steps:

– Step One: The first step consists of taking the m × m permutation matrix
M of π, and merging coordinates corresponding to the same input or output
switch, e.g., the first and second rows correspond to the first inward switch
thus they will be merged. The first and second columns correspond to the
first outward switch, they will be merged as well. Thus, this will result in an
m/2×m/2 matrix M ′ such that M ′

i,j = M2·i−1,2·j−1+M2·i,2·j−1+M2·i−1,2·j+
M2·i,2·j . For instance, for the permutation π̃, M̃ ′ will be

M̃ ′ =

⎡

⎢
⎢
⎣

2 0 0 0
0 1 0 1
0 0 2 0
0 1 0 1

⎤

⎥
⎥
⎦

– Step Two: In the second step, we construct two permutation matrices M1

and M2 such that M1
i,j + M2

i,j = M ′
i,j . Those matrices will be the ones

Distributing Any Elliptic Curve Based Protocol 361

corresponding respectively to π1 and π2, the permutations of the two sub
networks. For our example, M̃1 and M̃2 can be (one has a choice obviously)

M̃1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ M̃2 =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤

⎥
⎥
⎦

– Step Three: The last step is then setting the control bits for the inward and
outward layers. The algorithm does this by identifying the coordinates of the
entries in M , that correspond to the entries in M1 which are equal to one.
So for our example M̃1

2,2 = 1 as this entry corresponds to the one in position
(4, 4) of M̃ , therefore the coordinates (4, 4) are identified. Note that for some
entries, two coordinates can be identified instead of one, which is the case for
M̃1

1,1 and M̃1
3,3 in our example. When this happens, one of the coordinates is

identified (which one does not matter for the algorithm) As such, for example,
the coordinates (2, 1), (4, 4), (5, 5) and (8, 7) could be identified.
Then within each of these coordinates, if there is an even component, the
associated switch to this component is identified and its control bit is set to
be one. So for our example, the coordinates (2, 1) contain an even component
(in the first position) and thus the associated switch to this even component
is the switch one, i.e. 2/2, in the inward layer, i.e. control one bit is set to
one.
Similarly, the coordinates (4, 4), and (8, 7) contain even components, and so
the associated switches to these even components are 2 = 4/2 and 4 = 8/2
in the inward layer and 2 = 4/2 in the outward layer, and their associated
control bits are also set to one.
The control bit of all the remaining switches in the inward and outward layers
are set to zero.

This process is repeated recursively on the sub networks, until we reach the
subnetworks of size 2 which are simply switches. For such switches, if the corre-
sponding matrix is the identity matrix, we set the switch to be zero, otherwise,
we set it to be one. Figure 5 illustrates the resulting realization of the permuta-
tion π̃.

Making the Algorithm Suitable for MPC Implementation: Recall, our
aim is to transform a secret shared permutation matrix M of π, into secret
shared control bits realizing it. We can achieve this if we somehow manage to
transform the above algorithm into arithmetic operations.

The first step of the algorithm is easy to transform, as constructing M ′ is
by definition done by summing up entries from M of known coordinates, and is
thus a local operation when M is presented in secret shared form.

The last step is also relatively easy to transform; it consists of comparing
entries from M1 with entries from M , then checking whether coordinates contain

362 N. P. Smart and Y. Talibi Alaoui

even components. As such, the control bit bink for the switch k in the inward layer
and boutk in the outer layer can be computed as

bink =
j=m/2∑

j=1

M1
k,j · (M2·k,2·j−1 + M2·k,2·j),

boutk =
i=m/2∑

i=1

M1
i,k · (M2·i−1,2·k · (1 − M2·i,2·k−1) + M2·i,2·k).

The control bit corresponding to a subnetwork of size two can be computed as

bmid = M1,2,

as we have M = I2 if no switch occurs and M is the off-diagonal 2 × 2 matrix if
a switch occurs.

The second step is the most intricate one to transform, given that we need
to split a secret shared matrix M ′ into two secret-shared permutation matrices
M1 and M2. Our idea for this step is to express constraints on M1 and M2

into equations, where variables are entries of M1 and M2. Therefore, solving
these equations identifies M1 and M2. This solution is then accomplished by
making use of the fact that the entries are integers in {0, 1}, which constrains
their possible value considerably.

The first constraint on M1 and M2 is that they sum up to M ′, i.e. for
i, j ∈ {1, . . . , m/2} we have

M1
i,j + M2

i,j = M ′
i,j

The second constraint on M1 and M2 is that they are permutation matrices,
which translates into the set of linears equations for j ∈ {1, . . . , m/2} and k ∈
{1, 2}

m/2∑

i=1

Mk
i,j = 1 and

m/2∑

i=1

Mk
j,i = 1,

as well as the quadratic equations for i, j ∈ {1, . . . , m/2} and k ∈ {1, 2}
Mk

i,j · (Mk
i,j − 1) = 0.

To find M1 and M2, the strategy will be to solve the linear equations, while
allowing entries Mk

i,j to have values only in {0, 1}, which thus caters for the
quadratic equations.

We do this by first initializing the matrices M1, M2, O1 and O2 by having
their entries equal to zero. The matrices M1 and M2 will contain at the end the
permutation matrices of π1 and π2, as soon as we fix an entry in Mk

i,j we set
Ok

i,j equal to one. This is represented by the algorithm Init(M1,M2, O1, O2) in
Fig. 13.

The next step of the process consists of setting entries Mk
i,j that have only

one solution, see the function StartFix(M ′,M1,M2, O1, O2) in Fig. 13. When we

Distributing Any Elliptic Curve Based Protocol 363

have M ′
i,j = 0 (resp. 2) then we know that the values Mk

i,j must be equal to zero
(resp. one), since these are the only ways integers in {0, 1} can add up to zero
(resp. two).

For our example, after the execution of StartFix our values of Õ1 and Õ2

become

Õ1 =

⎡

⎢
⎢
⎣

1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0

⎤

⎥
⎥
⎦ Õ2 =

⎡

⎢
⎢
⎣

1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0

⎤

⎥
⎥
⎦

If Mk are not fully determined at this stage, we need to deal with entries cor-
responding to one’s in M ′. Having a one in M ′

i,j means that one of the entries
M1

i,j ,M
2
i,j is equal to one, and the other equals zero. We will take (as a free

choice) coordinates (i, j) of the first entry in M ′ that is equal to one, and we will
set M1

i,j to be one. See procedure MakeChoice in Fig. 13. In our example, after
making such a choice, Õ1 and Õ2 become

Õ1 =

⎡

⎢
⎢
⎣

1 1 1 1
1 1 1 0
1 1 1 1
1 0 1 0

⎤

⎥
⎥
⎦ Õ2 =

⎡

⎢
⎢
⎣

1 1 1 1
1 1 1 0
1 1 1 1
1 0 1 0

⎤

⎥
⎥
⎦

Making a choice will fix one entry in Mk, and fixing an entry in Mk will allow
us to fix other entries, see sub-procedure Update in Fig. 13. For our example, after
executing Update, all entries Õk

i,j are equal to one and therefore M1,M2 are fully
determined. However, executing Update only once does not always guarantee to
fix all entries that can be fixed with respect to the choice made, in addition
making one choice does not guarantee that all entries will be fixed. That is,
some permutations require repeated application of MakeChoice and Update until
all the values Õk

i,j are equal to one. Then we need to determine the bounds of
how many times we should iterate these steps.

At the end of the execution of StartFix, in each row i (resp. column j) of Mk,
either m/2− 2 entries are fixed (which is the case where the row i (resp. column
j) in M ′ contained two one’s), or m/2 entries are fixed (which is the case where
the row i (resp. the column j) in M ′ contained an entry that is equal to two).
Thus, at most n entries in Mk remain unfixed.

Recall once we make a choice to fix one entry in Mk, this allows us to fix
other entries. That is, at least row i and column j in Mk will now contain only
one entry that is not fixed, respectively Mk

i,f and Mk
f ′,j . This is because each

row (resp. column) in Ok can contain at most two zero entries before fixing the
value (i, j). These two entries will themselves fix one entry in row f ′ and one
entry in column f (if f = f ′ only one entry will be fixed). Therefore, making a
choice and updating with respect to it will fix at least four other entries, with
the minimum occurring when f = f ′. Thus, we will need to execute MakeChoice
at most m/4 times.

364 N. P. Smart and Y. Talibi Alaoui

Init(M1, M2, O1, O2):
1. For k ∈ {1, 2} and i, j ∈ {1, . . . , m

2
}:

(a) Mk
i,j ← 0, Ok

i,j ← 0.

StartFix(M ′, M1, M2, O1, O2):
1. For i, j ∈ {1, . . . , m

2
}:

(a) If (M ′
i,j = 0) then set O1

i,j ← 1, O2
i,j ← 1.

(b) If (M ′
i,j = 2) then set M1

i,j ← 1, O1
i,j ← 1, M2

i,j ← 1, O2
i,j ← 1.

MakeChoice(M ′, M1, M2, O1, O2):
1. For i, j ∈ {1, . . . , m

2
}

(a) If (M ′
i,j = 1 and O1

i,j = 0) then set M1
i,j ← 1, M2

i,j ← 0, O1
i,j ← 1,

O2
i,j ← 1 and return.

Update(M1, M2, O1, O2):
1. For i, j ∈ {1, . . . , m

2
}:

(a) If (O1
i,j = 0)

i. If (

m
2∏

k=1
k �=j

O1
i,k = 1) then set M1

i,j ← 1− (

m
2∑

k=1
k �=j

M1
i,k), O1

i,j ← 1, M2
i,j ←

1 − M1
i,j and O2

i,j ← 1.
(b) If (O1

i,j = 0)

i. If (

m
2∏

k=1
k �=i

O1
k,j = 1) then set M1

i,j ← 1− (

m
2∑

k=1
k �=i

M1
k,j), O1

i,j ← 1, M2
i,j ←

1 − (M1
i,j) and O2

i,j ← 1.

Waksman-Sub(M ′):
1. Init(M1, M2, O1, O2).
2. StartFix(M ′, M1, M2, O1, O2).
3. For c ∈ {1, . . . , m

4
}

(a) MakeChoice(M ′, M1, M2, O1, O2) .
i. For k ∈ {1, . . . , m + 1 − 4 · c}
A. Update(M1, M2, O1, O2).

Fig. 13. Waksman algorithm step 2 sub-procedures

Assuming that the first execution of Update after MakeChoice will fix at least
three entries, and each execution of Update after the first execution will at least
fix one entry of the entries that can be fixed. Also the choice we made may fix the
whole of the matrices Mk. Thus, we will need to execute Update m+1−4·c times
where c is the number of choices already made. This gives the final procedure
for the second step in sub-algorithm Waksman-Sub in Fig. 13.

Transforming the Algorithm: Having produced an (almost) data-oblivious
methodology to generate a Waksman network we now need to transform it into
a fully data-oblivious methodology by replacing all operations with algebraic

Distributing Any Elliptic Curve Based Protocol 365

operations. Again steps one and three are trivial, thus we are left with step two.
The key step is dealing with the conditional operations, but this can be easily
transformed into algebraic operations as follows.

At various points we need to determine whether a value in {0, 1, 2} is equal
to zero, one or two. This can be done via algebraic operations using three simple
quadratic functions, namely

Q0(x) = (x − 1) · (x − 2)/2,

Q1(x) = −x · (x − 2),
Q2(x) = x · (x − 1)/2.

Given these functions converting Fig. 13 into a secret shared format is relatively
simple; which we give in the full version.

Acknowledgements. The authors would like to thank Tim Wood, for insightful dis-
cussions and suggestions. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under
contracts No. N66001-15-C-4070 and FA8750-19-C-0502, and by the FWO under an
Odysseus project GOH9718N. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect
the views of the ERC, DARPA or FWO.

References

1. Abe, M.: Universally verifiable mix-net with verification work independent of the
number of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 437–447. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054144

2. Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Hei-
delberg (1999). https://doi.org/10.1007/978-3-540-48000-6 21

3. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks.
In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44586-2 23

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

5. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

6. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

https://doi.org/10.1007/BFb0054144
https://doi.org/10.1007/978-3-540-48000-6_21
https://doi.org/10.1007/3-540-44586-2_23
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-642-40203-6_1

366 N. P. Smart and Y. Talibi Alaoui

7. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

8. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy,
pp. 980–997. IEEE Computer Society Press, May 2018

9. Fauzi, P., Lipmaa, H., Siim, J., Zaj ↪ac, M.: An efficient pairing-based shuffle argu-
ment. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol.
10625, pp. 97–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 4

10. Fauzi, P., Lipmaa, H., Zaj ↪ac, M.: A shuffle argument secure in the generic model. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp.
841–872. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-
6 28

11. González, A., Ráfols, C.: New techniques for non-interactive shuffle and range
arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS,
vol. 9696, pp. 427–444. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39555-5 23

12. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 506–525.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 27

13. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 18

14. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 21

15. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: Lie, D., Mannan, M.,
Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1837–1854. ACM Press, October
2018

16. Lindell, Y., Nof, A., Ranellucci, S.: Fast secure multiparty ECDSA with practi-
cal distributed key generation and applications to cryptocurrency custody. IACR
Cryptology ePrint Archive 2018, 987 (2018). https://eprint.iacr.org/2018/987

17. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

18. Smart, N.P.: Cryptography Made Simple. ISC. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-319-21936-3

19. Smart, N.P., Wood, T.: Error detection in monotone span programs with appli-
cation to communication-efficient multi-party computation. In: Matsui, M. (ed.)
CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-12612-4 11

20. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-319-70697-9_4
https://doi.org/10.1007/978-3-662-53890-6_28
https://doi.org/10.1007/978-3-662-53890-6_28
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1007/978-3-319-63715-0_21
https://eprint.iacr.org/2018/987
https://doi.org/10.1007/BFb0054113
https://doi.org/10.1007/978-3-319-21936-3
https://doi.org/10.1007/978-3-030-12612-4_11
https://doi.org/10.1007/978-3-030-12612-4_11

Author Index

Abdolmaleki, Behzad 1
Armour, Marcel 22

Baghery, Karim 42
Betty, Rowena Alma L. 64
Branco, Pedro 78

Camenisch, Jan 102
Cozzo, Daniele 128

Damgård, Ivan 154
Delaplace, Claire 178
Ding, Jintai 78
Dubovitskaya, Maria 102

Eichlseder, Maria 200
Esser, Andre 178

Goulão, Manuel 78

Haagh, Helene 154

Kales, Daniel 200
Khoshakhlagh, Hamidreza 1

Lau, Terry Shue Chien 215
Lee, Hyang-Sook 236

Martínez, Ramiro 252
Mateus, Paulo 78
May, Alexander 178
Morillo, Paz 252
Munemasa, Akihiro 64
Murthy, Shyam 278

Nielsen, Michael 154

Orlandi, Claudio 154

Park, Jeongeun 236
Poettering, Bertram 22
Prabowo, Theo Fanuela 215

Sato, Shingo 295, 317
Schofnegger, Markus 200
Shikata, Junji 295, 317
Slamanig, Daniel 1
Smart, Nigel P. 128, 342

Talibi Alaoui, Younes 342
Tan, Chik How 215
Towa, Patrick 102

Vivek, Srinivas 278

	Preface
	Organization
	Contents
	A Framework for UC-Secure Commitments from Publicly Computable Smooth Projective Hashing
	1 Introduction
	2 Preliminaries
	2.1 SPHFs on Languages of Ciphertexts

	3 Publicly Computable SPHFs
	3.1 PC-SPHF on ElGamal Ciphertexts
	3.2 PC-SPHF on (Labeled) Cramer-Shoup Ciphertexts

	4 UC-Secure Commitment Scheme from PC-SPHFs
	4.1 Generic UC-Secure Commitment
	4.2 Efficient Instantiation

	5 Anonymous Credential System-Based Message Transmission
	6 Open Problem
	References

	Subverting Decryption in AEAD
	1 Introduction
	2 Notation and Definitions
	2.1 Symmetric Encryption

	3 ASAs on Symmetric Encryption Schemes
	4 Mounting Attacks via Decryption Subversion
	4.1 Attack 1: Passive
	4.2 Attack 2: Active

	5 Implementation
	6 Breaking Security Without Extracting the Full Key
	7 Conclusion
	A Pseudo-Random Functions and Permutations
	References

	Subversion-Resistant Simulation (Knowledge) Sound NIZKs
	1 Introduction
	2 Preliminaries
	2.1 Definitions

	3 Subversion-Resistant Simulation-Extractable NIZKs
	3.1 Construction
	3.2 Efficiency
	3.3 Security Proofs

	4 A Sub-ZK Simulation-Extractable SNARK
	5 Conclusion
	References

	Classification of Self-dual Codes of Length 20 over Z4 and Length at Most 18 over F2+uF2
	1 Introduction
	2 Preliminaries
	3 The Automorphism Group of the Residue Code of a Self-dual Z4-code
	4 Classification of Self-dual Z4-codes with Given Residue
	5 Classification of Self-dual F2+uF2-codes with Given Residue
	References

	A Framework for Universally Composable Oblivious Transfer from One-Round Key-Exchange
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 One-Round Key-Exchange

	3 A Framework for OT Using ORKE
	4 Efficiency and Comparison
	A UC-Security and Ideal Functionalities
	B Framework Instantiations
	B.1 DH-Based OT
	B.2 RLWE-Based OT
	B.3 SIDH-Based OT

	References

	Efficient Fully Secure Leakage-Deterring Encryption
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Ciphertext-Policy Attribute-Based Encryption Schemes

	3 Definitions and Security Model
	3.1 Time-Based Leakage-Deterring Encryption Schemes
	3.2 Security Definitions

	4 Generic Construction of a TB-LDE Scheme
	5 Instantiation
	6 Construction in the Random Oracle Model
	7 Non–Time-Based LDE Schemes
	7.1 Security Definitions
	7.2 Generic Construction
	7.3 Instantiation

	8 Revocation
	8.1 Anonymous Revocation Components
	8.2 Revocable (TB-)LDE Schemes

	9 Interactive Recoverability
	10 Conclusion
	A Preliminaries
	A.1 Pairing Groups and Hardness Assumptions
	A.2 BBS+ Signature Scheme
	A.3 Dual Pairing Vector Spaces
	A.4 Okamoto–Takashima Adaptively-Secure CP-ABE Scheme

	References

	Sharing the LUOV: Threshold Post-quantum Signatures
	1 Introduction
	2 Preliminaries
	3 Lattice Based Schemes
	3.1 Crystals-Dilithium
	3.2 qTesla
	3.3 Falcon

	4 MPC-in-the-Head Based Scheme
	4.1 Picnic

	5 Hash Based Scheme
	5.1 SPHINCS+

	6 MQ Based Schemes
	6.1 Rainbow
	6.2 LUOV

	References

	Commodity-Based 2PC for Arithmetic Circuits
	1 Introduction
	2 Commodity-Based Oblivious Linear Evaluation
	3 Implementation
	A Our Constructions in the Big Picture
	B Preliminaries
	B.1 Security Model
	B.2 Commodity Model
	B.3 Commitments
	B.4 Oblivious Linear Evaluation

	C More Details on Commodity-Based OLE
	D Allowing Servers to Be Memoryless
	References

	Improved Low-Memory Subset Sum and LPN Algorithms via Multiple Collisions
	1 Introduction
	2 Preliminaries
	3 New Subset-Sum Trade-Offs Using PCS
	3.1 Algorithm SS-PCS
	3.2 Algorithm SS-PCS4

	4 Application to LPN
	4.1 Computing c-sums with PCS

	5 Experimental Verification of Heuristic 1
	References

	Forgery Attacks on FlexAE and FlexAEAD
	1 Introduction
	2 Description of and
	3 Forgery Attacks on
	3.1 Differential Characteristic for the Counter Sequence
	3.2 Forgery Attacks for Using the Counter Difference

	4 Discussion and Further Observations on the Mode
	4.1 Domain Separation and Length Issues
	4.2 Other Observations
	4.3 Applicability to
	4.4 Practical Verification
	4.5 Tweaks Suggested by 's Designers

	5 Conclusion
	References

	Key Recovery Attacks on Some Rank Metric Code-Based Signatures
	1 Introduction
	2 Background on Rank Metric Code-Based Cryptography
	3 First Polynomial Time Attack on Rank Metric FS Signature Schemes
	3.1 Idea of Attack
	3.2 First Attack on TPL Signature Scheme
	3.3 First Attack on RQCS Signature Scheme
	3.4 First Attack on Veron Signature Scheme

	4 Second Polynomial Time Attack on Rank Metric FS Signature Schemes
	4.1 Idea of Attack
	4.2 Second Attack on TPL Signature Scheme
	4.3 Second Attack on RQCS Signature Scheme

	5 Experimental Results for Our Attacks
	6 Conclusion
	A Proof of Lemma 2.
	B Proof of Proposition 1.
	C Proof of Theorem 1.
	D Proof of Proposition 2.
	E Proof of Proposition 3.
	F Rank Support Recovery Algorithm
	References

	On the Security of Multikey Homomorphic Encryption
	1 Introduction
	1.1 Multikey Fully Homomorphic Encryption Schemes
	1.2 Our Contribution
	1.3 Organization

	2 Preliminaries
	2.1 TFHE Scheme
	2.2 TGSW and an External Product
	2.3 Multikey Version of TFHE
	2.4 Distributed Decryption

	3 Multikey Fully Homomorphic Encryption Security
	4 Distributed Decryption for Only Joint Users
	4.1 Distributed Decryption Protocol
	4.2 Specific Protocol with Multikey TFHE Scheme

	5 Round Optimal MPC Protocol Without a CRS via Two MFHE Schemes
	5.1 MTFHE2 Scheme Without Common Random String
	5.2 2 Round MPC Without a CRS via MTFHE2

	References

	RLWE-Based Zero-Knowledge Proofs for Linear and Multiplicative Relations
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Zero-Knowledge Proofs
	2.3 Ring Learning with Errors
	2.4 Stern Identification Scheme

	3 Commitment Scheme
	3.1 Knowledge of a Valid Opening
	3.2 Linear Relation
	3.3 Multiplicative Relation

	4 Comparisons and Conclusions
	4.1 Comparisons with Other Proposals
	4.2 Final Conclusions

	References

	Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data
	1 Introduction
	2 Cryptanalysis of a Secure k-NN Protocol
	2.1 Protocol from KesarwaniKNPSMM18
	2.2 Our Attack
	2.3 Running Time Analysis
	2.4 Further Optimisation

	3 Experiments and Results
	3.1 Experiments with Random Values
	3.2 Experiments with Real World Data

	4 Attack on the Secure k-NN Protocol in the Noisy Setting
	5 Conclusion and Future Work
	References

	Quantum-Secure (Non-)Sequential Aggregate Message Authentication Codes
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 Pseudorandom Function and Pseudorandom Generator
	2.2 Quantum Security of MAC

	3 Quantum-Secure AMAC
	3.1 Quantum Security of AMAC
	3.2 Katz-Lindell Construction

	4 Quantum Security for SAMACs
	5 Quantum-Secure Constructions of SAMACs
	5.1 SAMAC1
	5.2 SAMAC2

	6 Conclusion
	References

	SO-CCA Secure PKE in the Quantum Random Oracle Model or the Quantum Ideal Cipher Model
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 Quantum Computation
	2.2 Cryptosystems

	3 SIM-SO-CCA Secure PKE from KEM Schemes
	3.1 KEM/DEM Framework
	3.2 PKE from FO-Based KEM Schemes

	4 Conclusion
	References

	Distributing Any Elliptic Curve Based Protocol
	1 Introduction
	2 Preliminaries
	3 Multiparty Computation Over Elliptic Curve Groups
	3.1 MACCheck Protocol
	3.2 MPC Online Protocol

	4 Simple Example Applications
	5 Application to MixNets
	6 Generating the Waksman Control Bits
	References

	Author Index

