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Abstract

Several localities around the world expose successions of 
rocks that straddle the Permian–Triassic boundary docu-
menting a common pattern of environmental change. This 
change testifies to a large-scale event that led to the extinc-
tion of a significant portion of biodiversity, the most severe 
mass extinction of all times. This event is called the End-
Permian Mass Extinction (EPME) or the Permian–Triassic 
Mass Extinction and was likely triggered by extensive vol-
canism. It not only affected the biodiversity of the marine 
realm, but also the terrestrial environments where faunas 
showed a marked reduction in diversity, whereas evidence 
for a mass extinction among plants is less robust. Even if 
the synchronicity of the extinctions in terrestrial and 
marine environments is still controversial, it seems clear 
that the event itself was rather fast, and that it took several 
million years for life to recover completely from the crisis. 
In fact, it seems likely that massive volcanic eruptions not 
only caused a chain of reactions that led to the extinction 

but also hindered the recovery of most of the surviving 
taxa. The EPME changed life forever, and the following 
recovery saw the evolution and radiation of many modern 
taxa that still characterize our planet today.

10.1	 �Introduction

The End-Permian Mass Extinction (EPME) (also known as 
Permian–Triassic Mass Extinction, PTME) is one of the most 
studied geobiological events of the past. It is the most severe 
mass extinction of all life—“the mother of all extinctions”—
and promoted the evolution of modern ecosystems (e.g., 
Raup and Sepkoski 1982; Erwin 1993, 2006). Hundreds of 
scientific papers have been written on the topic (see Fig. 1 in 
Twitchett 2006), and the conclusions of these studies have 
been summarized in popular books with apocalyptic titles 
like “When life nearly ended: The greatest mass extinction of 
all time” (Benton 2005) and “Extinction: How life on Earth 
nearly ended 250 million years ago” (Erwin 2006). Popular 
books and TV documentaries are a clear sign that this topic is 
not only the “intellectual exercise” for a large group of scien-
tists, but that it conveys so many deep implications about our 
world today that it has the potential of attracting the general 
public. This is especially true in a time of global warming 
and, hopefully, increasing environmental awareness.
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The vast amount of data available for the EPME and the 
numerous congruent hypotheses developed in the last 
decades to explain its dynamics provide us today with an 
excellent model to describe what happened when a global 
ecosystem crisis pushed life close to complete annihilation, 
about 252 million years ago (Chen and Benton 2012). In an 
excellent overview, still broadly valid even if written about 
15  years ago (Benton and Twitchett 2003), three aspects 
were highlighted as key for understanding the EPME: the 
scale and pattern of species loss, what combination of envi-
ronmental changes could possibly have had such a devastat-
ing effect, and the pattern of the recovery. Here, we will 
provide an updated account of such key event for the evolu-
tion of life as currently known.

10.2	 �The Magnitude of Species Loss

The rate and the pattern of species loss is one of the main 
questions about this event. This is not an easy question to 
answer actually, because it is time-dependent and, therefore, 

needs precise dating of the rocks and fossil associations pre-
served therein. According to the most recent version of the 
International Chronostratigraphic Chart (v2019/5; Cohen 
et al. 2018), the boundary between the late Permian and the 
Early Triassic is set at a CA-ID-TIMS Uranium-Lead derived 
age of 251.902 ± 0.024 million years ago. Such CA-ID-TIMS 
analyses of a population of single-crystal zircons from a hori-
zon or bed provide the highest resolution age estimate for its 
emplacement. The age of the end-Permian event has been 
determined in China, at the reference locality for the Permian–
Triassic Boundary (PTB). The locality is called Meishan and 
is placed in Changxing County, Zhejiang Province (Fig. 10.1). 
It is one of several Global Stratotype Sections and Points 
(GSSP), where a “golden spike” was literally fixed into the 
sedimentary succession to mark the exact position of the 
boundary. In Meishan, each of the limestone and mudstone 
beds in the succession has been given a number in ascending 
stratigraphic order. In this succession, the PTB is placed at 
the base of Bed 27c, which records a deep marine environ-
ment from where the first occurrence of the conodont species 
Hindeodus parvus is documented (Yin et al. 2001). However, 

Fig. 10.1  The Global Stratotype Section and Point (GSSP) of the Permian–Triassic boundary is located at Meishan (Changxing County, Zhejiang 
Province) where a monumental garden has been created to celebrate the relevance of the outcrop in Earth history. Photo by Robert A Gastaldo
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the extinction is not a one-time or one-level event. It has a sort 
of a prelude at the base of Bed 24e, a main episode corre-
sponding to Bed 25, and an epilogue at Bed 28 (Yin et al. 
2007a). Thanks to the extremely precise dating available in 
these rocks, we now know that the extinction peak occurred 
about 40,000  years before the horizon marking the PTB 
(Burgess et al. 2014; Burgess and Bowring 2015). The whole 
event was extremely fast in geological terms, with a duration 
of about 60,000 years (e.g., Brand et al. 2012; Burgess et al. 
2014; Shen et al. 2018). Data from other sections, as in the 
Dolomites of northeast Italy, indicate that the event could 
have been even more rapid, with a duration of a few millennia 
(see Brand et  al. 2012; Posenato 2019). According to the 
interpretations of various results of different studies, the 
extinction events in continental ecosystems occurred over a 
time span as short as 10,000 years or across a much longer 
interval of up to 200,000 years (Smith and Botha-Brink 2014, 
and literature therein). In any case, the rock record clearly 
indicates that sedimentary strata, in which marine or terres-
trial organisms are preserved, are rich in fossils. These fossil 
assemblages testify to the presence of well-structured com-
munities for most of the late Permian (Lopingian) (Erwin 
1993; Bernardi et al. 2017) when the action of marine com-
munities that lived on and in the sediment is registered by 
intense bioturbation of the ocean floor, indicating oxic condi-
tions (Benton and Twitchett 2003). However, close to the end 
of the Permian, the oceans around the world record sediments 
that reflect dysoxic∗ or anoxic∗ conditions. These resulted in 
the production of non-bioturbated, laminated∗, dark, and 
pyrite-rich sediments that are scarcely fossiliferous in the 
marine realm (Wignall and Twitchett 2002; Benton and 
Twitchett 2003). Degraded terrestrial environments from the 
same time interval testify to erosion following the reported 
loss of vegetation (Benton and Newell 2014). Such rocks 
indicate that, before the PTB, the environmental conditions 
began to deteriorate, resulting in increasing stress in the biotic 
communities. Was the end-Permian event limited to the 
marine realm or did it affect also continental organisms?

According to some research (e.g., Smith and Botha-Brink 
2014; Cascales-Miñana et al. 2016), the EPME is the only 
one of the five major extinction events in the marine realm 
that “coincided” with a clear and abrupt decrease in conti-
nental biodiversity. It is also the only mass extinction thought 
to have had devastating effects on vegetation at a global scale 
(but see Nowak et al. 2019). In fact, peat-accumulating wet-
lands (see Gastaldo et al., Chap. 12) were absent on the land-
scape for more than ten million years; and, therefore, Early 
Triassic coals are unknown, except in western China (Thomas 
et  al. 2011), and Middle Triassic coals are rare and thin. 
Their absence has been termed the “coal gap” by Retallack 
et al. (1996). But is the concept of coincident diversity loss in 
the oceans and on land accurate?

The terrestrial vertebrate-fossil record in the Karoo Basin, 
South Africa (Fig.  10.2), has acted as the cornerstone on 

which the end-Permian extinction event is recognized on 
land. Having been considered the standard for understanding 
the end-Permian turnover in terrestrial ecosystems, any new 
data that can be used to constrain “time” on land in the Karoo 
Basin helps to tie together global events. Smith and Botha-
Brink (Smith and Botha-Brink 2014; but see also Gastaldo 
and Neveling 2016) proposed that there were three phases of 
drought-induced extinctions lasting, respectively (from the 
oldest), 21,000, 33,000, and 8000 years, separated by periods 
of 7000 and 50,000 years, over a timeframe equivalent, and 
coincident with, the marine event (see Fig. 12 in Smith and 
Botha-Brink 2014). The model has been extrapolated to other 
parts of the globe (e.g., Benton and Newell 2014) where this 
polyphased extinction resulted in the decimation of most ver-
tebrate taxa. In the Karoo Basin, the most recognizable verte-
brates that went extinct are probably the medium-sized 
dicynodont therapsid Dicynodon and the large gorgonopsid 
therapsid Rubidgea (see also, among others, Retallak et al. 
2003; Ward et al. 2005). But, the term “coincident” loss may 
not be appropriate because, as remarked by Padian (2018) 
and Fielding et  al. (2019), there is growing evidence for a 
series of events on land that are not synchronous with those 
that occurred in the oceans. For example, Gastaldo et  al. 
(2015, p. 939) presented the first high precision age on strata 
close to the inferred PTB in the Karoo Basin, South Africa. 
These authors concluded that the turnover in vertebrate taxa 
at this biozone boundary is older than the marine extinction 
event and “probably does not represent the biological expres-
sion of the terrestrial end-Permian mass extinction”. 
Additionally, a more recent analysis in the Karoo Basin like-
wise concluded that the turnover from the Daptocephalus 
(formerly Dicynodon) to Lystrosaurus Assemblage Zones 
(Fig. 10.3), once used to define the PTB on land, is not coin-
cident with the end-Permian marine event (Gastaldo et  al. 
2018, 2019a). Recently, Gastaldo et al. (2020) published a 
CA-ID-TIMS Uranium-Lead age date from a pristine ash-
fall bed in the base of the Lystrosaurus Assemblage Zone that 
is more than 300,000 years prior to the marine crisis. Because 
of these and other reasons, the expression “the terrestrial 
Permian–Triassic boundary event [bed] is a nonevent” 
recently appeared in the literature (Gastaldo et  al. 2009; 
Gastaldo and Neveling 2012, 2016; Ward et al. 2012).

Due to scarce and impoverished fossil megafloras from 
the earliest Triassic on the different continents, the common 
perception has been that land plants suffered a mass extinc-
tion like the terrestrial and marine animals, but doubts 
always remained (Nowak et al. 2019). Early Triassic mega-
floras are, indeed, often markedly impoverished and domi-
nated by opportunistic taxa such as the iconic lycophyte 
Pleuromeia (Box 10.1; Looy et al. 1999; Grauvogel-Stamm 
and Ash 2005; McElwain and Punyasena 2007), although 
some megafloras were more diverse and gymnosperm-dom-
inated (Feng et  al. 2018). This apparent loss in species is 
probably based on a strong taphonomic bias (Gastaldo et al. 
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2005) and/or on the fact that the macrofossil record (espe-
cially the gymnosperm one) is considerably undersampled 
for the Early Triassic, giving the impression of an increased 
gymnosperm extinction during the latest Permian (Nowak 

et  al. 2019). The recent discovery of  
nearly all major post-extinction plant groups, including 
bona fides Cycadales, Corystospermales, Bennettitales, 
Czekanowskiales, Podocarpales, and Araucariaceae in the 
Permian (e.g. DiMichele et  al. 2001; Abu Hamad et  al. 
2008; Blomenkemper et al. 2018; Kustatscher et al. 2019) 
and the presence of “mixed” floras (e.g. Glossopteris-

Fig. 10.2  The Karoo Basin, South Africa, has provided a key fossil record for evaluating the impact of the EPME on terrestrial vertebrate com-
munities. This photo by Robert A. Gastaldo shows the Bethel Farm in Bethulie Valley

Fig. 10.3  Several medium-sized dicynodontian therapsids went 
extinct in the Karoo Basin at the end of the Permian. In this artistic 
interpretation by Fabrizio Lavezzi, the body of Dicynodon is covered 
with hair as possibly indicated by bone histology and tentatively sug-
gested in a recent study of Permian coprolites (Bajdek et al. 2016)

Box 10.1: Pleuromeia sternbergii
Pleuromeia sternbergii (Fig. 10.4) is the most charac-
teristic plant of the biotic recovery during the Early 
Triassic. The first megafossil was discovered in 1836 
at the Magdeburger cathedral, when weathered sand-
stone fell down from the tower during repair works, 
burst, and released an impression of a yet-unknown 
fossil plant. During the same year, the specimen was 
brought to Georg Graf zu Münster (1776–1844), also a 
famous paleobotanist living in the city. He described it 
in 1839 as Sigillaria sternbergii in honor of paleobota-
nist Kaspar Maria Graf von Sternberg (1761–1844), 
one of the founders of paleobotany. Later, the species 
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Dicroidium floras; Schneebeli-Hermann et  al. 2015) indi-
cates that these groups did not “evolve” in response to the 
EPME, but rather had their major radiation after it.

Although the palynological record (Fig. 10.5) reflects a 
series of ecological disturbances and climatic changes 
around the PTB (Hochuli et al. 2010, 2016), the microscopic 
plant remains show less apparent changes during the extinc-
tion event than the macroscopic ones. This is possibly 
because of the higher preservation potential of pollen and 
spores (Fig. 10.6; Nowak et al. 2019). Nonetheless, the mag-
nitude of the extinction among plants is still a matter of harsh 
debate (see Nowak et al. 2019).

The estimate of loss in the marine ecosystem, on the other 
hand, has been calculated several times. As we have seen 
earlier (Romano in Chap. 7), “fishes” were not too severely 
affected. However, estimates vary according to which data-
base is used and the methods applied to analyze the data. 
Most studies agree that up to 49% of marine animal families 
went extinct, with foraminifers, bryozoans, and brachiopods 

Fig. 10.4  Pleuromeia 
sternbergii (Münster) Corda 
is the most characteristic plant 
megafossil of the biotic 
recovery during the Early 
Triassic. (a) Fossil from 
Sollingen, Germany 
(BSC445, 10 × 14 cm; picture 
courtesy Léa Grauvogel-
Stamm); (b) artistic rendering 
of the live plant by Fabrizio 
Lavezzi

was transferred by Corda to the new genus Pleuromeia 
(originally spelled Pleuromeya).

The individual plants have an undivided stem with a 
maximum height of two meters and a terminal, hetero-
sporous∗ cone-like structure composed of oval sporo-
phylls∗. The four-lobed plant base (rhizophore) shows 
a typical sequence of root scars. The structure of the 
rhizophores and the ultrastructure of the micro- and 
megaspores∗ indicate a strong relationship of this 
genus with the extant lycophyte Isoetes. Several spe-
cies of Pleuromeia colonized all continents during the 
Early Triassic. Pleuromeia is considered a highly 
adaptive pioneering plant. It experienced a quick radia-
tion during the earliest Triassic where it formed mono-
typic stands or was part of low-diversity communities 
that were subsequently replaced by more complex 
communities in the Anisian.
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Fig. 10.5  Kraeuselisporites 
apiculatus, a spore from the 
Permian–Triassic boundary 
interval of the Finnmark 
platform (Norway)

experiencing severe bottlenecks in diversity. Extinctions at 
the marine-species level have been estimated up to 96% by 
Raup (1979), but something between 80% (Benton and 
Twitchett 2003) and 85% (Stanley 2016) is now considered 
to be a more reliable estimate. On land, about 70% of ter-
restrial vertebrates experienced extinction, as well (see 
details in Benton and Newell 2014). Several large groups 
including fusulinid foraminifera, rugose and tabulate corals, 
the last trilobites and eurypterids, as well as blastoid echino-
derms, are among the groups that completely disappeared 
during the EPME (Benton and Twitchett 2003).

The end-Permian biological crisis not only resulted in the 
largest mass extinction of all times but also influenced the 
biogeographic range and the body size of the lineages that 
survived on both land and in the oceans (as we have seen in 
neopterygians; Romano in Chap. 7). Bernardi et al. (2018), 
for example, found evidence for forced range expansion 
among tetrapods that moved to higher-latitudinal, cooler 
regions, in an attempt to escape from the superhot climate 
that developed in the equatorial belt in the earliest Triassic 
(see below; Sun et al. 2012). Schaal et al. (2016) recorded 
the maximum size of 11,224 mostly invertebrate specimens 
belonging to 2743 species of gastropods, bivalves, calcitic 
and phosphatic brachiopods, ammonoids, ostracods, con-
odonts, and foraminiferans, spanning the late Permian 
through the Middle to Late Triassic. They concluded that the 
EPME induced more size reduction (the so-called “Lilliput 
effect”; Urbanek 1993) among species than any other inter-
val in Earth history. The decrease of size in specific lineages 
not only resulted from the extinction of larger taxa, but also 
because of the evolution of smaller sizes in the surviving lin-

eages. It is thought that the post-extinction world must have 
favored organisms with small body sizes in ecologically and 
physiologically different clades. But what caused such bio-
geographic changes, size reduction, and the disappearance of 
about 80% of late Permian biodiversity?

10.3	 �Looking for the Smoking Gun

Several lines of evidence have been presented in the last 
decades to explain the EPME. They include a bolide impact, 
similar to that experienced at the end of the Cretaceous, and 
extensive volcanism. The role of a bolide impact for the 
EPME has been thoroughly discussed in several papers 
(Benton and Twitchett 2003 and references therein). But, 
remarkably, data from the GSSP at Meishan, as well as other 
sections in south China and in central and western Tethyan, 
do not support an instantaneous calamity. The classical 
impact-related features (such as bolide ejecta or the crater 
itself) have never been found in any area. The evidence in 
these localities indicate that the marine biotic crisis started 
approximately 50,000  years before the possible impact of 
any bolide (Yin et al. 2007a, b; see also Bottjer et al. 2008). 
Therefore, as concluded by Twitchett (2006, p. 199), most of 
the evidence for the bolide impact “is seriously flawed and 
impact is not favored as a cause for this event” (see also 
Benton and Twitchett 2003). However, volcanism might 
have played a major role in the crisis.

The onset of the extensive volcanism that resulted in the 
emplacement of the Siberian traps (Fig.  10.7), a Large 
Igneous Province (LIP) in Russia, is now considered as the 
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most likely trigger of the EPME (among others, Svensen 
et al. 2009; Chen and Benton 2012). This prolonged, multi-
phase volcanic activity, which started in the latest Permian 
and continued for about five million years through most of 
the Early Triassic, produced immense volumes of effusive 
volcanic rocks over an extensive area of what is now Siberia. 
Estimates of the volume of basalts, tuffs, and intrusive igne-
ous rock injected into the crust are up to four million km3 and 
activated the cascade of events that produced the so-called 
“lethal triade”: extreme global warming, ocean anoxia, and 

acidification (e.g., Wignall and Hallam 1992; Saunders and 
Reichow 2009). The magmatic event was characterized by 
multiple episodes of CO2 and CH4 release. The events lead-
ing up to, and following, the extinction crisis are associated 
with a negative excursion in stable-carbon isotope values, 
indicating the addition of “light” carbon to the planet. The 
isotopic signature locked in these rocks of −4 to −6‰ is 
thought to be the evidence that explains the negative excur-
sion of δ13C across the PTB (Wignall 2001; Payne and Kump 
2007; Bond and Wignall 2014 and literature therein). 

Fig. 10.6  Genus-level diversity curves for land-plant macrofossils and 
sporomorphs (spores and pollen) from the late Permian to the Middle 
Triassic (after Nowak et  al. 2019). Macrofossil diversity decreases 
between the late Permian and the Early Triassic, but only less than 20% 
of the genera go extinct – significantly less than among animals. 
Sporomorph diversity even increases across the Permian–Triassic 
boundary and during the Early Triassic, showing no signs of a mass 

extinction. Interestingly, the diversity trends for spores and macrofos-
sils of spore-producing plants (mosses, club mosses, ferns, horsetails) 
are quite similar, whereas those for pollen and macrofossils of gymno-
sperms (the seed plants that produced the pollen) are very different. 
This is probably because pollen and gymnosperm remains had different 
limitations affecting transport and preservation. Courtesy Hendrik 
Nowak
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Because the basalt floods were recurrent over time, they 
impacted the host rock exposed on the surface and deeper in 
the crust. Those rocks included both coals and limestone 
(carbonates). Contact between the igneous magma and the 
host rock resulted in the thermal metamorphism of coal and 
carbonates of the Siberian craton. Heating of the sedimen-
tary rocks released additional carbon into the atmosphere, 
which had repercussions in both terrestrial and marine envi-
ronments. These multiple episodes of lava flood and carbon-
rich gas release lasted into the Triassic and are, at least, partly 
related to the Early Triassic negative and positive δ13C excur-
sions recorded in these rocks (Benton and Twitchett 2003; 
Benton 2005; Erwin 2006 and literature therein). However, 
the magnitude of the negative excursions of δ13C is so con-
spicuous that the volcanic CO2 and CH4 release, even if cou-
pled with a decrease in biological productivity, cannot 
explain the phenomenon in its entirety. There must be addi-
tional factors or reasons.

It is likely that as a consequence of the rapid global warm-
ing (Sun et al. 2012; but see also Goudemand et al. 2013), 
methane clathrates trapped on shallow oceanic floors and/or 
high latitude permafrost melted and released light methane 
(with a δ13C signature of −65‰) into the atmosphere (Benton 
and Twitchett 2003; Twitchett 2006). A similar scenario 
might have happened at the end of Paleocene, during another 
event of global warming we visited earlier on our journey 
(Dickens et al. 1995; see also Chap. 4). The amount of CO2 
and CH4 released in a sort of “runaway greenhouse”, with a 

positive-feedback loop established between clathrate melt-
ing and temperature increase triggered by Siberian volca-
nism, determined the extent of global warming. The average 
global increase in temperature has been calculated to be 
8–10  °C, and geochemical data indicate that the warming 
was very rapid (see the summary and Fig.  2  in Lai et  al. 
2018). The rate of increase is estimated to have occurred 
over about 2000 years and resulted in ocean temperatures in 
the intertropical belt of about 39–42 °C (Brand et al. 2012; 
Sun et  al. 2012). The direct release of large quantities of 
hydrochloric acid (HCl) and chloromethane (CH3Cl) into the 
atmosphere, as a result of venting and basin-scale metamor-
phism, resulted in significant stratospheric ozone depletion. 
And this modification of the stratosphere increased the inci-
dence of harmful ultraviolet-B radiation to an extent that sig-
nificantly affected life (Beerling et  al. 2007; Benca et  al. 
2018). It is thought that increasing concentrations of green-
house gasses resulted in increasing aridity, as well as a short-
term production of acid rains that negatively affected 
terrestrial vegetation (but see Li et al. 2017, Fielding et al. 
2019, and Gastaldo et al. 2019b for evidence against abrupt 
aridification in Australia and South Africa). A loss in plants, 
due to the disturbance of the terrestrial ecosystems across the 
land, may have increased soil erosion and, in this model, 
resulted in a higher sedimentation rate in both freshwater and 
saltwater basins (Chen and Benton 2012). Shortly after the 
extreme warming phase, ocean basins experienced wide-
spread anoxic/dysoxic and euxinic (anoxia in waters rich of 

Fig. 10.7  Siberian Traps cropping out in the area of Talnakh (the Red Stones locality, Krasnoyarsk Krai, Russia). Photo by Cindy Looy
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hydrogen sulfide) conditions: ocean waters soon became 
stratified and increasingly acid (e.g. Isozaki 1997; Clarkson 
et al. 2015). It is the interaction of these factors across Earth 
Systems that likely explains the marine ecological and envi-
ronmental turmoil that eclipsed the end-Permian ecosystems 
(Erwin 1993, 2006; Benton and Newell 2014). And if the 
establishment of hostile conditions had been a geologically 
rapid phenomenon, a cascade of geochemical events deter-
mined their persistence for a long time thereafter. These con-
ditions shaped the prolonged recovery that followed the most 
catastrophic mass extinction in Earth history.

10.4	 �The Recovery

The pattern of recovery is attracting more and more interest 
of researchers, because it may serve as a model for today’s 
crisis, similar to the Paleocene-Eocene Thermal Maximum 
(see DeVore and Pigg, Chap. 4). The paleoenvironments and 
fossil assemblages recorded in the post-extinction strata rep-
resent an excellent laboratory for studying evolutionary tra-
jectories and the origin of modern ecosystems. This is 
because many of the lineages that characterize the life on our 
planet, today, date back to the Triassic recovery (Chen and 
Benton 2012). Many new families, genera, and species, in 
fact, appeared or rapidly diversified in the Early and Middle 
Triassic. As such, they are technically not part of a real 
“recovery”, if the term “recovery” is thought of as a return to 
a previous state (Chen and Benton 2012). But these groups 
are interesting proxies of how ecosystems and trophic levels 
are restructured as the biosphere returned to a higher level of 
complexity.

The post-extinction recovery was a slow process for 
many of the animal groups that survived. This is because 
hostile conditions prevailed for a few million years. Among 
other things, hostile conditions across the globe are evi-
denced by: (1) the presence of multiple stable-carbon isoto-
pic excursions that followed the one found at the PTB 
(Payne et  al. 2004); (2) peaks in temperature (Sun et  al. 
2012); and (3) changes in the biogeochemical sulfur cycle, 
which resulted in widespread euxinic conditions and posed 
a sustained threat to marine life (Schobben et al. 2017; see 
also Benton et  al. 2013). Early Triassic ecosystems were 
highly unstable (Roopnarine et  al. 2007; Roopnarine and 
Angielczyk 2015), and it has been repeatedly suggested that 
the aftermath of the crisis extended into the Middle Triassic, 
about ten million years after the EPME (e.g., Lau et  al. 
2016; Martindale et al. 2018).

The change of the reef ecosystems before and after the 
PTB is particularly interesting. Reefs of the late Permian, 
constructed by sponges, algae, bryozoans, large foramin-

ifera, microbes, and rugose corals, hosted benthic inverte-
brates, including brachiopods, mollusks, foraminifera, 
sponges, and bryozoans (Martindale et  al. 2018). Most of 
these reef-forming groups never made it past the crisis. 
After the mass extinction, stromatolites (layered cyanobac-
terial structures), calcimicrobes (calcareous colonial micro-
fossils), and thrombolites (clotted, cyanobacteria mats) 
were common at relatively low latitudes. Microbial mats 
filled the ecological niche previously occupied by metazoan 
reefs (Heindel et al. 2018). Recent evidence indicates that 
these microbialites were associated with small-sized, 
oxygen-dependent metazoans, including ostracods, micro-
conchids, brachiopods, gastropods, bivalves, crinoids, echi-
noids, and conodonts but no corals (e.g., Martindale et al. 
2018). The concept of a “reef gap” has been modified into 
“reef eclipse” because microbial reefs were present, 
although severely altered, in the aftermath of the extinction. 
The first metazoan biostromes (horizontally bedded fossil 
assemblages) from the Early Triassic (Olenekian) are rela-
tively small structures devoid of corals. These assemblages 
were made by bivalves and sponges in association with stro-
matolitic and thrombolitic microbialites. Therefore, a long 
coral reef eclipse characterized the aftermath of the EPME 
(Martindale et al. 2018).

In the depauperate Early Triassic marine ecosystems, the 
presence of some disaster taxa, especially among brachio-
pods and mollusks, is remarkable (Fig. 10.8). The inarticu-
late brachiopod Lingula, rare in pre-extinction sediments, is 
an example of a very common and globally widespread 
taxon in subtidal environments immediately after the crisis 
(Twitchett 2006). Bivalve disaster taxa are also widespread 
and numerically abundant in Early Triassic sediments and 
include well-known taxa like Claraia, Eumorphotis, 
Promyalina, and Unionites (e.g., Bottjer et al. 2008).

The rate of recovery varied in different groups. Both slow 
and delayed recovery rates are recorded for benthic groups 
such as bivalves and gastropods (with an initial opportunistic 
proliferation of microgastropods). In contrast, explosive and 
rapid recovery is found in ammonoid cephalopods (in less 
than 2 My after the PTB, diversity levels were higher than in 
the Permian), conodonts, and some groups of foraminifera 
(Bottjer et al. 2008; Brayard et al. 2009; Stanley 2009; Song 
et  al. 2011). Rapid diversification also occurred in marine 
vertebrates. According to Benton et  al. (2013), bony (acti-
nopterygian) fishes explosively diversified in the Early 
Triassic (but see Friedman and Sallan 2012 and Romano in 
Chap. 7), while the diversification of marine reptiles only 
occurred in the latest Early–Middle Triassic (Motani 2009). 
This latter diversification involved ichthyosaurs, thalat-
tosaurs, pachypleurosaurs, nothosaurs, and placodonts (Chen 
and Benton 2012; Benton et al. 2013).
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Following the lingering effects of the EPME, when envi-
ronmental conditions became favorable again for the devel-
opment of well-structured communities, new groups 
radiated. For example, Dai et al. (2018) reported high levels 
of benthic and nektonic faunas in the late Induan, soon after 
the last carbon-cycle perturbations, with the appearance of 
26 new species of mollusks, brachiopods, foraminifers, con-
odonts, ostracods, and echinoderms. The most dramatic 
Early Triassic marine radiations are found in the scleractin-
ian corals, bivalves, and crinoids (e.g., Martindale et  al. 
2018, and literature therein). On land, several groups of ferns 
and conifers appear for the first time (Cascales-Miñana et al. 
2016), and insects are represented by an evolutionary mod-
ern fauna with derived clades of orthopteroids and hemip-
teroids and, especially, holometabolous taxa that replaced 
the previous Paleozoic faunas (Labandeira 2005). Among 
terrestrial vertebrates, several tetrapods including lissam-
phibians (frogs, salamanders) (Ascarrunz et al. 2016), squa-
mate reptiles (lizards, snakes) (Simões et  al. 2018), and 
several archosauriforms, comprising the dinosaurs (Brusatte 
et al. 2011; Ezcurra and Butler 2018), appear (Box 10.2).

Fig. 10.8  Examples of 
disaster taxa that flourished 
after the EPME. Mollusks: (a) 
Claraia; (b) Eumorphotis; (c) 
Unionites; (d) Promyalina. 
Brachiopod: (e) Lingula. 
Artwork by Fabrizio Lavezzi. 
(after Benton and Harper 
2009)

Box 10.2: Archosauromorph Diversity and the EPME

A recent analysis studied archosauromorph diversity 
from the middle Permian to the early Late Triassic 
(Ezcurra and Butler 2018). This clade of reptiles likely 
originated in the middle Permian and may not have 
been affected by the EPME. The morphological dispar-
ity (variation) in the group, depending on the analytical 
method used, does not change significantly into the ear-
liest Triassic (Induan). In fact, morphological disparity 
in this group increased significantly in the Olenekian or 
in the Anisian. Peaks of phylogenetic diversity in both 
the Induan and Olenekian correspond to very high evo-
lutionary rates. The Induan forms are characterized by 
a low disparity of a sort considered to characterize a 
disaster fauna, dominated by proterosuchids and other 
lineages that were rather homogeneous in terms of their 
morphology. These forms underwent a major phyloge-
netic radiation in the Olenekian, which led to the origin 
or diversification of major clades. These clades include 
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10.5	 �Conclusions

As shown above and summarized in Fig. 10.10, the end of 
the Permian is a drastic moment in Earth history with the 
most severe mass extinction of all life. This was most impact-

ful among the marine biota, although the various groups 
were affected differently depending on their life style (our 
knowledge is biased by their skeletal type and, therefore, the 
probability of retrieving information). Among the marine 
organisms, nektonic groups including the ammonoids and 
fishes were less affected than benthic forms such as bivalves, 
brachiopods, or reef-building organisms. On land, tetrapods 
and insects were more affected by either a loss in plant diver-
sity or ecological turnover, although the composition and 
richness of the communities changed in the latter group as 
well. The prolonged unstable climatic conditions in the after-
math of the mass extinction affected the biotic recovery of 
the groups that were affected by the EPME. But, at the same 
time, it was a cradle for the evolution and especially radia-
tion of a series of animals (archosaurs, squamates) and plants 
(corystosperms, Cycadales) that became important elements 
of Triassic ecosystems. Although the latest Permian and the 
earliest Triassic are among the most studied periods of time 
in Earth history, the dynamics and timeline of the extinction, 
biotic recovery, and radiation are still incompletely under-
stood and further studies in the next tens of years will likely 
shed more light on “the mother of all extinctions”.

For Deeper Learning

•	 Early, general works dealing with the EPME: Newell 
(1973); Raup (1979); Gould and Calloway (1980); 
Sepkoski (1981).

Fig. 10.9  The 
archosauriforms 
Chasmatosuchus (a), 
Erythrosuchus (b), and 
Tanystropheus (c) are among 
the taxa that underwent a 
major phylogenetic radiation 
after the EPME in the 
Triassic. Artwork by Fabrizio 
Lavezzi

the rhynchosaurs, archosaurs, erythrosuchids, and tan-
ystropheids (Fig. 10.9). During the Anisian, the archo-
sauromorphs underwent an increase in terms of the 
number of species, abundance, ecomorphological dis-
parity, and also size. In fact, the first part of the Middle 
Triassic witnessed the appearance of large hypercarni-
vore taxa, bizarre and highly specialized herbivores, 
long-necked marine predators, and gracile and agile 
dinosauromorphs (Ezcurra and Butler 2018). Their 
appearance corresponds with the return to stable eco-
systems, as indicated by the end of the carbon-isotope 
excursions and the structuring of conifer-dominated 
forests (Sun et al. 2012). According to Bernardi et al. 
(2018), the emergence and the radiation of entirely new 
vertebrate groups, such as the archosaurs (including the 
dinosaurs) and others, might have been prompted by 
the forced biogeographic shift induced by the rapidly 
changing conditions (e.g., global warming) that charac-
terized the aftermath of the EPME.
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•	 Siberian traps and the “lethal triade” (global warming, 
ocean anoxia, acidification): Wignall (2001); Algeo and 
Twitchett (2010); Algeo et al. (2011); Clapham and Payne 
(2011); Brand et al. (2012); Sun et al. (2012); Clarkson 
et al. (2015).

•	 Ocean waters stratification and acidification: Wignall and 
Hallam (1992); Wignall (2001); Wignall and Twitchett 
(2002); Algeo and Twitchett (2010); Clapham and Payne 
(2011); Brand et al. (2012); Winguth and Winguth (2012); 
Silva Tamayo et al. (2018); Shen et al. (2018).

•	 Stromatolites, microbialites, and trace fossils across the 
Permian–Triassic boundary: Schubert and Bottjer 
(1992); Twitchett and Wignall (1996); Kershaw et  al. 
(2012).

•	 Plant evolution across the EPME: DiMichele et al. (2001); 
Hochuli et al. (2010, 2016); Blomenkemper et al. (2018); 
Nowak et al. (2019).

•	 Insect evolution across the EPME: Shcherbakov (2008); 
Labandeira (2005); Ponomarenko (2016).

•	 Vertebrate evolution across the EPME: Friedman and 
Sallan (2012); Viglietti et al. (2016).

Questions

	1.	 Why is the EPME considered the worst of the Big Five 
mass extinctions over geologic time?

	2.	 Which groups of organisms were particularly affected, 
and which ones suffered relatively low extinction rates?

	3.	 Over what duration of time has the EPME been estimated 
to have lasted in the oceans and on land? How might you 
explain the disparity in these estimates?

	4.	 What evidence exists in marine sediments for reduced 
oxygen (dysoxia/anoxia) at the sea floor during the 
EMPE?

	5.	 How might a non-synchronous series of events, between 
the events on land and those in the oceans, be explained?

	6.	 What is the “Lilliput effect” and in which groups of Early 
Triassic organisms is it found?

	7.	 The emplacement of the Siberian Traps is considered a 
possible “smoking gun” that pushed ecosystem instabil-
ity. What are the Siberian Traps, how might their emplace-
ment have resulted in a lethal triade, and what lines of 
evidence are used to support this concept?

Fig. 10.10  A graphic summary of the environmental changes (oscilla-
tion of δ13C, volcanism  =  Vol., and anoxia), coupled with peculiar 
events in marine (“unusual” facies, trace fossils, reefs, reef-builders, 
chert, biodiversity changes in radiolarians, foraminiferans, brachio-
pods, ammonoids, conodonts, and ophiuroids) and terrestrial (coal gap 

and biodiversity changes in plants and vertebrates) ecosystems. Ae. 
Aegean, Bith. Bithynian, Di. Dienerian, Gr. Griesbachian, Illy. Illyrian, 
Sm. Smithian. Modified from Chen and Benton (2012; Fig.  1) after 
Nowak et al. (2019) by Fabrizio Lavezzi
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	8.	 What evidence exists for a hostile planet in the aftermath 
of the EPME?

	9.	 Why might different marine invertebrate groups have 
undergone different rates of recovery in the Early Triassic?
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