
Chapter 2
Fog of Things: Fog Computing in
Internet of Things Environments

Leandro Andrade, Cleber Lira, Brenno de Mello, Andressa Andrade,
Antonio Coutinho, and Cássio Prazeres

2.1 Introduction

The Internet of Things (IoT) has matured in recent years allowing market solutions
to emerge using the technology in different directions. Several domain scenarios
such as Smart City, Smart Transportation, Connected Vehicles, Smart Health, Smart
Building, Industrial Internet, Smart Farming, Smart Supply Chain, and others have
been the focus for products and applications. The increasing demand for more local
processing and more ways to protect the data before it goes to the cloud has made
Fog Computing more relevant.

In a typical implementation of IoT, the data collected from sensors is stored and
processed in cloud servers. Although this type of approach is commonly used, it
has some limitations according to Abdelshkour [2]: connectivity to the cloud is a
precondition and some IoT systems need to be able to work even when connection
is temporarily unavailable; high demand for bandwidth, as a result of sending every
bit of data over cloud channels; and slow response time (high latency) and limited
scalability as a result of dependency on remote servers hosted in centralized data
centers.

L. Andrade (�) · B. de Mello · A. Andrade · C. Prazeres
Federal University of Bahia (UFBA), Salvador, Brazil
e-mail: leandrojsa@ufba.br; brenno.mello@ufba.br; dsandrade@dcc.ufba.br; prazeres@ufba.br

C. Lira
Federal Institute of Bahia (IFBA), Salvador, Brazil

Federal University of Bahia (UFBA), Salvador, Brazil
e-mail: cleberlira@ifba.edu.br

A. Coutinho
State University of Feira de Santana (UEFS), Feira de Santana, Brazil
e-mail: acoutinho@uefs.br

© Springer Nature Switzerland AG 2020
V. Roesler et al. (eds.), Special Topics in Multimedia, IoT and Web Technologies,
https://doi.org/10.1007/978-3-030-35102-1_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35102-1_2&domain=pdf
mailto:leandrojsa@ufba.br
mailto:brenno.mello@ufba.br
mailto:dsandrade@dcc.ufba.br
mailto:prazeres@ufba.br
mailto:cleberlira@ifba.edu.br
mailto:acoutinho@uefs.br
https://doi.org/10.1007/978-3-030-35102-1_2


24 L. Andrade et al.

In order to overcome the aforementioned Cloud Computing limitations, Bonomi
et al. [7] proposed a Fog Computing paradigm which brings some operations of
computing and storage close to the edge of the network. The adoption of Fog
Computing does not exclude Cloud Computing and brings characteristics such as
low latency, location awareness, support for mobility, a strong presence of streaming
and real-time applications, and scalability for a large number of fog nodes. Based on
the Fog Computing paradigm for IoT systems, Prazeres and Serrano [21] introduced
the Fog of Things (FoT) paradigm. It proposes the cooperative use of network edge
processing capability with Cloud servers to perform data processing and service
delivery on devices, small local servers, and gateways (very small servers).

The SOFT-IoT platform is a concrete implementation of the FoT paradigm [21],
that uses microservice infrastructure distributed along devices (gateways, local
servers and cloud servers) in the IoT system. The microservices of SOFT-IoT are
deployed on an Enterprise Service Bus (ESB) infrastructure based on the OSGi,
which is a specification for middlewares that combines the functionality of a
Service-Oriented Architecture (SOA) and modularity [22]. This chapter presents
the Fog of Things paradigm and the SOFT-IoT platform. In addition, it describes
the characteristics and architecture of FoT and the technologies used to implement
SOFT-IoT.

The chapter is organized as follows. Section 2.2 describes FoT paradigm.
Section 2.3 presents FoT implementation following IoT architecture divided in
different layers. Section 2.3 introduces the SOFT-IoT platform in a conceptual
perspective. Section 2.5 introduces some topics of research related to SOFT-IoT
platform. Lastly, we present final remarks and future works in Sect. 2.6.

2.2 Fog of Things (FoT)

The FoT was proposed with the objective of taking advantage of the benefits that
Fog Computing can bring to the IoT. In the FoT paradigm part of the data processing
capacity and service delivery operations are processed locally on small servers. The
Fog of Things paradigm goes beyond Fog Computing in the following aspects: (1)
using all the edge processing capabilities of the network through data processing
and service delivery on devices; (2) defining IoT services at the edge network; (3)
distributing the IoT services on the edge of the network through a message and
service-oriented middleware.

IoT platforms based in FoT paradigm can be deployed in a hybrid fog in which
some of the IoT services will be deployed in the gateways and others in one or more
servers. These implanted in the servers will be responsible for the self-organizing
management of system, security management (authentication and identification),
and storage. These deployed at gateways will be responsible for the basic services
of an IoT platform, such as device access, discovery, composition, location, and
others.



2 Fog of Things 25

Some of the concepts used in FoT are based on the Architectural Reference
Model (ARM) [5] for the IoT. The ARM was developed by the partners of
the European FP7 Research Project IoT Architecture (IoT-A) with the technical
objective of creating a generic architecture reference that could be useful to build a
real IoT system. The IoT-A project was ran between 2010–2013, providing several
resources (models, views, best practices, etc.) and bridging existing developments
in the IoT domain.

As shown in Fig. 2.1, the FoT paradigm is composed of components, such
as applications, devices, gateways, servers, messaging-oriented middleware, and
security providers. In Prazeres and Serrano [21], the FoT is presented with the
following organization characteristics:

• FoT-Device: identified as “D” in Fig. 2.1 reuses the concept proposed by
ARM IoT [5] in which “devices are technical artifacts that perform real-world
integration with the digital world of the Internet.” Thus, Bassi et al. define three
types of IoT devices: sensor (e.g., temperature sensor), actuator (e.g., switch), and
label (e.g., RFID). They also transform raw data into structured content following
Linked Data guidelines;

• FoT-Gateway: the gateway (“G” in Fig. 2.1) is the basic communication node in
the network managed by FoT. Its basic aim is to translate communication layer
protocols (Ethernet, WiFi, ZigBee, Bluetooth, etc.) to the HTTP protocol and
to the rest of the IoT system. FoT offers access to FoT-Devices and other IoT
services. Therefore, the applications can abstract the protocol of communication
with the devices and access them in a standardized way for each type of device,
as happens in most Web applications;

Fig. 2.1 Fog of Things paradigm



26 L. Andrade et al.

• FoT-Server: the server “S” in Fig. 2.1 can be two types: a special type of gateway
that has platform management features or a special feature type (see definition of
feature below) that provides specific information such as historical device data
that is not supported by the gateways. It is important to note, as shown in Fig. 2.1,
that FoT-Gateways can provide storage features, such as data transformation, but
in general they have a lower capacity of storage and processing than FoT-Servers.
FoT-Server is called a server with the name of the main functionality it offers in
FoT. For example, “management server,” “storage server,” “authorization server,”
etc.;

• Enterprise Service Bus (ESB): an ESB is a distributed infrastructure based on
open standards which combines messages, Web Services, data transformation,
intelligent routing, invocation, and service mediation to facilitate the integration
of securely and reliably distributed applications and services [9];

• Application: identified as “A” in Fig. 2.1, it is any type of application based
in HTTP, which is provided by the FoT-Gateways or FoT-Servers to access
the FoT-Devices and provide interaction with these devices for the user. Thus,
applications can be Web, mobile (Android, iPhone, or Windows Phone), or even
traditional desktop applications.

• Security Provider: a security provider (“P” in Fig. 2.1) is a FoT-Server and is
treated separately given the importance of the security aspect for an IoT platform.

In addition to the previously described components, for a better understanding of
the operation of the FoT, some concepts are defined below.

• Resource: reuses the concept of the IoT-A ARM [5], where resources are
software components that provide data to or from devices. In the IoT-A ARM,
there is a distinction between “on-device resources” and “network resources.”
The first, as the name suggests, are software components which are deployed on
the device to provide access to it. The second are resources available somewhere
on the network. For example, a database for storing historical data of the FoT-
Devices;

• IoT Service: it is based in the concept of IoT ARM [5], where IoT service
provides an open and standardized interface, which offers all the necessary
functionality to interact via network with IoT resources or devices. On the FoT,
all IoT services will be implemented as RESTful Web Services;

• User: is someone who uses IoT services of the FoT. In this way, a user can be,
among other things, a person, an application, or another service;

• Profile: as can be seen in Fig. 2.1, each node in the FoT has a label: basic,
discovery, composition, management, etc. These labels are the names of the
node profiles which define a set of functionalities that the node must offer, via
an IoT Service, to the platform as a whole or to external applications/services.
The purpose of profiles is to facilitate and optimize platform management
dynamically and in a self-organizing way.

Profiles were defined to guarantee the functionalities of the FoT to support
dynamic, self-organizing capabilities. Other profiles can be defined and deployed
even after the platform development and deployment. The Basic Profile implements



2 Fog of Things 27

Fig. 2.2 Fog of Things paradigm, based in [4]

the basic functionalities that are: communication protocol mapping for HTTP;
access to devices (for example, provide access to device features such as getting
temperature, turning on/off a lamp, and changing the temperature of the air
conditioner); automatic device configuration; and automatic publishing (exposing
device features such as a RESTful Web Service). The FoT-Gateway which has only
the basic features belongs to the Basic Profile. However, if necessary, this gateway
can receive new features to incorporate one of the other profiles such as Discovery,
Composition, Localization, Storage, Security, and Management.

Figure 2.2 presents the flow of transition of data in a FoT architecture, from the
IoT devices to the cloud server. It shows that the flow of data ascends from very
local networks (from IoT Devices to FoT-Gateway) to a global network in cloud
servers. This structure is suitable to support mobility in devices, faster answers in
layers of local network, and autonomy to keep the IoT system in operation when
there is no communication with the cloud server.

2.3 IoT Architecture with Fog of Things

IoT development depends on the design of new applications and business models.
In recent studies, Khan et al. [15] and Al-Fuqaha et al. [3], divided the structure of
IoT into five layers: (1) Perception Layer, (2) Network Layer, (3) Middleware Layer,
(4) Application Layer, and (5) Business Layer. Figure 2.3 shows IoT Architecture
following the FoT paradigm. In the remainder of this section, we explain each one
of these layers and some security aspects under development in the FoT.



28 L. Andrade et al.

Fig. 2.3 IoT architecture with FoT

FoT-Devices FoT-Gateways

TATU Protocol

Fig. 2.4 Communication between FoT-devices and FoT-gateways

2.3.1 Perception and Network Layers

The Perception Layer contains the FoT-Devices. These devices can be categorized,
as described by Bassi et al. [5], as actuators, identifiers, and sensors. Actuators can
change the environment, for example, devices with relays (electrically operated
switches) that can turn other devices on/off. Identifiers can identify people and
collaborate with the system to allow people access. Sensors can collect data from
the environment, for example, devices with a DHT11 sensor able to collect the
temperature and humidity of the environment. The FoT-Devices interact with the
other elements in the FoT through the Network layer. This layer transfers the
information from the Perception Layer to the Middleware Layer. On SOFT-IoT the
transmission can be wireless or wired. Also, we can use technology 4G, Bluetooth,
and infrared depending on the device.

Figure 2.4 is based on the Fig. 2.3, but with a focus on the communication
between FoT-Devices in the Perception Layer, the FoT-Gateways in the Middleware
Layer, and the use of The Accessible Thing Universe (TATU) protocol through the
Network Layer to connect these layers.



2 Fog of Things 29

TATU1 arose from the need to develop a messaging pattern so that communi-
cation between devices was facilitated even for devices that did not use Message
Queuing Telemetry Transport (MQTT), it functions as an extension of MQTT,2

developed as a set of solutions to make the Perception Layer simpler and more
intuitive. We call this protocol TATU Thing Protocol for Internet (TATU TPI). This
protocol follows the JavaScript Object Notation (JSON) format.

2.3.1.1 TATU Methods

In the FoT, as the IoT, there are many types of data flow, generally used to meet data
analysis demands and real-time data presentation, e.g., temperature and luminosity
by a dashboard.3 TATU protocol offers two methods for data requisition, GET and
FLOW [6].

The traditional GET requisition pattern (see Fig. 2.5a) is useful when the FoT-
Gateway or application needs to collect some data in real-time, so either the
application or the FoT-Gateway triggers the communication by sending a GET
request. Then, the FoT-Device collects the required data and returns its value to
whoever demanded it.

The FLOW requisition pattern (see Fig. 2.5b) was proposed to avoid continuous
communication between FoT-Gateway/application and an FoT-Device, in this data
flow pattern, the FoT-Gateway/application sets up a time range and sample amount
(one array with multiple values) which it expects to receive periodically. So, the FoT-
Device will behave proactively, sending the arrays automatically to the requester as
soon as the parameters are set up. The time between requisitions can be changed at
any time as a request from either application or FoT-Gateway.

The GET pattern can perform the same functions provided by the FLOW data
flow pattern. However, when compared to FLOW, the GET pattern tends to demand
more network utilization to transfer the samples, this is due to the GET data flow
pattern being based on request and responses, whereas the FLOW pattern is mostly
based on responses.

FoT-Devices FoT-Gateways

GET request

Return value

FoT-Devices FoT-Gateways

FLOW request

Return array

Return array

Interval

(a) (b)

Fig. 2.5 TATU’s methods GET and FLOW. (a) GET requests. (b) FLOW requests

1TATU is available on: https://github.com/WiserUFBA/TATUDevice.
2MQTT Protocol: http://mqtt.org/.
3A tool for management and monitoring of metrics and indicators, projected to ease the
comprehension and decision-making.

https://github.com/WiserUFBA/TATUDevice
http://mqtt.org/


30 L. Andrade et al.

2.3.2 Middleware Layer

The Middleware Layer provides an interface between FoT-Device (sensors and
actuators) and the rest of the IoT system through FoT-Gateways. In the FoT
paradigm the Middleware Layer is divided in two parts with different functionalities
and orientations: the message-oriented part, and the service-oriented part.

The message-oriented part provides communication between the FoT-Devices
using the TATU protocol. This functionality implements a virtual communication
between FoT-Devices through TATU protocol and offers uniform access to the
sensor data for FoT-Gateways in the Middleware Layer.

The service-oriented part provides access to the collected sensor data for the
Middleware and Application Layer in the FoT based IoT systems. It is also
responsible for gathering the sensor data obtained from the message-oriented part
and storing it in a local database. The service-oriented part offers an interface for
the other modules in the application layer to have access to the collected data.

2.3.3 Application and Business Layers

The Application Layer is responsible for providing the services requested by
the users. Applications can be deployed on devices with limited capacity (e.g.,
Raspberry Pi FoT-Gateways) and servers that are located on the edge network
(FoT-Server) or servers located in the cloud (cloud server). In FoT paradigm an
application is any kind of application that uses the HTTP-based REST API to access
IoT services and offer interaction with services to the user.

In FoT, applications run on a service bus. The service bus enables the dynamic
deployment of software through a base infrastructure, which supports communica-
tion between applications. Applications in the FoT paradigm adopt the Microservice
architectural style. Microservices enable the creation of a system from a collection
of small and isolated services capable of managing their own data [13].

The academic interest in Microservices for the development of IoT applications
is recent [10]. Newman [19] lists some benefits, discussed below, when adopting
Microservices as a solution in the development of applications.

• Technology Heterogeneity: each part of the application can be implemented
with different technologies. So if a part of the application needs to improve
its service quality it is possible to decide to use a different technology stack
that is more adequate to achieve the required Quality of Service (QoS) levels.
For example, in Fig. 2.6 (side b), each application can be built with different
technologies to meet each objective.

• Scaling: with Microservices it is possible to scale parts of the application
according to the need. Thus, it is possible to execute other parts of the application
on a device with less computational power.

• Ease of Deployment: with Microservices it is possible to make a change to
a single service and deploy it independently of the rest of the system. If a



2 Fog of Things 31

(a) (b)

Fig. 2.6 Monolithic versus microservices architecture [13]. (a) Monolith. (b) Microservices

problem does occur, it can be isolated quickly to an individual service, making
fast rollback easy to achieve.

• Organizational Alignment: with Microservices, it is possible to better align the
application architecture with the organizational structure.

• Composability: One of the key issues in service-oriented architectures and in
distributed systems is the possibility of improving application reusability. With
Microservices, it is possible for a functionality to be consumed in different ways
for different purposes.

The Business Layer manages the general activities and services of an IoT system.
The responsibilities of this layer are to build a business model, graphs, flowcharts,
etc., based on data received from the Application Layer. In the FoT paradigm, the
aim of the Business Layer is to enable the creation of different data visualizations
that take into account the hierarchical levels in an architecture involving fog and
cloud. In this context, Pinto [20] presents a model for data visualization that
organizes the presentation at different levels of abstraction. This model intends to
provide multiple forms of visualization over the same dataset from its generation in
the FoT-Devices until its storage in the cloud, passing through the FoT-Gateways
and FoT-Servers.

2.3.4 Security Layer

Current IoT systems integrate physical objects, sensor data, and computing
resources into a large network over the Internet. IoT security is an area that aims to
guarantee the privacy, confidentiality, and availability offered by an IoT ecosystem.



32 L. Andrade et al.

In such environments, potential security vulnerabilities and privacy violations need
to be addressed based on trust and suitable mechanisms which developers can use
to build secure, scalable, and reliable distributed solutions. It involves ensuring
the security of IoT infrastructure components such as data, network, services, and
devices.

Each layer of the IoT architecture with the FoT paradigm shown in Fig. 2.3 can
employ mechanisms for addressing related security issues. In the following sections,
general models, security threats, and examples of mechanisms used to improve trust,
security, and privacy at every level of the IoT architecture are discussed.

2.3.4.1 Security Models and Concepts in IoT

Major reference architectures such as the Architectural Reference Model (ARM) [5]
and the Industrial Internet Reference Architecture (IIRA) [18] offer standards-based
architectural templates which enable IoT system architects to design solutions based
on a common framework and concepts. Also, these architectural models: (1) define
essential concepts and properties such as trust, security, and privacy; (2) discuss
potential security issues and approaches for IoT architecture; and (3) define security
models and functionality for IoT systems that serve as solid foundations upon which
it is possible to build complex solutions that guarantee those properties.

The ARM consists of three interconnected parts: the IoT Reference Model (RM),
the IoT Reference Architecture (RA), and a set of guidelines or best practice.
The RM provides a set of models that are used to define certain aspects of the
architectural views such as IoT domain model, information model, communication
model, functional model, and finally models for security, trust, and privacy.

Based on the RM, the RA consists of a set of views that represent structural
aspects of the system and perspectives that focus on the quality of the system.
Figure 2.7 shows the IoT-A ARM functional view that proposes a layered model of
functional groups which maps the concepts introduced in the ARM domain model
together with a set of essential functional components that an IoT system should
provide [8].

The following functional components were proposed in the RA security group:

• Authorization (AuthZ)—The AuthZ component is a front end for managing
policies and performing access control decisions based on access control policies.
This access control decision can be called whenever access to a restricted
resource is requested. For example, this function is called inside the IoT service
resolution component to check if a user is allowed to perform a look-up on
the requested resource. This is an important part of the privacy protection
mechanisms.

• Authentication (AuthN)—The AuthN component is involved in both user and
service authentication. It checks the credentials provided by a user, and, if valid,
it returns an assertion as a result, which is required to access the IoT services.



2 Fog of Things 33

Fig. 2.7 IoT-A ARM functional view and security components

Upon checking the correctness of the credentials supplied by a newly joining
node, it establishes secured contexts between this node and other entities.

• Identity Management (IM)—The IM component addresses privacy questions
by issuing and managing pseudonyms and accessory information to trusted
subjects so that they can operate (use or provide services) anonymously.

• Key Exchange and Management (KEM)—The KEM component is involved
in enabling secure communications between two or more IoT-A peers that do not
have initial knowledge of each other or whose interoperability is not guaranteed,
ensuring integrity and confidentiality.

• Trust and Reputation Architecture (TRA)—The TRA component collects
user reputation scores and calculates service trust levels. Its functions can be
invocated at a given remote entity to request or provide (recommendations or
feedback) reputation information about another entity.

The Industrial Internet of Things (IIoT) has to consider safety more heavily than
in the standard IoT. Information leaks in IIoT can cause not just a loss of reputation
and money but also the loss of human lives. Critical incidents can be a result of
system operations that do not occur in a timely and correct manner.

The IIRA model was first published in 2015 by the Industrial Internet Consortium
(IIC), an open membership organization founded by AT&T, Cisco, General Electric,
IBM, and Intel to accelerate the IIoT technology adoption. It focuses on the
industrial sector where cyber-physical systems and other objects have fast become
Internet-enabled, and security is an overall critical problem.



34 L. Andrade et al.

The industrial area introduces the concept of Operational Technologies (OT),
that is the hardware and software that detects or causes a change through the direct
monitoring and or control of physical devices processes and events in the enterprise.
The Information Technology (IT) and OT convergence are critical in IIoT security
because it has given remote access to control systems where conventional control
systems usually are on an isolated network. An example is giving a Programmable
Logic Controller (PLC) an IP address and then connecting it to the Internet.

Also, the concept of brownfield deployments is prominent in factory environ-
ments, where solutions need to be able to coexist and interoperate with existing
legacy systems with no security features. Instead of replacing industrial types of
equipment that are tough to change, industrial deployments often have these new
and old systems side-by-side and work with each other.

As part of the IIRA model, the ICC members have defined the Industrial Internet
Security Framework (IISF), a common security approach to assessing cybersecurity
in the IIoT systems. The IISF presents fundamental security concepts that lay the
foundation and architectural decisions for IIoT platforms.

These concepts are based on three main security definitions widely known as the
CIA triad: confidentiality, integrity, and availability. The CIA triad is a well-known
model designed to guide policies for information security within an IT organization.
In this context, confidentiality is a set of rules that limits access to information,
integrity is the assurance that the information is trustworthy and accurate, and
availability is a guarantee of reliable access to the information by authorized people.

However, IoT systems pose extra challenges to the CIA triad due to the large
amount of transmitted data, the variety of data formats, the heterogeneity of devices
and network technologies, and the continuously growing number of data sources.
This new computer scenario demands a high level of privacy, which is related to
the right of an individual or group to control who can access or manage system
components and information. This concept ties with confidentiality, as individual
entities should be able to see specific data while others should not. It can have
stakeholder specific requirements based on different commercial markets. Also, it
should be clearly defined to users, so they know how their data is being used.

The IISF model also emphasizes safety, reliability, and resilience as essential
and related concepts. In industrial environments, where system failures can lead to
different types of security risks, safety concerns the necessity of a cyber-physical
system to operate without directly or indirectly causing damage to the health of
users. Reliability is the ability of a system to perform its required functions at a
needed time, and the guarantee that security protocols do not interfere with system
functions. Resilience is the ability of a system to avoid, absorb, or manage dynamic
adverse conditions, keeping their state under control.

Figure 2.8 presents the related security concepts in IoT. All these related concepts
lead to the central concept of trustworthiness, which is the degree of confidence that
the system will perform as intended concerning all key system characteristics.

The IISF also defines functional and other concepts involved in the development
of a security framework which can also apply to generic IoT systems. The
application of these functional concepts into practical ideas involves providing



2 Fog of Things 35

Fig. 2.8 Security concepts in IoT

seamless mechanisms to endpoint protection, communications protection, security
monitoring, and security management. Other concepts employed in the proposed
framework, such as public key infrastructure and change control are a driving force
for providing security in real-world IoT platforms.

2.3.4.2 Security in Perception and Network Layer

The Perception Layer may involve different devices that perform actions on the
physical environment based on collected data. There are several kinds of sensors and
actuators, sensing technologies and types of data transmission. All these possibilities
could also be a target of cybersecurity threats at the Perception Layer.

The IoT devices are vulnerable to a variety of attacks that may try to capture
or replace it with a malicious node and to compromise the security of the IoT
application [16]. Most of the current IoT literature treats the IoT security from the
network or software perspective. However, embedded IoT systems are designed to
perform specific applications based on a mix of hardware and software components.
In the Perception Layer perspective, the root of trust coming from hardware is
always the best and most reliable solution. If the edge devices are compromised,
then the entire system may be compromised. Dedicated security modules in the
microcontroller/SoC used in the IoT edge devices can help in designing better
protection mechanisms [16].



36 L. Andrade et al.

The connection to the Internet in IoT is mandatory, where several heterogeneous
devices can communicate with each other in the ubiquitous network. Tamper
resistance and encryption schemes to protect sensitive data are used to deal with
a range of communication security issues from the Perception Layer to the cloud
data center.

MQTT and COAP are the most used protocols to access IoT edge devices.
Neither of these protocols use any security mechanisms by default. Although the
option to add an optional security layer in the form of TLS/SSL for MQTT and
DTLS for COAP is possible, it creates additional overhead in terms of processing
and bandwidth.

In the FoT paradigm, the primary function of the Network Layer is transmit-
ting the information received from the FoT-Devices at the Perception Layer for
processing in the FoT-Gateways, FoT-Servers, or cloud datacenters. To enable
this, there are many communication standards, such as 5G, WiFi, WPAN, and
Bluetooth. Also, several connectivity technologies can be used at different levels
in the same IoT application, such as Zigbee, 6LOWPAN, NFC, and RFID. Each of
these edge network technologies may or may not provide security features for data
transmission.

Due to the different technologies and number of network channels used in the
IoT infrastructures, the Network Layer is highly vulnerable to different types of
attacks [14], and there are several security challenges that the IoT deployments are
currently facing. In this sense, digital certificates and authentication protocols are
fundamental to provide secure and reliable communication between the involved
entities. Concerning the risk of different attacks, paradigms such as Fog Computing
and Blockchain can provide different solutions to overcome those security threats.

2.3.4.3 Security in Middleware Layer

The Middleware Layer includes different components, such as brokers, persistent
data stores, and machine learning processing. Although the Middleware Layer is
suitable for providing a reliable and robust IoT application, it is also susceptible
to security threats. Different attacks can take control of the entire IoT application
or damage the environment by corrupting middleware security. The security of
databases and FoT nodes is a critical challenge in the Middleware Layer. A well-
defined reference framework and standard for an end-to-end IoT application is not
yet available.

In the Middleware Layer, the gateway is a broad component that has an essential
role in connecting devices, services, and applications. It accomplishes security func-
tions such as decrypting and encrypting IoT data and translating security protocols
for communication between different layers. Also, IoT constrained devices do not
have the capabilities to download and install the firmware updates. In this regard,
gateways are used to download and apply the firmware updates.

This procedure permits different forms of attack that can be avoided by checking
the hash of downloaded code and validity of the signatures for secure firmware



2 Fog of Things 37

updates. Therefore, security challenges for IoT gateway involve protecting encryp-
tion keys. Services and functionalities should be restricted for unauthorized users to
avoid backdoor authentication or information breach.

2.3.4.4 Security in Application and Business Layers

The Application Layer has specific security issues that are not present in other
layers, such as data theft and privacy issues. Also, the security issues in this layer
are specific to a domain of applications. A combination of techniques and protocols
such as data encryption, data isolation, privacy management, user and network
authentication can be used to protect IoT applications against data thefts.

In the Application and Business Layer, access control and authorization mech-
anisms are critical security functions since the access is compromised, then the
complete IoT application becomes vulnerable. Due to potential security issues
present in the lower layers, the industry-standard protocols still focus on providing
specific security authorization flows for end-to-end cloud-based applications that
run in desktop, mobile phones, and living room devices.

The access to constrained resources remains a blocking concern, where conven-
tional solutions already accepted for both Web and cloud applications cannot be
directly used in this context. The generic HTTP is a heavyweight protocol and incurs
a significant parsing overhead. There are many alternate protocols accessible at the
Application Layer that have been deployed for IoT environments such as MQTT,
SMQTT, CoAP, XMPP, AMQP, M3DA, and JavaScript IoT. However, as discussed
in Sect. 2.3.4.2, these protocols have limited security and authentication features.

OAuth [17] is an example of a protocol that allows users to have access to
resources on a website without exposing their credentials. It is an authorization
framework, currently in version 2.0, that allows applications to reach user accounts
over an HTTP, such as Facebook and GitHub. It works by delegating the authenti-
cation of users to the service that hosts the user account and authorizing third-party
applications to access the user account. The OAuth-IoT [24] can be an alternative
for a flexible authentication and authorization framework for the IoT.

2.3.4.5 Blockchain-Based Security Solutions for the IoT

Currently, IoT trust, security, and privacy services such as identity management,
access control, and authentication focus on a client–server architecture [27]. These
services are based on the assumption that IoT users have to put all trust in their
so-called trusted third parties which possess personal data of users and can see all
transactions between users and service providers.

The advance of Blockchain presents an approach to ensure trust, security,
and privacy solutions in decentralized systems [1] such as IoT. However, the
integration of IoT with Blockchain is recent and needs further research. In [14], a



38 L. Andrade et al.

review of Blockchain-based solutions for IoT systems is presented. In Sect. 2.5.3,
the Blockchain-related initiatives being taken within the SOFT-IoT project are
discussed.

2.4 SOFT-IoT Platform on Fog of Things

The Fog of Things paradigm and its concrete implementation in the SOFT-IoT
platform supports deployment in several domains such as sensor networks, smart
homes, autonomous vehicles, and medical assistance. In addition, SOFT-IoT allows
for the use of different architectures in Fog Computing and/or Cloud Computing [4].
It enables the following computational architectures: personal area sensor networks;
personal area sensor network combined with gateway management, thus creating a
local area network; personal area sensor network with gateways and servers, thus
creating a more robust local area network infrastructure; cloud servers managing
local devices; deployment of all infrastructure from the global network to the
personal area network. Thus, the SOFT-IoT architecture is flexible and configurable
to meet specific or generic infrastructure and application requirements.

In SOFT-IoT, the FoT-Devices are sensor nodes or actuators embedded with a
driver (TATUDevice). It is implemented from a lightweight protocol TATU defined
by Fog of Things. The gateway in SOFT-IoT has the function of providing sensor
data, perform data processing and transformation, or indicating actions to the
actuators. These actions are obtained by a communication protocol, in the form
of Web Services, making the access to the devices transparent. On the other hand,
a SOFT-IoT fog server provides specific information, such as historical device data,
that is not supported by the gateways.

SOFT-IoT has as the main component for the implementation of its applications a
service bus. ServiceMix, based on the OSGi specification, is used as a service bus on
the SOFT-IoT platform. Apache ServiceMix4 is open source software, implemented
in Java, where native ESB/OSGi architecture services provide all the infrastructure
necessary to support SOFT-IoT. ServiceMix allows services (also called bundles) to
be deployed at run time, also allowing services to share data and objects through
relationships and dependencies.

Figure 2.9 introduces Apache ServiceMix and its main modules. ServiceMix is
lightweight and portable, with a basic requirement for Java 1.7 support. Also, it
supports Spring Framework5 and Blueprint6 and is compatible with Java SE or with
a Java EE application server. Karaf is the core of ServiceMix and offers the concept
of features where package collections can be installed as a group in a running

4http://servicemix.apache.org/.
5https://spring.io/.
6https://aries.apache.org/modules/blueprint.html.

http://servicemix.apache.org/
https://spring.io/
https://aries.apache.org/modules/blueprint.html


2 Fog of Things 39

Fig. 2.9 Apache ServiceMix components

OSGi environment. ServiceMix uses ActiveMQ to provide messaging service, CXF
to support RESTful services, Cellar for communication, and interactions between
different ServiceMix and Camel installations for integration and exchange of data
through routes. Finally, ServiceMix contains additional modules such as the H2
Database, which manage the file-based relational database system.

2.4.1 SOFT-IoT Devices

FoT-Devices in the SOFT-IoT platform are sensors/actuators that use the TATU
driver. These devices can have low processing and cost, such as Arduino boards.7

This type of board does not have a communication module directly soldered to
the board, but there are additional options that allow this device to be categorized as
sensors or actuator, as set out in Sect. 2.3.1.

The devices also have a semantic description based on ontology. The Zeroconf8

protocol is implemented in devices and is responsible for enabling devices to have
their functionality exposed by RESTful Web services. The TATU driver allows for
the communication of the devices with the gateways, allowing the use of the TATU
protocol by the gateways through a RESTful Web service. Also, the transformation
from raw data to Linked Data content is carried out on devices with an extension

7Arduino: https://www.arduino.cc/.
8Zeroconf: http://www.zeroconf.org/.

https://www.arduino.cc/
http://www.zeroconf.org/


40 L. Andrade et al.

Fig. 2.10 Gateway
SOFT-IoT technologies

to TATU protocol. Therefore, that data messages between devices and gateways are
using JSON-LD3 format, which is a size-reduced format for representing Linked
Data content (Fig. 2.10).

2.4.2 SOFT-IoT Gateway

The SOFT-IoT gateway implements the message and service-oriented middleware.
Service-oriented middleware provides communication between applications and
services deployed at gateways. On the other hand, the message-oriented part
provides communication between gateways and devices. To allow communication
between gateways and devices using the TATU protocol, the MQTTDriver was
developed. The MQTTDriver helps the developer in the task of implementing
communication with the devices by enabling virtual communication between the
service and the device. Some of the features implemented in the MQTTDriver are:
change the value of an actuator; read the value of a sensor; obtain device properties
such as IP; and edit the device properties. Figure 2.11 shows the Middleware Layer,
its modules, and interactions.

The gateway on the SOFT-IoT platform is generally a low-cost device with
limited processing and memory resources. The gateway uses a reduced version
of the Linux operating system, a Java virtual machine, an implementation of the
OSGi (service-oriented part) specification, and an MQTT server (message-oriented
part). The technologies used in the gateway are shown in Fig. 2.10. As shown in this
figure, the service-oriented Middleware Layer provides interfaces for applications
to access devices via RESTful Web Services (TaaS) using Apache CXF technology.
The MQTT broker aims to provide communication through messaging between the
gateway and the devices and also between the various gateways. Finally, there is the
Mapping Devices component that aims to intermediate the communication between



2 Fog of Things 41

Fig. 2.11 SOFT-IoT middleware layer components and interactions

the devices and the gateways, being implemented following the OSGi specification
and deployed to the Apache Karaf server.

The SOFT-IoT platform has a specific module for mapping the devices and
translating the TATU communication messages between the FoT-Device and FoT-
Gateway. The module soft-iot-mapping-devices9 implements the virtual interfaces
of sensors and actuators connected to the platform. This module also works as a
translator of TATU messages exchanged between sensors/actuators devices (FoT-
Device) and FoT-Gateway, which allow request and response to requests for sensor
data and actuator interactions.

Soft-iot-mapping-devices instantiate a set of objects that represent FoT-Devices.
These objects contain information related to devices such as unique identifier, device
type (sensor and/or actuator), and geolocation data. In addition, they are available
for access by the other modules of the platform, serving as interface for accessing
the sensors and/or actuators connected to the platform.

The MQTT Broker component provides a server that is capable of handling
connections, communication, and message exchange with remote MQTT clients.
In the SOFT-IoT platform the MQTT broker is implemented in the module soft-
iot-vertx-mqtt-broker,10 an OSGI-based implementation, as a ServiceMix bundle.
This module is responsible for enabling communications with remote MQTT
clients, which in the case of the SOFT-IoT platform are connected devices. In

9https://github.com/WiserUFBA/soft-iot-mapping-devices.
10https://github.com/WiserUFBA/soft-iot-vertx-mqtt-broker.

https://github.com/WiserUFBA/soft-iot-mapping-devices
https://github.com/WiserUFBA/soft-iot-vertx-mqtt-broker


42 L. Andrade et al.

Fig. 2.12 Sequence diagram with soft-iot-local-storage operations and relationships

addition to the advantages of using a modular architecture, using the Vert.x MQTT
Server API makes it possible to scale the reactive MQTT agent according to, for
example, the number of cores in the system and thus enables horizontal scalability.

The soft-iot-local-storage11 module is responsible for promoting the collection,
storage, and internal access of data produced by FoT-Device sensors. This module
concentrates the functionalities related to the internal storage of the sensors data, as
well as the access to this data by the other SOFT-IoT platform modules.

With soft-iot-mapping-devices support for translation of TATU messages and
identification of platform-connected devices, soft-iot-local-storage requests data
flow from each sensor connected to the platform in a user-defined period. The
request and response messages are exchanged in the MQTT broker implemented
by the soft-iot-vertx-mqtt-broker module to be finally stored in the Apache H2
relational database.

Figure 2.12 presents a sequence diagram of the main operations of soft-iot-
local-storage with their relationships. With the devices connected to the platform,
through user configuration (1. set a JSON with connected devices, Fig. 2.12),
the soft-iot-local-storage obtains from the module soft-iot-mapping-devices the
connected sensors and their respective collected data flow (2. getConnectedDe-
vices(), Fig. 2.12) in order to publish in the soft-iot-vertx-mqtt-broker the sensor
data requests (3. setFLOWSenrsorsDevices(), Fig. 2.12). With the data request,
the sensors will publish in the soft-iot-vertx-mqtt-broker information collected
at the configured period. The soft-iot-local-storage will in turn collect this data

11https://github.com/WiserUFBA/soft-iot-local-storage.

https://github.com/WiserUFBA/soft-iot-local-storage


2 Fog of Things 43

(4. getDataSensors(), Fig. 2.12) and store them in the Apache H2 database (5.
StoreSensorData(), Fig. 2.12). Soft-iot-local-storage also implements a procedure
for removing old data, whose period can be configured by the user (6. cleanOld-
Data(), Fig. 2.12) and application layer modules can request data from the sensors
through soft-iot-local-storage (7. requestDataSensor(), Fig. 2.12).

The soft-iot-web-service module12 exposes the sensor data of the IoT system
through a RESTful Web service. It accesses the data stored in the local database,
managed by the module soft-iot-local-storage, allowing users to obtain JSON data
and information about the sensors.

2.4.3 SOFT-IoT Server

The SOFT-IoT platform implements three types of FoT-Servers, management
server, storage server, and server security provider. The first is a server that acts
as a special type of gateway and implements all services related to the dynamic
self-organization of the SOFT-IoT platform. The latter two are servers that act as
a special type of resource and implement services related to storage and security
aspects, respectively. The SOFT-IoT platform implements self-organizing features
that must be deployed on servers, for example, the management server must
implement all services related to the SOFT-IoT platform self-organization.

The SOFT-IoT platform, based on services, is a sufficiently flexible platform
for dynamic deployment of new types of FoT-Servers that can offer their services
for specific purposes. For example, IoT services for large data analysis (Big Data
Analytics) can be developed and implemented on servers for data analysis locally
(at the edge of the network).

The SOFT-IoT platform also proposes self-organizing features that must be
deployed on fog servers. For example, management servers must implement all
services related to the SOFT-IoT platform self-organization. The main services
that can be implemented in the management servers are [22, 26]: self-organized
monitoring service; gateway deployment service; disaster recovery service; profile
management and balancing service.

2.4.4 SOFT-IoT Applications

The SOFT-IoT architecture implements the following modules (see Fig. 2.3, Appli-
cation Layer). The soft-iot-data-aggregation module is responsible for aggregating
data in FoT-Gateways. The soft-iot-semantic-enrichment module enriches sensor
data, in the FoT-Gateway, with Semantic Web descriptions. The soft-iot-semantic-

12https://github.com/WiserUFBA/soft-iot-iot-service.

https://github.com/WiserUFBA/soft-iot-iot-service


44 L. Andrade et al.

data-aggregation module provides data aggregation from semantic data. The soft-
iot-web-service application provides services such as RESTful API for accessing
IoT devices. These modules enable the Data Interplay which provides the definition
and deployment of data operations in regards to the life cycle of data: collection,
processing, storage, and access between edge, fog, and cloud infrastructures.

In addition, other modules with the SOFT-IoT platform (see Fig. 2.3, Applica-
tion Layer) for the construction of rules aiming to create Smart Spaces through
FoT were implemented. The soft-iot-semantic-model module obtains information
semantically described by RDF triples deployed in the FoT-Server. The soft-iot-
semantic-reasoner module performs semantic reasoning over the RDF data. When
the Semantic Reasoner executes the rule and infers that a condition was satisfied,
it performs an update on the model. The soft-iot-semantic-observer module is
responsible for observing changes that are made in the model and notifies the soft-
iot-rules module which is responsible for informing the actuator and activating the
device (for instance, turn on an air conditioner).

Finally, in the Business Layer, the SOFT-IoT architecture implements a Data
Visualization model. The aim is to enable the creation of different data visualizations
that take into account the hierarchical levels in an IoT architecture involving fog and
cloud.

2.5 SOFT-IoT Related Research Topics

In this section, some works related to the SOFT-IoT architecture are presented. The
aim is to introduce practical examples that serve as a basis for learning the concepts
and inspiration for new projects.

2.5.1 Reactive Microservices

Santana, Alencar, and Prazeres proposed an architecture and platform [11] to enable
the implementation of reactive applications in IoT scenarios by the implementation
of Reactive Microservices whose objective was to enable the construction of
applications that are performative, resilient, and scalable.

According to Escoffier [12] Reactive Microservices have four features:

• Autonomy, this characteristic enables a system to adapt to the availability of the
services surrounding them.

• Resilience, this characteristic applies to systems that require high availability. A
resilient system responds even in the presence of failures.

• Elasticity, this characteristic refers to the ability of a system to react appro-
priately to load variations. Therefore, increasing or decreasing resources will
depend on the number of requests to the system.



2 Fog of Things 45

• Asynchronous, to have these characteristics (i.e., Autonomy, Resilience, Elas-
ticity), the system must use asynchronous messages in order to guarantee low
coupling, isolation, and location transparency communication pattern.

Thus, Santana, Alencar, and Prazeres compared the architecture and platform
proposal with a FOG-based platform [21, 22]. The results showed that the use of
a reactive approach resulted in better performance when compared to the same
scenarios without a reactive approach.

2.5.2 IoT Stream Analytics in Fog Computing

IoT systems, in general, use Fog Computing, which helps solve some issues
and improve some aspects of cloud-centric applications such as: achieving low
latency; improving quality of service; enabling devices to operate in Fog Computing
even without Internet connectivity; Data processing and applications within the
boundaries of the local network. In addition, a new area of research has emerged,
its biggest challenge is to process and analyze the large amount of data generated
by IoT environments in Fog Computing, aiming to take advantage of the benefits
of an architecture in fog. This area is described in the literature as part of the more
general concept called IoT Stream Analytics [25].

IoT Stream Analytics aims to process data from various sources and domains
produced by IoT, such as temperature, humidity, air pressure, luminance, gas,
electricity, air quality, and motion sensor data. Common data streams generally
follow a statistical distribution over a long period. However, IoT data is produced in
large quantities and in a short time. They may also exhibit a variety of sporadic
distributions over time [23]. Therefore, IoT Stream Analytics is a new area of
research with some issues that should be further investigated.

2.5.3 Blockchain-Based Distributed Fog Solutions

As discussed in Sect. 2.3.4, the lack of intrinsic security measures makes IoT
systems vulnerable to different privacy and security threats. Also, the Cloud
Computing model has drawbacks in terms of high delays, which harm the IoT
tasks that require a real-time response. Together, Blockchain and Fog Computing
paradigms can help in addressing significant security and performance requirements
in IoT platforms [14].

Blockchain capabilities such as immutability, transparency, auditability, data
encryption, and operational resilience can solve most architectural shortcomings
of IoT. Also, it provides a decentralized way to share information between IoT
applications.



46 L. Andrade et al.

However, nontrivial challenges associated with integrating Blockchain technolo-
gies to IoT networks need be overcome [14]. One of the critical challenges is
the scalability and latency of IoT Blockchain networks since each entry on the
Blockchain requires consensus among all network nodes.

Fog and Edge Computing are complementary and useful paradigms to develop
IoT solutions with low latency and QoS guarantees. In Edge Computing, data is
processed directly by the device itself (data source) or by a local node rather than
being transmitted to the cloud data center. Fog Computing spreads the concept of
the edge in a scalable and integrated way with network devices such as switches,
routers, and IoT gateways. The fog and edge distributed approach reduces the
amount of data going through the core network and reduces latency issues.

The integration of Blockchain and Fog Computing technologies allows the
development of responsive, secure, interoperable IoT solutions. The SOFT-IoT
project has been investigating a strategy for managing these aspects by exploiting
the eventual consistency and security guarantees of distributed ledger technologies.

The development of a Blockchain-as-a-Service (BaaS) model, following a fog
architecture, can offer better managed Blockchain environments, resulting in higher
uptake, better deployment times, and low latency services. Also, a Blockchain-based
distributed fog architecture may lead to improvements in the QoS guarantees for
clients, in particular fairness.

2.6 Final Remarks

This Chapter presented the Fog of Things paradigm, which proposes a definition
of IoT infrastructure based on Fog Computing. It also relates the FoT paradigm
with IoT architecture, describing the components of FoT in each layer of IoT
architecture. Furthermore, the Chapter presented the SOFT-IoT platform that is an
implementation of the Fog of Things model. The SOFT-IoT is a distributed IoT
platform that uses Fog of Things infrastructure to deploy modules on FoT-Gateways,
FoT-Servers, and cloud servers. Furthermore, the SOFT-IoT is an agnostic IoT
platform and provides a flexible and configurable infrastructure. Lastly, some related
research topics that use the SOFT-IoT as an environment to perform and to develop
studies were presented.

References

1. Abadi, F.A., Ellul, J., Azzopardi, G.: The blockchain of things, beyond bitcoin: a systematic
review. In: 2018 IEEE International Conference on 2018 IEEE Cybermatics, pp. 1666–1672.
IEEE, Piscataway (2018)

2. Abdelshkour, M.: IoT, from cloud to fog computing. http://blogs.cisco.com/perspectives/iot-
from-cloud-to-fog-computing (2015). Accessed 20 July 2017

http://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing
http://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing


2 Fog of Things 47

3. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a
survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials
17(4), 2347–2376 (2015). https://doi.org/10.1109/COMST.2015.2444095

4. Andrade, L., Serrano, M., Prazeres, C.: The data interplay for the Fog of Things: a transition to
edge computing with IoT. In: 2018 IEEE International Conference on Communications (ICC),
pp. 1–7. IEEE, Piscataway (2018). https://doi.org/10.1109/ICC.2018.8423006

5. Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., Meissner, S.
(eds.): Enabling Things to Talk: Designing IoT Solutions with the IoT Architectural Reference
Model, 1st edn. Springer, Berlin (2013)

6. Batista, E., Andrade, L., Dias, R., Andrade, A., Figueiredo, G., Prazeres, C.: Characterization
and modeling of IoT data traffic in the Fog of Things paradigm. In: 2018 IEEE 17th
International Symposium on Network Computing and Applications (NCA), pp. 1–8 (2018).
https://doi.org/10.1109/NCA.2018.8548340

7. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet
of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, MCC ’12, pp. 13–16. ACM, New York (2012). https://doi.org/10.1145/2342509.
2342513

8. Carrez, F., Bauer, M., Boussad, M., Bui, N., Jardak, C., De Loof, J., Magerkurth, C., Meissner,
S., Nettsträter, A., Olivereau, A., et al.: Internet of Things—architecture IoT-a, deliverable
d1. 5—final architectural reference model for the IoT v3.0. European Union, 7th Framework
Programme (2013)

9. Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc., Sebastopol (2004)
10. de Santana, C.J.L., de Mello Alencar, B., Prazeres, C.V.S.: Microservices: a mapping study for

Internet of Things solutions. In: 2018 IEEE International Symposium on Network Computing
and Applications (NCA), pp. 1–4 (2018)

11. de Santana, C.J.L., de Mello Alencar, B., Prazeres, C.V.S.: Reactive microservices for the
Internet of Things: a case study in fog computing. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC ’19, pp. 1243–1251. ACM, New York (2019). https://
doi.org/10.1145/3297280.3297402

12. Escoffier, C.: Building Reactive Microservices in Java. O’Reilly, Sebastopol (2017)
13. Fowler, M., Lewis, J.: Microservices, 2014. http://martinfowler.com/articles/microservices.

html (2014)
14. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B.: A survey on IoT security:

application areas, security threats, and solution architectures. IEEE Access 7, 82721–82743
(2019)

15. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the internet of things architecture,
possible applications and key challenges. In: 2012 10th International Conference on Frontiers
of Information Technology, pp. 257–260 (2012). https://doi.org/10.1109/FIT.2012.53

16. Kumar, S., Sahoo, S., Mahapatra, A., Swain, A.K., Mahapatra, K.: Security enhancements to
system on chip devices for IoT perception layer. In: 2017 IEEE International Symposium on
Nanoelectronic and Information Systems (iNIS), pp. 151–156. IEEE, Piscataway (2017)

17. Leiba, B.: Oauth web authorization protocol. IEEE Internet Comput. 16(1), 74–77 (2012)
18. Lin, S., Crawford, M., Mellor, S.: The industrial Internet of Things-volume G1: reference

architecture. Industrial internet consortium. IIC:PUBG1
19. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, Inc.,

Sebastopol (2015)
20. Pinto, G.P., Prazeres, C.V.S.: Web of things data visualization: from devices to web via fog and

cloud computing. In: IEEE International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), pp. 1–6. IEEE, Piscataway (2019)

21. Prazeres, C., Serrano, M.: SOFT-IoT: self-organizing FOG of Things. In: 2016 30th Inter-
national Conference on Advanced Information Networking and Applications Workshops, pp.
803–808 (2016). https://doi.org/10.1109/WAINA.2016.153

https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/ICC.2018.8423006
https://doi.org/10.1109/NCA.2018.8548340
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/3297280.3297402
https://doi.org/10.1145/3297280.3297402
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/FIT.2012.53
https://doi.org/10.1109/WAINA.2016.153


48 L. Andrade et al.

22. Prazeres, C., Barbosa, J., Andrade, L., Serrano, M.: Design and implementation of a message-
service oriented middleware for Fog of Things platforms. In: Proceedings of the Symposium
on Applied Computing, SAC ’17, pp. 1814–1819. ACM, New York, (2017). https://doi.org/10.
1145/3019612.3019820

23. Puschmann, D., Barnaghi, P., Tafazolli, R.: Adaptive clustering for dynamic IoT data streams.
IEEE Internet of Things J. 4(1), 64–74 (2017)

24. Sciancalepore, S., Piro, G., Caldarola, D., Boggia, G., Bianchi, G.: Oauth-IoT: an access
control framework for the Internet of Things based on open standards. In: 2017 IEEE
Symposium on Computers and Communications (ISCC), pp. 676–681. IEEE, Piscataway
(2017)

25. Soldatos, J.: Building Blocks for IoT Analytics: River Publishers Series in Signal, Image and
Speech Processing. River Publishers, Gistrup (2016). https://books.google.com.br/books?id=
svQRMQAACAAJ

26. Sousa, N.R., Prazeres, C.V.S.: M2-fot: a proposal for monitoring and management of Fog of
Things platforms. In: 2018 IEEE Symposium on Computers and Communications (ISCC),
pp. 1–6. IEEE, Piscataway (2018)

27. Zhu, X., Badr, Y.: A survey on blockchain-based identity management systems for the Internet
of Things. In: 2018 IEEE International Conference on 2018 IEEE Cybermatics, pp. 1568–1573.
IEEE, Piscataway (2018)

Leandro Andrade, Msc., is a Ph.D. candidate at Federal Univer-
sity of Bahia (UFBA) and received MS (2014) and BS (2012)
in Computer Science at UFBA. He is researcher of the Web,
Internet and Intelligent Systems Research Group (WISER) where
he works in projects related to Internet of Things, Fog Computing,
and Big Data. In 2017, Andrade has done a Ph.D. internship at
Insight Centre for Data Analytics (former DERI) at the National
University of Ireland, Galway (NUIG). Leandro is a member of
the Brazilian Computer Society (SBC) and IEEE Communica-
tions Society, and he has publications in international and national
conferences. He is a substitute lecturer at the Department of
Computer Science in UFBA and his research interests are Web
Semantic, Web Services, Internet/Web of Things, Fog Computing,
Machine Learning, Education, and Free Software.

Cleber Lira, Msc., is a Ph.D. candidate at Federal University of
Bahia (UFBA) and received MS (2015) in Computer Systems at
UNIFACS. He is a researcher of the Web, Internet and Intelligent
Systems Research Group (WISER) and Nucleus of Mathematics
in Computational Environment (NUMAC), where he works in
projects related to Microservices, Internet of Things, Semantic
Web Services, and Education. Santana is a member of IEEE
Communications Society and he has publications in international
and national conference. Since 2013, he has been a professor of
the Federal Institute of Bahia (IFBA) and his research interests are
Web Semantic, Web Services, Internet of Things, Fog Computing,
Artificial intelligence, and Education.

https://doi.org/10.1145/3019612.3019820
https://doi.org/10.1145/3019612.3019820
https://books.google.com.br/books?id=svQRMQAACAAJ
https://books.google.com.br/books?id=svQRMQAACAAJ


2 Fog of Things 49

Brenno de Mello is a MSc. candidate at Federal University
of Bahia (UFBA) and received a degree in Systems Analysis
and Development (2016) from the Federal Institute of Bahia
(IFBA). He has experience in the area of Computer Science,
with emphasis on Information Systems and Software Engineer.
Currently, Mello is participant in the Web, Internet and Intelligent
Systems Research Group (WISER) and his research interests are
in Internet of Things, Data Stream Mining, Fog Computing, and
Smart Water.

Andressa Andrade received BS (2018) in Computer Engineering
from Federal University of Bahia (UFBA). She has acted as
a monitor in the subject of Robotics Intelligent at UFBA and
currently works with database management. Since 2015, she has
been a member of the Web, Internet and Intelligent Systems
Research Group (WISER). Her research interests are in the Per-
ception Layer technologies, working mainly on the development
of physical devices based on IoT architecture.

Antonio Coutinho, MSc., is a Ph.D. candidate at UFBA and
received a MS (2000) and BS (1998) in Computer Science from
Federal University of Campina Grande (UFCG). Since 2004, he
has been assistant professor of the Department of Technology
(DTEC) at the State University of Feira de Santana (UEFS).
Since 2016, he has been a member of the WISER and GAUDI
research groups at UFBA. His research interests are in Fog Com-
puting, working mainly on its integration with distributed ledger
technologies. Particularly in the SBRC 2016, he authored and
taught the minicourse “Fog Computing: Concepts, Applications
and Challenges”. At SBRC 2018, he authored and taught the
minicourse “Blockchain and the Revolution of Consensus on
Demand”.



50 L. Andrade et al.

Cássio Prazeres, DSc., has been an assistant professor at Federal
University of Bahia (UFBA) since 2010, where he leads research
activities and projects in the Web/Internet area, teaches under-
graduate and postgraduate courses, and is advisor for Ph.D., MSc,
and BSc students. Also at UFBA, Prazeres is a co-founder and
leader of Web, Internet and Intelligent Systems Research Group
(WISER). He received a Ph.D. (2009) in Computer Science from
University of Sao Paulo (USP). He has several publications in
international conferences and journals. Prazeres is member of:
Brazilian Computer Society (SBC); IEEE Communications Soci-
ety; IEEE Computer Society Technical Committee on Services
Computing; IEEE Smart Cities Technical Community; IEEE
Internet of Things Technical Community; ACM SIGWEB (Spe-
cial Interest Group on Hypertext the Web); W3C Web of Things
Community Group. He is interested in research involving topics
of Internet of Things, Web of Things, Web Services, Semantic
Web, Microservices, Fog Computing, Fog of Things, Web of
Data, and Linked Data. Prazeres has coordinated projects in the
Internet/Web of Things themes in the last years and has partici-
pated in other related projects such as Digital TV, crowdsourcing,
and e-learning. Recently, Dr. Prazeres had a sabbatical year as
a Postdoctoral Researcher at Insight Centre for Data Analytics
(former DERI) at the National University of Ireland, Galway
(NUIG).


	2 Fog of Things: Fog Computing in Internet of Things Environments
	2.1 Introduction
	2.2 Fog of Things (FoT)
	2.3 IoT Architecture with Fog of Things
	2.3.1 Perception and Network Layers
	2.3.1.1 TATU Methods

	2.3.2 Middleware Layer
	2.3.3 Application and Business Layers
	2.3.4 Security Layer
	2.3.4.1 Security Models and Concepts in IoT
	2.3.4.2 Security in Perception and Network Layer
	2.3.4.3 Security in Middleware Layer
	2.3.4.4 Security in Application and Business Layers
	2.3.4.5 Blockchain-Based Security Solutions for the IoT


	2.4 SOFT-IoT Platform on Fog of Things
	2.4.1 SOFT-IoT Devices
	2.4.2 SOFT-IoT Gateway
	2.4.3 SOFT-IoT Server
	2.4.4 SOFT-IoT Applications

	2.5 SOFT-IoT Related Research Topics
	2.5.1 Reactive Microservices
	2.5.2 IoT Stream Analytics in Fog Computing
	2.5.3 Blockchain-Based Distributed Fog Solutions

	2.6 Final Remarks
	References


