
Chapter 1
Evolution of Web Systems Architectures:
A Roadmap

Raoni Kulesza, Marcelo Fernandes de Sousa, Matheus Lima Moura de
Araújo, Claudiomar Pereira de Araújo, and Aguinaldo Macedo Filho

1.1 Introduction

Web systems have become popular because of the Web browsers ubiquity. This
characteristic allows us to conveniently install and maintain software systems on
a server without changing client-side software, even if it is accessed by millions of
browsers [15]. Currently, Web systems are used for all kinds of applications, such as
e-commerce, audiovisual content access, email, social networks, searches, corporate
portals, etc. [13].

Web systems can be considered a kind of client–server architecture model. In
this scenario, the Web browser represents the client that interprets HTML, CSS,
and JavaScript code. Besides, it communicates with the server using a URL and the
HTTP protocol [7]. In the beginning, each Web page was delivered to the browsers
as static documents and the server’s responsibility was only to receive requests
for locating and sending files. However, servers can now generate a dynamic page
for each request by running software, accessing the database, or integrating with
other systems. In addition, a Web page can also execute code on the client-side.
These characteristics led to the creation of different software development platforms

R. Kulesza (�) · M. L. M. de Araújo · C. P. de Araújo
Federal University of Paraiba (UFPB), João Pessoa, Brazil
e-mail: raoni@lavid.ufpb.br; matheus.lima@lavid.ufpb.br; claudiomar.araujo@lavid.ufpb.br

M. F. de Sousa
Institute of Higher Education of Paraiba (IESP), Cabedelo, Brazil
e-mail: marcelo@iesp.edu.br

A. M. Filho
Audit Office of Paraiba (TCE/PB), João Pessoa, Brazil
e-mail: amfilho@tce.pb.gov.br

© Springer Nature Switzerland AG 2020
V. Roesler et al. (eds.), Special Topics in Multimedia, IoT and Web Technologies,
https://doi.org/10.1007/978-3-030-35102-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35102-1_1&domain=pdf
mailto:raoni@lavid.ufpb.br
mailto:matheus.lima@lavid.ufpb.br
mailto:claudiomar.araujo@lavid.ufpb.br
mailto:marcelo@iesp.edu.br
mailto:amfilho@tce.pb.gov.br
https://doi.org/10.1007/978-3-030-35102-1_1


4 R. Kulesza et al.

(languages, libraries, APIs, frameworks), both server-side and client-side [25, 26].
Such solutions are mainly written using Java, C#, Python, Ruby, or JavaScript, and
there are hundreds of options [26].

Another important issue is that several Web systems have quickly become very
important and have gained worldwide access. For example, Facebook has one
billion hits every day and Netflix has 81.5 million customers in 80 countries [13].
These kind of systems need to meet increasingly demanding requirements, such
as high availability and performance, scalability, security, multiple failure points,
disaster recovery, transaction support, and integration with other systems [23].
Consequently, the client–server architecture has evolved in this software category
and there are several models currently presented as a solution [5].

This chapter aims to study the main options of web-based software platforms,
both on the client-side (React JS, Angular JS, and Vue JS) and the server-side
(Spring and Node.js). In addition, we present the history and evolution of Web
System’s architectural models, such as 3 layers, n layers, RESTFul [30], and
microservices [3]. Finally, we present solutions developed at the Paraiba Audit
Office (TCE/PB) in partnership with the Digital Video Applications Laboratory
(LAViD) of the Federal University of Paraiba (UFPB) in order to illustrate the
practical use of technologies and architectural models in a real project. The main
contribution of this work is the dissemination of the history of Web systems and the
understanding of the technologies and architectures used today, as well as the trends
for the future.

1.2 Fundamentals of Web Systems

1.2.1 History and Evolution of the Web

The Web—also known as the WWW or World Wide Web—was created by Tim
Berners-Lee in the early 1990s and can be understood as a distributed and weakly
coupled system for document sharing. Actually, Tim originally conceived the
Web as a collaborative space where people could communicate through shared
information [2]. However, the emergence of new technologies, such as cloud
computing [24] mashups [31], among others, has boosted Web development. Thus,
what was once a distributed system of interlinked documents became a platform
for open, interactive, and distributed applications and services [21]. In order to
understand the evolution of the Web, [1] proposed a taxonomy that was adapted
by [4] that divides the story into three waves: (1) read only, (2) read/write Web,
and (3) programmable Web. As we can see in Fig. 1.1, the so-called waves are not
divided by time necessarily, but by the appearance of new functionalities and, in this
way, they can overlap and coexist in certain periods.



1 Evolution of Web Systems Architectures: A Roadmap 5

Fig. 1.1 Web evolution: adapted from [4]

The first wave of the Web (read only Web) is called Web 1.0 and has applications
capable of providing information in a single direction, being limited in terms of
communication and interaction between users. Therefore, applications that allow
the realization of transactions of goods and knowledge such as search engines and
e-commerce services belong to this first wave. The second wave of the Web (the
read/write Web) is called Web 2.0 and has as its main characteristic the interaction
in communities through participation, collaboration, and co-creation. In this way,
social networks, blogs, etc., are representatives of this second wave. Finally, the
third wave of the Web (programmable Web) is called Web 3.0 and has the feature
of allowing anyone to create a new application or service from a web-supplied
infrastructure. This wave is driven by the advent of cloud computing which allows
the Web to take on the role of a platform for an ecosystem of people, applications,
services, and even objects (Internet of Things—IoT).

1.2.2 URL and HTTP

To better comprehend the modern Web systems, it is necessary to understand the
following fundamental concepts: resources and their representations; URIs; and
actions (verbs). In the Web context, resources are data and information, such as
documents, videos, or any device that can be accessed or manipulated through
Web-based systems. Many real-world resources can be represented on the Web,
requiring only the proper information abstraction to do so. This strategy makes the
Web a heterogeneous and accessible platform, since practically anything can be
represented as a resource and made available on the Web [30]. To identify, access,
and manipulate resources published on the Internet, the Web provides the Uniform
Resource Identifier (URI), which establishes a way to identify resources through
a one-to-many relationship. This means that a URI identifies only one resource,



6 R. Kulesza et al.

but one resource can be identified by many URIs. For example, a resource such as
a Playlist can be represented by the HTML markup language and interpreted by
Web browsers. In a similar way, the Playlist can also be represented in XML/JSON
format, which is usually used by other systems and machines. Figure 1.2 exemplifies
the representation of a resource with several URIs and representations. The Uniform
Resource Locator (URL) is a URI that identifies the mechanism by which a resource
can be accessed. For example, HTTP [9] (HyperText Transfer Protocol) URIs are
examples of URLs. HTTP is an application layer protocol of the TCP/IP stack model
used for data transfer over the Internet. It is through this protocol that resources
can be manipulated. To do so, there are actions provided by HTTP. The original
HTTP specification provides a series of request methods responsible for indicating
the action to be performed on the representation of a given resource. These methods
are also known as HTTP verbs. The HTTP verbs used for interaction with Web
resources are GET: is used to request a representation of a specific resource and
should only return data; HEAD: similar to the GET method, however, it does not
have a body with the feature; POST: is used to submit an entity to a specific resource,
possibly causing a change in resource state, or requesting server-side changes; PUT:
requests data load replaces all current representations of your resource; DELETE:
removes a specific resource; CONNECT: establishes a tunnel for connection to the
server from the target resource; OPTIONS: describes communication options with
the target resource; TRACE: runs a loopback call as test during the connection path
to the target resource; PATCH: applies partial modifications to a specific feature.

Fig. 1.2 Web principles [30]



1 Evolution of Web Systems Architectures: A Roadmap 7

1.3 Client Technologies for Web Systems Development

The success of the Web increased its access, as well as the complexity of the
available content, that evolved from static pages to applications with the capacity to
behave in a similar way to desktop applications. In this context, in 1995, Netscape
Communications introduced JavaScript, a client-side scripting language that allows
programmers to enhance user interface and interactivity with dynamic elements.
A few years later, in 2005, Jesse James Garrett proposed an approach to Web
application development called AJAX (Asynchronous JavaScript+XML). Until
then, user interactions (client-side) in a Web application submitted HTTP requests
to a server that returned a new HTML page. Garrett’s proposal brought a significant
change to this traditional method, adding a layer responsible for requesting data
from the server and performing all processing without the need to update the entire
HTML document structure, thus making the communication between client and
server asynchronous [14] HTML pages have become more user friendly with the
advent of AJAX, since it allows to update parts of a web page without reloading
the whole page. However, the JavaScript language had to face the competition
between Web browsers that developed specific solutions for their products that were
often incompatible with rival Web browsers. This scenario motivated the JavaScript
community to implement libraries and frameworks, such as jQuery, to mitigate
this problem, offering uniform behavior and productivity. Following the success
of AJAX, the consolidation of both HTML5 and the tools used to improve the user
interface development, the concept of Single Page Application (SPA) has emerged.
This is a type of application that loads a single HTML page along with its JavaScript
and CSS resources. After that, the browser becomes responsible for dynamically
rewriting the current page instead of loading whole new pages from a server,
minimizing client–server traffic. Thus, the browser supports more programming
logic, being able to perform tasks such as HTML rendering, validation, UI changes,
and so on [22]. JavaScript has grown a lot over the years and has an active
community. Nowadays, developers have several modern alternatives for developing
user interface with JavaScript based frameworks. For example: AngularJS, Ember,
ReactJS, VueJS. In the Sect. 1.3.2, we will introduce you to ReactJS.

1.3.1 Single Page Application

The single page application, or SPA, is based on the idea that the entire application
runs as a single web page designed to provide a user experience similar to that
of a desktop application. The presentation layer that was previously handled by
the server was factored to be managed from the browser. As a result, single page
applications are able to update parts of an interface without necessarily sending or
receiving a full page request from the server, thus improving performance and user
experience in most cases [28]. In a SPA, browser updates are not required until the



8 R. Kulesza et al.

initial page load all the tools needed to create and display previews are downloaded
and ready to use. If a new view is needed, It will be generated locally in the browser
and dynamically attached to the DOM (Document Object Model) via JavaScript.

In a SPA, we can use different approaches to rendering server data. An example
of this is partial server-side rendering, where we can combine HTML snippets with
server response data. One of the most used approaches is to let the client render and
only data is sent and received during business transactions. Commonly, one of the
data-exchange formats for this type of data is JavaScript Object Notation (JSON),
but other types of formats can be used, such as Extensible Markup Language
(XML).

1.3.2 ReactJS

Throughout the history of the Web, several JavaScript libraries have been developed
to address the problems of dealing with complex user interfaces. However, these
libraries still maintained the classic separation of responsibilities that divides style
(CSS), data, structure (HTML), and dynamic interactions (JavaScript). ReactJS is a
JavaScript library for the development of user interfaces created and maintained
by Facebook [8]. Unlike other approaches, ReactJS follows a component-based
development approach. Thus, instead of defining a single model for the interfaces,
they are divided into small reusable components, so the principle is to reduce
complexity through component separation [19]. Therefore, ReacJS facilitates reuse,
in addition to other benefits such as maintenance and distributed development, and
easily promote integration with the development process. It is worth noting that
the development of componentized user interfaces (UIs) is not a new approach,
however, React was the first to do so from pure JavaScript without the use of models.
In React, you can focus on your view layer before introducing more aspects to your
application. React is not a complete JavaScript front-end framework and does not
establish a specific way to develop modeling, style, or routing of data. React acts
as the “V” of the MVC architecture model. Therefore, developers use React along
with a routing or modeling library. The developer is free to choose which libraries
to use, but there is a React Stack widely adopted to develop a complete front-end
application [19]. This stack consists of data and routing libraries designed to be used
specifically with React. For example, the RefluxJS, Redux, Meteor, Flux are used
for the data model. The React Router is recommended for routing library. Finally,
for user interface styling the React component collection that consume the Bootstrap
Twitter library, the React-Bootstrap can be used.

To facilitate development in ReactJS, JavaScript Syntax eXtension (JSX) was
developed. JSX is a syntax extension for writing JavaScript as if it were XML. It
does not run in the browser, but is used as the source code for compilation. It is
transpiled in regular JavaScript. It is optional but is recommended by Facebook for
React application development. Although it sounds like a model language, JSX has
the same power as JavaScript and produces React elements.



1 Evolution of Web Systems Architectures: A Roadmap 9

In a React application you need to think about using the component-based
architecture, which allows you to reuse code by separating functionality into loosely
coupled parts. By adopting this strategy, code becomes scalable, readable, reusable,
and simple to maintain. This abstraction allows reuse of user interfaces in large and
complex applications as well as in different projects. Standard HTML tags (div,
input, p, h1, etc.) can be used to compose React component classes as well as other
components. This allows for flexibility in creating robust and potentially reusable
components. Theoretically, the components in React are like JavaScript functions.
It is possible to provide data entries called “props,” and they return React elements
that describe what should be displayed on the screen. You can define a component
in several ways, the simplest one being through a JavaScript function.

In addition to ReactJS, other client-side frameworks have been created those
have also become famous among developers, namely Angular and Vue.js. Angular
is popular web framework, from Google, built and based on Typescript. In addition,
Angular uses well-known concept for components, DOM and virtual models. Code
for templates can also be placed in a separate HTML template file. Like ReactJS,
Vue.js is also based on Virtual DOM, but its implementation is different from
ReactJS. Its implementation is optimized for efficiency, which means it only updates
those DOM elements if really need it. Instead of using JSX, Vue uses its templates.
These feature easy-to-use and readable syntax for creating your UI.

1.3.2.1 Single Page Application and ReactJS

React makes it possible to develop a SPA, although it also allows other alternatives.
Code written in React can coexist with markup rendered on the server by something
like PHP or other client-side libraries. For example, assuming SPA uses an MVC
architecture, the application navigator acts as the “C” of the MVC architectural
standard, and determines which data to fetch and which model to use. It also
performs requests for data collection and populates the views from the data obtained
to render the user interface. The UI sends actions back to the SPA, such as mouse
events, keyboard events, etc. [19].

1.3.2.2 Virtual DOM

A fundamental concept that makes ReactJS applications different is the Virtual
Document Object Model (VDOM). This is a programming concept in which a
virtual representation of the user interface in pure JavaScript is created, kept in
memory and synchronized with the actual DOM (Document Object Model) by a
library such as ReactDOM [8]. Therefore, the application interacts with VDOM
instead of the DOM. The main reason for this is to avoid performance issues,
because if DOM updates its structure directly, several unnecessary updates would be
executed, causing performance issues, especially in cases where the user interface
is complex [19]. Thus, with each change in the VDOM, an algorithm first calculates



10 R. Kulesza et al.

the difference between the VDOM and the real DOM and, from this analysis, the
library is able to identify the change in the rendering, updating only the change in
the real DOM [6].

1.4 Architectural Patterns for Implementing SPA

It is essential in a SPA to keep code segregated based on its functionality. Taking this
approach, application code is easier to design, develop, and maintain if segmented
based on the type of responsibility each layer has. The SPA can be broken into
multiple application layers, both server and client-side. Architectural patterns have
emerged to help developers build robust and scalable applications [28]. This section
details some of the most successful patterns in client-side approaches to building
SPAs, namely: MVC, MVP, MVVM, Flux, Redux.

MVC is one of the oldest standards. This pattern is based on the idea of separating
the application into three layers called data, logic, and presentation. The MVC
pattern includes the Model, the View, and a Controller. The model contains data,
business logic, and validation logic. The model notifies the view of state changes
but never cares about how data is presented [28]. The controller is responsible for
user interactions and sending commands to the model to update its state. The view
is aware of the model in this pattern and is updated when changes are observed.

In MVP, the role of the controller is replaced with a Presenter. The MVP is a
variation of MVC. The purpose of this pattern was to increase dissociation between
the model and the other two components of MVC. The view delegates actions to the
presenter. The Presenter has direct access to the model for any necessary changes
and calls methods on the view to notify it to update itself [28]. So, the presenter is
responsible for mediate the actions between the model and the view.

The MVVM is based on MVC and MVP, which tries to make UI development
even more isolated from behavior and business logic in an application. The MVVM
pattern includes Model, View, and ViewModel. As in MVP, the view itself is the
point of entry. The ViewModel is a model or representation of the view in code, in
addition to being the middleman between the model and the view [28]. It changes
Model information into View information, passing commands from View to Model.

Flux is an architectural pattern that was developed as an alternative to traditional
MVC architectures or their derivatives. Basically, it is an architecture designed to
avoid the concept of multidirectional data flow and linking, which is common in
typical MVC structures. The components that make up this architectural pattern are
Actions, Dispatcher, Store, and View [8]. The Action is a simple object containing
the new data and an action ID type property that is dispatched to the Store.
Dispatcher is responsible for managing the entire data flow in a Flux system. It
is important to note that it is not the same as the MVC Controller, as Dispatcher
does not usually have much logic inside it. The Store contains all the logic and state
of an application. Dispatcher, Store, and Views are independent nodes with distinct
inputs and outputs. The View observes state changes emitted by the store.



1 Evolution of Web Systems Architectures: A Roadmap 11

Redux comes up with the idea of enhancing the original design of the Flux pattern
by creating a single global singleton Store that stores state for each existing View
in the application. Redux, like Flux, emphasizes the importance of unidirectional
data flow. Redux is based on three principles. The first is that the entire state of
the application is contained in a centralized repository, a single store, acting as the
only source of truth of the system, which differs from the Flux model, where it
is possible to have different stores, each responsible for its own logical domain.
The second principle of Redux is that the state of the application is immutable,
that is, the object representing the state should not be directly modified [20]. The
third principle says that all functions that calculate a new state, in this case Reducer
functions, must be pure functions. Pure functions are functions that have no side
effects and are deterministic, that is, for a given set of inputs, the output will be the
same. In Redux, this state is modified by Reducers that modify bits and pieces of
the global app state.

1.5 Web Systems Architecture

Web system architectures have evolved considerably since the beginning of the
Internet. At first, the systems were developed using the CGI (Common Gateway
Interface) architecture. CGI gave a lot of power to the servers, since it started to
offer the ability to execute code scripts—usually Perl—when processing HTTP
requests, making Web systems able to process requests in a more dynamic way [18].
Another problem at the beginning of the Web was the difficulty in developing the
interface code and the business logic code of the Web applications in a separate
way. In order to do so, the template systems emerged, which allowed executable
codes of a programming language to be injected directly into the files responsible
for presenting the system. Thus, the 2 layers (presentation and logic) were better
divided [10]. After that, a number of architectures emerged, such as MVC’s “Model
2” architecture, which later became one of the main Web systems model [29] and
pushed technologies such as Struts, Tapestry, and Java Server Pages (JSF). Also at
that time, frameworks were developed to facilitate the mapping between object-
oriented models and relational models, such as Hibernate, which served as the
basis for 3-tier architecture (presentation, business logic, and data) [10]. Figure 1.3
presents a typical 3-tier architecture for enterprise applications with a view layer, a
controller layer, and a model layer. As we can see, a request is realized by the user
through the browser defining which view of an application will be presented. So, the
view triggers the controller that can retrieve the information directly in the model
or call business services in order to aggregate data from different sources. Finally,
the model classes provide the mapping onto the data storage and are passed back up
through the layers [11].

Due to the growing use of systems in a corporate environment with global access,
it was necessary to divide the processing from 3 to n layers [12]. So, distributed exe-
cution platforms such as Java Enterprise Edition (JEE), .NET, and Spring emerged.



12 R. Kulesza et al.

Fig. 1.3 Typical enterprise
application architecture:
adapted from [11]

Communication protocols (SOAP, REST, etc.) also appear, allowing systems to
communicate regardless of the programming language, facilitating the integration
of heterogeneous and legacy systems. As a result, developers were no longer
just developing applications that served content to browsers; but rather complex
systems that involved multiple layers of internal and external communication (with



1 Evolution of Web Systems Architectures: A Roadmap 13

other systems) [17]. Besides, real enterprise applications usually diverged from
the clean architecture presented in Fig. 1.3 that presents clear boundaries between
functionality within a layer. This situation happens because of a number of reasons,
such as deadlines pushing the development team, changes in development team over
time, difference of architecture preferences by the developers, etc. In this context,
the boundaries between functionalities become blurred, resulting in components in
each layer no longer having a well-defined purpose [11]. From then on the systems
grew a lot, and the number of users increased considerably, causing these systems
to become too large, turning them into giant monolithic systems [23].

A monolith, according to [11], is an application that has all its components
contained within a single deployable, usually does not respect boundaries between
functionalities and has a release cadence of 3–18 months. It is also a common
characteristic multiple deploy packages that are part of a single deployment. These
systems have many scalability and performance issues when many users use it, but it
is worth mentioning that the concept is more related to the coupling of dependencies
between components, leading to a problem when updating a single component is
necessary. The ideal scenario is to perform this task without needing to cascade
updates across many components, which allows a faster release cadence [11]. The
solution was found in less monolithic and more distributed architectures, such
as service-oriented architecture (SOA), using the concept of microservices and
polyglot persistence [27]. These models have a better distribution of each system
service, making the request load better distributed, greatly improving scalability
requirements such as load balancing and high reliability [23].

Figure 1.4 demonstrates a typical microservices architecture for enterprise
applications. We can understand a microservice as a single deployment executing
within a single process, isolated from other deployments and processes, responsible
to do one thing well. In other words, a microservice accomplishes a specific business
functionality, which is a logical way to separate the domain models of an enterprise.
A microservices architecture becomes useful when containing many microservices
loosely coupled communicating with each other and working together [11].

As mentioned, major breakthroughs have also been achieved at the client-
side presentation layer through frameworks that enable Web systems to have
performance and usability comparable to traditional desktop systems [28]. These
frameworks use SPA architectures [28], updating only what is needed through
the use of newer versions of JavaScript (e.g., ECMAScript versions 5 and 6)
and AJAX server communications [28]. This model removes the responsibility
for generating the view of servers, making systems lighter and faster [28]. In
this context, in [26] we can find that there are currently numerous options for
development platforms (languages, APIS, libraries, frameworks, etc.) for systems.
The next section describes a case study that demonstrates a set of state-of-the-art
options regarding the use of technologies (client and server) and the application of
modern architecture concepts to Web systems.



14 R. Kulesza et al.

Fig. 1.4 Enterprise microservices: adapted from [11]

1.6 Case Study: Você Digital

Você Digital1 is a research and development project conducted by the Paraiba
Audit Office (TCE/PB) in partnership with the Digital Video Applications Lab-
oratory (LAViD) of the Federal University of Paraiba (UFPB) for modeling and
development of a collaborative computing platform for electronic government (e-
government). The main objective is to improve political engagement by automating
popular compliments and complaints, which enables a better interaction and
communication between society and public administration. In addition, the platform

1Available at: http://controlesocial.tce.pb.gov.br/.

http://controlesocial.tce.pb.gov.br/


1 Evolution of Web Systems Architectures: A Roadmap 15

aims to exploit the collective intelligence present in the networks, promoting citizen
participation that can help reduce TCE/PB operating costs, increase transparency,
reliability, and efficiency of services promoted by the virtual and democratic
communication channel of society’s demands through the proposal tool. In addition,
as a digital public management tool, the idea is to evaluate part of public services, as
well as to encourage popular participation in the decision-making process of public
auditors and managers. In order to evaluate the platform, a mobile application has
been developed that will use new methods capable of increasing citizen involvement
in the context of problem diagnosis in different areas of public service (e.g.,
education, health, and safety).

1.6.1 Vsocê Digital Architectural Project

Figure 1.5 presents the high-level architectural design of the Você Digital platform
with its subsystems highlighted in blue. Possible TCE/PB internal systems are
highlighted in orange and external systems are represented in the upper corner of

Paraiba Audit Office - TCE-PB

Backend “Você Digital”

Gateway (Ribbon)Application Servers
(Spring) and containers

(Docker)

Databases Servers

AAA

Administration
(CRUD)

Publications
(Input)

Consumption
(Outputs)

Media

Statistics

Preferences

Evaluation

Users and
POIs

Search

A
P

I R
E

S
T

F
U

L
(A

pplication P
rogram

m
ing Interface)

API RESTFUL
(Application Programming Interface)

Servers

SQL/
PostgreSQL

SQL

Spring Web
MVC/Boot

…

Backend “Datacenter TCE”

HTTPS

HTTPS

HTTPS

App
Você Digital

(React Native)

Você Digital
Web admin
(React.JS)

Datacenter TCE
Admin UI

OAuth

OpenID
compatible

systems

Google Maps/
Google Places

FireBase Cloud
Messaging

OAuth

Fig. 1.5 Você Digital architectural design overview



16 R. Kulesza et al.

the illustration (“Systems with OpenID,” “Google Maps and Google Places”). Both
parts of the Você Digital system and TCE-PB internal systems will use the data
center and virtualization infrastructure currently available on TCE/PB. The Você
Digital system consists of two large subsystems: (1) 2 (two) client software systems
(front end) and (2) 1 (one) back-end system. The first (1) set has a mobile app built
with React Native technology (see Fig. 1.5 Você Digital App) available for download
from Apple and Google Web Stores. In addition, there is also a client software
system (see Fig. 1.5, Você Digital Administration) that allows to manage the Você
Digital system through tasks such as data management, registration management,
user permissions, statistical reports, etc. This application is based on the Single
Page Application (SPA) approach and React technology to enable it to run on
any web browser (desktop or mobile device). The second set (2) is responsible
for the processing of data registers available in the system, as well as inferring
through this data information for users. This subsystem is divided into three parts:
(I) Controller: Responsible for load balance, high availability, and secure access
to data and information available to applications through a RESTful API; (II)
Application servers (containers based on Docker platform and technologies for the
development of microservices architectures) responsible for handling the integration
and processing of internal and external data and partitioning of the functionalities
available for client software and (III) Database Systems: responsible for storing
data using polyglot persistence (this module uses SQL and/or NoSQL technologies).
Communication between applications (1) and servers (2) is accomplished through
HTTPS protocol and RESTFul APIs.

Regarding the integration requirements of the Você Digital system with external
systems, APIs available on OpenID-compliant systems were used to allow external
authentication (e.g., social networks) so no registration is required on the Você
Digital system to access application services. Similarly, the Google Maps APIs
were used to obtain geolocation information (Google Maps) and geo-localized
points of interest registered by individuals and legal entities (Google Places).
For the integration with the internal systems of the TCE/PB, a mapping was
made of what data and/or information would be needed. Thus, the TCE/PB team
offered a RESTFul API for communication between systems. Similarly, the Você
Digital system offers APIS RESTFul for TCE /PB to access data. According to
Fig. 1.5, the application server subsystem has been organized into the following
components: AAA (Authentication, Authorization, and Accounting): these are the
procedures related to authentication, authorization, and auditing. As is well known,
authentication verifies the identity of users, authorization handles permissions, that
is, it ensures that an authenticated user only has access to the resources authorized
for their profile and, finally, the audit is related to the action of collecting data on user
behavior in relation to the system. It is noteworthy that this module communicates
with external authentication services and is responsible for managing the sections;
Administration (CRUD): is the module that manages all entities of the class
model, being responsible for performing the four basic operations of creation,
query, update and destruction in database; Publications (Inputs): this module is
the main source of data input of the Você Digital system and it is responsible for



1 Evolution of Web Systems Architectures: A Roadmap 17

receiving all user-generated information such as ratings, comments, video and photo
recordings. In addition, it also has the responsibility to handle data security. Due
to the nature of the system, it is necessary to apply text filters to comments to
identify inappropriate posts, as well as to sanitize data to prevent HTML injection
attacks. Another competency for this module is to provide application authentication
mechanisms to prevent fraud through artificial intelligence programs (robots) that
can be used for information manipulation; Search: handles low granularity searches,
such as miscellaneous database queries; and finally, Consumption (Outputs): this
module uses the Search module to perform Data Analytics in order to generate
statistical data, data transformation, graphs, reports, and other analyzes. Continuing
to detail the architecture, the database server subsystem was organized in the
following bases: Users and POI: this base stores the user registration information
and their points of interest; Evaluation: this database stores information related to
the history of evaluations performed by users; Preferences (profile): this database
stores dynamic information related to users, such as: IP, Latitude and Longitude,
among others; Statistics: this database stores persistent statistics that can be used
by the Consumption module of the application server subsystem; and lastly, Media:
which is a base that stores all user-generated media, such as text, images, videos,
and audios. From a technology standpoint, the Spring ecosystem was adopted for
the implementation of the Application Server subsystem. The Spring framework is
a tool used to increase productivity in writing enterprise applications by exploring
concepts such as dependency injection and inversion of control. In addition to Spring
technology in the development of business logic and data access on the server, the
Spring Cloud Suite Solutions also has been adopted on the Controller subsystem,
which provides functionality for configuration, routing, load distribution, and high
availability for implemented services.

1.6.2 Você Digital Frontend Architectural Project

The Você Digital frontend application architecture, as shown in Fig. 1.6, follows the
Redux architectural pattern. In Fig. 1.6 the Views are composed of the components
of React. Actions will be triggered from interactions in Views by the user, following
to Reducers, in case of synchronous requests. Asynchronous requests will be
handled in the Redux Thunk Middleware,2 which will query the APIs used in the
system, in this case the Você Digital API, the Google Maps API, and the Google
Places API. After the API result returns, the result goes to the Reducers along
with the current state of the application. The Reducer responsible for the dispatched
Action will update and return the new state of the application, updating the Listener
Views.

2Available at: https://github.com/reduxjs/redux-thunk.

https://github.com/reduxjs/redux-thunk


18 R. Kulesza et al.

Middlewares

Store

RRR

RR

Reducers

New StateP
re

vi
ou

s 
S

ta
te

Views
React Components

Actions

State
User

R

Google Maps API

Google Places API

Você Digital API

Fig. 1.6 Você Digital frontend architectural project

The main architectural difference between the mobile application architecture
(React Native) and the web application architecture (ReactJS) is how to render
Views. While React.js uses Virtual DOM React Native uses native iOS or Android
APIs.

ReactJS uses the virtual DOM. DOM building takes time because DOM trees
are big today. But ReactJS can perform this procedure faster using a virtual DOM.
ReactJS then uses an abstract copy of the Document Object Model and distributes
the changes into one component without influencing the rest of the UI.

React Native uses native APIs to render parts of the UI that can be reused on
iOS and Android platforms. So what it really does is use Java APIs to render
Android components and Objective-C APIs to write iOS components. JavaScript
is not a language that runs natively on the mobile device, it is executed on an
interpreter known as JavaScript Core Engine and communicates with native APIs
via a JavaScript bridge [16]. It then uses JavaScript to compose whatever remains of
the code, individualizing the application for each platform. This gives React Native
mobile applications maximum component reuse and code coding capability.

1.7 Final Remarks

This chapter was a brief roadmap of Web technologies related both client and
server-side software development platforms. It presented the history of architectural
models evolution of Web systems. It also presented a case study through the



1 Evolution of Web Systems Architectures: A Roadmap 19

solutions developed at the Paraiba Audit Office (TCE/PB) in partnership with
the Digital Video Applications Laboratory (LAViD) of the Federal University
of Paraiba (UFPB). The Você Digital solution has adopted the technologies and
architectural models discussed in a real project. The main contribution of this work
is to disseminate the history of Web systems and to elucidate the technologies and
architectures used today and trends for the future.

References

1. Benioff, M.: Welcome to Web 3.0: Now Your Other Computer is a Data Center. TechCrunch.
http://techcrunch.com/2008/08/01/welcome-to-web-30-now-your-other-computer-is-a-data-
center-2/ (2008). Cited 16 Jul 2019

2. Berners-lee, T.: WWW: past, present, and future. Computer (1996) https://doi.org/10.1109/2.
539724

3. Boner, J.: Reactive Microservices Architecture. Pearson Education, Sebastopol (2016)
4. Buregio, V.A.A.: Social machines: a unified paradigm to describe, design and implement

emerging social systems. Doctor of Computer Science (PhD): Computer Science, Federal
University of Pernambuco, Recife, Brasil (2014)

5. Burns, B.: Designing Distributed Systems: Patterns and Paradigms for Scalable. O’Reilly
Media, Sebastopol (2018)

6. Chedeau, C.: React’s diff algorithm. Performance Calendar. https://calendar.perfplanet.com/
2013/diff/ (2013). Cited 16 Jul 2019

7. Deitel, P., Deitel, H., Deitel, A.: Internet e World Wide Web: How to Program. Pearson
Education, Boston (2012)

8. Facebook (2018): React – A JavaScript library for building user interfaces. ReactJS. https://
reactjs.org. (2019). Cited 23 Jul 2019

9. Fielding, R., Reschke, J.: Hypertext transfer protocol (http/1.1): semantics and content. Internet
Engineering Task Force (IETF) (2014). https://tools.ietf.org/html/rfc7231. Cited 23 Jul 2019

10. Fields, D.K., Mark, A.: Web development with JSP. Manning, Shelter Island (2002)
11. Finnigan, K: Enterprise Java Microservices. Manning Publications, Shelter Island (2019)
12. Fowler, M.: Patterns of Enterprise Application Architecture. Addison Wesley, Boston (2002)
13. Fox, R., Hao, W.: Internet Infrastructure. Taylor & Francis Group, New York (2018)
14. Garrett, J.J.: Ajax: a new approach to web applications. semanticscholar. https://pdfs.

semanticscholar.org/c440/ae765ff19ddd3deda24a92ac39cef9570f1e.pdf (2005). Cited 23 Jul
2019

15. Groef, W.: Client- and Server-Side Security Technologies for JavaScript Web Applications.
Doctor of Engineering Science (PhD): Computer Science, Faculty of Engineering Science, Ku
Leuven, Leuven (2016)

16. Hansson, N., Tomas, V.: Effects on Performance and Usability for Cross-Platform Application
Development Using React Native (2016)

17. Holdener, T.: AJAX the Definitive Guide. 1st edn. O’Reilly Media, Sebastopol (2008)
18. Hunter, J., Crawford, W.: Java Servlet Programming, 2nd edn. O’Reilly Media, Sebastopol

(2001)
19. Mardan, A.: React Quickly: Painless Web Apps with React, JSX, Redux, and GraphQL.

Manning Publications Co., Shelter Island (2017)
20. Masiello, E., Jacob, F.: Mastering React Native. Packt Publishing Ltd., Birmingham (2017)
21. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An online platform for web APIs and service

mashups. IEEE Internet Comput. (2008) https://doi.org/10.1109/MIC.2008.92
22. Mikowski, M., Powell, J.: Single page web applications: JavaScript end-to-end. Manning

Publications Co., Shelter Island (2013)

http://techcrunch.com/2008/08/01/welcome-to-web-30-now-your-other-computer-is-a-data-center-2/
http://techcrunch.com/2008/08/01/welcome-to-web-30-now-your-other-computer-is-a-data-center-2/
https://doi.org/10.1109/2.539724
https://doi.org/10.1109/2.539724
https://calendar.perfplanet.com/2013/diff/
https://calendar.perfplanet.com/2013/diff/
https://reactjs.org
https://reactjs.org
https://tools.ietf.org/html/rfc7231
https://pdfs.semanticscholar.org/c440/ae765ff19ddd3deda24a92ac39cef9570f1e.pdf
https://pdfs.semanticscholar.org/c440/ae765ff19ddd3deda24a92ac39cef9570f1e.pdf
https://doi.org/10.1109/MIC.2008.92


20 R. Kulesza et al.

23. Newman, S.: Building Microservices. Pearson Education, Sebastopol (2015)
24. Patterson, D., Fox, A.: Engineering Long-Lasting Software: An Agile Approach Using SaaS

and Cloud Computing. Strawberry Canyon LLC (2012)
25. Raible, M.: Comparing Hot JavaScript Frameworks: AngularJS, Ember.js and React.js. Raible

Designs. https://raibledesigns.com/rd/page/publications (2015). Cited 16 Jul 2019
26. Raible, M.: Front End Development for Back End Developers. Raible Designs. https://

raibledesigns.com/rd/page/publications (2017). Cited 16 Jul 2019
27. Sadalage, P.J., Fowler, M.: Nosql Distilled: A Brief Guide to the Emerging World of Polyglot

Persistence, 1st edn, Addison Wesley, Boston (2013)
28. Scott, Jr. E.A.: SPA Design and Architecture Understanding Single-Page Web Applications,

1st edn. Manning Publications, Shelter Island (2016)
29. Sommerville, I.: Software Engineering, 10th edn. Pearson Education, London (2015)
30. Webber, J., Parastatidis S., Robinson I.: REST in Practice: Hypermedia and Systems Architec-

ture. O’Reilly Media, Sebastopol (2010)
31. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development. IEEE Internet

Comput. (2008). https://doi.org/10.1109/MIC.2008.114

Raoni Kulesza, DSc., is an adjunct professor at the Federal Uni-
versity of Paraiba/ Informatics Center (UFPB/CI) and researcher
of Digital Video Applications Laboratory (LAVID) where he
teaches and coordinates multimedia systems projects, including
Web systems. Ph.D in Computer Science at Federal University
of Pernambuco (UFPE), MSc in Electrical Engineering at USP
and B.S. in Computer Science at Federal University of Campina
Grande (UFCG). He has been working with Web systems develop-
ment for 20 years in projects for e-commerce, multimedia content
management, digital TV and video transmission management,
social networks and intensive data processing systems integrated
with mobile devices.

Marcelo Fernandes de Sousa, DSc., is Ph.D. in Computer Sci-
ence at Federal University of Pernambuco (UFPE), MSc and B.S.
in Computer Science at Federal University of Paraiba (UFPB). He
is professor and coordinator of computer graduation courses at
Institute of Higher Education of Paraiba (IESP). He is currently a
researcher at the Digital Video Applications Laboratory (LAVID),
having worked on the GIGA-VR, Ginga Middleware and RH-
TVD CAPES projects. He is mainly interested in the following
subjects: Software Engineering, Digital Television, Interactivity,
Ubiquitous Computing, Multimedia, MulSeMedia and Web sys-
tems.

https://raibledesigns.com/rd/page/publications
https://raibledesigns.com/rd/page/publications
https://raibledesigns.com/rd/page/publications
https://doi.org/10.1109/MIC.2008.114


1 Evolution of Web Systems Architectures: A Roadmap 21

Matheus Lima Moura de Araújo, B.S., is a MSc. candidate
and received a degree in Computer Science (2018) from UFPB.
He is a researcher member at the LAVID. His research interests
are in the development of the client-side, mainly web and mobile
applications.

Claudiomar Pereira de Araújo, B.S., is a software developer
with 2+ years of professional experience and bachelor’s degree
(2018) in Computer Science at UFPB. He was a researcher
at LAVID, where contributed to multimedia and Web systems.
Currently, he works at Indra Company providing solutions for Web
systems.

Aguinaldo Macedo Filho, MSc., is Accounts Auditor and Special
Technical Advisor of the Intelligence Division of Paraiba Audit
Office (TCE-PB). He is B.S. in Computer Science at UFCG
and MSc in Computer Networks at UFPE. He has experience
in project management of Web systems developments for the
Brazilian Credit Protection Service, ANATEL, Ministry of Justice
and TCE-PB.


	1 Evolution of Web Systems Architectures: A Roadmap
	1.1 Introduction
	1.2 Fundamentals of Web Systems
	1.2.1 History and Evolution of the Web
	1.2.2 URL and HTTP

	1.3 Client Technologies for Web Systems Development
	1.3.1 Single Page Application
	1.3.2 ReactJS
	1.3.2.1 Single Page Application and ReactJS
	1.3.2.2 Virtual DOM


	1.4 Architectural Patterns for Implementing SPA
	1.5 Web Systems Architecture
	1.6 Case Study: Você Digital
	1.6.1 Vsocê Digital Architectural Project
	1.6.2 Você Digital Frontend Architectural Project

	1.7 Final Remarks
	References


