
PRONOM: Proof-Search
and Countermodel Generation
for Non-normal Modal Logics

Tiziano Dalmonte1 , Sara Negri2 , Nicola Olivetti1 ,
and Gian Luca Pozzato3(B)

1 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{tiziano.dalmonte,nicola.olivetti}@lis-lab.fr

2 Department of Philosophy, University of Helsinki, Helsinki, Finland
sara.negri@helsinki.fi

3 Dipartimento di Informatica, Universitá degli Studi di Torino, Turin, Italy
gianluca.pozzato@unito.it

Abstract. We present PRONOM, a theorem prover and countermodel
generator for non-normal modal logics. PRONOM implements some
labelled sequent calculi recently introduced for the basic system E and
its extensions with axioms M, N, and C based on bi-neighbourhood
semantics. PRONOM is inspired by the methodology of leanTAP and is
implemented in Prolog. When a modal formula is valid, then PRONOM
computes a proof (a closed tree) in the labelled calculi having that for-
mula as a root in the labelled calculi, otherwise PRONOM is able to
extract a model falsifying it from an open, saturated branch. The paper
shows some experimental results, witnessing that the performances of
PRONOM are promising.

Keywords: Non-normal modal logics · Labelled sequent calculi ·
Theorem proving

1 Introduction

Non-Normal Modal Logics (NNML for short) have been studied since the seminal
works by C.I. Lewis, Scott, Lemmon, and Chellas (for an introduction see [3]) in
the 1960s. They are a generalization of ordinary modal logics that do not satisfy
some axioms or rules of minimal normal modal logic K. They have gained interest
in several areas such as epistemic and deontic reasoning, reasoning about games,
and reasoning about “truth in most of the cases”.

In epistemic reasoning, where �A is read as “the agent knows/believes A”, it
was early observed [21] that NNML offers a partial solution to the problem of
omniscience: a non-omniscient agent would not necessarily be able to conclude

Supported by the ANR project TICAMORE ANR-16-CE91-0002-01, the Academy of
Finland project 1308664 and INdAM project GNCS 2019 “METALLIC #2”.
c© Springer Nature Switzerland AG 2019
M. Alviano et al. (Eds.): AI*IA 2019, LNAI 11946, pp. 165–179, 2019.
https://doi.org/10.1007/978-3-030-35166-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35166-3_12&domain=pdf
http://orcid.org/0000-0002-7153-0506
http://orcid.org/0000-0003-3958-6312
http://orcid.org/0000-0001-6254-3754
http://orcid.org/0000-0002-3952-4624
https://doi.org/10.1007/978-3-030-35166-3_12

166 T. Dalmonte et al.

that she knows (or believes) B from that fact that she knows both A and A → B,
that is �B does not follows from �A and �A → �B. This corresponds to
rejecting the K-axiom, or even more strongly, the rule of monotonicity (RM)
A → B implies �A → �B and possibly also the rule of necessitation (if B is
valid then also �B is valid) as it corresponds to the assumption that the agent
knows every logical validity.

In deontic logic, where �A is interpreted as “it is obligatory that A”, NNML
may offer a way-out to some well-known paradoxes caused by standard (normal)
deontic logic. The simplest example is Ross’ paradox [20]: let M denotes “the
letter is mailed” and B “the letter is burnt”, obviously M → (M ∨ B), but from
�M , i.e. the obligation of send the letter, it seems odd to conclude �(M ∨ B),
that is the obligation to send the letter or to burn it. Again, in this case the
“culprit” is the (RM) rule mentioned above. A similar analysis underlies the
gentle-murder paradox. Moreover normal deontic logic does not allow one to
represent conflicting obligations: for instance let A be “you go to the faculty
meeting”, it may hold both �A and �¬A (the former because you are a member
of the academic staff, the latter because you have a more important thing to do),
without wanting �⊥, that by (RM) would trivialize obligations. Here the critical
point is axiom C which allows one to conclude �(A ∧ ¬A) from �A and �¬A.
Moreover, also �� (whence the necessitation rule) has been rejected by some
authors, on the base that a logical truth cannot be the object of an obligation.

A non-normal interpretation of modal operators has been considered in logics
of Ability (see [18] and references therein) where the formula �A is interpreted as
“the agent has the ability of doing something which makes A true”; let R denote
“Ann draws a red card” and B “Ann draws a black card”, clearly �(R∨B) holds
as Ann can choose a card from a normal deck of cards that will be either red or
black, but unless she has a “magical” ability, she cannot ensure that she will pick
a red card or a black one, thus it is reasonable (or at least consistent) to assume
both ¬�R and ¬�B. But this shows that the logic of ability does not satisfy
the C axiom (in the dual form): �(A ∨ B) → �A ∨ �B. NNML have also some
interest in the area of game logic, more precisely it turns out that Monotonic
logic extended with axiom �� is a particular case of coalition logics, see [19].

Finally, �A can be interpred as “A is true in almost all cases” [2], with this
interpretation axiom C clearly fails, as the fact that A and B are independently
true in “almost all cases” does not entail that A ∧ B will also be such; a simi-
lar situation arises with a probabilistic reading of �A as “A is true with high
probability” [18].

Non-normal modal logics enjoy a simple semantic characterization in terms
of Neighbourhood models: these are possible world models where each world is
equipped with a set of neighbourhoods, each one being itself a set of worlds; the
basic stipulation is that a modal formula �A is true at a world w if the set of
worlds which make A true belongs to the neighbourhoods of w. A family of logics
is obtained by imposing further closure conditions on the set of neighbourhoods.

PRONOM: Proof-Search and Countermodel Generation for NNML 167

In this paper we describe PRONOM (theorem PROver for NOnnormal Modal
logics) a Prolog theorem prover for the classical cube of non-normal modal logic1.
Not many theorem provers for NNML have been developed so far. Here is a brief
account: in [8] optimal decision procedures are presented for the whole cube of
NNML; these procedures reduce a validity/satisfiability checking in NNML to
a set of SAT problems and then call an efficient SAT solver. For this reason
they probably outperform any (implementation of) specific calculi for these log-
ics, but they do not provide explicitly “proofs”, nor countermodels. A theorem
prover for logic EM based on a tableaux calculus (very similar to the one in
[10]) is presented in [9]: the system handles more complex Coalition Logic and
Alternating Time Temporal logic, and it is implemented in ELAN, an environ-
ment for rewriting systems. Finally [11] presents a Prolog implementation of
a non-normal modal logic containing both the [∀∀] and the [∃∀] modality; the
fragment with just [∃∀] coincides with the logic EM, which is covered also by
our theorem prover.

The prover PRONOM implements the labelled sequent calculi presented in
[4]. These calculi are based on bi-neighbourhood semantics, a variant of the neigh-
bourhood semantics recalled above: in a bi-neighbourhood model each world has
associated a set of pairs of neighbourhoods, the idea being that the two com-
ponents of a pair provide independently a positive and negative support for a
modal formula. The bi-neighbourhood semantics is particularly significant for
logics without monotonicity and maybe of interest in itself. However the main
reason to consider it, rather than the standard one, is that it is easier to generate
countermodels in the bi-neighbourhood semantics than standard neighbourhood
models. On the other hand, it is shown in [4] that the two semantics are equiva-
lent, and more precisely standard neighbourhood models and bi-neighbourhood
models can be constructively transformed into each other. The calculi are mod-
ular and make use of labels to represent both worlds and neighbourhoods in
the syntax. They have invertible rules and provide a decision procedure for the
respective logic. Because of the invertibility of the rules, a finite countermodel
in the bi-neighbourhood semantics (whence in the standard one) can be directly
extracted from a failed derivation.

The Prolog implementation closely corresponds to the calculi: each rule is
encoded by a Prolog clause of a predicate called terminating_proof_search.
This correspondence ensures in principle both the soundness and completeness
of the theorem prover. Termination of proof search is obtained by controlling
the non-redundant application of the relevant rules. PRONOM provides both
proof search and countermodel generation: it searches for a derivation of an
input formula, but in case of failure, it generates a countermodel (in the bi-
neighbourhood semantics) of the formula.

As far as we know, PRONOM is the first theorem prover that provides both
proof search and countermodel generation for the whole cube of non-normal
modal logics. Although there are no benchmarks, its performance seems promis-
ing. The program PRONOM, as well as all the Prolog source files, including those

1 A complete description of the whole cube of NNML will be provided in Sect. 2.

168 T. Dalmonte et al.

used for the performance evaluation, are available for free usage and download
at http://193.51.60.97:8000/pronom/.

2 Non-normal Modal Logics, Neighbourhood Semantics
and Labelled Calculi

In this section, we present the classical cube of NNMLs, both axiomatically and
semantically. The latter is defined in terms of bi-neighbourhood models [4] and
it is equivalent to the standard neighbourhood semantics.

Let Atm be a countable set of propositional variables. The language L con-
tains formulas given by the following grammar: A ::= p | ⊥ | � | A ∨ A | A ∧ A |
A → A | �A, where p ∈ Atm.

The minimal logic E in the language L is defined by adding to classical
propositional logic the rule of inference

A → B B → ARE
�A → �B

,

and can be extended further by choosing any combination of axioms M, C, and
N below on the left, thus producing eight distinct logics (see the classical cube,
below on the right).

M � �(A ∧ B) → �A

C � �A ∧ �B → �(A ∧ B)
N � ��

E

EM

EC EN

EMC EMN

ECN

EMCN (K)

We recall that axioms M and N are respectively equivalent to the rules RM
(A → B/�A → �B) and RN (A/�A), and that axiom K (�(A → B) → �A →
�B) is derivable from M and C. As a consequence, we have that the top system
EMCN is equivalent to the weakest normal modal logic K.

We consider here a variant of the standard neighbourhood semantics for
NNMLs, called bi-neighbourhood semantics [4].

Definition 1. A bi-neighbourhood model is a tuple

M = 〈W,Nb,V〉,
where:

– W is a non-empty set of worlds (states)
– V is a valuation function
– Nb is a bi-neighbourhood function W −→ P(P(W)×P(W)), where P denotes

the power set.

We say that M is a M-model if (α, β) ∈ Nb(w) implies β = ∅, it is a N-model
if for all w ∈ W there is α ⊆ W such that (α, ∅) ∈ Nb(w), and it is a C-model
if (α1, β1), (α2, β2) ∈ Nb(w) implies (α1 ∩ α2, β1 ∪ β2) ∈ Nb(w). The forcing
relation for boxed formulas is as follows:

http://193.51.60.97:8000/pronom/

PRONOM: Proof-Search and Countermodel Generation for NNML 169

w � �A iff there is (α, β) ∈ Nb(w) s.t. α ⊆ [A] and β ⊆ [¬A],

where [A] is, as usual, the truth set of A in W obtained by the valuation V.

In [4] it is shown that the bi-neighbourhood semantics characterises the whole
cube of NNMLs, in the sense that:

Theorem 1. A formula A is a theorem of E iff it is valid in all bi-neighbourhood
models. The correspondence carries over to the extensions: A is a theorem of
E+(M/C/N) iff it is valid respectively in all bi-neighbourhood M/N/C-models
(including any combination of axioms/corresponding model conditions).

It is instructive to recall also the standard neighbourhood semantics and see
how the two semantics are related. A standard neighbourhood model has the form
M = 〈W,Ns,V〉, where W, V are as before, and Ns has type W −→ P(P(W)).
The forcing relation for boxed formulas is: w � �A iff [A] ∈ Ns(w). In addition
we may consider the following conditions: a model M is supplemented if α ∈
Ns(w) and α ⊆ β implies β ∈ Ns(w), it contains the unit if W ∈ Ns(w) for all
w ∈ W, and it is closed under intersection if α, β ∈ Ns(w) implies α∩β ∈ Ns(w).

It is easy to see that every standard model gives rise to a bi-neighbourhood
model, by taking for each neighbourhood α ∈ Ns(x), the pair (α,W \ α). More-
over if the model is supplemented, contains the unit, or is closed under intersec-
tion the corresponding bi-neighbourhood model is a M/N/C model respectively.

On the other hand every bi-neighbourhood model can be transformed into
a standard model [4]: given a bi-neighbourhood model M = 〈W,Nb,V〉 we can
define the standard neighbourhood model M′ = 〈W,Ns,V〉 by taking for all
w ∈ W, Ns(w) = {γ ⊆ P(W) | there is (α, β) ∈ Nb(w) s.t. α ⊆ γ and β ⊆
W \ γ}. It can be proved that the two models are equivalent and that the trans-
formation preserves additional properties (supplementation etc.) whenever the
bi-neighbourhood model is a M/N/C model. For logics without monotonicity the
above transformation can be optimized in order to obtain a model whose size is
polynomially bounded by the size of the original one [4].

We turn now to present the labelled calculi for NNMLs based on the bi-
neighbourhood semantics. The language LLS of labelled calculi extends L with
a set WL = {x, y, z, ...} of world labels, and a set NL = {a, b, c, ...} of neighbour-
hood labels. We define positive neighbourhood terms, written [a1, ..., an], as finite
multisets2 of neighbourhood labels, with the unary multiset [a] representing an
atomic term. Moreover, if t is a positive term, then t is a negative term. Negative
terms t cannot be proper subterms, in particular cannot be negated. The term
τ and its negative counterpart τ are neighbourhood constants.

Intuitively, positive (resp. negative) terms represent the intersection
(resp. the union) of their constituents, whereas t and t are the two members
of a pair of neighbourhoods in bi-neighbourhood models.

The formulas of LLS are of the following kinds:

φ ::= x : A | t �∀ A | t �∃ A | x ∈ t | t ∈ N (x).
2 As a difference with [4] here terms are multisets rather than sets. This is ininfluent

for the properties of the calculi.

170 T. Dalmonte et al.

Sequents are pairs Γ ⇒ Δ of multisets of formulas of LLS . The fully modular
calculi LSE∗ are defined by the rules in Fig. 1.

Initial sequents: x : p, Γ ⇒ Δ, x : p x : ⊥, Γ ⇒ Δ Γ ⇒ Δ, x : �

Propositional rules: As for G3K [12].

x ∈ t, x : A, t �∀ A, Γ ⇒ Δ
L �∀

x ∈ t, t �∀ A, Γ ⇒ Δ

x ∈ t, Γ ⇒ Δ, x : A
R �∀

Γ ⇒ Δ, t �∀ A

x ∈ t, x : A, Γ ⇒ Δ
L �∃

t �∃ A, Γ ⇒ Δ

x ∈ t, Γ ⇒ Δ, x : A, t �∃ A
R �∃

x ∈ t, Γ ⇒ Δ, t �∃ A

[a] ∈ N (x), [a] �∀ A, Γ ⇒ Δ, [a] �∃ A
L�

x : �A, Γ ⇒ Δ

t ∈ N (x), Γ ⇒ Δ, x : �A, t �∀ A t ∈ N (x), t �∃ A, Γ ⇒ Δ, x : �A
R�

t ∈ N (x), Γ ⇒ Δ, x : �A

M
t ∈ N (x), y ∈ t, Γ ⇒ Δ

τ ∈ N (x), Γ ⇒ Δ
Nτ

Γ ⇒ Δ
Nτ

x ∈ τ , Γ ⇒ Δ

[a1, ..., an] ∈ N (x), [a1] ∈ N (x), ..., [an] ∈ N (x), Γ ⇒ Δ
C

[a1] ∈ N (x), ..., [an] ∈ N (x), Γ ⇒ Δ

x ∈ [a1], ..., x ∈ [an], Γ ⇒ Δ
dec

x ∈ [a1, ..., an], Γ ⇒ Δ

x ∈ [a1], Γ ⇒ Δ ... x ∈ [an], Γ ⇒ Δ
dec

x ∈ [a1, ..., an], Γ ⇒ Δ

Application conditions:

x is fresh in R �∀ and L �∃, a is fresh in L�, and x occurs in the conclusion of Nτ .

Fig. 1. The rules of LSE∗.

The above version of the calculi are sound and complete for sequents that
may appear in a backward proof search having at the root a single formula (these
sequents belong to the class of regular sequents, see [4] for details). It is easy to
see that in case of monotonic logics (i.e. logics containing M) the rule R� can be
simplified by eliminating the second premise. The reason is that an application
of the rule L �∃ to the term t will introduce an element y ∈ t in the antecedent,
so that the sequent immediately succeeds by rule M . So we can replace the rule
R� with the following:

t ∈ N (x), Γ ⇒ Δ,x : �A, t �∀ A
R�M

t ∈ N (x), Γ ⇒ Δ,x : �A

Moreover the rule M can also be deleted as it is not applicable anymore.

PRONOM: Proof-Search and Countermodel Generation for NNML 171

3 Design of PRONOM

In this section we present a Prolog implementation of the labelled calculi recalled
in Sect. 2. The program, called PRONOM, is inspired by the “lean” methodology
of leanTAP , even if it does not follow its style in a rigorous manner. The program
comprises a set of clauses, each one of them implementing a sequent rule or an
axiom of LSE and its extensions. The proof search is provided for free by the
mere depth-first search mechanism of Prolog, without any additional ad hoc
mechanism, following the line of the theorem provers for modal and conditional
logics in [1,7,13–17] and for preferential reasoning [5] in [6]. In the case of EM
we consider both the modular version like in Fig. 1, and the optimised version
in which the rule R� is replaced by R�M .

PRONOM represents a sequent with Prolog lists Spheres, Gamma and Delta.
Lists Gamma and Delta represent the left-hand side and the right-hand side of
the sequent, respectively. Elements of Gamma and Delta are labelled formulas,
implemented by Prolog lists with two, three or four elements, as follows:

– standard formulas are pairs [x,f], where x is a label and f is a formula;
– formulas of the form either x ∈ t or x ∈ t are triples [x,0,t] ([x,1,t],

respectively), where x is a label and t represents term t; the inner value,
either 0 or 1, is used to distinguish between positive and negative terms, t
and t, respectively;

– formulas of the form t |=∃ A, or t |=∀ A, or t |=∃ A, or t |=∀ A are repre-
sented by quadruples [exists,t,0,a], [forall,t,0,a], [exists,t,1,a],
[forall,t,1,a], respectively.

The list Spheres contains pairs of the form [x,Items], where Items is the list
of terms belonging to N(x). Symbols � and ⊥ are represented by constants true
and false, respectively, whereas connectives ¬, ∧, ∨, →, and � are represented
by -, ˆ, ?, ->, and box. Propositional variables are represented by Prolog atoms.
As an example, the Prolog lists

[[x,[t]]]
[[y,1,t], [y,a], [forall,t,0,a^b]]
[[exists,t,1,a^b], [x,box(a)]]

are used to represent the sequent t ∈ N(x), y ∈ t, y : A, t |=∀ A ∧ B ⇒ t |=∃

A ∧ B, x : �A.
Given a non-normal modal formula F represented by the Prolog term f,

PRONOM executes the main predicate of the prover, called prove3, whose only
two clauses implement the functioning of PRONOM: the first clause checks
whether F is valid and, in case of a failure, the second one computes a model
falsifying F . In detail, the predicate prove first checks whether the formula is
valid by executing the predicate:

3 The user can run PRONOM without using the interface of the web application. To
this aim, he just need to invoke the goal prove(f).

172 T. Dalmonte et al.

terminating_proof_search(Spheres,Gamma,Delta,ProofTree,RBox,RExist,LAll).

This predicate succeeds if and only if the sequent represented by the lists
Spheres, Gamma and Delta is derivable. When it succeeds, the output term
ProofTree matches with a representation of the derivation found by the prover.
Further arguments RBox,RExist, and LAll are used in order to control the appli-
cation of rules R�, R �∃, and L �∀, for obtaining a terminating proof search.
More in detail, let us consider the rule R�, which is applied (backward) to a
sequent of the form t ∈ N(x), Γ ⇒ Δ,x : �A: both the principal formulas
t ∈ N(x) and x : �A are copied into the premises, then we need to prevent
further applications of the same rule in a backward proof search. In order to
control the application of this rule, the list RBox contains triples of the form
[x,a,t] in order to keep trace of the fact that, in the current branch of the tree,
the rule R� has been already applied to x : �A by using t ∈ N(x). Therefore,
the application of the rule is restricted by instantiating a Prolog variable T such
that [X,A,T] does not belong to RBox. Similarly for RExist and LAll.

As an example, in order to prove that the sequent x : �(A ∧ (B ∨ C)) ⇒ x :
�((A ∧ B) ∨ (A ∧ C)) is valid in E, one queries PRONOM with the goal:

terminating_proof_search([x, []], [[x, (box (a ˆ (b ? c)))]],
[[x, (box ((a ˆ b) ? (a ˆ c)))]], ProofTree, [], [], []).

Each clause of terminating_proof_search implements an axiom or rule of
the sequent calculi LSE and extensions. To search for a derivation of a sequent
Γ ⇒ Δ, PRONOM proceeds as follows. First of all, if Γ ⇒ Δ is an instance of
an axiom, the goal will succeed immediately by using the following clause:

terminating_proof_search(Spheres,Gamma,Delta,tree(axiom),_,_,_):-
member([X,A],Gamma),
member([X,A],Delta),!.

The modular, unoptimised, version for logic EM has also the following clause:

terminating_proof_search(Spheres,Gamma,Delta,tree(m),_,_,_):-
member([_,List],Spheres),
member(T,List),
member([_,1,T],Gamma),!.

If Γ ⇒ Δ is not an instance of the axioms, then the first applicable rule will
be chosen, e.g. if Spheres contains an element [X, List], such that List con-
tains T, representing that t ∈ N(x), and Delta contains a formula [X,box A],
representing that x : �A belongs to the right hand side of the sequent, then the
clause implementing the R� rule will be chosen, and PRONOM will be recur-
sively invoked on the premises of such a rule. PRONOM proceeds in a similar
way for the other rules. The ordering of the clauses is such that the application
of the branching rules is postponed as much as possible. As an example, the
clause implementing R� is as follows:

PRONOM: Proof-Search and Countermodel Generation for NNML 173

1. terminating_proof_search(Spheres,Gamma,Delta,
tree(rbox,LeftTree,RightTree),RBox,RExist,LAll):-

2. member([X,box A],Delta),
3. member([X,SpOfX],Spheres),
4. member(T,SpOfX),
5. \+member([X,A,T],RBox),
6. !,
7. terminating_proof_search(Spheres,Gamma,[[forall,T,0,A]|Delta],

LeftTree,[[X,A,T]|RBox],RExist,LAll),
8. terminating_proof_search(Spheres,[[exists,T,1,A]|Gamma],Delta,

RightTree,[[X,A,T]|RBox],RExist,LAll).

Line 5 implements the restriction on the application of the rule described above,
and used in order to ensure a terminating proof search: given an instantiation
of the Prolog variable T, the rule is applied only in case it has not been already
applied by using the same T for the formula x : �A in the current branch, namely
[X,A,T] does not belong to RBox. Since the rule is invertible, Prolog cut ! is
used in line 6 to eventually block backtracking.

When the predicate terminating_proof_search fails, then the initial for-
mula is not valid, and PRONOM extracts a model falsifying such a formula from
an open saturated branch. This is computed by executing the predicate:

build_saturate_branch(Spheres,Gamma,Delta,Model,RBox,RExist,LAll).

This predicate has the same arguments of terminating_proof_search, with the
exception of the fourth one: here the variable Model matches a description of an
open, saturated branch obtained by applying the rules of the calculi to the initial
formula. Since the very objective of this predicate is to build an open, saturated
branch in the sequent calculus, its clauses are essentially the same as the ones for
the predicate terminating_proof_search, however rules introducing a branch
in a backward proof search are implemented by pairs of (disjoint) clauses, each
one representing an attempt to build an open saturated branch. As an example,
the following clauses implement the saturation in presence of a boxed formula
x : �A in the right hand side of a sequent:

1. build_saturate_branch(Spheres,Gamma,Delta,Model,RBox,RExist,LAll):-
2. member([X,box A],Delta),
3. member([X,SpOfX],Spheres),
4. member(T,SpOfX),
5. \+member([X,A,T],RBox),
6. build_saturate_branch(Spheres,Gamma,[[forall,T,0,A]|Delta],Model,

[[X,A,T]|RBox],RExist,LAll).
7. build_saturate_branch(Spheres,Gamma,Delta,Model,RBox,RExist,LAll):-
8. member([X,box A],Delta),
9. member([X,SpOfX],Spheres),
10. member(T,SpOfX),
11. \+member([X,A,T],RBox),
12. build_saturate_branch(Spheres,[[exists,T,1,A]|Gamma],Delta,Model,

[[X,A,T]|RBox],RExist,LAll).

174 T. Dalmonte et al.

PRONOM will first try to build a countermodel by considering the left
premise of the rule R�, corresponding to recursively invoking the predicate
build_saturate_branch on the premise introducing t |=∀ A in the right hand
side of the sequent in line 6. In case of a failure, the saturation process is com-
pleted by considering the right premise of R� introducing t |=∃ A by the recur-
sive call of line 12.

Clauses implementing axioms for the predicate terminating_proof_search
are replaced by the last clause, checking whether the current sequent represents
an open and saturated branch:

build_saturate_branch(Spheres,Gamma,Delta,model(Spheres,Gamma,Delta),_,_,_):-
\+instanceOfAnAxiom(Spheres,Gamma,Delta).

instanceOfAnAxiom(_,Gamma,Delta):-member([X,A],Gamma),member([X,A],Delta),!.

Since this is the very last clause of the predicate build_saturate_branch, it is
considered by PRONOM only if no other clause/rule is applicable, therefore the
branch is saturated. The auxiliary predicate instanceOfAnAxiom checks whether
the branch is open by proving that it is not an instance of the axioms. The third
argument matches a term model representing the countermodel extracted from
the lists Spheres, Gamma, and Delta.

The implementation of the calculi for extensions of E is very similar:
given the modularity of the calculi LSE∗, the systems implementing the
extensions are easily obtained by adding clauses for both the predicates
terminating_proof_search and build_saturate_branch corresponding to the
rules specifically tailored for the extensions under consideration. The only excep-
tion is logic EM, for which we give also an optimised version containing the rule
R�M instead of R�. For the extensions of EM we only propose the version with
R�M in place of R�.

PRONOM can be used by means of a simple web interface, implemented in
php and allowing the user to check whether a non-normal modal formula is
valid by using a computer or a mobile device. The web interface also allows the
user to choose the modal system to adopt, namely E or one of the extensions
mentioned in Sect. 2. When a formula is valid, PRONOM builds a pdf file showing
a derivation in the sequent calculus LSE (or one of its extensions) as well as the
LATEX source file. Otherwise, a countermodel falsifying the initial formula is
displayed. Prolog source codes and experimental results are also available. Some
pictures of PRONOM are shown in Figs. 2, 3 and 4.

4 Performance of PRONOM

The performance of PRONOM seems to be promising. We have tested it by
running SWI-Prolog, version 7.6.4, on an Apple MacBook Pro, 2.7 GHz Intel
Core i7, 8GB RAM machine. We have performed two kinds of experiments: 1. We
have tested PRONOM over sets of valid formulas in the basic system E as well as
in each considered extension; 2. We have tested PRONOM on randomly generated
formulas, fixing different time limits, numbers of propositional variables, and
levels of nesting of connectives.

PRONOM: Proof-Search and Countermodel Generation for NNML 175

Fig. 2. Home page of PRONOM. When the user wants to check whether a formula F
is valid, then (i) he selects the non-normal modal logic to use, (ii) he types F in the
form and (iii) clicks the button in order to execute the calculi.

Fig. 3. When a formula is valid, PRONOM computes a pdf file as well as a LATEX
source file of a derivation.

Concerning 1, we have considered around hundred valid formulas obtained
by generalizing schemas of valid formulas by varying some crucial parameters,
like the modal degree of a formula (the level of nesting of the � connective). For
instance, we have considered the following schemas (valid in all systems):

(�(�(A1 ∧ (B1 ∨ C1)) ∧ · · · ∧ �(An ∧ (Bn ∨ Cn)))) →
(�(�((A1 ∧ B1) ∨ (A1 ∧ C1)) ∧ · · · ∧ �((An ∧ Bn) ∨ (An ∧ Cn)))

(�nC1 ∧ · · · ∧ �nCj ∧ �nA) → (�nA ∨ �nD1 ∨ · · · ∨ �nDk)

176 T. Dalmonte et al.

Fig. 4. When a formula is not valid, PRONOM computes and displays a counter model
falsifying it.

We have obtained encouraging results: Table 1 reports results for E, from which
it can be observed that PRONOM is able to answer in less than one second on
more than the 75% of the tests, also on valid formulas with high modal degrees.

Table 1. Number of timeouts of PRONOM over 91 valid formulas in E.

0.1 ms 1 ms 100ms 1 s 5 s

51 32 26 22 18

Concerning 2, we have tested PRONOM for E over 1000 random formulas, obtain-
ing the experimental results of Table 2. It is worth observing that, even in case
formulas are generated from 7 different atomic variables and with a high level of
nesting (10), PRONOM is able to answer in more than 80% of the cases within
a time limit of 10 ms.

The random generation often leads to not valid formulas; as a consequence,
this kind of tests has been useful also in order to evaluate the performance of
PRONOM in computing countermodels: indeed, we have considered the number
of timeouts in the execution of the top-level predicate prove described in the
previous section, including the extraction of a countermodel in case of a failure
in the proof search. Again, the experimental results seems to be adequate, and
the time required for the generation of a counter model of a not valid formula is
negligible with respect to the time needed to perform the whole computation.

We have repeated the above experiments also for all the extensions of E
considered by PRONOM, and we have obtained the results in Figs. 5 and 6.

It is worth noticing that the above experimental results refer to the Prolog
component of PRONOM only, thus they do not take into account the effort of

PRONOM: Proof-Search and Countermodel Generation for NNML 177

Table 2. Percentage of timeouts in 1000 random tests (system E).

Number of variables/depth 1ms 10ms 1 s 10 s

3 variables - depth = 5 3% 2% 0 0
3 variables - depth = 7 29% 16% 14% 12%
7 variables - depth = 10 27% 19% 14% 9%

the graphical interface in computing the pdf file of the derivation. Since the web
application often requires a long time to answer, we are currently working on
improving the performances of PRONOM in such a way that the interface will
first provide an answer about the validity of the formula, whereas the generation
of the LATEX/pdf file will be performed only if this option is explicitly selected by
the user by clicking a suitable button. Moreover, we are planning to perform more

Fig. 5. Percentages of timeouts of PRONOM over valid formulas in extensions of E.

Fig. 6. Percentage of timeouts in 1000 random tests for extensions of E.

178 T. Dalmonte et al.

accurate tests following the approach of [8], where randomly generated formulas
can be obtained by selecting different degrees of probability about their validity.

5 Conclusions

We have described a Prolog Theorem prover for non-normal modal logics. As
far as we know ours is the first program that provides both proof-search and
countermodel generation for the whole cube of NNML. It implements directly,
concisely, and modularly the labelled sequent calculi presented in [4]. The system
provides both proof-search and countermodel construction: given a formula to
check, the system outputs either a derivation or a countermodel of the formula,
the latter in the bi-neighbourhood semantics, a variant of the standard neigh-
bourhood semantics. Although the implementation does not make use of any
optimization or any sophisticated data structure, its performances are encour-
aging. In future research we intend to study some improvements like the use of
free variables for term instantiation and other optimisations. We also intend to
implement an automated and efficient transformation of the bi-neighbourhood
countermodels into standard neighbourhood models, as shown in [4].

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: CSL-lean: a theorem-prover for the logic of
comparative concept similarity. Electron. Notes Theoret. Comput. Sci. (ENTCS)
262, 3–16 (2010)

2. Askounis, D., Koutras, C.D., Zikos, Y.: Knowledge means ‘all’, belief means ‘most’.
J. Appl. Non-Classical Logics 26(3), 173–192 (2016)

3. Chellas, B.F.: Modal Logic. Cambridge University Press, Cambridge (1980)
4. Dalmonte, T., Olivetti, N., Negri, S.: Non-normal modal logics: bi-neighbourhood

semantics and its labelled calculi. In: Bezhanishvili, G., D’Agostino, G., Metcalfe,
G., Studer, T. (eds.) Advances in Modal Logic 12, Proceedings of the 12th Confer-
ence on Advances in Modal Logic, 27–31 August 2018, Held in Bern, Switzerland,
pp. 159–178. College Publications (2018)

5. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux for KLM
preferential and cumulative logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR
2005. LNCS (LNAI), vol. 3835, pp. 666–681. Springer, Heidelberg (2005). https://
doi.org/10.1007/11591191_46

6. Giordano, L., Gliozzi, V., Pozzato, G.L.: KLMLean 2.0: a theorem prover for KLM
logics of nonmonotonic reasoning. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS
(LNAI), vol. 4548, pp. 238–244. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73099-6_19

7. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L., Vitalis, Q.: VINTE: an
implementation of internal calculi for Lewis’ logics of counterfactual reasoning. In:
Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp.
149–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1_9

8. Giunchiglia, E., Tacchella, A., Giunchiglia, F.: SAT-based decision procedures for
classical modal logics. J. Automated Reason. 28(2), 143–171 (2002)

https://doi.org/10.1007/11591191_46
https://doi.org/10.1007/11591191_46
https://doi.org/10.1007/978-3-540-73099-6_19
https://doi.org/10.1007/978-3-540-73099-6_19
https://doi.org/10.1007/978-3-319-66902-1_9

PRONOM: Proof-Search and Countermodel Generation for NNML 179

9. Hansen, H.: Tableau games for coalition logic and alternating-time temporal logic-
theory and implementation. Master’s thesis, University of Amsterdam (2004)

10. Lavendhomme, R., Lucas, T.: Sequent calculi and decision procedures for weak
modal systems. Studia Logica 65, 121–145 (2000)

11. Lellmann, B.: Countermodels for non-normal modal logics via nested sequents.
In: Bezhanishvili, N., Venema, Y. (eds.) SYSMICS2019 - Booklet of Abstracts, pp.
107–110. Language and Computation University of Amsterdam, Institute for Logic
(2019)

12. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism
and basic results. IfCoLog J. Log. Appl. 4(4), 1241–1286 (2017)

13. Olivetti, N., Pozzato, G.L.: CondLean: a theorem prover for conditional logics. In:
Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp.
264–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45206-
5_23

14. Olivetti, N., Pozzato, G.L.: CondLean 3.0: improving condlean for stronger con-
ditional logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702,
pp. 328–332. Springer, Heidelberg (2005). https://doi.org/10.1007/11554554_27

15. Olivetti, N., Pozzato, G.L.: Theorem proving for conditional logics: CondLean and
GoalDuck. J. Appl. Non-Classical Logics 18, 427–473 (2008)

16. Olivetti, N., Pozzato, G.L.: NESCOND: an implementation of nested sequent cal-
culi for conditional logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS (LNAI), vol. 8562, pp. 511–518. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08587-6_39

17. Olivetti, N., Pozzato, G.L.: Nested sequent calculi and theorem proving for normal
conditional logics: the theorem prover NESCOND. Intelligenza Artificiale 9, 109–
125 (2015)

18. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-67149-9

19. Pauly, M.: A modal logic for coalitional power in games. J. Logic Comput. 12(1),
149–166 (2002)

20. Ross, A.: Imperatives and logic. Theoria 7, 53–71 (1941)
21. Vardi, M.Y.: On epistemic logic and logical omniscience. In: Theoretical Aspects

of Reasoning About Knowledge, pp. 293–305. Elsevier (1986)

https://doi.org/10.1007/978-3-540-45206-5_23
https://doi.org/10.1007/978-3-540-45206-5_23
https://doi.org/10.1007/11554554_27
https://doi.org/10.1007/978-3-319-08587-6_39
https://doi.org/10.1007/978-3-319-08587-6_39
https://doi.org/10.1007/978-3-319-67149-9

	PRONOM: Proof-Search and Countermodel Generation for Non-normal Modal Logics
	1 Introduction
	2 Non-normal Modal Logics, Neighbourhood Semantics and Labelled Calculi
	3 Design of PRONOM
	4 Performance of PRONOM
	5 Conclusions
	References

