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Preface

This volume contains the papers presented at the main track of AI*IA 2019, the 18th
International Conference of the Italian Association for Artificial Intelligence held
during November 19–22, 2019, in Rende, Italy. The conference is organized by the
Italian Association for Artificial Intelligence (AI*IA – Associazione Italiana per
l’Intelligenza Artificiale), which is a non-profit scientific society founded in 1988
devoted to the promotion of Artificial Intelligence. The association aims to increase the
public awareness of AI, encourage the teaching of it, and promote research in the field.

The main track of the conference received 86 submissions, and 67 of them were
selected for the technical review process. Each selected submission was reviewed by at
least three Program Committee members. The committee decided to accept 41 papers
for presentation at the conference and publication in this volume. The program also
included four invited talks by Giuseppe De Giacomo, Sridhar Mahadevan, Michela
Milano, and Philipp Slusallek. Moreover, as in previous editions of the conference, the
program was enriched by several workshops on specific fields of AI. Finally, a novelty
for this edition of the conference was the presentation of discussion papers about
recently published research.

We acknowledge EasyChair (https://easychair.org/) for providing their conference
management system that significantly simplified the whole process from receiving the
submissions to producing the proceedings. Finally, we thank all the authors who
contributed to the workshops, the Program Committee members and the additional
reviewers for their effort to produce timely and wise reviews.

October 2019 Mario Alviano
Gianluigi Greco

Francesco Scarcello

https://easychair.org/
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Knowledge Representation for AI



Tight Integration of Rule-Based Tools
in Game Development

Denise Angilica, Giovambattista Ianni, and Francesco Pacenza(B)

Department of Mathematics and Computer Science,
University of Calabria, Rende, Italy

{angilica,ianni,pacenza}@mat.unical.it
https://www.mat.unical.it

Abstract. In the wider perspective of narrowing down some of the gaps
that prevent the adoption of declarative logic programming within highly
dynamically changing environments, we focus in this paper on the con-
text of integrating reasoning modules in real-time videogames. Integrat-
ing rule-based AI within the commercial game development life-cycle
poses a number of unsolved challenges, each with non-obvious solution.
For instance, it is necessary to cope with strict time performance require-
ments; the duality between procedural code and declarative specifications
prevents easy integration; the concurrent execution of reasoning tasks
and game updates requires proper information passing strategies between
the two involved sides. In this work we illustrate our recent progress on
how to embed rule-based reasoning modules into the well-known Unity
game development engine. To this end, we report about ThinkEngine, a
framework in which a tight integration of declarative formalisms within
the typical game development workflow is made possible. We prove the
viability of our approach by developing a proof-of-concept Unity game
that makes use of ASP-based AI modules.

Keywords: Answer Set Programming · Artificial Intelligence · Game
Programming · Knowledge Representation and Reasoning · Logic
Programs · Rule-based Systems · Unity

1 Introduction

When comparing declarative, rule-based, formalisms with imperative languages,
one can notice how it can be much easier to solve a problem using the first
approach rather than the second one in a variety of settings. On the one hand,
rule-based knowledge representation techniques feature solid theoretical bases,
they do not need algorithm encoding and they are based on easily modifiable and
maintainable knowledge bases; on the other hand, imperative languages enjoy
a better efficiency, a much wider user base, easier interoperability and better
handling of arbitrary data structures.

Combining these two radically different paradigms, so to achieve the bene-
fits of both worlds, is therefore desirable. Consider for instance the context of
c© Springer Nature Switzerland AG 2019
M. Alviano et al. (Eds.): AI*IA 2019, LNAI 11946, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-35166-3_1
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videogames, one of the real world applications based on imperative languages
with strict real-time requirements. In general, AI techniques have (or could have)
a role in numerous task applications in the game industry, ranging from program-
ming the behavior of non-player characters to game level and content genera-
tion. Especially when considering real-time videogames, this particular context
is really challenging for researchers since it means to work within an highly
reactive environment, requiring really fast responses from a KR system.

Beside performance problems, a second fundamental issue concerns the tech-
nical integration of an external KR module in an Object Oriented environment,
and specifically, a game development engine. It is important to clearly distin-
guish run-time settings from design-time settings. At run-time, a main module,
that we will call the procedural side, takes care of updating the game world. Rea-
soning modules that control artificial players or other aspects of the game, will
play the role of the reasoning side. Screen updates cannot be interrupted: thus
computationally demanding reasoning tasks must be executed within multiple
concurrent execution flows.

To make an embedded reasoning module aware of the state of the videogame
world and to make the main update module able of applying decisions pro-
vided from the reasoning module, it is necessary to devise a proper information
passing strategy. Devising such a strategy is not so trivial, mainly because of
synchronization issues (the world can change while a reasoner is running), and
because of the different data types and representations used respectively on the
reasoning side and on the procedural side. This latter problem requires appropri-
ate data reflection techniques, allowing to examine, introspect, and modify data
structures and behavior of the procedural side at run-time, and to map logical
propositions with object oriented data structures. It is thus clear that, the usage
of KR systems along with imperative languages, can not be seen as a mere call
to an external tool, rather as a tight integration of reasoning capabilities inside
the main environment.

In this work we present our developments in the integration of AI declarative
modules within applications developed in the known Unity game development
engine; in particular we report about the ThinkEngine module that we devel-
oped, which extends our first prototypical system presented in [3] in several
ways:

– we obtained a tight sharing of data structures between the procedural side
and the declarative side; this has been obtained by introducing reflection
techniques which work properly both at design-time and at run-time. Game
designers are relieved from the burden of manually mapping data structures
to and from the two worlds;

– an appropriate asynchronous execution model has been introduced in order to
handle time-consuming reasoning tasks with no interferences with the game
main thread. This required to devise a proper, concurrent, information passing
strategy between reasoning threads and the canonical game thread;

– we introduced the possibility of attaching a reasoning task to a trigger con-
dition or at scheduled times.
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In the remainder of this paper, we first illustrate the Unity engine and the
requirements that must be met when integrating rule-based reasoning tech-
niques in the context of such a game development engine. We then describe
the ThinkEngine module, which has been developed in the form of a Unity re-
usable asset, and we showcase a Unity-based game where the player is controlled
by rule-based reasoning modules programmed in ASP.

2 Integrating Declarative Formalisms into Unity

Unity [4] is a cross-platform game engine primarily used to develop videogames
or simulations for more than 25 different platforms like mobile, computers and
consoles. It supports 2D and 3D graphics, has many visual development aids,
and allows scripting the game logic using the C# language.

Rapid development speed, a very active community, cross-platform integra-
tion and the wide availability of assets such as 3D models, ready to use scripts,
shaders and other extensions, make Unity a user-friendly game engine easy to
learn and to use also for beginners; indeed, Unity is currently the leader of the
global game development engine market, holding the 45% share, nearly three
times the size of its nearest competitor.

Although the Unity community offers a wide range of re-usable assets, only
few of them are aimed to provide Artificial Intelligence capabilities1, and cur-
rently none of them enables developers to make use of a rule-based reasoning
module.

As it can be seen from Fig. 1, the main run-time execution workflow for a
Unity videogame is mostly single-threaded based. Game designers can customize
the game behavior by implementing specific user callback functions, which are
executed within the main thread. For instance, the game designer can provide
her/his own code for the FixedUpdate block, or provide her/his own coroutine.
Coroutines constitute a way for implementing asynchronous cooperative multi-
tasking within a single thread.

The run-time game world consists of a collection of game objects (GOs in the
following), which are subject to continuous updates depending on user input,
on the physics simulation of the game world, and on the game logic enforced
by the game designer. A game object consists of a recursive hierarchy of basic
properties, such as numeric, string and boolean fields, and complex properties,
such as matrices, collections, nested objects, etc.

At design-time, it is possible to work on game objects using the above
property-based philosophy, while the game logic can be edited by attaching
scripted code to specific game events.

3 The ThinkEngine Framework Architecture

The Unity execution model discourages multithreaded programming both for
efficiency and ease of development reasons. Auxiliary threads are allowed in
1 https://assetstore.unity.com/categories/tools/ai.

https://assetstore.unity.com/categories/tools/ai


6 D. Angilica et al.

EDITOR

INPUT EVENTS

INITIALIZATION

SCENE RENDERING

GIZMO RENDERING

GUI RENDERING

END OF FRAME

PAUSING

DECOMMISSIONING

FIXEDUPDATE

INTERNAL ANIMATION UPDATE

INTERNAL PHYSICS UPDATE

INTERNAL ANIMATION UPDATE

PHYSICS

GAME LOGIC

UPDATE

…

YIELD STARTCOROUTINE

Fig. 1. Unity workflow

Unity; however, within these latter most of the Unity API and game object data
structures are purposely made not accessible in that they are not thread-safe.
On the other hand, reasoning tasks are time-consuming and cannot be easily
accommodated in a single-thread execution flow, without slowing down the game
workflow. We thus delegated reasoning tasks to auxiliary threads and introduced
an information passing layer allowing the reasoning side to access and act on a
representation of the game world. This representation is independent from the
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Fig. 2. General run-time architecture of the ThinkEngine framework

Unity API and can be accessed separately. The whole run-time ThinkEngine
architecture is shown in Fig. 2.

In particular the ThinkEngine consists of:

1. A reasoning layer, in which the game world is accessible and encoded in terms
of logical assertions. An answer set solver [5] can elaborate the current state
of the game and produces decisions which are encoded in form of answer sets.

2. An information passing layer which allows to mediate between the reasoning
layer and the actual game logic. In this layer, sensors store data originated
from the upper layers. Sensors correspond to parts of the game world data
structures which are visible from the reasoning layer. On the other hand,
actuators collect decisions taken by the reasoning layer and are used to modify
the game state.

3. A reflection layer, in which a Sensors Manager and an Actuators Manager
keep the mapping between the game world data structures and the lower
layers. On the one hand the Sensors Manager reads selected game world
data which, this way, is made accessible from the reasoning layer. On the
other hand the Actuators Manager updates selected parts of the game world,
based on input coming from the reasoning layer.
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4. One or more brains that can control the three layers. Each brain can access
his own view of the world (i.e. a selected collection of sensors and actuators),
and can be used for programming a separate reasoning activity, like a separate
artificial player logic, etc.

A brain controls both the Sensors Manager and the Solver Executor . The
former is activated periodically or after a configurable trigger condition is met.
The Sensors Manager is responsible of updating all the sensors data mapped to
the current brain.

The brain at hand can concurrently wake the Solver Executor up. This can
happen either when a sensors update is completed or on a configurable trigger
condition. When a Solver Executor is started, it will generate a representation
W of the world expressed in terms of logical assertions (set of input facts) and
it will invoke the ASP solver. The ASP solver is fed in input with W and with a
logical knowledge base KB encoding the AI of the current brain. As soon as the
solver provides decisions encoded in form of an answer set, the Solver Executor
populates the actuators associated with the corresponding brain. The Actuators
Manager monitors actuators values and updates accordingly the properties of
the GO associated with each actuator.

Design-Time Configuration. When configuring a brain at design-time it is pos-
sible to explore the game objects used in the game and to visually select which
sensors are exposed to the reasoning layer, and which actuators will be used to
apply decisions derived from the AI to the game world. These bindings will be
then used by brains at run-time.

Data Structures Reflection. We defined a proper mapping strategy between the
game world data and ASP logic assertions. We introduced a mapping discipline
for basic data types, such as numbers, strings and boolean values. As for com-
plex data types we focused on matrices, since almost every game has a map
represented as a matrix2. For each game data property p it can be chosen a
particular aggregation filter function. For instance, when p is of numeric type,
one can choose between maximum, minimum, average, oldest or newest value.

In general, if p is a property belonging to the game object o, the filtered value
of p is translated to a logic assertion in the form:

sensor.name(gO.Name(propertyi.name(nested_propertyi1.name(

...(basic_type_propertyi.name(VALUE))...)))).

where

– sensor.name is the name of the sensor;
– gO.name is the name of the GO o associated to the sensor;
– propertyi.name is the name of the i-th property in the first layer of the

properties hierarchy of o;

2 For space reasons we will not describe how matrices are translated.
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– nested propertyij.name is the name of the j-th property of the object
referred by the i-th property;

– basic type propertyi.name is the textual name of p, i.e. the i-th basic type
property selected in the properties hierarchy of o;

– the VALUE is the current value of the filter associated to p.

4 Rule-Based Reasoning Modules into Unity at Work

In order to give an idea of how AI declarative modules can be integrated within
applications developed in Unity via the ThinkEngine, we developed a showcase
application. We started from a public available open-source project3, inspired
from the original Tetris game, and we modified this project to obtain an auto-
mated player whose artificial intelligence is managed by an ASP program. Note
that we are not proposing a state-of-the-art Tetris player, rather a demonstra-
tion of how an AI can be easily developed by means of logical rules and then
deployed in Unity.

In the following we briefly describe how our framework has been set up
and configured in order to cooperate with the Unity game scene. First, we will
show how we configured the sensors and actuators modules, then how the brain
component were set up. Finally we will describe our ASP encoding.

4.1 Sensors and Actuators Configuration

Developers can access to a list of the GOs used in the game scene via a custom
Unity window editor4 as in Fig. 3. It is possible to browse objects and select
which properties are mapped on the reasoning side. We will use next some of
the typical terminology used to describe our infrastructure and the Tetris game,
as recalled here:

Arena: as shown in Fig. 3, the arena is a GO that contains all the properties
relative to the playable game scene (i.e. a matrix of tiles, the properties max-
TileX, maxTileY etc.);

tiles: a matrix of GOs of type ArenaTile. This matrix can be expanded by the
user in order to configure some extra properties;

Tetromino: a geometric shape composed of four squares;
currentTetromino: in the Tetris game it represents the tetromino that is cur-

rently dropping in the Arena;
Spawner: a GO that manages the generation of a new Tetromino when the

previously created one can not drop further down in the Arena.

We bound to the reasoning side, as sensors, the Arena, the currentTetromino and
the Spawner, and, in a similar way, we configured the actuators. By means of the

3 https://github.com/MaciejKitowski/Tetris.
4 I.e. a window similar to the Unity inspector. The inspector displays detailed infor-
mation about the currently selected game object, including all attached components.

https://github.com/MaciejKitowski/Tetris
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Fig. 3. Editor window for the sensor configuration

Actuator Configuration Window one can select the AI script that is needed to
be mapped within the ASP module. The single selected actuator, called player,
contains the properties: nMove, nLatMove, nRot, typeLatMove. The meaning
of these properties will be explained in Subsect. 4.2 when we will discuss the
AIPlayer script.

4.2 Brain Component

After configuring the sensors (arenaGrid, tetromino and spawner) and the actu-
ator (player), we added to the GO hierarchy a new GO with an attached com-
ponent of type brain. The brain consists in a standard script belonging to the
ThinkEngine asset that will coordinate the sensors, the actuator and the solver
executor.

The brain component can be configured via the inspector tab (Fig. 4). Sen-
sors, actuators and some other additional features can be attached to a brain via
the visual interface. In our example, we setup the conditions5 to meet in order to
(a) update the sensors and run the ASP Solver; (b) let the Actuators Manager
apply the actuators actions.

When the game starts, thus at run-time, the brain will start updating sensors
and will also run an external thread that will execute the ASP solver if sensors

5 Conditions are selected from a set of boolean functions customized by the developer.
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Fig. 4. Configuration of the brain.

have data to share and the solver is not already running. Every time that it is
necessary to invoke the solver, the Sensor Mapper produces a representation, in
the form of logical assertions, of the filtered sensors values attached to the brain.
Then, the ASP solver is invoked by passing it this sensor representation and
a knowledge base KBT expressing the desired brain AI. After the ASP solver
ends its execution, its answer sets (i.e. a set of output logical assertions), will be
mapped to actuators by means of the actuators manager, thus influencing the
game world.

In the setting of the Tetris game, the solver’s output encodes the position
and orientation in which the current tetromino should be dropped. This is then
translated to the corresponding number of rotations and lateral moves of the
tetromino. In turn, a corresponding number of simulated swipes is commanded
via Unity procedural code and the tetromino is eventually dropped.

4.3 ASP Encoding

The ASP declarative specification KBT driving the brain decision is based on
the Guess/Check/Optimize paradigm [1]. The idea is to range in the search space
of columns of the Tetris grid and of rotations of the tetromino; to exclude com-
binations of columns and rotations such that the piece cannot be geometrically
placed; choose the optimal combination among the remaining candidates. For
the sake of simplicity the optimality criterion looks for positions not leaving
holes in the grid, and with lesser priority, lower dropping positions in the grid
are preferred. The reader can refer to [5] for a detailed illustration of syntax and
semantics of answer set programming.

The guess phase is expressed in the rule

bestSol(X,Y,C) | notBestSol(X,Y,C):-col(C), availableConfig(X,Y).

where the availableConfig(X,Y) predicate keeps track of all the possible
rotations for the current tetromino. This assertion, combined with the strong
constraints.
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:- #count{Y,C: bestSol(X,Y,C)} > 1.

:- #count{Y,C: bestSol(X,Y,C)} = 0.

assures that each model produced by the solver will contain exactly one bestSol.
The lowest row that the tetromino can reach when positioned with a given

rotation in a chosen column is described as follows.

1. free(R,C,C1):- tile(R,C,true), C1=C+1.

2. free(R,C,C2):- free(R,C,C1), tile(R,C1,true),C2=C1+1.

3. firstEmpty(R):- nCol(C), #max{R1:free(R1 ,0,C)}=R.

4. canPut(R):- bestSol(X,Y,C), free(R,C,C1), firstEmpty(R), confMaxW(X,Y,W),

C1=C+W.

5. canPut(R):- bestSol(X,Y,C), canPut(R1), free(R,C,C1), confMaxW(X,Y,W),

C1=C+W, R=R1+1.

6. freeUpTo(R):- canPut(R), not canPut(R1), R1=R+1.

7. oneMore(R1):- bestSol(X,Y,C), botSpace(X,Y,I,J), freeUpTo(R), R1=R+1,

free(R1,C1,C2), C1=C+I, C2=C+J.

8. twoMore(R1):-bestSol(X,Y,C), oneMore(R), extraRow(X,Y), botSpace(X,Y,I,J),

free(R1,C1,C2), R1=R+1, C1=C+I, C2=C+J.

9. bestRow(R):- freeUpTo(R), not oneMore(R2), botSpace(X,Y,0,0), R2=R+1,

bestSol(X,Y,_).

10. bestRow(R1):- freeUpTo(R), not oneMore(R2), not extraRow(X,Y),

bestSol(X,Y,_), not botSpace(X,Y,0,0), R1=R-1, R2=R+1.

11. bestRow(R1):-bestSol(X,Y,_), not oneMore(R2), freeUpTo(R), extraRow(X,Y),

not botSpace(X,Y,0,0), R1=R-2, R2=R+1.

12. bestRow(R):- oneMore(R), not twoMore(R1), bestSol(X,Y,_), R1=R+1,

not extraRow(X,Y).

13. bestRow(R):- twoMore(R).

14. :-#count{R:bestRow(R)}=0.

The tile6 predicate is used to derive in which rows the tetromino can be
placed. The space occupied by a tetromino is encoded by a number of assertions,
like e.g. confMaxW(x,y,w) which expresses that the maximum horizontal amount
of cells occupied by the tetromino x on which it has been applied the rota-
tion y is w; other similar assertions are botSpace(x,y,c,c1), topSpace(x,y,h),
leftSpaceWrtSpawn(x,y,l), extraRow(x,y).

Rules 1. and 2. describe, for each row of the arena, all the sequences of free
slots of the matrix (0−2, 0−3...0−10, 1−2, ..., 1−10..., note that the second index
is exclusive). Rule 3. derives the highest row in the arena completely empty, thus
the first row in which the tetromino can be placed in whatever column. Starting
from this row, rules from 4. to 8. describe in which row the tetromino, in the
chosen rotation configuration, is allowed to be placed, according also with the
current tetromino shape. Finally, rules from 9. to 13., describe the lowest line
that the tetromino will drop to.

The next set of rules describe which row the tetromino will reach (in height)
once it is placed (rule 15.) and how many holes will remain in the row immedi-
ately below (rules from 16. to 20.).

6 This assertion maps facts derived from the ArenaGrid sensor mapped by the predi-
cate arenaGrid(arena(arena(tiles(X,Y,arenaTile(empty(T)))))).
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15. reach(R):- bestSol(X,Y,_), bestRow(R1), topSpace(X,Y,W), R=R1-W.

16. hole(R,C1):-bestSol(X,Y,C), bestRow(R1), tile(R,C1,true),confMaxW(X,Y,W),

R=R1+1, C1 >=C, C<W1, W1=C+W.

17. hole(R,C1):- bestSol(X,Y,C), botSpace(X,Y,I,J), tile(R,C1,true), L=I+J,

L>0, C1 >=C, C1<C2, C2=C+I, oneMore(R).

18. hole(R,C1):- bestSol(X,Y,C), botSpace(X,Y,I,J), tile(R,C1,true), L=I+J,

L>0, C1 >=C2, C2=C+J, C1<C3, C3=C+W, oneMore(R), confMaxW(X,Y,W).

19. hole(R,C1):- bestSol(X,Y,C), botSpace(X,Y,I,J), tile(R,C1,true), L=I+J,

L>0, C1 >=C, C1<C2, C2=C+I, twoMore(R).

20. hole(R,C1):- bestSol(X,Y,C), botSpace(X,Y,I,J), tile(R,C1,true), L=I+J,

L>0, C1 >=C2, C2=C+J, C1<C3, C3=C+W, twoMore(R), confMaxW(X,Y,W).

The last fragment of declarative code represent optimization criteria, which
are expressed in terms of weak constraints. Roughly speaking, a weak constraint
is a condition that, if met, increases the cost of a possible tetromino drop con-
figuration.

21. :∼ #count{R,C:hole(R,C)}=N, #int(N1),#int(N),N1=3*N. [N1:4]

22. :∼ bestRow(R),numOfRows(N),D=N-R. [D:4]

23. :∼ reach(R),numOfRows(N),D=N-R. [D:3]

24. :∼ bestSol(X,Y,C). [C:2]

25. :∼ bestSol(X,Y,C). [Y:1]

Weak constraints 21. and 22. have been assigned to the same priority (4) since
we want, at the same time, to minimize the number of holes and to maximize
the lowest line that the tetromino will drop to. However, since we want to give
a bit more importance to the holes, we decided to assign a triple weight with
respect to the lowest row optimization criterion. At a lower priority level, we find
the minimization of the row reached in height by the tetromino (23.). The last
two constraints, 24. and 25., are used to assure that no more than one answer
set is produced. Indeed, when having two answer sets with the same costs for
respectively the number of holes criterion, for the lowest line criterion and for
the top most row criterion, we will choose the solution occupying the leftmost
column and requiring the lowest number of rotations.

Note that this artificial player, although not optimal, can be easily modified
by changing the heuristic associated to the weight of constraint in 21.; intro-
ducing new weak constraints expressing other desiderata; changing the priority
level of the constraints and so on. The above artificial player, including both
the declarative code and all the procedural code, can be downloaded at https://
github.com/DeMaCS-UNICAL/Tetris-AI4Unity.

5 Benchmark

One of the most common measuring indicators used for assessing the perfor-
mance of a videogame is the framerate. i.e. the number of frames that can be
displayed in a second.

The framerate appears to be a good measure even for the evaluation of the
ThinkEngine impact on the game performance. Using the Tetris showcase, we
compared the framerate of the game when played by a human agent and the
framerate obtained using the ThinkEngine asset. The performance is expected

https://github.com/DeMaCS-UNICAL/Tetris-AI4Unity
https://github.com/DeMaCS-UNICAL/Tetris-AI4Unity
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to be higher when a human agent controls the game, since the thinking phase
is absent and substituted by a quick keyboard reading; on the other hand if the
game is controlled by ThinkEngine, some impact on performance is expected.
Videogames are generally designed in order to keep a constant acceptable fram-
erate, which, in the case of Unity games, is set by default to a target of 60 frames
per second. Figure 5 shows how, for our setting, the framerate is not constant,
but it can vary on each frame. The two curves represent, respectively, the fram-
erate obtained when a human is playing (the blue one) and when the game is
controlled by the ThinkEngine (the red one). The two curves generally keep the
target framerate, although they present some occasional negative spikes. How-
ever, the ThinkEngine framerate has specific negative spikes that are caused by
the overhead introduced by the sensors update phase (red crosses in the figure).
These spikes do not have a visible impact on the graphical update as they are
sufficiently isolated and the moving average (light green curve in Fig. 5) over 25
frames is almost constant. This analysis can be used as an indication for how
often one should update the sensors: the game would stall if this is done too
often. The actuators update step, instead, has no appreciable impact on the
performance of the game (green diamonds in the figure). Obviously, the sensors
update needs more time with respect to actuators since they have to track down
an entire matrix of values on the game board.
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Fig. 5. Frame rate evaluation on Tetris game. (Color figure online)

Another aspect that is interesting to look at, is the time that the ThinkEngine
needs to auto-generate the input facts for the ASP solver and how fast is this
latter in producing a solution. These two measures cannot be tracked in the
framerate analysis since the two operations are performed in a separate thread
and the main one which is in charge of updating the graphics. However, an
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intuition of the amount of time elapsed between a sensors update and a solution
generation can be spotted in the Fig. 5. Indeed, the number of frames between
a sensors update and an actuators update is really low. The Table 1 shows the
time needed on average on a single Tetris match for both facts and answer set
generation: the last row is the overall average.

Table 1. Generation time

Run Facts (ms) AnswerSets (ms)

1 537.17 628.60

2 548.86 623.00

3 609.00 785.86

4 310.60 444.20

5 228.00 421.00

6 426.20 607.80

7 342.25 544.75

8 493.60 596.25

9 435.80 522.00

AVG 436.83 574.83

6 Related Work

Although several solutions aiming to the integration of Answer set programming
in object-oriented environments have been proposed during the last decade, to
the best of our knowledge ThinkEngine is one of the first attempt at integrating
rule-based reasoning in videogame development environment.

In general integration solutions can be categorized in (a) API-based
approaches and (b) hybrid languages. The first type of technique basically con-
sists in creating a library that exposes APIs allowing to access an ASP solver,
from a specific object-oriented language. The DLV Java Wrapper [11], is a first
attempt in this direction: it consists in a Java library allowing to access and run
answer set programs from Java code. With this solution, however, a programmer
must take care of the integration of ASP in Java. A smoother integration level
is reported in [6], where authors present a framework for the integration of ASP
and Java. JASP is based on an hybrid language that allows ASP programs to
access Java variables and, in the opposite direction, answer sets are stored in
Java objects (even using Object-Relational Mapping tools like Hibernate).

The Clingo5 system [8] is the last version of the clingo solver series, improving
further integration facilities and accessibility from external applications. Script-
ing facilities (using Lua and Python languages) allow to control the execution
of the clingo solver. The main objective of this solution is make ASP suitable
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also for dynamic environments and for problems that can take advantage of
the incremental reasoning. The EmbASP architecture [2], also used in this work
for calling external ASP solvers, is an abstract architecture allowing to inte-
grate ASP in external tools for which authors presented a Java and a Python
implementation. The EmbASP architecture can be easily implemented in any
programming language, deployed for multiple platforms and can take advantage
of different, non necessarily ASP, solvers.

Similar to EmbASP, with dual aspects, is PY-ASPIO presented in [10]. Even
if this solution is annotations-based, these can be put in the ASP program instead
that in the external application.

In [9], it has been proposed the Videas infrastructure as a different way of
making ASP useful for object-oriented programmers. The authors proposed a
visual tool based on the model-driven engineering in fact encouraging program-
mers to use ER diagram to describe a data model. In this way designers can
automatically generate constraints in the ASP program obtained from a ER dia-
gram. Finally, the ActHex system [7] allows to attach and execute action scripts
to specific truth values appearing in answer sets, and to generate execution plans
accordingly.

7 Conclusions and Future Work

In this paper we illustrated our recent progress on how to embed rule-based
reasoning modules into a game development environment.

In future work we aim to tighten the integration of reasoning based modules
even further in several respects: first, analyze the formal and technical issues
arising when one aims to stop and restart a reasoning task, if needed; second,
introduce sequences of actions (plans), and propose a model in which plans are
executed transparently and can be aborted, restarted, or modified on-the-fly;
last, but not least, add new data type mappings (collections, arrays and so on)
for both sensors and actuators.
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Abstract. Markov Chain Monte Carlo (MCMC) methods are a class of
algorithms used to perform approximate inference in probabilistic mod-
els. When direct sampling from a probability distribution is difficult,
MCMC algorithms provide accurate results by constructing a Markov
chain that gradually approximates the desired distribution. In this paper
we describe and compare the performances of two MCMC sampling algo-
rithms, Gibbs sampling and Metropolis Hastings sampling, with rejection
sampling for probabilistic logic programs. In particular, we analyse the
relation between execution time and number of samples and how fast
each algorithm converges.

Keywords: Approximate inference · Markov Chain Monte Carlo ·
Probabilistic Logic Programming

1 Introduction

Probabilistic Logic Programming (PLP) is a useful paradigm for encoding mod-
els characterized by complex relations heavily depending on probability [10,13].
One of the main challenges of PLP is to find the probability distribution of query
random variables, a task called inference. Real world problems often require very
complex models. In this case, exact inference, which tries to compute the prob-
ability values in an exact way, is not feasible. Approximate inference overcomes
this issue providing approximate results whose accuracy increases as the simu-
lation continues. Markov Chain Monte Carlo methods are a class of algorithms
used to perform approximate inference, especially when direct sampling from the
probability distribution is not practical. In this paper we propose the first Gibbs
sampling algorithm for PLP and we analyse how MCMC algorithms, Metropolis
Hastings sampling and Gibbs sampling in particular, behave in terms of execu-
tion time and accuracy of the computed probability.
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The paper is structured as follows: in Sect. 2 we introduce Probabilistic Logic
Programming. In Sect. 3 we offer an overview of Markov Chain Monte Carlo
(MCMC) techniques and we analyse Metropolis Hastings sampling and Gibbs
sampling. Section 4 shows the results of our experiments and Sect. 5 concludes
the paper.

2 Probabilistic Logic Programming

Several approaches have been proposed for combining logic programming and
probability theory. Here we consider languages based on the distribution seman-
tics proposed by Sato in [15]. All the languages based on this semantics presented
so far differ only in the way they encode choices for clauses but they all have the
same expressive power [13].

A probabilistic logic program without function symbols defines a probability
distribution over normal logic programs called instances or worlds. Logic Pro-
grams with Annotated Disjunctions (LPADs) [16] are a PLP language based on
the distribution semantics. In these types of programs, the possible choices are
encoded using annotated disjunctive heads of clause. An annotated disjunctive
clause has the form h1 : Π1; . . . ;hm : Πm :− b1, . . . , bn, where h1, . . . , hm are log-
ical atoms, b1, . . . , bn are logical literals and Π1, . . . , Πm are real numbers in the
interval [0, 1] that sum to 1. b1, . . . , bn is called body while h1 : Π1; . . . ;hm : Πm

is called head. In case of
∑m

k=1 Πm < 1, the head of the annotated disjunctive
clause implicitly contains an extra atom null that does not appear in the body
of any clause and whose annotation is 1 − ∑m

k=1 Πm.
Each world is obtained by selecting one atom from the head of each grounding

(i.e. substitution of variables with terms in all possible ways) of each annotated
disjunctive clause.

Consider the following LPAD:

mistake(X) : 0.6 :− drunk(X).
mistake(X) : 0.7 :− bad player(X).
drunk(iverson).
bad player(iverson).

This program can be read as: if X is drunk, then X makes a mistake with
probability 0.6 and nothing happens with probability 1 − 0.6 = 0.4. If X is a
bad player, then X makes a mistake with probability 0.7 and nothing happens
with probability 0.3. The last two clauses state that iverson certainly is a bad
player and is drunk.

The probability of a query in a probabilistic logic program without function
symbol is computed by extending the probability distribution over normal logic
programs defined by the probabilistic logic program, to a joint distribution of
the query and the worlds. Then, the probability is obtained by summing out the
worlds. When a program contains also function symbols, the previous definition
must be extended. This is because its grounding is infinite. So, the number of
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atomic choices in a selection that defines a world is infinite as well as the number
of words. For a detailed definition see [12].

Performing inference, i.e. computing the probability distribution of the truth
values of a query, can be done using exact or approximate methods. Exact infer-
ence can be performed in a reasonable time only when the size of the domain is
relatively small, due to the #P-completeness of the task [7]. For larger domains,
approximate inference is needed. Moreover, in programs with function symbols,
goals may have an infinite number of possible infinite explanations and exact
inference may not terminate [13]. Consider a one-dimensional random walk prob-
lem where a particle starts at position X > 0. At each time step, the particle can
move one unit left (−1) or right (+1) with equal probability. The walk stops as
soon as the particle reaches 0. In this case, the walk terminates with probability
one [5] but there is an infinite number of walks with nonzero probability [6].
In this example, exact inference, which tries to find the set of all explanations
and then computing the probability of the query from it, will loop because the
number of explanations is infinite.

Approximate algorithms using sampling are implemented in cplint [14] in
the MCINTYRE [11] module. To be able to sample a query from a program,
MCINTYRE applies a program transformation to the original program and then
queries the modified program. Consider a disjunctive clause

Ci = hi1 : Πi1 ∨ . . . ∨ himi
: Πimi

:− bi1, . . . , bini
,

where
∑mi

k=1 Πik = 1. Ci is transformed into the set of clauses MC(Ci) =
{MC(Ci, 1), . . . , MC(Ci,mi)}:
MC(Ci, 1) = hi1 :− bi1, . . . , bini

,
sample head(PL, i, V C,NH), NH = 1.

. . .
MC(Ci,mi) = himi

:− bi1, . . . , bini
,

sample head(PL, i, V C,NH), NH = mi.

where V C is a list containing each variable appearing in Ci and PL is a list
containing [Πi1, . . . , Πimi

]. If the parameters do not sum up to 1, the last clause
(the one for null) is omitted. In other words, a new clause is constructed for
each head. Then, using the predicate sample head/4, a head index is sampled
at the end of the body. If this index coincides with the head index, the derivation
succeeds, otherwise it fails. The internal database of the SWI-Prolog engine [17] is
used to record all samples (sampled random choices) taken with sample head/4
using the predicate assertz/1. Notice that sample head/4 is placed at the end
of the body because at that point all the variables of the clause are ground
(since we assume that the program is range restricted). The truth of a query in
a sampled program can be tested by asking the query to the resulting normal
program. This is equivalent to taking a sample of the query.

In general we are interested in computing approximate conditional proba-
bilities: we want to compute the probability of an event Y = y given that an
event E = e has been observed (i.e. P (y | e)) where Y and E are conjunc-
tions of ground atoms and y and e are either true or false. In the rest of the
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paper we analyze three different algorithms available in cplint [14] for performing
approximate inference with sampling: Gibbs sampling (Subsect. 3.1), Metropolis-
Hastings (Subsect. 3.2) and rejection sampling.

Rejection sampling [7] is one of the simplest Monte Carlo algorithms. To
take a sample of the query, it works in two steps: (1) it queries the evidence
e. (2) If the query is successful, it queries the goal g in the same sample (that
is, computing P (g | e)). Otherwise it discards the sample. The pseudocode for
rejection sampling is shown in Algorithm 1.

Algorithm 1. Function Rejection: Rejection sampling algorithm.
1: function Rejection Sampling(P, query, evidence, Samples)
2: Input: Program P, query, evidence, number of samples Samples
3: Output: P (query|evidence)
4: Succ ← 0
5: n ← 1
6: while n ≤ Samples do
7: Call evidence
8: if evidence succeeds then
9: Call query
10: if query succeeds then
11: Succ ← Succ + 1
12: end if
13: n ← n + 1
14: end if
15: end while
16: return Succ/Samples
17: end function

However, rejection sampling has a disadvantage: if the evidence is very
unlikely, many samples are discarded, making the algorithm very slow. For exam-
ple, if the probability of the evidence (P (e)) is very low, say 10−4, then even
for N = 105 samples the expected number of unrejected samples is 10. So, to
obtain at least Samples unrejected samples, we need to generate on average
N = Samples/P (e) samples from the distribution [7]. There are several alter-
natives to deal with low probability evidence, such as likelihood weighting [3] or
Markov Chain Monte Carlo (MCMC) methods.

3 MCMC Sampling

Markov Chain Monte Carlo (MCMC) methods generate samples from the pos-
terior distribution when directly sampling from the posterior is not feasible, due
to the complexity of the distribution itself. The main idea of MCMC methods is
to iteratively construct a Markov chain in which sampling can be done directly.
As the number of samples increases, the approximation gets closer to the desired
posterior distribution. In this way, MCMC methods are theoretically capable of
getting arbitrarily close to the true posterior distribution. During the execution
of MCMC algorithms, usually the first few samples are discarded because they
may not represent the desired distribution. This phase is called burnin phase.

In this section we analyse two of the most famous MCMC sampling algo-
rithms: Gibbs sampling and Metropolis Hastings sampling.
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Algorithm 2. Function Gibbs: Gibbs MCMC algorithm
1: function Gibbs(query, evidence, Mixing, Samples, block)
2: GibbsCycle(query, evidence, Mixing, block)
3: return GibbsCycle(query, evidence, Samples, block)
4: end function
5: function GibbsCycle(query, evidence, Samples, block)
6: Succ ← 0
7: for n ← 1 → Samples do
8: Save a copy of samples C
9: SampleCycle(evidence)
10: Delete the copy of samples C
11: ListOfRemovedSamples = RemoveSamples(block)
12: Call query � new samples are asserted at the bottom of the list
13: if query succeeds then
14: Succ ← Succ + 1
15: end if
16: CheckSamples(ListOfRemovedSamples)
17: end for
18: return Succ

Samples

19: end function
20: procedure SampleCycle(evidence)
21: while true do
22: Call evidence
23: if evidence succeeds then
24: TrueEv ← true
25: return
26: end if
27: Erase all samples
28: Restore samples copy C
29: end while
30: end procedure
31: function RemoveSamples(block)
32: SampleList ← []
33: for b ← 1 → block do
34: retract sample S = (Rule, Substitution, V alue) � samples are retracted from the top of

the list
35: Add (Rule, Substitution) to SampleList
36: end for
37: return SampleList
38: end function
39: procedure CheckSamples(ListOfRemovedSamples)
40: for all (Rule, Substitution) ∈ ListOfRemovedSamples do
41: if (Rule, Substitution) was not sampled then
42: Sample a value for (Rule, Substitution) and record it with assert
43: end if
44: end for
45: end procedure

3.1 Gibbs Sampling

The idea behind Gibbs sampling is the following: when sampling from a joint
distribution is not feasible, we can sample each variable independently consid-
ering the other variables as observed [4]. In details, suppose we have n variables
X1, . . . , Xn. First we set these variables to an initial value x

(0)
1 , . . . , x

(0)
n , for

instance by sampling from a prior distribution. At each iteration (or until con-
vergence) we take a sample x

(t)
m ∼ P (xm | xt−1

1 , xt−1
2 , . . . , xt−1

m−1, x
t−1
m+1, . . . , x

t−1
n ).

There is also the possibility to perform blocked Gibbs sampling, i.e, group
together two or more variables and sampling from their joint distribution con-
ditioned on all other variables, instead of sampling each one individually.
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Gibbs sampling is available on cplint. The code is shown in Algorithm 2.
A list of sampled random choices is stored in memory using Prolog asserts.
Function GibbsCycle performs the main loop. To take a sample, we query
the evidence using function SampleCycle that performs a type of rejection
sampling: it queries the evidence until the value true is obtained. When the
evidence succeeds, we remove block random choices from the list of saved random
choices using function RemoveSamples. Then, we ask the query and, if the
query is successful, the number of successes is incremented by 1. The last step
consist in calling function CheckSamples. This function checks if there are
some rules not sampled in the list of removed random choices. If so, a value
is sampled and stored in memory. This is due to the necessity of assigning a
value to xm even if it was not involved in the new derivation of the query. The
probability is returned as the ratio between the number of successes and the
total number of samples.

3.2 Metropolis Hastings

In Metropolis Hastings sampling, a Markov chain is built by taking an initial
sample and, starting from this sample, by generating successors samples. Here
we consider the algorithm developed in [9] and implemented in cplint [14]. Algo-
rithm 3 goes as follows: (1) it samples random choices so that the evidence is
true to build an initial sample. (2) It removes a fixed number (defined as lag) of
sampled probabilistic choices to build the successor sample. (3) It queries again
the evidence by sampling starting from the undeleted samples. (4) If the evi-
dence succeeds, the query is asked by sampling. It is accepted with probability
min{1, N0/N1} where N0 is the number of choices sampled in the previous sam-
ple and N1 is the number of choices sampled in the current sample. (5) If the
query succeeds in the last accepted sample then the number of successes of the
query is increased by 1. (6) The final probability is computed as the number of
successes over the total number of samples.

In details, function MH returns the probability of the query given the evi-
dence. Function resample(lag) deletes lag choices from the sampled random
choices. In [9] lag is always 1. Function InitialSample builds the initial sample
with a meta-interpreter that starts with the goal and randomizes the order in
which clauses are used for resolution during the search to make the initial sample
unbiased. This is achieved by collecting all the clauses that match a subgoal and
trying them in random order. Then the goal is queried using regular sampling.

4 Experiments

We tested the performances of Gibbs sampling, Metropolis Hastings sampling,
and rejection sampling using four different programs. For each program, we ran
the queries mc gibbs sample/5, mc mh sample/5 and mc rejection sample/5
provided by the MCINTYRE module [11] implemented in cplint. All the algo-
rithms are written in Prolog and tested in SWI-Prolog [17] version 8.1.7. For
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Algorithm 3. Function MH: Metropolis-Hastings MCMC algorithm
1: function MH(query, evidence, lag, Samples)
2: MHCycle(query, evidence, lag)
3: return MHCycle(query, evidence, Samples)
4: end function
5: function MHCycle(query, evidence, Samples)
6: TrueSamples ← 0
7: Ssample ← InitialSample(evidence)
8: Call query
9: if query succeeds then
10: querySample ← true
11: else
12: querySample ← false
13: end if
14: Save a copy of the current samples C
15: n ← 0
16: while n < Samples do
17: n ← n + 1
18: SamplesList ← Resample(lag)
19: Call evidence
20: if evidence succeeds then
21: Call query
22: if query succeeds then
23: querySample′ ← true
24: else
25: querySample′ ← false
26: end if
27: let CurrentSampled be the current number of choices sampled

28: if min(1, CurrentSampled
PreviousSampled ) > RandomV alue(0, 1) then

29: PreviousSampled ← CurrentSampled
30: Delete the copy of the previous samples C
31: Save a copy of the current samples C
32: querySample ← querySample′

33: else
34: Erase all samples
35: Restore samples copy C
36: end if
37: else
38: Erase all samples
39: Restore samples copy C
40: end if
41: end while
42: Erase all samples
43: Delete the copy of the previous samples C

44: return TrueSamples
Samples

45: end function
46: function Resample(lag)
47: for n ← 1 → lag do
48: Delete a sample Sample
49: NewSample ← Sample(Ssample)
50: Assert NewSample
51: end for
52: return SamplesList
53: end function

each query we show how the number of samples affects the execution time and
the computed probability. All the experiments were conducted on a cluster1

with Intel R© Xeon R© E5-2630v3 running at 2.40 GHz. Execution times are com-
puted using the SWI-Prolog built-in predicate statistics/2 with the keyword

1 http://www.fe.infn.it/coka/doku.php?id=start.

http://www.fe.infn.it/coka/doku.php?id=start
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walltime. The results are averages of 10 runs. For both Gibbs and Metropolis
Hastings sampling, we set the number of deleted samples (burnin) to 100.

For the first comparison, we consider a program that generatively defines
a random arithmetic function2. The problem is to predict the value returned
by the function given one or two couples of input-output, i.e., to compute a
conditional probability. The peculiarity of this program is that it has an infinite
number of explanations. As described in Sect. 2, approximate inference is needed,
as exact inference may loop. In this example, the evidence has probability 0.05.
Results are shown in Fig. 1. In this case, Metropolis Hastings sampling and Gibbs
sampling have comparable execution time, but Gibbs sampling converges more
slowly.
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Fig. 1. Results for random arithmetic functions test.

The second program encodes a hidden Markov model (HMM) for modeling
DNA sequences. The model has three states, q1, q2 and end, and four output
symbols, a, c, g, and t, corresponding to the four nucleotides (letters)3 [2]. We
compute the probability that the model emits the sequence [a,c] observing
that from state q1 the models emits the letter a. The evidence has probability
0.25. Results are shown in Fig. 2. In this case, all the three algorithms converge
to the same probability value, but Metropolis Hastings is the slowest one with
execution time several times larger than Gibbs and rejection sampling.

For the third test we consider a Latent Dirichlet Allocation (LDA) model4 [1].
LDA is a generative probabilistic model especially useful in text analysis. In
particular, it models the distribution of terms and topics in documents in order
to predict the topic of the analysed text. This program, differently from the
others, is hybrid, i.e., it contains also continuous random variables. For this
test, we fix both the number of words considered in a document (10) and the
number of topics (2) and we compute the relation between number of samples,

2 http://cplint.eu/example/inference/arithm.pl.
3 http://cplint.eu/example/inference/hmm.pl.
4 http://cplint.eu/example/inference/lda.swinb.

http://cplint.eu/example/inference/arithm.pl
http://cplint.eu/example/inference/hmm.pl
http://cplint.eu/example/inference/lda.swinb
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Fig. 2. Results for HMM test.

probability and execution time. In this example, we observe that the first two
words of the document are equal, which has probability 0.01. The results are
shown in Fig. 3: in this case Gibbs sampling is slower than Metropolis Hastings
both in execution time and number of samples needed to compute an accurate
probability. Then we also fix the number of topics to 2 and increase the number
of consecutive equal words from 1 to 8. In this test, the evidence is progressively
extended, i.e., we observe that n number of words (from 1 to 8) are equal. In
this case Metropolis Hastings sampling outperforms the other algorithms (Fig. 4
left). For Gibbs sampling and rejection sampling, the number of words in the
plot is at most 6 since, for a value bigger than that, each query requires more
than one hour of computation.

The last program describes a university domain5 [8] characterized by stu-
dents, professors and courses. Each professor is related to a course and each
student attends a course. We are interested in computing the probability that a
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Fig. 3. Results for LDA model.

5 http://cplint.eu/example/inference/uwcse.pl.

http://cplint.eu/example/inference/uwcse.pl
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professor teaches a course given that the same professor is advisor of some stu-
dents of the same course. We fixed the number of students to 10, and both the
number of professors and courses to 1. In this case the evidence has probability
0.09. Results are shown in Fig. 5. As for the previous experiment, we also incre-
mented the number of students up to 20 and plot how execution time changes
(Fig. 4 right). In both cases, Gibbs sampling is still the slowest algorithm, but
the performances are not so different from Metropolis Hastings and rejection
sampling.
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Fig. 4. Both graphs show how the number of facts affects the execution time. The left
one is related to the LDA model while the right one to the university model. For both
we fixed the number of samples to 104.
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Fig. 5. Results for the university domain.

5 Conclusions

In this paper we proposed the first Gibbs sampling algorithm for PLP. We also
compared it with Metropolis-Hastings and rejection sampling. The three algo-
rithms are available in the cplint suite and online in the web application cplint.eu.

http://cplint.eu/
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For each algorithm we conducted several experiments to compare execution
time and convergence time. In three of the four experiments, Metropolis Hastings
outperformed Gibbs sampling and rejection sampling in terms of accuracy and
execution time. However, in the second experiment (HMM), Gibbs sampling has
better performances than Metropolis Hastings and it is comparable to rejection
sampling in terms of execution time. Also, in this test, Metropolis Hastings is
the least accurate (it overestimates the probability) while Gibbs sampling and
rejection sampling converge faster. Experimental analysis showed that Metropo-
lis Hastings is the fastest among the three unless the evidence has a relatively
high probability as in HMM where it has probability 0.25: in that case, Gibbs
performs better.
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Abstract. In recent work by Gottlob et al., the usefulness and adequacy
of Datalog, and precisely Datalog

+
augmented with rules with existen-

tial heads to implement ontological reasoning has been shown. Also, it
has been shown how to express forms of reasoning that go beyond the
expressive capabilities of Description Logics. In our recent work [25] we
present a methodology for introducing customizable metalogic features
in logic-based knowledge representation and reasoning languages. We
made the specific case of Answer Set Programming (ASP), where such
features may be part of software engineering toolkits for this program-
ming paradigm. In this paper we show how such metalogic features can
further enrich Datalog

+
with minor changes to its operational semantics

(provided in terms of “chase”) and no additional complexity burden.
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1 Introduction

In [16–18] a family of expressive extensions of Datalog is presented, called
Datalog+ , and is proposed as a new paradigm for query answering over ontolo-
gies. Languages of the Datalog+ family are enriched, with respect to standard
Datalog, with existentially quantified variables in rule heads, where suitable
restrictions are introduced to ensure highly efficient ontology querying, thus lead-
ing to “guarded Datalog+ ”. The authors show, in fact, that guarded Datalog+

is PTIME-complete in data complexity. They also enrich the language with neg-
ative constraints and a general class of key constraints, where ontology query-
ing remains tractable. Languages belonging to the Datalog+ family are able to
express widely-used tractable ontology languages, in particular, the DL-Lite fam-
ily [3,19] of Description Logics, which are highly suitable for ontological modeling
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and reasoning. DL-Lite logics are able to define some relevant conceptual mod-
eling formalisms, such as Entity-Relationship model and UML class diagrams.
DL-Lite logics retain tractability of the most important reasoning tasks, such as
ontology satisfiability and query answering of arbitrary (union of) conjunctive
queries (ground and not ground). It has been shown that reasoning over ontolo-
gies of the DL-Lite family is LOGSPACE-hard in data complexity, and can be
thus delegated to a standard DBMS technology. Datalog+ is the core of Vada-
log, which is empowered in view of implementing KGMS (Knowledge Graphs
Management Systems) and so includes numeric computations, monotonic aggre-
gation, probabilistic reasoning, and primitives for access to external data sources
or computational resources of various kinds.

The OWL ontology language [1,37] provides a powerful data modeling lan-
guage, and automated reasoning abilities based upon Description Logics [4].
There are, as it is well known, different versions of OWL depending upon the
kind of reasoning one wishes to use and can computationally afford; in fact,
such versions range from the expressiveness of DL-Lite (OWL 2 QL), with rea-
soning capabilities equivalent to SQL, to very complex reasoning capabilities
even leading to undecidability. Relevant aspects concerning knowledge represen-
tation and reasoning that can be found in OWL are: (i) properties of relations:
e.g., symmetry/asymmetry, transitivity, functionality, reflexivity/irreflexivity,
domain/range; (ii) relations between relations (meta-properties): e.g., inverse-
of, equivalence, disjointness, subclass; (iii) cardinality of relations.Such aspects
are present even in OWL-Lite, one of the less expressive sub-languages of OWL,
where however reasoning is still non-tractable in general.

The possibility to express properties of relations has widely demonstrated
its usefulness in the definition and use of ontologies in the Semantic Web. We
believe that they would find useful application in many knowledge engineering
and automated reasoning languages. In fact, ontologies are pervading many areas
of knowledge and data representation and management, and a lot of effort has
been spent on the development of sufficiently expressive languages for the repre-
sentation and querying of ontologies. In particular, as Datalog+ has been since
long advocated as capable to perform useful and significant ontological reason-
ing: in this paper, we present a methodology for introducing OWL-like features
in Datalog+ . Our approach is based on concepts of introspection and reflection
discussed, among others, in [7,26,34,38]. In order to implement an engine real-
izing properties and meta-properties of relations inspired by those expressible in
OWL, we employ meta-level axiom schemata based upon a naming (reification)
device. We propose a method for extending the Datalog+ semantics accord-
ingly. In practice, such schemata should be seemingly added by default to any
program/knowledge base, and can be freely used by a programmer. We do not
claim to reproduce all OWL features and maybe not even most of them. In fact
we could not, as we stay within decidable frameworks based upon CWA (Closed-
World Assumption). However, the features that we reproduce are widely used,
and they are useful in many practical contexts. Moreover, we improve over OWL
as customized and user-defined new properties are allowed in our proposal. So,
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the average programmer does not define and does not need to see the definition
of properties of relations, but rather just uses predefined ones though the skilled
programmer is enabled to define new properties.

The possibility of improving knowledge engineering capabilities by means of
metaprogramming and metareasoning has been explored in the past [23]. In logic
settings such as Prolog [40] the aim was to enlarge representation and reasoning
possibilities while avoiding to resort to a higher-level setting, mainly by using
meta-interpreters [14] and trying to equip them with a logical semantics [12,20],
or by devising specialized language extensions [7,36]. Recently, the Rulelog lan-
guage [32] features some seemingly higher-order characteristics inspired by the
HiLog second-order language [21], though transposed into a simple (though lim-
ited under the point of view of reasoning capabilities) first-order representa-
tion. Our proposal, that in this paper we apply to Datalog+ , has the merit of
being language-independent: it is in fact generally applicable within the realm
of knowledge representation languages based upon computational logic and logic
programming [40], syntactically based upon some first-order language. Among
them are Prolog, Datalog+ , ASP, and many agent-oriented programming lan-
guages [13].

In this paper we discuss the extension with metalevel features for Datalog+ ,
which is a successful logic programming and knowledge representation paradigm,
oriented to ontological reasoning, knowledge integration and many other prac-
tical problems. We will show in detail how the approach can be quite naturally
applied to Datalog+ with notable practical advantages.

The paper is organized as follows. We first shortly summarize the basic prin-
ciples of the OWL language in Sect. 2, and we recall the concept of reification
(naming) of first-order terms and atoms (Sect. 3). Then, we present our approach
in Sects. 4 and 5. Later, after shortly recalling Datalog+ (Sect. 6), is the core part
of the paper. In Sect. 7 we show (by examples) how our approach can be usefully
applied to Datalog+ . In Sect. 8 we extend Datalog+ procedural semantics, called
‘the chase’ and based on a ‘chase rule’, with our constructs. Finally, in Sect. 9
we discuss some related work and draw conclusions. We assume basic knowledge
about Prolog/Datalog; the reader may refer to [40].

2 Background: OWL

OWL is a language for the definition of ontologies (the reader may refer to
www.w3.org/TR/2012/REC-owl2-primer for an introduction). The term ontol-
ogy has a complex history in Philosophy, and recently in Computer Science. In
Knowledge Representation, an ontology is a set of formal statements aimed to
describe some part of the world (often referred to as the “domain of interest” or
the “subject matter” of the ontology). Precise descriptions satisfy several pur-
poses, among which: they prevent misunderstandings in human communication
and they ensure a better software behavior, especially when different software
modules interact.

In order to precisely describe a domain of interest, the OWL language is
based upon a vocabulary. The meanings of terms is established by stating how

www.w3.org/TR/2012/REC-owl2-primer
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each term is interrelated to the other terms (and similarly for classes, prop-
erties, and individuals). A terminology, providing a vocabulary together with
such interrelation information constitutes an essential part of an OWL ontol-
ogy. Besides this “terminological” knowledge, usually called TBOX, an ontology
might also contain so called “assertional knowledge” (ABOX) that introduces
concrete objects of the considered domain. The TBOX part is the analogous of
the set of rules of a Prolog program, while the ABOX is the analogous of the set
of facts.

OWL 2 is not a programming language, rather it provides a declarative way
to describe knowledge in a logical way. For the decidable fragments of OWL,
appropriate tools (so-called reasoners) can then be used to infer further informa-
tion from a given TBOX+ABOX description. How these inferences are realized
algorithmically depends on the specific implementations and on the fragments
of OWL considered. Still, the correct answer to any of such question is prede-
termined by the OWL formal semantics.

In OWL it is possible to define classes of objects/individuals, membership to
classes, class inclusion, equivalence and disjointness, class hierarchies. Concern-
ing object properties, they correspond to binary predicates, i.e., to relations, and
are expressed concerning specific objects which are related by each property. It is
also possible to express negative assertions, concerning individuals not enjoying
some property. It is possible to specify hierarchies of properties (e.g., to state
that some properties are sub-properties of other ones) and to define domain
and range of each property. Among the “Advanced Use of Properties”, one can
state that certain properties are reflexive or irreflexive, symmetric or asymmet-
ric, transitive, equivalent to some other properties, or disjoint from them. It can
be stated that a property is functional, or that its inverse is functional.

3 Background: Naming Mechanisms

A reification mechanism, also known as “naming relation”, is a method for rep-
resenting within a first-order language expressions of the language itself, without
resorting to higher-order features. Naming relations can be introduced in sev-
eral manners. For a discussion of different possibilities, with their advantages
and disadvantages, see, e.g., [5,6,33,35]. However, all of them are based upon
introducing distinguished constants, function symbols (if available) and predi-
cates, devised to construct names. For instance, given an atom p(a, b, c), a name
might be atom(pred(p′), args([a ′, b′, c′])) where p′ and a′, b′, c′ are new constants
intended as names for the syntactic elements p and a, b, c. Notice that: p is a pred-
icate symbol (which is not a first-class object in first-order settings), atom is a
distinguished predicate symbol, args a distinguished function symbol and [. . .]
is a list.

More formally, let us consider a standard first-order language L including sets
of predicate, constant and (possibly) function symbols, and a (possibly denumer-
able) set of symbols of variables. As usual, well-formed formulas have atoms as
their basic constituents, where an atom is built via the application of a predi-
cate to a number n (according to the predicate arity) of terms. The latter can
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be variables, constants, or compound terms built by using function symbols (if
available). We augment L with new symbols, namely a new constant (say of the
form p′) for each predicate symbol p, a new constant (say f ′) for each function
symbol f , a new constant (say c′) for each constant symbol c, and a denumerable
set of metavariables, that we assume to have the form X ′ so as to distinguish
them syntactically from “plain” object-level variables X. The new constants are
intended to act as names, where we will say that, syntactically, p′ denotes p, f ′

denotes f , and c′ denotes c, respectively. The new variables can be instantiated
to meta-level formulas, i.e., to terms involving names, where we assume that
plain variables can be instantiated only to terms not involving names, so-called
object-level terms. We assume an underlying mechanism managing the naming
relation (however defined), so we can indicate the name of, e.g., atom p(a, b, c) as
p′(a′, b′, c′) and the name of a generic atom A as ↑A; vice versa the atom named
by A′ is denoted by ↓A. We will consider only names of object-level atoms, i.e.,
atoms not including meta-constants and meta-variables. We assume that ↑A is
constructed out of p′ = ↑p if p is the predicate occurring in A, and k′ = ↑k for
each constant k occurring in A. Also, we consider only names of ground atoms,
i.e., atoms not containing variables. Since this paper is concerned with Data-
log, we do not need names of function symbols either. Notice however that, as
discussed in the aforementioned references, it is possible to construct names of
names (. . . of names) and names of every kind of atoms and formulas.

Notice that, as discussed in [22] naming relation can be a sort of “input
parameter” for a meta-language. In fact a meta-language can be, if carefully
designed, to a large extent independent of the syntactic form of names, and of
which are the expressions that are named. In [6] and [7] a full theory of definable
naming relations is developed.

4 Background: Metalogic for Properties of Relations

Our focus is on rule-based languages, where rules are typically represented in
the form Head ← Body or equivalently Body → Head where ← and → indicate
implication; other notations for this connective can alternatively be employed.
In Prolog/Datalog-like practical systems, ← is often indicated as :−, and Body
is intended as a conjunction of literals (atoms or negated atoms) where conven-
tionally a comma stands for ∧.

We will represent properties of relations in OWL style by means of metalevel
rules, building on past work [8,9,24,26]. To define such rules, we assume to
augment the language L at hand not only with names, but with the introduction
of two distinguished predicates, solve and solve not (clearly, the specific name of
these predicates is immaterial). An atom A is a base atom or object-level atom
if it does not involve names and its predicate is neither solve nor solve not .
Distinguished predicates will allow us to respectively extend/restrict the meaning
of the other predicates in a declarative way. In fact, solve and solve not take
as arguments (names of) atoms (involving any predicate excluding themselves),
and thus they are able to express sentences about relations. Names of atoms, in
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particular, are allowed only as arguments of solve and solve not . Also, solve and
solve not can occur in the body of a metarule only if the predicate of its head
is in turn either solve or solve not .

So, metalevel rules in general allow arguments of predicates to be names of
predicates, function symbols, and constants. A particular kind of metarules, that
we call metaevaluation rules, have distinguished predicates solve and solve not
in their head, and possibly also in their body, taking as argument names of
atoms.

Below is a simple example of the use of solve to specify which properties a
reflexive predicate p meets. Namely, that p(a, a) can be derived for any element
a belonging to the predicate domain; here, this is elicited from a occurring in
the extensional definition of p. The first rule is a metaevaluation rule, featuring
predicate solve in its head, taking as argument the name of an atom; the latter
two rules are ‘simple’ metalevel rules taking as arguments metalevel constants.

solve(P ′(X ′,X ′)) :−reflexive(P ′), in domain(P ′,X ′).
in domain(P ′,X ′) :−solve(P ′(X ′,Y ′)).
in domain(P ′,X ′) :−solve(P ′(Y ′,X ′)).

Our objective is to make it automatic to derive p(a, a) whenever a program
includes this definition, a fact reflexive(p′) occurs in the program, and a is in
the domain of p. Vice versa, we can define:

solve not(P ′(X ′,X ′)) : −irreflexive(P ′).

with the aim to prevent the derivation of p(a, a) for any predicate p which have
been declared to be irreflexive (i.e., for which a fact irreflexive(p′) occurs in the
program).

Following [27], in general terms we understand a semantics SEM for logic
knowledge representation languages/formalisms as a function which associates
a theory/program with a set of sets of atoms, which constitute the intended
meaning. When saying that Π is a program, we mean that it is a program/theory
in the (here unspecified) logic language/formalism that one wishes to consider.

We impose a restriction on sets of atoms that should be considered for the
application of SEM . First, as customary, we only consider sets of atoms I com-
posed of atoms occurring in the ground version of Π. The ground version of
program Π is obtained by substituting in all possible ways variables occurring
in Π by constants also occurring in Π. In our case, metavariables occurring
in an atom must be substituted by metaconstants, with the following obvious
restrictions: a metavariable occurring in the predicate position must be substi-
tuted by a metaconstant denoting a predicate; a metavariable occurring in the
function position must be substituted by a metaconstant denoting a function; a
metavariable occurring in the position corresponding to a constant must be sub-
stituted by a metaconstant denoting a constant. According to well-established
terminology [40], we therefore require I ⊆ BΠ , where BΠ is the Herbrand Base
of Π, given previously-stated limitations on variable substitution. Then, we pose
some more substantial requirements. As said before, by ↑A we intend a name of
an object-level atom A.
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Definition 1. Let Π be a program. I ⊆ BΠ is a potentially acceptable set of
atoms iff for every object-level atom A belonging to I, solve(↑A) belongs to I.

Definition 2. Let Π be a program, and I be a potentially acceptable set of atoms
for Π. I is an acceptable set of atoms iff I satisfies the following axiom schemata
for every object-level atom A:

A ← solve(↑A)
¬A ← solve not(↑A)

We restrict SEM to determine acceptable sets of atoms only, modulo bijec-
tion: i.e., SEM can be allowed to produce sets of atoms which are in one-to-
one correspondence with acceptable sets of atoms. In this way, we obtain the
implementation of properties of relations that have been defined via solve and
solve not rules without modifications to SEM for any formalism at hand. For
clarity however, it is convenient to filter away solve and solve not atoms from
acceptable sets. Thus, given a program Π and an acceptable set of atoms I for
Π, the Base version IB of I is obtained by omitting from I all atoms of the
form solve(↑A) and solve not(↑A).

Procedural semantics and the specific naming relation that one intends to
use remain to be defined. In fact, it is easy to see that the above-introduced
semantics is independent of the naming mechanism. For approaches based upon
(variants of) Resolution (like, e.g., Prolog) one can extend the procedure so as
to be allowed to use rules with conclusion solve(↑A) to resolve a goal A and,
vice versa, rules with conclusion A to resolve solve(↑A); if a goal G succeeds in
this way with computed answer θ, then solve not(↑Gθ) should be attempted:
if it succeeds, then G should be forced to fail; otherwise, success of G can be
confirmed.

5 Background: Expressing OWL-Like Properties
of Relations, and More

In the previous section we have shown the use of metalevel definitions involving
solve and solve not to define what it means of a predicate to be reflexive or,
vice versa, irreflexive. These metalevel definitions are declarative yet executable,
in that they suitably enlarge or restrict involved predicates’ extension. In this
section we show the metalevel representation of other properties of relations that
can be expressed in OWL. We concentrate in particular on properties which are
relevant and widely used. The objective is to convince the reader that most such
properties can be represented in our approach without resorting to the powerful
though complex Description Logics.

Symmetry can be simply defined as follows:

solve(P ′(X ′, Y ′)) :−symmetric(P ′), solve(P ′(Y ′,X ′)).
symmetric(friend ′).

This rule specifies, in fact, the meaning of symmetry for any predicate, stating
(via the predicate solve applied over a generic atom name) that p(X,Y ) can be
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derived if p(Y,X) holds; notice that in this rule predicate solve occurs not only
in the head but also in the body of the rule. The fact symmetric(friend ′) specifies
that predicate friend is symmetric, via its name.

So, a programmer/knowledge-designer behaves very much like in OWL, save
that properties of relations must be specified on the names of the predicates.
Notice that different metaevaluation rules (with their auxiliary metalevel rules)
can be defined and expressed in a modular way, and they naturally interact and
compose with each other.

Below we consider transitivity, that can be expressed in the following way:

solve(P ′(X ′, Y ′)) :−transitive(P ′), solve(P ′(X ′, Z ′)), solve(P ′(Z ′, Y ′)).

This rule specifies the meaning of transitivity for any predicate, where a
fact of the form transitive(p′) declares that the predicate p′ is transitive. The
definition actually allows new facts to be derived. For example, if we have the
following facts:

transitive(same age′).
same age(ann, alice).
same age(alice, chris).

via the previous rule we can derive same age(ann, chris). A possible variation
is the transitive closure.

Another very useful feature, that increases flexibility to a great extent, is
equivalence between properties, obtained by the following definition:

solve(P ′(X ′, Y ′)) :−equivalent(P ′,R′), solve(R′(X ′, Y ′)).

This rule defines two relations as equivalent if they have the same extension.
For example, stating that predicate friend is equivalent to predicate amico (the
latter is the translation into Italian of the former):

equivalent(friend ′, amico′).
friend(ann, alice).
symmetric(equivalent ′).

we can easily see that it becomes possible to derive amico(ann, alice). The meta-
meta statement symmetric(equivalent ′) allows the translation to be applied in
both ways. The concept of equivalence can be customized via other meta-rules.

Focusing the attention on the concept of inheritance, we may have the fol-
lowing:

solve(P ′(X ′, Y ′)) :−hereditary(P ′,R′), solve(R′(X ′, Z ′)), solve(P ′(Z ′, Y ′)).

meaning that property P ′ is hereditary with respect to a relation R′ if whenever
an element of the domain of R′ has property P ′ then also all the other elements
have the same property.

It is important to notice that in the present setting new properties of rela-
tions can be defined upon need and immediately employed, in combination with
already existing ones, and meta-meta properties can be also expressed.

So, overall, we have proposed an extended Datalog including names, predi-
cations over names, and solve and solve not rules.
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6 Background: Datalog
+

Below we report from the aforementioned papers by Cali, Gottlob et al. the basic
notions about Datalog+ and its procedural semantics.

The core of Datalog+ languages consists of rules designated as “existen-
tial rules” (note that existential rules are also referred to as “Tuple Generating
Dependencies”, in short TGD’s), which introduce existential quantifiers in rule
heads. An example of existential rule is given below (where, in plain Datalog’s
style, we adopt lowercase for constants and predicates, and uppercase for vari-
able, where X̄ is to be intended as a tuple of variables and comma stands for
conjunction); this rule encodes that a person is the child of some other person.

person(X ) → ∃Y hasChild(Y ,X ), person(Y )
More generally, existential rules take the following form, where ψ is called

the rule Head and φ the rule Body, and they are conjunctions of atoms including
constants and variables:

∀X̄∀Ȳ φ(X̄, Ȳ ) → ∃Z̄ψ(X̄, Z̄)
The procedural semantics of a set of existential rules, (hereafter ‘program’)

Π over a database D, denoted Π(D) (composed of tuples, that we call ‘facts’
as in Prolog/Datalog), is defined via the so-called ‘chase’ procedure [16]. In
essence, the chase incrementally adds new atoms to D, where null values (fresh
constants used as placeholders) are used for satisfying the existentially quantified
variables, until the final result Π(D) satisfies all the existential rules of Π. The
chase procedure can be extended to accommodate negative constraints (“it is
false that. . .”) and stratified negation.

In general, however, Π(D) is infinite. In fact, considering the above
example, from D = {person(mary)} the chase derives hasChild(v1 ,X ) and
person(v1 ) where v1 is a null value. However, the process can continue deriving
hasChild(v2 , v1 ) and person(v2 ), and so on indefinitely. The notion of Ward-
edness and Warded Datalog+ , that hereafter we will take for granted, prevents
such infinite derivations. Wardedness is satisfied in a program Π if for each com-
posing rule (TGD) σ the following conditions hold: (i) all body-variables that
can be unified with a null value when the chase algorithm is applied, where such
null value is also propagated to the head of the rule (so-called “dangerous” vari-
ables) must coexist in a single body-atom α, called the ‘ward’, and (ii) the ward
can share only “harmless” variables with the rest of the body, i.e., variables that
are unified only with database constants during the construction of the chase.

We now provide a precise definition of chase, observing that by ‘chase’ the
authors of the aforementioned paper refer both to the chase procedure and to
its output Π(D). The TGD chase rule defined in [16] is reported below, given
the following preliminary assumptions: (i) an infinite universe of data constants
Δ, (ii) an infinite set of (labeled) nulls ΔN (where different constants represent
different values –unique name assumption–, while instead different nulls may
represent the same value), and (iii) an infinite set of variables. A lexicographic
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order is assumed over Δ ∪ ΔN with symbols in ΔN occurring after all symbols
in Δ. Notation X̄ stands for sequences of variables X1, . . . , Xk with k > 0.

CHASE RULE. Consider a database (set of facts) D and a (warded) TGD σ
of the form ∀X̄∀Ȳ φ(X̄, Ȳ ) → ∃Z̄Ψ(X̄, Z̄). Then, σ is applicable to D if there
exists a homomorphism h that maps the atoms of φ(X̄, Ȳ ) to atoms of D. Let
σ be applicable, and h1 be a homomorphism that extends h as follows: for each
Xi in X̄, h1(Xi) = h(Xi); for each Zj in Z̄, h1(Zj) = zj , where zj is a “fresh”
null, i.e., constant zj does not occur either in Π or in D, and zj lexicographically
follows all other nulls already introduced. The application of σ adds to D the
atom h1(Ψ(X̄, Z̄)) if not already in D.

We mention here Vadalog [10,11,29,31], a recent evolution of Datalog+ . In
fact, Vadalog core corresponds Warded Datalog+ (cf. [29]). The language is then
enhanced by adding additional features that are useful in real-world applications
such as: data types, expressions, Skolem functions, mapping functions to access
external data sources or computational resources. So, our proposal is applicable
to Datalog+ but also to Vadalog.

7 Enhancing Properties of Relations in Datalog
+

via Metalogic

In the above-mentioned work, Georg Gottlob proved that Datalog+ is under
some respect more powerful that OWL, as for instance in Datalog+ it is possible
to express a form of symmetry more general that in OWL: to state that two
people have been married from a date to another date, it is possible to express
symmetry over spouse names, while leaving the from-to dates unaltered. This
result is actually a combination of Markus Krötzsch et al. statement [39] that
this example cannot be expressed in certain description logics, combined with
Georg’s formulation, shown below, of how to express it in Datalog+ :

∀u, v, x, y.married(u, v , x , y) → married(v , u, x , y)
Since such a form is suitable for other relations, such as, e.g., colleague,

schoolmate, etc., a metalevel representation of such properties is in order, like:
solve(P ′(V ′, U ′,X ′, Y ′)) :−symmetric2 (P ′), solve(P ′(U ′, V ′,X ′, Y ′)).
symmetric2 (married ′).
symmetric2 (colleague ′).
symmetric2 (schoolmate ′).
. . .

In [30], it is extensively discussed how Datalog+ can express part of the
OWL 2 direct semantics entailment regime for OWL 2 QL. The following rules
represent a significant fragment of this representation:

Type(x , y),Restriction(y , z ) → ∃wTriple(x , z ,w)
Type(x , y),SubClass(y , z ) → Type(x , z )
Triple(x , y , z ), Inverse(y ,w) → Triple(z ,w , x )
Triple(x , y , z ),Restriction(w , y) → Type(x ,w).
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So, the above rules show that Datalog+ is powerful enough for ontological
reasoning and, as seen above for extended symmetry, even better than OWL at
certain tasks. We may notice that these rules are in fact metarules, reasoning
over data which are assumed to be represented by triples, in rdf style. Below we
show how via a metalogic approach this kind of rules can be expressed on data
represented in (or transposed into by some kind of import from external OWL
ontologies) Datalog facts. Notice that, from now on we will consider rules in
notation Head :−Body (traditional Datalog style) and Body → Head (Datalog+

style) as interchangeable; whenever not mentioned, variables that are not exis-
tentially quantified are assumed to be universally quantified; we assume that
each rule is terminated by a ‘.’.

Specifically, the above rules can be expressed, by exploiting the solve predi-
cate, as follows.

∃W ′solve(Pz ′(X ′,W ′)) :−restriction(Py ′,Pz ′), solve(Py ′(X ′)).
solve(Pz ′(X ′)) :−subclass(Py′, P z′), solve(Py ′(X ′)).
solve(Pw ′(Z ′,X ′)) :−inverse(Py ′,Pw ′), solve(Py ′(X ′,Z ′)).
solve(Pw ′(X ′)) :−restriction(Py ′,Pw ′), solve(Py ′(X ′,Z ′)).

We might add for instance facts:
inverse(parent ′, child ′).
symmetric(inverse ′).
restriction(sociable ′, friend ′).
subclass(female ′, person ′).
subclass(male ′, person ′).

So, we might derive that a person who is friend of someone is sociable, derive
who is a child form who is parent of whom (and vice versa, as we have declared
‘inverse’ is a symmetric property) and that both males and females are persons.
Indeed there is an extension to our previous syntax, as we have introduced an
existential in the head of a ‘solve’ rule.

One may notice that solve and solve not rules are not, strictly-speaking,
Datalog rules, because they may have compound terms as arguments. However,
the distinguished predicates are used just as “containers’ of seemingly higher-
order expressions, that can thus be formulated within first-order via naming. In
the following section we illustrate the practical treatment of such rules in the
extended chase procedure, that should clarify this matter. Also, one may wonder
whether the semantics of the OWL constructs on relations are fully captured in
the proposed approach. About this point, notice that the metalevel definitions
are user-defined, so this issue must be considered specifically for each set of
metarules one wants to adopt. For the properties introduced in Sect. 5, there
is a complete adherence to OWL semantics. The properties introduced in this
section instead go beyond OWL.

8 Meta-chase

From previously-discussed examples, we can see that in our extended Datalog
we have: (i) object-level atoms, where no metalevel constants and metavariables
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occur; (ii) metalevel atoms, where metalevel constants (names of object-level
constants or of predicates) occur; (iii) metaevaluation atoms, where distinguished
predicates solve or solve not occur.

In order to extend the chase to such extended programs, we have to suitably
extend the signature. We consider:

– a finite set of predicate symbols Ξ and their names Ξ ′, in the sense that for
every predicate symbol p ∈ Ξ there exists a metalevel constant p′ ∈ Ξ ′; we
state the naming relation, i.e., ↑p = p′ and ↓p′ = p;

– an infinite universe of data constants Δ and their names Δ′, in the sense that
for every (object-level) constant c ∈ Δ there exists a metalevel constant c′ ∈
Δ′; we state the naming relation, i.e., ↑c = c′ and ↓c′ = c, different constants
are assumed to represent different values (unique name assumption);

– an infinite set of (labeled) nulls ΔN and their names ΔN ′, in the sense that
for every null value v ∈ ΔN there exists a constant v′ ∈ ΔN ′; we state the
naming relation, i.e., ↑v = v′ and ↓v′ = v; different nulls may represent the
same value; so, we now have object-level and metalevel nulls;

– an infinite set of (object-level) variables with name starting with an uppercase
letter, say, e.g., X;

– an infinite set of metavariables with name starting with an uppercase letter
and syntactic form distinct from object-level variables, say, e.g., X ′.

A lexicographic order is assumed over Ξ∪Ξ ′∪Δ∪Δ′∪ΔN∪ΔN ′; precisely, we
have ↑p (respectively, ↑c and ↑v) for p ∈ Ξ (respectively, c ∈ Δ′ and v ∈ ΔN ′)
occurring immediately after p (respectively, c and v). Notation X̄ stands for
sequences of variables and/or metavariables. Wardedness of existential rules is
given for granted.

At first, we consider Datalog+ programs enriched with metavariables and
metaconstants, and with solve rules. We will discuss solve not rules later. For
the sake of simplicity we assume the head of rules to be an atom. In order to
exploit solve rules, the given database (that, we assume, can involve metalevel
facts but not solve facts) must be subjected to a pre-processing stage which
ensures that the given database becomes a potentially acceptable set of atoms.

Definition 3 (Database Pre-Processing). Let D be a database (set of
facts). For every object-level fact A in D, the pre-processing stage adds to D
the new fact solve(↑A).

Definition 4 (Meta-CHASE RULE). Consider a pre-processed database D,
and a (warded) TGD σ of the form ∀X̄∀Ȳ φ(X̄, Ȳ ) → ∃Z̄Ψ(X̄, Z̄). Then, σ is
applicable to D if there exists a homomorphism h that maps the atoms of the
body φ(X̄, Ȳ ) to atoms of D. Let σ be applicable, and h1 be a homomorphism
that extends h as follows:1

– for each Xi in X̄, h1(Xi) = h(Xi);

1 Recall that, a “fresh” null is a constant that does not occur either in Π or in D.
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– for each Zj in Z̄ which is an object-level variable, h1(Zj) = zj, where zj

is a “fresh” null and zj lexicographically follows all other object-level and
metalevel nulls already introduced;

– for each Zj in Z̄ which is a metavariable, h1(Zj) = z′
j, where z′

j is a “fresh”
null and z′

j lexicographically follows all other object-level and metalevel nulls
already introduced.

The application of σ adds to D the atom A = h1(Ψ(X̄, Z̄)) if not already in
D, and: (i) if A is an object-level atom, it adds also the atom solve(↑A); (ii) if
A = solve(↑B), it adds also the atom B.

Let assume that the initial database has been preprocessed as in Definition 3,
which produces a potentially acceptable set of atoms. Then we have:

Theorem 1. At each stage of the chase, the database D is an acceptable set of
atoms.

This follows immediately from the definition of the Meta-Chase rule, which for
every object-level atom adds the solve counterpart and for every metaevaluation
atom adds the object-level counterpart of its argument.

Managing solve not rules may seem trivial, as it would require to mod-
ify the Meta-chase rule so that an object-level atom A is added to D only if
solve not(↑A) does not belong to D. Only, since solve not(↑A) must be derived,
it might occur in D after A, and when A has been used in subsequent deriva-
tions already. To cope with this problem, one might limit the use of solve not to
stratified programs, extending to solve not the concepts of stratification already
developed for negation-as-failure [2]. This would guarantee that solve not(↑A)
would always be derived (if derivable) before A. For lack of space, we cannot
discuss solve not rules stratification here, so we defer this aspect to a future
paper.

Another simpler but fairly effective way is to state that solve not rules have
in their bodies program facts only. Thus, a further pre-processing stage would
compute all the solve not conclusions before starting the chase. In this case, the
last three lines of Definition 4 would become:

The application of σ adds to D the atom A = h1(Ψ(X̄, Z̄)) if neither A
itself not solve not(↑A) are already in D, and: (i) if A is an object-level
atom, it adds also the atom solve(↑A); (ii) if A = solve(↑B), it adds also
the atom B.

9 Related Work and Conclusions

Related work exists about ontologies and Answer Set Programming (see [15] and
the references therein). DLVHEX system [28] is a logic-programming reasoner
for computing the models of so-called HEX-programs. In this approach ASP
programs can import rdf triples from external ontologies and the basic ASP
language is extended to define higher-order logic programs. Since, however, the
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semantics of higher-order rules is provided by eliminating the distinction between
predicate and constant symbols, this rule may correspond to a number of weird
instances (where, e.g., a constant symbol is in predicate position) and possibly,
give rise to a combinatorial explosion of answer sets.

Our approach is not based upon higher-order rules, rather on names and
metalevel rules. It has been introduced [25] for possible integration in every
logic-based knowledge representation language, and as a proof of concept it has
already been applied to ASP (see the mentioned reference). It adds a much higher
practical expressive power, without impact on the complexity, as it is easy to
believe given the minor modification to the chase rule that have been necessary.
The fact however that such modifications were required demonstrates that the
additions are not just syntactic sugar. A theoretical analysis of the extended
language is deferred to future work. Issues to be considered are, e.g., whether
the theoretical properties of Wardedness are impacted by the extensions, and
whether or not they are applicable to other versions of the Datalog+ languages.
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Abstract. In intelligent agents, memory has a very important and deci-
sive role for the choice of future behaviors, since it is progressively formed
through the agent’s interactions with the external environment. Previous
work exists in the logic concerning the formalization of the reasoning on
the formation of beliefs and the interaction with the background knowl-
edge in non-omniscient agents. We extend this work by inserting the
concept of time through a particular function that assigns a “timing” to
beliefs and inferences.

1 Introduction

Memory in an agent system is a process of reasoning: in particular, it is the
learning process of strengthening a concept. The interaction between the agent
and the environment can play an important role in constructing its memory and
may affect its future behaviour, the latter due to the proactive and delibera-
tive capabilities of the agent themselves. In fact, through memory an agent is
potentially able to recall and to learn from experiences so that its beliefs and
its future course of action are grounded in these experiences. Most of the meth-
ods to design agent memorization mechanisms have been inspired by models of
human memory [15,18] developed in cognitive science.

Atkinson and Shiffrin in [3] proposed a model of human memory which con-
sists of three distinct memory stores, the sensory register where information are
stored which are detected from senses, the short term memory (or working mem-
ory) where explicit beliefs are stored and the long term memory which stores the
background knowledge; information passes from store to store in a linear way.

This model has been further enhanced by Gero and Liew in [14], and [10] for
constructive memory. Memory construction occur whenever an agent uses past
experience in the current environment in a situated manner. The exploitation of
“memories” requires the interaction among this different memory components.
Such correlation can be obtained in various ways, e.g., via neural networks, via
mathematical models or via logical deduction.

In computational logic, [4] introduces DLEK (Dynamic Logic of Explicit
beliefs and Knowledge) as a logical formalization of SOAR (State Operator And
Result) Architecture [13], which is one of the most popular cognitive architecture.
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Fig. 1. Short-term memory and Long-term memory

The underlying idea is to represent reasoning about the formation of beliefs
through perception and inference in non-omniscient resource-bounded agents.
They consider perception, short-term memory (also called “working memory”),
long-term memory (also called “background knowledge”) and their interaction.
DLEK is a logic that consists of a static part called LEK (Logic of Explicit
beliefs and Knowledge), which is an epistemic logic, and a dynamic component,
which extends the static one with “mental operations”. Resource-boundedness
in DLEK is modeled via the assumption that beliefs are kept in the short-term
memory, while implications that allow reasoning to be performed are kept in the
long-term memory. New beliefs can be formed in DLEK either from perception,
or from previous beliefs in short-term memories and rules in the background
knowledge. Inferences that add new beliefs are performed one step at a time
via an interaction between short- and long-term memories in consequence of an
explicit “mental operation” that will occur whenever an agent deems it necessary
and can allot the needed time [1,11].

DLEK has however no notion of time, while agents’ actual perceptions are
inherently timed and so are many of the inferences drawn from such perceptions.
So in [7] we have introduced explicit time instants and time intervals in formulas.
This is relevant because agents’ perceptions (that may become beliefs) are always
inherently timed, and so are the conclusions that can be drawn from them. But to
avoid problems with the management of the intervals and in order to not lose the
logic of the formalization, in this paper we present an extension of LEK/DLEK to
T-LEK/T-DLEK (“Timed LEK” and “Timed DLEK”) obtained by introducing
a special function which associates to each belief the arrival time and controls
timed inferences. Through this function it is easier to keep the evolution of the
surrounding world under control and the representation is more complete. The
issue of time in agents has been coped with in several other works, (see, e.g.,
among many, [5,6,16,17]), where however the objective is that of dealing with
time in communication and coordination among agents; thus, our attempt to
deal with time in memory management is a novelty in the literature.
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In the rest of the paper, Sects. 2 and 3 present syntax, semantics of the
extended logic, the axiomatization, and the canonical model. In Sect. 4 we pro-
pose a brief discussion on complexity and conclude.

2 T-LEK and T-DLEK

As in [4], our logic consists of two different components: a static component,
called T-LEK, which is mix between an Epistemic Logic and Metric Temporal
Logic ([12]), and a dynamic component, called T-DLEK, which extend the static
one with mental operation, which are vary important for “controlling” beliefs
(adds new belief, update belief, etc).

2.1 Syntax

As it is customary in logic programming, we assume a signature specifying
(countable) sets of predicate, function, and constant symbols. From constant
and function symbols, compound terms are built as usual. The Herbrand uni-
verse is the collection of all such terms (which includes constant symbols). We
assume that the integer numbers and the symbol ∞ are included among the con-
stant symbols and that the arithmetic operators are included among the function
symbols. Consequently, arithmetic expressions are terms of the signature. Atoms
have the form pred(τ1, . . . , τn) where pred is a predicate symbol, n ≥ 0 is its arity
and τ1, . . . , τn are terms. We denote by Atm the countable set of atoms of the
signature (i.e., the Herbrand base).

In our scenario we fix Atm = {p(t1, t2), q(t3, t4), ... ,h(ti, tj)} where ti � tj
and p, q, h are predicates, that can be equal or not. Moreover p(t1, t2) stands for
“p is true from the time instant t1to t2” with t1, t2 ∈ N (Temporal Representation
of the external world); as a special case we can have p(t1, t1) which stands for
“p is true in the time instant t1”. Obviously we can have predicates with more
terms than only two but in that case we fix that the first two must be those that
identify the time duration of the belief (i.e. open(1, 3,door) which means “the
agent knows that the door is open from time one to time 3”). Instead in the
previous work [7] we considered atoms of the form pI with I = [t1, t2], which are
the conjunction pt1 ∧ pt1+1∧· · ·∧ pt2 and also pt stands for pIt with It = [t, t]; we
have decided to change approach because pI is too detached from propositional
logic. Let also Agt be a finite set of agents.

Below is the definition of the formulas of the language LT -LEK , with a slight
abuse, in this grammar we use I as terminal symbol standing for time intervals
and i ∈ Agt:

ϕ,ψ := p(t1, t2) | ¬ϕ | �I ϕ | Bi ϕ | Ki ϕ| ϕ ∧ ψ| ϕ → ψ

Other Boolean connectives �, ⊥, ↔ are defined from ¬ and ∧ as usual. In the
formula �I Φ the MTL Interval “always” operator is applied to a formula; I is a
“time-interval” which is a closed finite interval [t, l] or an infinite interval [t,∞)
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(considered open on the upper bound), for any expressions/values t, l such that
0 ≤ t ≤ l and �[0,∞) will sometimes be written simply as �. The operator Bi

identifies belief in the working memory and the operator Ki to denote knowledge
and identifies what rules are present in the background knowledge.

Terms/atoms/formulas as defined so far are ground, namely there are no
variables occurring therein. We introduce variables and use them in formulas in
a restricted manner, as usual for example in answer set programming [9]. Vari-
ables can occur in formulas in any place constants can occur and are intended as
place holders for elements of the Herbrand universe. More specifically, a ground
instance of a term/atom/formula involving variables is obtained by uniformly
substituting ground terms to all variables (grounding step), with the restric-
tion that any variable occurring in an arithmetic expression (i.e., specifying a
time instant) can be replaced by a (ground) arithmetic expressions only. Conse-
quently, a non-ground term/atom/formula represents the possibly infinite set of
its ground instances, namely, its grounding. Notice that the rational of consid-
ering ground formulas is that they represent perceptions (either new or already
recorded in agent’s memory) coming in general from the external world(we say
“in general” as, in fact, in some of the aforementioned agent-oriented frame-
works perceptions can also result from internal events, i.e., from an agent’s
observations of its own internal activities). As it is customary in logic program-
ming, variable symbols are indicated with an initial uppercase letter whereas
constants/functions/predicates symbols are indicated with an initial lowercase
letter.

The language LT -DLEK of Temporalized DLEK (T-DLEK) is obtained by
augmenting LT−LEK with the expression [(GI : α)HI

]ψ, where α denotes a
mental operation, ψ is a ground formula, GI ,HI range over 2Agt and GI ⊆ HI ;
the I is used to define that in a given interval we have a given set of agents and
I depends on ψ. Moreover [(GI : α)HI

]ψ stands for “ψ holds after the mental
operation α is performed by all the agent in GI , and The mental operations that
we consider are essentially the the agents in HI have common knowledge abot
this fact”. Our mental operation are the following:

– +ϕ: learning perceived belief; where ϕ is a ground formula of the form p(t1, t2)
or ¬p(t1, t2): the mental operation that serves to form a new belief from a
perception ϕ. A perception may become a belief whenever an agent becomes
“aware” of the perception and takes it into explicit consideration. Notice that
ϕ may be a negated atom.

– ∩(ϕ,ψ): beliefs conjunction; believing both ϕ and ψ, an agent starts believing
their conjunction.

– (ϕ,ψ): belief inference; where ψ is a ground atom, say p(t1, t2): an agent,
believing that ϕ is true and having in its long-term memory that ϕ implies ψ
(in some suitable time interval including [t1, t2]), starts believing that p(t1, t2)
is true.

– �(ϕ,ψ): belief revision; where ϕ and ψ are ground atoms, say p(t1, t2) and
q(t3, t4) respectively: an agent, believing p(t1, t2) and having in the long-term
memory that p(t1, t2) implies ¬q(t3, t4), removes the timed belief q(t3, t4) if
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the intervals match. Notice that, should q be believed in a wider interval I such
that [t1, t2] ⊆ I, the belief q(., .) is removed concerning intervals [t1, t2] and
[t3, t4], but it is left for the remaining sub-intervals (so, its is “restructured”).

Example 1: We propose a small example to illustrate the form and the role
of rules in the working memory and in the long-term memory. If at time t =
2 it is starting raining, in the working memory of agent i there will be the
following belief: Bi(raining(2, 2)). And if we have in the background knowledge
Ki(rain(t1, t2) → take(t1, t2,umbrella)) and 2 ∈ [t1, t2] than agent i can infer
Bi(take(2, 2,umbrella)), which is a new belief stored in the working memory.

And if we have also Ki(rain(t1, t2) ∧ take(t1, t2,umbrella) → go(t1 +
1,∞, shops)) than the agent can infer Bi(go(3,∞, shops)) which means that
after getting the umbrella agent i can go around the shops.

Example 2: An example of a non-ground T-LEK formula is:

Ki(�[t1,t2](enrollment(T ,T )) → �[t1,t2]�[T,T+14]send payment(T1 ,T1 ))

where we suppose that an agent knows that it is possible to enroll in the uni-
versity in the period [t1, t2] and that, after the enrollment, the payment must be
sent within fourteen days (still staying within the interval [t1, t2]). Since, by the
restrictions on formulas stated earlier, it must be the case that T1 ∈ [T, T + 14]
and both T , T +14 must be in [t1, t2], only a finite set of ground instances of this
formula can be formed by substituting natural numbers to the variables T, T1

(specifically, the maximum number of ground instances is t2−t1−14+1 assuming
to pay on the last day t2). In case one would consider the more general formula:

Ki(�[t1,t2](enrollment(T ,T ,X )) → �[t1,t2]�[T,T+14]send payment(T1 ,T1 ,X ))

where X represents a student of that university, i.e., student(., .,X ) holds for
some ground instance of X, then the set of ground instances would grow, as
a different instance should be generated for each student (i.e., for each ground
term replacing X). In practice, however, ground instances need not to be formed
a priori, but rather they can be generated upon need when applying a rule; in
the example, just one ground instance should be generated when some student
intends to enroll in that university at a certain time T = t̂.

2.2 Semantics

Semantics of DLEK and T-DLEK are both based on a set W of worlds. In both
DLEK and T-DLEK we have the valuation function: V : W → 2Atm . Also we
define the “time” function T that associates to each formula the time interval in
which this formula is true and operates as follows:

– T (p(t1, t2)) = [t1, t2], which stands for “p is true in the time interval [t1, t2]”
where t1, t2 ∈ N; as a special case we have T (p(t1, t1)) = t1, which stands for
“p is true in the time instant t1” where t1 ∈ N (time instant);
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– T (¬p(t1, t2)) = T (p(t1, t2)), which stands for “p is not true in the time inter-
val [t1, t2]” where t1, t2 ∈ N;

– T (ϕ op ψ) = T (ϕ)
⊎

T (ψ) with op ∈ {∨,∧,→}, which means the unique
smallest interval including both T (ϕ) and T (ψ);

– T (Biϕ) = T (ϕ);
– T (Kiϕ) = T (ϕ);
– T (�Iϕ) = I where I is a time interval in N;
– T ([(GI : α)HI

]ϕ) there are different cases depends on which kind of mental
operations we applied:
1. T ((GI : +ϕ)HI

) = T (ϕ);
2. T ((GI : ∩(ϕ,ψ))HI

) = T (ϕ)
⊎

T (ψ);
3. T ((GI : (ϕ,ψ))HI

) = T (ψ);
4. T ((GI : �(ϕ,ψ)HI

)) returns the restored interval where ψ is true.

For a world w, let t1 the minimum time instant of T (p(t1, t1)) where p(t1, t1) ∈
V (w) and let t2 be the supremum time instant (we can have t2 = ∞) among the
atoms in V (w). Then, whenever useful, we denote w as wI where I = [t1, t2],
which identifies the world in a given interval.

The notion of LEK/T-LEK model does not consider mental operations, dis-
cussed later, and is introduced by the following definition.

Definition 1. A T-LEK model is a tuple M = 〈W ;N ; {Ri}i∈Agt;V ;T 〉 where:

– W is the set of worlds;
– V : W → 2Atm valuation function;
– T “time” function;
– Ri ⊆ W×W is the accessibility relation with i ∈ Agt, required to be an

equivalence relation so as to model omniscience in the background knowledge
s.t.
Ri(wI) = {vI ∈ W | wIR vI} called epistemic state of the agent i in wI , which
indicates all the situations that the agent considers possible in the world wI

or, equivalently any situation the agent i can retrieve from long-term memory
based on what it knows in world wI ;

– N : Agt×W → 22
W

is a “neighbourhood” function, ∀w ∈ W , N(i, w) defines,
in terms of sets of worlds, what the agent i is allowed to explicitly believe in
the world wI ; ∀wI , vI ∈ W , and X ⊆ W :
1. if X ∈ N(i, wI), then X ⊆ Ri(wI): each element of the neighbourhood is

a set composed of reachable worlds;
2. if wIRi vI , then N(wI) ⊆ N(vI): if the world vI is compliant with the

epistemic state of world wI , then the agent i in the world wI should have
a subset of beliefs of the world vI .

A preliminary definition before the Truth conditions:
let M = 〈W ;N ; {Ri}i∈Agt;V ;T 〉 a T-LEK model. Given a formula ϕ, for every
wI ∈ W , we define

‖ ϕ ‖M
wI

= {vI ∈ W | M,vI |= ϕ} ∩ Ri(wI).

Truth conditions for T-DLEK formulas are defined inductively as follows:
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– M,wI |= p(t1, t2) iff p(t1, t2) ∈ V (wI) and T (p(t1, t2)) ⊆ I;
– M,wI |= ¬ϕ iff M,wI � ϕ and T (¬ϕ) ⊆ I;
– M,wI |= ϕ ∧ ψ iff M,wI |= ϕ and M,wI |= ψ with T (ϕ), T (ψ) ⊆ I;
– M,wI |= ϕ ∨ ψ iff M,wI |= ϕ or M,wI |= ψ with T (ϕ), T (ψ) ⊆ I;
– M,wI |= ϕ → ψ iff M,wI � ϕ or M,wI |= ψ with T (ϕ), T (ψ) ⊆ I;
– M,wI |= Biϕ iff ‖ ϕ ‖M

wI
∈ N(wI) and T (ϕ) ⊆ I;

– M,wI |= Ki ϕ iff for all vI ∈ Ri(wI), it holds that M,vI |= ϕ and T (ϕ) ⊆ I;
– M,wI |= �Jϕ iff T (ϕ) ⊆ J ⊆ I and for all vI ∈ Ri(wI), it holds that

M,vI |= ϕ;

In particular, considering formulas of the forms Bi ϕ and Ki ϕ, we observe
that M,wI |= Bi ϕ if the set ‖ ϕ ‖M

wI
of worlds reachable from wI which entail ϕ

in the very same model M belongs to the neighbourhood N(i, wI) of wI . Hence,
knowledge pertains to formulas entailed in model M in every reachable world,
while beliefs pertain to formulas entailed only in some set of them, where this
set must however belong to the neighbourhood and so it must be composed of
reachable worlds. Thus, an agent is seen as omniscient with respect to knowledge,
but not with respect to beliefs.

Concerning a mental operation α performed by any agent i, we have:
M,wI |= [(GJ : α)HJ

]ϕ iff M (GJ :α)HJ , wI |= ϕ, T ((GJ : α)HJ
) ⊆ I, J =

T ((GJ : α)HJ
) where M (GJ :α)HJ = 〈W ;N (GJ :α)HJ (i, wI); {Ri

(GJ :α)HJ }i∈Agt;
V ;T 〉. Here Ri

(GJ :α)HJ (wI) = {vI ∈ W s.t. wIRi vI and J ⊆ I} and α repre-
sents a mental operation affecting the sets of beliefs. In particular, such opera-
tion can add new beliefs by direct perception, by means of one inference step,
or as a conjunction of previous beliefs. When introducing new beliefs, the neigh-
bourhood must be extended accordingly, as seen below; in particular, the new
neighbourhood:

– N (GJ :α)HJ (i, wI) = {X ∈ Nα(i, wI) if i ∈ GJ and J ⊆ I}: if agent i is in GJ

then he has to change his neighbourhood accordingly to α;
– N (GJ :α)HJ (i, wI) = {X ∈ N(i, wI) if i ∈ HJ\GJ and J ⊆ I}: if agent i is in

HJ\GJ then he does not have to change his neighbourhood because he does
not perform the mental operation α but he knows that other agents in GJ

have performed a operation;
– N (GJ :α)HJ (i, wI) = {X ∈ N(i, wI) if i /∈ H and J ⊆ I}: if agent i is not in

HJ then he does not have to change his neighbourhood because he does not
perform the mental operation α and also he do not know that other agents
in GJ have performed a operation.

Where Nα(i, wI) is defined for each of the mental operations as follows.

– Learning perceived belief:
N+ϕ(i, wI) = N(i, wI) ∪ { ‖ ϕ ‖M

wI

}
with T (ϕ) ⊆ I.

The agent i adds to its beliefs perception ϕ (namely, an atom or the negation
of an atom) perceived at a time in T (ϕ); the neighbourhood is expanded to as
to include the set composed of all the reachable worlds which entail ϕ in M .
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– Beliefs conjunction:

N∩(ψ,χ)(i, wI) =

⎧
⎨

⎩

N(i, wI) ∪ { ‖ ψ ∧ χ ‖M
wI

}
if M,wI |= Bi(ψ) ∧ Bi(χ)
and T (∩(ψ, χ)) ⊆ I

N(i, wI) otherwise

The agent i adds ψ ∧ χ as a belief if it has among its previous beliefs both
ψ and χ, with I including all time instants referred to by them; otherwise
the set of beliefs remain unchanged. The neighbourhood is expanded, if the
operation succeeds, with those sets of reachable worlds where both formulas
are entailed in M .

– Belief inference:

N�(ψ,χ)(i, wI) =

⎧
⎨

⎩

N(i, wI) ∪ { ‖ χ ‖M
wI

}
if M,wI |= Bi(ψ) ∧ Ki(ψ → χ)
and T ( (ψ, χ)) ⊆ I

N(wI) otherwise

The agent i adds the ground atom χ as a belief in its short-term memory
if it has ψ among its previous beliefs and has in its background knowledge
Ki(ψ → χ), where all the time stamps occurring in ψ and in χ belong to I.
Observe that, if I does not include all time instants involved in the formulas,
the operation does not succeed and thus the set of beliefs remains unchanged.
If the operation succeeds then the neighbourhood is modified by adding χ as
a new belief.

– Beliefs revision (applied only on ground atoms).
Given Q = q(j, k) s.t. T (q(j, k)) = T (q(t1, t2)) ∩ T (q(t3, t4)) with j, k ∈ N

and P =
{
M,wI |= Bi(p(t1, t2)) ∧ Bi(q(t3, t4)) ∧ Ki(p(t1, t2) → ¬q(t3, t4))

and T (� (p(t1, t2), q(t3, t4))) ⊆ I and there is no interval J � T (p(t1, t2)) s.t.
Bi(q(t5, t6)) where T (q(t5, t6)) = J

}
:

N�(p(t1,t2),q(t3,t4))(i, wI) =
{

N(i, wI) \ { ‖ Q ‖M
wI

}
if P

N(i, wI) otherwise

The agent i believes that q(t3, t4) holds only in the interval T (q(t3, t4)) and
has the perception of p(t1, t2) where T (p(t1, t2)) ⊆ T (q(t3, t4)). Then, the
agent replaces previous belief q(t3, t4) in the short-term memory with q(t5, t6)
where T (q(t5, t6)) = T (q(t3, t4)) \ T (q(t1, t2)).
In general, the set T (q(t3, t4)) \ T (q(t1, t2)) is not necessarily an interval:
being T (p(t1, t2)) ⊆ T (q(t3, t4)), with T (p(t1, t2)) = [t1, t2], and T (q(t3, t4)) =
[t3, t4], we have that T (q(t3, t4)) \ T (q(t1, t2)) = [t3, t1 − 1]∪[t2 + 1, t4]. Thus,
q(t3, t4) is replaced by q(t3, t1 − 1) and q(t2 + 1, t4) (and similarly if t4 = ∞).

We write |= T -DLEKϕ to denote that ϕ is true in all worlds wI , of every TLEK
model M .

Example 3: Let us consider the example of a person who is married or divorced,
where only the perform can perform the action to be married or divorced. Let
us assume that performed actions are recorded among an agent’s perceptions,
with the due time stamp. For reader’s convenience, actions are denoted using a
suffix “A”. For simplicity, actions are supposed to always succeed and to produce
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an effect within one time instant. Let us consider the following rules (kept in
long-term memory):

Ki(marry(T ,T )A → married(T + 1 ,∞))
Ki(divorce(T ,T )A → divorced(T + 1 ,∞)).

Let us now assume that a person married, e.g., at time 5; then, a belief will be
formed of the person is married from time 6 on; however, if that person later
divorced, e.g., at time 8, as a consequence result that s(he) is divorced from
time 9. It can be seen that the application of previous rules in consequence of an
agent’s action of marring/divorcing determines some “belief restructuring” in the
short-term memory of the agent. In absence of other rules concerning marriage,
we intend that a person can not be simultaneously married and divorced. The
related belief update is determined by the following rules:

Ki(married(T ,∞) → ¬divorced(T ,∞))
Ki(divorced(T ,∞) → ¬married(T ,∞))

With the above timing, the result of their application is that the belief formed at
time 5, i.e., married(6,∞) will be replaced by married(6, 8) plus divorced(9,∞).

Property 1: For the mental operations previously considered we have the fol-
lowing (where ϕ,ψ are as explained earlier):

– |= T -DLEK [(GJ : +ϕ)HJ
]Biϕ.

Namely, as a consequence of the operation +ϕ (thus after the perception of
ϕ) the agent i adds ϕ to its beliefs.

– |= T -DLEK(Biϕ ∧ Biψ) → [(GJ : ∩(ϕ,ψ))HJ
]Bi(ϕ ∧ ψ).

Namely, if agent i has ϕ and ψ as beliefs, then as a consequence of the mental
operation ∩(ϕ,ψ) the agent starts believing ϕ ∧ ψ;

– |= T -DLEK(Ki(ϕ → ψ) ∧ Bi ϕ) → [(GJ : (ϕ,ψ))HJ
]Bi ψ.

Namely, if agent i has ϕ as one of its beliefs and has Ki(ϕ→ψ) in its back-
ground knowledge, then as a consequence of the mental operation (ϕ,ψ) the
agent starts believing ψ;

– |= T -DLEK(K(p(t1, t2) → ¬q(t3, t4)) ∧ Bi (p(t1, t2)) ∧ Bi (q(t3, t4))) → [(GJ :
�(p(t1, t2), q(t3, t4)))HJ

] (Bi (q(t5, t6)))
where T (q(t5, t6)) = T (q(t3, t4)) \ T (q(t1, t2)).
Namely, if agent i has q(t3, t4) as one of its beliefs, q is not believed outside
T (q(t3, t4)), the agent perceives p(t1, t2) where T (p(t1, t2)) ⊆ T (q(t3, t4)), and
has Ki(p(t1, t2) → ¬q(t3, t4)) in its background knowledge.
Then after the mental operation �(p(t1, t2), q(t3, t4)) the agent starts believing
q(t5, t6)) where T (q(t5, t6)) = T (q(t3, t4)) \ T (q(t1, t2)).

3 Axiomatization and Canonical Models

The logic T-DLEK can be axiomatized as an extension of the axiomatization
of DLEK as follows. We implicitly assume modus ponens, standard axioms for
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classical propositional logic, and the necessitation rule. The T-LEK axioms are
the following:

1. Ki(ϕ) ∧ Ki(ϕ → ψ) → Ki(ψ);
2. Ki(ϕ) → ϕ;
3. Ki(ϕ) → KiKi(ϕ);
4. ¬KI(ϕ) → Ki¬Ki(ϕ);
5. Biϕ ∧ Ki(ϕ ↔ ψ) → Biψ;
6. �Iϕ ∧ �I(ϕ → ψ) → �I(ψ);
7. �Iϕ → �Jϕ with J ⊆ I;

The axiomatization of T-DLEK, involves these axioms:

1. [(GJ : α)HJ
]f ↔ f where f = p or f = pt or f = pI ;

2. [(GJ : α)HJ
]¬ϕ ↔ ¬[(GJ : α)HJ

]ϕ;
3. [(GJ : α)HJ

](ϕ ∧ ψ) ↔ [(GJ : α)HJ
]ϕ ∧ [(GJ : α)HJ

]ψ;
4. [(GJ : α)HJ

]Ki(ϕ) ↔ Ki

(
[(GJ : α)HJ

](ϕ)
)
;

5. [(GJ : +ϕ)HJ
]Biψ ↔

(
Bi([(GJ : +ϕ)HJ

]ψ) ∨ Ki

(
[(GJ : +ϕ)HJ

]ψ ↔ ϕ
))

;

6. [(GJ : (ϕ,ψ))HJ
]Biχ ↔

(
Bi

(
[(GJ : (ϕ,ψ))HJ

]χ
) ∨

(
Biϕ ∧ Ki

(
ϕ → ψ

) ∧
Ki

(
[(GJ : (ϕ,ψ))HJ

]χ ↔ ψ
)))

;

7. [(GJ : �(ϕ,ψ))HJ
]Biχ ↔

(
Bi

(
[(GJ : �(ϕ,ψ))HJ

]χ
) ∨

(
Biϕ ∧ Ki(ϕ→¬ψ) ∧

Ki

(
[(GJ : �(ϕ,ψ))HJ

]χ↔¬ψ
)))

;

8. [(GJ : ∩(ϕ,ψ))HJ
]Biχ ↔

(
Bi

(
[(GJ : ∩(ϕ,ψ))HJ

]χ
) ∨

(
(Biϕ ∧ Biψ) ∧

Ki

(
[(GJ : ∩(ϕ,ψ))HJ

]χ ↔ (ϕ ∧ ψ)
))

;

9.
ψ ↔ χ

ϕ ↔ ϕ[ψ/χ]
where ϕ[ψ/χ] denotes the formula obtained by replacing ψ

with χ in ϕ.

We write T-DLEK  ϕ to indicate that ϕ is a theorem of TDLEK.
Both logics T-LEK and T-DLEK are sound for the class of T-LEK models.

The proof that T-DLEK is strongly complete can be achieved by using a standard
canonical model argument.

The canonical T-LEK model is a tuple Mc = 〈Wc;Nc; {Ri,c}i∈Agt;Vc;Tc〉
where:

– Wc is the set of all maximal consistent subsets of LT -LEK ; so, as in [4],
canonical models are constructed from worlds which are sets of syntactically
correct formulas of the underlying language and are in particular the largest
consistent ones. As before, each w ∈ Wc can be conveniently indicated as wI .

– For every wI ∈ W and wIRi,cvI if and only if Kiϕ ∈ wI iff Kiϕ ∈ vI ; i.e.,
Ri,c is an equivalence relation on knowledge; as before, we define Ri,c(wI) =
{vI ∈ W | wIRcivI}. Thus, we cope with our extension from knowledge of
formulas to knowledge of formulas.
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– Analogously to [4], for wI ∈ W , Φ ∈ LT -LEK we define AΦ(wI) = {vI ∈
Ri,c(wI) | Φ ∈ vI}. Then, we put Nc(wI) = {AΦ(wI) | BiΦ ∈ wI}.

– Vc is a valuation function defined as before.
– Tc is a “time” function defined as before.

As stated in Lemma 2 of [4], there are the following immediate consequences
of the above definition: if wI ∈ Wc and i ∈ Agt , then

– for Φ ∈ LT -LEK , it holds that KiΦ ∈ wI if and only if ∀vI ∈ W such that
wIRi,cvI we have Φ ∈ vI ;

– for Φ ∈ LT -LEK , if BiΦ ∈ wI and wIRi,cvI then BiΦ ∈ vI .

Thus, while Ri,c-related worlds have the same knowledge and Nc-related
worlds have the same beliefs, as stated in Lemma 3 of [4] there can be Ri,c-related
worlds with different beliefs. The above properties can be used analogously to
what is done in [4] to prove that, by construction, the following results hold:

Lemma 1. For all wI ∈ Wc and BiΦ,BiΨ ∈ LT -LEK , if BiΦ ∈ wI but BiΨ �∈
wI , it follows that there exists vI ∈ Ri,c(wI) such that Φ ∈ vI ↔ Ψ �∈ vI .

Lemma 2. For all Φ ∈ LT -LEK and wI ∈ Wc it holds that Φ ∈ wI if and only
if Mc, wI � Φ.

Lemma 3. For all Φ ∈ LT -DLEK then there exists Φ̃ ∈ LT -LEK such that
T-DLEK  Φ ↔ Φ̃.

Under the assumption that the interval I is finite, the previous lemmas allow us
to prove the following theorems.

Theorem 1. T-LEK is strongly complete for the class of T-LEK models.

Theorem 2. T-DLEK is strongly complete for the class of T-LEK models.

With the new formalization of time intervals proposed in this paper, the
proof of the previous Theorem immediately follows from the proof proposed in
[4].

4 Conclusion

In this work we extended an existing approach to the logical modeling of short-
term and long-term memories in Intelligent Resource-Bounded Agents by intro-
ducing the T function, which manages the interval when an atom is true.
Through this function we are also able to assign a “timing” to the epistemic
operators B and K. Moreover we add the always operator �I of the Metric Tem-
poral Logic to increase the expressiveness of our logic. We considered not just
adding new beliefs, rather we introduced a new mental operation not provided
in DLEK, to allow for removing/restructuring existing beliefs. The resulting T-
DLEK logic shares similarities in the underlying principles with hybrid logics
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(cf., e.g., [2]) and with temporal epistemic logic (cf., e.g., [8]); as concerns the
differences, the former has time instants but no time intervals, and the latter
has neither time instants nor time intervals.

With regard to complexity for the mono agent case for LEK it has been
proved that the satisfiability problem is decidable and it has been proved to be
in NP-complete, instead for DLEK it has been conjectured to be PSPACE. It
is easy to believe that our extensions cannot spoil decidability because the T
function do not interfere. Inference steps to derive new beliefs are analogous to
D-LEK: just one modal rule at a time is used and a sharp separation is postulated
between the working memory, where inference is performed, and the long-term
memory.

Future developments could be the study of how to encode information from
the working memory to the long term memory under certain conditions how it
is illustrated in Fig. 1.
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Abstract. Simplifying programming, deployment, and configuration of
heterogeneous networked IoT devices requires networking, hardware, rep-
resentation of knowledge and concepts, design and programming skills.
In fact, IoT applications are mostly built by adopting different existing
paradigms and technologies on a case-by-case basis. As a result, pro-
gramming tools hinder adaptability and interoperability of applications
with their rigidity.

In this paper, we propose a rule-based system that configures and
programs IoT devices automatically. The rule base holds formal specifi-
cations about hardware platforms, networking protocols, physical world
concepts, and applications. Provided with a high-level application goal,
the proposed system generates and delivers symbolic application code to
the operating devices, which are then able to run it without any further
translation. The tool also supports automatic configuration of IoT het-
erogeneous entities. Based on hardware specifications in the knowledge
base, the system outputs the best configuration, i.e. the best way for
connecting sensors and actuators to a specific board for a given purpose.

Keywords: Symbolic programming · Formal knowledge
representation · FORTH · Code generation

1 Introduction

Emerging research trends and the growth of the Internet of Things (IoT) market,
make application developers face several interrelated challenges. Among these,
integrating knowledge and data representation on heterogeneous networks com-
prising both powerful and resource-constrained devices urges for novel standards
and technologies to enable effective pervasive connectivity and to overcome the
fragmentation caused by the multitude of existing infrastructures and frame-
works [12].

Knowledge integration from different sources represents a fundamental shift
towards effective interoperability since, regardless of their diversity, IoT objects
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have to interpret, access, and exchange descriptions of both the physical world
and of themselves, unambiguously [8].

For the purpose, ontologies are usually adopted for representing and manag-
ing high-level knowledge through the specification of concepts and their relation-
ships. Besides the fact that many ontologies are domain specific, the updating
process requires proper mechanisms to ensure that knowledge is correctly inter-
preted and synchronized among multiple devices.

In any case, formal description must be directly executable by the devices
to enable effective semantic reasoning. This requires specific tools and frame-
works. In this respect, description languages have also been proposed that pro-
vide generic metadata models to give semantics to data [6] and to specify struc-
tural and functional behaviors of systems.

A centralized approach, even based on the Cloud, is a common choice to
overcome the issues arising from the growth of the description itself [14]. A cen-
tral entity is often endowed with several frameworks to ease managing networks
of IoT devices. However, such systems are quite fragmented as they result from
linking together different paradigms, abstractions, and technologies. As a conse-
quence, any change, update or upgrade becomes problematic.

An alternative approach adopts a formal representation relying on a knowl-
edge base holding facts and logic rules. The knowledge base allows for a formal
description of concepts, specification, and logic rules to represent the application
domain with a high level of abstraction. Logic rules are exploited by an infer-
ence engine to manipulate the knowledge itself and to satisfy user goals. Several
systems benefit of this approach, ranging from verification for ensuring security
of controllers and actuators [1] to IoT service composition [2].

More generally, the complexity encountered in the lifecycle of IoT applica-
tions naturally suggests to encode the expertise needed for connecting, config-
uring, programming, deploying, and integrating different platforms successfully
as well as to assist developers and designers in automatically prototyping and
managing IoT applications, products, and services. Some solutions focus on easy
configuration, access, and management of the available devices even by ordinary
users [11]. Service management can also be built on rule-based systems so that
each device can use inference to expose its services. In this case, each node can
be queried by other clients to prove a set of theory axioms, while services are
configured at runtime by a configurator [3].

In this paper, we present a rule-based system to support developers in imple-
menting IoT applications. A knowledge base coalesces hardware and networking
specifications as well as properties of the environment. To automate software
development, an inference engine generates source code which is delivered to
deployed devices “on the fly”. Our tool acts as a configurator in the sense that
the output source code automatically defines what it is required to execute an
application on remote devices at bootstrap. Due to the adopted symbolic pro-
gramming approach, the generated high-level application code conveys seman-
tics still being directly executable by target devices without any translation
step [5]. Hardware configuration is also supported to assist novice users and
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implementers. The best connections of hardware components to a specific board
are inferred by the system, effectively. The remainder of the paper is organized as
follows. Section 2 presents the related work. Section 3 defines the architecture of
the rule-based system and highlights possible applications in real scenarios. The
knowledge base organization is presented in Sect. 4. The used techniques and
algorithms for hardware configuration and source code generation are detailed
in Sects. 5 and 6, respectively. Section 7 describes the implementation of a pro-
totype that interfaces with remote IoT devices to provide interoperability and
customization. Section 8 describes the experimental setup and reports evalua-
tions in terms of some metrics such as Lines of Code (LOC), number of rules,
and size of source code. Section 9 includes our conclusions and possible future
directions.

2 Related Work

IoT application development is an active research area. Several methodologies
have in fact be proposed to speed up the development by automating the soft-
ware generation process. Knowledge are abstracted by adopting models that are
progressively refined until source code is generated. The process of transforming
high-level abstraction models into lower-level models is made automatic in many
proposed systems. Moreover, combining rule-based models and Domain Specific
Languages has been proposed for application specification [9]. Other approaches
aim at reducing the implementation effort by adopting a suite of tools. These
usually include at least a domain-aware editor and a compiler, which automati-
cally generates the implementation code after processing the high-level descrip-
tion. Deployment tools, which are responsible of sending the code, and run-time
managers are also adopted [13]. In other cases, application development is under-
taken using different languages that have to be integrated [10]. Other approaches
are centered on rule-base systems. The use of a rule-based reasoner exploiting a
knowledge base has been proposed for automatic IoT service composition [2] or to
enable users to configure their own network and devices at home [11]. Exploiting
powerful devices, such as network gateways, has been suggested to manage and
access remote devices, and to automatically build high-level knowledge describ-
ing environmental properties [7]. A rule-based system implemented in Prolog has
been also proposed to detect conflicts in sensors and controllers behaviors [1].
Similarly, a prototype implementation has been designed on the top of tuProlog
engine for IoT service management. Each node exposes its services to multiple
devices while applications can access or configure the services [3]. Agent-based
computing paradigms have also been proposed to support IoT systems analysis,
design, and implementation [4].

3 System Overview

The proposed rule-based system presents a modular architecture which can be
logically decomposed into four main components:



62 S. Gaglio et al.

Fig. 1. Abstract view of the proposed system. The hardware configuration generator
and the Target source code Generator extract information from the Knowledge Base
and interact with the IoT ecosystem through the Communication Interface, which takes
care of sending code and receiving responses.

– A Knowledge Base encodes heterogeneous information across multiple
domains into a coherent whole. Facts and rules concerning the physical envi-
ronment, hardware platforms, networking, and about the high-level applica-
tion are included. For instance, symbolic code, classes of objects and their
instances–e.g. IoT hardware platforms and products available in the market–
and network protocols are formally specified from a structural and functional
point of view.

– The Target source code Generator exploits a backward chaining inference
engine and automatically generates symbolic code for run-time configuration,
programming or updating of already deployed devices. Given a user-defined
goal as input, this component outputs the related source code. Two distinct
working modes are available: (i) generation of code for application configu-
ration; (ii) generation of operational software. In the first case, the genera-
tor outputs the code to define procedures, routines, and symbols on remote
devices, while in the second one the application code is generated automati-
cally.

– The Hardware Configuration Generator exploits the inference engine and
automatically generates and validates hardware configurations, that is, possi-
ble ways of connecting hardware components, such as sensors and actuators,
to a specific microcontroller unit (MCU), correctly. This component takes
also care of interfacing a given node with the system itself.

– The Communication Interface exposes rules for interfacing the system with
the IoT ecosystem. In particular, it enables sending code from the system to
remote IoT devices. Code transmission can adhere to different communication
protocol, such as TCP, which has to be indicated by the user and specified
in the knowledge base. Secure exchange of symbolic code is also enforced in
this component.

The overall architecture is abstracted in Fig. 1.



A Rule-Based System for Hardware Configuration and Programming 63

4 Knowledge Base Structure

The knowledge base provides a formal representation of all of the aspects related
to the IoT scenario, as a whole. The expertise needed to embrace different
domains is encoded in a modular organization of distinct rule sets.

Physical world properties are modeled in the Physical world rule set. Con-
cepts and rules are independent from a specific use context and can be used
across multiple high-level application domains.

The Application rule set strictly relates to high-level applications. Aspects
concerning objects, their states and locations, measurable physical parameters,
and possible actions are formally defined. For instance, considering a IoT home
scenario, the application domain includes the references to the involved objects
as well as their placement in the house and possible states.

Hardware platforms are modeled in the Hardware rule set which encodes
the expertise concerning structural low-level board components, and their oper-
ational modes. Facts and rules define MCUs in terms of their pins, peripherals,
sensors, and actuators, as reported by technical documentation or data-sheets.
As an example, in the knowledge base an instance of the ESP8266 12E board is
defined with the code

mcu_name(myesp, esp8266_12e)

that associates the unique label myesp to the hardware platform ESP8266 12E.
The Software rule set holds useful facts and rules exploited by the Target

source code Generator for constructing symbolic executable code for each of the
possible operations.

The Network rule set provides a set of functionalities to transmit symbolic
code to nodes and to manage the correct reception of feedbacks by nodes, when
needed. Finally, network protocols are specified to control the remote connection
between each device and the rule-base system for configuration and code trans-
mission. Besides the inclusion of concepts as host name, IP address, and server
port number, the system currently models the Transmission Control Protocol
(TCP), which is the default protocol used for code exchange. For instance the
IP address and TCP server port of the myesp device are specified as such:

mcu_net_address(myesp,
’myesp.local’, 1983).

To enable secure interaction with nodes, this rule set also specifies the DES-
CBC and AES128-CBC protocols.

4.1 Objects, States and Locations

In our formal description, objects, states, and locations belong to the Application
rule set. While objects indicate real world devices, which are deployed in the
environment and can be managed by the system, parameters and states refer
to both environmental and object configurations. Objects such as lamps, LEDs,
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Home

Living Kitchen

Lamp TV Sensor Table

Lamp

Light Temperature Light

Fig. 2. Tree structure of a home environment. Circles represent locations, leaf nodes
are objects, while rounded shapes are physical parameters.

HVACs, and TVs can be easily found at home. Their possible states are “ON”
and “OFF”, while the light level is a parameter of the home environment.

In our system, the term location indicates the effective placement of an object
in the environment. Locations are structured in a hierarchy so that generic loca-
tions can be composed by other sub-locations, until a specific position is reached.
Such a definition inherently suggests the use of a tree structure in which the root
node represents a more general location, while internal nodes gradually identify
specific positions. Finally, leaf nodes indicate object placements. As an example,
the root location “Home” is composed of other sub-locations, e.g. “Kitchen” and
“Living room”. Real-world objects are thus leaf nodes, as shown in Fig. 2. This
way, it is possible to find the object location by following the reverse path from
the leaf, i.e. the object, to the root. The list of the objects in the same location
can be also obtained. Locations not containing objects are also leaf nodes.

To operate on the system users can construct queries including:

– a reference to an object through its location;
– a reference to a category of objects in a given location; all the object belonging

to the specified class and reachable by the indicated location are considered;
– a reference to all the objects in a given location, regardless of their category,

and an action to be executed; for instance the command ON at the general
location Home switches all the devices in the house on;

– a list of locations, a class of objects and an action; switching all the lamps
that are not placed on a table on, prevents the lamps outside the house, or
not placed on tables, from switching on.

In the end, the proposed tree structure, besides being easily implemented
in Prolog, fosters interoperability with several IoT application protocols. For
instance, the Message Queue Telemetry Transport (MQTT) protocol requires
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topics be structured in a hierarchy using the forward slash as a delimiter. For
instance, home/living/lamp is a possible valid MQTT topic.

5 Automatic Generation of Hardware Configuration

The hardware configuration process consists in finding a possible connection of a
given set of peripherals to the I/O pins available in the device MCU. The knowl-
edge about pin usage and their functionalities, as found in the data-sheets, is
encoded into the rule base. Structural description of sensors and actuators is
also encoded in the knowledge base. Provided with all these specifications, con-
sistent with the system in terms of both configuration and management of pins,
as well as of all the sensors and actuators involved, the Hardware configuration
Generator is given the task to find the best way of connecting an IoT device
MCU to all the sensors and actuators involved in the application following the
algorithm reported in Fig. 3.

As a first step, the Generator checks the existence of a node providing the
function required by the user. If such a node is not available, the Generator
looks for pins of the MCU that can be exploited to satisfy the user query. In
case a possible connection is found, the knowledge base is updated with new
facts and rules. It is also possible to specify multiple sensors or actuators to be
connected to a specific MCU in order to find a valid configuration that includes
them all. In this case, the generator proceeds through an incremental approach.
It evaluates the availability of a valid connection for the first component, then
for the second one, and so on. This way, each peripheral is connected taking into
account just the assigned pins. In the event that a valid configuration does not
exist, e.g. because there are no available pins, rollback procedures are triggered.
The Hardware configuration Generator is implemented in Prolog in a few code
lines as follows:

mcu_peripheral_make_connection(McuName, McuPin,
McuPinFunction, PeripheralName, PeripheralPin,
PeripheralPinFunction) :-

mcu_peripheral_pin_connection(McuName, McuPin,
McuPinFunction, PeripheralName, PeripheralPin,
PeripheralPinFunction), ! ;

mcu_peripheral_check_avaiability(McuName, McuPin,
McuPinFunction, PeripheralName, PeripheralPin,
PeripheralPinFunction),

assert(mcu_peripheral_pin_connection(McuName, McuPin,
McuPinFunction, PeripheralName, PeripheralPin,
PeripheralPinFunction)).

The generation of hardware configurations is provided by the rule
mcu peripheral make connection/6 which requires a list including: (i) an MCU
instance, (ii) an MCU pin number, (iii) an MCU pin functionality (iv) an instance
of a component, e.g. sensor or actuator, (v) a device pin number (vi) a device pin
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Fig. 3. Flow diagram representation of the hardware configuration generation process.

functionality. The indication of all of the required parameters leads to the verifi-
cation of that specific connection, without considering any alternative. A partial
specification of the parameters forces the generator to infer unassigned param-
eters, providing all the possible configurations. Finally, the rule mcu init/1
accepts a list of configurations and exploits mcu peripheral make connection
to check configurations of peripherals and MCUs, as follows:

mcu_init([
[myesp, 12, digital_output, relay1, 1, digital_input],
[myesp, 14, digital_output, relay2, 1, digital_input],
[myesp, _, _, lumsens, _, _]

]).

The code above connects two relay instances to the instance of ESP chip named
myesp through the device pin number 1 and the MCU pin number 12 and 14,
respectively. Such pins are defined in the knowledge base as digital output pins.
An instance of a light sensor (lumsens) is also defined without specifying con-
nection pins and their functionality. The system responds by assigning the light
sensor to the ADC and provides the right pin numbers for the correct configu-
ration.

6 Automatic Generation of Source Code

The Target source code Generator is intended to speed up the development of IoT
applications through automation. Provided with a high-level task by the user,
the system acts as an Application Configurator that outputs the executable code
for device installation at bootstrap. Complementarily, the Source code Generator
also infers the symbolic application code to match the user-defined goal. In both
cases, the generated executable code adheres to a symbolic programming model,
which raises the programming abstraction by enabling a tight coupling between
semantics and implementation. Such a choice avoids the mandatory translation
steps which are required by other systems to bind the description code to the
executable code.
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Fig. 4. Example of source code generation for the configuration of a simple application.
In the leftmost box, the Prolog code to generate the configuration is reported. The
rightmost box displays the generated symbolic code that defines a set of words, i.e.
HIGH, LOW, SET MODE and so on, as well as the constant RLED and the word store that
records the configuration on the remote node.

The symbolic executable program produced by the system is a chain of words,
each of which represents a computation and is defined using other, previously
defined, words. On remote nodes, words are stored in a word dictionary which
can be easily extended by users. Words are user-defined, in the sense that nothing
prevents from choosing word that can be taken directly from natural language.
The support to high-level knowledge is thus provided by the programming model
itself, as implemented by the Forth language, which is both interpreted and
compiled. Moreover, this paradigm can be adopted on either powerful devices or
resource-costrained hardware, due to its low footprint [5].

For instance the following sentence:

LAMP ON

actuates on the environment switching the lamp on, while:

LAMP BLINK 3 TIMES

is an application that blinks a lamp three times.
Considering a “neutral” node, i.e. a device that does not run any code, the

Source code Generator infers the code defining the necessary words for the appli-
cation. An example of this operation is illustrated in Fig. 4. The mcu gen conf
procedure provides the symbolic code for the MCU initialization as a list, while
the forth mcu gen conf procedure is used to build the symbolic code for all the
allowed high-level actions.

Considering runtime code generation, the execution of:

exec(home, led, on)

generates the code to switch all the home LEDs on:

RLED ON
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Fig. 5. Flow diagram of the required steps for symbolic code transmission to remote
devices.

To read the only luminosity sensor in a house, the system is queried as such:

execr(home, light, check, A).)

In this case the variable A stands for ‘answer’ and holds the light sensor value.
The generated symbolic code is:

LUMSENS READ.

The single-character word . (dot) displays the answer.

7 Symbolic Code Transmission

Symbolic code generated by the inference engine is sent to devices as simple tex-
tual strings. No other intermediate representation or translation is required. For
transmission, after specifying the required communication protocol, the system
exploits its definition in the knowledge base. In the event that the protocol is
undefined, code is sent via TCP, the default protocol for communication. The
system opens a TCP connection to the TCP-REPL listening port of the receiver
device. After the connection has been established, the code is sent via TCP to the
remote node and interpreted on receipt. The steps required for code transmission
are illustrated in Fig. 5.

Through the mcu send message/2 procedure, which requires the destination
node and the executable code in the form of a list of commands, the communi-
cation interface connects to the remote TCP-REPL server of myesp and sends
it the symbolic code to make the RLED LED be switched on and then off after
a 500 ms delay:

mcu_send_message(myesp,
[’RLED ON 500 ms RLED OFF’]).

A variant of this rule includes required feedbacks from the MCU. The
response is a list of feedbacks, each of which refers to the list of commands
sent by the system.
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Secure interaction among the system and remote IoT devices is also sup-
ported, although this functionality can be also deactivated at any time. The
user can choose to exchange symbolic code by using the DES-CBC or AES128-
CBC encryption protocols. Before transmitting, strings are encoded using the
Base64 algorithm. This step overcomes execution errors due to the presence of
unprintable chars, such as CR, LF and NUL which are interpreted by the TCP-
REPL server delimiters indicating the end of a line or of a string. Each MCU
node holds a MasterKey, which is unique and has to be specified in the knowl-
edge base. This key is adopted to exchange session keys between the system and
a remote node, so to be used for effective encrypted communications.

8 Experimental Setup and Evaluation

A prototype implementation of the system that automatically configures and
programs IoT node was implemented. The rule-base system is the central
entity and runs on a Raspberry-Pi 1B, equipped with a 700 MHz single-core
ARM1176JZF-S CPU. The board also includes a 512 MB RAM memory shared
with the Broadcom VideoCore IV GPU. The operating system is Raspbian 8.3.0
with some modifications done for our purposes.

The ESP8266-12E system on a chip (SOC) was adopted for the remote
devices. This SOC integrates a Wi-Fi interface and full support for TCP/IP.
The SOC is also equipped with a 80 MHz 32-bit RISC CPU, 64 KiB RAM mem-
ory for instructions and 96 KiB RAM for data, 4 MiB flash memory, and 16
general-purpose I/O (GPIO) pins. Installed on the SOC, PunyForth, an open
source FORTH implementation, provides a Read Evaluation Print Loop (REPL)
shell enabling interactive programming.

The rule-based system has been evaluated in terms of lines of code (LOC)
and source code size, as provided in Table 1.

Table 1. LOC and file size for all the components of the system

Knowledge representation LOC File size [KB]

Physical world 28 0.875

High-level actions 25 2

High-level domain 124 2 + 2 + 1

Hardware 201 19 + 0.797

Software generators 256 6 + 8

Networking 64 3

Security 74 2 + 0.703

Utilities 151 4

Total 923
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Code transmission using an encryption algorithm was also assessed. The
implementation of security algorithms directly through a symbolic approach
highlighted some limitations, mostly due to the required memory. For instance,
the DES algorithm performs permutations and rotations of relatively large matri-
ces. Therefore, we opted for a C implementation of the algorithm, and then the
MCU image was reflashed to include secure exchange of code. MCU binary
images, with and without secure exchange, differs by 8 KiB. We also compared
DES-CBC and AES128-CBC in terms of encryption speed as message length
increases. Message length was measured as the number of chars composing the
message itself. Results are provided in Table 2.

Table 2. Comparison in terms of speed of DES-CBC and AES128-CBC as message
length increases

Message length DES speed [s] AES speed [s]

16 0.0000111 0.0000131

32 0.0000071 0.0000081

48 0.0000091 0.0000111

64 0.0000121 0.0000151

80 0.0000131 0.0000181

96 0.0000151 0.0000231

112 0.0000171 0.0000251

128 0.0000201 0.0000281

9 Conclusions

In this work, a rule-based system for automatic IoT application configuration
and programming was proposed. The required knowledge is formally modeled
through a knowledge base holding facts and rules from different domains. The
proposed system automatically generates symbolic code either for application
configuration and for its execution. The code is sent via TCP as a sequence of
symbols that are executable by devices without any other intermediate represen-
tation. As a further functionality, the automatic generation of possible correct
connections among hardware components and the MCU is supported.

The rule-base system was implemented in Prolog while the symbolic environ-
ment running on devices was built atop PunyForth. A prototype implementation
and experimental evaluation supported the feasibility of the approach. Our tool
also permits secure code exchange using DES-CBC and AES-CBC encryption
protocols. Such a functionality can be deactivated by the user when desired.
Currently, the system interfaces with remote nodes via TCP, while other proto-
col specifications can be added provided that enough resources on remote nodes
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are available. Future work will focus on expanding the experimental evaluation,
as well as on enabling UDP and broadcast code exchange.
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Abstract. The right to silence is considered in several legal systems.
However, this phenomenon has not been sufficiently studied from a logic
perspective. After reviewing some previous studies of intentional silence,
Grice’s conversational implicature, and omissive implicature, we formu-
lated three interpretations of silence. Once the semantics are stated, we
explore the consequences of such interpretations in puzzles as a case
study involving testimonies, expressing them in answer set programming.
Several conclusions are derived from the different possibilities that were
opened for the analysis. Finally, we propose a strategy to generalize the
use of semantics in contexts related to testimonies or interviews.

Keywords: Silence · Interpretation · Testimonies · Intention ·
Implicature · Omissive implicature · Says predicate

1 Introduction

Silence has been the subject of study in various scientific disciplines, which have
provided insights for its understanding. However, we have not found an approach
to formalize it in terms of logic, where the closest attempt was that of [6] with
an “informal” logic. Next, we review some concepts related to this matter.

According to Kurzon [7], there are two types of silence, intentional and unin-
tentional. Intentional silence is a deliberate action not to cooperate with the
other party and unintentional silence is psychological in nature. The intentional
silence is also a sign of group loyalty.

To interpret intentional silence, first we have to discard the modal “can” that
may express unintentional silence, as in “I can not speak”. Then, intentional
silence can be interpreted according to four manners [7]:

1. I may not tell you
2. I must not tell you
3. I shall not tell you
4. I will not tell you
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Where manners 1 and 2 are intentional external silences involving some “order”
by a third party to do so. And manners 3 and 4 are intentional internal silences
expressing a “will” at different degrees of the speaker to keep quiet.

The interpretation of silence must be contextual. For example, in a normal
conversation, in court, silence is interpreted to the detriment of the person who
is silent. The immediate reaction is that she hides something. For Kurzon the
silence is defined by language and points to three types of silence:

– Psychological silence. The help of a decoder is necessary.
– Interactive silence. It occurs as an intentional pause in the conversation allow-

ing the other person to draw inferences related to the meaning of the conver-
sation.

– Socio-cultural silence. When silence is interpreted based on specific cultural
codes.

Dyne, Ang and Botero [1] identify three types of silence manifested by
employees in work organizations: Acquiescent, Defensive and ProSocial. The
intentional acquiescent silence suggests disengaged behaviour that is more pas-
sive than active. The silence is defensive when this silence is proactive, involving
awareness and consideration of alternatives, followed by a conscious decision
to withhold ideas, information, and opinions as the best personal strategy at
the moment. The prosocial silence is defined as withholding work-related ideas,
information, or opinions with the goal of benefiting other people or the organi-
zation - based on altruism or cooperative motives. In this work, we focus on two
of these types of silence, Acquiescent silence which reflects “silence is consent”
and as such is modeled; and Defensive silence with a simpler interpretation in
two variants.

The analysis and evaluation of witness testimonies in Law have been done
before with artificial intelligence and argumentation theory. Walton [14] argues
that testimonies can provide reasonable evidence to accept or reject a claim,
leading to a logically guided decision making process. In this direction, we for-
mulate a first logical approach to take into account silence in testimonies in a
limited context, considering the definition of omissive implicature, i.e. “In some
contexts, not saying p generates a conversational implicature: that the speaker
didn’t have sufficient reason, all things considered, to say p [12].”

Also in Law, the right to silence has been studied with a game-theoretic anal-
ysis, showing that can help to distinguish between innocent and guilty suspects
[10]. In contrast, our analysis shows that defensive silence can be advantageous
to guilty suspects, in the particular context of our case study.

The main contributions of this paper are: (1) we approach the interpretation
of silence in interaction from an artificial intelligence perspective, specifically
oriented to testimonies; (2) we model three types of silence; (3) these logical
interpretations are explored in terms of a case study to check their implications;
and (4) some guidelines are sketched to bring the interpretation into analysis.

This paper is organized as follows: Sect. 2 provides some preliminaries for
further development of the approach. Section 3 details a case study to explore
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silence interpretations and consequences. We conclude in Sect. 4, discussing in
addition work in progress.

2 Preliminaries

The conversational implicature is a potential inference that is not a logical impli-
cation and is closely connected with the meaning of the word “says”, as explained
in [5]. A formulation of implicature goes as follows, with S the speaker and H
the hearer (also referred as addressee) [15]:

S conversationally implicates p iff S implicates p when:

1. S is presumed to be observing the Cooperative Principle (cooperative pre-
sumption);

2. The supposition that S believes p is required to make S′s utterance consistent
with the Cooperative Principle (determinacy); and

3. S believes (or knows), and expects H to believe that S believes, that H is
able to determine that (2) is true (mutual knowledge).

The Cooperative Principle consists of the participants making their con-
versational contribution as required in the scenario in which this occurs for the
accepted purpose or direction of the speech exchange in which they were engaged
[5]. In this sense, we employ the predicate “says”, that has previously emerged
in a logic formulation for access control [3]. However, we are using it more freely,
i.e. with less constraints, considering in this case that intentional silence “says”
something when is interpreted in its context for decision making.

We define the predicate “Says” in the sense of Grice, as:

Definition 1. Says(X, Y), it expresses that the agent X says Y (predicate).

Next, we define informally Defensive and Acquiescent Silence, as described
by Dyne, Ang, and Botero, and then formalize such types of silence for further
application and analysis.

Defensive Silence is characterized in [1] as “withholding relevant ideas, infor-
mation, or opinions as a form of self-protection, based on fear.” Before proceeding
to a logical formulation of two variants of this silence, we state some notation
regarding a group of agents doing some assertions.

Let P be a logic program or knowledge base (KB); A1, A2, . . . , An are
agents; p1, p2, . . . , pm are predicates. XA1 = {Says(A1, p1), . . . ,Says(A1, pl)} =
{Says(A1, ∗)}; . . . ;XAk

= {Says(Ak, ∗)}; (1 ≤ l ≤ m); (1 ≤ k ≤ n); X =
XA1 ∪ XA2 ∪ . . . ∪ XAn

; X ⊂ P .

Definition 2. PAi
is Total Defensive Silence (TDS) of Ai understood as:

PAi
= P − XAi

Where (1 ≤ i ≤ n), n number of interacting agents; P is a logic program or
knowledge base, and XAi

= Says(Ai, ∗) is all that the agent Ai Says (asserts),
represented as predicates.
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Definition 3. PAi,pj is Partial Defensive Silence (PDS) of Ai understood as:

PAi,pj = P − {Says(Ai, pj)}

Where (1 ≤ i ≤ n), n number of interacting agents; (1 ≤ j ≤ m); Ai is an agent;
m number of utterances/assertions done by Ai, and pj is a utterance of Ai.

Other type of silence identified in [1] is Acquiescent Silence, explained as
“witholding relevant ideas, information, or opinions, based on resignation”, that
is in some sense equivalent to the saying “silence is consent”. This silence is
logically formulated as follows.

Definition 4. P ′
Ai

is Total Acquiescent Silence (TAS) of Ai understood as:

P ′
Ai

= PAi
∪ ({Says(Ak, ∗)} ◦ λ)

Where i �= k, (1 ≤ i, k ≤ n), n number of interacting agents; PAi
is the TDS of

Ai; λ = {Ak/Ai}, and the operator ◦ with λ substitution denotes the replacement
of Ak for Ai on Says subset of agent Ai.

Answer-Set Programming (ASP). Once these three definitions of silence
are formulated, we proceed to explore their implications in a case study. For
this purpose, we employed the ASP paradigm, given that is closely related to
intuitionistic logic [9], i.e. both are based on the concept of proof rather than
truth. This is a logic programming branch that computes stable models for
difficult problems [4], where a stable model is a belief system that holds for a
rational agent. This approach:

– Goes beyond answering queries.
– Is used to solve computational problems by reducing them to finding answer

sets of programs.
– In principle, any NP-complete problem can be solved in this way using ASP

without disjunction.
– With disjunction, we can solve more-complex problems.

For self-containment sake, we provide next a brief introduction to ASP, based
on [8]. A clause is a formula of the form H ← B where H and B are arbitrary
formulas in principle, called head and body of the clause respectively. There are
several types of clauses. If H = {} the clause is called a constraint and we can
write that clause as ← B. Analogously, if B = {} then the clause is called a
fact and can be written as H ←. A free clause is a clause where H contains
disjunctions of positive atoms and B consists of conjunctions of negative atoms.

A logic program is then a finite set of clauses, also called rules. If all the
clauses in a program are of a certain type, we say that the program is also of
that type. For example, a set of free clauses (rules) is a free program.

A set consisting of literals X, satisfies a basic formula F (symbolically, X |=
F ) recursively, as follows:
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– For F elemental, X |= F if F ∈ X or F = 
.
– X |= (F,G) if X |= F and X |= G.
– X |= (F ;G) if X |= F or X |= G.

Let Π be a basic program. A consistent set of literals X is closed under Π
if, for each rule F ← G in Π, X |= F when X |= G.

X is a answer set for the basic program Π if X has the minimum cardinality
of the consistent set of literals closed under Π.

For example, let consider the program: q ← p ∨ −p. The closure under this
program is characterized by the following condition: if p ∈ X or −p ∈ X then
q ∈ X. It is clear that the answer set for that program is empty. If we add the
rule p (that is, p ← 
) to this program then {p, q} will be the answer set.

Clingo (https://potassco.org/clingo/) is an implementation of ASP that
allows to find, if there exists, the answer set or stable model of a logic program.
This was employed to generate the answer sets for the case study.

3 A Case Study for Testimonies and Silence

Puzzles are a form of entertainment that often involve mathematical or logical
challenges. Here we focus on logic puzzles [11] involving deduction, and specifi-
cally some kind of testimonies of several people, as a test ground for our inter-
pretations of silence and their implications. First, we analyze the implications of
(total) defensive silence in the classic “knights and knaves” puzzle, and then we
turn to a little more challenging puzzle involving more than two testimonies.

3.1 Knights and Knaves

“Knights and knaves” is a riddle that has many forms but all start from the
following knowledge: there exists a place where every inhabitant is a knight or
is a knave but not both. The knights always tell the truth and knaves always
lie. Here we present a version taken from Smullyan [11]: The Island of Knights
and Knaves has two types of inhabitants: knights, who always tell the truth, and
knaves, who always lie. One day, three inhabitants (A, B, and C) of the island
met a foreign tourist and gave the following information about themselves:

1. A said that B and C are both knights.
2. B said that A is a knave and C is a knight.

What types are A, B, and C?.
The solution to the puzzle as formulated is: knave(A), knave(B), knave(C).
The logic program that solves the puzzle can be found in Syrjanen [13] and

shown in Appendix. In Fig. 1, we show a table including the solution of the
original problem and symbols we will use hereon to analyze the implications of
silence.

We now turn to explore what would happen if one of the inhabitants remains
silent. We can assume a defensive silence to analyze each inhabitant silence

https://potassco.org/clingo/
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Fig. 1. Symbols and solution of the original problem.

(A or B) at a time, generating the corresponding models. This problem only
allows to consider a total defensive silence. So, as defensive silence was defined
(Definition 2) and considering P the logic program detailed in Appendix, where:

XA = {Says(A, knight(B)), Says(A, knight(C))}
XB = {Says(B, knave(A)), Says(B, knight(C))}

were expressed in the corresponding rules:

2{knight(b),knight(c)}2 :- knight(a)
2{knave(a),knight(c)}2 :- knight(b)

So, the TDS for inhabitant A is:

PA = P − XA

And the TDS for inhabitant B is:

PB = P − XB

Now, we find the models and analyze each case separately:

1. Running the model generator for PA, we obtain the following solutions:

Answer: 1
agent(a) agent(b) agent(c) knight(c) knave(a) knight(b)
Answer: 2
agent(a) agent(b) agent(c) knave(a) knave(c) knave(b)
Answer: 3
agent(a) agent(b) agent(c) knight(c) knave(b) knight(a)
Answer: 4
agent(a) agent(b) agent(c) knave(c) knave(b) knight(a)
SATISFIABLE
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Fig. 2. Possibilities with the defensive silence of Agent A.

These are four different models, which contain the distribution of knights
and knaves for each of the three inhabitants or agents. As expected, with less
information, the possibilities expand. Figure 2 shows this distribution where
we can notice that everybody, to a lesser or greater degree, have the possibility
of being a knight. Analyzing the four Models in terms of Agents, we have:

– In the first row, the Agent A, that is silenced defensively, has the possi-
bility of being considered a knight, and in this way halves the chances of
being a knave.

– For agent B (second row) a possibility also opens of being considered a
knight.

– Agent C, similarly as A, distributes its possibilities in two and two.
2. Running the model generator for PB we get again four models. However,

these models are different to those obtained when Agent A is silent. Figure 3
depicts this distribution where we can notice that:

– A model arises where every agent could be considered a knight.
– For Agent A, a possibility opens of being considered a knight.
– In the second row, the Agent B, that is silenced defensively, opens options

to be a knight, and in this way halves the chances of being a knave.
– Agent C, similarly now as B, distributes its possibilities in two and two.

Fig. 3. Possibilities with the defensive silence of Agent B.

Under both scenarios analyzed, we got the solution of the original puzzle,
i.e. the three agents are knaves. We can notice that in the statement of the
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puzzle, agent C does not provide a testimony and is benefited indistinctly, with
the defensive silence of agents A or B. We can interpret here an unintentional
silence. So Agent C, who does not participate in a speech act or in a silence act,
appears in the same way in the models generated for PA or PB . Considering
silence in this puzzle led to conclude that (total) defensive silence benefits the
agent who practices it.

3.2 A Mystery with Several Testimonies

There is a second puzzle, previously modeled and solved in [4] (but unfortunately
omitted here for lack of space), that includes testimonies of different people, and
allows to model and explore our two interpretations of silence and variants.

In this puzzle, a mystery related to a murder is raised:

Vinny has been murdered, and Andy, Ben, and Cole are suspects.
Andy says he did not do it. He says that Ben was the victim’s friend but that
Cole hated the victim.
Ben says he was out of town the day of the murder, and besides he didn’t even
know the guy.
Cole says he is innocent and he saw Andy and Ben with the victim just before
the murder.

We must assume that all the people involved tell the truth except, possibly,
the murderer. The story and testimony of these three people are formulated in
a program for Clingo.

The program for the puzzle produces as a result: murderer (ben). This means
that according to the testimonies and the rules of commonsense knowledge pro-
vided, the murderer is Ben.

Based on the formulation of the puzzle previously described, we proceed
to explore the two interpretations of intentional silence, expressed in the three
definitions, linked to such context. The first interpretation is a Defensive Silence,
in its Total and Partial variant, while the second corresponds to Acquiescent
Silence, understood as asserting with silence what others have said, commonly
by resignation. We explore in all cases, the consequences of the interpretation.

Exploring Total Defensive Silence. If an agent investigating a case faces
this kind of silence of one or more of those involved, he can not count on their
testimonies. So, we have to remove the declaration of those people, as stated in
Definition 2.

So expressing this kind of silence in the context of this second puzzle; what
would happen if silence with common sense is presented as a possibility? What
conclusions the interrogator or judge can reach if some of the suspects decide to
intentionally shut up?

Applying this first rule to each person giving his testimony and executing
the programs, we get those presumable guilty. That is, as a result of the silence
of a person, we can analyze who becomes a candidate to blame.
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The possible outcomes (guilty) when a one or more suspects decide inten-
tionally to omit their testimonies are presented in Table 1, illustrating the right
to remain silent. In this, we can notice that the culprit can be anyone depending
on who decides to shut up. For the possibilities, we can comment:

1. {} corresponds to the original scheme where nobody is silent, i.e. every testi-
mony is taken into account. The only model for this case is Ben, as before.

2. When Andy is silent, the offender turns out to be either Ben or Cole. Each
answer corresponds to a model, as shown below.

Answer: 1
murderer(ben).
Answer: 2
murderer(cole).
SATISFIABLE

3. When Ben is silent, any of the three suspects may be guilty. Intuitively we can
think that Ben’s silence has more decision capability since anyone involved
can turn out as guilty.

4. Cole’s silence can turn Andy or Ben guilty.
5. With the remaining possibilities, related to more than one person, any of the

three involved may be guilty.

Table 1. Defensive Silence (DS) model for agent.

Silent agent(s) Presumable culprit

{} {ben}
{andy} {ben, cole}
{ben} {cole, andy, ben}
{cole} {andy, ben}
{andy, ben} {cole, ben, andy}
{ben, cole} {cole, andy, ben}
{andy, cole} {cole, ben, andy}
{andy, ben, cole} {cole, ben, andy}

Analyzing Partial Defensive Silence. For this variant of silence, what would
happen if only part of the information about the case is omitted? At the atomic
level, which of the arguments of each one of the suspects has more impact on
their total silence? That is, we can bring into consideration Partial Defensive
Silence, as detailed in Definition 3. Here we briefly provide some results:
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Table 2. Partial Defensive Silence models for Andy

Silenced testimony (predicate) Presumable culprit

{says(andy, innocent(andy))} {ben}
{says(andy, hated(cole, vinny))} {ben}
{says(andy, friends(ben, vinny))} {ben, cole}

Table 3. Partial Defensive Silence models for Ben

Silenced testimony (predicate) Presumable culprit

{says(ben, out-of-town(ben))} {andy, ben}
{says(ben, know(ben, vinny))} {ben, cole}

1. In the Andy case, with the silence of his first or second statement the culprit
can be Ben, with the silence of the third one, Cole also appears as presumably
guilty. Table 2 details the consequences of partial silence of Andy.

2. Ben is the most affected with his silence, either total or partial since he comes
out in every model, as Table 3 shows.

3. Cole can also decide, without incriminating himself, whom to reveal as guilty.
Table 4 shows the different answers obtained.

Exploring Total Acquiescent Silence. The second type of silence is related
with the old saying “silence is consent”, expressing a passive disengaged attitude.
In this interpretation, we operationalize it by deleting the person’s testimony
and inserting new assertions related with what he is implicitly assuming with
his silence (Definition 4). For example, in the case of Ben, we have to:

1. Ignore the following assertions, since he is not declaring anything:

says(ben, outoftown(ben)).
says(ben, didnotknow(ben, vinny)).

2. Add the following assertions, to model his consent on what others say:

1 says(ben, innocent(andy)).
2 says(ben, together(andy, vinny)).
3 says(ben, together(ben, vinny)).
4 says(ben, friends(ben, vinny)).
5 says(ben, hated(cole, vinny)).
6 says(ben, innocent(cole)).

Table 5 shows the solutions reached for the case when one or several persons
are silenced under the interpretation of Acquiescent Silence, i.e. silence as con-
sent. Again, the first line corresponds to the original situation where everybody
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Table 4. Partial Defensive Silence models for Cole

Silenced testimony (predicate) Presumable culprit

{says(cole, innocent(cole))} {ben}
{says(cole, together(andy, vinny))} {ben}
{says(cole, together(ben, vinny))} {andy, ben}

Table 5. Acquiescent Silence (AS) for agent.

Row Silent agent(s) Presumable culprit

1 {} {ben}
2 {andy} UNSATISFIABLE

3 {ben} {ben}
4 {cole} UNSATISFIABLE

5 {andy, ben} {ben, andy}
6 {ben, cole} {ben, cole}
7 {andy, cole} {cole, andy}
8 {andy, ben, cole} {cole, ben, andy}

has declared, leading to Ben as the murderer. Notice that there is no model (solu-
tion) in cases 2 and 4, where UNSATISFIABLE is produced. These situations
can be interpreted that there is no evidence to blame any of the suspects, pos-
sibly leading to a mistrial. So, under this scheme, Andy and Cole are those who
could benefit from remaining silent. In cases 5, 6 and 7, the person who speaks
can become out of suspicion. In the latter case, as expected from common sense,
when everybody is silent (no one has revealed any information), anyone can be
the culprit.

Combination of Two Types of Silence. Another situation that can occur
in legal cases is that those involved (witnesses) display different types of silence.

Table 6. Combining types of silences

Defensive silent Acquiescent silent Declarant Presumable culprit

andy ben cole {ben}
andy cole ben {cole}
ben andy cole {andy}
ben cole andy {cole}
cole andy ben {andy}
cole ben andy {cole, andy, ben}
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If we find that some of those declaring recur to different types of silence, what
would be the consequences in the case under consideration? In particular, for
the mystery, who will be guilty if the Defensive and Acquiescent silences are
combined in the testimony? Table 6 shows the possibilities when Total Defensive
Silence and Acquiescent Silence are combined among the three agents involved.

We can notice that under these different scenarios, the models reduce to point
to only one person, that who keeps silent as consent, except in the case of the
last row.

3.3 Discussion

It is evident that the silence in the testimony of the agents is an important factor
in decision making of a jury or judge to assign a qualification to one of them,
followed by the corresponding sentence in the cases that merits it. For instance,
[2] provides an account of the use of the phrase no comment in police interviews,
as a way to invoke the right to silence. The proposed formulations of silence can
serve as a basis for the interpretation of the possible intentions of the testimonies
in these cases.

Applying the interpretations to an actual case, some situations can occur.
For instance, the obvious case is when one of those involved recurs to his right
to remain silent. We can then proceed to consider, one at a time, the two types of
silence for such person. However, other situations can emerge, for instance when
two declarants A and B separately coincide in statements p and q, but let say A
in addition declares r. We can then hypothesize an acquiescent silence of B, or
even a partial defensive silence, since he is omitting r, and proceed accordingly
to represent and analyze the case.

4 Conclusion

The silence was before the word and the acts of silence emerge from the acts of
speech.

Silence expresses valuable information that can be employed for decision
making. In particular, when the intentional silent is interpreted according to its
context, we achieve implicatures.

Understanding and modeling the implications of silence can be useful as we
have shown in a case study. A collection of actual testimonies has been elusive,
meanwhile we continue exploring other puzzles involving testimonies with new
challenging features. We foresee a valuable analysis of different scenarios in legal
cases involving testimonies and different kinds of silence.

As future work, we plan to extend the interpretations to incorporate proso-
cial silence, i.e. retaining work-related information or opinions with the goal of
benefiting other people or an organization.

It remains to bring the interpretations of silence to a more general framework
for agent interaction, beyond testimonies and puzzles. In this direction, we are
also exploring to consider payoffs of agents involved in the interaction, as well
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as to the predicates to know who or what has more gains with silence, as an
instrument in making decisions.

The silence can be intentional, active, conscious, strategic, purposeful, pow-
erful and completely brief.

Acknowledgements. The first author thanks the support provided by Consejo
Nacional de Ciencia y Tecnoloǵıa and Benemérita Universidad Autónoma de Puebla.

Appendix. Knights-and-Knaves.pl Program

agent(a;b;c).
1{knight(P),knave(P)}1 :- agent(P).

2{knight(b),knight(c)}2 :- knight(a).
:- knave(a),knight(b),knight(c).

2{knave(a),knight(c)}2 :- knight(b).
:- knave(b),knave(a),knight(c).
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Abstract. Graph-based recommendation methods represent an estab-
lished research line in the area of recommender systems. Basically, these
approaches provide users with personalized suggestions by modeling a
bipartite graph that connects the users to the items they like and exploit
such connections to identify items that are interesting for the target
user.

In this work we propose a hybrid semantics-aware recommendation
method that aims to improve classical graph-based approaches in a
twofold way: (i) we extend and enhance the representation by model-
ing a tripartite graph, that also includes descriptive properties of the
items in the form of DBpedia entities. (ii) we run graph embedding
techniques over the resulting graph, in order to obtain a vector-space
representation of the items to be recommended.

Given such a representation, we use the resulting embeddings to cast
the recommendation problem to a classification one. In particular, we
learn a classification model by exploiting positive and negative embed-
dings (the items the user liked and those she did not like, respectively),
and we use such a model to classify new items as interesting or not inter-
esting for the target user.

In the experimental evaluation we evaluated the effectiveness of our
method on varying of different graph embedding techniques and on sev-
eral topologies of the graph. Results show that the embeddings learnt by
combining collaborative data points with the information gathered from
DBpedia led to the best results and also beat several state-of-the-art
techniques.

Keywords: Recommender system · Graph embedding · Linked data

1 Introduction

The concept of Linked Open Data (LOD) cloud [4] was introduced to describe
the huge set of datasets (see Fig. 1) released throughout the Linked Open Data
initiative, a project started in the late 2000s that inherited some of the ideas
originally spread by the name of Semantic Web.
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As proved by recent statistics1, thanks to the collaborative effort behind the
Linked Open Data initiative, the goal of the project is nearly to be reached.
Indeed, a huge amount of RDF triples has been released on the Web in the last
few years, thus contributing to the creation of the so-called Web of Data.

Fig. 1. The Linked Open Data cloud. Each bubble represents a dataset (a set of RDF
statements). Datasets encoding similar or related information are represented with the
same colors. (Color figure online)

Such a huge availability of semantics-aware machine-readable data attracted
researchers and practitioners willing to investigate how these information can
be exploited to develop new services and to improve the effectiveness of existing
algorithms. Specifically, in the area of recommender systems (RS), data extracted
from knowledge graphs such as DBpedia [1] or Freebase [6] can be helpful to
tackle two of the classical problems of RS [12], as the limited content analysis
problem, namely, the absence of content-based features that describe the items,
and the over-specialization problem, namely, the triviality of the recommenda-
tions which are often too similar to the items the user already liked.

In the first case, descriptive features of the items can be freely collected
from knowledge graphs and can be exploited, even when no textual content that
describe the item is available. As an example, Fig. 2 shows a tiny portion of

1 http://stats.lod2.eu/.

http://stats.lod2.eu/
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the properties available in DBpedia that describe the band The Coldplay. Such
features range from very basic information, as the fact that Chris Martin is one
of the members of the band, to more interesting and less trivial data points, as
the fact that the group won a Grammy Award.

Fig. 2. A (small) part of the properties available in the DBpedia describing the band
The Coldplay

In the latter - as we will show in this work - the features gathered from a
knowledge graph, such as DBpedia, can be used to learn a graph-based data
model that relies on the connections between users, items and descriptive prop-
erties gathered from the knowledge graph. This can lead to a more precise repre-
sentation of the interests of the user and to more accurate (and maybe surprising)
recommendations.

In parallel, graph embedding (GE) techniques emerged as an effective
mean to encode the information modeled in knowledge graphs. Basically, these
approaches take as input a graph and return as output a set of vectors represent-
ing its nodes. Such a representation tends to preserve the structural equivalence
between nodes, that is to say, nodes having a similar “role” in the graph (e.g.,
nodes acting as hubs) or nodes having similar neighborhoods tend to have simi-
lar embeddings. As shown in the literature, such techniques obtained very good
performance in a broad range of scenarios where data can be modeled as a graph,
as biology, social networks and so on [8].

Given that the information encoded in recommendation tasks can be easily
modeled as a graph that connects users, items and descriptive properties of the
items, through this paper we want to assess to what extent GE techniques can
be useful to tackle the problem of learning a representation of the items in a
recommendation scenario.

To this end, we propose a recommendation strategy based on the following
steps: (1) a tripartite graph-based data model connecting users, items and enti-
ties gathered from DBpedia is built; (2) GE techniques as Node2Vec [9] and



90 C. Musto et al.

Laplacian Eigenmaps (LE) [3] are applied over the tripartite graph, and a set of
vectors is obtained as output; (3) the resulting vectors are used to train a classifi-
cation model with positive and negative examples, that is to say, the item the user
liked and those she did not like. Finally, such a model is used to predict whether
a new and unseen item is interesting or not for the target user. Given that our
graph-based data model encodes both collaborative and content-based informa-
tion coming from user-item and item-properties connections, respectively, we can
label our method as a hybrid recommendation strategy.

In the experimental evaluation we evaluate the effectiveness of our method
on varying of different graph embedding techniques and on several topologies of
the graph. Results show that the embeddings learnt by combining collaborative
data points with the information gathered from DBpedia led to the best results
and also beat several state-of-the-art techniques.

To sum up, through this article we provide the following contributions:

– We develop a hybrid recommendation methodology based on classification
techniques;

– We investigate to what extent graph embedding techniques can be helpful to
learn a vector space representation of the items in a recommendation scenario;

– We validate our methodology by evaluating its effectiveness with respect to
several state-of-the-art baselines.

The rest of the article is organized as follows: Sect. 2 provides an overview
of the state of the art in the area. Section 3 describes the basics of the proposed
recommendation framework by introducing both our graph-based data model
and the techniques used to create our embeddings. Next, in Sect. 4 we show the
results of our experiments and in Sect. 5 we discuss the main findings of this
work.

2 State of the Art

This work investigates two different research lines: (i) the impact of features
gathered from knowledge graphs on the overall accuracy of a RS and (ii) the
effectiveness of graph embedding techniques in the task of learning a vector space
representation of the items in a recommendation scenario. In the following, we
provide an overview of relevant research in the areas.

Research in the area of semantics-aware recommender systems [7] showed
several attempts of investigating the impact of data available in the LOD cloud
on the overall accuracy of recommendation models. These attempts include the
definition of semantic similarity measures [17,20], the injection of the exogenous
knowledge available in DBpedia [14,15] (e.g., the actor of a movie or the genre
of a book), or the introduction of features based on the paths that exist in
the tripartite graph connecting users, items and entities available in DBpedia

[18]. In all these cases, the literature confirmed that recommendation methods
exploiting knowledge graphs tend to beat basic collaborative and content-based
recommendation algorithms [2].
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As for graph-based recommendation, the idea of tackling a recommendation
task through a graph-based data model is not new, since Huang et al. [11], Bogers
et al. [5] and Zhang et al. [24] gave evidence of the validity of the intuition in
several domains. Conversely, the insight of applying GE techniques is relatively
newer. As an example, in [23] the authors implement a RS for Points-of-Interests
(POI) that applies embedding techniques over the graph modeling the available
POIs. Similarly, [19] applied GE techniques on a tripartite graph in order to
calculate user/item and item/item similarity, and uses these similarities to feed
a learning to rank framework. With respect to these work, the novelty of this
paper lies in the current aspects:

– Differently from [23], where graph embedding techniques are applied to the
bipartite graph connecting users and POIs, in our approach nodes coming
from DBpedia are included in the representation. Accordingly, we can state
that we used GE techniques to learn richer and hybrid embeddings that
encode both collaborative and content-based information.

– Differently from [19], we tackled the recommendation problem as a classifica-
tion one, by using the resulting embeddings as input to build a classification
model. Moreover, another distinguishing aspect is the comparison of two dif-
ferent methodologies (Node2Vec and LE) in a recommendation task.

To conclude, through this work we provide a preliminary investigation to
assess the effectiveness of knowledge graph embeddings in recommendation tasks.
Our expectation is that through this work we will trigger similar research in
the area. Indeed, many more graph embedding techniques currently exist, and
a comparative and empirical analysis of the accuracy of such methods can be
really helpful to improve the understanding of the efficacy of GE embedding
methods in recommendation scenarios.

3 Methodology

In this section we outline our methodology for semantics-aware recommendations
based on GE techniques. In particular, in the following we will first introduce
our graph-based data model that relies on users, items and data available in
DBpedia, next we will show how GE techniques can be applied to obtain a
vector space representation of the items to be recommended.

3.1 Data Model

The main idea behind our methodology is to represent users and items as nodes
in a graph. Formally, given a set of users U = {u1 . . . un} and a set of items
I = {i1 . . . um}, a bipartite graph G = 〈V,E〉 is instantiated. Given that a
node is created for each user and for each item, then |V | = |U | + |I|. Next,
an (undirected) edge connecting a user u with an item i is created for each
positive feedback expressed by that user, thus E = {(u, i)|likes(u, i) = true}. In



92 C. Musto et al.

other terms, we connect the users to the items they like through an unweighted
undirected edge.

Such a basic formulation, built on the ground of simple collaborative data
points (we just modelled user-item pairs as in collaborative filtering), can be
enriched by introducing additional nodes and edges extracted from DBpe-

dia. Formally, we define an extended graph GDB = 〈VDBALL
, EDBALL

〉, where
VDBALL

= V ∪ VDB and EDBALL
= E ∪ EDB.

EDB represents the new connections resulting from the properties encoded
in DBpedia (e.g. subject, genre, . . .), while VDB represents the new set of nodes
which are connected to the items i1 . . . im ∈ I through the properties in DBpe-

dia. Accordingly, GDB becomes a tripartite graph, containing users, items and
entities describing the items extracted from DBpedia.

Fig. 3. Toy example of a graph-based data model. Blue nodes represent users, green
nodes represent items, red nodes represent data gathered from DBpedia. In our
setting, each item and each entity from DBpedia is mapped to a unique URI
(e.g., http://dbpedia.org/resource/Donnie_Darko or http://dbpedia.org/resource/
1999_films), while each edge connected to a red node is labelled with the descrip-
tor of the property (e.g., dct:subject or dbo:starring) For the sake of readability,
we did not explicitly reported the URIs. (Color figure online)

An example of our complete graph-based data model is provided in Fig. 3. If
we consider the movie Kill Bill, the information about the director of the movie
is available in DBpedia and encoded through the property http://dbpedia.org/
property/director. Consequently, an extra node Quentin Tarantino is added to
VDB and an extra edge, labelled with the name of the property, is instantiated in
EDB to connect the movie with its director. Similarly, if we consider the property
http://dbpedia.org/property/starring, new nodes and edges are defined in order
to model the relationship between Kill Bill and the main actors, such as Leonardo
di Caprio. In turn, given that Leonardo di Caprio acted in several movies, many
new edges are added to the graph and many new paths now connect different

http://dbpedia.org/resource/Donnie_Darko
http://dbpedia.org/resource/1999_films
http://dbpedia.org/resource/1999_films
http://dbpedia.org/property/director
http://dbpedia.org/property/director
http://dbpedia.org/property/starring
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movies. These paths would not have been available if only collaborative data
points were instantiated.

Given the above presented data model, in this work we compared the effec-
tiveness of the embeddings learnt by evaluating three different topologies of the
graph. The first one, referred to as collaborative data model, only includes user-
item edges (those connecting blue and green nodes). The second one, referred
to as DBpedia-based data model, models item-entity edges built on the ground
of data gathered from DBpedia (green and red nodes). Finally, the third one
is the complete data model, that encodes both collaborative data points and
information gathered from DBpedia in a unique representation.

In the experimental session the effectiveness of our recommendation frame-
work on varying of these topologies will be evaluated. It is worth to note that
in this first setting we did not apply any feature selection algorithm on the
properties available in DBpedia and we injected all of them in our data model2.

3.2 Graph Embedding Techniques

The aim of graph embedding techniques is to represent nodes in a graph as dense
vectors by projecting them in a vector space. The task is challenging since the
vector representation of the nodes should preserve the structure of the graph and
the connections between individual nodes. In the past decade, several methods
have been proposed to solve this problem. Basically, they can be categorized in
three main classes: (1) Factorization-based methods; (2) Random Walk-based
methods and (3) Deep Learning-based methods.

In this work takes into account two GE algorithms: a Factorization-based
method, namely Laplacian Eigenmaps (LE) [3], and a Random Walk-based app-
roach as Node2Vec [9]. Due to space reasons, we cannot provide many details
about the techniques. We suggest to refer to [8] for a complete discussion of the
topic.

In a nutshell, the idea behind Factorization-based methods is to factorize a
matrix that models the connections between nodes. LE constructs a weighted
graph of nodes and a set of edges connecting neighbors. The embedding map is
then provided by computing the eigenvectors of the Laplacian graph. The dimen-
sion d of the embedding is obtained by taking the eigenvectors corresponding to
the d smallest eigenvalues of the normalized Laplacian. Typically, embeddings
constructed by LE tend to preserve the 1st order proximity, that is to say, two
nodes with very similar neighbourhood will have a similar representation. More
details are reported in [3].

On the other side, Node2Vec tries to preserve higher order proximity between
nodes. This is done by maximizing the probability of occurrence of subsequent
nodes in fixed length random walks. This feature is important when we observe
only a portion of the graph or the graph is too large to measure in its entirety.
Differently from other approaches based on Random Walk, it defines a flexible

2 As future work, we will investigate the effectiveness of feature selection algorithm
on the quality of the embeddings.
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notion of a node’s network neighbourhood and implements a biased random walk
procedure, which efficiently explores diverse neighbourhoods. Such a flexibility
makes Node2vec able to generalize basic Random Walk-based approaches that
rely on more rigid notions of network neighbourhoods, and let the methodology
obtain richer representations. Generally speaking, such a representation is able
to learn the concept of structural equivalence between nodes, that is to say, two
nodes having the same “role” in the graph (e.g., nodes acting as hubs) will have a
similar representation even if they do not share any (or just a few) neighbours.

To sum up, in this work we compared two different methodologies for building
embeddings based on knowledge graphs: A community-preserving technique that
learns similar embeddings for nodes having similar neighbourhoods, as LE, and
a structural-preserving technique as Node2Vec, that uses random walks to take
also into account structural information about the topology of the graph. In our
specific setting, we used such techniques to learn a vector-space representation
of the items to be recommended, built on the ground of the tripartite graph con-
necting users, items and descriptive properties gathered from DBpedia. In the
experimental session the effectiveness of resulting vectors in a recommendation
scenario will be evaluated.

3.3 Recommendation Framework

In this work we casted the recommendation task to a classification one, that
is to say, we used the vectors representing the items the user liked as positive
examples and those she did not like as negative examples. Next, we trained the
classifiers and we used the models to classify all the items the user did not yet
consume as interesting or not interesting for her.

Formally, we define a predicate rate(u, i) = true if user u ∈ U rated item
i ∈ I. Thus, we can define the training set for the target user as TR(u) =
{ij ∈ I|rate(u, ij) = true} and the corresponding test set as TE(u) = I−TR(u).
Next, for each item i we define a representation function φ that takes as input
the item and a specific topology of the graph, and returns as output the rep-
resentation returned by the GE algorithm. Formally, given a specific topology
T chosen among those we previously presented, we define the representation
function as φ(i, T ) = iT .

To sum up, given a target user u, a training set TR(u), and topology T , our
classifier is fed with the examples iT ∈ TR(u) and we use the classification model
to predict the most interesting items for the target user. Specifically, items in
the test set are ranked according to the confidence of the prediction returned
by the classification algorithm and the top-K items are returned to the target
user. In the experimental session the overall effectiveness of our recommendation
framework has been evaluated by varying different topologies. This aspect will
be thoroughly described in the experimental protocol.
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Table 1. Statistics for MovieLens (ML), LibraryThing (LT) and Last.fm (LFM)
datasets.

ML LT LFM

#Users 6,040 7,112 1,892
#Items 3,883 37,231 17,632
Ratings 1,000,209 626,000 92,834
%Positive 57.51% 64.84% 53,10%
Sparsity 96.42% 99,99% 99.80%
#Mapped 3,301 11,695 10,180
#Properties 60 70 81
#Triples 397,655 601,245 844,208
#Entities 139,629 211,187 313,575

4 Experimental Evaluation

The experimental session was designed to answer to the following research ques-
tions:

– What is the impact of graph embedding techniques on the overall accuracy
of our recommendation model? (Experiment 1)

– How does our framework perform with respect to other state-of-the-art tech-
niques? (Experiment 2).

4.1 Experimental Protocol

Experiments were carried out on three state-of-the-art datasets, i.e. MovieLens-

1M (ML1M), LibraryThing and Last.fm. Statistics about the datasets are
reported in Table 1. For all the datasets, we used a 80%–20% training-test split.
Data were split in order to maintain the ratio between positive and negative
ratings for each fold. Different protocols were adopted to build user profiles:
in MovieLens-1M, user preferences are expressed on a 5-point discrete scale,
thus we decided to consider as positive only those ratings equal to 4 and 5.
For Last.fm we considered as positive ratings those that were greater than the
median of the users’ listening count, negative otherwise. Finally, LibraryThing

ratings are expressed on a 10-point scale, so we considered as positive only the
ratings greater or equal to 8. In all these cases, we followed the protocols already
adopted in literature [18].

Mapping Data to DBpedia. In order to extract information from DBpedia,
we carried out a mapping procedure aiming at identifying a URI in DBpedia for
all the items (movies, books, artists). For each dataset, we exploited a mapping
already available3 which is obtained by launching a SPARQL query based on
3 Github repository of LOD-aware datasets - https://github.com/sisinflab/

LODrecsys-datasets.

https://github.com/sisinflab/LODrecsys-datasets
https://github.com/sisinflab/LODrecsys-datasets
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descriptive properties of the item (e.g., the name of the movie). After the map-
ping, a huge set of new entities and new edges is encoded in the graph. Some
statistics is reported in Table 1. The values beside #entities and #triples refer
to the new nodes (e.g., Leonardo di Caprio) and the new edges (e.g., the relation
dbo:starring existing between Leonardo di Caprio and Django Unchained) cre-
ated in the graph. Finally, #properties refers to the different properties that can
be used to connect items and entities (e.g., dbo:starring).

Experimental Parameters. As previously stated, we took into account three
different graph topologies: collaborative, DBpedia-based and complete. For each
topology, graph embedding were built by relying on two different GE techniques,
namely Node2Vec and LE. We also compared three different sizes of the embed-
dings (128, 256 and 512), to state whether larger embeddings lead to an improve-
ment of the accuracy. Given that we cast the recommendation problem to a
classification one, the effectiveness of the different configurations is calculated in
terms of F1-measure. Logistic Regression was used as classification algorithm.

Implementation Details. Embeddings are calculated by using the implemen-
tation of the abovementioned methods available in the GEM library4. Node2Vec
is run with the following parameters: iterations = 1, walkLength = 80,
numberWalks = 10, contextSize = 10, retp = 1, inoutq = 1, while no parame-
ter had to be set for LE.

4.2 Discussion of the Results

Results of Experiment 1 are reported in Table 2. The first finding emerging from
the experiment is that the size of the embeddings did not affect the overall
accuracy of the model. Indeed, by comparing the results a very tiny difference
among the configurations typically emerges. This is a first interesting outcome
that is valid for all the datasets, and shows that also small embeddings can be
used to learn an item representation based on both collaborative and DBpedia-
based data points.

As regards the techniques we compared, Node2Vec tended to obtain better
results than LE on all the datasets as well as for all the dimensions of the embed-
dings. Even if this finding was somehow expected, since Node2Vec can learn a
richer representation that preserves both community-based and topology-based
information, it is not trivial that such a representation can be more effective
also for recommendation tasks. In this case, results showed that the use of
Node2Vec always leads to better results, and this is an useful finding to fos-
ter future research in the area.

Interesting findings also emerged by analyzing the results obtained on varying
of the different topologies of the graph. Indeed, we noticed that the information
gathered from DBpedia did not always lead to an effective representation of
items: if we compare the results obtained through the DBpedia-based topology
to those relying on the collaborative topology, it emerges that the embeddings

4 Github repository of the GEM library - https://github.com/palash1992/GEM.

https://github.com/palash1992/GEM
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learnt by exploiting the collaborative data points obtained the best results in
almost every comparison. However, the overall best results are obtained when
both the information sources are took into account, as shown for the Complete
configuration. This finding shows that the content-based features extracted from
DBpedia do a great job when merged with other data points, thus they resulted
as very useful to integrate and complete the information coming from other
heterogeneous data points. This result is in line with previous work investigating
the impact of features gathered from the LOD cloud in recommender systems
[14,15].

Table 2. Results of Experiment 1. Configurations that beat the basic collaborative
data model are reported in bold. The best performing configurations for each dataset
are reported in bold and underlined.

ML1M LibraryThing Last.fm

Collaborative 128 256 512 128 256 512 128 256 512

Node2Vec 0.6831 0.6804 0.6829 0.6586 0.6575 0.6581 0.6100 0.6113 0.6089

LE 0.6624 0.6625 0.6623 0.6541 0.6540 0.6537 0.6079 0.6073 0.6067

DBpedia-based 128 256 512 128 256 512 128 256 512

Node2Vec 0.6590 0.6583 0.6581 0.6524 0.6527 0.6521 0.6066 0.6071 0.6078

LE 0.6585 0.6590 0.6592 0.6538 0.6534 0.6546 0.6064 0.6062 0.6065

Complete 128 256 512 128 256 512 128 256 512

Node2Vec 0.6886 0.6886 0.6879 0.6592 0.6599 0.6585 0.6117 0.6114 0.6111
LE 0.6604 0.6607 0.6604 0.6553 0.6540 0.6539 0.6067 0.6068 0.6067

Finally, we compared our methodology to several baselines. As reported
in Table 3, our approach beats both classic baselines (as collaborative filtering
algorithms and matrix factorization ones) as well as other techniques that also
encode the information coming from DBpedia. Specifically, we compared our
method to User-to-User (U2U) and Item-to-Item (I2I) CF algorithms, Bayesian
Personalized Ranking Matrix Factorization (BPRMF) and a graph-based algo-
rithm as Personalized PageRank [10]. As regards collaborative baselines, we used
the implementations available in MyMediaLite library5, while for PageRank we
exploited the Jung library6.

Due to space reasons, we just reported the best-performing configurations
of parameters, that is to say, 80 neighbours for CF on ML1M and Last.fm and
30 neighbours on Librarything, and 20 factors for BPRMF for all the datasets.
Moreover, we also evaluated two variants of BPRMF and PR that encode in
the model the information extracted from DBpedia. Specifically, the features
encoded are side features that enrich the original model, as shown in previous
research [21].

5 http://www.mymedialite.net/.
6 http://jung.sourceforge.net/.

http://www.mymedialite.net/
http://jung.sourceforge.net/
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Table 3. Results of Experiment 2: comparison to baselines.

ML1M LibraryThing Last.fm

I2I 0.5835 0.5935 0.5092
U2U 0.5970 0.5935 0.5115
BPRMF 0.5297 0.5961 0.5117
PR 0.6023 0.6034 0.5990
BPRMF+LOD 0.6032 0.5964 0.5642
PR+LOD 0.6083 0.6152 0.6107
GE+LOD 0.6886 0.6599 0.6117

5 Conclusions and Future Work

In this paper we presented a semantics-aware recommendation strategy that uses
graph embedding techniques to learn a vector space representation of the items
to be recommended. Such a representation relies on the tripartite graph which
connects users, items and entities gathered from DBpedia, thus it encodes both
collaborative and content-based information.

Two main outcomes emerged from the experiment: first, our methodology
showed that graph embedding techniques can learn an effective vector space
representation that rely on the knowledge graph that connects users, items and
entities gathered from DBpedia, since our approach overcame all the baselines
we took into account. Next, results also showed the good impact of the properties
extracted from DBpedia on the overall effectiveness of the model.

As future work, we will investigate two different directions: first, we will eval-
uate more graph embedding techniques since a larger overview of such techniques
in recommendation scenarios is needed. On the other hand, we will evaluate fea-
tures selection techniques as those proposed in [22] to filter out non-relevant
properties gathered from DBpedia. Moreover, a broader comparison with other
techniques to learn semantics-aware representations (e.g., distributional seman-
tics models [16] or representation exploiting user-generated content [13]) can be
helpful to completely understand the effectiveness of such strategies.
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Abstract. Epistemic answer set programming (EASP) is a recent epis-
temic extension of answer set programming (ASP), endowed with the
epistemic answer set (EAS) semantics. EASs propose a straightforward
generalisation of ASP’s original answer set semantics. Moreover, they
provide intended results both for cyclic and acyclic programs, possibly
containing arbitrary constraints. Epistemic here-and-there logic (EHT) is
also a recent epistemic extension of a well-known nonclassical logic called
here-and-there logic (HT), which is intermediate between classical logic
and intuitionistic logic. In this paper, we discuss a strong equivalence
characterisation for EASP programs, which is identified on EHT.

Keywords: Answer set programming · Epistemic specifications ·
Modal logic S5 · Epistemic logic programs · Answer sets · World
views · Strong equivalence

1 Introduction

Answer set programming (ASP) [5] is a declarative problem solving approach,
and its semantics is given by answer sets. Answer set semantics provided a correct
interpretation of negation as failure (NAF) and related ASP to nonmonotonic
reasoning. Today, ASP has a wide range of applications in science and technology.
However, the NAF operator of ASP cannot reason about over a whole range
of answer sets. Especially in situations where there are multiple answer sets
of a program, ASP requires a more powerful introspective reasoning, as first
recognised by Gelfond [3]. To this end, Su has recently introduced an epistemic
extension of ASP called epistemic ASP (EASP) [13].

EASP extended ASP with epistemic operators K and K̂, able to quantify over
S5 models (sets of valuations). The interpretation of this new language is in
terms of an epistemic answer set (EAS)—an S5 model minimising both truth
(as in ASP) and also knowledge. Similar to the answer set semantics, the EAS
semantics is also reduct-based, which is oriented to exclusively eliminate NAF.
Thus, the reduct ΠA of an epistemic logic program Π w.r.t. an EAS candidate
A is a positive (excluding NAF) EASP program. The selection of EASs from
among all S5 models of a program is in two steps: first, we compute the reduct
of a program by a candidate model; second, we search for the EASs of this reduct.
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-35166-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35166-3_8&domain=pdf
http://orcid.org/0000-0002-3447-8841
https://doi.org/10.1007/978-3-030-35166-3_8


102 E. I. Su

If the candidate model equals one of these EASs, then we call it an EAS of the
original program. EASs perform well both with cyclic and acyclic programs,
giving intuitive results. Moreover, they behave regularly with epistemic logic
programs including constraints (headless rules) as in ASP1. To spell it out, in
EASP, aligning with ASP, constraints are used to eliminate possible worlds of
EASs—we can refute an EAS as a whole or remove just some of its worlds,
violating the constraint.

The logic of here-and-there (HT) [6] is a well-known nonclassical (3-valued)
logic, which is intermediate between classical logic and intuitionistic logic. Lif-
schitz et al. [7] used this monotonic logic to verify the strong equivalence of
nonmonotonic ASP programs. Fariñas et al. [1] have recently extended HT with
the epistemic modalities K and K̂ in which K and K̂ are non-dual (i.e., K̂ is not
equivalent to ¬K¬). The resulting formalism is called epistemic here-and-there
logic (EHT). As a result, EHT is a particular intuitionistic logic in which dual-
ity of necessity and possibility fails. Keeping track of the approach of [7], we
here propose a strong equivalence characterisation by pointing out the relation
between the strong equivalence of programs in nonmonotonic EASP and the log-
ical equivalence of the corresponding theories in monotonic EHT. Two EASP
programs Π1 and Π2 are said to be equivalent in the sense of the EAS semantics
if they have the same EASs. Π1 and Π2 are further strongly equivalent if Π1 ∪Π
and Π2 ∪ Π are equivalent for every EASP program Π. Thus, our main goal
in this paper is to prove that the strong equivalence concept in EASP can be
captured by the logical equivalence concept in monotonic EHT. To spell it out,
Π1 and Π2 are strongly equivalent in EASP if and only if their translations into
EHT are logically equivalent.

The rest of the paper is organised as follows. Section 2 introduces a recent
epistemic extension of ASP called EASP, whose semantics is given by epistemic
answer sets. Section 3 recalls an epistemic extension of HT called EHT. Section 4
first defines strong equivalence of EASP programs and then prepare us for the
main result of this paper by introducing some lemmas. Finally, we prove that
the strong equivalence of EASP programs can be verified by checking the equiv-
alence of their corresponding theories (finite sets of formulas) in EHT. Section 5
concludes the paper with some discussion.

2 Epistemic Answer Set Programming (EASP)

This section briefly recalls epistemic ASP (EASP), recently proposed by Su [13].

2.1 The Language of EASP (LEASP)

The language LEASP extends that of ASP by epistemic modal operators K and
K̂. Literals (λ) of LEASP are of two types: objective literals (l) and subjective
literals (g).
1 In ASP, constraints function to rule out answer sets violating them or they have a

neutral effect.
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l g

p | ∼p K l | K̂ l

in which p ranges over a set P of atoms. LEASP has two negations; strong negation
∼ and NAF (aka, default negation) not : notλ is read “λ is false by default”
which means that there is not enough evidence to infer λ, and so the query λ?
is undetermined.

An EASP rule r is a logical statement head(r) ← body(r) of the explicit
structure

λ1 or . . . orλk ← λk+1, . . . , λm, notλm+1, . . . , notλn

in which λi’s are arbitrary (objective or subjective) literals for every i, 0 ≤ i ≤ n
with 0 ≤ k ≤ m ≤ n. When k = 0, we suppose head(r) to be ⊥ and call r a
constraint. In particular, a constraint which is exclusively composed of (default-
negated) subjective literals is called a subjective constraint. When n = k, we
suppose body(r) to be � and call r a fact. When n = m, i.e., r does not contain
NAF, we call it a positive rule.

A (positive) EASP program is a finite collection of (positive) rules of EASP.

2.2 The Semantics of EASP: Epistemic Answer Sets (EASs)

The semantics of EASP is given by epistemic answer sets (EASs): given a positive
EASP program Π, we first partition Π into two disjoint subprograms; Πm and
Πc. The set of all constraints rc ∈ Π constitutes Πc. The rest, i.e., the set Π \Πc

forms Πm, which is the main part of the program Π. We begin with computing
the ESMs of Πm, each of which is then involved in an evaluation process carried
out w.r.t. the constraints in Πc.

Truth Conditions. Let O-Lit be the set of all objective literals of LEASP. Let A
be a nonempty collection of consistent sets of objective literals, and let A0 ⊆ A.
Then, we call the pair 〈A,A0〉 a pointed S5 model with A0 being the set of
designated worlds. When A0 = {A}, we simply denote it by 〈A, A〉. In an explicit
representation, we underline the designated worlds. Satisfaction of literals is
defined by: for l ∈ O-Lit,

A, A |= l if l ∈ A; A, A |= not l if l /∈ A.
A, A |= K l if l ∈ A′ for every A′ ∈ A; A, A |= notK l if l �∈ A′ for some A′ ∈ A.

A, A |= K̂ l if l ∈ A′ for some A′ ∈ A; A, A |= not K̂ l if l �∈ A′ for any A′ ∈ A.

Note that satisfaction of an objective literal l is independent of A, while sat-
isfaction of subjective literals K l and K̂ l is independent of A. Thus, we write
A |= K l or A |= l. Then, satisfaction of an EASP program Π is defined by: for
every rule r ∈ Π, A, A |= r viz.

“A, A |= body(r) implies A, A |= head(r)′′
.
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Definition 1 (weakening of a point in an S5 model). Given A ⊆ 2O-Lit,
let s : A → 2O-Lit be a subset map such that s(A) ⊆ A for every A ∈ A. Then,
a weakening of A at a point A ∈ A is identified with 〈s[A], s(A)〉2 such that
s = id on A and s|A\{A} = id, by which we take a strict subset of A ∈ A and
do not modify the rest. Formally, we say that 〈s[A], s(A)〉 is weaker than 〈A, A〉
at A ∈ A if

– s(A) ⊂ A and
– s[A] = (A \ {A}) ∪ {s(A)}.

Then, we denote it by 〈s[A], s(A)〉 � 〈A, A〉.
We now introduce a nonmonotonic satisfaction relation for pointed S5 models
〈A, A〉, involving a truth-minimality property based on set inclusion over the
designated point A. This condition says that none of the weakenings of 〈A, A〉
at A ∈ A is a model of Π.

Definition 2 (generalisation of the answer set definition of ASP to
EASP). Let A ⊆ 2O-Lit and A ∈ A. Let Π be a positive EASP program.
Then, we have: A, A |=∗ Π iff

• A, A |= Π and
• s[A], s(A) |= Π for every subset map s such that 〈s[A], s(A)〉 � 〈A, A〉.
Thus, A is a truth-minimal (T-minimal) model of Π if A, A |=∗ Π for every
A ∈ A.

Truth-minimality takes place locally, i.e., at each point of a model separately.
So, it is not strong enough to give intuitive results. Thus, we need other orderings
to choose intended ones among all T-minimal models of Π. Inspired by [10], we
first define the set Ep(Π) of subjective literals occurring in Π and taking the
form of notK l and K̂ l:

Ep(Π) = {not K l : K l appears in Π} ∪ {K̂ l : K̂ l appears in Π}

Then, we take its subset ΦA = {g ∈ Ep(Π) : A |= g} w.r.t. a collection
A ⊆ 2O-Lit. Using this set, we define a Π-indexed partial preorder �Π between
S5 models as:

A �Π A′ iff ΦA ⊆ ΦA′ .

The strict version of �Π is given as usual: A ≺Π A′ iff A �Π A′ and A′ �Π A.
If A �Π A′ and A′ �Π A, then A is equivalent to A′ w.r.t. �Π (denoted by
A ≈Π A′).

Definition 3 (epistemic answer set (EAS)). Let A be a nonempty collec-
tion of consistent sets of objective literals. Then A is an EAS of a constraint-free
program Π if
2 s[A] represents the image of A ⊆ 2O-Lit under s, and s(A) represents the value of s

at A ∈ A.
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1. A is a T-minimal model of Π;
2. there is no T-minimal model A′ of Π such that A ≺Π A′;
3. there is no T-minimal model A′ of Π such that A ⊂ A′.

The 2nd and 3rd items say that A is maximal w.r.t. �Π and ⊆ respectively. They
are used together to minimise knowledge. In particular, item 2 also suggests a
preference order over subjective literals as: K̂ l > K l and the reverse way for the
default-negated ones.

When Π contains constraints (i.e., when Πc = ∅), we first compute EAS(Πm)3

as explained above. Then, we evaluate each A ∈ EAS(Πm) with respect to their
behaviour on Πc: let ϕ =

∨
rc∈Πc

body(rc). Then for every A ∈ EAS(Πm) and
every A ∈ A,

• if A, A |= ϕ, then we accept A and call it Aaccept;
• if A, A |= ϕ, then we eliminate A.
• Finally, we reorganise the rest in such a way that we take the biggest possible

subset Anew ⊆ A viz. Anew is still a minimal model of Πm and Anew, A |= ϕ
for every A ∈ Anew. In other words, Anew turns into Aaccept.

As a result, EAS(Π) is the collection of all Aaccept’s and Anew’s. If Πc exclusively
contains subjective constraints, then we either refute or accept the EASs of Πm.
Now, we see how to find EASs of an arbitrary EASP program (which may include
NAF as well).

Definition 4 (generalisation of the reduct definition of ASP to EASP).
Let Π be an EASP program. Let A ⊆ 2O-Lit and A ∈ A. Then, the reduct
Π〈A,A〉 of Π with respect to 〈A, A〉 is given by replacing every occurrence of
default-negated literals notλ in Π by

R1. ⊥ if A, A |= λ (i.e., for λ = l if A |= l; for λ = K l/K̂ l if A |= K l/K̂ l);
R2. � if A, A |= λ (i.e., for λ = l if A |= l; for λ = K l/K̂ l if A |= K l/K̂ l).

Thus, A is a truth-minimal (T-minimal) model of Π if A, A |=∗ Π〈A,A〉 for
every A ∈ A.

Example 1. Consider the program Σ, given in the following split form:

Σ = p or q ← }
Σm ∪ ← K p

← not K̂ q

}

Σc

Σm is a positive program, and it has three T-minimal models:
{{p}}

,
{{q}} and{{p}, {q}}. Among these, only the last is an EAS of Σm due to set inclusion.

First consider the program Σc. Note that Σc is equivalent to ← K p or not K̂ q.
Then since

{{p}, {q}} |= K p or not K̂ q at each point, we accept
{{p}, {q}}.

Consequently, EAS(Σ) =
{{{p}, {q}}}

.

3 EAS(Π) denotes the set of all epistemic answer sets (EASs) of an EASP program Π.
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Example 2. Consider the program Δ, given in the following split form:

Δ =
p or q ←

r ← K p
s ← notK q

⎫
⎬

⎭
Δm ∪ ← not p

}
Δc

Δm has three minimal models;
{{p, r, s}},

{{q}}
and

{{p, s}, {q, s}}. Indeed,
we have:

p or q

r ← K p

s ← 	

⎫
⎬

⎭
Δ

{{p,r,s}}
m

p or q

r ← K p

s ← ⊥

⎫
⎬

⎭
Δ

{{q}}
m

p or q

r ← K p

s ← 	

⎫
⎬

⎭
Δ

{{p,s},{q,s}}
m

p or q

r ← K p

s ← 	

⎫
⎬

⎭
Δ

{{p,s},{q,s}}
m

and for instance, while
{{p, r, s}} |= Δ

{{p,r,s}}
m , its weakenings, i.e.,

{{p, r}},
{{p, s}},

{{r, s}},
{{p}}

,
{{r}}

,
{{s}}

and
{∅}

do not satisfy Δ
{{p,r,s}}
m . The

rest is similar. Now consider Ep(Γm) = {notK p, notK q}. It is easy to see that
Φ{{p,r,s}} = {notK q}, Φ{{q}} = {notK p} and Φ{{p,s},{q,s}} = Ep(Δm). So,
we have the following order:

{{p, r, s}} ≺Δm

{{p, s}, {q, s}} and
{{q}} ≺Δm{{p, s}, {q, s}}. As a result, EAS(Δm) =

{{{p, s}, {q, s}}}
. However, since{{p, s}, {q, s}} |= not p, we reorganise this S5 model by deleting its point {q, s}.

The resulting model
{{p, s}} is not a T-minimal model of Δm. Thus, we conclude

that EAS(Δ) = ∅.

Example 3. Consider the program Γ , given in the following partitioned form:

Γ =
p ← not∼q

∼q ← not p

r ← K̂ p

⎫
⎬

⎭
Γm ∪

← p

← not K̂ q

⎫
⎬

⎭
Γc

Then,
{{p, r}, {∼q, r}} is a T-minimal model of Γm. Indeed, we have the follow-

ing reducts:

p ← �
∼q ← ⊥
r ← K̂ p

⎫
⎬

⎭
Γ

{{p,r},{∼q,r}}
m and

p ← ⊥
∼q ← �
r ← K̂ p

⎫
⎬

⎭
Γ

{{p,r},{∼q,r}}
m

and while
{{p, r}, {∼q, r}} |= Γ

{{p,r},{∼q,r}}
m , all its weakenings, i.e.,

{{p},
}

{∼q, r},
{{r}, {∼q, r}} and

{∅, {∼q, r}} refute it. Similarly,
{{p, r}, {∼q, r}} |=

Γ
{{p,r},{∼q,r}}
m , while all its weakenings refute it. Obviously,

{{∼q}} and
{{p, r}}

are the other T-minimal models of Γm. Take Ep(Γm) = {K̂ p}. While
{{p, r}} |=

K̂ p and
{{p, r}, {∼q, r}} |= K̂ p,

{{∼q}} do not satisfy it. Thus, we have
the following order:

{{∼q}}≺Γm

{{p, r}}≈Γm

{{p, r}, {∼q, r}}. Then, by using
subset inclusion, we conclude that EAS(Γm) =

{{{p, r}, {∼q, r}}}
. Now con-

sider Γc: it is equivalent to ← p or not K̂ q. Clearly,
{{p, r}, {∼q, r}} |= p or K̂ q

while
{{p, r}, {∼q, r}} |= p or not K̂ q. Thus we reorganise the model by deleting

{p, r}. The resulting model
{{∼q, r}} is not a T-minimal model of Γm. So, we

have EAS(Γ ) = ∅.
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3 Epistemic Here-and-There Logic (EHT)

The logic of here-and-there (HT) is a 3-valued monotonic logic that is interme-
diate between classical logic and intuitionistic logic. An HT model is an ordered
pair (H,T ) of valuations satisfying the heredity constraint : H ⊆ T . Pearce [8,9]
was the first to realise that this logic provides a logical and mathematical basis
for ASP. More recently, the strong equivalence of ASP programs was charac-
terised by means of HT [7].

EHT extends HT by epistemic modal operators K and K̂ in the spirit of
intuitionistic modal logics [11]. EHT models generalise HT models (H,T ) to
collections

{
(Hi, Ti)

}
i

of such models. From the perspective of modal logic, an
EHT model can be viewed as a refinement of S5 models in which valuations are
replaced by HT models.

3.1 The Language of EHT (LEHT)

The language LEHT is given by the following grammar: for p ∈ P,

ϕ ::= p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | Kϕ | K̂ϕ

Note that K and K̂ are not dual: K̂ϕ is not equivalent to ¬K¬ϕ. As usual, �,
¬ϕ and ϕ ↔ ψ respectively abbreviate ⊥ → ⊥, ϕ → ⊥ and (ϕ → ψ) ∧ (ψ → ϕ).
A finite set of EHT formulas is called an EHT theory, noted Φ, Ψ, . . .. The set
of atoms occurring in a formula ϕ is symbolised by Pϕ. For example, PK (p→q) =
{p, q}. This generalises to EHT theories: PΦ =

⋃
ϕ∈Φ Pϕ. A formula (theory) is

nonmodal if it does not contain modalities.

3.2 The Semantics of EHT: EHT Models

The semantics of EHT is given via EHT models. An EHT model is a pair 〈T , s〉:
• T ⊆ 2P is a nonempty set of valuations;
• s : T → 2P is a subset map such that s(T ) ⊆ T for every T ∈ T .

The map s associates a subset-valuation to each valuation in its domain. Thus, an
EHT model 〈T , s〉 can alternatively be described as a collection

{
(s(T ), T )

}
T∈T

of HT models. The inclusion constraint on s generalises the heredity constraint
of HT to EHT.

We say that 〈T , s〉 is total on S ⊆ T if s(T ) = T for every T ∈ S. If
〈T , s〉 is total on T , then s is the identity function id, that is, s(T ) = T for
every T ∈ T . We identify 〈T , id〉 simply with the S5 model T ⊆ 2P. A pointed
EHT model is an ordered pair

(〈T , s〉,T0

)
in which 〈T , s〉 is an EHT model and

T0 ⊆ T is the nonempty set of designated worlds. When T0 = {T0}, we simply
denote it by

(〈T , s〉, T0

)
. We display pointed models explicitly as collections{

(s(T ), T )
}

T∈T where the designated worlds are underlined. For example, we
write {(∅, {p}), (∅, {q})} for the pointed EHT model 〈(T , s), {T0}〉, where T =
{{p}, {q}}, T0 = {p} and s({p}) = s({q}) = ∅.
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3.3 The Truth Conditions of EHT

In this section, we define the EHT truth conditions. Those for ⊥, ∧ and ∨ are
standard.

〈T , s〉, T |=EHT p if p ∈ s(T );
〈T , s〉, T |=EHT ϕ → ψ if 〈T , s〉, T |=EHT ϕ implies 〈T , s〉, T |=EHT ψ and

〈T , id〉, T |=EHT ϕ implies 〈T , id〉, T |=EHT ψ;
〈T , s〉, T |=EHT Kϕ if 〈T , s〉, T ′ |=EHT ϕ for every T ′ ∈ T ;
〈T , s〉, T |=EHT K̂ϕ if 〈T , s〉, T ′ |=EHT ϕ for some T ′ ∈ T .

It follows that 〈T , s〉, T |=EHT ¬ϕ if and only if 〈T , s〉, T |=EHT ϕ and 〈T , id〉,
T |=EHT ϕ. This statement will be further simplified in Proposition 3.1 below.

Example 4. 〈T , s〉, T0 |=EHT p ∨ ¬p if and only if p ∈ s(T0) or p ∈ T0. Moreover,
〈T , s〉, T0 |=EHT K (p∨¬p) → K̂¬¬p if and only if p ∈ T for some T ∈ T . Finally,
〈T , s〉, T |=EHT ¬K¬¬ϕ → ¬Kϕ for every EHT model 〈T , s〉 and every T ∈ T .

Given an EHT model 〈T , s〉 and a set T0 ⊆ T of designated worlds, if
〈T , s〉, T |=EHT ϕ for every T ∈ T0, then we write 〈T , s〉,T0 |=EHT ϕ for short.
Finally, we write 〈T , s〉,T0 |=EHT Φ if 〈T , s〉,T0 |=EHT ϕ for every ϕ ∈ Φ. Here
are some examples:

1. {
(∅, {p}), (∅, {q})} |=EHT ¬p as {

(∅, {p}), (∅, {q})} |=EHT p and {
({p}, {p}), ({q}, {q})} |=EHT p.

2.
{
(∅, {p}), (∅, {q})

} |=EHT ¬¬p.
3.

{
(∅, {p}), (∅, {q})

} |=EHT K¬r since
{
(∅, {p}), (∅, {q})

} |=EHT ¬r.
4.

{
(∅, {p}), (∅, {q})

} |=EHT ¬K̂ p since
{
(∅, {p}), (∅, {q})

} |=EHT ¬p.

Observe that the satisfaction of the formulas of the form Kϕ and K̂ϕ does not
depend on the set of designated worlds: if 〈T , s〉,T0 |=EHT Kϕ for some T0 ⊆ T ,
then 〈T , s〉,T0 |=EHT Kϕ for every T0 ⊆ T . Also note that the satisfaction of the
formulas of the form ¬ϕ is independent of the map s. Moreover, the satisfaction
of the formulas of the form ¬Kϕ, ¬¬Kϕ, ¬K̂ϕ and ¬¬K̂ϕ depends on neither s
nor the set of designated worlds. This fact can be justified by using Propositions 1
and 3 below.

Proposition 1. The following items are equivalent: for an EHT theory Φ,

• 〈T , s〉,T |=EHT Φ;
• 〈T , s〉, T |=EHT K (

∧
Φ) for every T ∈ T ;

• 〈T , s〉, T |=EHT K (
∧

Φ) for some T ∈ T .

The following result is the heredity (monotonicity) property in EHT: if a
formula has an EHT model, then it also has a total EHT model, i.e., it has a
classical S5 model.

Proposition 2. If 〈T , s〉, T |=EHT ϕ then 〈T , id〉, T |=EHT ϕ, that is, T , T |= ϕ.
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The list below helps us clarify the satisfaction of negated formulas.

Proposition 3. For an EHT model 〈T , s〉 and ϕ ∈ LEHT,

1. 〈T , s〉, T |=EHT ¬ϕ iff 〈T , id〉, T |=EHT ϕ;
2. 〈T , s〉, T |=EHT ¬¬ϕ iff 〈T , id〉, T |=EHT ϕ;
3. 〈T , s〉, T |=EHT ¬Kϕ iff 〈T , id〉, T ′ |=EHT ϕ for some T ′ ∈ T ;
4. 〈T , s〉, T |=EHT ¬K̂ϕ iff 〈T , id〉, T ′ |=EHT ϕ for every T ′ ∈ T .

3.4 The EHT Validity

A formula ϕ is called EHT satisfiable if 〈T , s〉,T0 |=EHT ϕ for some EHT model
〈T , s〉 and T0 ⊆ T . We call (〈T , s〉,T0) a pointed EHT model of ϕ. Then, ϕ is
EHT valid if 〈T , s〉,T |=EHT ϕ for every EHT model 〈T , s〉.

Example 5. Kϕ → ¬K̂¬ϕ, ¬K̂¬ϕ → ¬¬K̂ϕ and ¬¬Kϕ → ¬K¬ϕ are all valid
while their converses are not. On the other hand, none of ¬¬Kϕ → Kϕ and
K¬¬ϕ → Kϕ is EHT valid. The same holds if we replace K by K̂ . (Take
ϕ = p. Then the EHT model

{〈∅, {p}〉} provides a counterexample for all
these implications except ¬¬K̂ p → ¬K̂¬p and ¬K¬p → ¬¬K p. For these two,{〈∅, ∅〉, 〈∅, {p}〉} works as a counterexample.)

The following EHT validities help us grasp the above examples more easily.

Proposition 4. The equivalences ¬Kϕ ↔ K̂¬ϕ and ¬K̂ϕ ↔ K¬ϕ are EHT
valid.

As an immediate corollary of this proposition, we also have:

Corollary 1. The equivalences ¬¬Kϕ ↔ K¬¬ϕ and ¬¬K̂ϕ ↔ K̂¬¬ϕ are EHT
valid.

3.5 Translating EASP Programs into EHT Theories

Let Π be an ELP. Our translation (.)∗ replaces ‘←’, ‘ or ’, ‘,’ and ‘not ’ respec-
tively by ‘→’, ‘∨’, ‘∧’ and ‘¬’. Then the translations of K and K̂ are direct.
Furthermore, it introduces a fresh atom p̃ for each ∼p occurring in Π. For these
new atoms, the formula Cons(Π) =

∧
p∈PΠ

¬(p∧p̃) ensures that p and p̃ cannot
be true at the same time. (We only need it for those p that are prefixed by a
strong negation in Π.) Here is an example:

Π =
{
p or∼q ← K̂ r, not s , q ← notK p

}
.

Π∗ =
(
(K̂ r ∧ ¬s) → (p ∨ q̃)

) ∧ (¬K p → q
) ∧ ¬(

q ∧ q̃
)
.
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4 Strong Equivalence

We here discuss a strong equivalence characterisation for EASP programs, defined
as their logical equivalence in EHT. We will keep track of the approach proposed
by [7].

Definition 5. For EASP programs Π1 and Π2, Π1 is equivalent to Π2 in the
sense of the EAS semantics if EAS(Π1) = EAS(Π2). Then, Π1 is strongly equiva-
lent to Π2 if Π1 ∪ Π is equivalent to Π2 ∪ Π, i.e., EAS(Π1 ∪ Π) = EAS(Π2 ∪ Π)
for every EASP program Π.

Note that strong equivalence implies equivalence (simply take Π = ∅). The
strong equivalence concept is important because it enables us to simplify a sub-
program regardless of the rest because the meaning of the whole program would
not change.

4.1 Characterisation of Strong Equivalence in EHT

In this section we see that the strong equivalence of EASP programs can be
verified by checking the logical equivalence of corresponding EHT theories in
(monotonic) EHT.

Let ‖ϕ‖EHT denote the collection of all EHT models of a formula ϕ ∈ LEHT. We
generalise this notation to an EHT theory Φ as follows: ‖Φ‖EHT = ‖∧

ϕ∈Φ
ϕ‖EHT .

To get prepared for our main theorem, we now generalise some well-known lem-
mas from HT and ASP to EHT and EASP. The first is a generalisation of Lemma
1 given in [7]:

Lemma 1. Let 〈T , s〉 be an EHT model and T0 ∈ T . For a positive EASP
program Π,

〈T , s〉, T0 |=EHT Π∗ if and only if {s(T ) : T ∈ T}, s(T0) |= Π∗ and T , T0 |= Π∗.

Proof. Let Π be a positive (without NAF) EASP program. Let 〈T , s〉 be an EHT
model, and let T0 ∈ T . Then, 〈T , s〉, T0 |=EHT Π∗ iff for every rule r : head(r) ←
body(r) in Π,

〈T , s〉, T0 |=EHT (body(r))∗ implies 〈T , s〉, T0 |=EHT (head(r))∗

and
(1)

〈T , id〉, T0 |=EHT (body(r))∗ implies 〈T , id〉, T0 |=EHT (head(r))∗. (2)

By assumption, we know that body(r) and head(r) do not contain NAF for any
r ∈ Π. As a result of this, for every r ∈ Π, (1) and (2) are respectively equivalent
to:

{s(T ) : T ∈ T}, s(T0) |= (body(r))∗ implies {s(T ) : T ∈ T}, s(T0) |= (head(r))∗

and
T , T0 |= (body(r))∗ implies T , T0 |= (head(r))∗.

These implications can be combined and phrased as follows: 〈{s(T ) : T ∈
T }, s(T0)〉 and 〈T , T0〉 are (classical) pointed S5 models of Π∗. So, we are done.
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Second, we generalise Lemma 2, again proposed in [7], as described below:

Lemma 2. Let 〈T , s〉 be an EHT model and T0 ∈ T . For an EASP program Π,
we have:

〈T , s〉, T0 |=EHT Π∗ if and only if 〈T , s〉, T0 |=EHT (Π〈T ,T0〉)∗.

Proof. By the definition of reduct (see Definition 4), Π〈T ,T 〉 is a positive (with-
out NAF) program obtained from Π by the simultaneous replacement of some
subformulas of the form notλ (where λ is an arbitrary literal; objective or sub-
jective literal) with � and of all other subformulas of this form with ⊥. Thus,
it will be sufficient to check that for an arbitrary point T0 ∈ T , a subformula
notλ and the formula α that replaces it,

〈T , s〉, T0 |=EHT (notλ)∗ if and only if 〈T , s〉, T0 |=EHT (α)∗.

Since α is � or ⊥, its translation α∗ equals itself. Then, this claim can be
rewritten as

〈T , s〉, T0 |=EHT (notλ)∗ if and only if α = �.

Remember that (notλ)∗ = ¬λ since λ is an objective or subjective literal (see
Sect. 3.5 for the translation rules). Thus, we have: for every T0 ∈ T ,

〈T , s〉, T0 |=EHT ¬λ iff 〈T , id〉, T0 |=EHT λ (by Proposition 3.1)
iff T , T0 |= λ (see Proposition 2)
iff α = � (by Definition 4).

Finally, we generalise Lemma 1 in [2] to EHT and EASP as follows:

Proposition 5. Let 〈T , s〉 be an EHT model and T0 ∈ T . For an EASP
program Π,

〈T , s〉, T0 |=EHT Π∗ if and only if {s(T ) : T ∈ T }, s(T0) |= (
Π〈T ,T0〉)∗

.

Proof. Let 〈T , s〉 be an EHT model and T0 ∈ T . Then, by the definition of
reduct (see Definition 4), Π〈T ,T0〉 is a positive EASP program excluding NAF
(•). Thus, we have:

〈T , s〉, T0 |=EHT Π∗ iff (by Lemma 2)
〈T , s〉, T0 |=EHT

(
Π〈T ,T0〉)∗ iff (by (•) and Lemma1)

{s(T ) : T ∈ T }, s(T0) |= (
Π〈T ,T0〉)∗ and

T , T0 |= (
Π〈T ,T0〉)∗ iff (by Proposition 2)

{s(T ) : T ∈ T }, s(T0) |= (
Π〈T ,T0〉)∗

.

The following result is our main goal in this paper. It (partly) generalises
Theorem 1 proposed in [7] and shows the relation between the strong equiva-
lence of EASP programs and the logical equivalence of their corresponding EHT
theories.
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Theorem 1. The following conditions are equivalent: for EASP programs Π1

and Π2,

(a) EAS(Π1 ∪ Π) = EAS(Π2 ∪ Π) for every EASP program Π.
(b) Π∗

1 is equivalent to Π∗
2 in EHT, that is, ‖Π∗

1‖EHT = ‖Π∗
2‖EHT .

This theorem above corresponds to the standard strong equivalence results of
ASP discussed in [7] for nonmodal EASP programs in which subjective literals
do not appear. The proof below is a non-trivial generalisation of the proof of
Lemma 4 given in [7].

Proof. To see that (b) implies (a), we first assume that Π∗
1 is equivalent to

Π∗
2 in EHT. We know that EHT is a monotonic logic. Thus, we also have

‖Π∗
1 ∪ Γ‖EHT = ‖Π∗

2 ∪ Γ‖EHT for every EHT theory Γ . Clearly, our transla-
tion (.)∗ is a 1–1 and into map, so it is easy to conclude that ‖(Π1 ∪ Π)∗‖EHT =
‖(Π2 ∪ Π)∗‖EHT (�) for every EASP program Π. Thus, (Π1∪Π)∗ and (Π2∪Π)∗

have the same (total) EHT models. Obviously, they also have the same classical
S5 models because we know that any S5 model can be reformulated as a total
EHT model and vice versa. Then, from Proposition 5, we obtain that: for every
EHT model 〈T , s〉 and for every T ∈ T ,

{s(T ) : T ∈ T }, s(T ) |= (
(Π1 ∪ Π)〈T ,T 〉)∗ iff (by Proposition 5)

〈T , s〉, T |=EHT (Π1 ∪ Π)∗ iff (by (�) above)
〈T , s〉, T |=EHT (Π2 ∪ Π)∗ iff (by Proposition 5)
{s(T ) : T ∈ T }, s(T ) |= (

(Π2 ∪ Π)〈T ,T 〉)∗
.

Thus, for every s : T → 2P such that s(T ) ⊆ T for every T ∈ T and for every
T ∈ T ,

{s(T ) : T ∈ T }, s(T ) |= (
(Π1 ∪ Π)〈T ,T 〉)∗ iff

{s(T ) : T ∈ T }, s(T ) |= (
(Π2 ∪ Π)〈T ,T 〉)∗

.

Taking s = id will then give us: for every T ∈ T ,

T , T |= (
(Π1 ∪ Π)〈T ,T 〉)∗ iff T , T |= (

(Π2 ∪ Π)〈T ,T 〉)∗ (�).

Moreover, this equivalence also holds for every s = id such that s(T ) ⊂ T and
s|T\{T} = id for every T ∈ T . Thus, we have: for every s = id such that
s(T ) ⊂ T , but s|T\{T} = id,

s[T ], s(T ) |= (
(Π1 ∪ Π)〈T ,T 〉)∗ iff s[T ], s(T ) |= (

(Π2 ∪ Π)〈T ,T 〉)∗ (�)

for every T ∈ T . From (�) and (�), we obtain that for every T ∈ T (see
Definition 2),

T , T |=∗ (Π1 ∪ Π)〈T ,T 〉 iff T , T |=∗ (Π2 ∪ Π)〈T ,T 〉.
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Again using Definition 2, we deduce that Π1 ∪ Π and Π2 ∪ Π have the same T-
minimal models in EASP. Since ‖Π∗

1‖EHT = ‖Π∗
2‖EHT by assumption, the sets

of (default-negated) subjective literals appearing in Π1 and Π2 are the same,
i.e., Ep(Π1) = Ep(Π2). Then, it is easy to conclude that Π1 ∪ Π and Π2 ∪ Π
have the same T-minimal models which are maximal w.r.t. the orderings ⊆ and
�Π1∪Π , and ⊆ and �Π2∪Π respectively. As a result, they have the same EASs,
i.e., EAS(Π1 ∪ Π) = EAS(Π2 ∪ Π).

To see that (a) implies (b), we first assume that Π∗
1 and Π∗

2 are not logically
equivalent in EHT, i.e., ‖Π∗

1‖EHT = ‖Π∗
2‖EHT . Then, Π∗

1 has an EHT model
(〈T , s〉,T ) (•), which is not a model of Π∗

2 (••). Now, we will find an EASP
program Π such that T is an EAS for one of the programs Π1 ∪ Π and Π2 ∪ Π,
but not an EAS of the other.

Case 1: suppose that 〈T , id〉,T |=EHT Π∗
2 . However, by monotonicity property

of EHT (see Proposition 2), (•) implies that 〈T , id〉, T |=EHT Π∗
1 for every T ∈ T .

Then, by taking s = id in Proposition 5, we deduce that T , T |= (Π〈T ,T 〉
1 )∗ for

every T ∈ T (�).
We first consider the collection

⋃
T =

⋃{Ti}i of atoms appearing in at least
one Ti ∈ T . Then, we construct the following set of EHT formulas: for each i, let

Πi =
{
p ∨

∨
Ti : p ∈ Ti

}

where Ti =
⋃
T \ Ti is the relative complement of Ti w.r.t.

⋃
T . Note that we

can regard each Πi as a set of facts in EASP. Then we take the union of such
Πi’s, and we define

Π =
⋃

{Πi}i.

Since Πi does not include NAF, we have Π〈T ,Ti〉 = Π. Thanks to our con-
struction, it is obvious that T , Ti |= Πi. Moreover, it is not difficult to see
that T , Ti |= Πj for every j = i (w.l.o.g., we assume each Ti to be nonempty
and not to be a subset of another Tj (for some j) in the collection T ). Thus,
T , Ti |= Π. Since Π is positive, T , Ti |= Π〈T ,Ti〉. Then, using (�) we conclude
that T , Ti |= (Π1 ∪ Π)〈T ,Ti〉, for every Ti ∈ T .

It remains to show that s[T ], s(Ti) |= (Π1 ∪ Π)〈T ,Ti〉 for every s viz.
〈s[T ], s(Ti)〉 � 〈T , Ti〉 (see Definition 2). Again, thanks to our construction,
s[T ], s(Ti) |= Πi for any such s (i.e., for every s = id such that s|T\{Ti} = id).

Also notice that Π
〈T ,Ti〉
i = Πi since it does not include NAF. As a result,

T , Ti |=∗ (Π1 ∪ Π)〈T ,Ti〉. Since Ti ∈ T is arbitrary, by Definition 4 we conclude
that T is a T-minimal model for Π1 ∪ Π. Moreover, the choice of Π guarantees
that T is the unique T-minimal model of Π1 ∪Π. So, T ∈ EAS(Π1 ∪Π). On the
other hand, using our initial assumption we easily conclude that 〈T , id〉,T |=EHT

(Π2 ∪ Π)∗, so T cannot be an epistemic answer set (EAS) for Π2 ∪ Π because
T is not even an S5 model of (Π2 ∪ Π)∗.

Case 2: suppose that 〈T , id〉,T |=EHT Π∗
2 . Then, using (••) we conclude that

s = id (because otherwise (••) would contradict our initial assumption). Thus,
s(T0) ⊂ T0 for some T0 ∈ T . Then, by monotonicity property of EHT (see
Proposition 2) and using (•) we guarantee the existence of s′ such that s′(T0) =
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s(T0) ⊂ T0, but s′|T\{T0} = id and also satisfying the condition 〈T , s′〉,T |=EHT

Π∗
1 . We now define a set Π =

⋃{Πi}i of EHT formulas such that each Πi is
defined as below: taking H =

⋃{s(Ti)}i, we let

Πi = {p ∨
∨ (

H \ s(Ti)
)
: p ∈ s(T i)} ∪ {q ← r : q, r ∈

(
Ti \ s(Ti)

)
\

⋃
{Tj}j �=i and q �= r}.

Note that we can also consider Π as a set of positive EASP rules, i.e., a positive
EASP program. Thanks to our choice, 〈T , s′〉, T0 |=EHT (Π1 ∪ Π)∗. Then, by
Proposition 5, we moreover have {s′(T ) : T ∈ T }, s′(T0) |= (Π1∪Π)〈T ,T0〉 (note
that Π〈T ,T0〉 = Π since it is a positive program). Thus, T cannot be an EAS of
Π1 ∪ Π: it is easy to see that T is not even a T-minimal model of Π1 ∪ Π since
T , T0 |=∗ (Π1 ∪ Π)〈T ,T0〉.

By the hypothesis, we know that T , T |= Π2 for every T ∈ T . Then, clearly
〈T , id〉, T |=EHT (Π2 ∪ Π)∗ for every T ∈ T . By using Lemma 2, we also get
T , T |= (Π2 ∪ Π)〈T ,T 〉 for every T ∈ T . We now take an arbitrary weakening
〈s′′[T ], s′′(Ti)〉 of 〈T , Ti〉 for a function s′′ : T → 2P such that s′′|T\{Ti} = id and
s′′(Ti) ⊂ Ti. Assume for a contradiction that s′′[T ], s′′(Ti) |= (Π2 ∪ Π)〈T ,Ti〉.
Then, by Proposition 5, 〈T , s′′〉, Ti |=EHT (Π2 ∪ Π)∗. Since 〈T , s′′〉, Ti |=EHT Π∗,
we have s(Ti) ⊆ s′′(Ti), but since 〈T , s′′〉, Ti |=EHT Π∗

2 , we have s(Ti) = s′′(Ti)
(i.e., s(Ti) ⊂ s′′(Ti)) because by (••) we know that (〈T , s〉,T ) is not an EHT
model of Π∗

2 , so for some T0, 〈T , s〉, T0 |=EHT Π∗
2 . Thus, we have the following

order: s(Ti) ⊂ s′′(Ti) ⊂ Ti. Now, take an atom q ∈ s′′(Ti) \ s(Ti) and an atom
r ∈ Ti \ s′′(Ti). For these atoms, q → r ∈ Π, but clearly 〈T , s′′〉, Ti |=EHT q → r
(contradiction!). As a result, T is a T-minimal model of Π2 ∪ Π. Thanks to our
choice, T is also an EAS of Π2 ∪ Π.

Closed world assumption (CWA), saying that p is assumed to be false if there
is no evidence to the contrary, is expressed in ASP by ∼p←not p. However, this
representation was then discovered to cause problems (consider the program
Π = {p or q, ∼p←not p} [10]). We have two options in EASP to express CWA:
notK p → p and not K̂ p → p. However, ‖¬K p → p‖EHT = ‖¬K̂ p → p‖EHT .
This fact can be easily verified by taking the pointed EHT model

{∅, {p}}. By
using the theorem above we conclude that notK p → p and not K̂ p → p are not
strongly equivalent in EASP.

5 Conclusion

In this paper, we first recall a recent epistemic extension of ASP called epistemic
ASP (EASP). Then, we characterise in EHT the strong equivalence of EASP pro-
grams in a more direct way, compared to (i) [14] and (ii) [1]: these approaches
have a general setting and so it may be a bit difficult to get the intuition lying
under their abstract characterisations. Moreover, (i) defines a problematic ver-
sion of EHT as discussed by Su in [12]. Also, the equilibrium view approach of (i)
embeds Gelfond’s semantics [4], which has been no longer in use since improved
versions were suggested. Similarly, the AEEM semantics of (ii) is also partly
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obsolete nowadays since it suffers from unintended results for ELPs containing
arbitrary constraints. Thus, as future work, we would like to propose a new
epistemic extension of equilibrium logic, embedding EASP as well.
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yaroslav.petrukhin@mail.ru, michal.zawidzki@filozof.uni.lodz.pl

Abstract. Modal logics K45, KB4, KD45 and S5 are of particular inter-
est in knowledge representation, especially in the context of knowledge
and belief modelling. Pietruszczak showed that these logics are curious
for another reason, namely for the fact that their Kripke-style seman-
tics can be simplified. A simplified frame has the form 〈W,A〉, where
A ⊆ W . A reachability relation R may be defined as R = W × A,
which, however, makes it superfluous to explicitly refer to it. It is well-
known that S5 is determined by Kripke frames with R = W × W , i.e.,
A = W . Pietruszczak showed what classes of simplified frames deter-
mine K45, KD45, and KB4. These results were generalized to the exten-
sions of these logics by Segerberg’s formulas. In this paper, we devise
sound, complete and terminating prefixed tableau algorithms based on
simplified semantics for these logics. Since no separate rules are needed
to handle the reachability relation and prefixes do not store any extra
information, the calculi are accessible and conceptually simple and the
process of countermodel-construction out of an open tableau branch is
straightforward. Moreover, we obtain a nice explanation of why these
logics are computationally easier than most modal logics, in particular
NP-complete.

Keywords: Modal logic · Automated reasoning · Decision
procedures · Analytic tableaux · Simplified Kripke-style semantics

1 Introduction

Overview. Modal logics are a handy tool often used in knowledge represen-
tation. The most popular field in which logics such as S5, KD45, or K45 are
employed is modelling human knowledge and belief [19,31,32]. In many cases
the modelling task also involves a reasoning component. For example, we would
like to know whether from the assumptions:
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A1: [JohnBelieves]Truth,
A2: ∀ϕ

(
[JohnBelieves]ϕ → [JohnBelieves][JohnBelieves]ϕ

)
,

A3: ∀ϕ

(¬[JohnBelieves]ϕ → [JohnBelieves]¬[JohnBelieves]ϕ
)

follows the conclusion:

C: ∀ϕ

(
[JohnBelieves]([JohnBelieves]ϕ → ϕ)

)
1.

To solve such reasoning task, we usually employ so-called decision procedures,
i.e., algorithms which confronted with such a problem yield a yes/no answer.
In the context of modal logics tableau-based decision procedures gained high
popularity thanks to their conceptual simplicity and computational properties.
Moreover, labelled tableau calculi for modal logics allow for straightforward syn-
thesis of countermodels for non-valid formulas from the information stored on a
branch of derivation. Model generation itself is widely used in, i.a., fault anal-
ysis, system verification [1,26] or ontology debugging [21]. A particular focus
are minimal models or models with a restricted cardinality of the universe [20].
Tableau-based algorithms which can be applied to the most widespread modal
logics and which facilitate constructing a model with an arbitrarily small uni-
verse out of a derivation branch are then a very useful tool which can be exploited
in various areas of AI in a broad sense.
Modal Logics K45, KB4, KD45, and S5. It is well-known that the modal logic
S5 is determined by the class of universal frames, i.e., frames of the form 〈W,R〉,
where W is a non-empty set of possible words and R is a binary reachability
relation such that R = W ×W (R is said to be universal in this case). Thus, S5
is determined by the class of frames of the form 〈W,W ×W 〉. As a consequence,
we do not have to refer to R at all in the case of S5. Moreover, the first version
of Kripke’s semantics for S5 is formulated without using R [16]. The reachability
relation appeared in a later Kripke’s paper [17] and its aim was to make it
possible to formulate semantics for other modal logics. It turns out, however,
that S5 is not the only modal logic for which we can construct Kripke-style
semantics without using the reachability relation.

Pietruszczak [23] introduced the concepts of semi-universal and simplified
frames. The former have the form 〈W,R〉, where R = W × A and A ⊆ W (R
is said to be semi-universal and A is called set of common alternatives to the
worlds from W ). Thus, they can also be presented as follows: 〈W,W ×A〉. Hence,
we can alternatively define a frame as a pair 〈W,A〉 and refer to it as simplified
frame. Pietruszczak showed in [23] that the logic determined by the class of
all simplified frames is K45. Moreover, he proved that the class of non-empty
simplified frames (the ones with A �= ∅) determines the logic KD45; the class of
simplified frames which are empty or universal (the ones with A = ∅ or A = W )

1 The assumptions can be read in the following way: A1: John believes in whatever
is (logically) true, A2: If John believes that ϕ is true, then he believes that he
believes that ϕ is true, A3: If John disbelieves that ϕ is true, then he believes that
he disbelieves that ϕ is true. The conclusion can be read as follows: C: John believes
that whatever he believes is true.
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determines the logic KB4. In his follow-up paper, [24], Pietruszczak generalized
this result onto the extensions of the above-mentioned logics with Segerberg’s
axioms [29] (Altk) and (Taltk) which constrain the number of elements in A.

In this paper, we present sound, complete and terminating prefixed tableaux
for these logics, based on simplified Kripke-style semantics. First, we discuss
simplified tableaux for S5. Second, on the basis of Pietruszczak’s results on sim-
plified semantics, we devise tableau systems for K45, KD45, and KB4 along the
same lines. The only rule that tells all these calculi apart is the rule for ¬�. What
constitutes a substantial difference between our framework and some alternative
approaches, such as Massacci’s [18] or Goré’s [8], is that they use prefixes to
store information about the reachability relation. Consequently, prefixes have a
complex structure which reflects all reachability links between worlds labelled
by them. The rules for �-formulas are therefore designed to keep track of the
“shape” of the reachability relation. In our case, however, there is no reference
whatsoever to the reachability relation. From the beginning of every run of any
of our tableau calculi we know what simplified model we are aiming for. As
a result, the rules for �-formulas serve to obtain the desired model (i.e., the
desired inclusion relations between ∅, A, and W ). The internal structure of pre-
fixes is simple and we know in advance which prefixes will label worlds from A.
One consequence of this fact is that the completeness proof for our calculi is
straightforward and models can be extracted directly from an open branch.

We also extended Pietruszczak’s results by showing that the missing two
classes of simplified frames, namely frames with A �= W , and frames with ∅ �=
A �= W , which Pietruszczak does not consider in his papers, determine the modal
logics of, respectively, non-reflexive, transitive, and Euclidean (standard) Kripke
frames and non-reflexive, transitive, Euclidean, and serial (standard) Kripke
frames. We then prove that these logics are equal to K45 and KD45, respectively,
which means that both of them can be characterized by narrower simplified frame
classes than the ones indicated in [23]. This complete characterization of modal
logics determined by different classes of simplified frames, transposed into a
tableau framework, has another interesting effect. It allows us to show, in a very
simple way, why both problems: satisfiability and modal consequence are NP-
complete (rather than PSpace-complete like in the case of many other modal
logics) for all these logics. Finally, we formulate a special rule which restricts the
number of distinct prefixes on a branch to accommodate Segerberg’s axioms. We
show that when we add this rule to our calculi it does not affect their complexity.

The structure of the paper is as follows. In Sect. 2, we briefly introduce modal
logics semantically and syntactically, then we describe simplified semantics for
them following [23,24]. In Sect. 3, we introduce our simplified tableaux, establish
their soundness, completeness, and termination, and introduce a rule that accom-
modates Segerberg’s axioms. Section 4 is devoted to the discussion of related
work. We briefly conclude the paper in Sect. 5.
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2 Preliminaries. Simplified Kripke-Style Semantics

Syntax. Let L be a modal language with the alphabet 〈prop,�,¬,∧〉, where
prop = {p, q, r, p1, . . .} is a countable set of propositional variables. The set
form of well-formed formulas of L is defined inductively:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �ϕ,

where p ∈ prop. We define the connectives ∨, →, ♦ as standard abbreviations,
i.e, for any ϕ,ψ ∈ form: ϕ∨ψ := ¬(¬ϕ∧¬ψ), ϕ → ψ := ¬ϕ∨ψ, ♦ϕ := ¬�¬ϕ.
Axiomatization. Let us recall some basic modal axioms:

(K) �(p → q) → (�p → �q),
(T) �p → p, (reflexivity)
(D) �p → ♦p, (seriality)
(4) �p → ��p, (transitivity)
(5) ♦p → �♦p, (Euclideaness)
(B) p → �♦p, (symmetry)
(Q) �q, (emptiness of R)

(TQ) (�p → p) ∨ �q. (quasi-reflexivity)

Segerberg’s axioms [29] are as follows:

(Altk) �q1 ∨ �(q1 → q2) ∨ . . . ∨ �((q1 ∧ . . . ∧ qk) → qk+1),
(Taltk) (�p → p) ∨ (Altk).

Clearly, (Q) = (Alt0) and (TQ) = (Talt0). Let Taut be the set of all classical
tautologies. Recall that (Altk) and (Taltk) correspond to the following condi-
tions, respectively, ∀w∈W card(R[w]) ≤ k and ∀w∈W (R(w,w) or card(R[w]) ≤ k).
As follows from Segerberg’s work [29], S5 ⊕ (Altk) is determined by universal
frames with card(W ) ≤ k. The basic modal logic K is the smallest set of formulas
such that Taut ⊆ K, (K) ∈ K, and K is closed under modus ponens, uniform sub-
stitution, and the necessity rule. KX1 . . .Xk := K ⊕ {X1, . . . , Xk} is the smallest
extension of K by the formulas X1, . . . , Xk.
Semantics. The notion of Kripke frame is defined in a standard way, i.e., as
a pair F = 〈W,R〉, where W �= ∅ and R ⊆ W × W . A Kripke model is a pair
M = 〈F , V 〉, where F is a Kripke frame and V : prop −→ 2W . W , R, V are
called, respectively, universe, reachability relation, and valuation. For a given
model M = 〈W,R, V 〉 and a world w ∈ W we define the satisfaction relation �
in a standard way:

M , w � p iff w ∈ V (p),
M , w � ¬ϕ iff M , w � ϕ,

M , w � ϕ ∧ ψ iff M , w � ϕ and M , w � ψ,
M , w � �ϕ iff ∀v∈R[w]M , v � ϕ,

where p ∈ prop, ϕ,ψ ∈ form and R[w] = {v | wRv}.
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When we consider simplified frames, i.e., as mentioned in Sect. 1, frames of
the form 〈W,A〉, where A ⊆ W , the last condition takes the following form:

M , w � �ϕ iff ∀v∈AM , v � ϕ. (1)

In [23] Pietruszczak provided a characterization of the logics K45, KD45, and
KD45 and their extensions with Segerberg’s axioms in terms of simplified frames
(SF for short), which is expressed in the following theorem:

Theorem 1 ([23, Theorem 2.5], [24, Theorem 3.3]). The following logics are
determined by the following frame classes:

K45: finite SF;
KD45: finite SF with A �= ∅;
KB4: finite SF with A = ∅ or A = W ;
K45 ⊕ (Altk): SF with card(A) ≤ k;
KD45 ⊕ (Altk): SF with 0 < card(A) ≤ k;
KB4 ⊕ (Altk): SF with A = ∅ or both A = W and card(W ) ≤ k;
K45 ⊕ (Taltk): SF with A = W or card(A) ≤ k;
KD45 ⊕ (Taltk): SF with A = W or 0 < card(A) ≤ k.

If k > l, then:
K45 ⊕ {(Altk), (Taltl)}: SF with card(A)≤ l or (A = W and card(W )≤k);
KD45⊕{(Altk), (Taltl)}: SF with 0<card(A)≤ l or (A = W and card(W )≤k).

Recall that (TQ) ∈ KB4 and (TQ) ∈ S5 which implies, respectively,
KB4 = KB4 ⊕ (TQ) = KB4 ⊕ (Taltk) and S5 = S5 ⊕ (TQ) = S5 ⊕ (Taltk). Fur-
thermore, KB4⊕{(Altk), (Taltl)} = KB4⊕ (Altk) and S5⊕{(Altk), (Taltl)} =
S5 ⊕ (Altk). Besides, if l ≥ k, then K ⊕ (Altk) = K ⊕ {(Altk), (Taltl)}.

Note that in the case of simplified frames for which A �= W we can assume
that card(W \ A) = 1, i.e., that these frames contain only one world outside of
the set A. Indeed, since Kripke models are closed under generated submodels
(see [2, Proposition 2.5]), we can discard from a model based on a simplified
frame all worlds w ∈ W \ A save the one at which a formula of our interest
holds.

Consequently, simplified frames of the form 〈W,A〉 can be divided into three
‘pure’ types:

(a) frames in which A = ∅, i.e., W = {w},
(b) frames in which W = A,
(c) frames in which A �= ∅ and W = A ∪ {w} for some w /∈ A.

These types are depicted below:

w

W W

A

W

A

w

(a) (b) (c)
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Now let’s recall one basic concept. Let L be a modal logic. A formula ϕ is
L-satisfiable if there exists a model 〈F , V 〉, such that F = 〈W,A〉 belongs to the
class of frames which determines L, and a world w ∈ W , such that M , w � ϕ. If
a formula ϕ is not L-satisfiable, then ¬ϕ is L-valid.

Remark 1. Using labels: (a), (b), and (c) for frame types we can re-define the
classes of simplified frames characterizing logics from Theorem 1 by indicating
the types of frames a model of a satisfiable formula can be based on:

K45: (a) ∪ (b) ∪ (c);
KD45: (b) ∪ (c);
KB4: (a) ∪ (b);
K45 ⊕ (Altk): (a) ∪ [((b) ∪ (c))+card(A)≤k];
KD45 ⊕ (Altk): ((b) ∪ (c))+card(A) ≤ k;
KB4 ⊕ (Altk): (a) ∪ [(b)+card(A) ≤ k];
K45 ⊕ (Taltk): (a) ∪ (b) ∪ [(c)+card(A)≤k];
KD45 ⊕ (Taltk): (b) ∪ [(c)+card(A) ≤ k].

If k > l, then:
K45 ⊕ {(Altk), (Taltl)}: (a) ∪ [(b)+card(A)≤ k] ∪ [(c)+card(A) ≤ l];
KD45 ⊕ {(Altk), (Taltl)}: [(b)+card(A) ≤ k] ∪ [(c)+card(A) ≤ l].

By that means we have an almost complete characterization of logics deter-
mined by (various classes of) simplified frames. We know that the logic S5 is
determined by the class of frames of the form (b) and the logic Ver is determined
by the class of frames of the form (a). The only two pieces that are missing from
this picture are the logics determined by the classes of frames, respectively, of
the form (b) ∪ (c) and of the form (c). Before we provide a theorem that fills
this gap, we introduce the following notation. Let K45∗ denote the logic deter-
mined by non-reflexive, transitive, and Euclidean frames, where a non-reflexive
frame is a frame for which the following condition holds: ¬∀w∈WwRw, and let
KD45∗ denote the logic determined by serial K45∗-frames. Non-reflexivity is not
modally definable since the class of non-reflexive frames is not closed under sur-
jective bisimulations (conf. [2], it is, however, modally ∃-definable – see [22]), so
neither of the above-mentioned logics is axiomatizable. The following theorem
shows that these logics are our missing pieces:

Theorem 2. 1. K45∗ is determined by the class of semi-universal frames
〈W,W×A〉, as well as by the class of simplified frames 〈W,A〉, where A �= W .
2. KD45∗ is determined by the class of semi-universal frames 〈W,W × A〉, as
well as by the class of simplified frames 〈W,A〉, where ∅ �= A �= W .

The next theorem shows, however, that by introducing K45∗ and KD45∗ we
do not go beyond the set of logics we have already presented as they collapse to
K45 and KD45, respectively.

Theorem 3. 1. K45∗ = K45.
2. KD45∗ = KD45.
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Thus, we can replace the respective part of Remark 1 with the following:

Remark 2. Using labels: (a), (b), and (c) for frame types and exploiting Theo-
rem 3, we can again re-define the classes of simplified frames characterizing the
aforementioned normal modal logics in the following way:

K45: (a) ∪ (c),
KD45: (c),
K45 ⊕ (Altk): (a) ∪ [(c)+card(A) ≤ k],
KD45 ⊕ (Altk): (c)+card(A) ≤ k.

If k > l, then:
K45 ⊕ {(Altk), (Taltl)}: (a) ∪ [(c)+card(A)≤ l];
KD45 ⊕ {(Altk), (Taltl)}: (c)+card(A) ≤ l].

Note that K45⊕ (Altk) = K45⊕ (Taltk) and KD45⊕ (Altk) = KD45⊕ (Taltk),
and for k > l we have K45 ⊕ {(Altk), (Taltl)} = K45 ⊕ (Altl) and KD45 ⊕
{(Altk), (Taltl)} = KD45⊕ (Altl). This is a consequence of the fact that frames
of type (b) no longer define the logics K45 and KD45.

3 Simplified Analytic Tableaux

In this section we provide a characterization of sound, complete and terminating
prefixed tableau calculi2 for the logics mentioned in Theorem1 determined by
suitable classes of simplified frames described in Sect. 1. The notion of reacha-
bility relation is discarded in simplified semantics, so we will not refer to it in
the construction of our tableau systems. Instead, we will apply Theorem1 and
devise our calculi in such a way that they return a suitable simplified model for
each satisfiable formula.

We will now describe the structure of a tableau generated by our calculi. Let
an expression of the form n : ϕ, where n ∈ N0 and ϕ ∈ form, be called prefixed
formula. Contrary to, e.g., [8,18], prefixes have a uniform structure since no
information about reachability links needs to by stored by them.

Rules of our tableau calculi will have the following general form:

n : ϕ

m1
1 : ψ1

1, . . . ,m
l1
1 : ψl1

1 | . . . | m1
k : ψ1

k, . . . ,m
lk
k : ψ

lk
k

(R)

where the ‘|’ symbol should be read as a meta-disjunction and the ‘,’ symbol can
be conceived of as a meta-conjunction. If no ‘|’ symbol occurs in the denominator
of a rule, then it is non-branching. Otherwise it is called branching rule.

A tableau T generated by the calculus for a logic L is a tree whose nodes are
labelled by prefixed formulas. A simple path from the root to a leaf of T is called
2 For a thorough survey of prefixed tableau calculi for various modal logics between
K and S5 see, e.g., [8,18].
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branch of T. A branch B of T is extended by applying rules of the calculus to
formulas that are on B. A prefix n is present on B if there exists a formula ϕ,
such that n : ϕ is on B. Otherwise n is fresh on B. If we have a rule (R) and a
prefixed formula n : ϕ is present on a branch B, then we call n : ϕ (R)-expanded
on B if one of the sets of formulas m1

i : ψ1
i , . . . ,m

li
1 : ψli

i , 1 ≤ i ≤ k, is also
present on B. A rule (R) can only be applied to a prefixed formula that is not
(R)-expanded.

A branch B is called closed if the closure rule (⊥) has been applied to it,
that is, there exists a formula ϕ and a prefix n, such that both n : ϕ and n : ¬ϕ

are present on B. A branch that is not closed, is open. An open branch is fully
expanded if no rules are applicable to it. A tableau T is called closed if all its
branches are closed. Otherwise T is called open.

Analytic tableaux are satisfiability checkers, so a tableau proof of a formula
ϕ is a closed tableau with the prefix formula 0 : ¬ϕ at its root. Our tableau
calculi are designed to also check modal consequence. A formula ϕ is a modal
consequence of a set of global premises G and a set of local premises U in a logic
L if in all models 〈F , V 〉, such that F = 〈W,A〉 belongs to the class of frames
which determines L, whenever for every w ∈ W it holds that M , w � G, then for
all w ∈ W M , w � U implies M , w � ϕ. If G �= ∅, then the modal consequence
is called global, otherwise it is called local. A tableau proof that ϕ is a modal
consequence of a set of global premises G and a set of local premises U, is a
closed tableau with the prefix formula 0 :

∧
U ∧ ¬ϕ (

∧
U is the conjunction of

all the formulas from U) at its root and the rule (G) among the calculus’ rules.
A tableau calculus is (weakly) sound iff for each satisfiable input formula ϕ

there exists an open tableau generated by the calculus. It is (strongly) sound iff
for ϕ not being a modal consequence of the sets G and U, there exists an open
tableau generated by the calculus with ϕ and U as input formulas and G as the
basis for the (G)-rule. It is (weakly) complete iff for each valid input formula
ϕ there exists a tableau proof of ϕ. It is (strongly) complete iff for ϕ being a
modal consequence of the sets G and U, there exists a tableau proof of this fact.
It is terminating iff all tableaus generated by the calculus are finite. Finally, a
tableau calculus is a decision procedure if it is sound, complete and terminating.
Simplified Tableau Calculus for S5. Our point of departure is a simple
tableau calculus for the logic S5, presented in, e.g., [25], where S5 frames are
assumed to be universal frames, i.e., they involve no reachability relation and
the �-operator behaves like the universal modality. The rules of this tableau
system are presented in Fig. 1(a).
Tableau Calculi for K45, KB4, and KD45. In all tableau calculi that will
appear in the sequel, the Boolean rules, closure rule, prefix-generating rule, and
global premise rule from Fig. 1a, i.e., (⊥), (¬¬), (∧), (¬∧), (¬�), and (G) remain
unchanged3. Keeping that in mind, we will only list calculus-specific rules, that is
propagation rules for the �-operator, when describing each of them. The order
of rule application can be arbitrary since the calculus is confluent, however,

3 Henceforth, we will refer to these rules as common rules.
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Fig. 1. Simplified tableau calculus for S5 (a) and K45, KB4, and KD45 (b).

as usual, to obtain the shortest derivation it is recommended that the prefix
generating rule (¬�) is only applied when no other rules are applicable.
K45. As we know from Remark 2, the logic K45 is determined by the class
of simplified frames of type (a) and (c). For a given formula ¬ϕ the tableau
algorithm for K45 searches a model of, subsequently, type (a) and (c). To that
end it uses the common rules and the (�(a)∪(c))-rule. The intuitive sense of the
latter is the following. As long as no prefix-generating rule was applied, the only
prefix present on the branch is 0. Consequently, as long as no other prefix was
introduced to the branch, we assume that ϕ has a model of type (a) consisting
of only 0. Since 0 /∈ A, (�(a)∪(c)) does not allow to propagate any formulas
to 0. Once any prefix other than 0 has been introduced to the branch by an
application of the (¬�)-rule, we know that ϕ does not have a model of type (a).
Consequently, we assume that there can exist a model of type (c), i.e., a model
based on a frame 〈W,A〉, where A = W \ {0}. (�(a)∪(c)) acts in accordance
with this assumption by propagating formulas only to those prefixes which are
distinct from 0. If our search turns out unsuccessful, that is we obtain a closed
tree, it means that ¬ϕ is K45-unsatisfiable, i.e., ϕ has a tableau proof in K45.
KB4. The logic KB4 is determined by the class of simplified frames of type
(a) and (b). For a given formula ¬ϕ the tableau algorithm for KB4 first looks
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for a model of type (a), that is a singleton model with an empty set of common
alternatives. As long as 0 is the only prefix present on the branch, the (�(a)∪(b))-
rule does not allow to propagate any formulas under the scope of � to 0, assuming
that 0 /∈ A. Once another prefix has been introduced to a branch, it tells us that
no model of type (a) satisfies ¬ϕ. It means that ¬ϕ can have only a model of
type (b), that is a model based on a universal frame. After introducing at least
one prefix other than 0 to the branch (�(a)∪(b)) starts to behave like the (�)-rule
from the calculus for S5. If the run of the algorithm returns a closed tree, it proves
that ¬ϕ has neither a model of type (a), nor of type (b) and cardinality greater
than 1. However if no model based on a universal frame of cardinality greater
than 1 satisfies ϕ, then there exists no such model of cardinality 1 on which ¬ϕ

is satisfied, so no model of type (b) at all. Consequently, ¬ϕ is KB4-unsatisfiable
and thus ϕ has a tableau proof in KB4.
KD45. As mentioned in Remark 2, KD45 is determined by the class of simplified
frames of type (c). For a given formula ¬ϕ the tableau algorithm for KD45
searches a model of type (c), that is a model based on a simplified frame 〈W,A〉,
where A �= ∅ and 0 /∈ A. We know that a model our algorithm attempts to
construct should consist of at least two prefixes: 0 and 1. If all possible rules were
applied to formulas with the prefix 0 and no fresh prefix was introduced to the
branch, we apply (�(c)1) (if possible) which is a prefix-generating rule, although
it is not applied to any ¬�-formula. Of course, if neither (¬�), nor (�(c)1) is
applicable, it means that ¬ϕ is a Boolean formula and if it is propositionally
consistent, it is also modally satisfiable. Clearly, (�(c)1) can be applied at most
once and if it was done, (�(c)2) takes over the role of the propagating rule. (�(c)1)
allows to propagate formulas in the scope of � only to those prefixes which are
distinct than 0, which follows from the fact that 0 /∈ A. If the algorithm ends up
in a closed tableau, it tells us that ¬ϕ is KD45-unsatisfiable, so ϕ has a tableau
proof in KD45.

For the sake of example, in Fig. 2 we show a disproof of the axiom (B) (p →
�♦p) in the calculus for K45, as well as a disproof of the axiom (D) (�p → ♦p)
in the calculus for KB4. Moreover, we get back to the example from Sect. 1 for
which the logic KD45 is an adequate formalization, and show that the formula
�(�p → p) is KD45-valid. All formulas are rewritten, so that they include only
primitive (not defined) connectives. In the first case the tableau derivation yields
the following K45-simplified countermodel M1 = 〈W1, A1, V1〉 for the formula
p → �♦p: W1 = {0, 1}, A1 = {1}, V1(p) = {0}. In the second case the tableau
derivation yields the following KB4-simplified countermodel M2 = 〈W2, A2, V2〉
for the formula �p → ♦p: W2 = {0}, A2 = ∅, V2(p) = ∅.
Soundness and Completeness. In order to prove soundness and completeness
of tableau algorithms from Fig. 1(b) we take the conditions listed in the beginning
of this section in the contrapositive form. Thus, establishing soundness amounts
to showing that each tableau rule of a calculus preserves satisfiability, i.e., if a
set of formulas in the numerator of a rule is satisfiable, so is one of the sets in
the denominator. To prove completeness of the calculi for K45, KB4, and KD45
we need to show that:
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Fig. 2. Tableau derivations in the calculi for the logics K45, KB4, and KD45.

in the case of checking satisfiability: if for a given formula ϕ an algorithm
returned an open tableau, then ϕ is satisfiable;
in the case of checking modal consequence: if for a given formula ϕ and
sets G and U of, respectively, global and local premises an algorithm returned
an open tableau, then ϕ does not modally follow from G and U, i.e., there exist
a (simplified) model M = 〈W,A, V 〉, such that M , w � γ for all w ∈ W and all
γ ∈ G, and a world v ∈ W , such that M , v � ν, for all ν ∈ U , and M , v � ϕ.

Theorem 4 (Soundness and completeness). The tableau calculi for K45,
KB4, and KD45, presented in Fig. 1b, are (strongly) sound and complete.

Termination. Although the calculi for the logics K45, KB4, and KD45, pre-
sented in the previous section, are sound and complete, no termination is ensured
yet. So far, if we run any of these algorithms on a satisfiable formula such as
♦p ∧ �♦p, in all cases we will end up in an infinite loop despite the fact that
the formula is satisfiable in a finite (and small) model in all three logics. The
culprit is the (¬�)-rule which is the only rule that generates new prefixes and
introduces them to a branch (save (�(c)1) which generates and introduces to a
branch at most one fresh prefix and as such is not a threat to termination). We
need to limit its applicability. To that end we employ a so-called blocking mech-
anism. The simplified semantics underlying our calculi allows us to formulate a
very simple condition restricting the number of prefixes introduced to a branch:



From Simplified Semantics to Simplified Tableaux 127

(B) The (¬�)-rule cannot be applied to a prefixed formula n : ¬�ϕ if there
exists a prefix m on the branch, such that (¬�) has already been applied to
m : ¬�ϕ4.

Intuitively, (B) disallows to apply (¬�) to a prefixed formula n : ¬�ϕ and
generate new prefixes if it is known that there already exists a prefix on a branch,
which satisfies (B) for ¬�ϕ.

Theorem 5 (Termination and complexity). The tableau calculi for K45,
KB4, and KD45, augmented with (B), are sound, complete and terminating.
Moreover, they run in NP with respect to checking satisfiability and disproving
modal consequence. As a result, they are worst-case complexity-optimal.

By that means we obtain a nice general property of the class of normal modal
logics determined by (various classes of) simplified frames: for all of them both
the satisfiability problem and modal consequence are NP-complete.
Adding Segerberg’s Axioms. If we want to extend our logics with Segerberg’s
axioms, we need to augment the calculi with a rule that appropriately constrains
the number of prefixes labelling elements of A that occur on a branch. In each
calculus this rule will have the same form, but a different side condition following
directly from Remarks 1 and 2. First, let’s introduce several auxiliary notions.
Let B be a branch of a tableau and let n,m be prefixes occurring on B. We
define the following symbols: τB (n) = {ϕ | n : ϕ occurs on B}, μB (n,m) =
{m : ϕ | ϕ ∈ τB (n)} ∪ {n : ϕ | ϕ ∈ τB (m)}. Then, our rule has the form:

(↓k) n1 : ϕ1, . . . , nk+1 : ϕk+1

μB (n1, n2) | μB (n1, n3) | . . . | μB (nk, nk+1)
,

where τB (ni) �= τB (nj) whenever i �= j, and B is a branch to which (↓k) is
applied. Intuitively, if more prefixes representing elements of the set A occur
on a branch than it is allowed by the (Altk) and/or (Taltk) axiom, then (↓k)
non-deterministically checks whether a pair of prefixes can label the same world.
The tableau identification of prefixes is done by merging the sets of formulas
occurring with either of these prefixes and adding to the branch all elements of
this set with both prefixes (unless a given prefixed formula is already there). In
each calculus we apply (↓k) with the lowest priority, i.e., only when no other
rules are applicable. Note that the branching factor of (↓k) is quadratic in k.

Below, we provide a characterization of the tableau calculi for the suitable
Segerberg extensions of the calculi for K45, KB4, and KD45 with the (↓k)-rule
augmented with an appropriate side condition (SC for short).

K45 ⊕ (Altk): (↓k)-rule and SC: ni �= 0 is present on B, 1 ≤ i ≤ k + 1;
KD45 ⊕ (Altk): (↓k)-rule and SC: ni �= 0 is present on B, 1 ≤ i ≤ k + 1;
KB4 ⊕ (Altk): (↓k)-rule and SC: ni is present on B, 1 ≤ i ≤ k + 1;

4 Note that it is an analogous condition to Technique 9.1 from [18], however using
it in the framework of simplified tableaux shows explicitly why it does not violate
completeness.
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S5 ⊕ (Altk): (↓k)-rule and SC: ni is present on B, 1 ≤ i ≤ k + 1;
K45 ⊕ (Taltk): (↓k)-rule and SC: ni �= 0 is present on B, 1 ≤ i ≤ k + 1;
KD45 ⊕ (Taltk): (↓k)-rule and SC: ni �= 0 is present on B, 1 ≤ i ≤ k + 1.

For k > l:

K45⊕ {(Altk), (Taltl)}: (↓l)-rule and SC: ni �= 0 is present on B, 1 ≤ i ≤ l + 1;
KD45⊕ {(Altk), (Taltl)}: (↓l)-rule and SC: ni �= 0 is present on B, 1≤ i≤ l + 1.

Theorem 6. The tableau calculi for K45⊕(Altk), KD45⊕(Altk), KB4⊕(Altk),
S5 ⊕ (Altk), K45 ⊕ (Taltk), KD45 ⊕ (Taltk), K45 ⊕ {(Altk), (Taltl)}, KD45 ⊕
{(Altk), (Taltl)} are (strongly) sound, complete, terminating and run in NP.

4 Related Work

There are multiple general methodologies of devising labelled proof systems
for modal logics present on the market, such as Gabbay and Governatori’s
fibred tableaux [6,7,9], Massacci’s single-step tableaux [18], Viganò’s labelled
natural deduction [33] or Schmidt and Tishkovsky’s tableau-generation frame-
work [27,28]. Our framework is, however, more focused as it involves only those
modal logics whose semantics can be simplified. Since S5 is in a sense archetypal
for all modal logics with simplified semantics, let us start from a reference to one
of the first tableau calculi for S5. In [3,4] Fitting provides a non-prefixed analytic
tableau algorithm for S5. In his system the semantics of the logic is fully implicit
in the sense that no rules for the reachability relation or prefixes are used. How-
ever, his system supposes crossing out of the formulas which are not of the form
�ϕ or ¬♦ϕ, if the rules for ♦ϕ or ¬�ϕ are applied. This can be interpreted as
traversing between different worlds of a model. Due to the fact that the whole
semantic machinery is ‘hidden’, it cannot be called simplified in our sense, how-
ever it is in fact very accessible. In one of his later papers, [5], Fitting mentions
that S5 is peculiar with respect to both its semantics and tableau-formalization,
because we can assume that there is no reachability relation and an S5-frame
takes the form 〈W,�〉, where � is defined as in Sect. 2, with the proviso that we
change ∀v∈R[w] for ∀v∈W .

Priest follows up this line of thought in [25] by presenting a tableau algorithm
for S5 which is simplified in our sense, i.e., does not refer to the reachability
relation (although Priest himself does not use the term ‘simplified tableaux’).
Priest also demonstrates a general approach for the construction of prefixed
tableaux for modal logics (including K45, KB4, and KD45), however in other
tableau systems reachability relation is explicitly mentioned in derivation trees.

Reachability relation is handled slightly differently in prefixed modal
tableaux presented by Goré in [8] and Massacci in [18]. It does not occur in
the rules explicitly, that is as expressions of the form nRm, where n and m are
prefixes, but is encoded in a special system of prefixes. For example, if the prefix
3.2.1 occurs on a branch, it means that it labels a world which is an R-successor
of a world denoted by 3.2. By that means a tableau branch keeps track of the
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structure of R. Massacci’s general framework of tableaux generating is modu-
lar in the sense that each semantic constraint on the reachability relation (such
as symmetry, transitivity etc.) is reflected by a (�)-tableau rule. Consequently,
when we want to devise a tableau calculus for an extension of a given logic, we
just need to add a rule-counterpart of the semantic condition defining this exten-
sion without putting the completeness of the calculus at risk. No rules need to be
discarded. On the one hand, when in a logic multiple conditions are imposed on
the reachability relation, it automatically leads to an expansion of the tableau
calculus for this logic. On the other hand, adding subsequent rules to a calculus
does not violate its completeness. An interesting fact is that Massacci notices a
special status of S5, K45 and KD45 and shows that in tableaux for them appli-
cations of (¬�) can be constrained in a way that yields the NP-upper bound
on the complexity of the algorithms for both the satisfiability problem and (dis-
proving) modal consequence (which makes the tableaux complexity-optimal, as
these logics are NP-complete with respect to these problems, see [10]). The cost
of modularity is an expansion of the set of rules – each condition imposed on R
is reflected by one or several (�)-rules.

Some analogues of the (↓k)-rule can be found in, e.g., [11–15,34]. Neverthe-
less, the context of their use is slightly different than the one presented in this
paper. In our framework, (↓k) reflects a global restriction imposed in advance
on the cardinality of the model, whereas in the cited works it handles formulas
with cardinality constraints added as modal operators.

In our tableau calculi we do not have to keep track of any information related
to the reachability relation. Consequently, we do not need any Gabbay-style extra
rules for R. Moreover, unlike Goré’s and Massacci’s approaches, ours does not
involve any complex prefixes and multiple (�)-rules. In each tableau calculus
prefixes are simply natural numbers and �-formulas are handled by a single
(�)-rule ((�(c)1) is not a �-rule in the classical sense). There is, however, a
downside to the overall simplicity of the presented tableaux, namely the lack
of modularity, contrary to all of the above-mentioned frameworks. The tableau
framework presented in this paper is tailored to a particular set of modal logics,
so it cannot be easily extended onto the logics outside of this set. On the other
hand, the set of modal logics defined by classes of simplified frames seems rather
natural due to the fact that all of its elements are NP-complete with respect to
the satisfiability problem, as opposed to other modal logics (which are usually
PSpace-complete).

5 Conclusions

In this paper, we introduced a new tableau formalization of the logics K45,
KB4, KD45 and their extensions with Segerberg’s axioms, based on the so-called
simplified semantics. We also showed that K45 = K45∗ and KD45 = KD45∗,
thanks to which we were able to further simplify the tableaux. The presented
calculi are conceptually simple and make completeness and complexity proofs
straightforward. Moreover, they help easily see why the logics determined by
simplified frames are NP-complete.
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In the future we would like to investigate whether modal logics with simplified
semantics give rise to a class of sequent or hypersequent calculi which is uniform
in any respect. Interestingly, it is known that the cut-elimination theorem holds
for the sequent calculi for K45 and KD45 but fails for KB4 and S5 [30]. A detailed
analysis of the interrelations between the calculi and the simplified semantics of
the underlying logics might provide an explanation for this divergence.

Acknowledgements. We would like to thank the anonymous reviewers whose com-
ments helped substantially improve this paper.
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Abstract. The manipulation of articulated objects plays an important
role in real-world robot tasks, both in home and industrial environ-
ments. A lot of attention has been devoted to the development of ad hoc
approaches and algorithms for generating the sequence of movements the
robot has to perform in order to manipulate the object. Such approaches
can hardly generalise on different settings, and are usually focused on
2D manipulations.

In this paper we introduce a set of PDDL+ formulations for perform-
ing automated manipulation of articulated objects in a three-dimensional
workspace by a dual-arm robot. Presented formulations differ in terms
of how gravity is modelled, considering different trade-offs between
modelling accuracy and planning performance, and between human-
readability and parsability by planners. Our experimental analysis com-
pares the formulations on a range of domain-independent planners, that
aim at generating plans for allowing a dual-arm robot to manipulate
articulated objects of different sizes. Validation is performed in simula-
tion on a Baxter robot.

Keywords: Mixed discrete-continuous planning · Robotics application

1 Introduction

The manipulation of articulated objects plays an important role in real-world
robot tasks, both in home and industrial environments [20,23]. In literature,
the problem of determining the two- or three-dimensional (2D or 3D) configu-
ration of articulated or flexible objects has received much attention in the past
few years [3,7,8,26,33], whereas the problem of obtaining a target configuration
via manipulation has been explored in motion planning [4,31,35]. However, the
employed manipulation strategies are often crafted specifically for the problem at
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hand, with the relevant characteristics of the object and robot capabilities being
either hard coded or assumed, thus undermining generalisation and scalability.
More general solutions [1,8] are limited to 2D configuration, with a partial excep-
tion for the work in [1], where the notion of overlap between different parts of a
cable is explicitly considered. A challenging aspect of identifying the movements
needed to achieve a desired 3D configuration of an articulated object manipu-
lation is that the effect of gravity has to be explicitly modelled and taken into
account.

In this paper we introduce a set of PDDL+ [13] models for performing an
automated manipulation of articulated objects in a 3D workspace by a dual-arm
robot. Presented models differ in terms of how gravity is modelled, considering
different levels of accuracy, and in the design of the formulation itself, by trading-
off between human-readability and usability by planners. Three different levels
of complexity are designed and described for modelling the impact of gravity on
the articulated object.

Our experimental analysis compares the proposed models on a range of
domain-independent PDDL+ planners, taking into account articulated objects
with different sizes and different variable parameters (e.g., acceleration value)
for each level of complexity. As a matter of fact, the empirical analysis high-
lights that the proposed models, designed following the more natural and con-
cise representation of the considered problem, can not be handled by most of the
selected PDDL+ planning engines. For this reason, we then modify the intro-
duced PDDL+ models, providing a formulation which trades the intuitiveness
of the model for the acceptability by planning engines.

Results of our extensive experimental analysis show to which degree the
proposed PDDL+ models allow domain-independent PDDL+ planning engines
to solve tasks that model practical, real-world applications, i.e., in terms of
robot workspace and the number of links and physical features characterising
the articulated object. Moreover, it gives also an indication about what is the
most suited formulation and planner to solve these specific problem instances.

To sum up, the main contributions of this paper are:

– We define two sets of PDDL+ models for the task of automated, robot-based
manipulation of articulated objects in a 3D workspace. Each set of models
considers three different levels of complexity for representing the effect of
gravity.

– We analyse the performance of a number of domain-independent PDDL+
planners on realistic articulated object manipulation tasks.

We also validate generated plans using a robot control architecture for a dual-
arm robot manipulator in simulation. As a side effect of our work, we provide a
challenging domain, and its PDDL+ models, to the planning community.

2 Problem Statement

Among the tasks typically carried out in shop-floor environments, the manipu-
lation of flexible objects, e.g., cables [19,29], is particularly challenging. On the
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one hand, it is beneficial to plan the target cable configuration in advance; on
the other hand, it is often necessary to keep a cable firmly using one grasping
point to be able to manipulate other parts. A robot capable of manipulating
flexible objects in its 3D workspace must be able to: (i) represent object config-
urations adopting suitable modelling assumptions, and then segment the whole
manipulation problem in simpler actions to be sequenced and performed, each
action operating in-between two intermediate 3D object configurations; and (ii)
represent the actions to carry out using a formalism which allows for robust plan
execution and modelling inaccuracies.

These requirements lead to a robot perception and control architecture char-
acterized by the following features: (a) similarly to the approach described in
[1], the robot plans an appropriate sequence of actions to determine relevant
3D intermediate configurations for articulated objects (i.e., a suitable simplified
model for a flexible object like a cable) in order to determine a target 3D config-
uration; and (b) during plan execution, the robot monitors the outcome of each
action, and compares it with the intermediate target configuration to achieve.
The problem we consider in this paper can be defined as follows: given a target
object configuration in 3D space, determining a plan P to obtain it as an ordered
set of actions P = {a1, . . . , ai, . . . , aN ;≺}, where each action ai involves one or
more 3D manipulation operations to be executed by a dual-arm robot. We pose
a number of assumptions described as follows:

1. flexible objects are modelled as articulated objects with a given number
of links and joints, as it is customary for computational reasons [35]; we
assume an inertial behaviour, i.e., rotating one link causes the movement of
all upstream and downstream links, depending on the rotation joint;

2. the effects of gravity on all articulated object’s 3D configurations are explicitly
considered;

3. we do not assume any specific grasping or manipulation strategy to obtain a
target 3D object configuration starting from another configuration;

4. the perception of articulated objects, although affected by noise, is considered
perfect, i.e., data association is given.

We define an articulated object as a 2-ple α = 〈L,J 〉, where L is the ordered
set of its L links, i.e.,

L = {l1, . . . , lj , . . . , lL;≺}, (1)

and J is the ordered set of its J = L − 1 joints, i.e.,

J = {j1, . . . , jk, . . . , jJ ;≺}. (2)

Each link l is characterised by three parameters, namely a length, and two ori-
entations θl and γl, expressed with respect to a robot-centred reference frame
(Fig. 1). We allow only for a limited number of discrete orientation values, i.e.,
θl and γl can take values from a pre-determined set of possible values. Given
a link lj , upstream links are those from l1 to lj−1, whereas downstream links
range from lj+1 to lL. Such absolute representation leads to the direct percep-
tion of links and their orientations. When a sequence of manipulation actions is
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Fig. 1. A 3D articulated object configuration.

planned, changing one absolute orientation requires, in principle, the propaga-
tion of such change upstream or downstream the object via joint connections.
Given an articulated object α, its configuration is a L-ple:

Cα = {(θ, γ)1, . . . , (θ, γ)l, . . . , (θ, γ)L}, (3)

where it is intended that the orientations θ and γ are expressed with respect to
an absolute, robot-centred, reference frame.

3 Formulation

In order to address the problem introduced above, we exploited PDDL+ to
formulate three different domain models, corresponding to three different levels
of abstraction of the impact of gravity on the articulated object.

PDDL+ [13] is an extension of the standard planning domain modelling
language, PDDL, to model mixed discrete-continuous domains. In addition to
instantaneous and durative actions, PDDL+ introduces continuous processes
and exogenous events, that are triggered by changes in the environment. Pro-
cesses are used to model continuous change, and therefore are well suited in this
context to model the impact of gravity on articulated objects.

The absolute representation of angles we employ, on the one hand reduces
the burden on the robotic framework, because the orientations of links is directly
observable by the robot perception system and does not require any addi-
tional calculation. On the other hand, the complexity of the planning process is
increased, due to the fact that any manipulation action has to be propagated
to all the upstream or downstream link orientations. The interested reader is
referred to [8] for an extensive comparison of different joint angles representa-
tion techniques in 2D setting.

In the proposed PDDL+ models, a connected predicate is used to describe
the fact that two links are jointed. Joints are not explicitly modelled: the
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connected predicate indicates the presence of a joint between the two involved
links, and the orientation is given via the angle function, which indicates the
absolute orientation of the link li with regards to a plane j. The value of
angles ranges between 0 and 359 degrees. The effect of the manipulation of
two connected links are propagated via a corresponding affects predicate. In
order to reduce the computational complexity, we fixed the way in which the
robot can manipulate two connected links, so that propagation can only hap-
pen upstream. In other words, given two consecutive links, we allow the robot
to move only the upstream link, while the other one is kept fixed. It should be
noted that, if needed, the model can be easily extended to deal with both up and
downstream manipulation by adding the appropriate predicates. The number of
planes that can be represented is not fixed and can be easily modified: in our
evaluation we considered 2 planes, vertical and horizontal, corresponding to a
3D space.

The planner can modify the orientation of links using the following con-
structs:

– An operator start-increase(l1,l2,plane) is used by the planner to
manipulate the orientation of the link l2 on the plane plane, by using a
gripper for keeping l1 still, and another gripper for moving l2.

– A process move-increase(l2, plane) is used for modelling the continuous
movement performed by the robot to increase the absolute angle related to l2
on the corresponding plane. This process is activated by the above operator.

– An operator stop-increase(l1,l2,plane) is activated by the planner to
stop the modification of the orientation of the l1 and l2 links. The robot is
therefore releasing the two links.

– The events back-to-zero(l, plane) and back-to-360(l, plane) are trig-
gered when the value of the angle of link l on plane reaches, respectively, 360
or 0. In the former (latter) case, the value of the angle is reset to 0 (359).

– A process propagate-increase(l1,l2,plane) is activated when a process
move-increase(l2, plane) is ongoing, and it allows to propagate the effects
of the current manipulation on all the affected upstream angles.

In a nutshell, the planning engine can modify the angle between two con-
nected links via the operator start-increase(l1,l2,plane): this starts the
movement process, that can be stopped by the engine using another dedicated
operator. The movement process is also impacting a (potentially long) cascade of
processes that models the propagation of the manipulation to affected upstream
angles.

The above-listed constructs are in charge of performing and modelling manip-
ulations aimed at increasing angles. A corresponding set of constructs is used to
allow the planner to decrease some specified angles. Figure 2 shows the PDDL+
encoding of the start-increase operator and the back-to-zero event. Notably,
the predicate in-use is exploited to avoid parallel manipulations of the articu-
lated object by the robot. This is because the robot’s grippers are not explicitly
modelled, therefore many different actions could potentially be planned in par-
allel by the planning engine. The freeToMove predicates are used to indicate if
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a link is currently being manipulated or not; these predicates are a sort of token
for grasping a specific link.

(:action start-increase
:parameters (?l1 -link ?l2 -link ?x -plane)
:precondition (and (connected ?l1 ?l2)

(not (in-use)))
:effect (and (in-use)

(not (freeToMove ?l2))
(not (freeToMove ?l1))
(increasing_angle-robot ?l2 ?x)))

(:process move-increase
:parameters (?l2 -link ?x -plane)
:precondition

(increasing_angle-robot ?l2 ?x)
:effect

(increase (angle ?l2 ?x)(* #t (speed-i))))

(:event back-to-zero
:parameters (?l3 -link ?x -plane)
:precondition

(>= (angle ?l3 ?x) 360)
:effect

(assign (angle ?l3 ?x) 0))

Fig. 2. Part of the proposed PDDL+ formulation.

3.1 Modelling Gravity

Gravity is one of the main reasons for encoding a model in PDDL+, as gravity
effects are (i) continuous in nature, and (ii) not under the direct control of
the planning engine. For these reasons, PDDL+ constructs such as continuous
processes and events are extremely handy for describing the impact of gravity
on the 3D manipulation of an articulated object.

The representation of the effects of gravity on an articulated object can
be cumbersome, and may prevent the generation of valid plans in a reasonable
amount of time. Because of that, we introduce three different levels of complexity
that can be implemented in the proposed PDDL+ model. It is worth noting that
the typical articulated object, in order to support the manipulation via a robot,
has quite stiff joints, which are therefore resisting –up to some degrees– to the
gravity effect.

No Gravity (NoG). The most trivial way to reduce the complexity burden due
to the computation of the effects of gravity on the articulated object is, of course,
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to completely ignore gravity. In cases where the joints of the articulated objects
are extremely stiff, this model can still give some useful information to the robot.
Notably, the reduced complexity may allow to quickly re-plan in cases where the
robot observes that gravity has significantly modified the configuration of the
object.

Uniform Circular Motion (MCU). A more sophisticated way of modelling
the impact of gravity on an articulated object can be obtained by taking a joint-
by-joint perspective. As links are connected by joints, they can not fall to the
ground, but are bounded to each other by the joints. The impact of gravity
on a joint angle can be modelled as a uniform circular motion that moves the
angle towards a value of 360 (if we consider a 180-degree angle to be on the
z axis). In this encoding, the angular speed is constant. The impact of gravity
on an angle is modelled using a pair of dedicated processes (according to the
fact that the initial angle is lower or higher than 180) and, due to the fact that
angles are absolute, such motion is also propagated to all the affected joints via
a different PDDL+ process. The effects of gravity on a joint can be stopped for
two reasons: (i) the angle has reached the rest position (360/0 degrees), or (ii)
the corresponding link has been grabbed by the gripper of the robot.

Uniformly Accelerated Circular Motion (MCUA). Building on top of the
MCU formalisation, we introduce a more advanced representation of the impact
of gravity by modelling it as a uniformly accelerated circular motion. As before,
all joints angle tend to return to a 360◦ position on the z axis. However, their
initial angular speed is 0, but it is uniformly accelerated. The acceleration is
encoded in PDDL+ by means of an additional process, that is in charge of
increasing the angular speed while the gravity effect is active on a specific joint,
and an appropriate event that “resets” the speed value when the effect of gravity
ends.

As for the manipulation of angles performed by the robot, also in the MCU
and MCUA formulations the effect of gravity on an angle are propagated to all
the affected joints by a set of dedicated processes and events. An example of the
process exploited in the MCU formulation for modelling gravity is provided in
Fig. 3.

3.2 Alternative Formulations

The process presented in Fig. 3, as the dual gravity-decrease and those
exploited in the MCUA formulation, has been modelled in the most human-
readable way, due to the fact that robotics experts have to be involved in the
modelling process. For this reason, the process keeps true a Boolean predicate,
that is used to represent the fact that gravity is impacting the corresponding link.
Semantically, this implies that every time step in which the process is active, the
corresponding predicate is set to true. While this can be interpreted as an abuse
of PDDL+ language features, it is supported by some state-of-the-art planning
engines, and provides a good ground for describing and discussing the model
with robotics experts.
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(:process gravity-increase
:parameters (?l1 - link)
:precondition (and (freeToMove ?l1)

(> (angle ?l1 ZAXES) 180)
(< (angle ?l1 ZAXES) 360))

:effect (and
(increase

(angle ?l1 ZAXES) (* #t (speed-g)))
(increasing_angle-gravity ?l1)))

Fig. 3. The process used in the MCU formulation to model the effect of gravity on
angles between 180 and 359◦.

Furthermore, in a preliminary set of experiments, we observed that some
aspects of the modelling of processes and events of the presented PDDL+ models
were not accepted by some of the planning engines at the state of the art. With
regards to events, an example of an unaccepted event is provided in Fig. 2. The
back-to-zero event is used to reset an angle to 0◦ as soon as the value of
360◦ is reached. While it is easy to see that the effect of the event is making
the precondition false, preventing the event to be re-applied immediately, some
planning engines do not accept this formulation. Instead, they require that a
Boolean precondition is falsified by the list of effects. We therefore modified the
formulations with an additional predicate: it is initially set to true to allow events
to be triggered. As soon as an event is triggered, its effects falsify the predicate,
that is then reset to true by a subsequent reset event.

For the sake of completeness, and to exploit the opportunity to investigate
how planning engines performance are affected by different models, we consider
in our experimental analysis both formulations. We will refer to the “Original”
formulation as the formulation that is not well-supported by planning engines
but maximises human readability. The other formulation will be referred to as
“Modified”, and it aims at maximising the parsability by planning engines. Both
versions of the models, and the corresponding problem instances can be found
at https://github.com/Flaudia/AMAO.

4 Experimental Analysis

This section presents the PDDL+ benchmarks and the planners employed in our
analysis, as well as the results of the experiments we conducted. The main aim of
this analysis is to test whether our overall PDDL+ solution can solve tasks that
model practical, real-world applications, i.e., in terms of robot workspace and
the number of links and physical features characterising the articulated object.

For each set of formulations, we have generated planning instances by varying
the following parameters: (i) number of links of the articulated object: 3, 4, 5,
6, 7, 8, 10, 12; (ii) in MCU: angular speed of 0.1, 0.5, and 1.0 grades per second;
and (iii) in MCUA: acceleration of 0.1 and 0.5 grades per second.

https://github.com/Flaudia/AMAO
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In order to guarantee a fair assessment of the performance of planners accord-
ing to the level of complexity used for encoding the impact of gravity, for each
size of the articulated object 5 manipulation tasks were created by randomly
generating initial and final configurations (while ensuring that a plan is possi-
ble). Those instances are then encoded in PDDL+ according to the complexity
level and to the value of the corresponding MCU or MCUA parameter. Beside
the size of the object, no additional parameters have to be set for the NoG for-
mulation. Therefore, for each size of the object there are 5 tasks, encoded in
30 different problem models. The total number of problem models considered in
our experimental analysis is 240.

As a reference robot we considered a Baxter dual-arm manipulator, which is
widely used for research purposes and for performing manipulation tasks. This
type of robot is directly supported by the presented PDDL+ formulation, and
has been used –in simulation– to validate the generated plans. Moreover, it takes
care also of the motion planning part. An example is shown in Fig. 4.

Fig. 4. A simulated Baxter robot manipulating a four link articulated object. The
robot-centred reference frame is highlighted with different colours for the three reference
axes.

In our analysis we have employed the following state-of-the-art PDDL+
solvers: UPMurphi [11] is possibly the most popular domain-independent
PDDL+ planner, and is based on a model-checker adapted to deal with PDDL+;
DiNo [27], which adds heuristics to the UPMurphi approach; and ENHSP [28,30],
a numeric planner with heuristics extended to process PDDL+ problems. Those
planners have been selected due to their widespread use in literature and in
applications of PDDL+ planning.

Experiments have been run on a machine equipped with i7-6900K 3.20 Ghz
CPU, 32 GB of RAM, running Ubuntu 16.04.3.LTS OS. 8 GB of memory were
made available for each planner run, and a 5 CPU-time minutes cut-off time
limit was enforced. All such planners do not utilize multiple cores.
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Table 1. Results achieved by DiNo on the considered benchmarks. Sizes greater than
7 are omitted, as the planner did not solve any benchmark of these sizes. For each
dimension of the articulated object, results are presented in terms of average runtime
(percentage of solved instances). Average is calculated by considering solved instances
only.

Size – Number of links of the articulated object

3 4 5 6 7

NoG 0.5 (40) 88.1 (40) 8.9 (20) 22.0 (40) – (0)

MCU 0.1 0.6 (40) 130.1 (40) 13.4 (20) 27.2 (40) – (0)

0.5 0.6 (40) 130.2 (40) 13.5 (20) 26.8 (40) – (0)

1.0 0.6 (40) 125.5 (40) 13.4 (20) 26.7 (40) – (0)

MCUA 0.1 0.6 (40) 0.9 (20) 15.4 (20) 36.2 (40) – (0)

0.5 0.6 (40) 1.1 (20) 15.4 (20) 36.0 (40) – (0)

Table 2. Results achieved by ENHSP on the considered benchmarks. For each dimen-
sion of the articulated object, results are presented in terms of average runtime (per-
centage of solved instances). Average is calculated by considering solved instances only.

Size – Number of links of the articulated object

3 4 5 6 7 8 10 12

NoG 0.4 (100) 0.6 (100) 0.7 (80) 7.3 (80) 15.5 (40) 3.8 (20) 108.4 (60) 4.5 (20)

MCU 0.1 0.5 (100) 1.9 (100) 1.3 (80) 4.4 (60) 63.9 (40) 36.0 (20) – (0) 198.5 (20)

0.5 0.5 (100) 1.9 (100) 1.3 (80) 14.9 (80) 14.5 (40) 60.7 (20) – (0) – (0)

1.0 0.5 (100) 1.7 (100) 40.0 (80) 3.2 (80) 15.4 (40) 55.3 (20) – (0) – (0)

MCUA 0.1 0.5 (100) 1.2 (100) 1.3 (80) 4.4 (60) 19.3 (20) 42.5 (20) 50.3 (20) – (0)

0.5 0.5 (100) 1.2 (100) 1.3 (80) 4.8 (60) 19.4 (20) 50.0 (20) 55.3 (20) – (0)

To be as inclusive as possible in terms of planning engines, in the rest of this
section we will discuss results obtained with the Modified version of the PDDL+
models.

Tables 1, 2 and 3 present the results of DiNo, ENHSP, and UPMurphi, respec-
tively. All tables are organised as follows. The columns report the various number
of links, while in the rows there are the different formulations, with their vari-
ants. For each introduced gravity encoding and number of links, it is reported
the average runtime for solved instances, while in parenthesis it is reported the
percentage of solved instances. In general, it is easy to derive from the results
presented in the tables that, of course, the difficulty in solving the instances
increases with the number of links. With regards to the level of complexity of
the gravity, the NoG model –which completely ignores gravity– seems to be the
easiest (relatively) to solve, followed by MCUA, while MCU seems to be the
hardest. Intuitively, the fact that MCUA is easier than MCU can be due to the
fact that in the MCUA model the effect of gravity slowly builds up, while in the
MCU formulation the impact of gravity starts immediately at full speed.
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Table 3. Results achieved by UPMurphi on the considered benchmarks. Sizes greater
than 5 are omitted, as the planner did not solve any benchmark as well. For each
dimension of the articulated object, results are presented in terms of average runtime
(percentage of solved instances). Average is calculated by considering solved instances
only.

Size – Number of links

3 4 5

NoG 29.2 (40) 170.2 (20) – (0)

MCU 0.1 33.1 (40) 180.3 (20) – (0)

0.5 32.5 (40) 178.9 (20) – (0)

1.0 32.1 (40) 175.6 (20) – (0)

MCUA 0.1 2.4 (20) – (0) – (0)

0.5 45.6 (40) 214.8 (20) – (0)

Considering the MCU and MCUA formulations separately, the performance
of the planning engines are not significantly affected by the employed parameters
for MCUA, while for MCU the situation looks different: DiNo and UPMurphi
do not look to be affected by the employed parameters, while the performance of
ENHSP can significantly differ, also in the percentage of solved instances (see,
e.g., analysis for 6 links). Our analysis suggests that this is due to the fact that
DiNo and UPMurphi tend to solve only the easiest instances, for each considered
size of the object, that requires short and quick to execute plans to be solved.
In that, the impact of using the MCU or MCUA model is limited. Instead, as
ENHSP can solve also some more complicated instances, taking into account
gravity becomes pivotal. Moreover, we can see that ENHSP can solve instances
up to 12 links, while DiNo and UPMurphi stops at 6 and 2, respectively. ENHSP
is also the only solver able to solve all instances up to 4 links, and the majority
of the instances up to 6 links.

About the plans returned by solvers, we noticed no significant difference in
terms of both quality and structure for the three approaches. It may be the
case that DiNo is able to take better into account the upstream propagation
of the effects of the manipulation on angles. While ENHSP tends to provide
plans where the robot operates directly on the links of the joint that needs to be
modified for reaching the goal position, DiNo seems to prefer the robot to work
on different links, and to exploit the use of propagation processes to reach the
goal position. However, given the small number of instances solved by DiNo, it
is hard to assess whether this behaviour emerged by chance, or it is due to the
characteristics of the planning approach exploited by the engine.

Validation. The validation performed by simulating the execution of gener-
ated plans on a Baxter robot suggests that the MCU representation provides
a reasonably accurate way to encode the gravity effect, as the generated plans
can be executed in the simulation environment without further adjustments. An
example can be found at https://github.com/Flaudia/AMAO.

https://github.com/Flaudia/AMAO
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4.1 Comparison of PDDL+ Models

Out of the considered planners, only ENHSP does support the Original formu-
lation encodings, and provides valid plans. In this section we therefore exploit
this planner to compare the impact of the two formulations on its performance.

Figure 5 shows how the performance of ENHSP are affected by the two sets
of PDDL+ models, i.e., the Original and Modified models introduced in Sect. 3.

In Fig. 5, performance are compared in terms of Penalised Average Runtime
10 (PAR10). PAR10 is the average runtime where unsolved instances count as
10*cutoff time. PAR10 is a metric usually exploited in machine learning and
algorithm configuration techniques, as it allows to consider coverage and runtime
at the same time.

In our analysis, PAR10 is calculated considering all instances of the same size,
in terms of number of links, regardless of the way in which gravity is modelled. In
other words, each point of the graph corresponds to the PAR10 score obtained by
the planner on the 30 planning instances generated for the considered size of the
object. It can be noted that when considering objects with more than 5 links, the
use of the Original formulation allows to improve the performance of ENHSP.
According to the Wilcoxon signed rank test [34], performed by considering all the
instances, the performance improvement obtained by using the Original models
is substantial and statistically significant (p < 0.05). In terms of quality of the
generated plans, there is still no significant difference between plans generated
using the Original or the Modified models.
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Fig. 5. Comparison of ENHSP performance, in terms of PAR10, when run on the
Original formulation and on the Modified models.

While this may be due to the way in which the specific planner has been
designed, and it is not easy to generalise, it is still interesting to note that
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the most human-friendly encoding is the one that allows to deliver the best
performance.

5 Related Work, Conclusions and Future Work

Being able to model continuous quantities in the planning process has been sub-
ject to extensive research in Robotics, with particular reference to combined
task-motion planning. In fact, combined task-motion planning may overcome
those situations in which a high-level plan may not be executable in practice
due to the nature of the robot workspace [6,22,32]. The approach in [6] inte-
grates Metric-FF [21] and a sampling-based motion planner. Skolem symbols are
used in [32] to incorporate workspace knowledge in predicates, which implies a
symbolic-geometric mapping to be checked at run-time. Modelling the planning
problem in the so-called belief space allows for the integration between a Markov
decision process and logic-based planning [14], specifically by performing a search
over finite sets of robot configurations. An interesting approach to consider is
termed Iteratively Deepened Task and Motion Planning [10], which incorporates
workspace-related information at the task planning level. Therein, task-motion
interaction is done using the notion of semantic attachment [12], i.e., procedural
functions activated during the planning process. It is noteworthy that in our case
we do not consider robot motion at the continuous level in the planning process.
Rather, we aim at modelling the effects of a continuous, exogenous process, i.e.,
gravity, on the configuration of the object the robot manipulates.

In this paper we presented two sets of PDDL+ models for the problem of
robot manipulation of articulated object in a 3D workspace. Each model can
then consider three levels of complexity for representing the impact of grav-
ity. An experimental analysis, considering state-of-the-art PDDL+ planners and
articulated objects of different sizes, have shown that with our PDDL+ formu-
lations it is possible to solve tasks that model practical, real-world applications,
i.e., in terms of robot workspace and the number of links and physical fea-
tures characterising the articulated object. The simulation of generated plans
on a Baxter dual-arm manipulator confirmed that the plans generated using the
MCU formulation is a good compromise to successfully manipulate an object.

As a side effect of our work, we also designed a set of challenging PDDL+
models, that can be used to compare the performance of planning engines. We
also believe they provide a good ground for testing and exploiting knowledge
engineering techniques for evaluating the quality of different planning encodings
[24]. As future work, we would like to inject some heuristic in the best performing
planner (e.g., [17,18] from SAT) to possibly further improve performance, and
to test our approach on different robots models, and to evaluate more PDDL+
planners, namely SMTPlan+ [9], DReal [5] and EZCSP [2]. Both SMTPlan+
and Dreal rely on an SMT module for solving problems described using PDDL+,
while EZCSP exploits Constraint Answer Set Programming (CASP) [25], which
extends ASP [15,16] to model continuous behaviors. SMTPlan+ has not been
evaluated given that we were not able to compile it under the machines at our
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disposal, while EZCSP is not included because currently it does not directly
support PDDL+, and the problem needs to be expressed in CASP. Finally,
DReal does not seem to be capable of generating a plan for any of the models.
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Abstract. Power consumption is an increasingly limiting factor in mod-
ern ICT infrastructure, especially in the context of High Performance
Computing. Common strategies to curb energy consumption are power
capping, i.e. constraining the system power consumption within certain
power budget, and Dynamic Voltage/Frequency Scaling, i.e. reducing
the computing elements operating clock to decrease power usage. In this
paper we tackle the frequency assignment problem in the context of a
power capped system. We propose three approaches to solve the prob-
lem, a greedy algorithm, a CP model and MIP model. As a case study,
we consider the Eurora supercomputer, hosted at CINECA computing
center in Bologna. The experimental results show that the MIP approach
outperforms the other methods when the problem is loosely constrained.
With tighter bounds, the CP method can always find a solution, whereas
the MIP fails to provide a solution for half of the considered instances.

1 Introduction

Supercomputers peak performance1 is expected to reach the ExaFlops (1018)
scale in 2023 [21], as revealed by the rise of the worldwide supercomputer installa-
tion [10]. A key factor limiting further growth is the power consumption. Accord-
ing to [1] an acceptable range for an Exascale supercomputer is 20 MW. Reaching
the Exascale with current technologies would lead to unacceptable power con-
sumption, in the order of hundreds of MWatts, hence new solutions for power
awareness are needed.

A commonly used technique to reduce the power consumption of the process-
ing units (especially CPUs) is Dynamic Voltage and Frequency Scaling (DVFS)
[13,20], a method that trades processor performance for lower power consump-
tion. With DVFS a processor can run at one of the supported frequency/voltage
pairs lower than the maximum rated one. Lower frequency and voltage lead to
significantly lower power consumption allowing more jobs to run simultaneously.
One of the key practical problems limiting the adoption of DVFS is the trade-off
between reduced power consumption and increase of execution time, which create
accounting problems and user dissatisfaction [6]. Consequently, many works try
1 Measured as FLOPS (floating point operations per second).
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to exploit frequency reduction without impacting, as far as possible, the appli-
cations duration [8,25]. Another widespread approach to limit the amount of
power consumed by HPC systems is power capping [14,22], i.e. forcing a system
not to consume more than a certain amount of power at any given time. Power
capping approaches are gaining popularity due the relatively simple implementa-
tion. Currently, power capping features are typically implemented via hardware
solutions, that is the runtime power consumption is reduced through limiting
the computing node performance (DVFS) [24].

An alternative approach for power capping is to act on the jobs execution
order, as shown by numerous works in recent years [3,4,11,12,16], and even
better results can be obtained by combining both methods [5]. In many cases
the system power cap value can vary during the course of time, e.g. the power
budget can decrease during hot days when the cooling system is running at
full regime. When the power available is reduced the power constraint can be
violated. If the current workload power consumption does not exceed the reduced
power cap we can simply respect the new constraint by postponing the execution
of new applications. Conversely, if the current power consumption is larger than
the new power budget we may be required to take more drastic actions. In
this paper we study the possibility to employ DVFS and act on the frequencies
of the jobs currently running in the system, in order to slow them down and
reduce the overall power consumption. We propose three different methods to
deal with the frequency reassignment problem on a real supercomputer: (1) a
greedy algorithm, (2) a CP model with a dedicated search strategy and (3) a
MIP model.

Section 2 describes the target HPC system and Sect. 3 formally defines the
tackled problem. The greedy method, the CP approach and the MIP model are
respectively introduced in Sects. 4, 5 and 6. Section 7 shows the results of our
experiments; final remarks can be found in Sect. 8.

2 System Description

The Eurora supercomputer [2] has a heterogeneous architecture composed by 64
nodes, each one with 2 CPUs (8 cores each) and 2 HW accelerators, plus 16 GB
of RAM. The tool currently used to manage the workload on Eurora system is
PBS [26] (Portable Batch System). Jobs are submitted by the users into one of
multiple queues, each one characterized by different access requirements and by a
different estimated waiting time. Each queue has a priority and there is a special
one, the reservation queue, that contains jobs with highest priority and preferred
treatment. In this work we do not consider the jobs dispatching problem, but
rather we tackle the issue of how to optimally reassign the frequencies of a set of
jobs running on the supercomputer and consuming a certain amount of power,
if the overall power budget changes. In the rest of the paper we assume that
schedule and allocation have already been decided.
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2.1 Frequency Variability Impact

DVFS implies changing the frequency while tasks run on a supercomputer, thus
modifying its power consumption and duration (e.g. lower frequency leads to
longer duration and smaller consumed power). The entity of this change depends
on technological characteristics; Fraternali et al. [15] quantified this effect on the
Eurora supercomputer – their results guided our frequency assignment strategy.

There are two main factors determining the impact of changing a job fre-
quency: (1) the application type and (2) the execution node. The cited paper
studies three kind of jobs: a real HPC application (Quantum EXPRESSO [17]),
a synthetic CPU-bound benchmark (i.e. a task which particularly stresses the
CPU) and a synthetic MEM-bound benchmark (i.e. memory intensive appli-
cation). In our work we follow this distinction. Clearly, slowing down a CPU-
intensive application would cause a larger increase in duration w.r.t. to the same
slow down for a memory-bound job. The second factor is the node on which the
application is running: the frequency variations have different impact depending
on the node type. In Eurora we have high frequency nodes, with frequency rang-
ing from 1.2 GHz up to 3.4 GHz, and low frequency nodes, with frequency from
1.2 GHz up to 2.1 GHz. The current system always runs the applications at the
maximum speed allowed by the execution nodes.

3 Problem Definition

We assume a set of jobs is running in the system consuming a total power Psys;
that power budget is then reduced (e.g P

′
sys = 0.7∗Psys). The goal is to assign a

frequency to each job to respect the new power constraint. The main objective
is not to disrupt the performance in term of Quality-of-Service (QoS) for the
users while at the same time saving energy; both these goals can be reached
by minimizing the job durations increase due to the jobs slow down. Each job
i is already running, with a start time sti and an expected end time eti, with
eti = sti+di where di is the expected duration at the current running frequency2.
If we define the current time as ct, deli = ct− sti represents the elapsed duration
of a job so far. Each job belongs to a specific queue (depending on the user choice
and on the job characteristics). By analyzing existing execution traces coming
from PBS, we have determined an estimated waiting time for each queue, which
applies to each job it contains: we refer to this value as ewti.

We assume that each job is running at frequency fi; the default dispatcher
always assigns the maximum frequency possible when scheduling, but the dis-
patcher can deal with different frequencies as input. Every job is also charac-
terized by the type of the node it is running on nti and the application type
ati. The node type could assume two different values: 0, corresponding to a low
frequency node, and 1, corresponding to a high frequency node. The applica-
tion type can assume three values: 0 for average applications, 1 for CPU-bound
2 This duration is the maximum allowed execution time declared by the user at sub-

mission time.
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applications and 2 for memory-bound applications. As seen in Sect. 2.1 both node
type and application type have a strong impact on the variation of power and
duration given a frequency change. Each job has a related power consumption
pi, which is the power consumed by the job running at the frequency decided by
the dispatcher.

3.1 Model Extensions

The original problem is not particularly constrained but this is an artifact due
to the relative simple HPC system used as case study. Hence, we considered
a set of extensions, i.e. additional constraints that are typical requirements in
supercomputers. We first added job deadlines, i.e. each job i has a deadline dli
and it must finish within that deadline (thus constraining the allowed duration
increase). This will be referred as Extension D. Then, we implemented a second
extension (Extension R), namely we set dependencies among jobs (in particular
end-to-end relationships). Each job i may have a set of “related” jobs Reli whose
end needs to come after job i ends3. Finally, we considered the case with both
the deadlines and the job relations constraints, Extension D-R.

4 Greedy Algorithm

The first proposed approach is a greedy algorithm: we decrease the frequency of
few jobs as much as possible until reaching the desired power saving. The main
advantage of this simple algorithm is its efficiency: even on the larger instances
(up to 2000 jobs) the time required to produce a solution is negligible. Our
purpose is to implement our techniques on real systems with tight real-time
requirement, hence we disregard optimal solutions but rather look for the best
ones given a time limit.

The pseudo-code for the greedy algorithm is presented in Algorithm1. The
set of running jobs is called running jobs, current power is the sum of the
jobs powers, desired power is an input of the algorithm and defines the new
power budget; lines 1–3 initialize the algorithm. Line 4 sorts the jobs according
to a combination of different factors: (I) the job power consumption (we try to
slow down big applications first in order to slow fewer jobs); (II) the remaining
duration of the job compared to the overall duration (not to slow down jobs closer
to completion); (III) the job priority, computed w.r.t. the expected waiting time
(activities in queue with higher priorities should wait shorter times). The actual
equation computing the weight wi of a job i is wi = pi ∗ (αwD

i + (1 − α)wQ
i ),

where pi is the power consumption, wD
i = di/deli is the ratio between total and

elapsed duration and wQ
i = ewti/maxi∈J(ewti) is the queue priority factor. α

modulates the factors impact (in our experiments α = 0.6).
Once jobs are sorted, the first one is selected and its frequency is set at

the minimum value (lines 8–9) – modified power and duration are computed
3 We suppose that all jobs have already started, hence start-to-end relationships must

already hold.
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accordingly (lines 10–11). These functions are based on the value derived from
[15] and depend on the job features. Line 12 notifies changes (modified power
consumption and new end time et′i); finally, the power consumption decrease
is computed and the job is removed from the sorted list (lines 13–14), since it
cannot be slowed down anymore. Jobs are selected for power reduction until
reaching the desired goal (line 5); if the goal is unattainable (after slowing down
all jobs) the algorithm fails (lines 6–7)4.

Algorithm 1. Greedy Algorithm
1 J ← running jobs
2 power goal ← current power − desired power
3 power saved ← 0
4 Sort(J)
5 while power saved < power goal do
6 if J = ∅ then
7 return 0

8 j ← J [0]
9 new freq ← GetMinFreq(j)

10 power gain ← FindPowerGain(j, new freq)
11 new duration ← FindNewDur(j, new freq)
12 Update(running jobs, j, new freq)
13 J ← J − {j}
14 power saved ← power saved + power gain

15 return 1

Modifying the greedy algorithm to cope with the problem extensions proved
to be ineffective (e.g. setting the job frequency to the minimum only if this action
does not violate the deadline), since the extended algorithm was not able to
solve the majority of instances. This happens because with additional constraints
a solution can be found only “spreading” the slow down among several jobs,
contrary to the greedy algorithm behaviour (maximum slowing down of as few
job as possible).

5 The CP Model

The greedy algorithm is very fast but it lacks reasoning power, thus we propose a
CP model to optimally reassign the job frequencies. There is a decision (integer)
variable for each job Fi ∀i ∈ J ; the variables represent the frequency assigned
to each job. The frequency domains depend on the execution node: for low power
nodes the allowed values are [1.2, 1.3, 1.4, .., 2.1] GHz and for high power nodes
the range is [1.2, 1.4, 1.6, .., 2.8, 3.1, 3.4] GHz. Consequently, the domain of Fi

4 In the current system running applications cannot be interrupted/restarted.
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could either be [0, ..,9] if the job runs on a 2.1 GHz node or [0, .., 10] otherwise.
The duration of job i can be seen as di = deli + dRi , the duration elapsed so far
plus the remaining duration.

The relationship between the different frequencies and the changes in power
(duration) is encoded in a set of vectors. Given a job i we can identify the
correct vector for the durations DM and the powers PM , depending on the job
application type aii and node type nti. Each vector contains as many elements
as the possible frequencies; each element specifies the duration/power change
w.r.t. a base frequency (the maximum one) – e.g. if a job has a duration of di at
maximum frequency, the duration at frequency F ′

i becomes d′
i = DM [F ′

i ] ∗ di.
The method for obtaining the new power is analogous. To encode these relations
we introduce two auxiliary variables for each job, PMul

i for power and DMul
i for

duration. These variables are related to the frequency by the equations DMul
i =

DM [Fi] and PMul
i = PM [Fi]. These relations are expressed in the CP model

via element constraints [19]:

element(Fi,DM,DMul
i ) ∀i ∈ J (1)

element(Fi, PM,PMul
i ) ∀i ∈ J (2)

We use two additional auxiliary variables to represent the new power NPi and
duration NDi for each job:

NPi =PMul
i ∗ pi ∀i ∈ J (3)

NDi =DMul
i ∗ dRi + deli ∀i ∈ J (4)

The duration increase DIi of a job can be expressed as:

DIi = (NDi − di) = (DMul
i − 1)dRi ∀i ∈ J (5)

Now we need to impose the constraint on the new powers, i.e. their sum must
not be greater than the new power cap pcap:

∑

∀i∈J

NPi ≤ pcap (6)

We also want to set special constraints for the duration increase of jobs in the
reservation queue (JR), namely we want the maximum and the average duration
increase of those jobs to be less or equal of, respectively, dimax

res and diavgres :

1
|JR|

∑

∀i∈JR

DIi ≤ diavgres (7)

max∀i∈JRDIi ≤ dimax
res (8)

The frequency reassignment problem has a dual goal: on one hand we want to
reduce the energy consumed by the HPC system, on the other hand we want to
maintain a good performance for the end users – i.e. we want to keep the dura-
tion increases as low as possible. After a preliminary evaluation phase where we
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experimented with different objective functions, we opted to minimize the dura-
tion increase since this always guarantees an improvement in terms of consumed
energy and users’ satisfaction. This objective is expressed with this equation:
min

∑
∀i∈J DIi.

5.1 Search Strategy

As a reminder, we do not look for optimal solutions hence we do not use a
complete strategy; all the proposed search strategies are implemented with a
realistic time limit of 5 s. The first search strategy we used is a basic version of the
common strategy used for integer variables in CP. The variable selection proceeds
among unbound variables and chooses the one with the smallest domain. Ties
are broken by selecting the variable with lower min value. For the value selection,
we first try to assign the maximum allowed value for the selected variable. In
the rest of the paper we will call this strategy CP Standard.

Heuristic-Based Search. The CP standard search can produce good results
but it requires a much longer time than the greedy algorithm - during the 5 s time
limit the greedy algorithm was often able to produce better solutions, especially
on instances of non-trivial size. We then devised a new search strategy able to
produce solutions at least as good as the greedy ones and in a much shorter time
than the standard strategy. The new search strategy combines both the benefit of
the greedy algorithm and the capacity of exploring a larger search space typical
of CP search strategies. Namely, our strategy starts from the solution generated
by the greedy algorithm – hence we can quickly obtain a first, feasible solution
– then performs backtracking and tries to improve the current solution.

The backtracking is performed in typical CP fashion: at each decision point a
variable is selected and a new value is assigned. The variable selection procedure
exploits the heuristic too: the variables are ordered with the same method used
for the greedy algorithm and then the first variable in the ranking is chosen.
The idea is to consider first the variables that will have a greater impact on the
objective function. Once a variable is selected we set its value to the maximum
allowed. We will refer to this strategy as CP + Heuristic.

Large Neighborhood Search. We also implemented a Large Neighborhood
Search strategy [7]. Similarly to local search, with LNS we modify an existing
solution to the problem. However, instead of making small changes to a solution,
a subset of variables (called fragment) from the problem is selected and relaxed.
A search is then performed on these relaxed variables. To perform this complete
search we used the heuristic-based search described in the previous section.

The three main aspects which impact the LNS efficacy are the fragment
selection procedure, the fragment size and the search limit. After a preliminary
evaluation, the best selection criterion was combining complete random selec-
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tion and weighted selection5. We decide the fragment size and the search limit
(expressed as failures and branches limit) through a reinforced learning method
which changes these parameters based on the quality of the solutions found by
previous LNS iterations; this strategy was inspired by a previous work [23].

5.2 Extensions

The extensions described in Sect. 3.1 are modeled by the following equations
(deadlines and the relations):

ETi ≤ dli ∀i ∈ J (9)
ETi ≤ ETj ∀j ∈ Reli ∀i ∈ J (10)

where ETi = sti + deli + DM
i dRi is the variable which represents a job end time

and Reli is the set of jobs related to i.
The search strategy still belongs to the LNS framework but with a different

way to find the solution of the relaxed fragment. If job relations are involved
as well (Extensions R and D-R) the CP standard search strategy is used. Con-
versely, with deadlines a modified version of the heuristic described in Sect. 5.1
is used. The first solution is obtained with a variant of the greedy algorithm:
instead of indiscriminately setting the frequencies to their minimum levels, the
modified version does that only if it will not force the slowed job to go beyond
its deadline. Note that this first solution may be infeasible, i.e. could violate the
power constraint. After the first solution is found the second phase is performed
as before.

6 The MIP Model

We describe now a third approach to solve the frequency assignment problem,
namely a Mixed Integer Program (MIP) model. This kind of method is generally
well suited to deal with assignment problems. In the MIP model we have a set
of binary variables X where Xif assumes value 1 if job i has frequency f , 0 oth-
erwise; index i has the whole set of jobs J as a range and f can vary in the job
frequency range F , defined as before based on node type. Each job has exactly
one frequency (Eq. 12). For each job i we have a set of power and duration mul-
tipliers, one for each allowed frequency, respectively dMul

if and pMul
if . These mul-

tipliers combined with the current job power pi and the binary variable express
the power constraint (Eq. 13). Equations 14 and 15 specify the constraints on the
jobs duration increase, respectively, on the maximum increase (≤ dimax

res ) and on
the average increase (≤ diavgres ). Variable ri indicates if job i belongs to the reser-
vation queue (1 means reservation, 0 otherwise). (dMul

if −1)dRi Xif represents the
duration increase of job i. Finally, Eq. 12 sets the objective, i.e. minimization of
the duration increase.
5 A variable i is relaxed with probability P = ψ wi∑

∀i∈J wi
+ (1 − ψ) 1

|J| where wi is the

weight and ψ ∈ [0, 1] is a real number.
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min
∑

i∈J

∑

f∈F

(dMul
if − 1)dRi Xif (11)

∑

f∈F

Xif = 1 ∀i ∈ J (12)

∑

i∈J

∑

f∈F

pMul
if piXif ≤ pcap (13)

∑

i∈J

∑

f∈F

ri(dMul
if − 1)dRi Xif ≤ diavgres

∑

i∈J

ri (14)

∑

f∈F

ri(dMul
if − 1)dRi Xif ≤ dimax

res ∀i ∈ J (15)

The constraints for the extensions are the same of the CP model, namely
Eqs. 9 and 10. The end time is expressed as ETi = sti +deli +

∑
f∈F dMul

if dRi Xif .

7 Results

The experiments were carried out on a computer with a 2.4 Ghz CPU (4 i7 cores)
and 16 GB of RAM. The proposed methods were implemented using or-tools [18],
Google’s software suite for combinatorial optimization. The MIP solver used on
top of or-tools is the open-source Cbc (Coin-or branch and cut) MILP solver [9].
We evaluated all the approaches on instances which represent realistic workloads,
derived from traces collected on Eurora in a timespan of several months. We have
instances of several sizes, from smaller ones composed of 50 jobs up to the bigger
ones with 2000 jobs. As told before, we have strict time constraints to produce
a solution due to the real-time nature of our application. Therefore we set a
time limit of 5 s to the solvers in all the experiments. The time limit is not a
problem for the greedy algorithm on any of our instances; the time required by
this method is always around a few hundreds of milliseconds.

7.1 Models Evaluation

In this section we compare the performance of the different approaches when
dealing with the base version of the problem (without extension). In particular
we show the results obtained by: (1) the greedy algorithm, (2) the CP model
using standard search, (3) the CP model using heuristic-based search, (4) the CP
model using LNS and (5) the MIP model. For the LNS we used the technique
with the best performance, namely the combination of weighted and random
fragment selection (fragment size with reinforced learning) and the heuristic-
based search to solve the relaxed fragments. For every model we run experiments
on 30 instances. For each instance we first compute the initial power (the power
consumed by all jobs in the instance) then we try to reduce the power available
and assign new frequencies; as power cap levels we tested decreasing percentages
of the initial power (the power levels are identified by the markers in the following
graphs).
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To briefly summarize our experiments, when the MIP solver manages to find
a solution within the time limit it also proves that the solution is optimal, so
the remaining models can at best try to get as close as possible. In particular,
in the case of the base problem the MIP approach can solve all the instances
to optimality and clearly outperforms the other models, especially on larger
instances. If we start to consider the problem extensions the MIP solver struggles
more to find a solution for larger instances (obviously always within the time
limit) w.r.t. to the CP solvers. Nevertheless, when it does find a one, the solution
is optimal (or very close to the optimal one) and still outperforms the remaining
models on the corresponding instance.

In the following graphs we report the duration increases and the energy differ-
ences; these values are the normalized averages for all instances. Figure 1 presents
two graphs. On the left we can see the average duration increase (as a percentage)
obtained when decreasing the power budget available (from the right, maximum
power, to the left). The right graph depicts instead the energy difference (in per-
centage) w.r.t. to the maximal power budget. Although the objective function
considers only the job durations, we report also the energy differences to prove
that we obtain significant energy savings, even without explicitly focusing on
it. For lack of space, we show this only in the 100 jobs case but the results are
analogous with larger instances.

All the results we obtained clearly reveal that when we reduce the power
budget the average duration of the jobs increases, as a large fraction of jobs need
to be slowed down. As we can see in Fig. 1a when we consider small instances
(from 50 to 200 jobs) the MIP solver and CP plus LNS both provide optimal
solutions - their lines completely overlap. It is very easy to observe that already
with smaller instances there is a great gap between CP plus LNS and CP methods
without LNS: in particular CP with the standard search provides the worst
results, even worse than the greedy algorithm - except when the power becomes
very tight (50%–55%). CP with the heuristic search is able to find solutions equal
or better than the greedy algorithm ones - as we expected since it starts from
the greedy solution and then improves it. In Fig. 1b we can see that while both
CP plus LNS and MIP find solutions very close to the optimal, these solutions
are not the same: their related energy savings slightly differ.

When the instances become larger (400 to 800 jobs) we start to see the gap
which separates the solutions found by the MIP solver from those provided by
the CP methods: Fig. 2a reveals that even CP plus LNS is not able to find the
optimal solution provided by MIP. However, the gap is minimal (at least for the
600 jobs case) and LNS still performs much better than the remaining methods.
The situation worsens for CP and greedy approaches when the instances grow
larger (more than 1000 jobs): in Fig. 2b we can see how the MIP now definitely
outperforms all other methods, CP and LNS included. We can also see that
with larger instances it is very difficult for the heuristic-based search to improve
the first solution obtained by the greedy method. LNS manages to explore the
search space more effectively but not enough to reach an optimal solution. With
even bigger instances the optimality gap grows even further. The main reason is
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(a) Avg. Duration Increase (b) Energy Difference

Fig. 1. Base problem - 100 jobs (duration increase and energy difference)

the fact that the base problem is rather loosely constrained and, as it is known
from the literature, MIP techniques are very effective when dealing with pure
assignment problems.

(a) 600 jobs (b) 1000 jobs

Fig. 2. Base problem - 600 and 1000 jobs (duration increase)

Problem Extensions. The problem extensions we considered have the impli-
cation of raising the difficulty of the problem. As mentioned before we did not
consider a greedy algorithm to deal with the extensions. Our experiments with
the extended model reveal a behaviour comparable to the base problem: the
MIP approach is again the one able to find the best solutions, CP plus LNS
approaches the quality of MIP with smaller instances and the gap gradually
increases with larger instances. The remaining CP methods perform far worse
then the previous models. The plots for all the extended models are extremely
similar to those previously seen, hence we are not going to show them.
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What we want to focus on is a key difference to the base problem, at least for
the extensions which consider relationships among jobs. While all the CP models
manage to find a solution for almost all the instances within the time limit, the
MIP solver fails to obtain feasible solutions for many of the larger instances.
This aspect can be seen in Table 1. The table reports the percentages of solved
instances for the MIP solver, CP plus LNS and CP with standard search (CP
plus heuristic solves the same number of instances solved by CP plus LNS).
Instances composed by 600, 1500 and 2000 jobs are reported (smaller instances
are always solved by every model).

Table 1. Extensions experiments summary; percentages of solved instance.

Solver 600 Jobs 1500 Jobs 2000 Jobs

D R D-R D R D-R D R D-R

MIP 100 100 95 100 50 70 100 35 45

CP + LNS 100 100 95 100 100 90 100 95 95

CP + Std 100 100 100 100 100 100 100 100 100

8 Conclusions

We tackled the problem of regulating the workload execution on a power capped
supercomputer, in the case of a changing power budget. We propose three time-
bounded approaches to solve this problem: (1) a greedy algorithm, (2) a CP
model (with dedicated solving strategies) and (3) a MIP model. The MIP method
outperforms the other ones on large instances, while on smaller instances the
gap between the CP and MIP approaches is drastically reduced. The greedy
algorithm proved to be the fastest method but often unable to find good quality
solutions.

We also propose extensions which increase the difficulty of the initial problem
and reveal weakness of the MIP approach, especially on larger instances. In
particular, whereas the CP model almost always reaches a solution within the
time limit, the MIP solver struggles with the job relations extension and finds
a solution only in about half of the test instances (although it still outperforms
the other approaches when it does find a solution).
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FET project OPRECOMP (g.a. 732631). We also want to thank CINECA and for
granting us the access to their systems.
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Abstract. We present PRONOM, a theorem prover and countermodel
generator for non-normal modal logics. PRONOM implements some
labelled sequent calculi recently introduced for the basic system E and
its extensions with axioms M, N, and C based on bi-neighbourhood
semantics. PRONOM is inspired by the methodology of leanTAP and is
implemented in Prolog. When a modal formula is valid, then PRONOM
computes a proof (a closed tree) in the labelled calculi having that for-
mula as a root in the labelled calculi, otherwise PRONOM is able to
extract a model falsifying it from an open, saturated branch. The paper
shows some experimental results, witnessing that the performances of
PRONOM are promising.

Keywords: Non-normal modal logics · Labelled sequent calculi ·
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1 Introduction

Non-Normal Modal Logics (NNML for short) have been studied since the seminal
works by C.I. Lewis, Scott, Lemmon, and Chellas (for an introduction see [3]) in
the 1960s. They are a generalization of ordinary modal logics that do not satisfy
some axioms or rules of minimal normal modal logic K. They have gained interest
in several areas such as epistemic and deontic reasoning, reasoning about games,
and reasoning about “truth in most of the cases”.

In epistemic reasoning, where �A is read as “the agent knows/believes A”, it
was early observed [21] that NNML offers a partial solution to the problem of
omniscience: a non-omniscient agent would not necessarily be able to conclude
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that she knows (or believes) B from that fact that she knows both A and A → B,
that is �B does not follows from �A and �A → �B. This corresponds to
rejecting the K-axiom, or even more strongly, the rule of monotonicity (RM)
A → B implies �A → �B and possibly also the rule of necessitation (if B is
valid then also �B is valid) as it corresponds to the assumption that the agent
knows every logical validity.

In deontic logic, where �A is interpreted as “it is obligatory that A”, NNML
may offer a way-out to some well-known paradoxes caused by standard (normal)
deontic logic. The simplest example is Ross’ paradox [20]: let M denotes “the
letter is mailed” and B “the letter is burnt”, obviously M → (M ∨ B), but from
�M , i.e. the obligation of send the letter, it seems odd to conclude �(M ∨ B),
that is the obligation to send the letter or to burn it. Again, in this case the
“culprit” is the (RM) rule mentioned above. A similar analysis underlies the
gentle-murder paradox. Moreover normal deontic logic does not allow one to
represent conflicting obligations: for instance let A be “you go to the faculty
meeting”, it may hold both �A and �¬A (the former because you are a member
of the academic staff, the latter because you have a more important thing to do),
without wanting �⊥, that by (RM) would trivialize obligations. Here the critical
point is axiom C which allows one to conclude �(A ∧ ¬A) from �A and �¬A.
Moreover, also �� (whence the necessitation rule) has been rejected by some
authors, on the base that a logical truth cannot be the object of an obligation.

A non-normal interpretation of modal operators has been considered in logics
of Ability (see [18] and references therein) where the formula �A is interpreted as
“the agent has the ability of doing something which makes A true”; let R denote
“Ann draws a red card” and B “Ann draws a black card”, clearly �(R∨B) holds
as Ann can choose a card from a normal deck of cards that will be either red or
black, but unless she has a “magical” ability, she cannot ensure that she will pick
a red card or a black one, thus it is reasonable (or at least consistent) to assume
both ¬�R and ¬�B. But this shows that the logic of ability does not satisfy
the C axiom (in the dual form): �(A ∨ B) → �A ∨ �B. NNML have also some
interest in the area of game logic, more precisely it turns out that Monotonic
logic extended with axiom �� is a particular case of coalition logics, see [19].

Finally, �A can be interpred as “A is true in almost all cases” [2], with this
interpretation axiom C clearly fails, as the fact that A and B are independently
true in “almost all cases” does not entail that A ∧ B will also be such; a simi-
lar situation arises with a probabilistic reading of �A as “A is true with high
probability” [18].

Non-normal modal logics enjoy a simple semantic characterization in terms
of Neighbourhood models: these are possible world models where each world is
equipped with a set of neighbourhoods, each one being itself a set of worlds; the
basic stipulation is that a modal formula �A is true at a world w if the set of
worlds which make A true belongs to the neighbourhoods of w. A family of logics
is obtained by imposing further closure conditions on the set of neighbourhoods.
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In this paper we describe PRONOM (theorem PROver for NOnnormal Modal
logics) a Prolog theorem prover for the classical cube of non-normal modal logic1.
Not many theorem provers for NNML have been developed so far. Here is a brief
account: in [8] optimal decision procedures are presented for the whole cube of
NNML; these procedures reduce a validity/satisfiability checking in NNML to
a set of SAT problems and then call an efficient SAT solver. For this reason
they probably outperform any (implementation of) specific calculi for these log-
ics, but they do not provide explicitly “proofs”, nor countermodels. A theorem
prover for logic EM based on a tableaux calculus (very similar to the one in
[10]) is presented in [9]: the system handles more complex Coalition Logic and
Alternating Time Temporal logic, and it is implemented in ELAN, an environ-
ment for rewriting systems. Finally [11] presents a Prolog implementation of
a non-normal modal logic containing both the [∀∀] and the [∃∀] modality; the
fragment with just [∃∀] coincides with the logic EM, which is covered also by
our theorem prover.

The prover PRONOM implements the labelled sequent calculi presented in
[4]. These calculi are based on bi-neighbourhood semantics, a variant of the neigh-
bourhood semantics recalled above: in a bi-neighbourhood model each world has
associated a set of pairs of neighbourhoods, the idea being that the two com-
ponents of a pair provide independently a positive and negative support for a
modal formula. The bi-neighbourhood semantics is particularly significant for
logics without monotonicity and maybe of interest in itself. However the main
reason to consider it, rather than the standard one, is that it is easier to generate
countermodels in the bi-neighbourhood semantics than standard neighbourhood
models. On the other hand, it is shown in [4] that the two semantics are equiva-
lent, and more precisely standard neighbourhood models and bi-neighbourhood
models can be constructively transformed into each other. The calculi are mod-
ular and make use of labels to represent both worlds and neighbourhoods in
the syntax. They have invertible rules and provide a decision procedure for the
respective logic. Because of the invertibility of the rules, a finite countermodel
in the bi-neighbourhood semantics (whence in the standard one) can be directly
extracted from a failed derivation.

The Prolog implementation closely corresponds to the calculi: each rule is
encoded by a Prolog clause of a predicate called terminating_proof_search.
This correspondence ensures in principle both the soundness and completeness
of the theorem prover. Termination of proof search is obtained by controlling
the non-redundant application of the relevant rules. PRONOM provides both
proof search and countermodel generation: it searches for a derivation of an
input formula, but in case of failure, it generates a countermodel (in the bi-
neighbourhood semantics) of the formula.

As far as we know, PRONOM is the first theorem prover that provides both
proof search and countermodel generation for the whole cube of non-normal
modal logics. Although there are no benchmarks, its performance seems promis-
ing. The program PRONOM, as well as all the Prolog source files, including those

1 A complete description of the whole cube of NNML will be provided in Sect. 2.
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used for the performance evaluation, are available for free usage and download
at http://193.51.60.97:8000/pronom/.

2 Non-normal Modal Logics, Neighbourhood Semantics
and Labelled Calculi

In this section, we present the classical cube of NNMLs, both axiomatically and
semantically. The latter is defined in terms of bi-neighbourhood models [4] and
it is equivalent to the standard neighbourhood semantics.

Let Atm be a countable set of propositional variables. The language L con-
tains formulas given by the following grammar: A ::= p | ⊥ | � | A ∨ A | A ∧ A |
A → A | �A, where p ∈ Atm.

The minimal logic E in the language L is defined by adding to classical
propositional logic the rule of inference

A → B B → ARE
�A → �B

,

and can be extended further by choosing any combination of axioms M, C, and
N below on the left, thus producing eight distinct logics (see the classical cube,
below on the right).

M � �(A ∧ B) → �A

C � �A ∧ �B → �(A ∧ B)
N � ��

E

EM

EC EN

EMC EMN

ECN

EMCN (K)

We recall that axioms M and N are respectively equivalent to the rules RM
(A → B/�A → �B) and RN (A/�A), and that axiom K (�(A → B) → �A →
�B) is derivable from M and C. As a consequence, we have that the top system
EMCN is equivalent to the weakest normal modal logic K.

We consider here a variant of the standard neighbourhood semantics for
NNMLs, called bi-neighbourhood semantics [4].

Definition 1. A bi-neighbourhood model is a tuple

M = 〈W,Nb,V〉,
where:

– W is a non-empty set of worlds (states)
– V is a valuation function
– Nb is a bi-neighbourhood function W −→ P(P(W)×P(W)), where P denotes

the power set.

We say that M is a M-model if (α, β) ∈ Nb(w) implies β = ∅, it is a N-model
if for all w ∈ W there is α ⊆ W such that (α, ∅) ∈ Nb(w), and it is a C-model
if (α1, β1), (α2, β2) ∈ Nb(w) implies (α1 ∩ α2, β1 ∪ β2) ∈ Nb(w). The forcing
relation for boxed formulas is as follows:

http://193.51.60.97:8000/pronom/
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w � �A iff there is (α, β) ∈ Nb(w) s.t. α ⊆ [A] and β ⊆ [¬A],

where [A] is, as usual, the truth set of A in W obtained by the valuation V.

In [4] it is shown that the bi-neighbourhood semantics characterises the whole
cube of NNMLs, in the sense that:

Theorem 1. A formula A is a theorem of E iff it is valid in all bi-neighbourhood
models. The correspondence carries over to the extensions: A is a theorem of
E+(M/C/N) iff it is valid respectively in all bi-neighbourhood M/N/C-models
(including any combination of axioms/corresponding model conditions).

It is instructive to recall also the standard neighbourhood semantics and see
how the two semantics are related. A standard neighbourhood model has the form
M = 〈W,Ns,V〉, where W, V are as before, and Ns has type W −→ P(P(W)).
The forcing relation for boxed formulas is: w � �A iff [A] ∈ Ns(w). In addition
we may consider the following conditions: a model M is supplemented if α ∈
Ns(w) and α ⊆ β implies β ∈ Ns(w), it contains the unit if W ∈ Ns(w) for all
w ∈ W, and it is closed under intersection if α, β ∈ Ns(w) implies α∩β ∈ Ns(w).

It is easy to see that every standard model gives rise to a bi-neighbourhood
model, by taking for each neighbourhood α ∈ Ns(x), the pair (α,W \ α). More-
over if the model is supplemented, contains the unit, or is closed under intersec-
tion the corresponding bi-neighbourhood model is a M/N/C model respectively.

On the other hand every bi-neighbourhood model can be transformed into
a standard model [4]: given a bi-neighbourhood model M = 〈W,Nb,V〉 we can
define the standard neighbourhood model M′ = 〈W,Ns,V〉 by taking for all
w ∈ W, Ns(w) = {γ ⊆ P(W ) | there is (α, β) ∈ Nb(w) s.t. α ⊆ γ and β ⊆
W \ γ}. It can be proved that the two models are equivalent and that the trans-
formation preserves additional properties (supplementation etc.) whenever the
bi-neighbourhood model is a M/N/C model. For logics without monotonicity the
above transformation can be optimized in order to obtain a model whose size is
polynomially bounded by the size of the original one [4].

We turn now to present the labelled calculi for NNMLs based on the bi-
neighbourhood semantics. The language LLS of labelled calculi extends L with
a set WL = {x, y, z, ...} of world labels, and a set NL = {a, b, c, ...} of neighbour-
hood labels. We define positive neighbourhood terms, written [a1, ..., an], as finite
multisets2 of neighbourhood labels, with the unary multiset [a] representing an
atomic term. Moreover, if t is a positive term, then t is a negative term. Negative
terms t cannot be proper subterms, in particular cannot be negated. The term
τ and its negative counterpart τ are neighbourhood constants.

Intuitively, positive (resp. negative) terms represent the intersection
(resp. the union) of their constituents, whereas t and t are the two members
of a pair of neighbourhoods in bi-neighbourhood models.

The formulas of LLS are of the following kinds:

φ ::= x : A | t �∀ A | t �∃ A | x ∈ t | t ∈ N (x).
2 As a difference with [4] here terms are multisets rather than sets. This is ininfluent

for the properties of the calculi.
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Sequents are pairs Γ ⇒ Δ of multisets of formulas of LLS . The fully modular
calculi LSE∗ are defined by the rules in Fig. 1.

Initial sequents: x : p, Γ ⇒ Δ, x : p x : ⊥, Γ ⇒ Δ Γ ⇒ Δ, x : �

Propositional rules: As for G3K [12].

x ∈ t, x : A, t �∀ A, Γ ⇒ Δ
L �∀

x ∈ t, t �∀ A, Γ ⇒ Δ

x ∈ t, Γ ⇒ Δ, x : A
R �∀

Γ ⇒ Δ, t �∀ A

x ∈ t, x : A, Γ ⇒ Δ
L �∃

t �∃ A, Γ ⇒ Δ

x ∈ t, Γ ⇒ Δ, x : A, t �∃ A
R �∃

x ∈ t, Γ ⇒ Δ, t �∃ A

[a] ∈ N (x), [a] �∀ A, Γ ⇒ Δ, [a] �∃ A
L�

x : �A, Γ ⇒ Δ

t ∈ N (x), Γ ⇒ Δ, x : �A, t �∀ A t ∈ N (x), t �∃ A, Γ ⇒ Δ, x : �A
R�

t ∈ N (x), Γ ⇒ Δ, x : �A

M
t ∈ N (x), y ∈ t, Γ ⇒ Δ

τ ∈ N (x), Γ ⇒ Δ
Nτ

Γ ⇒ Δ
Nτ

x ∈ τ , Γ ⇒ Δ

[a1, ..., an] ∈ N (x), [a1] ∈ N (x), ..., [an] ∈ N (x), Γ ⇒ Δ
C

[a1] ∈ N (x), ..., [an] ∈ N (x), Γ ⇒ Δ

x ∈ [a1], ..., x ∈ [an], Γ ⇒ Δ
dec

x ∈ [a1, ..., an], Γ ⇒ Δ

x ∈ [a1], Γ ⇒ Δ ... x ∈ [an], Γ ⇒ Δ
dec

x ∈ [a1, ..., an], Γ ⇒ Δ

Application conditions:

x is fresh in R �∀ and L �∃, a is fresh in L�, and x occurs in the conclusion of Nτ .

Fig. 1. The rules of LSE∗.

The above version of the calculi are sound and complete for sequents that
may appear in a backward proof search having at the root a single formula (these
sequents belong to the class of regular sequents, see [4] for details). It is easy to
see that in case of monotonic logics (i.e. logics containing M) the rule R� can be
simplified by eliminating the second premise. The reason is that an application
of the rule L �∃ to the term t will introduce an element y ∈ t in the antecedent,
so that the sequent immediately succeeds by rule M . So we can replace the rule
R� with the following:

t ∈ N (x), Γ ⇒ Δ,x : �A, t �∀ A
R�M

t ∈ N (x), Γ ⇒ Δ,x : �A

Moreover the rule M can also be deleted as it is not applicable anymore.
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3 Design of PRONOM

In this section we present a Prolog implementation of the labelled calculi recalled
in Sect. 2. The program, called PRONOM, is inspired by the “lean” methodology
of leanTAP , even if it does not follow its style in a rigorous manner. The program
comprises a set of clauses, each one of them implementing a sequent rule or an
axiom of LSE and its extensions. The proof search is provided for free by the
mere depth-first search mechanism of Prolog, without any additional ad hoc
mechanism, following the line of the theorem provers for modal and conditional
logics in [1,7,13–17] and for preferential reasoning [5] in [6]. In the case of EM
we consider both the modular version like in Fig. 1, and the optimised version
in which the rule R� is replaced by R�M .

PRONOM represents a sequent with Prolog lists Spheres, Gamma and Delta.
Lists Gamma and Delta represent the left-hand side and the right-hand side of
the sequent, respectively. Elements of Gamma and Delta are labelled formulas,
implemented by Prolog lists with two, three or four elements, as follows:

– standard formulas are pairs [x,f], where x is a label and f is a formula;
– formulas of the form either x ∈ t or x ∈ t are triples [x,0,t] ([x,1,t],

respectively), where x is a label and t represents term t; the inner value,
either 0 or 1, is used to distinguish between positive and negative terms, t
and t, respectively;

– formulas of the form t |=∃ A, or t |=∀ A, or t |=∃ A, or t |=∀ A are repre-
sented by quadruples [exists,t,0,a], [forall,t,0,a], [exists,t,1,a],
[forall,t,1,a], respectively.

The list Spheres contains pairs of the form [x,Items], where Items is the list
of terms belonging to N(x). Symbols � and ⊥ are represented by constants true
and false, respectively, whereas connectives ¬, ∧, ∨, →, and � are represented
by -, ˆ, ?, ->, and box. Propositional variables are represented by Prolog atoms.
As an example, the Prolog lists

[ [x,[t]] ]
[ [y,1,t], [y,a], [forall,t,0,a^b] ]
[ [exists,t,1,a^b], [x,box(a)] ]

are used to represent the sequent t ∈ N(x), y ∈ t, y : A, t |=∀ A ∧ B ⇒ t |=∃

A ∧ B, x : �A.
Given a non-normal modal formula F represented by the Prolog term f,

PRONOM executes the main predicate of the prover, called prove3, whose only
two clauses implement the functioning of PRONOM: the first clause checks
whether F is valid and, in case of a failure, the second one computes a model
falsifying F . In detail, the predicate prove first checks whether the formula is
valid by executing the predicate:

3 The user can run PRONOM without using the interface of the web application. To
this aim, he just need to invoke the goal prove(f).
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terminating_proof_search(Spheres,Gamma,Delta,ProofTree,RBox,RExist,LAll).

This predicate succeeds if and only if the sequent represented by the lists
Spheres, Gamma and Delta is derivable. When it succeeds, the output term
ProofTree matches with a representation of the derivation found by the prover.
Further arguments RBox,RExist, and LAll are used in order to control the appli-
cation of rules R�, R �∃, and L �∀, for obtaining a terminating proof search.
More in detail, let us consider the rule R�, which is applied (backward) to a
sequent of the form t ∈ N(x), Γ ⇒ Δ,x : �A: both the principal formulas
t ∈ N(x) and x : �A are copied into the premises, then we need to prevent
further applications of the same rule in a backward proof search. In order to
control the application of this rule, the list RBox contains triples of the form
[x,a,t] in order to keep trace of the fact that, in the current branch of the tree,
the rule R� has been already applied to x : �A by using t ∈ N(x). Therefore,
the application of the rule is restricted by instantiating a Prolog variable T such
that [X,A,T] does not belong to RBox. Similarly for RExist and LAll.

As an example, in order to prove that the sequent x : �(A ∧ (B ∨ C)) ⇒ x :
�((A ∧ B) ∨ (A ∧ C)) is valid in E, one queries PRONOM with the goal:

terminating_proof_search([x, [ ]], [[x, (box (a ˆ (b ? c)))]],
[[x, (box ((a ˆ b) ? (a ˆ c)))]], ProofTree, [ ], [ ], [ ]).

Each clause of terminating_proof_search implements an axiom or rule of
the sequent calculi LSE and extensions. To search for a derivation of a sequent
Γ ⇒ Δ, PRONOM proceeds as follows. First of all, if Γ ⇒ Δ is an instance of
an axiom, the goal will succeed immediately by using the following clause:

terminating_proof_search(Spheres,Gamma,Delta,tree(axiom),_,_,_):-
member([X,A],Gamma),
member([X,A],Delta),!.

The modular, unoptimised, version for logic EM has also the following clause:

terminating_proof_search(Spheres,Gamma,Delta,tree(m),_,_,_):-
member([_,List],Spheres),
member(T,List),
member([_,1,T],Gamma),!.

If Γ ⇒ Δ is not an instance of the axioms, then the first applicable rule will
be chosen, e.g. if Spheres contains an element [X, List], such that List con-
tains T, representing that t ∈ N(x), and Delta contains a formula [X,box A],
representing that x : �A belongs to the right hand side of the sequent, then the
clause implementing the R� rule will be chosen, and PRONOM will be recur-
sively invoked on the premises of such a rule. PRONOM proceeds in a similar
way for the other rules. The ordering of the clauses is such that the application
of the branching rules is postponed as much as possible. As an example, the
clause implementing R� is as follows:
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1. terminating_proof_search(Spheres,Gamma,Delta,
tree(rbox,LeftTree,RightTree),RBox,RExist,LAll):-

2. member([X,box A],Delta),
3. member([X,SpOfX],Spheres),
4. member(T,SpOfX),
5. \+member([X,A,T],RBox),
6. !,
7. terminating_proof_search(Spheres,Gamma,[[forall,T,0,A]|Delta],

LeftTree,[[X,A,T]|RBox],RExist,LAll),
8. terminating_proof_search(Spheres,[[exists,T,1,A]|Gamma],Delta,

RightTree,[[X,A,T]|RBox],RExist,LAll).

Line 5 implements the restriction on the application of the rule described above,
and used in order to ensure a terminating proof search: given an instantiation
of the Prolog variable T, the rule is applied only in case it has not been already
applied by using the same T for the formula x : �A in the current branch, namely
[X,A,T] does not belong to RBox. Since the rule is invertible, Prolog cut ! is
used in line 6 to eventually block backtracking.

When the predicate terminating_proof_search fails, then the initial for-
mula is not valid, and PRONOM extracts a model falsifying such a formula from
an open saturated branch. This is computed by executing the predicate:

build_saturate_branch(Spheres,Gamma,Delta,Model,RBox,RExist,LAll).

This predicate has the same arguments of terminating_proof_search, with the
exception of the fourth one: here the variable Model matches a description of an
open, saturated branch obtained by applying the rules of the calculi to the initial
formula. Since the very objective of this predicate is to build an open, saturated
branch in the sequent calculus, its clauses are essentially the same as the ones for
the predicate terminating_proof_search, however rules introducing a branch
in a backward proof search are implemented by pairs of (disjoint) clauses, each
one representing an attempt to build an open saturated branch. As an example,
the following clauses implement the saturation in presence of a boxed formula
x : �A in the right hand side of a sequent:

1. build_saturate_branch(Spheres,Gamma,Delta,Model,RBox,RExist,LAll):-
2. member([X,box A],Delta),
3. member([X,SpOfX],Spheres),
4. member(T,SpOfX),
5. \+member([X,A,T],RBox),
6. build_saturate_branch(Spheres,Gamma,[[forall,T,0,A]|Delta],Model,

[[X,A,T]|RBox],RExist,LAll).
7. build_saturate_branch(Spheres,Gamma,Delta,Model,RBox,RExist,LAll):-
8. member([X,box A],Delta),
9. member([X,SpOfX],Spheres),
10. member(T,SpOfX),
11. \+member([X,A,T],RBox),
12. build_saturate_branch(Spheres,[[exists,T,1,A]|Gamma],Delta,Model,

[[X,A,T]|RBox],RExist,LAll).
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PRONOM will first try to build a countermodel by considering the left
premise of the rule R�, corresponding to recursively invoking the predicate
build_saturate_branch on the premise introducing t |=∀ A in the right hand
side of the sequent in line 6. In case of a failure, the saturation process is com-
pleted by considering the right premise of R� introducing t |=∃ A by the recur-
sive call of line 12.

Clauses implementing axioms for the predicate terminating_proof_search
are replaced by the last clause, checking whether the current sequent represents
an open and saturated branch:

build_saturate_branch(Spheres,Gamma,Delta,model(Spheres,Gamma,Delta),_,_,_):-
\+instanceOfAnAxiom(Spheres,Gamma,Delta).

instanceOfAnAxiom(_,Gamma,Delta):-member([X,A],Gamma),member([X,A],Delta),!.

Since this is the very last clause of the predicate build_saturate_branch, it is
considered by PRONOM only if no other clause/rule is applicable, therefore the
branch is saturated. The auxiliary predicate instanceOfAnAxiom checks whether
the branch is open by proving that it is not an instance of the axioms. The third
argument matches a term model representing the countermodel extracted from
the lists Spheres, Gamma, and Delta.

The implementation of the calculi for extensions of E is very similar:
given the modularity of the calculi LSE∗, the systems implementing the
extensions are easily obtained by adding clauses for both the predicates
terminating_proof_search and build_saturate_branch corresponding to the
rules specifically tailored for the extensions under consideration. The only excep-
tion is logic EM, for which we give also an optimised version containing the rule
R�M instead of R�. For the extensions of EM we only propose the version with
R�M in place of R�.

PRONOM can be used by means of a simple web interface, implemented in
php and allowing the user to check whether a non-normal modal formula is
valid by using a computer or a mobile device. The web interface also allows the
user to choose the modal system to adopt, namely E or one of the extensions
mentioned in Sect. 2. When a formula is valid, PRONOM builds a pdf file showing
a derivation in the sequent calculus LSE (or one of its extensions) as well as the
LATEX source file. Otherwise, a countermodel falsifying the initial formula is
displayed. Prolog source codes and experimental results are also available. Some
pictures of PRONOM are shown in Figs. 2, 3 and 4.

4 Performance of PRONOM

The performance of PRONOM seems to be promising. We have tested it by
running SWI-Prolog, version 7.6.4, on an Apple MacBook Pro, 2.7 GHz Intel
Core i7, 8GB RAM machine. We have performed two kinds of experiments: 1. We
have tested PRONOM over sets of valid formulas in the basic system E as well as
in each considered extension; 2. We have tested PRONOM on randomly generated
formulas, fixing different time limits, numbers of propositional variables, and
levels of nesting of connectives.
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Fig. 2. Home page of PRONOM. When the user wants to check whether a formula F
is valid, then (i) he selects the non-normal modal logic to use, (ii) he types F in the
form and (iii) clicks the button in order to execute the calculi.

Fig. 3. When a formula is valid, PRONOM computes a pdf file as well as a LATEX
source file of a derivation.

Concerning 1, we have considered around hundred valid formulas obtained
by generalizing schemas of valid formulas by varying some crucial parameters,
like the modal degree of a formula (the level of nesting of the � connective). For
instance, we have considered the following schemas (valid in all systems):

(�(�(A1 ∧ (B1 ∨ C1)) ∧ · · · ∧ �(An ∧ (Bn ∨ Cn)))) →
(�(�((A1 ∧ B1) ∨ (A1 ∧ C1)) ∧ · · · ∧ �((An ∧ Bn) ∨ (An ∧ Cn)))

(�nC1 ∧ · · · ∧ �nCj ∧ �nA) → (�nA ∨ �nD1 ∨ · · · ∨ �nDk)
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Fig. 4. When a formula is not valid, PRONOM computes and displays a counter model
falsifying it.

We have obtained encouraging results: Table 1 reports results for E, from which
it can be observed that PRONOM is able to answer in less than one second on
more than the 75% of the tests, also on valid formulas with high modal degrees.

Table 1. Number of timeouts of PRONOM over 91 valid formulas in E.

0.1 ms 1 ms 100ms 1 s 5 s

51 32 26 22 18

Concerning 2, we have tested PRONOM for E over 1000 random formulas, obtain-
ing the experimental results of Table 2. It is worth observing that, even in case
formulas are generated from 7 different atomic variables and with a high level of
nesting (10), PRONOM is able to answer in more than 80% of the cases within
a time limit of 10 ms.

The random generation often leads to not valid formulas; as a consequence,
this kind of tests has been useful also in order to evaluate the performance of
PRONOM in computing countermodels: indeed, we have considered the number
of timeouts in the execution of the top-level predicate prove described in the
previous section, including the extraction of a countermodel in case of a failure
in the proof search. Again, the experimental results seems to be adequate, and
the time required for the generation of a counter model of a not valid formula is
negligible with respect to the time needed to perform the whole computation.

We have repeated the above experiments also for all the extensions of E
considered by PRONOM, and we have obtained the results in Figs. 5 and 6.

It is worth noticing that the above experimental results refer to the Prolog
component of PRONOM only, thus they do not take into account the effort of
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Table 2. Percentage of timeouts in 1000 random tests (system E).

Number of variables/depth 1ms 10ms 1 s 10 s

3 variables - depth = 5 3% 2% 0 0
3 variables - depth = 7 29% 16% 14% 12%
7 variables - depth = 10 27% 19% 14% 9%

the graphical interface in computing the pdf file of the derivation. Since the web
application often requires a long time to answer, we are currently working on
improving the performances of PRONOM in such a way that the interface will
first provide an answer about the validity of the formula, whereas the generation
of the LATEX/pdf file will be performed only if this option is explicitly selected by
the user by clicking a suitable button. Moreover, we are planning to perform more

Fig. 5. Percentages of timeouts of PRONOM over valid formulas in extensions of E.

Fig. 6. Percentage of timeouts in 1000 random tests for extensions of E.
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accurate tests following the approach of [8], where randomly generated formulas
can be obtained by selecting different degrees of probability about their validity.

5 Conclusions

We have described a Prolog Theorem prover for non-normal modal logics. As
far as we know ours is the first program that provides both proof-search and
countermodel generation for the whole cube of NNML. It implements directly,
concisely, and modularly the labelled sequent calculi presented in [4]. The system
provides both proof-search and countermodel construction: given a formula to
check, the system outputs either a derivation or a countermodel of the formula,
the latter in the bi-neighbourhood semantics, a variant of the standard neigh-
bourhood semantics. Although the implementation does not make use of any
optimization or any sophisticated data structure, its performances are encour-
aging. In future research we intend to study some improvements like the use of
free variables for term instantiation and other optimisations. We also intend to
implement an automated and efficient transformation of the bi-neighbourhood
countermodels into standard neighbourhood models, as shown in [4].
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marco.locatelli@unipr.it

Abstract. Linear least squares is one of the most widely used regres-
sion methods among scientists in many fields. The simplicity of the model
allows this method to be used when data is scarce and it is usually appeal-
ing to practitioners that need to gather some insight into the problem by
inspecting the values of the learnt parameters. In this paper we propose
a variant of the linear least squares model that allows practitioners to
partition the input features into groups of variables that they require to
contribute similarly to the final result. We formally show that the new
formulation is not convex and provide two alternative methods to deal
with the problem: one non-exact method based on an alternating least
squares approach; and one exact method based on a reformulation of the
problem using an exponential number of sub-problems whose minimum is
guaranteed to be the optimal solution. We formally show the correctness
of the exact method and also compare the two solutions showing that the
exact solution provides better results in a fraction of the time required
by the alternating least squares solution (assuming that the number of
partitions is small).

1 Introduction

Linear regression models are among the most extensively employed statistical
methods in science and industry alike. Their simplicity, ease of use and perfor-
mance in low-data regimes enables their usage in various prediction tasks. As
the number of observations usually exceeds the number of variables, a practi-
tioner has to resort to approximating the solution of an overdetermined system.
Least squares approximation benefits from a closed-form solution and might be
the de-facto standard in linear regression analysis. Among the benefits of linear
regression models is the possibility of easily interpreting how much each vari-
ate is contributing to the approximation of the dependent variable by means of
observing the magnitudes and signs of the associated parameters.

In some application domains, partitioning the variables in non-overlapping
subsets is beneficial either as a way to insert human knowledge into the regression
analysis task or to further improve model interpretability. When considering
high-dimensionality data, grouping variables together is also a natural way to
make it easier to reason about the data and the regression result. As an example,
c© Springer Nature Switzerland AG 2019
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consider a regression task where the dependent variable is the score achieved by
students in an University or College exam. A natural way to group the dependent
variables is to divide them into two groups where one contains the variables
which represent a student’s effort in the specific exam (hours spent studying,
number of lectures attended...), while another contains the variables related to
previous effort and background (number of previous exams passed, number of
years spent at University or College, grade average...). As an another example,
when analyzing complex chemical compounds, it is possible to group together
fine-grained features to obtain a partition which refers to high-level properties of
the compound (such as structural, interactive and bond-forming among others).

In this paper, we introduce a variation on the linear regression problem
which allows for partitioning variables into meaningful groups. The parameters
obtained by solving the problem allows one to easily assess the contribution of
each group to the dependent variable as well as the importance of each element
of the group.

Our contributions include a formal non-convexity proof for the new Parti-
tioned Least Squares problem and two possible algorithms to solve it. One is
based on the Alternating Least Squares algorithm, where the optimization of
the parameters is iterative and can get trapped into local minima; the other is
based on a reformulation of the original problem into an exponential number of
sub-problems, where the exponent is the cardinality K of the partition. We prove
that solutions found by the second approach are globally optimal and test both
algorithms on data extracted from the analysis of chemical compounds. Our
experimental results show that the optimal algorithm is also faster, provided
that the size of the partition is small.

While to the best of our knowledge the regression problem and the algorithms
we present are novel, there has been previous work dealing with alternative for-
mulations to the linear regression problem. Partial Least Squares Regression [8]
parametrizes both the dependent and independent variables; Weighted Linear
Regression minimizes the residuals’ weighted sum of squares. Partitioned vari-
ables have also been the subject of previous work dealing with selecting groups
of features given a partitioning. Huang et al. provide a review of such method-
ologies [6].

2 Model Description

Let us consider the problem of inferring a linear least squares model to predict
a real variable y given a vector x ∈ R. We will assume that the examples are
available at learning time as an N × M matrix X and N × 1 column vector y.
We will also assume that the problem is expressed in homogeneous coordinates,
i.e., that X has an additional column containing values equal to 1, and that the
intercept term of the affine function is included into the weight vector.

The standard least squares formulation for the problem at hand is to minimize
the quadratic loss over the residuals, i.e.:

minimizew ‖Xw − y‖22
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Table 1. Notation

Symbol(s) Definition

(·)n n-th component of a vector

k, K k is the index for iterating over the K subsets belonging to the
partition

m, M m is the index for iterating over the M variables

X an N × M matrix containing the descriptions of the training instances

A × B matrix multiplication operation (we also simply write it AB when the
notation appears clearer)

y a vector of length N containing the labels assigned to the examples in
X

• wildcard used in subscriptions to denote whole columns or whole rows:
e.g., X•,k denotes the k-th column of matrix X and Xm,• denotes its
m-th row

∗ denotes an optimal solution, e.g., p� denotes the optimal solution of
the PartitionedLS problem, while p�

b denotes the optimal solution of
the PartitionedLS-b problem

P a M × K partition matrix, Pm,k ∈ {0, 1}, with Pm,k = 1 iff variable αm

belongs to the k-th element of the partition

Pk the set of all indices in the k-th element of the partition: {m|Pk,m = 1}
k[m] index of the partition element to which αm belongs, i.e.: k[m] is such

that m ∈ Pk[m]

◦ Hadamard (i.e., element-wise) product. When used to multiply a
matrix by a column vector, it is intended that the columns of the
matrix are each one multiplied (element-wise) by the column vector

� Hadamard (i.e., element-wise) division

� element-wise larger-than operator: α � 0 is equivalent to αm ≥ 0 for
m ∈ 1..M

This is a problem that has the closed form solution w = (XTX)−1XT y. As
mentioned in Sect. 1, in many application contexts where M is large, the resulting
model is hard to interpret. However, it is often the case that domain experts can
partition the elements in the weights vector into a small number of groups and
that a model built on this partition would be much easier to interpret. Then, let
P be a “partition” matrix for the problem at hand (this is not a partition matrix
in the linear algebra sense, it is simply a matrix containing the information
needed to partition the features of the problem). More formally, let P be a
M ×K matrix where Pm,k ∈ {0, 1} is 1 iff feature number m belongs to the k-th
partition element. We will also write Pk to denote the set {m|Pm,k = 1}. For
the sake of reference Table 1 summarises the notation adopted in this paper.

Here we introduce the Partitioned Least Square (PartitionedLS) problem, a
model where we introduce K additional variables and try to express the whole
regression problem in terms of these new variables (and in terms of how the
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original variables contribute to the predictions made using them). The simplest
way to describe the new model is to consider its regression

f(X) =

(
K∑

k=1

βk

∑
m∈Pk

αmxn,m + t

)
n

(1)

where (·)n denotes the n-th component of the vector being built. The first sum-
mation is over the K sets in the partition that domain experts have identified as
interesting, while the second one iterates over all variables in that set. We note
that the m-th α weight contributes to the k-th element of the partition only if it
belongs to it. As we shall see, we require that all α values are not smaller than
0 and that ∀k :

∑
m∈Pk

αm = 1. Consequently, the expression returns a vector
of predictions calculated in terms of two sets of weights: the β weights, which
are meant to capture the magnitude and the sign of the contribution of the k-th
element of the partition, and the α weights, which are meant to capture how
each feature in the k-th set contributes to it. We note that the α weight vector is
of the same length as the vector w in the least squares formulation. Despite this
similarity, we prefer to use a different symbol because the interpretation of (and
the constraints on) the α weights are different with respect to the w weights.

It is easy to verify that the definition of f in (1) can be rewritten in matrix
notation as:

f(X) =

(
K∑

k=1

βk

∑
m

Pm,kαmxn,m + t

)
n

= X × (P ◦ α) × β + t (2)

where ◦ is the Hadamard product extended to handle column-wise products.
More formally, if Z is a A×B matrix, 1 is a B dimensional vector with all entries
equal to 1, and a is a column vector of length A, then Z◦a � Z◦(a×1T ); where
the ◦ symbol on the right hand side of the definition is the standard Hadamard
product. Equation (2) can be rewritten in homogeneous coordinates as:

f(X) = X × (P ◦ α) × β (3)

where X incorporates a column of 1 and we consider an additional group (with
index K + 1) having a single αM+1 variable in it. Given the constraints on α
variables, αM+1 is forced to assume a value equal to 1 and the value of t is then
totally incorporated into βK+1. In the following we will assume that the problem
is given in homogeneous coordinates and that the constants M and K already
count the additional group and variable.

Definition 1. The partitioned least squared (PartitionedLS) problem is formu-
lated as:

minimizeα ,β‖X × (P ◦ α) × β − y‖22
s.t. α � 0

PT × α = 1
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In summary, we want to minimize the squared residuals of f(X), as defined
in (3), under the constraint that for each subset k in the partition, the set of
weights form a distribution: they need to be all nonnegative as imposed by α � 0
constraint and they need to sum to 1 as imposed by PT × α = 1 constraint.

Unfortunately we do not know a closed form solution for this problem. Fur-
thermore, the problem is not convex and hence hard to optimally solve using
standard out-of-the-box solvers. The following theorem states this fact formally.
Due to space constraints we do not provide the proof in full details.

Theorem 1. The PartitionedLS problem is not convex.

Proof. (sketch) It suffices to show that the Hessian of the objective function
is not positive semidefinite. By Schwarz’s theorem, since the loss function has
continuous second partial derivatives, the matrix is symmetric and we can apply
the Sylvester criterion for checking positive definiteness. In practice, we prove
that Hessian is not positive semidefinite by showing that not all leading principal
minors are larger than zero. In our specific case, the second minor can be shown
to assume values smaller than zero and this proves the theorem. Let us denote
with L the objective of the PartitionedLS problem

L = ‖X × (P ◦ α) × β − y‖22

=
∑

n

(∑
k

βk

∑
αm∈Pk

αmxn,m − yn

)2

Consider the vector containing all the variables of the PartitionedLS prob-
lem in the following order: (α1, β1, α2, β2, . . . , αK , βK , αK+1, αK+2, . . . , αM ) and
assume the problem is not trivial, i.e., that m > 1, k > 1. In the following, with-
out loss of generality, we will assume that α1 ∈ P1. Under these assumptions, to
prove that the second minor is smaller than zero, amounts to prove that:

H11H22 − H12H21 =
∂2L

∂α1∂α1

∂2L

∂β1∂β1
− ∂2L

∂α1∂β1

∂2L

∂β1∂α1

=
∂2L

∂2α1

∂2L

∂2β1
−

(
∂2L

∂α1∂β1

)2

< 0

By working out the details of the partial derivatives, one ends up with the
expression:

H11H22 − H12H21 =

(
2β2

1

∑
n

x2
n,1

)
2
∑

n

( ∑
m∈P1

αmxn,m

)2

−
[
2
∑

n

xn,1

(
β1

∑
m∈P1

αmxn,m + ρα,β(n)

)]2

, (4)

where ρα,β(n) is a short hand for
∑

k βk

∑
m∈Pk

αmxn,m − yn. To simplify the
algebra, let us now assume that for all n, k :

∑
m∈Pk

αmxn,m is equal to a con-
stant c. We notice that albeit being a strong assumption, it does not hinder
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the generality of the result since to prove that the Hessian is not semidefinite it
suffices to find a single configuration of the problem in which it is not. Under
this assumption, ρα,β(n) = c

∑
k βk − yn:

(4) =4Nc2β2
1

∑

n

x2
n,1 −

[
2

∑

n

xn,1

(
β1c + c

∑

k

βk − yn

)]2

=4Nc2β2
1

∑

n

x2
n,1 −

[
2β1c

∑

n

xn,1 + 2c

(
∑

k

βk

) (
∑

n

xn,1

)
− 2

∑

n

xn,1yn

]2

.

We end the proof by noticing that the expression on the left of the minus sign
is constant w.r.t. β2 . . . βK , while the part on the right of the minus sign can be
made arbitrarily large by varying those variables. This shows that for a certain
configuration of βk values, the expression can be made negative. ��

In the following we will provide two algorithms that solve the above problem.
One is an alternating least squares approach which scales well with K, but it is
not guaranteed to provide the optimal solution. The other one is a reformulation
of the problem through a (possibly) large number of convex problems whose
minimum is guaranteed to be the optimal solution of the original problem. Even
though the second algorithm does not scale well with K, we believe that this
should not be a problem since the PartitionedLS is by design well suited for small
K values (otherwise the main reason inspiring its creation would cease to exist
since for large K values the new model would not be much more interpretable
than the original one).

3 Algorithms

3.1 Alternating Least Squares Approach

In the PartitionedLS problem we aim at minimizing a non convex objective,
where the non convexity depends on the multiplicative interaction between α
and β variables in the expression ‖X × (P ◦ α) × β − y‖22. Interestingly, if one
fixes α, the expression X× (P ◦ α) results in a matrix X′ that does not depend
on any variable. Then, the whole expression can be rewritten as a problem
pα = ‖X′β − y‖22 which is the convex objective of a standard least squares
problem in the β variables. In a similar way, it can be shown that by fixing β
one also ends up with a pβ convex optimization problem.

These observations naturally lead to the formulation of an alternating least
squares solution where one alternates between solving pα and pβ . In Algo-
rithm1.1 we formalize this intuition into an algorithm where, after initializing α
and β randomly, we iterate T times. At each iteration we take the latest estimate
for the α variables and solve the pα problem based on that estimate, we then
keep the newly found β variables and solve the pβ problem based on them. At
each iteration the overall objective is guaranteed not to increase in value and we
conjecture convergence to some stationary point as T → ∞.
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Algorithm 1.1. Alternating least squares solution to the PartitionedLS problem. The
notation const(α) (respectively const(β)) is just to emphasize that the current value
of α (respectively β) will be used as a constant in the following step.

1 function PartitionedLS-alternating(X, y,P)

2 α = random(M)

3 β = random(K)

4
5 for t in 1 . . . T
6 a = const(α)

7 p∗ = minimizeβ (‖(X × (P ◦ a) × β − y‖2
2))

8
9

10 b = const(β)

11 p∗ = minimizeα (‖(X × (P ◦ α) × b − y‖2
2,

12 α � 0,

13 PT × α = 1)
14 end

15
16 return (p∗, α, β)
17 end

3.2 Reformulation as a Set of Convex Subproblems

Here we show how the PartitionedLS problem can be reformulated as a set
of convex problems such that the problem of achieving the smallest objective
attains the global optimum of the original problem.

Definition 2. The PartitionedLS-b problem is a PartitionedLS problem in
which the β variables are substituted by a constant vector b ∈ {−1, 1}K , and
the normalization constraints over the α variables are dropped:

minimizeα‖X × (P ◦ b) × α − y‖22
s.t. α � 0

We note that the above definition actually defines 2K minimization problems,
one for each of the possible b vectors. Interestingly, each one of the minimization
problems can be shown to be convex by the same argument used in Sect. 3.1 (for
fixed β variables) and we will prove that the minimum attained by minimizing
those problems corresponds to the global minimum of the original problem. We
also show that by simple algebraic manipulation of the result found by a Partitio-
nedLS-b solution, it is possible to write a corresponding PartitionedLS solution
attaining the same objective.

The main breakthrough here derives from noticing that in the original formu-
lation the β variables are used to keep track of two facets of the solution: (i) the
magnitude and (ii) the sign of the contribution of each subset in the partition
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of the variables. With the b vector keeping track of the signs, one only needs to
reconstruct the magnitude of the β contributions to recover the solution of the
original problem.

To do so, let us start by calculating a normalization vector β̄ containing in
β̄k the normalization factor for variables in partition subset k:

β̄ =

( ∑
m∈P k

αm

)
k

= PT × α.

Then, the vector α̂ (containing the α variables as defined in the original problem)
can be recovered by dividing each αm by β̄k[m]:

α̂ =
(

αm

β̄k[m]

)
m

=
K∑

k=1

(
(P ◦ α) � β̄

T
)

•,k
=

(
P ◦ α � β̄

T
)

× 1,

and the β̂ vector (containing both signs and magnitudes of the contribution
of each subset in the partition) can be reconstructed simply by taking the
Hadamard product of b and β̄:

β̂ = b ◦ β̄.

The complete algorithm, which detects and returns the best solution of the Par-
titionedLS-b problems over all possible b vectors, is reported in Algorithm1.2.

The following lemma (whose proof we omit due to space constraints) shows
that a PartitionedLS solution using α̂ and β̂ has the same objective value as the
PartitionedLS-b solution using the given b and α values.

Lemma 1. (Rewriting Lemma) Let α be a vector of m positive values, b ∈
{−1, 1}K a vector of K signs, and β̄ a vector of K non zero values. Let also α̂,
β̂ be such that:

α̂ =
(

αm

β̄k[m]

)
m

for m ∈ {1 . . . M}

and
β̂ =

(
bkβ̄k

)
k

for k ∈ {1 . . . K}.

Then:
X × (P ◦ α) × b = X × (P ◦ α̂) × β̂.

Corollary 1. Under the hypotheses of the Rewriting Lemma it holds:

‖X × (P ◦ α̂) × β̂ − y‖22 = ‖X × (P ◦ α) × b − y‖22 (5)

Theorem 2. Let p∗ be the optimal value of the PartitionedLS problem and let
pb∗ be the value attained by the PartitionedLS-b algorithm (Algorithm1.2). Then,
p∗ = pb∗ .

Proof. We first show that p∗ ≥ pb∗ , then we show that pb∗ ≤ p∗ and conclude
that p∗ = pb∗ . In the following let:
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Algorithm 1.2. PartitionedLS-b solution to the PartitionedLS problem. The function
extract min retrieves the (ṗ, α̇, β̇) tuple in the results array attaining the lowest ṗ
value.

1 function PartitionedLS-optimal(X, y,P)

2 results = []

3

4 for ḃ in {1, −1}K

5 ṗ = minimize α̇ (‖(X × (P ◦ α̇) × ḃ − y‖2
2), α̇ � 0)

6

7 results += (ṗ, α̇, ḃ)
8 end

9
10 p∗, α, b = extract_best(results)

11
12

13 β̄ = PT × α

14 α̂ = (P ◦ α � β̄
T
) × 1

15 β̂ = b ◦ β̄
16

17 return (p∗, α̂, β̂)
18 end

– b∗ be the best sign vector as found by Algorithm1.2 and let αb∗ be the
corresponding α vector (i.e., αb∗ , b∗ attain the pb∗ solution);

– α̂∗, β̂
∗

be the values attaining the p∗ solution.

Notice that Corollary 1 of the Rewriting Lemma implies that for sign vector
b = β̂ � β̄ and αb =

(
αmβ̄k[m]

)
m

:

p∗ = ‖X × (P ◦ α̂∗) × β̂
∗ − y‖22 = ‖X × (P ◦ αb) × b − y‖22.

Since the pb∗ solution is the best solution over all the possible sign vectors, it
holds that:

‖X × (P ◦ αb) × b − y‖22 ≥ ‖X × (P ◦ αb∗) × b∗ − y‖22 = pb∗ .

Vice-versa by Corollary 1 of the Rewriting Lemma it holds that for α̂, β̂ as given
in the Rewriting Lemma assumptions, it holds that:

pb∗ = ‖X × (P ◦ αb∗) × b∗ − y‖22 = ‖X × (P ◦ α̂) × β̂ − y‖22.
Since p∗ is the global optimum for the PartitionedLS problem, it holds:

‖X × (P ◦ α̂) × β̂ − y‖22 ≥ ‖X × (P ◦ α̂∗) × β̂
∗ − y‖22 = p∗s

��
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4 Regularization

The PartitionedLS model presented so far has no regularization mechanism in
place and, as such, it risks overfitting the training set. Since the α values are
normalized by definition, the only parameters that need regularization are those
collected in the β vector. Then, the regularized version of the objective function
simply adds a penalty on the size of the β vector:

‖X × (P ◦ α) × β‖22 + η‖β‖22 (6)

where the squared euclidean norm could be substituted with the L1 norm in case
a LASSO-like regularization is preferred.

The objective expressed in (6) can be used in Algorithm 1.1 as is, but it
needs to be slightly updated so to accommodate the differences in the objective
function when used in Algorithm 1.2. In this second case, in fact, the correct
expression for the ‖β‖22 regularization term becomes: ‖PT × α‖22 since the opti-
mization program does not maintain an explicit list of β variables. We notice
that since the regularization term is convex, it does not hinder the convexity of
the optimization problems in both algorithms presented in this paper.

5 Experiments

While the main motivation of the proposed approach is interpretability, we do
not provide here any direct measurement of this property. Unfortunately, inter-
pretability is not easily measurable since its very notion has not yet been clearly
defined and a multitude of different definitions coexist. Instead, we simply argue
that the smaller “grouped” model better matches one interpretability definition
based on transparency (in both the simulatability and decomposability meanings,
see [7]). In the following we will focus on the algorithmic properties of the two
algorithms we presented in this paper, showing how they behave so to provide
some insight about when one should be preferred over the other.

In order to assess the advantages/disadvantages of the two algorithms pre-
sented in this paper, we apply them to solve the block-relevance analysis pro-
posed in [3,4]. We will assess the two algorithms on a dataset [2] containing 82
features describing measurements over simulated (VolSurf+ [5]) models of 44
drugs. The regression task is the prediction of the lipophilicity of the 44 com-
pounds. The 82 features are partitioned into 6 groups according to the kind of
property they describe. The six groups are characterized in [3] as follows:

– Size/Shape: 7 features describing the size and shape of the solute;
– OH2: 19 features expressing the solute’s interaction with water molecules;
– N1: 5 features describing the solute’s ability to form hydrogen bond interac-

tions with the donor group of the probe;
– O: 5 features expressing the solute’s ability to form hydrogen bond interac-

tions with the acceptor group of the probe;
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– DRY: 28 features describing the solute’s propensity to participate in
hydrophobic interactions;

– Others: 18 descriptors describing mainly the imbalance between hydrophilic
and hydrophobic regions.

This dataset, while not high-dimensional in the broadest sense of the term,
can be partitioned into well-defined, interpretable groups of variables. Previous
literature which employed this dataset has indeed focused on leveraging the
data’s structure to obtain explainable results [4].

We used as training/test split the one proposed in [2] and set the regulariza-
tion parameter η to 1.0 (since we are not aiming at finding the most accurate
regressor, we did not investigate other regularization settings).

For this particular problem, the number of groups is small and the optimal
algorithm needs to solve just 26 = 64 convex problems. It terminates in 0.90 s
reaching a value of the regularized objective function of about 6.679. For what
concerns the approximated algorithm, we ran it in a Multistart fashion with 100
randomly generated starting points. We repeated the experiment using two dif-
ferent configurations of parameter T (number of iterations), setting it to 20 and
100, respectively. For each configuration we kept track of the cumulative time
and of the (“cumulative”) best solution found. As one would expect, increasing
the value of parameter T slows down the algorithm, but allows it to converge
to better solutions. Figure 1 reports the best objective value found by the algo-
rithms plotted against the time (reported on a logarithmic scale to improve
visualization) necessary to get to such a solution. The experiments show that
Algorithm 1.2 retrieves a more accurate (actually the globally optimal) answer
in a fraction of the time. Indeed, it is straightforward to observe that, in typical
scenarios1, the only times where the alternating least squares approach outper-
forms the optimal algorithm in terms of running time is for cases where the
total number of iterations (convex subproblems solved) is smaller than the 2K

subproblems needed by Algorithm 1.2 to compute the optimal solution. In our
admittedly limited experimentation, this leads to solutions that grossly approx-
imate the optimal one. Our conclusion is that the optimal algorithm is likely
to be preferable in most cases. The exceptions are the cases where the number
of groups is large or the cases where the time required to solve a single convex
problem is very large and approximate solutions do not hinder the applicability
of the result in the application at hand. For what concerns the cases with a large
number of groups, we argue that this setting defies the main motivation behind
employing a model such as the one we presented.

1 In this informal argument we are assuming that each convex problem requires about
the same amount of time to be solved. While this is not guaranteed, we believe that
it is very unlikely that deviations from this assumption would lead to situations very
different from the ones outlined in the argument.
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Fig. 1. Plot of the behavior of the two proposed algorithms. The PartitionedLS-
alternating algorithm has been repeated 100 times following a Multistart strategy and
in two settings (T = 20 and T = 100). Each point on the orange and green lines reports
the cumulative time and best objective found during these 100 restarts.(Color figure
online)

6 Conclusions

In this paper, we presented an alternative least squares linear regression formula-
tion and two algorithms to solve it: one iterative, one optimal. In our experimen-
tation, we found the optimal algorithm to be faster, although its time complex-
ity grows exponentially with the number of groups. Our model enables scientists
and practitioners to group features together into partitions modeling higher level
abstractions which are easier to reason about. In the future, we would like to per-
form an extensive experimentation on high-dimensionality data to better under-
stand the tradeoff between our Alternating Least Squares and exact approaches
when the number of groups is higher. In contrast with the choice we made in
this paper (where we focused on a dataset showcasing a real application of the
methodology), in this new experimentation we will use more broadly available
datasets. Even though the datasets and groupings will appear to be less justi-
fied, the new setting will allow us to better study in which cases it may be more
beneficial to recover a lower-quality solution in a shorter amount of time, rather
than striving for an optimal solution using the exact algorithm (Algorithm1.2).
We also plan to investigate branch-and-bound strategies to avoid the explicit
computation of all 2K sub-problems in the optimal algorithm.

A Julia [1] implementation of the algorithms is available at https://github.
com/ml-unito/PartitionedLS; the code for the experiments can be downloaded
from: https://github.com/ml-unito/PartitionedLS-experiments.

https://github.com/ml-unito/PartitionedLS
https://github.com/ml-unito/PartitionedLS
https://github.com/ml-unito/PartitionedLS-experiments
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This latter repository also contains the dataset we used in our experiments in
the format required to be loaded from the programs. Due to technical reasons, the
original dataset presented in [2] is no longer available for download. The authors
confirmed that they are willing to provide the data to interested researchers if
contacted directly.

References

1. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic language
for technical computing. CoRR abs/1209.5145 (2012). http://arxiv.org/abs/1209.
5145

2. Caron, G., et al.: A fast chromatographic method for estimating lipophilicity andion-
ization in nonpolar membrane-like environment. Mol. Pharm. 13(3), 1100–1110
(2016). https://doi.org/10.1021/acs.molpharmaceut.5b00910. pMID: 26767433

3. Ermondi, G., Caron, G.: Molecular interaction fields based descrip-
tors to interpret and compare chromatographic indexes. J. Chromatogr.
A 1252, 84–89 (2012). https://doi.org/10.1016/j.chroma.2012.06.069.
http://www.sciencedirect.com/science/article/pii/S0021967312009636

4. Giulia, C., Maura, V., Giuseppe, E.: The block relevance (BR) analysis to aid medic-
inal chemists to determine and interpret lipophilicity. Med. Chem. Commun. 4,
1376–1381 (2013). https://doi.org/10.1039/C3MD00140G

5. Goodford, P.J.: A computational procedure for determining energetically favorable
binding sites on biologically important macromolecules. J. Med. Chem. 28(7), 849–
857 (1985). https://doi.org/10.1021/jm00145a002

6. Huang, J., Breheny, P., Ma, S.: A selective review of group selection in high-
dimensional models. Stat. Sci.: Rev. J. Inst. Math. Stat. 27(4) (2012)

7. Lipton, Z.: The mythos of model interpretability. Commun. ACM 61 (2016).
https://doi.org/10.1145/3233231
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Abstract. Hypergraph Dualization (also called as hitting set enumera-
tion) is the problem of enumerating all minimal transversals of a hyper-
graph H, i.e., all minimal inclusion-wise hyperedges (i.e., sets of vertices)
that intersect every hyperedge in H. Dualization is at the core of many
important Artificial Intelligence (AI) problems. As a contribution to a
better understanding of Dualization complexity, this paper introduces
a tight upper bound to the number of minimal transversals that can
be computed in polynomial time. In addition, the paper presents an
interesting exploitation of the upper bound to the number of minimal
transversals. In particular, the problem dealt with is characterizing the
complexity of the data mining problem called IFMI (Inverse Frequent
itemset Mining with Infrequency constraints), that is the problem of
finding a transaction database whose frequent and infrequent itemsets
satisfy a number of frequency/infrequency patterns given in input.

Keywords: Hypergraph transversal · Hypergraph dualization ·
Inverse data mining

1 Introduction

A hypergraph is a pair H = (V,E), where V is a non-empty finite set of vertices
and E ⊆ 2V is a non-empty set of hyperedges (refer to [2] for more details on
hypergraphs). Let n = |V | and m = |E| be the number of vertices and of hyper-
edges, respectively. Moreover, let Ĕ be the inclusion-wise minimal hyperedges in
E, m̆ = |Ĕ| and H̆ = (V, Ĕ) (inclusion reduction of H).

A transversal of H is a hyperedge I that intersects every hyperedge in E
and it is a minimal transversal (also called hitting set) if no proper subset of it
is a transversal of H. Let Ed be the set of all minimal transversals of H and
md = |Ed|. As the minimal transversals of H coincide with the ones of H̆, in
the remainder of this section, unless it is otherwise specified, we assume that H
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is a Sperner hypergraph, i.e., H coincides with its inclusion reduction H̆. The
problem of enumerating all minimal transversals of a given hypergraph is known
in the literature with the name of hypergraph dualization (also called hitting
set enumeration, see, e.g., [8,10]). A hypergraph H1 is dual of a hypergraph
H2 if the hyperedges of H1 are exactly all minimal transversals of H2 and the
duality problem consists of deciding whether H1 is dual of a hypergraph H2.
Main relevant results on dualization and duality problems can be summarized
as:

– the number md of minimal transversals may be exponential in the number
n of vertices and the number m of minimal hyperedges and, therefore, the
efficiency of a dualization algorithm is measured in terms of n and of M =
m + md (i.e., the combined input and output size);

– a fast well-known dualization algorithm [12] runs in quasi-polynomial time
n · Mo(logM);

– recently, it has been proved in [14] that the Duality problem is in
DSPACE[log2 n] and it has been devised a deterministic algorithm in [13] that,
given two hypergraphs H1 and H2, computes a transversal of H2 missing in
H1 in quadratic logspace.

As pointed out in [14], dualization and duality are at the core of a number
of important problems in the areas of knowledge discovery, machine learning,
and more generally in AI and knowledge representation. Just to mention a few:
Learning monotone Boolean CNFs and DNFs with membership queries [15],
model-based diagnosis [22], computing a Horn approximation to a non-Horn
theory [17], computing minimal abductive explanations to observations [9], and
computing of the maximal frequent and minimal infrequent sets in data mining
[15,16].

In this paper we define an upper bound m̃d to the number md of minimal
transversals and we show that this bound can be computed in polynomial time.
This bound is based on the structure of the complement hypergraph H = (V,E)
of H, that is the hypergraph obtained from H by replacing every I ∈ E with
I = V \ I. Obviously m = |E| is equal to m. Let n̄ = |V | ≤ n, where V = ∪Ī∈Ē Ī
is the set of vertices that are not included in all hyperedges in E. In addition,
n̄2 = |V 2|, where V 2 = {{v1, v2}| v1, v2 ∈ V and ∃Ī ∈ E s.t. {v1, v2} ⊆ Ī} is the
set of vertex pairs that are not included in some hyperedge in E.

The upper bound m̃d is equal to md
1 + md

2 + m̃d
3+ , where md

1 = n − n̄ is the
number of singleton minimal transversals, md

2 = n̄(n̄ − 1)/2 − n̄2 is the number
of two-vertex minimal transversals and m̃d

3+ is an upper bound of the overall
number of minimal transversals with 3 or more vertices. The value of m̃d

3+ is
computed in time O(n·m2) by means of the formula (2), reported in Sect. 2, that
takes into account a particular type of intersection between any two complement
hyperedges. We next give an intuition to clarify this point. Let us first introduce
a parameter κ(H) = logn̄(md

2 +m̃d
3+) to better characterize the magnitude of m̃d

w.r.t. n̄ in a hypergraph H, so that we can write m̃d = md
1+n̄κ(H) = n−n̄+n̄κ(H).
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For each p, 1 < p < n̄, and for each two distinct complement hyperedges Ī
and J̄ , Ī

⋂

p J̄ denotes the set of vertices in Ī∩J̄ that are contained in at least p−2
other complements, i.e., a vertex is in Ī

⋂

p J̄ if and only if it is contained in at
most m−p hyperedges in H and is neither in I nor in J – note that Ī

⋂

2 J̄ = Ī∩J̄ .
Let CH be any family of hypergraphs for which m̃d

3+ ∈ Ω(2(log n̄)c) with c > 1.
Then there are two positive constants r1 and r2 and n0 > 0 such that for each
n̈ > n0, there exist H ∈ CH with n̄ = n̈, two hyperedges I and J in H and an
index p for which r1(log n̄)c−1 ≤ p < n̄ and r2(log n̄)c−1 ≤ (q − p) < n̄, where
q = |Ī ⋂

p J̄ |. In other words, a super-polynomial growth of m̃d is determined by
an (at least) logarithmically increasing number of “tangled” intersection patterns
for the complement hyperedges.

The advantage of the upper bound m̃d is that one knows in advance how
complex it would be to solve Dualization. In addition, the upper bound m̃d

can be exploited to introduce some cuts during the execution of dualization
algorithms. Obviously this advantage is real only if the upper bound results to be
tight. The above-described necessary condition for its super-polynomial growth
witnesses that the bound is not at all trivial: indeed, the condition requires
that the hyperedges have intricate overlappings. Furthermore, some experiments
carried out in [16] show that the upper bound is indeed tight in practice – the
only case it provides a loose estimation is when the hypergraph contains singleton
hyperedges but, as shown in the paper, this anomaly can be easily eliminated
by suitably removing all singleton hyperedges.

The experiments conducted in [16] refer to an interesting application of Dual-
ization: the problem of finding minimal infrequent itemsets in data mining appli-
cations, that is illustrated next. Think of V as a set of generic objects, called
items. Then, any non-empty subset of V corresponds to an itemset and a (trans-
actional) database D over V (also called dataset) is a bag of itemsets (called
transactions), which may occur duplicated in D – say that the number of dupli-
cates of a transaction I ∈ D is δ(I). Given an itemset I ⊆ V , the support of
I in D is σD(I) =

∑

J∈D∧I⊆J δ(J), that is the number of transaction dupli-
cates in D containing I. The so-called anti-monotonicity property holds: if I ⊂ J
then σD(I) ≥ σD(J). Given a support threshold σ > 0, I is called a σ-frequent
itemset in D if σD(I) > σ; otherwise I is σ-infrequent. To characterize the σ-
frequent/infrequent itemsets, by the anti-monotonicity property, it is sufficient
to enumerate the maximal (inclusion-wise) σ-frequent itemsets and the minimal
σ-infrequent itemsets. Assume that the set of maximal σ-frequent itemsets, say
E, is given. As evidenced in [3,15], by considering E as a set of hyperedges on
V , the minimal σ-infrequent itemsets coincide with the minimal transversals of
the hypergraph (V,E), where E is the set of the complementary hyperedges in
E.

The experiments described in Appendix A of [16] show that the parameter
κ(H) = logn̄(md

2 + m̃d
3+) is small in typical frequent/infrequent applications: its

value slightly exceeds 3 only in one case and for two thirds of the cases the value
is less than 2. In the same appendix, an empirical analysis of the parameter
κ over twelve real datasets confirms that the parameter value is greater than
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3 (actually, 3.12) only for one dataset whereas is much lower for the others.
This fact s uggests using the parameter κ to single out hypergraph families
for which the number of minimal transversals is polynomial: fixed a rational
constant k, a (not necessarily Sperner) hypergraph H = (V,E) is k-bounded if
κ(H) ≤ k. If H is not Sperner then κ(H) is defined to be equal to κ(H̆), where H̆
is the inclusion reduction of H. Obviously recognizing whether H is k-bounded
can be done in polynomial time. By exploiting the structure of the formula for
computing the upper bound m̃d, we present an algorithm that computes the
minimal transversals of a k-bounded hypergraph in polynomial time.

We stress that our k-boundness definition is different from other definition
used in the literature, in particular hypergraphs with (k, r)-bounded intersections
in which the intersection of any k distinct hyperedges has size at most r. In the
case that k + r is less than or equal to a given constant, all minimal transversals
can be computed in incremental polynomial time as proven in [18]. Thus, the
complexity of a finding a first minimal transversal or a new one (duality problem)
is polynomial, but the overall complexity may be exponential as the number of
minimal transversals can be exponential. Instead this number is guaranteed to
be polynomial for hypergraphs that are k-bounded according to our definition.

It is worth noting that there is a sort of complementarity between the two
definitions of boundness for a hypergraph H: (k, r)-boundness of [18] fixes bounds
to the intersections of the hyperedges in H, whereas the bounds in our definition
concern the intersections of the complement hyperedges. For a (k, r)-bounded
hypergraph, every duality problem instance is solved in polynomial time but
this resolution must be iterated for a number of times that can be exponential.
Instead, for a k- bounded hypergraph according to our definition, every duality
problem cannot be in general solved in polynomial time, but the number of
iterations is limited as the number of minimal transversals is polynomial.

We observe that another notion of k-bounded hypergraphs has been intro-
duced in [5] with the goal of investigating dualization complexity in the frame-
work of fixed-parameter tractability (FPT) – a problem with input size s and
another input parameter k is in FPT if it can be solved in O(f(k) p(n)) time,
where f is any computable function and p is a polynomial [7,11]. The dualization
problem dealt with concerns hypergraphs with a limited rank r – the rank of a
hypergraph H is the largest number of vertices in an edge of H. The problem is
stated as: given a hypergraph H with a fixed rank r and a number k, is there
some minimal transversal with more than k vertices? In [5] it is shown that this
problem is in FPT and that computing all minimal transversals with at most k
vertices can be done in O(rk p(s)), where p(s) is a polynomial in the size s of H.

We extend the notion of hypergraph by adding a function δ associating a
natural number to every hyperedge, which indicates the number of occurrences
of the hyperedge. We then define a duplicated-hyperedge hypergraph H as a triple
(V,E, δ) and apply the notion of support to hyperedges: given any K ⊆ V (not
necessarily in E), σH(K) =

∑

I∈E∧K⊆I δ(I), that is the the number of duplicated
hyperedges in E containing K. It turns out that the problem of discovering σ-
frequent/infrequent itemsets can be directly formulated in terms of hypergraph.
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We next reverse the frequent itemset perspective of the problem in a way that
the role of σ-infrequent itemsets (thus minimal transversals) becomes crucial.

We are given H = (V,E, δ) together with two natural numbers σd ≥ 0 and
ω > 0. The Frequent-Infrequent Duplicated Hypergraph Problem (FIDHy for short)
consists of deciding whether there exists a duplicated hypergraph ̂H = (V, ̂E, δ̂)
such that (1)

∑

I∈ ̂E δ̂(I) = ω, (2) for each I ∈ E, σ
̂H(I) = δ(I) and (3) for each

minimal transversal I of the complement hypergraph (V,E) of H, σ
̂H(I) ≤ σd.

Observe that FIDHy formulates the classical inverse frequent itemset mining
problem (IFM) (i.e., finding a transactional database D satisfying given support
constraints on the itemsets in E, that are typically the frequent ones, see [4,20])
with an additional infrequency constraint on the set E′ of the itemsets that are
neither in E nor subsets of some itemset in E. The infrequent itemsets in E′

must have their supports below a given threshold, say σd. This version of the
problem, called IFM with infrequency support constraint (IFMI for short), has
been first proposed in [16]1. By the anti-monotonicity property, it is sufficient to
enforce the infrequency support constraint to the minimal itemsets in E′, which
correspond to the minimal transversals of the complement of the hypergraph H.
It turns out that FIDHy is the hypergraph formulation of IFMI.

In this paper we prove that FIDHy (thus the decision complexity of IFMI) is
NEXP-complete. But this high complexity result can be scaled down as follows.

First, because of the strong relationships with frequent itemset applications,
we consider the case that the input duplicated hypergraph H = (V,E, δ) is k-
bounded, for a given rational constant k: the set of all such instances is called
the k-Bounded FIDHy Problem, k-FIDHy for short. The set of IFMI instances
corresponding to the instances of k-FIDHy is called the k-IFMI problem. We prove
that k-FIDHy (aka, the decision k-IFMI problem) is in PSPACE and NP-hard.

We can make a further step to reduce the complexity of the problem by
relaxing the integer restriction to the range of the function δ̂. We call this version
of the problem relaxed k-FIDHy and prove that it is NP-complete.

Despite we have reduced its complexity from NEXP to NP, the problem remains
intractable. Nevertheless, an approximate solution approach for k-IFMI has been
proposed in [16], which has been shown in a large number of experiments to be
very effective in solving large instances of both synthesized and real datasets.

The remainder of this paper is organized as follows. In Sect. 2 we present
the upper bound on the number of minimal transversals. In Sect. 3 we formulate
IFMI and prove that deciding whether there exists a feasible database is NEXP-
complete. In the same section we also introduce k-IFMI, prove its complexity
and illustrate our conjecture that the parameter κ is small for real transaction
databases. Finally, in Sect. 4, we draw the conclusion. For space reason, the
proofs of most of the theorems and propositions stated in the paper are placed
in an online appendix [23].

1 A preliminary version of this paper is a companion manuscript for [16].
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2 Upper Bound on the Number of Minimal Transversals

Given a set of vertices V , any (possibly empty or improper) subset of V is
called a hyperedge on V .2 A hypergraph is a pair H = (V,E), where V is a non-
empty finite set of vertices and E ⊆ 2V is a non-empty set of hyperedges on
V . H is a Sperner hypergraph if for each two distinct hyperedges I and J in E,
I 
⊂ J – let n = |V | > 0, m = |E| > 0. The Sperner hypergraph H̆ = (V, Ĕ)
that is obtained from H by removing all hyperedges that are not minimal (i.e.,
Ĕ = {I| I ∈ E ∧ � J ∈ E : J � I}) is called the inclusion reduction of H.
Obviously, if ∅ ∈ E then Ĕ = {∅}.

For each I ⊆ V , let Ī = V \ I be the complement hyperedge of I. Let V
denote ∪I∈E Ī and n̄ = |V | ≤ n be the number of vertices that are not included
in all hyperedges in E. In addition, n̄2 = |V 2|, where V 2 = { {v1, v2}| ∃I ∈ E :
{v1, v2} ⊆ Ī} consists of all vertex pairs that are not included in all hyperedges.

Given a hypergraph H = (V,E), a subset I of V that intersects every hyper-
edge in E is a transversal (or hitting set) of H and it is a minimal transversal if no
subset of I is a transversal. The dual of H is the hypergraph Hd = (V,Ed) such
that Ed is the set of all minimal transversals of H – obviously, Hd is a Sperner
hypergraph. We have that (i) Hd = (H̆)d and (ii) if Ed 
= ∅ then (Hd)d = H̆.
Observe that Ed = ∅ if and only if E contains the empty hyperedge.

Let Hd = (V,Ed) be the dual of a hypergraph H = (V,E). We denote
md = |Ed| and for each i > 0, md

i = |Ed
i |, where Ed

i is the set of minimal
transversals having i vertices. We point out that, if m = 1 (i.e., E = {I}),
then the value of md is trivially known: md = 0 if I = ∅ or md = md

1 = |I|
otherwise. We next focus on the case that m > 1 by assuming that H is a
Sperner hypergraph – then E cannot contain the empty hyperedge.

Proposition 1. Let H = (V,E) be a Sperner hypergraph with m > 1. Then
md

1 = n − n̄ and md
2 = n̄(n̄ − 1)/2 − n̄2. �

An upper bound m̃d to md can be defined as m̃d = md
1 + md

2 + m̃d
3+ , where

m̃d
3+ is an upper bound to the number of minimal transversals with at least 3

vertices. To compute m̃d
3+ , we define an upper bound m̃d

i to md
i , ∀i ≥ 3. To this

end, we first need some additional definitions and notation:

– ∀ i: 1 < i < m, V [i] is the set of all vertices in V that are contained into at
least i hyperedge complements, i.e., in at most m − i hyperedges in H;

– ∀ I, J ∈ E, J 
= I, and ∀i, 1 < i < m: Ī
⋂

i J̄ = Ī ∩ J̄ ∩ V [i], i.e., a vertex is in
Ī

⋂

i J̄ if and only if it is contained in at most m − i hyperedges in H and is
neither in I nor in J – note that Ī

⋂

2 J̄ = Ī ∩ J̄ ;
– ∀ I ∈ E and ∀ i, 1 < i < m, Ī[i] = ∪J∈E,J �=I: |Ī ⋂

i J̄|≥ i−1 (Ī
⋂

i J̄), i.e., the
vertices in Ī

⋂

i J̄ are included into Ī[i] only if |Ī ⋂

i J̄ | ≥ i − 1.

Theorem 1. Let a Sperner hypergraph H = (V,E) with m > 1 be given. Let J
be a minimal transversal of H with cardinality p + 1, where p ≥ 2, i.e., J is a

2 Other hypergraph definitions require a hyperedge not to be empty.
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hyperedge with at least three vertices. Take any ordering of the vertices in J , say
v1, . . . , vp+1, and let Ji denote J \ {vi}, ∀i, 1 ≤ i ≤ p + 1. Then p < m and there
exist p + 1 distinct hyperedges I1, . . . , Ip+1 in H such that ∀i, 1 ≤ i ≤ p + 1:

1. Ji ⊆ Īi (i.e., Ji ∩ Ii = ∅) and J 
⊆ Īi (i.e., vi ∈ Ii);
2. ∀j, 1 ≤ j ≤ p + 1 and i 
= j, J \ {vi, vj} ⊆ Īi

⋂

p Īj and vj ∈ Īi[p].

Proof. Let us first prove by contradiction that there exist p + 1 hyperedges
I1, . . . , Ip+1 in E such that ∀i, 1 ≤ i ≤ p + 1, Ji ⊆ Īi. Suppose not. Then for
some i, Ji intersects every hyperedge I ∈ E. Hence Ji is a transversal of H
and we get a contradiction with the hypothesis that J is a minimal transversal
of H. It follows that there are p + 1 hyperedges I1, . . . , Ip+1 in E such that
∀i, 1 ≤ i ≤ p + 1, Ji ⊆ Īi. We again proceed by contradiction to show that the
hyperedges I1, . . . , Ip+1 are distinct. Suppose then that there are two distinct
indices i and j such that Ii = Ij . We have Īi = J \ {vi}, Īj = J \ {vj} and
vi 
= vj by hypothesis. But we have previously proved that J \ {vi} ⊆ Īi and
J \ {vj} ⊆ Īj . So, from Īi = Īj it follows that that J ⊆ Īi and, therefore, J is
not a transversal of H as it does not intersect Ii – a contradiction. So Ii and Ij

must be distinct and, then, p < m. In addition, as we have previously proved
that Ji ⊆ Īj and J 
⊆ Īi, part (1) is proved as well.

Consider now any two Ii and Ij , with i 
= j. We have that J \ {vi} ⊆ Īi and
J \ {vj} ⊆ Īj with vi 
= vj ; hence, Ji,j = J \ {vi, vj} ⊆ Īi ∩ Īj . Take now any
vk ∈ Ji,j . By part (1), Ik is different from both Ii and Ij ; in addition, vk is not
contained in every Iq, with q 
= k and, then, it is contained in at most m − p
hyperedges of H. It follows that each of the p − 1 vertices in Ji,j is contained in
at most m−p hyperedges in H. Therefore Ji,j ⊆ Īi

⋂

p Īj . It also follows that each
vq ∈ Ji,j = Ji \{vj} is in Īi[p]. To conclude the proof of part (2) we have to show
that also vj ∈ Īi[p]. To this end, observe that Ji \ {vj} is not empty as p ≥ 2.
Then there exists some Ik, with k 
= i and k 
= j, such that J \{vi, vk} ⊆ Īi

⋂

p Īk.
It follows that vj ∈ Īi[p]. ��

We are now ready to define an upper bound m̃d
p+1 to md

p+1, 1 < p < m:

m̃d
p+1 =

2
p (p + 1)

·
|Ī ⋂

p J̄| ≥ p−1
∑

I,J∈E,I<J:

( |Ī ⋂

p J̄ |
p − 1

)

· |Ī[p] ∩ J | · |J̄ [p] ∩ I|. (1)

Note that I < J refers to any lexicographic ordering of the hyperedges that
simply avoids two hyperedges to be considered twice in the above summation.

Theorem 2. For each p such that 1 < p < m, md
p+1 ≤ m̃d

p+1. �

The next proposition provides some insights on the values that can be taken
by our bounds to the number of minimal transversals.

Proposition 2. Let f(n̄) be a function expressing
∑m−1

p=2 m̃d
p+1 in terms of the

value of n̄ of a Sperner hypergraph H. Then f(n̄) ∈ O(2n̄ log n̄).
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Let CH be any family of Sperner hypergraphs for which f(n̄) ∈ Ω(2(log n̄)c)
with c > 1. Then there are two positive constants r1 and r2 and n0 > 0 such that
for each n̈ > n0, there exist H ∈ CH with n̄ = n̈, two hyperedges I and J in H and
an index p for which (i) r1(log n̄)c−1 ≤ p < n̄ and r2(log n̄)c−1 ≤ (q − p) < n̄,
where q = |Ī ⋂

p J̄ |, and (ii) both Ī[p] ∩ J and J̄ [p] ∩ I are not empty. �

As shown in Example 1 below,
∑m−1

p=2 m̃d
p+1 may get a value of the order of

2n̄ log n̄, which is greater than 2n̄ (the maximum number of minimal transver-
sals). Thus Proposition 2 states that our estimation of the exponential growth
of the number of minimal transversals may only add a logarithmic factor in the
exponent. On the other hand, the proposition points out that a super-polynomial
growth of the bound is determined by rather “tangled” intersection patterns for
the complement hyperedges, which involve an (at least) logarithmically increas-
ing number of them.

Example 1. Let H = (V,E), where V = {a1, . . . , an, b1, . . . , bn}, E = {(a1, b1),
(a2, b2), . . . , (an, bn)} and n ≥ 3. It is easy to see that a minimal transversal
is an hyperedge (x1, . . . , xn) such that for each i, 1 ≤ i ≤ n, xi is either ai

or bi. Then the number of minimal transversals is md = md
n = 2n, i.e., H is

exponential even though it is (1, 2)-bounded according to the definition of [18].
Let us now compute m̃d

n using the formula (1). We set p = n − 1 to preserve
the same notation of this formula; therefore, m̃d

p+1 is equal to m̃d
n. We have that

for each I, J in E, |Ī ⋂

p J̄ | = 2n − 4. Then the term inside the summation in the
formula (1) becomes:

( |Ī ⋂

p J̄ |
p − 1

)

· |Ī[p] ∩ J | · |J̄ [p] ∩ I| =
(

2n − 4
n − 2

)

· 2 · 2 = 4
(

2n − 4
n − 2

)

.

Then, by multiplying the above value by n (n − 1)/2 (the number of pairs
I, J in E), we obtain the value of the overall summation term. Further on, by
multiplying this result by the initial formula term 2

p (p+1) = 2
(n−1)n , we obtain

the value of m̃d
n:

m̃d
n =

2
(n − 1)n

· (n − 1)n

2
· 4 ·

(

2n − 4
n − 2

)

= 4 ·
n−3
∏

i=0

2n − 4 − i

n − 2 − i
.

We have that for each i, 0 ≤ i ≤ n − 3, 2 ≤ 2n−4−i
n−2−i ≤ n − 1. Therefore,

4 · 2n−2 = 2n < m̃d
n < 4 · (n − 1)n−2 = 2(n−2) log(n−1)+2. �

Example 2. Let V = {a1, . . . , an, b1, . . . , bn, c1, . . . , cn} and E =
⋃n

i=1

{

V \
{ai, bi}, V \ {ai, ci}, V \ {bi, ci}

}

. Then the minimal transversals are the hyper-
edges {ai, bi, ci}, 1 ≤ i ≤ n. To give some intuition on this property, consider
the case n = 2. We have V = {a1, a2, b1, b2, c1, c2} and E = {{a2, b2, c1, c2},
{a2, b1, b2, c2}, {a1, a2, b2, c2}, {a1, b1, c1, c2}, {a1, b1, b2, c1}, {a1, a2, b1, c1}}. It is
easy to see that the minimal transversals are {a1, b1, c1} and {a2, b2, c2}.

It turns out that the number of minimal transversals is md = md
3 = n. To

compute m̃d
3 = m̃d

p+1 for p = 2, we set Ē = {Ī | I ∈ E} equal to
⋃n

i=1 Ēi, where
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Ēi =
{{ai, bi}, {ai, ci}, {bi, ci}

}

. It is easy to see that for any two distinct Ēi1

and Ēi2 , every hyperedge in Ēi1 is disjoint from all hyperedges in Ēi2 ; so, only
hyperedges in the same Ēi contribute to the computation of the formula 1. Then,
by also considering that Ī

⋂

2 J̄ = Ī ∩ J̄ , we can rewrite the formula as:

m̃d
3 =

n
∑

i=1

2
2 · 3

·
|Ī∩J̄|≥ 1

∑

Ī,J̄∈Ēi,Ī �=J̄:

(

1
1

)

· 1 · 1 =
n

∑

i=1

1
3

· 3 ·
(

1
1

)

= n

Note that the above computation takes into account that Ī
⋂

2 J̄ = Ī ∩ J̄ . �

Example 3. Let V = {a1, . . . , a2n} and E = { {a1}, . . . , {a2n} }. It is easy to
see that there is a unique minimal transversal that coincides with V , i.e., md =
md

2n = 1. However, m̃d
2n is exponential in n as shown nest. Let us compute

m̃d
n ≥ m̃d

2n using the formula (1). We set p = n−1 to preserve the same notation
of this formula; therefore, m̃d

p+1 is equal to m̃d
n. We have that for each I, J in

E, |Ī ⋂

p J̄ | = 2n − 2. Then the term inside the summation in the formula (1)
becomes:

( |Ī ⋂

p J̄ |
p − 1

)

· |Ī[p] ∩ J | · |J̄ [p] ∩ I| =
(

2n − 2
n − 2

)

· 1 · 1 =
(

2n − 2
n − 2

)

.

Then, by multiplying the above value by 2n (2n − 1)/2 = n (2n − 1) (the
number of pairs I, J in E), we obtain the value of the overall summation term.
Further on, by multiplying this result by the initial formula term 2

p (p+1) =
2

(n−1)n , we obtain the value of m̃d
n:

m̃d
n =

2
(n − 1)n

· n · (2n − 1) ·
(

2n − 2
n − 2

)

=
2(2n − 1)

n − 1
·

n−3
∏

i=0

2n − 2 − i

n − 2 − i
.

We have that for each i, 0 ≤ i ≤ n − 3, 2n−2−i
n−2−i ≥ 2 and 2n−i

n−i > 2 . Therefore,
m̃d

n ≥ 2n. The bound produces an anomalous overestimation in the presence
of singleton hyperedges. But the anomaly can be easily eliminated by removing
any singleton hyperedge and its vertex, say a1, from the other hyperedges, thus
obtaining the hypergraph H′. The minimal transversals of H are obtained by
adding a to every minimal transversal of H′. The removal can be iterated for
all other singleton hyperedges so that we either all hyperedges are removed (as
in the example) or a hypergraph with no singleton hyperedges is eventually
obtained. �

In order to introduce an overall upper bound m̃d to the number md of minimal
transversals, as the number of minimal transversals with less than 3 vertices is
exactly known, we next define an upper bound m̃d

3+ to the number md
3+ of

minimal transversals with 3 or more vertices:

m̃d
3+ = m̃d

3 +
r−1
∑

p=3

m̈d
p+1 (2)
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where m̃d
3 is defined by formula (1), r = min(m, n̄) and m̈d

p+1 is defined as:

m̈d
p+1 =

2
p (p + 1)

·
|Ī ⋂

p J̄|≥ p−1
∑

I,J∈E,I<J:

cIJ p · |Ī[p] ∩ J | · |J̄ [p] ∩ I|

where cIJ p is equal (i) to 0 if
(|Ī ⋂

p J̄|
p−1

) ≤ (|Ī ⋂

p J̄|
p−2

)

or (ii) to
(|Ī

⋂

p J̄|
p−1

) − (|Ī
⋂

p J̄|
p−2

)

otherwise. Observe that the case (i) arises if and only if q − 2p + 3 ≤ 0 and that

the value of cIJ p for the case (ii) is actually equal to
(|Ī

⋂

p J̄|
p−1

) · q−2p+3
q−p+2 .

Theorem 3. Let H = (V,E) be a Sperner hypergraph. If ∅ ∈ E then m̃d = md =
0, otherwise m̃d = md

1+md
2+m̃d

3+ is an upper bound to the number md of minimal
transversals, where md

1 and md
2 are the numbers of minimal transversals with

respectively 1 and 2 vertices (see Proposition 1) and m̃d
3+ is defined by formula

(2) and can be computed in time O(n · m2). �
We define a parameter κ as a function from the set of all hypergraphs 2H to

Q ∪ {−∞}, where Q is the set of rational numbers. For each H ∈ 2H, κ(H) =
logn̄(md

2 +m̃d
3+) if H is a Sperner hypergraph3, or κ(H) = κ(H̆) otherwise. Then

we can state that an upper bound to the number md of minimal transversals of
a hypergraph H is m̃d = md

1 + n̄κ(H). Note that κ(H) is either equal to −∞ or
≥ 0. Our conjecture is that the parameter is small in practice (between 1.5 and
3.5) for hypergraphs corresponding to maximal frequent itemsets.

Definition 1. Let a rational number k be fixed. Then every hypergraph H for
which κ(H) ≤ k is called a k-bounded hypergraph.

Proposition 3. Given a rational number k and a hypergraph H = (V,E), decid-
ing whether H is k-bounded can be done in time O(n ·m2). In addition, if k is a
constant and H is a k-bounded hypergraph then the number of minimal transver-
sals of H is polynomial in n. �
Theorem 4. Let k be a rational constant and H = (V,E) be a k-bounded hyper-
graph. Then the minimal transversals of H can be computed in time polynomial
in n and m. �

3 Hypergraph Formulation of Inverse Frequent Itemset
Mining with Infrequency Constraints

A duplicated-hyperedge hypergraph H is a triple (V,E, δ), where (V,E) is a hyper-
graph for which ∅ 
∈ E and δ : E → N is a function associating a natural
number to every hyperedge in E – for each I ∈ E, δ(I) indicates the num-
ber of occurrences of the hyperedge I. Given any K ⊆ V (not necessarily in
E), σH(K) =

∑

I∈E∧K⊆I δ(I) denotes the support of K in H, that is the the
number of duplicated hyperedges in E containing K. Observe that the so-called
anti-monotonicity property holds: if I ⊂ J then σH(I) ≥ σH(J).
3 We assume that logn̄ m̃d

3+ is equal to −∞ if m̃d
3+ = 0 or it is rounded up to a fixed

number of decimal places otherwise.
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Definition 2. Let H = (V,E, δ) be a duplicated-hyperedge hypergraph and
σd ≥ 0 and ω > 0 be two natural numbers. Let H = (V,E) be the complement
hypergraph of (V,E), where E = {Ī| I ∈ E}. The Frequent-Infrequent Duplicated
Hypergraph Problem (FIDHy for short) consists of deciding whether there exists a
duplicated hypergraph ̂H = (V, ̂E, δ̂) such that (1)

∑

I∈ ̂E δ̂(I) = ω, (2) for each

I ∈ E, σ
̂H(I) = δ(I) and (3) for each I ∈ E

d
(i.e., for each minimal transversal

of the complement of H), σ
̂H(I) ≤ σd.

This apparently “abstruse” problem has an important application in data
mining, if we think of the hypergraph vertices in V as generic objects, called
items. Then, any non-empty subset of V corresponds to an itemset (i.e., a set
of items) and a duplicated-hyperedge hypergraph H = (V,E, δ) represents a
(transactional) database D over V (also called dataset), that is a bag of itemsets
(called transactions), which may occur duplicated in D – thus, a hyperedge I ∈ E
is a transaction and δ(I) is its number of duplicates. The size of D is the total
number of transaction duplicates

∑

I∈E δ(I). Given an itemset I, the support of
I in D, denoted by σD(I), coincides with σH(I).

Given a support threshold σ > 0, I is called a σ-frequent itemset in D if
σD(I) > σ; otherwise I is σ-infrequent. A popular mining task over transaction
databases is to single out the set of the σ-frequent itemsets. This problem has
attracted relevant research efforts, and several solution approaches and general-
izations have indeed been discussed in the literature [1,15,19]. The problem can
be formulated in terms of hypergraph as: given a duplicated-hyperedge hyper-
graph H = (V,E, δ), find all hyperedges K on V for which σH(K) > σ.

The perspective of the frequent itemset mining problem can be naturally
inverted as follows. We are given in advance a natural number ω > 0 and a set
E of (frequent) itemsets together with their minimal and maximal support con-
straints: the goal is to decide whether there is a transaction database with size
ω satisfying the above constraints (and, of course, compute the database when-
ever the answer is positive). This problem, called the inverse frequent itemset
mining problem (IFM), has been introduced in the context of defining generators
for benchmarks of mining algorithms [20], and its computational properties have
been investigated: in particular, decision IFM has been proved to be NP-hard and
in PSPACE (see, e.g., [4,20]).

Table 1. Examples of feasible databases for an IFM instance
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As an example, given I = {a, b, c, d} and E = {{a, b}, {b, c}, {c, d}}, consider
the support constraints represented in Table 1-a. The itemsets E1 = {a, b} and
E2 = {b, c} must occur in exactly 100 transactions (possibly as sub-transactions)
and the itemset E3 = {c, d} must occur in exactly 50 transactions. We also
assume that the database size (i.e., the total number of transactions) must be
170.

A feasible database D1 is shown in Table 1-b—the second column indicates
the number of duplicates (occurrences) of every transaction. The first support
constraint is satisfied by the transactions {a, b, c} and {a, b}, the second one by
the transactions {a, b, c}, {b, c, d} and {b, c} and the third one by the transactions
{b, c, d} and {c, d}.

The IFM problem can be formulated in terms of hypergraphs as follows:
given a duplicated-hyperedge hypergraph H = (V,E, δ), find a hypergraph
̂H = (V, Ê, δ̂) such that for each I ∈ E, σĤ(I) = δ(I). This corresponds to
the FIDHy problem for the case that σd ≥ ω so that condition (1) and (3) in
Definition 2 trivially hold and, then, they can be removed.

IFM does not enforce any constraint on the itemsets that are neither in E
nor subsets of some itemset in E – we call the set of such itemsets E′. It may
therefore happen that D contains additional (and, perhaps, unsuspected or even
undesired) frequent itemsets. For instance, the itemset {a, b, c} in the database
D1 of Table 1-b is in E′ and turns out to be frequent with a support of 70. Note
that in the example, E′ consists of {a, b, c, d} and all non-empty subsets of it,
except {a, b}, {b, c}, {c, d}, {a}, {b}, {c} and {d}.

Recently, a substantial extension to the original framework of IFM has been
introduced in [16] that pertains to the role played by the itemsets I that are
in E′. This formulation explicitly considers an extra input parameter σ′ which
defines a maximum support threshold over the itemsets in E′ so that, by keeping
the threshold small, itemsets in E′ are constrained not to be frequent. This
version of the problem is called inverse frequent itemset mining problem with
infrequency constraints (IFMI). The goal is to find a database D for which the
supports on the itemsets both in E and in E′ are satisfied. Such a solution may
contain arbitrary transactions; however, by keeping the support σ′ small, we
can avoid these “extra” itemsets to become frequent in the solution database.
Further extensions of IFM have been recently investigated in [25], including the
formulation of the problem for generating NoSQL databases.

To enforce σ′-infrequency for the itemsets in E′, by the anti-monotonicity
property, it is sufficient to apply the constraint to the set of the minimal infre-
quent itemsets in E′, called the negative border in the literature (see [15]). As
evidenced in [3,15,16], the negative border coincides with the set of minimal
transversals of the complement hypergraph H = (V,E). It turns out that, by
setting σd = σ′, the FIDHy problem is the hypergraph formulation of IFMI. In the
example the set of the minimal infrequent itemsets in E′ is {{a, c}, {a, d}, {b, d}}.
If we fix σ′ = 40, a feasible database for IFMI is D2, shown in Table 1-c. The
infrequency support constraint is satisfied as the supports of {a, c}, {a, d}, {b, d}
are respectively 40, 0 and 40.
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The theorem below states that the Frequent-Infrequent Duplicated Hyper-
graph Problem is NEXP-complete. Recall that NEXP is the class of decision prob-
lems that can be solved by a non-deterministic Turing machine using time
O(2p(n)) for some polynomial p(n), where n is the size of the input (see [21]).

Theorem 5. The FIDHy problem (aka, the decision IFMI problem) is NEXP-
complete.

Proof. The proof, included in the Appendix [23], uses some duality properties
on hypergraph composition operators that we mention here for their potential
general interest. Given two sets of hyperedges E1 and E2, let E1�E2 denote the
set of hyperedges {I ∪J | I ∈ E1, J ∈ E2}. Let H1 = (V1, E1) and H2 = (V2, E2)
be two hypergraphs having distinct vertices, i.e., V1 ∩V2 = ∅. Then: (1) H1 ∪H2

denotes the hypergraph (V1 ∪ V2, E1 ∪ E2) (union) and (2) H1 � H2 denotes the
hypergraph (V1 ∪ V2, E1 � E2) (product). The following properties hold:

Lemma 1. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs with dis-
tinct vertices. Then: (H1 ∪ H2)d = Hd

1 � Hd
2 and (H1 � H2)d = Hd

1 ∪ Hd
2. �

The proof of the lemma is reported in the Appendix [23] as well. We point
out that the hardness proof of the Theorem is based on a reduction from the
binary domain inverse OLAP problem studied in [24]. �

Consider now the case that the input duplicated hypergraph H = (V,E, δ) is
k-bounded, for a given rational constant k: the set of all such instances is called
the Frequent-Infrequent Duplicated k-Bounded Hypergraph Problem, k-FIDHy for
short. The set of IFMI instances corresponding to the instances of k-FIDHy is
called the k-IFMI problem.

Proposition 4. The k-FIDHy problem (aka, the decision k-IFMI problem) is in
PSPACE and NP-hard. �

As we argued in the Introduction, our conjecture is that κ(x) is small in real
instances of IFMI and that only very artificial instances get a parameter value
much greater than 3, i.e., in practice real world instances of IFMI are indeed
instances of 3-IFMI. We next make a further step to reduce the complexity of
the problem by relaxing the integer range of the function δ̂: we replace it with
a function δ̂Q : ̂E → Q+, where Q+ is the set of non-negative rational numbers.
We call this version of the problem relaxed k-FIDHy.

Proposition 5. The relaxed k-FIDHy problem (aka, the decision relaxed k-IFMI
problem) is NP-complete. �

Despite we have reduced its complexity from NEXP of NP, the problem remains
intractable. Nevertheless, a solution approach for k-IFMI has been proposed in
[16], which has been shown in a large number of experiments to be very effective
in solving large instances of both synthesized and real datasets. This solution is
based on a version of the simplex method, called column generation (see, e.g.,
[6]), that is suitable to handle a large number of variables (large-scale linear
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programs). This method solves a linear program without explicitly including all
columns in the coefficient matrix but only a subset of them with cardinality equal
to the number of rows (i.e., constraints). Columns are dynamically generated by
solving an auxiliary optimization problem called the pricing problem, which has
been proved in [16] to be NP hard for k-FIDHy. A heuristic polynomial-time
algorithm to solve the pricing problem is provided in that paper, that enables
an effective solution of k-IFMI (thus k-FIDHy). The method allows us to handle
linear programs with an enormous number of variables (from 1022 to over 10240 in
the experiments of [16]) using a polynomial amount of space. Those experiments
reveal that exponential time is not gotten in practice as it happens for the classic
execution of the simplex algorithm.

4 Conclusion

Given a hypergraph H = (V,E) with n vertices in V and m hyperedges in
E, dualization is the problem of enumerating all minimal transversals of H.
Dualization is at the core of a number of important problems in the areas of
knowledge discovery, machine learning, and more generally in AI and knowledge
representation.

In this paper we have defined an upper bound m̃d to the number md of
minimal transversals of H and have shown that this bound can be computed in
polynomial time. This bound is based on the structure of the complement hyper-
graph H = (V,E) of H, that is the hypergraph obtained from H by replacing
every I ∈ E with I = V \ I. Obviously m = |E| is equal to m. Let n̄ = |V | ≤ n,
where V = ∪Ī∈Ē Ī is the set of vertices that are not included in all hyperedges
in E. In addition, n̄2 = |V 2|, where V 2 = {{v1, v2}| v1, v2 ∈ V and ∃Ī ∈ E s.t.
{v1, v2} ⊆ Ī} is the set of vertex pairs that are not included in some hyperedge
in E.

The upper bound m̃d is equal to md
1 + md

2 + m̃d
3+ , where md

1 = n − n̄ is
the number of singleton minimal transversals, md

2 = n̄(n̄ − 1)/2 − n̄2 is the
number of two-vertex minimal transversals and m̃d

3+ is an upper bound of the
overall number of minimal transversals with 3 or more vertices. We have defined a
formula that computes the value of m̃d

3+ in time O(n·m2), that takes into account
a particular type of intersection between any two complement hyperedges. We
have introduced a parameter κ(H) = logn̄(md

2+m̃d
3+) to estimate the magnitude

of m̃d w.r.t. n̄ in a hypergraph H, so that we can write m̃d = md
1 + n̄κ(H) =

n − n̄ + n̄κ(H).
A surprising result is that the necessary condition for a super-polynomial

growth of the upper bound requires that the hyperedges in the complement
hypergraph of H have intricate overlappings that may arise only when the hyper-
edges of H have small sizes and limited intersections. Such conditions character-
ize the bounded hypergraphs studied in [18], for which dualization can be com-
puted in incremental polynomial time, i.e., finding every new minimal transver-
sal is polynomial and a possible overall exponential complexity depends on the
number of minimal transversals.
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It turns out that there is a sort of complementarity between the two defini-
tions of boundness for a hypergraph H: the definition of [18] fixes bounds to the
sizes and the intersections of the hyperedges in H, whereas the bounds in our
definition concern the size and intersections of the complement hyperedges. For
a bounded hypergraph according to [18], the computation of every new minimal
transversal (duality problem) is done in polynomial time but this step must be
iterated for a number of times that can be exponential. Instead, for a bounded
hypergraph according to our definition, every duality problem cannot be in gen-
eral solved in polynomial time, but the number of iterations is limited as the
number of minimal transversals is polynomial. It turns out that dualization may
be intractable in the worst case but it is often effectively solved in practice. This
is confirmed by the results of the fact that it has been devised a deterministic
algorithm in [13] that solves duality in quadratic logspace and there are classes
of hypergraphs for which dualization is in FPT (fixed-parameter tractability)
[5]. As stated in [26], “the worst-case approach is simply too pessimistic and
tells us too little about algorithmic performance in practice (. . . ) Going beyond
worst-case complexity is a key challenge in complexity theory and is the subject
of much current research.” Our paper follows this approach.

In addition, as dualization is at the core of important data mining problems
concerned with finding itemsets in a transaction database that are frequent or
infrequent w.r.t. to given frequency thresholds, we have analyzed the complexity
of IFMI (Inverse Frequent itemset Mining with Infrequency constraints) by using
a hypergraph formalization of the problem and by exploiting the upper bound
m̃d. Also in this case, despite the high worst-case complexity, the problem can
be effectively solved in practice.
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Abstract. Question Answering (QA) over Knowledge Graphs (KGs)
has gained its momentum thanks to the spread of the Semantic Web.
However, despite the abundance of methods proposed in this field, there
are still many aspects that need to be fully covered. One of them is the
generation of SPARQL queries with modifiers, i.e. queries that are made
up not only by triple patterns but also other terms belonging to the
SPARQL syntax, such as FILTER, LIMIT, COUNT, ORDER BY. This
task results difficult to accomplish in a generic way since the matching
with natural language is not straightforward. Few works try to address
this complex issue. In this paper, we propose a new approach to handle
and to generate queries containing modifiers. Our method is able to gen-
erate queries with multiple modifiers, it is easily extendable to cover new
modifiers and new languages, and it is independent of the KG struc-
ture. Our approach represents an extension of an existing work called
QAnswer.

Keywords: Question answering · SPARQL · Knowledge graphs ·
Modifiers · Multilingual · Qanswer

1 Introduction

The research field of Question Answering (QA) aims to build a system able to
automatically answer questions exploiting one o more data sources. Since the
kind of data source deeply influences the methods that have to be employed to
answer a question, the research on this topic is usually categorized in systems
that employ unstructured data sources (books, articles, etc.) and the ones that
use structured data sources (databases, knowledge graphs). Moreover, there are
also hybrid approaches which try to combine the information from both data
sources.

QA over structured data started in the late sixties. Then the spread of
databases and the number of non-expert users of these technologies create the
urge for natural language interfaces able to allow an easier access to this informa-
tion [1]. After the advancement in the Semantic Web area, it was straightforward
c© Springer Nature Switzerland AG 2019
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that QA systems could undoubtedly help to access the information that is con-
tained in Knowledge Graphs (KG).

The literature on this topic is now wide and many approaches have been
proposed. Nevertheless, a definitive solution has not been reached yet due to
the complexity of this task. There are three main issues that QA systems have
to overcome in order to accomplish their goal: bridge the lexical gap, i.e. match
words in the question to the right resource in the KG, resolve the ambiguities,
i.e. choose the right resource among the others according to the context, and
finally construct complex queries, i.e. capture the semantics of the question and
its intent, and build a SPARQL query expressing the same meaning.

In this paper, we tackle the last issue: generation of SPARQL queries with
modifiers for QA systems over Knowledge-Graphs. By SPARQL queries with
modifiers, we refer to queries that not only contain triple patterns but also
other SPARQL syntax like filters, aggregates (sum, avg, max ) and functions.
Throughout the paper we will use the terms “SPARQL modifiers” or simply
“modifiers” for referring to those queries.

The idea that a QA system should also be able to support modifiers is due
to the fact that some recurrent natural language requests can only be answered
by these types of queries. Some example of such requests are: “Which mathe-
maticians were born before 1600?”, “In which year was Barack Obama born?”,
“How many cities have more than 10,000 inhabitants?”.

The objective of this paper is to present an approach that is able to deal
with this type of questions. It represents an extension of QAnswer [2], a QA
system that allows generating queries with a fixed number of triple patterns.
The approach proposed in this paper is extensible so that new modifiers can be
added. It is designed to work for both keywords and natural language questions.
Moreover, the approach supports multiple languages.

The paper is organised as follows. In Sect. 2 we present related works. In
Sect. 3 we describe the QAnswer approach that will be extended in this work.
The new approach is described in Sect. 4. We describe the experiments and the
demonstrator in Sect. 5, while conclusions are reported in Sect. 6.

2 Related Work

The problem of generating queries with modifiers is a well know problem in
QA over KGs as described in the most recent surveys of this domain [3,5]. In [5]
the challenge of generating “complex queries” is described, i.e. generating queries
that are different from a SELECT query with only one triple pattern. Queries with
modifiers are included in the category of complex queries. In [3] the challenge of
dealing with “Aggregations, comparison, and negation operators” is mentioned.
These challenges include some specific SPARQL syntax and is, therefore, a subset
of the more general problem of generating queries with modifiers.

Although being recognized as a main issue of QA over KG [3,5], handling
modifiers is still poorly addressed in the literature. The interest in this topic is
surely increasing as shown by the increase in the number of queries containing
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modifiers which are included in nowadays datasets for QA. In Table 1 we show the
results of an investigation of the modifiers that appear over the last three editions
of the QALD dataset1 and the LC-QuaD dataset2. However, it is important to
notice that the list of modifiers that appear in Table 1 is not exhaustive: they
represent only a very small subset of all modifiers defined by SPARQL. Even if
some modifiers are not included in any dataset at the state of the art, they are
needed to answer questions posed by users.

Table 1. Distribution of modifiers over different datasets.

Modifier QALD9
(train)

QALD9
(test)

QALD8
(train)

QALD8
(test)

QALD7
(train)

QALD7
(test)

LC-QuaD
(train)

LC-QuaD
(test)

ASK 37 4 34 0 29 0 285 83

FILTER 32 16 9 1 10 3 0 0

LIMIT 45 12 23 8 19 6 0 0

COUNT 26 11 8 1 7 1 535 123

GROUP BY 3 3 0 0 0 0 0 0

ORDER BY 42 12 23 3 19 6 0 0

UNION 29 17 2 0 3 1 0 0

w/o modifiers 268 98 151 30 155 34 3179 793

Total Size 408 150 219 41 215 43 4000 1000

Regarding the approaches already proposed in the literature to cope with
this problem, a true evaluation of the state of the art is very difficult to accom-
plish. This is due to the fact that the performance of QA systems are always
evaluated using metrics that take into account only the answers provided, while
the SPARQL translation is ignored. Usually, this is done because there can be
more than one SPARQL query capable to retrieve the same answer and calculate
the accuracy of each method would be troublesome. To make a proper compari-
son both results and SPARQL translations of each system should be considered
and properly analyzed. Moreover, since complex queries are often considered as
a rarity, novel QA methods usually focus more on addressing other problems
such as the lexical gap or ambiguity and handling only simple modifiers like
COUNT or ASK. Only a few works discuss the possibility of generating queries
with modifiers. We describe them in the following.

Pythia [10], performs an analysis of the input question to build a linguistic
representation of its ontology independent part. These representations can be
compositionally combined to represent the structure of complex queries. The
authors state that spatial propositions, adjectival modifiers, superlatives, aggre-
gation, comparisons, and negations can be handled by their method. However,

1 http://qald.aksw.org/.
2 http://lc-quad.sda.tech/.

http://qald.aksw.org/
http://lc-quad.sda.tech/
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the proposed approach has been tested only on a closed-domain dataset, i.e.
Geosystem3 since at the time of the publication the QALD dataset did not exist
yet. In [9], the authors use a template based method to construct queries for a
given question. They use the same parsing and meaning construction mechanism
used in Pythia. This method implies the use of the Lexicalized Tree Adjoin-
ing Grammar (LTAG) for syntactic representation and of Dependency-based
Underspecified Discourse REpresentation Structures (DUDEs) for semantic rep-
resentations. Both these representations offer the advantage to be designed for
compositionality, however, they appear difficult to modify to cover new kind of
query structures. Moreover, they are strongly dependent on the language thus
the approach is hardly adaptable to new languages.

In Intui3 [4], the syntactic and semantic information produced by two stan-
dard NLP tools is used to split the question in chunks and determine their inter-
pretation. Among the different types of chunks there are the functional ones
which correspond to lexical cues and correspond to functions such as COUNT, min
or max. System CASIA [7] use pre-defined SPARQL templates to generate the
final query. It can only handle the count modifier.

To summarize, there are only a few works that tried to tackle the problem
of generating SPARQL queries with modifiers. Most of the state of the art is
concentrating on generating triple pattern queries.

3 QAnswer: Existing Approach

In this section, we describe the existing approach we build on. It can be decom-
posed into four steps: Query Expansion, Query Construction, Query Ranking,
and Answer Decision. A schematic description of the four steps is depicted in
Fig. 1.

In the query expansion phase, all consequent n-grams in the questions are
analyzed and mapped to potential resources in the KG. An important issue is
how to select the right resources that actually reflect the meaning of the original
question.

In the query construction step, we start from all the resources identified in
the previous step. Out of the identified resources, all possible SPARQL queries
are generated, i.e. all SPARQL queries whose triple patterns are made up by
these resources or which gives directly back one of these resources.

For further discussion, we introduce the following notation. Each query is
made up by a pair of a triple pattern and projection variable. We denote such
pair as P . Thus we can say that this step returns a list of pairs P that in the
following we denote as List(P ).

In the query ranking phase, the queries created in the previous step are
ranked based on a series of features. Some of these include: how many words
in the questions are associated with resources in the SPARQL queries and how
similar is the label of the resource to the corresponding resource in the question.
The objective is to get the correct query in the top position.
3 ftp://ftp.cs.utexas.edu/pub/mooney/nl-ilp-data/geosystem/.

ftp://ftp.cs.utexas.edu/pub/mooney/nl-ilp-data/geosystem/
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Finally, in the answer decision phase, the first ranked query of the previous
phase is analyzed. The goal is to decide if the query matches the user intent or
not. This is, for example, necessary when the KG does not contain the infor-
mation requested by the user. In this case, none of the constructed queries will
express the user intention and no answer should be given. For a more detailed
description of this process we refer to [2].

This approach has a number of advantages over traditional methods [3].
These include:

– Robustness: users can ask questions using keywords (comedians turin born
in), natural language questions (What are comedians born in Turin?) and
even malformed questions (Comedians that born in Turin?), i.e., syntacti-
cally wrong questions. The algorithm is robust enough to deal with all these
scenarios (spelling mistakes are not considered).

– Multilingualism: the approach can be applied to other languages, i.e.:
English, German, French, Italian, Spanish, Portuguese, Arabic and Chinese.

– Portability: making QA system over a new dataset can be difficult. Some
approaches need a lot of training data, others are not designed to be portable
at all. The approach depicted above was applied to a number of different
datasets including Wikidata, DBpedia, Dblp, Freebase, MusicBrainz, Sci-
graph, and LinkedGeoData.

– Multi-Knowledge Base: the algorithm allows to query multiple Knowledge
Bases at the same time.

– Precision and Recall: the algorithm was tested on multiple benchmarks
and can compete with most of the existing approaches.

The goal of this work is to extend the method described above to also
cope with questions with modifiers while trying to maintain the aforementioned
features.

4 Improved Approach Supporting Queries with Modifiers

In this section, we describe our approach for supporting queries with modifiers,
and how we modified the existing process of QAnswer. We follow one of the
principles of QAnswer which is to ignore the syntax of the question and to build
interpretations of the question based on the semantics of the words. We introduce
three steps in QAnswer’s original process as shown in Fig. 2.

4.1 Pre-processing

The first new element in our pipeline is the pre-processing step. In this step, tem-
poral expressions and numerical values within the natural language question are
identified and normalized. For the running example “How many comedians were
born in Turin after 1970” we want to identify the date “1970” and normalize it
to the time interval between the “01-01-1970” and the “31-12-1970”. Another
example would be “Italian comedians born in the 70s.” where we want to identify



Question Answering with Operators 215

Fig. 1. Conceptual overview of the
QAnswer approach

Fig. 2. Evolution of the QAnswer process
to generate queries with modifiers

the expression 70s and normalize it to the time between the “01-01-1970” and
the “31-12-1979”. Moreover we identify different prepositions like before, in or
after. For performing this task, we decided to exploit HeidelTime [8], a multilin-
gual temporal tagger that allows to detect and normalize temporal expressions
according to the TIMEML [6] annotation standard. Given a temporal expression
such as 70s, HeidelTime assigns to it a TIMEX3INTERVAL tag and also retrieves
the normalized interval. It is important to notice that HeidelTime only recog-
nizes the temporal expression and does not consider the presence of expressions
like “before” and “after”. We take over the management of this aspect. Similarly
in the pre-processing step we also identify numbers. Note that currently we do
not identify expressions like: “Give me cities with more than hundred thousand
inhabitants.”. While this is not done yet, this step should also be used to iden-
tify and normalize units and currencies. To summarize, for our running example
we would identify two expressions: (1) 1950, as a date, normalized as the time
interval between “01-01-1950” and the “31-12-1950”; (2) 1950, as a number.

4.2 Question Analysis

In this step, potential modifiers are identified. The main idea behind our app-
roach is that SPARQL modifiers are triggered by specific linguistic patterns. For
example in the question “How many comedians were born in Turin after 1970?”
the pattern “How many” can trigger a COUNT and the pattern “after 1970” a
FILTER. There is a wide variety of patterns, and several linguistic patterns can
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correspond to a single modifier. For example the two questions “Total number
of comedians born in Turin after 1970?.” and “How many comedians were born
in Turin after 1970?” require that the construct COUNT appears in the query
translation: in the former question this is triggered by the noun total, while in
the latter by the locution How many.
Linguistic patterns can thus be difficult to identify even when including in the
pipeline the most effective Natural Language Processing tools such as depen-
dency parsers. Nevertheless, an interesting feature of these linguistic patterns
is that they are usually composed by adverbs, prepositions and other locutions
which are less likely to be affected by some lexical inflections. We thus exploited
this characteristic to design a set of rules able to capture these linguistic varia-
tions and link them to the proper SPARQL modifiers. To be flexible towards new
expressions we designed a structure to add new rules. Here are some examples:

– COUNT,en,how many
– FILTER(=),en,literaldate
– LIMIT,it,literalnumber

The first one triggers the COUNT modifier for English questions that contain the
expression “how many”. The second triggers a FILTER modifier with equality
operator when in an English question a date is matched. The third one triggers
a LIMIT modifier in an Italian question if a number is matched.
The general structure of a rule is defined by the following items:

– Modifier: the modifier that the regex pattern indicates as potential syntax
element in the final query;

– Operator (optional): an operator that may change the modifier (like the “=”
in the FILTER(=) rule);

– Language: the language for which this rule is used (we adopt the format
described by RFC30664).

– Regex: the linguistic pattern that has to be found in the question;

In this step, all existing rules are taken into consideration and if one is matched,
the corresponding modifier is attached to the question. Note that we do not
impose that the final query must include all these operators, but we only take into
consideration that they might be used to generate it. For the running question
“How many Italian comedians were born after 1970”, there are five rules that
will match with the question. The phrase “How many” can indicate that the final
query can contain a COUNT modifier. Moreover, the expression “1970” triggers
that the final query can contain an equality filter for the date 1970, a numeric
filter with the number “1970” or it could require to limit the number of results
to 1970. Finally the expression “after 1970” implies that the final query could
contain a filter on a date bigger or equal than “1970”. To summarize, in the
Question Analysis step the following modifiers are identified:

4 https://tools.ietf.org/html/rfc3066.

https://tools.ietf.org/html/rfc3066
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– COUNT,en,how many
– FILTER(=),en,literaldate
– FILTER(=),en,literalnumber
– LIMIT,en,literalnumber
– FILTER(>),en,after literaldate

Once all the modifiers are recognized, they are stored in a list that we denote
by List(M). For the running example it includes the following modifiers:
List(M) = {COUNT, FILTER(=) (literaldate), FILTER(=) (literalnumber), LIMIT,
FILTER(>)}. The list is used in the query modification step and it does not
affect the expansion and query construction steps which are described in Sect. 3.

4.3 Query Modification

The query modification step follows both the Query Analysis step and the Query
Construction step. The first step returns a list of modifiers List(M) while the
second returns a list of pairs List(P ) containing triple patterns and projection
variables.

For the considered example, List(M) = {COUNT, FILTER(=) (literaldate),
FILTER(=) (literalnumber), LIMIT, FILTER(>)} . Let Q be the SPARQL query
we want to generate, i.e. the one corresponding to the user’s question. By con-
struction, the list List(P ) generated in the query construction step contains the
triple pattern of Q. Moreover, the modifiers in Q are contained in List(M). This
means that by combining the elements in List(M) and List(P ) it is possible to
generate Q.

The goal of this step is thus to apply the modifiers in List(M) on the list of
triple patterns and projection variables in List(P ). In this way, a list of queries
with modifiers will be generated. This list by construction also contains the query
Q.
The key observation in this step is the following. While in theory every element
in List(M) should be applied to List(P ), this does not necessarily mean that
each modifier can be applied to each pair of a triple pattern and projection
variable. This considerably reduces the complexity of the problem. We want to
explain this in detail for some modifiers.

– COUNT: If the result of the triple pattern is a list of resources, it is semantically
meaningful to add in the head of the query a COUNT operator. This happens
for example in the question: “How many children has Barack Obama?”. On
the contrary, if the result of the triple pattern is a number, then it is not
semantically meaningful to add a COUNT operator. For example for the
question “What is the population of Boston?” the result of the projection
variable is an integer. In this case, including a COUNT operator does not
make sense and would lead to a wrong answer. To summarize, a COUNT can
be applied to all pairs of P where the projection variable is not a number.

– FILTER(=),literalnumber: A filter with a number can only be applied if the
variable that is filtered is a number. So it makes semantically sense to apply
this modifier if this condition is met.
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– ORDER BY: An order by can only be applied to a variable that is either numer-
ical, expresses dates or a list of literals. It does not make sense to apply it to
a list of resources.

– MAX: It is important to apply the MAX modifier only if the projection vari-
able is numeric or a date. If the projection variable contains resources then
applying the MAX modifiers does semantically not make sense.

Note that while these constraints are straightforward, they considerably reduce
the number of queries that can be generated by combining List(M) with List(T ).

If P is a pair of a triple pattern and projection variable and, M is a modifier
then we denote with query(P,M) the query that can be generated by combining
the modifier M with the pair P .

Finally, note that to each element in List(T ) several modifiers in List(M) can
be applied. We control this with a variable K that indicates the maximum num-
ber of modifiers that can be applied to each pair P . The Algorithm 1 describes
the procedure that we use to combine List(T ) with List(M). This concludes the
description of the extensions that we made to the original QAnswer algorithm.

Data: List of pairs List(P ), list of modifiers List(M), integer K
Result: List(Q) of queries that can be generated by applying at most K of the

modifiers in List(M) on the pairs in List(T )
1 List(Q) = List(P ); for PinList(P ) do
2 for i = 0; i < K; i + + do
3 for MinList(M) do
4 List(Q) = List(Q) ∪ query(P,M)
5 end

6 end

7 end
8 return List(Q)

Algorithm 1. Algorithm to compute all queries that can be generated by
applying at most K of the modifiers in List(M) on the pairs in List(T )

4.4 Advantages and Limitations

To summarize our approach, in the first step the question is analyzed to identify
candidate resources and modifiers it could refer to. In the second step, these
resources and modifiers are combined by taking into consideration the informa-
tion in the KG and the semantics of the modifiers. Our solution has the following
main advantages, which are consistent with the ones presented in Sect. 3:

– Robustness: keyword questions are supported as well as full sentences. It is
possible to formulate questions like “Barack Obama year born” or “British
scientists 5”. This is due to the fact that in the Question Analysis step we
rely only on upon regular expressions and we do not use POS tagging or
dependency parsing rules to extract patterns;
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– Multilingualism: our approach is easily extensible to cover new languages.
For example, the rule “how many, en, COUNT” can be adapted to other
languages by simply changing the regex and the target language: the Italian
equivalent for the aforementioned rule would be “quanti, it, COUNT” while
for German, it would be “wie viele, de, COUNT”.

– Portability: our proposal does not rely on how the Knowledge Graph is
structured. It is thus portable to new datasets. For example, consider the
question “How many children has Barack Obama?”. The right SPARQL query
is deeply influenced by how this information is encoded: the property to con-
sider to get the answer could have as object either the resources identifying
Obama’s children or the integer “2”. In the first case, the final query should
contain a COUNT modifier, while in the latter, there is no need for a modi-
fier since the object is already the answer we are looking for. Our method
attempts to construct both queries and generates only the valid ones.

– Multi-Knowledge Graph: our approach is still valid even if multiple KG
are queried. This characteristic of QAnswer is not altered by the newly intro-
duced steps.

Regarding the disadvantages, our approach is affected by the problem of the
lexical gap. This means that even if the query modifiers are correctly identified,
the final SPARQL query might still be erroneous due to a mismatch between a
word in the question and the resources in the KG. This is particularly true when
coping with the ORDER BY modifier which is usually triggered by superlatives: in
the question “Who is the tallest basketball player?” even if we correctly iden-
tify the presence of the superlative “tallest” and construct a query having the
ORDER BY and LIMIT modifiers, the missing match between “tall” and the
property dbp:height in the KG leads to a wrong result.

5 Implementation and Experiments

In the current implementation, we support the list of modifiers shown in Table 2.
To support all linguistic expressions that trigger these modifiers, we defined 136
rules in 4 different languages.

To test our approach we carried out two experiments. The first consisted of
running our algorithm over the questions in the QALD-9 test set that involve
modifiers. There are 53 questions in QALD-9 that involve modifiers. We evalu-
ated them using precision, recall and F-Measure as in the official challenges. As
a result, we obtain a Precision of 0.11, a Recall of 0.12, and an F-Measure of
0.11. This means that with the current approach we are able to solve only 10%
of the questions with modifiers that are contained in the QALD-9 test set. This
result is caused by three particular reasons.

The main cause of failure is represented by the lexical gap, which means
that the system does not map the natural language question to the right KG
resources. The lexical gap problem can arise in different contexts. For example,
for the question “How many seats does the home stadium of FC Porto have?”
two triple patterns need to be involved in the final query, i.e. dbr:FC Porto
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Table 2. Modifiers supported in the current version.

Modifiers Example question

ASK Is Dante Alighieri the author of the Divine Comedy?

COUNT How many books are written by George Orwell?

How many inhabitants has London?

FILTER (date) Which actors are born before 1980?

FILTER (number) Books with more than 500 pages

FILTER (string) Divine Comedy in Japanese

LIMIT 5 mountains in Italy?

SUM Give me the sum of books written by Oscar Wilde

AVG

GROUP BY How many books did each author write ?

ORDER BY Give me the most populated city

Temporal Functions
(e.g. YEAR, MONTH)

In which year was Barack Obama born?

How old is Barack Obama?

How many years ago was Italy founded?

dbo:ground ?ground. and ?ground dbo:capacity ?capacity. However, our
system does not connect the 1-gram “seats” to the property dbo:capacity due
to the great lexical gap and this provokes an error in the query construction
step. In the question “How many grandchildren did Jacques Cousteau have?”
the problem lies in the noun “grandchildren” which holds a specific semantic, i.e.
“children of children”. Our systems maps “grandchildren” with dbp:children
only once and not twice as required by the correct query.

Another cause of failure is represented by the presence of modifiers which are
not covered by our set of rules. For example in the question “Which countries
have more than ten volcanoes?” there is the phrase “more than ten” which should
trigger the modifier GROUP BY ?uri HAVING ( COUNT(?x) > 10 ) where ?x is
a variable representing the volcanoes and ?uri is a variable representing the
countries. The having modifier is still not covered by our method, moreover as
stated in Sect. 4, our preprocessing step is still unable to trace “ten” back to its
numerical value.

Finally, there are some questions like “Which space probes were sent into
orbit around the Sun?” which involve resources belonging to The Dublin Core5

namespace that are difficult to map like http://purl.org/dc/terms/subject which
is used in the triple pattern ?s dct:subject dbc:Missions to the Sun.

To summarize we can say that the questions with modifiers that appear
in QALD are very hard to solve in a general manner. Moreover, many of the
questions in QALD use modifiers to deal with KG problems, like dealing with

5 http://dublincore.org/.

http://purl.org/dc/terms/subject
http://dublincore.org/
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properties that express the same semantics. A detailed table showing the result
for each question in the dataset can be found at https://bit.ly/2GfOwF1.

We carried out a second experiment where we constructed a dataset of ques-
tion over Wikidata containing modifiers. The dataset contains 89 English ques-
tions. The dataset can be downloaded at https://bit.ly/2IsvNrs. We evaluated
them using precision, recall, and F-Measure as in the official challenges. As a
result, we obtain a Precision of 0.87, a Recall of 0.87 and an F-Measure of 0.87.
The main source of problems is the ranking of the generated queries that is some-
times failing. All experiments were carried out by fixing the maximum number
of triple patterns per query to 3 and the maximum number of modifiers per
query to 2. A demo showing the system can be found under http://qanswer.eu/
qa. The support of the modifiers is currently limited to English, French, Italian,
and German. We plan to add the support for the other languages by extending
the configuration file soon.

6 Conclusions and Future Work

In this work, we have focused on the issue of complex queries in QA over KGs
and, in particular, on the task of generating queries containing modifiers. Com-
plex queries with modifiers constitute one of the main challenges for this research
field, however, at the state of the art there is no work which analyzes this problem
in depth.

We have proposed a solution based on the use of a set of rules which allows
robustness, multilingualism, portability, and independence from the underlying
KG. The analysis of the results obtained over the QALD-9 test set shows that
there is still room for improvement, and the questions proposed in current chal-
lenges are hard to tackle. In particular, the lexical gap has a deep influence over
the capability of the system on handling this kind of questions. We have pre-
sented a new benchmark for this type of challenge and we could show that the
presented approach is able to generate queries with modifiers for questions with
a low lexical gap.

This work opens new challenges in the domain of QA over KGs. One is to
inform the user about the interpretation that the system gave to the question
in the case the generated SPARQL query contains modifiers. A second is the
visualization of the result sets that need to be ordered or grouped. Moreover,
the study of modifiers showed also the limits in current KG in the handling and
normalization of units. As future work, we plan to further extend the list of our
rules in order to cover more languages and modifiers, especially those triggered
by the presence of superlatives in the input question.

https://bit.ly/2GfOwF1
https://bit.ly/2IsvNrs
http://qanswer.eu/qa
http://qanswer.eu/qa
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Abstract. In this paper, we discuss a theorem of the alternative for
integer feasibility in a class of constraints called Unit Two Variable Per
Inequality (UTVPI) constraints. In general, a theorem of the alternative
gives two systems of constraints such that exactly one system is feasi-
ble. Theorems of the alternative for linear feasibility have been discussed
extensively in the literature. If a theorem of the alternative provides a
“succinct” certificate of infeasibility, it is said to be compact. In general,
theorems of the alternative for linear feasibility are compact (see Farkas’
lemma for instance). However, compact theorems of the alternative can-
not exist for integer feasibility in linear programs unless NP= coNP.
A second feature of a theorem of the alternative is its form. Typically,
theorems of the alternative connect pairs of linear systems. A graphical
theorem of the alternative, on the other hand, connects infeasibility in
a linear system to the existence of particular paths in an appropriately
constructed constraint network. Graphical theorems of the alternative
are known to exist for selected classes of linear programs. In this paper,
we detail a compact, graphical theorem of the alternative for integer
feasibility in UTVPI constraints.

1 Introduction

In this paper, we introduce a graphical theorem of the alternative for integer fea-
sibility in a class of constraints called Unit Two Variable Per Inequality (UTVPI)
constraints. Typically, theorems of the alternative connect pairs of linear systems
and have the following form: Given two linear systems A and B, exactly one of
them is feasible. System A is called the primal system and System B is called
the dual system. It is not hard to see that theorems of the alternative provide
certificates of infeasibility. If this certificate of infeasibility is “succinct”, i.e.,
polynomial in the size of the input, then it is said to be compact.

The most celebrated theorem of the alternative was proposed by Gyula Farkas
in [4]. Succinctly put, the theorem states that if a given vector c does not lie in
the positive span of a set of vectors S, then there must exist a hyperplane y,
which separates the set S and the vector c. Although this theorem was proved
more than a hundred years ago, new proofs of this theorem continue to be inves-
tigated and published (see [3]). In [22], Farkas’ lemma is proved as a corollary
of the correctness of the Fourier-Motzkin elimination method [15]. A number of
c© Springer Nature Switzerland AG 2019
M. Alviano et al. (Eds.): AI*IA 2019, LNAI 11946, pp. 223–234, 2019.
https://doi.org/10.1007/978-3-030-35166-3_16
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different theorems of the alternative such as Gordan’s theorem [7] and Stiemke’s
theorem [18] have been documented in [11].

Theorems of the alternative for integer feasibility are less common. In gen-
eral, a compact theorem of the alternative for integer feasibility cannot exist
unless NP= coNP. However, the literature documents Farkas type lemmas for
a number of specialized integer programs [10]. Note that the integer feasibility
problem for UTVPI constraint systems (UCS) is in P. However, this fact by
itself does not guarantee the existence of natural certificates of infeasibility.

A graphical theorem of the alternative, on the other hand, relates infeasibil-
ity in a linear system to the existence of particular paths in an appropriately
constructed constraint network. Such theorems of the alternative are known to
exist for selected classes of linear programs. For instance, it is well-known that a
system of difference constraints (constraints of the form xi −xj ≤ cij) is infeasi-
ble if and only if the corresponding constraint network contains a negative cost
cycle [14]. The property of Total Unimodularity [13] ensures that a difference
constraint system is linearly infeasible (does not contain any point) if and only
if it is integer infeasible (does not contain an integer point). Thus, technically,
a negative weight cycle is also a graphical theorem of the alternative for inte-
ger feasibility of a system of difference constraints. However, the focus of this
paper is on UTVPI constraints, where linear feasibility does not imply integer
feasibility.

UTVPI constraints occur in a number of problem domains including but
not limited to program verification [9], abstract interpretation [2,12], real-time
scheduling [6], game theory [21], and operations research. Indeed many soft-
ware and hardware verification queries are naturally expressed using this frag-
ment of integer linear arithmetic, i.e., the case in which the solutions of a UCS
are required to be integral. We note that when the goal is to model indices of
arrays and queues in hardware or software, rational solutions are unacceptable
[9]. Other application areas include spatial databases [17] and theorem proving.
UTVPI constraints are the invariants of the octagon abstract domain in [12]. For
a detailed discussion on the related work in UTVPI constraints, the interested
reader is referred to [9] and [1].

A graphical theorem of the alternative for UTVPI constraints was described
in [9]. However, it is important to note that our work differs from the work in
[9] in that the work in [9] utilizes a different graphical construction than the one
used by our paper. Likewise, [16] describes an incremental implementation of
[9]. Additionally, our theorem of the alternative utilizes the constraint network
corresponding to the original system without any added constraints. Thus, we
do not need to prove that the constraints in a certificate of infeasibility are
derivable from the original system since they are guaranteed to be part of the
original system.

Our result provides a different perspective on the integer infeasibility of UCSs
compared to these other approaches. This is similar to the different perspective
on linear infeasibility offered by Gale’s theorem [5], Gordan’s theorem [7], and
Stiemke’s theorem [18] when compared to Farkas’ lemma [4].
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The rest of this paper is organized as follows: In Sect. 2, we introduce the
problem being studied. Section 3 briefly describes the network construction used
by our theorem of the alternative. Our theorem of the alternative is presented in
Sect. 4. We conclude in Sect. 5 by summarizing our contributions, and outlining
avenues for future research.

2 Statement of Problem

In this section, we formally define the integer feasibility problem in UTVPI
constraints and also define the various terms that will be used in the rest of the
paper.

Definition 1. A constraint of the form xi − xj ≤ cij where cij ∈ Z is called a
difference constraint.

Definition 2. A constraint of the form ai · xi + aj · xj ≤ cij is said to be a
Unit Two Variable Per Inequality (UTVPI) constraint if ai, aj ∈ {−1, 0,+1}
and cij ∈ Z.

Definition 3. A constraint of the form xi ≤ ci or −xi ≤ ci, where ci ∈ Z, is
called an absolute constraint.

Observe that an absolute constraint is a UTVPI constraint in which one of
the coefficients (ai or aj) is 0. By adding a new variable x0, such a constraint
can be converted into constraints of the form: ai · xi + a0 · x0 ≤ ci, where both
ai and a0 are non-zero.

Definition 4. The constant which bounds a UTVPI constraint is called the
defining constant.

Example 1. The defining constant for the constraint x1 − x2 ≤ 9 is 9.

Definition 5. A conjunction of UTVPI constraints is called a UTVPI con-
straint system (UCS) and can be represented in matrix form as A · x ≤ c. If
the constraint system has m constraints over n variables, then A has dimen-
sions m × n.

Observe that a UCS defines a polyhedron in n-dimensional space. Given
such a system, we are interested in the following question: Does the defined
polyhedron enclose an integer point? This problem is called the Integer Feasibility
problem (IF).

Our goal is to design a graphical theorem of the alternative for the IF prob-
lem. In other words, we should be able to provide graphical refutations for infea-
sible UCSs. Our theorem of the alternative incorporates the following properties
of UTVPI constraints:

(i) A UCS is integer feasible if and only if the corresponding constraint network
does not contain certain types of cycles (see Sect. 4).
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(ii) Fourier-Motzkin with rounding (FMR) is a sound and complete procedure
for detecting integer feasibility in UTVPI constraints (see Sect. 4 and [19]).

While integer feasibility in a UCS immediately implies linear feasibility, the
converse is not true.

Our theorem of the alternative uses the following inference rules [9].
The transitive rule is

ai · xi + aj · xj ≤ cij −aj · xj + ak · xk ≤ cjk
ai · xi + ak · xk ≤ cij + cjk

,

and the tightening rule is

ai · xi + aj · xj ≤ cij ai · xi − aj · xj ≤ c′
ij

ai · xi ≤ � cij+c′
ij

2 �
.

The integer closure of U is the closure of U under the transitive and tight-
ening inference rules [12]. This means that once the integer closure is computed,
additional applications of the transitive and tightening inference rules do not
create any additional constraints.

Note that the transitive inference rule corresponds to summing two UTVPI
constraints. Thus, the transitive inference rule preserves linear solutions in addi-
tion to preserving integer solutions. In fact the closure of U under the transitive
inference rule is the linear closure of U [12]. This is also true for systems of
difference constraints.

3 Constraint Network Representation

In this section, we describe the constraint network representation used in this
paper.

Let U : A · x ≤ c denote the UCS, and let X denote the set of all (fractional
and integral) solutions to U. Corresponding to this constraint system, we con-
struct the constraint network G = 〈V,E, c〉 by utilizing the network construction
from [20].

The input UCS is transformed into a constraint network as follows:
For each variable, one node is added to the constraint network. Each con-

straint corresponds to a single edge as follows:

1. The constraint xi − xj ≤ c corresponds to the edge xj
c
xi. We refer to this

as a gray edge. This edge is also denoted by xi
c
xj .

2. The constraint xi + xj ≤ c corresponds to the edge xj
c
xi. We refer to this

as a white edge.
3. The constraint −xi − xj ≤ c corresponds to the edge xj

c
xi. We refer to

this as a black edge.
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x2 x1 x0

x3

x4

2

1

−1

−1

−2

0

1

Fig. 1. Constraint network for example constraints.

Note that all of these edges can be traversed in either direction.
To handle absolute constraints we add the vertex x0. Each absolute constraint

corresponds to a pair of edges as follows:

1. The constraint xi ≤ c corresponds to the edges xi
c
x0 and xi

c
x0.

2. The constraint −xi ≤ c corresponds to the edges xi
c
x0 and xi

c
x0.

If U has n variables and m constraints, then G has (n + 1) vertices and up to
(m + 2 · n) edges.

Example 2. Consider the UCS defined by System (1).

l1 : x1 + x2 ≤ 2 l2 : x1 − x2 ≤ 1 l3 : x3 − x2 ≤ 1
l4 : x4 − x2 ≤ 0 l5 : −x3 − x4 ≤ −2 l6 : −x1 ≤ −1 (1)

This UCS has an integer solution of x1 = 1, x2 = 1, x3 = 1, and x4 = 1. The
constraint network corresponding to UCS (1) is provided in Fig. 1.

This constraint network differs from the ones in [12] and [9] in several
respects:

(a) In this constraint network, the edges are “undirected”, i.e., the search algo-
rithms for determining feasibility can traverse them in either direction. This
is in marked contrast to potential networks, which are directed graphs and
must be traversed along directed edges.

(b) This constraint network directly reflects the original input UTVPI sys-
tem. Accordingly, this network retains information about constraint types
explicitly.

(c) The networks in [12] and [9] are in essence a difference constraint network
representation of UTVPI constraints. However, all UTVPI constraints are
represented explicitly in this constraint network.

This constraint network differs from bidirected graphs as described in [15] and
[8] in how we represent absolute constraints. In a bidirected graph, each absolute
constraint is represented by an edge between a vertex and itself. However, this
doubles the weight of the corresponding edge. In our construction we introduce
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the vertex x0 to handle absolute constraints. This allows us to represent absolute
constraints without doubling the weight of the corresponding edges. Thus, we do
not need to use extra edges in cycles that have edges corresponding to absolute
constraints.

We now introduce the notion of edge reductions.

Definition 6. An edge reduction is an operation which takes a two-edge path
and computes a single edge equivalent to that path. This operation represents
summing the two UTVPI constraints corresponding to the edges in question. If
this summation results in a UTVPI constraint, the reduction is said to be valid.

Note that not every two-edge path corresponds to a valid reduction. Consider

the two-edge path, (x1
2
x2

2
x3). This corresponds to the constraints x1 +x2 ≤

2 and x2 − x3 ≤ 2. Summing these two constraints results in the constraint
x1 + 2 · x2 − x3 ≤ 4 which is not a valid UTVPI constraint. Thus, there is no
valid reduction for this path.

Instead, consider the path (x1
2
x2

2
x3). This corresponds to the constraints

x1 + x2 ≤ 2 and −x2 + x3 ≤ 2. Summing these two constraints results in the
constraint x1 + x3 ≤ 4 which is a valid UTVPI constraint and corresponds to

the edge (x1
4
x3). Thus, the path (x1

2
x2

2
x3) reduces to the edge (x1

4
x3).

We use Definition 6 to define paths in the constraint network.

Definition 7. We say that a path has type t, if it can be reduced to a single edge
of type t, where t ∈ { , , , }.
Definition 8. The weight of a path p is the sum of the weights of the edges in p.

A path from a vertex to itself is a cycle. Note that we allow for cycles to use
edges and vertices more than once. Infeasibility of the original UCS corresponds
to the presence of cycles with negative weight that reduce down to a single gray
edge. We call these negative weight gray cycles.

Throughout this paper, we will utilize the following result from [20].

Theorem 1. Let U be a UCS and let G be the corresponding constraint network.
U is linearly feasible if and only if G does not contain a negative weight gray
cycle.

4 Characterizing Integer (in)feasibility in UTVPI
Constraints

In this section, we present a theorem of the alternative for integer infeasibility
in UTVPI constraints.

As before, let U : A · x ≤ c denote a UCS and let G = 〈V,E, c〉 denote the
constraint network as described in [20]. The details of this constraint network
can be found in Sect. 3.
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Let U′ denote the UCS constructed by adding absolute constraints of the
form xi ≤ ci and −xi ≤ ci, to U. An absolute constraint is added to U′ under
the following circumstances:

1. If the constraint xi + xi ≤ (2 · ci + 1) is derivable from U by the transitive
inference rule, then the constraint xi ≤ ci is added to U′.

2. If the constraint −xi − xi ≤ (2 · ci + 1) is derivable from U by the transitive
inference rule, then the constraint −xi ≤ ci is added to U′.

Let X′ denote the set of feasible solutions to U′. Let G′ = 〈V ′, E′, c′〉 denote
the constraint network representation of U′.

We first prove a number of lemmata.

Lemma 1. If u is an integer point in X, then u is an integer point in X′ as
well.

Proof. Observe that every constraint in U′ is either a constraint in U or an
absolute constraint of the form xi ≤ ci or −xi ≤ ci, which was added as per
the discussion above. For our purposes, it suffices to show that any integer point
satisfying the constraints in U, satisfies all the absolute constraints that are in
U′, but not in U.

Let the constraint l1 : xj ≤ cj denote one such constraint, i.e., l1 is in U′,
but not in U. As per the construction of U′, l1 was added to U′ because the
constraint xj+xj ≤ (2·cj+1) is deducible from the constraints in U. Thus, every
integer point in X must also satisfy the constraint xj +xj ≤ (2 ·cj +1). It follows
that every integer point in X also satisfies the constraint xj ≤ � 2·cj+1

2 � = cj .
Since the constraint l1 was picked arbitrarily, the same argument applies for

every constraint of the form xi ≤ ci, which is present in U′. but not in U.
Furthermore, the above argument can easily be generalized to the case where
the absolute constraint in question has the form −xi ≤ ci by changing the sign
on all of the variables.

Based on the above discussion, it follows that the integer points in X satisfy
all the constraints in U′, i.e., they satisfy all the constraints in U and the addi-
tional absolute constraints that define U′. It follows that every integer point in
X is also an integer point in X′. �	

Observe that the converse of Lemma 1 is trivially true since U′ is constructed
by adding constraints to U, and thus every integer point in X′ is also in X.

Lemma 2. If G′ has a negative weight gray cycle, then X contains no integer
points.

Proof. From Theorem 1, we know that if G′ contains a negative weight gray
cycle, then X′ is empty. It follows that X′ does not contain any integer points.
By Lemma 1, it follows that X cannot contain any integer points either. �	

We have now shown that if G′ contains a path from a vertex xi to itself
that can be reduced to a single gray edge of negative weight, then the constraint
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system U does not enclose an integer point. The following lemmata will help us
establish the converse.

We need the following definition from [12].

Definition 9. The tightened transitive closure U∗ of a UCS U is the set of all
UTVPI constraints (including absolute constraints) that are derivable from U by
the transitive and tightening inference rules.

We make the following observations regarding the tightened transitive clo-
sure, U∗:

(a) The set of constraints in U is a subset of the set of constraints in U∗.
(b) Every constraint in U∗ is either a constraint in U, or obtained by the appli-

cation of either the tightening rule or the transitive rule to constraints in U∗.
(c) U∗ is closed under the transitive and tightening inference rules. This means

that application of either the tightening rule or the transitive rule to con-
straints in U∗ will not result in a UTVPI constraint that is not already
in U∗.

(d) U has no integral solution if and only if U∗ contains a contradiction, i..e, a
constraint of the form 0 ≤ a, where a < 0 [12]. Note that this means that U
has no integral solution if and only if U∗ has no linear solution.

Lemma 3. If X contains no integer points, then X′ is empty, i.e., X′ is linearly
infeasible.

Proof. In this proof, we will establish that the set X′ of solutions to the con-
straint system U′ (constructed as per the discussion prior to Theorem2) is a
subset of X∗, where X∗ is the set of all solutions to U∗, the tightened transitive
closure of U. The lemma follows.

We first observe that every constraint in U∗ is obtained by applications of
the transitive and tightening inference rules detailed above. As stated previously,
applications of the transitive inference rule correspond to edge reductions and
so the constraints added in this fashion to U∗ do not affect its linear feasibility.
Thus, we are only concerned with the constraints added through application of
the tightening inference rule. We will now show that each constraint added to
U∗ as a result of applying the tightening inference rule is also added to U′.

We note that only absolute constraints are added to U∗ through the applica-
tion of the tightening inference rule. Assume that the constraint xi ≤ ci is added
to U∗ by the tightening rule. From [1], one round of tightening is sufficient to
find the tightened transitive closure. Thus, we can assume without loss of gen-
erality that either xi + xi ≤ 2 · ci + 1 or xi + xi ≤ 2 · ci is deducible from the
original set of constraints, U, by the transitive inference rule. In the first case,
the constraint xi ≤ ci is, by definition, in U′. In the second case, the constraint
xi ≤ ci is equivalent to the constraint xi + xi ≤ 2 · ci. Thus, this constraint does
not remove any solutions from X.

Likewise, assume that the constraint −xi ≤ ci is added to U∗ by the tight-
ening rule. It follows that −xi − xi ≤ 2 · ci + 1 or −xi − xi ≤ 2 · ci is deducible
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from the original constraints, U. In the first case, the constraint −xi ≤ ci is, by
definition, in U′. In the second case, the constraint −xi ≤ ci is equivalent to the
constraint −xi − xi ≤ 2 · ci. Thus, this constraint does not remove any solutions
from X.

We can thus conclude that every constraint added to U∗ that removes solu-
tions from X is also added to U′. It follows that any vector u that satisfies U′

also satisfies U∗, i.e., X′ ⊆ X∗. Finally, we note that if X contains no integer
points, then X∗ is empty [12]. Inasmuch as X′ ⊆ X∗, X′ is also empty. �	
Lemma 4. If X contains no integer points, then G′ contains a path from a
vertex xi to itself that can be reduced to a single gray edge of negative weight.

Proof. By Lemma 3, if X contains no integer points, then X′ is empty. Thus, by
Theorem 1, G′ contains a negative weight gray cycle from a vertex xi to itself.
However, such a cycle can be reduced to a single gray edge of negative weight.
The lemma follows. �	

Having established the preceding lemmata, we now prove the following result.

Theorem 2. Either the constraint system U encloses an integer point or (mutu-
ally exclusively) G′ contains a path from a vertex xi to itself that can be reduced
to a single gray edge of negative weight.

Proof. As shown in Lemma 2, if G′ contains a path from a vertex xi to itself
that can be reduced to a single gray edge of negative weight, then X and hence
U do not contain any integer points. Likewise, as per Lemma4, if X contains no
integer points, then G′ contains precisely such a path. �	

Next we express this result in terms of the original constraint network G.
From Theorem 1, a negative weight gray cycle in G means that X is empty. Thus,
X contains no integer points. As a result, we assume that G has no negative
weight gray cycle.

Lemma 5. If G has no negative weight gray cycle, then X contains no integer
points if and only if U′ \ U contains the constraints xi ≤ ci and −xi ≤ −ci − 1
for some xi.

Proof. The two constraints sum to produce the constraint 0 ≤ −1. This is clearly
a contradiction. Thus, if U′ \ U has the desired constraints, then X has no
integer points.

If X contains no integer points, then, by Lemma4, G′ contains a negative
weight gray cycle. By the assumption that G has no negative weight gray cycles,
this cycle must use edges corresponding to constraints in U′ \ U.

All the constraints in U′ \ U are absolute constraints. Thus, any negative
weight gray cycle in G′ must use x0. Since at least two edges of such a cycle
must use x0, any negative weight gray cycle in G′ must use at least two edges
corresponding to absolute constraints.
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Let p = (p1, p2, . . . p|p|) be a negative weight gray cycle in G′ with the fewest
edges. Assume without loss of generality that the first edge in p, p1, corresponds
to the constraint xi ≤ ci ∈ U′ \ U for some xi.

If p2 corresponds to a non-absolute constraint, then p2 corresponds to a
constraint of the form −xi + aj · xj ≤ cij where aj ∈ {−1, 1}.

The constraint xi ≤ ci is in U′ \ U. Thus, the constraint xi + xi ≤ 2 · ci + 1
is derivable from U by the transitive inference rule. Since the constraint −xi +
aj · xj ≤ cij is in U, the constraint aj · xj + aj · xj ≤ 2 · (cij + ci) + 1 is derivable
from U by the transitive inference rule. Thus, the constraint aj · xj ≤ cij + ci
is in U′. Let p′

1 be the edge in G′ that corresponds to this constraint. Let
p′ = (p′

1, p3, p4, . . . , p|p|). By construction p′ is a gray cycle with the same weight
as p. Thus p′ is a negative weight gray cycle with fewer edges than p.

However, this means that there is a negative weight gray cycle in G′ with
fewer edges than p. Thus, p cannot have any edges corresponding to non-absolute
constraints. This means that the edges in p correspond to the constraints xi ≤ ci1
and −xi ≤ ci2 where ci1 +ci2 < 0 for some xi. Without loss of generality assume
that xi ≤ ci1 ∈ U′ \ U.

Thus, the constraint xi +xi ≤ 2 · ci1 +1 is derivable from U by the transitive
inference rule. If the constraint −xi ≤ ci2 ∈ U, then the constraint

0 = xi + xi − 2 · xi ≤ 2 · ci1 + 1 + 2 · ci2 = 2 · (ci1 + ci2) + 1 ≤ −2 + 1 = −1

is derivable from U by the transitive inference rule. However, this means that
U is infeasible and, by Theorem 1, G has a negative weight gray cycle. Thus,
we must have that −xi ≤ ci2 ∈ U′ \ U. Thus, −xi − xi ≤ 2 · ci2 + 1 is derivable
from U by the transitive inference rule. Since U is feasible, we must have that
0 ≤ ci1 + ci2 + 1 < 0 + 1. Thus, we have that ci1 + ci2 = −1 as desired. �	
Theorem 3. Either the constraint system U encloses an integer point or (mutu-
ally exclusively), the corresponding network G contains either

(a) a path from a vertex xi to itself that can be reduced to a single gray edge of
negative weight or

(b) a white path (path of type ) of odd weight from xi to itself and a black
path (path of type ) of odd weight from xi to itself with total weight 0.

Proof. If G contains a path of type (a), then by Theorem 1, U contains no
rational points and thus no integer points.

If G contains a path of type (b), then for some ci the constraints xi + xi ≤
2 · ci + 1 and −xi − xi ≤ −2 · ci − 1 are derivable from U by the transitive
inference rule [20]. Thus, the constraints xi ≤ ci and −xi ≤ −ci − 1 are in U′.
This means that U′ (and thus U) contains no integer points.

If U does not contain an integer point, then there are two cases, either U
contains no rational points or it contains rational, but no integer points.

If U contains no rational points, then, by Theorem1, G has a path of
type (a).

If U contains rational but no integer points, then, by Lemma5, U′ \ U con-
tains the constraints xi ≤ ci and −xi ≤ −ci−1 for some xi. Thus, the constraints
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xi+xi ≤ 2·ci+1 and −xi−xi ≤ −2·ci−1 are derivable from U by the transitive
inference rule. The constraints used to derive xi + xi ≤ 2 · ci + 1 correspond to
a white path of weight (2 · ci + 1) from xi to itself [20]. Note that this path has
odd weight. The constraints used to derive −xi − xi ≤ −2 · ci − 1 correspond
to a black path of weight (−2 · ci − 1) from xi to itself [20]. Note that this path
also has odd weight. The total weight of these paths is 0. Thus, G has a path of
type (b). �	

Note that our graphical theorem of the alternative differs from the one in [9]
in the following ways:

1. Our theorem of the alternative utilizes the constraint network from [20], not
the constraint network in [12].

2. Our theorem of the alternative is based on the constraint network corre-
sponding to the original system without the need for constraints derived
from the tightening inference rule. While the algorithm in [9] does use the
unmodified graph, this is not explicitly given as a theorem of the alternative.

5 Conclusion

This paper introduced a new graphical theorem of the alternative of integer
feasibility in UTVPI constraints. This graphical theorem of the alternative clas-
sifies integer infeasibility in terms of the existence of certain paths and cycles in
the appropriately constructed constraint network. UTVPI constraints occur in a
number of important domains, including but not limited to operations research
and program verification. Our focus in this paper was the development of a
graphical, compact theorem of the alternative for integer feasibility in UTVPI
constraints. The literature is replete with theorems of the alternative for linear
feasibility; indeed, Farkas’ lemma is one of the more well-cited such theorems.
Theorems of the alternative for integer feasibility are less common. In general,
compact theorems of the alternative for integer feasibility in linear systems can-
not exist unless NP= coNP.
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Abstract. In multi-agent path finding (MAPF) the task is to navigate
agents from their starting positions to given individual goals. The prob-
lem takes place in an undirected graph whose vertices represent posi-
tions and edges define the topology. Agents can move to neighbor ver-
tices across edges. In the standard MAPF, space occupation by agents
is modeled by a capacity constraint that permits at most one agent per
vertex. We suggest an extension of MAPF in this paper that permits
more than one agent per vertex. Propositional satisfiability (SAT) mod-
els for these extensions of MAPF are studied. We focus on modeling
capacity constraints in SAT-based formulations of MAPF and evalua-
tion of performance of these models. We extend two existing SAT-based
formulations with vertex capacity constraints: MDD-SAT and SMT-CBS
where the former is an approach that builds the model in an eager way
while the latter relies on lazy construction of the model.

Keywords: Multi agent path finding · propositional satisfiability
(SAT) · Capacity constraints · Cardinality constraints

1 Introduction

In multi-agent path finding (MAPF) [9,18–20,23,27,32] the task is to navigate
agents from given starting positions to given individual goals. The standard
version of the problem takes place in undirected graph G = (V,E) where agents
from set A = {a1, a2, ... , ak} are placed in vertices with at most one agent per
vertex. The initial configuration of agents in vertices of the graph can be written
as α0 : A → V and similarly the goal configuration as α+ : A → V . The task of
navigating agents can be expressed as transforming the initial configuration of
agents α0 : A → V into the goal configuration α+ : A → V .
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Movements of agents are instantaneous and are possible across edges into
neighbor vertices assuming no other agent is entering the same target vertex.
This formulation permits agents to enter vertices being simultaneously vacated
by other agents. Trivial case when a pair of agents swaps their positions across an
edge is forbidden in the standard formulation. We note that different versions of
MAPF exist where for example agents always move into vacant vertices [28]. We
usually denote the configuration of agents at discrete time step t as αt : A → V .
Non-conflicting movements transform configuration αt instantaneously into next
configuration αt+1. We do not consider what happens between t and t + 1 in
this discrete abstraction. Multiple agents can move at a time hence the MAPF
problem is inherently parallel.

In order to reflect various aspects of real-life applications, variants of MAPF
have been introduced such as those considering kinematic constraints [8], large
agents [11], or deadlines [14] - see [13] for a more detailed survey.

Particularly in this work we are dealing with an extension of MAPF that
generalizes the constraint of having at most one agent per vertex. There are
many situations where we need to model nodes that could hold more than one
agent at a time. Such situations include various graph-based evacuation models
where for example nodes correspond to rooms in evacuated buildings [10] which
naturally can hold more than one agent. Various spatial projections could also
lead to having multiple agents per vertex such as upper projection of agents
representing aerial drones where a single node corresponds to x,y-coordinate that
could hold multiple agents at different z-coordinates [12]. Generally the need to
consider nodes capable of containing multiple agents appears in modeling of
multi-agent motion planning task at higher levels of granularity.

1.1 Contributions

The contribution of this paper consists in showing how to generalize existing
propositional satisfiability (SAT) [4] models of MAPF for finding optimal plans
with general capacity constraints that bound the number of agents in vertices.
Two existing SAT-based models are generalized: MDD-SAT [31] that builds the
propositional model in an eager way and SMT-CBS [29,30] that builds the model
in a lazy way inspired by satisfiability modulo theories (SMT) [16].

The eager style of building the propositional model means that all constraints
are posted into the model in advance. Such model is complete, that is, it is
solvable (satisfiable) if and only if the instance being modeled is solvable. In
contrast to this, the lazy style does not add all constraints at once and works with
incomplete models. The incomplete model preserve only one-sided implication
w.r.t. solvability: if the instance being modeled is solvable then the incomplete
model is solvable (satisfiable).

The SMT-CBS algorithm iteratively refines the incomplete model towards the
complete one by eliminating conflicts. That is, a candidate solution is extracted
from the satisfied incomplete model. The candidate is checked for conflicts -
whether any of the MAPF rules is violated - for example if a collision between
agents occurred. If there are no conflicts, we are finished as the candidate is



Multi-agent Path Finding with Capacity Constraints 237

a valid solution of the input MAPF instance. If a conflict is detected, then a
constraint that eliminates this particular conflict is added to the incomplete
model resulting in a new model and the process is repeated. A new candidate
solution is extracted from the new model etc. Eventually the process may end up
with a complete model after eliminating all possible conflicts. However, we hope
that the process finishes before constructing a complete model and we solve the
instance with less effort.

In the presented generalization with capacity constraints we need to distin-
guish between the eager and lazy variant. The capacity constraint concerning
given vertex v bounding the number of agents that can simultaneously occupy v
by some integer constant say 2 can be literally translated into the requirement
that no 3 distinct agents can occupy v at the same time. Such a constraint can
be directly posted in the eager variant: we either forbid all possible triples of
agents in v or post the corresponding cardinality constraint [3,22].

The situation is different in the lazy variant. To preserve the nature of the
lazy approach we cannot post the capacity bound entirely as conceptually at the
low level we are informed only about a particular MAPF rule violation, say for
example agents a1, a5 and a8 occurred simultaneously in v which is forbidden in
given MAPF. The information that there is a capacity constraint on v bounding
the number of agents in v by 2 may even not be accessible at the low level. Hence
we can forbid simultaneous occurrence of only the given triple of agents, a1, a5

and a8 in this case.
The paper is organized as follows. We first introduce the standard multi-agent

path finding problem formally including commonly used objectives. Then we
introduce two major existing SAT-based encodings. On top of this, we show how
to extend these encodings with vertex capacities. Finally we evaluate extended
models on standard benchmarks including open grids and large game maps.

2 Formal Definition of MAPF and Vertex Capacities

The Multi-agent path finding (MAPF) problem [18,23] consists of an undirected
graph G = (V,E) and a set of agents A = {a1, a2, ... , ak} such that |A| ≤ |V |.
Each agent is placed in a vertex so that at most one agent resides in each
vertex. The placement of agents is denoted α : A → V . Next we are given initial
configuration of agents α0 and goal configuration α+.

At each time step an agent can either move to an adjacent vertex or wait
in its current vertex. The task is to find a sequence of move/wait actions for
each agent ai, moving it from α0(ai) to α+(ai) such that agents do not conflict,
i.e., do not occupy the same location at the same time nor cross the same edge
in opposite directions simultaneously. The following definition formalizes the
commonly used movement rule in MAPF.

Definition 1 Valid movement in MAPF. Configuration α′ results from α
if and only if the following conditions hold:

(i) α(a) = α′(a) or {α(a), α′(a)} ∈ E for all a ∈ A (agents wait or move along
edges);
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(ii) for all a ∈A it holds α(a) �= α′(a)⇒¬(∃b ∈ A)(α(b) = α′(a) ∧ α′(b) = α(a))
(no two agents cross an edge in opposite directions);

(iii) and for all a, a′ ∈ A it holds that a �= a′ ⇒ α′(a) �= α′(a′) (no two agents
share a vertex in the next configuration).

Solving the MAPF instance is to find a sequence of configurations
[α0, α1, ... , αµ] such that αi+1 results using valid movements from αi for i =
1, 2, ... , μ − 1, and αµ = α+.

A version of MAPF with vertex capacities generalizes the above definition by
adding capacity function c : V → Z+ that assigns each vertex a positive integer
capacity. The interpretation is that a vertex v can hold up to the specified
number of agents c(v) at any time-step.

The definition of the valid movement will change only in point (iii) where
instead of permitting at most one agent per vertex we allow any number of
agents not exceeding the capacity of the vertex:

Definition 2 Vertex capacities in MAPF.

(iii’) for all v ∈ V it holds that |a | α′(a) = v| ≤ c(v) (the number of agents in
each vertex does not exceed the capacity in the next configuration).

Generalized vertex capacities relax the problem in fact as illustrated in Fig. 1.
Intuitively, capacities greater than one induce additional parking place in the
environment which we hypothetise makes the problem easier to solve.
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Fig. 1. Illustration of the standard MAPF (c = 1) and MAPF with generalized vertex
capacity (uniform capacity c = 2 us used). With c = 2 two agents a2 and a3 can both
enter vertex D. In contrast to this, a3 must wait in vertex F in the standard MAPF.
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2.1 Common Objectives in MAPF

We address here optimal MAPF solving hence we need to introduce objective
functions more formally. In case of makespan [28] we just need to minimize μ in
the aforementioned solution sequence. For introducing the sum-of-costs objective
[7,19,20,25] we need the following notation:

Definition 3. Sum-of-costs objective is the summation, over all agents, of
the number of time steps required to reach the goal vertex. Denoted ξ, where
ξ =

∑k
i=1 ξ(path(ai)), where ξ(path(ai)) is an individual path cost of agent ai

connecting α0(ai) and α+(ai) calculated as the number of edge traversals and
wait actions.1

Observe that in the sum-of-costs we accumulate the cost of wait actions for
agents not yet reaching their goal vertices. For the sake of brevity we focus here
on the sum-of-costs, but we note that all new concepts can be introduced for
different cumulative objectives like the makespan.2

We note that finding a solution that is optimal (minimal) with respect to
the sum-of-costs objective is NP-hard [17]. The same result holds for the variant
with capacities as it is a straight generalization of the standard MAPF version.

3 Related Work

Let us now recall existing SAT-based optimal MAPF solvers. We here focus
on aspects important for introducing capacities. We recall MDD-SAT, the sum-
of-costs optimal solver based on eager SAT encoding [31], and SMT-CBS [30],
the most recent SAT-based, or more precisely SMT-based, algorithm using lazy
encoding.

3.1 SAT-based Approach

The idea behind the SAT-based approach is to construct a propositional formula
F(ξ) such that it is satisfiable if and only if a solution of a given MAPF of
sum-of-costs ξ exists [28]. Moreover, the approach is constructive; that is, F(ξ)
exactly reflects the MAPF instance and if satisfiable, solution of MAPF can be
reconstructed from satisfying assignment of the formula. We say F(ξ) to be a
complete propositional model of MAPF.

Definition 4 (complete propositional model). Propositional formula F(ξ)
is a complete propositional model of MAPF Σ if the following condition holds:

F(ξ) is satisfiable ⇔ Σ has a solution of sum-of-costs ξ.

1 The notation path(ai) refers to path in the form of a sequence of vertices and edges
connecting α0(ai) and α+(ai) while ξ assigns the cost to a given path.

2 Dealing with objectives is out of scope of this paper. We refer the reader to [31] for
more detailed discussion.
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Being able to construct such formula F one can obtain optimal MAPF solu-
tion by checking satisfiability of F(0), F(1), F(2), ... until the first satisfiable
F(ξ) is met. This is possible due to monotonicity of MAPF solvability with
respect to increasing values of common cumulative objectives like the sum-of-
costs. In practice it is however impractical to start at 0; lower bound estimation
is used instead - sum of lengths of shortest paths can be used in the case of
sum-of-costs. The framework of SAT-based solving is shown in pseudo-code in
Algorithm 1.

3.2 Details of the MDD-SAT Encoding

Construction of F(ξ) as used in the MDD-SAT solver relies on time expansion of
underlying graph G. Having ξ, the basic variant of time expansion determines the
maximum number of time steps μ (makespan) such that every possible solution
of the given MAPF with the sum-of-costs less than or equal to ξ fits within μ
timesteps. Given ξ we can calculate μ as maxk

i=1{ξ0(ai)}+ξ −ξ0 where ξ0(a1) is
the length of the shortest path connecting α0(ai) and α+(ai); ξ0 =

∑k
i=1 ξ0(ai).

The detailed justification of this equation is given in [31].
Time expansion itself makes copies of vertices V for each timestep t =

0, 1, 2, ..., μ. That is, we have vertices vt for each v ∈ V and time step t. Edges
from G are converted to directed edges interconnecting timesteps in the time
expansion. Directed edges (ut, vt+1) are introduced for t = 1, 2, ..., μ − 1 when-
ever there is {u, v} ∈ E. Wait actions are modeled by introducing edges (ut, tt+1).
A directed path in the time expansion corresponds to trajectory of an agent in
time. Hence the modeling task now consists in construction of a formula in which
satisfying assignments correspond to directed paths from α0

0(ai) to αµ
+(ai) in the

time expansion.
Assume that we have time expansion TEGi = (Vi, Ei) for agent ai. Propo-

sitional variable X t
v(aj) is introduced for every vertex vt in Vi. The semantics

of X t
v(ai) is that it is TRUE if and only if agent ai resides in v at time step t.

Similarly we introduce Eu, vt(ai) for every directed edge (ut, vt+1) in Ei. Analo-
gously the meaning of Et

u,v(ai) is that is TRUE if and only if agent ai traverses
edge {u, v} between time steps t and t + 1.

Constraints are added so that truth assignment are restricted to those that
correspond to valid solutions of a given MAPF. Added constraints together
ensure that F(ξ) is a complete propositional model for given MAPF.

We here illustrate the model by showing few representative constraints. We
omit here constraints that concern objective function. For the detailed list of
constraints we again refer the reader to [31].

Collisions among agents are eliminated by the following constraint for every
v ∈ V and timestep t expressed on top of X t

v(ai) variables:
∑

ai∈A | vt∈Vi

X t
v(ai) ≤ 1 (1)
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There are various ways how to translate the constraint using propositional
clauses. One efficient way is to introduce ¬X t

v(ai)∨¬X t
v(aj) for all possible pairs

of ai and aj .
Next, there is a constraint stating that if agent ai appears in vertex u at

time step t then it has to leave through exactly one edge (ut, vt+1). This can be
established by following constraints:

X t
u(ai) ⇒

∨

(ut,vt+1)∈Ei

Et
u,v(ai), (2)

∑

vt+1 | (ut,vt+1)∈Ei

Et
u,v(ai) ≤ 1 (3)

Similarly, the target vertex of any movement except wait action must be
empty. This is ensured by the following constraint for every (ut, vt+1) ∈ Ei:

Et
u,v(ai) ⇒

∧

aj∈A | aj �=ai∧vt∈Vj

¬X t
v(aj) (4)

Other constraints ensure that truth assignments to variables per individual
agents form paths. That is if agent ai enters an edge it must leave the edge at
the next time step.

Et
u,v(ai) ⇒ X t

v(ai) ∧ X t+1
v (ai) (5)

A common measure how to reduce the number of decision variables derived
from the time expansion is the use of multi-value decision diagrams (MDDs) [20].
The basic observation that holds for MAPF is that an agent can reach vertices
in the distance d (distance of a vertex is measured as the length of the shortest
path) from the current position of the agent no earlier than in the d-th time
step. Analogical observation can be made with respect to the distance from the
goal position.

Above observations can be utilized when making the time expansion of G.
For a given agent, we do not need to consider all vertices at time step t but only
those that are reachable in t timesteps from the initial position and that ensure
that the goal can be reached in the remaining μ − t timesteps.

3.3 Resolving Conflicts Lazily in SMT-CBS

SMT-CBS is inspired by the search-based algorithm CBS [19,21] that uses the
idea of resolving conflicts lazily; that is, a solution of MAPF instance is not
searched against the complete set of movement constraints that forbids colli-
sions between agents but with respect to initially empty set of collision forbidding
constraints that gradually grows as new conflicts appear. SMT-CBS follows the
high-level framework of CBS but rephrases the process into propositional satisfi-
ability in a similar way as done in formula satisfiability testing in the satisfiability
modulo theory paradigm [5,15,16].



242 P. Surynek et al.

Algorithm 1. Framework of SAT-based MAPF solving
1 SAT-Based (G = (V, E), A, α0, α+)
2 paths ← {shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
3 ξ ← ∑k

i=1 ξ(N.paths(ai))
4 while TRUE do
5 F(ξ) ← encode(ξ, G, A, α0, α+)
6 assignment ← consult-SAT-Solver(F(ξ))
7 if assignment �= UNSAT then
8 paths ← extract-Solution(assignment)
9 return paths

10 ξ ← ξ + 1

The high-level of CBS searches a constraint tree (CT) using a priority queue
in breadth first manner. CT is a binary tree where each node N contains a set of
collision avoidance constraints N.constraints - a set of triples (ai, v, t) forbidding
occurrence of agent ai in vertex v at time step t, a solution N.paths - a set of k
paths for individual agents, and the total cost N.ξ of the current solution.

The low-level process in CBS associated with node N searches paths for
individual agents with respect to set of constraints N.constraints . For a given
agent ai, this is a standard single source shortest path search from α0(ai) to
α+(ai) that avoids a set of vertices {v ∈ V |(ai, v, t) ∈ N.constraints} whenever
working at time step t. For details see [19].

CBS stores nodes of CT into priority queue Open sorted according to the
ascending costs of solutions. At each step CBS takes node N with the lowest
cost from Open and checks if N.paths represent paths that are valid with respect
to MAPF movements rules - that is, N.paths are checked for collisions. If there
is no collision, the algorithms returns valid MAPF solution N.paths. Otherwise
the search branches by creating a new pair of nodes in CT - successors of N .
Assume that a collision occurred between agents ai and aj in vertex v at time
step t. This collision can be avoided if either agent ai or agent aj does not reside
in v at timestep t. These two options correspond to new successor nodes of N :
N1 and N2 that inherit the set of conflicts from N as follows: N1.conflicts =
N.conflicts ∪ {(ai, v, t)} and N2.conflicts = N.conflicts ∪ {(aj , v, t)}. N1.paths
and N1.paths inherit paths from N.paths except those for agents ai and aj respec-
tively. Paths for ai and aj are recalculated with respect to extended sets of con-
flicts N1.conflicts and N2.conflicts respectively and new costs for both agents
N1.ξ and N2.ξ are determined. After this, N1 and N2 are inserted into the pri-
ority queue Open.

SMT-CBS compresses CT into a single branch in which the propositional
model taken from MDD-SAT is iteratively refined. The high-level branching from
CBS is deferred to the low level of SAT solving. In the MDD-SAT encoding
collision avoidance constraints are omitted initially, only constraints ensuring
that assignments form valid paths interconnecting starting positions with goals
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Algorithm 2. SMT-CBS algorithm for solving MAPF
1 SMT-CBS (Σ = (G = (V, E), A, α0, α+))
2 conflicts ← ∅
3 paths ← {path∗(ai) a shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
4 ξ ← ∑k

i=1 ξ(paths(ai))
5 while TRUE do
6 (paths, conflicts) ← SMT-CBS-Fixed(conflicts, ξ, Σ)
7 if paths �= UNSAT then
8 return paths

9 ξ ← ξ + 1

10 SMT-CBS-Fixed(conflicts, ξ, Σ)
11 H(ξ) ← encode-Basic(conflicts, ξ, Σ)
12 while TRUE do
13 assignment ← consult-SAT-Solver(H(ξ))
14 if assignment �= UNSAT then
15 paths ← extract-Solution(assignment)
16 collisions ← validate(paths)
17 if collisions = ∅ then
18 return (paths, conflicts)

19 for each (ai, aj , v, t) ∈ collisions do
20 H(ξ) ← H(ξ) ∪ {¬X t

v(ai) ∨ ¬X t
v(aj)}

21 conflicts ← conflicts ∪ {[(ai, v, t), (aj , v, t)]}
22 return (UNSAT,conflicts)

are preserved. This will result in an incomplete propositional model denoted
H(ξ). The important component of SMT-CBS is a paths validation procedure
that reports back the set of conflicts found in the current solution that are used
for making model refinements.

SMT-CBS is shown in pseudo-code as Algorithm 2. The algorithm is divided
into two procedures: SMT-CBS representing the main loop and SMT-CBS-Fixed
solving the input MAPF for fixed cost ξ. The major difference from the stan-
dard CBS is that there is no branching at the high-level. The high-level SMT-
CBS roughly correspond to the main loop of MDD-SAT. The set of conflicts
is iteratively collected during the entire execution of the algorithm. Procedure
encode from MDD-SAT is replaced with encode-Basic that produces encoding
that ignores specific movement rules (collisions between agents) but in contrast
to encode it encodes collected conflicts into H(ξ).

The conflict resolution in the standard CBS implemented as high-level
branching is here represented by refinement of H(ξ) with disjunction (line 20).
The presented SMT-CBS can eventually build the same formula as MDD-SAT
but this is done lazily.
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4 Handling Capacity Constraints in MAPF

To adapt the SAT-based approach for MAPF with capacities we need minor
modifications only in both MDD-SAT and SMT-CBS. However in each algorithm
the integration of capacity constraints is profoundly different. While in MDD-
SAT we integrate capacity constraints eagerly in the line with the original design
of the algorithm (that is, the constraint in introduced as a whole), in SMT-CBS
we integrate capacity constraint lazily which means part by part as new conflicts
appear.

4.1 Details of the Encoding with Capacities

We need only a small modification of the MDD-SAT encoding to handle vertex
capacities. We need to replace constraint (1) with the following constraint that
is again posted for every vertex v and time step t:

∑

ai∈A | vt∈Vi

X t
v(ai) ≤ c(v) (6)
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Fig. 2. Sorted runtimes and the number of clauses on the 8 × 8 grid. MDD-SAT and
SMT-CBS are compared.

Unlike in the standard MAPF we need here a more sophisticated translation
of the constraint to propositional clauses. Using the approach of forbidding indi-
vidual c(v) + 1-tuples can be highly inefficient especially in cases when c(v) is
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large. Therefore we use cardinality constraints encodings commonly used in SAT
[3,22,24]. Generally the cardinality constraint over set of propositional variables
{X1,X2, ... ,Xn} permits at most a specified number of variables from the set to
be TRUE , denoted ≤k{X1,X2, ... ,Xn} means that at most k variables from the
set can be TRUE .

In our case of MAPF with capacities we need to introduce following cardinal-
ity constraints for every vertex v and time step t. The practical implementation
of cardinality constraints is done through encoding adder circuits inside the for-
mula [22].

≤c(v){X t
v(ai) | ai ∈ A ∧ vt ∈ Vi} (7)
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Fig. 3. Sorted runtimes and the number of clauses on the 16× 16 grid. MDD-SAT and
SMT-CBS are compared.

4.2 Capacities in SMT-CBS

Capacities in SMT-CBS are resolved lazily as well. That is, the capacity con-
straint is not posted entirely as a cardinality constraint but instead individual
sets of agents that violate the capacity are forbidden one by one as they appear.
That is for example if a generalized conflict occurs with agents ai1 , ai2 , ... , aim

in vertex v (in other words if m > c(v)) we post a conflict elimination clause
concerning the colliding set of agents: ¬X t

v(ai1) ∨ ¬X t
v(ai2) ∨ ... ∨ ¬X t

v(aim).
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Hence in the SMT-CBS algorithm we modify only lines 20 and 21 that handle
generalized vertex conflicts. Also we need to modify the validation procedure
called at line 15 to reflect generalized vertex capacities.

5 Experimental Evaluation

To evaluate the performance of capacity handling in context of SAT-based algo-
rithms we performed an extensive evaluation on both standard synthetic bench-
marks [6,20] and large maps from games [26].

5.1 Setup of Experiments and Benchmarks

We took the existing implementations of MDD-SAT and SMT-CBS written in
C++. Both implementations are built on top of the Glucose 4 SAT solver [1,2].
In the implementations we modified the capacity constraint from the original
at-most-one to generalized variants as mentioned above. All experiments were
run on a Ryzen 7 CPU 3.0 Ghz under Kubuntu linux 16 with 16 GB RAM. The
timeout in all experiments was set to 500 s. Presented are only results finished
within this time limit.

The second part of experimental evaluation took place on large 4-connected
maps taken from Dragon Age [19,26]. We took three structurally different maps
focusing on various aspects such as narrow corridors, large almost isolated rooms,
or topologically complex open space. In contrast to small instances, these were
only sparsely populated with agents. Initial and goal configuration were gener-
ated at random again. Up to 80 agents were used in these instances and uniform
capacities of 1, 2, and 3. We measured the runtime on large maps.

5.2 Results on Small Grids

Results obtained for small open grids are presented in Figs. 2 and 3. We can
see that in comparison with the standard MAPF capacities bring significant
reduction of the difficulty of instances. This difference can be seen in both MDD-
SAT and SMT-CBS. The starkest performance difference is between c = 1 and
c = 2. The least performance difference is between c = 3 and c = 4. The similar
picture can be seen in for the number of clauses.

5.3 Results on Large Maps

Results for large game maps are shown in Figs. 4 and 5. A different picture can be
seen here. Adding capacities does not cause any significant simplification except
the brc202d map which consists of narrow corridors. The interpretation is that
adding extra parking place via capacities may lead to simplification only when
it is not available normally. Otherwise generalized capacity constraints lead to
harder instances.
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Fig. 4. Sorted runtimes of MDD-SAT on ost003d, brc202d, and den520d maps.
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Fig. 5. Sorted runtimes of MDD-SAT on ost003d, brc202d, and den520d maps.

6 Discussion and Conclusion

We introduced multi-agent path finding problem with vertex capacity con-
straints. We modified two existing state-of-the-art SAT-based optimal MAPF
solvers to reflect vertex capacities, the MDD-SAT solver using the eager encod-
ing and the SMT-CBS solver using the lazy encoding.

In both solvers we observed that adding an extra room by increasing the
capacity of vertices dramatically reduces the difficulty of instances. However
adding further capacity has less significant effect. In large maps using higher
capacities even lead to performance degradation which we attribute to more
complex constraints.

In the future work we would like to apply the MAPF formulation with capaci-
ties in the real-life multi-agent problems being solved by hierarchical approaches.
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Abstract. The ultimate goal of automated planning is the execution
of plans by an artificial agent in the environment. When interactions
and collaboration with humans are considered, robust plan execution
requires even more highly flexible and adaptable control capabilities in
artificial agents. Therefore, plan-based controllers should effectively deal
with exogenous events and environment dynamics in order to perform
Planning and Acting in an efficient and effective way. The general app-
roach pursued here conforms to the general idea that Acting is not merely
executing plans but it entails a more complex process in which dynamic
knowledge processing and plan adaptation are required. To this aim, this
paper focuses on Human-Robot Collaboration (HRC) and the timeline-
based approach which is known to be well suited to robustly deal with
uncontrollable dynamics. This paper presents and discusses new inter-
esting results obtained by leveraging the acting capabilities of a novel
timeline-based Planning and Acting framework called PLATINUm in a
realistic HRC scenario. On the one hand, results show how the variability
of the environment can negatively impact the performance and reliability
of Acting systems. On the other hand, they show how a proper manage-
ment of temporal uncertainty strongly improve the Actin reliability.

Keywords: Planning and Scheduling · Execution · Temporal
uncertainty · Plan-based controller

1 Introduction

The design of autonomous agents, e.g. robots, whose behavior must be planned
to act in an effective (and intelligent) way, dealing with a variety of environments
and with a diversity of (possibly not fully controllable) tasks/events, entails a
set of deliberative skills. Among others, Planning and Acting play a crucial role
[9,13,14]: Planning is the process of synthesizing a sequence of actions that, if
correctly executed, achieves a desired objective; Acting is the implementation
c© Springer Nature Switzerland AG 2019
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of an on-line closed-loop feedback function (through sensors stimulus and to
actuators commands) to refine and control the achievement of planned actions.
Thus, reliable autonomous agents need a tight integration of Planning and Acting
technologies to realize highly flexible and reactive control behaviors.

Usually, plan-based control architectures integrate deliberative and execution
processes relying on different representation formalisms/models and often pur-
suing different approaches. Imperative approaches exploits, e.g., STRIPS oper-
ators combined to procedural languages like, for instance, PRS [12] or RAP
[8]. Stochastic approaches leverage learning to build control after experiences or
training, e.g., by means of Hierarchical MDP [10]. More classical plan-based solu-
tions pursue a temporal approach implemented in planning frameworks such as,
e.g., IxTeT-eXeC [15], IDEA [20], T-REX [22], APSI [3] with ad-hoc executive
sub-modules or using state machine encodings like, e.g., PLEXIL [27].

A current limit of the above mentioned approaches is the use of intrinsi-
cally different technologies and formalisms to realize Planning and Acting fea-
tures. Moreover, such decoupled approaches often entail hand-written encodings
and/or the use of different formalisms and representations of control problems.
As a consequence, Planning and Acting processes cannot completely share cru-
cial knowledge that may be useful for dynamically adapting the agent’s behav-
iors to the actual acting context. Indeed, planners usually synthesize action plans
without taking into full consideration execution perspectives and leading to the
execution of too abstract or brittle plans. Such plans are often not suitable for
“absorbing” all the possible (uncontrollable) dynamics of the environment caus-
ing a high number of replanning attempts and, consequently, affecting the general
performance of acting systems. On the contrary, the use of shared formalisms
can foster a tight integration of Planning and Acting significantly improving the
reliability and flexibility of plan-based control architectures. The capability of
uniformly modeling uncontrollable dynamics of the environment and leveraging
this information at planning time can lead to the synthesis of plans with some
desirable execution property like e.g., strong or dynamic controllability [17,28].

This paper uses a Planning and Acting approach that relies on a uniform rep-
resentation of control problems within tightly coupled internal deliberative and
executive processes. Such a uniform representation leverages the timeline-based
approach, a temporal planning paradigm introduced by [19] and successfully
applied in many real-world scenarios [1,5,6]. The framework fully complies with
the formal characterization given in [7] that provides a comprehensive definition
of timeline-based planning and execution with temporal uncertainty. This pro-
posal is operationalized in a set of extended features for a Planning and Acting
software, called PLATINUm [24,25] that extends previous work in timeline-
based planning, i.e., APSI-TRF [2] and EPSL [26], by introducing a number
of novel features and capabilities: (i) planning capabilities to synthesize plans
ensuring pseudo-controllability [17] in order to deal with temporal uncertainty;
(ii) controllability-aware execution capabilities to dynamically adapt the execu-
tion of timeline-based plans according to controllability properties of the domain;
(iii) acting capabilities to integrate planning and execution within a closed-loop
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control process that synthesizes and executes timelines, and perform re-planning
when exogenous events introduce discrepancies between the observed state of the
environment and the outcome expected by the plan under execution.

An experimental assessment of new Planning and Acting capabilities in
PLATINUm has been performed by considering a Human-Robot Collaboration
(HRC) in a typical collaborative assembly industrial scenario. The results show
that a tight integration of planning and execution together with a proper man-
agement of temporal uncertainty are crucial to realize robust acting behaviors
capable of executing complex plans in different contexts and facing uncontrol-
lable dynamics of the environment.

2 Challenges in Human-Robot Collaboration

Human-Robot Collaboration (HRC) constitutes a challenging scenario in which
highly flexible control is needed and uncontrollable dynamics of the environment
plays a crucial role. In recent years, the continuous improvements of robotic
technologies in terms of reliability, efficiency and safety are pushing the diffu-
sion of robots in an increasing number of common situations. In such situations
autonomous robotic agents must usually deal with “human agents” that behave
in different, unpredictable and autonomous ways. This is especially true in indus-
trial manufacturing environments where the introduction of collaborative robots
(also known as cobots) are being deployed in advanced manufacturing systems
to tightly collaborate with human operators and carry out together different
production processes.

Cobots are supposed to autonomously operate in a fenceless work cells and
collaborate with human operators in different ways according to the specific
production needs. There are a number of (research) challenges that cobots and
underlying control technologies must properly face to be effective. Some relevant
issues raised by HRC with respect to autonomy are the following:

– Different kind of decisions involving various tasks as well as different types of
collaborations between the human and the robot are considered;

– Collaboration, task assignment and interactions between robot and human
operator may change according to specific capabilities and skills of the worker;

– Adaptability and flexibility are crucial to allow a robot to robustly deal with
quick changes and unpredictable/uncontrollable behaviors of the worker dur-
ing process execution;

– The robot must make decisions and perform operations always guaranteeing
human workers safety.

To address the above issues, cobots must be endowed with a number of cognitive
capabilities. Figure 1(a)–(b) and Fig. 2(a)–(b) show these capabilities and the
features considered to achieve an effective collaboration.

Figure 1(a)–(b) characterize the representation capabilities a cobot needs to
know the structure/organization of a production process and the possible inter-
actions with the working environment. A complete description of production
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Fig. 1. Cobots need complete knowledge about production contexts: (a) Complete
knowledge about the the structure of production processes, operational constraints and
capabilities; (b) Complete knowledge about the structure of the environment, available
resources and knowledge about the capabilities of human operators.

processes is necessary to know the sequences of tasks that can be performed to
achieve production objectives. This knowledge characterizes the capabilities of
a robot and defines the tasks it can actually support. Similarly, it characterizes
the capabilities of the human operator and therefore ti defines the tasks he/she
can actually carry out. Depending on the specific needs of a production process,
some tasks can be performed either by the human and the robot. Other tasks
instead may require a strict collaboration and cooperation.

Also, this knowledge characterizes operational constraints in terms of valid
sequencing of tasks and resource availability constraints that must be satisfied to
perform tasks and correctly carry out the related production processes. Typically
indeed tasks composing a production process may rely on the availability of some
tool like e.g., a screwdriver. If only one (shared) screwdriver is available within
the working environment then, the tasks the human and the robot perform must
be properly organized (task allocation) to minimize idle times due to “resource
synchronization”.

Fig. 2. Cobots need flexible control process and policies to robustly carry out pro-
duction processes: (a) Flexible control processes enable dynamic allocation of tasks
according to human and robot capabilities and production needs as well; (b) Flexi-
ble control policies allow cobots to dynamically adapt their behaviors to the observed
behaviors of the workers, limiting the impact on the efficiency of the production.
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Figure 2 (a) and (b) characterize the decision making capabilities a cobot needs to
(autonomously) make decisions about the specific “shape of collaboration” and
adapt its behaviors to the state of the operator and the environment observed
at runtime.

According to the (internal) knowledge about the production process, robot
and human capabilities and the configuration of the working environment a
suited sequence of tasks must be synthesized and allocated/assigned to the two
actors. Two levels of decision: (i) decide the tasks needed to carry out the
requested production process (process synthesis); (ii) decide who is in charge
of execution which tasks (task allocation). Namely, it is necessary to decide the
actor (i.e., the robot or the worker) responsible for the execution of the tasks
synthesized to realize the collaborative process.

Finally, uncontrollable behaviors of a human operator can affect the behaviors
of a robot which must dynamically adapt task execution to observations coming
from the environment to robustly complete its tasks. The behavior of the worker
must be continuously observed to dynamically adapt the behavior of the robot
when necessary and support safety and achieve a flexible collaboration.

3 Towards Flexible Control

Automated Planning and Scheduling technologies can play a key role to increase
the flexibility and the adaptability of classical robot controllers and therefore
achieve a more reliable and effective collaboration with human operators. A tight
integration of planning and execution taking into account the control problem in
a uniform way sharing control information (i.e., acting) is crucial to achieve the
level of flexibility and reliability needed in HRC and similar scenarios [14,23]. The
human represents an uncontrollable element of the environment whose behaviors
can neither be controlled nor predicted with accuracy (e.g., the expected duration
of task execution). Therefore, it is necessary to make decisions that take into
account the uncontrollable dynamics of the environment (see the controllability
problem [18,28]).

Our objective is to synthesize plans that “encapsulate” control knowledge
enabling a flexible and robust execution and limiting the need for replanning.
To this aim we pursue a timeline-based planning formalism which takes into
account temporal uncertainty at both planning and execution level.

A first step towards this objective was the definition of the planning and
execution problem with timeline taking into account controllability information
in the shape of temporal uncertainty [7]. Then, we developed PLATINUm an
open-source planning and execution framework1 which complies with the pro-
posed formalization [24]. PLATINUm has been successfully applied in realistic
HRC scenarios [21] withinFourByThree2, an H2020 project. It relies on the
timeline-based approach pursuing a uniform representation of the control prob-
lem and the related causal, temporal and controllability features of the planning
1 https://github.com/pstlab/PLATINUm.git.
2 http://fourbythree.eu.

https://github.com/pstlab/PLATINUm.git
http://fourbythree.eu
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and execution problem (i.e., acting problem). The use of shared control informa-
tion concerning the possible (temporal) dynamics of the environment enables a
higher level of flexibility of the resulting acting processes.

3.1 Deliberating Pseudo-controllable Plans

Following the formal account of timelines given in [7], a plan is a set of flexible
timelines enriched with a set of temporal relations representing temporal con-
straints that must be fulfilled. A timeline models the possible temporal behaviors
of a domain features to control by specifying a sequence of tokens whose start
and end points are temporal intervals. Tokens model the states or actions the
associated domain feature assume or perform over time respectively.

Tokens can be controllable (the controller can decide both their start and
end time), partially controllable (the controller can schedule their start time, but
their exact duration is outside the control of the system), or uncontrollable (the
controller can only observe their execution).

On top of this formalism, the deliberative process implemented by PLAT-
INUm consists in a general partial-plan refinement procedure. It starts from
an initial set of partially constrained timelines and iteratively refines them by
detecting and solving flaws. PLATINUm extends this general refinement pro-
cedure by taking into account also temporal uncertainty.

The deliberative process synthesizes pseudo-controllable plans: it analyzes the
duration bounds of uncontrollable tokens of the plan to check that they have not
been squeezed with respect to the domain specification of the associated values.
In such a case, the solving procedure can carry on with the search, otherwise
backtracking is performed. Pseudo-controllability is a necessary but not sufficient
condition for dynamic controllability [17,28]. It is interesting to analyze this
property during plan synthesis because non pseudo-controllable plans must be
discarded, as their execution cannot be robust. The reader can refer to previous
works [24,25] for further details about the types of managed flaws and the related
reasoning capabilities.

3.2 Controllability Aware Execution

The execution process implemented by PLATINUm is organized as a sequence
of control cycles that “discretize” the temporal axis in a number of units called
ticks. The control frequency of the executive determines the granularity of these
ticks and the reactivity of the controller. During each tick, the system performs
a number of operations in two consecutive phases. A synchronization phase is in
charge of processing the execution feedback received until the current tick, and
verifying whether the timelines of the plan comply with the observed status of
the environment. A dispatching phase is in charge of selecting which token to
execute according to the current plan status. Moreover, the actual start time of
these tokens is scheduled according to the related temporal bounds. Dispatch-
ing operations are performed only if the synchronization phase is successfully
completed. Otherwise a failure signal is triggered.
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The synchronization and dispatching phases are supported by a data struc-
ture, called Execution Dependency Graph (EDG) which encodes dependencies
among tokens. Such dependencies are extracted from the set of temporal relations
contained in the timeline-based plan and are crucial to manage plan execution
at runtime. Let us consider as an example a partially controllable token A of a
timeline FTLA and a controllable token B of another timeline FTLB, such that
the temporal relation “A during[0,10][0,10] B” must hold. This temporal relation
requires in particular that the execution of token B ends within a minimum of
0 and a maximum of 10 time units after the complete execution of token A.
According to the timelines in the plan, the end time of the token A must be
scheduled within the interval [5, 23] while the end time of B within the interval
[5, 31]. Now, let us consider the case in which the current execution time is 8
and no feedback/observation about the end of token A has been received yet.
In order not to violate the temporal relations of the plan, the executive must
decide to postpone the end of the execution of B (a controllable token). An
EDG encodes information that allows the executive to make such decisions at
runtime.

3.3 The Execution Dependency Graph

An EDG is a directed labeled graph built from the temporal relations of a
timeline-based plan. Nodes represent tokens and edges represent execution depen-
dencies between tokens. An edge connecting a node A to a node B denotes
an execution dependency of A with respect to B. Each edge is labeled with
‘sx’ to denote a start execution dependency and with ‘ex’ to denote a end
execution dependency. Moreover, edge labels contain the execution state of
the target token enabling the dependency. For example, an edge of the form
〈 A,B, sx, in execution〉 encodes a dependency stating that: “The execution of
token A can start if and only if token B is currently in execution”. The dur-
ing relations of the example above is encoded with two execution conditions
and therefore with two distinct edges into the EDG. A start execution condi-
tion asserts that A can start its execution if and only if the execution of B is
already started. This dependency is represented as a directed edge labeled with
〈“sx”, in execution〉 connecting node A to node B. Similarly, an end execution
condition asserts that B (controllable) can end its execution if and only if the
execution of A is already ended. This dependency is represented as a directed
edge labeled with 〈“ex”, executed〉 connecting node B to node A. Algorithm 1
shows the procedure building an EDG from the analysis of the temporal rela-
tions of a timeline-based plan Π.

4 Assessment of the Acting Capabilities

The contribution of this work consists in an extensive assessment of the acting
capability of PLATINUm. Considering our previous works, we have developed a
deliberative control architecture which tightly integrates planning and execution
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Algorithm 1. The execution dependency graph building procedure

1: function buildExecutionDependencyGraph(Π)
2: EDG ← ∅
3: // initialize the set of nodes associated to the tokens of the timelines
4: FT L ← GetT imelines (Π)
5: for ti ∈ FT L do
6: // set the default execution status waiting
7: nti ← CreateNode (ti, waiting)
8: EDG ← AddNode (nti)

9: // initialize the set of edges associated to the temporal relations of the plan
10: R ← GetRelations (Π)
11: for r ∈ R do
12: // set the edges concerning start and end conditions of tokens
13: {..., (nh,i, nh,j , ch,k) , ...} ← GetStartConditions (r)
14: EDG ← addStartConditions ({..., (nh,i, nh,j , ch,k) , ...})
15: {..., (nh,i, nh,j , ch,k) , ...} ← GetEndConditions (r)
16: EDG ← addEndConditions ({..., (nh,i, nh,j , ch,k) , ...})

17: return EDG

capabilities of PLATINUm. Also, we have developed a simulation environment
to stress PLATINUm in different HRC scenarios of growing difficulty in terms
of complexity of the addressed problem (e.g., number of tasks to perform) and
uncertainty about the uncontrollable dynamics of the environment (temporal
uncertainty about possible behaviors of the human).

We have here considered a typical HRC scenario consisting of an industrial
robotic arm and a human operator sharing a fenceless working environment
and interacting with different modalities [11]. Specifically, a realistic assem-
bly/disassembly process, inspired by the ALFA Pilot of FourByThree, has
been considered [4,16]. The original assembly/disassembly process considered
during the project focused on the preparation of a die for wax injection and
extraction of the pattern from the die. Although it was only a part of the com-
plete industrial process, the underlying HRC coordination problem was (and
still is) interesting with respect to our research objectives. Indeed, it represents
a labour demanding operation for the human with a significant impact on the
final cost of the product. Therefore the introduction of a cobot can improve either
the working conditions of human operators and the efficiency of the process.

To give an intuition of the HRC problem, the process consists of the following
three macro-tasks: (i) mount the die (assembly); (ii) inject the wax pattern;
(iii) open the die and remove the wax pattern (disassembly). Focusing on the
disassembly part of the process, once the injection process has finished, the die is
put on the workbench by the worker who starts unscrewing bolts together with
the robot. When all bolts have been unscrewed, the worker removes the top-
cover of the die. Then, the worker turns the die to start removing the bottom-
cover. The human and the robot must collaborate to perform such a disassembly
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process by suitably handling different parts of the die and screwing/unscrewing
different bolts.

Hence timeline-based planning problems are defined by considering two
actors (or agents) that interact over time: a human and a robot. The human
is considered as an uncontrollable agent, so that all the values in human-specific
state variables are uncontrollable. On the contrary, the robot is a controllable
agent and the operations it can perform may be either controllable or partially
controllable. For instance, while unscrewing operations carried out by the robot
are controllable, its motion operations are not, as the duration of the execution
of a trajectory can vary for safety reasons (the speed of a motion can decrease or
be even set to zero to avoid collisions when the human is too close to the robot).

Tasks are hierarchically organized into high-level tasks, such as, e.g., prepar-
ing the piece (i.e., the metal die for wax part injection to disassemble), removing
the cover of the piece, etc.), and primitive ones (e.g., unscrewing a given bolt).
Relationships among higher-level and lower-level tasks are encoded through a
dedicated set of synchronization rules3 Another set of synchronization rules
describes the allowed collaborations between the human and the robot. They
specify, for each task, which agent can be assigned with the task (i.e., to the
human, to the robot or to both of them). Such rules can concern either high-
level or primitive tasks, to support different levels of granularity.

4.1 Experimental Design

Two sets of experiments have been considered to assess the deliberative capabil-
ities and the runtime acting capabilities of the framework, respectively.

To evaluate the deliberative capabilities, the experiments have been organized
by defining a number of problem specifications varying the following parameters:
(i) the number of total tasks the human and the robot must perform; (ii) the
percentage of tasks that can be assigned either to the human or to the robot;
(iii) the temporal uncertainty of the actual duration of uncontrollable operations
(by human) and partially-controllable operations (by robot).

The number of total tasks varies within a minimum of 10 and a maximum
of 30. For each number of tasks, the percentage of tasks that can be assigned to
the robot or the human vary from a minimum of 20% to a maximum of 100%.
For example a percentage of 60% over a number of 10 tasks means that the 6
of the 10 tasks can be assigned to the human or to the robot while the rest
of the tasks are pre-allocated to the human. Thus, it is up to the planner to
decide who (between the human and the robot) performs 6 of the 10 tasks of the
process. A higher percentage implies a higher number of choices and therefore a
more challenging planning problem with higher number of possible collaborative
solution plans.

To assess the runtime acting capabilities, experiments have been organized
by taking into account plans synthesized with a fixed number of tasks (10), a

3 A synchronization rule is a rule expressing causal/temporal dependencies among
tokens on timelines that must hold.
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fixed percentage of assignment choices (60%) and a variable amount of temporal
uncertainty. The objective is to evaluate the capacity of robustly dealing with
planning and acting in different situations (i.e., facing different uncontrollable
dynamics of the environment in a robust way). Thus, the developed simula-
tor randomly generates exogenous events during plan execution to stress acting
capabilities in different situations.

A number of experiments have been defined by varying temporal uncertainty
and platform uncertainty. The latter represents the actual uncertainty of the
simulated environment. The simulator receives execution requests and randomly
triggers feedback to the acting process. It determines the temporal window within
which random feedback is triggered (values span from 5 to 30 time units).

4.2 Results

The results concerning the assessment of the deliberative capabilities of the
framework show that PLATINUm can efficiently solve problems of growing
complexity in terms of number of goals (i.e., the number of total tasks) and
number of task allocation choices (i.e., the percentage of tasks to assign).

In the worst case indeed the planner takes up to 140 s to synthesize plans.
Namely, it takes 140 s to synthesize plans that implement a collaborative process
composed by 30 high-level tasks and decide the assignment of all these tasks. This
is a reasonable time considering that the estimated minimum execution time of
a whole collaborative process with 30 tasks is about 500 s. Also, the experiments
show that an increasing value of temporal uncertainty does not impact on the
solving performance of the framework.

Efficiency is not the only aspect to consider in application scenarios like
HRC. The quality of the synthesized plans is equally important in this kind of
scenarios. It is crucial to synthesize plans that enable a feasible and effective col-
laborations between humans and robots. A planning process synthesizing plans
where tasks are assigned only to the robot would not be effective in real world
applications, regardless its efficiency. A tradeoff between deliberation time and
quality of generated plans must be found to synthesize effective plans. To this
aim PLATINUm has been enriched with a load balancing search strategy to
achieve an as much as possible equal work load distribution between the human
and the robot and a low cycle time of the production process as well (i.e., low
makespan).

Figure 3 shows the obtained results by aggregating the makespan of the plans
and the number of tasks assigned to the human worker and the robot. It can
be observed that a higher percentage of task assignment (i.e., higher number
of alternative collaborative plans) leads to the synthesis of plans that achieve a
better makespan and a better task distribution. Also, the chart shows that the
total makespan of the collaborative process decreases when the number of tasks
that can be assigned to the human and the robot increases. Namely, increasing
the number of planning choices, the framework can generate plans with a better
distribution of the work load between the human and the robot and therefore a
lower makespan (i.e., a more efficient collaborative process).
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Fig. 3. Makespan and task distribution of the plans in different configurations

Concerning the assessment of the runtime capabilities of PLATINUm, the
obtained results show the capability of integrating planning and acting using a
common representation of the problem. Although with different performances,
all the tested acting configurations were capable of completing plan execution.
In particular, the results show that the use of a shared representation and a
proper model of the uncontrollable dynamics of the environment can strongly
improve the reliability of the acting process.

Indeed, PLATINUm was capable of completing the execution of (pseudo-
controllable) plans without replanning in all the configurations that do not
underestimate the uncertainty of the environment (i.e., all the configurations
with model uncertainty greater than or equal to the platform uncertainty).

Figure 4 shows the total planning time and the planning sessions of the dif-
ferent executions with a growing variability of the platform simulator. The figure
shows the behavior of the agent using different models of temporal uncertainty.
Except for the first planning session which is the one needed to generate the
plan, each (re)planning session represents an exogenous event causing an exe-
cution failure. The results show that the pseudo-controllable plans synthesized
with a temporal uncertainty set to 30 (see modelU30 in Fig. 4) enable the execu-
tive to “consistently” manage the (random and uncontrollable) dynamics of the
platform.

It is worth underscoring that the case with temporal uncertainty set to 10
(modelU10 in Fig. 4) is the acting configuration achieving the worst performance
in terms of total acting time and therefore the highest number of planning ses-
sions (5, total planning time about 70 s). The performance of this configuration
gets worst as soon as the variability of the platform becomes greater than the
modeled temporal uncertainty. This is a reasonable and expected result since
an under-estimation of uncertainty would prevent the agent to properly manage
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possible concrete situations. The higher the distance between the model and
the behavior of the system, the higher the probability that the system looses
control. Therefore an adequate model of the temporal uncertainty is crucial to
realize reliable acting agents.

Fig. 4. Total planning time and number of replanning attempts

5 Conclusions

This paper presents an assessment of the timeline-based planning and acting
framework called PLATINUm over a number of domains with an increasing
amount of temporal uncertainty. The aim of the work is to show the capability
of the framework in dealing with the uncontrollable dynamics of an environment
at both planning and execution level. The evaluation has focused on a realis-
tic Human-Robot Collaboration scenario where an industrial robot cooperates
with a human operator (uncontrollable) and together they carry out a collabora-
tive process in a reliable and efficient way. The results show that PLATINUm-
based acting agents can synthesize pseudo-controllable plans and execute them
through a flexible and reliable management of exogenous events and uncontrol-
lable dynamics of the environment. Then, the pursued acting approach is well-
suited to address challenging control problems where uncontrollable temporal
dynamics plays a key role and a reliable acting process is strongly necessary.

In the immediate future, we plan to extend the general timeline-based for-
malism, so that the particular features of HRC problems could be treated in
a specific and immediate way. In fact, it would be useful to define a syntactic
extension of the general formalism allowing the designer to use, for example,
abbreviations for task assignment, that would be automatically “compiled” into
the pre-existing kernel language.
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Abstract. It is well-known that the order in which clauses and literals
are listed in a SAT formulae can have a strong impact on solvers’ per-
formance.

In this work we investigate how the performance of SAT solvers can
be improved by a specifically-designed SAT formulae configuration. We
introduce a fully automated approach for this configuration task, that
considers a number of criteria for optimising the order in which clauses
and, within clauses, literals, are listed in a formula expressed using the
Conjunctive Normal Form.

Our experimental analysis, involving three state-of-the-art SAT
solvers and six different benchmark sets, shows that the configurations
identified by the proposed approach can have a significant positive impact
on solvers’ performance.

Keywords: SATisfiability · Knowledge configuration · Performance
improvement

1 Introduction

The propositional satisfiability problem (SAT) is one of the most prominent
problems in Artificial Intelligence (AI), and it is exploited in a wide range of
real-world applications. Well-known examples include hardware and software
verification [22], test-case generation [5], automated planning [23], and schedul-
ing [7]. Nowadays, thanks also to the SAT competitions and SAT challenges,1

there is a large-yet-growing number of ready-to-use SAT solvers that can be used
in applications.

By exploiting algorithm configuration techniques, SAT solvers’ behaviour can
be adjusted to perform well for a specific type of instances [8,17,24], allowing
them to be optimised for the actual problems at hand. To support this type of
customisation, most state-of-the-art solvers expose a large number of parameters
whose settings can significantly modify many parts of the solver, like the heuristic
and search techniques. Furthermore, in areas of AI such as automated planning
1 http://www.satcompetition.org.
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[25,26] or abstract argumentation [6], it has been demonstrated that also the
configuration of the knowledge models, i.e. the symbolic representation of the
problem that is provided as input to automated reasoners, can lead to significant
performance improvements of general domain-independent solvers. Intuitively,
such results can be due to the fact that the way in which a model is represented:
(i) implicitly carries some knowledge about the problem, and such knowledge can
positively impact the behaviour of solvers; and (ii) can early guide the search
approach towards promising areas of the search space, by ordering the way in
which options are considered. It may be argued that the first aspect can be more
relevant in “complex” models, such as those needed in automated planning, while
the second aspect can be prominent in the case of less-structured models.

In the SAT field, it is well-known that the ordering of clauses and literals
in SAT formulae can have a strong impact on the performance of solvers, and
random shuffling has been routinely implemented in international competitions
as a technique for avoiding some potential biases. In this context, we propose
instead to exploit the impact that orderings can have on SAT solvers in order to
improve performance. Here we introduce an approach for performing the auto-
mated configuration of SAT formulae expressed using the Conjunctive Normal
Form (CNF). The configuration aims at identifying an ordering of clauses and,
within clauses, the involved literals, of a CNF from a specific type of instances
that allows to improve the performance of a given SAT solver. In this sense,
the proposed approach exploits the fact that the ordering of elements in SAT
formulae has an impact on solvers, to improve performance and reduce –at least
in part– the accidental complexity of formulae. Accidental complexity refers to
cases where instances are made harder to be solved due to the way in which they
have been encoded [4].

Notably, due to the fact that the configuration has to be performed online
when a new CNF is provided to the solver, it has to rely on characteristics of the
CNF that are computationally cheap to extract. Through comprehensive experi-
ments, using three state-of-the-art SAT solvers and six different benchmark sets,
we demonstrate that the proposed approach for performing CNF configuration
can lead to significant benefits in terms of SAT solvers’ performance, and can
provide valuable information for the encoding of CNFs and for further improve-
ments of SAT solvers.

This paper is organised as follows. Firstly, we provide the relevant background
on the DIMACS format, used for representing CNFs. Then, we describe the
proposed approach for the automated configuration of SAT formulae. After that,
we show the results of our large experimental analysis. Finally, conclusions are
given.

2 SAT Formulae

In this work we focus on SAT formulae represented using Conjunctive Normal
Form (CNF) and following the DIMACS format. The DIMACS format is the
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standard format supported by SAT solvers, and used in SAT competitions and
challenges.2

A CNF formula is a conjunction of clauses, where a clause is a disjunction of
literals. Literals can be assigned a boolean value.

p cnf 5 3

1 -3 0

2 3 -1 -4 0

-5 -4 0

Fig. 1. An example CNF encoded in the DIMACS format.

Figure 1 gives an example of a formula, presented in the DIMACS format,
including five literals and three clauses. The line starting by p gives information
about the formula: the instance is in the CNF, and the number of literals and
clauses, respectively, are provided. In the DIMACS format a literal is uniquely
identified by a number. After the initial descriptive line, clauses are listed. Each
clause is a sequence of distinct non-null numbers ending with 0 on the same line.
Positive numbers denote the corresponding literals. Negative numbers denote
the negations of the corresponding literals. In the computation performed by
modern SAT solvers, the formula is satisfied when all the literals have been
assigned, and all the clauses are true at the same time. For the given example, a
valid solution would be 1 2 3 -4 5, corresponding to an assignment where all
variables are True, except 4.

3 Configuration of SAT Formulae

In a SAT formula, clauses are usually not ordered following a principled app-
roach, but they are ordered according to the way in which the randomised gener-
ator has been coded, following the way in which information from the application
domain has been collected, or deliberately shuffled to prevent potential biases.
This is also generally true for the order in which literals of a given clause are
presented in the formula.

Here we focus on the following question: given the set of clauses and, for
each clause, the set of corresponding literals, in which order should they be listed
to maximise the performance of a given solver? The underlying hypothesis is
that the order in which clauses and literals are listed can be tuned to highlights
elements that are important for satisfying, or demonstrating the unsatisfiability,
of the considered SAT instance by the considered SAT solver.

2 http://www.satcompetition.org.

http://www.satcompetition.org
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3.1 Automated Configuration of SAT Formulae

In this work we use the state-of-the-art SMAC [13] configuration approach for
identifying a configuration of CNF formulae, encoded using the DIMACS format,
that aims at improving the PAR10 performance of a given SAT solver. PAR10 is
the average runtime where unsolved instances count as 10× cutoff time. PAR10
is a metric commonly exploited in machine learning and algorithm configuration
techniques, as it allows to consider coverage and runtime at the same time.

SMAC uses predictive models of performance [18] to guide its search for
good configurations. More precisely, it uses previously observed 〈configuration,
performance〉 pairs 〈c, f(c)〉 and supervised machine learning (random forests [3])
to learn a function

f̂ : C → R (1)

that predicts the performance of arbitrary parameter configurations (including
those not yet evaluated). The performance data to fit these models is collected
sequentially. In a nutshell, after an initialisation phase, SMAC iterates the fol-
lowing three steps: (1) use the performance measurements observed so far to fit
a random forest model f̂ ; (2) use f̂ to select a promising configuration c ∈ C
to evaluate next, trading off exploration in new parts of the configuration space
and exploitation in parts of the space known to perform well; and (3) run c
on one or more benchmark instances and compare its performance to the best
configuration observed so far.

The CNF configuration has to be performed online: as soon as a new formula
is provided as input, the formula has to be configured before being presented to
the solver. In a nutshell, given a set of parameters that can be used to modify
the ordering of some aspect of the CNF formula, and given the value assigned
to each parameter, the online configuration is performed by re-ordering clauses
and literals accordingly. Notably, the value of each parameter has to be provided,
and can be identified via an appropriate off-line learning step.

Given the depicted online scenario, we are restricted to information about
the CNF that can be quickly gathered and that are computationally cheap to
extract. Furthermore, the configuration must consider only general aspects that
are common to any CNF. As it is apparent, the use of a computationally expen-
sive configuration of a single CNF, that considers elements that are specific to the
given CNF, would nullify the potential performance improvement, by drastically
reducing the time available for the solver to find a solution (or to demonstrate
unsatisfiability).

In this work, we consider the possibility to order clauses according to the
following criteria:

– (1) the number of literals of the clause;
– (2) the fact that the clause is binary;
– (3) the fact that the clause is ternary;
– (4) the number of positive literals of the clause;
– (5) the number of negative literals of the clause;
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– (6) the fact that the clause is binary, and both literals are negative;
– (7) the fact that the clause has only one negative literal.

Literals can be listed in clauses according to:

– (i) the number of clauses in which the literal appears;
– (ii) the average size of the clauses in which the literal is involved;
– (iii) the number of binary clauses in which the literal in involved;
– (iv) the number of ternary clauses in which the literal is involved;
– (v) the number of times the literal appears in clauses as positive;
– (vi) the number of times the literal appears in clauses as negative;
– (vii) the number of times the literal is involved in clauses where all literals

are positive;
– (viii) the number of times the literal is involved in clauses where all literals

are negative.

The set of proposed ordering criteria is aimed at being as inclusive as possible,
so that different characterising aspects of clauses and literals can be taken into
account, at the same time, for the configuration process.

It is easy to notice that many of the introduced criteria focus on aspects of
binary and ternary clauses. This is due to their importance in the search process.
For instance, binary clauses are responsible, to a great degree, of unit propaga-
tion. There are also criteria that aims at identifying potentially relevant aspects.
For instance, criterion 7 aims at identifying clauses that may be representing
implication relations between literals.

There are different ways for encoding the identified degrees of freedom in
CNFs as parameters. This is due to the fact that orders are not natively sup-
ported by general configuration techniques [13,19]. Results presented by Vallati
et al. [25] suggest that purely categorical parametrisations are not indicated for
the configuration of models, as they tend to fragment the configuration space
and to introduce discontinuities. Those combined aspects make the exploration
of the configuration space particularly challenging for learning approaches. For
this reason, here we generate 7 continuous parameters for configuring the order
of clauses, and 8 continuous parameters for configuring the order of literals in
clauses. Each parameter corresponds to one of the aforementioned criteria, and
they have to be combined to generate different possible orderings of clauses and
literals in CNFs. Each continuous parameter has associated a real value in the
interval [−10.0,+10.0] which represents (in absolute value) the weight given to
the corresponding ordering criterion. Two additional categorical selectors are
also included. One which allows to activate or de-active the ordering of literals
in the clauses, and the second that allows to order clauses according to the order-
ing (direct or inverse) followed by the involved literals. Thus, the configuration
space is C = [−10.0,+10.0]15 × 2 × 3, where 2 are the possible values of the
parameter on ordering of literals in clauses, and 3 are the possible values of the
categorical parameter describing whether the order of clauses should follow the
order of involved literals. An ordering σ instantiates each of the 17 parameters,
and can be used on any CNF. Given a CNF and an ordering σ, the corresponding
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configuration of the formula is obtained as follows. For each literal, an ordering
score ol(v) is defined as:

ol(l) =
∑

c∈C

(value(p, c) × weight(c)) (2)

where c is a continuous ordering criterion in the set C of the 8 available
continuous parameters for configuring literals’ order, value(p, c) is the numerical
value of the corresponding aspect for the literal v, and weight(c) is the weight
assigned to the corresponding continuous parameter by the configuration tech-
nique. If the 16th parameter is set to ignore the order of literals in clauses, then
literals are ordered as in the provided initial CNF. Otherwise, for every clause,
the involved literals are ordered following the score ol(v). Ties are broken follow-
ing the order in the original CNF configuration. As it is apparent from Eq. (2),
a positive (negative) value of weight(c) can be used to indicate that the aspect
corresponding to the parameter c is important for the SAT solver, and that
literals with that aspect should be listed early (late) in the clause to improve
performance.

Similarly to what is presented in Eq. (2) for literals, clauses are ordered
according to a corresponding score oC(d) –where C is the set of clauses ordering
criteria–, unless clauses are forced to follow the order of literals via the appro-
priate parameter. In that case, clauses are ordered according to the sum of the
ol(v) scores of the set of literals that appear in the clause L(d), as shown in
Eq. (3).

oC(d) =
∑

v∈L(d)

ol(v) (3)

p cnf 5 3

1 -3 0

2 3 -1 -4 0

-5 -4 0

p cnf 5 3

3 -1 -4 2 0

-4 -5 0

1 -3 0

Fig. 2. The example CNF formula non configured (top), and the configured version
(bottom). Configuration has been done by listing clauses according to their length and
the number of negative literals. Literals are listed following the number of clauses they
are involved.

Example 1. Let us consider the CNF presented, using the DIMACS format, in
Fig. 2 (top). Suppose that we are interested in listing clauses according to their
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length (criterion 1) and to the number of involved negative literals (criterion
5). Similarly, we are interested in listing the literals of a clause according to
the number of clauses in which they appear (criterion i). This can be done by
leaving all the parameters to the default value 0.0, but the ones controlling the
mentioned criteria to 10.0. Considering only criteria 1 and 5, the clause 2 3 -1
-4 0 has a oC(d) score of (4 + 2) × 10.0 = 60.0: it involves 4 literals, and 2
literals are negative. According to the same criteria, clause 1 -3 0 has a score
of (2 + 1) × 10.0 = 30.0. In a similar way, but considering the corresponding
criterion, the score of literals can be calculated, and literals are then ordered
accordingly in each clause. Of course, the first line of the considered CNF formula
is unmodified, as the DIMACS format require it to be the first, and to present
information in a given order. ��

The way in which the considered ordering criteria are combined, via Eqs. (2)
and (3), gives a high degree of freedom for encoding and testing different con-
figurations. Very specific aspects can be prioritised: for instance, it would be
possible to present first clauses that are binary, and where both literals are pos-
itive, by penalising criterion 5 and giving a high positive weight to criterion 2.
Furthermore, additional criteria can be added, with no need to modify or update
the overall configuration framework.

4 Experimental Analysis

Our experimental analysis aims to evaluate the impact of the proposed auto-
mated approach for performing CNF configuration, on state-of-the-art SAT
solvers’ performance.

We selected 3 SAT solvers, based on their performance in recent SAT compe-
titions and in their widespread use: Cadical version sc17 [2], Glucose 4.0 [1], and
Lingeling version bbc [2]. For each solver, a benchmark-set specific configuration
was generated using SMAC 2.08. A Python 2.7 script is used as a wrapper for
extracting information from a given formula and, according to the parameters’
value, reconfigure it and provide it as input for the SAT solver.

In designing our experimental analysis, we followed the Configurable SAT
Solver Challenge (CSSC) [17]. The competition aimed at evaluating to which
extent SAT solvers’ performance can be improved by algorithm configuration for
solving instances from a given class of benchmarks. In that, the CSSC goals are
similar to the goals of this experimental analysis –i.e., assessing how performance
can be improved via configuration–, thus their experimental settings are deemed
to be appropriate for our analysis. However, CSSC focused on the configuration
of SAT solvers’ behaviour by modifying exposed parameters of solvers. In this
work we do not directly manipulate the behaviour of SAT solvers via exposed
parameters, but we focus on the impact that the configuration of a CNF formula
can have on solvers.

Following CSSC settings, a cutoff of 5 CPU-time minutes, and a memory limit
of 4 GB of RAM, has been set for each solver run on both training and testing
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instances. This is due to the fact that many solvers have runtime distributions
with long tails [12], and that practitioners often use many instances and relatively
short runtimes to benchmark solvers for a new application domain [17]. There is
also evidence that rankings of solvers in SAT competitions would remain similar
if shorter runtimes are enforced [14].

We chose benchmark sets from the CSSC 2014 edition [17], and the bench-
marks used in the Agile track of the 2016 SAT competition.3 These two compe-
titions provide benchmarks that can highlight the importance of configuration
(CSSC) –even though a different type of configuration than the one considered
in this paper–, and that include instances that have to be solved quickly (Agile).
In particular, CSSC benchmarks can allow us to compare the impact of the
proposed CNF configuration with regards to the solvers’ configuration.

Selected CSSC 2014 benchmark sets include: Circuit Fuzz (Industrial track),
3cnf, K3 (Random SAT+UNSAT Track), and Queens and Low Autocorrelation
Binary Sequence (Crafted track).4 Benchmark sets were selected in order to cover
most of the tracks considered in CSSC, and by checking that at least 20% of the
instances were solvable by considered solvers, when run on the default CNFs.
Benchmarks were randomly divided into training and testing instances, aiming
at having between 150–300 instances for testing purposes, and a similar amount
of benchmarks for training. The size of each testing set is shown in Table 1.

Experiments were run on a machine equipped with Intel Xeon 2.50 Ghz
processors. Each configuration process, i.e. for each pair SAT solver - benchmark
set, has been given a budget of 5 sequential CPU-time days, and run on a
dedicated processor.

Table 1. Results of the selected solvers on the considered benchmark sets. Between
brackets, the number of considered testing instances. For each solver and benchmark,
we show the number of test set timeouts achieved when running on the default and on
the configured CNFs. Bold indicates the best result.

Cadical Glucose Lingeling

# timeouts: default → configured

K3 (150) 89 → 84 72 → 69 76 → 75

3cnf (250) 219 → 216 134 → 131 213 → 210

Queens (150) 10 → 9 26 → 25 24 → 23

Low Autocorrelation (300) 118 → 116 115 → 109 123 → 120

Circuit Fuzz (185) 19 → 17 9 → 9 12 → 10

Agile16 (250) 31 → 29 24 → 19 55 → 48

Total 486 → 471 380 → 362 503 → 486

3 https://baldur.iti.kit.edu/sat-competition-2016/.
4 http://aclib.net/cssc2014/benchmarks.html.

https://baldur.iti.kit.edu/sat-competition-2016/
http://aclib.net/cssc2014/benchmarks.html
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Table 1 summarises the results of the selected SAT solvers on the considered
benchmark sets. Results are presented in terms of the number of timeouts on
testing instances, achieved by solvers run using either the default or the config-
ured CNFs. Indeed, all of the considered solvers benefited from the configuration
of the CNFs. Improvements vary according to the benchmark sets: the Agile16
set is, in general, the set where the solvers gained more by the use of configured
CNFs. Remarkably, the improvements observed in Table 1 are comparable to
those achieved in CSSC 2013 and 2014, that were achieved by configuring the
solvers’ behaviour [17]. In fact, these results may confirm our intuition that the
way in which clauses and literals are ordered has an impact on the way in which
solvers explore the search space. Listing “important” clauses earlier may lead the
solver to tackle complex situations early in the search process, making it then
easier to find a solution. In that, it may be argued that a solver’s behaviour can
be controlled internally, by modifying its exposed parameters, and externally by
ordering the CNF in a suitable way.

Interestingly, the overall results (last row of Table 1) indicate that the CNF
configuration does not affect all the solvers in a similar way, and that can poten-
tially lead to rank inversions in competitions or comparisons. This is the case of
Lingeling (on configured) and Cadical on default. This may suggest that current
competitions could benefit by exploiting a solver-specific configuration, in order
to mitigate any implicit bias due to the particular CNF configuration exploited.
Randomly listing clauses and variables may of course remove some bias, but it
can also be the case that different biases are introduced. In that sense, allowing
solvers to be provided with a specifically-configured CNF may lead to a better
comparison of performance. Finally, it is worth noting that the way in which the
CNFs are configured varies significantly between solvers, as well as according to
the benchmark set. In other words, there is not a single ordering that allows to
maximise the performance of all the SAT solvers at once.

Table 2. Results of the selected solvers on the considered benchmark sets. For each
solver and benchmark, we show the IPC score achieved when running on the default
and on the configured CNFs. Bold indicates the best result. Results of different solvers
can not be directly compared.

Cadical Glucose Lingeling

IPC score: default → configured

K3 56.7 → 59.9 71.3 → 76.3 67.8 → 68.6

3cnf 27.3 → 31.6 106.6 → 107.0 33.6 → 35.9

Queens 136.5 → 137.6 119.3 → 121.1 120.6 → 122.9

Low Autocorrelation 171.8 → 173.4 177.2 → 183.7 171.0 → 175.3

Circuit Fuzz 156.3 → 160.8 175.2 → 175.3 161.3 → 164.3

Agile16 208.1 → 211.3 209.1 → 215.9 188.6 → 196.6

Total 756.7 → 774.6 858.7 → 879.3 742.9 → 763.6
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To better understand the impact of configuring CNFs on the runtime of
solvers, Table 2 compares performance in terms of IPC score variations. The
IPC score provides a trade-off between runtime and coverage, and is used in the
International Planning Competition for comparing planners’ performance.

For a solver R and a SAT instance p, Score(R, p) is defined as:

Score(R, p) =

{
0 if p is unsolved

1

1+log10(
Tp(R)

T∗
p

)
otherwise

where T ∗
p is the minimum amount of time required by any compared system to

solve the instance, and Tp(R) denotes the CPU time required by R to solve the
instance p. Higher values of the score indicate better performance.

In Table 2 the performance of a solver run on the default and configured
formulae are compared. Results indicate that the configuration provides, for
most of the benchmark sets, a noticeable improvement also in terms of IPC
score.

To shed some light on the most relevant aspects of the SAT formula con-
figuration, we assessed the importance of parameters in the considered config-
urations using the fANOVA tool [15]. We observed that in most of the cases,
improvements are mainly due to the effect of the correct configuration of a single
criterion, rather then to the interaction of two or more criteria together. In terms
of clauses, parameters controlling the weight of criteria 4 and 5 are deemed to be
the most important: in other words, the number of positive (or negative) literals
that are involved in a clause are a very important aspect for the performance
of SAT solvers. The solver that can gain the most by ordering the clauses is
Lingeling. In particular, this solver shows best performance when clauses with a
large number of negative literals are listed early.

Parameters related to criteria ii, vi, and viii have shown to have a significant
impact with regards to the literals’ ordering in clauses. For Glucose and Cadical,
criterion ii –i.e. the average size of the clauses in which the literal is involved– is
the most important single criterion that has to be correctly configured. However,
it is a bit hard to derive some general rules, as their impact on orderings vary
significantly with regards to the solver and the benchmark. In a nutshell, they
are important, but the best way to present the literals varies.

Generally speaking, also in the light of the criteria that are most important
for clauses, the ordering of literals appears to be the most important in a CNF
formulae: this is also because, in many cases, clauses are ordered according to
the (separately-calculated) weight of the involved literals. This behaviour can be
due to the way in which data structures are generated by solvers: usually literals
are the main element –that is also the focus of heuristic search used by SAT
solvers. Instead, clauses from the CNF tend to have a less marked importance
during the exploration of the search space, as they are related to literals mostly
via lists, and are exploited only for checking satisfiability and performing unit
propagation. Clauses learnt during the search process are not included in our
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analysis, as they are not part of the CNF formula–but are generated online by
the solver.

Finally, we want to test if there is a single general configuration that improves
the performance of a solver on any formula, despite of the benchmark and under-
lying structure. Therefore, we trained each of the considered solvers on a training
set composed by an equal proportion of instances from each of the 6 benchmark
sets. As for previous configurations, we gave 5 days of sequential CPU-time for
each learning process, and obtained configurations have been tested on an inde-
pendent testing set that includes instances from all the benchmark sets. Results
are presented in Table 3.

Table 3. Results achieved by the selected solvers on the general testing set. For each
solver, we show the PAR10, number of test set timeouts, and IPC score achieved when
running on the default and on the CNFs configured using the general configuration.
Bold indicates the best result.

Solver Performance: default → configured

# timeouts IPC score

Cadical 101 → 98 172.7 → 172.5

Glucose 80 → 78 207.5 → 211.2

Lingeling 109 → 108 190.7 → 191.7

Results on the independent testing set indicate that this sort of configuration
has a very limited impact on solvers’ performance. This seems to confirm our
previous intuition that solvers require differently configured formulae accord-
ing to the underlying structure of the benchmark: it is therefore the case that
structurally different sets of instances require a very different configuration. Intu-
itively, this seems to point to the fact that, in different structures, the character-
istics that identify challenging elements to deal with, vary. Solvers, when dealing
with different sets of benchmarks, are then sensitive to different aspects of the
CNF formulae, that should be appropriately highlighted and configured. On the
one hand, this result may be not fully satisfying, as it suggests that there is not
a quick way to improve the performance of SAT solvers. On the other hand,
the results of the other experiments indicate that, for real-world applications of
SAT where instances share some underlying structure, there is the possibility to
furtherly improve the SAT solving process by identifying a specific configuration
for the solver at hand.

5 Conclusions

Previous work in the area of algorithm configuration for SAT focused on modi-
fying the exposed parameters of SAT solvers in order to affect their behaviour.
Well-known examples include the use of ParamILS for configuring SAPS and
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SPEAR [16] or of ReACTR for configuring LingeLing [9], as well as the dedi-
cated design and development of highly modular and configurable SAT solvers
such as SATenstein [20] that can then be tuned for a specific set of benchmarks.
Algorithm configuration has also been used as a technique for selecting and com-
bining different SAT solvers into portfolios [21], and for creating suitable SAT
solvers that would complement the performance of a given portfolio [28].

In this paper we proposed an approach for exploiting the fact that the order
in which literals and clauses are listed in CNF formulae can strongly affect the
performance of SAT solvers. The proposed approach allows to perform the auto-
mated configuration of formulae. We considered as configurable the order in
which clauses are listed and the order in which literals are listed in the clauses.
In our experimental analysis we configured formulae for improving the PAR10
performance of solvers, i.e. a tradeoff between runtime and coverage. The per-
formed analysis, aimed at investigating how the configuration of CNF formulae
affects the performance of state-of-the-art SAT solvers: (i) demonstrates that the
automated configuration has a significant impact on solvers’ performance; (ii)
indicates that the configuration should be performed on specific set of bench-
marks for a given solver; and (iii) highlights important aspects of formulae, that
have a potentially strong impact on the performance of solvers.

It should be noted that different metrics can be used to configure CNF for-
mulae. In this work we focused on the PAR10 value, but metrics with a stronger
focus on runtime, coverage, or even “quality” of generated solutions can be
straightforwardly considered in the introduced framework. Similarly, additional
criteria to control the ordering of clauses and literals can be included.

We see several avenues for future work. We plan to evaluate the impact
of configuration on weighted max SAT, where the weight of the clauses can
provide another important information to the configuration process. We are also
interested in evaluating if ordering clauses (and literals) that are learnt during the
search process of a SAT solver, or if taking into account backdoors [10,11,27], can
be beneficial for improving performance. Finally, we plan to incorporate the re-
ordering of clauses and literals into existing approaches for configuring portfolios
of SAT solvers, such as SATenstein, in order to further improve performance,
and to investigate the concurrent configuration of formulae and solvers.
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Abstract. Diagnosing and monitoring Parkinson’s disease (PD) is a
topic of current research in many fields, including AI. The innovative
challenge is to develop a low-cost, non-invasive tool to support clini-
cians at the point of care. In particular, since handwriting difficulties in
PD patients are well-known, changes in handwriting have emerged as a
powerful discriminant factor for PD assessment. A crucial step in design-
ing a decision support system based on handwriting concerns the choice
of the most appropriate handwriting tasks to be administered for data
acquisition. When data are collected, traditional approaches assume that
different tasks, although not with the same impact, are all important for
classification. However, not all tasks are likely to be useful for diagnosis,
and the inclusion of these tasks may be detrimental to prediction accu-
racy. This work investigates the potential of an optimal subset of tasks
for a more accurate PD classification. The evaluation is carried out by
adopting a performance-driven multi-expert approach on different hand-
writing tasks performed by the same subjects. The multi-expert system
is based on similar or conceptually different classifiers trained on fea-
tures related to the dynamics of the handwriting process. The proposed
approach improves baseline results on the PaHaW data set.

Keywords: e-Health · Parkinson’s disease · Handwriting analysis

1 Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative disor-
ders: it is characterized by the degeneration of the dopaminergic nigrostriatal
neurons of the basal ganglia resulting in a progressive cognitive, functional and
behavioral decline. More specifically, akinesia, bradykinesia, rigidity and tremor
are typically observed [7]. Currently, there is no cure and the gradual decline
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of the patient can only be somehow managed during the disease progression.
However, an early diagnosis of PD would be crucial in the perspective of the
proper medical treatment to be administered and for evaluating the effects of
new drug treatments.

To this end, a growing research interest has arisen, in the last years, towards
computer aided diagnosis systems. Intelligent systems, in fact, are appropriate to
detect subtle changes in disease symptoms which may be difficult (if not impossi-
ble) to be observed by the human expert, e.g. [3,16]. In this context, handwriting
analysis can play a special role. Handwriting, in fact, is a complex activity entail-
ing cognitive, kinesthetic and perceptual-motor components, whose changes are
promising as a biomarker for the evaluation of PD [5]. Some works provided
evidence that the automatic discrimination between unhealthy and healthy peo-
ple can be accomplished on the basis of simple and easy-to-perform handwriting
tasks [1,12]. Developing a handwriting-based decision support system is desir-
able, as it can provide a complementary approach to the pathology evaluation
carried out by human experts that is non-invasive and very low-cost.

Within this direction, on-line (dynamic) systems can be adopted based on
the use of a digitizing tablet. A very important acquisition step deals with the
handwriting/hand-drawing tasks to be administered to capture the time series
raw data. Several tasks have been proposed and investigated, ranging from draw-
ing an Archimedes spiral, e.g. [20], to writing simple words or longer sentences,
e.g. [9]. In general, the most employed approach to studying the potentialities of
handwriting tasks involves combining the features coming from different tasks
into a unique high dimensional feature vector and then feeding this vector into a
traditional machine learning algorithm, e.g. [8]. Alternatively, some recent stud-
ies proposed to combine these features into ensembles of classifiers (a multi-expert
system), each built on top of the feature space of every task, e.g. [17,19].

These approaches are effective, especially when combined with feature selec-
tion strategies; however, they may suffer from two major limitations. First, high
dimensional feature spaces could cause overfitting, thus leading to an accuracy
degradation when the system is deployed in a real scenario. Second, some tasks
may be less useful than others and their presence may introduce additional bias
in the data. In other words, the task selection is crucial, as selecting the best
subset of tasks may strongly influence the potential of the acquired data.

In this work, the predictive potential of an optimal subset of tasks for an
automatized PD diagnosis is investigated. First, several features exploiting the
dynamics of the handwriting process are extracted from the raw data of differ-
ent tasks. Then, the predictive potential of each task is evaluated individually.
Finally, the best tasks, i.e. those with the highest prediction accuracy, are fed
into an ensemble of classifiers, whose predictions are obtained via majority vot-
ing. Experiments were performed on the freely available PaHaW data set [9], as
it includes several tasks performed by the same subjects.
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2 Materials

The “Parkinson’s disease handwriting database” (PaHaW) collects the data of
37 PD patients and 38 age and gender-matched healthy control (HC) subjects
[9]. Participants were enrolled at the First Department of Neurology, Masaryk
University and at the St. Anne’s University Hospital, Brno, Czech Republic. All
participants were right-handed, had completed at least ten years of education,
and reported Czech as their native language. No significant differences related
to age or gender were found between the PD and HC group. None of the sub-
jects had a history or presence of any psychiatric symptoms or disease affecting
the central nervous system, except for PD in the PD group. PD patients were
examined only in their ON-state while on dopaminergic medication and, prior
to acquisition, they were evaluated by a clinical neurologist. Also the HC group
was examined by a clinician to make sure that there was no movement disorder
or injury that could have significantly affected handwriting.

Subjects were requested to complete eight handwriting tasks in accordance
with a pre-filled template:

1. Drawing an Archimedes spiral;
2. Writing in cursive the letter l ;
3. The bigram le;
4. The trigram les;
5. Writing in cursive the word lektorka (“female teacher” in Czech);
6. porovnat (“to compare”);
7. nepopadnout (“to not catch”);
8. Writing in cursive the sentence Tramvaj dnes už nepojede (“The tram won’t

go today”).

Note that since not all participants performed each task, we considered only
those who succeeded in completing all tasks, i.e. 36 PD and 36 HC.

The handwriting signals were recorded by a Wacom Intuos digitizing tablet
overlaid with a blank sheet of paper. The raw data acquired include the x- and
y-coordinates of the pen tip, their time stamps, the pen inclination, i.e. azimuth
and altitude, and the pen pressure. The button status is also available, which is
a binary variable evaluating 0 for pen-ups (“in-air movement”) and 1 for pen-
downs (“on-surface movement”).

Sample images of healthy and Parkinsonian writing are depicted in Fig. 1.

3 Methods

In order to fairly evaluate the effectiveness of the proposed method, we repli-
cated the experiment in [8], as it provides baseline performance, on the same
data set, obtained with the fusion of dynamic features from all tasks. The exper-
imental methodology includes several steps which are described in the following
subsections.
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Fig. 1. Sample drawings of an Archimedes spiral performed by a healthy adult (on the
left) and a PD patient (on the right). Data do not belong to PaHaW, but they have
been acquired within the HAND project.

3.1 Feature Extraction

The overall set of features is summarized in Table 1. Note that the feature cal-
culation stage resulted in either a single value or a vector feature. For all the
resulting vector features the following basic statistical measures were computed:
mean; median; standard deviation; 1st percentile; 99th percentile; 99th percentile
– 1st percentile, which is an outlier robust range.

The horizontal and vertical components of handwriting, as recorded by the
tablet, were segmented into on-surface and in-air strokes in accordance with the
button status. A stroke corresponds to a single trait of the handwritten pattern
which is connected and continuous, i.e. between two consecutive pen-lifts. By
using the Cartesian coordinates of the sampled points and their time stamps,
several features were then calculated for both on-surface and in-air strokes.

Kinematic features include: number of strokes; tangential, horizontal and ver-
tical displacement, velocity, acceleration and jerk; number of changes of veloc-
ity/acceleration (NCV/NCA); NCA and NCV relative to writing duration. Dis-
placement corresponds to the straight-line distance between two consecutive
sampled points: it provides a good approximation of the pen trajectory. From dis-
placement, velocity, acceleration and jerk can be straightforwardly calculated as
the first, second and third derivative of displacement, respectively. Analogously,
displacement, velocity, acceleration and jerk can be calculated with respect to
both the horizontal and vertical direction. NCV and NCA are the mean number
of local extrema of tangential velocity and acceleration, respectively.

Spatio-temporal features include: stroke size and duration; speed and stroke
speed; stroke height and width; on-surface and in-air time; total time; normalized
on-surface and in-air time; in-air/on-surface ratio.

In order to make use of the pressure signal, the following measures were
also calculated: mean pressure; number of changes of pressure (NCP); relative
NCP. NCP was proposed in [9] and its meaning is analogous to the concept of
NCV/NCA, explained above.

The following features were also computed for both the on-surface and in-air
horizontal and vertical components of handwriting: Shannon and Rényi (sec-
ond and third order) entropy; signal-to-noise ratio (SNR) and empirical mode
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Table 1. Features. Unless otherwise specified, they are intended both on-surface and
in-air. Abbreviations: s = scalar value; v = vector of elements.

Feature s/v Description

Stroke number s Number of strokes

Displacement v Tangential trajectory during handwriting

Velocity v Rate of change of displacement with respect to time

Acceleration v Rate of change of velocity with respect to time

Jerk v Rate of change of acceleration with respect to time

Hor./ver. displacement v Displacement in the horizontal/vertical direction

Hor./ver. velocity v Velocity in the horizontal/vertical direction

Hor./ver. acceleration v Acceleration in the horizontal/vertical direction

Horizontal/vertical jerk v Jerk in the horizontal/vertical direction

NCV s Mean number of local extrema of velocity

NCA s Mean number of local extrema of acceleration

Relative NCV s NCV relative to writing duration

Relative NCA s NCA relative to writing duration

Stroke size v Path lenth of each stroke

Stroke duration v Movement time per stroke

Speed s Trajectory during writing divided by writing duration

Stroke speed v Trajectory during stroke divided by stroke duration

Stroke height v Height of each stroke

Stroke width v Width of each stroke

On-surface time s Overall time spent on-surface

In-air time s Overall time spent in-air

Total time s On-surface time plus in-air time

Norm. on-surface time s On-surface time normalized by total time

Normalized in-air time s In-air time normalized by total time

In-air/on-surface ratio s Ratio of time spent in-air/on-surface

Mean pressure v Average pressure over all strokes

NCP s Mean number of local extrema of pressure

Relative NCP s NCP relative to writing duration

Horizontal/vertical

Shannon entropy

v Shannon entropy of the horizontal/vertical component of

the pen position

Horizontal/vertical Rényi

entropy

v Second and third order order Rényi entropy of the

horizontal/vertical component of the pen position

Horizontal/vertical SNR v SNR of the horizontal/vertical component of the pen

position

Horizontal/vertical

intrinsic Shannon entropy

s Shannon entropy of the first and second IMF of the EMD of

the horizontal/vertical component of the pen position

Horizontal/vertical

intrinsic Rényi entropy

s Second and third order Rényi entropy of the first and

second IMF of the EMD of the horizontal/vertical

component of the pen position

Horizontal/vertical

intrinsic SNR

s SNR of the first and second IMF of the EMD of the

horizontal/vertical component of the pen position

decomposition (EMD). EMD iteratively decomposes the signal into so-called
intrinsic mode functions (IMFs), which are functions that satisfy two require-
ments: (1) the number of extrema and the number of zero crossings are either
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equal or differ at most by one; and (2) the mean of their upper and lower
envelopes equals zero. In this paper, Shannon and Rényi entropy and SNR were
applied to only the first and second IMF resulting from the decomposition. These
measures were intended to provide information about the randomness and irreg-
ularity of fine movements due to PD.

All features were normalized before classification so as to have zero mean
and unit variance.

3.2 Model Fitting

A set of different classifiers was adopted and evaluated: Support Vector Machines
(SVMs) both with radial basis function and linear kernel, Logistic Regression
(LR), Linear Discriminant Analysis (LDA) and AdaBoost (ADA). These are
state-of-the-art models tailored to the small data set here adopted. A brief
description of each algorithm is provided in the following. It is worth to note
that, for all of them, the scikit-learn implementation was used [18].

Support Vector Machines. The main idea behind SVMs is to find a separating
hyperplane with the largest minimal distance, i.e. a margin, from the closest
data points of either classes. New examples are then predicted to belong to a
class based on which side of the hyperplane they fall [11]. The margin of the
hyperplane is chosen so as to correctly separate most of the training examples,
while misclassifying some of them. In this work, a linear as well as a radial
basis function (RBF) kernel were considered. The bias-variance trade-off of the
algorithm depends on the fine tuning of the penalty parameter C and the kernel
coefficient γ in the case of RBF kernel. We set C to 1 and γ to 1

n , where n is
the number of features. These values are commonly found in the literature.

Logistic Regression. LR is a discriminative algorithm which relies on the sigmoid
function to model the posterior probability of each subject to belonging to a
class: p(y | x) = sigm(wTx). The w coefficients can be estimated, based on
the available data, by maximizing the likelihood function [11]. If the output
probability is thresholded at 0.5, the following decision rule can be induced:
predict class 1 if p(y | x) > 0.5; class 2 otherwise. In particular, we used the
dual formulation with L2 regularization: applying the regularization term helps
avoid overfitting.

Linear Discriminant Analysis. LDA is a generative algorithm which directly
models the class conditional distribution p(x | y) for each class k [11]. Predictions
can then be obtained by applying the Bayes theorem and by outputting the class
for which the estimated posterior probability is the highest. Estimating the class
conditional distribution is done by assuming a multivariate Gaussian form and
a covariance matrix common to all K classes. In the present study, since the
number of training examples was small compared to the number of features, for
a better estimation of the covariance matrix the automatic shrinkage using the
Ledoit-Wolf lemma was employed [15].
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AdaBoost. ADA relies on the boosting technique: a sequence of “base learners” is
trained on the entire data set; then additional copies of the classifier are trained
on the same data but with the weights of the incorrectly classified examples
iteratively updated [11]. The predictions from all the weak learners are combined
through a weighted majority vote to produce the final prediction. In the present
paper, 500 decision trees were used as base learners.

Ensemble. In order to explore an optimal subset of tasks for PD classifica-
tion, the Voting classifier was adopted: the individual classifiers are combined
by using a voting scheme to predict the class labels; in this way, the individual
weaknesses of each single classifier are balanced and mitigated. Combining the
predictions generated by different classifiers is likely to provide better predic-
tions, due to the diversification. Note that we used a majority voting scheme:
the final class label for a test example is the mode of the class labels predicted
by each individual classifier in the ensemble. In particular, our aim was to carry
out a performance-driven task selection, i.e. a selection of the best tasks based
only on their individual performance. To this end, each classification model was
trained on each task individually and the performance obtained were evaluated.
This served to explore the most discriminant tasks among the eight originally
proposed. Then, the three best tasks, i.e. those with the highest prediction accu-
racy, were pooled together in an ensemble scheme whose predictions were finally
obtained via majority voting. Note that we evaluated both the ensemble obtained
by combining similar models and that obtained by combining different models.

3.3 Validation

For a fair comparison with [8], the classification performance was validated
through a 10-fold cross-validation. The set of examples was divided into ten
folds: one fold was treated as test set; the remaining folds formed the training
set. The splitting was stratified by participant groups. The entire procedure was
repeated ten times, until each fold was used as test set once.

3.4 Feature Selection

In order to reduce the dimensionality of the feature space, a feature selection
technique was applied before classification. As in [8], the discriminating power
of each feature was evaluated by considering its accuracy in separating PD from
HC when used as a single input feature to a linear SVM classifier. All features
were then ranked in accordance with this score and only the n features providing
the highest score were retained for the final model fitting. Since feature selection
had to be performed on different feature spaces, one for each task, we chose to
not fix n, but to establish a dynamic threshold depending on the ranking of
features for each specific task.

It is worth to note that supervised feature selection strategies should be
part of the model selection process [11]; in other words, they should be nested
within the cross-validation iterations, so that the most discriminating features
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are chosen based only on the training set, blindly to the test set. Relying on an
a priori selection of features on the entire data set inadvertently introduces a
bias in the classification model which may lead to overoptimistic results.

4 Experimental Results

4.1 Combining All Tasks

For a fair comparison, we preliminarily replicated the experiment in [8], in which
the features coming from each task were combined into a unique high dimensional
feature vector. It is worth to note that our replica did not include copying the
Archimedes spiral, as the task was not considered in [8].

Table 2 reports the results obtained. In this table, as well as in the follow-
ing tables, only the best mean accuracy, averaged over all the cross-validation
iterations, is reported. Our replication of [8] achieved comparable results, i.e. an
accuracy of 88.33% instead of 88.13%. This difference appears to be marginal
and may have been due to implementation settings. Nevertheless, data may have
been overfitted because of the adoption of a non-nested feature selection. Indeed,
by applying a nested approach, a performance decrease can be observed, as an
accuracy of 74.58% was obtained.

Table 2. Classification performance with the combination of features from all tasks.

Classification scheme Accuracy

Drotár et al. [8] 88.13%

Present replica of [8] 88.33%

Present replica of [8], with nested feature selection 74.58%

4.2 Individual Tasks

In order to evaluate the predictive potential of each task individually, a classifica-
tion model was considered for each of them. The results obtained are reported in
Table 3. It is worth to note that the classification models employed did not com-
pletely agree about the selection of the most discriminating tasks. Nevertheless,
it can be observed that the tasks achieving an accuracy higher than or equal to
75% were: writing in cursive the letter l (task 2); the bigram le (task 3) and the
word porovnat (task 6); and writing the entire sentence (8). Surprisingly, task 3
was able to achieve a very high accuracy alone, outperforming the performance
obtained by the combination of features from all tasks. This indicated that the
multi-expert approach would had a good chance to improve performance.

The results obtained were expected. Writing non-sense words like lelele have
been extensively studied in the literature, e.g. [21], showing the impairment of
PD patients in fine motor control during loop-like movements. In addition, the
importance of the sentence task, already observed in [8], was confirmed: writing
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Table 3. Individual task performance with non-nested feature selection. In bold the
best three tasks for each classifier. In italic the best three results over all tasks.

Task SVMRBF SVMlin LR LDA ADA

Spiral 51.25% 61.25% 52.50% 53.33% 49.58%

lll 61.67% 82.08% 77.08% 70.41% 67.91%

le le le 70.00% 89.16% 81.25% 81.67% 69.58%

les les les 60.83% 69.16% 61.67% 54.16% 53.75%

lektorka 56.67% 74.58% 73.33% 72.08% 60.41%

porovnat 62.50% 79.58% 69.16% 61.25% 67.91%

nepopadnout 47.91% 69.58% 57.91% 52.50% 64.16%

Sentence 71.67% 75.83% 70.41% 68.50% 75.00%

Table 4. Individual task performance with nested feature selection. In bold the best
three tasks for each classifier. In italic the best three results over all tasks.

Task SVMRBF SVMlin LR LDA ADA

Spiral 53.75% 49.16% 52.08% 51.67% 46.67%

lll 59.16% 61.25% 63.75% 62.91% 67.08%

le le le 67.08% 70.41% 72.50% 69.58% 72.50%

les les les 57.91% 39.58% 45.41% 46.25% 53.33%

lektorka 52.91% 49.16% 54.58% 54.16% 53.33%

porovnat 60.83% 53.75% 53.33% 57.50% 63.75%

nepopadnout 53.33% 53.33% 55.41% 53.75% 61.67%

Sentence 68.33% 67.91% 69.16% 70.41% 67.91%

a long sentence, in fact, probably requires more cognitive effort, particularly a
high degree of simultaneous processing, and thus escalates the effects of disease
on handwriting. Producing loop-like movements and writing a sentence offer the
possibility to better evaluate the motor-planning activity between a character
or a word and the following one. In general, a hesitation or pause between two
characters or words could point out the necessity to re-plan the writing activity,
while fluid writing can reveal the presence of an anticipated motor planning.
Parkinsonian patients are known to write in a more segmented fashion, showing
difficulties in anticipating the forthcoming movement [2].

Conversely, very poor performance were obtained by the spiral task, confirm-
ing the findings already reported in [9]. This may have been due to the use of
measures only tailored to handwriting and not to hand-drawing.

More in general, it can be noted that the performance of linear SVM were
higher than those of SVM with RBF kernel, indicating that the two classes are
better separated by a linear decision boundary. This is confirmed considering
that similar performance were achieved by LR and LDA.
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Table 5. Ensemble of tasks performance with non-nested feature selection. In bold the
best result. In parentheses the best three tasks.

Ensemble SVMRBF SVMlin LR LDA ADA Overall

All tasks 61.67% 88.75% 79.17% 74.58% 79.17% 88.75%

Best tasks 69.17%
(3, 6, 8)

91.67%
(2, 3, 6)

85.83%
(2, 3, 5)

80.42%
(2, 3, 5)

74.17%
(2, 3, 8)

91.67%
(2, 3, 6)

Table 6. Ensemble of tasks performance with nested feature selection. In bold the best
result. In parentheses the best three tasks.

Ensemble SVMRBF SVMlin LR LDA ADA Overall

All tasks 66.25% 60.83% 61.67% 62.92% 72.92% 76.25%

Best tasks 68.33%
(3, 6, 8)

75.42%
(2, 3, 8)

77.92%
(2, 3, 8)

78.75%
(2, 3, 8)

76.67%
(2, 3, 8)

79.17%
(2, 3, 8)

Similar findings are reported in Table 4, which concerns the results obtained
by adopting the nested approach. As expected, an overall performance degra-
dation was obtained. However, the predictive potential of task 2, 3 and 8 was
confirmed and strengthened. Nesting feature selection within cross-validation, in
fact, provides not only more reliable results but also a more robust evaluation
of the performance against single randomized splittings.

4.3 Ensemble of Tasks

Table 5 shows the results obtained with the ensemble of classifiers. In the table,
both the ensemble obtained by all tasks and that obtained by considering only
the best three tasks, i.e. those with the highest prediction accuracy, are shown.
Note that the performance achieved by the overall ensemble, i.e. by considering
different classifiers, here coincide with the ensemble of linear SVM models, as
they outperformed the other models over all tasks. As expected, the ensemble of
the best three tasks improved the classification accuracy achieved by combining
all tasks (Table 2), i.e. 91.67% vs. 88.33%.

By looking at Table 6, where the accuracy obtained by using a nested feature
selection is reported, again an overall performance deterioration can be observed.
Nevertheless, the proposed approach showed its usefulness, as an improvement
against the combination of features from all tasks (Table 2) was obtained, i.e.
79.17% vs. 74.58%.

5 Conclusion

Parkinson’s disease causes impairments in previously learned motor skills, such
as handwriting. This suggests that handwriting analysis can be a powerful tool
to develop intelligent systems for disease diagnosis and monitoring. Handwrit-
ing difficulties in Parkinsonian patients have been documented for a long time,
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however only recently a growing interest and new insights have arisen from an
artificial intelligence perspective. A handwriting-based decision support system
has the potential to assist clinicians at the point of care, providing a novel diag-
nostic tool while reducing the expenditure of public health. Moreover, it can
be used to quantify aspects of the motor system and its disorders to better
understand the mechanisms underlying PD, e.g. the difficulties in coordinating
the components of a motor sequence movement. Finally, it can help study the
effects of medication on handwriting with the aim to monitor the responsiveness
of the patient to therapy. More in general, handwriting can provide a simple,
user-friendly and easy-to-use instrument to support the daily clinical trials. Of
course, handwriting-based intelligent systems are not expected to replace stan-
dard techniques or even doctors, but to provide additional evidence to further
support the clinical assessment.

In particular, when designing such systems, special attention should be paid
on the acquisition protocol, as the task selection strongly influences the potential
of the acquired data. In this study, an optimal subset of tasks was investigated,
by applying a performance-driven multi-expert approach on features calculated
from the freely available PaHaW data set. The results obtained are encouraging,
as they improved the baseline results obtained by combining the features coming
from all tasks into a unique high dimensional feature vector. Note that the
problem of task selection is important not only for boosting performance, but
also for making data acquisition faster and easier. In fact, in a future perspective,
the idea of using an ensemble learning approach could reduce the efforts in
diagnosis and monitoring PD by optimizing the number of tasks to be performed
by patients, and consequently reducing their frustration and allowing a less time-
consuming process.

As expected, writing in cursive lll, le le le and an entire sentence were among
the best tasks in terms of performance achieved. Our findings provide further
evidence that these tasks are valuable biomarkers for an automatized PD diagno-
sis. Furthermore, in this work we showed the detrimental effect on the predictive
accuracy caused by inadvertently introducing a feature selection bias within the
classification workflow.

It is worth remarking that, compared to other automatic tools based on
speech, e.g. [4], a lower prediction accuracy has been observed here. From the
prediction point of view, few studies have been carried out focusing on handwrit-
ing analysis for PD diagnosis from a machine learning perspective. Therefore,
the potentialities of this approach, as well as its limitations, have yet to be
investigated in depth. On the other hand, from the inference point of view, the
information related to handwriting may complement the information coming
from speech, as well as other biometric traits, providing different findings which
may support novel clinical insights and a better understanding of the pathology.
Tablet technology, in fact, enables the implementation of a multi-modal interac-
tion systems in which not only the input provided by the pen, but also speech
and visual input can be acquired. Handwriting can thus be coupled to speech
analysis based, for example, on NLP automatic assessment [10,14].



292 M. T. Angelillo et al.

Some open issues demand further research. The major limitation of the
present study is the small cardinality of the data set adopted, which makes
the results obtained less reliable for a real-world scenario. Developing a large
benchmark data set is one of the major open problems in the pattern recogni-
tion community for this research [5]. This holds not only for Parkinson’s dis-
ease but for other neurodegenerative disorders as well [13]. Secondly, it must be
underlined that the findings reported in the present paper rely on a dynamic
analysis of the handwriting tasks taken into account, i.e. on the characteristics
of the handwriting process while handwriting occurs. An alternative approach
consists in studying the static images of handwriting, eventually reconstructed
from the dynamic information given by the tablet. How to profitably combine
static and dynamic features to improve classification performance needs further
investigation: very promising results have been recently reported [6].
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Abstract. The paper discusses a pooling mechanism to induce subsam-
pling in graph structured data and introduces it as a component of a
graph convolutional neural network. The pooling mechanism builds on
the Non-Negative Matrix Factorization (NMF) of a matrix representing
node adjacency and node similarity as adaptively obtained through the
vertices embedding learned by the model. Such mechanism is applied
to obtain an incrementally coarser graph where nodes are adaptively
pooled into communities based on the outcomes of the non-negative fac-
torization. The empirical analysis on graph classification benchmarks
shows how such coarsening process yields significant improvements in
the predictive performance of the model with respect to its non-pooled
counterpart.

Keywords: Graph Convolutional Neural Networks · Differentiable
graph pooling · Non-Negative Matrix Factorization

1 Introduction

Nowadays many real-world phenomena are modeled as interacting objects pos-
sibly living into high-dimensional manifolds with added topological structure.
Examples can be found in genomics with protein-protein interaction networks,
fake news discovery in social networks, functional networks in neuroscience.
Graphs are the natural mathematical model for such data with underlying non-
Euclidean nature. Current Euclidean Convolutional Neural Networks have built
their success leveraging on the statistical properties of stationarity, locality and
compositionality of flat domains. Rendering convolutional neural networks able
also to learn over non-Euclidean domains is not that straightforward in that is
required a re-designing of the computational model for adaptively learning graph
embeddings. Over flat domains, i.e. grid-like structures, convolutional filters are
compactly supported because of the grid regularity and the availability of con-
sistent node ordering across different samples. This makes it possible to learn
filters of fixed size and independent of the input signal dimension leveraging, to
this end, weight sharing techniques. Furthermore, a set of symmetric functions
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is also applied for sub-sampling purposes to fully exploit the multi-scale nature
of the grids. The same does not apply to domains with highly varying topolo-
gies where learnt filters (non-Toeplitz operators) may be too representative of
the considered domain, since they highly depend on the eigen-basis of the filter
operator and they may thus fail to model sharp changes in the graph signal.
State-of-the-art Graph Convolutional Networks (GCNs) [11,17] try to overcome
the above difficulties with convolutions based on k-order Chebyshev polynomials,
introducing the interesting duality of implicitly learning the graph spectrum by
simply acting on the spatial representation. GCNs efficiently avoid the compu-
tational burden of performing a spectral decomposition of the graph, yielding to
learned filters that are independent of the number of nodes in the graph. When
considering graph classification tasks, we lack a principled multi-resolution oper-
ator providing coarser and more abstract representations of the input data as we
go deeper in the network. Standard approaches to graph pooling employ sym-
metric functions such as max, summation or average along features axes of the
graph embeddings. In [29], it is given an account of the discriminative power of
these different coarsening operators. In the present work, we introduce a simple
pooling operator for graphs that builds on the Non-Negative Matrix Factoriza-
tion (NMF) methods to leverage on the community structure underlying graph
structured data to induce subsampling, or equivalently, a multiscale view of the
input graph in order to capture long-range interactions as we go deeper in Graph
Convolutional Networks (GCNs). That would be of practical interest especially
in the context of graph classification or regression tasks where the whole graph
is fed into downstream learning systems as a single signature vector. Such mech-
anism is thus applied to incrementally obtain coarser graphs where nodes are
pooled into communities based on the soft assignments output of the NMF of the
graph adjacency matrix and Gram matrix of learned graph embeddings. Results
on graph classification tasks show how jointly using such a coarsening operator
with GCNs translate into improved predictive performances.

2 Background

In the following we introduce some basic notation used throughout the paper,
then we briefly introduce the necessary background to understand state-of-the-
art Graph Convolutional Neural Networks (GCNs). We mainly refer to spectral
graph theory as introduced in [4,7,9].

2.1 Basic Notation

A graph G is a tuple G = (V, E), where V is the set of vertices of the graph and
E is the set of edges connecting vertices, i.e. E ⊆ V × V. Let N (i) be the set of
neighbours of a node i ∈ V. And let A ∈ IRn×n, with n = |V|, be the adjacency
matrix such that

Ai,j =
{

ai,j > 0 if (i, j) ∈ E
0 otherwise.
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Note that in the above formulation we consider undirected graphs, i.e. such
that (i, j) ∈ E and (j, i) ∈ E . Thus, matrix A is such that A = AT . In the present
work, without loss of generality, we generalize to undirected graphs

We also indicate with X ∈ IRn×d as the matrix of the n signals xi ∈ IRd

associated to each node i ∈ V.

2.2 Graph Convolution via Polynomial Filters

Spectral Construction. A first approach to representation learning on graphs
is to explicitly learn the graph spectrum. In matrix notation, we can express the
generalized convolution over graphs as follows [7]

LX = UΛUT X (1)

where L is the combinatorial graph Laplacian, L = D − A, with D the degree
matrix such that Dii =

∑
j aij , where U ∈ IRn×k is an orthonormal basis gen-

eralizing the Fourier basis, and where Λ is a diagonal matrix being the spectral
representation of the filter [4,9]. Matrices U and Λ are the solution to the gen-
eralized eigenvalue problem LU = UΛ [4,9]. With such an approach there are
multiple problems: (a) the eigendecomposition in (1), and its application (fil-
tering), require non-trivial computational time; (b) the corresponding filters are
non-localized [11]; (c) filter size is O(n), hence introducing a direct link between
the parameters and the n nodes in the graph (no weight sharing).

Spatial Construction. In [11], it is proposed an alternative approach to
explicit learning of the graph spectrum, by showing how it can be learned implic-
itly through a polynomial expansion of the diagonal operator Λ. Formally,

gθ (Λ) =
K−1∑
k=0

θkΛk (2)

where θ ∈ IRK is the vector of polynomial coefficients. In [11] is pointed out that
spectral filters represented as K-order polynomials are exactly K-localized and
that weight sharing is thus made possible, since filters have size O(K). Graph
CNN (GCNN), also known as ChebNet [11], exploited the previous observation
by employing Chebyshev polynomials for approximating filtering operation (1).
Chebyshev polynomials are recursively defined using the recurrence relation

Tj(λ) = 2λTj−1(λ) − Tj−2(λ);
T0(λ) = 1;
T1(λ) = λ.

(3)
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Also, polynomials recursively generated by (3) form an orthonormal basis in
[−1, 1] [7,11]. A filter can thus be represented as a polynomial of the form

gθ(L̂) =
K−1∑
k=0

θkUTk(Λ̂)UT

=
K−1∑
k=0

θkTk(L̂),

(4)

where L̂ = 2Λ/λmax − In and Λ̂ = 2Λ/λmax − In indicate a rescaling of the
Laplacian eigenvalues to [−1, 1]. The filtering operation in (1) can be rewritten,
for one-dimensional input graph signals, as x̂ = gθ(L̂)x ∈ IRn, where the k-th
polynomial x̂k = Tk(L̂)x can be computed using the recurrence relation in (3)
now defined as x̂ = 2L̂xk−1 − x̂k−2 with x̂0 = x and x̂1 = L̂x. More generally,
taking into account multi-dimensionality of input data, we have a convolutional
layer as follows

X̂ = σ

(
K−1∑
k=0

Tk (Δ) XΘk

)
(5)

with σ a non-linear activation, and Θ ∈ IRdin×dout the matrix of learnable param-
eters, with din number of input features and dout number of neurons. A widely
used convolutional layer over graphs are GCNs by [17] that are layers of the form
of (5) with K = 2, namely

X̂ = ReLU
(
ÂXΘ

)
. (6)

The Θ term, the matrix of polynomial coefficients to be learned, stems from
(5) by imposing Θ0 = −Θ1, and with Â = A + I, and non-linearity being the
ReLU function [17]. Thus, the main idea is to generate a representation for a
node i ∈ V by aggregating its own features xi ∈ IRd and its neighbors’ features
xj ∈ IRd, where j ∈ N (i). Note that, apart from the formulation meant to
highlight the symmetry with convolutions on image data, the GCN model is not
substantially different from the contextual approach to graph processing put
forward by [22] a decade before GCN, and recently extended to a probabilistic
formulation [3] by leveraging an hidden tree Markov model [1] with relaxed
causality assumptions and a fingerprinting approach to structure embedding [2].

2.3 Node Pooling in Graph CNNs

A first attempt to formalize graph pooling can be found in [9], a simple frame-
work for multiresolution clustering of a graph is given based on a naive agglom-
erative method. There are some recent works proposing pooling mechanisms for
graph coarsening in Deep GCNs, in [10] a subset of the nodes are dropped based
on a learnable projection vector where at each layer only the top-k interesting
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nodes are retained. In [15], it is employed a rough node sampling and a differ-
entiable approach through a LSTM model for learning aggregated node embed-
dings, though it may render difficult satisfying invariance with respect to node
ordering. Interestingly, in [5] it is applied a simple and well known method from
Graph Theory for node decimation based on the largest eigenvector umax of the
graph Laplacian matrix. They further employ a more sophisticated procedure to
reduce Laplacian matrix using the sparsified Kron reduction. Another relevant
differentiable approach is that put forward by DiffPool [31], where the model
learns soft assignments to pool similar activating patterns into the same cluster,
though the idea of learning hiearchical soft-clustering of graphs via adjacency
matrix decomposition using a symmetric variant of NMF can be dated back
to [32]. In DiffPool, the learned soft assignment matrix is applied as a linear
reduction operator on the adjacency matrix and the input signal matrix, and
the coarsened graph is thus further convolved with GCNs.

3 NMFPool: Node Pooling by Non-Negative Matrix
Factorization

In the following section we introduce our model, NMFPool, a principled Pooling
operator enabling deep graph CNNs develop multi-resolution representations
of input graphs. NMFPool leverages community structure underlying graphs
to pool similar nodes to progressively gain coarser views of a graph. To that
end we take inspiration from [32] in which latent community structure of graph
data is made explicit via adjacency matrix decomposition using Symmetric NMF
(SNMF). NMFPool is grounded on that idea, building, instead, on a general non-
symmetrical NMF of the adjacency matrix without constraining solutions to be
stochastic. Before going further into details of our approach, we first introduce
the formal definition of the NMF problem, then we give an intuitive interpre-
tation of its solutions to clarify why NMF would help solve the graph pooling
problem on graphs. At the end we will show how to use product factors of NMF
as linear operators to aggregate topology and content information associated to
graphs. NMF is a popular technique for extracting salient features in data by
extracting a latent space representation of the original information. Throughout
the paper we refer to the original idea of NMF [19] though it has been extensively
studied in numerical linear algebra in the last years by many authors and for a
variety of applications. Formally, the NMF problem can be stated as follows:

Definition 1. Given a non-negative matrix A ∈ IRn×m
+ , find non-negative

matrix factors W ∈ IRn×k
+ and H ∈ IRk×m

+ , with k < min(m,n), such that

A ≈ WH (7)

If we see matrix A as having m multivariate objects column-stacked, the
straightforward interpretation of (7) is as follows

aj ≈ Whj , (8)
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with aj and hj corresponding to j-th columns of A and H. The approximation
(8) entails that each multi-variate object is a linear combination of columns of
W weighted by coefficients in hj . Thus W is referred to as the basis matrix
or equivalently the cluster centroids matrix if we intend to interpret NMF as a
clustering method. Matrix H can be seen, instead, as a low-dimensional represen-
tation of the input data making thus NMF also useful for dimensionality reduc-
tion. Latent representation, in the clustering perspective, may indicate whether
a sample object belongs to a cluster. For example, we could constrain each data-
point to belong to a single cluster at a time: namely, each data-point is assigned
to the closest cluster xj ≈ uj . We generally look for non-trivial encodings to
explain community evolution in graphs. Thus, the problem could be relaxed to a
soft-clustering problem in that each data-point can belong to k overlapping clus-
ters [28]. Formulation (7) requires to define a metric to measure the quality of
the approximation, and Kullback-Leibler (KL-) divergence or the more common
Frobenius norm (F-norm) are common choices. Many techniques from numerical
linear algebra can be used to minimize problem (7) whatever the cost function
we use, although its inherently non-convex nature does not give any guarantee
on global minimum [13]. In [19] were first proposed multiplicative and additive
update rules that ensure monotone descrease under KL- or F-norm.

Thus, our proposed solution can be summarized into two main steps. First,
we encode the input adjacency matrix to learn soft-assignments of nodes, and
that could accomplished via exact NMF of the adjacency matrix. Second, we
apply soft-assignments as linear operators to coarse adjacency matrix and node
embeddings. To this end, we refer to algebraic operations seen in [32] for decom-
posing adjacency matrices and we extend it using equations widely used for
graph coarsening [31], for they take into account embedding matrix reduction
and nodes connectivity strength. For a complete picture, consider � NMFPool
layers interleaved with at least �+1 stacked Graph Convolutions (GCs) as illus-
trated in Fig. 1, where the graph convolutions are computed according to (6).
Then, let Z(i) ∈ IRni×d be the output of i-th GC, namely the convolved node
embeddings at layer i-th, defined as

Z(i) = ReLU
(
A(i)Z(i−1)Θ(i)

)
(9)

with adjacency matrix A(i) ∈ IRni×ni , with ni number of nodes at previous
layer, and Θ(i) ∈ IRd×d matrix of weights. Observe that we are assuming, with-
out loss of generality, each GC layer (9) as having the same number of neurons.
Observe also that Z(0) = X ∈ IRn×d, namely the initial node labels, and the
initial adjacency matrix is set to A(0) = D̂−1/2ÂD̂−1/2, i.e. the normalized adja-
cency matrix with Â = A + I, A ∈ IRn×n, and D̂ is a diagonal matrix of node
degrees [17].

The i-th NMFPool layer solves the problem in (7), i.e. the decomposition of
the symmetric and positive A(i), by minimizing the following loss

||A(i) − W (i)H(i)||F (10)
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GC fcPool GC GCPool

Fig. 1. High level architecture of a 3-layers GCN interleaved with 2 NMF pooling
layers.

with W (i) ∈ IRni×ki
+ and H(i) ∈ IRki×ni

+ , and ki number of overlapping com-
munities to pool the ni nodes into, and ‖.‖F the Frobenius norm. Observe that
ki’s are hyper-parameters to control graph coarsening scale. The algorithm to
minimize (10) depends on the underlying NMF implementation. Then NMFPool
applies the encoding H(i) to coarsen graph topology and its content as follows

Z(i+1) = H(i)T Z(i) ∈ IRki×d (11)

A(i+1) = H(i)T A(i)H(i) ∈ IRki×ki . (12)

A graphical interpretation of the inner workings of the NMFPool layer is
provided in Fig. 2, highlighting the interpretation of pooling as a matrix decom-
position operator. It is crucial to point out that NMFPool layers are independent
of the number of nodes in the graph, which is essential to deal with graphs with
varying topologies.

4 Experiments

We assess the effectiveness of using the exact NMF of the adjacency matrix A
as a pooling mechanism in graph convolutional neural networks. To this end, we
consider five popular graph classification benchmarks and we further compare
the performance of our approach, referred to as NMFPool in the following, with
that of DiffPool, with the goal of showing how a simple and general method may
easily compare to differentiable and parameterized pooling operators such as
DiffPool. Results were gathered on graph classification tasks for solving biological
problems on the ENZYMES [6,25], NCI1 [27], PROTEINS [6,12], and D&D
[12,26] datasets and the scientific collaboration dataset COLLAB [30]. In Table 1
are summarized statistics on benchmark datasets.

In our experiments, the baseline graph convolution is the vanilla layer in
(6). For both models, we employed the interleaving of pooling and convolutional
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Fig. 2. The NMFPool layer. Orange circles represent nodes of input graph, and solid
lines the edges. Dashed lines are the predicted edges in between nodes pooled together.
Colored dashed circles represent discovered communities. (Color figure online)

layers depicted in the architecture in Fig. 1, varying the number of pooling-
convolution layer pairs to assess the effect of network depth on task performance.
Note that the number of layers in the convolutional architecture influences the
context spreading across the nodes in the graph. Implementation of NMFPool
and Diffpool is based on the Pytorch Geometric library [14], complemented by
the NMF implementation available in the Scikit library. Models configurations
were run on a multi-core architecture equipped with 4 NUMA nodes each with 18
cores (Intel(R) Xeon(R) Gold 6140M @ 2.30 GHz) capable of running 2 threads
each for a total of 144 processing units available. We had access also to 4 Tesla
V100 GPUs accelerators.

Model selection was performed for exploring a variety of configurations using
stratified 3-fold cross validation. Following standard practice in graph convolu-
tion neural networks, learning rate was set with an initial value of 0.1 and then
decreased by a factor of 0.1 whenever validation error did not show any improve-
ment after 10 epochs wait. The number of neurons is the same for each graph
convolutional layer and it has been selected in {16, 32, 64, 128} as part of the
cross-validation procedure. When applying the pooling operator both NMFPool
and Diffpool require to define the number of communities k, similarly to how the
pooling operator on images requires the definition of the pooling windows size
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Table 1. Statistics on benchmark datasets.

Dataset Graphs Classes Nodes (avg) Edges (avg)

COLLAB 5000 3 74.49 2457.78

D&D 1178 2 284.32 715.66

ENZYMES 600 6 32.63 62.14

NCI1 4110 2 29.87 32.30

PROTEINS 1113 2 39.06 72.82

(and stride). Here, following the idea indicated in the original DiffPool paper
[31], we choose different k for each dataset as a fraction of the average number
of nodes in the samples. Thus during cross-validation we intended to study how
NMFPool and DiffPool behave as a function of the cluster sizes ki at each layer.
To this end, pooling size has been selected from the set {k1, k2}. In particular,
for models with a single pooling layer, we tested both sizes k1 and k2. Instead,
for deeper architectures, we restricted to use the largest ki for the first layer,
following up in decreasing order of ki. Table 2 summarizes the number of clusters
used for the first and second pooling layer in the architectures considered in this
empirical assessment.

Table 2. k1 is computed using formula k1 = �navg · p� with p varying in [21%–25%],
and navg average number of nodes (see Table 1). Then k2 = k1/2. Fractions are chosen
depending on the size of task at hand and to previous empirical observation. Except
for the D&D dataset where p = 5%, 1%, being the bigger dataset we needed a good
compromise between abstraction capability and computational time.

Dataset k1 k2 p

COLLAB 16 8 22%

D&D 14 2 5%–1%

ENZYMES 8 4 25%

NCI1 6 3 24%

PROTEINS 8 4 21%

The outcome of the empirical assessment is summarized in Table 3, where it is
reported the mean classification accuracy of the different models averaged on the
dataset folds. Table 3 reports results for a vanilla GCN (no pooling) and a vary-
ing number of graph convolution layers: results show how at most two layers are
sufficient to guarantee good performances, while three layers are only required
for the COLLAB dataset and a single layer network obtains the best perfor-
mance on the NCI1 dataset. In the experiments we thus decided to employ at
most three GCN layers, namely at most two NMF and DiffPool pooling layers. It
is still evident how adding more convolutional and pooling layers does not always
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result into better performances. The analysis of the results for NMFPool shows
how the addition of the simple NMF pooling allows a consistent increase of the
classification accuracy with respect to the non-pooled model for all the bench-
mark datasets. Note how a single pooling layer is sufficient, on most datasets,
to obtain the best results, confirming the fact that pooling allows to effectively
fasten the process of context spreading between the nodes. When compared to
DiffPool, our approach achieves accuracies which are only marginally lower than
DiffPool on few datasets. This despite the fact that DiffPool employs a solution
performing an task-specific parameterized decomposition of the graph, while our
solution simply looks for quasi-symmetrical product matrices by knowing noth-
ing of the underlying task.

Table 3. Mean and standard deviation (in brackets) of graph classification accuracies
on the different benchmarks, for the vanilla GCN with � convolutional layers (�-GC),
for NMFPool and DiffPool with �p pooling layers and �p + 1 convolutional layers (i.e.
�p1 -NMFPool and �p2 -DiffPool, respectively).

Model ENZYMES NCI1 PROTEINS D&D COLLAB

1-GC 0.222 (0.023) 0.625 (0.014) 0.713 (0.019) 0.681 (0.045) 0.671 (0.007)

2-GCs 0.228 (0.023) 0.620 (0.057) 0.720 (0.034) 0.704 (0.048) 0.678 (0.007)

3-GCs 0.182 (0.022) 0.628 (0.031) 0.688 (0.024) 0.692 (0.032) 0.681 (0.002)

1-NMFPool 0.241 (0.039) 0.662 (0.026) 0.721 (0.031) 0.760 (0.015) 0.650 (0.004)

2-NMFPool 0.175 (0.023) 0.655 (0.013) 0.724 (0.020) 0.753 (0.010) 0.658 (0.002)

1-DiffPool 0.259 (0.069) 0.661 (0.017) 0.743 (0.011) 0.770 (0.007) 0.659 (0.005)

2-DiffPool 0.239 (0.064) 0.632 (0.017) 0.744 (0.026) 0.761 (0.003) 0.667 (0.022)

5 Conclusions

We introduced a pooling mechanism based on the NMF of the adjacency matrix
of the graph, discussing how this approach can be used to yield a hierarchical
soft-clustering of the nodes and to induce a coarsening of the graph structure. We
have empirically assessed our NMPool approach with the task-specific adaptive
pooling mechanism put forward by the DiffPool model on a number of state-of-
the-art graph classification benchmarks. We argue that our approach can yield to
potentially more general and scalable pooling mechanisms than DiffPool, allow-
ing to choose weather the pooling mechanism has to consider the node embed-
dings computed by the model and the task-related information when performing
the decomposition (as in DiffPool), but also allowing to directly decompose the
graph structure a-priori with no knowledge of the node embeddings adaptively
computed by the convolutional layer. This latter aspect, in particular, allows to
pre-compute the graph decomposition and results in a multiresolution represen-
tation of the graph structure which does not change with the particular task at
hand.
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Future works will consider the use of symmetric and optimized NMF vari-
ants to increase prediction performances. It also would be of particular interest
to improve the quality and quantity of information NMFPool retains into the
encoding matrix. NMFPool could evolve out of its general purpose form, for
example, making it a generative end-to-end differentiable layer using probabilis-
tic approaches. See [8] for an attempt to solve NMF using probabilistic models.
We could refer to the popular probabilistic generative model of the Variational
Auto-Encoders (VAEs) [16,24] possibly extended to graphs [18]. The underlying
hierarchical structure of graph data may also be taken into account by imposing
latent encoding to match priors referring to hyperbolic spaces [20]. Interestingly,
latent matrix encoding may not be forced to match overimposed priors, for they
could make the model too biased over particular graph geometries. Instead, such
priors could be directly learned from relational data using adversarial approaches
[21] extended also to graph auto-encoders [23]. Another interesting feature would
be to make NMFPool independent of hyper-parameter k.

Acknowledgments. This work has been supported by the Italian Ministry of Edu-
cation, University, and Research (MIUR) under project SIR 2014 LIST-IT (grant n.
RBSI14STDE).
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archical representations with Poincaré Variational auto-encoders. arXiv e-prints
arXiv:1901.06033, January 2019

21. Mescheder, L.M., Nowozin, S., Geiger, A.: Adversarial variational bayes: uni-
fying variational autoencoders and generative adversarial networks. CoRR
abs/1701.04722 (2017)

22. Micheli, A.: Neural network for graphs: a contextual constructive approach. IEEE
Trans. Neural Netw. 20(3), 498–511 (2009)

23. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized
graph autoencoder. CoRR abs/1802.04407 (2018)

24. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and
approximate inference in deep generative models. In: Xing, E.P., Jebara, T. (eds.)
Proceedings of the 31st International Conference on Machine Learning, vol. 32,
pp. 1278–1286. Proceedings of Machine Learning Research, PMLR, Bejing, 22–24
June 2014

25. Schomburg, I., et al.: BRENDA, the enzyme database: updates and major new
developments. Nucleic Acids Res. 32, D431–D433 (2004). https://doi.org/10.1093/
nar/gkh081

26. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

27. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowl. Inf. Syst. 14(3), 347–375 (2008).
https://doi.org/10.1007/s10115-007-0103-5

28. Watt, J., Borhani, R., Katsaggelos, A.K.: Machine Learning Refined: Foundations,
Algorithms, and Applicationsa, 1st edn. Cambridge University Press, New York
(2016)

29. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
CoRR abs/1810.00826 (2018)

http://arxiv.org/abs/1811.01287
http://arxiv.org/abs/1903.01321
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1901.06033
https://doi.org/10.1093/nar/gkh081
https://doi.org/10.1093/nar/gkh081
https://doi.org/10.1007/s10115-007-0103-5


306 D. Bacciu and L. Di Sotto

30. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 2015, pp. 1365–1374. ACM, New York (2015). https://doi.org/10.1145/
2783258.2783417

31. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in
Neural Information Processing Systems, vol. 31, pp. 4804–4814. Curran Associates,
Inc. (2018)

32. Yu, K., Yu, S., Tresp, V.: Soft clustering on graphs. In: Weiss, Y., Schölkopf, B.,
Platt, J.C. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp.
1553–1560. MIT Press (2006). http://papers.nips.cc/paper/2948-soft-clustering-
on-graphs.pdf

https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/2783258.2783417
http://papers.nips.cc/paper/2948-soft-clustering-on-graphs.pdf
http://papers.nips.cc/paper/2948-soft-clustering-on-graphs.pdf


Winograd Convolution for DNNs: Beyond
Linear Polynomials

Barbara Barabasz(B) and David Gregg

School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland
{barabasb,dgregg}@tcd.ie

Abstract. Winograd convolution is widely used in deep neural networks
(DNNs). Existing work for DNNs considers only the subset Winograd
algorithms that are equivalent to Toom-Cook convolution. We investi-
gate a wider range of Winograd algorithms for DNNs and show that
these additional algorithms can significantly improve floating point (FP)
accuracy in many cases. We present results for three FP formats: fp32,
fp16 and bf16 (a truncated form of fp32) using 2000 inputs from the
ImageNet dataset. We found that in fp16 this approach gives us up to
6.5 times better image recognition accuracy in one important case while
maintaining the same number of elementwise multiplication operations
in the innermost loop. In bf16 the convolution can be computed using 5%
fewer innermost loop multiplications than with currently used Winograd
algorithms while keeping the accuracy of image recognition the same as
for direct convolution method.

Keywords: DNN · Convolution · Winograd convolution · Accuracy ·
Floating point

1 Motivation

In DNNs, and especially in Convolutional Neural Networks (CNNs), a huge
amount of time is spent computing convolution. The simple direct algorithm has
a complexity of O(m2). In contrast, fast convolution algorithms, such as FFT,
Toom-Cook, and Winograd convolution require fewer operations.

The family of Winograd algorithms is based on (1) transforming tiles of the
input and kernel into a modulo polynomials domain (the Winograd domain),
where (2) convolution becomes the elementwise multiplication (Hadamard prod-
uct) with complexity O(m), and (3) transforming the result back to the original
domain. Winograd’s method is not a convolution algorithm itself; instead it
generates fast convolution algorithms that operate on fixed-sized tiles of input,
kernel and output.

Winograd’s can be used to generate a wide variety of convolution algorithms
with different trade-offs. It requires a set of polynomials as input to generate
the convolution algorithm. These polynomials can be linear (degree = 1) or
superlinear (degree > 1).
c© Springer Nature Switzerland AG 2019
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If only linear polynomials are used as inputs, Winograd’s method becomes
much simpler, and the resulting algorithms are guaranteed to need only the
theoretically minimum number of operations for the elementwise multiplication.
The set of Winograd algorithms generated using only linear polynomials is also
equivalent to the set of algorithms that can be generated using the Toom-Cook
method [12]. Toom-Cook is much simpler than the Winograd method, and as
a result it is used to generate the algorithms used in many implementations of
“Winograd” convolution.

The selected tile size is critical to the performance of Winograd convolution.
A larger tile size increases the number of elementwise multiplication operations
needed for that tile, but also computes more results per tile. Taking account
of extra operations needed at the boundary of each tile, larger tiles reduce the
number of elementwise multiplication operations per computed output point.
However, the floating point error also grows exponentially with the tile size
[1], so existing implementations of Winograd for DNNs typically use a small
tile size1. In this paper we investigate the effect of higher-order polynomials on
the accuracy of Winograd convolution for DNNs. Our experiments show that
using order-2 polynomials can dramatically reduce the measured floating point
error as compared to linear polynomials. However, higher order polynomials
also increase the required number of multiplications in Hadamard product. This
paper addresses the question: Is there a benefit in using the Winograd method
with super-linear polynomials for DNNs, as compared to the simpler Toom-Cook
method?

We make the following contributions:

– We demonstrate how the Winograd algorithm with higher-order polynomials
can be adapted to DNN convolution

– We present experimental results for one and two dimensional Winograd convo-
lution, with kernels of the size 3 (1D) or 3×3 (2D), and find that higher-order
polynomials can significantly reduce the FP error.

– We show how using higher-order polynomials offer similar trade-offs between
elementwise multiplications and FP accuracy, as compared with adjusting the
block size.

– We experimentally identify cases where using higher-order polynomials can
improve recognition without increasing elementwise multiplications when
using half precision (fp16), and where we can improve the performance keep-
ing the accuracy of image recognition in bfloat16 precision (bf16).

2 Related Work

In the DNN research literature the term “Winograd convolution algorithm” is
used for both Winograd and Toom-Cook convolution, and in practice the Toom-
Cook algorithm is used to generate the convolution matrices. The general Wino-
grad algorithm described in this paper is not explored a lot in literature. We

1 https://intel.github.io/mkl-dnn/winograd convolution.html

https://intel.github.io/mkl-dnn/winograd_convolution.html
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can find a description of the approach in Winograd [12], but not for the multi-
channel multiple kernel convolution used for DNNs. A simple example how to
construct matrices is presented in [3]. A more general and detailed description
can be found in [9]. Selesnick and Burrus [7] considered cyclic convolution meth-
ods using cyclotomic polynomials in their theoretical work.

Meng and Brothers in [6] apply the idea of using complex points i and −i
(root points of polynomial a2+1) for quantization network. We present a general
definition of the method and present floating point accuracy for a couple of
different versions of the algorithm.

There is some work done on the improvement of the FP accuracy of Winograd
(Toom-Cook) convolution for DNNs. Vincent et al. [11] present the result for one
set of matrices, that scaling matrices G and AT give the more accurate results.
Scaling improves the conditioning of used matrices but it is not necessarily always
equivalent to decrease the floating point error of computation, particularly for
the small size of matrices used in DNNs.

There are also a couple of methods that allow to increasing the accuracy of
dot product computations for matrices transformation, such as more accurate
summation algorithms, Strassen matrix multiplication [13], etc. However, they
require more operations for the transforms, for sorting elements, or for com-
pensated summation, and/or make the implementation more complicated. In
contrast, our approach does not require additional operations for the transfor-
mations. All of those methods for improving FP accuracy could also be used
together with the presented method to reduce floating point error even more.
These include pairwise summation over channels, Huffman based summation
method and mixed precision computations proposed in [1].

3 Toom-Cook Versus Winograd Algorithm

3.1 Winograd Algorithm Definition

Convolution can be expressed as polynomial multiplication. Mapping the ele-
ments of kernel vector h and input vector x to coefficients of polynomials h(a)
and x(a) respectively, the elements of output vector s (convolution of h and x)
are equal to the coefficients of polynomial s(a) = h(a)x(a). The Winograd fam-
ily of algorithms for convolution is based on Chinese Reminder Theorem (CRT)
for polynomials [2]. It says that for polynomial M(a) in ring of polynomials
over a field F, M(a) = m1(a) . . . m�(a) where mi(a) are irreducible and pairwise
coprime there exists s(a) such as deg(s(a)) < deg(M(a)) the unique solution of
systems of congruences: s(a) = si(a) mod mi(a) and

s(a) =
∑

i

si(a)Ni(a)Mi(a) mod M(a) (1)

where Ni(a)Mi(a) + ni(a)mi(a) = 1 and Mi(a) = M(a)/mi(a).
To compute the result of the convolution - the coefficients of the prod-

uct of polynomials h(a) and x(a) - we put si(a) = hi(a)xi(a) mod mi(a),
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hi(a) = h(a) mod mi(a) and xi = x(a) mod mi(a). Operations modulo mi(a)
are equal to finding the remainder from division by mi(a); so if we assume that
all polynomials mi(a) are of the first degree then the results in modulo mi(a)
arithmetic are all constant polynomials (scalars): hi(a) = h(a) mod mi(a) = rh,
xi(a) = x(a) mod mi(a) = rx. Then we can perform the computations
of si(a) = hi(a)xi(a) mod mi(a) for i = 1, . . . , � as single multiplication:
si(a) = rhrx. These operations for all i = 1, . . . , � are represented by Hadamard
product of two vectors consist of elements h1(a), . . . , h�(a) and x1(a), . . . , x�(a)
(see Fig. 1).

The commonly used DNN two-dimensional Winograd convolution algorithm
[5] uses the Matrix Exchange Theorem [3] and expresses the computations for-
mula for in the following form:

AT (GHGT � BT XB)A (2)

Where matrices H and X represents kernel and input values.
In this paper we use the modified version of the Winograd algorithm with

polynomial M(a) of degree equal to deg(s(a)) and pseudo-point ∞. The exact
algorithm to compute matrix elements and a more detailed theoretical descrip-
tion of the method can be found in [1,3,9].

To the best of our knowledge all Winograd algorithms used in DNNs require
that all mi(a) are of the first degree (i.e linear). All such algorithms derived using
Winograd’s method with linear polynomials can also be found using the Toom-
Cook method [4,10]. Toom-Cook was analyzed and applied to signal processing
problems by S. Winograd in the 1980s. Winograd also proved that Toom-Cook
guarantees that the generated convolution algorithm will use the theoretically
minimum possible number of elementwise multiplications needed to compute
convolution of size no × no with a kernel of size nh × nh. We denote these
algorithms as F (no × no, nh × nh)) [12].

If we use polynomial mi(a) of degree d > 1, then the results of
hi(a) = h(a) mod mi(a) and xi(a) = x(a) mod mi(a) are polynomials not
scalars (see Fig. 2). Thus to compute si(a) we need to multiply two polynomials
hi(a), xi(a) rather than using simple scalar multiplication. However, to solve this
subproblem (i.e. computing the coefficients of the product of two polynomials
hi(a) and xi(a)) we can apply any suitable algorithm, including the Toom-Cook
algorithm FT−C(d × d, d × d). All polynomials mi(a) used in the Winograd
algorithm have to be pairwise coprime, and similarly all polynomials used in
the Toom-Cook algorithm to solve the sub-problem also need to be pairwise
coprime. But polynomials in the two different groups do not need to be coprime.
This means that we can use the same polynomials of the first degree (points) in
both algorithms. In the Fig. 2 we can have qi = pj . Some points offer superior
floating point accuracy, such as 0, −1 and 1 (polynomials a, a+1 and a− 1) [1].

The approach with polynomials, mi(a) of degree d > 1 requires two steps of
transformations (see Fig. 2). Firstly, we transform input/kernel into the “Poly-
nomials Winograd domain”. That means to transform input/kernel into polyno-
mials of the degree greater than zero. We then transform both those polynomials
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h

Winograd domain

a− p1

a − p2

a− p3
a−

p4

∗

∗

∗

∗

x
a − p1

a − p2

a− p3

a
− p

4

Fig. 1. Transformation of the kernel (using matrix G) and input (using matrix BT ) in
one-dimensional Toom-Cook convolution algorithm FT−C(2 × 2, 3 × 3) with four root
points p1, p2, p3 and p4 (polynomials a = p1, a − p2, a − p3 and a − p4).

into scalars in the “Winograd domain”. To perform the second transformation
we use the Toom-Cook algorithm. Similarly, after computing Hadamard prod-
uct we first transform the result into “Polynomials Winograd domain” and after
this into the original domain. Each of these transforms can be represented by
a matrix which multiplied by the input/kernel/output to compute the transfor-
mation. We can merge the matrices for these two stages of transformation into
a single transformation, allowing us to create three matrices GW , BW and AW

applied to the kernel, input and result of the Hadamard product respectively. For
the clarity, we denote matrices constructed for Toom-Cook algorithm as G(T−C),
A(T−C) and B(T−C).

h

Polynomials’ Winograd domain

Winograd domain

a − p1

a − p2

a 2
+
ba+

c a− q1

a − q2
a−

q3

∗

∗

∗

∗

∗

a − p1

a − p2

a
2 +

ba
+
c

a − q1

a − q2

a− q3

x

Fig. 2. Transformation of kernel (matrix G) and input (matrix BT ) in 1 dimensional
Winograd convolution algorithm FW (2 × 2, 3 × 3) with polynomials a − p1, a − p2,
a2 + ba + c. The subproblem is solved with Toom-Cook algorithm FT−C(2 × 2, 2 × 2)
(input n = 3) and points q1, q2, q3 (polynomials a − q1, a − q2, a − q3).

3.2 Constructing the Transform Matrices

Matrices GW and AW : We use the function vec(m(a)) to map the polyno-
mial m(a) = m1 +m2a+ . . .+mnan−1 to the vector: vec(m(a)) =

[
m1 · · · mn

]T
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We use Rm(a)[p(a)] to denote the remainder from polynomial division of p(a) by
m(a). Rows of the matrix GW and AW which stand for transformation with poly-
nomials of the first degree are identical to those in the Toom-Cook algorithm.
(Note that we use matrices that are not scaled by factors Ni). To construct the
submatrices that correspond to the transformation with the polynomial mi(a) of
the degree d higher than one, we have to compose the matrix G with G′, where
G′ represents transformation to the “Polynomials’ Winograd domain” and the
G matrix stands for transformation to the “Winograd domain” and is equal to
matrix G(T−C) of appropriate size (FT−C(d × d, d × d)). Analogously, matrix
AW = A(T−C)A′—where A(T−C) is generated by the Toom-Cook algorithm
FT−C(d × d, d × d)—and A′ stands for transformation into the “Polynomials’
Winograd domain” with polynomial mi(a) of the degree higher than 1. The last
rows A� and G� represent the pseudo point ∞ needed to construct the modified
version of the algorithm [1,3]. Below we present an example of the construction
of matrices AW and GW for kernel of size 3 × 3 and output of size 2 × 2, choos-
ing polynomials m1(a) = a and m2(a) = a2 + ba + c. To solve the subproblem
FT−C(2 × 2, 2 × 2) we use Toom-Cook algorithm with points 0, 1.

G2 = G(T−C)G′ =

⎡

⎣
−1 0
1 1
0 1

⎤

⎦
[
1 0 −c
0 1 −b

]
=

⎡

⎣
−1 0 c
1 1 −b − c
0 1 −b

⎤

⎦

A2 = A(T−C)A′ =

⎡

⎣
1 0
1 1
0 1

⎤

⎦
[
1 0 −c bc
0 1 −b b2 − c

]
=

⎡

⎣
1 0 −c bc
1 1 −b − c bc + b2 − c
0 1 −b b2 − c

⎤

⎦

GW =

⎡

⎣
G1

G2

0 0 1

⎤

⎦ =

⎡

⎢⎢⎢⎢⎣

1 0 0
−1 0 c
1 1 −b − c
0 1 −b
0 0 1

⎤

⎥⎥⎥⎥⎦

AW =

⎡

⎣
A1

A2

0 0 0 1

⎤

⎦ =

⎡

⎢⎢⎢⎢⎣

1 0 0 0
1 0 −c bc
1 1 −b − c bc + b2 − c
0 1 −b b2 − c
0 0 0 1

⎤

⎥⎥⎥⎥⎦

The exact algorithms to compute matrices GW and BW are presented in
Algorithm 1.

Matrix BW . First we construct auxiliary matrix C that includes blocks Ci for
i = 1, · · · , �, where � is the number of the polynomials mi(a). The C matrix
represents transformation from the “Polynomials’ Winograd domain” into the
“Winograd domain”. The rows stand by transformation with polynomials mi(a)
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Algorithm 1. Construction of matrix GW and AW to transform kernel
and result of Hadamard product in a Winograd convolution algorithm
Input: no — size of output, nh — size of kernel, GT−C , AT−C matrix G and A

for FT−C(d × d, d × d), {m1(a), · · · , m�(a)} set of � irreducible and
pairwise coprime polynomials such as

∑
i deg(mi(a)) = nh + no − 2

Output: Matrices GW and AW for Winograd convolution
1 n = nh + no − 2
2 for i = 1 to � do
3 d = deg(mi(a))
4 if d == 1 then
5 pi = root(mi(a))

6 Gi =
[
p0

i · · · p
nh−1
i

]
, Ai =

[
p0

i · · · pno−1
i

]

7 if d > 1 then
8 G′ =

[
vec(Rmi(a)[a

0]) · · · vec(Rmi(a)[a
nh−1])

]

9 A′ =
[
vec(Rmi(a)[a

0]) · · · vec(Rmi(a)[a
no−1])

]

10 Gi = G(T−C)G′, Ai = A(T−C)A′

11 G�+1 =
[
0 · · · 0 1

]
, A�+1 =

[
0 · · · 0 1

]

12 GW =

⎡

⎢
⎢
⎢
⎣

G1

...
G�

G�+1

⎤

⎥
⎥
⎥
⎦

AW =

⎡

⎢
⎢
⎢
⎣

A1

...
A�

A�+1

⎤

⎥
⎥
⎥
⎦

of the first degree are equal to identity matrix. Blocks stand for transforma-
tion with polynomial mi(a) of degree greater than 1 represents transformation
with matrix B(T−C), generated for subproblem with FT−C(d × d, d × d). A sec-
ond matrix E includes the rest of operations, that is modulo M(a) (remainder)
from product of polynomials Mi(a) and the polynomial obtained from extended
Euclidean algorithm Ni(a) (see formula 1). Additional zeros in rows of matrix E
and column with coefficients of the polynomial Mi(a) implement the modified
version of the Winograd algorithm.

We present an example of constructing matrix BW for kernels of the size 3×3
and outputs of size 2×2, choosing polynomials: m1(a) = a and m2(a) = a2+ba+c
(as in previous subsection). Matrix B(T−C) is generated by the Toom-Cook algo-
rithm FT−C(2 × 2, 2 × 2) with points 0, 1.

B(T−C) =

⎡

⎣
−1 0 0
1 1 −1
0 0 1

⎤

⎦ C2 =
[−1 0 −c

1 1 −b − 1

]
C =

⎡

⎣
1 0 0 0
0 −1 0 −c
0 1 1 −b − 1

⎤

⎦

Next, we construct the blocks of matrix E. The polynomials get from extended
Euclidean algorithm [2] are: N1 = 1, N2 = −a.
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Algorithm 2. Construction of matrix B to transform the input in the
Winograd convolution algorithm
Input: no - size of output, nh - size of kernel, {m1(a), · · · , m�(a)} set of �

irreducible and pairwise coprime polynomials such as∑
i deg(mi(a)) = nh + no − 2

Output: Matrix BW for Winograd convolution
1 n = nh + no − 2
2 M(a) =

∏
i mi(a)

3 Mi(a) = M(a)/mi(a)
4 for i = 1 to � do
5 d = deg(mi(a))
6 if d == 1 then
7 Ci = [1]
8 if d > 1 then

9 B(T−C) matrix B for FT−C(d × d, d × d)
10 for j = 1 to 2d − 1 do

11 bj(a) = B
(T−C)
1,j + B

(T−C)
2,j a + · · · + B

(T−C)
2d−1,j a2d−2

12 Ci =
[
vec(Rmi(a)[b1(a)] · · · vec(Rmi(a)[b2d−1(a)])

]

13 C =

⎡

⎢
⎣

C1

. . .

C�

⎤

⎥
⎦

14 for i = 1 to � do
15 Ni(a) — polynomial obtained from extended Euclidean algorithm for

polynomials mi(a) and Mi(a)
16 Ei =

[
vec(RM(a)[a

0Ni(a)Mi(a)]) · · · vec(RM(a)[a
d−1Ni(a)Mi(a)])

]

17 E =

[
E1 · · · E�

0 · · · 0

]

18 BW =
[
EC vec(M(a))

]

E1 =

⎡

⎣
1
b
c

⎤

⎦ E2 =

⎡

⎣
0 0
0 c

−1 b

⎤

⎦ E =

⎡

⎢⎢⎣

1 0 0
b 0 c
c −1 b
0 0 0

⎤

⎥⎥⎦

EC =

⎡

⎢⎢⎣

1 0 0
b 0 c
c −1 b
0 0 0

⎤

⎥⎥⎦

⎡

⎣
1 0 0 0
0 −1 0 −c
0 1 1 −b − 1

⎤

⎦ =

⎡

⎢⎢⎣

1 0 0 0
b c c −c(b + 1)
c b + 1 b c − b(b + 1)
0 0 0 0

⎤

⎥⎥⎦
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BW =

⎡

⎢⎢⎣

1 0 0 0 0
b c c −c(b + 1) c
c b + 1 b c − b(b + 1) b
0 0 0 0 1

⎤

⎥⎥⎦

3.3 Optimality of Winograd Algorithm

Toom-Cook algorithms for 2 dimensional convolution have an optimal number
of multiplications n = (nh + no − 1)2 for fixed nh and no. While computing
convolution in DNNs, we break our input into the pieces of the size equal to
algorithm input tile. This results in overlap of input tiles at boundaries. The
exact number of overlapping input values for whole input depends on the kernel
and input/output sizes (see description in [5]). We express the performance of
the algorithm as the ratio of the number of multiplications per single output
point. Thus, Toom-Cook algorithm FT−C(2 × 2, 3 × 3) requires 16 multiplica-
tions to compute 4 output points, so we have ratio equal to 4. For algorithm
FT−C(4 × 4, 3 × 3), the ratio = 2.25. For Toom-Cook convolution with a fixed
kernel size the ratio decreases with tile size. The bigger input/output tile, the
fewer elementwise multiplications are needed. The elementwise multiplication
dominates the execution time of DNN convolution, so reductions in these multi-
ply operations translate to reduced execution time. Unfortunately, with increas-
ing the input/output size the floating point error of the computations increase
exponentially [1].

When we apply Toom-Cook algorithm FT−C(no × no, nh × nh) the ratio is
equal to (nh +no − 1)2/n2

o. In the Winograd method, as we can see from matrix
construction, introducing polynomials mi(a) of the degree greater than 1 results
in larger matrix sizes, which means the bigger number of multiplications. Every
Toom-Cook algorithm FT−C(d×d, d×d) used to solve subproblem in Winograd
algorithm requires 2d−1 polynomials of the first degree. The bigger number and
higher degree polynomials we use the more multiplications per output point are
required. To compute F (2 × 2, 3 × 3) we can use:

– 4 polynomials of the first degree with ratio = 16/4 = 4 (Toom-Cook algo-
rithm)

– 2 polynomials of the first degree and 1 of the second degree with ratio =
(2 + 3)2/4 = 6.25

– 1 polynomial of the first degree and 1 of the third degree with ratio = (1 +
5)2/4 = 9

– 2 polynomials of the second degree with ratio = (2 ∗ 3)2/4 = 9
– 1 polynomial of the fourth degree with ratio = 72/4 = 12.25

We can notice that in above example using the polynomial mi(a) of the 4th
degree do not change input (mapped to the polynomial of the 3rd degree) and
kernel (mapped to the polynomial of the 2nd degree) pending transformations,
so this case only introduce additional multiplications into convolution compu-
tations. Analogously using polynomial mi(a) of the 3rd degree does not change
the kernel. The Winograd method for fixed kernel and output size allows us to
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construct algorithms with different ratios, while the Toom-Cook method has a
constant ratio for given nh and no. Thus, for a fixed kernel size, we can construct
sets of Winograd matrices with the same ratio but other output/input size. For
example for FT−C(4 × 4, 3 × 3) ratio = 36/16 = 2.25 and FW (6 × 6, 3 × 3), with
6 polynomials of the first degree, and one polynomial of the second degree, we
have the same ratio = 81/36 = 2.25 see Table 1. Given these choices with the
same computational ratio, we can investigate the floating point error of such
algorithms and use the more accurate one.

Table 1. Number of multiplications for single output point in 2 dimensional Winograd
convolution algorithm for kernel 3 × 3 and outputs: 2 × 2, 4 × 4 and 6 × 6, for each
number of the polynomials of the first and second degree used in CRT. In orange is
Toom-Cook algorithm with all polynomials of the first degree.

Output size 2 × 2 4 × 4 6 × 6

No of mi(a) of degree 1 4 2 0 6 4 2 0 8 6 4 2 0

No of mi(a) of degree 2 0 1 2 0 1 2 3 0 1 2 3 4

Ratio 4 6.25 9 2.25 3.06 4 5.06 1.78 2.25 2.78 3.36 4

4 Tests Results

4.1 Random Data

We tested the accuracy of the Winograd convolution algorithm for the kernel
of the size 3 (1D) and 3 × 3 (2D). We studied a range of output tile sizes from
2–8 (1D) and 2 × 2–8 × 8 (2D). We run our initial experiments over 5000 loops
where kernel and input values were chosen randomly from range (−1, 1) with a
normal distribution. We computed the Euclidean error of Winograd convolution
performed in fp32 and compared it with the direct convolution in fp64.

We investigated Winograd convolution algorithm with the most promising
configurations of polynomials of the first and second degree (as we use the kernel
of size 3 or 3 × 3). The best results for each computation ratio and polynomial
degree configuration are presented in Fig. 3. We construct the first degree poly-
nomials using known good root points: 0, −1, 1, −1/2, 2, 1/2, −2, −1/4, 4 [1].
As second degree polynomials, we considered those with the coefficients equal to
0, −1 and 1, coprime with the polynomials of the first degree. That is: a2 + 1,
a2 + a + 1 and a2 − a + 1. To solve the subproblem for the polynomial of degree
greater than 1, we use Toom-Cook convolution algorithm FT−C(2×2, 2×2) and
root points 0,−1 and ∞. In our tests, we noticed that in some cases (up to ratio
around 1.9 for 1D and 3.5 for 2D) the Winograd algorithm with one polynomial
of the second degree gives a smaller floating point error than Toom-Cook, see
Fig. 3). When we use only one polynomial of the second degree we found that
a2 + 1 works the best as it provides only two coefficients, not three.
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Fig. 3. Euclidean error of Winograd convolution in fp32 comparing to the direct
method computed in fp64

4.2 Experiments with Real Data ImageNet on VGG16

We next run experiments for the vgg16 CNN [8] (using pretrained model from
Tensorflow Slim) with thirteen 2D convolution layers, with kernel size 3 × 3.
As inputs we use 2000 images from the ImageNet validation set. The computa-
tions were done in fp32. We also simulated fp16 and bf16 by performing the
operations in single precision and casting the results to the lower precision.

We tested the Toom-Cook algorithms with outputs 4 × 4, 6 × 6 and 8 × 8.
This means the ratio of multiplications per single output point equals 2.25, 1.78
and 1.56 respectively (see Table 1). For comparison we choose the Winograd
algorithm with one polynomial of the second degree for even output sizes, from
6×6 up to 12×12. The ratio of multiplications per single output point are equal
to 2.25, 1.89, 1.69 and 1.56 respectively. In our initial tests on random data, we
have found that using the polynomial of the second degree a2 + 1 works best.
Polynomials of the first degree for FW (no ×no, 3× 3) were constructed with the
root points used for FT−C((no −2)×(no −2), 3×3). For given output and kernel
sizes we can construct Winograd algorithms with different computational ratios.
In our tests, we used Winograd algorithms with only one polynomial of degree
2. We could achieve better accuracy by using more degree-2, but this would be
at the cost of a worse computational ratio. We focus on the cases where the
image recognition accuracy decreases – ratio equal to 2.25 in fp16 and ratio
between 1.78 and 1.56 in bf16. We do not present the all possible results, e.g.
for FW (12 × 12, 3 × 3) with 2 polynomials of the second degree (ratio = 1.78),
but our results are indicative.

We looked at the percentage of image recognition (top-1) for vgg16 network
with Winograd convolution layers in comparison to the same network with direct
convolution using the same floating point precision. In Table 2 we present the per-
centage accuracy of image recognition for different FP precision. For the output
sizes we consider, we do not see any changes using fp32. In fp16, all investigated
Toom-Cook algorithms failed. In bf16 the percentage of image recognition is the
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same as for direct convolution for Toom-Cook algorithm with output 6×6 (ratio
equal to 1.78), but for output size 8 × 8 the accuracy decreases.

Table 2. Percentage of image recognition for Toom-Cook convolution algorithm (T-C)
for kernel of the size 3×3 and outputs: 4×4, 6×6 and 8×8; and Winograd algorithm
(Win) with one polynomial of the second degree (a2 + 1) and outputs: 6 × 6, 8 × 8,
10 × 10 and 12 × 12 in precisions fp32, fp16 and bf16.

Method dir T-C
(4×4)

T-C
(6×6)

T-C
(8×8)

Win
(6×6)

Win
(8×8)

Win
(10× 10)

Win
(12× 12)

Ratio 2.25 1.78 1.56 2.25 1.89 1.69 1.56

fp32 70 70 70 70 70 70 70 70

fp16 70 10 0.05 0.05 65 0.1 0.05 0.05

bf16 70 70 70 68 70 70 70 62

With fp16, we see that using Winograd convolution instead of Toom-Cook
with the same performance ratio (equal to 2.25), increases the recognition accu-
racy from 10% to 65%. The main problem we face with fp16 is that it cannot
store the same range of values as fp32. Then using the same good root points
(like 0, −1 and 1) more than once results in lower intermediate values, and less
likelihood of overflow.

Using bf16, the decrease in image recognition appears for bigger input sizes
than in fp16. The bf16 format allow us to represent nearly the same range of
values as single precision. However, the lower number of bits results in lower accu-
racy of values representation and larger floating point error from operations. In
our tests we can observe the impact of this for network with Toom-Cook convo-
lution algorithm with output of the size 8×8. We have not found a configuration
of polynomials that would give us the accuracy of image recognition better than
68% with the ratio equal to 1.56. We construct the Winograd algorithm with
the accuracy of image recognition equal to 70% (the same accuracy we get using
of a direct convolution algorithm) with ratio = 1.69.

5 Conclusions

This paper asks the question: Is there a benefit in using the Winograd method
with superlinear polynomials for DNNs, as compared to the simpler Toom-Cook
method (which is equivalent to Winograd with linear polynomials)? We describe
the construction of Winograd transformation matrices in general case. We show
that the main benefit of using superlinear polynomials is that the same good root
points can be used multiple times, which improves FP accuracy. The Toom-Cook
method allows a trade-off of elementwise multiplications against FP accuracy by
varying the tile size. The presented Winograd method offers an larger space of
trade-offs between computation and accuracy using higher order polynomials.
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Thus, it allows us find an attractive one that are not available using Toom-Cook
algorithm. We find that in bf16 precision we can construct an algorithm that
maintains the same accuracy of image recognition as Toom-Cook but has better
ratio of elementwise multiplications per single output point than Toom-Cook.
In fp16 precision we can obtain better accuracy using Winograd convolution
algorithm with one polynomial of the second degree, as compared to Toom-
Cook (for the case kernel 3 × 3, output 4 × 4) with the same ratio of number
of elementwise multiplications per output point. The presented Winograd con-
volution algorithm does not require additional operations in the transformation
to/from the “Winograd domain”, and although the Winograd method itself is
complex, the generated convolution algorithm does not require a more advanced
implementation.

As a future work we plan to investigate presented algorithm further. Firstly,
in the context of other kernel sizes (i.e. 5×5). Secondly, for 3 dimensional kernels.

Acknowledgements. This work was supported by Science Foundation Ireland grant
12/IA/1381. We also extend our thanks to Andrew Mundy from Arm ML Research
Lab for his contribution.

References

1. Barabasz, B., Anderson, A., Soodhalter, K.M., Gregg, D.: Error analysis and
improving the accuracy of winograd convolution for DNNs. CoRR abs/1803.10986
(2018). http://arxiv.org/abs/1803.10986

2. Biggs, N.L.: Discrete Mathematics, 2nd edn. Oxford University Press, New York
(2002)

3. Blahut, R.E.: Fast Algorithms for Signal Processing. Cambridge University Press,
New York (2010)

4. Cook, S.A.: On the minimum computation time of functions. Ph.D. thesis, Harvard
University, Cambridge, Massachusetts (1966)

5. Lavin, A., Gray, S.: Fast algorithms for convolutional neural networks. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4013–
4021. IEEE, Las Vegas (2016)

6. Meng, L., Brothers, J.: Efficient winograd convolution via integer arithmetic. CoRR
abs/1901.01965 (2019)

7. Selesnick, I.W., Burrus, C.S.: Extending winograd’s small convolution algorithm to
longer lengths. In: 1994 IEEE International Symposium on Circuits and Systems,
ISCAS 1994, London, England, UK, 30 May–2 June 1994, pp. 449–452 (1994)

8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(2015)

9. Tolimieri, R., An, M., Lu, C.: Algorithms For Discrete Fourier Transform and
Convolution, 2nd edn. Springer, New York (1997). https://doi.org/10.1007/978-1-
4757-2767-8

10. Toom, A.L.: The complexity of a scheme of functional elements realizing multipli-
cation of integers. Sov. Math. Dokl. 3, 714–716 (1963)

http://arxiv.org/abs/1803.10986
https://doi.org/10.1007/978-1-4757-2767-8
https://doi.org/10.1007/978-1-4757-2767-8


320 B. Barabasz and D. Gregg

11. Vincent, K., Stephano, K., Frumkin, M., Ginsburg, B., Demouth, J.: On improving
the numerical stability of winograd convolutions. In: Proceedings of the 5th Inter-
national Conference on Learning Representations, Toulon, France, p. 4 (2017).
https://openreview.net/forum?id=H1ZaRZVKg

12. Winograd, S.: Arithmetic Complexity Computations. SIAM Publications, Bristol
(1980)

13. Zhao, Y., Wang, D., Wang, L., Liu, P.: A faster algorithm for reducing the compu-
tational complexity of convolutional neural networks. Algorithms 11(10) (2018).
https://doi.org/10.3390/a11100159, http://www.mdpi.com/1999-4893/11/10/159

https://openreview.net/forum?id=H1ZaRZVKg
https://doi.org/10.3390/a11100159
http://www.mdpi.com/1999-4893/11/10/159


A Deep Hybrid Model
for Recommendation Systems
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Abstract. Recommendation has been a long-standing problem in many
areas ranging from e-commerce to social websites. Most current studies
focus only on traditional approaches such as content-based or collabo-
rative filtering while there are relatively fewer studies in hybrid recom-
mendation systems. With the emergence of deep learning techniques in
different fields including computer vision and natural language process-
ing, Recommendation Systems (RSs) have also become an active area
of for these techniques. There are several studies that utilize ID embed-
dings of users and items to implement collaborative filtering with deep
neural networks. However, such studies do not take advantage of other
categorical or continuous features of inputs. In this paper, we propose
a new deep neural network architecture which uses ID embeddings, and
also auxiliary information such as features of job postings and candi-
dates. Experimental results on a real world dataset from a job website
show that the proposed method improves recommendation results over
deep learning models utilizing only ID embeddings.

Keywords: Content-based filtering · Collaborative Filtering · Hybrid
systems · Deep neural networks · Job Recommendation · Implicit
feedback

1 Introduction

Recommendation is the problem of predicting the ratio of interaction between
users and items such that a user would prefer an item to another one. It is
a ubiquitous problem that appears in numerous application domains ranging
from dating websites to e-commerce websites. Recommendation Systems (RSs)
make web experience special to their users by recommending, what to buy (e-
commerce, Amazon, Ebay), which movies to watch (Netflix), whom to follow
(Twitter), which songs to listen (Spotify) etc. We mainly focus on a special type
of RSs in this paper, Job Recommendation (JR), which is different than conven-
tional RSs with various aspects. In reciprocal RSs, preferences of both users and
items should be considered to find a suitable match and generate recommenda-
tions as different from traditional RSs, where items are recommended to users.
In a reciprocal RS for a job recruitment web service, jobs are recommended to
c© Springer Nature Switzerland AG 2019
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322 M. Çakır et al.

applicants on one side and candidates are also recommended to recruiters on
the another side. The recommendation is considered to be successful only if the
preferences of users at both sides are satisfied. Moreover, there are mostly no
explicit feedback for recruiters and job applicants in JR as there are ratings,
likes/unlikes etc. for items in conventional RSs.

In general, recommendation lists are created based on user-item past interac-
tions, item properties, user preferences, and some other additional data. There
are three main techniques used in traditional RSs: Content Based Filtering
(CBF), Collaborative Filtering (CF) and Hybrid RSs.

Content-Based Filtering: This technique creates user profiles taking which
users previously interact with items into account and simply recommends items
with similar contents to user profiles. The recommendation process uses proper-
ties of items as contents of users [2,3,9].

Collaborative Filtering: The CF based recommendation systems represent
users’ preferences as n-dimensional rating vectors where n is the number of
items in the system. The key idea of CF is that similar users/items share similar
interests [4,5]. CF recommends items to users based on their liked items by
computing similarities between users and items. There are two categories of CF:

– Item-based: Calculates the similarity between the items that user rates pre-
viously and other items.

– User-based: Calculates the similarity between users.

Hybrid Systems: These systems combine two or more types of recommenda-
tion techniques to produce better recommendations [7,8].

More recently, Deep Learning (DL) has gained a tremendous success which
takes advantage of deep neural networks using contextual, textual, and/or visual
information to produce better recommendation results. DL techniques can be
used with all approaches to leverage existing recommendation system. On the
other hand, these approaches can also be used not only in conventional RSs but
also in JR which requires a special attention to adopt. In the past few years, DL
has become a major direction in many fields including machine learning [10,11]
and RSs [12,13] etc. DL has been used to model users and items considering
their properties as an input of deep neural network. For instance, Oord et al.
used time-frequency representation from the audio signals as an input to the
network [14]. Zhang et al. applied embedding using items’ textual content and
visual content to create semantic representation on deep network [16]. Then, He
et al. also used another embedding technique which is called ID embedding that
takes users’ and items’ IDs to make a good recommendation instead of using
simple approach that applies an inner product on the latent features of users
and items [12]. We benefit from this ID embedding approach along with explicit
features of job applicants and job postings to produce better recommendations
in this paper.

Matrix Factorization (MF) [18] which discovers hidden factors being the
underlying reason for the user feedback is the most popular CF technique among
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the various approaches, and it will be expanded with ID embeddings in this work.
Also, Deep Neural Networks (DNNs) [31] that is a popular CBF approach will
be adopted to model auxiliary information. This paper proposes a hybrid system
that utilizes both MF and DNNs; DNN joins content information into a collab-
orative approach with ID embeddings as the first part of the hybrid model, and
the main framework combines collaborative latent features from MF, and the
mixed features from DNN over the last interaction layer as the second part of
the hybrid model.

The main contributions of this work are as follows:

1. We propose a hybrid model that combines features of candidates and job
postings along with ID embeddings. The architecture joins the strengths of
linearity of MF and non-linearity of DNN to model user × item interaction.

2. A novel approach is built for reciprocal recommendation which can be easily
applied on job recruitment websites. All experiments are performed with a
real-world dataset provided by one of the biggest job-recruitment website in
Turkey.

The rest of the paper is organized as follows: Sect. 2 reports related work
about Recommendation Systems, Sect. 3 provides preliminaries about RSs and
Sect. 4 presents our proposed method and general neural network architecture.
In Sect. 5, we show the experimental evaluation presenting the methodology and
results. Finally, Sect. 6 provides conclusion and discusses some of possible future
extensions that are special for JR.

2 Related Work

Although there are some studies that focus on CBF [9,14], the majority of the
approaches are based on CF [18–20]. CF approaches mainly utilize feedbacks
of users for items. Users’ feedbacks can be categorized in two ways: implicit
feedback [21,22] which indirectly reflects preferences of users, and explicit feed-
back [23] which directly indicates users’ choices. While implicit feedback shows
behaviours like purchasing products, clicking items, and watching videos, users’
ratings and reviews for products are considered as explicit feedback [12]. It is
more difficult to exploit implicit feedback since user satisfaction is not directly
observable than explicit. Since explicit feedback provides directly negative infer-
ence with low ratings and unfavorable reviews.

The original MF approach [18] was proposed to model explicit feedbacks of
users by mapping users and items to a latent factor space so that interactions
(e.g. ratings) of users and items can be represented by a dot product of latent fac-
tors of them. Many approaches have been presented to expand MF, combination
of MF and neighbor-based models [23] or extension to factorization machines [24]
for generating a model using user and item features. However, users mostly inter-
act with items through implicit feedback since explicit ratings are not present
all the time for many recommendations [22]. Although there is no information
such as rating, like or dislike in explicit feedback in JR, some implicit feedback
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information can be considered as explicit feedback. For instance, the number of
job view can be taken into account as a rating that is given by the applicants to
the company.

CBF is mainly based on comparisons across supporting information of users
and items while CF approaches use only user-item interactions. Texts, images,
and videos can be considered as a wide variety of additional information [28].
At the last few years, many research efforts have been made to improve the
recommendation performance with use of auxiliary information, and deep learn-
ing techniques have gained importance to process a great amount of informa-
tion. They generally adopted on DNNs for modeling auxiliary information using
implicit feedback, such as content of videos [31], audible features of musics
[14,15], textual explanation of items [13], and categorical-continuous features
of both users and items [32]. Although many applications like music and video
websites have no more personal information for users and limited amount of
information such as textual description, job search websites fortunately contain
many categorical and continuous features for both user and item sides to adopt
DL approaches.

There have been a great number of hybrid approaches proposed as a combi-
nation of collaborative and content-based methods [33–35]. A hybrid approach
can be implemented in different ways either applying separately collaborative
and content-based tasks and combining their predictions or joining some content-
based properties into a collaborative approach, or opposite, and lastly building a
general mixed model that joins collaborative and content-based properties [40].
In this work, we will adopt on both a general fixed model and concatenating
content-based properties with a collaborative approach.

Furthermore, there are no more general approaches for implementing JR task.
Some studies [36,37] particularly focus on JR using a specific dataset such as
modeling the interactions for user-job record, user-company, user-job title, and
recommendation through graph analysis in AskStory [37], and incorporating
user interactions into the recommendation task with a hierarchical graphical
model in LinkedIn [36]. In contrast to these models, our proposed model aims
at bringing out a framework that is available for many applications such as
book, music, and movie recommendation while making better recommendation
for both job seekers and recruiters in JR. Also, it may not be reasonable to
make reciprocal recommendation for many real-world applications since it is
pointless to recommend users to items like books, movies, and musics. However,
some studies [38,39] try to build a generalized framework for generating the
list of the most suitable candidates. The elements of reciprocal recommendation
can be two different users having bilateral relations as traditional user × item
interactions. Xia et al. bring a solution to online dating problem by finding out
users’ power of relationships analysing user-based and graph-based features [38].
Reciprocal recommenders, such as online dating and online recruiting, have a
major challenge to satisfy the mutual preferences of two users or user × item, and
graph-partitioning methods are used by representing the dataset as a bipartite
graph [39]. While these works make a good job of graph analysis to find out the
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relationships of users, deep learning based approaches have been disregarded to
process a great amount of information existing in properties of users and items,
textual explanation, and video/music content.

3 Preliminaries

In this part of the paper, existing solutions for CF and CBF that inspire Hybrid
Recommender System (HRS) will be mentioned. These preliminaries including
Matrix Factorization (MF) that utilizes user-item IDs and Deep Neural Network
(DNN) that takes advantages of user-item properties build the main structure
of our model.

3.1 Matrix Factorization

MF technique is only used for CF, and allows to discover the latent features
underlying the interactions between users and items. Each user and item can be
associated with a real-valued vector of the latent features. Let pu and qi denote
the latent vectors for user u and item i, respectively; MF is used to estimate an
interaction ŷui as a dot product of pu and qi:

ŷui = f(u, i|pu, qi) =
K∑

k=1

pukqki (1)

where K is a parameter that represents the dimension of the latent space, puk
and qki are used for user and item latent factor matrix elements, and f is a
function that maps model parameters to the predicted score, respectively. MF
models the interaction of user and item latent factors, and each dimension of
the latent space is independent from each other. Dimensions of the latent space
are linearly combined with the same weight, so MF can be considered as a linear
model of latent factors.

3.2 Deep Neural Networks

There are a variety of deep learning based approaches to implement for CF and
CBF. In this part, Multi-layer perceptron (MLP) that is a type of feedforward
artificial neural network will be mentioned. User and item properties are inte-
grated by concatenating them. Interaction between user and item latent features
does not exclusively occur by a vector concatenation that is unsatisfactory for
CF modeling [12]. This problem is resolved by adding some hidden layers after
concatenating these latent vectors. Let pu and qi denote the latent vectors for
user u and item i, respectively; DNN model is simply formulated as
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Fig. 1. General architecture of deep neural network

ψ1(pu, qi) = o1 =
[

pu
qi

]

ψ2(o1) = o2 = α2(WT
2 o1 + b2),

. . .
ψN (oN−1) = oN = αL(WT

NoN−1 + bN ),
ŷui = αout(hT oN )

(2)

where Wl and bl specify the weight matrix, bias vector, respectively. αl is the
activation function of the l-th layer of the model. Also, ψl represents a function
that takes the output of l − 1-th layer as input, and produces the result of the
current layer.

4 DeepHybrid Model

In this paper, a hybrid recommender system called as DeepHybrid is proposed. It
uses IDs of users and items and auxiliary information of both to represent their
historical interactions. Firstly, latent features of users and items are obtained
using MF technique from feedback of users. Secondly, a deep learning based
approach is used to get users’ and items’ features from both user-item IDs and
user-item properties. Lastly, a hybrid model is presented which combines MF
and DNN under DeepHybrid.

4.1 Features from MF

MF is the most popular approach for CF, and it maps users and items to a latent
factor space for the interaction of users and items. In this work, pu represents
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user properties and qi represents item properties. Embedding vector with one-
hot encoding of user (item) ID of the input layer can be seen as the latent vector
of user (item) [12]. Let the user latent vector pu be PT vU

u and item latent vector
qi be QT vI

i . These latent vectors are projected to the output layer as

ŷui = αout(hT (pu � qi)) (3)

where � defines the element-wise product of vectors, and αout represents the
activation function. Also, h is used as a weight vector of the output layer. In
our framework, MF model will be expanded using an activation function. Unlike
linear MF models, a non-linear activation function will make our MF model more
meaningful.

4.2 Features from DNN

In our DNN model, auxiliary information of users and items will be added for
concatenated vector that is the input of the neural network. In addition to
embedding vectors obtained from one-hot encoding of user and item IDs like
MF, the properties of users and items will be processed as embedding vector
or normalized value. These properties can be divided into two categories as
continuous and categorical features. Firstly, continuous features are real-valued
numbers and normalized to [0, 1] by mapping a feature value x. The normalized
value is calculated as Eq. 4 for values in the i-th quantiles.

ni =
i − min

max − min
(4)

Secondly, categorical features are embedded to n-dimensional vectors like ID
embeddings depending on the number of distinct values for the stated feature.
For example, age of a candidate is a continuous feature and normalized into [0,
1], and military status is considered as a categorical feature since this value is
distinct, and simply divided into two categories as completed and uncompleted
statuses in JRs. Figure 1 shows the architecture of DNN to process features
after embedding and normalization. Let conu, catu, and idu represent continuous
features, categorical features and ID embedding of users, respectively; and similar
notations of coni, cati, and idi for items. User and item properties for DNN model
are simply defined as

pu =

[
idu
catu
conu

]
, qi =

[
idi
cati
coni

]
(5)

These properties of users and items are concatenated after embeddings and
normalization. Then, the result features of these operations are processed by
DNN as Eq. 2. In this manner, the model learns the interaction between pu and
qi providing more flexibility and non-linearity than MF which only operates a
dot product of user and item latent vectors.
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4.3 Interaction Layer

In the interaction layer, two different mappings of latent features from categor-
ical features, continuous features, and ID embeddings are fused in DeepHybrid
as shown in Fig. 2. This model basically aims at ranking prediction as recom-
mendation task. A top-n list is produced by the ranking network using the near-
est neighbors of the candidates [28]. MF and DNN models can share the same
embedding layers for processing user and item IDs, then concatenate the results
of their operations. However, He et al. stated that MF and DNN use different
embeddings, and are fused by concatenating the last layers of these models to
enable more flexibility to the combined model [12].

ψMF = pu � qi

ψDNN = αN (WT
N (...α2(WT

2

[
pu
qi

]
+ b2)...)) + bN

ŷui = αout(hT

[
ψMF

ψDNN

]
)

(6)

4.4 Learning Interaction

An objective function needs to be specified to estimate model parameters. Exist-
ing solutions generally utilize a regression with squared loss. For example, rating
prediction is originally a regression problem, and squared loss will exactly fit
rating prediction. However, our target value yui has only two values 1 or 0 rep-
resenting whether u and i have an interaction.

DeepHybrid uses the binary property of data, and yui is labeled as 1 meaning
user u has positive feedback on item i, and 0 otherwise. The prediction score ŷui
shows how user u is related to item i. In this point, our recommendation task
with implicit feedback can be considered as a binary classification problem. If
the probability of class-1 is high, u is more relevant to i, or vice versa. Let yui
and ŷui denote the target and the predicted value, X be the interaction of users
and items, respectively;

L =
∑

(u,i)∈X∪X−
yui log ŷui + (1 − yui) log(1 − ŷui) (7)

where X denotes the set of observed interactions in X, and X− denotes unob-
served interaction. This formula is called as log loss (binary cross-entropy loss).
While X represents positive instances, X− is determined by uniformly sampling
from unobserved interactions due to a lack of negative feedback. For each positive
instance, a certain number of negative instances are determined.

5 Experiments

5.1 Dataset and Experimental Settings

In our experiments, we focused on Job Recommendation, and used the dataset
of one of the biggest job search website in Turkey.
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Fig. 2. DeepHybrid model

Kariyernet: Kariyernet dataset consists of many information such as which
candidate applied to which job posting and some important auxiliary information
of jobs and candidates. Table 1 shows the statistics of this dataset. Also, auxiliary
information of users and items are provided as:

– Candidate properties: Firstly, age of a candidate is used as continuous
feature, and normalized. Secondly, gender, military status, working status,
city, department, and university are considered as categorical feature, and
embedded.

– Job posting properties: The number of people to hire is used as continu-
ous feature. All other features of job posting that include preferred gender,
position type, position level, and educational status are taken into account
as categorical feature.

Our proposed deep hybrid model was implemented on Keras using Theano
backend. For all implemented models, one interaction of each user was sam-
pled as the validation, then hyper-parameters were tuned. Negative instances
were randomly selected from unobserved interactions because of lack of nega-
tive feedback. Three negative instances were allocated for each positive instance
in training set. Also, model parameters were initialized with a Gaussian distri-
bution, and optimized the binary cross entropy of Eq. 7 with mini-batch Adam
[29]. For MF, the number of latent factors was chosen as 4,8,16, and 32 to obtain
latent features from ID embeddings. For DNN, output dimension of embedding
layer for ID embedding was selected as 16, 32, and 64. Also, normalization of
continuous features naturally produces a number between 0 and 1, and categor-
ical features were embedded to one-dimensional space. Moreover, the batch size
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for each iteration was tested with values 100, 200, and 400, and the learning
rate was applied with 0.0001, and 0.001 for Adam optimizer. Lastly, our models
showed better performance with latent factor as 16, input layer size for DNN as
64, batch size as 200, and learning rate as 0.001.

Table 1. Statistics of Kariyernet dataset

Candidates Job postings Applications Sparsity

20283 16134 383434 99.99%

5.2 Evaluation Metric

Leave-one-out evaluation strategy was selected to evaluate both user recommen-
dation and item recommendation. This evaluation that has been mostly used in
other works [22,30] takes all data for training except the latest interaction of
user or item as the test set. The ranking strategy generates a top-n list of items
for each user. Also, m items are randomly sampled for each user as negative
instances which is different from training phase. He et al. uses Hit Ratio (HR)
and Normalized Discounted Cumulative Gain (NDCG) to evaluate the perfor-
mance of top-n list [12]. This work randomly selects 99 items from unobserved
items for each user in the test phase, and ranks top 10 of these items while imple-
menting item recommendation, or the opposite for user recommendation. While
NDCG is calculated by giving top items more higher score than next items, HR
only accounts if the test item is available on top-10 item list.

5.3 Baseline Models and Performance Evaluation

Baselines. Baseline models were selected from the studies which utilize inter-
actions between users and items, and calculates top-n list of items.

– eALS (CF): Matrix Factorization is the most popular recommendation
model for CF. eALS forms a special type of MF with implicit feedback
that handles all unobserved instances as negative, but gives weight to these
instances depending on the popularity of items [22].

– MF with ID Embedding (CF): This method generalizes, and expands
classical MF works. Unlike linear MF models, it takes ID embeddings of users
and items, and predicts the target value using element-wise product with a
nonlinear activation function like sigmoid, tanh etc. [12].

– DNN (CBF): This model takes only content information of users and items
instead of IDs. The features are collected with the traditional taxonomy of
continuous and categorical features. It embeds categorical features, normal-
izes continuous features, and a neural network processes these concatenated
features [31].
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– NeuMF (CF): This model is only designed for CF. It uses ID embeddings
that are processed under GMF, and MLP, and then combined under an inter-
action layer by concatenating each other. The result is optimized by binary
cross entropy loss [12].

Performance Evaluation. In JR systems, both jobs and candidates can be
recommended to each other, and the most perfectly fit resumes can be deter-
mined for each job posting. In this work, the results were calculated for both
item and user recommendation. The performance of DeepHybrid and baseline
models on Kariyernet dataset is shown with HR@10 and NDCG@10 as eval-
uation metric in Table 2. The experiments were repeated three times, and the
averages of the results were written down in terms of evaluation metrics HR and
NDCG.

Fig. 3. Performance of HR@10 and NDCG@10 with the number of factors

In this work, DeepHybrid achieves high improvements over the state-of-the-
art methods on Kariyernet dataset. Firstly, GMF and eALS use only the inter-
action of user and item, and GMF importantly outperforms eALS that shows
that the non-linearity setting of GMF is more expressive than linear MF models
like eALS. Secondly, DNN contributes on increasing HR and NDCG using only
content information that is stronger learner for ranking performance. Thirdly,
NeuMF made a valuable improvement on the other baseline models for both
item and user recommendation since it combines the linearity and non-linearity
of models, and it provides more flexibility to learn the interaction between user
and item latent factors using a deep learning based approach. These three base-
line models except DNN that utilizes auxiliary information use only user-item
historical interaction, and are called as CF approaches. DeepHybrid achieves the
best performance over all baseline models by integrating CBF and CF strategies.
This model concatenates categorical and continuous features into ID embed-
dings, and makes latent features of users and items stronger. DeepHybrid gains
approximately %1.7 improvement over NeuMF for both item and user recom-
mendation in terms of HR. However, the results shows that the improvement of
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DeepHybrid is %6 in terms of NDCG for Kariyernet dataset, and it can be said
that properties of candidates and job postings provide a strong performance for
ranking on top-n list.

Table 2. Performance of DeepHybrid model

Methods Item recommendation User recommendation

HR@10 NDCG@10 HR@10 NDCG@10

eALS 0.754 0.566 0.672 0.431

GMF 0.797 0.569 0.752 0.491

DNN 0.809 0.582 0.761 0.524

NeuMF 0.841 0.591 0.779 0.543

DeepHybrid 0.855 0.628 0.795 0.581

Also, Fig. 3 shows the performance of HR@10 and NDCG@10 depending on
the number of latent factors. While this factor represents the latent vector size
for eALS and GMF, it is considered as the output of the last layer for other
DNN based approaches. For all models, HR and NDCG evaluation metrics have
lower values for latent factor 4, but they are very close to each other for 8, 16,
32. These results showed us that latent factor 16 is the most suitable one to
evaluate all models since large factors cause overfitting while small factors are
not sufficiently learning the model depending on the size of dataset.

6 Conclusion

In this work, we have presented DeepHybrid, a new deep learning based
hybrid recommendation system to recommending candidates(items) to job post-
ings(users). The proposed approach exploits user-item interaction for CF and
auxiliary information of both users and items for CBF. DeepHybrid consists
of MF and DNN coupled together by a shared common layer to predict top-n
list of items. All interactions are treated as positive, and negative instances are
randomly selected through lack of explicit feedback. Additionally, Kariyernet
dataset was used for performance evaluation in the experiments. The proposed
model finds the best candidate list for a job posting, and ranks the most suitable
jobs for a candidate. Experimental results show that HR and NDCG evaluation
metrics for item recommendation is higher than user recommendation due to
the number of job postings and candidate application. Candidate application
is a lot more than job posting. As future work, we are planning to study on
processing text-based information of users and items since a great amount of
information exists as a text. For example, detailed explanation of experiences
and qualifications of a candidate, and explanation of a job posting might expand
our latent feature space while doing JR task. Also, we are randomly selecting
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items to be ranked for users, and finding top-n list of these items in this work,
but it is able to recommend irrelevant items to users because of random selection
in a real application. Therefore, we aim at realizing candidate generation task
before generating top-n list.
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Abstract. In recent years, Deep Learning methods have become very
popular in NLP classification tasks, due to their ability to reach high per-
formances by relying on very simple input representations. One of the
drawbacks in training deep architectures is the large amount of anno-
tated data required for effective training. One recent promising method
to enable semi-supervised learning in deep architectures has been for-
malized within Semi-Supervised Generative Adversarial Networks (SS-
GANs).

In this paper, an SS-GAN is shown to be effective in semantic pro-
cessing tasks operating in low-dimensional embeddings derived by the
unsupervised approximation of rich Reproducing Kernel Hilbert Spaces.
Preliminary analyses over a sentence classification task show that the
proposed Kernel-based GAN achieves promising results when only 1% of
labeled examples are used.

Keywords: Semi-supervised learning · Kernel-based deep
architectures · Generative Adversarial Network

1 Introduction

In recent years, Deep Learning methods have become very popular in many
Natural Language Processing (NLP) tasks. This is mainly due to their ability
to reach high performances by relying on very simple input representations, i.e.,
typically raw signals. As an example, recent architectures have been shown to
be effective in capturing syntactic information by only observing sequences of
words (e.g., LSTM as in [8]), redundant subsets of n-grams (e.g., CNNs as in
[11]) up to just sequences of characters [12]. The networks learn during training
the representations useful for the final decision.

One of the drawbacks in learning deep architectures is that, often, they need a
huge amount of information to perform effectively. This means having large-scale
annotated material to let a neural network learn the representations in its hidden
layers. Unfortunately, the availability of annotated material is often scarce. This
can prevent the effectiveness of deep architectures and it results in significant
performance drops. A viable solution to such a problem is the adoption of semi-
supervised methods [2], to improve the generalization capability of a learner
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M. Alviano et al. (Eds.): AI*IA 2019, LNAI 11946, pp. 336–347, 2019.
https://doi.org/10.1007/978-3-030-35166-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35166-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-35166-3_24


Kernel-Based Generative Adversarial Networks 337

when few labeled data is available while the acquisition of unlabeled sources is
possible.

One recent effective method to enable semi-supervised learning in deep archi-
tectures is formalized within the so-called Semi-Supervised Generative Adver-
sarial Networks (SS-GANs). Generative Adversarial Networks (GANs) [9,10] are
a class of neural generative models based on game theory. The goal of GANs
is to train a generator network G in producing samples from the data distri-
bution. The training of G adversarially depends on a discriminator network D,
trained to distinguish samples from the generator distribution from those char-
acterizing real instances. G in turn is trained to fool D into accepting its outputs
as being real. SS-GAN [18] has been proposed as a simple extension to GANs
where D is devoted in both assigning a class to each example and discriminating
whether it was generated by G. SS-GANs have been shown to be very effective
in semi-supervised learning in the image processing domain.

While the labeled material is used to train the classifier, the unlabeled one
improves the inner representations of D (which must be also robust to not being
fooled by G). Results within Image Classification have been shown SS-GANs to
be very effective: when exposed to a few dozens of labeled examples (but thou-
sands of unlabeled ones), an SS-GAN is capable of obtaining a quality similar
to state-of-the-art convolutional neural networks.

The usage of GANs in natural language problems has been limited so far;
this is mainly due to the discrete input space typically adopted in this domain,
i.e., raw words. However, in weakly supervised problems within natural lan-
guage processing tasks, exploiting linguistic information can be beneficial. For
example, syntactic information has been demonstrated to be useful for many lan-
guage understanding tasks [17]. Recently, [4] proposed the Kernel-based Deep
Architecture (KDA) that exploits an input representation of examples that is
linguistically justified: they demonstrate how the syntactic information captured
by a Semantic Tree Kernel can be embedded into vectors to be used as input for
neural network learning.

In this paper, we investigate how to improve the robustness of deep architec-
tures by exploiting an expressive space which encodes rich linguistic information.
The aim is to improve the capability of such architectures of learning from very
few annotated examples. We will exploit the information encoded by a KDA
within a semi-supervised learning framework provided by an SS-GAN. In par-
ticular, a KDA, used in classification tasks involving k classes, will be extended
to target an additional class, which aims at collecting examples not belonging to
the input dataset, called fake examples. This KDA will act as a discriminator
D, whose aim is to separate fake examples from the real ones and, at the same
time, to assign each real example to the correct class. At the same time, another
network (called generator, G) will be devoted to the generation of fake examples
with the aim of “fooling” the discriminator, by creating examples as much similar
as possible to the KDA real ones. These networks will be trained simultaneously
so that the G is penalized when fake examples are “unmasked” by D, while the
latter will be penalized when fake examples are incorrectly assigned to one of the
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k classes. In [10] this schema was shown beneficial in improving the robustness
of the discriminator in the original classification task, especially when very few
labeled examples are used in training, but many unlabeled examples exist.

The underlying idea is that the generalization capability of the discriminator
benefits from the contribution of the labeled material to assign new instances to
the target classes and from the contribution of unlabeled examples to improve the
representation capability of the network within the hidden layers. The resulting
architecture, namely Kernel-based Generative Adversarial Network (KGAN),
enables weakly supervised learning in linguistically rich spaces. To the best of our
knowledge, this is the first attempt to adopt an SS-GAN in semantic classification
tasks. The experimental evaluation with respect to Question Classification shows
a significant improvement in weakly supervised learning when only 1%, 2% and
5% of labeled examples are adopted.

In the remaining, Sect. 2 provides a brief introduction to SS-GAN. In Sect. 3,
our approach is presented. In Sect. 4, preliminary evaluations are reported, while
in Sect. 5 conclusions are derived.

2 Semi-supervised GANs

Deep neural networks are usually trained on a large amount of labeled data,
which is not often available: on the contrary, unlabeled data can be easily
accessed. Deep methods were initially adapted to the semi-supervised case by
using concepts coming from the theory of graph-based methods [13,21,24].

Fig. 1. SS-GAN architecture. G generates from noise a set of fake examples F.
These along with unlabeled U and labeled L examples are used as input for the dis-
criminator D.

At the same time, Semi-Supervised Generative Adversarial Networks (SS-
GANs) [18] support a semi-supervised setting within the GAN framework [10].
GANs are traditionally used for their generative capabilities: these are mainly
devoted in generating new examples resembling so many existing distributions
that a dedicated discriminator is not able at distinguishing real examples from
new (i.e., fake) ones. SS-GAN has been successfully applied in semi-supervised
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learning problems with respect to multi-classification tasks. As shown in Fig. 1,
instead of a binary classification task the discriminator D is trained over a (k+1)-
class objective: true examples are classified in one of the target k classes, while
the generated samples are classified into the last k + 1 class. This (k + 1)-class
discriminator objective leads to strong empirical results in image classification
since [18]. It has been also shown that the adoption of a small labeled dataset
improves the effectiveness of the generative component, improving the quality
of the generated images.

More formally, let D and G denote the discriminator and generator, and pdata
and pG denote the distribution of real data and the generated fake examples,
respectively. To train a k-class classifier with a small number of labeled samples,
the objective of D is extended as follows. It receives a data point x in input and
it outputs a (k +1)-dimensional vector of logits {l1, l2, . . . , lk, lk+1}), mapped
into a probability distribution. Then,

pmodel(y = k + 1|x) =
exp(lk+1)

∑k+1
j=1 exp(lj)

provides the probability that x is fake, while

pmodel(y = i|x, i < k + 1) =
exp(li)

∑k+1
j=1 exp(lj)

provides the probability that x is real and belongs to i-th class Cati. D is
expected to perform well both in the supervised classification task (with respect
to the k-classes) and on the unsupervised classification task (avoiding the erro-
neous rejection of real examples and acceptance of fake examples generated by
G). Its loss function is thus: LD = LDsup. + LDunsup. where:

LDsup. = −Ex,y∼pdatalog [pmodel(y = i|x, i < k + 1)]
LDunsup. = −Ex∼pdata log [1 − pmodel (y = k + 1|x)]

− Ex∼G log [pmodel(y = k + 1|x)]

It is straightforward to observe that labeled examples are used to minimize
LDsup. , while the unlabeled examples are used to minimize LDunsup. thus improv-
ing its generalization capability.

At the same time, G is expected to generate examples that are similar to
the real ones sampled from the real distribution pdata. The more G will succeed
in this task, the better it will fool D. Moreover, as suggested in [18] a good
G should generate data approximating the statistics of real data as much as
possible. In other words, the average example generated in a mini-batch by G
should be as much similar as possible to the real prototypical one. Formally,
let’s f(x) denote the activation on an intermediate layer of D, this difference
between such averaged inner representations should be minimized, introducing
the feature matching loss of G defined as:

L
Gfeature matching= ‖Ex ∼ pdataf(x) − Ex ∼ Gf(x)‖2

2
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This, combined with the unsupervised loss of G induced by the fake examples
correctly rejected:

LGunsup.
= −Ex∼G log [1 − pmodel (y = k + 1|x)]

gives rise to the final loss of G that is LG = LGfeature matching + LGunsup.
.

While in literature an SS-GAN is usually stimulated with input examples x
encoding images (e.g. from the MNIST dataset), in the next section we will show
that they can be easily adopted over input spaces encoding linguistic information,
e.g. a low-dimensional dense space encoding tree structures derived from the
dependency parse of a tree.

3 Kernel-Based GANs

In [4] it has been shown that neural networks can be trained in low-dimensional
spaces which approximate a generic Reproducing Kernel Hilbert Space (RKHS)
[19]. These low-dimensional approximations are derived as a reconstruction from
a set of real reference training (unlabeled) examples, called landmarks, which can
be used to compile the representation of any unseen test instance.

More formally, given an input training dataset L, a kernel K(oi, oj) is a
similarity function over L2 that corresponds to a dot product in the implicit
kernel space, i.e., K(oi, oj) = Φ(oi) · Φ(oj). The advantage of kernels is that the
projection function Φ(o) = x ∈ R

n is never explicitly computed [19]. In fact,
this operation may be prohibitive when the dimensionality n of the underlying
kernel space is extremely large, as for Tree Kernels [3]. Kernel functions are
used by learning algorithms, such as Support Vector Machines [20], to operate
only implicitly on instances in the kernel space, by never accessing their explicit
definition.

Let us assume we apply the projection function Φ over all examples from L
to derive representations x being the rows of the matrix X. The Gram matrix
can be computed as M = XX�, with each single element corresponding to
Mij = Φ(oi)Φ(oj) = K(oi, oj). The aim of the Nyström method [22] is to derive
a new low-dimensional embedding x̃ in a l-dimensional space, with l � n so
that M̃ = X̃X̃� and M̃ ≈ M . In other words, M̃ is an approximation of M
that is obtained by using a subset of l columns of the matrix of the available
examples, called landmarks. Suppose we randomly sample l columns of M , and
let C ∈ R

|L|×l be the matrix of these sampled columns. Then, we can rearrange
the columns and rows of M and define X = [X1 X2] such that:

M = XX� =
[

W X�
1 X2

X�
2 X1 X�

2 X2

]

and C =
[

W
X�

2 X1

]

(1)

where W = X�
1 X1, i.e., the subset of M that only considers landmarks. The

Nyström approximation can be defined as:

M ≈ M̃ = CW †C� (2)
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where W † denotes the Moore-Penrose inverse of W . The Singular Value Decom-
position (SVD) is used to obtain W † as follows. First, W is decomposed so that
W = USV �, where U and V are both orthogonal matrices, and S is a diago-
nal matrix containing the (non-zero) singular values of W on its diagonal. Since
W is symmetric and positive definite W = USU�. Then W † = US−1U� =
US− 1

2 S− 1
2 U� and the Eq. 2 can be rewritten as

M ≈ M̃ = CUS− 1
2 S− 1

2 U�C�

= (CUS− 1
2 )(CUS− 1

2 )� = X̃X̃� (3)

Given an input example o ∈ D, a new low-dimensional representation x̃ can
be thus determined by considering the corresponding item of C as

x̃ = Θ(o) = cUS− 1
2 (4)

where c is the vector whose dimensions contain the evaluations of the kernel
function between o and each landmark oj ∈ L. Therefore, the method produces l-
dimensional vectors. Regardless of the input examples (vectors, trees or graphs),
given a valid kernel function, the Nyström method allows projecting examples
in a l−dimensional feature space. Here, the inner product among vectors is the
best approximation of the kernel function (according to the Frobenius norm) of
the corresponding examples.

In [4] the above introduced Nyström representation x̃ of any input example o
was adopted to feed a neural network architecture. We assume a labeled dataset
T = {(o, y) | o ∈ T , y ∈ Y } being available, where o refers to a generic instance
and y is its associated class. In particular, a Kernel-based Deep Architecture
(KDA) is a Neural Network, for example, a Multi-Layer Perceptron (MLP),
which is directly applied over input instances obtained by approximating the
kernel space via the Nyström method. It means adopting a specific Nyström
layer based on the Nyström embeddings of Eq. 4 to project any input instance o
in a dense representation space in Rl. The specific KDA proposed in [4] extends
an MLP for classification tasks by introducing an input layer and a Nyström
layer in addition to the classical sequence of non-linear hidden layers and the
final classification layer, which produces the output.

The input layer corresponds to the input vector c, i.e., the row of the C
matrix associated to an example o. Notice that, for adopting the KDA, the
values of the matrix C should be all available.

The input layer is mapped to the Nyström layer, through the projection
in Eq. 4. Notice that the embedding provides also the proper weights, defined
by US− 1

2 , so that the mapping can be expressed through the Nyström matrix
HNy = US− 1

2 : it corresponds to a pre-trained stage derived through SVD. In
other words, Eq. 4 provides a static definition for HNy whose weights can be
left invariant during the neural network training. Formally, the low-dimensional
embedding of an input example o, is x̃ = c HNy = c US− 1

2 .
The resulting outcome x̃ is the input to one or more non-linear hidden layers.

Each r-th hidden layer is realized through a matrix Hr ∈ R
hr−1×hr and a bias
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vector br ∈ R
1×hr , whereas hr denotes the desired hidden layer dimensionality.

Clearly, given that HNy ∈ R
l×l, h0 = l. The first hidden layer, in fact, receives

in input x̃ = cHNy, that corresponds to r = 0 layer input x0 = x̃ and its
computation is formally expressed by x1 = f(x0H1 + b1), where f is a non-
linear activation function. The generic r-th layer is modeled as:

xr = f(xr−1Hr + br) (5)

The final layer of KDA is the classification layer, realized through the output
matrix HO and the output bias vector bO. Their dimensionality depends on the
dimensionality of the last hidden layer (called O−1) and the number |Y | of dif-
ferent classes, i.e., HO ∈ R

hO−1×|Y | and bO ∈ R
1×|Y |, respectively. In particular,

this layer computes a linear classification function with a softmax operator, so
that ŷ = softmax(xO−1HO + bO).

In order to avoid over-fitting, two different regularization schemes are applied.
First, the dropout is applied to the input xr of each hidden layer (r ≥ 1) and to
the input xO−1 of the final classifier. Second, a L2 regularization is applied to
the norm of each layer1 Hr and HO.

Finally, the KDA is trained by optimizing a loss function made of the sum
of two factors: first, the cross-entropy function between the gold classes and the
predicted ones; second the L2 regularization, whose importance is regulated by
a meta-parameter λ. The final loss function is thus

L(y, ŷ) =
∑

(o,y)∈L
y log(ŷ) + λ

∑

H∈{Hr}∪{HO}
||H||2

where ŷ are the softmax values computed by the network and y are the true
one-hot encoding values associated with the example from the labeled training
dataset L.

3.1 Kernel-Based Generative Adversarial Networks

Applying a GAN perspective on a KDA type of architecture promotes two main
benefits: the semi-supervised nature of the GA approach and the expressiveness
of kernel based learning. This paves the way to cost-effective and highly reliable
complex NLP inference, even in poor training conditions, e.g. small labeled data
sets.

A KDA can be easily extended within an adversarial learning framework,
deriving the so-called Kernel-based GAN (KGAN) as follows. The traditional
KDA is used as the discriminator, i.e., D: the Nyström layer generates real input
examples in the network, while the number of classes in the output layer will be
extended to k + 1. At the same time, another MLP is used as Generator, i.e., G,
which receives in input random vectors and produces output (fake) examples.
For simplicity, the G is characterized by the same number and hidden units of
1 The input layer and the Nyström layer are not modified during the learning process,

and they are not regularized.
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the KDA (removing the classification layer). In theory, there are no restrictions
on the number of hidden layers or their size. The only restriction is that the
size of the last generator layer must be equal to the input space, so that the
generated embeddings (the fake examples) are represented in Rl, consistently
with the adopted Nyström representation space. In such a way, fake examples
are expected to resemble originals in the approximated RKHS.

A KGAN can be used over any dataset, given that a kernel function operating
on the original feature space exists. Input examples can be thus projected in
the l-dimensional space by using the Nyström method in order to train the
overall architecture. During the training phase, the input dataset is expected
to contain labeled and unlabeled examples: these are randomly extracted and
grouped in mini-batches of size b to be provided to D. Consistently with [10],
at each iteration G will also provide b examples, which are added to the mini-
batch provided to D. After the classification of each mini-batch, the assignments
provided by the discriminator with respect to the k + 1 target classes are used
to evaluate the losses LD and LG (introduced in Sect. 2) so that the network
parameters are adjusted, accordingly.

At classification time, only D is adopted and, from a computational perspec-
tive, it results in a highly scalable and efficient solution with respect to classical
kernel based methods, as discussed in [4]. Overall, we expect that the expressive-
ness of the input kernel space, combined with the reduced number of parameters
from the MLP architecture as well as with the generalization capability of the
SS-GAN will embody an effective weakly-supervised paradigm. This amplifies
the applicability of these neural learning methods in industrial scenarios, that
are quite challenging with respect to the availability of large annotated datasets.

4 Experimental Results

In this section, we provide a set of preliminary evaluations of the KGAN app-
roach. We are interested in assessing the impact of the semi-supervised schema,
provided by the KGAN architecture, with respect to poor training conditions,
i.e., where a minimal set of labeled data is available.

We replicated the experiments reported in [4] with respect to the Question
Classification task. We adopted the UIUC dataset [15]: this includes a training
and test set of 5, 452 and 500 questions, respectively, organized in 6 coarse-
grained classes (e.g., ENTITY or HUMAN). In order to provide the input to the
KGAN architecture, we generated Nyström representations of the examples by
using the Compositionally Smoothed Partial Tree Kernel (CSPTK) [1]. It com-
bines both syntactic and compositional semantic information derived from the
dependency graphs of questions. Notice that in order to compute the Tree Ker-
nel, the dependency graphs have been transformed in trees, according to [1].
In particular, explicit compositional information is used to augment a Lexically
Centered Tree [5] (see Fig. 2 for an example).
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root〈play::v,*::*〉

play::vVBrootnsubj〈play::v,Hendrix::n〉

Hendrix::nNNPnsubj

aux〈play::v,do::v〉

do::vVBZaux

dobj〈play::v,instrument::n〉

instrument::nNNdobjdet〈instrument::n,what::w〉

what::wWDTdet

Fig. 2. Compositional Lexical Centered Tree (CLCT) of “What instrument does Hen-
drix play?”. Notice that non-terminal nodes are augmented with information about
relations.

Lexical vectors needed in the computation of the CSPTK are generated using
a Skip-gram model2 [16]. This kernel achieves the state-of-the-art (95% in Accu-
racy) over this task within a Support Vector Machine framework. It demonstrates
the expressiveness of the (implicit) representation space provided by the kernel
function. Notice that the representation space doesn’t require any labeled exam-
ple, but, it fully exploits the syntax and semantic information contained in the
tree representations.

We compare the KGAN to the standard KDA defined in [4], and with the
standard Kernel SVM, i.e., directly operating in the RKHS. We also compare
with a well-known deep learning architecture, i.e. the Convolutional Neural Net-
work (CNN) proposed in [11], applied over the embedding input matrix of sen-
tences3 for a text classification task.

KGAN has been tuned with respect to the following hyper-parameters: (i)
the number of hidden layers in the discriminator among 3, 4, and 5; (ii) dropout
level applied after each hidden layer among 0.95 and 0.99; (iii) whether using or
not feature matching. We used a split of the training set (about 10%) to tune the
hyper-parameters of each model. In our implementation, we adopted the Scaled
Exponential Linear Units (SELU) as activation function [14] in each layer.

For each model, we used an increasing amount of labeled data L composed
by 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50% and 100% of the original dataset,
as shown in Fig. 3. Notice that the KGAN used L as the portion of labeled
examples. The remaining examples, i.e., U , are used without their labels, so
affecting only the following losses: LDunsup. and the whole LG . We performed 5
runs shuffling the training set and reporting the average classification accuracy.

In Fig. 3, the learning curves with respect to the different portions of labeled
examples are reported for each model. Notice that with only 1% of labeled exam-
ples, i.e., about 55 questions, the KGAN approach is able to provide higher per-
formances with respect to the other supervised approaches. In fact, the KGAN
obtains 64.9% in Accuracy while the Kernel SVM and the KDA obtain 58.0%
and 57.8% respectively; it results in an error reduction of about 17%. Notice how
the CNN (that operates mainly over the n-grams of the input texts) performs
poorly in this training setting. In fact, it obtains only about 44% in Accuracy.

2 For the remaining kernel parameters, the same setting of [4] is used.
3 The word embeddings used for the CNN is the same used for the kernel computation.
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Fig. 3. Learning curve w.r.t. the QC task.

This confirms our idea that linguistically motivated information (combined with
the adversarial learning) can help in reducing the amount of annotated data
needed to train text classification models. The differences between the models
get smaller when the size of L grows: starting about at 30–40% of the labeled
examples the KGAN, KDA and Kernel SVM perform almost equally. At 100%
of the examples all the model performances are very similar. In fact, the KGAN,
KDA, the Kernel SVM and the CNN obtain 93.2%, 93.4%, 95.0% and 93.2%,
respectively.

5 Conclusion

In this paper, the application of Generative Adversarial Networks (GAN) for
semi supervised learning within semantic processing tasks is presented. The
approach, namely the Kernel-based Generative Adversarial Network (KGAN),
is specifically tailored to amplify the applicability of combined Kernel-based and
Deep learning Architectures previously proposed as KDAs, in literature. The
strict requirement of large scale annotated corpora, strongly characterizing most
complex NLP inference tasks is here mitigated by the semi-supervised perspec-
tive offered bu GANs. In a KGAN approach, the specific formulation known
as Semi supervised GAN (SS-GAN) has been adopted in combination with a
Kernel-based Deep Architecture. This allows to bootstrap the training of an
NLP classifier which directly operates in Reproducing Kernel Hilbert Spaces, in
all situations when a significant amount of examples is available, but only a small
subset is labeled. The resulting architecture enables to exploit both the expres-
siveness of semantic kernel spaces and the semi-supervised setting provided by
the SS-GAN. The experimental evaluations of the KGAN in a sentence-level
semantic classification task confirms the beneficial impact of an SS-GAN over
a semantic processing task, i.e. Question Classification. The outcome suggests
that a robust and accurate learning process is enabled within the kernel (embed-
ding) space. Such representation space, which encodes rich syntactic information
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through tree kernel functions, is clearly beneficial with respect to alternative
embeddings, usually tailored by shallower structures, e.g. word n-grams.

In future, we aim at targeting more tasks and explore the role of alterna-
tive kernel embeddings, in order to measure and assess the beneficial impacts.
Furthermore, promising architectures for text encoding (e.g., [7]) or SS-GANs
variants [6] will be clearly considered. We will also investigate neural models to
decode the sentences generated by G, applying neural decoders, e.g., [23].
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Abstract. Predicting the next activity of a running execution trace of
a business process represents a challenging task in process mining. The
problem has been already tackled by using different machine learning
approaches. Among them, deep artificial neural networks architectures
suited for sequential data, such as recurrent neural networks (RNNs),
recently achieved the state of the art results. However, convolutional
neural networks (CNNs) architectures can outperform RNNs on tasks for
sequence modeling, such as machine translation. In this paper we inves-
tigate the use of stacked inception CNN modules for the next-activity
prediction problem. The proposed neural network architecture leads to
better results when compared to RNNs architectures both in terms of
computational efficiency and prediction accuracy on different real-world
datasets.

Keywords: Business process monitoring · Sequence prediction · Deep
learning

1 Introduction

Process mining [1] refers to the analysis of executions, often called traces, of a
business process. In this research area, a challenging task is represented by the
learning of probabilistic predictive models [20]. When learned, these models are
then exploitable on incomplete or running traces, in order to predict missing
events or forecast the evolution of running traces based on patterns extracted
from a historical event log. One example of these predictive models includes
techniques able to predict the next activity [2,6,11,24]. This prediction ability
may be considered to guarantee the higher utilization by acting proactively in
anticipation.

In recent years, with the increasing popularity of deep artificial neural net-
works (NNs) [15] in many fields, such as image classification [18,22], automatic
speech recognition [9] and natural language processing [10], growing interest has
arisen in using deep learning to analyze event logs to gain accurate insights into
the future of a business process.
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Recurrent neural networks (RNNs) are a kind of NNs specialized to deal with
sequential data using internal memory and sharing parameters across different
parts of the model. The authors in [11] presented one of the first application of
deep NNs, adopting RNNs with long short-term memory (LSTM) cells [16], to
the problem of predicting the next process activity. In [24] the authors proposed
a new LSTM architecture for the next-activity prediction problem, which gains
in accuracy compared to the architecture already reported in [11].

The recent systematic study available in [23] has compared different neural
networks architectures, such as generic RNNs, and specialized RNNs with LSTM
and GRU units [8], designed for the next-activity prediction problem. They
have proved that all the neural networks architectures outperform other classical
approaches.

Techniques based on LSTM architectures, suited for predicting the sequence
of future activities of an ongoing case, could be improved by leveraging the
knowledge about the structure of the process execution traces as well as the
a-priori knowledge about future development, as already proven in [12].

In order to deal with sequential data, a valid alternative to RNNs could be the
use of convolutional neural networks (CNNs) [21]. The same peculiar properties
of CNNs—extracting features from local input patches and allowing for represen-
tation modularity—making them excel at computer vision could be also effective
for sequence processing, where time could be considered as a spatial dimension.
Such one-dimensional CNNs are competitive with RNNs at a cheaper computa-
tional cost. Instead, as recently showed in [3], simple convolutional architecture
outperforms canonical recurrent networks such as LSTMs across a diverse range
of tasks, while demonstrating longer effective memory.

However, a classical problem with CNNs is to correctly set the kernel size.
The problem has been tackled in [22] where the authors proposed an inception
module that simultaneously applies many convolutions with different kernel size
to the same input—an optimal local sparse structure in a convolutional network
can be approximated and covered by readily available dense components.

The aim of this paper is to investigate whether the use of one-dimensional
CNNs could be competitive to RNNs for the next activity prediction problem.
To this purpose we define an inception architecture for sequential data where
inception modules of one-dimensional convolutions are stacked on top of each
other. The proposed model, like other machine learning algorithms, is able to
return the probability distribution over all the possible activities for the next
event given an incomplete/running trace. The empirical evaluation, performed
on real-world event logs, proves the effectiveness of the proposed neural network
architecture both in term of prediction accuracy and computational cost.

Other approaches, such as that proposed in [20], deal with the problem of
predicting the time-to-completion of running business process instances. Even if
our proposed method can be extended to deal with this regression task, here we
focus on the next activity prediction problem.

The background definitions are reported in the following section, while the
formulated inception architecture is described in Sect. 3. The findings in the
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evaluation of the proposed architecture are discussed in Sect. 4. Finally, Sect. 5
refocuses on the purpose of the research and draws the conclusions.

2 Next Activity Prediction Problem

In this section we provide some background definitions regarding the next-
activity prediction problem.

2.1 Background

Process mining techniques aim to extract useful information from event logs,
assuming that each event of a business process refers to an activity of a particular
case—process trace. Further information may be linked to a specific event, such
as the timestamp and other attributes. Here we define some useful process mining
concepts.

Let A be the set of all possible activities, C the set of case identifiers, and Di

the set of attributes, 1 ≤ i ≤ m. Let E be the set of events in a trace.

Definition 1 (Event). An event ei ∈ E is as a tuple ei =
(ai, ci, ti, di1, . . . , dim) where ai ∈ A, ci ∈ C, ti is the timestamp, and dij ∈ Dj,
1 ≤ j ≤ m, are additional attributes.

Given an event ei = (ai, ci, ti, di1, . . . , dim), it is possible to define the func-
tions πA(ei) = ai, πC(ei) = ci, πT (ei) = ti, and πDj

(ei) = dj for each 1 ≤ j ≤ m.
As in [24] the additional attributes will not be considered in the following of this
paper, thus leading to events characterised by the activity, the timestamp and
the case identifier.

Definition 2 (Trace). A trace is a finite sequence of events σ =
〈e1, e2, . . . , en〉, where each ei ∈ E, n = |σ|, and such that πT (ei) ≤ πT (ei+1)
and πC(ei) = πC(ei+1), ∀1 ≤ i ≤ n − 1.

Given the trace σ = 〈e1, e2, . . . , en〉, a prefix σk of σ, with k = |σk| ≤ |σ|,
is the trace σk = 〈e1, e2, . . . , ek〉. In particular a trace is a complete process
instance—started and ended—while a prefix is an instance in execution—running
trace.

Definition 3 (Event log). An event log is a set of traces such that each event
appears at most once in the entire log.

Table 1 reports a part of the event log described in the Receipt phase dataset
adopted in the following experimental evaluation.
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Table 1. Two traces of the event log dataset Receipt phase.

Event Case ID Activity Timestamp

e1 10011 Confirmation of receipt 2011/10/11 13:45:40.276

e2 10011 Check confirmation of receipt 2011/10/12 08:26:25.398

e3 10011 Adjust confirmation of receipt 2011/11/24 15:36:51.302

e4 10011 Check confirmation of receipt 2011/11/24 15:37:16.553

e5 10017 Confirmation of receipt 2011/10/18 13:46:39.679

e6 10017 Determine necessity of stop advice 2011/10/18 13:47:06.950

e7 10017 Check confirmation of receipt 2011/10/18 13:47:26.235

e8 10017 Adjust confirmation of receipt 2011/10/18 13:47:41.811

e9 10017 Check confirmation of receipt 2011/10/18 13:47:57.979

e10 10017 Determine necessity to stop indication 2011/10/18 13:48:15.357

e11 10017 Adjust confirmation of receipt 2011/10/18 13:48:30.632

e12 10017 Check confirmation of receipt 2011/10/18 13:51:01.525

e13 10017 Adjust confirmation of receipt 2011/10/18 13:56:57.603

2.2 Problem Formulation

The next-activity prediction problem consists in predicting the activity of a
running trace. In our setting, the input consists of an event log—a set of traces
with the attributes of their corresponding events.

Given an event log L = {σi}N
i=1 consisting of N traces, the online next-

activity prediction scenario could be simulated in the following way.
A dataset S = {(si, ai)}M

i=1, with M > N , is constructed from L, where si

is a sequence of events corresponding to a prefix σk
j of a trace σj ∈ L, with

k ∈ N
+, and where ai is the activity of the (k+1)-th event of the trace σj . More

formally, let σ = 〈e1, e2, . . . , en〉 be a trace, and ΠA(σ, k) = πA(ek) the function
returning the activity of the k-th event of σ, then:

S = {(si, ai)}M
i=1 =

N⋃

j=1

{
(σkj

j ,ΠA(σj , kj + 1))
}|σj |−1

kj=1
.

In particular, S is the dataset of all the prefixes of all the traces in L labelled
with their next-activity in their corresponding trace.

2.3 Recurrent Neural Networks

Deep feed-forward neural networks, also called multi-layer perceptrons (MLPs),
are layered deep NNs defining a mapping y = f(x;θ) from an input x space to
an output y space—computing an higher level representation of the input—with
parameters value θ that result in the best function generating data approxima-
tion [15].
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In a MLP each neuron of a layer is connected to all the neurons of the next
layer without cycles. There are an input layer, an output layer, an many hidden
layers. Learning deep neural networks requires computing the gradients of com-
plicated functions, efficiently computed using the back-propagation algorithm.

Recurrent neural networks (RNNs) are NNs specialised for processing sequen-
tial data, processing all the symbols of the sequence and updating an internal
fixed-length memory state s with the same transition matrix at each time step.
Most recurrent networks are able to process sequences of variable length. The
idea in RNNs is to have feedback connections thus proving a parameters sharing
across different parts of the model.

Let xt and ht be, respectively, the input and the hidden state—the memory
of the network—at time step t. In a RNN, the hidden state ht is updated using
the previous hidden state and the current input at each time step:

ht = f(Uxt + Wht−1 + b),

where f is usually a non-linear function, such as tanh, and the parameters are
the bias vector b along with the weight matrices U and W. Then, the output
ot at time t is computed as a function of the hidden state,

ot = f(Vht + c),

where c is the bias vector and V the weight matrix.
The most effective sequence models used in practical applications are called

gated RNNs, including long short-term memory (LSTM) and networks based
on the gated recurrent unit. A LSTM [16] is a special RNN architecture better
suited for capturing long-term dependencies than vanilla RNNs. The core idea
in LSTM is to introduce a cell state Ct, more complex than the memory cell
ht in vanilla RNNs, where information is added or removed by gated structures,
composed of a sigmoid neural network layer and a multiplication operation.

The LSTM model can be described by the following equations, where σ is the
sigmoid function, and the operator ∗ denotes the Hadamard product—element-
wise product:

ft = σ(Wfxt + Vfht−1 + bf ), (1)
it = σ(Wixt + Viht−1 + bi), (2)
ot = σ(Woxt + Voht−1 + bo), (3)
Ct = ft ∗ Ct−1 + it ∗ tanh(Wcxt + Vcht−1 + bc), (4)
ht = ot ∗ tanh(Ct). (5)

The first sigmoid layer ft in Eq. 1—forget gate—operates on ht−1 and xt and
output numbers between 0 and 1 for each element in the cell state—deciding the
information to throw away from the cell. Then, the sigmoid layer it in Eq. 2—
input gate—decides the value to be updated, and the tanh layer in Eq. 4 proposes
a vector of new candidate values to be added to the state. In Eq. 4 the new
cell state Ct is obtained by forgetting some information and adding new scaled



Activity Prediction of Business Process Instances with Inception CNNs 353

information. The new value for ht is computed in Eq. 5 by firstly deciding what
part of the cell state to output as computed in Eq. 3—output gate.

As we can see from the above equations, learning a LSTM architecture is time
consuming since it requires to learn many parameters—eight weight matrices
Wf ,Wi,Wo,Wc and four bias vectors bf ,bi,bo,bc.

3 The Proposed Inception Networks

Instead of using RNNs for the next-activity prediction problem, in this section
we show how to use CNNs to tackle the same problem.

3.1 Convolutional Neural Networks

Convolutional neural networks [19] (CNNs) are a specialized kind of NNs for
processing grid-like topology data, such as time-series data—one dimensional
grid taking samples at regular time intervals—and image data—two dimensional
grid of pixels. A convolutional layer convolves a kernel with the input in order
to obtain a feature map. Often many different kernels for the same input are
used, leading to many different feature maps. Different layers may have differ-
ent kernel sizes. Between stacked convolutional layers, pooling layers—max or
mean—are often inserted, greatly reducing the number of inputs thus speeding
up the training process and reducing the number of parameters.

Convolutions are used over more than one axis at a time. For instance, if we
have a two-dimensional input, we also want to use a two-dimensional kernel.

Given a two-dimensional input X, the k-th feature map at location (i, j) in
a given convolutional l-th layer is determined by the weight matrix Wl

k and
the bias vector bl

k with a non-linear activation function, such as the sigmoid
function, as:

hl
i,j,k = σ(Wl

k ∗ xl
i,j + bl

k),

where xl
i,j is the input patch centered at location (i, j) of the l-th layer. The

kernel Wl
k is shared for each possible location (i, j), thus reducing the model

complexity and making the network easier to train. The same process applies on
a one-dimensional input using the convolutions on a single axis.

A pooling layer placed after a convolutional layer aims to achieve shift-
invariance by reducing the resolution of the feature map hl

:,:,k as:

yl
i,j,k = pool(hl

m,n,k),∀(m,n) ∈ Rij ,

where Rij is a local neighbourhood around location (i, j).

3.2 Inception Networks

The Inception module, introduced in [22] as a building block for the GoogLeNet
architecture, was an important milestone in the development of CNNs based clas-
sifiers. Since salient parts in images and sequences can have extremely large varia-
tion in size, choosing the right kernel size for the convolution operation becomes
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difficult—large, respectively small, kernels are suited for globally, respectively
locally, distributed information. The proposed solution is to have a convolu-
tional layer with kernels with multiple sizes operating—an inception module.
The network essentially would get a bit wider rather than deeper.

Figure 1a reports a näıve inception module for sequential data with three con-
volutions having kernel size 1, 2, and 3 respectively, plus an alternative parallel
max-pooling path of size 3. The output of the module is the simple concatenation
of the convolutions and pooling.

As these inception modules are stacked on top of each other (see Fig. 1b),
their output correlation statistics are bound to vary [22].

Concatenation

Conv1D 1 Conv1D 2 Conv1D 3 MaxPool 3

Input

(a) Näıve inception module
Concatenation

Conv1D 1 Conv1D 2 Conv1D 3 MaxPool 3

xa xt

Concatenation

Embedding

Concatenation

Conv1D 1 Conv1D 2 Conv1D 3 MaxPool 3

Concatenation

Conv1D 1 Conv1D 2 Conv1D 3 MaxPool 3

Global MaxPool

FC C

Softmax

Output Classifier

(b) The overall architecture.

Fig. 1. The proposed inception architecture: (a) depicts the näıve inception module,
while (b) is the stacking of three inception modules. Green boxes indicate the one-
dimensional convolutions over the sequence, while red boxes indicate the pooling oper-
ations. (Color figure online)
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3.3 Feature Representation

We recall that having an event log L we can obtain a dataset S = {(si, ai)}M
i=1,

as described in Sect. 2.2, consisting of all the prefixes si of all the traces in L,
labelled with their next-activity ai in their corresponding trace.

However, since S consists of prefixes and activities denoted with categorical
values, they should be converted into a numerical representation x ∈ R

l, with a
given l ∈ N

+, in order to be processed by our NN architecture.
For each sample (si, ai) = (〈ei1, ei2 . . . , eiki

〉, ai) ∈ S, we can construct its
corresponding numerical representation, denoted as ((xi

act,x
i
t), y

i), in the follow-
ing way.

The vector xi
act ∈ N

k corresponds to the numerical representation of the
activities sequence in si. Let fc : A → [1, 2, . . . , C], being C = |A| the cardinality
of the activity-vocabulary—the number of classes—be a function assigning a
numerical value to each activity, then xi

act = (xi
a1, x

i
a2, . . . , x

i
aki

) is the vector
where each xi

j = fc(πA(eij)), 1 ≤ j ≤ ki. In the same way we can encode the
label as yi = fc(ai). As usual in deep learning, in order to use losses such as
the categorical cross-entropy, the class vector y should be converted to a binary
class matrix Y, i.e., each row yi ∈ Y is the one-hot encoding of the label yi.

The vector xi
t = (xi

t1, x
i
t2, . . . , x

i
tki

) ∈ R
k is the numerical representation of

the temporal information of the activities. In particular, for each event eij ∈ si,
1 ≤ j ≤ ki, xi

tj = πT (eij) − πT (ei(j−1)) represents the time difference from the
previous event—it is zero for the first event in the sequence.

Example 1 (Feature representation). Let s = (e5, e6, e7, e8) be a prefix, as
reported in Table 1, consisting of 4 activities. Let fc be defined with the map-
pings { “Confirmation of receipt” → 0, “Determine necessity of stop advice”
→ 1, “Check confirmation of receipt” → 2, “Adjust confirmation of receipt”
→ 3, . . .}, then xact = (0, 1, 2, 3) and xt = (0.0, 27.271, 19.285, 15.576).

Thus, given the dataset S = {(si, ai)}M
i=1 in a categorical representation we

obtained its numerical representation D = (X,y) = {(xi
act,x

i
t), y

i}M
i=1. Since

all the sequences in S could not have the same length, then all the obtained
sequences xi

act and xi
t have been pre-padded with the value 0.0 to the same

length maxi=1,...M |xi
act| before to feed them to the NN architectures.

3.4 Architecture Details

Given the training dataset D = {(xi
act,x

i
t), y

i}M
i=1, the NN architectures have two

inputs xi
act ∈ N

k and xi
t ∈ R

k. Categorical values in xact should be represented
using a one-hot-encoding approach, as done in [23], that however could lead to
large sparse vectors. Inspired by the neural language modeling works [4]—each
word is mapped to a fixed size vector in R

d, i.e., an embedding—xi
act is the

input to an embedding layer—jointly learned with the model—with size equal
to d = 	C/2
. While xi

t is simply concatenated to the output of the embedding
layer whose values are in R

k×d, leading to a final input representation in R
k×d+1.
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Then many inception modules, whose basic structure is reported in Fig. 1a,
are stacked in order to learn increasingly complex patterns.

Each inception module applies three one-dimensional convolutional layers on
the same input with different kernel sizes—resp., 1, 2, and 3. A max-pooling
layer is applied on the same input. Finally, both the convolutional and pooling
layer outputs are concatenated to obtain the inception output.

The last inception output in the stack is the input to a global max pooling
layer, whose output is used by a final fully connected layer outputting the clas-
sification probabilities. The output probabilities have been computed using the
softmax activation function:

pi =
exp(ei)∑C

j=1 exp(ej)
.

The non-linear activation function we chose to use is the Rectifier Linear
Unit (ReLU) [14] computing max(0, x). The ReLU activation function limits the
gradient vanishing problem as its derivative is always one when x is positive.
Let Θ denote the parameters of the network, the optimum parameters have
been obtained by minimizing the mean-squared-error loss function:

L =
1
M

M∑

i=1

�mse(Θ;yi,pi).

4 Experimental Evaluation

Here we present the empirical results of our proposed neural network architecture
when compared to LSTM models. For LSTM architectures the same implemen-
tation adopted in [23] has been used1. However, for a fair comparison the original
code for LSTM architectures have been slightly modified in the following way.
In [23] the architecture takes as input the activities xact only. Here the input has
been extended to consider both xact and xt. Furthermore, in [23] the categorical
values in xact have been one-hot-encoded, while here the previous embedding
approach has been adopted.

4.1 Experimental Setup

We evaluated the performance of our proposed approach in predicting the next
activity on three event logs. For each log, we used a 3-fold cross validation app-
roach. The performance measures we adopted to assess the model performance
are the Brier score [7] and the accuracy. In particular, the brier score can be
interpreted as a measure of the calibration of a set of probabilistic predictions,
measuring error of the predicted likelihoods over all symbols—the lower the Brier
score is for a set of predictions, the better the predictions are calibrated.

The adopted logs—Table 3 reports statistics in terms of number of classes,
traces, and resulting sequences—are the following:
1 The original code used in [23] is available at https://github.com/TaXxER/rnnalpha.

https://github.com/TaXxER/rnnalpha
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– Receipt phase2: this log originates from the CoSeLoG project executed under
NWO project number 638.001.211. It contains the records of the execution of
the receiving phase of the building permit application process in an anony-
mous municipality in the Netherlands;

– bpi12 3: this log describes a loan application process. It has been pre-processed
as reported in [24];

– helpdesk4: this log contains events from a ticketing management process of
the help desk of an Italian software company.

Table 2. Hyperparameter search space for our method and LSTM adopted for the
TPE procedure.

OUR LSTM

layers {1, 2, 3} layers {1, 2, 3}
batch size {29, 210} batch size {29, 210}
learning rate [0.00001, 0.01] dropout [0, 0.5]

layer size [10, 150]

learning rate [0.00001, 0.01]

l1 [0.00001, 0.01]

l2 [0.00001, 0.01]

For both our method and LSTM we conducted an hyper-parameter opti-
mization by using the 20% of the training set as a validation set. We chose the
configuration of the parameter that achieved the best validation loss. The hyper-
parameters and their corresponding possible values are reported in Table 2. We
employed the hyper-parameter optimization tree-structured Parzen estimator
(TPE) as proposed in [5].

The weights are initialized following the Xavier scheme [13]. For all deep
learning approaches, the weights of the neural networks have been optimized
using Adam [17] minimizing the mean squared error, a variant of the stochastic
gradient descent. An early stopping approach has been used for regularization—
the training phase is stopped when there is no improvement of the loss on the
validation set for 20 consecutive epochs. A limit on the number of epochs has
been set to 200. The epoch with best validation loss was selected and the corre-
sponding model was evaluated on the test set.

Both our proposed approach and the LSTM architecture have been imple-
mented in Python using the Keras5 and Tensorflow6 libraries7.
2 https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6.
3 https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6.
4 https://doi.org/10.17632/39bp3vv62t.1
5 https://keras.io/.
6 https://www.tensorflow.org/.
7 Source code available at https://github.com/nicoladimauro/nnpm.

https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
https://doi.org/10.17632/39bp3vv62t.1
https://keras.io/
https://www.tensorflow.org/
https://github.com/nicoladimauro/nnpm
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All the experiments have been executed on a single GeForce GTX TITAN X
GPU—execution time are reported in Table 5.

Table 3. Dataset statistics.

Classes Cases Sequences

Receipt phase 26 1434 7143

helpdesk 8 3804 9906

bpi12 22 13087 151419

4.2 Results

As we can see from Table 4, our proposed approach outperform the LSTM one
both in terms of Brier score and accuracy on all the adopted datasets. The first
column in Table 4 reports the accuracy of a random predictor, guessing a label
with uniform probability. The value of the Brier score are very low, corresponding
to a low error of the predicted likelihoods over the symbols. This is confirmed
from the accuracy scores that are always greater than those obtained using
LSTM architectures. Specifically, our proposed approach obtain, when compared
to the LSTM model based one, an increase of the accuracy of 12.17% on average
(34.41% on Receipt phase, 2.34% on helpdesk, and 3.95% on bpi12 ). Even the
Brier score is always improved on each considered dataset, decreasing of 15.38%
on average (44.44% on Receipt phase, 4.4% on helpdesk, and 7.14% on bpi12 ).

Table 4. The Brier score and the classification accuracy (mean ± standard deviation
on three folds) for our proposed network and LSTM on all the event logs.

Brier score Accuracy

RAND OUR LSTM OUR LSTM

Receipt 0.037 ± 0 0.010 ± 0.000 0.018 ± 0.012 0.832 ± 0.005 0.619 ± 0.365

helpdesk 0.109 ± 0 0.043 ± 0.001 0.045 ± 0.002 0.785 ± 0.005 0.767 ± 0.015

bpi12 0.043 ± 0 0.013 ± 0.000 0.014 ± 0.002 0.789 ± 0.001 0.759 ± 0.029

Average 0.022 0.026 0.802 0.715

Another interesting aspect of our proposed solution, as expected when com-
pared to recurrent networks, regards the computational time for learning the
network parameters. Indeed, it is well known that RNNs are slow to be learnt.

As we can see from Table 5, even if on some datasets, such as helpdesk and
bpi12, the number of parameters of our best architecture is greater than that
of the LSTM based one, the time spent in seconds to optimize them is always
smaller than that used to optimize the LSTM parameters—2 times faster on
average.
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We can conclude from this experimental evaluation that our proposed neural
network architecture is more accurate, both in term of calibrated predictions
and accuracy, and more efficient than LSTM in predicting the next-activity of a
running execution trace of a business process.

Table 5. The number of parameters and learning time spent in seconds (mean on three
folds) of our proposed network and LSTM on all the event logs.

# parameters Time

OUR LSTM OUR LSTM

Receipt phase 14.2 k 39.4 k 10.7 19.2

helpdesk 35.5 k 22.0 k 17.6 25.3

bpi12 48.4 k 36.4 k 265.1 604.7

Average 97.8 216.4

5 Conclusion

Predicting the next activity of a running execution trace of a business pro-
cess represents a challenging task in process mining [20]. The problem has
been successfully tackled using recurrent neural networks providing state-of-the-
art results [23]. However, recurrent networks are time consuming and in many
cases they have been outperformed by convolutional network when dealing with
sequential data, as reported in [3].

In this paper we proposed a deep neural network model based on convolu-
tional neural networks to tackle the problem of next-activity prediction. In par-
ticular, we proposed an inception architecture, similar to that used for computer
vision, but adapted for sequential data. When compared to a LSTM recurrent
neural network on different real-world dataset, the results of the proposed app-
roach prove its validity both in terms of accuracy and computational complexity.

A possible extension of the proposed approach should be to predict at the
same time both the next-activity and the its execution time as already done in
[24]. Extensions of the näıve inception module to more complex ones are also
possible to be investigated.
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Abstract. Recurrent Neural Networks (RNNs) are at the foundation of
many state-of-the-art results in text classification. However, to be effec-
tive in practical applications, they often require the use of sophisticated
architectures and training techniques, such as gating mechanisms and
pre-training by autoencoders or language modeling, with typically high
computational cost. In this work, we show that such techniques could
actually be not always necessary. In fact, our experimental results on a
Question Classification task indicate that using state-of-the-art Reservoir
Computing approaches for RNN design, it is possible to achieve compet-
itive or comparable accuracy with a considerable advantage in terms of
required training times.

Keywords: Text classification · Recurrent Neural Networks · Echo
State Networks

1 Introduction

Recurrent Neural Networks (RNNs) have long been the de-facto standard neural
architectures for many Natural Language Processing tasks [1,8,23,29], mainly
because they allow to model the input and output text as a sequence of words
or characters. Unfortunately, during training vanilla implementations of RNNs
suffer from the well-known problems of gradient vanishing and gradient explo-
sion, which make these networks difficult to train in the presence of long-term
dependencies within the input [2].

Some approaches have gained popularity for their ability to avoid or alle-
viate the problems associated with the gradient propagation during training.
For example, gated architectures like Long Short-Term Memory (LSTM) [15]
and Gated Recurrent Unit (GRU) [8] are based on the idea of gating mecha-
nisms that selectively remember and forget by regulating the flow of informa-
tion through each time step, helping to alleviate the vanishing of the gradient.
Recently, the development of the Transformer architecture [34] made it possi-
ble to more easily perform training by not using any recurrent network within
the model and employing self-attention mechanisms instead. Increasingly often,
transfer learning is used to train a task-independent language model on a large
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variety of text corpora (for example by employing an autoencoder or a classifier
with a next-step prediction task) and then fine-tune it to the task at hand.

These techniques can lead to a significant increase of cost in terms of train-
ing time due to their considerable use of computational resources, with different
kinds of repercussions such as economic availability, financial costs, and envi-
ronmental impact. Currently, training a single Transformer model has been esti-
mated to produce about 87 kg of CO2 on commonly used hardware and cloud
computing services, with a financial cost in US dollars between $289 and $981
[33]. Do these high cost techniques provide an equally significant improvement
in predictive performance? In this paper, we try to address this question by
proposing an approach based on RNNs from the class of Reservoir Computing
(RC) [26,35], and comparing it with current state-of-the-art results in the litera-
ture. In particular we propose the use of Echo State Networks (ESNs) [16,17], a
recurrent RC model, to produce by means of randomly initialized and untrained
weights an embedding for the input text, which can then be used for classifi-
cation tasks. While the network is largely untrained, we use advances in the
architectural setup of ESNs and we explore the impact of an attention mech-
anism in this context. Unlike the commonly used approaches, thanks to the
fact that the recurrent part of our model is completely untrained, we are able
to achieve a strikingly fast training process. We then experimentally assess the
feasibility and the performance of our approach with a focused analysis on a
Question Classification task.

We briefly introduce the characteristics and advantages of the ESN model
in Sect. 2, where we also address advances on recurrent connections shaping. In
Sect. 3 we present the proposed models, which we then validate on a Question
Classification dataset, described in Sect. 4. Our experiments and methodology
are reported in Sect. 5, while a discussion of the results is presented in Sect. 6.
Finally, in Sect. 7 we draw the conclusions of this study.

2 Echo State Networks

The framework of RNNs offers a useful and effective method for modeling
sequences. In what follows, we use T to denote the length of a generic input
sequence. Whenever a specific sequence i is considered, its length is denoted by
Ti. Moreover, we use NU , NR and NY respectively to denote the size of the input
layer, the number of hidden recurrent units (i.e. the size of the state embedding),
and the number of output units in the RNN model. Given an input sequence
composed of vectors u(1), . . . ,u(T ) ∈ R

NU , a generic RNN scans the input left-
to-right and computes a sequence of states x(1), . . . ,x(T ) ∈ R

NR having the
same length T . From these states, an output (in the form of a sequence or of a
single element) is then computed. RNNs are usually trained by gradient descent
algorithms, which are subject to the problems associated with the gradient, as
briefly discussed in Sect. 1, and can be costly to run.

On the other hand, radically different approaches like ESNs [16,17], from the
RC paradigm, are based on the stable initialization of the recurrent dynamics
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so that the training of the parameters in the recurrent part of the network can
be avoided altogether. The state of the network at each time step is computed
by an untrained dynamical system with randomly initialized parameters called
“reservoir”, and the output is typically extracted from the state of the reservoir
by means of simple linear regression techniques (even though more complex
approaches can be used) [26]: ESNs are thus an efficient approach to modeling
and training RNNs.

The state dynamics of an ESN at a particular time step t, in the case of
leaky-integrator neurons [18] and hyperbolic tangent activation functions, are
ruled by the following equation:

x(t) = (1 − a)x(t − 1) + a tanh
(
W inu(t) + Ŵx(t − 1)

)
, (1)

where x(0) = 0, W in ∈ R
NR×NU is the input-to-reservoir weight matrix, and

Ŵ ∈ R
NR×NR is the recurrent reservoir-to-reservoir weight matrix. The scalar

value a ∈ R is the leaking rate, under the constraint that 0 < a ≤ 1. For simplicity
of notation, here and in the rest of this paper the bias term is omitted.

The key difference between an ESN and a vanilla RNN is in the fact that
in the ESN the values in the weight matrices W in and Ŵ are not trained,
instead they are initialized on the basis of stability constraints. These are given
by the global asymptotic stability property known as the Echo State Property
[16,26,36], and, under a practical perspective, they entail the control of algebraic
properties of the recurrent weight matrix of the dynamical reservoir. Specifically,
the weight values in Ŵ are randomly initialized and then re-scaled to control
the value of the spectral radius ρ = ρ(Ŵ ) (i.e. its largest eigenvalue in absolute
value). Similarly, the values in W in are randomly chosen from a uniform distri-
bution on [−ω, ω], where ω ∈ R

+ acts as input scaling. The values of ρ and ω
are hyperparameters that are chosen by model selection. Moreover, both W in

and Ŵ in Eq. 1 can be sparse matrices, since this causes a drop in the state
transition computational cost, typically without any associated loss in terms of
predictive performance [11].

After the input sequence has been fed in, the states produced by the ESN
can be used to compute the output. Given the typical high dimensionality of the
reservoir, it can be sufficient to use a simple linear layer (“readout”) to perform
the classification. In that case, the output y(t) ∈ R

NY for a generic state x(t) is
simply:

y(t) = W outx(t), (2)

where W out ∈ R
NY ×NR is the matrix containing the output weights, which are

the only free parameters that are adjusted on a training set. Given the formula-
tion in Eq. 2, training reduces to solving the following least squares problem:

min
W out

‖W outX − Y tg‖22. (3)

In Eq. 3 we use X ∈ R
NR×Ntrain to denote the state matrix, i.e. the column-

wise concatenation of the Ntrain states produced by the ESN that need to be
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Fig. 1. On the left, an example of a recurrent matrix Ŵ generated as per Eq. 5. On
the right, a representation of the corresponding multi-ring reservoir.

classified, and Y tg ∈ R
NY ×Ntrain to indicate the column-wise concatenation of

the target vectors. The parameters of the linear readout, i.e. the weight values in
W out, can then be computed in closed-form by exploiting direct methods, such
as ridge regression [26], as follows:

W out = Y tgX
T (XXT + λrI)−1, (4)

where I is the identity matrix, and λr ∈ R
+ is the regularization parameter.

2.1 Multi-ring Reservoir Topology

For the recurrent part, the networks that we are proposing adopt an ESN that
follows the same dynamics as in Eq. 1. The only difference is that the matrix Ŵ
is constructed in order to implement a constrained topology [6,32]. In particular,
we take

Ŵ = vP , (5)

where P ∈ {0, 1}NR×NR is a randomly generated permutation matrix and v ∈
R

+ is a scalar that determines the spectral radius of Ŵ , i.e. ρ(Ŵ ) = v. This
follows from the fact that since P is a permutation matrix it is also orthogonal,
i.e. for any vector w:

‖vPw‖ = v ‖w‖ . (6)

If w is an eigenvector of matrix vP with associated eigenvalue λ, i.e. vPw = λw,
then it follows that

‖vPw‖ = |λ| ‖w‖ . (7)

From (6) and (7) we conclude that |λ| = v for all eigenvalues, hence ρ(vP ) = v.
For this reason, in the following we will consider ρ = v, whose value is to be
selected by hyperparameter search.

The “multi-ring” layout that emerges from this configuration (see Fig. 1)
has many advantages, the most important one being that it allows building
large reservoirs with minimal state transition cost. In fact, the matrix-vector
multiplication Ŵx(t − 1) in Eq. 1 can be implemented in linear time in the
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case of a multi-ring reservoir. Moreover, the space requirements for matrix Ŵ
shrink from O(N2

R) to O(NR). Even further, the time required for initializing
the network is reduced since it is not necessary to compute the spectral radius
of Ŵ to rescale it, but it is possible to cheaply initialize the matrix with the
desired value of ρ.

3 Proposed Models

Our proposed models implement a bidirectional recurrent architecture [5,30]:
we use two separate networks to scan the input from left to right and from
right to left. In the following sections we present the variants of the models
that we designed, all of which adopt an ESN for the recurrent module but use
different implementations for the readout. Specifically, the first model uses a
simpler readout component and is described in Sect. 3.1. The second model,
which includes a self-attention mechanism, is presented in Sect. 3.2.

...

W
ord em

bedding ...

Linear layer

word 1

word 2

word n

...
Output

Bi-ESN

Fig. 2. Representation of the Bi-ESN model. Input words are transformed to vectors via
pretrained word embeddings, then they are fed through a bidirectional leaky ESN. The
final states are then concatenated for each direction, and fed to a linear classifier. The
only parts of the model that undergo training are represented by a shaded background:
in this case, only the final linear layer.

3.1 Bi-ESN

With our simplest model, Bi-ESN, we introduce in the literature the use of a
bidirectional orthogonal (multi-ring) architecture for the reservoir of a leaky
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word 1

word 2

word n

...

...

Self-attention Output

W
ord em

bedding ...

Linear layer

Linear layer + tanh

Bi-ESN

Fig. 3. Representation of the Bi-ESN-Att model. Input words are transformed to
vectors via pretrained word embeddings, then they are fed through a bidirectional
leaky ESN. All states from each direction are then concatenated (dashed rectangles)
and fed one by one to a linear layer that performs dimensionality reduction. After that,
the self-attention mechanism selects the most important states, which are summed
together and fed to a linear classifier. The only parts of the model that undergo train-
ing are represented by a shaded background.

ESN, in order to produce a fixed size untrained embedding of the input text
as illustrated in Fig. 2. The embedding is created by running the input through
the bidirectional ESN and then taking the concatenation of the last forward and
backward states, resulting in a single vector of size 2NR. This vector is then
processed by a simple linear layer.

Let us denote with
→
x (t),

←
x (t) ∈ R

NR respectively the forward and back-
ward state associated to u(t). If

→
xn(t) is a forward state for the n-th training

example (and similarly for
←
xn(t)), then in order to train the Bi-ESN with ridge

regression we apply the same formulation as in Eq. 4, where in this case the
state matrix contains the concatenation of forward and backward states, i.e.
X ∈ R

2NR×Ntrain , given by:

X =

[→
x 1(T1)

→
x 2(T2) . . .

→
xNtrain

(TNtrain
)

←
x 1(1)

←
x 2(1) . . .

←
xNtrain

(1)

]
(8)

with T1, T2, . . . , TNtrain
representing the lengths of the training input sequences.
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3.2 Bi-ESN-Att

We compare Bi-ESN with a more advanced model that is still based on a multi-
ring leaky Bi-ESN, but uses a more sophisticated readout implementation. The
model that we are proposing is a novel application of a self-attention mechanism
to a bidirectional multi-ring ESN. As shown in Fig. 3, unlike Bi-ESN this model
makes use of all the states produced by the ESN, both in the forward and
backward direction. In fact, the forward and backward sequences of states are
concatenated to produce a single sequence of vectors of size 2NR, each of which
goes through the same linear layer with the purpose of reducing the vector
dimensionality to ND. If

→
x (t),

←
x (t) ∈ R

NR are respectively the forward and
backward states associated to u(t), and W dr ∈ R

ND×2NR is a weight matrix,
then the state vector after dimensionality reduction, x̄(t) ∈ R

ND , is computed
as:

x̄(t) = tanh
(
W dr

[→
x (t),

←
x (t)

])
. (9)

After that, an attention mechanism selects the most important states from
the whole sequence. The particular kind of attention that we use is the “self-
attention” [25], which unlike other techniques (see for instance [1]) does not
require any additional information other than the sequence itself. Intuitively, in
its simplest form the attention mechanism works by assigning a score to each of
the states produced by the ESN, based on the relevance that they have in relation
to the task. These scores are then used to compute a weighted sum of the state
vectors, which leads to a fixed size representation for the whole sentence focused
on the most important features. Let T be the length of the input sequence, let
r ∈ R be the number of parts in the sentence on which the attention mechanism
is allowed to focus, and let da ∈ R represent the number of hidden units for
computing the scores. Then, if W s1 ∈ R

da×ND and W s2 ∈ R
r×da are weight

matrices, the self-attention scores A ∈ R
r×T are computed as:

X̄ =

⎡
⎢⎢⎢⎣

x̄(1)T

x̄(2)T
...

x̄(T )T

⎤
⎥⎥⎥⎦ ∈ R

T×ND

A = softmax
(
W s2 tanh

(
W s1X̄

T
))

.

(10)

As can be noticed from Eq. 10, none of the weight matrices depend on the
length of the sequence. The attention scores are then used to extract a fixed-size
weighted sum of the most important states into a matrix M ∈ R

r×ND :

M = AX̄. (11)

As for hyperparameters r and da, we simply take r = 1 and da = ND. In
this case, M reduces to a vector of size ND that we then classify using a linear
layer.

Note that all free parameters of the model can be trained end-to-end by
gradient descent. Since unlike what happens in standard RNNs here the gradient
only flows through a short path, we do not incur in the issue of gradient vanishing.
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4 TREC Dataset

The TREC dataset for Question Classification1 [24] is a commonly used bench-
mark for Natural Language Processing which deals with the classification of a
number of sentences, written in English, into one of 6 classes about their topic
(i.e. whether they ask about a person, a location, a number, a human being, a
description or an entity).

The dataset has been split in three folds: training, validation and test. The
test fold is directly provided by the authors of the dataset [24] and is composed
of 500 labeled questions. We divided the training data, composed of 5452 labeled
questions, by the commonly used “80/20 rule”, where 80% of the instances (cho-
sen at random) are used for training and the other 20% for validation. This
yields a training set of 4362 questions and a validation set of 1090 questions,
with similar class distributions between the two sets (we did not perform an
explicit stratification).

The questions are tokenized and each word is then represented by a pretrained
FastText embedding vector for the English language, with 300 dimensions [14].
In case of words without a corresponding embedding, a random vector of the
same shape is used. This vector is different for each missing word. While the
NLP community is pushing towards context-sensitive word embeddings, in the
current setting we chose FastText for its relative efficiency.

5 Experiments

We performed all our experiments2 on a single NVIDIA Tesla V100 with 16 GB
of memory, and we developed our models by using the PyTorch framework [27]
which provides automatic differentiation. In addition to the Bi-ESN and Bi-
ESN-Att that we have described in Sect. 3, we also implemented a standard
bidirectional GRU (Bi-GRU) that we use for comparison purposes on the analysis
of accuracy and efficiency.

After hyperparameter tuning on the validation set, our models have been
retrained on the whole training and validation data to get a final estimate of the
performance. In addition, all measurements of the test performance have been
performed by repeating the process 10 times, with different random initializa-
tions each time, and averaging the results.

The simple linear readout allowed us to train Bi-ESN by ridge regression,
while all other models were trained by mini-batched gradient descent using the
Adam algorithm [21] and cross entropy as loss function. This led to a very short
training time for Bi-ESN, which allowed us to cheaply compute also an ensemble
out of the predictions of 10 identical networks with different random initializa-
tions (we simply average the output scores and then take as final prediction
the class corresponding to the highest averaged score). As before, also for the
1 http://cogcomp.org/Data/QA/QC/.
2 Source code for reproducing the experiments is available at https://github.com/

danieleds/qc with untrained recurrent embeddings.

http://cogcomp.org/Data/QA/QC/
https://github.com/danieleds/qc_with_untrained_recurrent_embeddings
https://github.com/danieleds/qc_with_untrained_recurrent_embeddings
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ensemble we repeat the training process 10 times in order to compute a mean
accuracy and standard deviation, for a total of 10 × 10 = 100 repetitions.

For model selection of Bi-ESN and Bi-ESN-Att, we chose the number of recur-
rent units NR within [500, 10000]. The values for ω and ρ have been selected in
[e−7, e4], while the connectivity ratio of the input-to-reservoir matrix and leak-
ing rate have been chosen in (0, 1). The ESN hyperparameters have been chosen
separately for the forward and backward direction. For Bi-ESN-Att, the number
of units ND has been selected in {128, 256, 512}. Regarding the optimization
algorithm, we chose a learning rate in [e−9, e−3] and an early stopping strat-
egy with a maximum of 500 epochs, while for regularization we used dropout
and a weight decay strength in [e−9, 1]. In the case of Bi-ESN, which is instead
trained by ridge regression, we simply choose the regularization parameter λr

within [10−6, 106]. For searching within the hyperparameter space we used a
combination of random search [4], simulated annealing [22] and tree-structured
Parzen estimator [3]: at each iteration, we randomly choose one of these three
algorithms to select the next point in the hyperparameter space.

6 Results

The results of our experiments are reported in Table 1. For comparison, we also
report the performance achieved by state-of-the-art models in the literature.

The first important observation that can be drawn from Table 1 is that all
our proposed models which are based on an ESN, and that are thus exploit-
ing a completely untrained recurrent dynamics, are able to compete against a
fully trained Bi-GRU. In the case of the ensemble model, the accuracy is even
matched. The remarkable fact is that this comes with an extremely lower training
cost for the Bi-ESN which has turned out to be at least 70 times more efficient
than Bi-GRU. In fact even the ensemble model, which requires the training of 10
differently initialized classifiers, is still highly competitive against the Bi-GRU
in terms of training time (and could trivially be further improved by applying
parallelization between the different instances).

Adding an attention mechanism on top of the ESN as we did with Bi-ESN-
Att led to a gain in predictive performance with respect to Bi-ESN, but this
gain was rather limited. This may be due to the relative simplicity of the TREC
dataset, which exhibits short sentences with a relatively simple structure. In
fact, many sentences start with “Who is”, “How many”, “Where is”, “When
did”, and so on. The bidirectional architecture (and in particular the backward
direction), then, seems sufficient to capture these important features in the data,
as illustrated in Fig. 4. Still, Bi-ESN-Att is more efficient than a simple Bi-GRU,
requiring just one-seventh of the time to get trained.

Regarding the reported literature results it is worth noticing that, regarding
the SVM [31] and KDA [9], the authors do not specify how model selection was
performed, so it is difficult to provide a uniform comparison of the generalization
capability of these models when compared to our own. Also, among the different
results shown for different configurations of the approaches, we have reported
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Table 1. Results on the TREC dataset. Asterisks indicate those models for which the
methodology for model selection was not specified (see the text for details).

Fig. 4. Visualization of the intensity of the attention scores assigned by Bi-ESN-Att
to some of the sentences in the dataset. As you can see, it is common for the network
to focus mainly on the first word of the sentence since it carries the most important
information for the task. This specific region of focus is implicitly provided by any
bidirectional architecture without the need of self-attention.

the best on the test set as highlighted by the authors. Moreover, the SVM uses
as features 60 highly engineered hand-coded rules, which could directly harm
generalization when applied to other datasets. The CNNrnd from [7] should
have an architecture identical to the one previously introduced in [20], but the
authors do not provide an explanation for the extremely high increase in accuracy
with respect to the original paper. Finally, models UT and UT+CNNw2v make
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use of sentence embedding transfer learning, with weights trained on unrelated
tasks on large text corpora, while we only make use of the examples within the
TREC dataset and limit our use of transfer learning just to pre-trained word
embeddings.

In light of the above considerations we can see how, with no more than 65 s of
training time, our proposed models are able to approach or match the predictive
performance of many of the models in the literature, with a few above-mentioned
exceptions which could be attributed to a different model selection strategy or
to the heavy use of transfer learning. A notable observation is how our Bi-ESN,
with only 6 s of training time, is able to match (and slightly surpass) a fully
trained Bi-LSTM, which is an architectural superset of our Bi-GRU for which
we can thus estimate a supposedly similar (or worse) training time of around
7.5 min.

We were not able to reach the high accuracy of UT+CNNw2v [7], however
we want to highlight the fact that UT and UT+CNNw2v have more than 200M
parameters. In comparison, our largest model (Bi-ESN-Att) has just 1.6M train-
able parameters and, despite that, all our proposed models are able to compete
with UT , which uses the encoder of a transformer and is pre-trained with data
from Wikipedia, web news, web question-answer pages and other sources.

7 Conclusion

Sophisticated architectures requiring high amounts of computational resources
are not uncommon in the field of Natural Language Processing. While definitely
effective and justified on most complex tasks, they can be overkill in other situ-
ations. In order to investigate how a highly efficient model can compete in these
situations, for the first time in the literature we have proposed the use of a
bidirectional multi-ring ESN, possibly associated to a self-attention mechanism.

To determine the efficacy of the approach, we have selected a Question Clas-
sification task which allowed us to compare our method and architecture with
those of different kinds of works in the literature, showing how our own is com-
parable with the state-of-the-art performance of many of the alternatives. In
the cases where a direct comparison has been possible, this showed the extreme
efficiency of the proposed models.

In particular, we have demonstrated how a Bi-ESN shows basically the same
accuracy of another recurrent model, Bi-GRU, while however presenting notable
computational advantages, namely (1) not requiring any gating mechanism, and
(2) keeping the input and recurrent weights untrained. In other words, the largest
percentage of computational time used for training a GRU is actually unneces-
sary and detrimental. This can only get worse with other gated models, like
LSTMs, for which to the same state size corresponds a higher number of param-
eters that need to be trained.

In addition, we showed how our Bi-ESN model is still able to compete against
the more advanced attention mechanism of Bi-ESN-Att, which we showed to
determine an improvement in accuracy that however, at least on this dataset, is
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quite limited. Still, the use of Bi-ESN-Att can be of interest even on this kind
of dataset when looking for a more interpretable (and very efficient) model.

While within the limits of an analysis which has been focused on a Ques-
tion Classification task, our results show the potential of Reservoir Computing
methods and of their possible evolution. This potential is especially tangible
with respect to the extreme efficiency of these methods, which is increasingly
important in Natural Language Processing contexts that are often characterized
by considerable amounts of data.

As future works, we plan to extend our analysis to more complex tasks in
which an attention mechanism can have a higher impact. Moreover, we would like
to assess the role of multiple recurrent layers as in DeepESN [12,13], which could
provide richer information at different time scales, and of kernels [9], which could
help extract more interesting features from the data. Finally, given the recently
proven effectiveness of large language models for transfer learning [10,28], it
would be interesting to explore how Reservoir Computing approaches can reduce
the huge amount of time required to train these models, both in the case of
training the language model itself, and in the case of training the task-dependent
network.
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Abstract. In order to improve information available at the clinical
level and to better focus resources for preventive interventions, it is
paramount to estimate the general exposure to risk of adverse health
events, commonly referred as frailty. This study compares the perfor-
mance of shallow and deep multilayer perceptrons (sMLP and dMLP),
and of long short-term memories (LSTM), on the prediction of a sub-
ject decline in activities of daily living, with and without a previous
autoencoder based domain adaptation from an external dataset. Sam-
ples originates from two large epidemiological datasets: the English Lon-
gitudinal Study of Ageing (ELSA) and The Irish Longitudinal Study
on Ageing, with 107879 and 15710 eligible samples, respectively. Deep
networks performed better than shallow ones, while dMLP and LSTM
performance were similar. Domain adaptation improved predictive abil-
ity in all comparisons. On the bigger ELSA dataset, sMLP attains a Brier
score of 0.32 without domain adaptation, and 0.15 with domain adapta-
tion, while dMLP attains 0.20 and 0.11, respectively. Thus, experimental
results support the use of deep architectures in the prediction of func-
tional decline, and of domain adaptation when data from another similar
domain is available. These results may help improving the state of the
art in predictive models for clinical practice and population screening.

Keywords: Artificial neural networks · Deep learning · Domain
adaptation · Frailty · Risk assessment · Transfer learning

1 Introduction

Many persons, due to age but also other factors, are subject to a generally
increased risk of adverse health events. This state of increased risk is commonly
called frailty [15,39]. Frailty leads to an increased risk of various adverse out-
comes, like functional decline, loss of self sufficiency, and death [9,11,34].

Differently from other measures that capture the present state of a person
[10,24,25], frailty measures expectation for future states. Lacking a consensus
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on an exact outcome to predict, on the temporal aspects of the prediction, and
on the importance of the various observables, numerous frailty definitions and
measures have been proposed [7,17,35].

Frailty measures may be adopted in clinical practice, and the predictive valid-
ity of some of them have been analyzed [14]. After identifying the most frail
persons, an intervention program to reduce their risk exposure can be deployed.
Various programs have been tested, mostly, but not exclusively, based on phys-
ical exercise [45,51,56].

It can be argued that dichotomizing the population in frail and not frail
individuals may be too coarse grained for most applications, and it can be more
effective to see frailty as a scalar index, or even as a composition of scalar indexes,
one for each aspect of interest. In this work, frailty indicators have been tested
as predictors of the specific outcome of developing an ADL (activity of daily
living) or IADL (instrumental activity of daily living) disability [23,52].

Together with classical statistical models, we assist to an increasing applica-
tion of machine learning techniques in the health domain [48]. In recent years
there has been an explosion of artificial neural networks (ANNs) [43] and deep
learning (DL) [33] applications in many fields. The most common form of “deep
neural network” (DNN) is the multilayer perceptron (MLP), where connections
between units do not form cycles (feedforward ANN). When inputs are sequences
of observations, recurrent neural networks (RNNs) may be leveraged to capture
the dynamics of the sequences via cycles in the network of nodes [4,36,37].
A particularly widespread and successful RNNs is the long short-term memory
(LSTM) for its ability to learn relationships across long sequences of observations
[26]. ANN, RNN, and DL have been applied profusely and with clear benefits to
the health domain [38,40,46,47], that is the focus of this work.

Many recent DL results are produced by the combination of supervised
learning and unsupervised learning [3,5]. Typically, unsupervised pre-training
is exploited to extract effective high-level features that are then used as input by
the supervised training [19]. One of the most used techniques in unsupervised
pre-training is the autoencoder [53].

Sometimes there is a target domain with no/few labelled samples, and a
similar domain with many labelled samples. The domain adaptation problem,
also often called transfer learning, concerns exploiting the existing labelled
data from a domain, called source domain, to learn useful knowledge to be
adapted/transferred to a target domain [1,57]. Domain adaptation for deep
learning has been studied mostly for visual applications [13,41,55], but also
for other domains, like speech [16], sentiment classification [22], or health [44].

Starting from two well established north-European epidemiological datasets,
namely the English Longitudinal Study of Ageing (ELSA) [27,50] and The Irish
Longitudinal Study on Ageing (TILDA) [28,29,58], we trained various configura-
tions of DNNs in estimating the risk for young-old community dwelling persons
of suffering a functional decline with respect to ADL and IADL. We used unsu-
pervised pre-training by autoencoders followed by supervised training by neural
networks, both MLP and LSTM, and performed domain adaptation from one
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dataset to the other. To the best of our knowledge, this is the first application
of DNN with domain adaptation to epidemiological datasets in order to esti-
mate the risk of decline in ADL and IADL. Being this a complex and possibly
time-dependent domain, the final intent of this project was to test the following
issues.

– Measure the effectiveness of an ANN classifier when used to predict decline
in ADL and IADL.

– Verify if the long-time dependencies in the datasets are meaningful for the
prediction, by comparing MLP and RNN approaches.

– Measure the effectiveness of using an autoencoder to perform a knowledge
transfer between different datasets.

We compared the use of shallow vs. deep networks, MLP vs. LSTM, unsuper-
vised pre-training with autoencoders vs. no pre-training. In Sect. 2 we describe
the datasets, the operationalization of the outcome, the preprocessing steps,
including the feature selection, the algorithms and hyperparameters of the var-
ious ANNs tested, and the quality measures collected. In Sect. 3 we list the
hyperparameters that produced the best results for each type of ANN and qual-
ity measure. The best results for each net are also depicted. These are discussed
in Sect. 4, and some conclusions are drawn in Sect. 5.

2 Methods

2.1 Domain and Outcome

The project, whose details are more thoroughly reported by Donati [18] and
Fongo [20] in their Master theses, analyses the data of two longitudinal studies
on ageing-related parameters in order to predict the functional decline of young-
old patients.

The two datasets are collected respectively by ELSA [27] and TILDA [28,58].
The datasets are divided in waves, each one representing the biennial report on
health, economic, and social information for every subject of the study. The data
are acquired through periodical questionnaires and medical tests. The available
data spans over a wide variety of semantic meanings, e.g. the subject’s weight,
the reaction time to specific stimuli measured in seconds, the amount of debts
or assets divided in economic categories, the education of the subject, etc. For
the ELSA dataset, we also have access to the relative values for the subject’s
spouse, if available.

The ELSA dataset is made of 107,879 records spread over 6 waves, and
collects 570 different metrics. The data are all represented as numeric values,
mapping eventual categorical metrics onto an integer variable.

Since the TILDA study is more recent, the relative dataset is made of only
15,710 records divided in 2 waves, but collects over 1600 metrics. Furthermore,
the data are represented either as numeric values or categorical strings.

The measured outcome is the worsening of the functional status of the sub-
jects. As a proxy value we used the sum of ADLs and IADLs [49] scores, reported
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by both the datasets. ADLs and IADLs represent the amount of self-care activ-
ities that a person has to manage in order to be fully independent, therefore
we used the drop of their summed score between two consecutive waves as a
measure of functional decline.

We decided not to define custom features to treat the death of the subjects
in order to leave the network unbiased. Furthermore, we only had access to the
time of death for one of the two datasets, and even in that case we had no way
to distinguish between an accidental death and a natural death. As a result, the
networks did not distinguish between a subject leaving the trial or dying, as in
both case the functional status just stops updating like every other variables.

2.2 Preprocessing

During the pre-processing phase we converted at first every error value, repre-
senting different types of invalid or missing data, to a single error value.

Then, we automatically selected the most significant fields of each dataset
through an implementation of the Minimum Redundancy Maximum Relevance
(mRMR) algorithm based on a study by Berrendero [6]. The mRMR algorithms
guarantee the correctness of the selection by ranking the fields in order of rel-
evance with respect to the target field (i.e. the functional status in our case)
and then choosing the subset with the least redundancy among one another.
In particular, to measure both the relevance and the redundancy we used the
correlation coefficient for the numerical data and the mutual information for the
categorical data.

In the final step of the pre-processing we normalized the numerical variables
through feature scaling and projected the categorical variables onto one-hot vec-
tors. The input layer of the neural networks was made by concatenating all the
processed fields in a single vector of 321 floating point nodes.

2.3 Development

To predict the functional decline of the subjects we tried several approaches,
using multiple neural network classifiers and even introducing a Stacked Denois-
ing Autoencoder (SDAE) [54]. The SDAE is a particular neural network trained
through unsupervised learning that is able to extract high-level features from
the raw data. In this project we used the SDAE to perform a knowledge trans-
fer between the two reference datasets by training thoroughly the network on a
source dataset and then use the trained network on a different target dataset.
In order to compare the performance of the three different implemented classi-
fiers and also measure the knowledge transfer provided by the Stacked Denoising
Autoencoder, we defined two parallel data flows.

In the first one, the classifiers are trained on the raw data of the two datasets,
while in the second path the SDAE is trained to extract high-level features from
the raw data and then the classifiers are trained on the encoded data to verify
the eventual improvement in the quality of the classification granted by the
knowledge transfer.
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The SDAE was made by nesting up to three Denoising Autoencoders with
Masking noise one within the other, and it was trained using unsupervised learn-
ing in order to reproduce at each layer the uncorrupted signal of the outer layer.

We tried three different approaches to the classification through neural net-
works.

The baseline classifier is a shallow Multilayer Perceptron (sMLP) with only
one hidden layer. This is one of the simplest neural networks and it serves as a
comparison for more complex networks that are slower to train but could bear
more accurate results.

We also implemented a deep Multilayer Perceptron (dMLP) with up to three
hidden layers in order to verify if the functional decline can be predicted using
only the last (most recent) observation of the subjects.

Conversely, to test the hypothesis of the time-dependence we introduced a
LSTM classifier that analyses the whole timeline of a patient in order to perform
a more accurate prediction.

All the classifiers output a probability of functional decline and were trained
using a cost-sensitive backpropagation algorithm (or backpropagation through
time for the LSTM) applied to the Kullback–Leibler divergence loss function
[31]. Furthermore, we trained all the three classifiers and the SDAE with a
stochastic gradient descent (SGD) algorithm, and in order to reduce overfitting
we used an implementation of the early-stop algorithm with look-ahead proposed
by Prechelt [42]. These choices were made to reflect the state-of-the-art in deep
neural network technology and are de facto standards in most of the current
implementations [2,33,59].

2.4 Validation

In order to validate the hyperparameters of each neural network, we divided the
datasets into a training set, a validation set, and a test set (respectively 70%,
20%, and 10% of the original datasets) using a holdout process and granting the
integrity of the timelines.

At first we trained the classifiers on the raw data (not encoded by the SDAE)
and we validated their hyperparameters through a grid search from a pool of
possible values. Since the loss function used during the training was itself one of
the hyperparameters, in the validation phase we relied on four external metrics
to measure the quality of the classification: the Accuracy of the prediction, the
Cohen’s Kappa [12], the Brier Score [8], and the Area Under the ROC Curve
(AUC) [32]. We decided to use both the Brier Score and the Cohen’s Kappa
because the former represents a cost function for predicting the wrong outcome,
while the latter is a robust measure of inter-rater reliability which takes into
account the possibility of the agreement occurring by chance.

After the validation of the classifiers, we trained the SDAE in a two-phases
process. At first we performed a greedy layer-wise pre-training with data stochas-
tically acquired from both the datasets, then we fine-tuned the network through
deep-learning using data from only one of the datasets and we validated it on
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the data of the other dataset in order to measure the knowledge transfer from
the first to the second dataset provided by the SDAE.

The validation of the SDAE was performed on a pool of possible hyper-
parameters through a grid-search. Furthermore, the SDAE’s hyperparameters
were validated to maximize the quality of the classification done by the four
downstream classifiers as measured by the four aforementioned metrics.

For the neural networks we explored an extensive set of hyperparameters: two
optimization functions using either Stochastic Gradient Descent or Stochastic
Adam [30], a batch size in {32, 64, 128, 256}, an initial learning rate in {0.1,
0.01, 0.001}, a learning rate decay either fractional ( 1

1+t ) or exponential (αt,
with α = 0.99), an activation function of the hidden layers using either softplus,
ReLU, logistic function, or hyperbolic tangent, a weight initialization using either
a Gaussian or Xavier initializer [21], and an optional Gaussian noise (standard
deviation equal to 0.05) on the input layer of the classifiers. We also explored
several state sizes for the hidden layers depending on the network. The elements
between square brackets represent a single network with multiple layers having
each one a number of nodes equal to the corresponding value (e.g. [100, 50] is
a two-layers network with 100 nodes in the first layer and 50 in the second).
Regarding the SDAE, the notation refers to the encoding network, with the
decoding network being reversed.

– LSTM: {50, 100, 200, 300}
– dMLP: {[100, 50], [200, 100], [200, 100, 50], [300, 200, 100], [150, 150], [300,

300], [150, 150, 150], [300, 300, 300]}
– sMLP: {100, 200, 300, 400, 500, 600, 700, 800}
– SDAE: {100, 300, 500, [150, 75, 25], [300, 150, 50], [100, 100, 100], [300, 300,

300]}
Finally, for the SDAE we also tested two different loss function using either the
root-mean-square error (RMSE) or the cross-entropy (CE), and a masking noise
on the input layer in 0.3, 0.6, 0.9. For the inner Denoising Autoencoders we
always used a Gaussian noise instead during the greedy layer-wise pre-training.

3 Results

3.1 Optimal Hyperparameters

After the validation phase we found out that most of the hyperparameters had
the same optimal value across all the networks, namely the Adam optimizer, the
batch size equal to 128 items, the exponential learning rate decay, the hyperbolic
tangent activation function, and the Xavier initializer. Furthermore, the added
Gaussian noise always improved the robustness and ultimately the quality of the
classification.

For the LSTM the best learning rate was 0.001 and the best state size was
200. The dMLP got optimal results with learning rate equal to 0.001 and state
size equal to [300, 300, 300]. The sMLP preferred a bigger initial learning rate
of 0.01 and a state size of 400 nodes.
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For the SDAE we found different optimal learning rates, loss functions, input
masking noises and state sizes, depending on three factors: the direction of the
knowledge transfer between the two datasets (ELSA to TILDA or TILDA to
ELSA, EtoT and TtoE from now on), the downstream classifier (LSTM, dMLP
or sMLP), and the metric used to measure the quality of the classification (Accu-
racy, Cohen’s Kappa, Brier Score, or AUC). The detailed optimal hyperparame-
ters for the SDAE are reported in the Tables 1, 2 and 3, but in most cases for the
knowledge transfer in direction EtoT it was preferred a learning rate of 0.01, the
RMSE loss function, a 30% masking noise and a state size equal to 300 nodes,
while in direction TtoE we found better performance with a learning rate equal
to 0.001, the cross-entropy loss function, a masking noise between 30% and 60%,
and a state size of [300, 300, 300].

Table 1. Best SDAE hyperparameters w.r.t. sMLP classification

Loss LR Noise Size

EtoT Accuracy RMSE 0.01 0.3 300

Kappa

Brier

AUC CE 0.001 [300, 300, 300]

TtoE Accuracy CE 0.001 0.3 [300, 300, 300]

Kappa

Brier

AUC

Table 2. Best SDAE hyperparameters w.r.t. dMLP classification

Loss LR Noise Size

EtoT Accuracy RMSE 0.01 0.3 300

Kappa

Brier 100

AUC 0.6 300

TtoE Accuracy RMSE 0.001 0.3 100

Kappa

Brier 0.6 [300, 300, 300]

AUC CE 0.3
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Table 3. Best SDAE hyperparameters w.r.t. LSTM classification

Loss LR Noise Size

EtoT Accuracy RMSE 0.01 0.3 300

Kappa

Brier CE 500

AUC RMSE

TtoE Accuracy CE 0.001 0.6 [300, 300, 300]

Kappa

Brier

AUC

3.2 Metrics

As shown in Fig. 1, the accuracy of the classifiers on the raw Tilda’s test set
spanned from a minimum of 73% to a maximum of 85%, while on the raw Elsa’s
test set the accuracy was as low as 45% and at best equal to 72%. When the same
test was performed on Tilda’s data encoded with a SDAE that was previously
fine-tuned on Elsa’s dataset (EtoT) the accuracy reached 90% or more for every
classifier. Vice versa, the accuracy on the encoded Elsa’s test set (TtoE) spanned
between 80% and 89%, with a maximum increase of +35% points relative to the
shallow MLP.

The Cohen’s Kappa, as shown in Fig. 2, saw an average increase of +0.25
points when measured on the encoded Tilda test sets compared to the raw data,
and an average increase of +0,37 points thanks to the encoding of Elsa’s test
set.

The Brier score reported in Fig. 3 was almost always halved by the application
of the SDAE encoding on the two test sets.

Finally, the AUC reported in Fig. 4 shows an average improvement of 0.10 and
0.15 points on Tilda and Elsa’s test sets respectively thanks to the application
of the SDAE.

4 Discussion

Since most of the optimal hyperparameters are shared between all the classifiers
and even the SDAE, it may be possible that they are better suited to encapsulate
some of the inner characteristics of the problem we are trying to solve. For
example, the batch size could be correlated with the size of the datasets and
their specific inner variance, while the hyperbolic tangent may compute at best
over the nuances of the signal carried by the normalized input vector.

Regarding the SDAE’s hyperparameters, we can observe a clear divergence
between the two directions of the knowledge transfer. EtoT transfer generally
works better when performed by a shallower SDAE with a learning rate equal
to 0.01, while TtoE prefers a deeper SDAE with a slower learning rate. This
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Fig. 1. Accuracy of the three probabilistic classifiers on ELSA and TILDA test sets,
both before and after SDAE encoding. The higher, the better.
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Fig. 2. Cohen’s Kappa of the three probabilistic classifiers on ELSA and TILDA test
sets, both before and after SDAE encoding. The higher, the better.

property reflects the underlying characteristics of the two datasets. In fact, being
Tilda smaller in size and more consistent while also having less invalid or missing
values or records, it’s easier to extract patterns and knowledge from the more
complex Elsa dataset and then transfer them into the simpler one, thus causing
a optimal network that is smaller and faster. On the contrary, acquiring enough
knowledge from a simple environment in order to extract significant features
from a complex environment is far more difficult and requires a bigger network
and a slower albeit more accurate training.
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Fig. 3. Brier score of the three probabilistic classifiers on ELSA and TILDA test sets,
both before and after SDAE encoding. The lower, the better.
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Fig. 4. AUC of the three probabilistic classifiers on ELSA and TILDA test sets, both
before and after SDAE encoding. The higher, the better.

Analysing the results provided by the four metrics, we can notice that both
deep classifiers are more consistent across all the experiments when compared
to the sMLP. The LSTM performed especially well compared to every other
classifier when applied on the raw data of both datasets. This phenomenon is
particularly evident when looking at the raw Elsa data, since that dataset has 6
waves and thus it contains more temporal information compared to Tilda.

On a further analysis, regardless of the initial performance on the raw data,
after the encoding performed by the SDAE all the neural network classifiers
reached similar values for almost all the metrics, meaning that the domain adap-
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tation process was probably more relevant to the final classification than the
choice of the actual classifier.

It can be argued that during the pre-training of the SDAE, the network
acknowledges too much of the target dataset (although limited to its training
set) and therefore it could learn to use different neurons depending on the dataset
instead of mapping one domain into the other and performing a proper knowl-
edge transfer. This hypothesis finds some ground in the experimental results,
since the pre-training usually takes more time to converge than fine-tuning.
However the faster convergence of the fine-tuning is mostly attributable to the
network being already in a stable state after the pre-training, compared to the
random starting state of the latter. The effects of the fine-tuning on the source
domain with respect to the accuracy on the target domain requires therefore
further investigation.

5 Conclusion

We found that ANNs techniques are viable for predicting decline in ADL and
IADL, exhibiting fair to excellent performance depending on the data and the
specific technique. We statistically demonstrated on two big epidemiological
datasets the effectiveness of a tool in predicting decline, while its potential use
and benefits in real environments are open to further studies.

The experimental results support that dMLP is clearly better than sMLP
when sufficiently numerous samples are available. On the smaller TILDA dataset,
sMLP is comparable or even better than dMLP, while dMLP is clearly better on
ELSA. Somewhere in-between the two datasets there must be the turning point
between the shallow and deep approaches, and characterizing this boundary may
be of interest for future investigations.

When the domain adaptation is used, LSTM does not produce significantly
better results than dMLP, so the augmented difficulty in providing historical
data, and the augmented architectural complexity, is hard to justify. On the
opposite the LSTM shows better efficacy when the domain adaptation is not
used. It is arguable how much these results depend on the peculiarities of the
datasets, having TILDA just 2 waves, and the general availability of long tem-
poral chains of observations. These results are not conclusive and the relative
performance of LSTM for the prediction of functional decline remains to be
further investigated.

We demonstrated that domain adaptation can be a concrete tool when work-
ing with epidemiological data. Specifically, using an unsupervised pretraining
phase on both source and target datasets with a SDAE, and then a supervised
training only on source data, we obtained excellent results on the target dataset
in all examined cases, without requiring labeled data from it. An open question
is if the ability of SDAEs to extract common features from two epidemiological
datasets may be pushed forward to reach a methodology for the full automation
of dataset alignment, to merge two or more datasets into a common one without
the time-consuming human micromanagement.
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Abstract. The model of an environment plays a crucial role in
autonomous mobile robots, by providing them with the necessary task-
relevant information. As robots become more intelligent, they need a
richer and more expressive environment model. This model is a map
that contains a structured description of the environment that can be
used as the robot’s knowledge for several tasks, such as planning and
reasoning. In this work, we propose a framework that allows to capture
important environment descriptors, such as functionality and ownership
of the robot’s surrounding objects, through verbal interaction. Specifi-
cally, we propose a corpus of verbal descriptions annotated with frame-
like structures. We use the proposed dataset to train two multi-task neu-
ral architectures. We compare the two architectures through an experi-
mental evaluation, discussing the design choices. Finally, we describe the
creation of a simple interactive interface with our system, implemented
through the trained model. The novelties of this work are: (i) the defini-
tion of a new problem, i.e., addressing different object descriptors, that
plays a crucial role for the robot’s tasks accomplishment; (ii) a special-
ized corpus to support the creation of rich Semantic Maps; (iii) the design
of different neural architectures, and their experimental evaluation over
the proposed dataset; (iv) a simple interface for the actual usage of the
proposed resources.

Keywords: Natural Language understanding · Semantic mapping ·
Human robot interaction · Neural networks · Semantic mapping
corpus · Corpus annotator

1 Introduction

Robot’s internal knowledge of the operational environment is usually encoded in
the form of a structured map. The problem of how to represent and build this
map is one of the attractive fields in robotics [6]. This map is called Semantic
Map [14] and plays a key role in robotics. Indeed, a Semantic Mapping is an
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essential component for robot tasks accomplishment, since it holds the infor-
mation needed to perform a task. Consider, for example, a user that instructs
the robot to “bring the book”. In this task, if the robot relies solely on a met-
ric map, it can only detect the geometrical information of places (e.g. walls),
without having access to information about what is a “book”, and where it is
located. These essential pieces of information are held in a Semantic Map. Hence,
Semantic Maps allow the robot to successfully execute the user command. By
the growing role of robotics in different applications and heterogeneous environ-
ments, building and representing this map has become more and more complex.
In each different scenario, robots need a specific Semantic Map that holds all
the knowledge needed for performing application-relevant tasks.

As the growing intelligence of robots, their internal representation should be
enriched with supplementary information. For example, information about the
restrictions of a place is necessary for trajectory planning; objects’ affordances
are important for the successful accomplishment of a task, since some objects
might be non-functional for the task itself. Such knowledge can be acquired
through different modalities. One might rely on the post-processing of sensors’
raw data; knowledge bases could be manually engineered by a domain expert.
Another way of acquiring the required knowledge is by relying on Natural Lan-
guage interactions. Natural Language feedbacks shared between robot and user
allow to (i) enrich the Semantic Map with new supplementary information, (ii)
remove uncertainties of other input modalities, (iii) check the consistency of
the knowledge base, and (iv) disambiguate potentially ambiguous commands.
However, understanding Natural Language is a complex task to be performed
automatically. For example, when a user utters “this is titanic”, different inter-
pretations can be obtained depending on different features of the language, such
as allusion, time, context, place, etc. This sentence in the context of movie-store,
can be interpreted as pointing to a movie. Conversely, the user might want to
specify the size of an object, with “titanic” used as an adjectival modifier of the
targeted (implicit) object.

In this work, we propose a novel system for understanding linguistic expres-
sions in the context of Semantic Mapping. To the best of our knowledge, this
is the first work addressing semantic mapping with more than position descrip-
tors. Specifically, while state of the art systems are capable of understanding
only category and position of objects, we focus here on seven important descrip-
tors that can be captured through dialogic interaction, such as functionality and
ownership of objects/places. To this aim, a corpus of sentences for the scenario
of Semantic Mapping of domestic environments is created, and sentences are
annotated according to Frame Semantics theory [5]. The annotation process is
performed with a sentence annotator specifically designed for this work. Then,
the dataset is used for training two neural architectures. Both models are based
on Long Short-Term Memory (LSTM) networks [7]; while the former is based
on the ordinary pipeline architecture, the latter inherits its architecture from
hierarchical classifiers. The two architectures are evaluated and compared in
our scenario. Then, we show a qualitative analysis, by presenting some parsed
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sentences; finally, the design of a simple interaction with our proposed system is
described.

Section 2 discusses the relevant literature. In Sect. 3 we propose SEmantic
MApping Corpus (SeMaC) and its annotation process, describing its novelties.
In Sect. 4, two different neural architectures are adapted for our task. Section 5
presents experimental results and a comparison of the two neural models, and
discusses some showcased examples. Moreover, a further investigation of the
proposed system in a different context is performed to assess the generaliza-
tion capability of the proposed system. In Sect. 6, the creation of the simple
interface for interaction to our system is described in detail. Section 7 draws the
conclusions and some ideas for future works.

2 Related Work

Our work concerns the design and implementation of a framework for under-
standing Natural Language interaction in the context of Semantic Mapping. In
this section, we review some of the state of the art, according to each part of
our framework; namely, approaches for language understanding, datasets, and
Natural Language interaction in Semantic Mapping.

Several approaches have been proposed to tackle the problem of language
understanding in robotics, such as [10] and [3], where they focused on Robot
Control Language (RCL) and tried to parse any sentence in their context into
RCL grammar tree. The work presented in [8] introduces Spatial Description
Clauses (SDC), where each SDC represents a linguistic aspect of a command
that can be mapped to a real-world entity. Such approaches need a parser to
assign the role of each word in a sentence with respect to a predefined grammar,
and their approach is prone to failure if a sentence with the same intent, but
with an unseen grammar is given. Such approaches can understand the shallow
meaning of a sentence, but do not capture the meaning of complex linguistic
expressions.

There are various works in the field of NLU’s dataset, such as [9], where they
focused on collecting movie subtitles. Movie’s dialogs are very close to daily
human conversations, but this dataset contains different contexts, and it is not
annotated. The dataset proposed in [2], focuses on extracting semantics struc-
tures, domain concepts and other linguistic features from sentences, using frame
semantics theory. Their dataset contains dialogs between human-human and
human-machine; each sentence is annotated with dialog intent and frame seman-
tic elements. Human-Robot Interaction Corpus (HuRIC) is another dataset for
human-robot interaction in Natural Language [1]. This corpus is oriented to the
commands to service robots in a home, which is annotated with lemmas, part-
of-speech, frame semantics. There are many other datasets published, but all of
them are either context-free or context-sensitive to their context of interest. For
our objective, we developed a new specialized dataset.

There are many works in Natural Language interaction in the context of
Semantic Mapping. The work proposed in [15] use Natural Language for seman-
tic attribute acquisition, such as the category of objects inferred from a visual



Capturing Frame-Like Object Descriptors in Human Augmented Mapping 395

classifier. In another work, [11], the authors use Natural Language for remov-
ing uncertainties of position and category of objects, using a shallow language
understanding module. In [16], they propose another framework for learning a
human-centric model of the environment from Natural Language descriptions,
focusing on spatial relationships between objects and location inherited from
the dialog. Although all the presented approaches are capable of understanding
a language, none of them addresses any semantic attributes other than position
and category of objects.

3 Dataset

In this section, we present the new SEmantic MApping Corpus (SeMaC), and
its corpus annotator, and discuss their novelties.

The proposed corpus is specialized for the scenario of Semantic Mapping
in the range of domestic robots, and its annotator is designed for annotating
sentences according to frame-like structures.

3.1 Corpus

Although a variety of corpora are already available, a corpus specialized for
Semantic Mapping is still missing. Such a corpus should contain all linguis-
tic expressions that humans use in their daily conversation. For this work, we
created a Semantic Mapping Corpus (SeMaC) which contains 590 sentences,
sampled from movies subtitles. These sentences are randomly found in a dataset
released by [9], where contexts are aligned to the context of Semantic Mapping
by a slight modification in verbs and objects. This approach lets our corpus
hold different linguistic expressions, such as formal, informal and slang expres-
sions, in the context of Semantic Mapping. SeMaC is annotated using frame-like
structures, with SeMaC data annotator. SeMaC collects seven different semantic
information, summarized in the following.

– Ownership. This class contains 90 sentences dedicated to assigning ownership
of objects. Sentences as “this book belongs to me” and “this chair is a property
of her” indicate the owner of an object, where such information cannot be
obtained from any other input modalities of a Semantic Mapping system,
other than Natural Language interaction with the user.

– Functionality. This class contains 80 sentences describing the functionality
status of objects. For example, “this chair is broken” or “this television is
not fixed yet” indicate whether an object can be used or it is broken. This
information plays a crucial role in the planning of a robot, where the robot
should ignore non-functional objects. This information can be obtained only
through Natural Language interaction with the user.

– Restrictions. 90 sentences in this class assign any restriction that might be
applied to actions or objects. For example, “you can not enter the room”
or “you do not have to touch my book” give information about restrictions
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applied to objects or actions, to the robot or the robot’s master. As well as
the previous one, this information can only be obtained only through Natural
Language interaction with the user.

– Weight. 80 sentences in this class describe the weight of objects. For example,
through “this book is not heavy, around 500 grams”, or “this object is like
feather”, the user can give information about the weight of an object. This
information can be obtained through a knowledge base. However, information
coming from a knowledge base is valid for all objects in a category; conversely,
the proposed system allows the user to assign this property to each object
and overwrite/update the pre-existing beliefs.

– Size. 90 sentences in this class describe the size of objects. For example, “this
refrigerator is very big” or “our office is vast” express the size of an object
or an environment. This information might be used alongside the robot’s
perception for objects, where robot’s perception is not sure about the size of
an entity, interaction through Natural Language can confirm it.

– Labeling. 80 sentences in this class assign a category or a name to the objects.
For example, “this object is a book” or “I am Farid” can assign the category
or name to the real-world entities. Assigning a category to an object through
Natural Language can assure the robot about the type of an object, while
the robot has low confidence in its perception. Assigning a name to an object
in a category is an important piece of information for the robot that can be
used for understanding referential expressions.

– Position. 80 sentences in this class describe the objects’ position. Sentences
such as “the book is on the desk” or “we are in the kitchen” express the
relative or absolute position of real-world entities.

It is worth to note that, the first five aforementioned classes give crucial
properties in robot planning, where they solely can be obtained through Natural
Language interaction with the user. Table 1 provides some statistics of the cor-
pus, including the number of sentences in SeMaC, the number of unique words
that appeared in SeMaC, the average number of words in each sentence, the
average number of words that have frame type label, and the average number of
words that have frame elements label.

Table 1. Statistics of SeMaC.

Number of sentences 590

Vocabulary size 557

The average length of sentences 5.21

The average length of frames per sentence 4.53

The average number of frame elements per sentence 3.31
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3.2 Corpus Annotator

For annotating SeMaC, we design a corpus annotator that allows us to make
the annotation process faster than any other corpus annotator. SeMaC corpus
annotator is designed to work with Microsoft Word document, by using format
painter. For a better understanding of this annotator, we make the following
example. Let us suppose we have a Word (.docx) document and the following
line has been written in that as following.

line1 : Location LexicalUnit Theme Being located ¶
line2 : The knife is located in the kitchen ¶
The first line of this document is dedicated to defining labels, and the rest

of the lines are sentences in the corpus. In this example, SeMaC annotator will
capture all the words that have red font color as the label of “Location”, and all
the words that are highlighted in yellow are labeled “Being located”. This simple
idea makes the annotation process faster and effortless. In the current version of
this annotator, it can assign 5 different labels to each word, wherein this work
we use two of these labels for frame types and frame elements.

4 Neural Models

In this section, we propose two neural network models for understanding the
sequence of words in a sentence. Understanding Natural Language is a complex
task for computers. Even though a variety of approaches already exist, such
as using grammar parsers, they might obtain good results in some contexts,
while bearing problems when dealing different linguistic expressions. For learning
SeMaC, we adapt two different architectures of deep neural networks. These
architectures are based on Long Short-Term Memory (LSTM) networks, which
recently have caught significant attention due to their abilities in dealing with
time series and sequences. In this work, we use pipeline and hierarchical neural
network architecture, as depicted in Fig. 1. The pipeline architecture is made of
two LSTM layers in sequence. These layers are both shared by the two tasks
of predicting the frame types and frame elements. In the second architecture,
we directly supervise each LSTM encoding with the corresponding task, to learn
better representation for the given task. We assume the prediction of frame types
to be easier than frame elements; hence, we shape the network as a hierarchy,
letting the first block of LSTM to predict frame types, and the second block to
predict frame elements. As the design of hierarchy, the first LSTM block is fed by
input, and the second LSTM block is benefited from input alongside the output
of the first LSTM block. The sequence of words in sentences are embedded by
using NumberBatch ConceptNet [13], which is benefiting from retrofitting [4] of
state of the art word embeddings and ConceptNet knowledge graph [12]. The
choice of NumberBatch as word embedding is because of its knowledge graph
information that has been injected to vectors by retrofitting. Information from
a knowledge graph lets the system understand more complex expressions. In
the next section, we compare these two models on results and identify the most
promising one.
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Fig. 1. Pipeline, on left, and hierarchical, on right, architectures.

5 Results

In this section we discuss the experimental results we obtained with the proposed
neural models, we discuss some showcase examples, and provide an evaluation
performed in a different context.

5.1 Choosing the Best Architecture

In order to identify the most suitable architectural design among hierarchical
and pipeline, we train both models with 10-fold cross validation strategy, while
each time we only change the dropout. This test is done with the batch size of
128 and 150 LSTM units for each LSTM block. For training, Nadam optimizer
is used for training of 100 epochs without early stopping.

Then, we use nested cross-validation with grid search for finding hyperparam-
eters. Although this experimental design is computationally heavy, it gives a fair
comparison between the models. In this experiment we let the algorithm choose
dropout, number of LSTM units and optimizer, as stated in Table 2; batch size
is set to 128, the number of training iterations is set to 250 epochs with early
stopping. In this test, we compute the micro F1 score for both frame types and
frame elements and the percentage of sentences that correctly predicted all the
frame.

Table 2. Hyperparameters for optimization.

Dropout LSTM unit Optimizer

0.3, 0.5, 0.8 100, 200, 300 rmsprop, nadam, adam
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The test of dropout exploit various characteristics of SeMaC and models.
As shown in Fig. 2, though more visible in hierarchical architecture, both mod-
els tend to choose a slightly high dropout for learning SeMaC, which indicates
the high variation in this dataset. Moreover, we can see that the hierarchical
architecture is less sensitive to changes of dropout, even though we observed
that to avoid oscillations in the learning curve, we should use a rather high
dropout, with early stopping for smoothing the learning curve and immunity to
overfitting. Also, it can be seen that the pipeline architecture is suffering from
underfitting in 100 epochs, which is probably due to the problem of gradient
descent in deep networks.

Fig. 2. Dropout test for both hierarchical (blue) and pipeline (red) architectures. (Color
figure online)

The F1 score of nested cross-validation is shown in Table 3; the hierarchical
architecture outperforms the pipeline architecture in both frame type and frame
elements. It is worth to note that as the number of frame types is much less
than the number of frame elements, it is expected that the F1 score of the frame
type score becomes less than the frame elements score. This can be seen in the
pipeline architecture. However, as showed in Table 3 the hierarchical architecture
has a better score in frame elements, which is most likely because of the first
LSTM block (frame-type classifier) which provides more information for frame-
element’s LSTM block. It has been observed that the number of sentences, whose
both labels of each of its word are correctly predicted (exact match score) is much
higher in the hierarchical architecture.

5.2 Showcase Examples

As it will be described in the next section, understanding an utterance towards
making a dialog is upon the prediction of word’s labels according to frame seman-
tics theory. To this aim, we let the hierarchical architecture learn the whole
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Table 3. Results of metrics for both architectures.

Metric Hierarchical Pipeline

F1- Frame types 0.87 0.7

F1- Frame elements 0.89 0.67

Exact match 0.73 0.40

SeMaC with the dropout of 0.6, 150 hidden units for each LSTM block and
training with Nadam optimizer for 100 epochs. We used this trained model to
predict some showcase examples, which do not appear in SeMaC, as shown in
Tables 4, 5 and 6, where frame types, frame elements, and the confidence of the
prediction are stated. We can see that the proposed system is capable of under-
standing different linguistic expressions, even those that are not in SeMaC. We
grant the fact that the neural network prediction of sentences in the training
set (SeMaC) is perfectly predicted, and here we just provide some challenging
examples. In particular, none of the words “titanic”, “whacking”, and “exclu-
sive” appear in SeMaC. As we can see, in these showcase examples the trained
model is able to predict the correct labels. Although we noticed that in some
predictions the confidence is very low, the model can still capture important
information such as the object, property of the object, and the frame of the
phrase.

Table 4. Prediction of showcase 1.

Lexical Frame type Frame element

This Size (83) Entity (97)

is Size (82) ND (-)

titanic Size (21) Lexical unit size (15)

Table 5. Prediction of showcase 2.

Lexical Frame type Frame element

Kitchen Size (95) Entity (98)

is Size (94) ND (-)

whacking Size (91) Lexical Unit Size (77)

5.3 A Different Context

In this subsection, we describe the results of the proposed model over sentences
of a different context, to examine the generality of the proposed system. We use
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Table 6. Prediction of showcase 3.

Lexical Frame type Frame element

Knife Possession (87) Possession(Object) (71)

is Possession (64) ND (-)

exclusive Possession (9) ND (-)

to Possession (13) ND (-)

her Possession (96) Owner (70)

the model trained over SeMaC for predicting sentences from annotations of MS-
coco dataset, whose sentences are more complex and different from SeMaC (e.g.
different verbs and objects). We choose 10 sentences per each of our classes for
this prediction, as for some of our classes we were not able to find more instances.
As the annotations in MS-coco are describing images, each annotation is a com-
plex structured sentence, with multiple overlapping frames. Our proposed model
achieves 0.39, 0.50 for F1 score of frame elements and frame types, respectively.
Then, we prune each annotation to have a single-frame sentences. This pruning
shortened the average size of sentences by 30%. F1 score of single framed sen-
tences reaches 0.59, 0.74 for frame elements, and frame types, respectively. It is
worth noting that testing sentences with multiple overlapping frame is not legit
for a model that has been trained on sentences with single frame. Instead, the
result with pruned sentences supports the generality of the proposed system.

6 Interactive Interface

In order to validate our approach, we implemented a simple interactive interface
for our system. In this section, we describe this interface, by discussing the pro-
cess of understanding a sentence, given the predicted labels, and the generation
process of a back-channel. In particular, we define understanding a sentence as a
process of finding the semantic frame label of each word in a sentence, and cap-
turing the intrinsic meaning of words. Capturing the concept of words becomes
more challenging if we want to deal with unseen words. For example, the robot
should be able to understand “broken” is a lexical unit that is used for objects
that are not working, while “fixed” causes the functionality of an object.

We use the trained model as the core of our interactive system, which can
predict labels of any given sentence. Given the frame type of a sentence, we can
have the intent of a sentence. This intent accompanied with frame elements,
helps us to have the object and the property that the sentence is intended to
assign to the object. In this work, our focus is on understanding the language,
assuming the problem of grounding objects as solved. Let us make an example to
show the understanding process of a property. For example, in the sentence “the
chair is out of order”, firstly we find the semantics of “out of order”, which can
be obtained from the semantic vectors of each word. Afterwards the semantics
is compared to predefined semantics, such as functional, and broken. The cosine
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distance between these semantic vectors gives the meaning of the property. We
improved this methodology by comparing the property with the centroid of a
concept instead of a single word. We define a concept ς as a spatial region in the
semantic space, where the semantic vectors of all verbal expressions are used for
describing a particular concept exist.

For example, the concept of “not working”, contains different expressions,
where all bear the same meaning. Let σi be the semantic representation of a word
and ςc be the centroid of a concept, where each σi can be used for expressing ς.
The centroid of the concept can be obtained by:

ςc =
1
n

n∑

i=0

σi Where σi is an expression for ς (1)

Through the same methodology, any property can be compared to the centroid
of concepts, and the closest concept indicates the meaning of property. This app-
roach lets the system understand arbitrary properties, even those not appeared in
SeMaC. The same methodology has been used for different classes of attributes.

We use a straightforward methodology for the generation of back-channels,
which is a template-based approach. In this methodology, a template is chosen
from seven predefined templates, based on the most appeared frame type in the
predicted frame types; thereafter, free-slots of the template are filled by using
frame elements and concepts. In particular, our context for the back-channel
generation can be simplified as finding an object and a property that we want
to assign to it. The object can be directly concluded from frame elements, and
the assigned property is obtained from frame elements and their corresponding
concept. Table 7 provides examples of sentences understood by the system, with
their corresponding generated back-channels.

Table 7. Five interaction between human and the proposed system.

No. User utterance Robot utterance

1 This is out of order Ok, I save this as improper

2 Knife is exclusive to her Got it! knife belongs to her

3 Kitchen is messed up Oh, ok, I save kitchen as improper

4 This is titanic Ok, got it, this is huge

5 Kitchen is not whacking Oh, ok, kitchen is not huge then

7 Conclusion

In this work, a framework for Natural Language understanding specialized for
Semantic Mapping is created. This framework lets a robot enrich its Seman-
tic Map with some crucial information about its surroundings through Natural



Capturing Frame-Like Object Descriptors in Human Augmented Mapping 403

Language interaction. In particular, the proposed framework is composed of
three parts: dataset, prediction model, and interaction interface. We validate
our proposed framework with some showcase examples, showing that the pro-
posed framework is able to enrich a semantic map by seven different environment
descriptors. This work can be extended towards many directions. For example,
linguistic allusions, where allusion is a common expression in humans dialog, and
a user-specific allusion synthesizing can consistently improve the understanding
of Natural Language. Moreover, the proposed system can be extended by letting
the robot ask spot questions to gather new information or to refine its uncer-
tainty.
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Abstract. Recent public calls for the development of explainable and
verifiable AI led to a growing interest in formal verification and repair of
machine-learned models. Despite the impressive progress that the learn-
ing community has made, models such as deep neural networks remain
vulnerable to adversarial attacks, and their sheer size represents a major
obstacle to formal analysis and implementation. In this paper we present
our current efforts to tackle repair of deep convolutional neural networks
using ideas borrowed from Transfer Learning. With results obtained on
popular MNIST and CIFAR10 datasets, we show that models of deep
convolutional neural networks can be transformed into simpler ones pre-
serving their accuracy, and we discuss how formal repair through convex
programming techniques could benefit from this process.

Keywords: Transfer Learning · Network repair · Convex optimization

1 Introduction

The need for the development of explainable and verifiable AI has been put for-
ward in a number of public events, e.g., the Workshop on Explainable AI held at
IJCAI 20171, and research programs, e.g., the DARPA program on Explainable
Artificial Intelligence.2 These “calls to arms” did not go unanswered, originating
several related research streams. Among them, particularly vibrant is the one
concerned with automated verification and repair of machine-learned models.
Albeit the first contribution in this direction appeared about ten years ago [15],
a recent extensive survey [8] cites more than 200 papers, most of which published
in the last three years. In particular, there is high interest in verifying Deep

1 http://home.earthlink.net/∼dwaha/research/meetings/ijcai17-xai/.
2 https://www.darpa.mil/program/explainable-artificial-intelligence.
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M. Alviano et al. (Eds.): AI*IA 2019, LNAI 11946, pp. 405–417, 2019.
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Neural Networks (DNNs): their adoption and successful application in various
domains have made them one of the most popular machine-learned models to
date—see, e.g., [20] on image classification, [24] on speech recognition, and [10]
for the general principles and a catalog of success stories.

Despite the impressive progress that the learning community has made in
the field, it is well known—see, e.g., [5,19]—that DNNs can be vulnerable to
adversarial perturbations, i.e., minimal changes to correctly classified input data
that cause a network to respond in unexpected and incorrect ways. Indepen-
dently from the accuracy of a network, the vulnerability to adversarial attacks
calls for techniques to improve robustness and guarantee desired properties.
Repair [6,7,15] is one such technique, whereby we seek to adjust the parameters
of the network in order to formally guarantee that the network will respond cor-
rectly even in the presence of adversarial perturbations. In practice, the sheer
size of these models still represents a major obstacle to formal analysis of any
kind. Typical state of the art neural networks for tasks like image classification
have more than a hundred millions of parameters [18], which makes off-the-shelf
techniques hardly applicable.

In this paper we focus on the repair of Convolutional Neural Networks
(CNNs), a type of DNN mainly used in computer vision—see [11] for a survey
related to DNN architectures and their applications. In particular, we discuss
our current efforts to repair CNNs using convex programming and ideas bor-
rowed from Transfer Learning (TL) [22]. In general, TL is the simplification of
learning in a new task through the transfer of knowledge from a related task
that has already been learned. As posited in [17], the idea is to keep the convo-
lutional part of the network as a learned feature extractor, and replace the final
classification layer with one featuring less parameters and/or a smaller model
complexity. Noticeably, the replacement may yield networks whose accuracy is
comparable with the one of the original DNNs, yet more amenable to formal
analysis.

More specifically, we contribute an experimental analysis based on the pop-
ular MNIST3 and CIFAR104 datasets. The first step is to train CNNs on both
datasets and to replace their final fully-connected layer with linear support vec-
tor machines. This step reduces by orders of magnitude the number of free
parameters, e.g., from 4.7 million to 65 thousand in the case of CIFAR10, while
preserving accuracy. We discover adversarial attacks on such “hybrid” models
using the Fast Gradient Sign Method described in [5]. Since we replace non-
linear layers with linear ones, we are able to define a repair procedure as a
convex optimization problem—as done in [7] for kernel-based learning models.
The resulting problem can be solved with off-the-shelf tools—cvxopt5 in our
case. The results we obtain are still preliminary, but show some promise as far
as scaling to networks of larger size is concerned. However, the repair proce-
dure is not yet general enough to make the networks immune to perturbations

3 http://yann.lecun.com/exdb/mnist/.
4 https://www.cs.toronto.edu/∼kriz/cifar.html.
5 https://cvxopt.org/index.html.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://cvxopt.org/index.html
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Fig. 1. Generic architecture of a fully connected DNN with 3 hidden layers (left) and
graphics representation of a local receptive field (right). The images are taken from [12].

other than those considered by the repair procedure. While this might not be a
strong limitation when considering real-world instead of artificial adversaries—
see [4]—further investigations are needed to confirm whether our method could
be effective for practical applications.

To the extent of our knowledge, this is the first time that TL is leveraged
in order to repair a CNN through convex programming techniques. The idea of
replacing parts of a CNN to improve its performances is not new, as it has been
explored in [17] and [21], among others. However, the focus of these contributions
is to improve the accuracy of the network, rather than providing models whose
properties can be certified more easily than the original one. Trying to apply
formal verification techniques to networks of size smaller than the original could
be done following alternative paths. For instance, in [2] the authors show that it
is possible to find small-sized subnetworks in CNNs which prove to be remarkably
accurate on some datasets including MNIST and CIFAR10. These subnetworks
could be extracted and certified considering our approach or other state-of-the-
art tools like Planet [1] or Reluplex [9]. Finally, the aim of obtaining networks
robust to adversarial examples, but not necessarily smaller than the original ones,
can be pursued using results in robust training: recent results—see, e.g., [23]—
seem to open this possibility also for CNNs of considerable size.

The rest of the paper is structured as follows. In Sect. 2 we give an overview
of CNNs, and on the methodology we use to simplify them inspired to TL. In
Sect. 3 we introduce and analyze the baseline models, and we show the logic
behind of our repair procedure. We present experimental results in Sect. 4 and
we conclude the paper with some final remarks and our future research agenda
in Sect. 5.

2 Preliminaries

2.1 Convolutional Neural Networks

According to [10], representation learning “is a set of methods that allows a
machine to be fed with raw data and to automatically discover the representa-
tions needed for detection of classification”. DNNs are representation learning
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models characterized by multiple levels of representation, obtained by compos-
ing several non-linear modules. Each module transforms the representation at
one level (starting with raw input) into the next, more abstract, representation.
At the heart of every DNN lie the “classical” neural network modules as shown
in Fig. 1(left) whose mathematical formulation can be expressed in a recursive
form as:

h(1) = Φ(1)(W(1) · x + b(1))

h(i) = Φ(i)(W(i) · h(i−1) + b(i))
(1)

where Φ(i) is the activation function, W(i) ∈ R
di×di−1 is a matrix of weights and

b(i) ∈ R
di is the vector of the biases of the i-th layer. h(i) ∈ R

di corresponds to
the output of the i-th layer and the range of i depends on the number of layers.
A module like this is said to be fully connected, because the weighted sum of the
outputs of each neuron in level i is fed to every neuron in level i + 1, creating
the topology shown in Fig. 1(left). CNNs are a specific kind of DNNs, typically
adopted in computer vision applications, characterized by one or more convo-
lutional modules. The distinctive element of such modules is that they feature
connections for small, localized regions of the input vector, i.e., each neuron of
the hidden layer is connected only to a small subset of the input neurons. This
subset of the input neurons is called local receptive field of the hidden neuron.
A graphical example of a local receptive is depicted in Fig. 1(right). Another
important feature of convolutional modules is that all the local receptive fields
share the same weights and bias reducing the overall number of weights substan-
tially. In practice, each local receptive field is trained to detect a specific feature
in the input image, i.e., distinctive elements of input portions. As a consequence,
in a specific hidden layer, different sets of shared weights are used: each of these
sets is trained to detect specific feature in the image. Usually each convolutional
module is followed by a pooling layer, which simplifies the information received.
For instance, each unit of a pooling layer could take a subset of neurons from
the previous module and select their maximum activation—an operation called
max-pooling. Since our experiments are about image classification, in the follow-
ing we consider a CNN arrangement widely adopted for this task, i.e., a series of
convolutional modules and pooling layers followed by fully connected modules.
The first part of the network can be seen as an application of a (learned) kernel
to the original input whereas the second part can be seen as the actual classifier.
For a more detailed study on Convolutional Neural Networks we refer to [12].

2.2 Transfer Learning

As mentioned in [22], TL is “the improvement of learning in a new task through
the transfer of knowledge from a related task that has already been learned”. TL
has been suggested in the context of deep learning applications—see, e.g., [17]—
where pre-trained models are used as starting points for computer vision or
natural language tasks. Since the training of DNNs requires substantial compu-
tational resources, it is often the case that reusing (parts of) pre-trained models
enables applications which would not be feasible otherwise. For instance, in [17],
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a pre-trained convolutional module is extracted from a CNN and then applied
as a feature extractor in the context of an object recognition task where the
paucity of training samples would make training of the full CNN untenable. On
the other hand, combining the pre-trained convolutional module with a newly
trained classifier, makes for an effective combination, enabling to solve classi-
fication tasks that were not within the reach of the original CNN. TL and its
applications suggest the possibility of replacing some modules of a DNN which
are hardly analyzable with formal methods, with others that are more amenable
to such analysis. As long as the accuracy of the resulting network, which we call
hybrid network in the following, is close to the original DNN, one may (i) replace
the original network with the hybrid one and (ii) fix the hybrid one instead of
the original network, should adversarial examples be found also for the hybrid
network. In particular, we build hybrid networks by collating the convolutional
module of a CNN followed by a linear Support Vector Machine (lSVM), i.e., a
classifier based on separating hyper-planes in which the distance of the hyper-
plane from the nearest samples of both classes is maximized. In our experiments
we consider multiclass lSVMs, i.e., in order to discriminate among k classes we
compute k different separating hyper-planes each one discriminating among one
class and the remaining k − 1. The input-output relation of a multiclass lSVM
is defined as follows:

f(x) = W · x + b

y = argmax(f(x))
(2)

where x ∈ R
d is the vector of the inputs, b ∈ R

k is the vector of the biases,
W ∈ R

k×d is the matrix of the weights corresponding to k lSVMs, each working
to detect one of the k classes. The function f(x) is the decision function corre-
sponding to the input x. It contains the signed distances of the input x from
each decision hyper-plane. From the definition of the decision function we can
derive the correct class y for an input x.

3 Repair of Hybrid Networks

3.1 Hybrid Networks

For the sake of our experiments, we have developed two CNNs and two cor-
responding hybrid networks for each dataset considered. Given the preliminary
nature of this work the datasets considered are CIFAR10 and MNIST, two of the
most famous basic datasets for image classification. The MNIST dataset contains
60000 grayscale images of handwritten digits whereas the CIFAR10 dataset con-
tains 60000 color images in 10 different mutually exclusive classes: both datasets
are divided in a training set of 50000 images and a test set of 10000 images.

The network considered for the MNIST dataset (MNIST-NN) is a CNN with
2 convolutional layers, 2 max-pooling layers and 2 fully connected layers. The
convolutional layers have kernel size equal to 5 × 5 and stride length equal to 1,
the max-pooling layers have kernel size equal to 2 × 2. There is a max-pooling
layer after each convolutional layer. The two fully connected layers have 500 and
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10 hidden neurons respectively and the inputs of the first layer are the values
generated from 800 neurons of the second max-pooling layer. The total number
of parameters of the network is 407330 and 99.5% of them are part of the fully
connected layers.

The network developed for the CIFAR10 dataset (CIFAR10-NN) is a CNN
with 6 convolutional layers, 3 max-pooling layer and 3 fully connected layers.
The convolutional layers have kernel size equal to 3 × 3, stride length equal to
1, padding equal to 1 and present respectively 32, 64, 128, 128, 256 and 256
different kernels, the max-pooling layers has kernel size equal to 2 × 2. There
is a max pooling layer every 2 convolutional layers. The three fully connected
layers have 1024, 512 and 10 hidden neurons respectively, and the inputs of the
first layer are the values generated from 4096 neurons of the third max-pooling
layer. The activation functions are all ReLU. The total number of parameters is
4747904 and 99.5% of them are part of the fully connected layers. The network
considered is similar to the Conv-6 network presented in [3], but our network
features a first convolutional layer with 32 kernels whereas the corresponding
layer of the Conv-6 network has 64 kernels.

In this work we have used PyTorch [13] for the implementation and training
of all the networks. The MNIST network is trained using the SGD optimizer
with learning rate equals 0.001, momentum 0.9 and train batch size 64, for 10
epochs. The CIFAR10 network is trained using the Adam optimizer with learning
rate equals 0.001, weight decay 5e–4 and train batch size 128, for 25 epochs. The
hybrid networks consist of the union of the convolutional and max-pooling layers
of the original networks with lSVM multiclass classifiers: in this work we have
used off-of-the-shelf implementations provided by scikit-learn [14]. In particular,
both for MNIST-NN and for CIFAR10-NN, we have designed corresponding
linear hybrids. We identify the linear hybrids as MNIST-LH and CIFAR10-
LH. All networks are trained using standard training parameters recommended
respectively from PyTorch and scikit-learn documentation.

As a preliminary experiment we have analyzed the accuracy gap between
the hybrid models and the corresponding neural networks: for CIFAR10 models
our results are 85.4% (NN) and 85.6% (LH). The accuracies of the MNIST
models are 97.12% (NN) and 98.72% (LH). All the accuracies were computed as
the number of correctly classified images against all the images of the test sets
provided by the MNIST and CIFAR10 repositories. These figures tell us that, for
the MNIST dataset, hybrid models can be more accurate than the corresponding
CNN. CIFAR10 is more complex than MNIST, nevertheless the results still hold.

3.2 Repair

The main idea behind our repair approach is to circumvent the repair of CNNs
and attempt to repair the corresponding hybrid networks instead. To repair
hybrid networks, we generate adversarial examples for them, and then we solve
an optimization problem in the space of the network’s parameter, with the objec-
tive to reduce as much as possible the impact of the adversaries. In order to make
the optimization problem computationally feasible, we consider the convolutional
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modules of our hybrid models as a fixed feature map and we do not include their
parameters into the optimization problem, but we concentrate on the final layers
instead. In practice, this corresponds to analyzing the network in feature space,
instead of input space—as done in [6,7]. Owing to this, and to the fact that fully
connected layers of the CNN are substituted by lSVMs in our hybrid networks,
the number of free variables for the convex optimization problem is drastically
reduced. For example, in the case of the MNIST models, we managed to reduce
the number of variables from 405510 to approximately 8000.

Thanks to the linearity of the lSVM considered it is possible to limit the con-
vex optimization problem to piece-wise linearity—because of absolute values—
eliminating the need of a non-linear solver or abstraction techniques to manage
non-linearities. In Eq. (3) we present the mathematical definition of our opti-
mization problem: parameters c and d are the number of possible classes and
the number of feature of the adversarial example in the feature space, respec-
tively; parameters γi,j are the modification on the weights wi,j of the lSVM
model; the variables δi are slack variable necessary to keep the problem solv-
able at the price of some error on the prediction of the decision function for the
adversarial example of interest; finally, yi are the correct values of the decision
function of the lSVM classifier for the adversarial example and xj are the fea-
ture of the adversarial sample of interest in the feature space. All the variable
considered take real values.

min

c∑

i=1

d∑

j=1

|γi,j | +
c∑

i=1

δi

yi − δi ≤
d∑

j=1

(wi,j + γi,j)xj ≤ yi + δi ∀i = 1, ..., c

δi ≥ 0 ∀i = 1, ..., c

(3)

In this case we consider only one adversarial example, but the extension of the
problem to the case in which more than one adversarial sample is considered
is trivial. The cost function seeks to minimize the (absolute) variation of the
weights of the lSVM, while satisfying the constraint of bringing the prediction
of the decision function of the adversarial example as close as possible to the
correct decision function. In the case of the CIFAR10 model we need a fur-
ther simplification: even with the replacement of the fully connected layers the
number of variables in the convex optimization problem is 40960 and the opti-
mization procedure is not able to solve the problem. Therefore we decided to
apply a feature-selection procedure on the output of the convolutional layers of
our model. For each feature we consider two set of samples: the first one taken
from the original inputs and the second one taken from the adversarial inputs.
We compare the sets of samples using the Wilcoxon Signed Rank test against
the null hypothesis that the two sets come from the same distribution. The pro-
cedure computes the p-values of the test for each feature and selects the ones
which present a p-value below a given threshold: in our experiments we choose
a threshold value of 0.1. The rationale of our procedure is to retain only the
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features which are affected significantly by the adversarial inputs and change
only the corresponding weights in the SVM. After feature selection we manage
to reduce the number of variables of the convex optimization problem below
6000, therefore making the problem manageable for the solver.

4 Experimental Results

We test our repair procedure on both the MNIST and CIFAR10 datasets, using
the Fast Sign Gradient Method (FSGM) [5] as adversarial attack of choice. The
FSGM works by using the gradients of the neural network to create an adversarial
example. For an input image, the method uses the gradients of the loss with
respect to the input image to create a new image that maximises the loss (i.e. the
adversarial sample). In order to generate adversarial samples for our models we
utilize FoolBox [16] which provides a number of ready-made adversarial attacks.
Another advantage of FoolBox is that it accepts as model to be attacked every
valid PyTorch model, which allows us to attack also our hybrid models without
complex workarounds. In our tests, we analyze the loss of accuracy of our models
corresponding to increasing magnitudes of adversarial attacks, as shown in Fig. 2.
We control the magnitude of the adversarial attack using the parameter ε.

As it can be expected, the accuracies of both the MNIST and CIFAR10
models drops for increasing values of ε and in general the LH models seem to
be more vulnerable to this kind of adversarial attack. Given that our aim is
to repair the LH models, this is not a limitation for our approach. As it can
be observed in Fig. 2 for ε = 0.15 the adversarial perturbation for the MNIST
images is clearly recognizable even if it would not fool a human observer. For
the CIFAR10 dataset we consider smaller adversarial perturbations: as it can be
seen in Fig. 2, for ε = 0.025 the models accuracy is already below the baseline.

In our main experiment we analyzed the behavior of MNIST-LH and of
its repaired version (MNIST-RLH) for ε = [0.025, 0.05, 0.075, 0.1, 0.125, 0.15]
and the behavior of CIFAR10-LH and of its repaired version (CIFAR10-RLH)
for ε = [.001, .005, .01, .015, 0.02, 0.025]. More specifically, for each ε, we com-
pute the accuracies of the LH, NN and RLH models on the following test
sets: MNIST/CIFAR10 test set (Data), MNIST/CIFAR10 test sets in which
all the images for which we found a corresponding adversarial example have
been replaced with the adversarial example. Since the adversarial attack is
model-dependent, the latter test set corresponds to three different sets com-
puted on MNIST/CIFAR10-NN (NADV), MNIST/CIFAR10-LH (HADV) and
MNIST/CIFAR10-RLH (RHADV) (Table 1).

Table 1. Synopsis of networks and related adversaries.

Network Description Adversaries

NN Convolutional NN NADV

(R)LH (Repaired) Linear hybrid network (R)HADV

KH Kernel-based hybrid network —
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Fig. 2. Accuracies of MNIST-NN, MNIST-LH (above) and CIFAR10-NN, CIFAR10-
LH (below) as ε increases (left) and graphics representation of some adversarial exam-
ples (right). The epsilons of the graphical representation for CIFAR10 do not corre-
spond to the ones in the accuracies graph because otherwise they would be completely
indiscernible to the human eye

In Fig. 3(left) it is possible to see how repair affects the accuracy of the
models both with respect to adversarial samples only (ADV) and with respect
to the original test set (Data). In the case of MNIST, even considering only
one adversarial in the optimization problem (3), the resulting model (MNIST-
RLH) manages to generalize also on other adversarial examples, e.g. it manages
to classify correctly at least 20% of the adversarial examples. In the case of
CIFAR10, even if the repaired model is more accurate than the original one
with respect to the adversarial samples the improvement is not substantial; in
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Fig. 3. Accuracies of the NN, LH and RLH models computed on different test sets of
interest (MNIST above, CIFAR10 below). All the accuracies are computed for increas-
ing values of ε.

our opinion this is due to the fact that both the model and the dataset are more
complex than the ones in MNIST. In Fig. 3(right) it is also possible to see how
the accuracy of the RLH models compares with the accuracies of the LH and
NN ones with respect to the datasets NADV and HADV: from the images on the
right it is clear that, while the repaired model is more robust to the adversarial
sample computed on the non-repaired model, it has not acquired robustness
against adversarial attacks in general. Moreover, it appears clear that the original
model (NN) is still more robust to adversarial attacks. From the same images
it is also possible to see that, as the RLH models are somewhat robust with
respect to the adversarial example computed on the LH ones, so the LH models
are somewhat robust with respect to the adversarial example computed on the
RLH ones. This result suggests that the adversarial examples computed on the
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LH and RLH models belong to different categories of adversarial examples. This
phenomenon requires further investigation to be confirmed. The code for the
experiments presented in this section can be found at https://gitlab.sagelab.it/
dguidotti/aiia2019-code.

5 Conclusions and Future Work

The main idea presented in this paper is to study the safety of DNNs in a “mod-
ular” fashion using techniques adopted from transfer learning. In particular, we
consider how the properties of CNNs change if we replace the fully connected
module with lSVMs obtaining hybrid networks. Our results confirm that such
replace does not impact on the accuracy in a relevant manner, while making
repair of hybrid networks feasible using a relatively simple encoding in a convex
optimization problem. Our experimental results on MNIST show that, even using
very few adversaries, the repair procedures manage to provide a model which
presents an acceptable generalization on all the adversaries computed using the
original hybrid model. On the other hand, our results on CIFAR10 show a more
intricate picture, one in which the repaired network can be made robust against
specific adversaries but generalization is still not completely achieved. Overall,
the repaired models are still vulnerable to the same adversarial attack, e.g. the
repaired models developed a resistance to the adversarial examples of the old
model, but not to the general adversarial attack. The different grade of resis-
tance of the original and repaired models to the reciprocal adversarial examples
appears to indicate that different categories of adversarial example may exist.

Given the results obtained from this work, our future lines of research will
concentrate on understanding the properties of categories of adversarial samples
in hybrid convolutional-lSVM networks and adding verification-driven kernels to
our SVMs in order to obtain robust hybrid convolutional-SVM networks. More-
over, we will try to extend our work in order to repair CNNs without swapping
away the fully connected modules and to explain how adversarial attacks affect
the convolutional part of the networks and therefore the input in the feature
space.
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Abstract. The neuron activation function plays a fundamental role in
the complexity of learning. In particular, it is widely known that in
recurrent networks the learning of long-term dependencies is problem-
atic due to vanishing (or exploding) gradient and that such problem is
directly related to the structure of the employed activation function. In
this paper, we study the problem of learning neuron-specific activation
functions through kernel-based neural networks (KBNN) and we make
the following contributions. First, we give a representation theorem which
indicates that the best activation function is a kernel expansion over the
training set, then approximated with an opportune set of points mod-
eling 1-D clusters. Second, we extend the idea to recurrent networks,
where the expressiveness of KBNN can be an determinant factor to cap-
ture long-term dependencies. We provide experimental results on some
key experiments which clearly show the effectiveness of KBNN when
compared with RNN and LSTM cells.

1 Introduction

By and large, the appropriate selection of the activation function in deep archi-
tectures is regarded as an important choice for achieving challenging perfor-
mance. For example, the rectifier function [7] has been playing an important
role in the impressive scaling up of nowadays deep nets. Likewise, LSTM cells [8]
are widely recognized as the most important ingredient to face long-term depen-
dencies when learning by recurrent neural networks. Both choices come from
insightful ideas on the actual non-linear process taking place in deep nets. At a
first glance, one might wonder why such an optimal choice must be restricted
to a single unit instead of extending it to the overall function to be learned. In
addition, this general problem has been already been solved; its solution [5,6,12]
is in fact at the basis of kernel machines whose limitations as shallow nets have
been widely addressed (see e.g. [10,11]). However, the optimal formulation given
for the neuron non-linearity enjoys the tremendous advantage of acting on 1-D
spaces. This strongly motivates the reformulation of the problem of learning in
deep neural network as a one where the weights and the activation functions
are jointly determined by optimization in the framework of regularization oper-
ators [14], that are used to enforce the smoothness of the solution. The idea of
c© Springer Nature Switzerland AG 2019
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learning the activation function is not entirely new. In [16], activation functions
are chosen from a pre-defined set and combine this strategy with a single scal-
ing parameter that is learned during training. It has been argued that one can
think of this function as a neural network itself, so the overall architecture is still
characterized by a directed acyclic graph [3]. Other approaches learn activation
functions as piecewise linear [1], doubled truncated gaussian [15] or Fourier series
[4]. A more recent work by [13] introduces a family of activation functions that
are based on a kernel expansion at every neuron. The proposed approach is based
on the nice intuition that a kernel-based representation for the neuron function
is computationally efficient, yet very effective in terms of representation.

In this paper, we study the problem of learning neuron-specific activation
functions through kernel-based neural networks (KBNN) and provide two main
contributions.

First, we prove that, like for kernel machines, the optimal solution of the
variational problem that characterizes the process of supervised learning in the
framework of regularization can be expressed by a kernel expansion, so as the
overall optimization is reduced to the discovery of a finite set of parameters. The
risk function to be minimized contains the weights of the network connections,
as well as the parameters associated with the points of the kernel expansion.
Hence, the classic learning of the weights of the network takes place with the
concurrent development of the optimal shape of the activation functions, one
for each neuron. As a consequence, the machine architecture preserves both
the strong representational power of deep networks in high dimensional spaces
and the effective setting of kernel machines for the learning of the activation
functions.

As a second contribution, we extend the idea to Kernel-Based Recurrent
Networks (KBRN). In fact, unlike most of the activation functions used in deep
networks, those that are developed during learning are not necessarily mono-
tonic. We claim that this property has a crucial impact in their adoption in
classic recurrent networks, since this properly addresses classic issues of gradi-
ent vanishing when capturing long-term dependencies and provide experimental
results on some key experiments which clearly show the effectiveness of KBNN
when compared with RNN and LSTM cells [8]. The intuition is that the associ-
ated iterated map can either be contractive or expansive. Hence, while in some
states the contraction yields gradient vanishing, in others the expansion results
in to gradient pumping, which allows the neural network to propagate informa-
tion back also in case of long time dependences. The possibility of implementing
contractive and expanding maps during the processing of a given sequence comes
from the capabilities of KBRN to develop different activation functions for differ-
ent neurons that are not necessarily monotonic. This variety of units is somewhat
related to the clever solution proposed in LSTM cells, where the authors real-
ized early that there was room for getting rid of the inherent limitation of the
contractive maps deriving from sigmoidal units. Experimental results are pro-
vided for some ad hoc cases, which highlight the expressiveness of the proposed
units, and for challenging benchmarks that are inspired from seminal paper [2],
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where the distinctive information for the classification of long sequences is only
located in the first positions, while the rest contains uniformly distributed noisy
information.

2 Representation and Learning

The feedforward architecture that we consider is based on a directed graph
D ∼ (V,A), where V is the set of ordered vertices and A is the set of the
oriented arcs. Given i, j ∈ V there is connection from i to j iff i ≺ j. Instead of
assuming a uniform activation function for each vertex of D, a specific function
f is attached to each vertex. We denote with I the set of input neurons, with
O the set of the output neurons and with H = V \ (I ∪ O) the set of hidden
neurons; the cardinality of these sets will be denoted as |I|, |O|, |H| and |V | ≡ n.
Without loss of generality we will also assume that: I = {1, 2, . . . , |I|}, H =
{|I|+1, |I|+2, . . . , |I|+|H|} and O = {|I|+|H|+1, |I|+|H|+2, . . . |I|+|H|+|O|}.

The learning process is based on the training set TN = { (eκ, yκ) ∈ R
|I| ×

R
|O| | κ = 1, . . . N }. Given an input vector z = (z1, z2, . . . z|I|), the output

associated with the vertices of the graph is computed as follows1:

xi(z) = zi(i ∈ I) + fi(ai)(i /∈ I), (1)

with ai =
∑

j∈pa(i) wijxj + bi, where pa(i) are the parents of neuron i, and
fi : ΩΛ → R are one dimensional real functions; ΩΛ := [−Λ,Λ], with Λ chosen
big enough, so that Eq. (1) is always well defined. Now let f = (f1, f2, . . . , fn)
and define the output function of the network F (·, w, b; f) : R|I| → R

|O| by

Fi(z, w, b; f) := xi+|I|+|H|(z), i = 1, . . . , |O|.
The learning problem can then be formulated as a double optimization problem
defined on both the weights w, b and on the activation functions fi. It is worth
mentioning that while the optimization on the weights of the graph reflects all
important issues connected with the powerful representational properties of deep
nets, the optimal discovery of the activation functions are somewhat related to
the framework of kernel machines. Such an optimization is defined with respect
to the following objective function:

E(f ;w, b) :=
1
2

n∑

i=1

(Pfi, Pfi)

+
N∑

κ=1

V (eκ, yκ, F (eκ, w, b; f)),

which accumulates the empirical risk and a regularization term [14]. Here, we
indicate with (·, ·) the standard inner product of L2(ΩΛ), with P a differential
operator of degree p, while V is a suitable loss function.
1 We use Iverson’s notation: Given a statement A, we set (A) to 1 if A is true and to

0 if A is false.
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Clearly, one can optimize E by independently checking the stationarity with
respect to the weights associated with the neural connections and the stationarity
with respect to the activation functions. Now we show that the stationarity
condition of E with respect to the functional variables f (chosen in a functional
space Xp that depends on the order of differential operator P ) yields a solution
that is very related to classic case of kernel machines that is addressed in [14]. Let
us consider a variation vi ∈ C∞

c (ΩΛ) with vanishing derivatives on the boundary2

of ΩΛ up to order p − 1 and define ϕi(t) := E(f1, . . . , fi + tvi, . . . , fn;w, b).
The first variation of the functional E along vi is therefore ϕ′

i(0). When using
arguments already discussed in related papers [5,12,14] we can easily see that

ϕ′
i(0) =

∫

ΩΛ

(
Lfi(a) +

N∑

κ=1

ακ
i δaκ

i
(a)

)
vi(a) da,

where ακ
i = ∇F V · ∂fi

F and L = P ∗P , P ∗ being the adjoint operator of P . We
notice in passing that the functional dependence of E on f is quite involved,
since it depends on the compositions of linear combinations of the functions fi

(see Fig. 1–(a)). Hence, the given expression of the coefficients ακ
i is rather a

formal equation that, however, dictates the structure of the solution.

3 4

5

1 2 4

42

4

41 4N4κ· · · · · ·

a4

x4 = f4(a4)

(a) (b)

Fig. 1. (a) A simple network architecture; the output evaluated using Eq. (1) is
x5(z1, z2) = f5(w53f3(w31z1 + w32z2 + b3) + w54f4(w41z1 + w42z2 + b4) + b5). (b)
Highlight of the structure of neuron 4 (encircled in the dashed line) of (a): The activa-
tion function f4 of the neuron is computed as an expansion over the training set. Each
neuron 4j , j = 1, . . . , N in the figure corresponds to the term g(a4 − aj

4) in Eq. (3).

The stationarity conditions ϕ′
i(0) = 0 reduce to the following Euler-Lagrange

(E-L) equations

Lfi(a) +
N∑

κ=1

ακ
i δaκ

i
(a) = 0, i = 1 . . . n, (2)

2 We are assuming here that the values of the functions in Xp at the boundaries
together with the derivatives up to order p − 1 are fixed.
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where aκ
i is the value of the activation function on the κ-th example of the

training set. Let g be the Green function of the operator L, and let k be the
solution of Lk = 0. Then, we can promptly see that

fi(a) = k(a) −
N∑

κ=1

ακ
i g(a − aκ

i ) (3)

is the general form of the solution of Eq. (2). Whenever L has null kernel, then
this solution is reduced to an expansion of the Green function over the points
of the training set. For example, this happens in the case of the pseudo dif-
ferential operator that originates the Gaussian as the Green function. If we
choose P = d/dx, then L = −d2/dx2. Interestingly, the Green function of the
second derivative is the rectifier g(x) = − 1

2 (|x| + x) and, moreover, we have
k(x) = mx + q. In this case

fi(a) = θia + νi +
1
2

N∑

κ=1

ακ
i |a − aκ

i |, (4)

where θi = m + 1
2

∑N
κ=1 ακ

i , while νi = q − 1
2

∑N
κ=1 ακ

i aκ
i . Because of the rep-

resentation structure expressed by Eq. (3), the objective function of the original
optimization problem collapses to a standard finite-dimensional optimization on3

Ê(α,w, b) :=E
(
k(a) −

∑

κ

ακg(a − aκ);w, b
)

=R(α) +
N∑

κ=1

V (eκ, yκ, F̂ (eκ, w, b;α));

here R(α) is the regularization term and F̂ (eκ, w, b;α) := F
(
eκ, w, b; k(a) −

∑
κ ακ

i g(a − aκ
i )

)
. This collapse of dimensionality is the same which leads to the

dramatic simplification that gives rise to the theory of kernel machines. Basically,
in all cases in which the Green function can be interpreted as a kernel, this
analysis suggests the neural architecture depicted in Fig. 1, where we can see the
integration of graphical structures, typical of deep nets, with the representation
in the dual space typical of kernel methods.

3 Recurrent Case and Approximation Issues

We can promptly see that the idea behind kernel-based deep networks can be
extended to cyclic graphs, that is to recurrent neural networks. In that case, the
analogous of Eq. (1) is:

3 Here we omit the dependencies of the optimization function from the parameters
that defines k.
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ht+1
i = fi(at+1

i );

at+1
i = bi +

∑

j∈pat→t+1(i)

wijh
t
j +

∑

j∈pat+1(i)

uijx
t+1
j .

Here we denote with xt
i the input at step t and with ht

i the state of the network.
The set pat→t+1(i) contains the vertices j that are parents of neuron i; the cor-
responding arcs (j, i) are associated with a delay, while pat(i) vertices j with
non-delayed arcs (j, i). The extension of learning in KBNN to the case of recur-
rent nets (KBRN) is a straightforward consequence of classic Backpropagation
Through Time.

The actual experimentation of the model described requires to deal with a
number of important algorithmic issues. In particular, we need to address the
typical problem associated with the kernel expansion over the entire training set,
that is very expensive in computational terms. However, we can early realize that
KBNNs only require to express kernel in 1-D, which dramatically simplify the
kernel approximation. Hence, instead of expanding fi over the entire training set,
we can use a number of points d with d 	 N . This means that the expansion in
Eq. (3) is approximated as follows

fi(a) ≈ k(a) −
d∑

k=1

χk
i g(a − ck

i ), (5)

where ck
i and χk

i are the centers and parameters of the expansion, respectively.
Notice that χk

i are replacing ακ
i in the formulation given in Sect. 2. We consider ck

i

and χk
i as parameters to be learned, and integrate them in the whole optimization

scheme.
In the experiments described below we use the rectifier (ReLU) as Green

function (g(x) = − 1
2 (|x| + x)) and neglect the linear terms from both g(x)

and k(x). We can easily see that this is compatible with typical requirements
in machine learning experiments, where in many cases the expected solution
is not meaningful with very large inputs. For instance, the same assumption
is typically at the basis of kernel machines, where the asymptotic behavior is
not typically important. The regularization term R(χ) can be inherited from
the regularization operator P . For the experiments carried out in this paper we
decided to choose the �1 norm4:

R(χ) ≈ λχ

∑

1≤k≤d
1≤i≤n

|χk
i |,

with λχ ∈ R being an hyper-parameter that measures the strength of the regu-
larization.

In a deep architecture, when stacking multiple layers of kernel-based units,
the non-monotonicity of the activation functions implies the absence of guaran-
tees about the interval on which these functions operate, thus requiring them to
4 This choice is due to the fact that we want to enforce the sparseness of χ, i.e. to use

the smallest number of terms in expansion 5.
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be responsive to very heterogeneous inputs. In order to face this problem and
to allow kernel-based units to concentrate their representational power on lim-
ited input ranges, it is possible to apply a normalization [9] to the input of the
function. In particular, given fi(aκ

i ), aκ
i can be normalized as:

âκ
i = γi

(aκ
i − μi)
σi

+ βi;

where

μi =
1
N

N∑

κ=i

aκ
i , σi =

1
N

N∑

κ=i

(aκ
i − μi)2;

while γi and βi are additional trainable parameters.

4 Experiments

We carried out several experiments in different learning settings to investigate
the effectiveness of the KBNN with emphasis on the adoption of kernel-based
units in recurrent networks for capturing long-term dependences. Clearly, KBNN
architectures require to choose both the graph and the activation function. As it
will be clear in the reminder of this section, the interplay of these choices leads
to gain remarkable properties.

4.1 The XOR Problem

We begin presenting a typical experimental set up in the classic XOR benchmark.
In this experiment we chose a single unit with the Green function g(z) = |z|, so
as y = f(w1z1 + w2z2 + b) turns out to be

y =
d∑

k=1

χk|w1z1 + w2z2 + b − ck|

where w1,w2 and b are trainable variables and the learning of f corresponds
with the discovery of both the centroids ck and the associated weights χk. The
simplicity of this learning task allows us to underline some interesting properties
of KBNNs. We carried out experiment by selecting a number of points for the
expansion of the Green function that ranges from 50 to 300. This was done
purposely to assess the regularization capabilities of the model, that is very
much related to what typically happens with kernel machines. In Fig. 2, we can
see the neuron function f at the end of the learning process under different
settings. In the different columns, we plot function f with a different numbers
d of clusters, while the two rows refer to experiments carried out with and
without regularization. As one could expect, the learned activation functions
become more and more complex as the number of clusters increases. However,
when performing regularization, the effect of the kernel-based component of the
architecture plays a crucial role by smoothing the functions significantly.
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Fig. 2. XOR. The plots show the activation functions learned by the simplest KBNN
which consists of one unit only for the 2-dim (2a) and 4-dim (2b) XOR. The first/second
row refer to experiments with without/with regularization, whereas the three columns
correspond with the chosen number of point for the expansion of the Green function
d = 50, 100, 300.

4.2 The Charging Problem

Let us consider a dynamical system which generates a Boolean sequence accord-
ing to the model

ht = xt + [ht−1 − 1> 0] · (ht−1 − 1)
yt = [ht > 0],

(6)

where h−1 = 0, x = 〈xt〉 is a sequence of integers and y = 〈yt〉 is a Boolean
sequence, that is yt ∈ {0, 1}. An example of sequences generated by this system
is the following:

t = 01 2 3 4 5 6 7 8 9 10 . . .

xt = 00 0 4 0 0 0 0 0 0 0 . . .

yt = 00 0 1 1 1 1 0 0 0 0 . . . .
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Notice that the system keeps memory when other 1 bit are coming, that is

t = 01 2 3 4 5 6 7 8 9 10 . . .

xt = 00 0 4 0 2 0 0 0 0 0 . . .

yt = 00 0 1 1 1 1 1 1 0 0 . . .

The purpose of this experiment was that of checking what are the learning capa-
bilities of KBRN to approximate sequences generated according to Eq. 6. The
intuition is that a single KBNN-neuron is capable to charge the state accord-
ing to an input, and then to discharge it until the state is reset. We generated
sequences 〈xt〉 of length L = 30. Three random element of each sequence were
set with a random number ranging from 0 to 9. We compared KBRN, RNN with
sigmoidal units, and recurrent with LSTM cells, with a single hidden unit. We
used a KBRN unit with d = 20 centers to approximate the activation function.
The algorithm used for optimization used the Adam algorithm with λ = 0.001
in all cases. Each model was trained for 10000 iterations with mini-batches of
size 500. Figure 3 shows the accuracy on a randomly generated test set of size
25000 during the training process. The horizontal axis is in logarithmic scale.

Iterations

A
cc

ur
ac

y

KBRN
LSTM
RNN

103 104
20

40

60

80

100

1 10 102

Fig. 3. Charging Problem. The plot shows the accuracy obtained by recurrent nets
with classic sigmoidal unit, LSTM cell, and KBNN unit. The horizontal axis is in
logarithmic scale.

4.3 Learning Long-Term Dependencies

We carried out a number of experiments aimed at investigating the capabilities
of KBRN in learning tasks where we need to capture long-term dependencies.
The difficulties of solving similar problems was addressed in [2] by discussions
on gradient vanishing that is mostly due to the monotonicity of the activation
functions. The authors also provided very effective yet simple benchmarks to
claim that classic recurrent networks are unable to classify sequences where the
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distinguishing information is located only at the very beginning of the sequence;
the rest of the sequence was supposed to be randomly generated. We defined a
number of benchmarks inspired by the one given in [2], where the decision on
the classification of sequence 〈xt〉 is contained in the first L bits of a Boolean
sequence of length T  L. We compared KBRN and recurrent nets with LSTM
cells using an architecture where both networks were based on 20 hidden units,
which makes the two models having approximately the same number of trainable
parameters. We used the Adam algorithm with λ = 0.001 in all cases. Each model
was trained for a maximum of 100, 000 iterations with mini-batches of size 500;
for each iteration, a single weight update was performed. For the LSTM cells, we
used the standard implementation provided by TensorFlow (following [17]). For
KBRN we used a number of centroids d = 100 and the described normalization.

We generated automatically a set of benchmarks with L = 2 and variable
length T , where the binary sequences 〈xt〉 can be distinguished when looking
simply at the first two bits, while the rest is a noisy string with uniformly
random distribution. Here we report some of our experiments when choosing
the first two discriminant bits according to the ∨, ∧, ⊕ and ≡ functions.
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Fig. 4. Capturing Long-Term dependencies. Number of successful trials and average
number of iterations for a classification problem when the ∨, ∧, ⊕ and ≡ functions are
used to determine the target, given the first two discriminant bits.
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For each Boolean function, that was supposed to be learned, and for sev-
eral sequence lengths (up to 50), we performed 5 different runs, with different
initialization seeds. A trial was considered successful if the model was capable
of learning the function before the maximum allowed number of iterations was
reached. In Fig. 4 we present the results of these experiments while in Fig. 5 we
show the learned activation functions.

Each of the four quadrants of Fig. 4 is relative to a different Boolean function,
and reports two different plots. The first one has the sequence length on the x-
axis and the number of successful trials on the y-axis. The second plot has the
sequence length on the x-axis and, on the y-axis, the average number of iterations
required to solve the task. The analysis of these plots allows us to draw a couple
of interesting conclusions: (i) KBRN architectures are capable of solving the
problems in almost all cases, regardless of the sequence length, while recurrent
networks with LSTM cells started to experiment difficulties for sequences longer
than 30, and (ii), whenever convergence is achieve, KBRN architectures converge
significantly faster than LSTM.

In order to investigate with more details the capabilities of KBRN of handling
very long sequences, we carried out another experiment, that was based on the
benchmark that KBRN solved with more difficulty, namely the equivalence (≡)
problem. We carried out a processing over sequences with length 60, 80, 100, 150,
and 200. In Fig. 6, we report the results of this experiment. As we can see, KBRN
are capable of solving the task even with sequences of length 150, eventually
failing with sequences of length 200.

0

-1

-4 4

0

-2

0

-1

-4 4 -4 4 -4 4

0

-2

0

1

0

2

0

2

0

1

0.5

1

0

1.5

0

0.5

-0.5

0.5

0

-1 -2

-1

0

-1

0

1.5

-0.5

1

0

4

-1.5

-0.5
0

0.1

Fig. 5. Activation functions. The 20 activation functions corresponding to the problem
of capturing long-term dependencies in sequences that are only discriminated by the
first two bit (≡ function). All functions are plotted in the interval [−4, 4]. The functions
with a dashed frame are the ones for which |f ′| > 1 in some subset of [−4, 4].
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Fig. 6. Capturing Long-Term dependencies. Number of successful trials and average
number of iterations when facing the ≡ problem with sequences of length ranging from
5 to 200, when the distinguishing information is located in the first two bits.

5 Conclusions

In this paper we have introduced Kernel-Based Deep Neural Networks. The
proposed KBDNN model is characterized by the classic primal representation of
deep nets, that is enriched with the expressiveness of activation functions given
by kernel expansion. The idea of learning the activation function is not entirely
new. However, in this paper we have shown that the KBDNN representation
turns out to be the solution of a general optimization problem, in which both the
weights, that belong to a finite-dimensional space, and the activation function,
that are chosen from a functional space are jointly determined. This bridges
naturally the powerful representation capabilities of deep nets with the elegant
and effective setting of kernel machines for the learning of the neuron functions.

A massive experimentation of KBDNN is still required to assess the actual
impact of the appropriate activation function in real-world problems. However,
this paper already proposes a first important conclusion which involves recurrent
networks, that are based on this kind of activation function. In particular, we
have provided both theoretical and experimental evidence to claim that the
KBRN architecture exhibits an ideal computational structure to deal with classic
problems of capturing long-term dependencies.
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Abstract. Biomedical named entity recognition (BioNER) is the task
of categorizing biomedical entities. Due to the specific characteristics of
the names of biomedical entities, such as ambiguity among different con-
cepts or different ways of referring to the same entity, the BioNER task is
usually considered more challenging compared to standard named entity
recognition tasks. Recent techniques based on deep learning not only
significantly reduce the hand crafted feature engineering phase but also
determined relevant improvements in the BioNER task. However, such
systems are still facing challenges. One of them is the limited availability
of annotated text data. Multi-task learning approaches tackle this prob-
lem by training different related tasks simultaneously. This enables multi-
task models to learn common features among different tasks where they
share some layers. To explore the advantages of the multi-task learning,
we propose a model based on convolution neural networks, long-short
term memories, and conditional random fields. The model we propose
shows comparable results to state-of-the-art approaches. Moreover, we
present an empirical analysis considering the impact of different word
input representations (word embedding, character embedding, and case
embedding) on the model performance.

Keywords: Biomedical named entity recognition · Multi-task
learning · Bidirectional long short-term memory

1 Introduction

Named entity recognition (NER) identifies portions of text and classifies them
into predefined categories, e.g. person name, location, etc. NER is an information
extraction task and is required in many applications such as question answer-
ing systems, information retrieval, co-reference resolution, machine translation,
etc. [3]. Most biomedical text data are available as free, unstructured text. The
increasing amount of medical texts publicly available makes it difficult for physi-
cians to keep themselves up to date. Identifying biomedical concepts such as dis-
ease, chemical, protein, etc in the text data and labelling them with predefined
categories is called biomedical named entity recognition (BioNER).
c© Springer Nature Switzerland AG 2019
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Recent advances in BioNER derive from the application of deep neural net-
works, which help researchers to get rid of the manual feature engineering step.
Deep learning is now the state-of-the-art technique; however, the complexity of
biomedical text data limits the performance of these systems.

Biomedical documents are more complex than normal texts and the names of
the entities show peculiar characteristics. Long multi-word expressions (10-ethyl-
5-methyl-5,10-dideazaaminopterin), ambiguous words (TNF alpha can be used
for both DNA and Protein) [8], spelling alternations (e.g., 10-Ethyl-5-methyl-
5,10-dideazaaminopterin vs. 10-EMDDA) make the BioNER task even more
challenging. BioNER is also an important preliminary task for other tasks like the
extraction of relations between entities (e.g., chemical induced disease relation,
drug-drug interaction, . . . ).

Moreover, annotated biomedical text data are not available in large amounts.
This is another reason why the performance of the BioNER systems available
is not satisfactory. Manually producing such annotated text data for biomedical
entities is a time consuming and expensive job. One solution to such a limita-
tion is to use the multi-task approach where different related tasks are trained
together simultaneously. Such approach has shown significant improvements in
different fields [1]. In this paper, we propose a multi-task model (MTM-CNN)
using convolution neural networks (CNNs), Bidirectional long-short term mem-
ories (BiLSTM), and conditional random fields (CRFs). Furthermore, we have
conducted an empirical analysis of the impact of different word input represen-
tations to our model.

The rest of the paper is organized as follows; Sect. 2 gives a brief background
of the multi-task learning, followed by Sect. 3 where our multi-task model (MTM-
CNN) is discussed. The experimental setup is presented in Sect. 4 which is fol-
lowed by the results and discussion (Sect. 5). Section 6 concludes and presents
possible future research directions.

2 Multi-task Learning

In general, a deep learning model performance highly depends on the amount
of annotated data and it performs better with a large amount of data. Unfortu-
nately, in different biomedical tasks, only a limited quantity of annotated text
data is available and in this case deep learning models are unable to generalize
well. Moreover, manually annotating new data is a time consuming job. This
issue can be reduced by using two methods: transfer learning and multi-task
learning.

Transfer learning is a kind of knowledge transfer from one domain (auxiliary
task) to another domain (main task). In transfer learning, the model is partially
trained on an auxiliary task. The pre-trained model is then reused on the main
task. This enables the model to fine tune the weights of the layers which are
learned during the training on the auxiliary task. Such method helps the model
to generalize well on the main task. This implies learning generalized features
among auxiliary and main tasks. More specifically, this method learns and trans-
fers shallow features from one domain to another domain [12]. Retraining on the
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main task can involve the addition of new layers or the freezing of some layers in
the original model. The weights of those layers which are frozen are not updated
during the training phase on the main task [10]. However, to decide which layers
should be kept frozen or trainable is an empirical problem.

Contrary to transfer learning, multi-task learning (MTL) is an approach
where different related tasks are trained simultaneously. Unlike transfer learn-
ing, multi-task learning optimizes the model under construction concurrently. In
MTL approaches, some of the layers in the model are shared among different
tasks while keeping some layers task-specific. Training jointly on related tasks
helps the multi-task model to learn common features among different tasks by
using shared layers [2]. This also helps model to generalize well for the related
tasks. The task-specific layers, usually the lower layers, learn features that are
more related to the current task. Training related tasks together helps the model
to optimize the value of the parameters. Moreover, the MTL lowers the chances
of overfitting as the model has to learn the common representation among all
tasks. MTL has been widely adopted in many different domains [1,12].

Crichton et al. [5] proposed a multi-task model (MTM) based on CNN to
perform BioNER. However, they only focused on the word level features ignoring
the character level ones. Although word level features give much information
about the entities, character level features help to extract common sub-word
structures among the same entities. Furthermore, depending solely on the word
level features can lead to out-of-vocabulary problems when a specific word is
not found in the pre-trained word embedding. Wang et al. [17] also performed
BioNER using different multi-task models. They found that the MTM with the
word level features and extraction of the character level features using BiLSTM
enhances performance of the model. They concluded that the character level
feature should be considered for the BioNER task.

3 Our Proposal

In this paper, we propose a multi-task model with a Convolution neural network
(MTM-CNN) that uses the MTL approach as shown in Fig. 1. Our MTM-CNN
model differs from the model presented by Wang et al. [17] in three ways. First,
we use the orthographic-level representation of a word in our model. Many stud-
ies have exploited word’s orthographic-level information for their models [6,9,15].
Providing some explicit orthographic-level information of the word to the model
can enhance the model performance where deep learning models implicitly learn
orthographic-level features. This can also help CRF whose output highly depends
on hand-crafted features [11]. Thus, we believe that considering the orthographic-
level representation of the word will help our model to extract more information
about the entities. In this paper, we are referring to the explicit orthographic-
level features as case-level features and we use the two terms interchangeably.
In this work the orthographic-level (case-level) feature includes information on
the structure of the word, i.e. either the word is starting with a capital letter
followed by small letters or all the letters in the word are capital or contain
digits, etc.
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Secondly, we use CNN instead of BiLSTM, differently to the Wang et al.
[17], to extract features at a character level. Many of the approaches have used
CNN at a character level [4,14] due to its finer ability of feature extraction. CNN
learns global level features from local level ones. This enables CNN to extract
more hidden features. Thirdly, we implement stacked layers of BiLSTMs. Using
stacked BiLSTMs helps hidden states of BiLSTM to learn the hidden structure
of the data presented at different time stamps. This will help BiLSTM to learn
features at a more abstract level.

As said earlier, we implemented two stacked BiSLTMs where the first is
shared among all the tasks while the lower is task specific. In particularly, the
lower layers in our proposed MTM-CNN model are task specific. Thus, for the
specific task, both shared layers and layers belonging to that specific task are
activated. Finally, we use CRFs for output labeling. CRFs have the ability to
tag the current token by considering neighboring tags at a sentence level [9].
Yang et al. [18] performed experiments comparing CRF and Softmax and found
out that CRF produces better results compared to Softmax.

An alternative training approach was adopted for the training phase. Let us
suppose we have D1,D2, ... , Dt training sets, related to the T1, T2, ... , Tt tasks
respectively. During the training phase, a training set Di is selected randomly
and both shared layers and the ones specific to the corresponding task Ti are
activated. Every task has its own optimizer so during training only the one
specific to the task Ti is activated and the loss function related to it is optimized.
It means that the parameters of the shared layers and of the task-specific ones
are changed during the training of the specific task. The optimizing parameters
of the shared layers for all the tasks help the model to find common features
among different tasks.

4 Experiments

We performed experiments on the 15 datasets which are also used by Crichton
et al. [5] and Wang et al. [17]. The bio-entities in these datasets are Chemical,
Species, Cell, Gene/Protein, Cell Component, and Disease1. Brief descriptions
of datasets, taken from [5], are given in Table 1. Each dataset contains separate
training, development, and test sets. In addition, the name of the entities and
their distribution in the dataset (percentage wise) is reported in the Table 2. The
values in the table represent the percentage of an individual entity, the O-outside
tag is not included, contributing in the train/dev/test file. We followed the same
experimental setup adopted by Wang et al.2, using both train and development
set data for training the model. Therefore, the table contains the cumulative
distribution of the entities for both the training and development set.

Moreover, to represent words, we use a domain-specific pre-trained word
embedding since the general one can cause a high rate of out-of-vocabulary
1 The datasets can be found at the following link https://github.com/cambridgeltl/

MTL-Bioinformatics-2016.
2 https://github.com/yuzhimanhua/Multi-BioNER.

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/yuzhimanhua/Multi-BioNER
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words. In particular, we employ the WikiPubMed-PMC word embedding which
is trained on a large set of the PubMedCentral(PMC) articles and PubMed
abstracts as well as on English Wikipedia articles [7]. On the other hand, char-
acter embedding is initialized randomly while orthographic (case) embedding is
represented by the identity matrix where 1 in the diagonal represents the pres-
ence of the orthographic information of a word. Moreover, we analyse the effect
of the different word input representations (word level, char level, and case level)
of a word on the performance of our proposed architecture.

5 Results and Discussion

As a first step, we performed experiments using the single task model (STM).
Table 3 shows the comparison between the results of MTM and its counterpart
STM. It can be seen that for most of the datasets they have improved markedly
by using MTM, showing its importance in BioNER. The performance decrease
noted in the MTM-CNN shows that some of the datasets contain overlapping
entities so they should not be used together. One solution to such problem can be
to train the MTM-CNN with different combinations of datasets. In our exper-
iments, we performed the training of the MTM-CNN with all datasets. Fur-
thermore, Table 4 shows the comparison between the results of different state-
of-the-art STMs. It can be seen that on most datasets our STM yields better
performance compared to others while the model proposed by Wang et al. [17]
performed well on four of the datasets. On the other hand, the model proposed
by Crichton et al. [5] is unable to show any improvement on any dataset.

Table 5 shows the comparison of different MTM models. It can be seen that
for all the datasets our MTM-CNN model outperforms the one proposed by
Crichton et al. [5] with notable difference of F1-score up to 4%. Whereas com-
pared to the multi-task model presented by Wang et al. [17], it attained better
results for most datasets and for some of them results are comparable.

We extended our work for MTM-CNN and examined the effect of differ-
ent word input representations on the performance of MTM-CNN. Therefore,
MTM-CNN is run with different input representations. We name these models
MTM-CNN, MTM-CNN 1, and MTM-CNN 2. MTM-CNN contains word-level,
character-level, and case-level representations and is our model. MTM-CNN 1
contains word-level and char-level input representations whereas MTM-CNN 2
contains word-level and case-level input representations. Table 6 reports the aver-
age F1-score of each model (run for 10 times). For most datasets MTM-CNN
and MTM-CNN 1 outperformed MTM-CNN 2 while MTM-CNN 2 is able to
show improvements only for BC2GM, CRAFT, and Ex-PTM. Thus we can say
that our model can also produce better results with only word and char level
information. However, simply using only orthographic (case) level information
along with word-level information causes performance degradation as excluding
char level information causes out-of-vocabulary problem.

Finally, we also modified our MTM model by using Softmax instead of CRF
to find out the impact of Softmax and CRF on our model. Table 7 shows results
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Table 1. Datasets description [5].

Dataset Contents Entity counts

AnatEM Anatomy NE 13,701

BC2GM Gene/Protein NE 24,583

BC4CHEMD Chemical NE 84,310

BC5CDR Chemical,Disease NEs Chemical:15,935; Disease:12,852

BioNLP09 Gene/Protein NE 14,963

BioNLP11EPI Gene/Protein NE 15,811

BioNLP11ID 4 NEs Gene/Protein:6551; Organism:3471
Chemical:973; Regulon-operon:87

BioNLP13CG 16 NEs Gene/Protein:7908; Cell:3492;
Chemical:2270; Organism:1715; Tissue:
587;
Multi-tissue structure:857;
Amino acid:135; Cellular compo-
nent:569;
Organism substance: 283; Organ: 421;
Pathological formation:228;
Immaterial anatomical entity:102;
Organism subdivision:98;
Anatomical system:41; Cancer:2582;
Developing anatomical structure:35

BioNLP13GE Gene/Protein NE 12,057

BioNLP13PC 4 NEs Gene/Protein:10,891; Chemical:2487;
Complex:1502; Cellular
component:1013

CRAFT 6 NEs SO:18,974; Gene/Protein:16,064;
CL:5495; Taxonomy:6868; Chemi-
cal:6053;
GO-CC:4180

Ex-PTM Gene/Protein NE 4698

JNLPBA 5 NEs Gene/Protein:35,336; DNA:10,589;
Cell Type:8639l; Cell Line:4330;
RNA:1069

Linnaeus Species NE 4263

NCBI-Disease Disease NE 6881

comparison for softmax and CRF. It can be seen that using Softmax at output
layer it is only able to obtain good results for the linnaeus dataset compared to
the model with CRF, while for the rest of the datasets, it is unable to improve
the results.

To statistically evaluate the performance of the proposed model, we applied
Friedman test which is used when three or more comparisons are drawn [16,19].



438 T. Mehmood et al.

Table 2. Entities percentage distribution in Training+Development and test dataset

Dataset Entities name Train+Dev Set Test set

AnatEM Anatomy 7.241 7.865

BC2GM Gene 10.505 10.526

BC4CHEMD Chemical 7.284 7.162

BC5CDR Chemical
Disease

6.061
5.971

5.622
5.740

BioNLP09 Protein 9.573 10.274

BioNLP11EPI Protein 7.662 7.840

BioNLP11ID Reulon-operon
Chemical
Organism
Protein

0.047
7.036
4.421
4.575

0.131
0.700
3.801
4.134

BioNLP13CG Gene or gene product
Cancer
Amino acid
Simple Chemical
Organism
Cell
Tissue
Organ
Multi tissue structure
Cellular component
Pathological formation
Immaterial anatomical
Organism subdivision
Anatomical system
Developing anatomical structure
Organism substance

9.975
2.423
0.088
2.631
1.462
4.464
0.579
0.262
0.818
0.479
0.191
0.075
0.060
0.036
0.018
0.197

9.236
2.896
0.123
2.550
1.209
3.987
0.559
0.328
0.881
0.472
0.241
0.078
0.091
0.049
0.040
0.238

BioNLP13GE Protein 8.100 7.781

BioNLP13PC Gene or gene product
Simple chemical
Complex
Cellular component

13.447
3.272
3.190
0.889

13.268
3.571
3.232
0.879

CRAFT SO
GGP
Taxon
CHEBI
CL
GO

4.330
4.240
1.280
1.210
1.330
0.960

3.860
4.320
1.160
1.250
1.190
0.990

Ex-PTM Protein 7.967 7.616

JNLPBA Protein
DNA
Cell type
Cell line
RNA

11.190
5.130
3.140
2.780
0.504

9.740
2.810
4.860
1.470
0.300

Linnaeus Species 1.153 1.350

NCBI-Disease Disease 8.220 8.356

Friedman test ranks the values in the column and uses these rank values to
find the significance of the data. We found that the results produced by the
proposed model and its variants are statistically significant. The total ranks for
each dataset is given in the Table 8. We further performed post-hoc Namenyi
test for pairwise comparison of the models [13]. Figure 2 shows the post-hoc
pairwise analysis of the models where we can see that the result produced by
the MTM-CNN-Softmax model is statistically significant with other models with
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Table 3. STM vs MTM-CNN

Datasets STM MTM-CNN

AnatEM 85.89 86.99

BC2GM 80.90 80.82

BC4CHEMD 88.60 87.39

BC5CDR 85.66 87.85

BioNLP09 87.03 88.74

BioNLP11EPI 81.48 84.75

BioNLP11ID 83.21 87.65

BioNLP13CG 81.27 84.25

BioNLP13GE 73.36 79.82

BioNLP13PC 86.33 88.84

CRAFT 83.84 83.15

Ex-PTM 72.70 80.95

JNLPBA 74.48 74.05

linnaeus 87.38 87.79

NCBI-disease 84.11 85.66

Table 4. Single task model results comparison

Datasets Wang et al. Crichton et al. STM

AnatEM 85.30 81.55 85.89

BC2GM 80.00 72.63 80.90

BC4CHEMD 88.75 82.95 88.60

BC5CDR 86.96 83.66 85.66

BioNLP09 84.22 83.90 87.03

BioNLP11EPI 77.67 77.72 81.48

BioNLP11ID 74.60 81.50 83.21

BioNLP13CG 81.84 76.74 81.27

BioNLP13GE 69.30 73.28 73.36

BioNLP13PC 85.46 80.61 86.33

CRAFT 81.20 79.55 83.84

Ex-PTM 67.66 68.56 72.70

JNLPBA 72.17 69.60 74.48

linnaeus 86.94 83.98 87.38

NCBI-disease 83.92 80.26 84.11

pvalue < 0.001 (NS represents Not Significant). However, rest of the models are
statistically not significant with each other. We further extended the analyses
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Table 5. Results comparison for different multi-task models

Datasets Wang et al. Crichton et al. MTM-CNN

AnatEM 86.04 82.21 86.99

BC2GM 78.86 73.17 80.82

BC4CHEMD 88.83 83.02 87.39

BC5CDR 88.14 83.90 87.85

BioNLP09 88.08 84.2 88.74

BioNLP11EPI 83.18 78.86 84.75

BioNLP11ID 83.26 81.73 87.65

BioNLP13CG 82.48 78.90 84.25

BioNLP13GE 79.87 78.58 79.82

BioNLP13PC 88.46 81.92 88.84

CRAFT 82.89 79.56 83.15

Ex-PTM 80.19 74.90 80.95

JNLPBA 72.21 70.09 74.05

linnaeus 88.88 84.04 87.79

NCBI-disease 85.54 80.37 85.66

Table 6. Results comparison for all MTM-CNN models

MTM-CNN MTM-CNN 1 MTM-CNN 2

word, char, case word, char word, case

AnatEM 86.99 86.86 86.43

BC2GM 80.82 81.00 81.01

BC4CHEMD 87.39 87.66 87.21

BC5CDR 87.85 88.08 87.93

BioNLP09 88.74 88.67 88.64

BioNLP11EPI 84.75 85.17 84.66

BioNLP11ID 87.65 87.28 87.01

BioNLP13CG 84.25 84.39 84.09

BioNLP13GE 79.82 80.44 80.42

BioNLP13PC 88.84 89.02 88.59

CRAFT 83.15 83.12 83.94

Ex-PTM 80.95 80.83 80.97

JNLPBA 74.05 73.93 73.99

linnaeus 87.79 87.45 87.88

NCBI-disease 85.66 85.38 85.07
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Table 7. Results comparison for our multi-task model with CRF and Softmax at the
output layer

Datasets MTM-CNN MTM-CNN-Softmax

AnatEM 86.99 85.84

BC2GM 80.82 78.71

BC4CHEMD 87.39 84.40

BC5CDR 87.85 86.78

BioNLP09 88.74 88.00

BioNLP11EPI 84.75 83.29

BioNLP11ID 87.65 87.34

BioNLP13CG 84.25 82.98

BioNLP13GE 79.82 79.69

BioNLP13PC 88.84 87.79

CRAFT 83.15 80.98

Ex-PTM 80.95 79.60

JNLPBA 74.05 71.52

linnaeus 87.79 88.37

NCBI-disease 85.66 84.17

Table 8. Friedman test ranks for all datasets

MTM-CNN MTM-CNN 1 MTM-CNN 2 MTM-CNN-Softmax

AnatEM 34 32 21 13

BC2GM 28 31 31 10

BC4CHEMD 32 32 26 10

BC5CDR 26 33 31 10

BioNLP09 32.5 27.5 25 15

BioNLP11EPI 26 37 27 10

BioNLP11ID 31 24 19 26

BioNLP13CG 32 32 25 11

BioNLP13GE 21 32 26 21

BioNLP13PC 29 35.5 25.5 10

CRAFT 23.5 29 37.5 10

Ex-PTM 30 27 28 15

JNLPBA 34 28 28 10

linnaeus 24 18 27 31

NCBI-disease 36 28 22 14

Total Ranks 439 446 399 216

Avg Ranks r̄p 2.92 r̄q 2.97 r̄r 2.66 r̄s 1.44
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Fig. 2. Posthoc pairwise analysis with Nemenyi of FriedmanTest

of the post-hoc Namenyi test to observe the models that are statistically better
from one another. Figure 3 shows the graphical representations where we can
see that MTM-CNN, MTM-CNN 1, MTM-CNN 2, are statistically better than
MTM-CNN-Softmax.

Fig. 3. Graphical representation of the Friedman test

6 Conclusion and Future Work

In this paper we showed that BioNER performance can be drastically improved
by using a multi-task approach. The results depict that the multi-task approach
can be a good solution when not enough data are available to perform BioNER.
We also performed an empirical analysis of different input representations of
word input to examine their impact to our model. For future work, we will extend
it using attention mechanisms since a number of studies have shown significant
advantages of attention mechanisms over traditional LSTMs. Moreover, we will
also expand our multi-task model to perform the relation extraction task in which
BioNER can be used as an auxiliary task while keeping the relation extraction
task as the main task.
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Abstract. Discovering the effect of the simultaneous assumption of
drugs is a very important field in medical research that could improve
the effectiveness of healthcare and avoid adverse drug reactions which
can cause health problems to patients. Although there are several phar-
macological databases containing information on drugs, this type of
information is often expressed in the form of free text. Analyzing sen-
tences in order to extract drug-drug interactions was the objective of
the DDIExtraction-2013 task. Despite the fact that the challenge took
place six years ago, the interest on this task is still active and several
new methods based on Recurrent Neural Networks and Attention Mech-
anisms have been designed. In this paper, we propose a model that com-
bines bidirectional Long Short Term Memory (LSTM) networks with the
Self-Interaction Attention Mechanism. Experimental analysis shows how
this model improves the classification accuracy reducing the tendency to
predict the majority class resulting in false negatives, over several input
configurations.

1 Introduction

Healthcare professionals constantly study the risks of taking medications. This
discipline, called pharmacovigilance, focuses on side effects and adverse drug
reactions (ADR) in order to minimize the risk of health issues that may affect
patients. With the rise of this discipline, pharmacological databases like Drug-
Bank or IUPHAR/BPS were created. Moreover, starting from 1997 the scientific
literature database MedLine is free and accessible via its search engine, PubMed,
providing abstracts and references concerning healthcare related topics.

In order to use these data for clinical purposes, we need to ensure the quality
and the consistency of the information about ADR. With the increase of phar-
macovigilance publications, keeping these databases updated and trustworthy
can be a very complex and demanding issue for humans who would be required
to read a huge amount of texts.

The DDIExtraction-2013 task [25] is a machine learning challenge that
addresses these issues. In order to build or to control pharmacological knowl-
edge bases, it is necessary to define a machine learning model that extracts
c© Springer Nature Switzerland AG 2019
M. Alviano et al. (Eds.): AI*IA 2019, LNAI 11946, pp. 445–460, 2019.
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relations between drugs. In particular, the goal is to find and classify Drug-Drug
Interactions (DDIs), i.e. potential adverse drug reactions that occur when two
drugs are assumed simultaneously by a patient. DDIs have to be extracted from a
corpus of free-text sentences, combining machine learning with natural language
processing (NLP) techniques.

In the last few years, deep neural networks obtained great results over text
data. Word embedding techniques and neural network based algorithms like
Word2Vec [18] and Glove [21] are the typical way to represent words. Similarly,
Recurrent Neural Networks (RNN) and Long Short Term Memory networks
(LSTM) are now the state-of-the-art technology for most of natural language
processing tasks like text classification or relation extraction. These techniques
process the entire sequence of words, allowing the model to capture dependencies
among words and keeping the context information for the whole sentence.

Since in a relation extraction task some words are more important than oth-
ers, the attention mechanism scores the relevance of the words for classification
purpose [10] creating a context representation vector. The main idea behind the
attention mechanism [1] is that the model “pays attention” only to the parts
of the input where the most relevant information is present. There are several
types of attention mechanisms, like Global Attention, which considers all the
words for building the context, Local Attention that relies only on a subset of
words [16], or Self-Attention [27] into which multiple attention mechanisms are
applied in parallel, trying to discover every connection between pair of words.

This is the main goal also of the self-interaction mechanism [34] that applies
attention with a different weight vector for each word in the sequence, producing
a matrix that represents the influence between all word pairs. We consider this
information very meaningful, especially in a challenge like this one where we
need to discover connections between pairs of words.

In this paper we show how self-interaction attention improves the results in
the DDI-2013 task, in particular reducing the tendency to predict the majority
class, which is the main issue for this challenge due to the strong dataset unbal-
ance. We also compare our approach with the other state-of-the-art methods.

2 Related Work

The best performing teams in the DDI-2013 original challenge [25] used SVM
[3]. In particular, in [5] the information from the global context of the sentence
and the local context of the two drug mentions in order is exploited defining a
new kernel. This work also deals with the skewness of the dataset with different
techniques: filtering instances from the training-set, removing sentences with two
drug mentions with the same name and exploiting negations.

More recently, deep learning techniques have proved to be the new state of
the art. Even for this task, in the last two years several papers have applied
Convolutional Neural Networks (CNN) or Recurrent Neural Networks (RNN).
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2.1 CNN Approaches

Authors in [22] propose a Multichannel Convolutional Neural Network into
which each sentence is represented by five stacked matrices. Given a sentence of
m words and a word embedding representation of s real numbers, the matrix
M ∈ R

m×s constitutes a channel. This work considers five different word embed-
ding representations and builds a five-channels input which is passed to a convo-
lutional layer followed by a max-pooling [20,26] layer and a last fully connected
layer with softmax activation [8, Chapter 6.2.2].

In [15] is defined a single channel model with one convolutional layer with
tanh activation and a max-pooling layer. The simplicity of the model is balanced
by a more thorough negative filtering that excludes drug mention pairs with the
same name, if one is the abbreviation, acronym or a special case (like, for example
“Drug1 such as Drug2”) of the other or if they appear in a coordinate structure.

2.2 RNN and Attention-Based Models

Recurrent Neural Networks (RNN) and their ability to analyze sequences of data
are the main concepts contained in several works [19]. In particular, Long Short
Term Memory (LSTM) units in RNN allow to keep and learn context informa-
tion through sentences. Moreover, LSTM neural networks can lose important
contextual information if the sequence is particularly long and complicated [23].
The main response to this issue is to develop an attention-based model [1,16],
scoring the importance of sequence segments for the machine learning task. In
this challenge, the attention mechanism assigns weights to the most influen-
tial words, i.e. the ones that indicate the presence or the absence of a relation
between two drugs. For the DDI-2013 task, LSTM and Attention-based models
obtain the best results, outperforming SVM and CNN methods. In this section
we present a selection of works following this approach.

The work presented in [11] is proposed a double LSTM. The sentences are
processed by two different bidirectional LSTM layers: one followed by a max-
pooling layer and the other one by a custom made attention-pooling layer that
assigns weights to words. The results of these two paths are concatenated and
followed by a fully connected layer with softmax activation function.

The work in [32] uses a multi-path LSTM neural network. Three parallel
bidirectional LSTM layers process the sentence sequence and a fourth one pro-
cesses the shortest dependency path between the two candidate drugs in the
dependency tree. The output of these four layers is merged and handled by
another bidirectional LSTM layer and passed to a softmax classifier. In this
work, the attention mechanism assigns scores to the words with respect to the
two candidate drugs before the sequence is treated by the LSTM layers (“input
attention”).

Similarly, in [35] the attention is directly applied to word vectors, creating
a “candidate-drugs-oriented” input which is processed by a single LSTM layer.
This mechanism, called “drug-oriented input attention”, calculates the relevance
degree between each word and the two drug mentions using the scalar product as
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score function. Given the word wi and the two drug mentions (with j ∈ {1, 2})
and their vector representation uwi

and udj
, this work calculates the relevance

degree αj
i as the scalar product between uwi

and udj
divided by the length of the

sentence and then the softmax function is applied. αi is defined ad the average
of the contributions α1

i and α2
i . The new “candidate-drugs-oriented input” is

obtained as the element-wise multiplication between the original representation
uwi

and αi.
The work in [30] uses a RNN with Gated Recurrent Units (GRU) [4] instead

of LSTM units, followed by a traditional attention mechanism, and it exploits
information contained in other sentences with a custom made sentence attention.

While self-attention [27] is quite popular for this task [6,13], to the best of
our knowledge the self-interaction mechanism, which shares the main concept of
discovering the influence between all word pairs, has not been tried in a relation
extraction task yet.

3 Dataset Description

This dataset was released for the shared challenge SemEval 2013 - Task 9 [25]
and contains annotated documents from the biomedical literature. In particular,
there are two different sources: abstracts from MedLine research articles and
texts from the pharmacological database DrugBank.

Every document is divided into sentences and, for each sentence, the dataset
provides annotations of every drug mentioned. The task requires to classify all
the possible pairs of drugs that can be found in the given sentences. If the sen-
tence mentions only two drugs, there is only one pair but, in general, if the
sentence mention n drugs, there are

(
n
2

)
instances, provided with their classi-

fication value. There are five different classes: unrelated: the text states that
there is no relation between the two drugs mentioned; effect: the text describes
the effect of the drug-drug interaction; advise: the text gives a recommenda-
tion to avoid the simultaneous assumption of two drugs; mechanism: the text
describes an anomaly of the absorption of a drug, if assumed simultaneously
with another one; int: the text states a generic interaction between the drugs
not giving further details.

4 Pre-processing

The pre-processing phase exploits the “en core web sm” model of spaCy1, a
Python tool for Natural Language Processing, and it is composed by the follow-
ing steps:

Tokenization and PoS tagging: each sentence is divided into tokens. If
a drug name is composed by more than one token (for example, “TNF antag-
onist”), these tokens are merged into a single one. Each token is also labelled
with a part-of-speech tag by spaCy.
1 https://spacy.io.

https://spacy.io
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Substitution: given a pair of drug mentions in a sentence, the corresponding
tokens are replaced by the standard terms PairDrug1 and PairDrug2. In the
particular case when the pair is composed by two mentions of the same drug,
these two drug names are replaced by NoPair. Every other drug mentioned in
the sentence is replaced with the generic term Drug.

Shortest dependency path: spaCy analyzes the grammatical structure
of the sentence and provides its dependency tree, with tokens as nodes and
dependency relations between the words as edges. Every edge is also labelled
with a dependency tag, such as neg for negations or dobj for subjects. Then,
we calculate the shortest path in the dependency tree between PairDrug1 and
PairDrug2.

4.1 Negative Instance Filtering

The DDI-2013 dataset contains a large amount of “negative instances”, i.e.
instances that belong to the unrelated class. In an unbalanced dataset, machine
learning algorithms are more likely to classify a new instance over the majority
class, leading to poor performance for the minority classes [28]. In order to avoid
that, and given that previous works on this dataset [5,11,35] have demonstrated
a positive effect of reducing the number of negative instances, we have filtered
out some instances from the training-set relying only on the structure of the
sentence.

First of all, since the purpose of this task is to find relations between pairs of
different drugs, if the two drug mentions have the same name or they differ only
for the final character (for example “antidepressant” and “antidepressants”) we
can automatically label such instance as negative.

In addition to this case, we can filter out a candidate pair if the two drug
mentions appear in coordinate structure, like in a list. For example, in the sen-
tence “The majority of patients in RA clinical studies received one or more of
the following concomitant medications with ORENCIA: MTX, NSAIDs, corti-
costeroids, TNF blocking agents, azathioprine, gold, hydroxychloroquine, lefluno-
mide, sulfasalazine, and anakinra” the drug names in italic are in a coordinate
structure, so we can apply the negative filtering for all the possible pairs between
two drugs in this list.

While other works like [11] and [15] apply custom-made rules for this dataset,
such as filtering for particular regular expressions involving the two drug men-
tions, our choice is to keep the pre-processing phase as general as possible, with
the purpose of defining an approach that can be applied for other relation extrac-
tion tasks. In order to filter the drug mentions that appear in coordinate struc-
tures avoiding dataset oriented techniques, we exploit the dependency tree check-
ing the shortest dependency path between the two drug mentions: if it contains
only drug names or the word “and”, the instance can be filtered out.

These rules are applied to both the training set and the test set. In the
first case, negative instances with two drug mentions having the same name or
in a coordinate structure are not considered as training examples. Instead, no
negative instances are excluded from the test-set: all those instances with two
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drug mentions having the same name or in a coordinate structure are classified
as unrelated.

4.2 Offset Features

The representation of each token (i.e. each word) in the sentence includes four
features: the word itself, its PoS tag and two offset features D1 and D2 [31]. Given
a word W in the sentence, D1 is calculated as the distance (in terms of words)
from the first drug mention. Similarly, D2 is calculated as the distance from the
second drug mention. For example, in the sentence “Intravenous PairDrug1 was
shown to double the bioavailability of oral PairDrug2”, the word “shown” has
D1 equals to 2 and D2 equals to −7.

5 Model Description

In this section we present the LSTM based model, the self-attention mechanism
and how it is used for relation extraction.

5.1 Embedding

In order to build the input for our neural network model, each feature has to be
mapped into a vector of real numbers [14].

Each word in our corpus is represented with a vector of length 200. These
vectors are obtained with a Word2Vec [18] fine-tuning. We initialized a Word2Vec
model with the vectors obtained by the authors of [17] the same algorithm over
PubMed abstracts and PMC texts, and trained our Word2Vec model using the
DDI-2013 corpus.

PoS tags are represented with vectors of length 20. These are obtained apply-
ing the Word2Vec method to the sequence of PoS tags in our corpus.

The offset features are represented with two vectors of length 3. These vectors
are obtained using an embedding layer and they are trained contextually with
the entire model.

5.2 Bidirectional LSTM Layer

A Recurrent neural network is a deep learning model for processing sequen-
tial data, like natural language sentences. Its issues with vanishing gradient are
avoided using LSTM cells [7,9]. Given x1, x2 . . . xm, ht−1 and ct−1 where m is
the length of the sentence and xi ∈ R

d is the vector obtained by concatenating
the embedded features, ht−1 and ct−1 are the hidden state and the cell state of
the previous LSTM cell (h0 and c0 are initialized as zero vectors), new hidden
state and cell state values are computed as follows:



Applying Self-interaction Attention for Extracting Drug-Drug Interactions 451

ĉt = tanh(Wc[hti , xt] + bc)
it = σ(Wi[hti , xt] + bi)
ft = σ(Wf [hti , xt] + bf )
ot = σ(Wo[hti , xt] + bo)
ct = it ∗ ĉt + ft ∗ ct−1

ht = tanh(ct) ∗ ot

with σ being the sigmoid activation function and ∗ denoting the element wise
product. Wf , Wi, Wo, Wc ∈ R

(N+d)×N are weight matrices and bf , bi, bo, bc ∈ R
N

are bias vectors. Weight matrices and bias vectors are randomly initialized and
learned by the neural network during the training phase. N is the LSTM layer
size and d is the dimension of the feature vector for each input word. The vectors
in square brackets are concatenated.

Bidirectional LSTM not only computes the input sequence in the order of
the sentence but also backwards [24]. Hence, we can compute hr using the same
equations described earlier but reversing the word sequence. Given ht computed
in the sentence order and hr

t in the reversed order, the output of the t bidirec-
tional LSTM cell hb

t is the result of the concatenation: hb
t = [ht, h

r
t ]

5.3 Sentence Representation and Attention Mechanism

The LSTM layers produce, for each word input wi, a vector hi ∈ R
n which is

the result of computing every word from the start of the sentence to wi. Hence,
given a sentence of length m, hm can be considered as the sentence representation
produced by the LSTM layer. So, for a sentence classification task, hm can be
used as the input to a fully connected layer that provides the classification.
LSTM neural networks have difficulties preserving dependencies between distant
words [23] and, especially for long sentences, hm may not be influenced by the
first words or may be affected by less relevant words. The attention mechanism
[1,10] deals with these problems taking into consideration each hi, computing
weights αi for each word contribution:

ui = tanh(Wahi + ba)
αi = softmax(vTui) = exp(vTui)/

∑n
k=1 exp(vTuk)

where Wa ∈ R
N×N , ba ∈ R

N and v ∈ R
N are trainable parameters of attention

mechanism.
The attention mechanism outputs the sentence representation, also called the

context vector :

s =
∑m

i=1
αihi
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Fig. 1. Model 1

5.4 Model 1

As proposed by [34], self-interaction mechanism uses multiple vi for each word
wi instead of using a single one. This way, we can extract the influence (called
action) between the action controller wi and the rest of the sentence, i.e. each
wk for k ∈ {1,m}. The action of wi is calculated as follows:

si =
∑m

k=1 αi,kui

αik = exp(vT
k ui)/

∑m
j=1 exp(vT

j ui)

with ui defined in the same way as the traditional mechanism.
In order to obtain also in this case a context vector representing the sentence,

in [34] each si is aggregated into a single vector s as its average, maximum or
even applying another standard attention layer. In our model we choose to avoid
any pooling operations and to concatenate instead each si, creating a flattened
representation [6] and passing it to the classification layer.

The model designed (see Fig. 1) and tested for the DDI-2013 Relation Extrac-
tion includes the following layers: three parallel embedding layers: one with
pre-trained word vectors, one with pre-trained PoS tag vectors and one that cal-
culates the embedding of the offset features; two bidirectional LSTM layers
that process the word sequence; the self-interaction attention mechanism;
a fully connected layer with 5 neurons (one for each class) and softmax acti-
vation function that provides the classification.

Our work differs from the others in these aspects: the independent neg-
ative filtering that uses only the dependency tree, avoids dataset-oriented
techniques and can be applied for other relation extraction tasks; the self-
interaction attention mechanism with its ability to represent the influence
between each pair of words; and the flattened representation for avoiding
any pooling operations and preserving all the information.
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Fig. 2. Model 2

5.5 Model 2

This model is composed by two channels in parallel (see Fig. 2): the first one
replicates exactly the first model, the second is composed by one LSTM layer
and a subsequent self-interaction mechanism. This channel does not process the
entire sequence but only the words belonging to the Shortest Dependency Path
[32], alongside with PoS tags. Also, for this second model the edge labels that
represent grammatical relations between words are embedded in vectors of size
10. The output of the two channels is concatenated and forms the input for the
fully-connected softmax layer.

6 Results and Discussion

6.1 Experimental Settings

Our models are implemented using Keras library with Tensorflow backend. We
perform a simple random hyper-parameter search [2] in order to optimize the
learning phase and avoiding overfitting, using a subset of sentences as validation
set. This is the configuration of the model: LSTM layer size: 80, dropout : 0.45,
recurrent dropout : 0.48, optimization algorithm: Adam, learning rate: 0.0001. For
Model 2, considering that the shortest dependency path input is shorter than
the entire sentence, the size of the LSTM layer is 40.

6.2 Evaluation

We tested our two models with different input configurations: using only word
vectors, word and PoS tag vectors or adding also the offset features. For the
second model, we tested also the inclusion of the edge labels embedding.
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Table 1. Overall recall (%) comparison with different models and input configurations.
The asterisk denotes statistically significant results according to the Wilcoxon test.

Model: Input No Attention Attention

1: Word 64.44 69.68*

1: Word+Tag 65.37 64.96

1: Word+Tag+Offset 60.67 70.88*

2: Word 57.30 65.78*

2: Word+Tag 58.42 65.27*

2: Word+Tag+Edge 56.70 62.00*

Table 2. Detailed F-Score comparison with different configurations. For each class,
best F-Score is marked in bold.

Effect Mechanism Advise Int

No Att Att No Att Att No Att Att No Att Att

1: Word 0.68 0.70 0.69 0.70 0.77 0.78 0.53 0.45

1: Word+Tag 0.67 0.69 0.71 0.70 0.78 0.77 0.55 0.43

1: Word+Tag+Offset 0.65 0.69 0.68 0.76 0.74 0.78 0.50 0.49

2: Word 0.65 0.68 0.65 0.72 0.65 0.76 0.50 0.50

2: Word+Tag 0.63 0.69 0.68 0.69 0.69 0.74 0.51 0.53

2: Word+Tag+Edge 0.65 0.66 0.67 0.71 0.66 0.70 0.49 0.45

In Table 1 we show the recall measure for each input configurations. The
effect of self-interaction is also verified through Wilcoxon test [29]: for all input
configurations except one, the models with self-interaction attention perform
significantly better than without it with confidence of 99%. The Word+Tag
configuration shows a little performance decrease, but this is not statistically
significant.

Since our negative filtering avoids the application of dataset-oriented tech-
niques for generalization purpose, self-interaction can be seen as a method for
reducing the effect of the presence of a large majority class like unrelated.

In Table 2 we show the F-Score for each class of the dataset. Model 1 per-
forms better than Model 2, despite the introduction of new information with the
shortest dependency path. The best configuration includes word vectors, PoS
tagging vectors and offset features as input. The overall performance of this con-
figuration is considered also in Table 3. Both models and all the configurations
obtain good results, predicting the unrelated class with a F-Score between 0.95
and 0.96.

Figure 3 shows improvements of the recall average over each input config-
uration produced by adding the self-interaction attention mechanism. Similar
results are obtained also with Model 2. On the other hand, we can observe a
slight performance worsening regarding the int class. We address this issue in
Sect. 6.3.
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Fig. 3. Recall improvements in Model 1 and Model 2. Comparison of the average recall
for each class with (in blue for Model 1, in green for Model 2) or without (in light blue
for Model 1, in light green for Model 2) the self-interaction attention mechanism. (Color
figure online)

In Table 3 we compare our results with other state-of-the-art methods. Our
method produces better or similar results than most of the other approaches
which apply dataset-oriented negative filtering techniques. In terms of F-Score,
Word Attention LSTM [35] outperforms our approach and the other LSTM-
based models by more than 4%. We discuss this issue in Sect. 6.4.

Table 3. Comparison with overall metrics of other state-of-the-art methods: precision
(P), recall (R) and F-Score (F), ordered by F. Results higher than ours are marked in
bold. Our results are obtained with the best configuration of Model 1.

Method P(%) R(%) F(%)

UTurku (SVM) 73.2 49.9 59.4

FBK-irst (SVM) 64.6 65.6 65.1

Zhao SCNN 72.5 65.1 68.6

Liu CNN 75.7 64.7 69.8

Multi-Channel 76.0 65.3 70.2

Joint-LSTMs 73.4 69.7 71.5

Our method 73.0 70.9 71.9

GRU 73.7 70.8 72.2

SDP-LSTM 74.1 71.8 72.9

Word-Att LSTM 78.4 76.2 77.3
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Fig. 4. On the y-axis, percentage of error respect to the x-axis representing the sentence
length (top) or the distance between the drug mentions (bottom). Model 1 is on the left,
Model 2 is on the right and, for all the diagrams, blue indicates the model configuration
with attention, lighter blue without it (Color figure online)

6.3 Discussion and Error Analysis

In order to lay the foundation of our future work and to understand the short-
comings of our approach, we have analyzed the error distribution for our best
model. The main problem with our system is again the distinction between all
the related classes and the negative class. While the self-interaction mechanism
decreases this error by 14.6%, this distinction includes the 83.5% of all the mis-
classification errors. On the contrary, the distinction for the three main related
classes advise, mechanism and effect works quite well with or without the
attention mechanism. Only 30 misclassifications for 861 test instances belonging
to those three classes are due to this distinction task.

The int class, to which only 1.6% of all test instances belongs, presents more
issues. In fact, our system tends to classify these instances as effect even more
than predicting the unrelated class. We speculate that our model recognizes
that these kinds of sentences present some sort of relation and it tends to classify
with the most frequent related class.

We also analyze how our system works with respect to sentence length and
to the distance between the two drug mentions. Figure 4 shows that our system
performs worse over short or medium length sentences. The attention mecha-
nism does not significantly change the error distribution over the length of the
sentences or the distance between the drug mentions, except in Model 1 for
distances between 10 and 40 or 60 and 70 words.
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6.4 Drug-Oriented Attention Model

In order to understand why the approach of [35] (described, along with other
works, in Sect. 2.2) outperforms our models, we have tried to replicate their
model, which uses word embedding, PoS-embedding and the offset features as
input. The word vectors are then subject to the drug-oriented input attention,
using dot score as score function, since it provides the best performance. The
drug-oriented word vectors, concatenated with the other features, are processed
by a bidirectional LSTM layer. The output hm at the last time step of the
sequence (i.e. the last word), which reflects the whole sentence, is taken by the
softmax classifier.

We have replicated their architecture using our word embedding represen-
tation but we could not obtain same results or to obtain better performance
with respect to our model. We have also analyzed the effect of the drug-oriented
input attention: for each input configuration (only word vectors or including PoS
tag vectors with or without offset features), their attention mechanism did not
improve the performance.

Their paper also reports that the baseline bidirectional LSTM model, with-
out the input attention, obtains a F-Score of 76.2%. Since this result with a
quite simple architecture outperforms not only our method but also every other
known approach, we speculate that the difference is due to some pre-processing
techniques, which are not adequately presented in the article, or to the quality
of the word embedding provided in input, which is not publicly available.

7 Conclusions and Future Work

Our experiments show that the self-interaction mechanism increases the classifi-
cation accuracy, in particular avoiding false negatives and reducing the tendency
of predicting the majority class, even with the use of a less thorough and more
general filtering of negative instances.

However, other approaches give better results than ours. We think that their
advantage is obtained by a better pre-processing phase, a more precise and
dataset-oriented negative instance filtering, a more thorough hyper-parameter
optimization or the inclusion of other information like the grammatical structure
expressed in the dependency tree. In particular, SDP-LSTM [32] uses a parallel
LSTM channel that processes the shortest dependency path, alongside with an
input attention layer. Instead, our attempt to add a SDP parallel channel does
not improve performance.

As future work, our objective is to analyze the effect of the input attention
mechanism, understanding why our attempt to apply the drug-oriented input
attention did not produce any improvement. We will also work on incorporating
the information produced by the dependency parser using parallel channels or
adding Graph Convolutional Layers, following the approach used in [33].

Another direction includes the exploitation of a different pre-trained language
modeling. For example, BioBERT [12] obtains good results for several NLP tasks
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like Named Entity Recognition or Question Answering, and we plan to apply it
to our task.
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Abstract. Most of the works on planning and learning, e.g., planning
by (model based) reinforcement learning, are based on two main assump-
tions: (i) the set of states of the planning domain is fixed; (ii) the mapping
between the observations from the real word and the states is implicitly
assumed, and is not part of the planning domain. Consequently, the focus
is on learning the transitions between states. Current approaches address
neither the problem of learning new states of the planning domain, nor
the problem of representing and updating the mapping between the real
world perceptions and the states. In this paper, we drop such assump-
tions. We provide a formal framework in which (i) the agent can learn
dynamically new states of the planning domain; (ii) the mapping between
abstract states and the perception from the real world, represented by
continuous variables, is part of the planning domain; (iii) such mapping is
learned and updated along the “life” of the agent. We define and develop
an algorithm that interleaves planning, acting, and learning. We provide
a first experimental evaluation that shows how this novel framework can
effectively learn coherent abstract planning models.

1 Introduction and Motivations

Several automated planning techniques are based on abstract representations of
the world, usually called planning domains. A planning domain can be formal-
ized by a finite state transition system1, i.e., a finite set of states, actions, and a
transition relation [7,8]. This abstract representation is both conceptually rele-
vant and practically convenient, since it allows a planner to reason and generate
plans at a high level of abstraction. For instance, in order to plan how to move a
robot from a room to another room in a building, it may be convenient to adopt
a planning domain that encodes an abstract topological map of the building,
such that each state corresponds to (the fact that the robot is in) a given room,
and transitions correspond to (complex) actions that move the robot from one
room to an adjacent room.

While an agent can conveniently plan at the abstract level, it perceives the
world and acts in it through sensors and actuators that work with data in a con-
tinuous space, typically represented with variables on real numbers. For instance,
1 The transition system can be either deterministic, nondeterministic, or stochastic.
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a robot does not perceive directly the fact that it is in a given room/state,
instead it perceives, e.g., to be in a position of the building through sensors like
odometers or the images from its camera. Similarly agent actions’ effects in the
environment are continuous transformations, e.g., “the robot has moved forward
5.4 m”. It is part of the cognitive capability of the agent to fill the gap between
these two different levels of abstractions.

Most of the works in planning and learning, see, e.g., [6,22] assume that (i)
the finite set of states of the planning domain is fixed once forever at design
time, and (ii) the correspondence between the abstract states and the observa-
tions (represented with continuous variables) is implicit and fixed at design time.
This is the case of most of the works on planning by (model based) reinforce-
ment learning, see, e.g., [14,19–23]2, which focus on learning and updating the
transitions between states, e.g., the probabilities of action outcomes (or rewards)
in an MDP framework. They support neither the learning of new states nor the
updating of the mapping between the real world and the abstract model.

In many cases, however, having a fixed set of states and a fixed mapping
between the perceived data and the abstract model is not adequate. There may
be situations in which the agent perceives data which are not compatible with
any of the states of its abstract model. For instance, a robot may end up in
unknown and unexpected states of the world. Consider the simple example in
which the task is to navigate in a restricted part of a building, and instead, due
to some reasons, like a navigation error, or an unexpected open door, the robot
ends up in a different part of the building. Similarly, along its life, an agent
could also revise its mapping between its abstract model and the real sensed
data. In general, the (number of) states and the mapping to perceptions may be
not obvious at design time, and thus be incomplete or not adequate.

In this paper, we provide a formal framework in which the agent can learn
dynamically new states of the planning domain. Moreover, the mapping between
abstract states and the real world is part of the planning domain of the agent,
and it is learned and updated along the “life” of the agent. Given this framework,
we provide the following contributions: (i) We model agent’s perception of the
real world by a perception function that returns the likelihood of observing some
continuous data being in a state of the domain. We define a criteria based on the
perception function to extend the set of states. Intuitively, when the likelihood
is too low for all the existing states, a new state is created; (ii) We define an
algorithm that interleaves planning, acting, and learning. It is able to discover
that the abstract model is not coherent with the real world. While planning and
acting, the algorithm updates both the set of states and the perception function
of the planning domain. The learning mechanism can be defined in several differ-
ent ways, depending on whether we follow a cautious strategy, where changes are
made only if there is a certain number of evidences from acting and perceiving
the real world, or a more impulsive reaction to what the agent has just observed.
Moreover, we define a measure of coherence between the planning domain and

2 In some works (see, e.g., [1,4,17]) the two levels are collapsed, since planning is
performed in a continuous space.
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the real world as perceived by the agent; (iii) We provide a preliminary exper-
imental evaluation that shows how this novel model for planing, acting, and
learning lets the agent converge to a model which is increasingly coherent with
the state of the world.
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Fig. 1. (a) A planning problem on a domain composed of 4 states, corresponding to 4
rooms, no walls between them, and 4 actions n, s, w, and e (go north, south, west, and
east). Transitions that don’t change the state are not shown. (b) A perception function
associated to the planning domain. (c) The real world: the building has 6 (and no 4)
rooms, and two walls

2 Planning, Acting, and Learning

A (deterministic) planning domain is a triple D = 〈S,A, γ〉, composed of a finite
non empty set of states S, a finite non empty set of actions A, and a state
transition function γ : S ×A → S. A planning problem is a triple P = 〈D, s0, Sg〉
composed of a planning domain D, an initial state s0 ∈ S and a set of goal states
Sg ⊆ S. A plan π for D is a policy, i.e., a partial function from S to A. The way
in which an agent perceives the world is modeled by a perception function, i.e.,
a function f : R

n × S → R+, defined as f(xxx, s) = p(xxx|s), where p(xxx, s) is a join
PDF on R

n × S. In other words, f(xxx, s) is the likelihood of observing xxx being in
a state s.
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Definition 1 (Extended planning domain). An extended planning domain
is a pair 〈D, f〉 where D is a planning domain and f a perception function on
the states of D.

Hereafter, if not explicitly specified, with “planning domain” we will refer to
extended planning domain.

Example 1. A simple planning domain with four states is shown in Fig. 1. The
transition system is shown in Fig. 1(a), the relative perception function is shown
in Fig. 1(b), and the real world, composed of a 3×2 building is shown in Fig. 1(c).
The perception function f(〈x, y〉, sij), shown in Fig. 1(b), is f(〈x, y〉, s) =
p(〈x, y〉 | s) where p(〈x, y〉|sij) = N (μμμ = 〈i − 0.5, j − 0.5〉,ΣΣΣ = ( 1 0

0 1 )). Notice
that, the agent’s planning domain in Fig. 1(a–b) is not coherent with the real
world of Fig. 1(c), since the transitions from s12 and s21 to s22 are not possible in
the real world, due to the presence of walls. In addition, there are no states cor-
responding to the rightmost part of the building. This prevents the agent from
reaching the goal. Indeed, to reach the goal the agent should extend its planning
domain, as shown in Fig. 2, and plan for its actions in this new planning domain.

We now introduce an algorithm that interleaves planning, acting and learn-
ing. Not only it is able to learn/update transitions between existing states of the
planning domain, but it can also learn/update the perception function, and prop-
erly extend the planning domain with new states. Algorithm1 PlanActLearn
(PAL) takes in input a planning problem and a perception function. At line 4,
plan(P) generates a plan π by applying some planning algorithm for determinis-
tic domains3. If plan(P) does not find a plan to the goal, then it generates a plan
to learn the domain, e.g., a random policy. We then execute the planned action
π(s0) in the current state s0, and perceive the data from the real world as a vec-
tor of real numbers xxx (line 6). We then determine the state s′

0 that maximizes
the likelihood of observing xxx (line 7); if such a likelihood is below the threshold
(1 − ε) · max pinit(·, ·) with ε ∈ [0, 1], and where pinit(·, ·) is the initialization
function of the perception function, then we extend the set of states S with a
new state snew, and initialise its perception function f(·, snew) with pinit(·,xxx)
(lines 9–11). Notice that, low values of ε, promote the easy introduction of new
states, while with high values of ε we are cautious in creating new states. In the
extreme case, i.e., with ε = 1, we never add new states.

We then extend the sequence of transitions T and of observations O, and
learn the new transition function γ and the new perception function f . The
functions update trans and update perc update the transition function γ and the
perception function f , respectively, depending on the data available in T and O.
The update functions take into account (i) the current model, (ii) what has been
observed in the past, i.e., T and O, and (iii) what has been just observed, i.e.,
〈s0, π(s0), s′

0〉 and 〈s′
0,xxx〉. The update functions can be defined in several different

3 We assume that the sequential plan returned by the planning algorithm can be
transformed into a policy π. Since here we plan for reachability goals, sequences of
actions can be mapped into policies.
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Algorithm 1. PlanActLearn - PAL

Require: P = 〈〈S, A, γ〉, s0, Sg, f〉 {A planning problem with a perception function}
Require: pinit(·, ·) initialization for f(·, s)
1: T ← 〈〉 {The empty history of transitions}
2: O ← 〈〉 {The empty history of observations}
3: while s0 �∈ Sg do
4: π ← plan(P)
5: while π(s0) is defined and γ has not been changed do
6: xxx ← act(π(s0))
7: s′

0 ← argmaxs∈S f(xxx, s)
8: if f(xxx, s′

0) < (1 − ε) · max pinit(·, ·) then
9: s′

0 ← snew

10: S ← S ∪ {snew}
11: f(·, snew) = pinit(·,xxx)
12: end if
13: T ← append(T, 〈s0, π(s0), s

′
0〉) {extend the transition history with the last

one}
14: O ← append(O, 〈s′

0,xxx〉) {extend the observation history with the last one}
15: γ ← update trans(γ, T , s0, π(s0))
16: f ← update perc(f, O, s′

0)
17: s0 ← s′

0

18: end while
19: end while

ways, depending on whether we follow a cautious strategy, where changes are
made only if there is a certain number of evidences from acting and perceiving
the real world, or a more impulsive reaction to what the agent has just observed.

Updating Transitions: update trans decides whether and how to update the
transition function. suppose that, after executing the action a from the state s0,
the agent perceives xxx, and suppose that s′

0 = argmaxs(f(xxx, s)), i.e., the most
likely reached state, is different from the state predicted by the agent planning
domain, i.e., s′

0 �= γ(a, s0), then γ may need to be revised to take into account
this discrepancy. since our domain is deterministic (the transition γ must lead
to a single state), if the execution of an action leads to an unexpected state,
we have only two options: either change γ with the new transition or not. we
propose the following transition update function that depends on α: we define
γ′ = update trans(γ, T , s, a) to be the same as γ for all (s′, a′) �= (s, a) and

γ′(s, a) ∈ {argmax
s′∈S

(
α · �s′=γ(s,a) + (1 − α) · |{i | Ti = 〈s, a, s′〉}|

)
} (1)

where �s′=γ(s,a) is equal to 1 if s′ = γ(s, a) and 0 otherwise, Ti is the i-th
element of T , and α ∈ [0, 1]. Notice that, if α = 1, we are extremely cautious, we
strongly believe in our model of the world, and we never change the transition
γ. Conversely, if α = 0, we are extremely impulsive, we do not trust our model,
and just one evidence makes us to change the model. In the intermediate cases,
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α ∈ (0, 1), depending on the value of α, we need more or less evidence to change
the planning domain.

Updating the Perception Function: The update of the perception function
about a state s is based on the current perception function f(xxx, s) and the set
of observations O(s) about the state s. We suppose that the perception function
is parametric on θθθ = 〈θ1, . . . , θk〉. In Example 1, θθθ = 〈θ1, θ2〉 with θ1 = μμμ and
θ2 = ΣΣΣ, i.e., the mean and the covariance matrix of the normal distribution
associated to any state. Given a new observation 〈xxx, s〉 and a set of previous
observations O(s) = 〈xxx(0), . . . ,xxx(k)〉 about an abstract state s ∈ S, we have to
update the parameters θθθs of the perception function f(·, s) in order to maximize
the likelihood of the entire set of observations extended with the new observation.
Also in this case the agent can be more or less careful in the revision. This
is expressed by a parameter β ∈ [0, 1], where, the higher the value of β the
more careful the agent is in the revision. If f(xxx, s) = p(xxx | θθθs), we define f ′ =
update perc(f,O, s) where f ′(·, s′) is equal to f(·, s′) for all s′ �= s and f ′(·, s) =
p(· | θθθ′) where:

θθθ′ = β · θθθs + (1 − β) · argmax
θθθ′′

L(θθθ′′, O(s)) (2)

where L(θθθ,xxx(1), . . . ,xxx(n)) is the likelihood of the parameters θθθ for the observa-
tions xxx(1), . . . ,xxx(n), defined as:

L(θθθ,xxx(1), . . . ,xxx(n)) =
n∏

i=1

p(xxx(i) | θθθ) (3)

Intuitively Eq. (2) defines the parameters θθθ′
s of the updated perception function

for a state s as a convex combination, based on the parameter β, of the param-
eters of the previous perception function for s, i.e., θθθs and the parameters θθθ′′

that maximize the likelihood of the past and current observations about state s
(Eq. (3)). An efficient procedure for incremental estimation of the second term of
(2), is described in [2]. In case of Multivariate Gaussian distribution, θθθs contains
the mean μμμs and covariance matrix ΣΣΣs, and the updates defined in Eq. (2) can
be efficiently computed as follows:

μμμ′
s = β · μμμs + (1 − β)(μμμs + Δμμμs)

ΣΣΣ′
s = β · ΣΣΣs + (1 − β)(ΣΣΣs + ΔΣΣΣs)

where Δμμμs = 1
|O(s)| (xxx − μμμs) and ΔΣΣΣ2

s = 1
|O(s)| (xxx − μμμ′

s)
2 + |O(s)|−1

|O(s)| (Δμμμ2
s −

2μμμsΔμμμs) − 1
|O(s)|ΣΣΣ

2
s. Concerning the parameter β ∈ [0, 1], it plays the simi-

lar role as α in the case of the revision of the transition function. It balances
the update depending on whether the agent is cautious or impulsive about the
current perception function, and the new perceptions.

Example 2. Let us now describe how our algorithm works in Example 1 and how
the goal is reached by creating new states and changing the model to the one
described in Fig. 2.
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1. Suppose that the robot is initially in the position (0.5, 0.5). Since the state
s ∈ S that maximizes f((0.5, 0.5), s) is s11 the agent believes to be in this
state.

2. (line 4) According to the planning domain in Fig. 1(a), Plan(P) can generate
two plans, the one that reaches the goal passing through s21 and the one
that passes through s12. Let us suppose that it generates the former, i.e.,
the plan π(s11) = e and π(s21) = n.

3. (line 6–7) Since π(s11) is defined, we execute the action e, which moves the
robot of one unit in the east direction, and returns the current position in
xxx, which will be some value close to 〈1.5, 0.5〉. Notice that we cannot assume
that xxx is exactly 〈1.5, 0.5〉, since we have to take into consideration that
sensors and actuators can be noisy. So suppose that the observed values
after the execution of π(s11) are 〈1.51, 0.49〉. Given the current f , the state
s that maximizes f(xxx, s) is s21, therefore s′

0 = s21.
4. (lines 8, 13, 14) Suppose that the condition on line 8 is false. We then do

not create a new state. We add the transition to the history and we have
T = 〈〈s11, e, s21〉〉. Similarly we have O = 〈〈s21, 〈1.51, 0.49〉〉.

5. (lines 15) We then update the transition function: update trans does not
produce any change, since s21 = γ(s11, e). Indeed in this case the transition
function γ correctly predicts, at the abstract level, the effects of the execution
of action e in state s11.

6. (line 16) The update of the perception function will slightly move the mean
μμμ, from 〈1.5, 0.5〉 in the direction of the current perception i.e., 〈1.51, 0.49〉
and the ΣΣΣ will also be updated.

7. We then update s′
0 to s21 and go back to (lines 3, 4). Since π(s21) = n, we

execute the action moving one unit north from s21. But the execution of this
action does not have the effect that is expected by the agent, i.e., it does
not reach state s22. Indeed, the execution of n starting from the position
〈1.51, 0.49〉 would result in hitting the wall, the presence of which was not
expected by the agent. Let us suppose that the execution of this action will
result in the robot doing nothing, and act(π(s21)) will return the value xxx
which is the same as the previous one i.e., xxx = 〈1.51, 0.49〉.

8. s21 is the state that maximizes the observed xxx, and we proceed as
before, by not generating a new state and appending the new transi-
tion to T such that T = 〈〈s11, e, s21〉, 〈s21, n, s21〉〉 while O becomes
〈〈s21, 〈1.51, 0.49〉〉, 〈s21, 〈1.51, 0.49〉〉〉

9. (line 15) The transition function this time gets updated in different ways
depending on the value of α. Let’s compute the arguments of the argmax of
Eq. (1) with a = n and s = s21;

s′ α · �s′=γ(s21,n) + (1 − α) · |{i | Ti = 〈s21, n, s′〉|
s11 α · 0 + (1 − α) · 0 = 0
s21 α · 0 + (1 − α) · 1 = (1 − α)
s12 α · 0 + (1 − α) · 0 = α
s22 α · 1 + (1 − α) · 0 = 0

If α < 1/2, we are reasonably keen to learn from acting in the real world that
the state that maximizes Eq. (1) is s21 and update trans deletes γ(s21, n) =
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s22 and adds γ(s21, n) = s21, i.e., the agent understands that there is a
wall that does not allow the robot to move north from state s21. If instead
α > 1/2, then the state that maximizes (1) is s22 and γ(s21, n) = s22 will
be kept. Notice that after k attempts to execute the actions n in state s21
without updating the transition function, in order to change the transition
function it is enough to have α < k

1+k . So if α �= 1, sooner or later the agent
will update γ.

10. At this point we go back to Plan(P) which generates the alternative plan
that passes through s12, and sends the robot back to state s11 and then to
state s12, in a similar way to what happened in the case of going through
s21.

11. At this point the planning domain of the agent is shown below. Notice that
the goal is not reachable.

s11start

s12

s21

s22

e
n s

w

w

s

12. After having explored all the possibilities without reaching the goal, Plan(P)
generates random (exploration) plans. Suppose that it generates a plan π
with π(s21) = e. The observation after the execution of such a π returns
xxx = 〈x, y〉 close to 〈2.5, 0.5〉. In that position s21 maximises f(xxx, s), however
the value of f(xxx, s21) is extremely low, and let us suppose it is below the
threshold (1 − ε) · max pinit(·). We therefore create a new state, say s31.

13. T gets updated by adding the transition 〈s21, e, s31〉, and O by adding the
pair 〈s31,xxx〉. The update function update trans may create the new transition
γ(s21, e) = s31 (if α is small enough) and update perc will initialize the
perception function f(·, s31) with pinit ∼ N (μμμ,ΣΣΣ) with μμμ = xxx, and ΣΣΣ =
( .1 0
0 .1 ).

14. The next step is similar to the previous one. Since there is no plan to the
goal, plan(P) tries to learn the domain, and state s32 is created, transition
γ(s31, n) and the corresponding f are created. Since no plan to the goal exists
yet, while trying to learn the domain, plan(P) may add the new transitions
γ(s31, w) = s21 and γ(s32, s) = s31

15. In the final step, plan(P) learns the transition γ(s32, w) = s22, and finally
finds the plan to the goal π(s32) = w. Furthermore, the agent has updated
its initial planning domain, obtaining the planning domain shown in Fig. 2.
Notice that this planning domain is not completely correct, as there are no
information about the execution of actions in s22. This is due to the fact that,
in this simple example, the agent has planned no actions in s22 (since it was
the goal) and therefore it has not learned anything about the transitions and
the perceptions functions of this node.
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Fig. 2. The new planning domain obtained by extending the initial domain of Fig. 1,
with two new states

3 Measuring the Coherence of the Model

In order to estimate the quality of the model generated by the PAL algorithm,
we should define a method to measure the coherence between an abstract model
with perception function and the real world.

We introduce a measure called divergence. Intuitively, a low divergence means
that if γ(a, s) = s′, then if the agent perceives to be in s and performs a, then
after the execution of a it will perceive to be in the state s′.

We suppose to have a stochastic model of the real execution of actions. Under
Markovian hypothesis, every action a ∈ A can be modeled as a conditional PDF
pa(xxx′|xxx), which expresses the probability of measuring xxx′ after executing the
action a in a state in which the agent perceives xxx. It represents the effects of
executing the action a in the real world.

To measure the quality of the abstract planning domain, we have to compare
pa with how the action a is modeled in the domain. Suppose that an agent per-
ceives xxx, and that the state s maximizes the likelihood of perceiving xxx. Suppose
that the action a is executed. According to its abstract model, the agent will
believe to be in the state s′ = γ(a, s). After the actual execution of action a, it
will perceive xxx′ with a probability pa(xxx′|xxx). However, according to the agent’s
abstract model, the probability of observing xxx′ after the execution of a is p(xxx′|s′).
The closer the two distributions are, the more coherent the abstract representa-
tion is. To estimate how well p(xxx′|s′) approximates the real distribution pa(xxx′|xxx),
we use the notion of divergence, which is the opposite notion of coherence (the
lower the divergence, the higher the coherence), and we formalize it with the KL
divergence KL(pa(xxx′|xxx)||p(xxx′|s′)), defined as:

∫

xxx′
pa(xxx′|xxx) log

(
pa(xxx′|xxx)
p(xxx′|s′)

)
dxxx′

We can therefore define the divergence measure as
∫

xxx

∑

a∈A

KL(pa(xxx′|xxx)||p(xxx′|γ(a, sxxx))) · pA(xxx) dxxx (4)

where sxxx = argmaxs∈S f(xxx, s)) and pA(xxx) is a distribution of all the possible
perceptions that can be obtained by the agent following all the possible sequences
of actions, i.e.,
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pA(xxx) =
∑

〈a1....,an〉∈A+

pan
(xxx|xxx(n−1)) ·

n−1∏

i=1

pai
(xxx(i)|xxx(i−1))

where A+ is the set of finite non empty sequences of actions in A and xxx(0) is
the perception of the agent in the initial state. However, computing (4) ana-
lytically is very difficult. We therefore estimate (4) by random walk sampling
method. Starting from an initial observation xxx(0) we generate N random walks
a1, . . . ,aN , with ai = 〈ai,1, . . . , ai,ni

〉 and sample xxx(i) from
∏ni

j=1 paij
(xxxj |xxxj−1).

We approximate (4) with

1
N

N∑

k=1

∑

a∈A

KL(pa(xxx′|xxx(k))||p(xxx′|γ(a, s(k)))) (5)

where s(k) = argmaxs∈S f(xxx(k), s) for 1 ≤ k ≤ n. In our specific example, since
we are working with Gaussian distributions, we have that pa(xxx′|xxx) = N (μμμ =
a(xxx),ΣΣΣ = ΣΣΣa), where a(xxx) is some real function that maps xxx in the expected
value a(xxx) after performing the action a, and ΣΣΣa is the model of the noise of the
sensors/actuators associated to a. For instance, in Example 1

e(〈x, y〉) =

⎧
⎪⎪⎨

⎪⎪⎩

〈x + 1, y〉 If there are no walls
between
〈x, y〉 ad 〈x + 1, y〉

〈x, y〉 Otherwise

Furthermore, the KL divergence of Multivariate Gaussians can be computed
analytically.

4 Experimental Evaluation

To explain and evaluate PAL and its effects depending on different parameter
settings, we propose two sets of experiments. We first run PAL on Example 1
and successively we run the algorithm on a larger artificial test case4. Since the
paper does not focus on a specific plan generation technique, we implement our
approach using a naive planner, which uses an heuristic based on the distance
from the goal.

In the first experiment, the initial planning domain is shown in Fig. 1 and,
for different configurations of the parameters α, β, and ε in {0.0, 0.5, 1.0}, we
run the PAL algorithm 10 times. We measure the average number of states of
the final model (|S|), the reduction/improvement of the divergence (“% lrn”)
and the percentage of achieved goals (%G). The results are reported in Table 15.
Consider first the effects of the parameter ε:
4 The code is available in the additional material.
5 The reviewer/reader interested to graphically see the computation of PAL on this

simple example with different parameters can download the additional material and
run the command python PALex1.py <alpha> <beta><epsilon>.
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– ε = 1 prevents the creation of new states. Indeed, in all cases, no new state
is created, and, as expected, the learned model is not more coherent than
the initial one - the percentage of learning “% lrn” ranges from a negative
number (−11.7) to very low improvement (0.26). Indeed, without creating
new states, PAL never understands that there are new rooms. Because of
this lack of coherence, in many cases PAL does not manage to reach the
goal within the given timeout (100 steps). The reason why in some cases it
manages to reach the goal is simply due to the fact that, when no plan exists
according to the model, then a random policy is tried, which in some cases
reaches the goal by chance, due to the simple and small domain.

– ε = 0 tends to create many new states: |S| ∈ [20.2, 32.9]. In spite of this,
when α = 0, the learning is much better than when no new states are created
(“% lrn” ∈ [0.49, 0.54]) and the goal is often reached. The learning gets worse
by increasing α, since we learn many new states that are however scarcely
connected to the states in the initial model.

– ε = 0.5 represents a balanced situation. The number of new learned states is
the right one (|S| ≈ 6) for all the values of the other parameters. Moreover,
with α = 0 we have the best learning of a coherent model (“% lrn” = 0.72)),
since we allow the update of the transition function by connecting the two
new states with the four initial ones. The performance of learning smoothly
decreases by increasing α to 0.5, while it becomes low in the case of α = 1,
due to the fact that the new states are not connected with the old ones.

In the case α = 0 and α = 0.5, the parameter β, when it is low (β = 0), tends
to decrease the amount of learning towards a coherent model, by producing the
two worst results (“% lrn” = −11.17 and −4.71) in the case ε = 1. This is
because, since we cannot learn new states, with a low β we allow the perception
function to move the same old states to different positions, thus creating a rather
incoherent model.

Table 1. Performance of PAL on Example 1 depending on α, β, and ε. Results are
averaged on the 10 runs.

α β ε = 0.0 ε = 0.5 ε = 1.0

|S| %lrn %G |S| %lrn %G |S| %lrn %G

0.0 0.0 21.6 0.49 1.0 6.0 0.72 0.7 4.0 −4.71 0.1

0.5 24.7 0.50 0.9 5.9 0.72 0.8 4.0 −0.41 0.9

1.0 20.2 0.54 0.9 5.9 0.72 0.7 4.0 0.18 0.9

0.5 0.0 25.8 0.19 1.0 5.9 0.66 0.8 4.0 −11.17 0.2

0.5 30.7 0.15 0.7 5.9 0.69 0.8 4.0 0.26 0.8

1.0 32.9 0.16 0.7 6.0 0.63 0.8 4.0 0.07 0.7

1.0 0.0 25.0 0.15 0.9 5.9 0.25 0.5 4.0 0.01 0.1

0.5 24.4 0.18 0.8 5.8 0.24 0.8 4.0 −1.26 0.8

1.0 28.5 0.16 0.8 6.0 0.27 1.0 4.0 0.00 0.9
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In the second set of experiments, we consider a 5×5 building with randomly
generated walls6 completely unknown by the agent. Differently from the previous
experiments, we test the capability of PAL to create a planning domain from
scratch, while it is trying to achieve 10 randomly generated goals. We initialise
the agent with a model containing only two states, i.e., S = {s0, sg0}. The mean
μμμs0 of the initial state is set to 〈0.5, 0.5〉, the mean of sg0 of the perception
function of sg0 is randomly generated. The covariance matrixes ΣΣΣs0 and ΣΣΣsg0

are initialized to ( .1 0
0 .1 ). The objective of the agent is to reach the goal sg0 ,

and successively to reach other 9 goals sg1 , . . . , sg9 , which are also randomly
generated. We run this experiment, for every combination of α, β, and ε in
{0.0, 0.5, 1.0}. In Fig. 3 we report the divergence (in the three plots on the left
of the figure) and the number of states that are generated (in the three plots
on the right) depending on the time used by PAL to plan, act and learn (the
x axis), and depending on the parameters α, β, and ε. Notice that the graphs
have different scales, since with a uniform scale some of the graphs would not
be readable.

If ε = 1, PAL cannot add new states to the planning model, and therefore,
planning is useless, and the agent adopts a random walk strategy. Furthermore,
the divergence is computed only on a single state. The consequence is that α
does not have any effect, since with a single state there is no transition to revise.
Instead, the value of β has the effect of (dis)allowing the change of the perception
function associated to the single state s0. If β = 1, the perception function
f(xxx, s0) is not changed and, consequently, the divergence is constant (i.e., it takes
its initial value ≈ 5000); with β �= 1, instead, the perception function f(xxx, s0) is
updated to take into account the observations that the agent accumulates during
its random walk, but after short time it converges to a constant value ≈ 13.0.

If ε = 0, PAL tends to generate an eccessive number of states independently
from α and β: We get to about 600 states in 800 s. In this case PAL learns a
domain by decreasing significantly the divergence, which gets below 500 for all
the values of α and β. It takes however a long time to complete the tasks, up to
800 s, because the model is uselessly accurate.

If ε = 0.5, PAL generates a reasonable number of states. For all the values
of α and β, the completion of the task requires much less time than the case of
ε = 0. The best model, i.e., the one closest to our intuition, is the one gener-
ated in the case of ε = 0.5, α = 0.5, and β = 0. It has indeed 25 states, each
one corresponding to the 25 rooms in the building, and with transitions taking
into account the walls. In this case, the divergence rapidly decreases to values
below 100. Moreover, in all cases in which ε = 0.5, we have divergences much
lower than in the case ε = 0 (please notice the different scale in the two graphs).
Finally, we have lower divergences for low values of α (α = 0 and 0.5) than in

6 A picture of this world is reported in the additonal material.
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Fig. 3. Experiments with 5× 5 building. a, b, and e stand for α, β, and ε, respectively.

the case of α = 1, since, as usual, α = 1 does not allow PAL to connect the new
states to the old ones.

In conclusion, the experiments show that the new formal framework allows
PAL (with a very simple planning algorithm) to learn the abstract model (even
from scratch) and, with a reasonable set up of the parameters, to learn coherent
models in reasonable time.

5 Related Work

Our approach shares some similarities with the work on planning by model
based reinforcement learning (RL) [6,13,22], especially with approaches defined
on abstract discrete models. In [23] planning domains are specified in the action
language BC in a hierarchical reinforcement learning setting. In [19] hierarchical
abstract machines impose constraints on reinforcement learning. [20] combines
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symbolic planning techniques with reinforcement learning. In [14] plans are gen-
erated by answer set programming, and reinforcement learning allows adaptation
to a changing environment. [10,11] adopts a different approach based on model
based planning to learn the planning domain directly from execution traces. All
the works mentioned above assume that the set of states and the correspondence
between continuous data from sensors and states are fixed a priori. Furthermore,
after acting, the agent knows exactly the reached state. As a consequence there
is no possibility to learn a new state, or to learn to adapt the mapping between
perceptions in the real world and states. We, instead, allow to introduce new
states at run-time, and to adapt the perception function.

Moreover, we have explicit parameters like α and β in the update trans and
update perc functions that we can use to balance how much we trust in an initial
model or in the model learned so far.

A complementary approach is pursued in works that plan directly in a con-
tinuous space, see, e.g., [1,4,17]. In this way there is no need to define a mapping
such as the perception function, since there is no abstract discrete model of the
world. Such approaches are very suited to address some tasks, e.g., moving a
robot arm to a desired position or performing some manipulations. However, we
believe that, in several situations, it is conceptually appropriate and practically
efficient to perform planning in an abstract discrete state space.

Several approaches to planning for robotics (see Section 7 of [12] for a com-
prehensive survey) deal with the problem of planning in and learning the envi-
ronment in which they operate, and they have to deal with the robot ending
up in unknown and unexpected states of the world. Some of them make use of
an abstract model of the world. However, none of these works provide a for-
malization of the mapping and of the learning mechanism as we provide in this
paper.

Works on domain model acquisition focus on the different problem of learning
action schema, see, e.g. [5,9,15,16,18,24]. Finally, our work has some similarities
with planning in hybrid domains (see, e.g., [3]), since we deal with a discrete
model and continuous data coming from sensors. However we do not plan in a
hybrid domain, since our plan generation is performed in the discrete space.

6 Conclusion and Future Work

We have provided a formal framework that supports the incremental construc-
tion of an abstract planning domain by learning new states and the mapping
between states and real world perceptions. We have provided a planning-acting-
learning algorithm that allows an agent to learn a coherent abstract planning
model while planning and acting to achieve its goals. We have provided an exper-
imental evaluation that shows how this can be obtained with different learning
modalities.

In this paper we focus on deterministic domains; in the future we plan to
extend our work to nondeterministic and probabilistic planning domains, e.g.,
by learning probability distributions on γ. Moreover we plan to integrate in our
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framework a state-of-the-art on-line planner, and to run experiments on more
complex and realistic domains.
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Abstract. With the wealth of information produced by social networks,
smartphones, medical or financial applications, speculations have been
raised about the sensitivity of such data in terms of users’ personal pri-
vacy and data security. To address the above issues, Federated Learning
(FL) has been recently proposed as a means to leave data and com-
putational resources distributed over a large number of nodes (clients)
where a central coordinating server aggregates only locally computed
updates without knowing the original data. In this work, we extend the
FL framework by pushing forward the state the art in the field on several
dimensions: (i) unlike the original FedAvg approach relying solely on sin-
gle criteria (i.e., local dataset size), a suite of domain- and client-specific
criteria constitute the basis to compute each local client’s contribution,
(ii) the multi-criteria contribution of each device is computed in a prior-
itized fashion by leveraging a priority-aware aggregation operator used
in the field of information retrieval, and (iii) a mechanism is proposed
for online-adjustment of the aggregation operator parameters via a local
search strategy with backtracking. Extensive experiments on a publicly
available dataset indicate the merits of the proposed approach compared
to standard FedAvg baseline.

Keywords: Federated learning · Aggregation · Data distribution

1 Introduction and Context

The vast amount of data generated by billions of mobile and online IoT devices
worldwide holds the promise of significantly improved usability and user experi-
ence in intelligent applications. This large-scale quantity of rich data has created
an opportunity to greatly advance the intelligence of machine learning models by
catering powerful deep neural network models. Despite this opportunity, nowa-
days such pervasive devices can capture a lot of data about the user, information
such as what she does, what she sees and even where she goes [15]. Actually,
most of these data contain sensitive information that a user may deem private.
To respond to concerns about sensitivity of user data in terms of data privacy
and security, in the last few years, initiatives have been made by governments
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to prioritize and improve the security and privacy of user data. For instance, in
2018, General Data Protection Regulation (GDPR) was enforced by the Euro-
pean Union to protect users’ personal privacy and data security. These issues
and regulations pose a new challenge to traditional AI models where one party
is involved in collecting, processing and transferring all data to other parties. As
a matter of fact, it is easy to foresee the risks and responsibilities involved in
storing/processing such sensitive data in the traditional centralized AI fashion.

Federated learning is an approach recently proposed by Google [9,10,14] with
the goal to train a global machine learning model from a massive amount of data,
which is distributed on the client devices such as personal mobile phones and/or
IoT devices. It is noteworthy that FL differs from traditional distributed learning
since we assume that training data (which is supposed to be sensitive) is kept
on the very large set of users’ private devices they were generated on (e.g., data
generated from users’ interaction with mobile applications). Therefore, we have
to deal with data that is quantitatively unbalanced and differently distributed
over devices, i.e. each device data is not a representative sample of the overall
distribution. Instead, in a traditional distributed setting, data has to be collected
in a centralized location and then evenly distributed over proprietary compute
nodes. As a matter of fact, with FL we leverage users’ computing power for
training a shared ML model while preserving privacy, by actually decoupling
the ability to learn a ML model from the need to centrally store private data.

In principle, a FL model is able to deal with fundamental issues related
to privacy, ownership and locality of data [2]. In [14], authors introduced the
FederatedAveraging (FedAvg) algorithm, which combines local stochastic gra-
dient descent on each client via a central server that performs model aggre-
gation by averaging the values of local hyperparameters. To ensure that the
developments made in FL scenarios uphold to real-world assumptions, in [3]
the authors introduced LEAF, a modular benchmarking framework supplying
developers/researchers with a rich number of resources including open-source
federated datasets, an evaluation framework, and a number of reference imple-
mentations.

Despite its potentially disruptive contribution, we argue that FedAvg exposes
some major shortcomings. First, the aggregation operation in FedAvg sets the
contribution of each agent proportional to each individual client’s local dataset
size. A wealth of qualitative measures such as the number of sample classes held
by each agent, the divergence of each computed local model from the global
model — which may be critical for convergence [16] —, some estimations about
the agent computing and connection capabilities or about their honesty and
trustworthiness are ignored. While FedAvg only uses limited knowledge about
local data, we argue that the integration of the above-mentioned qualitative
measures and the expert’s domain knowledge is indispensable for increasing the
quality of the global model.

The work at hand considerably extends the FedAvg approach [14] by building
on three main assumptions:
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– we can substantially improve the quality of the global model by incorporat-
ing a set of criteria about domain and clients, and properly assigning the
contribution of individual update in the final model based on these criteria;

– the introduced criteria can be combined by using different aggregation oper-
ators; toward this goal, we assert about the potential benefits of using a
prioritized multi-criteria aggregation operator over the identified set of cri-
teria to define each individual’s local update contribution to the federation
process;

– computation of parameters for the aggregation operator (the priority order
of the above-mentioned criteria) via an online monitoring and adjustment is
an important factor for improving the quality of global model.

The remainder of the paper is structured as follows. Section 2 is devoted to
introducing the proposed FL system, it first describes the standard FL model
and then provides a formal description of the proposed FL approach and the
key concepts behind integration of local criteria and prioritized multi-criteria
aggregation operator in the proposed system. Section 3 details the experimental
setup of the entire system by relying on LEAF, an open-source benchmarking
framework for federated settings, which comes with a suite of datasets realisti-
cally pre-processed for FL scenarios. Section 4 presents results and discussion.
Finally, Sect. 5 concludes the paper and discusses future perspectives.

2 Federated Learning and Aggregation Operator

In the following, we introduce the main elements behind the proposed approach.
We start by presenting a formal description to the standard FL approach (cf.
Sect. 2.1) and then we describe our proposed FL approach (cf. Sect. 2.2).

2.1 Background: Standard FL

In a FL setup, a set A = {A1, ... , AK} of agents (clients) participate to the
training federation with a server S coordinating them. Each agent Ak stores
its local data Dk = {(xk

1 , y
k
1 ), (xk

2 , y
k
2 ), ... , (xk

|Dk|, y
k
|Dk|)}, and never shares them

with S. In our setting, xk
i represents the data sample i of agent k and yk

i is
the corresponding label. The motivation behind a FL setup is mainly efficiency
— K can be very large — and privacy [1,14]. As local training data Dk never
leaves federating agent machines, FL models can be trained on user private (and
sensitive) data, e.g., the history of her typed messages, which can be considerably
different from publicly accessible datasets.

The final objective in FL is to learn a global model characterized by a param-
eter vector wG ∈ R

d, with d being the number of parameters for the model, such
that a global loss is minimized without a direct access to data across clients. The
basic idea is to train the global model separately for each agent k on Dk, such
that a local loss is minimized and the agents have to share with S only the
computed model parameters wk, which will be aggregated at the server level.
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By means of a communication protocol, the agents and the global server
exchange information about the parameters of the local and global model. At
the t-th round of communication, the central server S broadcasts the current
global model wG

t to a fraction of agents A− ⊂ A. Then, every agent k in A−

carries out some optimization steps over its local data Dk in order to optimize a
local loss. Finally, the computed local parameter vector wk

t+1 is sent back to the
central server. The central server S computes a weighted mean of the resulting
local models in order to obtain an updated global model wG

t+1

wG
t+1 =

|A−|∑

k=1

pkt+1w
k
t+1. (1)

For the sake of simplicity of discussion, throughout this work, we do not consider
the time dimension and focus our attention on one time instance as given by
Eq. (2)

wG =
|A−|∑

k=1

pkwk, (2)

in which pk ∈ [0, 1] is the weight associated with agent k and
∑|A−|

k=1 pk = 1.
We argue that collecting information about clients and incorporating that

knowledge to compute the appropriate agent-dependent value pk is important
for computing an effective and efficient federated model. Moreover, it is worth
noticing that pk may encode and carry out some useful knowledge in the opti-
mization of the global model with respect to relevant domain-specific dimensions.

2.2 Proposed Federated Learning Approach

As discussed at the end of the previous section, we may have different factors
and/or criteria influencing the computation of pk. Given a set of properly identi-
fied criteria about clients, it could be then possible to enhance the global model
update procedure by using this information.

To connect it to the formalism presented before, let us assume C =
{C1, ... , Cm} be a set of measurable properties (criteria) characterizing local
agent k or local data Dk. We use the term cki ∈ [0, 1] to denote, for each agent k,
the degree of satisfaction of criterion Ci in a specific round of communication.
Hence, in the proposed FL aggregation protocol, the central server computes pk

as

pk =
f(ck1 , ... , c

k
m)

Z
=

sk

Z
, (3)

where f is a local aggregation operation over the set of properties (criteria),
which represent agent k, sk ∈ R is a numerical score evaluating the k-th agent
contribution based on the m identified properties and, finally, Z is a normaliza-
tion factor. In order to ensure that

∑|A−|
k=1 pk = 1 where pk ∈ [0, 1], we compute

Z =
∑|A−|

k=1 sk.
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Example 1. Let us consider three criteria C1, C2, C3 describing, e.g., three spe-
cific qualities of the local devices, their produced models or their data. Let
us suppose that we have just two clients, and client 1 obtained evaluations
c11 = 0.5, c12 = 0.8, c13 = 0.9, while client 2 obtained c21 = 0.2, c12 = 0.9, c13 = 0.7.
Based on Eq. 3, overall evaluation of client 1 and 2 will be proportional and equal
to f(0.5,0.8,0.9)

Z and f(0.2,0.9,0.7)
Z in which Z = f(0.5, 0.8, 0.9) + f(0.2, 0.9, 0.7). �

In the following, we briefly discuss the identified set of criteria (together
with a motivation for the selection), the selected aggregation operator f , and
the online adjustment procedure.

Identification of Local Criteria. In FedAvg, the server performs aggregation
to compute pk, without knowing any information about participating clients,
except for a pure quantitative measure about local dataset size. Our approach
relies on the assumption that it might be much better to use multiple criteria
encoding different useful knowledge about clients to obtain a more informative
global model during training. This makes it possible for a domain expert to
build the federated model by leveraging different any additional domain- and
client-specific knowledge.

For instance, one may want to choose the criteria in such a way that the
rounds of communication needed to reach a desired target accuracy are min-
imized. Moreover, a domain expert could ask users/clients to measure their
adherence to some other target properties (e.g. their nationality, gender, age,
job, behavioral characteristics, etc.), in order to build a global model empha-
sizing the contribution of some classes of users; in this way, the domain expert
may, in principle, build a model favoring some targeted commercial purposes.

All in all, we may have a suite of criteria to reach the final global goal (in
Sect. 3 we will see the example adopted in our experimental setup).

Prioritized Multi-criteria Aggregation Operator. Once local criteria eval-
uations have been collected, the central server aggregates them for each device
in order to obtain a final score associated to that device. Over the years, a
wide range of aggregation operators have been proposed in the field of informa-
tion retrieval (IR) [13]. We selected some prominent ones and exploited them
in our FL setup. In particular, we focused on the weighted averaging opera-
tor, the ordered weighted averaging (OWA) models [17,18], which extend the
binary logic of AND and OR operators by allowing representation of interme-
diate quantifiers, the Choquet-based models [4,7,8], which are able to interpret
positive and negative interactions between criteria, and finally the priority-based
models [6]. Due to the lack of space, here we report only the approach and the
experimental evaluation related to the last one, modeled in terms of a MCDM
problem, because of its better performance.

The core idea of the prioritized multi-criteria aggregation operator proposed
in [6] is to assign a priority order to the involved criteria. The main rationale
behind the idea is to allow a domain expert to model circumstances where the
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lack of fulfillment of a higher priority criterion cannot be compensated with the
fulfillment of a lower priority one [13]. As an example, we may consider the case
where the domain expert may want to consider extremely important the age of
an agent’s user rather than its dataset size, so that even a large local dataset
would be penalized if the user age criteria is not satisfied.

Formally, the prioritized multi-criteria aggregation operator f : [0, 1]m →
[0,m] measures an overall score from a prioritized set of criteria evaluations on
the local model wk as in the following [6]:

sk = f(ck1 , ..., c
k
m) =

m∑

i=1

λi · ck(i)

λ1 = 1, λi = λi−1 · ck(i−1), i ∈ [2,m]

(4)

where ck(i) is the evaluation of C(i) for device k and the ·(i) notation indicates
the indices of a sorted priority order for criteria, as specified by the domain
expert, from the most important to the least important one. For each score ck(i),
an importance weight λi is computed, depending both on the specified priority
order over the criteria and on the fulfillment and the weight of the immediately
preceding criterion.

Example 2. Let us suppose that we are interested in evaluating device k based
on three criteria C1, C2, C3 and their respective evaluations are ck1 = 0.5, ck2 =
0.8, ck3 = 0.9. Let the priority order of criteria be C(1) = C1, C(2) = C2, C(3) = C3,
from the most important to the least important; then, λ1 = 1, λ2 = λ1 · ck(1) =
0.5, λ3 = λ2 · ck(2) = 0.4. Hence, the final device score will be sk = (1 ·0.5)+(0.5 ·
0.8) + (0.4 · 0.9) = 1.26. If we change the priority order to be C(1) = C3, C(2) =
C2, C(3) = C1, we would then obtain λ1 = 1, λ2 = λ1 · ck(1) = 0.9, λ3 = λ2 · ck(2) =
0.72 with a final device score of sk = (1·0.9)+(0.9·0.8)+(0.4·0.5) = 1.82. We see
that this latter value is higher than the previous one since the most important
criterion here is better fulfilled. �

Online Adjustment. The aggregation operator we are using takes as param-
eter the priority order of the involved criteria and, as a consequence, one of the
problem is to identify the best ordering for Eq. 4 which takes benefit of the gath-
ered information. Although by definition this priority order could be defined by
a domain expert, here we propose to choose the best one in an online fashion
such that we can maximize the performances of the model at each round of
communication.

Let (C(1),t, ..., C(m),t) be the last priority ordering of the criteria used to
compute the local scores pkt (see Eqs. (3) and (4)) at time t. The sequence of steps
needed to compute the updates to the global model is formalized in Algorithm 1
and commented in the following.

Lines 1–7 On each device, we locally train the last broadcasted global model
wG

t with the local training data, in order to compute wk
t+1; then, we measure

the local scores for each of the identified criteria.
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Algorithm 1. Sequence of steps executed by the server to compute the
new global model with online adjustment of aggregation operator parameters.
Functions ModelUpdate, PropertyMeasure, and LocalTestAccuracy are executed
locally on the k-th device. Variable acct is an estimation of the global accuracy.
Require: wG

t , acct, (C(1),t, ..., C(m),t)
Ensure: wG

t+1, acct+1, (C(1),t+1, ..., C(m),t+1)
1: broadcast wG

t to clients in A−

2: for each client k ∈ A− in parallel do
3: wk

t+1 ← ModelUpdate(k,wG
t )

4: for each criterion Ci ∈ C do
5: cki,t+1 ← PropertyMeasure(k,wk

t+1, Ci)
6: end for
7: end for
8: P ← (C(1),t, ..., C(m),t)
9: for each client k ∈ A− do

10: pk
t+1 ← f(ck(1),t+1, ..., c

k
(m),t+1)/Z

11: end for
12: wG

t+1 ← ∑|A−|
k=1 pk

t+1w
k
t+1

13: for each client k ∈ A in parallel do
14: acckt+1 ← LocalTestAccuracy(k,wG

t+1)
15: end for
16: acct+1 ← weighted average of acckt+1 w.r.t. local test set size, ∀k ∈ A
17: while acct+1 < acct do
18: if other priority orderings are available then
19: P ← another priority ordering of criteria (C(1), ..., C(m))�
20: repeat steps 9—16
21: else
22: P ← priority ordering for which we get the maximum value for acct+1

23: acckt+1 ← accuracy of the model which performed best
24: repeat steps 9—12
25: break
26: end if
27: end while
28: (C(1),t+1, ..., C(m),t+1) ← P
29: wG

t+1 ← wG
t+1

Lines 9–11 For each device, we use the priority ordering of criteria already used
in the previous round of communication to compute the local score pkt+1.

Line 12 A new candidate global model wG
t+1 is built by computing a weighted

averaging of the local models w.r.t. the computed pkt+1.
Lines 13–15 On each device, wG

t+1 is locally tested using the local test set.
Lines 16–29 An estimation of a global accuracy is computed weighting local

accuracies w.r.t. local test set size; then, if the obtained accuracy is higher on
average than the accuracy obtained with wG

t , then we update the global value
wG

t+1 ← wG
t+1 and we proceed with the next round of communication; oth-

erwise, another permutation is considered and, once a new pkt+1 is computed
for each device, we go back to step 3; if no other permutations are available,
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the candidate global model which produced the least worst test accuracy is
assigned to wG

t+1.

The above-mentioned steps are also graphically illustrated by means of a plot
in Fig. 1, where an exemplification with dummy values is presented. Training
steps proceed with the same parametrization until a lower accuracy is obtained
(blue point in round of communication 8); then, the previous model is restored
and the other configurations are tested, until a higher accuracy is found (e.g.,
orange point in round 8). When a higher accuracy cannot be found, the least
worst option is selected (e.g., green point in round 10).1

5 6 7 8 9 10 11
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0.7

0.8

Round of communication

A
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y

Parametrization A
Parametrization B
Parametrization C

Fig. 1. An illustration of the online parameter adjustment for the aggregation operator.
(Color figure online)

3 Experimental Setup

In this section we describe the experimental setup used to validate the perfor-
mance of the proposed FL system.

Experimental Evaluation Framework. In order to perform the experimen-
tal validation and performance evaluation, an extensive set of experiments has
been carried out by relying on LEAF [3], a modular open-source benchmarking
framework for federated settings, which comes with a suite of datasets appropri-
ately preprocessed for FL scenarios. LEAF also provides reproducible reference
1 We should be reminded that the proposed adjustment algorithm may involve some

communication and computational overhead due to the need of evaluating each of
the candidate global models on local test data. We have not included this overhead
in the count of rounds, since in the literature of FL a round of communication is
defined as the entire process of model exchanging between clients and server and
local model training [11]. Alternatively, we could define these extra rounds as testing
rounds, which imply the same communication cost as a round of communication,
but a significantly lower computational power. In the worst case, we would need m!
testing rounds for each round of communication, where m is the number of criteria.
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implementations and introduces both system and statistical rigorous metrics for
understanding the quality of the FL approach.

As for the metrics computation, the global model is tested on each device
over the local test sets. The objective of LEAF is to capture the distribution of
performance across devices by considering the 10th and 90th percentiles of the
local accuracy values and by estimating a global accuracy (local accuracy values
are averaged weighting them based on local test set size).

In this work, we improve the validation of the FL setting by using an approach
which offers an overview of the whole training performances, instead of metrics
describing a single round of communication. More specifically, we measure the
number of round of communication required to allow a certain percentage of
devices, which participate to the federation process, to reach a target accuracy
(e.g., 75% or 80%), since this measurement is able to fairly show how effective
and efficient is the model across the devices.

Federated Dataset. We run our experiments using the FEMNIST dataset [3],
which contains handwritten characters and digits from various writers and their
true labels. Unlike the original FedAvg algorithm [14], which uses the MNIST
dataset [12] artificially split by labels, the FEMNIST dataset [3], is larger and
more realistically distributed. The dataset contains 805,263 examples of 62
classes of handwritten characters and digits from 3,550 writers and it is built
by partitioning data in ExtendedMNIST [5] — an extended version of MNIST
with letters and digits — based on writers of digits/characters. It is impor-
tant to note that data in FEMNIST is inherently non-IID distributed, as the
local training data can vary between clients; therefore, it is not representative
of the whole population distribution. We use the described dataset to perform
a digit/character classification task, although for computational limits we use a
subsampled version (10% of total, 371 clients involved). Even though this train-
ing data is quite simple, in our view FEMNIST is sufficiently appropriate for our
purposes, since one of the most motivating example of FL is when the training
data comes from personal users’ interaction with mobile applications. Actually,
one could find interesting to eventually experiment our approach with different
datasets, for example with a less marked user-dependence.

Convolutional Model. Similar to [14], the classification task is performed by
using a convolutional neural network (CNN). The network has two convolutional
layers with 5 × 5 filters — the first with 32 channels, the second with 64, each
followed by 2 × 2 max pooling —, a fully connected layer with 2048 units and
ReLu activation, and a final softmax output layer, with a total of 6,603,710
parameters.
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Hyperparameter Settings. We set the hyperparameters for the whole set
of our experiments as follows, also guided by the results obtained in [14]. As
for the FedAvg client fraction parameter, in each round of communication only
10% of clients are selected to perform the computation. For what concerns the
parameters of stochastic gradient decent (SGD), we set the local batch size to
10 and the number of local epochs equal to 5. This is the configuration that
in the baseline makes it possible to reach the target accuracy in less rounds of
communication. Moreover, we set the learning rate to η = 0.01. Finally, we set
the maximum number of rounds of communication per each experiment to 1000.

Identified Local Criteria. In our experimental setting, the proposed FL sys-
tem extends pure quantitative criteria in FedAvg [14] — dataset size — and
leverages two new criteria. Please note that we are not stating that the pro-
posed ones are the only possible criteria. We present them just to show how the
introduction of new information may lead to a better final model. More specif-
ically, in our experimental evaluation, we aim at both reducing the number of
rounds of communication necessary to reach a target accuracy and making the
global model not diverging towards local specializations and overfittings.

The criteria have been defined so that cki ∈ [0, 1] with 0 meaning bad perfor-
mance and 1 good performance. Moreover, in order to make each criterion lying
in the same interval scale, we normalized them such that

∑|A−|
k=1 cki = 1.

Local Dataset Size(baseDS). The first criterion we considered is the one already
used by FedAvg [14] namely the local dataset size given by ck1 = |Dk|/|∪i∈A− Di|.
This criterion is a pure quantitative measure about the local data, which will
serve both as baseline in empirical validation of the results (i.e., when used in
isolation) and as part of the entire identified set of criteria in the developed FL
system (i.e., when used in a group).

Local Label Diversity(Ld). The second considered criterion is the diversity of
labels in each local dataset, measuring the diversity of each local dataset in terms
of class labels. We assert this criterion to be important since it can provide a clue
on how much each device can be useful for learning to predict different labels.
To quantify this criterion we use ck2 = δ(Dk)/

∑
i∈A− δ(Di) where δ measures

the number of different labels (classes) present over the samples of that dataset.

Local Model Divergence(Md). With non-IID distributions — and this is the case
of our dataset — model performance dramatically gets worse [19]. Moreover, a
large number of local training epochs may lead each device to move further away
from the initial global model, towards the opposite of the global objective [16].
Therefore, a possible solution inspired by [16] is to limit these negative effects,
by penalizing higher divergences and highlighting local models that are not very
far from the received global model. We evaluate the local model divergence as
ck3 = ϕk/

∑
i∈A− ϕi where ϕi = 1√

||wG−wi||2+1
.
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4 Results and Discussion

In order to validate the empirical performance of the proposed FL system, an
extensive set of experiments has been carried out with respect to three under-
study exploration dimensions in agreement with the assumptions presented in
Sect. 1. The final results are shown in Table 1. Note that they are presented for
reaching two distinctive desired target global accuracy of 75% and 80%.2 Each
column indicates the percentage of devices participating to the federation that
is able to reach a desired target accuracy3. In addition, we present the results in
three groups of (Low, Mid, High) for percentage of participating devices.

Study A: Effect of Individual Criteria. Study A contemplates answering
the question: “Are we able to introduce a set of device- and data- dependent
criteria through the help of which we can train a better global model?”. The
results for this study are summarized in the row Ind of Table 1. To answer the
previous question, we considered the effect of each of the three identified criteria
base Ds, Md, Ld in isolation, i.e., alternatively using only one of them. The
results with respect to both desired accuracies of 75% and 80% show that the new
identified criteria (Md and Ld) have an impact in the final quality of the global
model, which is comparable (in Low and Mid cases) or superior with respect
to the conventional base Ds criteria (in the case of High). For example, when
comparing Md and Ld, one can notice the results are equal to 25.5 v.s. 27 with
a marginal difference of only 6%. This is while, if we desire to satisfy a higher
number of devices (High case) to reach a certain accuracy, the proposed criteria
show a quality substantially better than the base Ds criteria. For example, Ld
has a mean performance of 405 compared with 552.5 obtained base Ds. This is
equal to an improvement of 36% with respect to existing baseline. These initial
results already show how the global model can benefit from considering other
criteria than just the dataset size.

Study B: Impact of Priority Order in Multi-criteria Aggregation.
Study B focuses on the question: “Are we able to exploit the potential benefits of a
prioritized multi-criteria aggregation operator to build a more informative global
model based on the identified criteria?”. The results for this study are summa-
rized in row MCA of Table 1. To answer this research question, we performed
one experiment for each individual permutation of criteria in the prioritized
multi-criteria aggregation setting. Since there are 3 identified criteria, we have
in total 6 permutations of criteria. For a fine-grained analysis, we provide the
results obtained for all the permutation runs, denoted, e.g., by Ds � Ld � Md,
2 We chose these values since they represent reasonable accuracy values and higher

were not reached in the 1,000 allowed rounds of communication.
3 The total number of participating devices in the federation is 371, thus 20%, as an

example, indicates the round of communication required for 0.2 × 317 = 75 devices
to reach the desired target accuracy.
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Ds � Md � Ld. By looking at the results, we can notice that in Low and Mid
categories, the best results are obtained for Ds � Ld � Md and Ds � Md �
Ld. These results share a similar characteristic, which involves the fact that by
considering Ds as the first important criterion, we can grant a smaller subset
of devices the chance to reach to a desired target accuracy in faster pace/rate.
This result is in agreement with individual results (see Ind in Table 1) in the
sense that the criterion Ds provides the best quality in Low and Mid study
cases for both desired target accuracy of 75% and 80%. However, when concen-
trating on the High category, one can notice Md � Ds � Ld provides the best
performance. This result is a bit surprising and shows that to satisfy a higher
number of devices, the criterion Md plays the most important role. This result
is surprising from the sense that in the individual results (see Ind in Table 1),
Ld has the most important performance, while in the obtained result it has
the lowest priority. Interestingly, we may notice that in all these best cases, the
pattern Ds � Ld always occurs4.

Study C: Impact of Online Adjustment of the Priority-Order in Multi-
criteria Aggregation. Finally, study C answers the question: “Is it possible to
update parameters for the aggregation operator (the priority order of the above-
mentioned criteria) via an online monitoring and adjustment or improving the
quality of global model?”. The results for this study are summarized in row
Final of Table 1. This study in fact is concerned with the dynamic behavior of
our proposed FL approach, by letting the server choose at each round of com-
munication the priority ordering maximizing the accuracy (i.e, obtain the best
sub-optimal accuracy). Similar to the previous study, here we also run six exper-
iments, related to the six possible initializations for the priority combinations.
In Table 1 we show results related to the best run and to their mean. In this
final experimental setting, we see an overall improvement in the performances
of the proposes approach when we initialize the priority ordering with Md �
Ds � Ld. Also in this case, the pattern Ds � Ld occurs. In this final stage
of our proposed approach we can notice it outperforms FL original algorithm,
although we take into account the increased communication and computational
requirements already discussed in Sect. 2.2.

4 We remember here that a preference relation � is transitive. Hence Ds � Md � Ld
implies Ds � Ld.
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Table 1. Final results of the empirical evaluation. Each cell provides the number of
rounds of communication necessary to make the percentage of devices specified in the
columns reach a desired target accuracy (either 75% or 80% in our case). Runs that
did not reach the target accuracy for the specified percentage of devices in the 1,000
allowed rounds are marked with —. The best results obtained in study MCA are shown
in underlined bold, while the best results in study Final are shown in bold.

Study/% devices Low Mid High

20% 30% Mean 40% 50% Mean 70% 75% mean

Target accuracy 75%

Ind Dataset size (base) 22 29 25.5 39 62 50.5 304 801 552.5

Model divergence 24 30 27 41 67 54 274 768 521

Label diversity 25 32 28.5 43 70 56.5 278 532 405

MCA Ds � Ld � Md 20 29 24.5 39 60 49.5 300 823 561.5

Ds � Md � Ld 20 29 24.5 39 60 49.5 300 669 484.5

Ld � Ds � Md 24 31 27.5 41 68 54.5 259 768 513.5

Md � Ds � Ld 24 32 28 45 70 57.5 255 532 393.5

Ld � Md � Ds 23 30 26.5 41 68 54.5 270 729 499.5

Md � Ld � Ds 24 32 28 46 70 58 255 620 437.5

Mean 22.5 30.5 26.5 41.8 66 53.9 273.17 690.1 481.6

Final Md � Ds � Ld 12 19 15.5 26 57 41.5 164 494 329

Mean 20.5 27.5 24 38.6 61.8 50.2 223 611.8 417.4

Target accuracy 80%

Ind Dataset size (base) 31 45 38 72 136 104 — — —

Model divergence 31 46 38.5 82 151 116.5 — — —

Label diversity 36 53 44.5 90 161 125.5 — — —

MCA Ds � Ld � Md 30 45 37.5 72 135 103.5 — — —

Ds � Md � Ld 30 45 37.5 72 135 103.5 — — —

Ld � Ds � Md 31 46 38.5 82 149 115.5 — — —

Md � Ds � Ld 36 53 44.5 84 161 122.5 — — —

Ld � Md � Ds 31 46 38.5 82 151 116.5 — — —

Md � Ld � Ds 36 53 44.5 90 161 125.5 — — —

Mean 32.3 48 40.1 80.3 148.6 114.5 — — —

Final Md � Ds � Ld 21 36 28.5 61 133 97 — — —

Mean 30 43.5 36.7 78.1 142.6 110.4 — — —

5 Conclusions and Future Perspectives

In this work, we presented a practical protocol for effectively aggregating data by
proposing a set of device- and data-aware properties (criteria) that are exploited
by a central server in order to obtain a more qualitative/informative global
model. Our experiments show that the standard federated learning standard,
FedAvg can be substantially improved by training high-quality models using
relatively few rounds of communication, by using a properly defined set of local
criteria and using aggregation strategy that can exploit the information from
such criteria. We want to stress here that devising such criteria is not a trivial
task, and we deem necessary the knowledge of experts in the specific field or
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domain. Moreover, it would be arduous to find a general criterion that would
meet the needs of all domains. Future perspectives for this work concern with
the identification of other local criteria — both general purpose and domain-
specific —, the experimentation with other aggregation operators and with other
interesting datasets, as well as the extension of this federated approach to other
machine learning systems, such as those in recommendation domain.

Acknowledgements. The authors wish to thank Angelo Schiavone for fruitful dis-
cussions and for helping with the implementation of the framework.
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Abstract. We investigate the effects that social influence can have on
the behaviour of agents in a social network in the context of an election.
In particular, we study how the structure of a social network can be
manipulated in order to determine the outcome of an election.

We consider an election with m candidates and n voters, each one with
her own ranking on the candidates. Voters are part of a social network
and the information that each voter has about the election is limited
to what her friends are voting. We consider an iterative elective process
where, at each round, each voter decides her vote, based on what her
neighbors voted in the previous round and her own ranking. Thus, a
voter may strategically decide to vote for a candidate different from her
favorite to avoid the election of a candidate she dislikes.

Following [36] we investigate how a central organization that knows
rankings of all the voters and the structure of the social network can
determine the outcome of the election by creating new connections
among voters.

Our main result is an algorithm that, under mild conditions on the
social network topology and on the voters’ rankings, is able to produce
a limited number of links to be added to the social network in order to
make our sponsored candidate be the winner of the election. Our results
can be seen as another indication that the control of social media is a
great threat to our democracy since the controller has an extraordinary
power in determining which information we are exposed to and can use
this power to control and influence crucial decisions.

Keywords: Social networks · Election manipulation · Strategic voting

1 Introduction

The influence that social media have on our choices and our everyday life is
getting more and more relevant. For example, it is quite common to choose
restaurants, hotels or holiday destinations by looking at how other users rate
these places on social sites as Yelp, TripAdvisor, or also Facebook. The spirit of
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these services is that you can take advantage of the experience of the community
in taking your decisions. However, our choices will be strictly intertwined not
only to what our friends did or thought, but also on which data the social media
decided to show or conceal or in which order they are presented.

In this work we address the problem of the manipulability of a social network
from the point of view of the social choice theory. We consider a setting of an
election with n voters (e.g., the users of a social media service) and m candidates.
Voters are arranged in a graph, describing the social relationship existing among
the voters. Voters are then involved in an iterative voting session [31], in which
they are required to submit a vote at each time step, based on the information
they received about the election, and from one step to the next one, they can
revise their previous decisions, and vote for a different candidate.

Specifically, in this work, in order to understand to which extent the social
media can influence our choices by deciding which information we are exposed,
we consider the setting proposed in [36], in which each voter has her personal
ranking on the candidates, and she is exposed to limited information about the
election, consisting only of the votes expressed by her neighbors in the network
(and, possibly, a poll). Voters are then assumed to behave strategically, in the
sense that they decide their vote in response to what their neighbors are voting
in order to optimize their personal welfare. Thus, a voter may decide to vote for
a candidate that she does not prefer, as long as her vote can lead, according to
her limited view of the election (restricted to her neighborhood and the poll), to
an outcome that she would prefer to the current outcome.

In [36] it has been investigated to what extent a central entity that has global
knowledge on the voters’ rankings and the control of the social network (e.g.,
the social media owner or manager) may influence the outcome of the election
process, by manipulating the view of the voters through the addition or the
deletion of links in the social network. In particular, they focus only on the
addition case, since this operation is less invasive and can be realized without
arising suspects in the voters. We remark that this scenario is very relevant, since
current technology would be already able to implement this kind of manipulation
(e.g., Facebook’s friend suggestions).

Unfortunately, the results in [36] address the issue only partially. Indeed, they
design a polynomial time algorithm that, given the social network and the voters’
rankings, compute a set of edges that a central designer may add to the network
in order to have that a candidate w will be voted by the majority of voters. This
interesting result has the drawback that the number of added links is extremely
large and this makes the algorithm infeasible in real settings. However, deciding
the minimum number of edges that are necessary to add in order to make the
sponsored candidate win, would be hard, even in simpler settings [18].

To address these issues, in [36] it has been proposed an alternative heuristic
that works in two phases: first, it influences a subset of voters, by adding edges
to the social network in order to modify their view so that they “autonomously”
decide to vote for our sponsored candidate w, and then, it stabilizes the neigh-
bors of the voters influenced in the previous phase to have them vote for their
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favorite candidates. Clearly, the heuristics fails if it does not find enough voters
to influence and stabilize in order to have w the winner of the election.

In [36] it is experimentally shown that their heuristic adds only a limited
number of edges. However, their heuristic tends to have a quite large failure rate.
The main problem is that the heuristic does not stabilize neighbors of stabilized
voters: thus, due to the added edges, some of these voters may become unstable,
and this can activate cascading behaviors with severe effects on the outcome of
the election. (The problem has been acknowledged also in [36] and the authors
propose a fix for it, but, again, the number of new edges added by the heuristics
is very high. This causes too many new edges to be added).

Our Contributions. In this work we present a novel algorithm to compute the
set of edges to be added to the social network to determine the winner of the
election. Our algorithm works under mild condition on the network structure and
on the voters’ rankings. Moreover, it adds a limited number of edges (comparable
to the heuristics in [36]).

As the heuristic in [36], our algorithm works in two phases. In the influence
phase we look for a voter u that may be influenced to vote for our sponsored
candidate w, and we add edges between u and voters that are voting for w or
for the candidate that u dislikes the most. These voters are chosen among the
ones that have not been influenced yet. This phase is repeated until w obtains
the majority of the votes. Thus, if all the non-influenced voters would vote for
their favorite candidates (we take care of this hypothesis in the stabilization
phase), then w will win the election. Notice that, since we are following the
same approach proposed in [36], in this phase we are not adding more edges
than their heuristic does.

The stabilization phase aims to guarantee that all the non-influenced voters
vote for their favorite candidates and it is the crux of our algorithm. We partition
the voters to stabilize in three sets: the superseeds, the seeds, and the remaining
voters. Our algorithm uses only 4 edges per node to stabilize a superseed voters
and at most 2 edges per node to stabilize all the remaining voters. We prove
that it is not possible to stabilize all these voters by adding less edges.

Our algorithm works under a set of mild conditions: the main requirement is
that there are sufficiently many voters that do not rank w as the worst candidate
(since these voters can be never induced to vote for w), and those have a limited
neighborhood (otherwise the available edges are not sufficient to change their
minds). There are also other technical requirements, but they concern only a
limited number of nodes and they can be easily satisfied whenever the number
of voters is large enough.

Finally, in Sect. 5 we run extensive experiments comparing our approach to
the one in [36]: they show that both approaches add a number of edges that is
more or less of the same order of magnitude, but our algorithm never fails, while
the one by Sina et al. [36] fails in about 30% of the simulations.

Related Works. There is a large literature on iterative voting, that allows agents
to update several times their vote [23,28,32,33]. These works focus on condi-
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tions guaranteeing that strategic voters converge to an equilibrium in an itera-
tive election process: specifically, they consider the issue under different votes’
aggregation rules, such as Plurality and Borda rules, or by restricting the set
of voters’ initial rankings. However, these works do not consider the effect that
social influence could have on voters’ actions, i.e., in these works every voter has
complete knowledge of votes of every other agents.

There is an increasing literature focusing on the election manipulation prob-
lem, i.e., on how social media can be used as a powerful tool for subverting the
result of an election. One of the first works along this directions analyzed the
resistance to bribery of a special aggregation rule based on cp-nets [29]. More-
over, a series of works by Auletta et al. [5,7,8] showed that the in an election
setting with only two candidates, and voters influenced by a (weighted) majority
of their neighbors, it is always possible for a manipulator to lead a minority (if it
is large enough) to become a majority, regardless of the topology of the under-
lying social relationships. Similarly, in [11] it has been proved that in a similar
setting, a manipulator can be able to lead a bare majority to consensus. Inter-
estingly, these results cannot be easily extended to more than two candidates
[10]. Other forms of manipulation are considered in [18,21,24]: in particular,
[18] considered the case that a manipulator may add edges in the relationship
network, just as we do in this paper. Finally, in [37], a more complex voting
setting is considered, similar to the one considered in this work, with more than
two candidates and a plurality aggregation rule. Note however that in all these
works players are not strategic, that is they may change their ranking as effect
of the neighbors’ influence. In our work the ranking does not change, but the
expressed vote may be adapted as effect of a strategic voting behavior.

More in general, there is an intense research on how to model the effects
that social pressure may have on people’s choices: original models derive from
sociological and economical studies [2,16,25]; on top of these, many other mod-
els have been proposed [1,6,9,14,15,19,20,35], trying to model more complex
aspects, such as the co-evolution of choices and relationships, the presence of
both positive and negative influences, and the evolution over the time of the
relationships. Some of these models also inspired the one considered in [36] and
in this work. However, we stress that no of these papers investigate on whether
and how social influence can be used in order to manipulate an election.

2 Model and Definitions

We have a set of candidates of size m and a set of voters of size n. Voters lie on
nodes of a social network G = (V,E)1. We say that the neighborhood of a node
u represents the u’s view of the election. Each voter u has a preference order, or
ranking, �u over the candidates such that, for any two candidates c, c′, we say
1 In the rest of the paper we usually assume that the network is undirected. Indeed,

this is the most difficult case for the problem faced in this work. Indeed, when
influence are directed is possible to fix the vote of a voter by adding edges without
harming the voters from which this influence goes out.
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that c �u c′ if u prefers c to c′. Moreover, voter u is said to be a supporter of
the candidate c if u prefers c to every other candidate. For every candidate c,
we denote by Supp[c] the set of the supporters of c. We can also assume that a
poll is available that makes public the number of supporters for each candidate
within a random sample of voters.

The Election Process. The election process works in rounds. At round 0 each
voter announces to all her neighbors the candidate she supports (i.e., the first
candidate in her preference list). At round i ≥ 1 each voter considers the votes
announced by her neighbors in round i − 1 and the poll; based on these infor-
mations, she strategically chooses to vote a candidate c, possibly different from
the candidate that she supports (see below for details about how this choice is
done); finally each voter announces to all hes neighbors the candidate she’s going
to vote.

The winner of the election at round i is the candidate that received the
majority of votes in that round. A tie-breaking rule is adopted to determine the
winner when multiple candidates received the same number of votes. Given two
candidates c, c′, we say that c > c′ if c would win the tie-break against c′. The
process is repeated until an equilibrium is reached, i.e., a round of the election in
which no voter changes the vote that she expressed in the previous round. Note
that that this dynamics is known to converge under opportune conditions [34].
However, we prove that for all networks in which our manipulation algorithm
returns an outcome, the dynamics above will surely converges to an equilibrium.

We are now ready to describe how voters choose who vote at each round.
We assume that voters are strategic and at each round they declare a vote that
best-responds to the votes expressed by their neighbors in the previous round.
Thus, a voter changes her vote only if, according to her view, it is crucial to
determine the election of a candidate she likes more of the current winner. The
following definition describes when a voter u has an incentive to change her vote.

Definition 1. A voter u is (c1, c2)-crucial in round i if c1 is the candidate that
is voted by the majority of neighbors of u at round i − 1 (in case of ties, the
one that wins the tie-break), and c2 is a candidate with c2 �u c1, and one of the
following two conditions hold: (i) c1 and c2 received the same number of votes
among the neighbors of u; (ii) c2 received one vote less than c1 and c2 > c1 (i.e.,
c2 wins a tie-break against c1).

Clearly, if u is (c1, c2)-crucial in round i, then she will decide to vote for c2 to
support an outcome she prefers to the current one. If, instead, u is not crucial,
i.e., she cannot influence the outcome of the election in her neighborhood, then
she confirms the vote expressed in the previous round.

3 The Manipulation Algorithm

In this section we present our manipulation algorithm. The algorithm takes in
input the social network G = (V,E), the list of candidates M , the preference
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lists of all the voters {�u}u∈V , and the sponsored candidate w and it returns a
set of edges to add to the social network in order to guarantee that w will be the
winner of the election. Following the approach presented in [36], our algorithm
works in two phases.

Influence Phase. We start by running the first two rounds (round 0 and round
1) of the election on the graph G. Let Aff be the set of voters that voted for w
in the round 1, even if they are not supporters of w. Observe that each voter
u ∈ Aff voted for w since this was the best response to what their neighbors
announced in round 0. That is, u were (c, w)-crucial in round 1, where w �u c.

Even if we assume that all the supporters of w will always vote for this
candidate, and that all voters in Aff never change their minds after round 1, it
could be the case that w has no sufficient votes to win the election. In this case,
we have to induce other voters to vote for w. To this aim we follow the same
approach as in [36], and add other edges to the social network according to the
following algorithm.

1 Let v = (v1, . . . , vn) be the set of votes at round 1
2 Set Aff = {i : v[i] = w} \ Supp[w]
3 while there is c �= w such that either |{i : v[i] = c}| > |Aff ∪ Supp[w]| or

|{i : v[i] = c}| = |Aff ∪ Supp[w]| and c > w do
4 if there is an affectable voter u then
5 Let G′ be the graph resulting from the corresponding edge addition (see

below)
6 Add u to Aff
7 Recompute v

8 else stop the influence
Algorithm 1. The Influence Phase

The algorithm looks for affectable voters, where a voter u is affectable if
u /∈ Aff and it satisfies the following conditions: (i) u does not support w; (ii)
there is a candidate c such that w �u c; (iii) there is a set Mw of w’s supporters
and a set Mc of non-affected c’s supporters that are not adjacent to u and such
that if we add links from u to all the nodes in Mw ∪Mc then u in round 1 will be
(c, w)-crucial, but not (c, c′)-crucial for every c′ �u w. If such a voter exists, we
add new links to the social network between u and the nodes in Mw ∪ Mc. Let
G′ be the resulting graph. By running again the first two rounds of the election
on graph G′, we have that, by hypothesis, u will vote for w. We then add u to
Aff and iterate the procedure until we added sufficiently many voters to Aff so
that w would be the winner of the election with the votes by her supporters and
by voters in Aff.

Let A be the set of links added by Algorithm1 and let G′ = (V,E ∪ A) be
the resulting graph. We will next formally prove that, when running the election
process on G′, every voter u ∈ Aff will vote for w at round 1 and it will confirm
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her vote in all the successive rounds, as long as all the non-affected voters vote
for the candidates they support. Then the following lemma holds.

Lemma 1. Assume we run the election process on the social network G′ =
(V,E ∪ A) returned by the Influence Phase. If at each round of the election all
the voters v ∈ V \Aff vote for their favorite candidates, then every voter u ∈ Aff
votes for w at every round of the election.

Observe that previous lemma assumes that non-affected voters permanently
vote for the candidates they support. However, these voters could decide to
change their votes to react to changes in their own view, and this could have
destructive cascading effects with respect to our manipulation goal. Consider for
example the network in Fig. 1, and assume that voters p, q, r, s have preference
d �p w �p d, w �q d �q d, c �r w �r d and d �s c �s w, respectively, whereas
voters xi and zi support candidates d and w, respectively. Moreover, assume
that the tie-breaking rule is c > d > w. It is then immediate to see that votes
by q, r, s oscillate at each round by passing from w, c, d to d,w, c, respectively.

r s

p

q

z1 x2

x1

x3

z2

Fig. 1. An instance on which manipulation fails without the stabilization phase

Thus, we have to run a Stabilization Phase in which we add other links to
the social network to stabilize non-affected voters and have them voting for the
candidates they support.

In the rest of the paper we assume that a non-affected voter is stable in
round i if she votes for her favorite candidate in this round and she is unstable
otherwise.

Stabilization Phase. We partition the non-affected voters in three sets, B, Seed
and SSeed, defined as follows. Seed is a set of 3m non-affected voters containing
three supporters for each candidate c, such that if u and v are supporters of the
same candidate c in Seed, and w is a neighbor of both u and v, then w ∈ Aff∪Seed,
i.e., either w is a voter that has been affected in the influence phase, or it is one of
the 3m voters selected as seeds. SSeed, instead, is a set of 2m non-affected voters
that is disjoint from Seed and it contains two supporters for each candidate c that
are not adjacent to voters in Seed∪Aff. B is the set of all remaining non-affected
voters.

The Stabilization Phase works in three rounds: we first stabilize the voters
in SSeed, then we stabilize the voters in B, and, finally, we stabilize the voters
in Seed.
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To stabilize a voter u ∈ SSeed we connect u to four supporters of the can-
didate c that is supported by the majority of the neighbors of u (in case of
tie, we consider the one that wins the tie-break). These four supporters must
be chosen among the voters in B. To stabilize a voter u ∈ B we connect it to
at most two seeds. The selection of these seeds will be done through the Node
Stabilization procedure that will be described in the next section. To stabilize
a voter u ∈ Seed we connect u to at most two voters in SSeed, selected through
the Node Stabilization procedure.

Let Σ be the set of links added in the Stabilization phase and let G′′ =
(V,E ∪ A ∪ Σ) be the graph obtained after both Influence and Stabilization
Phase have been correctly executed. Then we have the following lemma.

Lemma 2. If we run en election on the social network G′′ = (V,E ∪ A ∪ Σ), at
each round every voter u /∈ Aff is stable.

We defer the proof of this lemma to the next section, after we described the node
Stabilization procedure.

Observe that Lemmas 1 and 2 prove that whenever our manipulation algo-
rithm is correctly executed, it returns a set of edges to add to the social network
that guarantee that the sponsored candidate will win the election. However, it
may be the case that either in the influence phase or in the stabilization phase,
we are unable to choose nodes with the desired properties. The following theorem
describes the conditions under which this would not happen.

Theorem 1. Our manipulation algorithm returns a network G′′ such that the
sponsored candidate w is the winner of the election in G′′ and the process stops
in 2 rounds, as long as we can partition the nodes in G in two sets (L,R) such
that:

– L contains min
{
maxc{Supp[c]}, n

2

}
+ 1 − Supp[w] nodes that do not support

w;
– for every u ∈ L, there are maxc Vote0[c]−Vote0[w]+2 ≤ du+2 supporters of w

that are not in the neighborhood of u, and maxc Vote0[c]−Vote0[ĉ]+2 ≤ du+2
supporters of ĉ that are not in L and not in the neighborhood of u, for some
ĉ such that w �u ĉ, where, for every c, Votei[c] is the number of neighbors of
u that voted for c at round i;

– for every candidate c there are in R three distinct subsets Sc, Tc, Uc such that:
(i) Sc contains 3 supporters of c with disjoint neighborhood; (ii) Tc contains
2 supporters of c with no neighbors in S ∪ L; (iii) Uc contains 4 supporters
of c with no neighbors in T ; where S =

⋃
c Sc and T =

⋃
c Tc.

We notice that the number of edges introduced by our manipulation algo-
rithm cannot be larger than the one used by the heuristic proposed in [36].
Indeed, the two influence phases are equivalent (in particular, we can adopt in
our algorithm the optimizations introduced in [36]), but our stabilization proce-
dure uses the minimum possible number of edges.

We also highlight that our approach guarantees convergence in the lowest
possible number of rounds, namely two, where the first consist in all voters voting
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for their supported candidate, and the second in strategically adjusting their
vote. Theorem 1 then states that no more adjustments are necessary henceforth.

4 Node Stabilization

The Node Stabilization procedure is the core of our stabilization process. It takes
in input a voter u /∈ Aff and a subset of voters S containing supporters of all
candidates, and returns at most two voters in S such that if u is connected to
these voters then u will be stable in each round of the election.

Let us briefly describe the idea behind our approach. Let t be the candidate
that u supports and let c∗

i be the candidate that has been voted by the majority
of neighbors of u in round i (in case of ties, c∗

i is the one that wins the tie-
break). As an example, consider how we can have u to vote for t in round 1.
This clearly occurs when u, according to her view, cannot influence the outcome
of the election or when u is crucial to make t the winner. Suppose, instead,
that there is a candidate c �= c∗

0, t such that u is (c∗
0, c)-crucial. In this case, u

would vote for c instead of t. To avoid this situation, it is sufficient to add a
link between u and a supporter of c∗

0 in S. Actually, as we will show later, there
could be several candidates c, distinct from c∗

i , such that the addition of an edge
between u and a supporter of c causes u to vote for her favorite candidate at
round i. We will call these candidates stabilizers for u in round i and we will
denote by Sti the set of these stabilizers.

Thus, by adding an edge between u and a voter in S that is a supporter of a
stabilizer in St0 we have stabilized u for round 1. However, since in round 1 the
affected voters changed their vote to w, it may be the case that u, if adjacent
to some affected voters, becomes (c∗

1, c)-crucial in round 2, for some c �= t. In
this case, u would change her vote in round 2 and vote for c. Thus, we have to
stabilize also voters that could change their votes in round 2.

Observe that we cannot use the same approach as above, i.e., to add an edge
between u and a supporter of c∗

1 in S, since this new edge could make u again
unstable in round 1. Indeed, suppose that u is (c∗

0, c)-crucial in round 1 and
(c∗

1, c
′)-crucial in round 2. If c∗

1 = c and we add a link between u and supporters
of both c∗

0 and c∗
1, then u is still (c∗

0, c)-crucial in round 1 and she will remain
unstable in this round. However, it is easy to see that we could stabilize u both
in round 1 and 2 by simply adding edges between u and two supporters of c∗

1.
In general, we call blocker for u a candidate whose supporters cannot be used

to stabilize u in round 2 because they would make the voter unstable in round
1. We distinguish two cases: if u is not stable at round 1, then we will denote
her set of blockers as Bl0; otherwise we will denote it as Bl1. A formal definition
of blockers is given later. We also prove that, whereas the addition of a single
link between u and a supporter of a candidate c ∈ Bli is harmful, it is possible
to stabilize u both at round 1 and 2 by simply adding edges between u and two
supporters of a candidate c ∈ Bli.

Our Node Stabilization procedure works as described by Algorithm 2.
Roughly speaking, it distinguishes two cases. Consider first that case that u

is not stable in round 1 (i.e., she does not vote for her favorite candidate t). If
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1 if |St0| > 1 and t /∈ St0 then
2 if there is c ∈ St0 s.t. u votes for t at round 2 if an edge between u and a

supporter of c is added then
3 Add an edge between u and a supporter of c
4 else if c∗

1 /∈ Bl0 then
5 Add edges between u and supporters of c∗

0 and c∗
1

6 else Add edges between u and two supporters of c∗
1

7 else if there is c ∈ St1 \ Bl1 then
8 Add an edge between u and a supporter of c
9 else Add edges between u and two supporters of c∗

1

Algorithm 2. Node Stabilization Procedure

there is a candidate c ∈ St0 such that the addition of an edge between u and a
supporter of c does not make u unstable in round 2, then we add this edge. if
such a candidate does not exist, consider the candidate c∗

1 that would win the
round 2 of the election in the u’s view: if c∗

1 /∈ Bl0 we add edges between u and
both a supporter of c∗

0 and one of c∗
1; if c∗

1 ∈ Bl0 we add edges between u and
two supporters of c∗

1.
If, instead, u is stable in round 1 (i.e., she votes for her favorite candidate t),

then either there is c ∈ St1\Bl1, and we add an edge between u and a supporter
of c; or we add edges between u and two supporters of c∗

1.
In the rest of this section we give formal definitions of the stabilizer and

blocker sets, and we prove that the Node Stabilization procedure correctly sta-
bilize voter u adding the minimum number of edges.

The Set Sti of Stabilizers for u in Round i. Let us recall that, given a voter u, we
denote by c∗

i the candidate voted by the majority of the neighbors of u at round
i (in case of ties, c∗

i is the one that wins the tie-break). For every candidate c,
let Votei[c] be the number of neighbors of u that voted for c at round i. The set
Sti of stabilizers for u in round i is defined as follows:

Definition 2. The set Sti, for i ∈ {0, 1}, contains all candidates c satisfying at
least one of the following properties:

– c = c∗
i ;

– Votei[c] = Votei[c∗
i ] and for each c′ with Votei[c′] = Votei[c∗

i ] it occurs that
either c > c′ or c �u c′;

– Votei[c] = Votei[c∗
i ] − 1 and for each c′ with Votei[c′] = Votei[c∗

i ] it occurs
that c > c′ and c �u c′, whereas for each c′ with Votei[c′] = Votei[c∗

i ] − 1 it
occurs that either c > c′ or c �u c′.

We can prove that if u is unstable in round i + 1 and there exists a candidate
c ∈ Sti we can stabilize u for this round by simply adding an edge between u
and a supporter of c.

Next lemma states that candidates in Sti are the only nodes whose supporters
can “stabilize” u with a single edge. This will be a fundamental insight to prove
that our approach to node stabilization is optimal.
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Lemma 3. For i ∈ {0, 1}, let u /∈ Aff be unstable in round i + 1. If we add
an edge between u and a supporter of a candidate c /∈ Sti, then u will be still
unstable in round i + 1.

The set Bl0 of blockers for a voter u unstable in round 1.

Definition 3. Let u be a voter unstable in round 1. Candidate c ∈ Bl0 iff c �= c∗
0

and one of the following properties holds: (i) Vote0[c] = Vote0[c∗
0] and c �u c∗

0;
(ii) Vote0[c] = Vote0[c∗

0] − 1 and both c > c∗
0 and c �u c∗

0.

By Definition 3 it immediately follows that if we add edges between u and a
supporter of c∗

0 and a supporter of c ∈ Bl0, it makes u (c∗
0, c)-crucial in round 0.

Thus, in round 1 u changes her vote to c. However, by definition of blockers, the
addition of edges between u and a supporter of both c∗

0 and c /∈ Bl0 guarantee
that u is stable in round 1.

We notice that to stabilize u in round 1 we can also add edges between u
and two supporters of the same candidate c ∈ Bl0.

The set Bl1 of blockers for a voter u stable in round 1.

Definition 4. Let u be stable in round 1. Candidate c belongs to Bl1 iff c �= c∗
0

and one of the following properties holds:

– Vote0[c] = Vote0[t] = Vote0[c∗
0], with c∗

0 �= t and c > t, and there is a
candidate c′ with Vote0[c′] = Vote0[c∗

0], c′ > c, and c′ �u c;
– Vote0[t] = Vote0[c∗

0] − 1, with t > c∗
0 and c satisfies one of the following

conditions:
• Vote0[c] = Vote0[c∗

0], and there exists c′ s.t. Vote0[c′] = Vote0[c∗
0], c′ > c,

and c′ �u c;
• Vote0[c] = Vote0[c∗

0] − 1, c > t, and there is c′ s.t. Vote0[c′] = Vote0[c∗
0]

and c′ �u c;
• Vote0[c] = Vote0[c∗

0]−1, c > t, and there is c′ s.t. Vote0[c′] = Vote0[c∗
0]−

1, c′ > c and c′ �u c;
– St0 contains only c∗

0 and c satisfies one of the following conditions:
• c �= c∗ and Vote0[c] = Vote0[c∗

0];
• Vote0[c] = Vote0[c∗

0] − 1, c > c∗
0 and c∗

0 �u c;
• c �= t, Vote0[c] = Vote0[c∗

0] − 1, c∗
0 > c and c �u c∗

0;
• c �= t, Vote0[c] = Vote0[c∗

0] − 2, c > c∗
0 and c �u c∗

0.

As above, adding an edge between u and a supporter of c ∈ Bl1 can be
harmful, while adding a link with a supporter of c /∈ Bl1 is not. Moreover,
adding edges between u and two supporters of c ∈ Bl1 is harmless.

Proof of Lemma 2. Observations above prove that our Node Stabilization pro-
cedure correctly stabilizes voter u. Moreover, with a more careful analysis, one
can prove that our algorithm uses the minimum number of edges to stabilize u.

We now are ready to prove Lemma 2.
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Proof. Let G′′ be the graph returned by the Stabilization phase. In order to
prove the Lemma we have only to show that in an election on G′′ every voter
u /∈ Aff will be stable both in rounds 1 and 2. In fact, by Lemma 1 we know
that all the affected voters vote for the sponsored candidate w in rounds i ≥ 2.
Hence, in round 3 all the voters confirm votes expressed in the previous round
and the election process stops.

We start considering a node u ∈ B. In this case, as indicated above, the
claim follows, as long as there are sufficiently many voters in Seed to add the
required edges. However, the Stabilization phase requires to add at most two
edges between u and voters in Seed supporting of the same candidate that are
not neighbors of u. Since Seed includes three supporters for each candidate with
no common neighbors, we can always find the supporters required to stabilize u.

Consider now a voter u ∈ Seed. In this case, to stabilize u we have to add
at most two edges between u and two voters in SSeed that are supporters of
the same candidate c and are not adjacent to u. Since, by construction, SSeed
contains two supporters of each candidate that are not adjacent to seeds, we
certainly find the the supporters required to stabilize u.

Finally, consider a voter u ∈ SSeed. Observe that in the Stabilization phase
we add only edges between u and voters in Seed. Since Seed contains 3 supporters
of each candidate, then u will have at most 3 new neighbors in G′′ voting for
each candidate c. Let c∗

0 be the candidate that is supported by the majority of
neighbors of u. We next show that if we add edges from u to 4 supporters of
c∗
0 voter u will be stable in round 1. Since u does not have neighbors in Aff, all

her neighbors vote in round 1 for their favorite candidate, and thus u does not
change her vote in successive rounds.

Consider, indeed, the graph G̃ obtained from G′ by adding edges between u
and three supporters of each candidate c. Note that the view of u in G̃ is exactly
the same as in G′. In particular, c∗

0 is still the candidate that is supported by the
majority of neighbors of u and the best response for u in G̃ is the same as in G′.
Anyway, as stated above we have that it is sufficient to add an edge (the fourth
one) between u and a supporter of c∗

0, to stabilize u in round 1. Moreover, this
property continues to hold if edges between u and supporters of c �= c∗

0 (that is,
if less than 3 seed nodes are connected to u during the seed stabilization phase)
are removed or if further edges are added between u and supporters of c∗

0 (that
is, if more than zero seed nodes supporting c∗

0 are connected to u during the
stabilization phase). �	

5 Experiments

To validate our algorithm we run extensive experiments and on a real dataset
to compare it against the heuristic proposed by [36]. Specifically, we consider
the social network dataset “Facebook MHRW” [22], that contains a sample of
the Facebook structure taken over about 900,000 nodes. For our tests, we sam-
pled from this network 10 different graphs over 25000 nodes, by running a BFS
from 10 different randomly selected nodes. For each of these graphs we assigned
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the preferences to its nodes according to three different approaches: (i) each
voter is assigned a randomly selected preference list; (ii) each voter is assigned
a randomly selected single-peaked preference list; (iii) we used a dataset of real
preference lists available from PrefLib, that contains the results of surveys about
sushi preferences, and assigned to each voter a random preference list among the
ones in the dataset. In particular, for each graph we run 30 simulation with ran-
dom preference lists, 10 with random single-peaked preference lists, and 10 with
real preference lists.

For each combination of graph and preference list we consider a setting with
5 candidates, and we select the sponsored candidate w to be the candidate that
is ranked as 2nd, 3rd, 4th, and 5th with respect to the number of supporters.
Hence, in total we run our simulations on 4 × 50 × 10 = 2000 different settings.
For each setting we run both our algorithm, and the code provided by [36].

We observe that our algorithm correct computes a set of edges such that their
addition to the original graph, assures that the sponsored candidate w wins the
election. We remark that on the same settings, the heuristic of Sina et al. fails
in about 30% of the runs, by returning a set of edges that is insufficient to make
w the winner of the election.

Next picture shows that this guarantee comes at a limited cost in term of the
number of added edges. Indeed, as showed in Fig. 2, the number of edges added
by our algorithm is slightly larger but in the same order of magnitude as the one
added by [36].

Fig. 2. The number of added edges with respect to the four different choice for the
desired candidate w

6 Conclusions

In this paper we presented an algorithm to compute a set of edges to add to
a social network in order to manipulate the outcome of an election and have a
sponsored candidate to win. We proved that our algorithm adds the minimum
number of edges and it works on mild conditions on the structure of the social
network and on the preference lists of the voters.
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We also run extensive experiments to validate performances of our algorithm.
They show that our algorithm adds a number of edges that is similar to their
heuristic but it has a 100% success rate. We will also plan to run even more
extensive experiments in even more realistic settings.

Our results can be seen as another indication that the control of social media
is a great threat to our democracy since the controller has an extraordinary power
in determining which information we are exposed to and can use this power to
control and influence crucial decisions. This threat was already highlighted by
several works in the case that voters are myopic and they are simply influenced
by their neighbors (and possibly by their own belief).

In this paper we enforce the message of [36], by showing that manipulation
can be often effective even if voters are instead strategic and they can decide
to vote for a candidate different from their favourite. Clearly, we acknowledge
that neither of these two extremal behaviors fully represents the real world: usu-
ally, people’s decisions depend on both the influence of their social relationships
and by strategic considerations based on their limited view. Hence, it would be
interesting to evaluate the extent at which these manipulability results extend
to this more realistic environment.

Moreover, most of the works on the election manipulability problem (includ-
ing this one) make a lot of simplifying assumptions: e.g., voters’ knowledge is
limited to their own neighborhood; they perfectly know their neighbors’ votes;
they have a total order of candidates. In a real world setting, some of these
assumptions could not hold: e.g., polls can provide an aggregate information
about the rest of the network; voters could have only incomplete information
about their neighbors’ votes (i.e., received messages could be blurry or could be
lost in the mess of information that one receives nowadays through social media).
It would be an interesting direction to verify at which extent the manipulability
results hold when some of these assumptions are relaxed and voters are assumed
to have limited rationality2, where the extent of limited rationality may depend
on how much the voters know about the rest of the networks, how confident they
are about the signals received by their neighbors, or about their own choices.

The results presented in this paper can be seen a contribution towards the
fundamental step of drawing of the boundary of the manipulability of social
networks. These results allow not only to establish when an intervention is nec-
essary, but they also suggest some form of intervention, such as constraining the
network to be one robust against manipulation. Nevertheless, we highlight that
other forms of intervention can be operated, even when it is not possible to work
on the network topology: e.g., quarantining particular nodes [4], or including
in the network special nodes working as monitors [3,39] are among the most
effective proposal of intervention that have been recently suggested in literature.

2 Many models are known in literature for dealing with this kind of players: the muta-
tion model [26], the mistake model [27,38], the logit update rule [17] and its cor-
responding equilibria concepts, quantal response equilibrium [30], and logit equilib-
rium [12,13].
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vol. 9470, pp. 74–88. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48995-6 6

6. Auletta, V., Caragiannis, I., Ferraioli, D., Galdi, C., Persiano, G.: Generalized
discrete preference games. In: Proceedings of IJCAI 2016, pp. 53–59 (2016)

7. Auletta, V., Caragiannis, I., Ferraioli, D., Galdi, C., Persiano, G.: Information
retention in heterogeneous majority dynamics. In: Devanur, N.R., Lu, P. (eds.)
WINE 2017. LNCS, vol. 10660, pp. 30–43. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71924-5 3

8. Auletta, V., Caragiannis, I., Ferraioli, D., Galdi, C., Persiano, G.: Robustness in
discrete preference games. In: Proceedings of AAMAS 2017, pp. 1314–1322 (2017)

9. Auletta, V., Fanelli, A., Ferraioli, D.: Consensus in opinion formation processes in
fully evolving environments. In: Proceedings of AAAI 2019 (2019)

10. Auletta, V., Ferraioli, D., Fionda, V., Greco, G.: Maximizing the spread of an
opinion when tertium datur est. In: Proceedings of AAMAS 2019 (2019)

11. Auletta, V., Ferraioli, D., Greco, G.: Reasoning about consensus when opinions
diffuse through majority dynamics. In: Proceedings of IJCAI 2018, pp. 49–55 (2018)

12. Auletta, V., Ferraioli, D., Pasquale, F., Penna, P., Persiano, G.: Logit dynamics
with concurrent updates for local interaction games. In: Bodlaender, H.L., Italiano,
G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 73–84. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40450-4 7

13. Auletta, V., Ferraioli, D., Pasquale, F., Penna, P., Persiano, G.: Convergence to
equilibrium of logit dynamics for strategic games. Algorithmica 76(1), 110–142
(2016)

14. Bhawalkar, K., Gollapudi, S., Munagala, K.: Coevolutionary opinion formation
games. In: Proceedings of STOC 2013, pp. 41–50 (2013)
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Abstract. Shared-autonomy approaches are the most appealing for
what concerns the control of assistive devices such as wheelchairs and
mobile robots, designed to aid disabled and elderly people. In this paper,
we propose a shared-autonomy navigation for mobile robots, that com-
bines the user’s interaction as well as the robots’ perception and the
environment knowledge, with the information of important landmarks,
namely the doors. In order to facilitate the control of the robot, our sys-
tem exploits a door detection module, aiming to detect doors and espe-
cially to identify their open/close status, making the robot pass through
narrow doorways without any user’s intervention. We tested the proposed
system on a real mobile robot to verify the feasibility.

Keywords: Mobile robots navigation · Robot perception ·
Human-centered systems

1 Introduction

Assistive robots and wheelchairs represent a change especially for people affected
by some diseases or disabilities, giving them the possibility to keep a self-
controlled mobility and to maintain relationship with the others [1,3,10,15,29].
In this regards, the shared-autonomy systems appear very appealing solutions
referring to the development of “intelligent” robotic devices able to contextualize
commands from the human into the representation of the environment coming
from their sensory robotic data. Therefore, the agents maintain some degree of
autonomy, but, at the same time, they deal with the user’s decisions. In the lit-
erature, several Shared-Autonomy approaches have been proposed [7,12,21,23].
All are characterized by two key principles: (i) the human’s commands define the
high-level behavior of the robot; (ii) the robot decides autonomously its low-level
behavior accordingly to the surrounding environment information. In this work,
we propose a shared-autonomy approach integrating the information of crucial
environment landmarks, which are doors [39]. The resulting system enables the
robot not only to avoid obstacles and to move according to the user’s commands,
but also to pass through narrow doorways without any user’s intervention, with
the aim of reducing the workload required.
c© Springer Nature Switzerland AG 2019
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2 Related Works

In the literature, many studies about autonomous and semi-autonomous robots,
proposed to identify point of interest such as doors by relying on a priori knowl-
edge of the environment (e.g. topological map) [19,31] and/or fiducial markers
[2,37]. These information are then used both for path planning [25,28,33] and
to estimate the human’s intent [8,35]. In this work, we propose a system that
detects the door without specialized sensor setups and that integrates this infor-
mation in the shared-autonomy navigation of the robot.

As regards the door detection, several studies have proposed methods by
using different sensors, features and training methods [5,6,9,11,14,30,41]. One
of the most simple approach is based on ultrasonic or laser sensors, that detects
the doorway just looking for a hole in the sensor stream and finding the points
of interest according to its wide [13,16,33]. The limitation of this approach is
that not all gaps necessarily meet this criterion, by generating disagreements
between possible targets in the nearby vicinity [22]. To overcome this drawback,
some approaches for door detection depend on 3D information including both
visual and distance data. For instance, Anguelov et al. [5] combined two 2D laser
scanners and a panoramic camera data in input to a probabilistic model, that
segments the environment into door and wall objects and learns their properties.
Similarly, in [32], sonars are used to confirm the door detection from cameras. In
[4,9,30], Hough Transform is used to extract edge lines from images. However,
any square-shaped like objects might be treated as a door due to similar edge
numbers. Alternatively, in [22], Derry et al. proposed to detect walls as vertical
planes in the 3D point cloud by finding gaps in the wall planes. Yuan et al.
[36] extend this approach in which wall planes are extracted from the point
clouds acquired by a depth camera and the door’s opening angle is calculated
by analysing the shape of the gap inside the door. In this case, the detection of
the location and the orientation of doorways is rapid and robust. These studies
support our work in designing the door detection module, however in these
cases the authors focused on developing techniques for detecting doors without
integrating these information in the shared-autonomy navigation of the robot.

From these point of view, in literature some studies investigated how the
robot perception can enhance the shared-autonomy behaviours, especially in
the context of assistive wheelchairs, in which assistance is provided to the user
who might not possess the fine motor control necessary to handle challenging
activities such as doorway traversal [8,22,27,28,35]. An example is NavChair
[28,34] that includes the door passage mode: the wheelchair’s speed is reduced
and the data from a sonar sensors are used to attempt to center the wheelchair
within the door as the user drives it through. This approach is very effective
when the door is directly ahead. Otherwise, the wheelchair might be driven
away from the door in an attempt to center on the door, because the doorway is
not actually actively detected. Zeng et al. developed a Collaborative Wheelchair
Assistant [27]. In this system a helper can program a path by demonstration and
then the user can drive this path controlling the speed. However, there are no
sensors to detect collisions and in narrow spaces such as doorways, it relies on



Shared-Autonomy Navigation for Mobile Robots 513

the driving skill of the user. In [35] Carlson et al. assign to each target doorway
a confidence score based on Euclidean distance to the goal and when it crosses a
threshold, the wheelchair is automatically guided through the door. Interesting
the idea of designing a local model representing the action moving towards a
doorway, nevertheless also in this work the doors are identified with fiducial
markers. In [24] the authors demonstrate how the human can be integrated into
a semi-autonomous control using Potential Field to generate velocity commands.

Herein, our system considers the attractive/repulsive effects of many compo-
nents such as the obstacles, the user’s input and the doors, by using an approach
similar to the Potential Field. However, in contrast to them [20,24,28,40], we
merge these information, to determine a position corresponding to the next sub-
goal the robot has to reach, without affecting its speed. Then, the robot tries
to reach the current subgoal avoiding obstacles and updating it continuously
according to the user’s commands.

3 Methods

In this Section we present our shared-autonomy approach that combines different
contributions related to the human input, the obstacle avoidance and the attrac-
tion to doors. We describe also our experimental setup and the robot platform
we used to test our system.

3.1 Shared-Autonomy Approach for Door Traversal

In our system, the low-level behavior of the robot consists in combining: the infor-
mation about the laser data, the environment representation, the door detec-
tions, as well as the high-level commands from the user, to define a subgoal that
has to be reached. Then, once the subgoal is computed, the robot decides the
best trajectory to move and it tries to reach it avoiding obstacles. The current
subgoal is continuously updated and adjusted according to the human’s input,
resulting in a smooth navigation. To drive the robot, the human operator can
deliver direction commands. Every time the human operator sends a direction
command, the system stores three different information (see Fig. 1A):

– Direction: the direction angle α ∈ [−180◦, 180◦] specified by the human.
– Robot position: the (x, y) coordinates of the robot position with respect to

the global reference system.
– Robot orientation: the current rotation angle β of the robot with respect

to the global reference system.

The previous information are overwritten once the user delivers a new command.
We have modeled the subgoal-setting problem designing an heuristic function

h to determine the best direction along which the robot has to move. We consider
the attractive/repulsive effect of the following components:
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– Obstacle influence Fo : the obstacles in the environment generate repulsive
forces enabling the robot to avoid the collision with them. In other words,
those directions making the robot move too close to obstacles are penalised.

– User input Fu : the target direction, chosen by the user, generates an attrac-
tive force. In our system, the directions consistent with the user high-level
commands are preferred.

– Direction correction Fc : it provides an autonomous correction when the
current direction, along which the robot is moving, does not correspond to
the user command. For instance, it can happen because of the presence of
obstacles. Therefore, in order to avoid the robot moving too far, it keeps
track of the user commands and, as soon as possible, it adjusts its low-level
behavior according to the high-level one chosen by the user.

– Door attractor Fd : the doors in the environment become attractors for the
robot when the user exhibits his/her intention to pass through them.

By summing the contribution of each component (Fo, Fu, Fc, Fd) multiplied
by a certain weight (ωo, ωu, ωc, ωd), we obtain the heuristic function h:

h =
ωo · Fo + ωu · Fu + ωc · Fc + ωd · ∑

doorFd

ωo + ωu + ωc + ωd
(1)

The corresponding subgoal, the robot has to reach, is found by maximizing
the heuristic function h. In addition, the robot exploits a global map of the
environment to check the validity of the subgoal (a free cell) and eventually to
arrange its coordinates within the neighborhood.

In designing the system, we decided to take advantage of the well known ROS
navigation stack1 for what concerns the robot motion and collision avoidance.
We used the 2D SLAM algorithm provided by Google Cartographer [38] for the
mapping and localization purposes. Furthermore, in our system, the obstacle
detection is based on the laser data, according to which each laser ray is associ-
ated to a specific direction θ (see Fig. 1B).

In the following paragraphs we describe in details the components of the
heuristic function h and the computation of the subgoal.

Obstacle Influence: It deals with the repulsive effect of the obstacles in the
environment, thanks to which the robot can move towards safe positions. The
influence of the obstacles is measured according to their distance from the robot
position. Similarly to [18], we classify the direction along the robot can move into
risky or safe based on the presence of imminent obstacles. For each laser ray, we
consider the closest object to the robot in that direction. If the obstacle influence
Fo for that object is below a threshold rlack, it means that the corresponding ray
laser direction is risky for the robot and therefore it is penalised. Otherwise, that
direction is safe since the robot has enough space to move without colliding with
obstacles. In correspondence to the threshold rlack, Fo has a neutral strength.
1 https://github.com/ros-planning/navigation.

https://github.com/ros-planning/navigation
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Fig. 1. (A) Schematic representation of the direction command (α) sent by the user
with respect to the global reference system (blue) and the considered laser direction
θ (yellow); (B) Illustrative representation of the obstacle influence computed for each
laser ray direction (θ): more green a ray is, more attractive the associated direction
is, while red rays correspond to repulsive forces; (C) Descriptive illustration about
the direction correction function (Fc): in blue it is represented the ideal linear path
computed when the user sends a command (at the blue cross position in the direction
according to the dashed line), while rayd corresponds to the difference between the
distance from the current (xt, yt) and the predict future (xt+1, yt+1) robot’s positions
to the ideal path; (D) Illustrative representation of the doors attractor function (Fd): a
door is considered only when the angle γ′ indicating the direction chosen by the user is
less than 60◦. The angle γ relating to the robot reference system (green) is considered
in the computation of the function Fd. (Color figure online)

We compute the strength of the obstacle influence Fo as follows:

Fo(ri) =
log(ri + 1 − rlack)

max
r

log(r + 1 − rlack)
(2)

where ri is the distance between the robot position and the closest object in the
considered laser ray direction (see Fig. 1B). We normalize the computed values
with respect to the maximum, in order to obtain values in the interval [−1, 1].
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User Input: It is responsible for generating an attractive behavior in corre-
spondence of the directions chosen by the user. In this way, the robot prefers
to move along those directions that are compatible with the commands of the
user. In other words, the user input Fu evaluates how close the direction of each
laser ray (θ) is to the last direction specified by the operator (α). In details,
when the user sends a command, the system stores the α angle of the direction
with respect to the robot reference system and the β angle of the rotation of the
robot with respect to the global reference system (see Fig. 1A). Thus, the global
angle φ that identifies the last human direction in the global reference system is
given by the sum of α and β. To be able to compare the angle φ with the angle
θ of a direction of the laser, we have to express also θ with respect to the global
reference system. The resulting angle θ′ is simply obtained summing θ to β′,
which is the current rotation angle of the robot with respect the global reference
system.

We define the strength of the user input Fu according to the equation:

Fu(θ) = ε · 1
| (θ + β′) − (α + β) | +ε

= ε · 1
| θ′ − φ | +ε

(3)

The inverse is due to the fact that Fu has to be higher the closer θ′ is to the
direction φ, in order to prefer a direction that is, from an angular point of view,
not too far from the direction specified by the user. The ε parameter is needed
in order to avoid that Fu tends to infinity and to normalize the resulting values
between the interval [0, 1].

Direction Correction: It creates an additional attractive behavior, to perform
an autonomous correction, especially on those directions characterised by similar
obstacle influence Fo and user input Fu values. In particular, it is fundamental
in the case in which the robot is moving along a different direction from the one
chosen by the user, e.g. for the presence of obstacles. Thank to the contribution
of the direction correction Fc , the robot is influenced by the attractive effect
generated in those directions consistent with the user choice, and therefore it
is able to adjust its next movements. In details, when a new command is sent,
it computes an ideal linear path (in blue in Fig. 1C), starting from the robot
position, at the instant in which the command is received, according to the
direction specified by the user (α). For each laser ray direction, we calculate the
next position (xt+1, yt+1)—with respect to the global reference system—along
which the robot will move if it is chosen to set the subgoal. To compute the
two coordinates of the next position (xt+1, yt+1), we use the angle θ′ and the
corresponding distance r defined above, in the following way:

{
xt+1 = xt + p · cos θ′

yt+1 = yt + p · sin θ′

where xt and yt are the current robot coordinates and p is a value in the interval
(0, 1). Then, using the basic geometry properties, we computed the difference
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between the distance from the current robot (xt, yt) and the future position
(xt+1, yt+1) to the ideal path for each of the possible directions. We have called
this difference as rayleight distance and we refer to it as rayd (see Fig. 1C). The
strength of the direction correction Fc increases with increasing of rayd, but it
saturates above a certain threshold. Since we want that Fc grows rapidly with
rayd and, at the same time high values of the rayd must not influence too much
the heuristic function h, we design Fc based on a modified version of Rayleigh
distribution [26]. In particular, Fc is defined as:

Fc(θ, r) = sign(rayd) · (1 − e−ray2
d/(2σ2)) (4)

It returns a value in the range [−1, 1]. The sign multiplication is introduced to
assign a strength also to the negative values, for which the Rayleigh distribution
is not defined.

Door Attractor: it represents the attractive effect that the doors can have
on the robot low-level behavior. In particular, it depends on how the direction
chosen by the user fits with the position of the door. In fact, we hypothesize
that if the user command corresponds to the direction from the robot position
to the centre of the door, there is an high probability the user wants the robot
to pass through the door. Every time that a valid door is detected, it is labelled
as influential / not influential. In details, we consider the angular distance γ′

between the user’s direction and the angle described by the line connecting
the robot position to the door center with respect the global reference system
(Fig. 1D). If γ′ is less than a threshold, it is marked as influential and it generates
an attractive behavior. Otherwise it is considered as not influential. For each
influential door, we compute the strength of the door attractor Fd , defined as
the probability density function of a Gaussian distribution with zero mean and
0.05 variance:

Fd(θ, door) =
1√

2π · 0.05
e− (γ−θ)2

2·0.05 (5)

where the angle γ is achieved by connecting the robot position to the door center
with respect to the robot reference system. As reported in the Eq. 1, we sum the
Fd contribution of each influential door.

3.2 Door Detection and Aperture Estimation Strategy

Our system includes a door detection module, based on the data from a 3D
camera sensor, with the aim of detecting the doors and inferring the knowledge
about their status (open/close) (see Fig. 2). In other words, it finds the door-
way, tracks it during the approach and estimates the detected door’s aperture.
Although it does not represent the focus of this work.

The doors detections are based on the start-of-the-art YOLOv3 library2 [17].
Because of real-time constraints and reduced hardware resources, we decided to
2 https://pjreddie.com/yolo/.

https://pjreddie.com/yolo/
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Fig. 2. The RGB frame in which doors are detected and the corresponding point cloud.
The computed center of the door’s aperture AC is indicated in green. In this case the
aperture of the doors in A1 and A2 are equal to 90◦ (i.e. completely open) and 45◦

(i.e. half open). (Color figure online)

use a reduced configuration of YOLOv3, structured in 13 convolutional layers.
We trained it on a NVIDIA GeForce GT 740M GPU, by giving in input a
set of 11’140 door images extracted from the Open Images Dataset v43. The
images present different light conditions and resolutions. Furthermore, doors in
the images have been taken from different perspectives and include the envi-
ronmental context (e.g buildings, windows, cars, people and so on). To reduce
the number of false positives (e.g. other objects with a rectangular shape) we
have implemented a rejection filter for the detected doors, based on the depth
image. We filter the detected objects by imposing a constraint only on its esti-
mated height. We average the depth values for those pixels that fall inside the
bounding box, obtaining the mean depth value dmean. We have assumed that
objects enclosed by the bounding box entirely belong to the plane at distance
dmean. Thus, we estimate the object height He, using the bounding box width
and height with the following formula:

He =
dmean × Hp × Hs

f × Himg
(6)

where Hp is the height of the bounding box in pixels, Hs is the sensor dimension
(e.g. we consider the height), f is the camera focal length and Himg is the image
height in pixels.

Once that a new door is identified, it is stored in a list of doors (D) and it is
considered until the ratio between the number of the frames in which it appears
and the total one, computed starting from the first detection, become less than
a threshold TD.

The door aperture estimation approach analyzes the point cloud generated
by the 3D sensor and uses the detections given by the door detector. We enlarge
the size of the bounding box to include also a part of the wall in which the
door is placed. Then, we compute the angle δ (see Fig. 3) formed by the line
connecting the top-left corner (BLC) of the enlarged bounding box to its center
(BC), approximating it to 30◦, 45◦ or 60◦.
3 https://storage.googleapis.com/openimages/web/index.html.

https://storage.googleapis.com/openimages/web/index.html
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Fig. 3. Graphical representation of the doorway aperture estimation method.

We assume that the point BLC belongs to the wall containing the door, and
we use it as reference to set a threshold Tw to define the plane of the door. We
store the value of the depth DBLC

corresponding to this point. In this way, every
other point at a distance in the range (DBLC

− Tw,DBLC
+ Tw) is considered as

belonging to the plane of the door. Then, we compute the real coordinates (with
respect the 3D sensor) of the points DJ and DS , identifying respectively the
jamb and the shutter of the door (see again Fig. 3). In details, DJ corresponds
to the last point with depth belonging to the range (DBLC

− Tw,DBLC
+ Tw),

found by searching in the direction of the computed angle δ, starting from the
point BLC . While DS represents the first point with the depth in the same range,
obtained by proceeding horizontally from the point DJ . Therefore we estimate
the door aperture (A) and the world coordinates of its center (AC) (see Fig. 2),
using the coordinates of the points DJ and DS :

A =
√

(xDS
− xDJ

)2 + (zDS
− zDJ

)2

AC = (
xDJ

+ xDS

2
; y = 0 ;

zDJ
+ zDS

2

)

We consider a door closed when it is identified by the detection framework, but
the aperture estimation method can not retrieve the DJ point (and then also
DS), since all the points belong to the same plane (i.e. the plane of the door).
This means that there is not an open space within the door bounding box.

The doors with a too small estimated aperture are not taken into account
in the shared-autonomy algorithm to be sure that the robot can pass through
them.



520 G. Beraldo et al.

3.3 Computation of the Subgoal

The subgoal given to the robot corresponds to a pose in the environment, that
it has to reach:

sg = (x, y, z, qx, qy, qz, qw) (7)

In our algorithm, it is computed from the heuristic function h. In details, among
all the considered directions θ (see Fig. 1B), we find the pair (θsg, rsg) maximizing
h, where rsg is the distance between the robot position and the nearest object in
the corresponding orientation θsg. The pose of the subgoal is determined as sg =
(rsg ·cos(θsg), rsg ·sin(θsg), 0, qxsg, qysg, qzsg, qwsg), where (qxsg, qysg, qzsg, qwsg)
is the quaternion computed from θsg.

4 Experimental Design

To verify the feasibility of our shared-autonomy algorithm on a mobile robot, we
conducted a pilot experiment. It consists in making the robot complete an entire
path, passing through a door opened with a 60◦ angle. We have set respectively
a starting and an arrival positions, defining 3 target positions T1, T2, T3 to be
reached along the path (see Fig. 4A). The user was sat in a corner of the room,
from which he/she could not see directly the robot. He/she received the robot
position in the environment map as feedback, which has been updated in real
time thanks to Cartographer. The user delivered commands to the robot through
a controller connected to a separate computer, that communicated with the robot
through a local network. The experiment was performed by four different people
(age 24.75 ± 0.96): s1, s2, s3, s4. Each subject has repeated the experiment three
times. Three of these people (s1, s2, s4) did not know the system architecture
and its low-level functionalities. For these tests we used the configuration of
parameters in Table 1.

Furthermore, we evaluated the importance of shared-autonomy navigation by
comparing our approach with a pure manual control. In this case, we asked the
user to repeat the experiment controlling the robot with discrete commands sent
by the controller but without the assistance of the shared-autonomy navigation
and the door detection module.

4.1 Robot Platform

Our telepresence platform consists of a Pioneer P3-AT mobile robot equipped
with a Microsoft Kinect RGB-D camera. The 3D camera was mounted at a height
of 1.05 m from the floor and it provides RGB-D data with 1920× 1080 pixels
resolution at 30 frames per second. In our navigation experiments, we acquired
color images and depth data at a reduced resolution, namely 960× 540 pixels in
order to estimate the door aperture faster (Please refer to Sect. 3.2 for further
details). For obstacle avoidance, the robot has a 2D LiDAR LMS1000 SICK
sensor with an aperture angle of 270◦ (θ ∈ [−135◦, 135◦]) with a constant angle
increment of 0.5◦ and a scanning range of 20 m (r ∈ [0, 20] m). We integrated
our system on an HP laptop equipped with an Intel Core i7 4700MQ 2.4 GHz
CPU with an 8 GB RAM and an NVIDIA GeForce GT 740M GPU.
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Table 1. The configuration of the shared-autonomy algorithm parameters

h function weights ωo 0.5

ωu 0.8

ωc 0.1

ωd 1

Obstacle influence rlack 0.9

User input ε 0.01

Direction correction p 0.6

σ 0.5

Door detection and aperture estimation strategy TD 15%

Tw 60 cm

5 Preliminary Results

All the subjects that performed the experiment4, independently from the system
knowledge, succeeded in all the three trials, making the robot reach all the 3 tar-
get positions and the arrival position. We have considered the time taken and the
number of commands sent by the user to drive the robot to each target position.
The results are shown in Fig. 4C. To verify the contribution of the door attractor
on the shared-autonomy navigation system, we carried out an additional qualita-
tive test(See footnote 4). We tested our shared-autonomy navigation algorithm
with and without the doors information in the same conditions. By sending the
same high-level user command, corresponding to the right direction from the
relative position of the robot, the resulting low-level behavior performed by the
robot was different. As shown in Fig. 5, when the door detector module was
active, the subgoal was positioned along the door direction. In the other case,
without considering the door influence (the door attractor contribution Fd equal
to zero), it made the system generate a subgoal along the given direction, mak-
ing the robot turn right but without passing through the door. The importance
of the shared-autonomy and the door detection is confirmed in terms of ratio
between the number of commands in the two modalities shared-autonomy with
door detection module and pure manual control without shared-autonomy and
door detection module. In our case we achieved a ration equal to 10.32%. It is
possible to notice that the number of commands increased in the pure manual
modality. This suggests that without shared-autonomy and door detection mod-
ule, the user has to send more commands to the robot, increasing the necessary
cognitive workload.

To evaluate qualitatively the door aperture estimation, we have tested it on
two kinds of doors: a painted wooden door and a metal door. The first is a
narrower with a width of only 63 cm; while the second has a width of 85 cm.
For each door, we have examining five main angles of aperture, which are 0◦

4 An illustrative video is available at https://youtu.be/LuJNzdG143s.

https://youtu.be/LuJNzdG143s
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Fig. 4. (A) The experimental environment with the three target positions and the red
circles indicating additional mobile obstacles not representing in the global static map;
(B) The true positive % related to the detection of the painted wooden and metal
doors; (C) Average number of commands and average time in seconds needed to reach
each target position for each subject.

(i.e. closed door), 30◦, 45◦, 60◦ and 90◦(i.e. completely opened door), at four
different distances (1, 2, 3 and 4 m). Furthermore, for each pair angle-distance
the test has been run 5 times, taking into account the estimated apertures, if the
door was detected. The results we achieved are shown in the Fig. 4B in terms of
true positive percentages and in the Tables 2 and 3 in terms of the average error
made in the door aperture estimation for each pair angle-distance considered.
There were few cases that were not able to be well handled by our door detector.
The reasons are essentially deficiencies due to the sensor (noise in the Kinect),
situation of occlusions and incorrect identification of the wall plane.

Table 2. Painted wooden door aperture estimation error

Distance Angle

0◦ 30◦ 45◦ 60◦ 90◦

1 m 0.0 ± 0.0 cm 1.6 ± 4.8 cm 4 ± 1.3 cm 7.2 ± 5.0 cm 2.5 ± 0.7 cm

2 m 0.0 ± 0.0 cm 13.4 ± 0.9 cm 9.2 ± 1.1 cm 6.1 ± 3.5 cm 2.4 ± 0.4 cm

3 m 3.5 ± 2.2 8.9 ± 0.0 cm 8.8 ± 12 cm 4.3 ± 0.7 cm

4 m 8.7 ± 2.2 cm 7.6 ± 3.3 cm 9.9 ± 1.3 cm 2.9 ± 0.9 cm
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Fig. 5. Comparison of the behaviors performed by the robot when the door detector
module was active (A) or disabled (B), by sending the same high-level user command
(in the right direction from the relative position of the robot). In A the robot moves
correctly through the door, while in B the robot turns in the right direction, but without
performing the door passage (it is in front of the wall to the right of the relative position
of the robot).

Table 3. Metal door aperture estimation error

Distance Angle

0◦ 30◦ 45◦ 60◦ 90◦

1 m 0.0 ± 0.0 cm 26.8 ± 17.9 cm 1.7 ± 2.7 cm

2 m 0.0 ± 0.0 cm 10.2 ± 18.3 cm 4 ± 0.5 cm 16.1 ± 5 cm 19.6 ± 0.3 cm

3 m 0.0 ± 0.0 cm 4.3 ± 2.1 cm 3.4 ± 6.4 cm 7.8 ± 0.0 cm 2.8 ± 0.3 cm

4 m 0.0 ± 0.0 cm 11.4 ± 1.7 cm 7.4 ± 8.6 cm 24.9 ± 4.8 cm 7.8 ± 0.3 cm

6 Discussion

The focus of our proposed shared-autonomy navigation system is to transform
high-level commands delivered by the user, in terms of preference directions, into
effective subgoals that the robot has to reach. In our system we considered the
human-robot interaction as well as the fusion between the robot’s perception
and the environment knowledge. Therefore, this fusion results in the obstacle
avoidance and generally in the navigation of the robot, achieved thanks to the
combination of the laser data information and representation of the environment.
Moreover, in comparison to our previous work [10], we included also an addition
level according to which the perception of the robot enables the detection of
typical landmarks in the environment, increasing, at the same time, its knowledge
about the environment. In this scenario, we have chosen doors as key elements,
presenting a full framework, in comparison to [14,30,39], to detect doors and to
estimate their aperture in order to understand their open/close status inside a
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shared-autonomy algorithm. Moreover, we achieved the integration of the door
detection module in the shared-autonomy navigation without designing a specific
procedure to pass through the door as in [25,28,33]. Simply, we relied on a good
estimation of the door aperture center to define the subgoal given in input to
the planner, keeping the same logic underlying the obstacle avoidance and the
navigation itself. Our door detection module is based to a similar approach to
the one presented in [22,36] exploiting the point cloud data from the 3D sensor.
However we did not need to search a door by scanning horizontal stripes of
the point cloud since we can exploit the bounding box founded by the door
detector/tracker. Nevertheless, our results are in line with [22], showing that the
doorway aperture estimation is enough robust from different distance and with
different aperture angles (average error 5.61 ± 2.24 cm for the painted wooden
door and 8.23 cm ± 3.82 for the metal door). However, differently to [22], our
method is strong also to closed doors—in all the cases the estimated aperture
was exactly 0 m—and in addition it has been tested on a real mobile robot.

Thanks to the door detection module, in our pilot experiments the robot
was able to pass through narrow doorways without any user’s intervention(See
footnote 4). Furthermore, we verified the contribution of the door attractor(See
footnote 4), by testing our shared-autonomy navigation algorithm with and with-
out the doors information in the same conditions (see Fig. 5). The qualitative
result showed that the robot performed different low-level behavior in correspon-
dence of the same high-level behavior chosen by the user. However, only when
the door detection module was active, the robot was able to pass through the
door without requiring additional commands to the user. Therefore, this prelimi-
nary result might suggest a decrease of number of commands needed to make the
robot move through doors, facilitating the user experience and reducing his/her
workload.
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8. Demeester, E., Hüntemann, A., Vanhooydonck, D., Vanacker, G., Van Brussel,
H., Nuttin, M.: User-adapted plan recognition and user-adapted shared control: a
Bayesian approach to semi-autonomous wheelchair driving. Auton. Robot. 24(2),
193–211 (2008)

9. Aude, E.P.L., Lopes, E.P., Aguiar, C.S., Martins, M.F.: Door crossing and state
identification using robotic vision. IFAC Proc. Vol. 39(15), 659–664 (2006)

10. Beraldo, G., Antonello, M., Cimolato, A., Menegatti, E., Tonin, L.,: Brain-
computer interface meets ROS: a robotic approach to mentally drive telepresence
robots. In: Proceedings of the 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1–6. IEEE (2018)

11. Cicirelli, G., D’orazio, T., Distante, A.: Target recognition by components for
mobile robot navigation. J. Exp. Theor. Artif. Intell. 15(3), 281–297 (2003)

12. Belaidi, H., Hentout, A., Bentarzi, H.: Human-robot shared control for path gen-
eration and execution. Int. J. Soc. Robot. 11, 1–12 (2019)

13. Budenske, J., Gini, G.: Why is it so difficult for a robot to pass through a doorway
using ultrasonic sensors? In: Proceedings of the 1994 IEEE International Confer-
ence on Robotics and Automation, pp. 3124–3129. IEEE (1994)

14. Hensler, J., Blaich, M., Bittel, O.: Real-time door detection based on adaboost
learning algorithm. In: Gottscheber, A., Obdržálek, D., Schmidt, C. (eds.)
EUROBOT 2009. CCIS, vol. 82, pp. 61–73. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16370-8 6

15. Philips, J., et al.: Adaptive shared control of a brain-actuated simulated wheelchair.
In: Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation
Robotics, pp. 408–414. IEEE (2007)

16. Hong, J.P., Kwon, O.S., Lee, E.H., Kim, B.S., Hong, S.H.: Shared-control and
force-reflection joystick algorithm for the door passing of mobile robot or powered
wheelchair. In: Proceedings of the IEEE. IEEE Region 10 Conference. TENCON
1999. Multimedia Technology for Asia-Pacific Information Infrastructure (Cat. No.
99CH37030), vol. 2, pp. 1577–1580. IEEE (1999)

17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

18. Crandall, J.W., Goodrich, M.A.: Characterizing efficiency of human robot interac-
tion: a case study of shared-control teleoperation (2002)

19. Joo, K., Lee, T.-K., Baek, S., Oh, S.Y.: Generating topological map from occupancy
grid-map using virtual door detection. In: Proceedings of the IEEE Congress on
Evolutionary Computation, pp. 1–6. IEEE (2010)

20. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In:
Cox, I.J., Wilfong, G.T. (eds.) Autonomous Robot Vehicles, pp. 396–404. Springer,
New York (1986). https://doi.org/10.1007/978-1-4613-8997-2 29

21. Goodrich, M.A., Crandall, J.W., Stimpson, J.L.: Neglect tolerant teaming: issues
and dilemmas. In: Proceedings of the 2003 AAAI Spring Symposium on Human
Interaction with Autonomous Systems in Complex Environments, pp. 24–26 (2003)

22. Derry, M., Argall, B.: Automated doorway detection for assistive shared-control
wheelchairs, pp. 1254–1259, May 2013

https://doi.org/10.1007/978-3-642-16370-8_6
https://doi.org/10.1007/978-3-642-16370-8_6
https://doi.org/10.1007/978-1-4613-8997-2_29


526 G. Beraldo et al.

23. Desai, M., Yanco, H.A.: Blending human and robot inputs for sliding scale auton-
omy. In: Proceedings of the IEEE International Workshop on Robot and Human
Interactive Communication, pp. 537–542. IEEE (2005)

24. Aigner, P., McCarragher, B.: Human integration into robot control utilising
potential fields. In: Proceedings of the International Conference on Robotics and
Automation, vol. 1, pp. 291–296. IEEE (1997)

25. Salaris, P., Vassallo, C., Souères, P., Laumond, J.P.: The geometry of confocal
curves for passing through a door. IEEE Trans. Robot. 31(5), 1180–1193 (2015)

26. Papoulis, A., Saunders, H.: Probability, Random Variables and Stochastic Pro-
cesses (1989)

27. Zeng, Q., Burdet, E., Rebsamen, B., Teo, C.L.: Evaluation of the collaborative
wheelchair assistant system. In: Proceedings of the 2007 IEEE 10th International
Conference on Rehabilitation Robotics, pp. 601–608. IEEE (2007)

28. Simpson, R.C., Levine, S.P., Bell, D.A., Jaros, L.A., Koren, Y., Borenstein, J.:
NavChair: an assistive wheelchair navigation system with automatic adaptation.
In: Mittal, V.O., Yanco, H.A., Aronis, J., Simpson, R. (eds.) Assistive Technology
and Artificial Intelligence. LNCS, vol. 1458, pp. 235–255. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055982

29. Leeb, R., Tonin, L., Rohm, M., Desideri, L., Carlson, T., Millan, J.D.R.: Towards
independence: a BCI telepresence robot for people with severe motor disabilities.
Proc. IEEE 103(6), 969–982 (2015)
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Abstract. This paper presents a newborn collaboration between hetero-
geneous AI competences. In particular, it describes current work on the
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1 Introduction

Given the speed of the current societal changes, the need for “continuous edu-
cation” is really a must. In this regard, the area of Intelligent Tutoring System
(ITS) [20,22] pursues the idea of designing computer systems that, thanks to per-
sonalised stimuli sent to the learners, enable situated and meaningful learning,
enhancing the effectiveness of the overall experience. Goal of such systems is to
radically rethink the learning environment through the application of advanced
ICT technology and may represent a valid support to continuous education.
Common ITSs aim at replicating the benefits of one-to-one personalized tutor-
ing in contexts where students would have access to one-to-many instruction
from a single teacher (e.g., classroom lectures), or no teacher at all (e.g., on-line
homework) [21]. Such systems are typically related to classical learning environ-
ments, hence neglecting the possibility to act in both time (e.g., lifelong) and
space (e.g., working both at school, in an outdoor environment, during leisure,
etc.) and overcoming the classical concept of “lessons”. Furthermore, although
ITSs have proven to be effective in different domains, they remain intrinsically
difficult to build from the authoring perspective, with estimates of 200–300 h of
c© Springer Nature Switzerland AG 2019
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development per hour of instruction [1]. While the introduction of ITS devel-
opment environments encourages instructional designers at defining courseware,
indeed, the workload for tutors remains still too steep.

Fig. 1. Authoring and delivering lessons.

This paper focalises around
the two aspects that we con-
sider crucial in modern ITSs
(see Fig. 1): (a) the adap-
tive delivery of lesson that
facilitate both personaliza-
tion and direct experience,
(b) the synthesis of facili-
tators for authoring materi-
als for new learning systems.
We have pursued these goals
by integrating heterogeneous
AI techniques, using Planning
for personalizing lessons and
Machine Learning (ML) for authoring. This paper describe the current status
of the integration by giving some generality of the ExPLoRAA ITS and its
current challenges (Sect. 2), presenting the planning part that allows personal-
ization while delivering the lesson (Sect. 3), then the ML approach for supporting
the lesson model authoring phase (Sect. 4), and closing with a description of the
current status plus an example (Sect. 5).

2 The ExPLoRAA Concept

ExPLoRAA is a Continuous Intelligent Tutoring System, developed in the con-
text of “Città Educante” project1 (the name means “city that educates” in Ital-
ian), which pursues the idea of providing a continuous and dynamic teaching in
space and time. This approach evolves from previous works (e.g., [3–5,8]) also
based on the idea of dynamically composing lessons through the use of auto-
mated planning [12]. The key idea beyond the ExPLoRAA system consists in
using technology related to automated planning to dynamically compose lessons.
Starting from a static representation containing a high-level lesson track, initially
stored in a database, the lesson is planned and dynamically adapted and person-
alized to the involved users. The idea of using automated planning technology
relies on the need to create a sufficiently extensive didactic experience to repro-
duce a large number of different situations which are, at the same time, char-
acterized by a high variability of stimuli, aimed at increasing the involvement
level of users. Automated planning, indeed, favors the generation of different
lessons that would be too complicated to obtain with a simple pre-compilation
of stories. The timeline-based approach to automated planning [19], in partic-
ular, represents the unifying element of the various modules by ensuring the
dynamic adaptability of plans by promoting experiential learning.
1 http://www.cittaeducante.it.

http://www.cittaeducante.it
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Fig. 2. The ExPLoRAA general idea.

From a high-level point of view, the main modules of the system are described
in Fig. 2. In particular, it is possible to distinguish between two kinds of involved
users: the students, i.e., a group of people, potentially, of any age, interested
in using the learning services offered by the ExPLoRAA environment, and the
teachers, i.e., users with special privileges who have the opportunity to observe
students, monitor and control the progress of the lessons and of the overall learn-
ing environment. Once the lesson authoring phase is finished, a timeline-based
planner takes care of keeping the model of the involved users consistent with the
lesson model, resulting in a planned lesson which is customized to the involved
students. The arising plan will then be executed, bringing to the dispatching of
stimuli to a lesson presentation module which presents them to the users in an
appealing way. The module is also responsible for collecting information from
users (customization parameters) aimed at dynamically modifying the user’s
model and, consequently, the lesson presented. According to the needs of the
specific lesson, indeed, this information can include physiological parameters of
the users, collected through Bluetooth bracelets, or geographical coordinates,
collected through mobile devices, thus allowing the interpretation of the concept
of learning with a wider attention, breaking down the barriers of time and space
within which the classical lessons are confined (for a more detailed description
of the applicationt of ExPLoRAA to cultural visits, for example, refer to [3]).
In Sect. 3 we describe the concepts underlying the timeline-based planning and
how it was used to keep the representation of users and lessons consistent. The
three concepts of timeline, token and rule constitute the basis of this kind of
reasoning. The latter, in particular, must in some way be defined by the domain
experts (i.e., the teachers) during the authoring phase (see again Fig. 2). For
this reason, in this work, we focus on the automatic extraction of rules from
digital materials, so as to relieve application designers as much as possible from
handcrafting them.

2.1 The Challenge: Supporting Content Definition

The task performed by the teacher during the lesson design phase is both criti-
cal and complex. Specifically, the teacher must take into account all the feasible
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evolutions of the lesson, considering all the possible stimuli for the students,
their relationships and how these are related to the state of the users. In partic-
ular, these possible evolutions are defined, ultimately, by defining the planning
rules which, although allow the problem to be easily broken down into subprob-
lems and, therefore, help designing the lesson, are currently handwritten on a
text file, without the support of any editor specifically built to take account of
the application context. The use of authoring tools such as, for example, the
Cognitive Tutor Authoring Tools (CTAT), would certainly be able to reduce
the workload assigned to course designers [1]. Nevertheless, this paper describes
how we have tackled the problem by using ML techniques, so as to be able to
automate and, therefore, to facilitate as much as possible the task of designing
the lessons, while maintaining the dynamic adaptation characteristics offered by
the tutoring systems relying on timeline-based planning.

Our goal is to achieve a system that, starting from a high-level topic (e.g., the
“Trevi Fountain” topic) automatically generates the planning rules (e.g., in order
to better understand “Trevi Fountain”, you must have information on “Nicola
Salvi”, “Roman Holiday”, “Trevi (rione of Rome)”, etc.) for the ExPLoRAA
system. The planning subsystem will reason on these rules by autonomously
generating a lesson over time and dynamically adapting it according to the
specific evolution of the context (e.g., sending at proper time information about
“Nicola Salvi” to those interested in architecture, about “Roman Holiday” to
those interested in cinema, about “Trevi (rione of Rome)” to those interested in
city planning, etc.).

3 Timeline-Based Planning for Dynamic Lesson Synthesis

Since most of the components of the ExPLoRAA system strongly depend on
temporal aspects, we have chosen to rely on a specific automated planning tech-
nique, called timeline-based, which allows to explicitly reason on time. Timeline-
based planning, indeed, allows to reason about events in time and, hence, rep-
resents a valid tool for meeting our pedagogical needs. Planning a lesson, in
particular, requires dispatching information at proper time. Additionally, react-
ing to users’ interactions requires plan adaptation capabilities which can more
hardly be achieved through other automatic planning techniques. Furthermore,
the dynamic adaptation of the user profiles, which can take place on the different
features that represent the user’s model, can also be achieved through timelines.

The main data structure, for timeline-based planning, is the timeline which,
in generic terms, is a function of time over a finite domain. Values on the timelines
are extracted from a set of temporally scoped predicates (i.e., predicates endowed
with extra arguments belonging to the Time domain T, either real or discrete),
with their parameters, called tokens. Formally, a token is an expression of the
form n (x0, . . . , xi) @ [s, e, τ ], where n is a predicate name, x0, . . . , xi are the
predicate’s parameters (i.e., constants, numeric variables or object variables),
s and e are temporal parameters belonging to T such that s ≤ e and τ is a
parameter (i.e., a constant or an object variable) representing the timeline on
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which the token apply. The overall idea pursued in ExPLoRAA consists in
using such tokens for representing both the model of the users and the planned
stimuli. Compared to the general formalization above, however, we can afford
some simplifications. Specifically, since the stimuli have no duration, the s and
e variables of each token would always be equal. We address this by removing
one of the two variables, e.g., the e variable. As an example, the expression
st0 () @[10 : 00, l0] would represent a stimulus st0 (for instance, a text message)
which is planned to be dispatched at time 10:00 for the lesson l0.

It is worth noticing that the tokens’ parameters, including the temporal ones,
are constituted, in general, by the variables of a constraint network [10,15]. In
order to reduce the allowed values for such parameters, bringing the system to
a desired behavior, it is possible to impose constraints among them (and/or
between the parameters and other possible variables). Such constraints include
temporal constraints, usually expressed by means of interval relations [2], bind-
ing constraints between object variables as well as linear constraints among
numerical, including the temporal one, variables. In particular, the set of tokens
and constraints is used to describe the main data structure that will be used
to represent the “nodes” of the timeline-based search space: the token network.
Specifically, a token network is a tuple π = (T , C), where T = {t0, . . . , tj} is
a set of tokens and C is a set of constraints, required to be consistent, on the
variables of the tokens in T .

Additionally, tokens can be partitioned into two groups: facts and goals.
While facts are, by definition, inherently true, goals have to be achieved. Specif-
ically, causality, in the timeline-based approach, is defined by means of a set o
rules indicating how to achieve goals. Formally,

Definition 1. A rule is an expression of the form

n (x0, . . . , xk) @ [s, e, τ ] ← r

where:

– n (x0, . . . , xk) @ [s, e, τ ] is the head of the rule, i.e., an expression in which n
is a predicate name, x0, . . . , xk are numeric variables or object variables, s
and e are temporal variables belonging to T such that s ≤ e and τ is an object
variable representing the timeline on which the token apply.

– r is the body of the rule (or the requirement), i.e., either a slave token, a
constraint among tokens (possibly including the x0 . . . xk variables), a con-
junction of requirements or a disjunction of requirements.

Rules define causal relations that must be complied to in order for a given goal
to be achieved. For each goal having the “form” of the head of a rule, the
body of the rule must also be present in the token network. As an example, the
expression {st0 () @[s, l] ← {st1 () @[s1, l] ∧ 10 ≤ s − s1 ≤ 20}} represents a rule
asserting that, for each stimulus st0 there must exist, from 10 to 20 s before,
a stimulus st1. It is worth noting that, in this case, the body of the rule is a
logical conjunction of a token and a constraint. More generally, however, it is
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also possible to have disjunctions. In the latter case the solver will choose among
the various disjuncts.

We have now all the ingredients to define a timeline-based planning prob-
lem. In particular, the definition can rely on the above concept of requirement.
Specifically, a timeline-based planning problem is a triple P = (T,R, r), where
T is a set of timelines, R is a set of rules and r is a requirement, i.e., either a
(fact or goal) token, a constraint among tokens, a conjunction of requirements
or a disjunction of requirements.

Roughly speaking, the role of a timeline-based solver consists in, starting
from a token network described by the problem’s requirement, applying the
proper rules, so that each goal has its corresponding rule applied, incrementally
refining the current token network by adding new tokens and new constraints
according to the rules’ bodies. It is worth noticing, indeed, that, in general, the
application of the rules might result in the introduction of further goals into the
token network. Such goals, also called sub-goals, require to be achieved as well.
The process ends up when, for all the goals of the token network, either the body
of its corresponding rule is present in the token network or it is recognized as
semantically equivalent to another token (in this case we talk about unification of
the tokens). Additionally, in case the bodies of the rules contain disjunctions, the
solver will choose among the available disjuncts. Finally, the solver will assign a
value to all the tokens’ parameters such that all the constraints of the token net-
work are satisfied (possibly, backtracking to another available disjunct whenever
the constraints cannot be made consistent). Notice that, despite the simplicity
of the above solving procedure, the combination of disjunctions and constraints
in the rules make the resolution process, in generally, extremely challenging from
a computational point of view. For this reason, indeed, heuristics are often used
to make the resolution process more efficient (see, for example, [6,7]).

3.1 Modeling Students and Lessons Through Timelines

As already mentioned, the ExPLoRAA system is composed of different func-
tional blocks. In particular, the user modeling module aims at creating and
dynamically maintaining an updated model of the users which is used as a start-
ing point for the personalization of the lessons. By pursuing the overall objective
of enhancing the learning experience, indeed, it is necessary to keep a user model
up-to-date in order to consider how their emotional, psychological, physiological
and geographical parameters can influence the learning process. Specifically, the
student modeling has three main objectives: (i) to model and monitor relevant
factors through which the lesson can be customized; (ii) to develop a model that
can represent the user’s profile; and (iii) to provide a high level guidance for
customizing learning objectives.

The parameters that are relevant for personalization are, in general, depen-
dent on the type of lesson. Basically, the system keeps up to date a number of
parameters that can be chosen according to the domain and context of learning
(lesson at the university, support to cultural visits, etc.). For instance they can be
related to the personal/psychological and emotional aspect such as: the personal
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interests, the level of engagement, the current performance assessment and the
fatigue (in case of a cultural visit around a historical city). This type of param-
eters can be measured by using questionnaires dynamically dispatched to the
students or by making use of physiological devices like the Bluetooth bracelets
(e.g., the Empatica E42), through which it is possible to extract physiologi-
cal values such as peripheral skin temperature, skin conductance, heart rate and
heart variability to derive the emotional state of the users. Additionally, through
the use of mobile devices, it is possible to leverage on geo-localization services
to get a good estimate of the users’ position in time, so as to contextualise the
planned stimuli according to their geographical position. Finally, the profile of a
student can also be updated exploiting the interactions of the users with the sys-
tem asking them, for example, to answer to sporadic questions. As an example,
the users’ engagement is measured through a five levels Likert-type scale which
is administered to the users at regular intervals. Finally, particular emphasis is
given to the students’ performance which is monitored and observed through the
administration of questions and the interpretation of the provided answers. By
processing the above information, the system generates a user model that is con-
stantly updated to perceive and represent significant changes in the emotional
state (note that parameters can generally change over time).

The modeling of the lessons is the key feature of the ExPLoRAA system
since it creates and manages the network of stimuli that guides the entire learn-
ing session. Nodes on this network are tokens and are intended to represent
temporally annotated stimuli (e.g., videos, text messages, questions, etc.) to be
sent, at appropriate time, to the users while edges represent causal and temporal
relations among such stimuli introduced either in the planning problem definition
or through the application of the rules. Additionally, tokens are endowed with
additional information including a set of covered topics (e.g., “art”, “architec-
ture”, “religion”, etc.) and some content dependent on the nature of the stimulus
(e.g., a text for textual stimulus or a URL for a video stimulus).

It is worth noting that although the above network is initialized in order
to represent an abstract blueprint of a lesson, it is afterwards customized and
dynamically adapted to the profile of the involved user. Personalization, indeed,
takes place both in terms of users’ interest in some topics, as explained earlier,
as well as in terms of the type (and the number) of tokens in the token network.
Specifically, adaptations to the network are made thanks to the application of a
set of rules (introduced in Definition 1) associated to each lesson, which define
how to “react” to the users’ profile, to their updates and to their actions (e.g.,
moving to a specific location or answering to a question). Such rules, in particu-
lar, are intended to create the “conditions”, in terms of events and their relations
within the network, for other events to be present. An example of rule can be “in
order to stimulate the cognitive activity of the group, either propose a simple
crosswords and the group’s performance is low, or propose a complex crosswords
and the group’s performance is high”. Notice that by taking advantage of the
possibility of defining disjunctions within the rules and being able to combine

2 https://www.empatica.com/research/e4.

https://www.empatica.com/research/e4
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such rules sequentially, it is possible to obtain a great wealth of possible lessons’
evolutions. Finally, since some of these rules may contain conditions which con-
cern the user model, not all of them are applicable (e.g., in the above example,
in case the group’s current performance is low, only the simple crosswords is
proposed), resulting in an overall network which is always compatible with the
current users’ profiles. It is worth noting, however, that establishing which and
how personalization parameters affect the adaptation of the lesson constitutes,
ultimately, an additional load on the shoulders of the teacher during the author-
ing phase, which will have to worry about defining the rules that will allow the
planner to achieve dynamic adaptation.

4 Courseware Production Through Machine Learning

The contribution of ML has the purpose of automatizing the phases that involve
tutor intervention. Specifically, the most difficult and time-consuming task for
the teacher regards the formulation of the lesson model, through the definition
of the planning rules, during the authoring phase (see Fig. 1).

Wiki Course Builder (WCB) system generates short educational courses,
entirely based on Wikipedia pages, starting from a query of the system. The
teacher queries the system with the didactic goal, and the related context.
WCB explores Wikipedia recommending some pages related to the query. The
teacher selects the interesting pages and the system automatically sequences
them according to the prerequisite relations between them. This approach allows
a fast generation of didactic paths, and the reliability of its contents is guaranteed
by an in-depth study that compared Wikipedia with the British encyclopedia,
showing the same accuracy percentage [13]. The fact that each article is virtually
subject to constant verification make it a good candidate for the extraction of
truthful information. With more than 5.9 millions of articles and an average 577
new articles per day3, Wikipedia provides a rich knowledge base for teachers
and instructional designers, and can be a great help in the activity of course
creation. As said, Wikipedia is an excellent knowledge base, but the approach
can be generalized to all linked open data such as DBPedia or Wikidata.

The two main characteristics of WCB, the recommender and the sequencing
engine, are respectively presented in [9,11].

4.1 The Recommender Engine

Here, the recommendation is based on the preference of the users in the platform
Grasha Teaching Styles (TS) Model [14] which models the registered teachers and
Wikipedia pages in a way that the teachers are guided by the system towards
material chosen by similar teachers. In detail, the teacher is first modeled by
means of a questionnaire at the signup step: the Grasha-Riechmann TS survey.
Secondly, every time a Wikipedia page is inserted in a course, the page is labeled

3 https://en.wikipedia.org/wiki/Wikipedia:Statistics (visited September, 12 2019).

https://en.wikipedia.org/wiki/Wikipedia:Statistics
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with the TS of the teacher that selected it. If other teachers choose the same
page, the TS of that page are updated according to the averages for each of the
five categories of Grasha-Reichmann. In this way, it is possible to define a metric
of similarity between the teacher who performs the search and the pages with a
similar subject, chosen by other teachers. This step suffers from the cold-start
problem that is solved by equipping the engine with other content-based metrics
such as Tf-Idf, Information Gain, and Latent Semantic Index, thus allowing
reliable results.

4.2 The Sequencing Engine

The approach evaluates a set of hypotheses for understating the feasibility of
exploiting the Wikipedia content in order to automatically define prerequisite
relationships between learning objects. We follow a traditional ML approach
[18] applied to a dataset of LOs by performing a comparative analysis of several
features of the LOs. We define the features according with peculiar aspects of
the representative topics such as content length, generality, or specialization. So
then, the topics are analyzed and the related LOs features computed. Finally,
the dependency relation between two LOs is inferred taking their features under
consideration: this computation is obtained by feeding the features into a ML-
based classifier.

4.3 Feature Extraction and Machine Learning Approach

Initially, a traditional approach was applied to the classification problem, apply-
ing the calculation of Tf-Idf as described in [16]. The first experiments based
on a model build on six hypothesis, gave accuracy values of 60% not consid-
ered acceptable. From the six hypotheses with a feature selection process we
identified 15 features characterizing the problem. Below is the description of the
methodology applied for the configuration of a neural network based on multi-
layer perceptron whose validation is published in [11].

After Wikipedia pages detection, we perform feature extraction on pairs of
pages, so to construct instances vector for the prerequisite classifier based on
multilayer perceptron. Then a supervised learning paradigm takes the vector
and carries on the classification task, deciding whether a prerequisite relation-
ship does exist between the pages. Under the assumption that an ML approach
can learn to obtain accurate predictions based on a small number of training
instances, the automatic prerequisite detection (and the consequent translation
into rules) reduces the effort required to human experts that, otherwise, have to
establish the prerequisites manually.

In our model, knowledge representation is multilayered. As sketched in Fig. 3,
each layer identifies a set of features. The full set of features is shown in [11].
In the first layer from the bottom (I), we perform a lexical analysis on the
pages text, which is tokenized into a sequence of tokens. The length of the term
sequence is represented by f

(lo)
l . A part-of-speech (POS) tagger extracts the
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term sequence and recognize term, namely, noun, verb, article, adjective, prepo-
sition and pronoun. Since we are more interested in terms that represent people,
places, things, or classes of these elements, we look in particular to the nouns
of the pages. The second layer (II), provides Wikipedia features related to the
page structure. In particular, the length of the page f

(c)
l and its internal links

f
(c)
L , that is, references between articles and other analysis. Complex entities

that have several references to other pages may refer to concept that should be
discussed later in a learning process, whereas, by contrast, longer discussions
may describe introductory topics that should be learn before others. The top
layer (III) analyzes the categories that Wikipedia makes available to the users
for recognize pages on similar subjects. The categories can be normally found at
the end of each Wikipedia page. Each page may be assigned to one or more cate-
gories. Exploiting the results from the Information Gain algorithm, we asses that
the features that belong to this layer are the most important in the classification
process. The accuracy of this approach is validated by means of experimental
evaluations as shown in [11].

5 The Integrated Prototype

The integrated version of the prototype provides first automatic support for the
rules definition process. In particular, the use of WCB prevents the teacher from
writing all the rules by hand and allows to quickly create lesson models for each
type of domain. Specifically, starting from a goal identified by the teacher, WCB
processes the query representing the goal and returns a list of Wikipedia pages
which are considered as the prerequisites of the goal. These pages are translated
into the slave tokens of the body of a rule whose head is the original goal of
the query. Additionally, temporal constraints, generated from the features of the
preconditions, are introduced so as to allow the students a sufficient amount time
for the assimilation of the stimuli. In particular, the ratio between the number of
concepts and the length of the page, defined as the semantic density of the page
[17], has been used to temporally outdistance stimuli over time. The role of the
teacher, during the lesson authoring process, remains still active, maintaining the
possibility to select the interesting prerequisites from which, iteratively, WCB
extracts further prerequisites. In general, given the i-th Wikipedia page found at
level k, pik, WCB extracts a list of n pages prerequisite of pik: [pi+1

k.1 , . . . , pi+1
k.n ]. The

teacher selects one or more pages from this list and WCB iterates the prerequisite
search on the selected pages. At the end of the authoring phase, there will be
a list of rules that can be fed to the planner to allow the construction of the
personalized lesson.

5.1 The System at Work

A teacher wants to compose a lesson about Fontana di Trevi. S(he) starts to
query WCB with “Fontana di Trevi” using, for example, the word “Rome” for
disambiguation. The system scans all the outgoing link to the page to build
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Fig. 3. Extraction schema.

a knowledge graph. In this graph, nodes represent entities in Wikipedia while
arcs are the links between pages. The system extracts the concepts closest to
the query using three, appropriately weighted, metrics (TfxIdf, IG and LSI) and
creates a list of outgoing links to possible prerequisites of the concept. From this
list, the system extracts instances for the binary classifier (one for each element
of the list) and, from these results, the analysis of prerequisites starts. In the
Trevi Fountain example, among the most likely prerequisite pages there are the
entities associated with the pages Acqua vergine and Palazzo Poli, identified by
the system. Starting from this prerequisite analysis, an example of generated
rule for the ExPLoRAA system is, therefore, represented by {tf () @[s, l] ←
{av () @[s1, l] ∧ sdav ≤ s − s1 ∧ pp () @[s2, l] ∧ sdpp ≤ s − s2 ∧ . . . }} asserting
that, for each stimulus tf (representing a pointer to the Trevi Fountain page)
there must exist, at least sdav seconds before, a stimulus av (representing a
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pointer to the Acqua vergine page), and at least sdpp seconds before, a stimulus
pp (representing a pointer to the Palazzo Poli page). The constants sdav and
sdpp represent, respectively, the semantic density of the Acqua vergine and the
Palazzo Poli pages. Proceeding in this way, looking at the prerequisites starting
from the new root Acqua vergine, we can create further rules.

Unfortunately the prerequisite recognizer is trained to work on sets of
Wikipedia pages associated with subjects, as described in the previous chapter.
However, we are still able to recognize the most obvious relationships. The first
problems are the lack of all the features described in the previous chapter, and
specifically the relationships that the study of the Information Gain turned out
to be more significant for evaluation have gone from being real numbers to simple
binary relationships; in the classification process the analysis of the links between
the pages are used to recognizing if a page points to the second one (considering
also that we look for them in the Wikipedia graph often the relation is worth 1
for all the analyzed pages); moreover it is not possible to calculate the number
and the average lengths of the topics associated to the concept.

Furthermore, the exploit of Wikipedia in Italian is limited by the number
of entities that are present online. Wikipedia (EN) is composed of 5,700,000
pages with an average words count of 640 Average Word Count (AWC) while
Wikipedia (IT) by 1,500,000 pages much less characterized than those in the
original language. In future, for a better comparison between Wikipedia pages,
a different training model starting from datasets manually generated by experts
of the domain will be inquired.

6 Conclusions

This paper describes work done to integrate heterogeneous AI techniques to serve
an example of intelligent learning environment. In particular, we have addressed
a known bottleneck of “knowledge intensive” AI systems (well exemplified by
ITSs) that stay in the huge effort required to handcraft knowledge for the actual
functioning of the system. We strongly believe that the goal of integrating AI
systems generated by different cultural tradition is a key aspect in the AI debate
for the immediate future.

This paper results can be read as a feasibility study for the integration of a
ML approach in a plan-based ITS. The current results demonstrate that such
direction is worth being pursued. At present, we are investigating the idea of
a complete automation of the authoring process in order to identify potential
limitation of the approach. Nevertheless, it is worth noting that also an inter-
mediate approach that opens to the possibility of a user-refinement after or in
combination with the ML phase would be really acceptable given the criticality
of the authoring phase. The full exploration of possible alternative approaches
to authoring is one of the directions for future work.
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Abstract. In the last years, digital media have challenged traditional
narrative models with an increasing request for interaction with the user,
leading to novel paradigms of storytelling and performance. While most
research in interactive storytelling and drama has addressed the role of
automation in the story generation process, in this paper we present a
framework that relies on Artificial Intelligence techniques to augment
the performer–audience interaction in a storytelling setting. Step after
step, the emotional response of the audience is automatically detected,
the performer decides about her/his attitude towards the audience, and
the story is composed and delivered to the audience by the joint sys-
temperformer initiative on an augmented stage. Initially designed as
training tool for interactive story editing, the system has been deployed
to create a public performance in February 2019.

Keywords: Interactive drama · Emotion recognition · Computational
models of narrative

1 Introduction

For more than two decades, digital storytelling has been developing models and
techniques for creating interactive narratives, in response to an increasing request
for interactivity by digital media [16,21]. In parallel with this trend, innovation
in performance has led to the integration of digital devices into the stage, result-
ing in groundbreaking changes in the relation between the performer and the
public, as reviewed by [19]. Although the advent of digital media in dramatic
performance has been described as “mediaturgy” by drama scholars [17], so as
to stress the impact of computational schemes in traditional dramaturgy, most
work in digital performance has addressed the physical enactment of drama on
stage.
c© Springer Nature Switzerland AG 2019
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Fig. 1. A moment of the performance with DoPPioGioco (Turin, February 8th 2019).
Notice in foreground the tablet employed by the performer to control the story contin-
uation.

In this work, we describe a computational platform to support the performer
role on an augmented stage, called DoPPioGioco (“Double Play”), which relies
on Artificial Intelligence techniques in two main ways: on the one side, the fac-
torization of the story into units that are composed on the fly based on the
response of the audience, following an established paradigm in computer-based,
interactive storytelling; on the other side, the deployment of affect detection
techniques to capture the emotions expressed by the audience through facial
expressions, and their use to inform the choices of the performer. Thus, DoPPio-
Gioco fills a gap in the landscape of digital techniques for dramatic performance
by leveraging computational models of narrative and affect to address the core
of the performance, namely the performer-audience interaction in an innovative
way [9]. DoPPioGioco intervenes in the performer-audience relationship as an
“intelligent prompt” which suggests the performer the next story chunk, taking
into account both the emotional response of the audience and the performer’s
decisions. In practice, after the performer has delivered a story chunk, the system
detects the audience’s emotional response and allows the performer to choose
whether to please or to oppose that response, choosing also the level of intensity.
Once the performer has made a choice, the system prompts the next suitable
story chunk to be delivered, and so on through the story end. At the core of
this model of interactivity lays an emotional system that is employed for tag-
ging the story chunks and a real-time engine that prompts the story chunk to be
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delivered. Initially designed as training tool for interactive story editing and test-
ing, in February 2019 DoPPioGioco was deployed to create a public performance
(Fig. 1).1

This paper is organized as follows: in the next section, we provide the theo-
retical background behind the design of DoPPioGioco. In Sect. 3, we illustrate
the detection of emotions and their mapping to story continuations within the
paradigm of emergent narrative. Section 4 describes the architecture and imple-
mentation of the system; the deployment of DoPPioGioco in the public perfor-
mance of February 2019 is presented and discussed in Sect. 5. Conclusion ends
the paper.

2 Background and Motivations

Designed with the goal of supporting the performers’ ability to interpret the
script in response to the emotional response of the audience [1], the conception
of DoPPioGioco and its design acknowledge the traditional distinction between
author and performer in story design and delivery. The narrative component
is handled offline by the author at the story editing time, by representing the
story as a graph of storylines annotated with emotion tags. Online, the sys-
tem computes the available continuations based on the emotional response of
the audience, leaving the performer the final decision about which attitude to
take towards the audience. Moving the focus from the design of the emotional
response at the story level to the continuous, adjustable level of story delivery,
DoppioGioco puts equal emphasis on the performer and on the audience, respec-
tively, transforming the interactive delivery of the story into a tight interplay of
emotional responses by the audience and counter-responses by the performer.

This approach partly relies on the paradigm of improvisational theatre, tra-
ditionally exploited in interactive digital storytelling to manage the complexity
of emergent storytelling [2,27]. As observed by [27], the paradigm of improvi-
sational theater increases the sense of dramatic presence and the engagement
of the users. The dynamics of improvisational theater has been described by
[6] in the perspective of interactive storytelling, using the Decision Cycle from
Newell’s Unified Theory of Cognition (receive new inputs, elaborate new knowl-
edge, propose actions to take, select one of those actions, execute the action) as
a conceptual framework for analyzing the way each improviser takes advantage
of the scene advancing moves of the others.

While most research in interactive story generation tends to focus on the
consistency of the plot in terms of characters’ goals and actions (see for example
[21]), DoPPioGioco departs from this approach to exploit the emotions of the
audience as the pivotal element of the story construction. In interactive drama,
the dominant approach to audience emotions consists in optimizing the engage-
ment of the audience during the performance according to some predefined design
patterns. In Mateas’ pioneering work [18], Façade, the generation of the inter-
active drama was driven by a function that kept the emotional engagement of
1 http://www.cirma.unito.it/portfolio page/doppiogioco/.

http://www.cirma.unito.it/portfolio_page/doppiogioco/
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the user close to a target curve; in the Distributed Dramatic Management of the
Emergent Narrative [30], predetermined emotional trajectories were employed as
a metric for dramatic impact in the process of the character’s action-selection.
On the contrary, drawing inspiration from the notion of “subversive player” [28],
developed in game studies to describe the user’s attempts at breaking the bound-
aries of the interactivity allowed for by games, in DoPPioGioco the emotional
response becomes a propellant of the performer-audience interaction, where the
performer is free to manage the response of the audience following her/his inspi-
ration within the space of possible story continuations.

3 Modelling the Emotional Response of the Audience

In the last decade, audience emotions have been explored in performance and
audience studies, both as way to study the aesthetic experience of the indi-
viduals and as a way to assess the impact of cultural experience on society
[12,14,25,29]. For example, the Sense-Making Methodology (SMM) [12] includes
questions about the participant’s feelings and emotions as part of the in-depth,
surface-breaking questionnaire delivered to audience members of performing arts
with the goal of assessing the quality of their experience. The investigation of
aesthetic experience has been conducted also by measuring physiological cues of
engagement, such as heart rate, skin conductance or eye movements [26,29].
However, since these measurements have raised further questions about the
relation between engagement and the cognitive and cultural levels of audience
response, some scholars have resorted to self-reported emotions to investigate
this relation [14,25] in a more explicit way: their studies have pointed out that
the range of audience emotions includes also emotion types that are intrinsically
related with social and moral values, such as anger or embarrassment, and that a
correlation with physiological cues of engagement can be found [14]. In addition
to this trend, scholars in Computer Human Interaction have stressed the role of
negative emotions in the fruition of art and entertainment, proposing negative
emotions as an inescapable and intrinsic component of user experience, which
can be planned and manipulated by computer-based systems [7,8].

Given the relevance and articulation of the emotional component in audience
and user experience, the use of a formal model of emotions is crucial to the
implementation of the story engine, since it guarantees that the story can be
manipulated by the performer in predictable ways in spite of the emotional
response of the audience. Different computational models of emotions have been
proposed in the last two decades, for purposes that range from the annotation
of emotions in media to the generation of emotions in synthetic characters. The
former systems typically rely on dimensional models, such as Russell’s circumflex
model of affect [23] or Plutchik’s wheel of emotions [20], which lend themselves
to the general description of the affective content of media, while the latter
systems tend to draw inspiration from cognitive models of emotions [24], easily
integrated in goal-directed characters [3,5].

In DoPPioGioco, emotions are accounted for through the GEMEP model [4],
a dimensional model of emotions originally devised to annotate a corpus of clips
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displaying the perfomance of emotions by human actors, known as the GEneva
Multimodal Emotion Portrayals. Thanks to its syncretic and methodologically
robust design, geared on performance and informed upon an extensive survey
of emotion theories and models, GEMEP is especially suitable to annotate the
affective content of performance. In GEMEP, emotions are grouped along two
axes: polarity (positive/negative) and intensity (high/low). The combination
of these two axes provides four emotion families, each including three emotion
types; within each family, the emotion types are mainly characterized by different
arousal levels:

– Positive, high intensity: amusement, pride, joy;
– Positive, low intensity: relief, interest, pleasure;
– Negative, high intensity: hot anger, panic fear, despair;
– Negative, low intensity: irritation, anxiety, sadness.

In DoPPioGioco, GEMEP model plays a twofold role: at story editing time,
the emotion families are employed to tag the story chunks; during the perfor-
mance, the rules that implement the performer’s reaction in favour or against
the audience rely on the four dimensions of GEMEP. GEMEP provides the core
model of emotions of the system: when a specific emotion detection systems is
plugged into the platform within a specific production, its output must mapped
onto the GEMEP emotion families and types, leaving the core of the engine
unchanged.

4 System Architecture

In DoPPioGioco, the story is formally structured as a directed graph [15], as
exemplified by the visualization in Fig. 2. The interaction with the audience
determines the transition to the next node: after the emotional response of the
audience has been detected, the transitions that are not compatible with the
audience emotions are filtered out, and the performer is prompted to decide
whether to play in favour or against the audience, then the continuation is
selected and delivered on stage by the system. This approach requires that the
story units are annotated offline, by encoding not only their position in the story
graph, but also the affective information brought by the unit.2 So, each unit is
labeled with a set of emotion tags, which represent the emotions that the author
expects the audience to feel when the unit is delivered. Also, each unit is asso-
ciated with a text and an audiovisual clip which accompanies the performance.
A detailed description of the platform and of the annotation tool can be found
in [11].

As anticipated in the previous section, the polarity–based account on emo-
tions of GEMEP is suitable to deal with the polarity of the performer’s attitude

2 The GEMEP model also encompasses 5 extra emotion types that don’t fit in the
dimensional classification (Admiration, Tenderness, Disgust, Contempt, Surprise)
and have been omitted from DoPPioGioco.
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Fig. 2. The visualization of the story plot. Negative emotions are marked in blue (dark
blue for the high intensity family and light blue for the low intensity family); positive
emotions are marked in red (bright red for the high intensity family and light red for
the low intensity family). Green circles represent the emergence of specific topics within
the plot, manually annotated on the graph by the authors (in Italian). (Color figure
online)
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Fig. 3. The architecture of DoPPioGioco. Red lines represent the control flow of the
system. (Color figure online)

towards the audience’s response: the decision to play against (or in favour of)
the audience is mapped onto the negative/positive dimension of emotions in this
model, with “against” corresponding to the “opposite polarity” and “in favour”
to “same polarity”. Notice that rules only set the polarity and intensity of the
next clip, thus identifying an emotion family: the actual available units given the
selected family depend on the possible continuations stored in the story graph.
The following Reaction rules, applied in a cascading flow, determine the contin-
uation of the story after collecting the audience’s response and the performer’s
subsequent reaction:

– Polarity rule: If the selected attitude is in favour of the audience, then select
the emotion families with the same polarity ; else (the storyteller decides to
oppose the audience), select the families with opposite polarity.

– Intensity rule: Given the polarity established by the Polarity rule, tune the
intensity level of the reaction to the selected intensity (low or high).

The architecture of the system encompasses four main modules (see Fig. 3):
the Story Manager, the Stage Manager, the Emotion Manager, and the Audience
Manager. The knowledge about the story and the media assets, created and
uploaded offline through the annotation interface of the platform, are embedded,
respectively, into the Story Manager and into the Stage Manager (where they are
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stored in the Media Repository). The system loop orchestrates the interaction
of the four modules in the following way:

1. The Audience Manager accounts for the reaction of the audience. For
training purposes, an audience simulation module can be plugged into the
system, as described in [11]. When the platform is employed to support live
performance, an emotion detection module is employed (see Sect. 5). Provided
that it can be mapped onto the polarity/intensity dimensions in GEMEP,
different emotion detection modules can be plugged into the system depending
on the characteristics and the artistic goals of the single production.

2. The Emotion Manager takes as input the audience’s response and the
attitude (in favour or against) selected by the performer in reaction, and
applies the Reaction Rules to compute the candidate emotion family, which
becomes the input to the Story Manager.

3. The Story Manager retrieves the next candidate units from the story graph
given the emotion family selected by the Emotion Manager. In order to
emphasize the elements of arbitrariness that characterize a live performance,
and to introduce differences over the performances, the system randomly
selects the next unit among the available ones, so that the performer does
not have complete control on the selection.

4. The Stage Manager takes as input the unit selected by the Story Manager
and sends the related media (text, videoclip, sound, etc.) to the player, thus
providing the properly called intelligent prompt to the performer on stage.

Each module of the system is implemented as a web service, so as to allow
the portability of the system across different devices and media. The services
are written in PHP and rely on a mySql database. The current interfaces have
been developed as web pages and rely on the Ajax technology to support a
fluid interaction with the user during both the real time and the annotation
phases. In order to favour the portability of the system and its adaptation to
different settings and productions, the system is deployed using the Docker con-
tainer management system.3 All the services composing the platform, from the
database server to the playback and face recognition services, are orchestrated
through Docker, with advantages for scalability and real time execution.

5 Going Live

On February 8th 2019, DoPPioGioco was exploited to create a public perfor-
mance at the Studium Lab at the University of Turin. Studium Lab is an open
lab equipped with a technological infrastructure (cameras, lighting, projection
system), multimedia stations for editing and pre-visualization, and a configurable
space that can accommodate up to 50 persons. Figure 1 shows a moment of the
performance (see also Fig. 4).

3 https://github.com/docker.

https://github.com/docker
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Fig. 4. The augmented stage during the location setup. Notice the projection of the
recognized emotion type on the floor (“contempt”) on a light grey background. (Color
figure online)

5.1 Production and Setting

The production of the performance was carried out at the lab from 4th to 8th
February 2019 and the performance took place on February 8th 2019 with 4
sessions of about 25’ in the afternoon. The production was based on the story
designed and edited by a team of graduate students of the school of Arts and
Media under the guidance of an expert writer and drama theorist as part of the
Interactive Storytelling Lab. Intended as a training activity in interactive media
editing, the story editing was accomplished in 4 weeks from November 2018 to
January 2019 by using the web based version of DoPPioGioco described in [10].

The assignment given to the students concerned the subject of migrations:
given the story graph created during the lab, the production phase consisted
in pruning and refining the graph to obtain a set of storylines with a duration
included in the target range of 10’–20’ (roughly equivalent to 4–8 story units),
organized so as to develop a set of relevant topics revolving around migrations, as
depicted in Fig. 2. The final story graph consisted of 110 units. Audiovisual clips
were produced from the annotations attached to the units in the previous editing
phase by composing existing public domain material on migrations. In addition
to the audiovisual clip, each unit was accompanied by a script of proportional
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Fig. 5. Pre-visualization of the performance setting.

length which was performed by a professional actress. A sound clip was produced
for each emotion family by a sound designer. By using the web based platform
for the editing and annotation tasks, the units, their metadata and accompa-
nying media were subsequently smoothly exported to the production version of
DoPPioGioco.

The stage was equipped with a large projection screen for the playback of the
clips located behind the performer and a second projector oriented towards the
stage floor, where emotional feedback collected from the audience was given to
audience and performer. The text of the the unit being played was displayed to
the performer on two displays posited on the stage, not visible to the audience. A
camera oriented to the audience recorded the audience during the performance;
the location could sit up to 12 people. The stage layout and equipment can be
seen in the visualization shown in Fig. 5, created during the production design
phase to arrange the stage and the sitting area.

In parallel with the production of the units and the system deployment,
rehearsal took place so as to allow the performer to acquire familiarity with
the technical apparatus and become expert in the use of the system. The avail-
able storylines were rehearsed several times to tune their length to the target
duration, making minor modifications when needed. Extensive rehearsing was
required also to adapt the performance to the narrative content and emotional
tags of the units. Sessions were regulated by the following protocol: after select-
ing the first unit, the performer started the system trough a tablet she used
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to control the system. The script associated to the unit was enacted by the
performer in the style of narrative theatre, while the clip was streamed on the
projection screen. 10 seconds before the end of the clip, the system started record-
ing the audience, sending frames to the emotion detection service for analysis.
When the clip ended, the resulting emotion was revealed to the audience and
performer through the floor projection system; the name of the emotion type
and a matching color were appeared on the floor of the stage. Based on the emo-
tional response of the audience, the performed decided whether to play against
or in favour of the audience by selecting the desired option through the tablet,
thus triggering the start of the subsequent unit.

5.2 Emotion Recognition at Work

The production platform was deployed with Docker using the local network of
the lab; the face expression detection system was provided by the Face API of
the Cognitive Services suite by Microsoft Azur, which returns a values for each
emotion type (happiness, surprise, neutral, anger, disgust, fear, contempt and
sadness) for each detected face in the frame.4

In order to ensure a timely interpretation of the emotional response of the
audience, we decided to sample frames in the incoming stream from the audience
camera at fixed intervals of 2'', so as to reduce the transmission and response
time, and synchronously calling the Face APIs to collect face analysis results in
the right sequence. Figure 6 illustrates the process of collecting the emotional
response of the audience and mapping it onto the tagging system of DoPPio-
Gioco. The emotion analysis pipeline, aimed at accounting for the activation of
emotions along all the recording time, consists of the following steps:

1. The video streaming is sampled and selected frames are captured and sent
to the Face API for analysis (5 frames are sent to the API in the current
implementation);

2. Results returned by the face analysis service (in JSON format) are stored
by system; the JSON file contains a feature–value list of all emotions types
for each detected face. Values below a given threshold are discarded so as to
avoid obtaining a significant overall value for frequent emotions with a low
activation level, and to promote emotional peaks;

3. Finally, for each emotion type, the final value is computed by summing its
values through all faces and collected frames, and the emotion type with the
highest final value is returned.

After computing the most relevant emotion, the emotion type was mapped
onto the emotion tagging system of DoPPioGioco, which is informed on the
GEMEP emotion model as described in Sect. 3. Given the two dimensions
acknowledged by the model (polarity and intensity), and the analysis of the
emotion types in the literature, the 8 emotion types returned by the Face API
were mapped on the emotion families in DoPPioGioco as follows:
4 https://azure.microsoft.com/id-id/services/cognitive-services/face/.

https://azure.microsoft.com/id-id/services/cognitive-services/face/
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Fig. 6. Audience emotion analysis

– Positive, high intensity: happiness, surprise
– Positive, low intensity: neutral
– Negative, high intensity: anger, disgust, fear
– Negative, low intensity: contempt, sadness

5.3 Audience Reception

The public performance consisted in 4 sessions of about 25’ in the afternoon
of February 8th 2019. In each session, an audience of 12 people attended two
subsequent performances; however, thanks to the variability of the performer’s
choices, the differences in the audience’s emotional responses and the random
elements in DoPPioGioco, all sessions were significantly different, each time fol-
lowing a different narrative and emotional trajectory across the story graph. The
average length of each performance consisted of 4,3 units, with a minimum of 3
and a maximum of 7 units; duration ranged from 8’ to 24’ with an average of
15,5’.

Although the data collected during the sessions are far from significance due
to the size of the sample, they show that, for all runs, audience emotions were
consistent with the tagging of the units when the intensity was high, for both
polarities. 27 times out of 35 the emotional response of the audience matched
the polarity of the emotion tags attached to the units concerning (77%). If we
consider not only the polarity but also the intensity (high or low), the exact
match was obtained for 14 units (40% of responses and 52% of the matches on
the polarity dimension). A closer examination of the cases in which the emotional
response of the audience did not match the annotation reveals that in 4 cases out
7 the recognized emotion was “surprise”, that is often considered neutral in the
literature with respect to the positive/negative distinction [22]; in the remaining
3 cases, the audience responded with a positive emotion to a unit annotated
with a negative emotion. Finally, the performer’s attitude did not seem to affect
the emotional response of the audience: the performer decided to oppose the
audience in 13 cases out of 27, but no correlation can be found between her
attitude and the response of the audience.
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6 Lesson Learned

Facing a real production and a real audience was a challenge for the design of
DoPPioGioco, with an added value in terms of awareness about the assumptions
underlying the platform. Although the production turned out to be a valuable
experience for both the story editing team and the performer and a novel expe-
rience for the audience, some issues emerged that were partly accounted for by
adjusting the design of the sessions and of the platform itself.

First of all, due to environmental conditions, capturing the face expressions of
the audience was harder than expected, notwithstanding the moderate lighting
on the sitting area. Also, although the audience were aware of the interactive
nature of the performance, the initiative was still mostly in the hands of the
performer, so participants were less active than expected, since the test sessions.
In order to compensate for these factors, we decided to increase the awareness
of the audience by inserting an explicit signal that emotion recording was in
progress (a progress bar and the recording symbol), so as to stimulate the audi-
ence to assume an active attitude in the emotional response. Similarly, in [13]
the explicit emotional feedback of the audience is employed to direct a music
performance. In addition, we decided to change the protocol by inserting an
initial training phase in which participants were encouraged to try individually
the Face API. A dedicated installation was posited outside the theatre with an
application that prompted the user to fake facial expressions for fun, with the
goal of acquiring familiarity with the face expression detection service.

A more subtle issue was given by the partial mismatch between the emo-
tion model of DoPPioGioco and the actual emotion types returned by the face
expression recognition software. Since the poetics of the story was built on the
emotion model embedded in the system, by asking the team of authors to tag
units with the available emotion tags, a mismatch could be observed during the
sessions. For example, the face expression expressing strong sadness triggered
by the vision of some clips displaying war refugees and children in war episodes
were interpreted as contempt by the Face APIs instead of the intended sadness
and anxiety. So, despite the assumed universality of face expressions, this mis-
match reveals that emotion tags and types must be carefully selected in artistic
projects.

Finally, in order to enhance the involvement of the audience, we decide to
provide a final reward at the end of the session by printing on screen the intensity
of their overall emotional feedback. This integration was also intended as a way
to adjust the balance of power in favour of the audience. In DoPPioGioco, the
performer’s freedom to encourage or discourage the emotional response of the
audience creates a space where audience and performer negotiate their interac-
tion in an overt way: thanks to the adjustments brought about in the redesign
phase, the opportunity for the performer to frustrate the expectations of the
audience, a modality listed by [7] as a major source of discomfort, is rebalanced
by the opportunity given to the audience to repay her/him in the same way with
unexpected responses, and receive at the same time a reward for getting in the
game.
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7 Conclusion and Future Work

In this paper, we described the deployment and consequent adaptation e redesign
of DoPPioGioco for a real performance. DoPPioGioco, an intelligent prompt sys-
tem that allows the performer to adapt the story continuation to the emotional
response of the audience, was employed in the production of a dramatic perfor-
mance in a interactive multimedia setting.

The Artificial Intelligence techniques embedded in the system, namely the
factorization and online composition of the story and the modelling and recog-
nition of the audience emotions, proved to be functional to the artistic goals
of the writer and performer roles, thus effectively providing novel and valuable
experience to both performer and audience. However, the testing of the plat-
form on the field suggests that the overall interaction design must be conducted
very carefully to ensure proper engagement and that the emotion model must
be tuned to the emotional range of the specific production.

As future work, we intend to test different modalities for collecting the
emotional response of the audience, including large-scale and continuous detec-
tion systems, more suitable to explore the temporal dynamics of the emotional
response to the performance in progress. Also, the adoption of a purely dimen-
sional model of emotions will be explored as a replacement for the current mixed
dimensional and categorial model, so as to support a larger range of interactive
performance formats and settings.
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Abstract. Social media allow users convey emotions, which are often
related to real-world events, social relationships or personal experiences.
Indeed, emotions can determine the propension of the users to social-
ize or attend events. Similarly, interactions with people can influence the
personality and feelings of the individuals. Therefore, studying emotional
content generated by the users can reveal information on the behavior of
users or collectives of users. However, such an information is related only
to a specific moment when the emotions are sporadic or episodic, there-
fore they could have little usefulness. On the contrary, it can have greater
significance tracing emotions over time and understanding whether they
may appear with regularity or whether they are associated to behaviors
already observed in past and could recur.

In this paper, we focus on the periodicity with which emotional words
appear in the micro-blogs as indication of a collective emotional behav-
ior expressed with regularity. We propose a computational solution that
builds a cyberspace based on the emotional content produced by the
users and determines communities of users who express with periodicity
similar emotional behaviors. We show the viability of the method on the
data of the social media platform Twitter and provide a quantitative
evaluation and qualitative considerations.

1 Introduction

The widespread of social media has been one the main contributors to stimulate
the formation of new forms of collectives. Individuals overcome the diffidence to
establish face-to-face relationships with new modalities of interaction based on
online boards, forums and chats. The communication language becomes essen-
tially textual, but this does not obstacle the individuals to convey typical ver-
bal expressions, feelings and emotions. Interactions and emotions are therefore
interrelated and inherently variable. The emotional status of an individual can
change because of the interaction with others, as well as personal sensations and
experiences can limit the use of social media platforms and can even change the
relationships with users with whom there is already interaction. Relationships
and emotions can be also co-active [9], in the sense that, at the same time,
c© Springer Nature Switzerland AG 2019
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individuals can have affinity with someone and aversion with some others, an
individual can express joy when observed in a group of users and, on the con-
trary, to be angry when observed in another group. Thus, it emerges that the
study of the emotions and interactions can play a relevant role in the dynamics
of the social communities, especially because emotional affinities can guide the
individuals in the choice of the users with whom they socialize and communities
to follow. To conduct this kind of study, we should consider the content that
individuals (users) generate when they use online boards, forums and chats and
we cannot directly adopt classical techniques of community detection why they
rely on the relationships based on social ties, which would constraint the analysis
to the inter-connected users, with the risk to introduce bias in the variety and
dynamics of emotional status.

However, the complexity of the psychological processes makes difficult, even
with information technologies, studying what triggers the manifestation of an
emotion. Indeed, emotions are often unpredictable, why perhaps related to unex-
pected behaviors or to events that occur sporadically. Other times instead, they
could not be unexpected, why related to behaviors already expressed in past and
thus likely to repeat. Thus, what is worth of being investigated is the occurrence
and repeatability of the emotions rather than their raising. Indeed, emotions
which occur over time with a certain regularity or that are manifested at regular
periods can provide information on the predictability of emotions, behaviors and
interactions with other individuals.

Extracting emotions from social media and tracing their repetitions is a chal-
lenging new research topic because social media has become widespread only in
the past decade and the studies on the occurrence and repeatability of the emo-
tional status we register are really few and come from border disciplines of the
Artificial Intelligence and Natural Language Processing [5,21]. In this paper, we
are interested in tracking groups of users with homogeneous emotional status,
emotional communities, over time by identifying those periodic, that is, those
repeated at regular periods of time. To do that, we could group users which
have similar emotions in each time point, but this would disregard possible emo-
tions stimulated by interactions and would consider the punctual information
while neglecting the durable aspect of the emotional status. To this end, we
focus on the simplest form of interaction, that is, a pair of users, and extract
pairs which convey similar emotional content over time. The resulting emotional
communities are groups of pairs which convey the homogeneous emotional status
at regular time-periods.

The computational solution relies on a cyberspace that quantifies the cate-
gorical information of the emotional words used in the microblogs in English.
The dimensions of the cyberspace depict the axis along which emotions are rep-
resented, so the points of the cyberspace mirror emotional content conveyed by
pairs of users. Then, we consider dense groups of points (groups of pairwise users
having similar emotional content) and search for equi-distanced occurrences of
those groups.
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In the Sect. 2 we provide notions fundamental behind the cyberspace and con-
cepts necessary for the detection of periodic ECs. The computational solution is
illustrated in Sect. 3, while a preliminary empirical evaluation on the microblogs
(in English) produced on Twitter is presented in Sect. 4. A discussion on the
related work (Sect. 5) and conclusions (Sect. 6) complete this work.

2 Basics

The cyberspace is structured in two levels, termed as content-space and feature-
space, respectively. The definition of the content-space relies on theoretical mod-
els proposed in the literature of Psychology on the human behavior, according to
which the emotions can be distinguished in distinct and well-identifiable classes.
Without loss of generality, we will refer to the pioneering model of Ekman [3]
formulated on seven basic categories of emotions, namely joy, fear, anger, sad-
ness, disgust, shame, guilt, which, in this work, stand for the dimensions of the
content-space. One more dimension is introduced to represent the discrete time
axis, composed of equally spaced time-instants. Thus, an 7-dimensional point of
the content-space depicts the emotional content expressed in the messages asso-
ciated to a user. We denote as p(u) :〈(p1, τ1), (p2, τ2), . . ., (pm, τm)〉 the sequence
of points associated to user u, where pi ∈ [0,1]7 is the point at the time-instant
τi for the user u).

However, in the current form, the content-space is able to only arrange punc-
tual information, whilst we are interested in representing interactions and time-
aware emotional status. To this aim, we introduce a new class of features, termed
as Emotional Discrepancy (ED), in order to capture the difference between two
users in the use of emotional words of an emotion category. So, when there is no
difference, it means that the two users convey the same emotional content, that
is, the way a user expresses an emotion in the social media over time is similar
to the one of the other user.

ED is determined for each emotion category and is computed as the difference
between the two angles formed by the straight lines (each drawn on the two
points of a user) and reference axis over the time-instants 〈τi, τi+1〉 (Fig. 1). ED
has values in the range [−90,90] and returns 0 when the quantity expressed by
two users respectively remains unchanged, while returns 90◦ (or −90◦) when the
quantities have opposite variations, one goes from 0 to 1, the other one goes
from 1 to 0 (or viceversa). For instance, in Fig. 1, the emotional discrepancy
for joy is θr-θs. Intuitively, the larger the difference, the greater the discrepancy
in expressing the emotion. It should be noted that the emotional discrepancy
equals zero even when the two straight lines are parallel but not coincident, that
is, when the quantities remain constant although with different values.

By considering the new class of features ED, we can build seven new features
upon the emotion categories of the content-space. The feature-space is completed
with a dimension (the eighth one) corresponding to the time interval-based axis,
built on the discrete time axis. So, a new feature ED maps the points of two users
ur and us, drawn at the consecutive time instants 〈τi, τi+1〉 of the content-space
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Fig. 1. Representation of the feature-space with the feature ED built on the emotion
joy and discrete time axis).

for the emotion category c, into a numeric value over the time-interval 〈τi, τi+1〉
(we use the notation EDc|〈τi,τi+1〉(p(ur), p(us))).
The notions introduced above are fundamental for the concepts reported in the
following:
A Pair Set G = {(ur,R) |ur /∈ R} is a set of paired users that have one user in
common (that is, ur).

Definition 1 [Emotional Community]. Let G be a pair set, EDc be the fea-
ture ED for the emotion category c: G is an emotional community iff there
exists a finite sequence of time-intervals T : {〈τi, τi+1〉, . . . , 〈τn, τn+1〉} s.t.
∀(ur, us) ∈ G, (EDc|〈τj ,τj+1〉(p(ur), p(us))) ≤ ε, ∀〈τj , τj+1〉 ∈ T .

An emotional community (EC) is centered on one user (ur) and includes
users whose emotional content is similar to the one of the user ur, which hence
turns out to be a reference individual. Intuitively, an EC collects users who con-
form to similar emotional content over time, not necessarily continuous. Clearly,
we expect that the sequences T of different ECs are well-distinct, without over-
lapping time-intervals, that is, a pair of users should not appear at the same
times in different ECs.

To capture emotional behaviors which are regularly repeated over time, we
have to search for ECs with equi-spaced time-intervals. Thus, not all the ECs
are of interest, but only those for which the sequence T has (i) at least a min-
imum number of repetitions ρ (time-intervals), and (ii) all the time-interval δ-
separated, that is, ∀〈τi, τi+1〉, 〈τj , τj+1〉 ∈ T , δ−1 ≤ j−i ≤ δ+1 and there are no
time-intervals (τh, τh+1), i < h < j, s.t. δ−1 ≤ j−h ≤ δ+1, δ−1 ≤ h−i ≤ δ+1.

The term δ stands for the periodicity with which the emotional content of EC
is exhibited over time and establishes the maximum distance and minimum dis-
tance between two consecutive repetitions. This does not guarantee the identical
distance between two consecutive repetitions, but, on the other hand, allows us
to capture also ECs with some disturbances between the repetitions, which is a
particular periodicity known in the literature as asynchronous [6].
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Fig. 2. The block diagram of the computational solution to detect periodic ECs. The
first module is in charge of processing of user-generated content and projecting messages
into the cyberspace. The second module is in charge of building valid ECs from the
periodicities on the pairs of users.

3 The Computational Solution

The computational solution to discover ECs consists of two main mod-
ules (Fig. 2). The module CYBERSPACE CONSTRUCTION processes user-
generated content and projects messages into the cyberspace. The module PERI-
ODIC ECs DISCOVERY finds out periodic repetitions of similar emotional sta-
tus on the pairs of users and then combines them together to build valid ECs.

3.1 Projection of Message Content into Cyberspace

To project message content into the cyber-space we need to build the two levels,
content-space and feature-space. The content level provides a numeric represen-
tation of the emotional content of the messages. To implement it, we should
recognize mentions or references of the emotions of the Ekman’s model within
the messages and build a quantification. This can be basically done with two
approaches [18], (i) language processing approach and (ii) machine learning.
The first approach relies on lexical resources, while the second approach asks
for more. Indeed, machine learning algorithms require the creation of annotated
message corpus and resolution of annotation discrepancies to train accurate clas-
sification/regression models. The use of classification algorithms, in particular,
introduces another downside for the problem at the hand, that is, the constraint
to use only the categorical information of the emotion-labels, while overlooking
some peculiarities of the social messages, for instance, the presence of multiple
emotions and the use of different words to emphasize an emotional status. This
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could result in making the quantification of the emotions which have not really
been expressed in the text.

These are the reasons why we adopt a language processing approach and
use the lexical resources of the database WordnetAffect [22], which straightfor-
wardly arranges the emotions of the Ekman’s model. However, this choice does
not exclude the possibility of using any other lexicon supporting the same psy-
chological model [19]. In WordnetAffect, the emotions are termed as affective
labels, to which sets of synonyms (synsets) are assigned. The categories of the
Ekman’s model are identified with the labels joy, negative-fear, anger, sadness,
disgust, shame, guilt. This way, to detect mentions or references of the emotions,
we spot the key-words of the synsets associated to the seven categories. The
quantification is obtained by computing the relative frequency of the emotions
for a user. It is the number of the occurrences of the key-words out of the number
of messages posted by the user in a time-interval and has values in the range
[0,1]. In the case a message has more emotional key-words, we count it as many
times.

Procedurally, for each word of the message that has part-of-speech tag as
noun, verb, adverb or adjective, we first search for the synset in which that
word occurs (by using its lemmatized form and pos-tagging annotation), then,
we take the emotion category associated to the synset. In the case the word
occurs in more synsets, we consider the most frequent synset, according to the
ordering established in WordNet [17]. This way, the values of the relative fre-
quency of the several emotions determine the collocation of the user over the
seven dimensions of the content-space. For instance, the frequencies computed
on the messages posted in the time spans [Sept 9th 2012,Sept 11th 2012] and
[Sept 12th 2012,Sept 14th 2012] determine the points at the two consecutive
time-instants τi and τi+1.

Once the relative frequencies for all the users have been determined and
projected into the content-space, we compute the values of the class of features
ED for each emotion category by using the formulation reported in Sect. 2. As
a result, we have eight-dimensional feature vectors (points of the second level
of the cyber-space) which represent the discrepancy of the emotional content
computed for each pair of users ur and us over the time-interval 〈τi, τi+1〉.

3.2 Detection of Periodic Emotional Collectives

To detect periodic ECs, an approach is building pair sets and then searching
for the repetitions of similar emotional content for each pair set. It asks for the
preliminary identification of admissible pair sets and requires that the repetitions
of all the pairs of users (of a pair set) are always coincident (identical time-
intervals 〈τj , τj+1〉). However, this could lead to miss ECs which are smaller (in
the sense of number of users) but which have longer sequences of repetitions.
Thus, we prefer a generate-and-test strategy that searches for the sequences T
of repetitions for each pair of user and builds the sequence T for a pair set by
considering the repetitions which are in common to the paired user (member of
the pair set).
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As preliminary operation, we remove the pairs of users (resulting from the
first module, Fig. 2) whose time-intervals are less than the threshold ρ (Sect. 2).
Then, we start with the first time-intervals (according to the temporal order)
of the pair of users currently considered and incrementally evaluate the current
time-intervals 〈τj , τj+1〉 with the latest time-intervals 〈τi, τi+1〉 inserted into the
set T . So, if they are δ-separated, then the 〈τj , τj+1〉 is inserted into the set
T , otherwise it will be considered to start the construction of the set T of a
new candidate EC by using the previous pair of users, but different repetitions.
Finally, the sequences T which have less than ρ are filtered out.

Once the candidate pairs of sets have been selected, we group them by pair
sets (user ur in common) and detect the respective periodicities by generating the
sequence T with the repetitions which are in common to the users of the pair set.
This can be done by adapting the technique of computation of the intersections
between sequences, each possibly discontinued, proposed in [11]. Our adaptation
first matches a primary sequence against those remaining and then evaluates
the intersection between the time-intervals of the primary sequence and time-
intervals of the other sequences by means of two binary search operations. These
operations work on two sorted lists of time-intervals, one is composed of the
first time-instants τi of the time-intervals 〈τi, τi+1〉, the other is composed of
the second time-instants τi+1. The intersecting time-instants are thus sorted
by temporal order and combined to form the candidates. Finally, we select the
sequence that satisfies a user preference criterion, which, implicitly, chooses also
the pair set of the EC. There are two alternative preference criteria, the first one
(maxDuration) chooses the pair set having the longest sequence, while the second
one (maxUsers) chooses the pair set with more users. This criterion is also used
for the initial selection of the primary sequence. Indeed, the option maxDuration
picks the longest sequence present in the pair sets, while the option maxUsers
picks the shortest sequence. Finally, the sequences T which do not exceed the
threshold ρ are discarded.

An example is reported in Fig. 2 (module PERIODIC ECs DISCOVERY),
which we comment in the following. We have four pairs of users {(ur, us), (ur, ut),
(ur, uv), (ur, uz)}. Supposing δ = 4, we remove the time-intervals 〈τ11, τ12〉,
〈τ21, τ22〉, and 〈τ11, τ12〉 and 〈τ15, τ16〉, for the pairs (ur, us), (ur, uv) and (ur, uz)
respectively. Then, supposing ρ = 3, the sequence of the pair (ur, uv) can be
excluded for further computation. Finally, the criterion maxDuration will iden-
tify the EC composed of the pair set {(ur, us), (ur, ut)} with sequence T :
{〈τ1, τ2〉, 〈τ5, τ6〉, 〈τ9, τ10〉, 〈τ13, τ14〉}, while the criterion maxUsers will identify
the EC composed of the pair set {(ur, us), (ur, ut)}, (ur, uz)} with sequence
T : {〈τ1, τ2〉, 〈τ5, τ6〉, 〈τ9, τ10〉}.

4 Experimental Evaluation

The proposed computational solution has been applied to microblogging posts of
the Twitter platform. The original dataset concerns the 2012 U.S. Presidential
Election and collects tweets posted between August 1, 2012 and November 6,
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2012 that mention the words “Obama” and/or “Romney” 1. We considered an
excerpt that covers the period November 1, 2012 – November 5, 2012. For each
tweet, we took the text of the tweet, time-stamp when the message was written
and nickname of the author, then we removed URLs, emoticons and hash-tags,
discarded messages that had only social tagging and no textual content. Finally,
we kept the tweets that were longer than 35 chars. The initial dataset has a
daily average of almost 47000 tweets (including re-tweets and replies), standard
deviation equal to 48461, comprises almost 236.000 tweets and almost 117.000
users, but, to identify ECs spanning a relatively long time, we considered the
posts of the first 1000 users with higher number of tweets. The final corpus has
around 69.000 tweets with a daily peak of 28 per single user.

Evaluation setup and Comparisons. As to the evaluation, we quantified the
ability of the method (hereafter, PEREC ) to discovering ECs of high quality,
that is, ECs in which sequences T and pair sets are well-distinct, which corre-
sponds to when a pair of users has similar emotional content in the sequence
T ′ of an EC’ and cannot do the same in the sequence T ′′ of another EC”. To
measure this, we resorted to the Silhouette index [20] (an internal clustering
validation schema), which is based on the concept of separation between points
we revised to determine the dissimilarity (separation) between two pairs of users
p1 and p2 of different ECs:

separation(p1, p2) =
1

|T ′| × |T ′′|
∑

τi∈T ′

∑

τj∈T ′′
separation(τi, τj), (1)

separation(τi, τj) =

⎧
⎪⎨

⎪⎩

1 if 〈τi, τi+1〉 ∩ 〈τj , τj+1〉 == �
1 if 〈τi, τi+1〉 ∩ 〈τj , τj+1〉 	= �, p1 	= p2

0 otherwise

(2)

The separation has values in [0,1] and approaches to 0 if the two pairs appear
in the two ECs at the same time-intervals, therefore, the Silhouette index has
values in [−1,1].

Empirical comparisons were conducted with two different algorithms. The
first algorithm (afterward ECbas) corresponds to a baseline designed to handle
only two emotion categories, that is, positive and negative, which are the most
general classes than those used to design our proposal, according to the catego-
rization reported in [22]. The main difference is that the cyber-space of ECbas
has a smaller set of features. The Silhouette index is computed as for PEREC.
The second algorithm (afterward Swarm) uses a clustering technique to group
points based on the notion of closeness in a metric space [13]. We adapted Swarm
to work on the content-space. In this comparative study, Swarm has been used
to find out and track clusters of users (swarms) repeated over time, by using
only the content-space, that is, the frequency values of the emotional words. To

1 The corpora was downloaded on January 2018 from the link https://old.datahub.
io/dataset/twitter-2012-presidential-election/resource/9bb14d78-9519-459a-9fad-
e630e3e9a0a1.

https://old.datahub.io/dataset/twitter-2012-presidential-election/resource/9bb14d78-9519-459a-9fad-e630e3e9a0a1
https://old.datahub.io/dataset/twitter-2012-presidential-election/resource/9bb14d78-9519-459a-9fad-e630e3e9a0a1
https://old.datahub.io/dataset/twitter-2012-presidential-election/resource/9bb14d78-9519-459a-9fad-e630e3e9a0a1
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compute the Silhouette index, we could not consider the feature values of paired
users, but took the frequency values (within the content-space) of the individual
users as clusterized by Swarm.

Experiments were performed at (i) different configurations of the cyber-space
and (ii) different values of the threshold δ. The several configurations of cyber-
space were obtained with different time granularities of the time-intervals, more
precisely we defined the time-instants by aggregating posts at 60, 120, 240, 480,
960 min.

Results. For space limitations, we present the results of the emotion with highest
quality and emotion with lowest quality for perEC and Swarm. In Table 1, we
report the average values of Silhouette index computed on all the ECs detected
at the different time-granularities of the cyber-space. All the algorithms were
required to discover ECs of at least five users, periodicity threshold δ = {3, 4, 5}
and number of repetitions ρ = 5, that is, the repetitions have to be at least 5 and
have to be distanced by 3, 4, 5 time-instants. So, for instance, when the time-
granularity is 60 and δ = 3, the distance between two consecutive repetitions is
greater than 180 min (δ−1) and less than 240 min (δ+1).

By inspecting Table 1, we observe that the emotion categories expressed with
larger regularity and homogeneity are anger and joy, while the emotional words
associated to shame and disgust are those used without particular regularity.
The result is confirmed by the experiments on PEREC and Swarm, indeed the
two algorithms agree on the emotion for each time-granularity configuration,
although with different values of the Silhouette index. This is mainly due to the
difference in terms of algorithmic choices, in fact Swarm requires the closeness
among all the users, while PEREC searches for similar values of the feature ED
per pairs of users. We observe also that the relatively smaller time-granularities
facilitate the formation of periodic ECs around to anger (60 and 120 min), while,
for the largest time-granularities, joy is the emotion more repeated. This can
indicate that the users, when posting Tweets with political content, utilize emo-
tional words related to anger for shorter time-spans and likely for discussions
which are very brief, while the emotional words related to joy are used less
on shorter time-spans but have an homogenous presence among the users over
longer time-spans. In all the time-granularities, PEREC does better than ECbas,
meaning that aggregating the content of several emotions, even referred to the
same category, is not beneficial whether we aim at interpreting the way the
microblogs are used to express emotions.

In Table 2, we report the average values of Silhouette index computed on all
the ECs detected at the different values of periodicity δ. All the algorithms were
required to work on a time-granularity of 30 min (in one time-instant they gather
the tweets posted in 30 min) and discover ECs of at least five users, number of
repetitions ρ = 4, that is, the repetitions have to be at least 4.

By inspecting Table 2, we see that, for the algorithms PEREC and Swarm,
there is large homogeneity in the use of emotional words related to anger and
joy, and this behavior is replicated with a basis of at most 3 h for anger (30 min
multiplied by δ = 6), while, in the case of joy is repeated every 4 h. On the
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Table 1. Silhouette index computed at different time-granularities of the cyber-space.
The emotion showing highest quality and lowest quality are reported in the brackets.

Highest perEC Lowest perEC Highest ECbas Lowest ECbas Highest swarm Lowest swarm

60 (anger)0.34 (shame)−0.1 Negative(0.1) (positive)−0.1 (anger)0.22 (shame)0.07

120 (anger)0.41 (shame)−0.1 Negative(0.19) (positive)−0.14 (anger)0.17 (shame)0.04

240 (joy)0.42 (shame)−0.1 Negative(0.22) (positive)−0.14 (joy)0.22 (shame)−0.13

480 (joy)0.28 (disgust)−0.18 Positive(0.1) (negative)−0.08 (joy)0.14 (disgust)−0.1

960 (joy)0.22 (disgust)−0.18 Positive(0.1) (negative)−0.08 (joy)0.12 (disgust)−0.2

contrary, the lowest quality of shame and fear mirror the low tendency of the
users to post tweets containing shame and fear. We observe also that, generally,
the Silhouette index tends to decrease as the periodicity grows up, which can
reveal homogeneity in the manifestation of the emotions at the beginning and
a blurred similarity when times getting longer. Also in this case, ECbas does
not provide a clear response neither in terms of emotion nor in terms of quality
values.

Table 2. Silhouette index computed at different thresholds of periodicity.

Highest perEC Lowest perEC Highest ECbas Lowest ECbas Highest swarm Lowest swarm

4 (anger)0.38 (shame)−0.1 Negative(0.18) (positive)−0.1 (anger)0.39 (shame)0.1

5 (anger)0.33 (shame)−0.1 Negative(0.19) (positive)−0.13 (anger)0.28 (shame)0.08

6 (anger)0.29 (sadness)−0.3 Negative(0.22) (positive)−0.14 (joy)0.22 (fear)−0.07

7 (joy)0.25 (fear)−0.1 Positive(0.1) (negative)−0.08 (joy)0.24 (fear)−0.1

8 (joy)0.22 (fear)−0.1 Positive(0.1) (negative)−0.08 (joy)0.12 (fear)−0.2

In Table 3, we report the values of the Silhouette index computed on the ECs
distinguished by emotion. The ECs have been detected at the different values
of periodicity δ by the algorithm PEREC. The algorithm is required to work on
a time-granularity of 30 min (in one time-instant they gather the tweets posted
in 30 min) and discover ECs of at least five users ρ = 4, that is, the repetitions
have to be at least 4. We observe that groups of “emotionally” homogeneous
users can be basically detected on anger and joy, which can be evidence of the

Table 3. Silhouette index computed on the ECs distinguished by emotion.

Joy Fear Anger Sadness Disgust Shame

4 0.29 −0.01 0.38 0.04 0.03 −0.1

5 0.23 −0.01 0.33 0.1 −0.01 −0.1

6 0.27 −0.08 0.29 −0.3 0.04 0.01

7 0.25 −0.1 0.19 0.1 −0.08 0.07

8 0.22 −0.1 0.2 0.1 −0.08 0.08
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uniformity with which the users express these two emotions on the microblogs.
On the contrary, there is no a clear indication on how the users express the
remaining emotions, considered that there are not values lower than −0.1.

5 Related Works

The studies on the periodicity of the emotions find space especially in the Sociol-
ogy and Psychology, while very few attempts can be listed in Computer Science.
In [5], quantitative indicators have been defined to measure circadian rhythms of
positive and negative moods on Twitter. More recently, in [21], the author study
the cyclicity of the emotions expressed by individual users on blogs. They pro-
pose a representation built on time series of the frequency of the emotional words
expressed by the users. The cyclicity on weekly and monthly basis is analyzed
through auto-correlation and power spectral density.

A larger interest attracts instead the temporal-based analysis of the emo-
tions. The work proposed in [2] uses descriptive statistics for a time-sensitive
analysis aiming at quantifying the intensity of the basic emotions and recogniz-
ing different types of users. The study proposed in [4] investigates the reactivity
of the users of instant messaging in comparison to persistent communication, in
order to capture the real-time interactions between users. They provide an agent-
based model of emotional interaction which works on the power-law distribution
of the communication activity of the users. The agent recovers patterns based on
user activity and emotions in chat rooms. However, this does not guarantee the
identification of users with similar emotions, which is one of the purposes of the
current work. In [23] the method explores the correlation between emotion sub-
jectivity and topics discussed in the posts. They first extract subjective corpora
and then track the evolution of the emotions with respect to sub-topics. A simi-
lar problem is investigated in [24] through a time-aware topic modeling method.
They combine two probabilistic models, one to represent the evolutions of the
topics and the other one to represent the evolutions of the emotions in a state
space. In [12], the authors use socialization measures to estimate the quantify
the emotions expressed in the tweets posted from a geographic area, social con-
nections and demographics. In [10] it is presented an analysis of the evolution of
the stance in political tweets of user communities over four fixed and pre-defined
temporal phases. The communities are built with a classic network-based algo-
rithm working on Twitter linkage and the evolution consists of the differences
(manually spotted) on communities statistics. The notion of emotional commu-
nities have been presented in [8], but without temporal connotation. The authors
inject the emotional state detected on the tweets and social activity in an algo-
rithm of community detection based on the social network structures to identify
groups of users particularly influential. Clustering tasks on emotional texts have
been mostly addressed for community detection algorithms which exploit the
social ties in social networks. Jin and Zafarani [7] performs a multi-level analysis
which starts with user information and ends at the whole network information.
Finally, in a previous research [14], we investigate how grouping users on the
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basis of similar emotional changes, without necessarily considering social ties. In
that paper, we did not yet account for the temporal information offered by the
periodicity, which is what concerns the current work.

6 Conclusions

In this paper, we have investigated the novel problem to trace the periodicity of
“emotionally” homogeneous groups of users, that is, users which convey similar
emotional content. The problem becomes crucial and relevant when designing
technologies and tools for online communities platforms, cyber-bullying monitor-
ing systems and social media campaigns services. We have proposed a method
which sees emotions as collectors of individuals, whose emotional status can
recur, even with regularity. The emotional collectives are not the representation
of effective interactions happened in the social media, but indicate the presence
of homogenous behaviors in conveying emotions. The proposed method first
exploits a representational mechanism to quantify emotions from social media
texts and then searches for the repetitions of collectives of individuals with simi-
lar use of the emotional words. The application to the Twitter posts reveals that
two specific emotion, anger and joy, can be considered as particular aggregators
of homogenous behaviors.

As future work, we plan to upgrade the research in three directions: (i) change
analysis of the emotional state of network-based communities [16] (rather than
individual users), (ii) quantification of the emotional content through regression-
based techniques to estimate the emotional intensity at the level of single message
[15], (iii) informativeness-based mechanisms in order to rank periodic ECs [1].
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Abstract. Ontologies are largely used but the abstraction process
required to create them is a complex task that leads to incompleteness.
Concept invention offers a valid solution to extending ontologies by cre-
ating novel and meaningful concepts starting from previous knowledge.
The use of distributed vector representations to encode knowledge has
become a popular method in both NLP and Knowledge Representation.
In this paper, we show how concept invention can be complemented with
distributed representation models to perform ontology completion tasks
starting from lexical knowledge. We propose a first approach based on
a deep neural network trained over distributed representations of words
and ontological concept. With this model, we devise a method to gen-
erate distributed representations for novel and unseen concepts and we
introduce a methodology to evaluate these representations. Experiments
show that, despite some limitations, our model provides a promising
method for concept invention.

1 Introduction

Ontologies define the terminology adopted to represent structured knowledge in
a variety of application domains. Knowledge Graphs (KGs) are prominent exam-
ples of structured knowledge bases used today in the industry and science, which
represent entities, their properties and binary relations between them. Ontology
concepts specify which types of entities are described in KGs. Their meaning
is usually defined by axioms from formal languages like Description Logics [1],
which can specify relations between concepts (e.g., subclass of, disjoint with) and
constrain their usage with properties (e.g., by domain and range restrictions over
properties).

Large KGs require to cover entities that are instance of many different con-
cepts and their ontologies are often incomplete. This issue has different origins
like the complex abstraction processes required to model a domain, the selection
of a subset of important concepts to be represented, and the intrinsic dynamic
nature of KGs and ontologies. For example, the DBpedia ontology includes
concepts such as ‘Guitarist’ and ‘Singer’ but does not include concepts such
c© Springer Nature Switzerland AG 2019
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as ‘Pianist’ and ‘DJ’, despite entities that are pianists and DJs are described
therein.

The task of adding more concepts to a given ontology can be viewed as an
ontology completion problem. Ontology completion can be interpreted under dif-
ferent perspectives [10]. For instance, completion can be understood as adding
subclass of relations between concepts that already exist. Another possible com-
pletion mechanism is concept invention, where a new concept is created in the
ontology. This can be achieved by concept blending or concept induction [10].
In concept blending, new concepts are obtained by combining existing concepts
from the ontology, leveraging schema-level evidence and, in particular, their log-
ical specifications. In concept induction, new concepts deemed to be relevant are
generated using evidence about instances in the ontology or knowledge graphs.
A large body of work in concept invention has been developed in the context of
logic-based approaches to define the semantics of concepts, and many of them
are based on Description Logics [10]. These languages provide the foundations
for languages like RDFS and OWL, which are widely used to model real-world
ontologies of large knowledge graphs. In this work, we want to study a concept
invention problem, and, in particular concept induction, for ontologies repre-
sented using Distributed Models (DMs).

DMs have been recently introduced as complementary approaches to rep-
resent the semantics of KG elements, including ontology concepts, after their
uptake in computational linguistics. In this field, some model implementations
like Word2vec [27] and ELMo [31] have become standard techniques for down-
stream NLP applications [31], and many scientists have argued for their cogni-
tive groundedness [24]. Those models provide lexical knowledge starting from
natural language texts and are based on Distributional Semantics, whose main
hypotheses are that words’ meaning is based on their usage and that words
that appear in similar contexts are similar. For example, the representations
of ‘Guitarist’ and ‘Pianist’ will be similar because those words are used in
similar contexts. Although many approaches have proposed models for learn-
ing distributed representations entities and properties [5], few of them learn
distributed representations of ontology concepts. For example, Type2Vec [2,3]
proposes concept representations based on distributional semantics that encode
similarity and/or relatedness between the concepts. Other approaches have been
proposed to encode the subclass of relation and concept hierarchies [23,29,33] by
using hyperbolic geometries that are better suited to capture tree-like structures
[22].

Distributed models are vector-based representations of entities or properties
or concepts that are generated from data through machine learning approaches
by optimizing one or more functions. Even if the individual components of the
generated vectors are hard to interpret, geometric relations between the vectors
encode semantic relations between the represented elements, like similarity or
the subclass of relation.

In this work, we aim to show how DMs can provide a natural and suit-
able framework to support novel ontology completion tasks that require concept



574 M. Vimercati et al.

invention. The key intuition behind the use of DMs for concept creation tasks is
the following: each one of the infinite set of vectors in a vector space representing
concepts encodes some semantics; vectors that are not associated with a known
concept may, in fact, be potential new concepts in the ontology; relevant new
concepts can be identified by finding some hot spots in the space, based on some
evidence. For example, we expect to assign a suitable position for the unseen
concept ‘Pianist’, by using available evidence.

We propose, to the best of our knowledge, one of the first approaches towards
supporting concept induction in DMs using lexical knowledge as a source of evi-
dence. In particular, we use a neural network to learn an alignment function
that generates distributed concept representations from distributed word rep-
resentations. As a source of the alignment, we use distributed representations
based on the ELMo model [31], where each word is associated to several vectors
reflecting the different meanings that the word assumes in different contexts. As
target of the alignment, we consider two different distributed concept spaces: a
hyperbolic space, which represents the hierarchical relations between concepts,
and a Euclidean space, which is built with Type2Vec, encoding the distributional
semantics. This twofold representation allows us to capture simultaneously the
semantic similarity derived from the use of the concepts in the data and the
dependencies between concepts obtained from an ontology. Intuitively, the func-
tion learns how to map concept labels to concept representations, and, more
importantly, entity names to the representations of their respective concepts.
For example, we learn to generate the representation of the concept ‘Guitarist’
by mapping guitarists’ names to the representation of this concept in the two
concept spaces. As a consequence, we can then feed several names of pianists to
the network, to generate the representation of the concept ‘Pianist’ in the two
spaces.

The main contributions of this paper are: (i) we illustrate how distributed
models can be used to represent concepts; (ii) we provide a model which can
be used to obtain data set without bias; (iii) we show how new concept repre-
sentations can be generated using the semantics inside distributed models; (iv)
we propose an evaluation method and discuss about its limitations; (v) we pro-
vide a first example of implementation and discuss the results obtained with our
models.

The paper is structured as follows: we establish terminology and notation
in Sect. 2 and discuss related work in the concept invention and ontology com-
pletion fields in Sect. 3; after explaining our method in Sect. 4, we discuss the
methodology proposed to evaluate the invention process and our experimental
results in Sect. 5. Conclusions and future work end the paper.

2 Preliminaries

For this work, we can define a Knowledge Graph (KG) as a tuple <C,E,⊆,∈ >,
where:

– C is a set of concepts (often also referred to as classes), e.g., Pianist;
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– E is a set of entities that represent domain objects, e.g., Elton John;
– ⊆ is a subclassOf relation that holds between pairs of concepts in C; we

assume that the relation is transitive, reflexive and anti-symmetric and defines
a partial order over the set of concepts, e.g., Pianist ⊆ MusicalArtist;

– ∈ is the instance-of relation that holds between an instance and a concept,
e.g., Elton John ∈ Pianist

We use a minimal definition of KG, where we only assume that a partial
order over the concepts is defined and entities are associated with concepts.
This makes our approach very general and applicable to ontologies defined using
expressive logical languages as well as to ontologies defined as simple schemas
of KGs.

Distributed Models (DMs), frequently named embeddings, are vector-based
models which are used to represent different knowledge resources, such as word
meanings and ontology concepts. A distributed model is a vector space Rn which
uses vectors in the space to represent the objects. The semantics of the repre-
sented objects is captured by geometrical or mathematical relations between
labelled vectors in the space. Distributed models are often generated by training
a model with a data set. For example, word embeddings are built using a text
corpus. Vector spaces used in distributed models contain, by definition, an infi-
nite set of vectors, even though only a few of them are explicitly associated with
an element after training, usually, the vectors that correspond to some element
in the training data, e.g., words in the corpus. We will refer to these vectors as
labelled vectors, because they are explicitly associated with a label, e.g., the word
they are associated with, and to all the other vectors as unlabelled vectors. The
dimension of the space is a parameter that depend on the method used to create
the DM. Moreover, DM can be built to encode different kinds of semantics, in
this paper we consider two main kinds of semantics as detailed below.

– Distributional semantics (DS): [19] is a semantic principle according to
which the distribution of words in a corpus, i.e., their usage, determines
their meaning. Different count-based [11,14,17,30] or predictive [12,27,31]
approaches can be used to generate distributed models inspired by the DS
principle. All these approaches return distributed models such that we can
expect that vectors of similar words will appear close in the vector space.
In fact, DS encodes relatedness among words, where the relatedness can be
computed using cosine similarity or Euclidean distance. DS has been used
to account for word meaning extensively in a number of models such as
Word2Vec [27], Glove [30] and BERT [12]. In particular, we will use ELMo [31]
as input word space in our approach. However recent work has also proposed
to use DS as a principle to provide distributed representations of entities and
concepts of knowledge graph. Type2Vec [3] provides a way to embed DBpedia
types in the vector space by considering type to type co-occurrence over a
text corpus: the corpus is firstly annotated with entities (using entity linking
techniques) and then entities are replaced with their most specific type thus
generating a document containing ordered sequences of types.
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– Hierarchical Semantics (HS): Hyperbolic metric spaces have proved to
be useful when representing hierarchical relations [22]. The most common
use of this type of embedding is graph representation, namely to assign to
each node in the graph a point in a low dimensional hyperbolic space in such a
way that neighbours are placed close. The quality of the embedding is usually
measured by the capacity of reconstruct the original graph starting from the
representation; or by the link prediction task [29] which aims to predict edges
previously removed from the input graph before the embedding phase.
Since Taxonomies represent hierarchical relations, recent methods [23,29,33]
use Hyperbolic Geometry Models to create a high quality representation on
low dimensional hyperbolic spaces. Following this line of work, we use HS to
express hierarchical relations between concepts from a given ontology.

The most common Hyperbolic models used to create graph embedding are
Lorentz Model (which is the upper sheet S+ of the Hyperboloid model) and
Poincaré Disk Model (Fig. 1), which is the choice in our model. The Poincaré Disk
Model is a two-dimensional disk of radius r endowed with its natural hyperbolic
metri (Eq. 1). In this model, distance between points scales exponentially when
we move from the origin toward the border circumference. This property makes
this model particularly suitable to represent tree-like structures, in which the
number of elements usually grows exponential with depth. In fact, all trees can
be isometrically embedded using this model [18].

d(x, y) = arccosh
(
1 + 2∗r2∗‖x−y‖2

(r2−‖x‖2)∗(r2−‖y‖2)

)
(1)

Slightly abusing the terminology, from now on we will refer to distributional
models (or representations), to refer to distributed models (representations)
inspired by DS. Based on this distinction we define here the three distributed
representation spaces that we will use in our approach: a distributional represen-
tation space of words, a hyperbolic representation space of ontology concepts,
and a distributional representation space of concepts.

A Distributional representation space of words VW (Fig. 2) can be built over
a tuple <T,W>. VW is a distributed model which is built by applying the DS
over a generic corpus T. A corpus T is a collection of sentences, a sentence is an
ordered set of words w ∈ W and word phrases (like ‘New York Times’ ) wp ∈ W .
Depending on the applied model, a labelled vector vw ∈ VW exists for each word
w ∈ W (Word2Vec [27] or GLOVE [30]) or for each occurrence of each word
w ∈ W (ELMo [31] and BERT [12]).

A Hierarchical representation space of concepts HC is built over a tuple
<C,⊆ >. HC is a distributed model of the concepts C in the POSet structure of
a KG. For example, in [33] for each c ∈ C a labelled vector hc ∈ HC is created
with the Poincaré disk model.

A Distributional representation space of concepts DC (Fig. 3) can be built
over a tuple <C, ε,∈, TC , λ,KG>. DC is a distributed model built applying the
DS over a corpus TC . TC is obtained by replacing each entity ε in a generic
corpus with λ(ε), λ is a function which represents an Entity Linker which map
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each entity ε into c if in KG the relation ε ∈ c is true; otherwise, in the case that
ε is not in the KG then nothing is returned. So TC is a collection of sentences
composed by ordered c ∈ C. To obtain DC a DS based method is applied over
TC .

Fig. 1. Example of tree
embedding in a Poincaré
disk model

Fig. 2. Example of distri-
butional representation of
words

Fig. 3. Example of
distributional represen-
tations of concepts

3 Related Work

Inspired by the Computational Creativity research field [9,37], we divide concept
invention into four tasks [39]:

– Concept Extraction is the task of extracting a conceptual representation
from an existing but different representation of the same idea after an ade-
quate transformation; this research field is related to the information extrac-
tion methods, for example, Hearts patterns [20] which are able to extract
hyponym/hypernym relations between words from text corpora.

– Concept Induction is based on instances of concepts from which a concept
or concepts are learned; this can be supervised (Concept Learning) or unsu-
pervised (Concept Discovery). An example of concept learning is the task of
automatic taxonomy construction from NLP resources like the approaches
surveyed in [36,38] which use text corpora to learn concepts organized into
hierarchies. In Concept Discovery concepts are obtained by applying unsu-
pervised techniques like clustering or LDA [4].

– Concept Recycling is the creative re-use of existing concepts. The most
remarkable approaches of this kind are those based on concept blend-
ing [15,16]. However, studies about semantic shift in temporal word embed-
dings [13] and novel word sense detection [21] are also somehow relevant to
the (post hoc) study of concept recycling.

– Concept Space Exploration takes as input a search space of possible new
concept and locates interesting concepts in it.
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The ontology completion task can be faced with two strategies: by finding
new triples or by extending the set of concepts and defining new subclassOf
relations. The former can be tackled with the use of KG embeddings which
encode entities as vectors and properties as spatial transformations to predict
new triples [5,28], recent methods combine rule templates with DR created using
gaussian distributions [6]; the latter derives new concepts and rules starting
from the ontology itself. These approaches can be designed with Inductive Logic
Programming [7] or even with Statistical Relational Learning approaches [34,35]

Recently [23] has used text corpora to infer hierarchical concepts. This work
is based on an hyperbolic embedding and a revisited version of Hearst patterns,
which are lexical patterns used to find Hyponym/Hypernym relations in a text.
(for example in the sentence ‘DJ and other artists’ ‘DJ’ can be recognized as an
instance of ‘Artist’).

Regarding conceptual combination some recent approaches tried to define
a framework to face the creation of combined concepts starting from already
known concepts. For example, [25] uses conceptual spaces and a combination of
prototype theory and random set theory which can capture both typicality and
semantic uncertainty. On the other hand, [10] shows how the description logic
EL+ can be used to support conceptual combination and introduces a novel
operator which can be helpful for this task. [26] Proposes a framework based
on description logic in which combine DL are combined with probabilities and
other heuristics to support concept combination. Our work applies the Concept
Induction definition to generate the representations for new concepts.

4 Ontology Concept Induction with Lexical Knowledge
Mapping

We begin by providing an overview of the proposed approach. In the following
we will discuss each of its components in detail.

4.1 Approach Overview

We define the concept invention process as a mapping function Π : R
n −→

R
m × R

q from the word vector space into two different concept vector spaces: a
distributional type space and hierarchical type space respectively. We implement
Π as a Neural Network which is trained in a Multi-Task learning (MTL [8]) setup
(but any other machine learning model can be also applied). Figure 4 depicts a
high level representation of the neural architecture.

Starting from a set of concepts C, we create CT ⊂ C and CI ⊂ C, with
CT ∩ CI = ∅. CT represents the set of concepts that will be used during the
training phase to learn the mapping function Π, while CI is the set of concepts
that we the model will invent: their representation will be created using Π. Since
we will test on the CI set the network will have to predict the representation of
unknown concepts.
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Fig. 4. Multi-task learning for concept invention schema

Fig. 5. Schema of resource usage

To reduce bias in our experimentation, we build the distributed representa-
tions without using concepts which will be invented. Thus, we create an hierar-
chical representation space HCT

and a distributional representation space DCT

using resources which contain only concept c ∈ CT . A corpus T is used to create
a distributional space VW of words W . A schema that illustrates this procedure
is showed in Fig. 5.

In our work, we want to perform concept invention starting from words. This
can be seen as a Concept Induction task. To learn a mapping function which
can project words to their respective concepts we need a data set composed of
examples of <word, concept> alignment.

This kind of dataset is model and vector independent, because is
an alignment between symbols who represent words and concepts (e.g.,
<Elton Jhon, P ianist>). Since we are using DMs we need to retrieve vec-
tors to compose the training tuples. Thus, once we have the pairs of words
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and concept we can create training examples with the representation vectors:
<wword, dconcept, hconcept>

Therefore, we build our dataset in the following way:

1. For each c ∈ CT retrieve from the KG all the entities ε for which the relation
ε ∈ c is defined in the KG, this step creates the Ec set.

2. For each εc ∈ Ec find the word wεc
∈ W which represents εc (for instance,

the word phrase ‘Elton Jhon’ for the DBpedia entity dbr:Elton Jhon), and
create the couple <wεc

, c>; if the representation of an εc cannot be found in
W , discharge that εc.

3. For each pair <wε, c>, we retrieve all vectors vw ∈ VW , for each vw create a
tuple <vw, dc, hc> with dc ∈ DCT

and hc ∈ HCT

Once the function Π is learned, we are able to generate concept representa-
tions. Thus, starting from our test set of concept CI and applying (1) and (2)
we can retrieve words in W which belong to concepts in CI .

Π can be used to predict hci ∈ HCT
and dci ∈ DCT

and performing a concept
invention. The quality evaluation of this vectors will be discussed in Sect. 6.

4.2 The Source: Distributional Word Space

The VW is obtained using ELMo [31]. ELMo is a deep learning model which
creates a language model during the training on a prediction task. ELMo uses
a Bidirectional Language Model (BiLM) to predict a word based on its left
context (forward model) or its right context (backward model). Once the BiLM
is trained, ELMo’s representations are obtained through a fine-tuning on the
target task which lets ELMo learn how to combine the representations which
come from the forward and backward models to maximize the performances in
the fine-tuning task (which can be another prediction task or other NLP tasks).

The pre-training of our ELMo model is performed on the Billion Word Cor-
pus1. The model is then fine-tuned obtain a proper representation of DBpedia
Abstract Corpus2 language model, and reflect the distributional word’s mean-
ing in this corpus. In VW each word occurrence representation is based on his
sentence context in the DBpedia abstract corpus and on all contexts of all occur-
rences of that word in the Billion Word Corpus.

ELMo model produces three vectors for each occurrence of each word in the
fine-tuning corpus, we use the vectors at layer 1 because these vectors embody
the contextual representation of the word. Due to the ELMo’s hyperparameters,
the dimension of a contextual word representation is 1024.

4.3 The Target: Distributed Concept Spaces

Distributional Concept Space. DCT
is obtained using DBpedia’s Types as

concepts and is generated with Type2Vec [3], a Word2Vec [27] model applied
1 https://opensource.google.com/projects/lm-benchmark.
2 http://downloads.dbpedia.org/2016-10/core-i18n/en/long abstracts en.tql.bz2.

https://opensource.google.com/projects/lm-benchmark
http://downloads.dbpedia.org/2016-10/core-i18n/en/long_abstracts_en.tql.bz2
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over a processed corpus: starting from the DBpedia abstract corpus an entity
linking algorithm is used to obtain the DBpedia entities contained in the corpus,
unlinked words are eliminated and subsequently each entity is replaced with its
most specific Type in DBpedia ontology tree3. The dimension of the a represen-
tation is 100 due to Type2Vec’s hyperparameter.

Hierarchical Concept Space. HCT
is created with HyperE [33], an algorithm

that embeds a graph in a Poincaré Disk Model. The obtained embedding has
a low distortion, meaning that node distances in the graph are preserved. In
particular we obtain HCT

by applying the HyperE approach to the DBpedia
ontology tree. The vectors are 2-dimensional and they embody the hierarchical
structure of the ontology tree. Each labelled vector hc ∈ HC (hThing excluded)
has Norm(ht) ∼ 1, this is a consequence of the HyperE approach and it is a
property that has to be treated in the learning phase since these vectors are very
close to the boundary of the Poincaré Disk and then could be mapped out of
the domain.

4.4 Multi-task Learning for Concept Invention

We model the invention problem as a Multi-Task Learning (MTL) problem,
this choice is motivated mainly for two reasons: (i) DC and HC capture dif-
ferent semantic properties: a combined loss which receives the feedback from
both spaces using back-propagation can use the information from one space to
improve the performance on the other; (ii) as noticed in many cases, in MTL each
task works as a regularization function w.r.t. to other tasks, thus avoid overfit-
ting [32], since the training process generates intermediate representations which
take into account the different objective tasks. Figure 6 shows the architecture
of the network. The multiobjective loss function optimized by the MTL network
is L = λLD + (1 − λ)LH which is a convex combination of two loss functions
that encode the distance in the respective spaces:

Fig. 6. Architecture of the multi-task feedforward network

3 http://mappings.dbpedia.org/server/ontology/classes/.

http://mappings.dbpedia.org/server/ontology/classes/
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– LD is the mean cosine similarity (Eq. 2) between the predictions and the real
vectors for each example e in the training set TS. Minimizing this generates
vectors which are distributionally similar to the real ones because of share a
very similar angle w.r.t. the origin.

LD =
∑

e∈TS cossim(pred, true)
|TS| (2)

– LH (Eq. 3) is the mean hyperbolic distance between the predictions and the
real vectors for each example e in the training set TS with a penalization
term. By minimize this value, we force the prediction to be closer to the
real vectors, the concept of closeness is based on the Poincaré Disk Model
topology.

LH =
∑

e∈TS dH(pred, true)
|TS| ,

dH(p, t) = φ(p)arccosh

(
1 + 2

‖p − t‖2
max(K, 1 − ‖p‖2)(1 − ‖t‖2)

)

φ(p) =

{
1 if R < ‖v‖ < 1
P otherwise

(3)

In Equation (3) K is a penalization parameter forcing the predicted vectors to
be in the disk of radius 1, while P is a penalization parameter that amplifies
the distance if the predicted vector is inside the radius R disk (R < 1). The
former penalization is imposed to force the predicted vectors to be placed in
the Poincaré disk model domain (inside the unit disk); conversely, the latter
penalization forces the vectors to be near from the edge of the disk, which is
the region where the predictions are placed in our dataset.

5 Evaluation: Preliminary Results and Discussion

In this section, we present the results for the Concept Invention task performed
by the MTL network presented in previous sections. We present some examples
of predictions and provide numerical results to support our model. The training
of the model is based on a training set which contains 15 conceptual classes,
showed in Table 1; the test conceptual classes (or ‘class to invent’) are shown
in the Table 2 Our experiments will be generally based on the following task:
generating concept representations of unseen words (words not in the training
set) and to check how close they are to the vector of their real type. For example,
we expect that the predicted vector associated with a word like beaver to be close
to the vector of the type Mammal.

Note that these results are not obtained from unbiased spaces: in fact, the
sets HCT

and DCT
correspond to the entire set of concepts C, thus we have HC

and DC . While this might impact our results, we believe that this setting can
be used to provide a first feedback over the validity of our assumptions, showing



Mapping Lexical Knowledge to Distributed Models for Concept Invention 583

that we can indeed construct representations of unseen concept that are close to
the real ones.

For each class c ∈ CI we have multiple predicted vectors so hc and dc are
to be imputed. We think that generating predictions from multiple word vectors
Vw of words w which belong to the concept c is a good process: a generalization
of concept ‘Fish’ has a better quality when it is based on different instances of
fish. All our data, experimental procedures and complete architectures of the
neural networks are available online for replication4.

Table 1. Composition of the training
dataset

DB. type Uniq. words # vectors

Arch.Structure 480 5077

Award 113 2335

Bird 203 1435

Colour 47 6938

Company 1536 36647

EthnicGroup 556 6411

Fic.Character 1127 8026

Insect 189 953

Language 385 20566

Mammal 331 9510

Planet 64 2140

Plant 901 13465

Sport 198 4459

SportsTeam 129 828

Weapon 64 2043

Table 2. Composition of the invention
dataset

Class Uniq.
words

# Vectors

Amphibian 23 78

Crustacean 43 140

Currency 8 298

EducationalInstitution 10 49

Fish 185 737

GovernmentAgency 37 1954

Game 64 991

Mollusca 56 360

Reptile 56 414

SportsLeague 11 41

5.1 Qualitative Analysis

To evaluate the quality of the concept invention process we selected words which
belong to entities that in DBpedia2016 were defined as instances of the OWL
concept Thing, that is, the top of the concepts’ partial order. We choose these
words because we want to show that our model can be used to assign a more
expressive type to these entities. We recorded the similarities between the cen-
troid of the predicted vectors and the labelled vectors in the concept spaces.
Table 3 shows some examples of predictions.

4 https://github.com/NooneBug/Multi task concept invention.

https://github.com/NooneBug/Multi_task_concept_invention
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Table 3. Qualitative results on word of unseen concepts

Word Ranking in DC Ranking in HC

Algae Plant Thing

Conifer Species

Fern ChemicalSubstance

Insect Polyhedron

Beaver Mammal Species

Bird ChemicalSubstance

Reptile Thing

Fish Polyhedron

JPEG Company Agent

Bank Award

Automobile Thing

Software PublicService

5.2 Quantitative Analysis

Measures. For the evaluation, we use similarity ranking between the predicted
vectors and the labelled vectors. For a given predicted vector we compute its
neighbourhood and obtain the position of its true type label. Relying on these
ranks we compute (and report) the mean rank of the true type label inside the
ranking list (Avg). We also report the mean position of the true type label in
the neighbourhood of a centroid for each semantic class (Cent). Both methods
are computed over the distributional D and hyperbolic H space.

Settings. We consider two different settings: (i) Cent and Avg of predictions
about unseen words which belong to concepts used during training and (ii) Cent
and Avg of predictions about unseen words which belong to unseen concepts.
The former will evaluate the invention task as standard in machine learning,
we test the generalization ability on trained concepts. The latter is performed
to explore how similarity between word representations can be used to infer
different concepts, thus being a task closer to real concept invention. We consider
one baseline model and propose two neural networks.

– Random Forest (RF), a random forest regressor model trained to predict the
concept vector in the hyperbolic space or in the distributional type space
based on the word vector.

– Feed Forward Neural Network with Single Output (SO), a neural network
which takes in input the word vector and returns a vector in one concept
space, performing a regression task.

– Multi-Task Neural Network with Double Output (DO), a neural network
which takes in input the word vector and returns two vectors: one in the
hyperbolic type space and one in the distributional type space. This network
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uses the loss function L = λLD +(1−λ)LH showed above (we use λ = 0.91,
experimentally computed).

5.3 Results

Table 4 shows that the neural model can correctly project a centroid into the
distributional concept space and, on average, the projected vectors into the hier-
archical concept space have a correct position. The quantitative results show that
the distributional projection is probably noisy, show also that the hyperbolic cen-
troid procedure is highly affected by ‘wrong’ predictions. Results suggest that
while the performance of the models is still far from one of a perfect predictor,
the approach is promising; moreover the qualitative predictions (Table 3) seem
to support this mapping methodology. The neural models seem to be better
suited for this task then the baseline, but still DO suffers from some limitations
that might be due to the optimization process; nevertheless, its ability to learn
from two different spaces and aggregate the information is important for novel
tasks related to concept invention; results are heavily influenced by the hyper-
parameters of the MTL model (e.g., λ). These considerations are valid for both
setups (Tables 4 and 5) with different sensibility when the model has to predict
the position of an unseen concept.

Table 4. Predictions ranks on unseen
words but with known concepts

Model Avg D Cent D Avg H Cent H

RF 108 64 16 234

SO 85 4 17 208

DO 115 5 18 206

Table 5. Prediction ranks with unseen
words and concepts

Model Avg D Cent D Avg H Cent H

RF 181 107 18 372

SO 175 82 35 330

DO 183 82 31 333

6 Conclusions and Future Work

In this paper, we have proposed a first approach to tackle concept invention
combining information coming from distributed representations. The results
obtained with a preliminary implementation and evaluation of the approach
suggest that the approach is promising for supporting concept invention tasks,
in particular to generate representations in the hyperbolic space that capture a
generalization relations between the concepts.

Nevertheless, the proposed approach has some limitation that we aim to solve
in future work. First, in the training process, we aim to find a way to associate
words to concepts that makes the learning more robust; for example, we might
want to avoid introducing words that are too ambiguous. Second, we would like
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to investigate methods to evaluate more systematically the performance of the
approach with words that currently do not have a specific type in existing KGs
(e.g., Pianist in DBpedia). Third, we would like to improve the method used
to generate the final representation of the vectors after the application of the
network to a set of words: operations in high-dimensional spaces require careful
considerations.
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Abstract. The number of social media users is ever-increasing. Unfor-
tunately, this has also resulted in the massive rise of uncensored online
hate against vulnerable communities such as immigrants, LGBT and
women. Current work on the automatic detection of various forms of
hate speech (HS) typically employs supervised learning, requiring manu-
ally annotated data. The highly polarizing nature of the topics involved
raises concerns about the quality of annotations these systems rely on,
because not all the annotators are equally sensitive to different kinds
of hate speech. We propose an approach to leverage the fine-grained
knowledge expressed by individual annotators, before their subjectivity
is averaged out by the gold standard creation process. This helps us to
refine the quality of training sets for hate speech detection. We introduce
a measure of polarization at the level of single instances in the data to
manipulate the training set and reduce the impact of most polarizing
text on the learning process.

We test our approach on three datasets, in English and Italian, anno-
tated by experts and workers hired on a crowdsourcing platform. We
classify instances of sexist, racist, and homophobic hate speech in tweets
and show how our approach improves the prediction performance of a
supervised classifier. Moreover, the proposed polarization measure helps
towards the manual exploration of the individual instances of tweets in
our datasets.

Keywords: Hate speech detection · Linguistic annotation · Inter-rater
agreement · Data augmentation

1 Introduction

Hate speech (HS) is a form of abusive language directed at specific targets and
inciting hatred and violent actions. Online hate speech (or cyber-hate) takes
different forms and its rapid growth raises concerns that it may be a catalyst for
harmful behavior [16]. The issue needs considerable attention from researchers
and policy makers in order to protect the disadvantaged social groups. While
some countries define some expressions of hate speech as illegal in their laws and
regulations [1], a culturally shared definition of what constitutes hate speech is
still under debate. Hate speech is quite subjective in nature.
c© Springer Nature Switzerland AG 2019
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From a natural language processing perspective, hate speech detection is
often approached with similar techniques to sentiment analysis i.e., the task of
identifying the opinions expressed in subjective utterances, from product and
service reviews to comments to political events. However, online hate can be
characterized by incitement to hate and to violent acts [24], rather than just a
display of emotion.

A supervised learning approach typically relies on manual human annota-
tion in order to create reference data to train models. The annotation is done
either by experts or paid contributors on crowdsourcing platforms. In super-
vised learning, during the process of annotating data, the cultural background
of annotators is usually ignored [25]. Judging the quality of gold standard data on
subjective phenomena has been investigated recently, e.g., by [5], where expert
and crowdsourced annotation of sentiment polarity and irony is compared. As
a consequence of inter-annotator agreement issues, the benchmarks based on
datasets created with traditional methods may be inadequate, leading to unsta-
ble results.

The main contributions of this paper are two: (1) to improve the quality
of hate speech detection corpora, and consequently models trained on them, by
considering the impact of different opinions of annotators and how they differ on
individual messages; (2) a mean to manually explore the data and understand
the topics and issues with polarizing nature.

Our working hypothesis is that diverging opinions expressed by annotator
groups are valuable source of information rather than noise in gold standard data.
This information can help to create better quality data to train machine learning
models for the prediction of highly subjective phenomena such as cyber-hate. In
particular, we focus on inter-annotator agreement computed for subdivisions of
the annotator set, and on the level of polarization of the human judgments.
We test our hypothesis empirically on three different datasets, in English and
Italian, to further gain insight in a multilingual setting.

We introduce a novel measure of polarization of opinions in Sect. 3, along
with a pilot study to verify its effectiveness. In Sect. 5, we present the result of
an experimental evaluation on several datasets of hate speech in social media
(described in Sect. 4). We present a discussion and qualitative analysis in Sect. 6,
and draw conclusions in Sect. 7.

2 Related Work

Hate speech usually refers to disparaging individuals or groups because of their
ethnicity, gender, race, color, sexual orientation, nationality, religion, or other
similar characteristics – see for instance the U.S. constitution [21]. People from
different backgrounds may have different opinions when asked about a partic-
ular event or topic and the opinions expressed are also influenced by various
factors including the knowledge of a domain. The increase in social media usage,
where users often express personal opinions, resulted in new opportunities to
collect and analyze rich datasets on online harassment and abuse, often target-
ing women and minority groups based on race, ethnicity and gender [11,30], and
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similarly highly controversial topics. Controversiality is not a new concept in the
study of social media. Usually, the controversial topics are identified and user
responses or opinions are detected on those topics or issues [3,6]. Therefore, the
literature mostly focuses on the controversiality of a message or other aspects
of the content rather than on the polarization among annotator opinions during
the development of gold standard corpora for hate speech detection, which is the
focus of this work. Controversy in text stems from events, topics or social issues
with varying responses from online users [23]. High controversiality can impact
the manual annotation of such phenomena in terms of agreement between human
judges because it can lead to polarized judgments.

Literature on hate speech detection in NLP has been recently surveyed
by [14]. Scholars addressing the task utilized various surface level features such
as bags of uni-grams and n-grams [10,32], syntax, lexical semantics, and combi-
nations thereof [20,27–29,31]. The work in [7] focused not only on detecting HS
but also finding the counter measures based on certain social or political events
that actually triggered HS among the general public. Targeted hate is also the
main topic of recent evaluation campaigns in several languages [4,8,12,13]. An
interesting by-product of such initiatives is the creation of publicly available gold
standard datasets, annotated by experts or by crowdsourcing. Inter-annotator
agreement measures such as Fleiss’ Kappa and Krippendorff’s Alpha [2] are typ-
ically used to assess annotation quality. [9] highlights the shortcomings of such
inter-annotator agreement measures in the crowdsourcing scenario, and proposes
an improved measure to solve them. Similarly, [15] notes how the reliability of
the crowd contributors may be inconsistent compared to the traditional expert
annotation scenario, and proposes the MACE method to create gold standard
datasets accounting for the annotators’ reliability. [26] proposed a method to
leverage the disagreement of annotators as a source of knowledge rather than
treating it as noise in the data. In the present work, disagreement is leveraged
too, however with a focus on its interpretation as a measure of divergence of
opinion between groups.

3 Method

We propose a method aiming at creating higher quality benchmarks for super-
vised learning of subjective phenomena by introducing a new index that mea-
sures how polarized a message is, when annotated by two different groups. Our
approach exploits the fine granularity of single annotations, e.g., resulting from
crowdsourcing. We analyze the inter-annotator agreement in a setting where
the annotators do not form one homogeneous group. We split the annotators in
two groups with the highest divergence of opinions by performing an exhaustive
search, and define a quantitative index of opinion polarization based on such
split. Finally, we use such measure to automatically manipulate the training set
of a supervised algorithm for hate speech detection.
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3.1 Polarization Index

We provide a novel method to measure polarization in opinions about individual
tweets. We aim at understanding the role of factors like ethnicity and social
background of the annotators and how it is reflected in their judgment. In a sense,
we are testing a homophily hypothesis [18] with respect to opinions, and on a
larger (even global) scale: just as homophily in social groups strongly shape their
social network, we postulate that the common background of some annotators
shapes their opinions as well, leading to polarized judgments on certain kinds
of messages. While polarization of opinions stems from the high subjectivity of
some phenomena (e.g., hate speech), it differs from inter-annotator agreement, as
the latter is influenced by factors such as text comprehension and interpretation,
e.g., of ironic content. Our goal is instead to capture the influence of personal
background of the annotators at a macro-level. Note that high polarization does
not necessarily equates to low agreement: we consider the set of judgments on
an utterance to be highly polarized if different groups show high agreement on
different opinions. On the contrary, if the agreement is low overall, including
among members of the same group, then there is no polarization, according to
our definition.

We measure the level of polarization in a message given a set of annotations
provided by two groups of annotators. Given a set of messages N and a set of
annotators M , gi,j denotes the annotation of an annotator j on the message i. For
each message i ∈ N , we can split the set of its annotations Gi = {gi,1, . . . gi,m}
into k subsets G1

i , . . . , G
k
i . As a measure of agreement of the annotations on a

single message, we use the normalized χ2 statistics, that is, a test of indepen-
dence of the distribution of the annotations against a uniform distribution. The
rationale for this choice is that we consider a uniform distribution of annotations
as total disagreement. For instance, if three out of six annotators decide for a
label in a binary classification setting, and the other three assign the other label,
the distribution (3, 3) is uniform, and therefore the disagreement is maximum.
Normalizing the χ2 by dividing the statistic by the number of annotation, we
obtain a value between 0 (total disagreement) and 1 (perfect agreement):

a(Gi) = 1 − χ2(Gi)
|M | (1)

We compute the polarization index (P-index) of a message i as:

P (i) =
1
k

∑

1≤w≤k

a(Gw
i )(1 − a(Gi)) (2)

P is a number between 0 and 1, where 0 indicates no polarization and 1 indicates
maximum polarization. It is designed to take a higher value when at the same
time, the agreement between members of same group is high and the agreement
between the members of different groups is low. To give a few examples with
k = 2, if G1

i = {1, 1, 0} and G2
i = {1, 1, 1}, then a(G1

i ) ≈ 0.11 (low intra-
group agreement), a(G2

i ) = 1 (high intra-group agreement), a(Gi) ≈ 0.44, thus
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P (i) ≈ 0.31. If instead G1
i = {0, 0, 0} and G2

i = {1, 1, 1}, that is, each group is in
total agreement but on different labels, then a(G1

i ) = 1, a(G2
i ) = 1, a(Gi) = 0,

thus P (i) = 1.

3.2 Pilot Study

In order to validate the metric, we created a small, manually annotated dataset
of English tweets on Brexit gathered from the corpus developed by [17], where
around 5 million tweets were collected by querying Twitter with the hashtag
#Brexit between the June 22nd and 30th, 2016. This dataset was initially anno-
tated and used for stance detection. We filtered the dataset to only retrieve the
tweets containing keywords related to immigrants and Muslims that reflect our
work on HS detection: Immigration, migration, immigrant, migrant, foreign,
foreigners, terrorism, terrorist, Muslim, Islam, jihad, Quran, illegals, deport,
anti-immigrant, rapefugee, rapugee, paki, pakis, nigger. The keywords used are
selected based on a study by [19].

We manually labelled 119 randomly selected tweets by following the scheme
and guidelines proposed in [22,24] with 4 dimensions: hate speech, aggressiveness,
offensiveness, and stereotype. We asked three volunteers with specific demo-
graphic features, i.e. first- or second-generation migrants and students from
the developing countries to Europe and the UK, of Muslim background, to
annotate the dataset. The other three volunteers were researchers with western
background with experience in linguistic annotation. The two groups annotated
exactly the same data with the same guidelines. The final data set is therefore
annotated by six people divided into two groups, which we refer to as target (T)
and control (C).

For current work, we only focus on the main class, i.e., hate speech. We
measured the inter-annotator agreement between all annotators by using Fleiss’
Kappa obtaining a value of 0.35. We hypothesize that the high subjectivity of the
task is one of the reasons for the low Kappa value. Interestingly, the agreement
on hate speech classification is higher than the other labels included in the
schema: aggressiveness (0.21), offensiveness (0.30), and stereotype (0.20). Since
the groups are formed by people having different ethnic background and culture,
we expect a higher level of polarization than what we could measure by splitting
the groups randomly. The mean P-index for the original split is 0.18, while the
average mean P-index for the 9 other possible splits is 0.09. This result indicates
that the P-index successfully picks up the divergence of opinions coming from
different communities and ethnic backgrounds.

In the presence of a given split of the annotator groups, in addition to the
overall agreement (inter-group agreement), we can also calculate the intra-group
agreement for each group. On the Brexit data, we computed an intra-group
agreement of 0.54 for both groups. By computing pair-wise agreement, we induce
a network of fine-grained agreements between the annotators. The topology of
such network provides an insight on the relationships between the opinions of
single annotators and their groups. On the Brexit dataset, the pair-wise agree-
ment between the couples of annotators from the same group is rather high,
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between 0.52 and 0.56 in the control group and between 0.46 and 0.60 in the
target group. However, the pair-wise agreement between pairs where the two
annotators are from different groups drops significantly, between 0.16 and 0.36
with a median of 0.24 and standard deviation of 0.06.

Fig. 1. Pairwise agreement on the Brexit dataset annotation, between the target group
(T) and control group (C).

The pair-wise agreement measured on the Brexit dataset is shown in Fig. 1.
It is clear from the picture that the two groups of annotators show a much higher
intra-groups agreement (top-left and bottom-right area of the figure) than their
inter-group agreement (top-right area).

3.3 Enhancing the Training Data

The polarization index introduced in Sect. 3.1 provides useful information on the
annotation of highly subjective messages. Here, we propose a method employing
this metric to improve gold standard data and therefore improve classification
performance. In a supervised learning fashion, a training set is needed, made
by manually annotated instances of the text paired with the judgments of a
set of annotators. Supposing that complete information about the annotation is
available, i.e., not only the aggregated values but each single annotation, then we
can compute the P-index of each instance in the dataset. It is important to note
that even when the complete annotation is available, in general, we do not have
background information about the annotators. However, based on the result of
the pilot study presented in Sect. 3.2, we assume that it is reasonable to split
the annotators in two groups in a way that maximizes the total polarization.

We compute the P-index for each instance in the training set and then repli-
cate the instances based on its value. The intuition is that if the P-index of
an instance is low, a classifier can learn more than if the instance is more
polarizing. Therefore, we replicate the instances in the training set a number
of times inversely proportional to their P-index. Instances with a P-index of 1
are removed from the training set. In order to verify that our approach works,
we experimented with different strategies. First, we only remove instances with a
maximum P-index value and do not replicate the rest of the instances. Alterna-
tively, we do not remove the tweets with a maximum value of P but only replicate
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the instances. Finally, we combine the two approaches. Our method only modi-
fies the training set in a fully automated supervised learning approach, while no
change is made to the test set.

4 Data

In order to test the approach introduced in Sect. 3, we gathered a dataset of hate
speech in social media. The corpus is borrowed from previous studies by [30] on
HS detection in the English language. The original dataset was composed of 6,909
tweets annotated with racism and sexism. The dataset is available on a Github
repository1, where only the Twitter IDs and the labels are provided. Querying
Twitter to retrieve the messages by using the IDs resulted in the collection of a
smaller dataset consisting of 6,361 tweets, due to the perishability of the data
on the online platform.

Experts (feminist and anti-racism activists) annotated the data. These
experts were allowed to skip any instances that they were unsure of. The anno-
tations from experts were aggregated into a single label. Non-experts were hired
via a crowdsourcing platform2 and they worked on the same tweets annotated
by experts, following the guidelines developed by [31]. Each tweet was annotated
by at least four annotators. The total number of annotators was not disclosed
for privacy reasons. The gold labels are computed by majority vote, and ties are
broken by giving preference to the judgment of expert annotators. For current
work, we treat all annotators (experts and non-experts) equally.

We also employ an additional set of tweets in Italian, to test the application
of our method in a multilingual perspective. The Italian dataset comprises 1,859
tweets on topics related to the LGBT community. The homophobia dataset was
annotated by volunteers. The details of our datasets and the distributions of
labels are shown in Table 1.

Table 1. Datasets used in the experiments with distribution of the labels.

Dataset Positive class Negative class Total

Sexism 810 5,551 6,361

Racism 100 6,261 6,361

Homophobia 224 1,635 1,859

4.1 Sexism

The dataset from [30] contains tweets annotated according to four categories:
sexism, racism, both, and neither, in a multi-label fashion. We isolated the sexism
1 https://github.com/ZeerakW/hatespeech.
2 https://www.figure-eight.com/.

https://github.com/ZeerakW/hatespeech
https://www.figure-eight.com/
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and racism classes to focus on them individually with two binary classification
tasks. In other words, we converted the labels sexism and both to sexist, and
the labels racism and neither to non-sexist. In the resulting Sexism dataset, 810
tweets out of 6,361 (12.7%) are marked as sexist.

The overall agreement (Fleiss’ Kappa) between the four annotators in Sexism
dataset is 0.58, indicating a moderate agreement. Following the methodology of
the pilot study conducted on the Brexit data (see Sect. 3.2), we compute the P-
index of all the tweets in the dataset for all possible splits of four annotators, and
select the combination that maximizes the average P-index, in order to create
two annotator groups. We measured the intra-group agreement for two groups,
resulting in 0.53 and 0.64 respectively. Figure 2 shows examples from the Sexism
dataset with their P-index values. Notice that the two examples with P-index = 1
are polarized in opposite directions with each group having different annotation
for a single tweet.

@ Because she’s not a “feminazi” and is really cool. I have
a lot of friends with different views
(P-index=1)

i just googled to find out if i was a basic bitch. buzzfeed says i am not. i
remain suspicious
(P-index=1)

@ I’m sure you give good ones. Too bad you’re probably ugly
as dirt like most FemiNazi cunts.
(P-index=0)

Fig. 2. Three examples from Sexism dataset with P-index values.

4.2 Racism

We extracted a binary labeled Racism dataset from the data of [30] following
the same procedure we applied to derive the Sexism dataset (Sect. 4.1). The
annotation scheme remains the same as with the original dataset explained in
Sect. 4. The only difference is the mapping of the original labels: racism and both
are mapped to racist, while sexism and neither are mapped to non-racist. In the
resulting Racism dataset, 100 tweets out of 6,361 (1.57%) are marked racist.
The overall agreement (Fleiss’ Kappa) between all annotators in the Racism
dataset is 0.23, indicating relatively high disagreement between the annotators.
We divide the annotators into two groups by selecting the split that maximizes
the average P-index, and measure an intra-group agreement of 0.22 and 0.25.
Figure 3 shows examples from the Racism dataset with their computed P-index
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values. Each tweet in the first two examples is oppositely polarized, with each
group having different annotation for the tweet.

Headed out #coon #hunting with some friends on the back of the #farm.
This is his first time. Kinda https://t.co/vDofdeemhY
(P-index=1)

jumping in the #BlameOneNotAll tag.I expect to find all kinds of bigoted
fucktards telling me how I’m the problem http://t.co/MwgmqJXPiR
(P-index=1)

Why do #Blacks #Coon on television or the movies?
http://t.co/je4HUxhMEt If they don’t...they won’t work they won’t
make money...
(P-index=0)

Fig. 3. Three examples from Racism dataset with P-index values.

4.3 Homophobia

We exploited a dataset from the ACCEPT project3 on the monitoring of homo-
phobic hate online. The data consist of tweets selected with a number of LGBT+-
related keywords and annotated by five volunteers contacted by the largest
Italian LGBT+ non-for-profit organization (Arcigay)4 selected along different
demographic dimensions such as age, education and personal view on LGBT
stances. The original dataset is labeled in a multi-class fashion according to
four categories: homophobic, not homophobic, doubtful or neutral. We map not-
homophobic, doubtful and neutral to not homophobic and leave the label homo-
phobic unchanged, to restrict the problem definition to a binary classification
task.

The agreement between the five annotators (Fleiss’ Kappa) is 0.35 (moder-
ately low). Similarly to the Sexism and Racism datasets, we split the annotators
into two groups, by computing the average P-index for all the possible combina-
tions of 3 + 2 groups, and selecting the split that maximizes the average P-index.
The intra-group agreement for the two groups is 0.40 and 0.39. Figure 4 shows
examples from the Homophobia data set with their English translations and
their computed P-index values. The tweets with high P-index are oppositely
polarized, i.e., one group detected HS whereas the other group did not.

3 http://accept.arcigay.it/.
4 https://www.arcigay.it/en/.

http://accept.arcigay.it/
https://www.arcigay.it/en/
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@ @ concordo su tutto, basta che non si
esageri arrivando al gender x sui neonati perché a tutto c’è un limite
@ @ I agree on everything, as long as we
don’t overdo, getting to gender for newborns, because there is a limit
to everything
(P-index=0.96)

I nuovi adolescenti sono minchioni e la colpa è delle teorie gender...
New teenagers are idiots and the fault is of the gender theories...
(P-index=0.96)

#MeToo effettivamente non è altro che una declinazione del #gender
per fare estinguere i rapporti eterosessuali
#MeToo is in fact just a declination of #gender to make heterosexual
relationships go extinct
(P-index=0)

Fig. 4. Three examples from Homophobia dataset with P-index values.

5 Evaluation

We evaluate the method introduced in Sect. 3 with cross-validation experiments
on the datasets described in Sect. 4. At each fold, we randomly split the dataset
into a training set (80%) and a test set (20%). We refer to the “positive” and
“negative” classes as a generalization over the actual labels, which are different
(but comparable) for each dataset. All the datasets are highly unbalanced. We
did not balance the data artificially, in order to obtain realistic results.

We employ a straightforward supervised learning approach, keeping the test
set fixed and only modifying the training set prior to giving it as input to the clas-
sifier. We employ a basic classifier, to focus on the impact of the modified training
sets rather than the effect of hyper-parameters of more sophisticated models. The
classifier is based on a Support Vector Machine model (SVM) with Bag of Word
features and TF-IDF weighting. Specifically, we implemented the classifier with
the Scikit-learn Python library with default parameters, and the TfIdfVector-
izer function. The only parameter we optimize for the different datasets is the
number of features (unigrams) in the vectorized representations of the tweets.

The performance is measured in terms of overall Accuracy, Precision, Recall
and F1-score on the positive class, averaged over five folds. The baseline results
are given by the classifier trained on the original, unmodified training sets.

We train the classifier on a training set modified according to the polarization
of its textual instances. We compute the P-index for all the tweets in the training
set, and replicate them according to their value. The first modification to the
training set consists in the removal of instances with the maximum P-index value
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(P-max filter). For the Sexism and Racism datasets, the maximum P-index is
1, whereas for Homophobia dataset, the maximum P-index is 0.965. The second
modification consists in the replication of instances (replication) based on the
following scheme: for the Sexism and Racism datasets, tweets with 0 ≤ P < 0.375
are replicated one time (two instances in total). For the Homophobia dataset,
tweets with 0.3552 ≤ P < 0.5328 are replicated once (two instances in total),
tweets with 0.32 ≤ P < 0.3552 are replicated twice (three instances in total),
tweets with 0.0528 ≤ P < 0.32 are replicated twice (four instances in total) and
tweets with 0 ≤ P < 0.0528 are replicated to a total of five copies.6 Finally, we
combine both modifications (P-max filter+replication). These changes concern
the training set only, while the test set is unchanged.

The results are presented in Tables 2, 3 and 4. The performance of the classi-
fication generally improves over the baseline on all three datasets. On the Sexism
dataset, the performance boost is caused by a higher recall. The recall on the
Racism and Homophobia datasets with baseline result is substantially low, due to
the datasets being highly skewed. However, both precision and recall improve on
these datasets. Interestingly, the recall improves in every experiment, including
when some training data is removed (P-max filter). This indicates that indeed
highly polarizing instances tend to generate confusion for the classifier.

Table 2. Results of the prediction on Sexism dataset (1700 features).

Classifier Accuracy Precision Recall F1

SVM 95.11 87.60 71.60 78.74

SVM+P-max filter 95.13 86.40 73.01 79.11

SVM+replication 95.27 87.01 73.40 79.67

SVM+P-max filter+replication 95.27 86.60 74.01 79.83

Table 3. Results of the prediction on Racism dataset (1700 features).

Classifier Accuracy Precision Recall F1

SVM 98.55 55.40 11.01 18.40

SVM+P-max filter 98.58 59.01 12.01 19.88

SVM+replication 98.61 70.01 19.60 29.49

SVM+P-max filter+replication 98.61 69.80 19.80 29.74

5 This difference is due to having five annotators in total, therefore uneven group sizes.
6 The threshold values come from the observation of actual P-index values in the data.
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Table 4. Results of the prediction on Homophobia dataset (3500 features).

Classifier Accuracy Precision Recall F1

SVM 88.81 61.01 11.40 19.02

SVM+P-max filter 88.81 63.60 13.60 22.30

SVM+replication 86.55 50.40 18.40 26.83

SVM+P-max filter+replication 87.63 47.90 26.20 33.67

6 Discussion

The impact of our method on the classification of sexism is reflected in a higher
recall, at the cost of lower precision. This indicates that ignoring the disagree-
ment between annotators is likely to generate greater confusion on borderline
sexist messages, that in turn produces a higher number of false negatives. The
results on the Racism data show a different pattern, where the precision in par-
ticular improves by a large margin by applying agreement-based training set
manipulation. This suggests that injecting knowledge about polarization in the
model helps us in disambiguation of potential false positives. A similar pattern
is observed on the Homophobia dataset, but with the P-max filter providing a
higher precision boost, as opposed to the replication strategy, which was giving
the best precision performance on the Racism dataset.

It is worth noting that the measure of polarization introduced in this article
is useful to support manual exploration of the data, besides providing a tool for
supervised text classification. By ranking the instances of a dataset by P-index,
the most polarizing tweets emerge naturally at the top of the list. In the Sexism
dataset, the vast majority of the tweets with P = 1 contain race-related remarks
along with misogyny, as in the following example:

@ ThelmaSleaze uh... did you watch the video? one of the women talked about how
it’s assumed she’s angry because she’s latina.

Similarly, we found several instances of sexism among the most polarizing tweets
in the Racism set. Humour (albeit black) also seems to play a role in generating
confusion and polarization among the annotators, as we found several instances
of (often inappropriate) jokes at the top of the racism P-index ranking, e.g.:

Another #Arab car #terror attack in #Jerusalem #Israel. Will #Obama call it
random traffic infringement? http://t.co/XrxajfBXKF

Finally, by manually inspecting the Homophobia dataset ranked by P-index,
we found that the most polarized tweets mention a restricted number of topics
(gender theories and their education in school, family values) very consistently,
while such topics are otherwise distributed in the corpus equally among other
topics such as news, law, gossip, politics and homophobia. In fact, the relative
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frequency of the word gender7 is about seven times higher among the tweets with
P = 0.96 than those with P = 0. Tweets about homophobia are generally not
controversial or polarized, with the relative frequency of the word homophobic
(and its variations) being almost three times higher among the tweets with P = 0
than those with P = 0.96.

7 Conclusion and Future Work

In this paper, we presented a method that leverages different opinions emerg-
ing from groups of annotators to improve the automatic classification of highly
subjective phenomena such as hate speech. We tested our approach in a cross-
validation experiment on datasets containing sexism, racism and homophobia
in social media. The experimental results show a consistent improvement of the
prediction performance due to the pre-processing induced by our method, even
using simple models and features (bags of words).

Our results suggest that consensus-based methods to create gold standard
data are not necessarily the best choice when dealing with highly subjective
phenomena, and the knowledge coming from the disagreement and the polariza-
tion of opinions is indeed highly informative. Finally, we show how the P-index
can effectively be employed as a tool to manually explore the data, ranking the
instances to identify messages that are more likely to generate confusion and
polarization among the annotators.

The future work aims at exploring more dimensions of the background of
annotators, including native language, demographic factors, and how they inter-
play with the measured polarization of their annotations in a group. Moreover,
we believe that involving the victims of hate speech in the process of annotating
the data in hate related detection tasks can provide new insights and improve the
quality of the data. On the other hand, the information about the background
of annotators is often not available in publicly distributed datasets. Moreover,
the set of annotations could be sparse, e.g., in a crowdsourcing context. There-
fore, we propose to extend our method to effectively cluster larger annotator sets
based on their annotation (e.g., with a K-nearest neighbors approach) and more
than two groups in order to make diverging opinions emerge on polarizing top-
ics. Finally, let us emphasize that this first work on polarization of annotators’
opinions is rooted in the somewhat strong assumption that there exists a latent
background divide in the annotator population. Even stronger is the assumption
that the number of groups is fixed. Although the experimental results confirm
the existence of the polarization phenomenon, it will be interesting to investigate
how the method can be refined by relaxing the division constraints and aiming
for a more flexible, perhaps clustering-based procedure.
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by Progetto di Ateneo/CSP 2016 (S1618 L2 BOSC 01, Immigrants, Hate and Prejudice
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7 In Italian, the English word gender is used as a borrowing only to refer to the modern
gender theories.
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