
Rotten Cellar: Security and Privacy
of the Browser Cache Revisited

Florian Dehling(B), Tobias Mengel, and Luigi Lo Iacono

TH Köln University of Applied Sciences, Cologne, Germany
{florian.dehling,tobias.mengel,luigi.lo iacono}@th-koeln.de

Abstract. Web browsers use HTTP caches to reduce the amount of
data to be transferred over the network and allow Web pages to load
faster. Content such as scripts, images, and style sheets, which are static
most of the time or shared across multiple websites, are stored and
loaded locally when recurring requests ask for cached resources. This
behaviour can be exploited if the cache is based on a naive implementa-
tion. This paper summarises possible attacks on the browser cache and
shows through extensive experiments that even modern web browsers
still do not provide enough safeguards to protect their users. Moreover,
the available built-in as well as addable cache controls offer rather limited
functionality in terms of protection and ease of use. Due to the volatile
and inhomogeneous APIs for controlling the cache in modern browsers,
the development of enhanced user-centric cache controls remains—until
further notice—in the hands of browser manufacturers.

Keywords: Browser cache · Security · Privacy

1 Introduction

Large distributed systems such as the web require technologies that provide
high scalability. A mechanism that enables to reduce the amount of data to be
transferred between the client and the origin server drastically is the caching
of resources. Besides web caching systems, such as proxy caches and content
distribution networks (CDN), the browser-internal cache plays an important
role in reducing the amount of data transmitted over the network. This is done
by storing static content temporarily on the user’s system and loading it as
required. The consequence of reusing a file at a later time is the question of its
validity and freshness. Even though the browser cache has not yet achieved pub-
lic fame in terms of security and privacy risks, several attack strategies exist
(e.g. [10,16,26]) that emphasise the urgency to look at this topic more
thoroughly.

This paper contributes towards this claim by capturing the current usage of
HTTP browser caches, summarising security and privacy issues, as well as point-
ing out the necessity for future research on this topic. For this purpose, exper-
iments are performed to explore the influence of browser caches on quality of
c© Springer Nature Switzerland AG 2019
A. Askarov et al. (Eds.): NordSec 2019, LNCS 11875, pp. 20–36, 2019.
https://doi.org/10.1007/978-3-030-35055-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35055-0_2&domain=pdf
http://orcid.org/0000-0002-7863-0622
https://doi.org/10.1007/978-3-030-35055-0_2


Rotten Cellar: Security and Privacy of the Browser Cache Revisited 21

service metrics, as well as to analyse the content of the browser cache in relation
to shared resources. Moreover, the browser cache’s handling of TLS-protected
resources is investigated by carrying out a repetition experiment. More specif-
ically, it is examined how browser caches handle resources that are transferred
with different TLS certificates for the same origin domain. Finally, approaches
and tools are investigated that allow users to improve their security and privacy
when using the browser cache.

The remainder of this paper is structured as follows. First, the foundations of
HTTP caching are laid with a particular focus on the browser cache. In Sect. 3,
possible risks for security and privacy of users are summarised. In order to record
the current use of the browser cache, Sect. 4 describes several experiments that
were conducted and discusses the obtained results. Amongst them are the achiev-
able data transfer savings as well as the files that are reused from the browser
cache likewise by a large number of websites. Another experiment investigates
the relationship between the validity of TLS certificates and the behaviour of the
browser cache. Possibilities for users to influence the behaviour of the browser
cache are discussed in Sect. 5. Beside comparing the procedures to completely
delete the browser cache of well-known web browsers, available browser add-ons
for extended control of the cache are examined. Last but not least, Sect. 6 dis-
cusses the results and presents some suggestions that could contribute to improv-
ing a user’s security and privacy when browsing the web while maintaining the
benefits of browser caching.

2 HTTP Caching Background

Transmitting data in large distributed systems can be expensive, especially if
the bandwidth is limited somehow. As modern websites consists of numerous
files, technologies are used that reduce the amount of data to be transmitted.
The strategy considered here stores static components of a website on the clients
system, in order to be able to call them up if necessary without renewed trans-
mission. While so-called caches are used in numerous types on the internet, this
paper is limited to the HTTP browser cache.

If a website contains static content like e.g. images or scripts, web browsers
can store those files locally inside their respective browser cache. Once the client
requests the corresponding website again, previously stored files can be loaded
from the cache instead of requesting and transmitting them from the origin server
again. This technology is part of the Hypertext Transfer Protocol, specified by
RFC 2616 [12] and revised in RFC 7234 [11]. As not every resource of a website is
suitable to be cached and even the content of supposedly static files may changes
over time, a web server can send instructions on how the browser cache should
behave and handle cached resources. This is done via the Cache-Control header
in the corresponding HTTP response. In the following, the basic directives are
listed and described briefly.

no-cache. Forces caches to deliver the request to the source server to check the
validity of each request before releasing a cached copy.



22 F. Dehling et al.

no-store. The browser is strictly forbidden to temporarily store the response
from the server. This statement is usually used if the response contains sen-
sitive data.

private/public. Using the instruction private, responses can only be stored
in the browser cache as they may contain private information. Public allows
caching in shared caches, even if the response requires HTTP authentication.

max-age. This statement specifies the maximum time period in seconds begin-
ning with the time of the initial request in which a stored response can be
reused. If for example a response is assigned with the Cache-Control header
directive max-age=86400, the corresponding resource can be reused up to one
day.

Once a resource has been stored in the browser cache, the question arises as to
whether this file is up-to-date. As specified in RFC 7234, two procedures can be
used for this kind of verification and which enable a browser to perform so-called
explicit caching. The freshness lifetime rates the validity of a resource by features
which were previously defined by the web server. The HTTP header Expires or
the Cache-Control header directive max-age can be used to define a period of
time within which a resource may be reused by caches. A freshness validation
describes a process to check the validity of a resource by consulting the web
server but without transferring the actual payload. Using conditional requests
[13], indicators are transmitted that provide information about the version of
the cached resource. This can be done using the ETag header, which contains an
opaque string describing the version of the resource, or by using time information
such as the Date or Last-Modified header. One of these three features can be
used by the client to send a conditional request to the server. If the latest version
of the requested resource is present at the client’s cache, the server responds with
a status code 304 Not Modified. If the resource invalidated in the meantime,
it will be retransmitted in the response body.

Missing validation-features could theoretically cause a client to store a file
for an indefinite time. To prevent this, web browsers perform so-called implicit
caching if the server does not provide any features for freshness lifetime or fresh-
ness validation. The procedure of implicit caching depends on the implementa-
tion of the web browser and has been investigated in [22].

3 Security and Privacy Implications of the Browser
Cache

In addition to the advantages that browser caches offer to users, they can also
be a gateway to cyberattacks. These can be divided into two types, (1) those
affecting the user’s privacy and (2) those placing malicious code on the victim’s
computer. Several possible attack vectors have been detected and discussed in
the literature already and are summarised in the following.



Rotten Cellar: Security and Privacy of the Browser Cache Revisited 23

3.1 Browser Cache Poisoning

Browser Cache Poisoning attacks consists of placing manipulated files to the
affected browser cache [15,19,26]. The procedure is as follows. The victim first
visits a website which is described by an HTML document that also includes
instructions to load further documents like JavaScript files. The attacker replaces
one of those additional resources with his poisoned version. This can contain
malicious code that gets executed if the document is interpreted by the vic-
tim’s web browser. To infiltrate his modified file, the attacker can make use
of a Man-In-The-Middle attack (MITM). This enables him to compromise the
communication between the victim and the web server which is requested to
deliver the content for the appropriated website. Beside manipulating the actual
content, the attacker also ensures that the Cache-Control header enables the
browser cache to store the file as long as possible without performing an val-
idation process. If the victim visits the same website again at a later point of
time, the web browser will load the manipulated file from the browser cache and
executes the malicious code. At this time, the attacker does not need to have
access to the communication between the victim and the requested web server
as the malicious file was stored at the victims browser cache at the time of the
actual attack. In order to achieve greater impact, the attacker will try to com-
promise files that are used by multiple websites likewise and thus requested by
the victims browser more frequently. Files that are distributed via CDNs are a
promising solution for this purpose. The risk of such an attack increases when
resources are transmitted via unsecured connections.

3.2 User Tracking

Beside Browser Cache Poisoning attacks, the browser cache offers vulnerabilities
that affect the user’s privacy. This can be done in several ways. One approach
is to place user-based-identifiers in HTML documents. In this case, a server-
defined ID is assigned to e.g. a hidden DOM-element. If the appropriated HTML
document is cached by the victims web browser, it will be loaded containing the
identifier, when the victim is visiting the website at a later time. Using a script,
the embedded ID can be extracted and transmitted to the server. On this way,
both page visits can be associated and the user is identified [14].

Analysing loading times, also called Cache Timing Attacks (CTAs), is
another possibility to track users online activities with the help of the browser
cache [8]. This approach makes usage of one of the core features of this technol-
ogy, the drastic shortening of loading times. In order to explore which websites
already have been visited by the victim, a script can be used to request signif-
icant resources, like logos, of the websites to test. By measuring the time that
elapses until the resource is loaded, an attacker can determine whether the vic-
tim has already visited a specific page or not. Assuming that websites cause the
browser cache to store static content like logos, a short loading time occurs if the
requested content was loaded from the browser cache, whereas a longer loading
time is caused by loading the file from a web server.



24 F. Dehling et al.

This procedure is also possible without the use of runtime-analysing scripts
[10]. To do so, a sequence of requests, two to the own origin and one to a
resource of a website to be tested, needs to be defined in a HTML document in
immediate succession. The first request to the own origin triggers the start of
the time analysis. Next, a resource of a website of interest gets requested like in
the procedure that has been described before. As now, there is no application
logic in the client’s browser that could measure the time elapsing while loading
the external resource, a second request to the HTML document’s origin gets
triggered immediately after the external resource was loaded completely. By
analysing the time difference between the incoming requests on the origin server,
conclusions about the duration of the loading time for the external resource
can be drawn on the server side. The practical implementation of this method
requires the consideration of parallel loading of sub-resources. The attacker thus
needs to ensure that all requests of a sequence are executed successively after
the previous one is completed. This can be archived using the onload event
of a DOM element. Even though JavaScript is required to implement this, the
evaluation takes place on the server side, so no suspicious code is visible to the
client.

Using both procedures, it is also possible to obtain geographic information of
website visitors. By checking locally related pages it is possible, in particular for
a limited number of users to be identified, to infer their location or to identify
them on the basis of their location [16].

The third way to implement a tracking mechanism based on the browser
cache is utilising HTTP headers that are originally intended to be used for
validating cached resources. The HTTP headers Last-Modified and ETag are
suitable to transport user-based identifiers. These are stored together with the
corresponding resource to the browser cache. If a user is visiting a website that
requires this previously stored resources, the web browser performs a freshness
validation by transmitting the Last-Modified or the ETag header values. On
this way, the user-based identifier is available on the server side and can be used
in order to derive a usage behaviour [17].

4 Browser Cache Experiments

To examine the impact of browser caches with respect to the current state of
the web, an extensive analysis is carried out. The top 500 URLs of Tranco [20]
retrieved on August 19, 2019 serves as data basis. It results from a combination
of well-known website ranking lists like Alexa, Cisco Umbrella, Majestic and
Quantcast which has been prepared as a reliable and manipulation-free database
for security and privacy research. Using a Chromium devtools extension, each
URL of the list gets requested five times in a row with a time interval of 20 s. The
recorded traffic is exported in the HTTP Archive (HAR) [23] format for further
analysis. Since data which is stored persistently on the client’s hard disk is of
particular interest, the memory-cache, which is used by Chromium to tempo-
rary store content for opened tabs, is cleared before each page call. The records



Rotten Cellar: Security and Privacy of the Browser Cache Revisited 25

thus can be reduced to the usage of the disk-cache. In case of examinations with
activated browser cache, every website is called once before starting the mea-
surements to fill the cache. Since the content and thus also the transmitted data
of a website can be time-dependent, the measurement conditions described in
the following are carried out in parallel.

4.1 Effects on Network Performance

The first part of the analysis focuses on the effect of a browser cache on the trans-
mitted data volume when a website is accessed. For this purpose, the transferred
data volume of incoming responses that do not originate form the disk-cache is
computed. In order to avoid measurement errors, only the sub-resources of a
website that are present in the data set of all measurement conditions are con-
sidered. The median of resulting data volume for the five available measurements
is determined and used for further evaluation. This procedure is performed for
three test cases:

(a) activated browser cache
(b) deactivated browser cache (via option in the devtools)
(c) browser cache limited to same-origin and a https pattern in the URL

Test case (c) was achieved by using a developed browser extension that pre-
vents the browser from loading resources from the cache that do not originate
from the host of the page the user is attempting to access. As the affiliation of a
resource is determined by its URL, the usage of CDNs that do not include the
full name of the host, specified for the main HTML document, leads to an exclu-
sion from the browser cache. In addition, caching is limited to URLs starting
with the pattern https.

The results show a median of saved data of 95.9% for the comparison of acti-
vated and deactivated browser cache (test cases (a) and (b)). As shown in Fig. 1,
half of the requested websites reach a data saving of between 89.7% and 98.9% in
this measuring condition. Restricting the use of the browser cache to resources
from the originally requested origin and a https schema in the URL results in a
significantly different outcome. As shown in Fig. 2, half of the requested websites
archive a data saving of 0.35% to 77.7%. The median reaches a value of 37%.

The comparison of the data savings of the two evaluations clarifies the number
of resources that originate from sources that are not initially related to the
originally requested website. Some might originate from CDNs that are operated
by the provider of the website, but whose URL cannot simply be traced back to
the URL of the main HTML document. Another part are third-party resources
which are not associated with the originally requested website.

The evaluation of measurement conditions (a) and (b), the comparison of
activated and deactivated browser cache, clearly points out the importance of
this technology with regard to the scalability of a distributed system like the
web. The renouncement of a browser cache thus leads to a drastic increase of
required bandwidth, which is unacceptable, especially with mobile applications.



26 F. Dehling et al.

Fig. 1. Percentage of data saving by
using the browser cache of Chromium
for ubuntu. Median: 95.9%, q1: 89.7%,
q3: 98.9%, min: 0%, max: 100%

Fig. 2. Percentage of data saving by
using the browser cache of Chromium
for ubuntu with limitation to same-
origin resources and https URL pat-
terns. Median: 37%, q1: 0.35%, q2:
77.7%, min: 0%, max: 100%

4.2 Current Security and Privacy Risk Assessment

The second part of the analysis focuses on potential threats caused by the
browser cache. Browser Cache Poisoning attacks are particularly dangerous if
they are applied on resources that are used by several websites likewise. In order
to quantify this danger, the records are analysed to find cached resources that
are shared among several websites. We again use the top 500 websites by Tranco
[20] and capture the HTTP traffic with activated browser cache. The logs are
analysed as follows. If a sub-resource is loaded from the browser cache, the URL

Table 1. The 10 most referenced resources by the Tranco top 500 websites

URL of resource Web page

referencing

resource

https://www.google-analytics.com/analytics.js 202 (40.4%)

https://connect.facebook.net/en US/fbevents.js 111 (22.2%)

https://connect.facebook.net/signals/plugins/inferredEvents.js?v=2.9 111 (22.2%)

https://www.googletagservices.com/tag/js/gpt.js 81 (16.2%)

https://tpc.googlesyndication.com/safeframe/1-0-35/html/container.html 80 (16%)

https://securepubads.g.doubleclick.net/gpt/pubads impl 2019082201.js 79 (15.8%)

https://www.googletagservices.com/activeview/js/current/osd.js?cb=%2Fr20100101 67 (13.4%)

https://www.googletagservices.com/activeview/js/current/osd listener.js?cache=r20110914 65 (13%)

https://sb.scorecardresearch.com/beacon.js 64 (12.8%)

https://securepubads.g.doubleclick.net/gpt/pubads impl rendering 2019082201.js 60 (12%)

https://www.google-analytics.com/analytics.js
https://connect.facebook.net/en_US/fbevents.js
https://connect.facebook.net/signals/plugins/inferredEvents.js?v=2.9
https://www.googletagservices.com/tag/js/gpt.js
https://tpc.googlesyndication.com/safeframe/1-0-35/html/container.html
https://securepubads.g.doubleclick.net/gpt/pubads_impl_2019082201.js
https://www.googletagservices.com/activeview/js/current/osd.js?cb=%2Fr20100101
https://www.googletagservices.com/activeview/js/current/osd_listener.js?cache=r20110914
https://sb.scorecardresearch.com/beacon.js
https://securepubads.g.doubleclick.net/gpt/pubads_impl_rendering_2019082201.js


Rotten Cellar: Security and Privacy of the Browser Cache Revisited 27

of the initiating website is captured. This leads to a list of web pages loading
the same resource from the browser cache.

Table 1 contains the top 10 shared resources, sorted descending by the amount
of requesting websites. 40% of the websites requested in this analysis reference
the script analytics.js delivered by the host google-analytics which is located in
the browser cache. Compromising this file in would therefore have impact on a
large number of websites.

Reviewing Browser Cache Poisoning Attacks. To investigate the rele-
vance of Browser Cache Poisoning attacks on current web browsers, a further
experiment was carried out. This draws particular attention to the relationship
between the validity of TLS certificates and resources loaded from the browser
cache. A similar investigation has been done in [15] in 2015. In order to verify
how modern web browsers deal with this kind of attack, a renewed assessment
was done. The investigation is based on the assumption that files in the browser
cache are assigned solely based on a single cache key i.e. the URL, but no dis-
tinction is made as to whether the resource was transferred via a valid TLS
connection or not. A valid TLS connection is defined to be based on a certificate
whose authenticity is fully and successfully verified by the web browser. The
experiment set up (see Fig. 3) is described in the following.

Fig. 3. Procedure of Browser Cache Poisoning attack performed in order to test the
relationship between TLS certificates and cached resources

The client visits a website that is providing a valid TLS certificate. This
website serves an index HTML file and a JavaScript file as sub-resource. Both



28 F. Dehling et al.

files are delivered with cache statements that forbid the browser to load them
from the cache. In order to simulate a MITM attack, the delivering web server
changes its configuration and uses a self-signed certificate that is not trusted by
the browser. The client now reloads the website and receives an TLS warning
message. After he successfully clicked through the warning, the web server deliv-
ers its data as usual. As before, two resources are transferred, an index HTML
page and a JavaScript file. The latter now contains malicious code, but does not
provide any caching instructions. After a further change of the configuration,
back to the valid TLS certificate, the client updates the requested page again.
Although he now uses a trusted TLS connection, the browser loads the manipu-
lated JavaScript file from the browser cache. This will be the case until the user
explicitly instructs his web browser to request all resources from the origin, or
clears the cache.

To perform this experiment, an nginx web server is used to distribute the
HTML and JavaScript file. A Let’s Encrypt certificate was issued for the server,
in addition a self-signed certificate was created. The server configuration is used
to switch between the two certificates, whereby the self-signed certificate sim-
ulates a MITM attack. When changing the certificates, also the content of the
JavaScript file changes, whose function consists of inserting the currently con-
figured scenario (good certificate/bad certificate) as string into an object of the
HTML page. The selected scenario assumes that the HTML file is not cached
by the browser in both configurations. In the case of a valid certificate, the
JavaScript file should not be cached, but the MITM attack should save it per-
sistently. Figure 4 shows the Cache-Control header configuration defined on the
server.

Fig. 4. Cache-Control header of the resources provided by the server during the simu-
lated Browser Cache Poisoning attack

The results (see Table 2) show that all tested web browsers are vulnerable to
the chosen attack. Due to the cache implementation of the Chrome browser, the



Rotten Cellar: Security and Privacy of the Browser Cache Revisited 29

JavaScript file delivered with the valid certificate gets cached already, so that an
explicit reload of the page need to be done to load the manipulated script. For all
browsers, a TLS certificate warning needs to be clicked through before accessing
the web site transmitted when using a self-signed TLS certificate. After switching
back to the authentic certificate, all browsers load the manipulated script from
the browser cache. Chrome, Internet Explorer and Edge also cache the HTML
file, which results in the certificate warning in the URL-bar remaining for the
time being. Firefox updates the TLS information in the address-bar; Safari does
not distinguish between accepted self-signed and authentic certificates. After the
web browsers are closed and restarted, Internet Explorer, Edge and Safari still
load the manipulated JavaScript file from the browser cache, this time without
any certificate warnings. The scenario constructed is probably rare in reality,
since the described attack can be prevented by simple mechanisms such as Sub-
resource Integrity [7]. Nevertheless, it shows that none of the browsers tested
takes the authenticity of the certificate into account when caching.

Table 2. Impacts of the simulated browser cache poisoning attack

Chrome v76

(Windows &

MacOS)

Firefox v69

(Windows &

MacOS)

Internet

Explorer v11

(Windows)

Edge v44

(Windows)

Safari v12

(MacOS)

Caches malicious

script (self-signed

certificate)

(Yes) after

forced page

reload

Yes Yes Yes Yes

Loads malicious

script (valid

certificate)

Yesa Yes Yesa Yesa Yes

Loads malicious

script after browser

restart (valid

certificate)

No No Yes Yes Yes

aAs the index.html file is loaded from the cache too, the certificate warning in the URL-bar is still

present.

5 User-Centred Mitigation Strategies

Vulnerabilities of browser caches can affect the security and privacy of users.
The analyses described in the previous section points out that modern web
browsers still not provide sufficient mechanisms to prevent such attacks. The
likewise usage of shared resources shown in Table 1 increases the impact of an
incident. In order to improve the security of the browser cache without extensive
changes in the implementation of web browsers, users could make use of addi-
tional tools. In the following, user-centred mitigation strategies will be presented
and analysed. As it is well known that security-relevant technologies require a
high degree of usability in order to achieve the intended improvements in practice
[27], we reviewed the following mechanisms under consideration of efficiency and
task adequacy. First, we will highlight the simplest method imaginable, deleting



30 F. Dehling et al.

the browser cache. Due to the different implementations of the web browsers,
the usability of this function is not sufficient in all cases. Afterwards, available
browser extensions are examined which influence the functionality of the browser
cache to achieve a higher level of security and privacy.

5.1 How to Clear the Browser Cache

To evaluate the usability of the cache delete function for the web browsers Fire-
fox, Chrome, Safari, Internet Explorer and Edge, the procedure is examined by
focusing on the user’s effort. Table 3 shows the number of clicks necessary to
clear the cache.

The clear cache function of Firefox is located in the security and privacy area
of the browser settings. Five clicks are required to use it.

Chrome allows to open the corresponding dialog without navigating to the
general browser settings. The deletion of browser data can be limited to a certain
period of time. As the last hour is selected as default, users first must adjust the
period to the total interval of time. If this is done once, the cache can be cleared
within four clicks.

The Safari browser does not offer any option to clear the cache when using
the default configuration. With a total of five clicks, the developer settings must
be activated first to enable the option to empty the cache memory. If this is
done, two clicks are necessary.

To clear the browser cache in Internet Explorer, the appropriated dialog can
be accessed using the Security sub-menu of the browser’s main-menu. Unfortu-
nately it is marked with the term browser history. Four clicks are required to
clear the cache.

Edge requires a procedure similar to Firefox. The corresponding function
can be found in the security and privacy section located in general settings. Five
clicks need to be done to clear the cache.

With the exception of Firefox and Edge, the procedures for deleting the
browser cache differ. Especially the necessity of activating the developer options
on Safari seems unnecessarily complicated. Chrome, Firefox, Internet Explorer
and Edge also offer a shortcut to display the dialog box for deleting browser
data. In this case, Firefox will open a window which is different from the one
accessible via the menu. Similar to Chrome a time period must be selected for
which the data should be deleted.

Table 3. Number of clicks required to clear the browser cache

Firefox Chrome Safari Internet Explorer Edge

Number of clicks 5 4 5 + 2 4 5

Instead of clearing the browser cache, a private browsing session can be used
for all considered web browsers. The resources cached during private sessions get
cleared once all private browsing windows are closed.



Rotten Cellar: Security and Privacy of the Browser Cache Revisited 31

5.2 Tool-Based Solutions

Frequently clearing the full browser cache does not seem to be an efficient way to
deal with the present security and privacy threats when considering the amount
of data saved using this technology. A way of defining cache policies for sensitive
websites, such as online banking or risky resources like the ones originating
from different origins, would be more desirable. Browser add-ons can provide
additional functionality that could lead to an improvement for the user’s security
and privacy. We analysed extensions that are available at Google Chrome Web
Store, Firefox Add-ons and GitHub considering a functionality which exceeds
clearing the browser cache as well as a usable design which enables ordinary users
to make use of them. We used the keyword “cache” to search for browser plugins
at Chrome and Firefox extension stores as well as “browser cache extension” to
find relevant projects on GitHub. Due to a large number of results, the analysis
is restricted to the first 60 hits.

Extensions found at the Chrome App Store can be grouped into three cat-
egories. The largest group (26 results) provides only deletion of the cache or in
some cases further storages such as the browsing history. Another category (8
results) refers to applications that offer to display cached elements or to render
web pages using resources stored in the browser cache. The third category (3
results) contains applications that can manipulate the caching behaviour. These
include NoCache [24], PowerCache [18] and Supercache [21]. NoCache provides
a button to disable the browser cache. Using PowerCache it can be individually
specified which elements should not be loaded from the browser cache. This is
done by using a regex pattern to filter the requested URLs. Requests that are
manipulated by the extension are listed in the add-on. This application is pri-
marily intended for developers and thus is not designed to be usable for ordinary
web users. Super Cache is using a simple and minimalist user interface. One can
specify whether stylesheets, images or scripts should be loaded from the cache.
The options Default (no manipulation), Cache or NoStore can be set. These
settings can be configured for each website individually. As this extension only
manipulates the Cache-Control header directive of response headers, it can only
prevent resources from being stored to the browser cache. If a file is already
located there, it will be used to render the website anyway.

The analysis of Firefox browser extensions was done in the same way. Among
the first 60 results, 13 applications can be found which can clear the cache, six
applications that can display cache contents and two applications that allow
deactivation of the cache (Toggle Cache [25] and Cache It Out [6]). Five appli-
cations provide reloading of a page without using files from the browser cache. As
this concept seems to be similar to clearing the cache or performing a full reload
of a website, these extensions are neglected. Due to a restriction of the imple-
mentation of the extension API used by Firefox, it is not possible to control the
behaviour of the browser cache in detail. This would require the manipulation
of a HTTP request with regard to the caching behaviour before it is processed
by the browser, which is not possible in Firefox extensions.



32 F. Dehling et al.

The search on GitHub revealed eleven applications that allow to clear the
browser cache. Four projects offer the possibility to display content from the
cache. Only one application (Opera-disable-cache [9]) can deactivate the browser
cache. As it is implemented for the Opera browser, it will not be discussed fur-
ther. Table 4 provides an overview of the features of the remaining five applica-
tions that can control the caching behaviour.

Table 4. Comparison of five browser extensions that allow to control caching behaviour

NoCache

(Chrome)

PowerCache

(Chrome)

SuperCache

(Chrome)

Toggle Cache

(Firefox)

Cache It Out

(Firefox)

GUI X � � X X

Page specific

settings

X X � X X

Resource-type

specific settings

X � � X X

View cached

resources

X � X X X

Multiple settings

per website

X X � X X

(�: feature provided, X: feature not provided)

6 Discussion

The security and privacy risks presented in this paper, as well as the results of
the experiments carried out, demonstrate that modern web browsers are still
providing insufficient precautions to protect users. The analysis of present user-
centred mitigation strategies points out that further work needs to be done in
order to compensate the shortcomings of current browser cache implementa-
tions. The following section should take up the most important issues and give
recommendations on how these can be solved effectively.

Web Browser Extensions. In order to improve the browser cache with regard
to security and privacy, it would be conceivable to develop browser extensions
that control the behaviour of the cache according to users’ needs. Using browser
add-ons, shortcomings of the current caching procedure could be diminished
without depending on extensive and time-consuming developments of improved
web browsers. When looking at the APIs for Chrome and Firefox extensions,
we noticed that there is no direct way to manipulate the behaviour of the
browser cache [1,5]. By setting the Cache-Control header directive no-cache
in the request header, it is possible to prevent Chrome from loading a resource
from the cache. The documentation of Chrome contradicts this observation, but
describes this information as unstable. [2]. It would be desirable if browser ven-
dors would provide well-documented interfaces by which developers can create
high-performance solutions that give users more control on the behaviour of their
web browsers.



Rotten Cellar: Security and Privacy of the Browser Cache Revisited 33

Tracking via Browser Cache. As discussed in Sect. 3, the browser cache can
be utilised to attack users’ privacy. By using individual identifiers, a web tracking
mechanism can be implemented, very similar to the functionality of cookies. We
have not yet been able to establish any more detailed investigations into this
matter, but consider this to be absolutely necessary. While the introduction of
the General Data Protection Regulation (GDPR) increased users’ awareness on
privacy related risks of cookies due to the omnipresence of cookie info boxes
on many websites, the risks related to the browser cache are far less present
and seem to have received little attention so far. We plead for a comprehensive
analysis of possible further uses of the browser cache with regard to the risks for
the privacy of users. This includes but is not limited to a critical consideration
of freshness validation mechanisms as they can be misused to exchange user
identifiers using ETag or Last-Modified header values.

Cache Keys and TLS Certificates. Restricting the cache key to the URL for
resources transferred over TLS secured connections can lead to urgent security
risks. However, this practice seems incomprehensible, since information about
the authenticity of the certificate used in the TLS connection is available in
the web browser. Resources transferred via TLS connections based on differ-
ent certificates should not be considered identical. In fact, this contradicts the
security service of authenticity. A resource should therefore be bound to the cer-
tificate used during the transfer. Bypassing the browser cache for unauthentic
TLS connections could prevent Browser Cache Poisoning attacks by limiting the
impact of MITM attacks to the moment of the actual attack. Investigations also
revealed that the devtools of the Firefox web browser, unlike the information
in the URL-bar, do not distinguish between authenticated and, for example,
self-signed certificates. In both cases a green icon appears beside the transferred
resources displayed in the network tab. This does not seem to be sufficiently
differentiated and could lead to confusion among developers.

Browser Cache Partitioning. To prevent attacks that could harm the privacy
of users, Chrome plans to partition the cache [4]. This is to be achieved by using
the origin URL of the website requested by the user as an additional key for
a cached resource. This approach is to be welcomed as it can prevent attacks
like CTAs. Developers of Firefox are also considering this improvement [3]. It
remains to be seen whether this gets actually implemented.

7 Conclusion

HTTP browser caches are important components of distributed systems like the
web as they enable these systems to scale at large. We show that half of the 500
most popular websites from the Tranco list archive savings between 89% and 99%
of the data volume to be transmitted when browser caching is enabled. Thus,
disabling the browser cache has severe performance and economic consequences
for service providers and end users respectively.



34 F. Dehling et al.

At the same time though, browser caches can be misused to perform user
tracking and to persistently store malicious code on the client’s computer. The
current practice does not sufficiently balance security and performance trade-offs.
By taking a closer look at the files stored inside the cache we found resources
that are used by up to 40% of the examined websites. As these resources most
commonly stem from third parties providing analytics or advertising services,
the potential for user tracking is inherent. Moreover, we found that modern
web browsers still do not distinguish between valid and self-signed TLS certifi-
cates when storing and reusing resources from the browser cache. Although this
weakness opens the door for Browser Cache Poisoning attacks and has been
known since 2015 [15], it is still exploitable in the most current versions of major
browsers.

Hence, providing a more fine-grained control of the cache policy enforced by
the browser is essential. Browsers themselves offer caching by default and simple
settings to clear the cache. In some cases these settings are even well hidden
from the end user. Some browser extensions aim at closing this gap with more
enhanced features. However, our analysis of these extensions emphasises that
they provide only very fragmented functionalities with most of them only going
slightly beyond browsers’ builtin functionalities.

Overall, we argue that more research is required in respect to browser caches
and their relation to the security and privacy of end users. This would enable
browser vendors to close existing vulnerabilities and provide more elaborated
cache control settings for end users as well as APIs for developers and researchers.
The latter will foster the iterations towards novel approaches to balance perfor-
mance and security.

References

1. Chrome APIs - Google Chrome. https://developer.chrome.com/extensions/api
index. Accessed 05 Sept 2019

2. chrome.webRequest - Google Chrome. https://developer.chrome.com/extensions/
webRequest. Accessed 05 Sept 2019

3. Double-keyed HTTP cache Issue #904 whatwg/fetch. https://github.com/
whatwg/fetch/issues/904. Accessed 05 Sept 2019

4. Partition the HTTP Cache - Chrome Platform Status. https://www.chromestatus.
com/feature/5730772021411840. Accessed Sept 05 2019

5. WebExtensions. https://developer.mozilla.org/de/docs/Mozilla/Add-ons/
WebExtensions. Accessed 05 Sept 2019

6. Firefox user 13863091: Cache it out. https://addons.mozilla.org/en-US/firefox/
addon/cache-it-out/. Accessed 05 Sept 2019

7. Akhawe, D., Braun, F., Marier, F., Weinberger, J.: Subresource Integrity. W3c
Reccomendation, W3C (2016). https://www.w3.org/TR/SRI/. Accessed 05 Sept
2019

8. Bansal, C., Preibusch, S., Milic-Frayling, N.: Cache timing attacks revisited: effi-
cient and repeatable browser history, OS and network sniffing. In: Federrath, H.,
Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 97–111. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18467-8 7

https://developer.chrome.com/extensions/api_index
https://developer.chrome.com/extensions/api_index
https://developer.chrome.com/extensions/webRequest
https://developer.chrome.com/extensions/webRequest
https://github.com/whatwg/fetch/issues/904
https://github.com/whatwg/fetch/issues/904
https://www.chromestatus.com/feature/5730772021411840
https://www.chromestatus.com/feature/5730772021411840
https://developer.mozilla.org/de/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/de/docs/Mozilla/Add-ons/WebExtensions
https://addons.mozilla.org/en-US/firefox/addon/cache-it-out/
https://addons.mozilla.org/en-US/firefox/addon/cache-it-out/
https://www.w3.org/TR/SRI/
https://doi.org/10.1007/978-3-319-18467-8_7


Rotten Cellar: Security and Privacy of the Browser Cache Revisited 35

9. Digital, b.: Opera extension to disable browser cache, perfect for developers:
biati-digital/opera-disable-cache. https://github.com/biati-digital/Opera-disable-
cache. Accessed 05 Sept 2019

10. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: Proceedings
of the 7th ACM Conference on Computer and Communications Security, CCS
2000, Athens, Greece, pp. 25–32. ACM, New York (2000). https://doi.org/10.1145/
352600.352606

11. Fielding, M.N.R., Reschke, J.: RFC 7234: hypertext transfer protocol (HTTP/1.1):
caching. Technical report RFC 7234, IETF (2014)

12. Fielding, R., et al.: RFC 2616: hypertext transfer protocol-(HTTP/1.1). Technical
report RFC 2616, IETF (1999)

13. Fielding, R., Reschke, J.: RFC 7232: hypertext transfer protocol (HTTP/1.1): con-
ditional requests. Technical report RFC 7232, IETF (2014)

14. Fleischer, G.: Implementing web tracking. In: Black Hat USA 2012 Conference
Briefings, pp. 1–37 (2012)

15. Jia, Y., Chen, Y., Dong, X., Saxena, P., Mao, J., Liang, Z.: Man-in-the-browser-
cache: persisting HTTPS attacks via browser cache poisoning. Comput. Secur. 55,
62–80 (2015). https://doi.org/10.1016/j.cose.2015.07.004

16. Jia, Y., Dong, X., Liang, Z., Saxena, P.: I know where you’ve been: geo-inference
attacks via the browser cache. IEEE Internet Comput. 19(1), 44–53 (2015).
https://doi.org/10.1109/MIC.2014.103

17. Juels, A., Jakobsson, M., Jagatic, T.N.: Cache cookies for browser authentication.
In: 2006 IEEE Symposium on Security and Privacy (S P 2006), pp. 5–305, May
2006. https://doi.org/10.1109/SP.2006.8

18. Khachatryan, A.: Power cache. https://chrome.google.com/webstore/detail/
power-cache/famkodflhompmapangljedfdcfeligih?hl=de. Accessed 05 Sept 2019

19. Kuppan, L.: Attacking with HTML5 (2010). https://media.blackhat.com/bh-
ad-10/Kuppan/Blackhat-AD-2010-Kuppan-Attacking-with-HTML5-wp.pdf.
Accessed 05 Sept 2019

20. Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Korczynski, M., Joosen,
W.: Tranco: a research-oriented top sites ranking hardened against manipulation.
In: Proceedings 2019 Network and Distributed System Security Symposium, San
Diego, CA. Internet Society (2019). https://doi.org/10.14722/ndss.2019.23386

21. Mathur, T.: Super-cache. https://chrome.google.com/webstore/detail/super-
cache/fglobbnbihckpkodmeefhagijjcjnbeh?hl=de. Accessed 05 Sept 2019

22. Nguyen, H.V., Lo Iacono, L., Federrath, H.: Systematic analysis of web browser
caches. In: Proceedings of the 2nd International Conference on Web Studies, WS.2
2018, Paris, France, pp. 64–71. ACM, New York (2018). https://doi.org/10.1145/
3240431.3240443

23. Odvarko, J., Jain, A., Davies, A.: HTTP Archive (HAR) format (2019).
https://w3c.github.io/web-performance/specs/HAR/Overview.html Accessed 05
Sept 2019

24. Oluwaseye: No cache. https://chrome.google.com/webstore/detail/no-cache/
hckocmggmdfdnjjomghmhllibmdobdll. Accessed 05 Sept 2019

25. Reimer, M.: Toggle cache. https://addons.mozilla.org/de/firefox/addon/
togglecache/?src=search. Accessed 05 Sept 2019

https://github.com/biati-digital/Opera-disable-cache
https://github.com/biati-digital/Opera-disable-cache
https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/352600.352606
https://doi.org/10.1016/j.cose.2015.07.004
https://doi.org/10.1109/MIC.2014.103
https://doi.org/10.1109/SP.2006.8
https://chrome.google.com/webstore/detail/power-cache/famkodflhompmapangljedfdcfeligih?hl=de
https://chrome.google.com/webstore/detail/power-cache/famkodflhompmapangljedfdcfeligih?hl=de
https://media.blackhat.com/bh-ad-10/Kuppan/Blackhat-AD-2010-Kuppan-Attacking-with-HTML5-wp.pdf
https://media.blackhat.com/bh-ad-10/Kuppan/Blackhat-AD-2010-Kuppan-Attacking-with-HTML5-wp.pdf
https://doi.org/10.14722/ndss.2019.23386
https://chrome.google.com/webstore/detail/super-cache/fglobbnbihckpkodmeefhagijjcjnbeh?hl=de
https://chrome.google.com/webstore/detail/super-cache/fglobbnbihckpkodmeefhagijjcjnbeh?hl=de
https://doi.org/10.1145/3240431.3240443
https://doi.org/10.1145/3240431.3240443
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://chrome.google.com/webstore/detail/no-cache/hckocmggmdfdnjjomghmhllibmdobdll
https://chrome.google.com/webstore/detail/no-cache/hckocmggmdfdnjjomghmhllibmdobdll
https://addons.mozilla.org/de/firefox/addon/togglecache/?src=search
https://addons.mozilla.org/de/firefox/addon/togglecache/?src=search


36 F. Dehling et al.

26. Saltzman, R., Sharabani, A.: Active man in the middle attacks. OWASP AU (2009).
http://www.security-science.com/pdf/active-man-in-the-middle.pdf. Accessed 05
Sept 2019

27. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of
PGP 5.0. In: Proceedings of the 8th Conference on USENIX Security Symposium,
vol. 8, SSYM 1999, Washington, D.C., pp. 14–14. USENIX Association, Berkeley
(1999). http://dl.acm.org/citation.cfm?id=1251421.1251435

http://www.security-science.com/pdf/active-man-in-the-middle.pdf
http://dl.acm.org/citation.cfm?id=1251421.1251435

	Rotten Cellar: Security and Privacy of the Browser Cache Revisited
	1 Introduction
	2 HTTP Caching Background
	3 Security and Privacy Implications of the Browser Cache
	3.1 Browser Cache Poisoning
	3.2 User Tracking

	4 Browser Cache Experiments
	4.1 Effects on Network Performance
	4.2 Current Security and Privacy Risk Assessment

	5 User-Centred Mitigation Strategies
	5.1 How to Clear the Browser Cache
	5.2 Tool-Based Solutions

	6 Discussion
	7 Conclusion
	References




