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Preface

This volume contains the papers presented at the 24th Nordic Conference on
Secure IT Systems (NordSec 2019). The conference was held during November 18–20,
2019, in Aalborg, Denmark.

The NordSec conference series started in 1996 with the aim of bringing together
researchers and practitioners in computer security in the Nordic countries, thereby
establishing a forum for discussion and cooperation between universities, industry, and
computer societies. The NordSec conference series addresses a broad range of topics
within IT security and privacy and over the years it has developed into an international
conference that takes place in the Nordic countries. NordSec is currently a key meeting
venue for Nordic university teachers and students with research interests in information
security and privacy.

The 17 papers accepted for presentation, and included in the present volume, were
carefully chosen from 32 submissions, all of which were double-blind reviewed by the
Program Committee (PC). Additionally, a poster session was organized to encourage
further discussion, brainstorming, and networking on interesting topics of IT security.

Finally, we would like to sincerely thank everyone involved in making this year’s
conference a success, including, but not limited to: the authors who submitted their
papers, the presenters who contributed to the NordSec program, the PC members and
additional reviewers for their thorough and very helpful reviews, and finally a thanks to
EasyChair for their platform and support.

October 2019 Aslan Askarov
René Rydhof Hansen

Willard Rafnsson
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Privacy Impact Assessment: Comparing
Methodologies with a Focus

on Practicality

Tamas Bisztray(B) and Nils Gruschka

Department of Informatics, University of Oslo, Oslo, Norway
{tamasbi,nilsgrus}@ifi.uio.no

Abstract. Privacy and data protection have become more and more
important in the recent years since an increasing number of enterprises
and startups are harvesting personal data as a part of their business
model. One central requirement of the GDPR is the implementation of a
data protection impact assessment for privacy critical systems. However,
the law does not dictate a special assessment methods.

In this paper we compare different data protection impact assessment
methods. We have developed a comparison and evaluation methodology
and applied this to three of the most widespread assessment frameworks.
The result of this comparison shows the weaknesses and strength, but
also clearly indicates that none of the tested methods fulfills all desired
properties. Thus, the development of a new or improved data protection
impact assessment framework is an important open issue for future work.

Keywords: Data protection · Privacy Impact Assessment · GDPR ·
DPIA

1 Introduction

Data is the new currency of the 21th century and there is an increasing number of
businesses collecting and storing our personal information and making monetary
benefits from it. The key to success for these businesses is to harness value from
the collected data. To do this they need not just to store but to process what
has been collected. Monetary benefits and business goals are easily pushing the
protection of people’s personal privacy down in the to-do list. The General Data
Protection Regulation (GDPR) [8] was meant to give back the control to people
over their private data.

Companies failing to fulfill requirements imposed by the GDPR can face seri-
ous fines laid out by Article 83 which in the worst case can be up to e 20 million,
or 4% of the firm’s worldwide annual revenue from the preceding financial year,
whichever amount is higher.

If a company wants to avoid such high fines they have to adjust their oper-
ations to become compliant with the GDPR. However, many worry that these

c© Springer Nature Switzerland AG 2019
A. Askarov et al. (Eds.): NordSec 2019, LNCS 11875, pp. 3–19, 2019.
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regulations are imposing an unnecessary burden on tech companies. This opinion
was also voiced by Alibaba’s founder Jack Ma who said in an interview: “Europe
will stifle innovation with too much tech regulation” [18]. Indeed for a startup
such a fine would be devastating. Allocating too much resources to become fully
compliant could be similarly harmful. Therefore, becoming GDPR compliant
from the beginning without too much hassle is very important. But more than
a year after the GDPR came into force there still exists no standard framework
in the EU and companies are either doing an assessment on their own or they
have to find out which DPIA method is the one that would suit their project
the best.

Article 6(1) contains six requirements one of which is necessary to fulfill in
order to lawfully process PII (personally identifying information). One possi-
bility is to obtain consent from the data subject. Article 7 further states that
consent shall be requested in a way that is: “clearly distinguishable from the
other matters, in an intelligible and easily accessible form, using clear and plain
language”.

But what is intelligible, easy to understand plain language or what is appro-
priate in length can be matter of debate. Consent once acquired is very easy to
demonstrate and allows the controller1 to specify all use cases to rule out the
possibility of unwanted legal issues. Whereas other requirements could be more
difficult to prove.

Acquiring compliance therefore can look like one just have to ask something in
a sophisticated way and if the user clicks accept the processing is lawful. Google’s
case serves as a counterexample where the company received a e 50 million fine,
inflicted by French data protection authorities (CNIL) [9]. According to CNIL
the way Google obtained consent violated the transparency of obligations and
was lacking legal bases. This case sets a good example but unfortunately, in
practice there are still many instances where the users are presented sophisticated
documents where copyright claims and other legal matters are mixed with asking
consent without a clear description of the processing purposes.

There are several rules the data controller has to follow. Following our exam-
ple with consent Article 7(3) says “The data subject shall have the right to with-
draw his or her consent at any time”. If the data subject withdraws consent for
storing his personal information the data controller shall delete it. Meanwhile
if the data was copied, shared with several processors, has been processed after
which new PII was created, all of this has to be deleted, too. This requires that
the data controller should constantly keep track of the data.

Obtaining and maintaining compliance with the GDPR requires attention
and a good overview of operations related to PII. Improper management of PII
can lead to the violation of the GDPR. This is specially challenging for com-
panies with complex systems designed prior to the GDPR. Tackling this prob-
lem requires a method guiding organisations to identify and document activ-
ities related to personal data and assess risks related to its processing, while

1 Natural or legal person, public authority, agency or other body which, alone or jointly
with others, determines the purposes and means of the processing of personal data.
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providing steps to achieve compliance with the GDPR and the ability to demon-
strate it. For this purpose Article 35 introduces DPIA (data protection impact
assessment). Its a method that provides guided steps to identify and analyse how
the rights and freedoms of individuals might be affected by certain actions or
activities related to data processing, and to assist in avoiding/correcting these
issues.

This paper will analyse and compare different DPIA methods. The goal of this
work is twofold. Firstly, we are aiming to identify shortcomings of current DPIA
methods. We will do this by proposing a metric that helps to identify advantages
and disadvantages of existing methods. The second goal is to provide help for
those who are planning to conduct a DPIA, but can’t decide which framework
would be the best for their application as of today. To help with this question
we are briefly going through some frameworks highlighting their strengths and
weaknesses.

Section 2 gives a general introduction to DPIA and an overview of the exam-
ined DPIA frameworks. Section 3 provides an overview of related work in com-
paring DPIA methods. In Sect. 4 we present our metric for comparing DPIA
methods and perform the comparison itself. Section 5 contains the summary and
conclusions.

2 Data Protection Impact Assessment

2.1 Legal Background

Data protection impact assessment is a new requirement under the GDPR as
part of the data protection by design and by default principle (introduced in
Article 25). According to Article 35:

If the processing is likely to result in a high risk to the rights and freedoms
of natural persons, the controller shall, prior to the processing, carry out
an assessment of the impact of the envisaged processing operations.

Unfortunately it does not specify which type of processing requires a DPIA. The
reader might be confused right from the start after finding these methodologies
under the name of Privacy Impact Assessment (PIA). In practice they are the
same concept. Originally PIA was only aiming to assess the privacy risks of
a processing, whereas the GDPR requires DPIA to go beyond and determine
sufficient security measures and safeguards to address these risks. As pointed
out by Roger Clarke [12] in his Comprehensive Interpretation of Privacy, data
privacy is just one of the four aspects of privacy where the other three are:
privacy of the person, privacy of personal behaviour and privacy of personal
communications. In this paper we prefer the use of DPIA over PIA but they are
treated as synonyms.

In the Guidelines on Data Protection Impact Assessment published by the
Article 29 working party nine criteria for processing likely to result in a high
risk scenario (and therefore requiring a DPIA) are defined [1]. Similarly there is
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a list of cases in which no DPIA is required. The general guideline is that if you
are not sure where a certain process belongs a DPIA has to be performed.

Furthermore, Article 35(11) requires that a new DPIA has to be carried
out when there is a change related to the risk of the process. This means that
processes must be tracked over time in order to detect these kind of changes.
This also applies to processes which are at the moment labeled low risk since
the risk might change to high.

The GDPR does not reference a concrete DPIA method, but Article 35(7)
at least defines the minimal content of a DPIA:

– a systematic description of the envisaged processing operations and the pur-
poses of the processing, including, where applicable, the legitimate interest
pursued by the controller;

– an assessment of the necessity and proportionality of the processing operations
in relation to the purposes;

– an assessment of the risks to the rights and freedoms of data subjects referred
to in paragraph 1;

– the measures envisaged to address the risks, including safeguards, security
measures and mechanisms to ensure the protection of personal data and to
demonstrate compliance with this Regulation taking into account the rights
and legitimate interests of data subjects and other persons concerned.

Therefore, no DPIA methodology can miss any of these points.
The Article 29 working party recommends EU generic DPIA frameworks

from 4 countries (DE, ES, FR, UK) [1] and two EU sector-specific frameworks
“Privacy and Data Protection Impact Assessment Framework for RFID Appli-
cations” [6] and “Data Protection Impact Assessment Template for Smart Grid
and Smart Metering systems” [7]. The ISO/IEC 29134 as international standard
is referenced.

For applying our DPIA comparison approach, we will select the DPIA meth-
ods from this list. Additionally we will use LINDDUN as the most well-known
DPIA framework. We used the following criteria when selecting the methods to
compare:

– The method has recently been updated.
– An English version is available.
– The method offers a good selection of supporting material.
– From each of these origin at least one framework is selected: policy-driven,

academic, international.

Based on these criteria, the following methods have been selected for detailed
description and comparison: LINDDUN, CNIL, ISO/IEC 29134:2017. In the
following sections these methods are presented in more detail. Throughout the
analysis remarks will be made in the form of numbered notes to underline positive
or negative aspects of each method. These will be referenced in the evaluation.
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2.2 LINDDUN

LINDDUN is a privacy threat analysis framework, developed by researchers from
the DistriNet Research Group at KU Leuven, Belgium [17]. LINDDUN, is an
acronym for Linkability, Identifiability, Non-repudiation, Detectability, Disclo-
sure of information, Unawareness, Non-compliance and consists of 6 main steps.

1. Define Data Flow Diagram (DFD). It uses a data flow diagram to
provide a high level graphical description of the whole architecture (based on
SDL threat modeling). In a system model there are 4 different building blocks:
entity, process, data flow, data store.

Note 1: This representation makes it possible to differentiate between threat
analysis (for incoming and outgoing information) and privacy analysis (for inter-
nal data flow and processes) which is very helpful. It is also useful to map existing
architecture, for example Data store = Data base.

2. Mapping Privacy Threats to DFD. This step helps to identify threats
connected to each element in the DFD. Figure 1 shows the LINDDUN mapping
table, where each row is a LINDDUN threat category and the columns contain
all DFD elements. If a threat is relevant to a DFD type it is marked with X.

Fig. 1. Mapping privacy threats to DFD element types (E-entity, DF-data flow, DS-
data store, P-process) (Source: [17])

3. Identify Threat Scenarios. Each X in the table has to be examined to
determine whether they pose a threat to the system. Lindunn provides a set of
privacy threat threes to each X. (With the exception of Disclosure of Information,
where LINDDUN points to STRIDE for further analysis). If the threat is relevant
misuse cases has to be documented from the misactors point of view. Otherwise
the assumptions on why something is not relevant has to be documented.

4. Prioritise Threats. There can be an overwhelming number of threats and
due to budget and time limitations first (or only) the most important are consid-
ered. Risk assessment is not part of LINDDUN and it offers a number of meth-
ods to perform this step: OWASP’s Risk Rating Methodology [19], Microsoft’s
DREAD [20], NIST’s Special Publication 800-30 [21], or SEI’s OCTAVE [22].
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Note 2: It would be useful to have an improved version/combination of these
tools tailored for LINDDUN so that the security analyst conducting this step
doesn’t have to figure out which method would suit his application the best.

5. Elicit Mitigation Strategies. Every threat tree is automatically linked to a
mitigation strategy (which later is linked to solution steps). In a case study where
LINDDUN was used for DPIA with a Identity Wallet Platform [14] the authors
considered this impractical and used the ISO/IEC 27005 Information Security
Risk Management, which identifies four mitigation strategies: risk reduction,
retention, avoidance, and transfer.

6. Select Corresponding Threats. For every mitigation strategy a list of
related papers is provided on appropriate privacy enhancing technologies. This
is organised as a table and can be found in the supporting materials. In [14]
the authors noted that they faced “lack of expertise, low technology readiness
level, and other uncertainties regarding the integration of Privacy-Enhancing
Technologies (PETs)”. They also identified further PETs not present in the
table. They also described the need of finding balance between project goals and
privacy goals as they had trouble addressing all privacy threats.

2.3 CNIL

The CNIL PIA framework was created by the French data protection author-
ity. They published their DPIA method [3] in November 2018 incorporating the
GDPR and the Article 29 Working Party’s opinion [1]. It has a very well rounded
list of supporting materials: Methodology, Knowledge bases, Templates, Appli-
cation to IOT devices examples of data processing operations likely to result in
a high risk [2] and a software tool that helps to go through the steps [10]. It
helps to demonstrate compliance and provides guiding steps to achieve it. Com-
pliance is defined as a combination of the following two pillars: Fundamental
Rights and Principles (non-negotiable), Management of data subjects/privacy
risks (technical controls). It consists of 4 steps: describe context of processing,
guarantee compliance with fundamental principles, assess privacy risks and treat
them, and document validation.

1. Study of Context. The main steps here are:

– outline processing
– identify data controller and any processor
– check applicable references: approved codes of conduct (Article 40), certifica-

tions regarding data protection (Article 42)
– define personal data concerned / recipients, storage duration
– describe processes and personal data supporting assets.
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Note 3: As a first step it doesn’t give a good picture of the whole architec-
ture, data movement is not visible and doesn’t allow to later differentiate threat
analysis and privacy analysis. The online tool doesn’t support grouping or any
structuring of this information. On the upside it references the GDPR and the
relatable sections to help with compliance and clearly defines what is expected
at each entry and what the conductor of the DPIA should pay attention to.

Note 4: Article 35(1) requires “a systematic description of the envisaged
processing operations”. This could be a matter of debate but in contrast to
LINDDUN CNIL doesn’t fully comply with this point. It does list and describe
the processing operations but the process itself doesn’t lay out a systematic way
on how this should be conducted.

Note 5: Very important to remark: CNIL in its collection of supporting mate-
rials among which is a document called “Templates”, does provide tables to
collect and categorise information. It is not as good as a visual representation
but good for record-keeping. However, this paper focuses on the process and the
practicality of the DPIA method. If during the steps of the DPIA it is not explic-
itly mentioned or referenced if something additional is needed for that very step,
or the concept is not present in the main document which describes the process,
it will not be counted as part of the process. The DPIA should be intuitive with
sufficient guidance. Due to the plethora of templates available it is not easy to
get a hold of what is needed for a certain step. The main document itself never
references to any of the templates and their lack of integration into the process
is a serious drawback.

2. Study of Fundamental Principles. The aim is to ensure compliance with
privacy protection principles. It consists of two steps: “Assessment of the con-
trols guaranteeing the proportionality and necessity of the processing to enable
the persons concerned to exercise their rights” and “Assessment of controls pro-
tecting data subjects’ rights”.

Note 6: This step is a direct translation of the second bare minimum principal
from Article 35 (7b) and it is a simple compliance check.

3. Study of Risk. Note 7 : So far the software tool and the written material
were in sync, the tool used the same points described in the text but from this
point on it forks into two different processes with different questions.

The document first gives a general introduction to risk assessment with a
brief overview on how to calculate risk level. The supporting material Knowl-
edge Bases provides a very detailed tutorial on how to determine severity and
likelihood with a lot of real life threat scenarios. Study of risks contains two sec-
tions. The first one is Assessment of existing or planned controls on controls of
data being processed: encryption, anonymization etc., general security controls,
and organisational controls.

Note 8: The order of the steps so far are incorrect in the documentation.
Potential threats were not yet identified neither controls mitigating those threats.
Encryption is used if for example confidentiality needs to be protected, but there
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are many forms of encryption and first a threat needs to be recognised to use
the proper countermeasures.

The second section is on Risk assessment. It requires for each impending
event:

– determine potential impact on the data subject privacy
– estimate severity of impact
– identify threats to personal data supporting assets, that leads to this feared

event (threat scenario) and the risk sources (threat actors)
– estimate likelihood
– determine whether the risks identified in this way can be considered accept-

able in view of the existing or planned controls.

Note 9: These steps are out of order. Likelihood and severity has to be
calculated before impact.

Note 10: Considering if a risk can be acceptable doesn’t qualify as prioritising
threats.

The software tool interestingly follows a different steps: Planned or existing
measures, illegitimate access to data, unwanted modification of data, data disap-
pearance, and risks overview. It eerily resembles the CIA triad (confidentiality,
integrity, availability) with “Planned or existing measures” and “Risk overview”
added. It also doesn’t categorise the risk properly, neither differentiates between
non-negotiable and technical controls.

4. Validation of the DPIA. In a timely fashion this section correspond to
Article 35 (7d): “the measures envisaged to address the risks, including safe-
guards, security measures and mechanisms to ensure the protection of personal
data and to demonstrate compliance...”. It consists of 3 steps: prepare material,
formal validation, repeat when necessary (no further comment on how often).

2.4 ISO/IEC 29134:2017

The ISO/IEC standard number 29134:2017 also has a nice selection of support-
ing material, mainly other ISO standards like a risk-based management system:
ISO/IEC 27001, or overview and vocabulary: ISO/IEC 29100:2011 etc. The doc-
ument itself starts with a long discussion on principles and guidelines related to
conducting the DPIA such as: preparing grounds, benefits of DPIA, objectives
of reporting, accountability to conduct, scale, determine if DPIA is necessary,
preparations, set up a team, prepare a plan, describe what is being assessed, and
stakeholder engagement.

The actual steps of the DPIA only starts at Sect. 6.4 and it consists of 5 main
steps:

1. Identify information flows of personally identifying information (PII)
2. Analyse the implications of the use cases
3. Determine the relevant privacy safeguarding requirements
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4. Assess privacy risks
5. Prepare for treating privacy risks.

The general structure for these steps consists of the following list the con-
ductor has to fill out:
Objective, Input, Expected output, Actions, Implementation guidelines.

The guiding document provides a detailed description of what is expected at
each point of this list that is tailored to the main steps. After the list it provides
a detailed guide with comments and recommendations to further assist the con-
ductor of the DPIA, by for example listing organisational and non-compliance
threats and other tips related to that part of the assessment. Note 14: This
approach makes the whole process a bit monotone almost like filling out a ques-
tionnaire but at least it discusses the important topics.

The next sections are the DPIA follow up and the DPIA report. These are
more detailed than the DPIA itself. For example the Risk assessment section
contains: Threats and their likelihood, Consequences and their level of impact,
Risk evaluation, Compliance analysis. But it always references back to previous
points so it doesn’t mean it was missing from the process. Plus it is easy to put
together and provides a very detailed report.

3 Related Work

Although there is an overabundance in available DPIA methods there hasn’t
been a lot of work on evaluating and comparing them. Further, from the existing
literature only a small proportion was published after the GDPR came into force.
There are two types of papers in this topic. Evaluating DPIA methods and
comparing/measuring the effectiveness of DPIA reports. These are two different
fields but in the pursuit of evaluation a lot can be learned from the study of
reports as well.

As mentioned before, the GDPR unfortunately does not provide an actual
framework to follow and it also doesn’t recommend one. This is a shortcoming
recognised by Wright et al. already in 2013 [16]. They urged that the European
commission and EU member states should draw from the experience of other
countries and develop their own DPIA policy, methodology and framework. They
also pointed out that a DPIA should be more than a compliance check, as it
should be a process. It has to be reviewed and updated throughout the whole
life cycle of the project as also stated in Article 35(11). They compared DPIA
methods from six countries drawing inspiration from the PIAF project [11] co-
founded by the European Commission which reviewed DPIA methods from other
countries.

The PIAF delivereable 1 compared the effectiveness of DPIA guides based
on a checklist of 18 questions [4, table 10.1] and comparing DPIA reports using
checklist of 10 questions [4, table 10.2]. The thirds deliverable [5] outlines what
a DPIA process should conatin. These are: Project description, Stakeholder con-
sultation, Risk management, Legal Compliance check, Report, Implementation,
Review.
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The RFID framework [6] even though it is sector-specific, recognises eight
important steps a DPIA should address. These are: characterization of the appli-
cation, initial analysis, definition of privacy targets, evaluation of degree of pro-
tection demand for each privacy target, identification of threats, identification
and recommendation of controls, consolidated view of controls, assessment and
documentation of residual risks. The frameworks our analysis will focus on are
those designed for general use-cases.

So far for comparing DPIA methods the most commonly used technique was
to go through a checklist to see if it fulfills certain requirements. However, this can
be only done if the evaluation criteria is quantitative in nature and only checks
the existence or non existence of a certain aspect. For example in the comparison
of Wright et al. one checkpoint is: “Provides a suggested structure for the PIA
report”. This is a binary question. Whereas other qualitative matters shouldn’t
be written off with a check-mark. For example points like DPIA is a process or
DPIA is more than a compliance check. It doesn’t matter if a method says or
claims these points, the real question is how well they fulfill these requirements.
It is also pointless to include such questions in a DPIA report analysis as it is
not the job of the project owner to invent a working DPIA method that has
a nice workflow, rather it’s the task of those developing DPIA methods and
tools to fulfill these requirements. A report is a statement on what has been
performed. These problems are commonly present in previous works by either
treating important question as a check-mark and not uncovering shortcomings
of the DPIA method, or including questions related to the quality of the method
in the report analysis.

An improvement to the check-mark approach was PEGS (PIA Evaluation
and Grading System) proposed by Whadwa et al. [15]. Even though this method
was developed to evaluate the actual DPIA process post facto (the DPIA report)
not the DPIA itself, the authors note that it can be helpful also in guiding a
DPIA process. Their evaluation criteria is first presented as a checklist where
they provide an extra column where in case a requirements was not fulfilled
scope of improvement can be specified. Then a weighting is applied in three
categories 1, 2 or 3 to each criteria in line with their relative importance, where
1 is the least important and 3 is the most important. Their choice of weights was
highly based on the PIAF project. Criteria with weight 1: clarification of early
initiation, identification of who conducted the DPIA and publication; weight 2:
project description, purpose and relevant contextual information, information
flow mapping, legislative compliance checks and identification of stakeholder
consultation; weight 3: identification of privacy risks and impacts, identification
of solutions/options for risk avoidance and mitigation, and recommendations
handling after the PIA.

In a more recent analysis Vemou et al. [13] reviewed 9 different DPIA methods
regardless of country of origin with the only criteria that it should not be sector
specific, by using 17 questions derived from existing literature as check-marks to
draw attention the to lack of completeness of these methods.
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4 Comparison of DPIA Methods

4.1 Comparison Metric

To successfully evaluate a DPIA method we should differentiate between three
types of criteria. Questions that relate to steps someone should consider prior
starting the DPIA are preliminary questions, they are important to consider but
they don’t have to be integrated into the process. Similarly there are a series of
questions only relevant after a DPIA is completed. Like “is publication of the
DPIA report provisioned”. These are in the territory of DPIA report analysis
(which is the scope of our future research) and again is not something that
needs to be part of the DPIA process itself. The questions the we focus on
are the ones directly related to the steps of DPIA. Questions should also point
out the shortcomings identified in the Notes. Some questions such as “is it a
process” or “is structured guidance to assist in risk assessment provided?” cannot
be answered with a single check-mark as they are rather qualitative questions.
However, it would be very difficult to build a metric with open questions. In
previous works questions related to the DPIA process were simply listed. Here
the questions will be structured based on which part of the DPIA process should
contain it. It’s important to note that Article 29 working party’s document is
the only official recommendation on how the process should look like. Therefore,
we consider that as a starting point2 .

In total there will be 28 questions. These are categorised based on which
part of the DPIA they belong to. The evaluation happens the following way.
Each questions will receive grades in two categories: score (S) and process (P).
The Score (S) meant to determine if the question is covered by the method in
general. For the score a question can get 0 points if it is not in the method, 1
point if it is partially included, and 2 if its completely addressed. The Process
(P) meant to evaluate if a question is well integrated in the DPIA process, for
example is discussed in the right part of the DPIA, which can also mean it’s part
of the method but not placed correctly or logically from the perspective of the
whole process. Is it properly discussed with the necessary supporting materials
included. For the process it can get +1 if the step is integrated into the process
or −1 if it is not integrated ). For a zero Score the Process is automatically
zero too. This approach can penalize if a framework while mentioning a certain
criterions or questions doesn’t integrate its steps into a process and it’s closer to
a compliance check. For a simple check-mark evaluation this is not possible.

2 Their “Criteria for acceptable DPIA” checklist, however, is not a blueprint for a
good process. The points of Article 35 (7) of the GDPR was also only meant to be a
list. Unfortunately, the steps of CNIL is almost a point to point copy of these two.
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In this analysis we are not going to focus on a complete compliance checklist
but many related questions are included in the process. Checking all the appli-
cable points of the GDPR is not the scope of this paper, as it is more important
during the report evaluation.

4.2 Evaluation Questions

This section contains the grading questions split up between six tables for the
six steps we identified as crucial parts of the DPIA process. The cells apart from
the received grades in some cases also contain a reference to the “Notes”. For
example Note 1 is denoted as (1). Grades for (S) and (P) are also separately
shown (Breakdown) before summarised in the Total score where the maximum
achievable grade is also shown. Most questions are aiming to evaluate the content
of the methods, while others are specifically trying to uncover if the order of steps
and questions in the method are designed properly.

Step 1: Description of envisaged processing ISO CNIL LIN.

S P S P S P

Structured description and mapping of
information flows, contextual information and
envisaged processing (structured: either graph
or table)

2 +1 2 −1 (3) (4) (5) 2 +1 (1)

Establish easy to follow connections between
system elements (data, process, supporting
assets etc.)

2 +1 1 −1 (5) 2 +1 (1)

Allow the differentiation of internal and
external data movement

2 +1 0 0 2 +1 (1)

Stakeholder identification 2 +1 2 +1 1 +1

Breakdown 8 +4 5 −1 7 +4

Total score (out of 12) 12 4 11

Both LINDDUN and ISO are using visual representation of the information
flows and they are described during the process. LINDDUN is more intuitive
but the instructions provided in ISO are more detailed. Unfortunately, the CNIL
method really falls behind at this point, which is a very serious issue. This step
is the foundation stone for the whole DPIA and missing points here is a serious
problem.
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Step 2: Assess necessity and proportionality of
processing

ISO CNIL LIN.

S P S P S P

How information is to be collected, used, stored,
secured and distributed and to whom and how long
the data is to be retained

2 +1 2 +1 0 0

Compliance with Article 29 Working party’s
corresponding list (Annex 2/necessity and
proportionality)

2 +1 2 +1 0 0

Analyse all previously identified system elements in a
structured manner

2 −1 0 (6) 0 (6) 2 +1

Breakdown 6 +1 4 +2 2 +1

Total score (out of 9) 7 6 3

LINDDUN is clearly missing assessment steps from a legal perspective and
mainly focuses on threat analysis. CNIL does a perfect job from a compliance
perspective but it doesn’t connect the dots. For the next step we deviate from the
suggestion of Article 29 Working Party which would be: “measures envisaged”.
To determine how the information has to be stored and secured it is important to
know the context, from who it has to be protected. Here we prefer the approach
of LINDDUN where an early threat analysis is initiated.

Step 3: Identify threats/risks ISO CNIL LIN.

S P S P S P

Organisational and technical that are endangering
the rights of data subjects

2 +1 2 +1 0 0

Origin of risks are specified (threat actor-attack
surface)

2 −1 2 −1 2 +1

Threats should be directly linked to elements from
step 1

1 −1 1 −1 2 +1

Identification of threats coming from GDPR
non-compliance is integrated into the process

2 +1 2 +1 0 0

Threats are identified before Risk Assessment 2 +1 0 (8) 0 2 +1

Is there a differentiation between threat analysis and
privacy analysis

2 +1 2 +1 1 −1

Addresses all types of privacy risks (informational,
bodily, territorial, locational, communications)

1 +1 1 −1 1 +1

Breakdown 12 +3 10 0 8 +3

Total score (out of 21) 15 10 11



16 T. Bisztray and N. Gruschka

The ISO standard proves to be the best in this case as well. The drawback of
LINDDUN is again the fact that legal compliance is not integrated in the process,
which the authors clearly state in the beginning as a result lot of aspects are
missing (although some are accidentally tackled). LINDDUN only considers a
limited number of threats. CNIL is very strong contentwise but there is no logical
structure in its steps and it is a simple compliance check.

Step 4: Risk Assessment ISO CNIL LIN.

S P S P S P

Structured guidance to assist in risk assessment is
provided

2 +1 2 +1 0 0

Fundamental Rights and Principles (non-negotiable)
and Management of data subjects/privacy risks
(technical controls) are differentiated

1 +1 2 +1 0 0

Risk calculation is included with sufficient
supporting material

2 +1 2 −1 (9) 0 0

Risks are prioritised 2 +1 1 (10) +1 0 0

Lower risks that are not immediately addressed are
well documented

2 +1 1 +1 2 +1

Risk reduction, retention, avoidance, and transfer are
all listed as mitigation strategies and sufficiently
discussed in supporting material

2 +1 1 +1 0 0

Owner of residual risks specified 2 +1 2 +1 0 0

Breakdown 13 +7 11 +5 2 +1

Total score (out of 21) 20 16 3

LINDDUN doens’t include a risk assessment, only recommends some. It gets
some points because in the previous step all threats were already documented.
ISO also points out to other ISO/EIC standards and guides, but it does include
a structured guide on its own and the recommendations are well referenced and
compatible. Whereas LINDDUN leaves the privacy analyst alone to figure out
which method would be the best for his use case. If CNILs software tool would
be also evaluated for this step its score would be closer or below LINDDUNs.
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Step 5: Measures envisaged ISO CNIL LIN.

S P S P S P

Technical controls and PETs are only discusses after
threats and related risks have been evaluated

2 +1 1 −1 2 +1

An extensive list of organisational measures are provided 1 +1 2 −1 0 0

An extensive and updated list of technical measures
(PETs) are available

1 −1 2 −1 2 +1

Literature/supporting material for suggested PETs are
included

0 0 2 −1 2 +1

Breakdown 4 +1 7 −4 6 +3

Total score (out of 12) 5 3 9

CNIL again is very vague in the main document but, the fact that in it’s
“knowledge bases” supporting material provides a wide selection of technical
measures none of which is referenced in the process. The list provided by LIND-
DUN can not be considered complete (neither CNILs or ISO), but it’s a step in
the right direction.

Step 6: Documentation/Validation ISO CNIL LIN.

S P S P S P

Outline of the report was generated during the process 2 +1 1 −1 1 −1

Result is evaluated 2 +1 2 +1 0 0

Action plan for continuation 2 +1 2 +1 1 −1

Breakdown 6 +3 5 +1 2 −2

Total score (out of 9) 9 6 0

Here ISO outruns the other methods in terms of DIPA report preparation.
The steps are already outlined in the main document and every step is referenced
back to a step from the process.

Evaluation ISO CNIL LIN.

S P S P S P

Final Breakdown 49 19 42 3 27 10

Final Score (out of 84) 68 45 37

The overall result shows that, CNIL lost a lot of points for coming off as a
compliance check and not trying to be a better process, and due to the lack of
references. The ISO method proved to be the best but it could also use a bit
if improvement as the order of its steps and the content are good, it feels like
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a questionnaire and not a genuine process. LINDDUN needs to develop a step
for risk assessment and documentation, while steps and references for GDPR
compliance must be incorporated throughout the process.

5 Summary and Outlook

In this paper we performed a comparison of widespread data protection impact
assessment methods. By approaching the evaluation and grading from the per-
spective of a process rather then a compliance check, it became obvious that
in many cases very important points of these methodologies are not properly
worked out. The ISO standard proved to provide the best framework both con-
tentwise and as a process, although there are still many shortcomings waiting
for improvement. The latter is even more true in case of CNIL and LINDDUN.
These are among the state of the art DPIA methods with the purpose of: helping
companies implementing the Privacy by Design paradigm, support developing
GDPR compliance (not least to avoid fines such as Google got), but mostly to
assist in the protection of the rights and freedom of natural persons. CNIL has
a very good selection of supporting material and in terms of achieving GDPR
compliance, it is the best method to go for. However, as a process it really doesn’t
perform well. LINDDUN has a very good start but it completely misses Risk
Assessment and it’s 5th step (Eliciting mitigation strategies) is not very intuitive
and it’s not strong on documentation/validation.

Following Wright et al. [16] we also highlight the importance of one or more
officially approved EU-specific DPIA frameworks with sufficient and regularly
updated supporting material. In future work we will apply these frameworks
to various projects to address the question of GDPR compliance more deeply
and analyse the DPIA reports, with the intention of proposing improvements to
these methods.
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Abstract. Web browsers use HTTP caches to reduce the amount of
data to be transferred over the network and allow Web pages to load
faster. Content such as scripts, images, and style sheets, which are static
most of the time or shared across multiple websites, are stored and
loaded locally when recurring requests ask for cached resources. This
behaviour can be exploited if the cache is based on a naive implementa-
tion. This paper summarises possible attacks on the browser cache and
shows through extensive experiments that even modern web browsers
still do not provide enough safeguards to protect their users. Moreover,
the available built-in as well as addable cache controls offer rather limited
functionality in terms of protection and ease of use. Due to the volatile
and inhomogeneous APIs for controlling the cache in modern browsers,
the development of enhanced user-centric cache controls remains—until
further notice—in the hands of browser manufacturers.

Keywords: Browser cache · Security · Privacy

1 Introduction

Large distributed systems such as the web require technologies that provide
high scalability. A mechanism that enables to reduce the amount of data to be
transferred between the client and the origin server drastically is the caching
of resources. Besides web caching systems, such as proxy caches and content
distribution networks (CDN), the browser-internal cache plays an important
role in reducing the amount of data transmitted over the network. This is done
by storing static content temporarily on the user’s system and loading it as
required. The consequence of reusing a file at a later time is the question of its
validity and freshness. Even though the browser cache has not yet achieved pub-
lic fame in terms of security and privacy risks, several attack strategies exist
(e.g. [10,16,26]) that emphasise the urgency to look at this topic more
thoroughly.

This paper contributes towards this claim by capturing the current usage of
HTTP browser caches, summarising security and privacy issues, as well as point-
ing out the necessity for future research on this topic. For this purpose, exper-
iments are performed to explore the influence of browser caches on quality of
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service metrics, as well as to analyse the content of the browser cache in relation
to shared resources. Moreover, the browser cache’s handling of TLS-protected
resources is investigated by carrying out a repetition experiment. More specif-
ically, it is examined how browser caches handle resources that are transferred
with different TLS certificates for the same origin domain. Finally, approaches
and tools are investigated that allow users to improve their security and privacy
when using the browser cache.

The remainder of this paper is structured as follows. First, the foundations of
HTTP caching are laid with a particular focus on the browser cache. In Sect. 3,
possible risks for security and privacy of users are summarised. In order to record
the current use of the browser cache, Sect. 4 describes several experiments that
were conducted and discusses the obtained results. Amongst them are the achiev-
able data transfer savings as well as the files that are reused from the browser
cache likewise by a large number of websites. Another experiment investigates
the relationship between the validity of TLS certificates and the behaviour of the
browser cache. Possibilities for users to influence the behaviour of the browser
cache are discussed in Sect. 5. Beside comparing the procedures to completely
delete the browser cache of well-known web browsers, available browser add-ons
for extended control of the cache are examined. Last but not least, Sect. 6 dis-
cusses the results and presents some suggestions that could contribute to improv-
ing a user’s security and privacy when browsing the web while maintaining the
benefits of browser caching.

2 HTTP Caching Background

Transmitting data in large distributed systems can be expensive, especially if
the bandwidth is limited somehow. As modern websites consists of numerous
files, technologies are used that reduce the amount of data to be transmitted.
The strategy considered here stores static components of a website on the clients
system, in order to be able to call them up if necessary without renewed trans-
mission. While so-called caches are used in numerous types on the internet, this
paper is limited to the HTTP browser cache.

If a website contains static content like e.g. images or scripts, web browsers
can store those files locally inside their respective browser cache. Once the client
requests the corresponding website again, previously stored files can be loaded
from the cache instead of requesting and transmitting them from the origin server
again. This technology is part of the Hypertext Transfer Protocol, specified by
RFC 2616 [12] and revised in RFC 7234 [11]. As not every resource of a website is
suitable to be cached and even the content of supposedly static files may changes
over time, a web server can send instructions on how the browser cache should
behave and handle cached resources. This is done via the Cache-Control header
in the corresponding HTTP response. In the following, the basic directives are
listed and described briefly.

no-cache. Forces caches to deliver the request to the source server to check the
validity of each request before releasing a cached copy.
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no-store. The browser is strictly forbidden to temporarily store the response
from the server. This statement is usually used if the response contains sen-
sitive data.

private/public. Using the instruction private, responses can only be stored
in the browser cache as they may contain private information. Public allows
caching in shared caches, even if the response requires HTTP authentication.

max-age. This statement specifies the maximum time period in seconds begin-
ning with the time of the initial request in which a stored response can be
reused. If for example a response is assigned with the Cache-Control header
directive max-age=86400, the corresponding resource can be reused up to one
day.

Once a resource has been stored in the browser cache, the question arises as to
whether this file is up-to-date. As specified in RFC 7234, two procedures can be
used for this kind of verification and which enable a browser to perform so-called
explicit caching. The freshness lifetime rates the validity of a resource by features
which were previously defined by the web server. The HTTP header Expires or
the Cache-Control header directive max-age can be used to define a period of
time within which a resource may be reused by caches. A freshness validation
describes a process to check the validity of a resource by consulting the web
server but without transferring the actual payload. Using conditional requests
[13], indicators are transmitted that provide information about the version of
the cached resource. This can be done using the ETag header, which contains an
opaque string describing the version of the resource, or by using time information
such as the Date or Last-Modified header. One of these three features can be
used by the client to send a conditional request to the server. If the latest version
of the requested resource is present at the client’s cache, the server responds with
a status code 304 Not Modified. If the resource invalidated in the meantime,
it will be retransmitted in the response body.

Missing validation-features could theoretically cause a client to store a file
for an indefinite time. To prevent this, web browsers perform so-called implicit
caching if the server does not provide any features for freshness lifetime or fresh-
ness validation. The procedure of implicit caching depends on the implementa-
tion of the web browser and has been investigated in [22].

3 Security and Privacy Implications of the Browser
Cache

In addition to the advantages that browser caches offer to users, they can also
be a gateway to cyberattacks. These can be divided into two types, (1) those
affecting the user’s privacy and (2) those placing malicious code on the victim’s
computer. Several possible attack vectors have been detected and discussed in
the literature already and are summarised in the following.



Rotten Cellar: Security and Privacy of the Browser Cache Revisited 23

3.1 Browser Cache Poisoning

Browser Cache Poisoning attacks consists of placing manipulated files to the
affected browser cache [15,19,26]. The procedure is as follows. The victim first
visits a website which is described by an HTML document that also includes
instructions to load further documents like JavaScript files. The attacker replaces
one of those additional resources with his poisoned version. This can contain
malicious code that gets executed if the document is interpreted by the vic-
tim’s web browser. To infiltrate his modified file, the attacker can make use
of a Man-In-The-Middle attack (MITM). This enables him to compromise the
communication between the victim and the web server which is requested to
deliver the content for the appropriated website. Beside manipulating the actual
content, the attacker also ensures that the Cache-Control header enables the
browser cache to store the file as long as possible without performing an val-
idation process. If the victim visits the same website again at a later point of
time, the web browser will load the manipulated file from the browser cache and
executes the malicious code. At this time, the attacker does not need to have
access to the communication between the victim and the requested web server
as the malicious file was stored at the victims browser cache at the time of the
actual attack. In order to achieve greater impact, the attacker will try to com-
promise files that are used by multiple websites likewise and thus requested by
the victims browser more frequently. Files that are distributed via CDNs are a
promising solution for this purpose. The risk of such an attack increases when
resources are transmitted via unsecured connections.

3.2 User Tracking

Beside Browser Cache Poisoning attacks, the browser cache offers vulnerabilities
that affect the user’s privacy. This can be done in several ways. One approach
is to place user-based-identifiers in HTML documents. In this case, a server-
defined ID is assigned to e.g. a hidden DOM-element. If the appropriated HTML
document is cached by the victims web browser, it will be loaded containing the
identifier, when the victim is visiting the website at a later time. Using a script,
the embedded ID can be extracted and transmitted to the server. On this way,
both page visits can be associated and the user is identified [14].

Analysing loading times, also called Cache Timing Attacks (CTAs), is
another possibility to track users online activities with the help of the browser
cache [8]. This approach makes usage of one of the core features of this technol-
ogy, the drastic shortening of loading times. In order to explore which websites
already have been visited by the victim, a script can be used to request signif-
icant resources, like logos, of the websites to test. By measuring the time that
elapses until the resource is loaded, an attacker can determine whether the vic-
tim has already visited a specific page or not. Assuming that websites cause the
browser cache to store static content like logos, a short loading time occurs if the
requested content was loaded from the browser cache, whereas a longer loading
time is caused by loading the file from a web server.
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This procedure is also possible without the use of runtime-analysing scripts
[10]. To do so, a sequence of requests, two to the own origin and one to a
resource of a website to be tested, needs to be defined in a HTML document in
immediate succession. The first request to the own origin triggers the start of
the time analysis. Next, a resource of a website of interest gets requested like in
the procedure that has been described before. As now, there is no application
logic in the client’s browser that could measure the time elapsing while loading
the external resource, a second request to the HTML document’s origin gets
triggered immediately after the external resource was loaded completely. By
analysing the time difference between the incoming requests on the origin server,
conclusions about the duration of the loading time for the external resource
can be drawn on the server side. The practical implementation of this method
requires the consideration of parallel loading of sub-resources. The attacker thus
needs to ensure that all requests of a sequence are executed successively after
the previous one is completed. This can be archived using the onload event
of a DOM element. Even though JavaScript is required to implement this, the
evaluation takes place on the server side, so no suspicious code is visible to the
client.

Using both procedures, it is also possible to obtain geographic information of
website visitors. By checking locally related pages it is possible, in particular for
a limited number of users to be identified, to infer their location or to identify
them on the basis of their location [16].

The third way to implement a tracking mechanism based on the browser
cache is utilising HTTP headers that are originally intended to be used for
validating cached resources. The HTTP headers Last-Modified and ETag are
suitable to transport user-based identifiers. These are stored together with the
corresponding resource to the browser cache. If a user is visiting a website that
requires this previously stored resources, the web browser performs a freshness
validation by transmitting the Last-Modified or the ETag header values. On
this way, the user-based identifier is available on the server side and can be used
in order to derive a usage behaviour [17].

4 Browser Cache Experiments

To examine the impact of browser caches with respect to the current state of
the web, an extensive analysis is carried out. The top 500 URLs of Tranco [20]
retrieved on August 19, 2019 serves as data basis. It results from a combination
of well-known website ranking lists like Alexa, Cisco Umbrella, Majestic and
Quantcast which has been prepared as a reliable and manipulation-free database
for security and privacy research. Using a Chromium devtools extension, each
URL of the list gets requested five times in a row with a time interval of 20 s. The
recorded traffic is exported in the HTTP Archive (HAR) [23] format for further
analysis. Since data which is stored persistently on the client’s hard disk is of
particular interest, the memory-cache, which is used by Chromium to tempo-
rary store content for opened tabs, is cleared before each page call. The records
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thus can be reduced to the usage of the disk-cache. In case of examinations with
activated browser cache, every website is called once before starting the mea-
surements to fill the cache. Since the content and thus also the transmitted data
of a website can be time-dependent, the measurement conditions described in
the following are carried out in parallel.

4.1 Effects on Network Performance

The first part of the analysis focuses on the effect of a browser cache on the trans-
mitted data volume when a website is accessed. For this purpose, the transferred
data volume of incoming responses that do not originate form the disk-cache is
computed. In order to avoid measurement errors, only the sub-resources of a
website that are present in the data set of all measurement conditions are con-
sidered. The median of resulting data volume for the five available measurements
is determined and used for further evaluation. This procedure is performed for
three test cases:

(a) activated browser cache
(b) deactivated browser cache (via option in the devtools)
(c) browser cache limited to same-origin and a https pattern in the URL

Test case (c) was achieved by using a developed browser extension that pre-
vents the browser from loading resources from the cache that do not originate
from the host of the page the user is attempting to access. As the affiliation of a
resource is determined by its URL, the usage of CDNs that do not include the
full name of the host, specified for the main HTML document, leads to an exclu-
sion from the browser cache. In addition, caching is limited to URLs starting
with the pattern https.

The results show a median of saved data of 95.9% for the comparison of acti-
vated and deactivated browser cache (test cases (a) and (b)). As shown in Fig. 1,
half of the requested websites reach a data saving of between 89.7% and 98.9% in
this measuring condition. Restricting the use of the browser cache to resources
from the originally requested origin and a https schema in the URL results in a
significantly different outcome. As shown in Fig. 2, half of the requested websites
archive a data saving of 0.35% to 77.7%. The median reaches a value of 37%.

The comparison of the data savings of the two evaluations clarifies the number
of resources that originate from sources that are not initially related to the
originally requested website. Some might originate from CDNs that are operated
by the provider of the website, but whose URL cannot simply be traced back to
the URL of the main HTML document. Another part are third-party resources
which are not associated with the originally requested website.

The evaluation of measurement conditions (a) and (b), the comparison of
activated and deactivated browser cache, clearly points out the importance of
this technology with regard to the scalability of a distributed system like the
web. The renouncement of a browser cache thus leads to a drastic increase of
required bandwidth, which is unacceptable, especially with mobile applications.
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Fig. 1. Percentage of data saving by
using the browser cache of Chromium
for ubuntu. Median: 95.9%, q1: 89.7%,
q3: 98.9%, min: 0%, max: 100%

Fig. 2. Percentage of data saving by
using the browser cache of Chromium
for ubuntu with limitation to same-
origin resources and https URL pat-
terns. Median: 37%, q1: 0.35%, q2:
77.7%, min: 0%, max: 100%

4.2 Current Security and Privacy Risk Assessment

The second part of the analysis focuses on potential threats caused by the
browser cache. Browser Cache Poisoning attacks are particularly dangerous if
they are applied on resources that are used by several websites likewise. In order
to quantify this danger, the records are analysed to find cached resources that
are shared among several websites. We again use the top 500 websites by Tranco
[20] and capture the HTTP traffic with activated browser cache. The logs are
analysed as follows. If a sub-resource is loaded from the browser cache, the URL

Table 1. The 10 most referenced resources by the Tranco top 500 websites

URL of resource Web page

referencing

resource

https://www.google-analytics.com/analytics.js 202 (40.4%)

https://connect.facebook.net/en US/fbevents.js 111 (22.2%)

https://connect.facebook.net/signals/plugins/inferredEvents.js?v=2.9 111 (22.2%)

https://www.googletagservices.com/tag/js/gpt.js 81 (16.2%)

https://tpc.googlesyndication.com/safeframe/1-0-35/html/container.html 80 (16%)

https://securepubads.g.doubleclick.net/gpt/pubads impl 2019082201.js 79 (15.8%)

https://www.googletagservices.com/activeview/js/current/osd.js?cb=%2Fr20100101 67 (13.4%)

https://www.googletagservices.com/activeview/js/current/osd listener.js?cache=r20110914 65 (13%)

https://sb.scorecardresearch.com/beacon.js 64 (12.8%)

https://securepubads.g.doubleclick.net/gpt/pubads impl rendering 2019082201.js 60 (12%)

https://www.google-analytics.com/analytics.js
https://connect.facebook.net/en_US/fbevents.js
https://connect.facebook.net/signals/plugins/inferredEvents.js?v=2.9
https://www.googletagservices.com/tag/js/gpt.js
https://tpc.googlesyndication.com/safeframe/1-0-35/html/container.html
https://securepubads.g.doubleclick.net/gpt/pubads_impl_2019082201.js
https://www.googletagservices.com/activeview/js/current/osd.js?cb=%2Fr20100101
https://www.googletagservices.com/activeview/js/current/osd_listener.js?cache=r20110914
https://sb.scorecardresearch.com/beacon.js
https://securepubads.g.doubleclick.net/gpt/pubads_impl_rendering_2019082201.js
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of the initiating website is captured. This leads to a list of web pages loading
the same resource from the browser cache.

Table 1 contains the top 10 shared resources, sorted descending by the amount
of requesting websites. 40% of the websites requested in this analysis reference
the script analytics.js delivered by the host google-analytics which is located in
the browser cache. Compromising this file in would therefore have impact on a
large number of websites.

Reviewing Browser Cache Poisoning Attacks. To investigate the rele-
vance of Browser Cache Poisoning attacks on current web browsers, a further
experiment was carried out. This draws particular attention to the relationship
between the validity of TLS certificates and resources loaded from the browser
cache. A similar investigation has been done in [15] in 2015. In order to verify
how modern web browsers deal with this kind of attack, a renewed assessment
was done. The investigation is based on the assumption that files in the browser
cache are assigned solely based on a single cache key i.e. the URL, but no dis-
tinction is made as to whether the resource was transferred via a valid TLS
connection or not. A valid TLS connection is defined to be based on a certificate
whose authenticity is fully and successfully verified by the web browser. The
experiment set up (see Fig. 3) is described in the following.

Fig. 3. Procedure of Browser Cache Poisoning attack performed in order to test the
relationship between TLS certificates and cached resources

The client visits a website that is providing a valid TLS certificate. This
website serves an index HTML file and a JavaScript file as sub-resource. Both
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files are delivered with cache statements that forbid the browser to load them
from the cache. In order to simulate a MITM attack, the delivering web server
changes its configuration and uses a self-signed certificate that is not trusted by
the browser. The client now reloads the website and receives an TLS warning
message. After he successfully clicked through the warning, the web server deliv-
ers its data as usual. As before, two resources are transferred, an index HTML
page and a JavaScript file. The latter now contains malicious code, but does not
provide any caching instructions. After a further change of the configuration,
back to the valid TLS certificate, the client updates the requested page again.
Although he now uses a trusted TLS connection, the browser loads the manipu-
lated JavaScript file from the browser cache. This will be the case until the user
explicitly instructs his web browser to request all resources from the origin, or
clears the cache.

To perform this experiment, an nginx web server is used to distribute the
HTML and JavaScript file. A Let’s Encrypt certificate was issued for the server,
in addition a self-signed certificate was created. The server configuration is used
to switch between the two certificates, whereby the self-signed certificate sim-
ulates a MITM attack. When changing the certificates, also the content of the
JavaScript file changes, whose function consists of inserting the currently con-
figured scenario (good certificate/bad certificate) as string into an object of the
HTML page. The selected scenario assumes that the HTML file is not cached
by the browser in both configurations. In the case of a valid certificate, the
JavaScript file should not be cached, but the MITM attack should save it per-
sistently. Figure 4 shows the Cache-Control header configuration defined on the
server.

Fig. 4. Cache-Control header of the resources provided by the server during the simu-
lated Browser Cache Poisoning attack

The results (see Table 2) show that all tested web browsers are vulnerable to
the chosen attack. Due to the cache implementation of the Chrome browser, the
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JavaScript file delivered with the valid certificate gets cached already, so that an
explicit reload of the page need to be done to load the manipulated script. For all
browsers, a TLS certificate warning needs to be clicked through before accessing
the web site transmitted when using a self-signed TLS certificate. After switching
back to the authentic certificate, all browsers load the manipulated script from
the browser cache. Chrome, Internet Explorer and Edge also cache the HTML
file, which results in the certificate warning in the URL-bar remaining for the
time being. Firefox updates the TLS information in the address-bar; Safari does
not distinguish between accepted self-signed and authentic certificates. After the
web browsers are closed and restarted, Internet Explorer, Edge and Safari still
load the manipulated JavaScript file from the browser cache, this time without
any certificate warnings. The scenario constructed is probably rare in reality,
since the described attack can be prevented by simple mechanisms such as Sub-
resource Integrity [7]. Nevertheless, it shows that none of the browsers tested
takes the authenticity of the certificate into account when caching.

Table 2. Impacts of the simulated browser cache poisoning attack

Chrome v76

(Windows &

MacOS)

Firefox v69

(Windows &

MacOS)

Internet

Explorer v11

(Windows)

Edge v44

(Windows)

Safari v12

(MacOS)

Caches malicious

script (self-signed

certificate)

(Yes) after

forced page

reload

Yes Yes Yes Yes

Loads malicious

script (valid

certificate)

Yesa Yes Yesa Yesa Yes

Loads malicious

script after browser

restart (valid

certificate)

No No Yes Yes Yes

aAs the index.html file is loaded from the cache too, the certificate warning in the URL-bar is still

present.

5 User-Centred Mitigation Strategies

Vulnerabilities of browser caches can affect the security and privacy of users.
The analyses described in the previous section points out that modern web
browsers still not provide sufficient mechanisms to prevent such attacks. The
likewise usage of shared resources shown in Table 1 increases the impact of an
incident. In order to improve the security of the browser cache without extensive
changes in the implementation of web browsers, users could make use of addi-
tional tools. In the following, user-centred mitigation strategies will be presented
and analysed. As it is well known that security-relevant technologies require a
high degree of usability in order to achieve the intended improvements in practice
[27], we reviewed the following mechanisms under consideration of efficiency and
task adequacy. First, we will highlight the simplest method imaginable, deleting
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the browser cache. Due to the different implementations of the web browsers,
the usability of this function is not sufficient in all cases. Afterwards, available
browser extensions are examined which influence the functionality of the browser
cache to achieve a higher level of security and privacy.

5.1 How to Clear the Browser Cache

To evaluate the usability of the cache delete function for the web browsers Fire-
fox, Chrome, Safari, Internet Explorer and Edge, the procedure is examined by
focusing on the user’s effort. Table 3 shows the number of clicks necessary to
clear the cache.

The clear cache function of Firefox is located in the security and privacy area
of the browser settings. Five clicks are required to use it.

Chrome allows to open the corresponding dialog without navigating to the
general browser settings. The deletion of browser data can be limited to a certain
period of time. As the last hour is selected as default, users first must adjust the
period to the total interval of time. If this is done once, the cache can be cleared
within four clicks.

The Safari browser does not offer any option to clear the cache when using
the default configuration. With a total of five clicks, the developer settings must
be activated first to enable the option to empty the cache memory. If this is
done, two clicks are necessary.

To clear the browser cache in Internet Explorer, the appropriated dialog can
be accessed using the Security sub-menu of the browser’s main-menu. Unfortu-
nately it is marked with the term browser history. Four clicks are required to
clear the cache.

Edge requires a procedure similar to Firefox. The corresponding function
can be found in the security and privacy section located in general settings. Five
clicks need to be done to clear the cache.

With the exception of Firefox and Edge, the procedures for deleting the
browser cache differ. Especially the necessity of activating the developer options
on Safari seems unnecessarily complicated. Chrome, Firefox, Internet Explorer
and Edge also offer a shortcut to display the dialog box for deleting browser
data. In this case, Firefox will open a window which is different from the one
accessible via the menu. Similar to Chrome a time period must be selected for
which the data should be deleted.

Table 3. Number of clicks required to clear the browser cache

Firefox Chrome Safari Internet Explorer Edge

Number of clicks 5 4 5 + 2 4 5

Instead of clearing the browser cache, a private browsing session can be used
for all considered web browsers. The resources cached during private sessions get
cleared once all private browsing windows are closed.
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5.2 Tool-Based Solutions

Frequently clearing the full browser cache does not seem to be an efficient way to
deal with the present security and privacy threats when considering the amount
of data saved using this technology. A way of defining cache policies for sensitive
websites, such as online banking or risky resources like the ones originating
from different origins, would be more desirable. Browser add-ons can provide
additional functionality that could lead to an improvement for the user’s security
and privacy. We analysed extensions that are available at Google Chrome Web
Store, Firefox Add-ons and GitHub considering a functionality which exceeds
clearing the browser cache as well as a usable design which enables ordinary users
to make use of them. We used the keyword “cache” to search for browser plugins
at Chrome and Firefox extension stores as well as “browser cache extension” to
find relevant projects on GitHub. Due to a large number of results, the analysis
is restricted to the first 60 hits.

Extensions found at the Chrome App Store can be grouped into three cat-
egories. The largest group (26 results) provides only deletion of the cache or in
some cases further storages such as the browsing history. Another category (8
results) refers to applications that offer to display cached elements or to render
web pages using resources stored in the browser cache. The third category (3
results) contains applications that can manipulate the caching behaviour. These
include NoCache [24], PowerCache [18] and Supercache [21]. NoCache provides
a button to disable the browser cache. Using PowerCache it can be individually
specified which elements should not be loaded from the browser cache. This is
done by using a regex pattern to filter the requested URLs. Requests that are
manipulated by the extension are listed in the add-on. This application is pri-
marily intended for developers and thus is not designed to be usable for ordinary
web users. Super Cache is using a simple and minimalist user interface. One can
specify whether stylesheets, images or scripts should be loaded from the cache.
The options Default (no manipulation), Cache or NoStore can be set. These
settings can be configured for each website individually. As this extension only
manipulates the Cache-Control header directive of response headers, it can only
prevent resources from being stored to the browser cache. If a file is already
located there, it will be used to render the website anyway.

The analysis of Firefox browser extensions was done in the same way. Among
the first 60 results, 13 applications can be found which can clear the cache, six
applications that can display cache contents and two applications that allow
deactivation of the cache (Toggle Cache [25] and Cache It Out [6]). Five appli-
cations provide reloading of a page without using files from the browser cache. As
this concept seems to be similar to clearing the cache or performing a full reload
of a website, these extensions are neglected. Due to a restriction of the imple-
mentation of the extension API used by Firefox, it is not possible to control the
behaviour of the browser cache in detail. This would require the manipulation
of a HTTP request with regard to the caching behaviour before it is processed
by the browser, which is not possible in Firefox extensions.
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The search on GitHub revealed eleven applications that allow to clear the
browser cache. Four projects offer the possibility to display content from the
cache. Only one application (Opera-disable-cache [9]) can deactivate the browser
cache. As it is implemented for the Opera browser, it will not be discussed fur-
ther. Table 4 provides an overview of the features of the remaining five applica-
tions that can control the caching behaviour.

Table 4. Comparison of five browser extensions that allow to control caching behaviour

NoCache

(Chrome)

PowerCache

(Chrome)

SuperCache

(Chrome)

Toggle Cache

(Firefox)

Cache It Out

(Firefox)

GUI X � � X X

Page specific

settings

X X � X X

Resource-type

specific settings

X � � X X

View cached

resources

X � X X X

Multiple settings

per website

X X � X X

(�: feature provided, X: feature not provided)

6 Discussion

The security and privacy risks presented in this paper, as well as the results of
the experiments carried out, demonstrate that modern web browsers are still
providing insufficient precautions to protect users. The analysis of present user-
centred mitigation strategies points out that further work needs to be done in
order to compensate the shortcomings of current browser cache implementa-
tions. The following section should take up the most important issues and give
recommendations on how these can be solved effectively.

Web Browser Extensions. In order to improve the browser cache with regard
to security and privacy, it would be conceivable to develop browser extensions
that control the behaviour of the cache according to users’ needs. Using browser
add-ons, shortcomings of the current caching procedure could be diminished
without depending on extensive and time-consuming developments of improved
web browsers. When looking at the APIs for Chrome and Firefox extensions,
we noticed that there is no direct way to manipulate the behaviour of the
browser cache [1,5]. By setting the Cache-Control header directive no-cache
in the request header, it is possible to prevent Chrome from loading a resource
from the cache. The documentation of Chrome contradicts this observation, but
describes this information as unstable. [2]. It would be desirable if browser ven-
dors would provide well-documented interfaces by which developers can create
high-performance solutions that give users more control on the behaviour of their
web browsers.
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Tracking via Browser Cache. As discussed in Sect. 3, the browser cache can
be utilised to attack users’ privacy. By using individual identifiers, a web tracking
mechanism can be implemented, very similar to the functionality of cookies. We
have not yet been able to establish any more detailed investigations into this
matter, but consider this to be absolutely necessary. While the introduction of
the General Data Protection Regulation (GDPR) increased users’ awareness on
privacy related risks of cookies due to the omnipresence of cookie info boxes
on many websites, the risks related to the browser cache are far less present
and seem to have received little attention so far. We plead for a comprehensive
analysis of possible further uses of the browser cache with regard to the risks for
the privacy of users. This includes but is not limited to a critical consideration
of freshness validation mechanisms as they can be misused to exchange user
identifiers using ETag or Last-Modified header values.

Cache Keys and TLS Certificates. Restricting the cache key to the URL for
resources transferred over TLS secured connections can lead to urgent security
risks. However, this practice seems incomprehensible, since information about
the authenticity of the certificate used in the TLS connection is available in
the web browser. Resources transferred via TLS connections based on differ-
ent certificates should not be considered identical. In fact, this contradicts the
security service of authenticity. A resource should therefore be bound to the cer-
tificate used during the transfer. Bypassing the browser cache for unauthentic
TLS connections could prevent Browser Cache Poisoning attacks by limiting the
impact of MITM attacks to the moment of the actual attack. Investigations also
revealed that the devtools of the Firefox web browser, unlike the information
in the URL-bar, do not distinguish between authenticated and, for example,
self-signed certificates. In both cases a green icon appears beside the transferred
resources displayed in the network tab. This does not seem to be sufficiently
differentiated and could lead to confusion among developers.

Browser Cache Partitioning. To prevent attacks that could harm the privacy
of users, Chrome plans to partition the cache [4]. This is to be achieved by using
the origin URL of the website requested by the user as an additional key for
a cached resource. This approach is to be welcomed as it can prevent attacks
like CTAs. Developers of Firefox are also considering this improvement [3]. It
remains to be seen whether this gets actually implemented.

7 Conclusion

HTTP browser caches are important components of distributed systems like the
web as they enable these systems to scale at large. We show that half of the 500
most popular websites from the Tranco list archive savings between 89% and 99%
of the data volume to be transmitted when browser caching is enabled. Thus,
disabling the browser cache has severe performance and economic consequences
for service providers and end users respectively.
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At the same time though, browser caches can be misused to perform user
tracking and to persistently store malicious code on the client’s computer. The
current practice does not sufficiently balance security and performance trade-offs.
By taking a closer look at the files stored inside the cache we found resources
that are used by up to 40% of the examined websites. As these resources most
commonly stem from third parties providing analytics or advertising services,
the potential for user tracking is inherent. Moreover, we found that modern
web browsers still do not distinguish between valid and self-signed TLS certifi-
cates when storing and reusing resources from the browser cache. Although this
weakness opens the door for Browser Cache Poisoning attacks and has been
known since 2015 [15], it is still exploitable in the most current versions of major
browsers.

Hence, providing a more fine-grained control of the cache policy enforced by
the browser is essential. Browsers themselves offer caching by default and simple
settings to clear the cache. In some cases these settings are even well hidden
from the end user. Some browser extensions aim at closing this gap with more
enhanced features. However, our analysis of these extensions emphasises that
they provide only very fragmented functionalities with most of them only going
slightly beyond browsers’ builtin functionalities.

Overall, we argue that more research is required in respect to browser caches
and their relation to the security and privacy of end users. This would enable
browser vendors to close existing vulnerabilities and provide more elaborated
cache control settings for end users as well as APIs for developers and researchers.
The latter will foster the iterations towards novel approaches to balance perfor-
mance and security.
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Abstract. Traditionally, Wi-Fi networks are discovered by actively
transmitting probe requests. The alternative, passive scanning, is rarely
used because it is substantially slower. Unfortunately, active scanning
can be abused to track users based on (physical) fingerprints of probe
requests. Previous work attempted to address these issues by mak-
ing active scanning more privacy-friendly. For instance, Franklin et
al. proposed to make implementations more uniform (USENIX Secu-
rity 2006), and Lindqvist et al. suggested to use encrypted probe requests
(WiSec 2009). However, a better approach is to make passive scanning
faster. This motivates vendors to use passive scanning, increasing the
privacy of users.

Motivated by the above insight, we improve the performance of pas-
sive scanning. We implement our proposals on Android, and show the
average time needed to connect to a known network using passive scan-
ning now matches active scanning. Additionally, we implement a new
network-discovery mechanism that drastically decreases scanning times,
and present a new method to fingerprint Wi-Fi radios. All combined, our
results show that passive scanning is a viable and more privacy-friendly
alternative to active scanning.

Keywords: Tracking · Anonymity · Passive scanning · Priority
scanning

1 Introduction

Practically all mobile devices discover nearby Wi-Fi networks by actively sending
probe requests [10]. Unfortunately, properties of the physical Wi-Fi signal of
probe requests can be abused to fingerprint and track devices [4]. These physical
properties of the Wi-Fi signal are caused by unique imperfections in each radio
transmitter. As a result, whenever a probe request is sent, no matter what its
content, it becomes possible to track the sender. Additionally, probe requests
may contain the unique MAC address of the transmitter, and can contain other
sensitive information [10,21]. We find that in practice people are indeed being
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tracked based on the Wi-Fi signals of their devices. For example, garbage bins
tracked people in London based on probe requests [5].

Previous works tackled this issue by trying to make active scanning more
privacy-friendly. For instance, Franklin et al. proposed to make active scanning
implementations more uniform [9, §7], Greenstein proposed to encrypt probe
requests [11], and Lindqvist et al. suggested a different protocol to encrypted
probe requests [16]. More recently, Vanhoef et al. advised to simplify and unify
the content of probe requests [23], and Matte et al. suggested to randomize the
timings of probe requests [18]. However, our position is that trying to improve
active scanning is not the way forward. We believe this because new tracking
techniques against active scanning are inevitable, since in general any frame
being transmitted can be fingerprinted based on physical-layer properties [4].
To defend against this, we should be making passive scanning more performant,
such that it becomes a viable alternative to active scanning.

Under passive scanning, a device does not send any frames to discovery net-
works. Instead, nearby Wi-Fi networks are instead detected by listening for bea-
con frames that all APs periodically transmit. These beacon frames contain the
same information as probe responses, and hence allow a client to determine all
relevant parameters of the network. This makes it impossible to track users based
on probe requests. Unfortunately, having to wait for beacons on each channel
makes passive scanning significantly slower than active scanning, and therefore
it is rarely used. We overcome this obstacle by increasing the performance of
passive Wi-Fi scanning.

Apart from privacy pitfalls, active scanning also reduces the available band-
width. That is, the airtime consumed by probe requests and responses can be
quite large. For example, in crowded places they take up more than 10% of avail-
able airtime [14], and can reduce the throughput of clients by 17%. Hence, apart
for privacy advantages, passive scanning would also free up airtime.

Inspired by the privacy and bandwidth benefits of passive scanning, our goal
is to increase its speed, such that it becomes a viable alternative to active scan-
ning. This will incentivise vendors to use passive scanning instead, thereby elim-
inating the privacy downsides of active scanning. To avoid the longer scanning
durations under passive scanning, we introduce the concept of priority scans.
Under a priority scan, a set of priority channels is scanned first, and networks
detected on these channels are returned immediately. We implement these mod-
ification on Android to evaluate our techniques in practice. Additionally, we
propose a novel scanning technique where networks advertise all neighboring
networks that they can detect, and present a new method to fingerprint Wi-Fi
radios. The client can then use this information to drastically reduce the average
scanning duration.

To summarize, our main contributions are:

– We present a novel method to fingerprint of type of Wi-Fi radio that a device
uses (Sect. 3).

– We improve passive scanning to reduce the time needed to discover and con-
nect to (known) networks (Sect. 4).
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– We implement and test our proposal on Android (Sect. 5).
– We propose to advertise neighboring networks to drastically improve the dis-

covery time of known networks (Sect. 6).

Finally, we discuss related work in Sect. 7, and conclude in Sect. 8.

2 Background

In this section we introduce relevant parts of the 802.11 standard, and we discuss
our threat model.

2.1 Network Discovery

An essential task of a wireless devices is discovering nearby networks. The 802.11
standard provides two methods to discover nearby Wi-Fi networks. The first is
passive scanning, and the second is active scanning. We briefly introduce both:

Passive Scanning. All Wi-Fi networks periodically transmit beacon frames.
These beacons are used to announce the presence of a network, to synchro-
nize clocks between associated clients, and so on. Since they are periodically
broadcasted, clients can passively listen for them to detect nearby networks.
Beacons include all network configuration parameters that must be obtained
before connecting to a network. In particular, beacons contain the Service Set
Identifier (SSID), supported data rates, supported or required security protocols,
and so on. By default, APs transmit a beacon every 102.4 ms, though this can be
configured differently. Because clients must search for networks on all channels,
this makes the default passive scan slow and therefore rarely used.

Some APs can be configured to exclude the SSID in beacons. These are
called hidden networks. Doing this has the advantage that nearby clients do not
show the SSID (i.e. the network name) in their user interface. To detect hidden
networks, active scanning must be used and the SSID of the hidden network must
be included in all probe requests. Because including the SSID in probe requests
can leak sensitive information about the user, the usage of hidden networks is
no longer a recommended practice [10,19,23].

Active Scanning. With active scanning, the client transmits broadcast probe
requests, and in response nearby APs reply with probe responses. These probe
responses contain all the information required to connect with a network. As a
result, a device can quickly detect nearby networks using active scanning.

Unfortunately, probe requests may contain a significant amount of informa-
tion about the client’s device. For instance, if MAC address randomization is
not used, probe requests contain the permanent MAC address of the client. This
can be used to trivially track users [3]. Moreover, properties of the physical
Wi-Fi signal can also be used to fingerprint and track a device [4]. All combined,
whenever a client sends probe requests, it becomes possible to track the user.
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Finally, active scanning is the only mechanism able of detecting hidden net-
works. This is because to detect a hidden network, the client must send a directed
probe request that contains the SSID of the particular hidden network. If the
hidden network is nearby, it will reply with an (ordinary) probe response.

2.2 Frequency Bands and Channels

A Wi-Fi network can operate in various frequency bands, and within one band
can operate on several possible channels. The most common frequency bands
are the 2.4 GHz and 5 GHz bands. Here, the 2.4 GHz band has 13 channels (in
Europe), and out of these 13 channels there are three non-overlapping ones
(channel 1, 6, and 11). It is common practice to only use one of these non-
overlapping channels, since this avoids cross-channel interference [8].

In the 5 GHz band, there are more than 20 non-overlapping channels. In most
regulatory domains (i.e. countries), only a few of these channels can be used
freely. All the other channels in the 5 GHz band can only be used if the device
supports Dynamic Frequency Selection (DFS). We will refer to these as DFS
channels. DFS is a mechanism to avoid interference with radar systems. Among
other things, DFS prohibits a device from transmitting until it has listened on the
channel fore more than one minute without detecting radar pulses. This means
clients are not allowed to immediately send probe requests on DFS channels.
Instead, only passive scanning can be used to detect APs on DFS channels.

2.3 Threat Model

The adversary we consider aims to identify and track devices when they are
not connected to an AP. We assume the adversary controls enough APs, so any
probe request that the victim sends will be captured. Additionally, as shown
in [4], we must assume the adversary can fingerprint probe requests based on
physical properties of any transmitted frame. Put differently, any frame sent by
a device can be used to identify and track it [4].

3 Channel Switch Fingerprinting

In this section we describe a novel method to fingerprint devices. We show how
this method allows an adversary to differentiate devices based on the type of
internal Wi-Fi radio that a device uses.

3.1 Channel Switch Time

When a device is scanning for nearby Wi-Fi networks, it sends one or more probe
requests on all non-DFS channels. This means that during a network scan, the
Wi-Fi radio is constantly switching channels. Our insight is that the specific type
of Wi-Fi radio being used influences how much time it takes to switch from one
Wi-Fi channel to another. As a result, if an adversary is capable of accurately
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Fig. 1. Box plot of the time between two sequential probe requests sent on different
channels, for various types of Wi-Fi radios.

measuring the channel switch time, this information can be used to fingerprint
the type of Wi-Fi chip being used.

In practice, most devices will use the same (random) MAC address during
one network scan over all channels [17,18,23]. In other words, the same (random)
MAC address is used to send probe requests over different Wi-Fi channels. This
allows an adversary to measure the time between probe requests sent on different
channels. Moreover, this time difference can be measured with high accuracy by
relying on hardware receive timestamps of commodity Wi-Fi radios. Due to the
capture effect, if the victim device is close to the adversary, it is even possible
to use a single Wi-Fi radio to receive frames on two adjacent channels. Since
multiple channels are scanned in one individual network scan, the adversary can
make multiple channel switch timing measurements. This means the average
channel switch time can be calculated, reducing the impact of (temporal) noise.
All combined, this means commodity Wi-Fi devices can be used to measure the
time between probe requests on different channels.

3.2 Experiments

We measured the channel switch times of 8 USB Wi-Fi radios. The results of
these measurements are shown in Fig. 1. We used an Intel Wireless 8265 card
to perform the timing measurements. The time difference between two probe
requests is calculated based on the hardware receive timestamps of the frames.

From Fig. 1 we learn that different types of Wi-Fi radios result in a different
average channel switch time. By calculating the average channel switch time over
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several Wi-Fi channels, this allows us to accurately differentiate different types
of Wi-Fi radios.

3.3 Countermeasures

One possible defense against our novel fingerprinting technique is to use a new
random MAC address on each Wi-Fi channel being scanned. This makes it harder
to measure the channel switch time. However, this would still allow an adver-
sary to fingerprint physical properties of the Wi-Fi signal, and hence does not
deter more powerful adversaries [4]. Instead, in the remainder of the paper, we
improve the performance of passive Wi-Fi scanning, such that it becomes a viable
alternative to active scanning.

4 Passive Scanning Improvements

In this section we present several techniques to improve the speed of passive
scanning. We also define metrics to rigorously evaluate our proposed techniques.

4.1 Proposed Scanning Modifications

In this section, we limit ourselves to backwards-compatible modifications on the
client. This makes it easier to deploy our proposals, since no network infrastruc-
ture needs to be modified. Additionally, this assures that all existing networks
remain discoverable. More concretely we propose the following modifications and
optimizations:

Dwell Time Variation. We first evaluate the impact of the dwell time. The
dwell time denotes the total time we listen on each channel for beacon frames.
This parameter heavily influences the total duration of a passive scan.

Incremental Scanning. In our second modification, partial scanning results
are returned to the Operating System (OS) while the scan is still in progress.
We call this incremental scanning. More precisely, after scanning each channel,
newly discovered APs are immediately returned to the OS. While reporting these
results, the Wi-Fi chip continues scanning the remaining channels. The OS can
abort the scan once a known network has been discovered.

Static Priority Scanning. This modification is an improvement of the incre-
mental scanning procedure, where we only return discovered APs to the OS after
scanning several channels. This removes possible overhead caused by constantly
communicating with the OS. At the same time, we prioritize certain channels
and scan them first. In particular, we first scan the non-overlapping channels in
the 2.4 GHz band (i.e. channel 1, 6, and 11) in a so-called priority scan. After
scanning these priority channels, a second scan is performed over the remaining
channels. We also examined the 5 GHz band, and observed that channels 36, 40,
and 44 are used the most. Hence, in a second variation of static priority scanning,
we also include these 5 GHz channels in the (initial) priority scan.
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Dynamic Priority Scanning. In our last modification, we dynamically deter-
mine the set of priority channels that are scanned first. The specific algorithm
that is used to select these priority channels is out of scope for this paper. Instead,
we refer to related work for algorithms that determine which networks are likely
nearby. For example, the presence of nearby networks can be predicted based on
one’s location [20], the current day and time [22], and so on.

4.2 Metrics for Evaluation

We now propose several metrics that we will use to quantify the performance of
our scanning procedures:

Scan Duration. The scan duration is the total time it takes between listen-
ing on the first channel, and the moment collected results are returned to the
OS. When using priority scanning, we will refer to the duration of scanning all
channels as the full scan time, and the time it takes to scan only the priority
channels as the priority scan duration.

Time-to-Connect. The time-to-connect metric measures the time between
listening on the first channel, and the moment when the device discovers a known
AP. This metric reflects the waiting time that users experience.

AP Discovery Rate. We define the AP discovery rate as the amount of APs
discovered relative to the total amount of APs discoverable by the device. This
metric needs a reference of all available APs in the vicinity to compare a scan
result to. In general, there will be a trade-off between discovery rate and scan
duration. Similarly, a longer scan time likely results in a better AP discovery
rate, but may negatively impact the time-to-connect metric.

Specific AP Discovery Rate. This metric measures the rate at which a spe-
cific set of APs is discovered, relative to the total amount of scans performed. We
will use this metric when a known network is nearby, to measure how frequently
the network will be detected by various scanning procedures.

4.3 Experimental Setup

We implemented our proposed modifications by modifying the user-space Wi-Fi
client. In particular, we modified wpa supplicant. One advantage of this approach
is that every Linux and Android device can then be tested with our modifications.

In our specific setup, we implemented our modifications on Android 7.1.1
AOSP, and used a Google Nexus 5X. We changed the gPassiveMinChannelTime
parameter (and the analogous Max parameter) of the Wi-Fi driver to control the
dwell time. Fortunately, this did not require any changes to the driver code.
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Instead, we can modify the driver configuration file that contains these param-
eters using a user-space script1.

Our incremental and priority scanning procedures are implemented by mod-
ifying wpa supplicant.2 This means our modifications can be tested on both
Android and Linux, making our results easier to replicate. We implemented
incremental scanning by issuing separate scan requests for every individual chan-
nel. Although this adds a overhead when communicating with the kernel to
initiate each scan, part of this overhead is unavoidable. That is, even if we
modified the driver or firmware, we still need to send individual notifications
to wpa supplicant after scanning each channel. When measuring the total scan
duration of an incremental scan, we add all the individual scan durations, and
exclude elapsed time between individual scans. Note that this measurement still
includes the overhead caused by communicating with the kernel for initiating
each scan. For priority scanning, we also modified wpa supplicant to issue two
individual scans. The first scan covers the priority channels, and the second scan
covers all remaining channels.

5 Experimental Results

In this section we experimentally analyze the performance of our scanning strate-
gies. This shows passive scanning can be a viable alternative to active scanning.

5.1 Dwell Time Variation

We first analyzed the impact of varying the dwell time when performing a stan-
dard passive scan. Interestingly, the total passive scan duration with a dwell
time of 100 ms is only slightly longer than the scan duration of a default active
scan. This is because most channels in the 5 GHz must be scanned passively, to
avoid interfering with other devices such as weather radars [13, §11.1.4.1]. As a
result, even when using default active scanning, these channels are still scanned
passively. This implies that, when the 5 GHz band is also scanned, there is only
a minor slowdown in scanning duration when switching from the default active
scanning procedure to passive scanning.

We also measured the influence of the dwell time on the AP discovery rate.
This was done at two locations. First at our office, where there were 30 dis-
coverable APs (see Fig. 2a). Then at a busy international train station where
there were 419 discoverable APs (see Fig. 2b). Note that in these figures, the
AP discovery rate of a normal passive scan is identical to the discovery rate of
a full priority scan. As expected, higher dwell times result in more APs being
discovered. With a dwell time of 100 ms, passive scanning matches the discovery
rate of default active scanning. For larger dwell times we observed only a slight

1 This is the file /system/etc/firmware/wlan/qca cld/WCNSS qcom cfg.ini.
2 Our code, including a build for the Nexus 5X, is available at https://github.com/

vanhoefm/nordsec-passivescan.

https://github.com/vanhoefm/nordsec-passivescan
https://github.com/vanhoefm/nordsec-passivescan
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increase in the discovery rate. With a dwell time lower than 100 ms, the discov-
ery rate quickly drops, with the discovery rate at 50 ms being roughly half of
active scanning. We conclude that the optimal dwell time for passive scanning
must be at least 100 ms.

5.2 Incremental Scanning

We found that with incremental scanning, the scanning time is slightly higher
compared to a standard passive scan. More precisely, the overhead of constantly
issuing new scan requests for each channel, reporting the results back to the
Operating System, and preparing a new scan, constitutes a 10% overhead. Due
to this overhead, we do not consider incremental scanning as a good candidate
to replace a default active scan, and will not consider it any further.

5.3 Static Priority Scanning

To evaluate static priority scanning, we first use the 2.4 GHz channels 1, 6, and
11 as static priority channels. Then we included the 5 GHz channels 36, 40, and
44 as well. We evaluated both the scan duration and AP discovery rate:

Scan Duration. We found that the ratio of the priority scan duration, com-
pared to a full scan, approximates the ratio of the scanned channels in the pri-
ority scan to the total scanned channels. Note that the full scan duration is the
same as a standard passive scan duration. For a small set of priority channels,
the priority scan is significantly faster than a default scan. That is, when only
including three 2.4 GHz channels, the priority scan takes only 8% of the time.
When also including the three selected 5 GHz channels, a priority scan takes
15% of the time of a full scan.

AP Discovery Rate. Figure 2a and b contain the AP discovery rate when using
priority scanning at our office and the train station, respectively. The lower AP
discovery rate around a 120 ms dwell time at the train station (Fig. 2b) is because
we had to slightly change our location during the experiment to accommodate
passengers. Of interest is how many networks are discovered in a priority scan,
compared to a full scan. With the 2.4 GHz priority channel set, 42% of networks
are discovered at the office during the priority scan (compared to a full scan),
while 22% were discovered at the train station during the priority scan. When
also including the 5 GHz priority channels, 61% of networks are discovered at the
office compared to a full scan, and 62% are discovered at the train station. This
shows that including 5 GHz channels in the priority scan is essential to obtain a
high AP discovery rate.

We conclude that, compared to a full passive scan, a priority scan takes 15%
of the time, while already discovering close to two-thirds of networks. This shows
that priority scanning is a very promising technique. Moreover, a priority scan
takes only a fraction of the time, even when compared to the default active scan.
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Fig. 2. The AP discovery rate for various passive scanning procedures at (a) our office;
and (b) an international train station. The horizontal line denotes the average discovery
rate for a default active scan.

5.4 Dynamic Priority Channels

To test dynamic priority scanning, we assume the client has one known network,
and that it treats the (previous) channel of this network as the single dynamic
priority channel. We measure the discovery rate and time-to-connect:

Specific AP Discovery Rate. For this experiment we used an environment
with little interference and close proximity to the AP. We first tested the specific
AP discovery rate for a default active scan, and found that the AP is always
detected in the first scan (see Fig. 3). For our passive implementation, we get
comparable results. More precisely, with a dwell time of 100 ms, the discovery
rate is around 90%. With a dwell time of 120 ms or higher, the AP is always
detected. Based on these results, we conclude that passive scanning with a dwell
time of 120 ms or higher matches the performance of active scanning. This again
shows that passive scanning can form a practical alternative to active scanning.

Time-to-Connect. We investigate the time-to-connect for dynamic priority
scanning, and compare it to the default active scanning procedure. For both
procedures, we ran the time-to-connect experiment exactly 50 times. Figure 4a
shows the resulting time-to-connect histogram for the default active scanning
experiments. The average time-to-connect is between 3.8 and 3.9 s, indicating
that the AP was always discovered during the first scan. We conjecture that
the two separate groups around 3.8 and 3.9 s are caused by internal timing
constraints in the Wi-Fi chip.

For passive scanning, the time-to-connect heavily depends on the dwell time.
In particular, for a dwell time of 100 ms or lower, multiple scan are sometimes
needed to discover the AP (see Fig. 4b). This significantly increases the average
time-to-connect, even though most of the time the network is discovered in the
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Fig. 3. Specific AP discovery rate for one known network when using passive dynamic
priority scanning. The dashed horizontal line marks the average specific AP discovery
rate for the default active scanning implementation.

Fig. 4. Time-to-connect for (a) default active scanning; and (b) passive dynamic scan-
ning with one priority channel and 100ms dwelltime. The vertical line denotes the
average time-to-connect for the default active scanning procedure.

first scan (see Table 1). However, when using a dwell time of 120 ms or higher, we
always discover the AP during the first priority scan. Because this is a priority
scan, results of the scan are returned nearly instantly, resulting in a very low
average time-to-connect. Notice that with a 150 ms dwell time, the AP is again
always discovered in the first priority scan. However, the higher dwell time results
in a higher scan duration, and hence also in a higher time-to-connect. Finally, the
average time-to-connect for active dynamic priority scanning is 0.049 s. Although
this is faster than passive scanning, this difference is likely not noticeable to users,
meaning passive scanning remains a viable alternative to active scanning.
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Fig. 5. Time-to-connect for passive and active scanning.

Table 1. Time-to-connect for passive dynamic priority scans

Dwell time (ms) 50 100 120 150

Average TTC (s) 5.62 0.91 0.13 0.16

We conclude that a dwell time of 120 ms minimizes the average time-to-
connect. Moreover, compared to the default active scanning procedure, it results
in a lower (i.e. faster) average time-to-connect, while being more privacy-friendly.

6 Advertising Neighboring Networks

In this section we propose a novel scanning technique, where APs include basic
information of neighboring networks into their beacon frames. We show that
providing this information drastically reduces the average scanning time.

6.1 Advertising Neighboring Networks

Many APs are capable of detecting nearby networks on different channels, while
at the same time providing normal connectivity to clients. This is commonly
used to let the AP automatically operate or switch to the least-used channel,
and in practice this feature is often called Dynamic Channel Selection (DCS)
or Dynamic Channel Assignment (DCA) [7,24]. More importantly for us, this
means many APs are capable of scanning for nearby networks without interfering
with normal operations.

To reduce the average scanning time of clients, we propose that every AP
advertises all neighboring networks in its beacon frames. In practice, a simplified
version of the Neighbor Report element can be used for this [13, §9.4.2.37]. In
this element the SSID and channel of neighboring networks is included. In case
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there are many neighboring networks, and there is insufficient space to advertise
them all, then only networks with a high signal strength can be included.

When a client is scanning for networks, it can use the neighbor reports inside
beacons to optimize the scanning process. In particular, when a neighbor report
contains a known SSID, then the client can immediately scan this channel to see
if that network is also within range of itself. If so, the client can immediately
connect to this network, which greatly reduces the average time-to-connect. In
case the network is not with in range of the client, we continue with the normal
scanning process.

6.2 Experiments and Results

To estimate the benefits of including neighboring networks in beacon frames,
we simulated this strategy and determined how much it reduced the average
scanning time of a client. This allows us to determine how many APs must
support this new feature for it to have a real benefit in practice. Note that in
practice APs may not often get updated, meaning it is important that our new
scanning strategy works well even if few APs advertise neighboring networks.

To determine the average scanning performance, we determine the number of
channels that must be scanned before a known network is detected. In order to
have realistic estimations of the number of nearby networks in our simulation, we
use real-world Wi-Fi network locations from OpenWifi3. This is an open source
database of Wi-Fi networks that is normally used for geolocation purposes. Based
on this database, we perform the following steps in our simulation:

1. We assign a random operating channel to every network. Here we consider
a total of 11 possible channels in the 2.4 GHz range, and 20 channels in the
5 GHz range.

2. A given percentage of networks is assumed to implement our proposal and
advertise neighboring networks in their beacon frames.

3. We then randomly pick a position in a city, and determine all networks that
are within 100 m of this position. These networks are considered to be within
range of the client. We further assume a known network is nearby, since
otherwise the scanning time will always equal the duration of a full network
scan.

4. Additionally, we assume a second known network is out of range of the client,
but within range of one or more nearby APs. This means this network may
appear in the neighbor lists of APs, but will not be detected when the client
searches for this network on the advertised channel.

Figure 6 shows the resulting number of scanned channels needed to find a
known nearby network, in function of how many APs include neighboring net-
works in their beacon frames. What is surprisingly is that even if only a minor
number of APs advertise nearby networks, this already results in a major reduc-
tion in scanning time. For instance, in San Francisco our results show that even if
3 https://openwifi.su/download.php?lang=en.

https://openwifi.su/download.php?lang=en
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Fig. 6. Average number of scanned channels before discovering a known network, when
using normal scanning (dashed line) or when using neighbor advertising (solid line).
Figure (a) contains the results for a densely populated area in San Francisco, while
Figure (b) shows the results of a more sparse area in Boulder.

only 5% of APs advertise nearby network, then this already reduces the scanning
time by more than half. To study the impact is less dense cities, we performed
the same simulation in Boulder, and again found that if a minor number of
APs advertise nearby networks, this already results in a major decrease of the
scanning time. In particular, when only 10% of networks advertise its neighbors,
then the average scanning time is almost halved.

Based on these experiments, we conclude that letting APs advertise nearby
networks will result in a major decrease of the average scanning time. As a result,
even when using passive scanning, known networks will be quickly found.

7 Related Work

Several researchers investigated the discovery process of Wi-Fi platforms and
clients [1,6,9,10,12,18]. They conclude that most employ active scanning [10].
Unfortunately, capturing probe requests is trivial, and they provide a signifi-
cant amount of information, ranging from family names, visited locations, travel
routes, and so on [2,3,21].

To prevent tracking, modern devices use MAC address randomization
when sending probe requests [17,23]. However, this defense can be (partly)
bypassed. First, early implementations of address randomization did not reset
the sequence number of probes between different individual scans [10]. Random
MAC addresses can then be linked together by their incremental sequence num-
bers. Another method to link randomized probe requests is by relying on the
included Information Elements (IEs). In particular, researchers found that the
set of included IEs, their order, and their values, form a reliable fingerprint [23].
They suggest to avoid this by only including essential IEs. Finally, the timing
between different network scans can also be used to track devices [18]. More pre-
cisely, the Inter-Frame Arrival Time (IFAT) between frames sent on the same
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channel within an individual scan forms a fingerprint of the device. This can be
mitigated by sending probe requests with random delays [18]. In contrast, we
look at the time between probe requests sent of different channels. Additionally,
none of these works focus on improving passive scanning such that it becomes a
viable alternative to active scanning.

Other works optimize active scanning by modifying the dwell time [1,6].
Their results indicate that in an environment with many APs, increasing the
dwell time leads to a higher AP discovery rate [1]. However, increasing the dwell
time past 100 ms did not yield more APs when using active scanning. Kim et
al. propose to use the current location of a device to reduce privacy leaks during
active scanning [15]. Here a device remembers the location of known networks,
and only sends probe requests to networks that are likely nearby. Again, none
of these works investigate passive scanning.

8 Conclusion

In this paper we argued that improving active scanning, such that it is more
privacy-friendly, is not the best way forward. Instead, we believe a better app-
roach is to improve the speed of passive scanning. We hope this makes vendors
more incentivized to use passive scanning as the new default.

In particular, we proposed incremental and priority scanning. We imple-
mented these modifications on Android, and evaluated their performance using
several metrics. These experiments indicate that passive scanning can match
and even surpass the speed of active scanning. For instance, when using static
or dynamic priority scanning, the average time-to-connect is lower than default
active scanning. This makes passive scanning a practical alternative to active
scanning, improving privacy, and freeing up airtime.
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Abstract. We present a new online voting scheme with everlasting pri-
vacy and cast-as-intended verifiability. We follow the so called “audit-
and-cast” paradigm where the voter audits the ballot before casting it.
To mitigate the ability of this information to harm the voter’s privacy, we
provide measures for avoiding coercion by allowing any party to create
fake proofs for the content of any vote. We propose an efficient imple-
mentation and formally verify its security properties.

1 Introduction

This work focuses on simultaneously achieving two properties, everlasting pri-
vacy and cast-as-intended verification—along with end-to-end verifiability—in
an efficient manner. Everlasting privacy is achieved because the public infor-
mation in the scheme is unconditionally hiding. Further, our scheme provides
timely and accountable cast-as-intended verification which the voter confirms
before the ballot is accepted; this results in a simple vote ceremony which is
dispute free. This prevents the issue found in many other schemes, where dis-
gruntled voters can cast aspersions which cannot be resolved. While we do not
claim that our scheme provides coercion resistance, we do provide to all parties
the ability to create fake proofs of all votes. This means interested parties can
run counter-coercion strategies on behalf of voters.

2 Related Work

Electronic voting schemes have been the subject of much cryptographic study
since the 1980s [3,7–9,11,12,24]. During this extensive study of verifiable elec-
tronic voting schemes many subtle issues have been detected. One such issue
is receipt-freeness [4] and another is cast-as-intended verifiability. Unfortunately
the former significantly complicates the latter. Prominent verifiable electronic
voting schemes for remote voting like Helios [2] use Benaloh challenges [32]
to achieve cast-as-intended verification without generating receipts, but this
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mechanism—as currently implemented—is (often) unusable [21]. Compound-
ing the usability issues with some cast-as-intended mechanisms are the further
issues of accountability and dispute management. We desire that electronic vot-
ing schemes provide strong evidence of misconduct, but the definitions of cast-
as-intended verification require only that a voter can detect misconduct. While
this issue is dealt with in some papers [10,30], in many deployed examples and
papers [19,29,31] the definitions do not imply strong evidence. This lack of
strong evidence means that if honest voters make mistakes in verification, or
disgruntled voters desire to cast aspersions on the security of the election, there
is no way to tell the difference between these scenarios and an attack. To provide
strong evidence the definition needs to be strengthened to something closer to
accountability [22].

Many voting protocols have been proposed with everlasting privacy and oth-
ers have configurations which achieve this property. Everlasting privacy was
proposed as an extension to the Helios scheme by Demirel et al. [14], extending
the Split-ballot voting scheme from Moran and Naor [25]. This kind of extension
reduces privacy attacks on the system (from an external adversary) to infor-
mation theoretic security rather than computational. Hence, no future break-
through in computation power, mathematics, or large scale quantum computers
will put the voters’ privacy at risk to the public. While there are schemes [35]
which provide information theoretic privacy these are impractical for most/all
real elections. Demirel et al.’s scheme and many others, including our work here,
have at least one authority against which privacy holds only computationally.
Another set of schemes use some form of anonymous signature (ring, group, link-
able) and an anonymous channel [23] which achieves everlasting privacy cleanly,
but the existence of such a channel is problematic to realise [34].

Our work is similar to both Selene [29] and Guasch et al.’s work on “How to
Challenge and Cast Your e-Vote” [17] in that we make use of a voter controlled
trapdoor which allows the voter to be given a proof about which they can then
equivocate to possible coercers. Our work provides stronger cast-as-intended
verifiability than either of the above by avoiding dispute issues in the cast-
as-intended mechanism. We achieve this by getting the voter to confirm that
they are happy with the cast-as-intended check before submitting. Selene has a
significantly different user experience where the voter checks that their vote was
included after the election is complete, whereas Guasch et al.’s work has a similar
voter experience to ours. In addition, while there seems to be no insurmountable
barrier to updating either of the above schemes to have everlasting privacy,
neither scheme currently has this property.

3 Building Blocks

3.1 Definitions

We begin by stating the standard definitions.

Definition 1. Encryption Scheme: An encryption scheme Πε consists of a triple
of efficient algorithms (Genε, Encε,Decε) such that:
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Genε(1n): Given the security parameter 1n, output a pair of public and secret
keys (pk, sk). The public key specifies a message space Mε.

Encε(pk,m): Given a public key and a message m, return ⊥ if m /∈ Mε, oth-
erwise output a ciphertext c. The explicit notation is Encε(pk,m; r) for the
randomness used in the encryption.

Decε(sk, c): Using the private key sk, output a decryption d of the ciphertext c.

We require an encryption system to be correct and at least preserve indistin-
guishability of messages under chosen plaintext attacks.

Definition 2. Trapdoor Commitment Scheme: A trapdoor commitment scheme
Πc is a tuple of efficient algorithms (Genc, GenTKc, Comc, V erifyc, Fakec)
such that:

Genc(1n): Given the security parameter 1n, output a public commitment key ck
and a proof that ck was generated without a known trapdoor. The commitment
key specifies a message space Mc.

GenTKc(1n): Given the security parameter 1n, output a public commitment key
ck and trapdoor key tk. The commitment key specifies a message space Mc.

Comc(ck,m): Given a commitment key and a message m, return ⊥ if m /∈
Mc, otherwise output a pair (c, d) made of a commitment and an open-
ing. The explicit notation is Encε(ck,m; r) for the randomness used in the
commitment.

V erifyc(ck, c, d,m): Given a commitment key, commitment, opening and mes-
sage, return either 1 or 0 if these inputs are consistent or not.

Fakec(ck, tk, c, d,m,m′): Given a commitment key, trapdoor key, commitment,
opening and messages m and m′ returns a new opening d′.

Clearly the commitment scheme should be correct and it should not be possible
to open the same commitment to two different messages without knowledge of
the trapdoor key. In addition, our scheme requires that the commitments be
statistically hiding.

Definition 3. Signature Scheme: A signature scheme Πs is a triple of efficient
algorithms (Gens, Signs, V erifys) such that:

Gens(1n): Given a security parameter 1n, output a pair of public and secret keys
(pk, sk). The public key specifies a message space Ms.

Signs(sk,m): Given a secret key and a message m, return ⊥ if m /∈ Ms, other-
wise output a signature s.

V erifys(pk,m, s): Return either 1 if the signature verifies for the public key or
0 if not.

A signature scheme should be correct and prevent even existential forgeries.
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3.2 Specifics

We take as our primary building blocks the Pedersen commitment scheme [28]
and Paillier encryption [27]. These have been very commonly used in e-voting
with everlasting privacy, going back to Moran’s seminal work [25], and were also
used in [14] and [13]. In essence, one commits to the vote in a Pedersen com-
mitment and then encrypts the opening under Paillier encryption. The uncondi-
tionally hiding Pedersen commitments can ensure the integrity of the election on
the public board without revealing any information about the vote. In addition,
we make use of verifiable mixnets and sigma protocols.

We note that Paillier has somewhat of a bad reputation in the e-voting com-
munity for complicating secure threshold key generation. While this was certainly
a significant concern when Paillier was first proposed, subsequent research has
changed the situation [26]; of particular note in addressing this concern is Hazay
et al.’s [20] recent work. At present, the remaining reason not to prefer Pail-
lier encryption is computational costs which we would argue are insufficiently
problematic to justify the procedural issues incurred by most alternatives.

We note in passing that it is possible to adapt the very elegant PPATC
scheme of Cuvelier et al. [13] for use with our scheme as a replacement for
Paillier encryption and Pedersen commitment. The resulting scheme proceeds
identically to how we describe, but instead of Pedersen commitments, Abe et al.’s
[1] commitment scheme is used—once with known trapdoors and once without.
This works because while PPATC is not additively homomorphic, an analogous
sigma protocol to the “Sigma protocol for consistent commitments”—which we
will define below—is available. We detail this sigma protocol in AppendixA.

Paillier encryption consists of a triple of efficient algorithms (GenPa, EncPa,
DecPa) such that:

GenPa(1n): Choose two n-bit primes, p and q, and compute the public modulus
N := pq for the Paillier encryption. The corresponding secret key λ := λ(N)
is the number lcm(φ(p), φ(q)) = φ(N)/2. Output (N , λ).

EncPa(N,m): For m ∈ ZN choose r ∈R Z
∗
N and return = (N +1)mrN mod N2.

DecPa(λ, c): For c ∈ ZN2 return ([cλ mod N2] − 1)/N)[λ−1 ∗ x mod N ] ∈ ZN .

Pedersen’s commitment scheme consists of a tuple of efficient algorithms (GenPe,
GenTKPE ComPe, V erifyPe, FakePe) such that:

GenPe(1n): Choose a group G of order o, 2n−1 < o < 2n, in which the discrete
log problem is hard. Select two generators g and h in a verifiably random
way such that no non-trivial information about the relationship between is
revealed, for instance as described in [16]; return ck := (G, o, g, h). We also
allow G to be given explicitly in which case the notation is GenPe(G).

GenTKPE(1n): Choose a group G of order o approximately equal to 1n in which
the discrete log problem is hard. Select a random generator g and random
element of Zo x and set h = gx; return ck := (G, o, g, h) and tk := x. We also
allow G to be given explicitly in which case the notation is GenPe(G).

ComPe(ck,m): Given a commitment key and message m ∈ Zo choose r ∈R Zo

and return (grhm, r).
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V erifyPe(ck, c, d,m): Given a commitment key, commitment c, opening d and
message m return 1 if c = gdhm else 0.

FakePe(ck, tk, c, d,m,m′): Recall that tk = x where h = gx, return (r′ :=
r + xm − xm′).

In our scheme we use Pedersen commitments in two separate places (with differ-
ent commitment keys). First, we use them to achieve everlasting privacy while
preserving integrity. In this use, the ability to implant a trapdoor is undesir-
able, so the setup should produce two generators which are verifiably drawn
uniformly and independently at random. They should be drawn in such a way
that no more information about the relationship between them is revealed than
can be easily computed given only the two elements. However, we also use the
Pedersen commitments to allow the voters to verify that their ballot is cast as
intended but later equivocate about the proof, in which case we make deliberate
use of the trapdoors. We emphasise that since these two different places
have two different sets of keys no contradiction occurs by having one
trapdoored and the other not.

We can exploit the homomorphic properties of the above primitives to create
efficient Zero Knowledge Proofs (ZKP) of correct encryption. Specifically given a
Pedersen commitment of the vote c, Paillier ciphertexts opening the commitment
c1 and c2, and an additional verification Pedersen commitment cv, we can prove
that the ciphertexts do encrypt an opening to the commitment and that the
additional verification commitment refers to the same vote. The sigma protocol
for correct encryption first appeared in [13].

Sigma protocol for correct encryption. Given a ck, pk, (c, c1, c2) we
show that we know (v, r, r1, r2) such that c = ComPe(ck, v; r), c1 =
EncPa(N, r; r1), and c2 = EncPa(N, v; r2).
1. Prover chooses (v′, r′, r′

1, r
′
2) at random and computes c′ = ComPe(ck,

v′; r′), c′
1 = EncPa(pk, r′; r′

1), and c′
2 = EncPa(pk, v′; r′

2) and returns
(c′, c′

1, c
′
2).

2. Verifier sends a challenge e chosen at random in ZN .
3. Prover computes t1 := v′ + ev, t2 := r′ + er, t3 := r′

1r
′
1
e, and t4 := r′

2r
′
2
e

and sends these to the verifier.
4. The verifier accepts if c′ce = ComPe(ck, t1; t2) and c′

1c
e
1 = EncPa(pk,

t2; t3) and c′
2c

e
2 = EncPa(pk, t1; t4).

Sigma protocol for consistent commitments. Given a ck, ckv, (c, cv) we
show that we know (v, r, rv) such that c = ComPe(ck, v; r), and cv =
ComPe(ckv, v; rv).
1. Prover chooses (v′, r′, r′

v) at random and computes c′ = ComPe(ck, v′; r′),
and c′

v = ComPe(ckv, v′; r′
v) and returns (c′, c′

v).
2. Verifier sends a challenge e chosen at random in ZN .
3. Prover computes t1 := v′ + ev, t2 := r′ + er, and t3 := r′

v + erv and sends
these to the verifier.

4. The verifier accepts if c′ce = ComPe(ck, t1; t2) and c′
vce

v =
ComPe(ckv, t1; t3).
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We can make the sigma protocol for correct encryption non-interactive by
applying the Fiat-Shamir transform, and we will in future refer to CEProve
and CEVerify for the non-interactive prover and verifier functions respectively.
We do the same for the consistent commitment sigma protocol and refer to
CCProve and CCVerify.

The Sigma protocol for correct encryption above can be modified to prove
correct re-encryption of a tuple of a Pedersen commitment and two Paillier
ciphertexts. Given the sigma protocols for correct re-encryption we can apply
Wikström’s general result from [33] to construct a mixnet. An optimised vari-
ant of Wikström’s mixnet for shuffling Pedersen and Paillier together recently
appeared in [18].

We will refer to the mixnet for the Pedersen commitment and Paillier cipher-
texts together as Mix and its verification algorithm as MixVerify; similarly we
denote the mixnet for commitments alone as Mix’ and its verification algorithm
as MixVerify’. We denote MixSimulate and MixSimulate’ the simulators
for the mixnets which are obtained by reprogramming the random oracle. It is a
trivial equivalence for the authorities to check that the commitments are shuffled
according to the same permutation and updated by the same randomness factors
on both boards. We note that in this case, the structure of Wikström’s proof
also works for a significantly optimised variant of the mixnet from the general
result, as is also true in the case of ElGamal for instance; we omit the details.

4 Cronus E-Voting Scheme

We now describe the scheme which uses two bulletin boards BB and sBB;
the first is a public board and the second can only be seen by the authorities.
Since BB is public information all algorithms are assumed to have access to
all its contents. For simplicity we describe it with a single key holder although
threshold key generation is available:

Setup(1n) runs GenPa(1n) and receives (N,λ), chooses k such that kN + 1 is
prime, denoting the subgroup of order N in ZkN+1 as G and runs GenPe(G)
and receives (g, h), and sets the election public key pk = (N,G, g, h) and
sk = (λ). Then it generates the empty list of credentials ID and posts pk and
ID BB.

Register(1n, id) runs GenTKPe(G) and Gens(1n) and sets pkid = (ck, pks) and
skid = (tk, sks), and posts (id, pkid) to BB unless id already appears on the
board in which case it aborts.

CreateVote(v, id) retrieves (pk = (N,G, g, h), pkid = (ck, pks)) from BB.
Then, it runs ComPe((g, h), v) and receives (c, r); it then chooses r1 and
r2 at random in Z

∗
N , then runs EncPa(N, r; r1) and EncPa(N, v; r2) and

receives c1 and c2. It then runs ComPe(ck, v) and receives (cv, rv). The vot-
ing device calls CEProve(c, c1, c2)(v, r, r1, r2) and CCProve(c, cv)(v, r, rv)
and receives πCE and πCC . The ballot b is then (c, c1, c2, cv, πCE , πCC). The
device also outputs (v, rv) which will be used to audit the ballot.
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CastBallot(b, skid, id) runs Signskid
(b) and receives ζ. The authenticated ballot

is then ba = (id, b, ζ).
ProcessBallot(ba) parses ba as (id, b, ζ) and b as (c, c1, c2, cv, πCE , πCC). It

checks that V erifys(pkid, b, ζ) = 1 and that CEVerify(c, c1, c2, πCE) = 1
and that CCVerify(c, cv, πCC) = 1. If tkid is not present BB then posts
(id, c, cv, πCC) to the public bulletin BB and (id, c1, c2, πCE) to the private
bulletin board sBB.

AuditVote(id, v, rv). On receiving (id, v, rv), the audit device accesses the bul-
letin board to retrieve (c, cv, πCC). It checks that CEVerify(c, cv, πCC) = 1
and that V erifyPe(ckid, cv, v, rv) = 1. If these checks pass it returns 1,
otherwise 0.

ConfirmBallot(id, skid, (v, rv)) parses skid as (tk, sks) and retrieves pkid

parsing it as (ck, pks). It then checks that tk is valid for ck and that
V erifyPe(ck, cv, v, rv) = 1, if so it chooses v′ at random from the set of valid
votes and posts (tk, v′, r′

v) to the BB where r′
v = FakePe(ck, tk, cv, rv, v, v′),

otherwise it returns 0.
Tally(sk, sBB)

Filter. First the authorities filter out the ballots which were not confirmed.
Parallel shuffle. They then take the set of commitments on the public

board and the set of commitments taken with the ciphertexts on the
private board. They then re-randomise and shuffle these sets using Mix’
and Mix respectively, checking that the commitments on the two boards
match at each step. We denote by Φ1 and Φ2 the Non-Interactive Zero
Knowledge Proof (NIZKP) proofs of correct mixing for the public and
private board respectively. The output set of commitments along with
intermediary values and Φ1 are posted to the public board BB and the
output set of ciphertexts and Φ2 are posted to the secret board sBB.

Decryption. The authorities then jointly decrypt the set of ciphertexts of
the form (c′

1, c
′
2) to recover (r′, v) which are then posted to the public

board.
VerifyTally(pk) to verify that a set of votes (v1, ..., vn) are the correct result, an

auditor retrieves the input commitments, output commitments, intermediary
values, openings and Φi for the public board. It then runs Mix’ and checks
that V erifyPe(ck, c′, v, r′) = 1 for all commitments c′ and openings r′. If all
checks pass it returns 1, else 0.

4.1 Election Flow

The election protocol has the following participants: Election Authorities, Reg-
istrars, and Voters whom we assume have access to a Voting device and Audit
device.

Setup Phase. Before an election, the set of election authorities set up the public
parameters as defined by Setup, which they publish to the public bulletin
board BB—and also define the voting options and the tally function. The
voters are registered by the registrars, using the Register function, and the
voters pkid are posted to the BB.
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Vote Casting Phase. During the vote casting stage, voters access their voting
devices and cast their ballots using CreateVote and CastBallot, and receive
v, rv. They then provide v, rv to the audit device which checks the ballot using
AuditBallot. If the ballot audit is successful, the voter then confirms their
ballot using Confirm Ballot. The voter should check that both their voting
device and audit device agree that the ballot has been confirmed.

Tallying Phase. After voting is over, the authorities run Tally which runs the
mixnets and tallies the votes.

Audit Phase. After the election, any party can check the signatures on the
submitted ballots to see that ballots were collected as cast and no ballots
from ineligible voters are present. They can also run VerifyTally to check
that the ballots were counted as collected.

The voter’s experience in the most straightforward instantiation of the scheme is
of authenticating and voting on one device, which then displays a QR code. The
voter then scans this with a second device which confirms that the encrypted
ballot encodes the voter’s choice. The voter then confirms their ballot.

5 Security Definitions and Analysis

In defining Ballot Privacy, we follow the Ballot PRIVacy (BPRIV) definitions of
Bernhard et al. [5] which we have slightly modified, while our cast-as-intended
definition is similar to Escala et al. [15,17]. We also briefly discuss why everlasting
privacy holds and why the encryption is Non-Malleable and indistinguishable
under a Chosen Plaintext Attack (NM-CPA).

5.1 Ballot Privacy

The intuition for the formal definition of privacy is that privacy should hold even
against insiders up to and including any subset of the authorities, less than the
threshold that can recover the key—that threshold can trivially break privacy
by decrypting the ciphertexts next to the voter id. Formally we define ballot
privacy by the adversary advantage in the following experiment. Note that in
our privacy definitions we prepend the bulletin board on which the algorithm is
running to its list of inputs when necessary for clarity.
Expbpriv,β

B,V (n)
(pk, sk) ← Setup(1n)

OvoteLR(id, v0, v1)
skid = Register(1n, id)
Let (b0, (v0, r0)) = CastBallot(VoteCreate(v0, id), skid, id) and

(b1, (v1, r1)) = CastBallot(VoteCreate(v1, id), skid, id)
If ProcessBallot(bβ) = 0 return 0.
If ConfirmBallot(id, skid, (vβ , rβ)) = 0 return 0.

Ocast(id, b, (v, r))
skid = Register(1n, id)
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If ProcessBallot(b) = 0 return 0.
If ConfirmBallot(id, skid, (v, r)) = 0 return 0.

Oboard()
return (BBβ , sBBβ)

Otally() for β = 0
(r, φ) ← Tally(BB0, sBB0, sk)

Otally() for β = 1
(r, φ) ← Tally(BB0, sBB0, sk)
φ′ ← SimProof(BB1, r)
return(r, φ′)

Definition 4. BPRIV Consider a voting scheme V = (Setup,Register,
CreateV ote,CastBallot,ProcessBallot,AuditV ote,ConfirmBallot,
Tally, V erifyTally) for a set I of voter identities for a result function p. We
say the scheme has ballot privacy if there exists an algorithm SimProof such
that no efficient adversary can distinguish between games Expbpriv,0

B,V (λ) and
Expbpriv,1

B,V (λ) defined by the oracles above, that is for any efficient algorithm A

|Pr[Expbpriv,0
B,V (λ) = 1] − Pr[Expbpriv,1

B,V (λ)]|

is negligible in λ.

Due to similarities between between Helios and our scheme the proof of ballot
privacy is similar. However, there are significant differences; we have a public
and a confidential bulletin board and a two-stage ballot casting process. For the
purpose of proving ballot privacy we assume casting and confirming a ballot is
an atomic process, since the adversary has less information to attack privacy
when his process aborts rather then completes this does not enable any attacks.
We define BB as the union of BB and sBB so that it contains entries of the
form (id, b = (c, c1, c2, cv)).

Recall the observation that since the visible bulletin board is built through
the OvoteLR(id, v0, v1) and Ocast(id, b, (v, r)) queries, our BPRIV reduction
can associate, to any entry (idi, bi) in the visible bulletin board, a tuple
(idi, b

0
i , b

1
i , v

0
i , v1

i ).

[Game G−1] Let G−1 be the BRPIV game corresponding to Experiment
Expbpriv,0

B,VCronus . The BPRIV adversary A sees the ballot box BB0 and an oracle
Otally() faithfully answered.

[Game G0] Let G0 be the same as Game G−1 except the tallying proof φ′ is
produced by MixSimulate and MixSimulate’ by reprogramming the Random
Oracle G. Due to the zero-knowledge property of the NIZKP proof associated
with the mixnet, the distinguishing probability is negligibly close between the
two games. From now on the proof is always simulated.

[Game G0,i] is obtained from Game G0,i−1 by taking two possible actions
depending on the contents of the tuple (idi, b

0
i , b

1
i , v

0
i , v1

i ): if b0i = b1i do nothing,
else b0i �= b1i replace the i-th entry (idi, b

0
i ) in BB0 with (idi, b

1
i ). By the NM-CPA
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property of our construction, the distinguishing probability of the adversary is
negligibly close to G0,i−1.

[Game G1] Let G1 be Game G0,n. The view of the adversary in Game G1

corresponds to the view of the BPRIC adversary with β = 1. Cronus is thus
BPRIV private.

5.2 Cast-as-Intended Verifiability

The challenger C calls Setup(1λ) and provides (N,G, g, h) to the adversary.
For a list of voters ID and Bulletin boards BB, sBB, it provides the following
oracles.
OregisterHonest(id)

A provides id /∈ ID. The challenger C calls Register(1λ, id) adding (id, pkid)
to ID.
OregisterCorrrupt(id, pkid)

A provides id /∈ ID. The challenger C adds (id, pkid) to ID.
Ocast(id, b)

C returns CastBallot(b, skid, id).
Oprocess(ba)

C returns ProcessBallot(ba).
OconfirmHonest(id, v, rv)

If AuditVote(id, v, rv) returns 1 then return skid and run ConfirmBal-
lot(id, skid, (v, rv)).
OconfirmCorrupt(id, ba)

return skid.

Definition 5. Cast-as-Intended Verification: Consider a voting scheme V =
(Setup,Register,CreateV ote,CastBallot,ProcessBallot,AuditV ote,
ConfirmBallot, Tally,V erifyTally) for a set ID of voter identities and
a result function p. We say the scheme has cast-as-intended verifiability if there
exists no efficient adversary that can win the following game with greater than
negligible probability.

The adversary wins if there exists a confirmed ballot (id, c, cv) ∈ BB and
(id, c1, c2) ∈ sBB such that the following conditions hold:

– id ∈ ID and id was not the input to OregisterCorrupt.
– DecPa(sk, c2) �= v where v was the voting option submitted by the adversary

to OconfirmHonest.

Provided that Cronus is instantiated with a secure signature scheme (Gens,
Signs, V erifys), sound Pedersen commitment scheme (GenPe, GenTKPe,
ComPe, V erifyPe, FakePe), and sound NIZKP schemes (CEProve,
CEVerify), (CCProve, CCVerify)—and one of the devices is honest—no such
efficient adversary exists.
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First note that all entries on the board, confirmed or otherwise, were placed
there by the Oprocess oracle. This means that the adversary has shown that it
knows an opening v, r, r1, r2 such that c = ComPe(ck, v; r), c1 = EncPa(N, r; r1)
and c2 = EncPa(N, v; r2); and, that it knows an opening v′, r′, rv such that
c = ComPe(ck, v′; r′) and cv = ComPe(ck, v′; rv). By the binding property of
the Pedersen commitments v = v′ and r = r′.

Secondly, observe that all entries on the board not violating the first condition
were confirmed there through the OconfirmHonest oracle. This oracle checks
that the adversary can open the commitment cv to v before it confirms the
ballots. Since the Pedersen commitments are binding, this v must be the only
opening which the adversary knows; and, hence, the same v which it showed to be
equal to contents of the ciphertext c2 when the ballot was processed. Therefore,
by the soundness of CEProve and CCProve and the binding property of the
commitment scheme, the vote v submitted to OconfirmHonest is the vote which
c2 decrypts to.

We have just shown that the first device is unable to submit a different vote
without being detected, but what if the second device is corrupt? If both devices
are corrupt then the voter has no integrity guarantees. However, it is also clear
that if the audit device is corrupt but the voting device is honest the ballot is sent
correctly and the voting device will honestly tell the voter when their ballot is
confirmed. We note that if one device complains that the other has misbehaved,
diagnosing which device is actually malicious is non-trivial.

5.3 Strong Consistency and Strong Correctness

We define the following extraction and verification algorithms consistent with
Tally and ProcessBallot:

1. Extract((c, c1, c2, cv, πCE , πCC), sk) first verifies the proofs πCE and πCC and
if either fails returns ⊥. Otherwise decrypts c2 and return the result.

2. ValidInd(b) checks that the ballot is valid and the proofs are correct. That is,
given a ballot b = (c, c1, c2, cv, πCE , πCC) it checks that both πCE and πCC
verify.

Definition 6. Strong Consistency: A voting protocol has strong consistency if
the following hold:

– For all pk from Setup for any voter v, for any voter identity id and pkid for
Register(id), Extract(CreateVote(v,id)) = v.

– ProcessBallot(ba) = 1,AuditBallot(id, v, rv) = 1,ConfirmBallot
(id, skid, (v, rv)) = 1 implies thatV alidInd(b) = 1.

– Where the adversary’s chance of winning the following game is negligible,
Setup phase. The challenger runs Setup(1n) to generate pk and sk, which

it gives to A.
Bulletin Board. A submits a bulletin board BB and sBB.
Counting phase. The challenger runs Tally(sk) and obtains the set of

output votes r and tally proof φ1.
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Output. The adversary A wins if r �= Extract(BB, sk), where Extract is
applied to each confirmed ballot on the bulletin board.

The first property follows trivially from the correctness of Paillier encryption.
The second property follows because ProcessBallot checks the same proofs as
ValidInd. The last property follows trivially because the definition of extract and
tally are the same up to mixing.

Definition 7. Strong Correctness: A voting protocol has strong correctness if
given pk = Setup(1n), for any efficient algorithm A, the following probability

Pr[(id, v, BB) ← A(pk);Register(1n, id);CreateV ote(v, id) = b, (v, rv);

CastBallot(b, skid, id) = ba : ProcessBallot(ba) = 0 ∨ AuditV ote(id, v, rv) = 0

∨ConfirmBallot(id, skid, (v, rv) = 0]

is negligible in λ, where id does not appear on BB.

By definition of ProcessBallot, AuditVote and ConfirmBallot the above
definition implies that the following events must occur except with negligible
probability. The signature produced by CastBallot must verify. The sigma
protocol transcripts produced by CreateVote must verify. The tkid must not
already appear on the bulletin board. The commitment cv must open to v, rv.
All of these events are implied by the correctness of the relevant primitives with
the exception of tkid not appearing on the bulletin board; for this, we require
that id does not already appear on the BB as produced by the adversary.

5.4 Everlasting Privacy

Everlasting privacy is fairly straightforward. The public bulletin board BB con-
tains the following information for each confirmed ballot at the end of the elec-
tion (id, pkid = (ck, pks), c, cv, πCC). The commitments c and cv are statistically
hiding and hence leak negligible information about the vote regardless of adver-
sary’s computational power. The proof πCC is honest verifier zero knowledge and
also leaks negligible information about the vote regardless of adversary computa-
tional power. Since no non-negligible information is leaked about the vote based
on the public information, we conclude that the scheme has everlasting privacy.

5.5 Encryption

It is known that an Indistinguishable under Chosen Plaintext Attack (IND-CPA)
secure cryptosystem plus a Simulation Sound Extractable Proof of Knowledge
(SSE-PoK) is Non-Malleable under Chosen Plaintext Attack (NM-CPA) [6]. It
also known that applying the strong Fiat-Shamir transform to sigma protocols
yields an SSE-PoK. We therefore have that our construction is also NM-CPA
secure provided that Paillier-Encryption is IND-CPA secure. It is also necessary
to prevent simple duplication of ballots; this can be done by filtering duplicates
or including the voter id in the input to the hash function challenge generator
in the non-interactive version.
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6 Practical Realisation

In practice the voter needs to have access to the keys in some way. One option is
that the voter has a trusted authentication device which handles the signing and
trapdoor for them; however, this reduces the practicality of the scheme. Another
option is to provide the voter with a confirmation code and distribute the trap-
door among the set of tellers; the set of tellers would release the trapdoor when
the voter confirms. Interestingly, this realisation does not affect the integrity
of the scheme—unless the first device colludes with the tellers—but has a mild
impact on privacy.

7 Conclusion

We have presented a straightforward and effective scheme with cast-as-intended
verifiability, everlasting privacy, and universal verifiability. The scheme avoids
many of the issues hitherto present in similar schemes through careful use of
checks and zero-knowledge proofs. The construction as we present it relies on
Pedersen commitments and Paillier encryption; however, it is equally possible
to instantiate over elliptic curves of prime order with bilinear pairings.

A Sigma protocol for consistent Abe commitments

We present a sigma protocol which shows that the prover can open two of Abe
et al.’s [1] commitments to the same message. Recall that Abe et al.’s commit-
ments are defined over an elliptic curve coupled with a bilinear pairing; we denote
the groups of the curve as G1,G2,GT . Given two generators for G1 denoted G0,
G1 and a generator for G2 denoted H, a commitment to a message m using
randomness r, r′ is a tuple (Hr1m,Gr

0G
r1
1 ).

Sigma protocol for consistent commitments. Given a G1,G2, G0, G1,H,
(c1, c2), (c′

1, c
′
2) the prover shows that they know (r, r′, r1, r′

1) such that
c1/c′

1 = Hr/Hr′
, c2 = Gr

0G
r1
1 , and c′

2 = Gr′
0 G

r′
1

1 .
1. Prover chooses (s, s′, s1, s′

1) at random and computes com1 = Hs/Hs′
,

com2 = Gs
0G

s1
1 , and com3 = Gs′

0 G
s′
1

1 and returns (com1, com2, com3).
2. Verifier sends a challenge e chosen at random in ZN .
3. Prover computes t1 := s+er, t2 := s′+er′, t3 := s1+er1, and t4 := s′

1+er′
1

and sends these to the verifier.
4. The verifier accepts if com1(c1/c′

1)
e = Ht1/Ht2 and com2c

e
2 = Gt1

0 Gt3
1

and com3c
′e
2 = Gt2

0 Gt4
1 .

The proof is straightforward and we omit it due to lack of space.
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Abstract. Traditional security mechanisms such as signature based
intrusion detection systems (IDSs) attempt to find a perfect match of a
set of signatures in network traffic. Such IDSs depend on the availability
of a complete application data stream. With emerging protocols such as
Multipath TCP (MPTCP), this precondition cannot be ensured, result-
ing in false negatives and IDS evasion. On the other hand, if approximate
signature matching is used instead in an IDS, a potentially high number
of false positives make the detection impractical. In this paper, we show
that, by using a specially tailored partial signature matcher and knowl-
edge about MPTCP semantics, the Snort3 IDS can be empowered with
partial signature detection. Additionally, we uncover the type of Snort3
rules suitable for the task of partial matching. Experimental results with
these rules show a low false positive rate for benign traffic and high
detection coverage for attack traffic.

1 Introduction

Intrusion detection systems (IDSs) are an integral part of network infrastruc-
ture protection. Signature based IDSs such as Snort3 [24] compare network traf-
fic with signatures extracted from pre-defined rules. The comparison results in
an alarm only when an exact and perfect match of a signature is found in the
network traffic and other conditions stated in a rule are met. The detection
is heavily dependent on the availability of a complete data stream. To ensure
this, the Snort3 IDS caters for on-path fragmentation by using a TCP stream
reassembly process that, if enabled, waits for attack patterns that are fragmented
across multiple packets of the same connection. The process combines data from
all packets in a stream into a larger pseudo packet and forwards it for detec-
tion [10]. Such a set-up has served its purpose well in the case of standard TCP.
However, Snort3 cannot handle the case where the application data are frag-
mented across different paths (TCP connections).

Multipath TCP (MPTCP) [12] is an emerging protocol that is expected to
overcome some inherent weaknesses in standard TCP. Originally designed for
smartphones, MPTCP enables end-hosts to communicate using multiple paths at
the same time for improved connectivity and/or a higher throughput. One of the
implications of this is that many basic assumptions made by IDSs such as Snort3
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are no longer true [3,21]. The problem is two-fold. First, the security technologies
that do not recognize MPTCP fail to perform their function even when the entire
data stream is visible to them. For instance, assume that there is an IDS with
a rule to detect a string “secret” in TCP packets. Using MPTCP, an adversary
can fragment the signature and send “sec” and “ret” on two different paths.
Consequently, the IDS will be matching the rule against one half of the string
at a time instead of the whole string. It will not raise an alarm because neither
“sec” nor “ret” match “secret”. However, the full message “secret” will still arrive
at its destination. This is also known as a cross-path data fragmentation. The
built-in TCP reassembly is not adequate in this situation. Previous works [3,13]
have addressed this problem where the task was relatively easier as the IDS had
data from all paths and simply needed to correlate and reassemble it.

The second and more challenging problem for intrusion detection arises when
the paths involved in an MPTCP connection are controlled by different Internet
Service Providers (ISPs) and hence data from other paths are not available in an
IDS. This limitation makes approaches such as distributed signature detection
inapplicable, as there can be no sharing of information between the IDSs. In this
scenario in which some data are missing, the IDS has to decide by itself whether
an available data fragment is part of an actual signature. If the IDS uses exact
matching, it will find no exact matches of any possible attack patterns. If general
approximate matching is used, the number of matches will include far too many
false positives, making the task of intrusion detection questionable by creating
more problems than it solves [6].

This paper takes the first step towards detecting intrusion attempts caused
by MPTCP cross-path data fragmentation and unavailability of data from other
paths. In a first work of its kind, we investigate the extent to which an IDS
that is operating independently can make reliable decisions. We also explore the
bounds on the minimum data that an IDS needs to observe to make a decision. To
this end, we formally present the attack model and employ a specially designed
partial pattern matcher that enables an independently operating Snort3 IDS to
reliably decide whether a data segment belongs to a signature in its database.
Another contribution of this work is the discovery of Snort3 rules that are not
suitable for partial signature detection. Leveraging the MPTCP protocol seman-
tics and heuristics, we present a novel methodology that empowers Snort3 with
partial signature detection with a low risk of false positives for suitable rules.

The rest of the paper is structured as follows. Section 2 provides the necessary
background and summarizes related work. Section 3 describes the attack model
and the partial signature matching algorithm. Section 4 discusses the detection
set-up in more detail, explaining each building block. Section 5 provides a val-
idation of the detection methodology. Finally, Sect. 6 presents an outlook and
summarizes the work presented.

2 Background and Related Work

MPTCP [12] is an extension to TCP that enables a TCP connection to oper-
ate across multiple paths simultaneously, thus providing many performance and
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dependability advantages. An MPTCP connection consists of one or more sub-
flows, where each of these subflows is a proper TCP connection but with addi-
tional MPTCP options. These options allow every subflow to be linked to an
MPTCP connection. Once an MPTCP connection is established and multiple
subflows are available, data can flow on any or all subflows simultaneously. The
sender can utilize multiple paths to enhance bandwidth and ensure that the data
are sent to the receiver as fast as possible using all available paths. See [12] for
further details on MPTCP.

Smartphones were the main motivation behind the design and development of
MPTCP, so the largest deployment of MPTCP is naturally on smartphones [9].
Using the two available wireless interfaces (cellular and WiFi) on smartphones,
MPTCP enables a client to roam seamlessly without losing connectivity. For
example, Siri in the Apple devices [7] benefits from MPTCP’s handover capabil-
ities by establishing an MPTCP connection with two subflows using the cellular
and the WiFi interfaces. This deployment has not only significantly improved
connectivity but also made Siri a lot faster. Another use case of MPTCP in
smartphones has come in the form of combining the two available wireless inter-
faces for an increased throughput [8].

As most signature based IDSs use exact string matching to compare known
attack patterns with network traffic, there is a strong possibility of evading them
using variation(s) in attack patterns [15,17]. Since MPTCP allows an attacker
to distribute attack patterns across multiple paths, this evades the exact string
matching tasks on each individual path. This problem of detecting signatures
from traffic where some parts are missing can be contrasted to the problem of
approximate matching, which has been around for decades. Information the-
ory introduced edit distance to measure how close or similar two strings are
to each other. The similarity is measured in terms of how many operations are
required to convert one string into the other. Levenshtein distance [18] is the
most commonly used edit distance metric. Normally, it considers three opera-
tions: insertions, deletions, and substitutions. In computer science, Levenshtein
distance can be used in approximate pattern matching [20]. Other metrics have
been proposed in the literature such as Hamming distance [16] which only con-
siders substitution operations when counting the number of operations needed
to go from one string to another. Another metric known as Jaro-Winkler [25]
distance considers transpositions only, whereas Longest common subsequence
(LCS) [20] considers only two allowed operations, i.e., insertion and deletion.

As an alternative to unbounded approximate string matching, few works
[11,22] have proposed constrained approximate string matching algorithms.
These algorithms introduce constraints on the number of edit operations on
the old attack patterns to ensure that false positives and negative rates are kept
low. In previous work [2], we proposed an insert-only variation of the Leven-
shtein distance to enable accurate comparison of two strings for the case when
edit operations such as deletions and substitutions do not appropriately model
the process creating the differences in strings.
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In terms of applied intrusion detection for detecting distributed signatures
in MPTCP, to the best of our knowledge, only one work [19] exists. The authors
proposed a distributed algorithm where each IDS coordinates and broadcasts its
activities to all other IDSs. According to the authors, the proposed algorithm
performs well, but optimization of the algorithm is required to reduce delay
in detection when out of order packets are received. In addition, this approach
assumes that the same organization owns parts of the paths where multiple IDSs
are deployed or, alternatively, the IDSs are placed closer to end-points such that
they can observe all the traffic. The approach will be infeasible for on-path
IDSs where paths are owned or controlled by different ISPs and the traffic is
fragmented using MPTCP across those paths.

3 Attack Model and Matching Algorithm

In this section, we describe the attack model considered in this paper. We also
describe the matching algorithm to be used in detection of signatures from partial
fragments.

3.1 Attack Model

We consider the case where there are multiple IDSs passively monitoring different
paths into an organization’s network. Our focus is on the most common use case
of MPTCP, i.e., smartphones, where two paths are established and used over
the two wireless interfaces. As shown in Fig. 1, these IDSs are working in offline
mode and do not exchange messages or keep any joint state. They make decisions
independently based on the network traffic that passes through them.

Fig. 1. Attack model.

We assume an attacker who uses MPTCP to distribute an attack pattern
among multiple paths to perform arbitrary cross-path data fragmentation. This
means that the attacker can alternate the path after every byte. To generalize,
we consider the case of an organization with L Internet connections and IDSs
operating on different autonomous systems (ASes). It can be shown that, with a
length of M bytes for a particular signature, at least one of the IDSs must have
observed a minimum detect length of at least �M/L� bytes of the signature, if a
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message containing the signature has been transferred across the paths. This is
true regardless of how an attacker might perform the splitting. Thus, the attack
model followed in this paper assumes topological knowledge of its infrastructure
by the organization and arbitrary fragmentation by the attacker, whereby the
minimum detect length will be present on at least one of the paths.

3.2 Matching Algorithm

As noted earlier, approximate matching with the aim to detect cross-path frag-
mentation does not need to consider deletion or substitution operations, as the
only possible transformation operation of a pattern string resulting from sending
part of it on an alternate path is deletion. Therefore, the appropriate approxi-
mate matching operation is insertion. We have devised an MPTCP-aware multi-
pattern approximate matching algorithm that uses the slice distance [2] metric
suitable for approximate matching in cross-path fragmentation scenarios.

Formally, we consider a collection of V patterns where some pattern P is
a string with length M = |P |. Furthermore, we receive indications that, in a
data stream Ds|s ∈ {1, ..., z}, with a buffering of z bytes, there exists some
number n of holes indexed by j|j ∈ {1, ..., n}. Each hole Hj starts at some
position Hs

j in the data stream, and ends at some later position He
j . The high-

level pseudo code for a matching algorithm over some sequence of data Ds and
holes Hj is provided in Algorithm 1. The algorithm provides two operating cases,
depending on the size of the hole Hj (i.e., He

j −Hs
j ) as caused by the cross-path

data fragmentation. Case 1 is where an attacker places packet boundaries in the
middle of a pattern. Such attacks do not require repeated fragmentation into
suspiciously small packet sizes, but will still break a non-multipath aware IDS
matcher. The matcher now examines the region around the boundaries of the
hole, i.e., the substrings D.,Hs

j
and DHe

j ,.
for potential matches against pattern

substrings P1,. and P.,|P | using the count matches method. Case 2 is where a
pattern is split into multiple small pieces, and multiple holes may be present
within one pattern by an attacker forcing multiple small fragmented packets
to be produced, iteratively sending one or a few bytes on each of the paths. If
required in an implementation context, different optimizations can be applied for
the two different cases. For case 1, which corresponds to the multi-pattern general
fix-constrained slice distance as discussed in [2], the Aho-Corasick algorithm [4]
would be applicable, which would yield favorable computational complexity.

It can be noted that the pseudo code here focuses on ease of understanding
and implementation rather than computational performance. The algorithm has
a computational complexity of O(V M̄2) per hole evaluation. While such com-
plexity provides sufficient performance for our proof-of-concept implementation,
we note that both cases can be sped up to a complexity of approximately O(M̄)
with the use of precomputed pattern match templates and rolling hashes, at a
cost of increased memory complexity. As shown in [14], the achievable through-
put of rolling hashes is above 2 Gbps, which is more than sufficient, as rolling
hashing is only employed around packet fragment boundaries, i.e., holes. For the
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data set size of rules in Snort3, the resulting memory requirement of such an
approach would be in the order of 100 MiB.

Algorithm 1. Partial signature matcher algorithm.
1: R ← max(M)/2
2: for allholesHj do
3: if He

j − Hs
j > R and Hs

j − He
j−1 > R and Hs

j+1 − He
j > R then

4: for P in pattern collection do
5: for i in roof(M/L)...M − 1 do
6: if i == count matches(DHs

j−i,He
j
, P1,i) then

7: return P
8: else if i == count matches(DHs

j ,H
e
j +i, P|P |−i,|P |) then

9: return P
10: end if
11: end for
12: end for
13: else
14: for P in pattern collection do
15: for i in 1...M − 1 do
16: if |P | == count matches(DHs

1−i,He
1
, P1,|P |) + sum(hole sizes) then

17: return P
18: end if
19: end for
20: end for
21: end if
22: end for

4 Detection Methodology

This section describes the detection of partial signatures using Snort3 in an
MPTCP setting. Figure 2 shows the different parts of the detection methodol-
ogy. The three blocks in bold are proposed by us, while the remaining are part
of Snort3 by default and are used with no changes. As shown in the figure, net-
work packets are processed by up to four different processes before being passed
to the Snort3 Detection engine. As packets arrive, Snort3 performs basic pro-
tocol decoding and passes only TCP packets to the MPTCP inspector while
the remaining packets are forwarded to the Detection engine. The inspector for-
wards necessary packet information to the MPTCP reassembler that performs
the stream reassembly and also detects possible missing segments. Depending on
the response from the MPTCP reassembler, the recreated data stream is either
passed on to the Partial matcher if the response suggests missing segments or is
directly forwarded to the Detection engine if the response suggests no missing
segments. It should be noted here that the decision as to whether a packet or flow
triggers a Snort3 rule and creates an alarm is entirely left to the Snort3 Detec-
tion engine, which is the ultimate decision maker. The role of the processes that
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precede the Detection engine is only to help it make that decision accurately.
Below, we discuss the inner working and details of each of the processes involved
in the methodology.

Fig. 2. Flow diagram of proposed detection methodology.

4.1 Packet Decoder, Detection Engine, and Logger

These are the three main systems that make up standard Snort3 and are used
with no modifications in our methodology. The Packet decoder is the system
that receives raw traffic and performs protocol decoding. It sets different point-
ers, e.g., location of data and size of payload, in the packet data to help the
Detection engine in later analysis. The Packet decoder also translates unsup-
ported encoding to an understandable format.

The Detection engine is the system that performs signature detection in
Snort3 using a set of rules. This is done by dividing the rules in a two-dimensional
linked-list. Packets on a particular 5-tuple are only matched to relevant signa-
tures for that 5-tuple. If the Detection engine detects a signature and other
options in a rule are true, then the Alert and logging system is used to log the
alarm.

4.2 MPTCP Inspector

Snort3 [23] is the third generation version of the popular Snort IDS. One of the
main motivations behind its development was making Snort’s detection compo-
nents extendable. Through the use of dynamic inspectors, it is possible to extend



78 Z. Afzal et al.

Snort3 beyond its basic capability. Conceptually, once the Packet decoder sys-
tem has performed decoding of packets, packets can be passed to any requesting
preprocessor or inspector instead of the Detection engine. An inspector can per-
form a wide range of tasks, as custom code written in C++ can be executed
here.

We have developed an MPTCP inspector to request all TCP packets from
the Packet decoder system. The inspector filters received packets further by
only processing the TCP packets with MPTCP options and passes the remain-
ing TCP packets directly to the Detection engine. For every MPTCP data
packet (referred to as original packet in the subsequent discussion), the MPTCP
inspector extracts and passes the packet header and packet data to the MPTCP
reassembler module and waits for the response. The response from the reassem-
bler decides what happens next. If the reassembler observed a previous data
packet for the same MPTCP connection, it reassembles the data stream accord-
ing to the data sequence numbers and sends it back to the MPTCP inspector.
If it detects a missing segment(s), this is also flagged to the MPTCP inspector.

If the response from the MPTCP reassembler shows that no missing data
segment(s) was detected, the MPTCP inspector replaces the packet payload of
the original packet with the reassembled payload, updates the packet length,
and sends the packet to the Detection engine. However, if the reassembler flags
a missing segment(s), the inspector utilizes the Partial matcher system to ensure
that a partial fragment of a signature cannot evade detection. In that case, the
reassembled payload and other information from the packet header such as the
source and destination addresses and ports is forwarded to the Partial matcher.
Any possible matches of the data stream in the matcher are returned. In case of
a match, a new pseudo packet is generated with the same packet header as the
original packet but with the updated length. The packet payload is replaced by
the match returned by the pattern matcher. This packet is then forwarded to the
Detection engine. In case of multiple matches by the Partial matcher, multiple
pseudo packets can be created with different packet payloads and lengths and
passed on to the Detection engine. The possible generation of pseudo packets by
the MPTCP assembler is akin to the default TCP stream reassembly process in
Snort3, as discussed earlier.

4.3 MPTCP Reassembler

The MPTCP reassembler is an enhancement of a tool [13] implemented in
Python3 to perform MPTCP data stream reassembly to prevent cross-path data
fragmentation attacks [3]. The MPTCP inspector forwards all MPTCP packets
to this module. The reassembler keeps track of all MPTCP connections and their
subflows using a buffer and tags every connection by a unique token. The hand-
shake packets (both the initial handshake and subflow handshake(s)) are used to
create entries in a dictionary data structure. On the reception of a data packet,
data are saved for that particular connection in a buffer by looking it up in the
dictionary. At the same time, the reassembly process kicks in and reassembles
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the data stream of that connection in the correct order by going through all sub-
flows and using MPTCP sequence numbers. The reassembled data stream is sent
back to the MPTCP inspector. The current implementation of the reassembler
is a proof-of-concept and has aspects that could be improved. For example, with
the arrival of each new MPTCP data packet, the reassembled stream grows in
size as it contains data from the current data packet as well as all previous pack-
ets on that MPTCP connection. This can be a problem for production systems
where timely flushing of the buffered data should instead be implemented.

Apart from the reassembly functionality, the MPTCP reassembler performs
another important task of identifying missing segments while reassembling data-
streams. This is done using the Data Sequence Signal (DSS) option in MPTCP
that contains data sequence numbers and the datal-level length. A data packet
can be missing in a stream because that packet could be routed over a differ-
ent path to the destination. The reassembler identifies that and flags it to the
MPTCP inspector. Additionally, a timer is associated with each MPTCP con-
nection based on the last observed packet for it. If the next packet for that
connection does not arrive before the timer expires and no connection closure
packets are observed, this is also flagged to the MPTCP inspector to warn it of a
possible missing segment(s) so that the Partial matcher can be utilized. We use a
timer set to 30 s for our proof-of-concept. This will need to be tuned accordingly
for a production system.

4.4 Partial Matcher and Rules

An implementation of the algorithm described in Sect. 3.2 is used in the detec-
tion methodology. The implementation uses Python NumPy arrays to store all
incoming data. As Snort3 rules can define signature patterns in different formats,
i.e., text, hex, or a mix of both, these patterns are all converted to a consistent
integer format and stored in NumPy arrays. The incoming data stream is also
saved in a consistent data type of integer arrays. Storing all data in this manner
allows for NumPy array matching operations to be used directly. By employing
our tailored matching algorithm, we intend to reduce the number of possible
matches by only considering the ones that are possible by making insertions into
the observed data. We also take a number of additional steps to further reduce
the number of matches. In the case of Snort3 rules, each rule defines a 5-tuple
in its header. This 5-tuple consists of the protocol and the IP addresses/ports of
the sender and the receiver, respectively. The signature in the rule options is only
matched for that particular 5-tuple. Using the same logic, the Partial matcher
in our detection methodology reduces the number of possible signatures that
a particular packet can trigger. Only the relevant signatures for the observed
packet are considered by the Partial matcher.

5 Evaluation

In this section, we describe how the detection methodology discussed in Sect. 4 is
evaluated. We experiment with two different datasets to evaluate it thoroughly.
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5.1 Datasets

This subsection describes the datasets used to evaluate the methodology. For
the proposed detection logic to be effective, it has to perform well with both the
normal (benign) traffic as well as the attack traffic.

Normal Traffic. For normal traffic with no attack signatures, the methodology
should generate no or very few false positives. Although millions of Apple devices
use MPTCP, there are not many MPTCP servers on the Internet to date. This
makes collection of real MPTCP traffic a problem. To overcome this hurdle, we
set-up an MPTCP SOCKS5 proxy as depicted in Fig. 3. An MPTCP-capable
client uses shadowsocks to connect to a remote shadowsocks server and forwards
its traffic to it. The shadowsocks server supports MPTCP for all TCP connec-
tions. It communicates with the Internet over TCP as requested and sends the
responses back to the client. For the client, the entire process is transparent
and it seems as though it communicated with an MPTCP server. We config-
ured MPTCP such that 2 subflows are created for each MPTCP connection.
For scheduling packets over the subflows, a round-robin scheduler with default
parameters is used. The scheduler ensures that data are sent on both subflows
in a round-robin fashion.

A total of 17 different HTTP based websites were browsed on the Internet to
collect a trace of 151,367 packets. Eleven of the selected websites are amongst
the top 100 websites in the world according to Alexa [5]. The rest are local
European websites, including the websites of municipalities of cities. The trace
consists of 900 MPTCP connections, each with 2 MPTCP subflows making up a
total of 1800 MPTCP subflows, and we assume that it is benign. The reason for
collecting HTTP traffic (port 80) is that a signature-based IDS requires plaintext
application data. We realize this limitation of signature-based IDSs, but observe
that these IDSs are still common and will continue to be used in a number of
controlled settings.

Fig. 3. MPTCP proxy set-up for traffic collection.

Attack Traffic. We generate attack traffic synthetically from Snort3 rules to
counter the lack of a realistic IDS testing attack dataset. Our approach which
was previously presented in [1] uses an interpreter to translate each Snort3 sig-
nature into a corresponding payload. Furthermore, to mimic the data fragmenta-
tion effect of MPTCP, fragments are derived for each payload. These fragments
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are ensured to be exactly half of the original payload in length (or as close as
possible).

Each resulting payload fragment is small enough to be encapsulated into a
packet. These packets are then sent to mimic an MPTCP connection with two
subflows, i.e., two paths and an attacker that equally distributes the data stream
among the two paths.

5.2 Snort Rules

The official Snort3 rules (snapshot 2990) are used in this work. The ruleset
consists of 26808 TCP rules divided into over 60 rule categories. For evaluation,
we filter the rules by destination port and only consider ports that have at least
100 rules. Additionally, we filter out rules that use regular expressions in Perl
as they are limited in number. In total, 23320 rules divided among seven rule
categories are identified and used.

5.3 Results and Discussion

This subsection presents the evaluation results generated using the methodology
discussed in Sect. 4. During the normal operation of an IDS, it spends most of
the time processing non-attack traffic [6]. It is therefore vital for the detection
methodology to not generate too many false positives for it to be useful. In
the design of the methodology, we have taken a number of steps to ensure the
same. First and foremost, only MPTCP traffic is processed. The non-MPTCP
traffic is directly forwarded to the Detection engine with no modification. Sec-
ondly, the usage of Partial matcher is only enabled in special conditions, i.e.,
when the MPTCP reassembler detects missing segment(s). Lastly, the Partial
matcher itself is designed in a way such as to ignore matches that are not possible
and only consider matches possible due to missing bytes. This combination of
precautionary steps ensures that partial matching is performed only when it is
absolutely necessary and in a way that keeps false positives as low as possible. To
evaluate how well these ideas work in practice, we experiment with the captured
traffic.

Normal Traffic. As we are only focused on those false positives that are actu-
ally caused by our Partial matcher, we test the benign traffic twice. First, we
consider the trace as a whole where all MPTCP connections and their respec-
tive subflows have no data missing. Since there are no missing segments, the
Partial matcher is not used and detection is performed by the Detection engine
directly. We noticed a total of only 3 false positives in this case. These false
positives represent the case where Snort3 wrongly classifies benign HTTP traffic
as malicious.

Secondly, to imitate an MPTCP scenario with only partial traffic available,
we split the big trace into separate pcap files (1800 in total), one for each subflow,
and test them individually. In this case, where the Partial matcher is used, an
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initial analysis showed a high number of 867 false positives. Upon further anal-
ysis, we discovered that 846 of them are triggered by a single generic pattern
“HTTP/1.1 200” that is common in web traffic. The Snort3 rule from which this
pattern comes aims to detect invalid HTTP headers by defining a specific loca-
tion in the packet payload for this pattern and a condition that a second pattern
“OK” should not be present after the first pattern. This second condition is not
compatible with our methodology, as we only attempt to identify the existence
of certain patterns. Thus, such Snort3 rules that rely on the absence of certain
patterns should not be used for partial detection of signatures. This may lead to
some false negatives but we identified a total of only 91 such rules (referred to as
unsuitable rules). The remaining 21 false positives are caused by patterns that
are short in length, and their rules specify other information, such as pattern
location, that is not available to the Partial matcher. A comparison of the two log
files showed that only 18 false positives are unique to the partial matching case.
This validates the detection methodology as the usage of the Partial matcher
does not generate a very large number of additional false positives.

Attack Traffic. Table 1 below summarizes the results for attack traffic accord-
ing to the top Snort3 rules’ destination ports. For each category, all attacks
are detected, i.e., 100% attack detection coverage. The difference in detection
lies in the frequency of matching each signature fragment with only one signa-
ture (defined as unique detection ratio in the table). From the table, it can be
seen that the largest category of rules is “any”, as these rules define no desti-
nation port. For this category of rules, using the generated attack traffic and
the detection methodology, it is possible to detect 80.4% of the signatures with
no risk of multiple matches (multi-matches). We define a multi-match as an
instance when a signature fragment matches with more signatures than just the
intended signature. For the remaining 19.6% rules from this category, the Partial
matcher generates multi-matches as it has no means to further filter and provide
more accurate results based on the input fragment it sees. As an example of
a multi-match, for a signature fragment “User-Agent: Mozilla/5.0”, the Partial
matcher gives two matches; “User-Agent: Mozilla/5.0(Linux)” and “User-Agent:
Mozilla/5.0(Android)”. Considering only the input fragment, it cannot do bet-
ter. During detection, such situations are handled by crafting multiple packets
in the MPTCP inspector and passing them to the Detection engine. The idea
here is to rely on other details in the Snort3 rules to let the Detection engine
trigger an alarm for only one of the packets. In the worst case, when the rule
header and options provide no means for the Detection engine to know which of
the possible rules to trigger, there will be a possibility of multiple alarms being
generated. We believe that these cases can be further reduced by optimizing the
Snort3 rules. In particular, rules that are for the same 5-tuple and have patterns
that are very similar to each other need optimizations to help avoid triggering
multiple alarms.

For the rest of the categories in the table, the ratio of unique detection
(with no multi-matches) varies from 83.7% for port 25 to 43.2% for ORACLE
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port rules. Three types of rule categories dominate the number of rules. These
include “any”, “HTTP”, and “port 25”. These three categories account for more
than 84% of Snort3 rules in snapshot 2990. In all, we show that it is possible
to detect signatures from their partial fragments with no multi-matches for over
76% of the Snort3 rules in snapshot 2990.

Table 1. Evaluation of the detection methodology using attack traffic.

Port
category

Total
attacks

Detected
attacks

Single
matches

Multiple
matches

Unique
detection
ratio

Attack
detection
coverage

Port 139/445 62 62 43 19 69.3% 100%

Port 21 125 125 73 52 58.4% 100%

Port 443 116 116 66 50 56.8% 100%

ORACLE 335 335 145 190 43.2% 100%

Port 25 4831 4831 4046 785 83.7% 100%

HTTP 8557 8557 5970 2587 69.7% 100%

any 9294 9294 7474 1820 80.4% 100%

Overall 23320 23320 17817 5503 76.4% 100%

To validate and support that the Partial matcher is designed in a way to
keep false matches down to a minimum, we compare it against a well known
approximate string matching algorithm, i.e., Levenshtein distance [18]. For this
task, the Partial matcher from the methodology shown in Fig. 2 is replaced by an
implementation of general purpose Levenshtein distance. All other parameters
including the bounds on the minimum number of matches required are kept the
same. It can be seen from Table 2 that the number of multi-matches increases and
the number of single matches decreases for each port category, when Levenshtein
distance is used on the attack traffic. This was due to the fact that Levenshtein
distance considers all three types of edit operations. This results in it matching
unrelated fragments at times and missing possible matches at other times. When
normal and benign traffic is instead used, a large number of 822 false positives
are generated (considering only suitable rules), in comparison to only 21 false
positives generated by the proposed Partial matcher as shown before. These
results validate the ideas of the paper, as the use of any other alternative than
the specially tailored Partial matcher when matching would create many more
multi-matches for the attack traffic, as shown by the low 20.8% unique detection
ratio and a high number of false positives for the normal traffic.
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Table 2. Results of using Levenshtein distance with attack traffic.

Port category Single matches Multiple matches Unique detection ratio

Port 139/445 1 98 0%

Port 21 18 106 14.5%

Port 443 32 75 29.9%

ORACLE 38 324 10.4%

Port 25 1208 2706 30.8%

HTTP 579 7866 6.8%

any 2557 5681 31.0%

Overall 4433 16856 20.8%

6 Outlook and Concluding Remarks

IDSs that perform exact string matching malfunction in the presence of data
stream fragmentation enabled by protocols such as MPTCP. Existing solutions
either rely on communication between different IDSs or the application of gen-
eral approximate string matching. The first approach is not always practical,
as the data required for signature matching need to be shared among different
paths that can be controlled by different ISPs. The second approach of general
approximate string matching will likely yield too many false positives. This calls
for a novel approach to detect intrusions from partial traffic.

We have therefore in this paper proposed a way to detect signatures from
partial fragments using Snort3. The detection logic relies on a specially tailored
Partial matcher and makes use of MPTCP protocol semantics and heuristics.
Our experiments show that the detection methodology is effective. For attack
traffic based on Snort3 rules, all attacks are successfully detected with a 100%
detection coverage where over 76% signatures can be detected with no risk of
multi-matching. The evaluation using the collected benign traffic shows that, if
the traffic does not contain any attack signatures, then the detection remains
mostly silent and does not generate too many false positives for the suitable
Snort3 rules. Identification of such rules that are suitable for partial matching
is another contribution of this work. It should be noted that the traffic sam-
ples used in our evaluations are relatively small and should hence be regarded
as a proof-of-concept. A more extensive evaluation should be conducted before
implementation in a production system. We envision a number of steps to take
this work forward. This involves a comprehensive evaluation using more realis-
tic attack traffic and further enhancements of the detection methodology. For
instance, instead of separate processes for MPTCP stream reassembly and partial
matching, their functionality could be implemented within the MPTCP inspec-
tor. The unique detection ratio could also be further improved using packet
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meta-data information such as packet size. The code of the current version of
our work is freely available1.
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Abstract. In software-defined networking (SDN), routing decisions are
made by a trusted network controller, which communicates with each
forwarding device over a secure control channel. While this architec-
ture avoids many security issues of distributed routing protocols, SDN
remains vulnerable to topology poisoning attacks during topology dis-
covery. Faked link information can cause wrong routing decisions by the
controller and, thus, enable the attacker to reroute some traffic flows to
compromised nodes. This paper provides both qualitative and quanti-
tative analysis of topology poisoning attacks in SDN. We classify the
attacks including new variants and analyze how their impact depends
on the network topology, routing policy, and attacker location. While
most of the literature emphasizes the security of the SDN controller and
control channels, we assume them to be secure and aim to understand
the ability of a small number of compromised switches to divert traf-
fic flows. This is important because the low-cost, heterogeneous network
equipment available for SDN may not be entirely trusted and because
targeted attacks often start from the compromise of a single device.

1 Introduction

Software-defined networking (SDN) [19] separates the control plane of the net-
work from the data plane and moves it to a software-based controller, which
communicates directly with the switches. This paper investigates the vulnera-
bility of SDN to one particular class of attacks: topology poisoning. In tradi-
tional networks, an attacker can spoof or tamper with routing advertisements
to manipulate how the control-plane elements view the network topology [23].
Compared to traditional networks, a well-managed SDN is relatively resistant to
such attacks because the routing decisions are not made by a distributed proto-
col but by a trusted controller, which communicates with each network device
directly, over a secure channel. Nevertheless, it has been discovered that the
network topology service of SDN controllers can be poisoned by compromised
nodes [3,9,14]. In these attacks, the attacker creates fake links into the network
so that the controller, which typically uses a shortest-path algorithm to decide
on the routes, sends more data flows through the compromised nodes. Until
now, however, the attacks by compromised switches in SDN have been poorly
understood and analyzed. We aim to shed light into this area.
c© Springer Nature Switzerland AG 2019
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Attacks mounted by a small number of compromised nodes in an otherwise
secure network are a timely issue for two reasons. First, in targeted attacks
against high-security organizations, the attacker first tries to gain any kind of
small foothold, such as one compromised network device, and then starts to
extend this gradually. Second, the trustworthiness of network equipment is often
called into question, for the fear of both targeted trojans and mass-surveillance
functionality in the devices. This concern becomes even more acute with SDN
because one of the promises of SDN is that networks can be built with low-cost,
heterogeneous equipment that only needs to implement the standard interfaces.

We analyze the topology poisoning attacks against SDN both qualitatively,
to understand the principles, and quantitatively with simulations, to assess and
explain their impact. Our focus is specifically on attacks mounted from a small
number of compromised SDN switches. Moreover, we focus on types of topology
poisoning attacks that previous research has found particularly difficult to defend
against [2,9,14]. This is also reflected in the defensive strategies that we discuss,
which are more on how the effect of these attacks can be mitigated, rather than
trying to completely prevent them. For concreteness, we use OpenFlow [22] as the
example protocol and architecture. The ideas and results are, however, general
and apply to other SDN technologies.

2 Background

This section gives an overview of OpenFlow controller channel and topology
discovery as well as related work.

2.1 OpenFlow Controller Channel and Topology Discovery

OpenFlow [20] is the most common controller channel protocol used by SDN
network controllers to manage the switches. Routing rules and security policies
are implemented in software at the controller and in the SDN applications on top
of it. The controller then installs the necessary flow table entries to the switches,
which forward packets based on them.

In order to make routing decisions, the controller needs to know the net-
work topology, i.e. how the switches are connected to each other. In SDN, the
old distributed layer-2 and layer-3 topology discovery and management tech-
niques (e.g. spanning-tree protocol) are replaced by new, controller-driven mech-
anisms. The OpenFlow controller typically uses the OpenFlow Discovery Proto-
col (OFDP), which leverages the Link Layer Discovery Protocol (LLDP) pack-
ets [1], to dynamically detect layer-2 links between adjacent OpenFlow switches.

The link discovery process is as follows. First, the controller sends to one
switch an OFPT PACKET OUT message, which contains an LLDP packet
and the instruction to forward it on a specific port. The switch forwards the
LLDP packet on the specified port. If there is another switch connected to
the port, it receives the LLDP packet and sends it to the controller in an
OFPT PACKET IN message along with the ingress-port identifier. The con-
troller can thus reason that there is a directional link between the two switches.
The controller then proceeds to do the same in the other direction.
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2.2 Related Work

Topology poisoning is a well-known problem in traditional networks where the
attacks mainly exploit distributed routing protocols [15,23,24,29]. The opportu-
nities for topology poisoning in SDN are narrower than in traditional networks.
In a well-managed SDN network, there is a direct secure channel between the
non-compromised switches and the controller. The switches do not aggregate
routes or forward unauthenticated topology or routing information from each
other. Thus, the compromised switches cannot spoof or make malicious modi-
fications to the routes or to the forwarded topology data. This means that the
only way for the compromised switches to influence routing in SDN is to tweak
the topology-discovery process locally, between the compromised switches and
their neighbors.

The earlier literature on SDN security has focused on the security of SDN
applications [26,28,30], real-time verification of network policies [13,17,18,25],
and vulnerabilities in the controllers [20,21,27] as well as controller-switch com-
munication [5,9]. Much less effort has been put into studying attacks originating
from the data plane and, more specifically, from compromised nodes [3,4,16].

Topology poisoning in SDN has stimulated some interest from scholars. Hong
et al. [14] presented several ways in which the controller’s network view can
be poisoned by a compromised host even when the controller channel is pro-
tected with TLS. The proposed attacks are carried out either by creating fake
Link Layer Discovery Protocol (LLDP) packets or by forwarding genuine ones
from one switch to another. We build on this basic technique while discussing a
broader range of attack variants and analyzing them in more depth.

Hong et al. proposed adding an extra authenticator to LLDP packets, but
acknowledge that it does not prevent the relaying of genuine packets. Similar
authentication mechanism was also proposed by Alharbi et al. [2]. There are
also defense strategies for topology poisoning that are based on anomaly detec-
tion [6,9]. These, however, are limited to some attack scenarios such as where the
attacker does not actively try to avert detection or where only a single network
element has been compromised.

3 Topology Poisoning Attacks

This section presents our threat model and different variants of topology poi-
soning attacks in SDN.

3.1 Threat Model

In this paper, we assume that the SDN controller and the control channels are
secure. However, the attacker is in control of a small number of compromised
switches. The goal of the attacker is to poison the controller’s view of the network
topology and route more traffic to the compromised nodes.
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By a compromised switch, we mean that the attacker is able to access
and manipulate the switch’s configuration, authentication credentials, and flow
tables. The compromised switch is not assumed to have any special hardware
capabilities. For example, the switch could be compromised by accessing it via
a console serial port, by guessing the administrator password, or by exploiting
a software vulnerability. To implement a persistent compromise of the switch,
the simplest way would be to add a second, malicious controller to it (multiple
controllers is an OpenFlow 1.2+ feature). All the topology-poisoning attacks
considered in the paper can be achieved with this method.

The attack happens in the topology discovery phase. The attacker spoofs fake
links that create shorter or alternative paths in the network. Since all routing
algorithms favor shorter paths at least to some extent, the SDN controller will
route packets via these fake links. The attacker can then sniff the packets or
mount MitM attacks on the data plane.

3.2 Attack Principle

The principle of the topology poisoning attacks is that the attacker first manip-
ulates the propagation of the LLDP packets to fabricate non-existing links and
then establishes tunnels that make these links appear functional. For example,
if there are two compromised switches, whenever one of them receives an LLDP
packet that should cross the fake link, it tunnels the packet to the other switch,
which encapsulates it into an OFPT PACKET IN message and sends it to the
controller. As the result, the controller thinks that there is a direct link between
the two switches.

Apart from this basic principle, the attacker needs to avoid creating a for-
warding loop. Consider the situation where one tunnel endpoint, i.e. one of the
compromised switches, wants to send a tunnel packet to the other. It has to
forward the tunnel packet to an adjacent good switch first. If the packet is
addressed to the other tunnel endpoint, the adjacent switch will usually return
the packet right back to the compromised switch because the controller thinks
that the shortest route is through the fake link. To avoid this pitfall, the two
tunnel endpoints need to communicate via a third node, called the relay node.
To set up the relay node, the attacker could compromise a host in the network,
rent a virtual machine if it is a data center, or use a remote host in the Internet.
However, the relay node cannot be just anywhere on the network. It needs to be
located in such a way that the packets from the tunnel endpoints to it will not
be routed into the tunnel. We will discuss this requirement further in Sect. 5.4.

3.3 Attack Variants

In this section, we present four different variants in which the fake links and
tunnels can be set up for the attacks. Among these, only the basic variant has
been discussed in the literature [3,9].

Basic Variant. In the most obvious variant of the attack, the controller is fooled
into thinking that there is a direct link between two compromised switches.
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Just one fake link will be created for one pair of compromised nodes. The appar-
ent distance between two good nodes that are connected through this link will
be at least 3 hops. If there are n compromised nodes, then the number of fake
links can grow to n(n − 1)/2.

Neighbor Variant. This variant also requires two compromised switches, but
the fake link is created between two good switches that are neighbors to the two
compromised switches. The compromised switches become invisible and tunnel
packets transparently between the neighbors. They do not participate in the
link-discovery process in any other way.

The compromised switches typically have many neighbors, and it is possi-
ble to pair them up to create multiple tunnels. However, one neighbor needs to
be sacrificed for the tunnel implementation. If the degree of both compromised
nodes is k, there can be up to k− 1 fake links via each of them. With n compro-
mised nodes of degree k, the number of fake links can be as high as �n

2 (k − 1)�.
The minimum apparent length of the paths that traverse the fake link is just 1.
The greater reduction in path lengths and the larger number of apparent links
make this variant attack worth investigating in comparison to the previous one.

Merging Variant. In this attack, two or more compromised switches merge
together and appear as one big virtual switch with many neighbors. They all
share one identity, which can be taken from one of the participating switches.

With two compromised nodes of degree k, this variant attack creates fake
paths between all the k(k− 1) pairs of neighboring good switches (reserving one
neighbor for the tunnel on the switch that assumes the identity of the other).
When the number of compromised switches grows to n, the number of such fake
paths becomes is as large as (k − 1)2 · (n− 1)(n− 2)/2 + k · (k − 1)(n− 1). The
minimum apparent length of the paths that make use of these fake routes is 2
hops. While the resulting path lengths are one hop higher than in the previous
variant, this third variant becomes interesting when n > 2 or k is large because
the number of good-neighbor pairs connected via the fake links grows faster.

Single-Switch Variant. The last variant attack differs from the previous
ones in that only one compromised switch is needed. The fake links are estab-
lished between two neighbors of the same compromised switch, and the com-
promised switch itself becomes transparent. No tunnel or relay is used. Instead,
the attacker configures the compromised switch to forward the LLDP packets
received from one port directly to another port.

If the compromised switch directly connects to k good switches, the attacker
can fabricate a maximum of �k

2 � fake links between these switches. The minimum
apparent distance between good nodes through the fake link is just 1. While
this attack causes only minor changes to the apparent topology of the network
(shortening some paths by 1), it is worth investigating because it can be launched
locally at a single compromised switch without any collusion or coordination.
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3.4 Attack Implementation

To verify that the topology poisoning attacks described above work against real
SDN technology, we implemented them in an emulated network environment.
Table 1 summarizes the software and methods used in the experiments.

Table 1. Implementation environment

Network emulator Mininet 2.2.0

Switches OpenvSwitch 2.3.1 on Mininet hosts

Controller Floodlight 1.0

Routing algorithm Shortest-path routing

Southbound protocol OpenFlow version 1.0

Malicious controller POX

In the experiments, the malicious switches were controlled by a malicious
controller. The malicious controller also acted as the relay node for the tunnels.
Moreover, the control channel between the good controller and the compromised
switches was redirected from the compromised switch to the malicious controller.
This was done with NAT-like address rewriting rules in the compromised switch’s
flow table. The malicious controller then emulated the behavior of good switches
and spoofed the state of the compromised switches to the good controller so that
they appeared to be functioning as normal. It is important to emphasize that
the compromised switches were standard OpenFlow 1.0 switches with no soft-
ware modifications. They were compromised only in the sense that the attacker
could change their controller and could access their authentication credentials
for spoofing the OpenFlow channel towards the good controller.

4 Attack Simulation

In this section, we assess the threats of the topology poisoning attacks that are
described in the previous section in simulated networks. Our goal is to analyze
topology spoofing on a general level. Thus, rather than picking one specific net-
work and routing algorithm for the simulations, we assess the threats against a
wide variety of network topologies and different routing strategies. This way, the
results will be more general and also teach us about resilient network design.

Routing Algorithms. In the simulations, we tested two routing algorithms,
which represent the classes of deterministic and load-balancing routing algo-
rithms. The first, fully-deterministic routing, is suitable for latency-sensitive ser-
vices, such as the web. It uses the Dijkstra algorithm [10] to find the path with
the smallest number of hops. When many such paths exist between two end-
points, the same one is always chosen based on small random weights added to
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Table 2. Network topologies in the simulations

Topology Type Edges Nodes

Grid regular mesh yes 729 (27 × 27)

2D torus regular mesh no 729 (27 × 27)

3D torus regular mesh no 729 (9 × 9 × 9)

Hypercube regular mesh no 512 (9 dimensions)

Triangulated planar irregular mesh yes 729

Ad-hoc radio irregular mesh yes 729

Binary tree tree-like yes 511 (height 8)

Fat tree tree-like yes 720 (3 tiers, 24 pods)

the links. The second, load-balancing routing, is an example of an algorithm that
takes network load into account in the routing. It also uses the Dijkstra algo-
rithm but with the total number of active flows on the links in the considered
path as the primary distance measure, and the hop count only as a secondary
path selection criterion. This algorithm is non-deterministic in the sense that
the route for a new flow depends on the other flows in the network and, thus,
cannot be predicted reliably.

Network Topologies. We considered a broad range of network topologies with
very different characteristics, which are shown in Table 2. The mesh topologies
have been widely used for high-performance computing applications [7,12]. The
triangulated planar topology, which is a Delaunay triangulation [8] of a set of
points in a plane, and the ad-hoc radio topology, where geographically placed
nodes communicate with those within the radio range, represent wireless mesh
networks. The fat-tree topology is popular in data centers because of its high
fault tolerance. Simple tree topology can also be deployed in small-scale net-
works. After experimenting with different node degrees, we chose binary trees
for the simulations because they exhibit the properties of tree topologies at their
most extreme. In the tree-like topologies, hosts were placed only in the leaf
nodes. All the simulations treated the network as a single domain under a single
controller, and thus we did not include inter-domain routing topologies.

Simulation Method. For each simulation, we picked one, two, or many com-
promised switches in random and measured the number of data flows that passed
through them. This metric was chosen because it reflects how many flows are
vulnerable to follow-up attacks (e.g. sniffing, man-in-the-middle) by the com-
promised switches. We first simulated the baseline case, i.e., with no topology
poisoning. The baseline case was then compared with the different topology-
poisoning scenarios. We created the fake links for each of the variant attacks
described in Sect. 3.3 and repeated the experiment to see how many more data
flows were captured by the compromised switches. Each such experiment was
repeated 100 times with each simulation lasting 10 s with 50 000 data flows of at
most 1 s each.
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The attacks were implemented as follows. In the single-switch variant, we
used the following simple heuristics for pairing up the neighbors for the fake
links. On the rectangular networks, the fake links were formed between neighbors
on the opposite sides of the compromised switch. In the fat tree topology, if the
single compromised switch was in the aggregation layer, the fake links were
created between the core and edge switches, and otherwise randomly. In the
neighbor variant, the neighbors were always paired up randomly.

Most of the simulations were run with only one or two compromised switches
because we wanted to learn the basic characteristics of topology poisoning
attacks from these “atomic” cases. When the attacker has many compromised
switches, the attack is composed of the atomic cases, but there is a combina-
torial explosion in the possible configurations and parameters, such as choosing
the fake links and relay nodes from among the compromised switches. For the
same reason, we assumed a relay node to exist when assessing the impact of
the attack variants and routing algorithms, and then measured in a separate
experiment the availability of potential relay nodes (see Sect. 5.4).

5 Simulation Results

This section presents the evaluation results and the insights gained from them.
We show the results for selected topologies that best illustrate the results.

5.1 Topology Poisoning Compared to Baseline

Figure 1 illustrates how successful the attacker is in diverting traffic flows to the
compromised switches. The CDFs show the percentage of captured flows. In each
plot, the blue baseline (usually the leftmost line) shows how many data flows
go through the compromised switches when they are passively sniffing network
traffic. The further right the other lines are from the baseline, the more the
attacker gains from creating the fake links. Our observations are as follows.

First, topology poisoning increases significantly the attacker’s ability to cap-
ture traffic flows. That is, the compromised switches that mount the topology
poisoning attacks are typically able to attract several times as many traffic flows
as in the baseline case.

Second, the neighbor and merging variants of the attack are clearly more
successful than the basic variant. This provides proof that our investigation into
the attack variants was worth the trouble. The attacker can dynamically choose
the most successful attack variant, and without considering the more powerful
variant attacks, we might underestimate the threat of topology poisoning.

Third, even the single-switch attack can divert significantly more flows than
the one-switch baseline. Since the single-switch attack can be mounted by each
compromised switch locally and without coordination, it seems that the attacker
would, at minimum, try this variant attack.
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Fig. 1. CDF of the percentage of captured flows with different routing algorithms and
network topologies (line further right means more captured flows)

5.2 Impact of Different Factors

From Fig. 1, we can see that there is big variation in the results between simu-
lations. In some cases, the attacker is able to capture as much as 10–30% of all
flows in the network, but usually less than 5–10%. Below, we analyze the factors
that influence the attacker’s success.

Load Balancing. One key observation is that in most cases, the more load bal-
ancing or non-determinism there is in the routing, the less effective the topology
poisoning attacks are. This is illustrated by the comparison between the figures
in the two leftmost columns to the two rightmost columns). The difference is
especially prominent in the 3D torus and fat tree topologies.
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The mitigating effect of load balancing can be explained by the fact that,
if a fake link is able to capture many traffic flows, the controller soon thinks
that the link is congested and routes the new flows around it. In general, any
randomness or state-dependency in the routing means that the shortest path by
hop count is not always used, and that reduces the attacker’s ability to attract
large numbers of flows to a small number of compromised switches. The effect
is strongest in the 3D torus and fat tree because there are many paths of equal
or almost-equal length, over which the network load can be distributed.

We also note that the load-balancing is less effective in mitigating the neighbor
and merging variant attacks. This is because the attacks create multiple fake
links, which have more apparent capacity than the single fake link in the basic
variant.

Network Topology. The fat tree topology has some properties that make it
particularly resistant to topology spoofing (see Figs. 1e–1f). First, the fat tree
has so many alternative routes that the compromised switches capture few flows.
This is true both for the baseline and under the different attack variants. Second,
the fat tree is so shallow that the length of the longest path in the tree is only
4. It is unlikely that a randomly placed fake link would shorten the already very
short routes in the fat tree. The attack resistance of the fat tree comes at the
cost of needing many redundant hardware links.

Figures 1g–1h of binary tree are striking because the neighbor variant attack
is less successful than the basic variant and even the baseline. The result is
explained by the fact that the pure tree topology is very sparse, i.e. has the
minimum number of links to be connected. This kind of network becomes par-
titioned by the removal of a single switch or link. The neighbor variant attack
has tendency of breaking networks with sparse-graph topology, such as trees, and
thus is not suitable for them.

Finally, another key observation of this paper is that an irregular or slightly
randomized mesh network is more resistant to the single-switch variant attack
than a mesh based on a simple regular pattern. For example, adding some random
diagonal links to a rectangular grid or randomizing the degree of switches in the
triangulated planar graph weakened the single-switch attack. This tendency can
be explained by the fact that a regular network structure has many equal-length
shortest paths between two endpoints, and one small shortcut may be able to
divert them all. The phenomenon is familiar from cities with a rectangular grid
plan. If even just one of the rectangles is a park that can be crossed diagonally,
that park attracts a large number of people walking through because it shortens
so many paths. Graphs with irregular structure lack this effect, and in regular
networks, it can be mitigated by adding randomness artificially.

Location of the Compromised Switches. It is obvious that central network
locations are best for sniffing if the network has a center and an edge. For
example, the grid, triangulated planar, and tree topologies have a center and
edge, while the 2D torus, 3D torus, and hypercube do not.

For topology spoofing, the central network locations may not be as critical
because the fake links attract more traffic when their endpoints are more distant
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Fig. 2. Effect of the distance between compromised switches on the percentage increase
of captured flows over the baseline

from each other. This is because, the longer jump a fake link makes, the bigger
its effect on the apparent path lengths. Figure 2 depicts the relation between the
distance of the two compromised switches and the average effect of the fake link
on the number of captured flows (compared to the passive-sniffer baseline). The
relation between the distance and the effectiveness of the fake tunnel is clear in
networks with no center and edge, such as the 3D torus. In a network with a
center, we could not come to any definite conclusion about the optimal location
of the compromised nodes as it depends heavily on the network and on the traffic
distribution.

5.3 Many Compromised Nodes

Finally, we get to discuss attacks with more than two compromised switches
forming tunnels. Figure 3 shows the number of captured flows for the 2D torus
when the attacker creates the maximum number of tunnels. The results for the
other topologies are essentially similar.

The main lesson is that a small fraction of compromised switches is sufficient
to capture most network flows. From the left-hand figure, we see that the some of
the variant attacks, especially the neighbor variant, fail and perform worse than
the baseline when the number of compromised switches grows above a certain
threshold. This is due to the attacks breaking links and causing problems in
routing. Naturally, a smart attacker will not create more tunnels than what
gives optimal results. Overall, the insight for the attacker is that only a small
number of compromised switches are needed, and if many are available, the main
benefit is being able to choose good locations for the tunnel endpoints and to
vary them over time.
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Fig. 3. Effect of the number of compromised switches on captured flows (the right-hand
figure is a zoom to the important part of the left-hand figure)

5.4 Finding a Relay Node

The two-switch variant attacks are effective but they crucially depend on having
a relay node through which traffic can be tunneled between the compromised
switches. In the basic variant attack, a node r can act as the relay between two
compromised switches c1 and c2 iff the real distance from c1 to r is shorter than
the distance via the fake link, and the same must hold in the other direction:

d(c1, r) < d(c2, r) + 1 and d(c2, r) < d(c1, r) + 1
=⇒ d(c1, r) = d(c2, r)

That is, the relay node must be equidistant from the compromised nodes. For
the neighbor and merging variants, there is no such simple formula because one
specific neighbor of each compromised node needs to be reserved for communi-
cating with the relay (and not be the endpoint of any fake link). In practice, the
attacker can choose the tunnel endpoints simply by testing which tunnels work
with the available relay nodes.

Simulations showed that the number of nodes that can act as the relay node
varies remarkably. Their number tends to decrease slightly when the distance
between the compromised nodes grows, but variations between individual sim-
ulations are far greater. Figure 4 illustrates these variations in the grid and tri-
angulated planar topologies. The two red nodes represent the two compromised
switches, while the green nodes represent the switches that can relay traffic
between the red nodes. Overall, the average percentage of potential relays var-
ied between 3–50 % of all switches (or hosts attached to them) depending on the
topology and distance between the compromised nodes. Of course, the attacker
may not have the luxury of choosing the location of the relay node, which usually
is a compromised host or a host in the Internet. In that case, these probabilities
give a rough indication of how often a fake link can be constructed with a given
relay node.



Analysis of Topology Poisoning Attacks in Software-Defined Networking 99

Fig. 4. Examples of possible relay nodes

When there are more than two compromised switches, it no longer makes
sense to ask which are the potential relay nodes because the fake links influence
each other’s communication. Instead, fake links between the switches should be
constructed one by one until the available relays cannot be used to create more.

6 Discussion

It is clear from the simulation results that topology poisoning attacks are attrac-
tive to an attacker who is looking for any way to expand a small foothold on
a network. In the following, we will discuss the generality of the results and
defensive strategies.

6.1 Generalizing the Results

The attacks were tested against OpenFlow, but the principles are more general.
First, the link discovery with LLDP is not specific to OpenFlow. It and sim-
ilar proprietary protocols are widely used for topology discovery. Second, our
simulations were done on a high level of abstraction that does not depend on
the exact control protocol or method of link discovery, so that the result can be
generalized to most SDN technologies.

Regarding non-SDN networks, topology poisoning is not very interesting if
compromised routers can achieve the same (and more) by tampering with the
routing protocol. The topic of this paper becomes relevant when the attacker
has no easier method of tampering with the routing than topology poisoning.

6.2 Defensive Strategies

Architectural and Routing Strategies. As observed in this paper, load bal-
ancing and non-determinism in the routing reduce the effects of topology poi-
soning because it becomes more difficult to divert large numbers of traffic flows
to a small number of switches and links. Random route mutation [11], which is a
technique where routes between endpoints are periodically randomized, is thus a
very effective countermeasure against these attacks. Redundant links and paths,
such as those in the fat tree topology, also mitigate the effects of the attacks.

Similarly, irregularity in the network topology reduces the impact of
topology-poisoning attacks. In grid networks and other regular topologies that
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have many paths of (almost) equal length, small amounts of random variation,
such as shortcut links, could be added artificially to counter the effect of topology
poisoning.

Network like 2D and 3D torus, which have no edge, may be more resistant
to attackers who are able to choose the location of the compromised nodes.
This is because the network has no central locations that most data flows would
traverse. This is definitely true for the baseline case, i.e. passive sniffing.

Static Detection Strategies. Any a-priory knowledge that the controller has
about the network topology or the ports and links on the switches will natu-
rally help in preventing topology spoofing. For example, the basic variant of the
attack may require the attacker to create virtual ports on the switches, and the
neighbor and single-switch variants may cause a usually busy switch to appear
almost or entirely disconnected from the rest of the network (because it has
become transparent). As a rule, however, it is not desirable to require manual
configuration of such information about the network in the controller. This is
because manual configuration is error-prone and not scalable in practice.

Dynamic Detection Strategies. The controller can test the links to detect
fake ones. It can isolate each link in turn from the rest of the network, so that
tunnel operation is prevented, and then forwarding packets though it with the
OpenFlow commands. While such testing can be implemented entirely in con-
troller software, it is difficult to do this without disrupt the normal operation of
the network. Thus, this method is useful mainly during network bootstrapping
or when new switches and (real or fake) links are added, but it is not practical
for scanning a network that is already in operation. Load testing might detect
that two fake links are not truly independent and, thus, may be based on the
same tunnel, but that will also disrupt the normal network operation.

Another monitoring solution is to observe the latencies of links, such as the
delays in LLDP or data flows. This might work because routing through fake
links increases the latency in most cases. It may, however, be difficult to measure
the forwarding time accurately, especially with in-band control.

Unfortunately, these dynamic detection techniques work poorly against the
single-switch variant attack, which does not require any tunneling or create sig-
nificant latency.

Hardware-Based Strategies. Without having access to the switch’s private
authentication key, the attacker is not able to spoof good switch behavior to
the controller. Therefore, trusted computing technology, such as secure boot or
storing the private authentication key on tamper-proof hardware, can make the
attacks more difficult to implement and easier to detect. Trusted execution envi-
ronments (TEE) built into the latest microprocessors also enable such protection
of the switch’s credentials.

7 Conclusion

A trusted central controller with a network-wide view is one of the major inno-
vations in SDN and mitigates many of the threats against distributed routing
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algorithms. The view of the controller can, however, be poisoned in the link-
discovery phase. Compromised switches can create fake links to the network
and, thereby, divert traffic flows via themselves. This paper provides a classifi-
cation and thorough analysis of topology poisoning attacks and the factors that
influence their success. For example, we found that a single compromised switch
may be able to mount a successful topology poisoning attack to increase its
foothold in the networking. On the positive side, we found that irregularities in
the network topology and load-balancing or nondeterminism in routing may mit-
igate the impact of these attack. The results, nevertheless, indicate that topology
poisoning by a small number or rogue network elements is a serious concern in
SDN if used to enable further attacks such as sniffing and man-in-the-middle.
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Abstract. Internet users increasingly rely on commercial virtual pri-
vate network (VPN) services to protect their security and privacy. The
VPN services route the client’s traffic over an encrypted tunnel to a
VPN gateway in the cloud. Thus, they hide the client’s real IP address
from online services, and they also shield the user’s connections from
perceived threats in the access networks. In this paper, we study the
security of such commercial VPN services. The focus is on how the client
applications set up VPN tunnels, and how the service providers instruct
users to configure generic client software. We analyze common VPN pro-
tocols and implementations on Windows, macOS and Ubuntu. We find
that the VPN clients have various configuration flaws, which an attacker
can exploit to strip off traffic encryption or to bypass authentication of
the VPN gateway. In some cases, the attacker can also steal the VPN
user’s username and password. We suggest ways to mitigate each of the
discovered vulnerabilities.

1 Introduction

Virtual private networks (VPNs) [33] were originally developed for connecting
geographically distributed corporate networks to each other and also for connect-
ing remote workers to the employer’s intranet. However, one of the most common
uses of VPNs today is to protect regular Internet users who seek improved secu-
rity and privacy. Such users perceive a need for a VPN in many situations,
such as when accessing the Internet over public Wi-Fi (e.g. at a cafe or airport)
or to hide their online activities from an oppressive entity (e.g. government).
Because of the increased demand, a large number of commercial VPN services
have appeared in the market.

Commercial VPNs typically function by tunneling the user’s Internet traffic
through a trusted remote server before it is forwarded to its final destination.
This achieves two goals: (1) the traffic is protected by an encrypted VPN tunnel
and (2) the destination server does not learn the real IP address of the client.
The commercial VPN providers usually provide native client applications with
graphical user interfaces, which automatically set up the VPN connection for
the users. For more technically savvy users who prefer not to install the pro-
vided applications, they usually give instructions for configuring the built-in
VPN client in the user’s operating system (OS) to work with their servers.
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While the commercial VPN services have undergone severe scrutiny, only a
few of them have taken a closer look at the client configuration [12,30]. They
revealed misconfiguration issues that lead to user de-anonymization and traffic
leakage. Our work extends this theme with the focus on the security of the VPN
tunnels, namely whether they are encrypted and authenticated properly.

Motivation. Our work was primarily motivated by the observation that many
commercial VPN providers configure L2TP/IPsec, a popular VPN protocol, in
an insecure way. Specifically, the protocol relies on IPsec [13] to provide the
secure transport, but many VPN providers use one pre-shared key for all users
to authenticate the IPsec tunnels, which is usually publicly available online or
can be discovered by examining the client configuration. If an attacker knows the
pre-shared key, it can perform a man-in-the-middle (MitM) attack on the VPN
connection and obtain all the network traffic to and from the victim’s computer.
This problem was discussed on public forums in 2016 [3]. However, when we re-
analyzed the 14 insecure commercial VPN services mentioned in the discussion,
we found that 10 of them were still using the insecure configuration. Since this
security issue remains opaque to most end-users, we feel that it is important to
systematically scrutinize the client configurations of commercial VPN services
for flaws that could undermine the user’s security and privacy.

Contributions. In this paper, we study how popular commercial VPN providers
set up, or how they instruct users to set up, desktop VPN clients for common
VPN protocols. Our study covers three common desktop OSs: Windows, macOS
and Ubuntu. The study reveals various vulnerabilities in the configurations of
VPN clients, which allow attackers to strip off traffic encryption or to bypass
server authentication. By exploiting these vulnerabilities, attackers can intercept
network traffic to and from the victim. Some of the vulnerabilities also allow the
attacker to steal user credentials for authenticating to the VPN gateway. While
each of the vulnerabilities alone might seem like a trivial mistake, together they
indicate a serious lack of security-awareness across the commercial VPN industry,
and we feel that it is the responsibility of the research community to raise the
issue. We also provide guidelines on fixing the vulnerabilities. Through this work,
we hope to raise awareness among the commercial VPN providers about common
configuration mistakes and how they can be avoided.

2 Commercial VPN Services

Commercial VPNs (also known as personal or consumer VPNs) are subscription-
based services available to regular Internet users. They are typically used for
personal purposes, such as accessing geoblocked media contents, securing online
activities while on public Wi-Fi networks, and avoiding censorship and surveil-
lance by local governments and access-network operators.

Most commercial VPN providers have a native client application, which sets
up the VPN connection for the user. These applications are usually available
for Windows and macOS users. To use the application, users must first sign in
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with their VPN credentials. The application then pulls configuration data, such
as VPN server addresses, roots of trust for the authentication, and VPN-client
credentials (which are not necessarily the same as the user-login credentials),
from the VPN provider’s server and configures the VPN tunnel for later use. It
typically allows the user to choose from many different VPN protocols for the
tunnel implementation.

The client applications are usually available only for Windows and macOS
users. The applications rely on the OS’s built-in VPN client functionality
whenever it exists. Windows is bundled with implementations of the PPTP,
L2TP/IPsec, SSTP and IKEv2 protocols, while macOS comes with L2TP/IPsec,
IKEv2 and Cisco IPsec client functionality. For the protocols that have no built-
in support in the OS, the commercial VPN providers include third-party client
binaries in their native applications.

For the users of the OSs that the VPN providers do not have native client
applications or for those who prefer not to install the provided applications,
the VPN providers give instructions on their websites for configuring the OS’s
built-in VPN client. They may also give advices on installing and configuring
third-party clients to use with their service.

3 Study of Commercial VPN Services

3.1 Adversary Model

The object of our study is the way commercial VPN services make use of the com-
mon VPN protocols and tunnels. We consider two types of attackers whose ulti-
mate goal is to bypass the protection mechanisms of the VPN connection and steal
sensitive data sent or received through it: network attacker and local attacker.

Network Attacker. We consider an active network attacker who can intercept
and modify network traffic originating from and destined to the user’s machine.
The attacker could, for example, be a rogue hotspot operator at a hotel or
airport, or a compromised core-network operator. This is the standard attacker
model for network security.

Local Attacker. The VPN client software on the user’s computer often com-
prises multiple components that are communicated with each other via inter-
process communication (IPC) (e.g. network sockets, files on disk). For exam-
ple, the GUI component may use an IPC channel to sent the VPN configura-
tion to a third-party client binary. If such channels are not protected properly,
non-privileged processes of other users [14] could exploit them to steal sensitive
information or to modify the VPN connection settings. We included this type of
attackers to the study because the vulnerability of VPN clients to it is currently
not well understood and the attacks are different from those on the network.

3.2 Methodology

We selected 30 commercial VPN services based on popularity and advertised
features (refer to Table 1). As a rough estimate of popularity, we searched for
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“best VPN services” on Google and counted how many times each service was
mentioned in the resulting pages. The idea was to identify the services that
normal users would be most likely to choose. Among the popular services, we
prioritized those that support a higher number of VPN protocols. We focused
on standard VPN protocols, including PPTP, L2TP/IPsec, IKEv2, Cisco IPsec,
SSTP, OpenVPN, and SoftEther VPN.

We analyzed the selected VPN services with a two-step process as follows.

Configuration Analysis. In each of the commercial VPN client applications,
we first looked at the way the application creates and configures the VPN con-
nection. When the VPN service providers recommended a built-in client in the
OS or a third-party client, we scrutinized the provided configuration instructions
and unchanged default settings. In both cases, we looked for potential misconfig-
urations and architectural mistakes that might compromise the security of the
resulting VPN connection. We did not try to find flaws in the cryptographic
protocols themselves or code-level implementation errors.

Experimental Verification. When we found a potential client-configuration
issue, depending on the type of the attack, we verified it as follows.

For network attacks, we first created a fake VPN server to intercept connec-
tions from the client to the gateway server. We then routed the VPN client’s
traffic to the fake server as follows. When testing a commercial VPN client appli-
cation, we edited /etc/hosts to map the true VPN server’s domain name to
the fake server’s IP address. When testing the instructions for configuring a
built-in or third-party VPN client, we simply followed the instruction but gave
the fake server’s IP address as the gateway address. These methods sufficiently
emulate the behavior of a network attacker that intercepts the connections on
an untrusted access or core network. Finally, if the VPN client successfully con-
nected to the fake server without dropping the connection or alerting the user,
we concluded that the client is vulnerable to the attack currently under test.

For local attacks, we created two user accounts on a test machine: one acted
as the honest user and the other as the attacker. The attacker here is a standard
user with no administrative privileges (a guest account can be equally used).
We wrote a script to exploit the potential vulnerability in the IPC, executed it
in the attacker’s login session, and checked whether it succeeded in exploiting
the vulnerability in the VPN client application that was running in the honest
user’s login session.

4 Study Results

This section describes the vulnerabilities that we found in the client configuration
of the selected commercial VPN services. Table 1 summarizes our findings.

4.1 Point-to-Point Tunneling Protocol

Point-to-Point Tunneling Protocol (PPTP) [18] was created by Microsoft, and it
is one of the oldest VPN protocols. It has well-known weaknesses [19,22,26,31]
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Table 1. Discovered vulnerabilities (✗: vulnerable, ✓: not vulnerable, –: not applicable,
W: Windows, M: macOS, U: Ubuntu, N: Network attacker, L: Local attacker)

PPTP SSTP IKEv2 OpenVPN SoftEther Cisco IPsec Fallback

OS W U U W W,M W,M,U W,M

Attacker type N N N L N, L N N

Astrill ✓ – – ✓ – ✗ –

BoxPN ✗ – – ✗ – ✗ –

CactusVPN ✗ – – ✓ ✗ – –

CyberGhost ✓ – – ✓ – ✗ ✓

ExpressVPN – – – ✗ – – ✗

FastestVPN ✓ – – ✗ – ✗ –

FrootVPN ✗ – – ✗ – ✗ –

GooseVPN – – – ✗ – ✗ ✗

Hide.me ✓ – ✗ ✓ ✗ – ✓

HideMyAss ✗ – – ✗ – ✗ –

ibVPN ✗ – – ✓ ✗ ✗ ✓

IPVanish ✗ – – ✗ – ✗ –

IVPN – – ✓ ✓ – – –

LimeVPN ✗ – – – ✗ – –

NordVPN – – ✗ ✓ – – –

OverplayVPN ✓ – – ✓ – – –

Perfect-Privacy – – – ✓ – ✗ ✓

PersonalVPN ✗ – ✓ – – ✗ –

PIA ✓ – – ✓ – – –

PrivateVPN ✓ – – ✓ – ✗ –

ProXPN – – – ✓ – – ✗

PureVPN ✗ ✗ – ✗ ✗ – ✓

RocketVPN – – – – ✗ – –

SaferVPN ✗ – – ✓ – – ✗

StrongVPN ✗ ✗ ✗ ✗ – ✗ –

TorGuard ✗ ✗ – ✓ – ✗ –

Trust.Zone – – – – ✗ – –

UnblockVPN ✗ ✗ – – – – –

VyprVPN ✗ – – ✓ – – –

24VC – – – – ✗ – –

and is no longer considered secure. Nevertheless, the protocol remains widely
deployed and used because many firewalls do not block it. Our goal is to see
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whether it has additional weaknesses that could further compromise the users’
security and privacy.

To establish a PPTP connection, an IP tunnel is first created between the
client and the server, and then a Point-to-Point Protocol (PPP) [32] session is
instantiated inside the tunnel. The PPP session goes through three phases:

1. Authentication: The communication endpoints first authenticate each other.
Most commercial VPN services implement MS-CHAPv2 as the only authen-
tication method.

2. Negotiation: If the authentication is successful, the client and the server nego-
tiate parameters such as the encryption scheme and the DNS servers. The only
encryption scheme that PPP supports is Microsoft Point-to-Point Encryp-
tion (MPPE) [28]. A well-configured PPTP server usually enforces MPPE
with 128-bit keys on its connections. The encryption key is derived from the
authentication in the previous phase. It is important to note that all packets
until completion of this phase are transmitted in plain text.

3. Data exchange: Finally, the client starts communicating network traffic with
the server by encrypting it as per the negotiated encryption scheme.

Optional Encryption. Windows by default does not enforce encryption on any
VPN connection. We found that many of the selected commercial VPN services
do not instruct their users to change this setting while configuring PPTP with
the built-in client on Windows. A network attacker can take advantage of this
behavior to perform server impersonation as follows. First, the attacker acts
as a man-in-the-middle to forward traffic between the client and the honest
server until the authentication phase is finished. The attacker then switches to
performing server impersonation and negotiates with the client not to encrypt
the data exchange. The client agrees to this because it is not mandatory to use
encryption. As the result, the attacker obtains all traffic of the victim just as if
no VPN was used.

4.2 SSTP

Secure socket tunneling protocol (SSTP) [25] is another VPN protocol created by
Microsoft. It also utilizes PPP to transport network traffic, but it encapsulates
the PPP packets in HTTPS. An SSTP connection is established as follows:

1. The client opens an HTTPS connection to the server. It authenticates the
server by verifying the server’s TLS certificate as in any HTTPS connection.

2. If the TLS authentication succeeds, the client begins SSTP negotiation by
sending a Connect-Request message to the server. The server replies with a
Connect-Acknowledgement message that contains a nonce to be used later.

3. Both sides perform the PPP authentication, deriving a session key for MPPE.
Like in PPTP, MS-CHAPv2 is usually used for this. However, in this case, it
is protected against active and passive attacks by the HTTPS encryption.
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4. The client sends a Call-Connected message that contains the nonce received
from the server, a hash of the server certificate from the HTTPS handshake,
and a message authentication code (MAC) that is computed over the message
with the MPPE key derived during the PPP authentication. This message
cryptographically binds the PPP session to the server identity from the outer
TLS authentication.

5. The endpoints perform the PPP negotiation and then start to exchange net-
work traffic. SSTP does not use MPPE encryption. Instead, it relies entirely
on HTTPS for the secure delivery of its messages.

Windows has a built-in SSTP client. On macOS and Ubuntu, VPN services
usually suggest the user to install EasySSTP [1] and sstp-client [7], respec-
tively. EasySSTP, however, has been obsolete since 2013, and it no longer works
on the latest version of macOS (10.14) at the time of writing this paper.

Ignored Certificate Verification Failures. We tested the SSTP client on
Windows 10 and the latest sstp-client (v1.0.11) to see whether they perform
the mutual authentication properly. While the Windows client does this cor-
rectly, sstp-client does not consider whether the server’s certificate is trusted.
By inspecting the source code of sstp-client, we found the reason for this
unexpected behavior: sstp-client is integrated into Ubuntu network connec-
tion manager, which allows the user to configure whether the connection should
be terminated when the certificate verification fails, but it ignores certificate
verification errors regardless of this setting.

Ignoring the certificate verification failure allows the network attacker to per-
form server impersonation attacks as follows. First, the fake server presents a
self-signed TLS certificate to the honest client. It then connects to the honest
server pretending to be the client. The attacker forwards traffic between the
honest client and the honest server until the PPP authentication is completed
and the attacker sees the Call-Connected message (Step 4 above). The attacker
then stops forwarding traffic to the honest server and finishes the PPP negoti-
ation by itself. When the SSTP connection is successfully established, the fake
server can act as the VPN gateway and obtain all the victim’s traffic.

4.3 IKEv2

IKEv2 is a more modern VPN protocol based on IPsec. It uses IKEv2 [21] for
authentication as well as establishing and maintaining security associations. One
improvement of IKEv2 over IKEv1 is that the new protocol allows each endpoint
to use a different authentication method. IKEv2 also supports EAP [11], extend-
ing the selection of available authentication methods.

In a typical IKEv2 connection that is set up by VPN services, the server
authenticates itself to the client with a certificate while the client authenticates
to the server with EAP-MSCHAPv2 [20], which is basically MS-CHAPv2 encap-
sulated in the EAP protocol. The connection is established as follows:



110 T. Bui et al.

1. Initial exchange: The client and server negotiate security parameters, such
as cryptographic algorithms, and exchange nonces and Diffie-Hellman (DH)
values. After that, each party computes the shared session keys, which will
be used for protecting all the following messages. These values will also be
used for constructing the first security association (SA).

2. Server authentication: The server authenticates itself to the client with its
certificate (or certificate chain) and a signature on the SA data.

3. Client authentication with EAP: The client is then authenticated with the
EAP-MSCHAPv2 protocol. After completion of the protocol, the client and
server exchange MACs to bind the EAP authentication to the created SA.
The MACs are calculated over the SA data with the session key produced by
the MS-CHAPv2 protocol.

Both Windows and macOS have built-in support for IKEv2. On Linux sys-
tems such as Ubuntu, commercial VPN services usually instruct their users to
install StrongSwan [8], an open-source IPsec implementation, for the client.

Unspecified Server Name. To establish an IKEv2 connection with Strong-
Swan, the user has to create a profile for the connection. Several commercial VPN
providers in our study instruct their users to create the profile as follows (only
important parts are shown).

l e f t a u t h = eap−mschapv2
. . .
r i g h t = <se rver−address>
r i ghtauth = pubkey
r i g h t i d = %any

Left and right indicate the client and the server, respectively. With such
a profile, the server uses a public key for authentication while the client uses
EAP-MSCHAPv2. The problem is with the rightid setting, which tells how
the server should be identified in the authentication. Since it is set to %any, the
client will accept any certified server regardless of its identity. Consequently, the
network attacker can pick any domain that it owns and purchase a certificate
from a widely trusted CA. It can then impersonate the server in the server
authentication step because the client does not check the name in the certificate.

Fortunately, MS-CHAPv2 actually provides mutual authentication with the
user password. The binding of this authentication to the SA prevents the attacker
from completing the protocol without knowing the password. Thus, the miscon-
figuration effectively reduces the security of IKEv2 to that of MS-CHAPv2,
which is significantly weaker [22,31].

4.4 OpenVPN

OpenVPN [4] appears to be the most widely supported protocol by commercial
VPN services. It uses TLS as the underlying authentication and key exchange
protocol. Commercial VPN services deploy OpenVPN in the client-server mode,
in which the server authenticates itself to the client with an X.509 certificate
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signed by a CA that the client trusts while the client proves its identity with a
username and password.

Despite the wide range of configuration options that OpenVPN supports, we
did not find any broken configuration examples that would allow the network
attacker to compromise the OpenVPN connection. We found, however, that the
local attacker, i.e. non-privileged local users and processes (see Sect. 3.1), can
steal the username and password that are used for authenticating the client.

To support OpenVPN, commercial VPN services include the open-source
openvpn client binary in their client software and run it as a daemon. To create
an OpenVPN connection, the openvpn daemon needs configuration information
including the server address, server name, and trusted CA certificate. There
are two ways of delivering the configuration information to the daemon: the
client GUI application can either write the configuration to a file or pass it to
the daemon as command-line parameters. Additionally, the daemon will need
the client’s VPN username and password, which can be specified either in the
configuration file or via the management interface described below.

The OpenVPN daemon supports a management interface [5], which allows
administrative control via a TCP connection. By default, it only accepts connec-
tions on the localhost interface. The advantage of the management interface is
that the user can avoid saving the client credentials into the configuration file on
the disk. The commercial VPN application first starts the openvpn daemon with
all the necessary configuration options, except the client credentials, and puts
it on hold with the management-hold option. The application then connects to
the management interface of the daemon, gives it the username and password,
and finally releases the connection from the hold state.

Credential Leakage. Some commercial VPN client applications are careless
when passing the username and password to the OpenVPN daemon. Specifically,
the VPN applications store the credentials in configuration files that are readable
to all users on the client computer. Therefore, the local attacker can capture this
sensitive information. Some of these services remove the credentials from the file
after the connection has been established, but this still leaves a window of a few
seconds to capture the information.

4.5 SoftEther VPN

SoftEther VPN [6] is another VPN protocol with an open-source implementa-
tion that tunnels Ethernet frames over HTTPS. Similar to OpenVPN in the
client-server mode, the SoftEther VPN server proves its identity to the client
with a TLS certificate while the client has a username and password for its
authentication.

The SoftEther VPN connection establishment is implemented with two bina-
ries: vpncmd, the command-line administrative tool, and vpnclient, its com-
mand execution worker. The vpnclient worker process runs a TCP server on
port 5555 for receiving administrative commands. By default, the TCP server
accepts connections only from the localhost interface. It can be configured to
require password authentication.
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By issuing commands to the vpnclient TCP server, vpncmd can perform
administrative operations such as creating a new VPN profile or editing an
existing one, or starting and stopping a VPN connection with an existing profile.
SoftEther VPN profiles have various configurable options, including whether the
client should check the server’s TLS certificate or not.

No Server Verification. Hide.me supports SoftEther VPN on its GUI. How-
ever, the CheckServerCert parameter is set to false in its client configuration.
Consequently, the client does not verify the server’s certificate. This allows the
network attacker to perform a MitM attack on its connections and obtain the
victim’s credentials and network traffic.

Some other commercial VPN services support SoftEther VPN by providing
instructions on how to connect to their servers with the SoftEther VPN GUI
application [6]. When creating a new SoftEther VPN connection, the GUI allows
the user to choose whether the client verifies the server’s certificate. The default
setting is False, and the VPN services do not tell their users to change the
setting. Thus, they are vulnerable to the same attacks as Hide.me.

Wrong VPN Server. We found another problem with Hide.me, which is that
its GUI does not require password authentication on the management interface of
the vpnclient process. This allows the local attacker to connect to the interface
and, for example, launch a new VPN connection that routes all network traffic
of the victim to a malicious server under the attacker’s control.

4.6 Cisco IPsec

Cisco IPsec [15] is widely used in enterprise VPNs. However, it is also supported
by several commercial VPN services. Like L2TP/IPsec, the protocol uses IPsec
to tunnel traffic. The main distinguishing feature of Cisco IPsec is that, after the
communicating nodes have completed the conventional IKEv1 authentication,
an additional phase of Extended Authentication (XAUTH) [29] is performed to
authenticate the user. XAUTH allows various types of user authentication, such
as challenge-response and one-time password.

Known Pre-shared Keys. We found that all of the commercial VPN services
that support Cisco IPsec in our study use a pre-shared key to authenticate the
IPsec tunnel. Learning from the experience of L2TP/IPsec, it is rather obvious
to ask where the endpoints get the pre-shared key. The user interfaces of the
commercial VPN clients do not have a way of entering such a key. Perhaps
unsurprisingly, we found that the commercial VPN services have fixed pre-shared
keys also for Cisco IPsec. This allows the network attacker to perform MitM
attacks on these IPsec connections and to obtain all the network traffic.

4.7 Fallback Strategy

As mentioned in Sect. 2, commercial VPN services usually have a list of proto-
cols from which the user can choose on the GUI of the provided application.
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A special option that several services in our study support is Automatic, which
means that the application will automatically select the protocol for the user.
In particular, the application tries different protocols one after another until it
succeeds in creating a VPN connection. Users typically choose this option if the
firewall in the access network blocks some VPN protocols, or if they do not want
to understand the technical intricacies of choosing the right protocol.

Fallback to Weak Option. It is easy to see that the security of the fallback
strategy is equal to that of the weakest option which the application is willing
to try. The network attacker can simply block all other connection attempts. We
found that some commercial VPN services include L2TP/IPsec with publicly-
known pre-shared key as an option in their automatic mode. For example,
ExpressVPN attempts to use the following protocols: OpenVPN, SSTP, and
L2TP/IPsec. If the network attacker blocks the first two (e.g. by filtering the
corresponding ports), it effectively forces the client to use L2TP/IPsec, and thus,
the attacker can perform a MitM attack on the VPN connection and obtain the
traffic.

Windows also provides similar fallback strategies when RRAS [23] is used to
create the VPN connection. With the VpnStrategy option [24], RRAS allows the
developers to choose the order in which it attempts VPN protocols until the con-
nection is successfully established. ProXPN, when configuring its IKEv2 client
on Windows, instead of setting VpnStrategy to 5 (i.e. attempting IKEv2 only),
sets the option to 8, which effectively tells the client to try the following protocols
in order: IKEv2, SSTP, PPTP, and L2TP/IPsec. This causes the application to
suffer from the same vulnerability in the automatic mode as ExpressVPN.

5 Mitigation Solutions

In this section, we discuss potential solutions to the issues presented in Sect. 4.

PPTP. As explained in Sect. 4.1, PPTP encryption is optional in the Windows
implementation. Fixing this issue is straightforward: the VPN service providers
simply need to tell Windows users to change the Data encryption setting of
the PPTP connection adapter from Optional encryption to Maximum strength
encryption. This enforces MPPE encryption with a 128-bit key on the connec-
tion. A more sustainable solution would be for Windows to employ strong encryp-
tion by default. While such changes to default settings are not always feasible
for backward compatibility reasons, secure by default is one of the key principles
in designing secure systems.

SSTP. The sstp-client in Ubuntu ignores certificate verification failures. As
pointed out in Sect. 4.2, the flaw is in the sstp-client library code. Until it is
fixed, commercial VPN services should explicitly instruct their users to not use
sstp-client and possibly provide an alternative. The broader issue here is that
modern software development practices create complex dependencies on free and
third-party components, for which there may not be guaranteed maintenance.
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One would expect security-critical services, such as commercial VPNs, to manage
their dependencies carefully.

IKEv2. Setting the rightid value of a StrongSwan’s IKEv2 configuration to
%any could be useful, e.g. for testing a VPN server but not for production pur-
poses. To fix the problem, the commercial VPN providers should give clear
instructions to the users to set rightid to the server’s domain name or to the
Distinguished Name from the server’s certificate [2].

The security failure here arises from the fact that it is easier to get the service
to work with insecure wildcard settings than to find out and configure the correct
server name. Even if the VPN service providers documented the correct usage,
some users would find easier, insecure configuration entries online. Probably the
only safe solution in this case is to automate the setup process and to audit the
configuration regularly for unsafe changes by the user.

OpenVPN. The obvious solution to unauthorized users reading the OpenVPN
configuration file is to set the access controls on the file, which is world-readable
by default. Another solution is to avoid writing the VPN username and password
to the file by communicating them over the management interface.

Storing secrets on the local machine is a problem encountered commonly by
security-critical software. There is no perfect solution but making use of OS’s
access control is a good starting point. The next step might be a secure hardware
module for storing client credentials.

SoftEther VPN. The management interface of SoftEther VPN must be pro-
tected with proper password authentication because without authentication, it
allows any local user or process to control the VPN connections. The higher-level
issue here is that TCP connections to localhost are not inherently secure and
may require application-level authentication between the client and server [14].

To fix the server verification problem that we described, the CheckServerCert
parameter of the SoftEther VPN connection must be set to true so that the client
verifies the server’s certificate during the establishment of the connection. This can
be done either by changing the default value of CheckServerCert in SoftEther, or
the VPN services can provide explicit instructions to their customers to do the
same. This again highlights the importance of safe default values and the danger
of allowing easy but insecure settings.

L2TP/IPsec and Cisco IPsec. The commercial VPN services that support
the L2TP/IPsec and Cisco IPsec protocols share the same problem of using
known pre-shared key for the IPsec authentication. Before considering solutions,
it is worth discussing the reason for the use of fixed keys in these IPsec-based
VPN protocols. They both use IKEv1 in the Main Mode, in which the server
selects the pre-shared key by the IP address of the client. IKEv1 and the entire
IPsec architecture reside in the IP layer, and thus the IP address is the only clue
available for them about the client identity. Since the clients of the commercial
VPN services practically always have dynamic IP addresses, it is not possible
for the VPN gateway to support client-specific pre-shared keys. There have been
proprietary proposals for sending a hint about the client identity to the server,



Client-Side Vulnerabilities in Commercial VPNs 115

but the rather historical IKEv1 protocol and its implementations have not been
updated to support such new features in an interoperable way. Thus, the com-
mercial VPN services have fallen back to the insecure practice of sharing the
same key between all clients.

A solution is to switch from pre-shared keys to certificate authentication.
For this, the commercial VPN services must obtain certificates for their VPN
servers from a widely trusted commercial CA. The client certificates, on the
other hand, can be provisioned by the VPN service provider itself. Client-side
authentication in IKEv1 is not extremely critical anyway because the client user
is authenticated separately with username and password in the later phases of
the VPN protocols. It would, nevertheless, be a good practice to authenticate
both the client device (with a certificate) and the client user (with username and
password), so that devices and users can be revoked individually.

Fallback Strategy. Since the security of a fallback strategy is equal to the
weakest allowed option, L2TP/IPsec and PPTP with their known weaknesses
should be disabled in any automatic protocol selection process.

As mentioned earlier, one of the main reasons why commercial VPN services
provide fallback options is to bypass firewall filters. The fallback strategy for
firewall traversal gives an advantage to any malicious access-network operator or
oppressive government that wants to attack VPN users. An alternative approach
would be to only try safe firewall traversal techniques such as using server ports
that are usually not blocked (e.g. 443).

When using RRAS to create VPN connections on Windows clients, the
VpnStrategy setting should never be set to 0, 2, 4, 6 or 8 because all these
values instruct Windows to attempt IKEv2, SSTP, PPTP, and L2TP/IPsec,
just in different orders, until one succeeds. In an ideal world, Windows would
stop supporting protocols and configuration options with known vulnerabilities.

6 Responsible Disclosure

We have reported all the vulnerabilities that we discussed in this paper to the
corresponding VPN service providers. At the moment of writing, 15 of the tested
providers have responded to us. They acknowledged all the problems and have
fixed all of them, except the pre-shared key issue in L2TP/IPsec and Cisco IPsec,
which none of them agrees to fix. They argued that the protocols are not secure
and while they support them, they do not encourage their users to use them.

In addition, we reported the optional encryption problem of PPTP to the
Microsoft security response team. While they acknowledged the problem, they
are already looking into deprecating PPTP, and thus no immediate fixes will be
released. Similarly, SoftEther team acknowledge the problem about the default
value of the CheckServerCert parameter. However, they hesitate to change the
default value as they believe it is the responsibility of the commercial VPN
providers. We have reported the certificate verification problem to the author
sstp-client but have not received a response.
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7 Discussion

It appears that commercial VPN services compete by providing the maximum
number of features, such as different VPN protocols, and maximum ease of use,
and that security is a secondary concern for them. For example, the issue of using
publicly known pre-shared keys for L2TP/IPsec has been known for years, but it
has not been addressed by most VPN services. While this issue could be solved
by provisioning certificates to the clients as discussed in Sect. 5, that would be
an administrative hurdle for the VPN service providers and might scare away
non-expert customers. This could be the reason why they have opted to continue
the insecure services rather than endanger their business growth.

There are also many entirely unnecessary flaws in the VPN client settings,
such as not checking the server certificate or server name. These appear to indi-
cate lack of technical knowledge or security awareness by the service providers.
We hope that the current paper will, at least to some extent, increase awareness
about the importance of correct VPN configuration among the commercial VPN
developers and operators.

We further observed the importance of developer documentation and con-
figuration examples for third-party VPN software components that are used as
building blocks in the commercial VPN services. Let us take OpenVPN for a
positive example. It has detailed documentation of all the software configura-
tion options as well as best-practice guidelines for building secure systems. Also,
the OpenVPN software warns the user about insecure settings. These are prob-
ably the reasons why none of the commercial VPN services in our study were
found to have insecure OpenVPN configurations.

A more sinister explanation for the configuration weaknesses might be that
some access-network firewalls are intentionally configured to permit insecure
VPN protocols and applications while blocking ones that are not vulnerable.
This encourages commercial VPNs to support vulnerable but apparently more
reliable settings and protocols, which can then be spied upon. There is anecdo-
tal evidence, both personal experience and online discussions about traveling in
China and other countries, of this kind of practice in regions with strict govern-
ment surveillance of citizens. For example, PPTP often works while OpenVPN
does not, even though PPTP is not technically any more difficult to block. We
can only speculate about the exact reason for such selective blocking.

8 Related Work

There are have been various user de-anonymization attacks that leak information
about the VPN user [12]. In a majority of the cases, the VPN reveals user
information due to IPv6 traffic and DNS leakage [30]. Fazal et al. demonstrated
that an attacker could penetrate into the VPN tunnel by exploiting clients with
a dual-NIC that supports both Wi-Fi and Ethernet [16]. Similarly, privilege
escalation attacks [9,10] allowed an attacker to gain access over the VPN traffic.

VPN protocols have undergone critical cryptanalysis in the past. Among
others, MS-CHAPv2 in PPTP is known to have cryptographic weaknesses, and
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it is possible to break the protocol with exhaustive key search [22,31]. If used
against a large number of users and connections, these attacks demand rela-
tively heavy computing resources, whereas the configuration flaw explained in
this paper immediately exposes the user traffic. Another known issue of PPTP
is that the configuration packets in the PPP negotiation phase are not authenti-
cated [26]. This allows a network attacker to spoof the packet containing the DNS
server’s address and effectively force all name resolution to happen through a
compromised name server. On the other hand, the PPTP misconfiguration issue
that we discuss in this paper allows the attacker to obtain all network traffic of
the victim, including DNS. Also, by forcing no encryption, the victim’s traffic is
visible to everyone, including the attacker.

Oracle-based attacks on VPN systems can also undermine the security of
the tunneled traffic. For example, the compression oracle attack on OpenVPN
compression algorithms allows an attacker to send cross-domain requests when
an HTTP website is tunneled through OpenVPN connections [27]. Similarly, by
exploiting Bleichenbacher oracles Felsch et al. demonstrated that reusing the
same key pair across IKEv1 and IKEv2 allows an attacker to bypass authenti-
cation as well as perform impersonation attacks [17].

9 Conclusion

In this work, we analyzed the security of how popular commercial VPN providers
set up, or instruct their users to set up, desktop VPN clients. We studied com-
monly used VPN protocols and software on Windows, macOS, and Ubuntu. We
found vulnerabilities in the client configurations of most of the protocols and
clients. These vulnerabilities allow network attackers to perform MitM or server
impersonation on the connection and thus obtain the victim’s original network
traffic. Similarly, local attackers can exploit vulnerabilities to steal user creden-
tials for the VPN services. We provide guidelines for fixing these vulnerabilities.

Our main message is that security flaws, either accidental or intentional, are
not always deeply hidden in the code or cryptography. Instead, configuration
mistakes, poor instructions, insecure default values, and failures to disable broken
legacy features can result in widespread security issues across an entire industry.
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Abstract. The deployment of optical networks grows due to the
demand of high-speed communication in our daily life. Virtually all mod-
ern security solutions on optical networks are based on cryptographic
technology. Various security solutions using cryptographic techniques
have been adapted in current optical networks. In this paper, we investi-
gate advanced cryptographic techniques to ensure the long-term security
of optical networks.
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1 Introduction

Optical communication systems have capability to transport a large amount
of data at extremely high speed (currently up to 600 Gbit/s) with very low
latency. High-bandwidth applications such as data center interconnection and 5G
networks deploy optical networks for transporting large data in a long distance.
Optical networks are one of the core infrastructure to enable today’s high speed
internet and mobile communication.

Traditionally optical networks have been configured and controlled by a cen-
tralized network management system. Since modern optical networks are getting
complex and handle huge amount of data, network operators have difficulties to
manage their networks only by a simple management system. Recently a frame-
work of software defined networking (SDN) is introduced to optical networks to
solve such difficulties in a flexible and cost-effective way [29]. Though SDN-based
network control is not yet widely deployed in existing optical networks, SDN is
likely to become a dominant framework for optical network control in the near
future.

While the SDN paradigm enables the deployment of centralized and inte-
grated security policies, which simplifies complicated solutions of network secu-
rity problems, a centralized optical network management has several downsides.
A single-point failure is the most critical risk. A malicious behavior or a misuse
of the SDN controller may interrupt the entire network services. Also, a central-
ized network structure is potentially vulnerable to DDOS (Distributed Denial
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of Service) attacks [27]. Those downsides can be compensated by integrating a
decentralized authentication mechanism into the network management.

Data encryption over an optical fibre channel is another must-have feature
in optical networks. A standardized encryption algorithm such as AES-256 has
been widely used for protecting data during transmission. Usually an AES key
is established via an authenticated key exchange protocol using standard public-
key crypto algorithms such as RSA or (EC)DH. However, it is known that clas-
sical public-key cryptosystems could be broken by Shor’s algorithm in a poly-
nomial time when quantum computers are available [28]. Nowadays quantum
attacks are considered as a critical threat against the long-term security of opti-
cal network infrastructure.

1.1 Our Contribution

This paper investigates how the modern cryptographic techniques can be used
to reduce current risks of the optical network security. We focus on following
two topics: quantum-resistant data encryption and Hash-based authentication.

Quantum-Resistant Encryption. It is known that Grover’s algorithm can
achieve only quadratic speedup of brute-force attack against symmetric key
encryption [10]. Hence, the 128-bit quantum security can be still achieved if an
AES-256 algorithm is used for data encryption. Whereas, classical ephemeral key
exchange protocols such as RSA or (EC)DH should be replaced by a quantum-
resistant algorithm. We propose a McEliece-based key establishment mechanism
which is known to be secure against quantum attacks [20]. Even though a key size
is quite large, the security level of the McEliece system has remained remarkably
stable, despite dozens of attack papers over 40 years [2]. Other quantum-resistant
key exchange schemes using a smaller size of a key might provide better perfor-
mance. However, they could not provide as strong confidence as the McEliece
cryptosystem. Note that the McEliece-based key exchange can be combined with
a classical key exchange for the smooth migration to the quantum security. This
is so-called a hybrid mode key exchange.

Hash-Based Authentication. The proposed scheme consists of two stages.
One stage is to authenticate a SDN controller and optical node controllers (upper
level). The other stage is to authenticate among a node controller and optical
components (lower level).

A mutual authentication between a SDN controller and optical nodes can be
achieved by a popular secure communication protocol such as TLS (Transport
Layer Security). However, due to the evolving nature of open protocols and the
technical difficulties, TLS is often not fully implemented nor activated in the SDN
controller [24]. We propose a lightweight hash-based authentication scheme for
software-define optical networks. In order to keep the efficient framework of SDN,
the upper level takes a centralized authentication mechanism, which enables a
fine-grained authentication for orchestrators, applications, and logging in the
context of SDN.
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Fig. 1. A popular deployment of optical networks

On the other hand, actual optical communications between optical compo-
nents are carried out in a peer-to-peer way, so that a decentralized authentication
scheme is suitable for the lower level. The proposed scheme is based on the Merkle
signature scheme (MSS), which is recently extended to several hash-based sig-
nature schemes (HSS) [12,21,22]. A benefit of HSS is that it does not require
computationally expensive mathematical operations such as modular exponenti-
ation or discrete logarithm. Hence, HSS seems to be suitable for authenticating
optical components which are resource constrained devices. Moreover, a hash-
based signature is known to be resistant to any known attacks including quantum
attacks, which makes the proposed scheme suitable for long-term security.

We note that we do not propose a new quantum-resistant encryption scheme
or a hash-based authentication mechanism. Our contribution is to integrate such
mechanisms on a SDN-based optical network, analyze their benefits and disad-
vantages, and compare them with the standard mechanisms based on traditional
cryptographic techniques.

The rest of this paper is structured as follows: first, we describe a brief struc-
ture of the optical network system and identify major security threats against
optical networks. Next, we introduce currently available security options. We
investigate the problems of such options and propose new solutions based on
modern cryptographic techniques. Finally, we conclude the paper.

2 System Description

Optical communications are performed over the optical fiber layer (or Layer 1).
Using wavelength-division multiplexing (WDM) technology, a number of optical
carrier signals can be multiplexed onto a single optical fiber by using differ-
ent wavelengths of laser light. The transmitted wavelengths are demodulated
and detected in a receiver side. The specific optical transmission and switch-
ing characteristics, such as circuit, burst, and packet switching on wavelength
channels, pose challenges for controlling optical networks. For operator’s usabil-
ity, an optical network management such as system configuration, monitoring
and maintenance can be done over an IP network. Note that such IP network
is usually isolated from public networks to avoid malicious attacks from exter-
nal network. Figure 1 shows a popular deployment of optical networks. Optical
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networks have several unique features. A node of the optical network is an inte-
gration of a node controller and multiple optical components such as transceivers,
amplifiers and switches. A node controller is used to configure and control com-
ponents, while optical communications are carried out between transceivers in
peer-to-peer way. Optical components are usually hot pluggable, meaning that
an optical component can be added and removed on the backplane while the
system is being operated. The system automatically detects and recognizes the
change. An interface between an optical network controller and actual optical
transceivers are performed through a dedicated backplane [16]. A typical config-
uration of an optical network node is depicted in Fig. 2.

3 Security Threats

Security threats in optical networks are identified mainly by the following cate-
gories.

Eavesdropping. Eavesdropping is to attempt an unauthorized access to the
carried data for the purpose of stealing data or analyzing the network traffic
without breaking the connection. It is not very difficult to intercept an optical
signal: One can tap the fiber using a commercially available clip-on coupler that
can detect the leaked optical signal caused by a bend in the fiber. A more com-
plex method is to observe the signal leaked due to crosstalk in optical switching
and perform eavesdropping [30]. Fiber cut or re-routing channel would be simi-
lar unauthorized attempts to access data over fiber. Several fiber-optic tapping
incidents have been already reported in the press.

Optical Disrupting. This attack is to degrade or completely disrupting service
on an optical layer via optical link cuts, signal insertion, or signal splitting. For
instance, high-power jamming, amplifier-transient or mixed-modulation attacks
can cause a series of harmful effects to the co-propagating user signals inside
optical fibers, amplifiers, and switches, resulting in reduced optical signal-to-
noise ratio (OSNR) and degraded bit error ratio (BER) [8].

(Distributed) Denial of Service Attack. Denial of Service (DoS) attack is
one of the critical cyber-attacks on SDN-based optical networks. Attackers can
launch DoS attacks on the user plane by sending bogus packets to the optical
network. The path towards the core network can be flooded by bogus packets.
This would lead to a denial of service or at least a throughput degradation
caused by the congestion to networks. A simulation result of DDoS attacks on
the optical fiber cable is presented in [18].

Network Intrusion. This attack aims to intrude a network, access resources,
and manipulate the network operation. Malicious applications and network
devices may allow an attacker to introduce vulnerabilities to the system. An
SDN-based network management is particularly vulnerable to this type of attack
because the attacker can control the entire network system by hijacking a SDN
controller. Hence, both an authentication and an access control mechanism need
to be implemented properly to avoid such unauthorized access to the network.
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Fig. 2. A typical configuration of an optical network node

Quantum Attacks. Quantum attacks are a new but a critical threat against
the internet security. It is known that most of popular public-key cryptosystems,
such as RSA, ECC and Diffie-Hellman will be broken by Shor’s algorithm [28]
when a large scale of quantum computers would be available. One may argue
that it may be too early to discuss quantum threat at this stage since no one
knows when quantum computers can be actually built. However, as long as there
exists a non-negligible risk of a harvest-type attack (a store-now-decrypt-later
attack) and optical networks are usually built for the critical infrastructure,
quantum security became one of the important topics that optical networks
should consider for a long-term security Fig. 2.

4 Current Security Solutions

Building secure optical networks is challenging due to unique features of optical
networks. User data are framed into G.709 Optical Transport Network (OTN)
format and transported over Layer 1 [9]. Popular security protocols such as
TLS/SSL or IPsec do not apply here. Data encryption should be done in hard-
ware such as ASIC or FPGA due to the requirement of high speed and low
latency data transport. Note that a hardware-based data encryption needs a
special care to catch up the high speed data rate. Optical communication is
always bidirectional, meaning that encryption and decryption are performed in
parallel at each node, which requires double crypto engines.

Similarly to other classes of networks, optical networks focus on three
major security topics: data confidentiality, user/device authentication and data
integrity.

Data Confidentiality. The primary concern on the confidentiality is on being
eavesdropped by fiber tapping. Due to high bandwidth of an optical channel,
tapping fiber in a very short time can lead a large amount of data loss. Hence,
user data are commonly encrypted by a symmetric encryption algorithm such as
AES (Advance Encryption Standard) algorithm. User data are encrypted and
inserted into the payload field of the G.709 OTN framework, as shown in Fig. 3.
A data encryption key (an AES key) should have a lifetime. A re-key interval
should be carefully considered on the high-speed link since the security level is
bounded by the maximum amount of date that is encrypted with a single key. A
specific value of the key lifetime should be determined in accordance with some
safety margin for protocol security. In [19], it is given that low bounds on the
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Fig. 3. G.709 Optical Transport Network Frame

amount of data that AES-GCM can process without needing a key change. These
bounds are also rephrased in the specification of TLS 1.3 [26]. Unfortunately,
there is no dedicated field in G.709 frame that can be used for a key exchange
protocol. An industrial de-facto solution is to abuse some of (unused) overhead
field to perform a key exchange protocol.

Authentication. In terms of network security, authentication is divided into
two sub-categories: user authentication and device authentication. Similarly to
normal operating systems, user authentication is usually done by verifying pass-
words, that is, by checking a user knowledge, while device authentication can be
done by checking a piece of data that device is supposed to hold in memory or
a smart card.

In a nutshell, when a new optical component is added to the system, this
component is verified by the host server through an authentication procedure.
Popular internet security protocols such as TLS/SSL or IPSec do not apply for
optical networks in general due to the constraint of computing resources. Optical
components can be authenticated by a stored password or their certificates from
PKI (public-key infrastructure) structure.

Since any secret that is installed in devices would be a target for various
attacks, it is preferred that a device has only public information that include a
signature signed by a central authority. In this context, the centralized and inte-
grated authentication process simplifies the solution of complex network security
problems. On the other hand, a malicious behavior or misuse of a centralized
server may cause the disruption of entire network. This concern leads to the
concept of decentralized authentication. In the next section, we will propose a
two-stage authentication mechanism suitable for optical networks.

Integrity. According to G.709 framework, erroneous or modified bits in the pay-
load can be corrected by the FEC (Forward Error Correction) up to the capabil-
ity of code. If an error occurs beyond the correcting capacity, it will be detected
by checksum and the packet will be dropped. In addition, a message authen-
tication code (MAC) is generated from a payload using a secret key to ensure
that the payload has not been modified during transmission. Galois/Counter
Mode (GCM) is a widely adopted MAC mechanism in combination with the
AES encryption algorithm (AES-GCM).
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5 Quantum-Resistant Encryption

The cryptographic tools are at the center of protecting our information assets
from security threats. Unfortunately, quantum computers become a serious
threat on optical network security, as they can break most of current public-key
cryptographic algorithms. To keep ahead of the hackers, research on quantum-
safe security is actively performed around the world, as this solution renders
information secure in an era with quantum computers.

Post-quantum Cryptography. Post-quantum cryptography is the most
important research topic on quantum-safe security, as it aims to develop effi-
cient quantum-resistant crypto algorithms that could replace classical crypto
algorithms in quantum world. The National Institute of Standards and Tech-
nology (NIST) in the United States initiated a standardization process of post-
quantum cryptography in 2016 and expects a draft standard available around
2022/2024 [5].

In general, post-quantum cryptographic algorithms fall into the following
categories: lattice-based, code-based, hash-based, multivariate and SIDH (Super-
singular Isogeny Diffie–Hellman). Among those, we focus on code-based crypto
algorithms since their security has been studied for a long time in many aspects
and, therefore, it is unlikely hidden attacks are found in the near future. In addi-
tion, the theory of error correction codes itself is well developed and understood.

The general idea behind code-based crypto schemes is to first select a code
for which an efficient decoding algorithm is known, and then to create a trapdoor
function by disguising the code as a general linear code. Since the problem of
decoding a linear code is NP-complete, a description of the original code serves
as the secret key, while a description of the transformed code serves as the public
key.

McEliece Cryptosystem. The first code-based crypto scheme was introduced
by McEliece in 1978. Since then, the McEliece cryptosystem has been exten-
sively analyzed for more than thirty years, and its original form using Goppa
codes is still unbroken. It became now the basic construction of code-based cryp-
tosystems. Several other underlying codes have been proposed so far, but most
of them are broken [25]. Due to long-lasting security and well-developed the-
ory, the McEliece cryptosystem using a binary Goppa code would be a good
cryptographic primitive that can be used for a key exchange scheme.

Due to this background, we propose a post-quantum key exchange scheme
based on McEliece public key cryptosystem using a binary Goppa code. It is
known that the McEliece cryptosystem is very efficient at encryption and decryp-
tion, but suffers from very large key sizes. However, the McEliece cryptosystem
is applicable to the use case of high-speed optical communication since the ben-
efits of security and speed are more important than the costs of communicating
and storing keys.
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Fig. 4. A example of the key combination for hybrid mode: DH and PQC

Re-key Period. It is important to refresh a data encryption key (a symmetric
encryption key) regularly within a short time period. The reason is that common
cryptographic attacks are based on the ability to collect encrypted data under a
single key and the amount of transmitted data over high-speed optical networks
reaches quickly the maximum threshold number of messages that can be safely
encrypted.

Hybrid Mode Key Exchange Protocol. A hybrid mode is a migration tech-
nique to move to quantum-resistant encryption in advance of establishing com-
plete security assurance in quantum computer world. There are several methods
for deriving cryptographic keys from two shared secrets; the two raw shared
secrets (the ECDH shared secret and the PQC shared secret) can be concate-
nated or XORed to derive a secret key, or putting them through a KDF (key
derivation function) to derive a common shared secret, as shown in Fig. 4. The
shared secrets are established using existing classical key agreement schemes
such as ECDH, and quantum-resistant key encapsulation methods (PQ-KEMs).
The key derivation functions for the hybrid mode key agreement can be taken
from e.g. NIST SP 800-56C [23] or IETF RFC-5869 [17].

Implementation. We implemented a McEliece-based key exchange scheme
with a very conservative parameter set, e.g. a 300-bit classical security corre-
sponding to a 150-bit post-quantum security, on optical networks. Even though
the size of a public key is quite large, i.e. around 1.3 Mbytes, the key exchange
can be completed before exceeding the maximum limit of data encryption.
We demonstrated a high-speed quantum-safe optical communication over the
GÉANT network. The central building block of our demo system is a hybrid
mode key exchange scheme combining a post-quantum key exchange (McEliece-
based), together with a classical key exchange (Diffie-Hellman). We performed
a hybrid mode quantum-safe key exchange over a 100G optical communication
link between long-distant nodes, one was located in Poznań (Poland) and the
other was in Trondheim (Norway), and connected over the NRENs network. The
distance was around 2,800 km [6].
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Table 1. Average execution time of NIST KEM candidates on PowerPC test platform.
opt = optimized code, ref = reference code

Candidate keypair gen. enc. dec. parameter ref/opt

Classic McEliece 43 s 23ms 28 ms mceliece8192128 opt

Classic McEliece 226 s 53ms 3129ms mceliece8192128 ref

NTS-KEM 6.6 s 21ms 54ms NTS-KEM(13, 136) opt

HQC 0.045 s 98ms 127ms Paranoiac-IV opt

HQC 0.053 s 114ms 167ms Paranoiac-IV ref

LEDAcrypt 0.602 s 78ms 882ms SL=5 N0=2 opt

LEDAcrypt 1.1 s 217ms 2438ms SL=5 N0=2 ref

We extended our experiments for other code-based crypto algorithms. In
Jan. 2019, NIST announced the 17 second-round candidate of public-key encryp-
tion and key exchange algorithms. Among those, there are 7 code-based KEMs,
including Bike, Classic McEliece, HQC, LEDAcrypt, NTS-KEM, ROLLO and
RQC. We implemented these code-based KEMs on our platform and evaluated
the feasibility and their performance. Details are given in Table 1. Note that
Bike, ROLLO and RQC have not been evaluated because their codes required
external libraries such as NTL and GMP which were not available on our test
platform.

6 Hash-Based Authentication

Our proposal uses a hash-based signature scheme (HSS) as a basic building
block of the authentication. HSS does not rely on the conjectured hardness of
mathematical problems. Instead, its security assumptions rely on those of a
cryptographic hash function: pre-image resistance and collision resistance. No
random oracle or number-theoretic assumptions are required.

6.1 Hash-Based Signature

A Hash-based signature was initially proposed by Merkle in the late 1970s [22].
Since then, several variants of the Merkle signature have been proposed [3,12,21].
Hash-based signature schemes generally feature small private and public keys
as well as fast signature generation and verification but large signatures and
relatively slow key generation. Unlike most other signature systems, it is known
that hash-based signatures can withstand attacks using quantum computers [5].

Merkle signature scheme (MSS) consists of a one-time signature scheme
(OTS) and a Merkle hash tree [22]. An OTS scheme can sign only one mes-
sage with one key. A Merkle hash tree enables us to sign multiple messages
with a single public key. An example of a Merkle signature scheme is shown in
Fig. 5. The leaves are the hash values of public keys of OTS. Each inner node
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Fig. 5. Merkle-tree with a height h = 3. Red-colored nodes and arrows indicate the
path from leaf a34 to the root a00. (Color figure online)

is computed as the hash of the concatenation of its two children nodes, i.e.,
aij = H(a(i+1)(2j)||a(i+1)(2j+1)) where H is a hash function and || is a concate-
nation.

To sign a message w(i), a signer first computes a constant-sized digest d(i) =
H(w(i)). Then, the signer generates a one-time signature σ(w(i)) of the digest
using the i-th OTS key sk(i). Note that i is the index chosen from {0, . . . , 2h−1}
and h is the height of the tree. Since each OTS key should be used only once,
the management of the key index is an important issue for the security of OTS
schemes.

Let S(·) denote a Merkle signature of the w(·). Then, S(w(i)) =
{i, σ(w(i)), pk(i), path(i)}, where the index i, the OTS signature σ(w(i)), the
i-th OTS public key pk(i), and the path(i) to the root of tree. The path(i) con-
sists of the siblings for all nodes along the path from the i-th leaf to the root. In
the example shown in Fig. 5, path(4) = {a35, a23, a10}.

To verify the signature S on message w(i), the verifier first validates the
OTS signature on the message by pk(i). Then, a root value of the Merkle tree
is computed using the nodes in path(i). If this root value matches the one given
as the public key, the signature is accepted, otherwise it is rejected.

Advanced Hash-Based Signature Schemes. Since Merkle invented a hash-
based signature in 1979, several variants have been proposed to improve
the efficiency and performance: XMSS (eXtended Merkle Signature Scheme)
[12], XMSSMT [14], HSS (Hash-Based Signatures) [21], SPHINCS [3], and
SPHINCS+ [1]. In particular, XMSS and HSS have been proposed in the Inter-
net Engineering Task Force (IETF). We omit the detailed description of these
schemes since it is straightforward to replace MSS by these schemes.
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Fig. 6. A two-stage authentication in the optical network

6.2 Authentication Schemes

As mentioned in the introduction, the proposed authentication scheme consists
of two stages. The first stage is an authentication between an SDN controller and
optical nodes for the trusted management (Fig. 6(a)), while the second stage is
between components for the trusted optical communication (Fig. 6(b)). This two-
staged authentication is necessary because a network management and actual
optical communications are separated in the optical network. Optical compo-
nents perform a mutual authentication directly during transmission in order to
minimize the latency.

Node Authentication. Suppose an optical network is composed of n nodes
that are managed by a SDN controller. The SDN controller chooses the height of
Merkle tree h where 0 < n ≤ 2h − 1 and other security parameters. The height
h determines the size of the Merkle signature.

The SDN controller creates a certificate Certnode for each node. The certifi-
cate consists of a data field and its signature where a data field contains a random
number, a Merkle signature, and a signature given by the SDN controller. This
certificate is used for the node authentication.

Certnode = {r, S(r), SignSDN}
The certificate management such as enrollment, renewal, and revocation can
be done by an internet protocol such as SCEP (Simple Certificate Enrollment
Protocol) [11].

Component Authentication. Each node controller creates its own Merkle
signature where the size of Merkle tree can be different, depending on the number
of components of each node. Since each node is usually located remotely on an
optical network, it is important to verify a public key of Merkle signature that a
counterpart node uses. One may use a PKI infrastructure. However, a centralized
key validation approach has several downsides, as mentioned in the introduction.

Our proposal is to use a blockchain structure. A root value (a public key)
of Merkle tree is hash-chained, together with meta data of the node and a hash
value of the previous block, as shows in Fig. 7. This hash chain is distributed
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Fig. 7. Structure of authentication using hash-based signature over software-based
optical network

by the SDN controller and installed on each node controller. It is infeasible to
modify the hash chain unless the SDN controller is corrupted. The update of the
hash chain can be done only by the SDN controller via a secure protocol. The
last block of hash chain is a trusted block which is added by the SDN controller,
otherwise the last block of hash chain would not be validated.

By this structure, any public key of Merkle signature can be verified without a
centralized authentication server. Note that, even though our proposal is similar
to blockchain, a signing process itself is not chained, hence, it does not validate
the occurrence of signing event itself. Rather, it provides the trust of public key
in a decentralized manner so that it reduces the risk of a single point failure.

Practical Aspects. The practicability of hash-based signature schemes has
been demonstrated in several papers, e.g., see [3,4,7,12,15]. There, the hash-
based signatures have been implemented on constrained devices such as an 8-bit
AVR and a 16-bit smart card at a speed comparable to RSA and ECDSA.

Suppose we choose a XMSS scheme with a tree height H = 20 and n =
32 (e.g. SHA-2-256). This parameter set allows to generate 220 ≈ one million
signatures with the security level of 2236 [13]. Then, the sizes of a public-key, a
secret key, and a signature are around 2.2 kB, 1.3 kB, and 2.8 kB, respectively.
According to [13], a signing process, fully implemented in C language, takes 3.24
ms on a 3.5 GHz Intel i7 CPU platform.

7 Conclusion and Future Plan

Optical networks are evolving. Various cryptographic techniques have been used
for the security of optical networks. We showed that modern cryptographic tech-
niques such as quantum-resistant encryption or hash-based signature are able to
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improve further the security of optical networks. We have already implemented
and performed a field-test for quantum-resistant encryption over optical net-
work. Since the standardization process of post-quantum cryptography is still
going on, our evaluation would subject to changing by upcoming report from
NIST. However, based on our experience that there is a great timing gap between
the standardization and the real deployment, our evaluation would contribute to
minimize such gap. As a next step, we will implement the proposed mechanisms
on a SDN controlled optical network and check the performance and feasibility.
Since several detailed aspects are missing, this would be filled by experimental
implementations.
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Abstract. Ransomware is a type of malware which restricts access to a
victim’s computing resources and demands a ransom in order to restore
access. This is a continually growing and costly threat across the globe,
therefore efforts have been made both in academia and industry to
develop techniques that can help to detect and recover from ransomware
attacks. This paper aims to provide an overview of the current landscape
of Windows-based anti-ransomware tools and techniques, using a clear,
simple and consistent terminology in terms of Data Sources, Processing
and Actions. We extensively analysed relevant literature so that, to the
best of our knowledge, we had at the time covered all approaches taken
to detect and recover from ransomware attacks. We grouped these tech-
niques according to their main features as a way to understand the land-
scape. We then selected 15 existing anti-ransomware tools both to exam-
ine how they fit into this landscape and to compare them by aggregating
their accuracy and overhead – two of the most important selection crite-
ria of these tools – as reported by the tools’ respective authors. We were
able to determine popular solutions and unexplored gaps that could lead
to promising areas of anti-ransomware development. From there, we pro-
pose two novel detection techniques, namely serial byte correlation and
edit distance. This paper serves as a much needed roadmap of knowledge
and ideas to systematise the current landscape of anti-ransomware tools.

Keywords: Ransomware · Anti-ransomware · Detection · Recovery

1 Introduction

Ransomware, a type of malware used to extort money from victims, has existed
in various forms since the 1980s [1] and has incorporated more sophisticated
features since 1996 when the idea of cryptoviral extortion was first introduced [2].
Throughout the years, there have been various types of ransomware including
device lockers and crypto-ransomware [3]. Device lockers restrict access to a
device by locking the screen (without encrypting any data) and displaying a
ransom note. On the other hand, crypto-ransomware encrypts the victim’s files
such that a corresponding decryption key is required to regain access. In all
cases, the victim is typically notified through the use of a ransom note often
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accompanied by threatening demands and instructions on how to pay (usually
via cryptocurrency such as Bitcoin). The attacker will only release the decryption
key if the ransom is paid.

Unfortunately, individuals and organisations are still frequently hit by ran-
somware attacks that cause severe disruption and substantial costs. There has
also been an increase recently in targeted attacks, i.e. large-scale ransomware
infections aimed at specific organisations, which effectively can bring businesses
to a halt [4]. As with other types of malware attacks, it has been repeatedly
shown that running up-to-date antivirus software is generally not enough to
prevent ransomware attacks. Offline backups are the only reliable security coun-
termeasure to mitigate a ransomware attack, but unfortunately they are still not
common, particularly in small and medium organisations.

Additionally, many cybercriminals simply make use of the code or ideas
from other relatively successful ransomware variants in order to make a quick
profit [5,6]. Also, the availability of Ransomware-as-a-Service (RaaS) [7] means
cybercriminals can go to the underground market to purchase ransomware kits,
such as Satan [8], allowing them to deploy their own ransomware variants with-
out needing in-depth technical knowledge.

Due to the significant damage and disruption that ransomware can cause [9],
there is an increasing demand for research in anti-ransomware tools and tech-
niques. For instance, the “No More Ransom” project maintains a collection of
defeated ransomware variants along with tools to help victims recover any lost
data [10]. Users are also often advised to follow best practices with regard to
backing up their data and dealing with unexpected links and email attachments
to help mitigate the risk of a ransomware infection [11].

However, this is not enough, so a number of techniques are in development
and being implemented to detect the presence of a ransomware infection quickly,
with the aim of stopping it before it causes any significant damage or data
loss. Similar approaches include attempting to recover any data the ransomware
did manage to encrypt, to ensure that the victim experiences minimal or no
disruption. We expand further on the techniques and their results in Sect. 5.

Contribution. First, we present a novel feature-based roadmap of the tech-
niques that are commonly used in anti-ransomware tools. This is constructed
based on the analysis of the state-of-the-art in anti-ransomware tools – open-
source, where possible – from academic research. Second, we propose two new
techniques to detect ransomware through serial byte correlation and edit dis-
tance. These are detailed in Sect. 4. We envision that our paper can help in
guiding future work in anti-ransomware research by providing researchers with
a single point of reference, allowing them to reason about new and existing
anti-ransomware techniques.

2 Related Work

There are two types of taxonomies covering the ransomware domain: Ran-
somware and Anti-Ransomware. The former is quite common in the literature,
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whereas to the best of our knowledge, only one occurrence of the latter exists.
Al-rimy et al. present a ransomware taxonomy based on three factors: Severity,
Platform and Target [12], each of which is further sub-categorised. Ahmadian
et al. present a high-level taxonomy of ransomware splitting it into two main
types: Non-Cryptographic Ransomware (NCR) and Cryptographic Ransomware
(CGR) [13]. CGR is further split into Private-Key Cryptosystem Ransomware
(PrCR), Public-Key Cryptosystem Ransomware (PuCR) and Hybrid Cryptosys-
tem Ransomware (HCR).

In [14], Kharraz et al. analysed 1,359 ransomware samples across 15 dis-
tinct ransomware families to determine ransomware characteristics in order to
help propose detection strategies. Useful insights are given, including how ran-
somware accesses a victim’s files, how it changes the Master File Table (MFT)
and how ransom payment is implemented. However, not all aspects are consid-
ered such as infection vectors nor evasive techniques. They also propose the idea
of monitoring the filesystem for detecting ransomware, a technique used by many
anti-ransomware algorithms today, as shown in Table 1 later.

Scaife et al. discussed two additional characteristics: filesystem traversal pref-
erences and file format attack frequency [15]. Three types of traversal were
shown: depth-first with encryption starting at the leaves, depth-first with encryp-
tion starting at the root, and extension-based. The most targeted file types were
.pdf, .odt, .docx and .pptx, indicating that cybercriminals prioritise productivity-
related files rather than personal files (such as pictures and videos).

Gazet presented an analysis of 15 ransomware samples across four families,
providing insights into the structure of the ransomware code and the encryption
schemes used [16]. The study additionally examined the extortion schemes imple-
mented and their infection vectors, however concluded that the ransomware that
was analysed was not suitable for mass extortion.

To the best of our knowledge, Al-rimy et al. [12] is the first and only pub-
lished paper so far that presents an anti-ransomware taxonomy. They categorise
existing research into two groups: Analysis research and Counteractions research.
Analysis research investigates the behaviour of the ransomware and tries to cat-
egorise it into families. It is usually conducted in a monitored environment –
mostly isolated in a research laboratory – either using static methods (a passive
approach in which the ransomware payload would be studied without running
it) or dynamic methods (where ransomware will be analysed during execution).
The focus of Counteractions research is on confronting the ransomware attacks
in a working environment. The authors outline three subcategories: Prevention,
Detection and Prediction. Prevention relates to the procedures and policies aim-
ing to protect potential victims against ransomware attacks by preventing the
damage from being inflicted in the first place. Prevention is subdivided into
Proactive Prevention and Reactive Prevention. Proactive Prevention aims to
prevent the attack before it starts, while Reactive Prevention focuses on mit-
igating the effect of the attack by restoring the encrypted data. The authors
define Detection as the process of distinguishing between malicious and benign
samples. Prediction is presented as an early detection which enables taking
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preventive actions on time. These suggest that there are some inconsistencies
which we feel necessary to address. Through our initial study of this taxonomy,
we noticed the existence of an overlap in the definitions of Prevention, Detection
and Prediction. There are works in the literature that might easily be classified
under any of these three definitions. A more robust anti-ransomware classifica-
tion system is therefore needed.

3 Methodology

Learning from Al-rimy et al. [12], our motivation was to design a landscape
that avoids overlapping between categories and includes the individual anti-
ransomware techniques rather than just their type. We believe that this provides
a clearer and more complete overview of the methods used to defeat ransomware
at a glance. We also hope that this would help other researchers catch up with the
current state-of-the-art and encourage them to develop their own tools and tech-
niques. A robust and extendable anti-ransomware classification system should:

– Clearly define current anti-ransomware techniques
– List their data sources and/or system requirements
– Compare them where possible in terms of accuracy and overhead
– Map the current state-of-the-art onto the landscape

With these criteria in mind, we first defined the scope of our analysis.
Research into anti-ransomware tools and techniques has covered various plat-
forms so far including Windows, Linux and Android [17,18], but our survey
revealed that most of this work has targeted PC-based (specifically Windows)
ransomware. This is justifiable, as ransomware mainly targets the Windows plat-
form [19,20]. We therefore set PC-based techniques as the main scope for our
current analysis, but we firmly believe this work could easily be expanded with
techniques in use on other platforms, such as Heldroid [21] for the Android plat-
form, in the future.

We analysed the literature looking for the implementation details of var-
ious anti-ransomware tools. Although these tools have largely similar goals
(i.e. detection, recovery, prevention or a combination of those), their implemen-
tations vastly differ. Our analysis highlighted that there are two major types of
anti-ransomware tools: those developed by the academic community and those
developed by antivirus vendors. Whilst it was our intention to ensure that this
work encompassed the anti-ransomware landscape as accurately as possible, var-
ious reasons led us to restrict the current analysis to techniques used in academic
and open source software. These reasons are discussed further in Sect. 5.3.

After finding a number of similarities between the various approaches and
techniques studied, we were able to identify areas of crossover that could be
used for grouping at a higher level. Initially, we split the landscape according to
functionality, i.e. what the anti-ransomware tools intend to achieve. These can
be largely grouped into detection and recovery strategies.



A Roadmap for Improving the Impact of Anti-ransomware Research 141

Within this high-level classification, we then looked at the individual tech-
niques used for detection and recovery. In order to achieve detection, some Data
Source is required along with the Processing of this data. The data source used
for a given detection technique may require access to Kernel Space (such as in
Data Aware Defense [22]), User Space (such as in RAPPER [23]) or both (such
as in UNVEIL [20]). Additionally, any results from the raw data sources or the
data processing steps could optionally be fed into Machine Learning algorithms
in order to detect subtle patterns in the data to build models to distinguish
between benign and malicious behaviour (as in ShieldFS [19]).

We take a similar approach to classify the strategies in ransomware recovery.
To recover from a ransomware attack, some Data Source is required, such as a
backup or access to API calls. Depending on the chosen data source, a Processing
step may be required before the tool is able to start the recovery process.

 

Fig. 1. An overview of the current academic anti-ransomware landscape

Our analysis of the literature also highlighted that there were several actions
to react to the detection of a ransomware attack. It is common to attempt to
kill or block the malicious process or thread, such as in Data Aware Defense.
This often requires user confirmation to minimise false positives, such as in
Redemption [24]. Recovery tools should help the user to get to a state where
the effects of the attack have been alleviated, i.e. they recover access to most
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of the lost data. However, this does not always imply that all damage has been
mitigated, due to factors such as the cost to an organisation in lost business
during the downtime resulting from an attack [25].

4 Contribution

We created a roadmap of the current anti-ransomware landscape (Fig. 1), includ-
ing examples of where anti-ransomware tools fit into this landscape (summarised
as Table 1 in Sect. 5). We also propose novel ransomware detection techniques
(serial byte correlation and edit distance) that have shown great potential in our
initial experiments.

4.1 Detection

Unlike other types of malware that may wish to remain hidden for a long time,
most ransomware strains usually perform encryption just after the initial infec-
tion. Once the encryption is done, it will then typically make itself known to
the victim, often via a ransom note [26]. Researchers have shown that this unso-
phisticated behaviour can be exploited to detect the ransomware infection in its
early stages. For example, as shown by UNVEIL [20], crypto-ransomware almost
invariably results in obvious and repetitive I/O traces within the filesystem due
to bulk encryption (which results in write and/or delete operations). Similarly,
CryptoDrop [15] shows that by taking a ‘data-centric’ approach, i.e. focusing on
modifications to user data, ransomware can also be successfully detected.

The current state-of-the-art in anti-ransomware detection aims to analyse a
data source on the potential victim’s system and process it in some way to decide
whether or not they are under a ransomware attack. By using machine learning
or some other statistical technique over this data, a decision can be made and
an appropriate action taken.

Data Sources. There are several ways to collect the data required for ran-
somware detection. Depending on the desired approach, the data source may
require access to kernel space, user space or both. In the former case, it is com-
mon to implement a Windows Filesystem Minifilter Driver [27]. This can provide
an unrestricted view of filesystem access requests - represented as I/O Request
Packets (IRPs). By registering a filesystem minifilter driver with the Windows
Filter Manager, it is possible to filter specific I/O requests such as reads or
writes. The IRP itself contains a lot of useful information regarding the request,
including IRP type and the user buffer for the operation. This in turn facilitates
processing of the user buffer, for example as used in UNVEIL [20], Redemp-
tion [24], ShieldFS [19] and Data Aware Defense [22].

However, developing a filesystem minifilter driver is non-trivial and could
take a very long time. One reason for this is that the code runs in the ker-
nel space, where seemingly minor bugs can result in system crashes leading to
lengthy development and debugging times. If a developer wishes to sacrifice some
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flexibility but gain simplicity while monitoring kernel events, a primary alterna-
tive is Fibratus [28]. This is an open-source Python tool that allows the user to
capture, log and process kernel events including filesystem I/O, network activ-
ity and registry activity. One example of sacrificed flexibility is that although
Fibratus can filter individual filesystem I/O requests, not all of the informa-
tion provided by a filesystem minifilter driver is available with Fibratus. Most
notably, access to the user buffer is not provided, making it difficult to perform
processing on individual filesystem writes.

The kernel space data sources include Network, Registry, Firmware and
Filesystem events. Monitoring network events may reveal connections to Com-
mand & Control Servers, intercepted network packets could leak information
such as encryption keys, and logs could reveal behaviour that is different to base-
line activity. As an example, [29] and [13] detect ransomware that uses domain
generation algorithms (DGAs) by monitoring DNS traffic to apply Markov
Chains and behavioural-based detection features.

Monitoring changes to the registry could also be useful to detect any unex-
pected modifications by a malicious process such as disabling an anti-ransomware
solution at start-up. Sgandurra et al. [30] uses registry key operations (along with
API calls and filesystem events) as a feature for a machine learning-based app-
roach to detect ransomware. Firmware modifications can also be used as a data
source, such as in [31]. Using firmware allows access to data that doesn’t exist
in the operating system layer, for example whether or not filesystem writes are
made to the same block of memory. As seen consistently throughout the state-of-
the-art, monitoring filesystem events not only allows the analysis of I/O traces
but can also potentially enable access to the user buffer itself for data processing.
Finally, monitoring system events (for example process activity) could help to
uncover anomalous system behaviour.

Within user space, RAPPER uses Hardware Performance Counters (HPCs)
as a data source for detecting ransomware [23]. It recognises anomalous system
behaviour through System/API calls on Linux. Visual Output (i.e. changes to
the GUI of a system that are visible to the user) can also be used to aid in ran-
somware detection and classification. For example, UNVEIL uses this approach
by analysing screenshots of the ransom notice with OCR and image processing.

Another approach, as seen with ShieldFS, is to analyse a process’ memory
for cryptographic primitives and key-related material. The authors explain that
a key schedule is part of many symmetric encryption algorithms, and that this
is often pre-computed and stored in the process’ memory. The authors run the
key-schedule algorithm and check a process’ memory to see if the same values
are found. This also relates to exploiting ransomware by targeting the Crypto
System used to carry out encryption. Other examples of this are PayBreak [32]
and UShallNotPass [33], which target cryptographic libraries that ransomware
often uses. These tools implement hooking in order to intercept crypto-related
API calls as a data source for their anti-ransomware methods (see Sect. 5).
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Processing. In order to detect a ransomware attack, it is necessary to pro-
cess the raw data in some way. This step may be as simple as monitoring a
given data source or something more complex such as feature extraction before
machine learning. Hashing refers to taking a malicious binary and applying a
hashing algorithm to its contents, such as SHA-3. This approach is a common
strategy used by antivirus vendors in order to detect and classify malware in
general [34], although its usefulness in the context of ransomware is somewhat
limited, in part due to the copy-cat nature of ransomware and the existence of
RaaS. However, hashing has cleverly been used in the anti-ransomware domain
on numerous occasions. For example, PayBreak uses a 32-byte fuzzy function sig-
nature in order to identify the usage of statically-linked cryptographic libraries,
and CryptoDrop uses Similarity-Preserving hashes to quantify the difference
between a file and its (possibly) encrypted version.

Another approach is to implement a score that represents the overall ‘malice’
of a given process, for example as implemented in Redemption and CryptoDrop.
The idea here is that some indicators of ransomware behaviour can be well
defined (for example how a process changes file extensions after encryption), and
then applications can be monitored for occurrences of these indicators. When
one such event happens, the malice score for the process is incremented until a
pre-computed threshold is reached. At this point, the system would report that
the process is likely to be ransomware and act accordingly.

Another fairly popular approach to detecting ransomware is to make use of
statistical tests. The rationale is that properly implemented crypto-ransomware
should write (encrypted) data that is effectively random. It is therefore possible
to make use of lightweight, tried-and-tested statistical tests to detect the presence
of randomness, and by extension, ransomware. There are several occurrences in
the literature of anti-ransomware tools making use of entropy computations to
help in detecting ransomware. This is often calculated over the user buffer of
write requests, such as in ShieldFS. However, and as stated in [22], one weakness
of the entropy test in this context is that it has difficulties distinguishing between
encrypted and highly compressed data, possibly leading to many false positives
if a user compresses their data or deals with compressed formats such as mp3
or jpeg. To address this issue, Data Aware Defense uses a Chi-Square test for
randomness, which can distinguish between encryption and compression better.

Machine Learning. Both the raw data sources and any output computed by
the processing techniques can be used as training and testing data for machine
learning algorithms. A very relevant example of the use of machine learning to
detect ransomware is ShieldFS. It uses a Random Forest algorithm to distinguish
between malicious and benign system behaviour from a filesystem perspective.
Examples of the features used to train this classifier include the number of files
written and read and the average entropy of filesystem writes, all within a given
interval. These features are derived from logs of billions of IRPs.

Another machine learning approach is the use of a neural network to classify
ransomware behaviour. Whilst this often results in longer training times and
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produces a classifier that is difficult for humans to interpret [35], it may lead to
a higher accuracy which could be crucial for end-point ransomware protection.

Actions. In order to develop a tool capable of stopping a ransomware attack,
some action needs to be taken after it is decided such an attack is in progress. The
most common approach is to attempt to Kill or Block the Process or Thread that
has been classified as malicious, such as with Data Aware Defense [22]. Another
potential approach could be to place it under Surveillance. The idea is that all
processes could be monitored with quite general indicators of ransomware. If a
process’ behaviour begins to look malicious, the process could be placed under
surveillance, i.e. more indicators of ransomware are used and more resources are
devoted to its analysis. This provides the benefit of accurate decision making
based on an increasing number of indicators, without the overhead of every
indicator being used on every process. A similar technique is used in RAPPER.

Additionally, it is common to include some sort of User Notification to ensure
that the decision cast by the anti-ransomware tool is sensible in a given context.
For example, a user may intentionally encrypt their data, at which point some
of these tools may incorrectly classify this behaviour as malicious. A notification
would allow the user to continue the benign operation, or confirm the killing of
a ransomware related process.

4.2 Recovery

Our analysis has shown that anti-ransomware techniques have focused on detec-
tion rather than recovery. Still, researchers are developing clever ways of recov-
ering from ransomware attacks. Ideally, this enables the victim to revert their
system to a point in time before the ransomware attack happened, mitigating
the effects of the attack.

We take a similar approach in classifying recovery techniques. That is, we
notice that some Data Source is required in order to begin recovery. This data
could be, for example, some kind of backup, or access to API calls. Depending
on the data source in use, some processing may be required before recovery
is possible. After that the recovery actions can take place, typically via file
restoration as in ShieldFS, or decryption as in PayBreak.

Data Sources. A logical way of recovering from a ransomware attack involves
the use of some kind of backup. In the context of anti-ransomware tools, the
meaning of a backup is slightly different. In the literature, anti-ransomware tools
that use a backup tend to implement their own ‘short-term’ approach.

For example, ShieldFS implements a copy-on-write system that essentially
creates a short-term backup of a file whenever it is written to or deleted by
a process for the first time. This is achieved using the I/O Interception capa-
bilities of Windows Filesystem Minifilter Drivers mentioned in Sect. 4.1. If the
process is eventually classified as ransomware, the copied version of the file can
be recovered. Otherwise, if sufficient time passes, the backup can be cleared.
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Redemption implements a similar approach in that a write or delete will
result in a copy of the file, but subsequent I/O requests to the original file will
be redirected to the copy. Changes to this file are periodically written to disk
unless the process is classified as ransomware. Additionally, it may be possible
to implement some kind of Cache or Buffer where potential changes to the
filesystem are stored until a final decision has been made as to whether or not
the changes are malicious.

Another strategy that can aid with recovery, as explored by PayBreak, is
API Hooking. This consists of function hooks to crypto-related libraries. Pay-
Break uses this technique to gather information regarding the encryption used by
the ransomware, for example its symmetric key, initialisation vector and cipher
mode. This is implemented using Microsoft’s Detours package [36]. This informa-
tion is aggregated and stored in an append-only vault, protected with adminis-
trator privileges. After a ransomware infection completes, the user is then able to
activate the PayBreak recovery process at which point the collected encryption
algorithm information is used with every encrypted file until successful decryp-
tion is achieved.

Processing. Processing may or may not be required, depending on the data
source used for recovery. PayBreak presents an example of processing: The raw
information collected from API hooking requires aggregating and storing, known
as a Key Escrow mechanism, before being used to decrypt the files. Other exam-
ples of data processing include SSD-Insider’s use of Delayed Deletion in order to
prevent ransomware modifications being written to disk [31], and ShieldFS’s use
of an IRP transaction log in order to identify exactly which files were affected
by a ransomware attack and need to be restored [19].

Actions. One of two major actions can be taken in order to complete the
recovery process: Restoration or Decryption. As shown above, PayBreak takes

(a) Serial Byte Correlation Coefficients (b) The Addition of Chi-Square

Fig. 2. Using serial byte correlation for ransomware detection
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the decryption approach, i.e. the damage caused by ransomware is reversed via
the decryption of the files affected. ShieldFS and Redemption, on the other hand,
achieve recovery using restoration, i.e. the damage is reversed by restoring the
unmodified versions of the affected files.

4.3 Novel Detection Techniques

Below we propose two novel indicators that show potential in detecting ran-
somware that – to the best of our knowledge – have not been used this way. We
leave further implementation and testing of these techniques as future work.

Serial Byte Correlation Coefficient. The first is the use of the serial cor-
relation coefficient, a lightweight statistical test that looks at the relationship
between consecutive numbers. We look at the correlation between bytes written
to a file, expecting a low value for encrypted files.

Figure 2 shows the results of experiments relating to serial byte correlation.
In Fig. 2a, the serial byte correlation coefficients of 979 files from the Govdocs
corpus [37] were calculated before and after encryption. A clear trend towards
zero is shown for the encrypted versions of the files. Figure 2b shows values of
chi-square calculated alongside byte correlation over the same data, highlighting
a cluster representing random data (in this case, encrypted data) when these
indicators are combined.

Edit Distance of File Paths. We also propose the use of the edit distance
of the file path interacted with by a process. As shown by the literature [15],
ransomware performs bulk encryption iteratively across files so for a given direc-
tory, we would expect to see several consecutive writes whose file paths have
minimal edit distance. This is because the only part of the path that should
change is the file name (and extension) itself – the bulk of the path should

(a) Ransomware Behaviour (b) User Behaviour

Fig. 3. Edit distances of file paths from filesystem accesses representing ransomware
and user behaviour
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remain the same until another directory is accessed. We would therefore expect
ransomware to make several writes whose file paths have a very low edit distance
with intermittent occurrences of high edit distances.

Figure 3 shows the differences in Levenshtein distance of file paths generated
by iterative (Fig. 3a) and random (Fig. 3b) filesystem accesses. This quantifies
the difference between given strings, or in this context, the number of edits
required to get from one string to another. In order to represent the filesystem
traversal of ransomware as generally as possible, we generated filesystem access
requests based on the three main types of ransomware traversal reported in [15],
namely depth-first with encryption starting at leaves, depth-first with encryption
starting at the root, and extension-based.

Figure 3a shows the results of depth-first traversal with encryption starting
at the leaves. The other behaviours generated similar patterns, although they
were slightly less noticeable in the case of extension-based traversal, as there
is often no guarantee that a directory will contain multiple files of the same
type. Figure 3b was generated by randomising access requests to represent the
unpredictability of humans, although we plan to improve this by collecting data
based on real human activity.

5 Analysis and Evaluation

We mapped existing anti-ransomware tools onto our proposed roadmap, accom-
panied by relevant data sets and information regarding each tool’s accuracy as
reported by the tool’s authors.

5.1 Observations

We believe that our roadmap provides a classification scheme and a clear map of
the current ways ransomware is being fought, which is also expandable to cover
strategies targeted at other platforms such as Android. It also highlights gaps in
existing techniques that could lead to new ideas and techniques.

Table 1 provides a global view of how the anti-ransomware tools we have
analysed fit into the landscape. The values shown in the blue row represent
the popularity of individual techniques within the literature, whereas the values
in the blue column represent how many individual features a given tool in the
literature actually makes use of. Immediately noticeable is the obvious preference
for detection techniques compared to recovery techniques. There is also a clear
preference towards some form of monitoring, for example of the filesystem. As
well as this, it is interesting to see that some reportedly promising approaches –
e.g. the use of a malice score – have not received much attention in the literature.

5.2 Accuracy

Table 2 provides a comparison of current anti-ransomware tools in terms of their
accuracy (i.e. their ability to successfully detect ransomware). We would like to
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Table 1. Matrix of anti-ransomware tools in the landscape
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UNVEIL [20] FS VO 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
CryptoDrop [15] FS - 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 8

2entFOX [29]
R
FS

AC
CS
CE 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

Connection
Monitor [13] - N 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4

EldeRan [30]
R
FS AC 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

PayBreak [32] - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 3
Data Aware

Defense [22] FS - 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4

ShieldFS [19] FS
M
CS 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 11

Redemption [24] FS - 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 9
UShallNotPass [33] - CS 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 5

RAPPER [23] - AC 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 5
R-Killer [38] FS N 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 6

SSD-Insider [31] F - 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 8
R-Locker [39] - HT 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 4
Honeypot [40] - HT 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 5

Total 1 1 1 2 1 1 2 12 7 0 2 7 2 3 9 2 3 1 1 1 1 3 1

stress that the figures presented here are as reported by the respective authors
of the tools. We did not have access to most of these tools, meaning we were
unable to perform a fair comparison using a consistent and well designed dataset.
Therefore, we leave judgment of the capabilities of the current landscape to the
reader.

We also notice the reportedly high detection rates across all tools implement-
ing filesystem activity monitoring. One such case is Redemption, purportedly
achieving a detection rate of 100% and a false positive rate of 0.5% over 1,174
samples across 29 families. These results are clearly very promising. We believe
that, for the task of defeating ransomware, maximising true positive rate is more
important than minimising false positive rate. From the perspective of a user, a
false positive (i.e. a benign process incorrectly classified as malicious) is arguably
an annoyance, whereas a false negative (i.e. ransomware remaining undetected)
could have catastrophic results. However, we do not disregard the importance of
a low false positive rate because a user who is constantly confronted with false
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Table 2. Reported anti-ransomware results

Anti-ransomware tool Source Code Runnable Dataset Ransomware Reported results

Available Free Paid Available Families Samples Detection rate False

positive

UNVEIL [20] ✗ ✗ ✗ ✗ N/A 3156 93.3% 0%

CryptoDrop [15] ✗ ✗ ✓ ✗ 14 492 100% N/A

2entFOX [29] ✗ ✗ ✗ ✗ N/A 8 87.5% N/A

Connection-Monitor &

Connection-Breaker [13]

✗ ✗ ✗ ✗ N/A 20 100% N/A

EldeRan [30] ✗ ✗ ✗ ✗ 11 582 96.34 ± 2.1% 1.61 ± 0.8%

PayBreak [32] ✓ ✗ ✗ ✗ 20 107 N/A N/A

Data Aware Defense [22] ✗ ✓ ✗ ✓ 20+ 798 99.37% 0.05%

ShieldFS [19] ✗ ✗ ✓ ✓ 5 383 99.74–100% 0–0.208%

Redemption [24] ✗ ✗ ✗ ✗ 29 1174 100% 0.5%

UShallNotPass [33] ✗ ✗ ✗ ✗ N/A 524 94% N/A

RAPPER [23] ✗ ✗ ✗ ✗ 1 1 100% ≈0%

R-Killer [38] ✗ ✗ ✗ ✗ 13 50 96% N/A

SSD-Insider [31] ✗ ✗ ✗ ✗ 2 2 100% 5%

R-Locker [39] ✗ ✗ ✗ ✗ 2 2 100% N/A

Honeypot [40] ✗ ✗ ✗ ✗ N/A N/A N/A N/A

positives is likely to give up on using the tool or not take appropriate action
when notified about a real attack.

The authors of Data Aware Defense shift their focus to minimising system
overhead, and report success in doing so (“by a factor of a few hundreds” com-
pared with the overhead of other anti-ransomware tools [22]). However, they
caution that this comparison was made without knowing the testing procedure
of other tools. This shows great promise, particularly when coupled with the
tool’s high detection rate (99.37% over 798 samples, across more than 20 fam-
ilies). We believe that system overhead is a frequently forgotten but critical
feature of these anti-ransomware solutions that deserves much more attention.
For a user to happily use one of these tools, not only must it successfully achieve
its goal of protecting them from a ransomware attack, but also their normal
interactions with the system should not be significantly impacted.

The approach taken by Palisse et al. [22] in conducting a benchmark-
ing exercise using standard third party tools is a step in the right direction.
The tools that they used are CrystalDiskMark (https://crystalmark.info/en/
software/crystaldiskmark/), Geekbench 4 (https://www.geekbench.com), and
PCMark 8 (https://benchmarks.ul.com/pcmark8). This allows researchers to
evaluate their solutions against others using the same criteria. In Sect. 5.3, we
discuss how a universal testing platform could be created for evaluating anti-
ransomware tools, both in terms of their accuracy and system overhead. We
expect that – as ransomware detection and recovery tools become more refined
– there will be a shift towards overhead minimisation. In turn, it will result in
tools that are faster and more suitable for real-time end-point protection.

https://crystalmark.info/en/software/crystaldiskmark/
https://crystalmark.info/en/software/crystaldiskmark/
https://www.geekbench.com
https://benchmarks.ul.com/pcmark8
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5.3 Limitations and Future Work

The main limitation with our analysis is our focus on PC-based anti-ransomware
techniques developed by the academic and open-source community, despite the
existence of tools such as Heldroid. Antivirus vendors also develop anti-ransom-
ware tools [41,42], but we found academic and open-source tools to be more
accessible, for example due to the provision of implementation details. Future
work may be to expand this overview with both antivirus vendor tools and
non-PC based tools to give a better overview of the anti-ransomware landscape.
We are particularly interested to see any commonalities between academic and
antivirus vendor techniques provide greater insight into popular and underdevel-
oped areas. We believe it would also be interesting to see how techniques from
both communities evolve over time. It would be fascinating to see how advances
from one community inspire further advances in the other, leading to a cycle of
continuous improvement in anti-ransomware techniques.

As mentioned in Sect. 5.2, we note that the performance and overhead statis-
tics we have provided are as self-reported by the authors of the respective tools
themselves. Therefore we do not believe it possible to conduct a fair compar-
ison of the effectiveness of each technique. Another area of future work would
be to develop a universal testing platform such that each of the tools can be
evaluated in isolation using the same data sets and be fairly and transparently
evaluated on the same criteria. It could be possible to develop such a platform
using virtual machines (VMs). Snapshots could be taken of VMs in their fresh
states (i.e. a clean installation of the target OS) and then the VMs could be con-
figured with the anti-ransomware tool to test. Additionally, it could be possible
to automate the entire process, taking inspiration from the automated malware
analysis platform developed by the authors of [22].

6 Conclusion

In this work, we have presented a clear and simple roadmap of the current aca-
demic and open-source anti-ransomware landscape. This encompasses the cur-
rent techniques being used to detect and recover from ransomware attacks, from
the point of view of Data Sources, Processing and Actions. We used these clas-
sifications to provide both a consistent terminology for researchers in the area,
as well as the ability to accommodate new techniques in the future. On top of
that, we proposed, implemented and tested two new techniques for ransomware
detection, using serial byte correlation and edit distance.

We also examined how existing anti-ransomware tools (including our pro-
posed techniques) fit into the landscape, noticing a current preference towards
filesystem activity monitoring for detection. We also provided a single point of
reference comparing reported results of current anti-ransomware tools as well as
their dataset sizes. We hope this information provides useful insights into current
and future trends in fighting ransomware. We also believe that a clear roadmap
of the landscape, along with a consistent terminology, will help to simplify and
organise the development of improved future anti-ransomware techniques.
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This work has been carried out to the best of our ability with limited access to
the anti-ransomware tools themselves. In the interests of scientific reproducibil-
ity, we are happy to provide all of the material required to repeat the experiments
discussed in this work.
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Abstract. Cryptojacking is the illicit exploitation of Internet users’
bandwidth and processing power to mine cryptocurrencies. This paper
presents an experimental analysis of how different types of cryptojacking
attacks impact a selection of consumer-grade devices, and the perceived
annoyance by the user. This is seen in relation to the expected cost
and revenue the attacker would expect. The results show that a well-
configured cryptojacking attack does not significantly harm its victims,
hence can be very difficult to detect, and even aware users might not
bother getting rid of the infection. The costs and risk associated with
performing cryptojacking are low, but the attacker would rely on a pool
of infected devices over a prolonged period of time in order to make any
significant revenue. The main cost is therefore the opportunity cost, as
there are more profitable ways to abuse compromised systems due to the
general decline in cryptocurrency values. Though the heyday of crypto-
jacking has gone by, several adversaries are likely to have made quite a
profit from it. It can therefore emerge as a serious threat again due to
market externalities.

Keywords: Cryptojacking · Cryptomining · Drive-by mining ·
Monero · Blockchain · Malware · Experiment · Economy

1 Introduction

Cryptojacking is one of the youngest members in the family of cryptocurrency
related crimes, including blatant theft, illegal trading, money laundering, extor-
tion and ransomware among others. Since the investment costs of hardware and
electricity in most cases exceed the expected profit from mining cryptocurren-
cies, the goal with cryptojacking is to illicitly exploit Internet users’ bandwidth
and processing power to mine on behalf of the attacker. In contrast to many
other types of attacks, cryptojacking is not about stealing or altering data, nor
does it want to interrupt the victims workflow or operations. Instead it wants to
stay hidden and extract as many CPU cycles as possible. In 2018, Europol [17]
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proclaimed that the industry reported an explosion in the volume of illicit cryp-
tomining and in the latter part of 2017, it overshadowed almost all other malware
threats. However, in a more recent report from 2019 [40], Symantec finds that
cryptojacking dropped by 52% between January and December 2018, and that
the declining trend is continuing.

In order to explain some of the reasons why cryptojacking promptly declined
as a cyber threat, this paper presents an experimental analysis of cryptojacking
impacts using a selection of six types of consumer-grade devices. This is seen in
relation to the expected cost and profit the attacker would expect. The goal of
the experiment has been to answer the following research questions:

1. How is performance on different types of devices affected by cryptojacking
measured objectively and perceived subjectively?

2. What are the expected revenues and costs for the attacker based on the
targeted devices?

The outline of this paper is as follows: Sect. 2 explains the basics of crypto-
jacking attacks and cryptocurrencies typically associated with them. In Sect. 3
we present the experiment setup and measurement types. Section 4 presents the
results from the experiment in terms of mining efficiency and how the devices
are degraded seen objectively and subjectively. Section 5 discusses mining times
and investments compared to expected profit, as well as limitations and related
work. Finally, Sect. 6 revisits the research questions and concludes the paper.

2 Background

2.1 Types of Cryptojacking Attacks

There are two main types of cryptojacking attacks; one which require a malicious
payload to be installed on the user’s computer and the other which runs inside the
user’s browser upon visiting dubious web sites. In the former case, the simplest
attacks typically fool users to download and launch an executable file or open
an email attachment. More advanced methods exploit unpatched vulnerabilities,
often zero-days to bypass the user entirely and install the payload.

The second type is an even more subtle way of attacking. About 95% of all
web sites use JavaScript [43], and due to its popularity JavaScript is supported
by all major web browsers. JavaScript is a quite powerful programming language
running inside the web browser and uses the computing power of the client, not
the web server. This allows for a lot of processing power, including the power to
mine cryptocurrency. Such a drive-by download attack [11] terminates as soon
as the web page is closed, leaving no trace on the victim’s computer.

The most well-known script for cryptojacking was offered by Coinhive [7]. It
allowed web site owners to deliberately put a cryptominer on their web site, let-
ting visitors choose to allow the use of their CPUs for mining. However the same
script was also frequently injected into compromised sites [12,32]. The business
model of Coinhive was to take 500 EUR for an account creation, then a 30%
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share of the mining itself. The services offered by Coinhive were not nefarious
or illegal, in fact, they presented themselves as an alternative to advertisement,
which is one of the main sources of revenue on the Internet to day. However,
Coinhive was quite controversial and received their share of criticism since their
initial script did not ask web site visitors for consent, and the users did not have
to upgrade to the one that required this. On February 26th 2019, the Coinhive
Team announced they were shutting down their service as of March 8th 2019.
They proclaimed that it was no longer profitable to keep the service operating
anymore, citing that Monero had depreciated more than 85% over the last year
and that the hashrate dropped over 50% after the last hard fork [8].

Coinhive accounted for 70–75% of the cryptojacking JavaScripts on the web
in 2018 [31,35], and while the default setting was to use 100% of the victims
CPU, researchers have found that most sites throttled themselves to use between
25% and 70% of available CPU power [16,27]. This was likely done to make the
mining unnoticeable to the user. A report by Rüth et al. [35] also found that
merely 10 user accounts were responsible for 80% all short links, meaning that
only a handful of people were reaping the vast majority of the profits.

An alternative approach for cryptojacking is to mine using plugins that are
used by web sites, such as Wordpress plugins. This will require a compromise of
the browser extension itself, which is easier to detect. In the past, Wordpress had
cryptomining plugins on its official plugin page, including several miners using
the Coinhive script [44]. These could be included by legitimate web site owners,
but they could also be deployed on compromised sites. Browser extensions are
yet another vector for attackers.

Cryptojacking can also target smart phones and IoT devices. For the Android
operating system, it is possible to download applications as APK -files from the
Internet and install them directly without going through Google’s Play Store. If
the side loading setting is not set to off, cryptomining apps like HiddenMiner [45]
can take advantage of the device. The auto update feature can also be exploited
to install a cryptominer. It should be noted that Google have recently removed
all cryptomining apps from the Google Play Store. Apple’s iOS has been less
susceptible to these kinds of attack due to a stricter lock-down policy. However,
there have been incidents where apps suddenly begun mining cryptocurrency,
such as the Calendar 2 app [24]. Apple has also proclaimed that they do not
allow cryptominers in their App Store [4], but mining can still be done using
developer accounts or a jailbroken device.

Luckily the security industry has developed many techniques to prevent cryp-
tojacking [38]. For native miners, all the same procedures that prevent other
kinds of malware will be effective. For instance, anti-virus programs have caught
up and can detect the well-known cryptominers [14,18,20]. To protect against
web miners there exist a lot of options as well, such as browser extensions, spe-
cialized addons and general purpose ad-blockers.
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2.2 Coins Suited for Cryptojacking

The first mainstream and most popular cryptocurrency, Bitcoin, was created to
establish a decentralized global currency [28]. While Bitcoin in theory is anony-
mous, linking an account to a person is considered manageable when the coins
at some point are exchanged or used to buy items. To preserve the integrity of
the blockchain, all Bitcoin transactions and associated wallets are public. This
means that if a person is linked to a wallet, all previous transactions can be
traced back as well.

Monero [26] is a cryptocurrency based on Bytecoin. Bytecoin was abandoned
when the community found out that its creators had mined about 80% of the
supply for themselves, but the technology was sound, so Monero rose from the
ashes. Monero uses an algorithm called CryptoNote, which is virtually untrace-
able and unlinkable [37]. This is a desirable feature when you are exploiting
somebody else’s hardware. Monero is currently only on the 10th place among
cryptocurrencies when in comes to market capitalization [9], however it is a very
popular payment option among Dark Net marketplaces trading illegal goods and
services.

In cryptomining everyone that mines is competing to solve the next block
and get the next payout. Bitcoin and similar technologies use primarily raw
computing power and can be effectively done in parallel. This makes expensive
High Performance Computers (HPC) desirable targets for native Bitcoin mining.
However, these machines tend to be well protected and not easy to infect with
native cryptojacking attacks.

CryptoNote is less CPU intensive, but requires a relatively large amount
of memory (CPU-cache or RAM) instead. Compared to Bitcoin, the benefits of
using large computing clusters, GPUs and ASICs over regular CPUs are severely
diminished. This means that average consumer-grade hardware has a decent
chance of solving the puzzle and get the payout. This in turn makes Monero
an attractive currency to mine when someone has access to a large number of
regular and cheap devices, such as laptops, IoT-devices and smart phones. These
devices exist in enormous quantities around the world with limited protection,
hence very suitable targets for cryptojackers seeking Monero.

3 Method

For our cryptojacking experiment we decided to focus on Monero mining and a
selection of consumer-grade devices typically found in homes and work places.
The goals were to understand how Monero performs under different configura-
tions, how efficient web mining is in comparison to native mining, how much
power is consumed and how noticeable this kind of mining would be on an
infected device. The devices we included were the following:

– NUC (Intel NUC7i5BNK) was a tiny computer running Linux Ubuntu 18.04.
It had a two core, four thread, i5 2.3 GHz CPU with a turbo mode at 3.4
GHz, 4 MB CPU cache memory and 8 GB RAM. It was released in Q1 2017
and represents low-to-medium powered computers.
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– Mac was a mid-2014 laptop running MacOS High Sierra. It had a dual core,
four thread CPU running at about 2.6 GHz with a turbo mode at 3.1 GHz.
With 3 MB CPU cache memory, 8 GB RAM and no discrete graphics, it was
chosen to represent laptops.

– Chromebook was a low powered ASUS laptop running Chrome OS with
developer access. It had a 2.16 GHz dual core CPU without hyper threading,
1 MB of L2 cache and 2 GB RAM. It represents devices that do not have
true access to the hardware.

– Stationary was a custom made desktop PC with Microsoft Windows 10,
build in early 2014 with a four core, eight thread, i7 CPU running at 3.40
GHz, with turbo up to 3.90 GHz, 8 MB of L3 cache, 16 GB RAM and a
discrete Nvidia GTX 760 graphics card, making it the most powerful device
in the experiment.

– Phone was a Sony H4113 Android smart phone from 2018 with root access.
It had two ARM CPUs, both dual core, four thread, one running at 2.2 GHz
and one running at 1.8 GHz with 3 GB RAM. It was included to analyze web
mining on phones.

– Rpi was a Raspberry Pi 2 Model B with a 900 MHz ARM Cortex-A7 CPU
with 256 KB of L2 cache and 1 GB RAM, This was the least powerful device
used it this experiment and dates back to 2015. It represents fairly advanced
IoT devices and was only used for native mining.

In order to determine Monero performance, the hashrate was the main
parameter. The peak and average hashrates were recorded by the mining soft-
ware. The peak tells us what the device is capable of when the miner has most
of the device’s resources for itself, while the average hashrate tells us how much
is likely to be mined when the device is used in a regular manner. The tests
were performed with a varying amount of threads mining simultaneously, which
allowed us to see the overhead effects as well.

For the native tests a miner called XMR-stak [46] was used. It runs natively
on x86 versions of Linux, Windows and MacOS for both the CPU and GPU.
Unfortunately, XMR-stak does not run on ARM devices, and as thus it could
not be used on the Rpi. Instead another program, cpuminer-multi [13] was used
in this case. We also employed a mining pool named supportxmr.com [39] that
allowed us to extrapolate the number of required hashes for one coin of Monero
without actually having to mine a whole coin. A mining pool works by connect-
ing the resources of many miners together. When a block is solved, every member
of the pool gets a share of the coinage based on the amount of work they con-
tributed. In this way a mining pool can provide a steady and predictable income
as opposed to the random nature of solo mining. The effectiveness of web mining
was measured by employing several different web sites, including coinhive.com
[7] (before its shutdown), coinwebmining.com [10] and minero.cc [25].

Each device ran for at least 1 hour for each configuration of native mining
and for at least 10 min of web mining. Though the time intervals are somewhat
short, initial testing showed that the hashrate was quite stable, so it was deemed

http://supportxmr.com
http://coinhive.com
http://coinwebmining.com
http://minero.cc
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unnecessary to prolong the experiment. The web mining gave a real time update
and had far less variance than the native mining.

The power consumption was measured by the spot Watt usage when running
idle and when mining under different configurations. The consumption was mea-
sured over a few minutes, this was enough time to get an estimate that could be
extrapolated. For the devices that did not have batteries (NUC, Stationary and
Rpi), a simple hardware power recorder was installed in the power outlet and
read directly. For the Chromebook, a build-in utility was used (chrome://power
in the URL-bar). With the Macbook we used a utility called iStats Menu [21],
and with the Phone Android Studio and Battery Historian [3] were used.

To measure the actual impact of cryptojacking, we had one objective and
one subjective approach. Objective measurements were collected with Sysbench
[41] on the supported systems. On Android no comparable benchmarking tool
to Sysbench was found and thus no benchmark data have been collected for the
Phone.

For the subjective testing, a scale of annoyance was recorded for the different
configurations. It ranged from 0 - not annoyed at all to 4 - the device is practically
unusable. The devices were tested doing some common tasks such as surfing the
web, streaming HD-video, using office applications and gaming.

4 Results

4.1 Relationship Between Hashrate and Power

Figure 1 shows the highest recorded hashrate and power consumption for the
NUC in both native and web mining mode when varying the number of threads
used.

When mining natively it peaked at 2 threads, and decreased somewhat when
adding more threads, probably due to increased overhead. During web mining
adding more threads seemed to work well to increase the hashrate, although
the 4th threads did not add much. The power consumption was very similar
between native and web mining, at about three times the power consumption
when idling. Interestingly, adding more threads to mine did not increase the
power consumption by a whole lot.

We saw similar trends with the other devices as well, native mining outper-
forms web mining by a factor between 3–8, and in most cases uses less power.
With the Mac, adding a second thread does not affect the hashrate beyond the
margin of error, and the third thread adds less than a 10% increase. The fourth
thread does not add anything at all. The Chromebook did not mine very effi-
ciently, but the power consumption was also quite low. Both the Rpi and Phone
scaled almost linearly when adding threads for mining. With the Stationary, we
noticed that the power drain during mining was almost exactly the same whether
mining natively or web, but when using the GPU the power consumption went
up significantly. The next noticeable thing was that the hashrate peaked at
four threads during native mining, GPU or no GPU. Adding even more threads
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Fig. 1. Hashrate and power consumption of the NUC in native and web mining modes.

made the hashrate drop significantly. This was not true for web mining where
the hashrate flattened out.

Figure 2 shows mining performance on all devices where the hashrate has
been divided by the power consumption. The device that truly stands out is the
Rpi at 3 threads, but this was not very efficient mining. The highest hashrate of
the Rpi was 12.1, while the Stationary had 218.7 in native mode with the same
number of threads.

4.2 Objective Impact on Performance and Latency

To get measurements on the impact cryptomining had on device performance,
Sysbench was used both while the devices were idling and mining. Sysbench
works by running a large amount of math problems by the CPU to test how many
events it can process in a given time. The number of threads for both mining and
performing events were varied to see how this competition for resources turned
out. Figures 3 and 4 show how mining affected performance and latency for the
NUC. For the Mac and Stationary the trends were the same, when mining at full
speed the performance of all devices drop to about half and the latency increases
dramatically.

4.3 Subjective Impact on Casual Use

While a benchmark is very useful for getting an objective measurement on how
a stressed device is affected by cryptojacking, this does not necessarily tell the
whole story. If the users are not bothered by cryptominers using their CPUs, they
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Fig. 2. Relationship between hash efficiency and power consumption (higher is better).

Fig. 3. NUC performance during mining (higher is better).

are less likely to do anything about it. In Fig. 5 we have recorded the annoyance
level for five of the devices when they were exposed to an increasing number
of threads used for mining. The Phone was omitted since multitasking (running
several apps in parallel) could not be done in practice while mining. The scores
were all given by a single individual (one of the authors), the results are thus
highly subjective and not very reliable, but they still give an indication of how
mining might impact the perceived performance of cryptojacked devices.
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Fig. 4. NUC latency during mining (lower is better).

The stationary was tested while performing several different tasks includ-
ing steaming HD video, working with office documents and playing some game
(real-time and turn-based strategy games, turn-based card game, real-time fight-
ing game). When mining using the GPU in XMR-stak and no CPU threads the
graphical I/O were severely impacted, to the point of making the whole computer
unusable for anything else. However, when running as many as 7 out of 8 CPU
threads the impact was negligible when simultaneously streaming HD-video and
playing games. When running all 8 threads the impact was noticeable, but the
computer was still fully usable. Even so, the increased latency was only signifi-
cantly noticeable when performing context switches, such as loading new maps
in a game, starting a new video, open new documents for editing and switching
between different web sites rapidly. When staying within a single application,
document or map for a long time the perceived performance hit was much less
noticeable. The NUC and Mac were tested in much the same way, but with
fewer games. The results were similar, both devices were slower than the Sta-
tionary even with no mining, but the reduced performance was only noticeable
when using all available threads for mining. Latencies in load times and context
switching were somewhat more noticeable on these devices. On the Chrome-
book, a web miner was set up running at 100% using both available threads.
At the same time full HD videos were streamed and documents were opened
in the browser. While the Chromebook was slower in comparison to the other
machines, there was little performance impact from the web miner. The Rpi was
only tested with a web browser running in the GUI. It was very slow to begin
with and the mining made it virtually unusable.

5 Discussion

5.1 Best Buck for the Bang

An important aspect of cryptomining is how long it takes to accumulate the
currency. In our case we worked with Monero, and during our experiment we ran
about 223,680,786 hashes that generated about 0.0125 XMR. This indicates that
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Fig. 5. Subjective experience of performance during mining.

it takes about 18 billion (1.789 446 288 × 1010) hashes to produce a single coin.
Note that this estimate is subject to the ever-changing nature of Monero mining.
The Monero network limits the payouts to only once every second minute, thus
the more participants in the network the more hashes are required to acquire
one coin. Additionally, the payouts decrease over time, effectively increasing the
amount of hashes necessary to acquire one coin. Since our work was done prior
to the hard fork on the 9th of March 2019, we have looked at the potential value
at that time. On the 1st of March 2019, one coin had a value of about 50 USD
[9]. As with most cryptocurrencies, this number fluctuates a lot. On the 7th
of January 2018, Monero peaked at about 500 USD. Even so, we can use our
estimates to make a comparison between the devices and give an indication of
how long a miner must run to yield valuable results on a single device. This is
shown in Fig. 6, where we have used the maximum recorded hashrate from our
devices.

As can be seen from the figure, even greedy configurations of the script need
years to mine a single coin even when running on high-end devices. In order
to have any reasonable chance of making a revenue from this kind of mining, a
cryptojacker would need to infect a large number of devices, preferably in native
mode. For cyber criminals this means that there might be more profitable ways
to use compromised devices, such as encrypting the data and demanding ransom,
have the device participating in denial of service attacks or just leave it dormant
until some use for it can be found.

Rational attackers will not only consider the potential revenue of cryp-
tojacking, but also their own investments in order to perform the attack.



An Experimental Analysis of Cryptojacking Attacks 165

Fig. 6. Years to mine a single Monero coin (lower is better).

Since cryptomining by itself is perfectly legal, a lot of the necessary code can
already be found in the public domain, thus the job of the cryptojacking devel-
opers is to weaponize the code. This includes making it run stealthily and unde-
tected by the user and perhaps include an auto update feature. As an example,
we can look at DeepMiner ’s source code [15], which is freely available and consti-
tutes about 1000 lines of code when excluding the cryptography itself. Assuming
an investment of 18 USD per line [34], a rough estimate would be 18 000 USD
for the weaponization. Alternatively, the attacker could buy off-the-shelf cryp-
tojacking software from e.g. Dark Net markets. We have observed such items
being sold for about 150 USD, although the prices very between vendors and
markets. However, there is a significant risk of being scammed when purchasing
items on the Dark Net, which must also be considered in this equation. Once
created, the cryptojacking software must be maintained and updated, which can
be even more challenging than for legitimate software. Malware usually takes
advantage of some vulnerability to infect other software, but such vulnerabilities
are patched regularly, so there is a limited window of opportunity. Additionally,
anti-virus programs and ad-blockers will quickly be on the lookout for crypto-
jacking signatures and behavior. There is also a significant cost of distribution,
which is difficult to put a price tag on. Often the people distributing cryptojack-
ing attacks are not the same people that wrote the software. This was the whole
business idea behind Coinhive and its affiliates. Native miners have an even
higher distribution cost in order to be installed and executed, whether through
social engineering, as a trojan, using an exploit or through physical access to the
devices.
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Some of these costs might be better measured in terms of time rather than
money spent, which we often refer to as opportunity cost. Opportunity cost
refers to the cost of doing one thing rather than another. Every hour, every
buck and every bit of effort put into cryptojacking attacks could be used to do
something else. As we have shown in Fig. 6, an attacker would need long-term
infection periods on a vast number of devices just to make some small revenue,
and it is therefore understandable why the heyday of cryptojacking has gone
by. Having said that, the cryptocurrency market might skyrocket again, making
cryptojacking a very relevant threat again.

5.2 Limitations

One obvious limitation in our experiment is the relatively small sample size of
six devices, running different operating systems and hardware configurations.
Also, the subjective annoyance recording could have involved more people, but
it is doubtful that the results would have been very different. Additionally, it
was difficult to account for other running processes even when comparing idle
states with mining activities. Prolonged mining would also create a tempera-
ture increase making the different devices behave differently, but this was not
something we recorded.

Monero’s Cryptonote mining algorithm was using memory blocks of 2 MB at
the time of our experiment, meaning that in theory each CPU or GPU thread
running CryptoNote would be most efficient if they could get 2 MB of cached
memory for themselves. There are now plans for Monero to switch to another
proof-of-work algorithm that requires miners to dedicate over 2 GB of RAM to
the process, making cryptojacking attempts harder to hide [48] and probably
useless on low-end devices. It would therefore be useful to repeat the experiment
as the algorithm changes to see how this affects the impact on different device
types.

5.3 Related Work

Cryptojacking is a relatively new phenomenon, hence there has been limited
research on this kind of threat prior to 2018. Musch et al. [27] wrote an extensive
report on web-based cryptojacking this year, describing how to identify mining
scripts among the Alexa [2] Top 1M web sites and expected mining revenues.
They found that about 1 out of 500 web sites contained miners and that there
was moderate profit to be made at that time. Tahir et al. [42] have done a later
study on Alexa Top 50K web sites looking for cryptojacking, and also discovered
that mining-prevention plugins often fail to detect such scripts.

Eskandari et al. [16] have analyzed the profitability of cryptojacking web
sites using a real-world data set, showing that over a period of three months
little revenue can be earned. They also discuss whether the web site visitors
giving consent to mine have a clear mental model of what they are paying.
This is supported by Carlin et al. [6], who discuss the legality of cryptomining,
referring to UK legislation.
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Similarly to our work, Saad et al. [36] have analyzed the impact cryptojacking
has on system resources on various devices, in their case three different laptops
and one smart phone, but only for web-based mining. They also examined the
economic basis for cryptomining as an alternative to advertisement on web sites,
and concluded that cryptomining was not a feasible alternative. In parallel to
this work, Papadopoulos et al. [31] studied the profitability of in-browser min-
ing and developed a testbench that ran on a Linux desktop. They found that
advertisements were 5.5 more profitable than web-cryptomining, but that hybrid
solutions would allow for maximum profits. However, on the user side the device
temperature and power consumption would increase 52.8% and 2X respectively
on a desktop computer.

Hong et al. [19] have done a systematic study on cryptojacking and present a
detector that automatically tracks mining scripts. This detector has been applied
to the Alexa Top 100K list, and they estimated a danger to more than 10M
web users and extra spending of electricity that is similar to powering a city.
Kharraz et al. [22] present another detector that has been applied to Alexa Top
1M and conclude that cryptojacking operations can be detected with minimal
human interventions. Konoth et al. [23] did another crawl of Alexa Top 1M, but
in contrast to related studies, they analyzed more than just the landing pages.
They found that only 3.86% of cryptomining web sites informed their users of this
activity, and that the most profitable web site was earning 17K USD a month
from 29M visitors. However, the vast majority of web sites were making very
little revenue from cryptomining. Pastrana and Guillermo [33] have conducted a
longitudinal study where they analyze about 1M malicious miners to see where
the profit goes in the underground economy. They found that at least 56M USD
have gone to criminals. A broader paper on how to monetize from web attacks
has been published by Nguyen et al. [29], who also suggest countermeasures to
this. A paper by Norman [30] also focus on many of the same countermeasures.
In a review paper by Al Hajri et al. [1] a particular warning goes to enterprises
due to their broad attack surface.

Sigler [38] show the trend where web/script-based cryptojacking attacks
became more favorable than the native counterpart due to their easiness. Zimba
et al. [47] have proposed how digital autopsies on both native and web-based
miners, as well as extortion malware, can be performed. They found that most
of the scripts they analyzed were very simple and relied on communication to
Command and Control servers to receive further directives.

Bijmans et al. [5] have performed a recent large study on organized crypto-
jacking. They discovered that cryptojacking campaigns have been heavily under-
estimated in previous studies, and that third-party software such as Wordpress
is the new preferred method of spreading infections. After having crawled about
20% of the Internet, they estimate cryptomining without user consent in 0.011%
of all domains, mostly prevalent in adult content sites. They also describe numer-
ous hiding techniques present in scripts making them more difficult to detect by
blocking application.
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6 Conclusion

Related to our first research question, the experiment measurements show that
native mining clearly outperforms web mining. Though relatively simple devices
such as the Raspberry Pi had the highest hashrate per Watt, mining simply
takes too much time on these that they are desirable targets. When we measured
performance and latency during mining using an objective benchmarking tool,
these values went down as expected as we added more mining threads, making
cryptojacking easily detectable on an already stressed device. However, we got a
somewhat different impression when the devices had more casual usage patterns
involving video streaming, office apps, surfing and games. On devices with many
available threads, the mining was hardly noticeable as long as the algorithm
did not take all available resources. Since most regular users are accustomed
to natural performance variations, it can therefore be very difficult to naturally
recognize cryptomining running in the background.

By addressing our second research question we saw that it was difficult to
justify a sound attacker business model. There was a relatively large marked for
it up until 2018, but as the cryptocurrencies fell in value, the cyber criminals
started to revert back to other, more profitable ways of making a revenue. It is
important to remember that if the cryptocurrency markets should resurge, it is
likely that cryptojacking will follow suit. The attacks are relatively easy to carry
out, and since they seldom cripple the infected devices, users might not detect
the mining or bother to do something about it. Luckily, the security industry
is now more aware of this threat and there are many tools that can protect the
users.
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Abstract. Smartwatches are small but powerful devices which make
daily life easier and are without a doubt desirable objects for thieves. In
this paper, we present a first machine learning based theft detection app-
roach running in a user’s domain, relying solely on data of his smartwatch
and thus not involving third parties. Hence, we collect data from mul-
tiple persons to first show that there is an exploitable structure within
data provided by a smartwatch’s inertial sensors and perform user iden-
tification on the basis of that data. Then we will present and thoroughly
evaluate our robust, efficient and fast (within seconds) theft detection
algorithm which has both a low false rejection rate and an even lower
false acceptance rate.

Keywords: User recognition · Smartwatch · Clustering · Privacy

1 Introduction

While the smartphone market declined for the sixth consecutive quarter [5],
smartwatches continue to gain attention with 41.5 million smartwatches being
sold worldwide in 2017. Sales are expected to almost triple in 2022 to 115.2
million units [13]. Nevertheless, the size of a smartwatch poses a particular chal-
lenge. Both the screen and the hardware must be small enough to wear the watch
on your wrist. These restrictions result in the restriction of the user interface,
reduced computing power, lower battery capacity and less precise sensors. These
challenges also exist with smartphones, but not to the same extent. Neverthe-
less, smartwatches have decisive advantages over smartphones. The sensors are
able to read out more data, especially due to their unique wearing position and
permanent connection to the owner’s skin. The wearing position plays a decisive
role in activity detection. While smartphones are often transported in trouser
pockets, handbags or backpacks, which can impair the sensor data read out,
smartwatches are located on the wearer’s wrist. This eliminates the need to first
determine the wear position of the device. It is only necessary to distinguish
between left- and right-handed users.
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However, the high price, increasing popularity, and size of a smartwatch
also bring dangers with it. These characteristics make the device a sought-after
object among thieves. Therefore, this work will investigate whether a theft of the
smartwatch can be detected with the help of the integrated sensors. The sensor
data read out is used to determine differences between the rightful owner and
the potential thief.

Contribution. To the best of our knowledge, we are the first ones to apply
theft detection to the field of smartwatches. In fact, we contribute with

– a smartwatch application for Wear OS to collect sensor data,
– a real world dataset of smartwatch sensor data from multiple persons per-

forming activities,
– a feasibility proof by applying machine learning based user identification to

our dataset which works as a baseline for our theft detection algorithm, and
– a fast and robust machine learning based algorithm for theft detection with

a low footprint in terms of training data.

We also provide an exhaustive evaluation of our theft detection approach by
analyzing multiple parameters such as the number of features, sensors used, and
we find the best fit for balancing false alarms and usability.

Structure. First, we present our environment in Sect. 2 and talk about con-
straints when it comes to the usage of sensor data from smartwatches. Section 3
elaborates and shows the existence of a structure in our dataset by performing
user identification. Next, Sect. 4 tackles the problem of theft detection under the
given constraints. Related work (see Sect. 5) takes a brief look at the usage of
sensor data, in particular inertial sensor data, in the domain of smartwatches.
Last, Sect. 6 concludes our work.

2 Environmental Constraints

Smartwatches provide a multitude of sensors to tackle daily tasks. For instance,
GPS can be used to track the location of a user to create a location trajectory
while running with the heart rate monitor gaining information of the user’s
performance.

However, modern smartwaches also have inertial sensors such as gyroscope
and accelerometer. These two sensors are present in almost every smartwatch.
Thus, the presented approach only exploits data from these both specific sensors
to detect a theft. Our system is designed to detect if a smartwatch gets stolen
and carried away. This requirement is obvious since some activity has to be
recorded to differentiate between multiple users.
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2.1 Activity Recognition

Not all user activities are feasible for user identification and thus theft detection
in real-time. We select running or walking to be the activity of choice since
it is likely that a thief runs away with the stolen device. Furthermore, both
are activities everyone does on a regular basis. We can therefore derive a first
requirement that is needed in the chain of theft detection. First, the system has
to gain information about the current activity class in order to perform more
thorough inspections of the collected data. Our work is based on existing work
to identify the current activity to match it against known data of individuals
(e.g. [9,11]).

A system designed for theft detection of smartwatches has to be robust
against activity variability. This is due to the fact that the same activity per-
formed by different individuals can lead to different patterns. However, the sys-
tem still has to identify the same activity, for instance, running. In fact, activity
variability is a challenge even for the same person performing the same activity
at different times. Reasons might be stress, fatigue or the emotional condition
of a user. Identifying the correct activity on the basis of sensor data is not a
trivial task since human moving patterns are highly complex and diverse. This
task has been of interest for many years. [3] provide and evaluate a framework
specifically for this task.

2.2 Imbalance of Training and Test Data

Activity recognition and eventually theft detection is no different to other
machine learning tasks. The more training data is available, the better the recog-
nition. The variability of the data has to be ensured when collecting such data
to reflect real world conditions and thus being able to generate a robust model
(e.g. robust against overfitting). Similar data readings can lead to the same activ-
ities, despite not being the same. For example, smoking and drinking a cup of
coffee show similar data recordings [3], although both tasks are very different
except that the hand moves to the mouth. The granularity of the activities can
also be scaled from coarse to fine, resulting in even more diverse datasets.

In the context of theft detection, gaining huge amounts of training data is not
a feasible approach, because it would require a user to perform a training phase
with his smartwatch where he performs different activities in varying manners.
This might have a great impact in terms of acceptance. Thus, our approach is
designed to only use a very short learning period of about a few minutes, where
a user just carries the smartwatch. This can be done in his daily routine.

For theft detection, just a small amount of the recorded data might provide
enough evidence for a theft. Therefore, irrelevant data has to be ignored in order
not to lead to false assessment of the situation. For instance, climbing the stairs
is not to be confused with walking.
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2.3 Environmental Constraints

In addition to the challenges of activity recognition and dataset size, other factors
such as the properties of the sensors used must also be taken into account. For
instance, sensors of portable devices must consider where the device is worn
and how accurate measurements of these sensors are. These factors can have
a significant impact on the data collected. In this context, the latency of the
system is of great importance when processing the data. Many applications,
such as gesture-based input or theft detection, require real-time data processing
and classification to provide immediate feedback to the user. We noticed that
some sensors have a high delay in terms of data provision. For instance, the heart
rate sensors took more than a minute to deliver new data readings. Such sensors
are conflicting with real-time requirements and thus are unfeasible for usage in
this context. The battery life of the device is also limited and the approach has
to be designed to work in an efficient way.

2.4 Data Collection

Both for the recognition of activities and for the identification of individuals,
sensor data of physical activities must be collected in the first step. We therefore
developed a Google Wear OS application which collects data for a specific user
and a predefined activity. Activity recognition is not focused in this work and
we want to prevent any degradation in the theft detection process because of
wrongly detected activities.

We focused on data from the accelerometer and gyroscope along all three
ordinal axes x, y, z. The target frequency of the collection was 50 Hz resulting
in around 3000 data readings per minute. It has to be noted that with the
device we used, a Huawei Watch 2, readings from the gyroscope came in slower
compared to the accelerometer (only around 25 Hz). This seems to be hardware
constrained.

Data was collected from 7 test persons performing different activities in order
to generate a broad, diverse dataset. In total, we were able to collect around 10 h.
Furthermore, one of the test persons was left-handed. We explicitly selected such
a person to see how our theft detection approach can handle left-handed and
right-handed people and to further analyze if there are significant differences
between both groups.

2.5 Data Preprocessing

The sensors deliver a continuous data stream, whereby each measured value
represents the state of a sensor at a certain point in time. In the data segmenta-
tion step, individual segments are extracted from the data stream that are highly
likely to contain specific information about the motion of an individual’s activity.
This step is primarily performed to apply statistical techniques to specific parts
of the data stream. A widely used approach to data segmentation is the so-called
sliding window. In this approach, a window of a fixed size is moved over the data
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in a certain increment. The step size is selected so that the individual windows
overlap each other. The selection of the window size is particularly important for
real-time applications, as a window that is too large greatly impairs the latency
of the process.
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Fig. 1. Excerpt of data readings of a person walking in a straight line showing a clear,
reoccurring pattern.

Next, we extract features for each window eventually leading to individuals.
A common approach is to generate these features based on statistical measures
such as minimum, maximum and standard deviation. Our experiments show that
using more features does not necessarily increase the detection performance.
Because of the limited environment, we tried to minimize the number of fea-
tures used during the theft detection process. In fact, the following features were
extracted:

1. Minimum 2. Maximum 3. Range 4. Average 5. Median 6. Sum of squares
7. Variance 8. Standard deviation 9. Median absolute deviation.

The use of extracted features in time windows also has the advantage that the
amount of data sets used for training a model can be greatly reduced. For exam-
ple, when using raw sensor data with a frequency of 50 Hz, 3000 data records per
minute are generated. For window lengths ranging from 2 s to 10 s, the number
of elements used for processing and identification can be reduced to 12–60 data
sets. This leads to an acceleration of the training phase, which is particularly
relevant on a smartwatch with reduced computing power.

3 Distinction of Individuals

In order to find any structure within the data, we performed user identification
on the basis of the sensor data from the smartwatch. We used data from up to
7 participants to validate our findings.

3.1 Visual Analysis

Acceptable theft detection requires that one individual is at least identifiable
with high accuracy using sensor data to ensure low false positive and false neg-
ative prediction rates in the theft scenario.
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Figure 1 shows the accelerometer sensor reading for a person walking in a
straight line. At the beginning and the end, only gravity (around 9.8m

s2 ) affects
the accelerometer, though when moving, arm movement introduces a second
impact. It is possible to identify a periodic pattern resulting from a swinging
arm while walking. This underlines the fact that one person seems to have a
reoccurring pattern while performing an activity. However, the amplitude is not
always identical between swings. As a consequence, anomaly detection for theft
detection will not be a feasible approach.
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Fig. 2. Excerpt of sensors readings of all persons in the data set walking straight (x-axis
is shown).

Table 1. Performance overview of four
different classification algorithms.

Algorithm Accuracy [%]

Naive Bayes 75.5
Decision Tree J48 96.6
k-Nearest-Neighbor 97.4
Random Forest 98.4

To further analyze if there is even a
difference between the walking style and
the resulting data reading of multiple peo-
ple, we plotted randomly selected walks
from all participants in Fig. 2. One can
easily see that there are a lot of differ-
ences between all participants, such as the
amplitude or the length of a curve. Rea-
sons for that are the walking speed or the
arm swinging style.

We used the raw data set to confirm that the recorded data allows user iden-
tification by having a (hidden) structure. We therefore performed identification
using only a one minute testing sample of each user. Further optimization of the
data was not done. Table 1 shows promising results that identification is possible
in our dataset.

3.2 Cluster Analysis on Raw Data

In a first attempt, the collected data was clustered in order to find similarities
across three random test subjects (each represented by a color in Figs. 3a, b and
4a to d).
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(a) Clustered raw gyroscope data. (b) Clustered raw accelerometer data.

Fig. 3. Three clusters of raw data for three test subjects across all axes (each using
own color). (Color figure online)

Figure 3a points out that all three gyroscope-based clusters are diverse, i.e.
they are mixed up and no sharp borders can be found which can be exploited
to determine a users. This is very different for readings from the accelerometer
as illustrated in Fig. 3b. Especially the z-axis can be considered as an indicator.
The green colored datasets are rather in the upper area, the brown colored ones
in the lower area. However, the centers of the different clusters are very close
to each other, which, according to the objectives of the cluster analysis, could
make it difficult to correctly classify a dataset between them.

We then added a noise cluster to collect all data not exactly assignable to a
user cluster. As a result, most of the test data from both sensors was assigned to
that cluster, indicating that there is no clear structure within the raw data. Most
data seems to be randomly adjusted to a cluster making the usage of raw data
for theft detection not feasible. Parameter tuning did not increase the quality.

3.3 Cluster Analysis with Preprocessing

Thus, we decided to use the state of the art approach and subdivided the con-
tinuous data stream in windows using the sliding window approach. We selected
a window size of 5 s with an overlapping of 50%. We further extracted the fea-
tures stated in Sect. 2.5. All experiments were executed using four random test
participants.

Figure 4a and c present the average acceleration across all axes respectively
the range of the gyroscope readings for each window of each individual. In con-
trast to the raw readings, the preprocessed dataset shows clear cluster centers
and thus allows to divide and identify the users. It has to be noted that although
the figures only show one feature, we used all said features to identify a users.
Introducing a noise cluster and taking a look at the results (c.f. Fig. 4b and d;
noise is represented as white dots), it can be stated that the noise cluster has
an inferior role and there is a structure within the data which may be exploited
for identification.
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(a) Clustered average acceleration across
all windows.

(b) Clustered average acceleration across
all windows with a noise cluster.

(c) Clustered range of gyroscope across all
windows.

(d) Clustered range of gyroscope across all
windows with a noise cluster.

Fig. 4. Three clusters of preprocessed data divided in windows and all features for
three test subjects across all axes (each using own color). (Color figure online)

Now, we aggregate our findings by performing the actual identification pro-
cess. Even if there are clusters within the dataset, it cannot be assured that all
data points are assigned to the correct cluster (i.e. successful identification).

Table 2 presents the confusion matrix for our identification model. The goal
is to assign a user to one cluster which represents that user. It can be seen that
identification is possible with high accuracy of 88% overall. This shows that
the sensor data from smartwatches with the correct preprocessing allows correct
identification and is therefore a good basis for theft detection. However, there are
some false predictions which have to be handled in the context of theft detection.

It should also be mentioned that different window sizes were tested and
led to similar results. Furthermore, there are different methods to determine the
influence of the individual attributes per dataset on the classification in a specific
cluster. We used a visual approach to identify significant attributes such as the
mean acceleration along the x-axis and the average absolute distance from mean
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along the x-axis. The cluster centers of these two attributes varied significantly
between the four participants.

4 Theft Detection

After having analyzed if user identification on the basis of smartwatch data is
even possible, we now want to aggravate the problem and perform theft detection
almost in real time. This problem is different from user identification since we
move from a closed set problem to an open set problem where not all carriers of
the watch are already known.

Table 2. Confusion matrix of user identification.

Predicted
cluster 0 cluster 1 cluster 2 cluster 3

A
ct
u
al user 0 0.08 0.81 0.11 0.00

user 1 0.00 0.00 0.00 1.00
user 2 0.00 0.18 0.79 0.04
user 3 0.91 0.09 0.00 0.00

4.1 Definition of Environment

We construct two different scenarios targeting different research questions.

Scenario 1. The first scenario examines whether it is possible to distinguish
a person from other test subjects if only a small amount of training data is
available. For this scenario, 2 data records of a selected owner of one afternoon
of about 10 min each are used as training data. As test data, data records of
different persons are used as thieves, with a total length of 2 h on the same and
other test tracks, as well as a data record of the owner from the morning of the
training day with a length of 7 min on the same track were used.

Scenario 2. The purpose of the second scenario is to simulate the use of a theft
detection app and to check how much data is needed to correctly classify an owner
and thieves. For this purpose, training data was collected over several days from
one owner on different tracks and under different weather conditions with a total
length of 67 min. Due to significant differences in walking behavior depending on
the day, weather and possibly other factors, it is difficult to recognize an owner
on a new day. Thus, the owner’s training data is randomly divided into test
and training data and used for evaluation. Additionally, movement data over a
length of 82 min of other persons used as thieves was collected to test the model.

Both scenarios have in common that we do not focus on different activities
but use “walking” as a common activity. However, this constraint can easily be
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widened by applying an additional filter at preprocessing to select the appropri-
ate training data/model for the recognized activity.

For an evaluation of the classification model, we use a binary confusion matrix
from which two error rates can be read. First, if the owner wears the watch and is
falsely classified as a thief, it is a false rejection, the rate of this error is specified
in the False Rejection Rate (FRR) and represents a false alarm in the application
scenario. The second error is that a thief is mistakenly classified as the owner
and it is a false acceptance, represented by the False Acceptance Rate (FAR),
which is the more serious error as it would cause a theft to go unnoticed.
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Classify Test Data Score

Read Test Data Select Features

ARFF Reader Column Filter
OneClassClassifier
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Fig. 5. KNIME workflow for Scenario 1.
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Fig. 6. KNIME workflow for Scenario 2.

4.2 Theft Detection Accuracy

Classification was performed using a One-Class-Classifier combining density and
class probability estimation [7] (KNIME module version 3.7) provided by the
KNIME Analytics Platform (version 4.0.1). All features were used, which results
in 63 features per window. We also tested different window sizes, however over-
lapping was fixed to 50%. One individual from our dataset was selected to be
the smartwatch’s rightful wearer, while all other participants from the dataset
were considered to be thieves. We repeated the experiments.

Figure 5 shows the KNIME workflow for Scenario 1 which used a fixed number
of training samples. In contrast, Fig. 6 illustrates the workflow for the second
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scenario which differs in the amount of data used for training. The remaining
data of the owner was used for testing the model.

From Table 3 it is easily recognizable that the approach which uses raw data
is unfeasible for theft detection because, in both scenarios, thieves are wrongly
classified as owners (high FAR). As a result, we do not further consider such
an approach. In Scenario 2, thieves as well as owners can be identified correctly
using extracted features. A positive observation is that already on the basis of
10% training data the remaining 90% of the owner’s movement data are correctly
classified in approximately 90% of the cases. If preprocessing is performed, the
FAR is always very low, thus a thief is not confused with the owner.

Table 3. Comparison of the suitability of raw data and extracted features for classifi-
cation purposes.

Ra F,ws = 2sb F,ws = 5sb F,ws = 10b

FAR FRR FAR FRR FAR FRR FAR FRR

Scenario 1 65.8 5.8 1.0 18.8 0.2 41.1 0.1 90.4

Scenario 2

.. 10% training 48.5 10.1 0.8 7.7 0.2 8.0 4.1 7.0

.. 25% training 48.4 10.3 0.4 8.8 0.1 10.5 0.0 15.8

.. 50% training 48.7 10.0 0.2 9.8 0.2 8.9 0.0 15.5

.. 75% training 48.6 10.2 0.4 7.8 0.1 11.4 0.7 9.6

All numbers given in percent
aRaw data as it comes from the smartwatch sensors
bPreprocessed data with all features and window size ws

For this evaluation, the standard configuration of the One-Class-Classifier
was applied, with the exception that only a kernel density estimation was used for
the training of the model, since the training of a model in another configuration
requires more computing capacity. For example, when using all 208,000 owner
data records of Scenario 2, training the model took 30 min compared to only a
few seconds when applying only kernel density estimation.

4.3 Adjustment of Target Rejection Rate

Using features for classification in Scenario 1 results in a high false rejection
rate. This is due to the differences in the owner’s walking movements between
training data and test data. To test whether classification is possible despite
such differences, the Target Rejection Rate (TRR) of the classifier was reduced
from 10% to 5% in a further test. The classifier uses this rate to determine what
portion of the owner’s (target’s) existing training data should be classified as
non-owner to form a boundary between target and non-target data. Using this
boundary, the model can evaluate new data and decide whether the data set is
within the owner’s boundary or should be classified as a thief. If the test data
is identical to the training data, a portion of the data that corresponds to the
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TRR is also classified as a thief. As a result, a perfect model with a FAR of 0%
will have a FRR corresponding to the TRR as expected. Since in Scenario 1 a
large part of the owner’s data is classified as a thief, it was examined whether
an adaptation of the TRR would allow an improvement in owner recognition. In
addition, Scenario 2 was used to check whether such a change can also be used
in a model that was trained with more diverse data sets.

Table 4. Results of the classification when using a TRR of 5%.

F,ws = 2s F,ws = 5s F,ws = 10

FAR FRR FAR FRR FAR FRR

Scenario 1 6.5 4.8 1.5 7.8 0.5 17.4

(↑5.5)a (↓14.0) (↑1.3) (↓33.3) (↑0.4) (↓73.0)
Scenario 2

.. 25% training 12.3 3.5 9.5 3.0 0.0 10.8

(↑11.5) (↓4.2) (↑9.3) (↓5.0) (↓4.1) (↑3.8)
.. 75% training 10.3 3.4 5.9 5.3 28.6 6.1

(↑9.9) (↓4.4) (↑5.8) (↓6.1) (↑27.9) (↓3.5)
All numbers given in percent
aAbsolute change in comparison to Table 3

The results (c.f. Table 4) illustrate the influence of the TRR. By lowering
the number of records classified as owners, the FRR decreases in all cases, but
the FAR increases. For Scenario 1, this adjustment is an improvement since
both error rates are now within an acceptable range in the case of the 2 and
5 s window, but when transferring the setting to Scenario 2, the FAR is greatly
increased without generating much added value by reducing the FRR. For these
reasons, a reduction in TRR seems inappropriate when used in reality and a
TRR of 10% will be used subsequently.

4.4 In-Depth Analysis of Our Approach

We now want to analyze different input vectors of the theft detection approach
to understand the prediction accuracy. Namely we analyze if the number of
features is relevant for the detection and which sensor provides more information
in the context of theft detection. Lastly, we loosen our constraint to only rely on
kernel density estimation and use several state-of-the-art classifier models. Only
Scenario 2 will be considered here because it describes the theft detection.

Features. First, we change the number and types of features used for theft
detection. Table 5 shows some interesting facts. The existing model seems to
use too many features because a similar theft detection accuracy can also be
achieved only using averages, minima and maxima from the sensors. This sensor
selection even comes to a lower FAR without negatively influencing the FRR.
This suggests that using too many features leads to some kind of overfitting.
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Sensors. Literature has shown that accelerometer data is sufficient to detect
an activity [9], but identification requires a second sensor such as the gyro-
scope [8]. Thus, we want to elaborate if theft detection is also possible using
only accelerometer or gyroscope. In the aftermath of the previous section, we
only execute our experiments using average-, minima- and maxima-based fea-
tures. From Table 6, one can see that the gyroscope improves the already good
results from the accelerometer. So we can conclude that using both sensors is
recommended.

Table 5. Results of different feature sets.

F,ws = 2s F,ws = 5s F,ws = 10

FAR FRR FAR FRR FAR FRR

25% training

All features 0.4 8.8 0.1 10.5 0.0 15.8

Only averages 3.4 8.5 0.7 11.0 0.7 14.7

(↑3.0)a (↓0.3) (↑0.6) (↑0.5) (↑0.7) (↓1.1)
Average, min/max 0.0 9.1 0.0 12.7 0.0 14.6

(↓0.4)a (↑0.3) (↓0.1) (↑2.2) (→0.0) (↓1.2)
50% training

All features 0.2 9.8 0.2 8.9 0.0 15.5

Only averages 4.2 7.5 5.9 8.9 0.1 17.8

(↑4.0) (↓2.3) (↑5.7) (→0.00) (↑0.1) (↑2.3)
Average, min/max 0.0 8.7 0.1 8.1 0.0 16.0

(↓0.2) (↓1.1) (↓0.1) (↓0.8) (→0.0) (↑0.5)
75% training

All features 0.4 7.8 0.1 11.4 0.7 9.6

Only averages 4.7 7.0 3.7 11.1 9.0 9.1

(↑4.3) (↓0.8) (↑3.6) (↓0.3) (↑8.3) (↓0.5)
Average, min/max 0.1 7.9 0.1 9.9 0.2 11.2

(↓0.3) (↑0.1) (→0.0) (↓1.5) (↓0.5) (↑1.6)
All numbers given in percent
aIn comparison to all features

Classifiers. All previous results are achieved using kernel density estimation
which is a robust approach for One-Class classification. However, we wonder
if a hybrid approach (which eventually increases training time, though) using
another classifier will improve the already good performance of our theft detec-
tion algorithm. Table 7 gives an overview of the performance of three classifiers,
namely Naive Bayes, BayesNet and a Logistc Regression model. The other clas-
sifiers provide similar performance, although their training time is much longer
compared to kernel density estimation.
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4.5 Discussion

Section 4 shows that a One-Class-Classification is possible on the basis of col-
lected data of the owner of a smartwatch. It was shown that an identification
is already possible with a small dataset (Scenario 1), but can be significantly
improved by collecting further data (Scenario 2). The walking behavior of a per-
son may change, but even a small amount of data (around 25%) of one movement
pattern is sufficient to successfully train the model. We were able to achieve a
FAR ≤ 0.2% while keeping an acceptable FRR below 8% with the FRR only
limited by the TRR (which could still be optimized).

Table 6. Results of different sensor combinations.

F,ws = 2s F,ws = 5s F,ws = 10

FAR FRR FAR FRR FAR FRR

25% training

acc + gyro 0.0 9.1 0.0 12.7 0.0 14.6

accelerometer 1.0 9.2 0.5 12.8 0.0 18.8

(↑1.0)a (↑0.1) (↑0.5) (↑0.1) (→0.0) (↑4.2)
gyroscope 13.8 9.3 7.3 10.1 1.7 17.5

(↑13.8)a (↑0.2) (↑7.3) (↓2.6) (↑1.7) (↑2.9)
75% training

acc + gyro 0.1 7.9 0.1 9.9 0.2 11.2

accelerometer 1.0 9.2 2.0 9.4 7.3 9.6

(↑0.9) (↑1.3) (↑1.9) (↓0.5) (↑7.1) (↓1.6)
gyroscope 12.5 7.2 7.4 10.1 11.6 10.7

(↑12.4) (↓0.7) (↑7.3) (↑0.2) (↑11.4) (↓0.5)
All numbers given in percent
aIn comparison to acc + gyro

For real world use, we derive the following rule candidate to detect a theft: If 3
or more windows are classified as theft within the first 5 time windows, an alarm
is sent. Assuming an FRR of 10%, the probability of a false alarm decreases
to 0.856%. With the same decision rule and an expected FAR of 0.5%, the
risk of undetected theft is reduced to approximately 0.0001%. Since no relevant
difference could be detected when evaluating the classification on the basis of
time windows of different lengths, the shortest window with a length of 2 s is best
suited for a time-critical application such as theft detection. Thus, by overlapping
the time windows, after a time of 6 s, a good decision can already be made as to
whether it is a thief or the owner of the smartwatch.

5 Related Work

The topic of activity recognition using smartwatches has been investigated
in different works in recent years. [2–4,6,10–12,14] address the recognition of
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diverse activities with different level of complexity with various machine learn-
ing approaches. For example [4] show how the smoking behavior can be detected
and how it can even be distinguished from other similar gestures. [2] evaluate the
heartbeat rate and wrist acceleration data, gathered via a smartwatch, in order
to identify subject’s sleep behavioral pattern. In addition, research on activity
recognition has already been extended to the identification of people in some
studies. Individuals could be recognized on the basis of certain movements. [1,8]
show that people can be identified by gait with a certain accuracy. However
nobody discussed the topic of theft detection.

Table 7. Results of different classifiers.

F,ws = 2s F,ws = 5s F,ws = 10

FAR FRR FAR FRR FAR FRR

25% training

KDE 0.0 9.1 0.0 12.7 0.0 14.6

Naive Bayes 2.7 9.1 0.0 12.4 1.2 14.1

(↑2.7)a (→0.0) (→0.0) (↓0.3) (↑1.2) (↓0.5)
BayesNet 0.0 9.0 0.0 12.7 0.0 17.1

(→0.0)a (↓0.1) (→0.0) (→0.0) (→0.0) (↑2.5)
Logistic Regression 0.0 9.3 0.0 12.0 0.0 14.4

(→0.0)a (↑0.2) (→0.0) (↓0.7) (→0.0) (↓0.2)
75% training

KDE 0.1 7.9 0.1 9.9 0.2 11.2

Naive Bayes 0.5 9.1 0.5 8.0 0.7 11.2

(↑0.4)a (↑1.2) (↑0.4) (↓1.9) (↑0.5) (→0.0)

BayesNet 0.0 7.3 0.0 10.1 0.5 10.2

(↓0.1)a (↓0.6) (↓0.1) (↑0.2) (↑0.3) (↓1.0)
Logistic Regression 0.1 7.9 0.1 9. 1 0.2 11.2

(→0.0)a (→0.0) (→0.0) (↓0.8) (→0.0) (→0.0)

All numbers given in percent
aIn comparison to kernel density estimation (KDE)

6 Conclusion

In this work we have provided a first and successful attempt to provide theft
detection for coveted smartwatches. Thus, we are able to detect if a thief
(i.e. unauthorized wearer) carries away a smartwatch and uses it. Not only does
the classification of movement data of a user in closed-set environments provide
good results, but rather the realistic open-set problem was also handled with
high accuracy and fast detection performance making our approach feasible for
daily usage. Furthermore, we constrained ourselves by limiting the amount of
training data available to significantly increase user acceptance. We have shown
in two realistic scenarios that real-time theft protection is possible and that our
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approach recognizes a theft within 6 s – a time span where a potential thief is
still in sight of the owner – while minimizing false alarms.

Our algorithm may be improved using a more complex theft detection process
since we did not focus on activity recognition which is a necessary fundamental
for strong user identification. Human Activity Recognition (HAR) approaches
already exist in literature (e.g. [9,11]). Thus we plan to include such an approach
in our process in order to prefilter sensor data to improve our approach. As we
have shown, a very limited amount of training data is sufficient for good results,
thus, usability is still ensured. Furthermore, we want to integrate the alarming
system into a real Wear OS application since there is a huge need for such an
app. By integrating the whole theft detection process into a user’s smartwatch
(or domain) without the need for any external services, we will provide a privacy
friendly solution. We further want to make our theft detection approach even
more secure by analyzing how training data from different days and various
moods affects the detection.
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Abstract. Online services such as social networks, online shops, and
search engines deliver different content to users depending on their
location, browsing history, or client device. Since these services have a
major influence on opinion forming, understanding their behavior from
a social science perspective is of greatest importance. In addition, tech-
nical aspects of services such as security or privacy are becoming more
and more relevant for users, providers, and researchers. Due to the lack
of essential data sets, automatic black box testing of online services is
currently the only way for researchers to investigate these services in
a methodical and reproducible manner. However, automatic black box
testing of online services is difficult since many of them try to detect and
block automated requests to prevent bots from accessing them.

In this paper, we introduce a testing tool that allows researchers
to create and automatically run experiments for exploratory studies
of online services. The testing tool performs programmed user inter-
actions in such a manner that it can hardly be distinguished from a
human user. To evaluate our tool, we conducted—among other things—
a large-scale research study on Risk-based Authentication (RBA), which
required human-like behavior from the client. We were able to circum-
vent the bot detection of the investigated online services with the exper-
iments. As this demonstrates the potential of the presented testing tool,
it remains to the responsibility of its users to balance the conflicting
interests between researchers and service providers as well as to check
whether their research programs remain undetected.

Keywords: Black box testing · Evaluation · Testing framework

1 Introduction

The advancing digital transformation impacts all areas of human life. As a conse-
quence, research aiming at understanding the inner workings of digital technolo-
gies, platforms, applications, services, and products, as well as their influence on
human society and culture, becomes increasingly important.
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Numerous examples for such intersections of online services with society can
be found today. All sorts of social networks use non-transparent algorithms to
perform content filtering and provisioning tasks, depending on one’s individ-
ual characteristics and interests. Other examples can be found in the various
deployed recommendation systems of e-commerce and content distribution plat-
forms. To what extent these types of online services influence society is an impor-
tant research question. Is your taste in music governed by music streaming com-
panies and their algorithms to promote or recommend music? Are these systems
exploitable for purposes other than the intended ones? First research attempts
indicate that such influences on society are taking place [6,32,43].

Besides the impact on culture and society, technical aspects are more and
more hidden behind the user interfaces of online services. Deployed security, as
well as privacy preserving and undermining technologies, remain opaque to the
user. For instance, contemporary security approaches to strengthen password-
based authentication with Risk-based Authentication (RBA) [18] are deployed
by only a few large online services [2,23,28], even though this technology is of
broad relevance as the recent recommendation by NIST emphasizes [22]. Study-
ing RBA-instrumented services would help to demystify RBA setups so that
they can be discussed and further developed by a wider audience. This may
contribute to accelerate the adoption and deployment of RBA in the wild. Good
examples for exploratory research that are beneficial for society are the various
studies on misusing cookies for tracking purposes [7,9,12,17,26].

An essential prerequisite to perform effective and reliable research, in this
context, is the availability of data. Although many openly accessible data sets
of various online services and platforms exist [4], they only provide a very lim-
ited and fragmented view. One major reason for this lack of data is that the
companies and organizations possessing it—most commonly—do not share it
(publicly). Thus, the digital utilities surrounding our daily lives are black boxes
that do not reveal their internal workings. As this lack of transparency hinders
scientific research, methods are required to methodically reverse-engineer these
black boxes. This is important to understand the algorithms influencing our
current and future zeitgeist as well as their corresponding security and privacy
features.

Unfortunately, the investigation of the inner workings of online services is
complicated for several reasons which turns studying them into a difficult prob-
lem. There is no unique path to conduct such an analysis, no simple agreed Appli-
cation Programming Interface (API) or even approach. Moreover, online services
are distributed systems, making the service-side inaccessible to entities other
than the respective service provider itself. Also, investigating the inner work-
ings of online services is further complicated by means of the service provider.
For large-scale methodological studies, automated browsing through online ser-
vices is required. However, online services integrate technical countermeasures
against such automated browsing. These range from presenting CAPTCHA chal-
lenges [11] or delivering different website contents for human users and bots [1],
to completely blocking the service access [30]. Hence, in order to be able to
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conduct exploratory studies of online services, technologies are required to cam-
ouflage automated black box testing as far as possible.

This arms race between service providers and researchers lies in their con-
tradicting requirements. Service providers want to keep their internals secret, as
they might also contain intellectual property. Researchers instead, are keen to
analyze and understand systems thoroughly, with the aim to gain knowledge and
enhance system properties towards an optimum. Thus, in the absence of other
means, researchers will use black box tests to determine their research results,
while service providers will detect and block automated black box tests to keep
their internals opaque to outsiders.

Another reason for service providers to block automated black box testing
is that it is considered a double-edged sword since it might not only be used
by researchers. In the hands of attackers, such testing tools can be used to
threaten systems and networks, even if they are aimed at improving security.
Still, as security is about balancing several trade-offs, these trade-offs need to be
understood thoroughly in order to make the right compromise.

Contributions. We introduce an inspection tool to perform automated black
box testing of online services and, at the same time, mimic human-like user
behavior1. The aim is to provide a research vehicle to investigate the inner
workings of online services lacking publicly accessible resources. This can foster
discussion and collaboration among security researchers and service providers.

Outline. The rest of this paper is structured as follows. We review related
work in Sect. 2. We describe the introduced inspection tool in Sect. 3. We give
more detailed descriptions on its implementation as well as customization to
study online services in Sect. 4. To further illustrate the use of the introduced
inspection tool, Sect. 5 discusses exemplary studies. We discuss the benefits as
well as limitations of the introduced inspection tool in Sect. 6. As the usage of
our tool can easily be extended to exploit online services, Sect. 7 discusses ethical
considerations before the paper concludes in Sect. 8.

2 Related Work

A number of researchers performed black box testing of online services with web
browser automation. Choudhary et al. [10] developed a tool for automated web
application testing to detect cross-browser inconsistencies on websites. Starov
and Nikiforakis [34] analyzed the effect of browser extensions on the rendered
Document Object Model (DOM) document for the 50 most popular websites.
They showed that differences inside the DOM tree can be (mis-)used for fin-
gerprinting and tracking the client. Englehardt and Narayanan [15] measured
and analyzed one million websites and their corresponding usage of online track-
ing as well as the effect of browser privacy tools. Golla and Dürmuth [19] used
1 Provided as open source software at https://github.com/das-th-koeln/HOSIT.

https://github.com/das-th-koeln/HOSIT
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browser automation to test password strength meters of online services. Degeling
et al. [12] automatically extracted cookie consent notices and privacy policies of
6,579 websites inside the European Union (EU) to analyze their appearance
before and after the EU General Data Protection Regulation (GDPR) [16] went
into effect.

However, in all publications mentioned above, the corresponding browser
automation frameworks did not aim to imitate human-like behavior as we did
in our framework. As a consequence, these studies cannot tell whether their
observations reflect the services’ inner workings or a customized behavior due to
being detected as a bot.

Other browser automation frameworks tried to imitate human-like user-
actions to a small extent. Petsas et al. [29] used browser automation to evalu-
ate the quantity of Google users with enabled Two-factor Authentication (2FA).
Their framework introduced a random waiting time between clicks. Snickars and
Mähler [32] analyzed the behavior of the online music streaming service Spotify
with browser automation. Their automation framework conducted several user
actions, e.g., logging in, selecting a track, and skipping a track. However, they
noted that this was only possible before Spotify introduced reCAPTCHAs as a
bot protection mechanism in 2016.

In contrast to all these frameworks, we included a considerably higher amount
of efforts in our framework to closely mimic human-like behavior and bypass
CAPTCHAs to not be detected as a bot (see Sect. 6).

The DASH tool [13] by the DETER project aimed to model human behavior
in various situations, e.g., responding to phishing emails. In contrast to our tool
(see Sect. 3), the application did not really conduct human-like actions on online
services and only simulated possible behavior in theory.

Most browser automation tools described in this section were based on
the Selenium framework [10,12,15,17,19,32,34]. One tool was based on Cas-
parJS [29]. We decided to use the high-level application programming library
Puppeteer [21] as a base for our tool. We chose Puppeteer over Selenium since
it offers a higher-level API and is targeted to the popular Chrome browser [44]
instead of multiple browsers. Note that Puppeteer was not available at the time
where most of the above mentioned studies were conducted2.

3 Humanoid Online Services Inspection Tool

The Humanoid Online Services Inspection Tool (HOSIT) was designed to sim-
ulate human-like browsing behavior on online services. While some frameworks
for automated browsing are freely available on the Internet, their standard func-
tionality makes them difficult to use for inspecting online services for several
reasons:

2 First version of the source code was published on the Puppeteer GitHub repos-
itory on May 11th, 2017: https://github.com/GoogleChrome/puppeteer/commit/
2cda8c18d10865d79d3e63b23e36aa7562098bf7.

https://github.com/GoogleChrome/puppeteer/commit/2cda8c18d10865d79d3e63b23e36aa7562098bf7
https://github.com/GoogleChrome/puppeteer/commit/2cda8c18d10865d79d3e63b23e36aa7562098bf7
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– There is no function to create virtual identities which are perceived as real
humans by online services.

– Some of the integrated functions do not model real-world human behavior
and thus can be detected by online services, e.g., typing with 0 ms delay or
clicking in the exact center of an element.

– The API allows activities which are not possible for real web browser users,
e.g., conducting browsing activities inside two browser tabs at the same time.

– Browser automation using these frameworks can be detected due to differ-
ences between the normal and the automated browser mode [40].

– These frameworks do not log conducted actions such as name and screenshot
of clicked elements automatically. This makes potential implementation errors
(e.g., element with certain ID not found) hard to detect. Consequently, scaling
the automation to multiple machines is difficult.

We addressed these issues with HOSIT and enhanced the integrated standard
functionalities of Puppeteer with human-like browsing behavior and camouflage
measures to be as indistinguishable from human users as possible:

(i) A scrolling function to imitate reading of website contents (usage can be
seen in the script in Fig. 2). The function scrolls down around half the dis-
play height, pauses for some time, scrolls further, pauses again and repeats
this procedure until reaching the bottom of the page. We developed this
function since scrolling is considered a typical behavior for human users on
websites [36,42].

(ii) A function which allows switching between browser tabs. This is also a
typical behavior for a human using a web browser.

(iii) A search query generator based on current events in media. The gener-
ated queries can be used to create arbitrary browsing behavior, e.g., enter-
ing query in a search engine and opening one of the results. The genera-
tor accesses a publicly available Really Simple Syndication (RSS) feed and
parses the feed’s content to an evaluation function which generates a list of
search queries. From this list, the generator selects a random entry every
time the generator is called. The search query generators can be customized
and added in the HOSIT configuration, e.g., for generating search queries
focused on other topics. We chose this functionality since visiting search
engines is a common online activity [24,27].

(iv) Hidden element checks: some online services integrate hidden elements which
can be used to detect bots, e.g., typing text inside a hidden field or clicking
a hidden link. For this reason, we provide a function to check whether a
certain element on a website is visible or not.

(v) Integration of external services providing CAPTCHA solving capabilities.
(vi) Automated logging of all activities conducted on the online service with

screenshots into a MongoDB database for replicable studies. The database
type can be adjusted for individual use case scenarios.

In general, we focused on human-like behavior that could by analyzed by
reading out information via the web browser, i.e., keyboard and mouse events.
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Fig. 1. Architecture of HOSIT

We considered the human-like behavior based on empirical studies modeling
human computer interaction [8,14,25,33,37,46] as well as similar ideas on human
behavior simulation [5].

The basic architecture of HOSIT is as follows (see Fig. 1). In order to test
services, the study conductor creates one or multiple virtual identities with differ-
ent browsing behavior (e.g., typing speed and clicking behavior). The conductor
also defines a sequence of activities to be executed on the tested services for the
respective study. Examples for activities can be: “click on shopping cart link”,
“search for a friend”, or “logout from service”. In many cases, these activities
can be divided into training procedures (let the service learn “normal” user
behavior) and inspection procedures (analyze the service’s reaction to unusual
behavior). The HOSIT API offers functions to create virtual identities inside the
HOSIT framework as well as to execute the activities. In contrast to other solu-
tions, HOSIT enables human-like behavior in two ways. First, human-imitating
behavior is automatically added to activity calls for many functions (e.g., the
“click on button” function clicks on an arbitrary position inside the button). And
second, HOSIT offers additional function calls allowing explicit human behav-
ior as a part of the activity sequence (e.g., “scroll to the end of the web page”).
Using a script containing a sequence of activities and the browsing behavior from
the virtual identities, the HOSIT framework calls the service using a Chromium
browser instance. Finally, all responses from the service are logged for later anal-
ysis.

Figure 2 shows a simple example of a HOSIT script calling an online service in
a human-imitating manner. The example code invokes HOSIT to open a search



194 S. Wiefling et al.

Fig. 2. Example HOSIT script

engine, click on the link to open the image search (after waiting a random period),
and enter a search query chosen randomly by HOSIT based on current events
in the media. Finally, HOSIT scrolls to the bottom of the page. This results in
a usage of the online service in a way that a human would also do.

All activities performed on the online service as well as errors are logged into
a database. As a result, study conductors get an overview of all interactions that
the identities performed on the online service. This also eases the debugging of
errors caused by activities of a certain identity.

4 Implementation

We implemented HOSIT using the Node.js library Puppeteer [21] in version
0.13.0 for browser automation. Consequently, HOSIT can be used on all operat-
ing systems which are capable of running the Node.js runtime environment and
the browser Chromium. A Chromium version is bundled with the HOSIT instal-
lation. Nevertheless, HOSIT can be configured to use a customized Chromium
or Chrome browser version instead of the bundled version. This might be nec-
essary for example, when testing websites requiring Digital Rights Management
(DRM) functionalities, which are included in Chrome but not in Chromium.

Chromium is executed in a custom headful mode, in which the browser is
launched in the standard mode with visible GUI3. HOSIT uses this headful
mode to minimize the detection of automated browsing. Chromium’s headless
3 To be compatible with Linux servers or Docker containers without a visible desktop

environment, the headful mode can also be run inside a virtual window session.
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Table 1. Feature differences between Puppeteer and HOSIT

Properties Puppeteer 0.13.0 HOSIT

Typing speed Constant Randomized variations

Click position Exact element center Randomized variations

Click time 0 ms Realistic [25]

Logging Limited Extendeda

Browsing behavior changes - Yes, based on persona

Bot detection protection - Patched

Functions

Common workflows Need to be repeated Integrated in Controller class

Search query generator - Included

CAPTCHA solving - Included

Scrolling - Included

Select tabs - Included

- Not included
aLogs all conducted actions with screenshots into a database

mode, which is designed specifically for browser automation, can be detected
by a number of differences in the browser’s properties and behavior [40]. Dur-
ing testing we actually experienced that online services treat headless browsers
differently. Amazon, for example, required a CAPTCHA in headless but not in
headful mode. We also patched HOSIT against known headless browser detec-
tion mechanisms [40]. HOSIT executes these patches when launching Chromium,
e.g., removing the navigator.webdriver property [35].

During testing, we found some indications that browser automation can be
detected with the standard functionality of Puppeteer. For instance, Amazon
rated correctly entered CAPTCHA solutions as not correct if “typed” in by the
standard Puppeteer function. Therefore, we enhanced some of Puppeteer’s inte-
grated functions with human-like user behavior. We compared manual browsing
behavior with the automated behavior of Puppeteer to determine differences
and optimized the affected functions. First, we modified the constant standard
delays between pressing and releasing key buttons with randomized delays. These
delays vary with an average typing speed which is defined by the identity (aver-
age time and maximum deviation). We recommend to measure these delays on
real humans before setting them on the identities. By default, we set empirically
measured typing speeds [8,14] on the identities. This procedure helped mimic
human behavior more precisely. Further, we modified the mouse input behav-
ior. Instead of clicking in the exact center of an element, the mouse selected a
random click point in the center quarter of the element. We also replaced the
default delay between pressing and releasing the left mouse button of 0 ms with
an empirically measured clicking time with randomized variations [25].

We, moreover, added further functionalities to HOSIT which did not exist in
Puppeteer (see Table 1). Finally, we simplified the API of Puppeteer and added
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recurrent tasks for the use case scenario inside the functions, e.g., automatically
adjust the browser resolution when creating a new tab. As a result, fewer function
calls are required to achieve the same result as with Puppeteer while being more
human-like in many respects.

As stated in Sect. 3, each HOSIT instance is linked to a virtual identity which
controls a browser instance. All further browsing behaviors are derived from
this identity on this instance (e.g., typing behavior, selecting different categories
based on the virtual identity’s persona). The identity manages all browser tabs
such as opening, switching, and closing browser tabs, and performs the actions
on the website. These actions range from typing or clicking to scrolling and
can only be performed in the currently open browser tab. We decided to select
this identity-based structure to both optimize the API for the use case and to
avoid unrealistic browsing behavior that was possible in Puppeteer, e.g., clicking
buttons in two browser tabs at the same time.

When developing own studies of online services, study conductors have to
design individual testing procedures with HOSIT. This is necessary since nav-
igation structures and functionalities differ between online services and might
change over time. For fine-grained variations of the browsing behavior, each
HOSIT instance provides functions which can be used to increase randomized
browsing behavior. These functions range from providing a random boolean value
with a given probability for if-else conditions to providing the persona of the iden-
tity. By using these functions, we achieved that each browser session performed
by HOSIT appeared differently on the tested online services.

5 Exemplary Use

To evaluate HOSIT, we conducted two studies that we discuss in the following.
Both experiments would not have been possible without HOSIT or just with
significant higher effort. The discussions will also provide a better understanding
of HOSIT deployments based on the two given exemplary use case scenarios.

5.1 Use Case 1: RBA

Risk-based Authentication (RBA) [18] is an adaptive security measure to
improve password authentication. During login, RBA monitors and stores addi-
tional features available in the context (e.g., IP address or user agent string)
and requests additional information for authentication if a certain risk level is
exceeded. RBA offers protection against security risks such as credential stuff-
ing, password database leaks and intelligent password guessing methods. Beyond
that, RBA has the potential to compensate low adoption rates of Two-factor
Authentication (2FA). For instance, less than 10% of all active Google users
activated 2FA in January 2018 [28].

RBA is recommended in the NIST digital identity guidelines [22] and is used by
several large-scale online services. However, these online services keep their imple-
mentations secret and restrain their approaches for a public discussion in science.
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This lack of public knowledge makes it difficult for small and medium websites to
use RBA.

For this reason, we black box tested eight popular online services4 with
HOSIT to find out more about the corresponding RBA implementations, i.e.,
features and offered additional authentication factors [45]. We created 28 virtual
online identities, registered 224 user accounts with the eight targeted services,
and observed the services’ behavior when accessing them under different cir-
cumstances. Each virtual identity had its own unique IP address from the same
Internet service provider and a personal computer.

However, analyzing the inner workings of RBA is complicated, since one of
the main tasks of RBA is to protect against bots. During pilot testing, we found
indicators that some online services treated an automated browser using Pup-
peteer differently. For this reason, we designed our study using HOSIT to imitate
human user behavior as exact as possible. Imitating human behavior was essential
to make sure that the observed services’ behavior is identical to normal usage.

RBA estimates the login risk based on the login history of the user. Therefore,
our virtual identities conducted 20 browsing sessions including user sessions on
the online services. The user sessions included login, activities on the online
service, and logout. After these 20 browsing sessions, we varied browser features
including the login time, IP address and device, logged in again on all online
services, and observed the reactions. Based on the reactions, we drew conclusions
about the inner RBA workings of the tested online services. The activities on the
online services were randomized and individualized with HOSIT and differed on
each of the online services. We selected typical activities for each of the online
services, e.g., scrolling in the newsfeed, checking mail inbox or browsing for
articles or jobs. In addition, these activities included a lot of randomness to
mitigate being detected as a bot. As an example, on social media websites, it
was randomly alternated between scrolling in the newsfeed, checking the message
inbox and searching for content.

Since online services are likely tracking their users [7,9], all virtual identities
simulated randomized browsing behavior in each browsing session with HOSIT.
They visited search engines and entered search queries based on current topics
discussed in media. Then, they opened some of the websites and “read” the text
by scrolling and waiting. Also, the testing sequence of services was shuffled to a
random order. This was done to prevent our virtual online identities from logging
into the online services at similar times.

With the study based on HOSIT, we were able to derive features as well as
an approximation to the respective weightings used for the RBA risk estimation
of popular online services. One major finding was that five of the eight tested
popular online services used RBA. Also, each of the services had a different RBA
implementation, varying from protecting all users to only a selection of users.
Besides using the IP address as a high weighted RBA feature, some services also
used additional lower weighted features (e.g., user agent string).

More details on the RBA study can be found in the original publication [45].

4 Amazon, Facebook, GOG.com, Google, iCloud, LinkedIn, Steam and Twitch.
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5.2 Use Case 2: Amazon Product Recommendation System

When shopping on Amazon, a large amount of customer actions are tracked by
the online shop. Besides the purchased items, these actions also include every
item just visited by the user. Details can be seen in logs which European users
can request from Amazon [3]. This right to request all personal data stored on
a service provider is granted by the GDPR [16] (Fig. 3).

Fig. 3. Shopping history and recommendations in the Amazon online shop

Amazon offers different types of product recommendations that are consid-
ered interesting for the customer [31]. When visiting a product page for exam-
ple, similar or related items are presented. These items are based on sponsoring
(“Sponsored products related to this item”) or shopping behavior of other users
(“Customers who bought this item also bought”). Another recommendation type
(“Inspired by your browsing history”) is based on the user’s own browsing his-
tory mentioned in the previous paragraph, i.e., not only the purchase history,
but also items just visited.

The recommendations given by Amazon are interesting for customers as well
as other online shops. Hence, these recommendations can be considered a valu-
able asset for Amazon. It is therefore a reasonable assumption that Amazon, by
detecting bots, is protecting these assets from automatic scraping. As a counter-
measure, a bot could be presented different website content compared to human
users, e.g., a CAPTCHA, different recommendations, or even recommendations
with different prices. Thus, research on recommendations shown to human users
requires a human-imitating client as provided by HOSIT.

In order to analyze the recommendation system and to verify this assumption,
we conducted a study on the Amazon online shop. In this study, our (automated)
user requested a fixed sequence of products and recorded the recommended prod-
ucts on the history page.
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We conducted the same study with three different types of clients: automat-
ically using Puppeteer, automatically using HOSIT, and manually by a human
user. In addition, the products were requested in two different manners: either by
simply opening the sequence of product page URLs or with “human like” online
shopping, i.e., typing a search term into the search bar, selecting a search result,
looking at the product page, searching for a next item and so forth. Finally, we
performed this study with both registered and unregistered Amazon users.

The evaluation of the study revealed an unexpected result: the recommended
items were exactly the same in all cases, including the order of items and the
product prices. Thus, in contrast to the RBA of Amazon services, we assume
that Amazon does not perform any bot detection for their recommendation
system or allows bots to a certain degree, e.g., let harmless bots pass, block bots
exaggerating the network traffic [1].

6 Benefits and Limitations

We put a lot of effort into ensuring that our tool was not recognized as a bot
by online services. Nevertheless, the possibility that online services recognize
HOSIT-based experiments as automated browsing remains. Even human-like
browsing if performed constantly for a very long time will surely be detected.
Also, creating too many new user accounts from the same IP address in a short
time is likely to be noticed and even stopped by many online services. This,
however, is even true when performed by a human. Thus, despite all protection
mechanisms, automated browsing activities should not be exaggerated and kept
at a realistic level, e.g., by introducing a long pause after some hours.

Still, based on our observations, we are convinced that our tool remained
under respective bot detection thresholds. For instance, Amazon did not block
automated logins with HOSIT while it did with Puppeteer. In March 2019, we
also tested HOSIT using an instance of reCAPTCHA v3 [20], which is specifically
designed to recognize bots. It analyzed the browsing behavior and returned a risk
score. The score was a numerical value between 1.0 (very likely a human) and 0.0
(very likely a bot). We opened a testing website, which used reCAPTCHA v3,
with both Puppeteer and HOSIT, and observed the risk score returned by the
reCAPTCHA API. When using HOSIT, the reCAPTCHA v3 risk scores were
identical to those of a human-controlled Chrome browser with empty browsing
history and cookies (score: 0.7 = likely a human), while this was not the case
with Puppeteer (score: 0.1 = likely a bot). After the release of HOSIT in April
2019, the reCAPTCHA risk score when using HOSIT was lowered to 0.3. This
again underlines the arms race between bot detectors and bot detection avoiders.
We will observe novel bot detection mechanisms and integrate countermeasures
against them in future versions of HOSIT.

Before conducting research studies with HOSIT, study conductors are
advised to test for anomalies on online services. In addition, study conductors
should monitor which JavaScript attributes were read by online services while
accessing this service [41]. These tests are helpful to determine possible bot
detection and to implement countermeasures as a result.
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Overall, we still find HOSIT highly sensible for studies due to the following
reasons: (i) The reCAPTCHA v3 risk score is still higher than with Puppeteer.
(ii) Not all online services on the Internet use the current reCAPTCHA. (iii)
The API of HOSIT is more simplified than the API of comparable tools such as
Selenium and Puppeteer, which makes it much easier to use.

7 Ethical Considerations

As with most tools for black box analysis, HOSIT is considered as “dual use”,
i.e., it can be used for illegitimate purposes as well. On the one hand, it can be
beneficial to gather information on service behavior determining our everyday
life. On the other hand, it could also be used for click fraud on online advertising,
theft of intellectual property, or possibly even denial of service. Further, when
using HOSIT, researchers should carefully check not to violate the respective
Terms of Service. Also, researchers should use automated browsing responsibly,
e.g., by keeping the impact on the inspected online services minimal [29,45].

We believe, however, that the results gathered by public research with HOSIT
can be beneficial for a large user base and thus should be set ahead of corporate
goals. We further argue that our work is justified, as the expected gain from
scientific studies outweighs the potential security implications. Ultimately, we
hope that public research based on our inspection tool will be beneficial for
smaller online services. In consequence, security related research using this tool
will protect a larger user base.

8 Conclusion

In this paper we presented HOSIT, a framework for automatically invoking
online services in a human-like manner. As many online services try to detect if
the client is a person or a bot, human-imitating behavior is required for auto-
mated service interactions in order to receive the same results as a human user.
HOSIT implements a number of human-like behavior techniques and can be
extended with further methods, as required by the targeted experiment and
online service.

HOSIT can be used to circumvent services’ bot-detection and to perform
large-scale research on how online services behave towards human users. This
is particularly interesting if the offered service depends—or is suspected to
depend—on the user’s behavior, location, history, device, and so on. Examples
for such services are results from search engines, information in social networks,
or recommendations in online shops. In particular, our research on RBA [45],
which led to valuable and beneficial results, would not have even been possible
without HOSIT. We discovered—among others—a privacy leakage in one of the
RBA dialogs of Facebook and resolved this issue within a responsible disclosure
process.
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In future work, we will continuously extend and refine the human-imitating
techniques of HOSIT. To evaluate their effectiveness, we will perform in-depth
analysis on the influence of our methods on bot-detection systems, such as
reCAPTCHA, on a regular basis. Moreover, we will apply HOSIT to study fur-
ther scenarios including, e.g., search engine results and local browser storage
usage patterns. We hope to see more of such research conducted on the basis of
HOSIT.

For future research on service behavior, we will also follow alternative
approaches. Instead of performing black box tests using camouflaged tools, ser-
vices could enable responsible access to researchers. Researchers would benefit
from unbiased results and focus on the analysis (and not on the black box testing
tools), and services could advertise their support for research. This responsible
service access could be monitored by an independent organization or public
authority. A similar method called regulatory sandbox is used successfully in the
financial area [38] and is currently discussed for research on personal identifying
information [39].
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Abstract. In this paper, we conduct an empirical study with the pur-
pose of identifying common security vulnerabilities discovered in vehicles.
The vulnerability information is gathered for 60 vehicle OEMs (Original
Equipment Manufacturers) and common vehicle components from the
National Vulnerability Database (NVD). Each vulnerability (CVE) is
analyzed with respect to its software weakness type (CWE) and severity
score (CVSS). 44 unique CVEs were found in NVD and analyzed. The
analysis results show that about 50% of the vulnerabilities fall into the
medium severity category, and the three most common software weak-
nesses reported are protection mechanism failure, buffer errors, and infor-
mation disclosure.

Keywords: Vehicles · Cyber security · Vulnerabilities · Weaknesses

1 Introduction

Modern vehicles are often connected to the Internet, and they contain more than
a hundred Electronic Control Units (ECUs) that control brakes, airbags, parts
of the engine, and so forth. This combination of ECUs, sensors, and network
buses creates a computerized system. The most commonly used network in a
vehicle is called Controller Area Network (CAN)1, and there are several known
ways to breach this network [4]. Vehicles seem to be vulnerable to exploits in
several ways, just as other systems are, but a malicious actor getting access to
vital ECUs can have dire safety consequences. Vulnerabilities have been reported
numerous times, and one famous example is when two white-hat hackers (pene-
tration testers) acquired remote control of a 2014 Jeep Cherokee2.

An empirical study of vehicle-specific vulnerabilities could help to improve
the security of modern vehicles. We conduct this study by first collecting vul-
nerability data, using Common Vulnerability and Exposures (CVEs)3, to get

1 https://en.wikipedia.org/wiki/CAN bus.
2 https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/.
3 https://cve.mitre.org.
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an overview. The vulnerability information for 60 Original Equipment Manufac-
turers (OEMs) including BMW, Mercedes-Benz, General Motors, and Tesla,
together with common vehicle modules and network buses e.g. ECU, Blue-
tooth, Keyless Entry, and CAN bus was gathered from the National Vulner-
ability Database (NVD)4. We then analyzed the severity of these vulnerabilities
through the Common Vulnerability Scoring System (CVSS)5 ranking. Based on
the results, we propose possible mitigations where OEMs can make efforts to
improve security. NVD analysts have also integrated Common Weakness Enu-
meration Specifications (CWEs)6 into the scoring process. The CWE system
is used for categorizing and defining software weaknesses and provide well-
documented information about these. This makes it possible for companies to
publish and discuss vulnerabilities on a common platform where everyone has
an understanding of what the definitions and terms represent. It also makes it
easier to understand what a vulnerability specifically is and what weakness it is
originating from.

In this paper, we follow these research steps: First, we gather vulnerability
information through searching NVD. Then, we collect publicly available CVEs,
the related CWEs, and CVSS information. After that, we analyze the identified
vulnerabilities in terms of CVSS severity, CVSS metrics, and software weak-
nesses (CWEs), to understand the underlying causes and the impact of each
vehicle-related vulnerability. 44 vehicle vulnerabilities are analyzed, and about
50% of them have medium severity. Based on the vulnerabilities found, 21 soft-
ware weakness types are identified, where the most frequent one is protection
mechanism failure.

The remainder of the paper is as follows. Section 2 considers the background.
In Sect. 3, we explain the method used in this paper. Section 4 presents detailed
steps and the analysis results. The paper is discussed in Sect. 5 and finally con-
cluded in Sect. 6.

2 Background

The background section starts with an overview of vehicle security. Then we
introduce the publicly available vulnerability sources, and finally, related work
using vulnerability sources is presented.

2.1 Vehicle Security

Previously, vehicle OEMs did not consider cyber attacks that much, since an
attack was only possible if an attacker had physical access to the vehicle. How-
ever, as modern vehicles have multiple wireless connections to outside networks
and devices (e.g. Bluetooth, Internet), they are vulnerable to cyber attacks7.
4 https://nvd.nist.gov.
5 https://www.first.org/cvss/.
6 https://cwe.mitre.org.
7 https://www.cpomagazine.com/cyber-security/connected-cars-a-new-and-

dangerous-vector-for-cyber-attacks/.
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A connected vehicle consists of over 100 ECUs, and each of them is responsi-
ble for one or more functionality. For example, the Telematics unit tracks vehicle
diagnostics, driving behavior, location, and other information. Researchers got
remote code execution on a Telematics unit of a vehicle by exploiting a vulnera-
bility in the Bluetooth stack of an ECU and separately compromising a cellular
modem [3].

The vehicle modules are connected through buses e.g. CAN bus, LIN (Local
Interconnect Network) bus, which also have potential vulnerabilities. The work
presented in [2] addressed the security issues in the CAN protocol, including
lack of authentication, lack of network segmentation, lack of data encryption,
and vulnerable to denial-of-service (DoS) attacks.

Possible security mechanisms to secure vehicle internal communication were
addressed by (for instance) HoliSec8, which include Message Authentication
Codes (MAC) for traffic integrity, firewalls both for external traffic and for inter-
nal traffic implemented in gateway ECUs, use of Intrusion Detection Systems
(IDSs) to detect unusual activities on the networks, and certificates for iden-
tification of various devices. Security mechanisms are also addressed in [2] for
asset threat mitigation, including access control, packet filter firewall, message
authentication, etc.

2.2 Publicly Available Vulnerability Sources

There are multiple vulnerability databases where vulnerabilities have been col-
lected and are publicly available, such as NVD and SecurityFocus9. Also, many
manufacturers regularly publish security advisories when they find vulnerabili-
ties in their products.

In this study, data was gathered from NVD, which is the U.S. government
repository for vulnerabilities. NVD uses the CVSS ranking system to distinguish
between dangerous and less dangerous vulnerabilities. The CVSS scores in NVD
has been proven to be trustworthy [9]. Furthermore, we use CVSS v2.0 in this
study, as some identified CVEs do not have base metric scores of version 3.0 and
they all have version 2.0 scores (more details can be found in Sect. 3.3). The base
score represents the intrinsic and fundamental characteristics of a vulnerability
that are constant over time and user environments.

2.3 Vulnerability Studies

There have been previous studies using publicly available vulnerability sources.
In [9] the credibility of CVSS scores in five leading vulnerability databases was
studied and the researchers found that CVSS is a robust system that can be
trusted. It also provides a baseline for comparing results, i.e. average values of
the CVSS base metrics. Also, the most accurate metrics in the databases seem
to be the impact on Confidentiality, Integrity, and Availability (CIA).

8 http://autosec.se/wp-content/uploads/2018/04/1.2-holisec-state-of-the-art.pdf.
9 https://www.securityfocus.com.
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As generating attack graphs is useful in showing the targets within systems.
However, determining the attacker privileges corresponding to all vulnerabili-
ties and continuing this effort as new vulnerabilities emerge is impractical and
requires significant effort and time. To address this [1] defined an enhanced cate-
gorization of attacker privileges used for generating attacker privileges from the
vulnerabilities in NVD in order to automate the generation of attack graphs.

In [12] the authors propose a method to assess security vulnerabilities of the
installed and the latest software versions used based on the CVSS vulnerability
scoring system, and then suggested whether a software version upgrade is needed.

The work presented in [5] focus on two sets of data - (1) the exposures of
attacks on embedded systems published in security conferences and literature,
and (2) the published vulnerabilities specific to embedded systems. The result
of this work is a set of attack classification criteria that serves as a basis for an
attack taxonomy. Also focused on embedded systems, [13] conducted an empir-
ical study for identifying common software weaknesses by gathering data from
online databases, including NVD and ICS-CERT10. The authors used CVSS
scores and CWEs in relation to each CVE found.

Our study combines the keywords and analyses done in [7] and [11], both
focusing on vulnerabilities in connected cars but with different datasets and
approaches. Besides the database NVD considered in this study, [7] also consid-
ered a security incident repository called Upstream11, and in [11] data was also
gathered for Qualcomm12.

3 Method

The goal of this study is to identify common vulnerabilities in connected vehicles
systematically and quantitatively. The research steps for conducting this study
are shown in Fig. 1 and described below.

Fig. 1. An overview of research steps.

– Step 1: searching for vulnerability information in NVD.
– Step 2: collecting publicly available vulnerabilities (CVEs) in NVD.
– Step 3: collecting CVSS base metrics and CWE information.
– Step 4: analyzing vulnerabilities in terms of CVSS severity, CVSS metrics,

and weakness types (CWE).
10 https://www.us-cert.gov/ics/advisories-by-vendor.
11 https://www.upstream.auto/.
12 https://www.qualcomm.com/products/snapdragon-820-automotive-platform.

https://www.us-cert.gov/ics/advisories-by-vendor
https://www.upstream.auto/
https://www.qualcomm.com/products/snapdragon-820-automotive-platform
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3.1 Searching for Vulnerability Information in NVD

In the first step, we used three types of keywords:

(1) Vehicle-related terms to include all possible vulnerabilities and weaknesses
related to connected vehicles.

(2) Common vehicle components and networks. See Table 1 for an overview of
some vehicle components that could be found in the vulnerability sample
set. Common vehicle bus systems13 were also considered, including CAN,
LIN, MOST, and FlexRay.

(3) Major OEMs. 60 vehicle OEMs were considered, of which 47 OEMs have no
information available in the vulnerability database.

The complete list of keywords can be found below.

– Part 1: Vehicle-Related Terms
vehicle, car, automotive.

– Part 2: Common Vehicle Components and Networks
adaptive cruise control, adas, airbag, airbiquity, android auto, autoliv, blue-
tooth, braking system, carlink, carplay, collision prevention, control unit,
cruise, drivesync, engine control, infotainment, keyless entry, lane keep assist,
park assist, lidar, controller area network/CAN, local interconnect net-
work/LIN, media oriented systems transport/MOST, flexray, OBD-II, aas-
sive anti-theft system/PATS, radio data system, steering control, telematics,
tire pressure/TPMS.

– Part 3: Major OEMs
volkswagen, bmw, acura, audi, toyota, jeep, kia, mercedes-benz, skoda,
renault, ford, peugeot, nissan, hyundai, opel, mazda, saab, seat, subaru, dacia,
citroën, honda, great wall, cadillac, suzuki, land rover, rolls royce, porsche,
jaguar, mitsubishi, chevrolet, mini, lexus, alfa romeo, lancia, snapdragon
automobile, alpine, aston martin, bentley, bugatti, buick, changan, chrysler,
daimler, dodge, dongfeng, ferrari, fiat, fisker, geely, general motors, infiniti,
gmc, lamborghini, maserati, maclaren, tesla, pagani, ssangyong, tata motors.

3.2 Collecting Vehicle Vulnerabilities

During Step 2, 44 vulnerabilities with unique CVE numbers were identified in
NVD. The identified 44 vulnerabilities describe vulnerabilities related to at least
six different vehicle components and networks; keyless entry, Bluetooth, airbag,
Telematics, and CAN network.

Several vulnerabilities are related to two OEMs - BMW (9) and Tesla (6).
For BMW, all of the vulnerabilities identified are related to Infotainment compo-
nent/Telematics control unit of BMW i Series, BMW X Series, BMW 3 Series,
BMW 5 Series, and BMW 7 Series vehicles produced in 2012 through 2018,

13 https://automotive.softing.com/en/standards/bus-systems.html.

https://automotive.softing.com/en/standards/bus-systems.html
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Table 1. Examples of vehicle components covered.

Keyword Reason Examples

Airbag An airbag is a vehicle occupant
restraint system using a bag
designed to inflate extremely quick
then quickly deflate during a
collision

Exploitation allows an
attacker to send a crafted
Unified Diagnostic Service
(UDS) message to detonate
the pyrotechnical charges; [6]

Keyless Entry A keyless entry system is an
electronic lock that controls access
to a vehicle without using a
traditional mechanical key

An keyless entry system
makes Tesla Model S easier
for attackers to clone a key
fob within a few seconds

TCU TCU (Telematics Control Unit) is
an embedded system on board of a
vehicle that controls the tracking of
the vehicle

BMW vehicles produced in
2012 through 2018, allow a
remote attack via a cellular
network

Bluetooth Bluetooth connectivity is a popular
feature that allows an owner to
pair their phone with their car

BMW i Series, BMW X
Series, BMW 3 Series, BMW
5 Series, and BMW 7 Series
vehicles produced in 2012
through 2018 allows a remote
attack via Bluetooth when in
pairing mode, leading to a
Head Unit reboot

Gateway ECU Gateway ECU is an ECU that
connects two or more vehicular
networks by acting as a bridge to
them

Tesla Motors Model S
automobile’s Gateway ECU
is susceptible to commands
that may allow an attacker to
install malicious software
allowing the attacker to send
messages to the vehicle’s
CAN bus

OBD-II OBD-II monitors emissions,
mileage, speed, and other useful
data

BMW i Series, BMW X
Series, BMW 3 Series, BMW
5 Series, and BMW 7 Series
vehicles produced in 2012
through 2018 allows local
attacks involving the USB or
OBD-II interface

which opens to local/remote attacks. Whereas for Tesla, there were six vul-
nerabilities identified for different vehicle components, including entertainment
system that triggers firmware code execution, Passive Keyless Entry and Start
(PKES) system that allows an attacker to clone a key fob within a few seconds,
and a Gateway ECU that allows an attacker to install malicious software and
send messages to the vehicle’s CAN bus.
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3.3 Collecting CVSS and CWE Information

In this step, we collect CWE and CVSS metrics data for each CVE, as we aim
to analyze the underlying causes of each vehicle-related vulnerability (CVE) as
well as the impact of each vulnerability.

Table 2. Explanation of CVSS metrics that were studied.

Metric Values Description

Access Vector Local Local account or physical access required

Adjacent Access to either broadcast or collision domain

Network Remote access

Attack Complexity High Specialized access conditions

Medium Somewhat specialized

Low No specialized access conditions

Authentication Multiple Two or more times authenticated

Single Attacker needs to be logged on

None No authentication

Confidentiality None No impact

Partial Partial disclosure

Complete Total information disclosure

Integrity None No impact

Partial Modification of some files of data

Complete Total compromise of system integrity

Availability None No impact

Partial Reduced performance of interruptions

Complete Total shutdown of the affected resource

As an example of the first three research steps: (1) We use “Keyword Search”
in NVD to collect vulnerabilities related to Gateway ECUs. (2) CVE-2016-9337
was identified, which addresses an issue discovered in Tesla Motors Model S
automobile. All firmware versions before version 7.1 (2.36.31) with web browser
functionality enabled makes the vehicle’s Gateway ECU susceptible to com-
mands that may allow an attacker to install malicious software allowing to send
messages to the vehicle’s CAN bus. (3) Its CVSS v2.0 severity and metrics
information can be seen in Fig. 2. This CVE relates to the weakness type called
- Command Injection (CWE-77).

16 out of 44 identified CVEs do not have base metric scores in CVSS version
3.0, however all of them have CVSS version 2.0 scores. Therefore, CVSS base
metric scores of version 2.0 is used. Table 2 gives a short explanation of each of
the CVSS version 2.0 metric, these will be used for further analysis.
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Fig. 2. Example of a vulnerability entry, CVE-2016-9337, in NVD with its CVSS
metrics.

37 out of 44 CVEs identified had a weakness number (CWE) associated
with them and seven were found to be in the reserved status and thus missing
CWE information in NVD (i.e. NVD-CWE-noinfo, NVD-CWE-Other). To be
more specific, NVD-CWE-noinfo means there is insufficient information about
the issue to classify it, and details are unknown or unspecified. NVD-CWE-
Other means the weakness type is not covered by that subset. 21 different CWE
weakness types were identified and will be further analyzed.

4 Analysis

In this section, we summarize and interpret the collected CVE data. Focusing on
the CVSS metrics and the relations to software weaknesses (CWEs) that help
describe the underlying causes of the vulnerabilities.

Fig. 3. CVSS severity base score distribution.
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4.1 CVSS Metrics Analysis

First, we present the vulnerability analysis according to CVSS metrics (defined
in Table 2). An overview of CVSS severity base score distribution is shown in
Fig. 3. Value distributions of the three metrics, which capture how a vulnerability
is accessed and whether or not extra conditions are required, are shown in Fig. 4;
value distributions of the three impact metrics are shown in Fig. 5.

Fig. 4. CVSS metric value distributions for capturing how the vulnerability is accessed
and whether extra conditions are required.

CVSS Base Score. The base score value ranges from 1 to 10, where medium
vulnerabilities range from 4 to 6.9, and with 10 being the most severe. The score
is based on six metrics, where Access Vector, Access Complexity, and Authen-
tication metrics capture how a vulnerability is accessed and if extra conditions
are required to exploit it, while Confidentiality, Integrity, and Availability (CIA)
Impacts are defined as the degree of loss of CIA. These metrics are indepen-
dent, for example, a vulnerability could cause a complete loss of integrity and
availability, but no loss of confidentiality.

The results show that more than half (23) of the vulnerabilities fall into the
high severity category (base score higher than 7) and only 3 vulnerabilities fall
into the low severity category (e.g. CVE-2010-4565). Also, 18 vehicle vulnerabil-
ities identified fall into the medium severity category.

Access Vector. This metric reflects the context by which vulnerability exploita-
tion is possible. According to the analysis results shown in Fig. 4, 52% of the vul-
nerabilities can be exploited remotely. It is reasonable as vehicles are becoming
Internet-facing systems, and are interconnected thus open to remote attacks.
Whereas, none of these vulnerabilities belong to the adjacent network cate-
gory, meaning the vulnerabilities are either remotely exploitable or they require
attackers to access the target system locally.
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AttackComplexity. This metric describes the conditions beyond the attacker’s
control that must exist to exploit the vulnerability. According to our analysis
(shown in Fig. 4), 66% of the vulnerabilities can be exploited without restrictions.
Only 2 out of 44 vulnerabilities require specialized access conditions.

Authentication. This metric measures the number of times an attacker must
authenticate a target to exploit a vulnerability. As we can see in Fig. 4, almost
all of the vulnerabilities (40 out of 44) require no authentication, while only
9% of the vulnerabilities require an attacker to be logged on, and none of the
vulnerabilities need an attacker to be two or more times authenticated.

Fig. 5. CVSS base metric value distributions for CIA.

Confidentiality Impact. This metric measures the impact on confidentiality
of a successfully exploited vulnerability. In our analysis, the plurality (41%) of
these vulnerabilities lead to total information disclosure of vehicles, and only 27%
of them have no impact on confidentiality. However, even when one vulnerability
has total disclosure, it may not have a serious impact on connected vehicles unless
it also leads to serious integrity and availability compromises.

Integrity Impact. Integrity Impact measures the trustworthiness and veracity
of information, thus it is an important property for connected vehicles, and the
partial and complete impact should be minimized. However, according to our
analysis, the plurality (43%) of the vulnerabilities lead to full compromise.

Availability Impact. Availability Impact measures the impact a vulnerability
can have on the accessibility of its information resources, such as a network
service (e.g. web, database, email). According to the analysis, more than half
of the vulnerabilities can fully access vulnerable resources. It is interesting to
see that the portions of vulnerabilities that have no impact on Confidentiality,
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Integrity, and Availability are the same (27%), while not from the same set
of vulnerabilities. This is worrisome as many connected vehicles have real-time
constraints, therefore an Availability Impact with the Complete value can have
serious consequences.

4.2 CWE Analysis

In this subsection, we further analyze the identified vulnerabilities through weak-
ness types (CWEs). Based on the results, altogether 21 unique CWE types were
found. As we can see in Fig. 6, where the horizontal axis denotes the occurrence
frequency of a CWE, more than half of the CWEs occurred only once, and the
most frequent CWE was found seven times. According to the descriptive statis-
tics, the mean occurrence of a CWE was 1.76, and six of the CWEs belong to the
top 25% occurrence group. We also employ the CVSS v2.0 score to understand
the severity of the vulnerabilities for each CWE type.

Fig. 6. Frequency of weakness types identified in this study.

As we can see in Fig. 7, six out of seven vulnerabilities belonging to CWE-
693 (i.e. Protection Mechanism Failure) are ranked high, as these vulnerabili-
ties lead to total compromise of both Confidentiality, Integrity, and Availability
(CIA), whereas none of the vulnerabilities related to CWE-200 (i.e. Information
Leak/Disclosure) and CWE-310 (i.e. Cryptographic Issues) have high severity.

Table 3 gives a short explanation of the top 25% CWE types identified, and
provides suggested mitigations to counter these attack patterns (seen in Table 3).
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Fig. 7. Distribution of vulnerability severity of the top 25% common CWEs identified
in this study.

Table 3. Top 25% of CWE types identified with possible mitigations.

CWE ID Count Description Mitigations

CWE-693 7 Protection mechanism failure Use intrusion detection
systems; secure
communications between
ECUs

CWE-119 4 Buffer errors Use a language, or a vetted
library, or a framework that
does not allow this weakness
to occur; use static analysis
tools

CWE-200 4 Information leak/disclosure Set trust boundaries. Use
privacy mechanisms

CWE-310 3 Cryptographic issues Use strong cryptography and
properly manage the private
key

CWE-264 2 Permissions, privileges, and
access control

Design secure architecture

CWE-20 2 Input validation Use static and dynamic
analysis tools to test the
software

5 Discussion

In this paper, we conduct a study to find the most common weaknesses and
vulnerabilities for connected vehicles and provide some possible mitigations to
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the most common weaknesses found. The top 25% of the weakness types found
can be compared to the OWASP top 10 most critical web application security
risks14. To be more specific, protection mechanism failure can be compared to
broken authentication15, which is the most critical security risk. Information
leak/disclosure can be compared to sensitive data exposure16. Permissions, priv-
ileges, and access control can be compared to broken access control17, and input
validation can be compared to security misconfiguration18. Thus, our results
overlap with the OWASP top 10.

The combination of ECUs, sensors, and network buses creates a computerized
system in modern vehicles, which affects the potential number of vulnerabilities
as each of these components might have weaknesses. The results show that 52% of
the identified vulnerabilities can be remotely exploited (see in Fig. 4). It should
also be noted that the vulnerabilities are not always isolated in exploits, as
low-level vulnerabilities can be combined to achieve high-level attack goals [8].
Besides, 66% of the vulnerabilities can be exploited without specialized access
conditions.

The OBD-II port was made mandatory for all cars in the U.S. 1996 and
was introduced to all gasoline-fueled vehicles in Europe in 2001. During the
study, we found that OBD-II related components have the largest number of
vulnerabilities among the considered vehicle components, for example, it could
allow remote attacks to execute arbitrary code by specifying an update server.
If an OBD-II device has been compromised, its network connection can be the
second point of vulnerability. Therefore, it is important to use security tools e.g.
OBD-II scanners to diagnose and fix security problems.

The empirical study presented in [13] focusing on embedded systems in power
networks identified the most common problem as improper input validation,
whereas the most common vehicle weakness found in this study belongs to pro-
tection mechanism failure category. It implies that the protection mechanisms
e.g. correct access control of vehicles may be missing, therefore, using intrusion
detection systems and secure communications are important. In second place
was buffer errors, also information leak/disclosure that leads to compromise of
confidentiality is frequent, therefore, limit access to identifiable information, and
use privacy mechanisms can help to increase the level of confidentiality [16].

Our study has its limitations. First, we only use information from the vulner-
ability database NVD, while there are other vulnerability sources e.g. Upstream
for vehicle cyber attacks, ICS-CERT vendor advisories. Also, 60 major OEMs
are considered in this study, however, most of them do not publish security advi-
sories frequently. Due to the limited information available from NVD, the results
are skewed towards BMW and Tesla. Furthermore, we only try to find the vul-
nerabilities of in-vehicle networks (e.g. CAN bus, FlexRay), and the attacks that

14 https://www.owasp.org/index.php/Category:OWASP Top Ten 2017 Project.
15 https://www.owasp.org/index.php/Top 10-2017 A2-Broken Authentication.
16 https://www.owasp.org/index.php/Top 10-2017 A3-Sensitive Data Exposure.
17 https://www.owasp.org/index.php/Top 10-2017 A5-Broken Access Control.
18 https://www.owasp.org/index.php/Top 10-2017 A6-Security Misconfiguration.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
https://www.owasp.org/index.php/Top_10-2017_A2-Broken_Authentication
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
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can happen to them and to the connected components (e.g. ECUs). However,
vehicular Ethernet networks, diagnostics protocols, some popular public inter-
faces, and advanced connectivity capabilities e.g. V2X communications are not
included in this study.

This study can benefit our research. Threat modeling is proposed as a solu-
tion for secure application development and system security evaluations. It aims
to be more proactive and make it more difficult for attackers to accomplish
their malicious intents [15], and often, it is combined with attack simulations for
providing probabilistic simulation results. Previously, we conducted threat mod-
eling and attack simulations of connected vehicles [10,14] and found that more
research in vehicle-specific attacks and countermeasures is needed. Thus, this
work studying vehicle-specific vulnerabilities, weaknesses, and countermeasures
can help to provide more accurate simulation inputs.

This study can also add value to the vehicle industry for producing more
secured vehicles by identifying weakness types and providing their possible mit-
igations. As the connected vehicle is still in its early stage, a more secure vehicle
architecture is needed. Future work includes conducting research focusing on
the life cycle of modern vehicles, and further investigation of risk-prone industry
standards.

6 Conclusion

In this study, we investigated security vulnerabilities in vehicles including their
severity and impact, as well as the relation to software weaknesses. The informa-
tion was identified and collected through the National Vulnerability Database
(NVD). We identified several common weaknesses types. With the most common
being protection mechanism failure, that may lead to a complete compromise of
Confidentiality, Integrity, and Availability (CIA). As the vehicle industry needs
to continuously work on cyber security as an integral part of product develop-
ment, maintenance, and vehicle architecture design our study can provide some
guidelines in this work.
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Abstract. Microcontrollers storing valuable data or using security func-
tions are vulnerable to fault injection attacks. Among the various types of
faults, instruction skips induced at runtime proved to be effective against
identification routines or encryption algorithms. Several research works
assessed a fault model that consists in a single instruction skip, i.e. the
ability to prevent one chosen instruction in a program from being executed.
This assessment is used to design countermeasures able to withstand a sin-
gle instruction skip. We question this fault model on experimental basis
and report the possibility to induce with a laser an arbitrary number of
instruction skips. This ability to erase entire sections of a firmware has
strong implications regarding the design of countermeasures.

1 Introduction

Fault attacks (fa) consist in disturbing the operations of a target integrated cir-
cuit (ic) for the purpose of extracting secret information it may contain. Faults,
or computation errors, are injected by means of altering the target environmen-
tal conditions [2] (e.g. its voltage, temperature, frequency, etc.). The induced
information leakage generally aims at extracting a cryptographic key [4] or at
providing an unauthorized access to some of the target functionalities [9].

Laser illumination may also be used to inject faults into an ic [7,16]. Laser is
probably the most expensive fault injection means, however it makes it possible
to inject faults with high accuracy even at advanced technology nodes [10]. It
is accurate both in terms of timing (faults may be injected with laser pulses as
short as a few picoseconds [12]) and in terms of location (it affects mainly the
logic gate located within its spot size that may be as low as a few micrometers
[7]). This explains why significant research work is dedicated to the study of
laser-induced fas.

The properties of the faults induced by laser (or by any other fault injection
means) are referred to as a fault model (fm). It is often linked to a given attack
scheme and expressed as an ability to meet requirements in terms of synchro-
nization with the target activity and extension of the induced fault (e.g. the fm
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of the well-known Piret fa [14] requires to fault one byte of the aes algorithm
calculations before its last MixColumn transformation).

In this work, we report our analysis of the laser-induced instruction skip fm.
This fm relates to how a given instruction of a microcontroller program may be
skipped (i.e. not executed) at runtime. Several works already described this fm
and assessed the possibility of laser-induced single instruction skips [5,6,17]. The
assessment of fms on experimental grounds is of high interest regarding how fas
countermeasures (cms) are designed and tailored. As a matter of example, the
authors of [13] discussed two cms based on instruction redundancy designed on
the assumption that an attacker is only able to induce single instruction skips.
Would this assumption be proved wrong, their cms would be vulnerable.

Our experiments extend further this fm by reporting the feasibility of induc-
ing several successive instruction skips by laser illumination. It also assesses the
ability to skip several, but close, separate groups of instructions. This is a very
strong fm which is very difficult to defend against with software only cms.

This article is organized as follows. Section 2 discusses the state-of-the-art of
instruction skips and introduces the aim of our work. Our experimental setup
and settings are described in Sect. 3. Section 4 reports the obtained results. Then,
the assessed fm is discussed in Sect. 5. Section 6 concludes the paper.

2 The Laser-Induced Instruction Skip Fault Model

2.1 Fault Model Definition

A fm generally describes the main properties of a fa scheme, often expressed in
terms of requirements of synchronization (requirement to fault a particular step
of an algorithm or program) and of extension (requirement to limit the fault
extension, e.g. to a single bit or a single byte). In this work, we consider the fm
related to laser fault injection. It may be defined at different levels of abstraction
from transistor or gate level (as the authors of [10] did to describe laser-induced
bit-set and bit-reset faults) to the assembler or algorithm level. We studied the
fm of microcontrollers experiencing laser-induced instruction skips.

2.2 The Instruction Skip Fault Model, State-of-the-Art

An instruction skip is a fault that results in skipping, meaning not executing,
one instruction of a microcontroller program at runtime (as if the program flow
had skipped over the faulted instruction).

Several works studied the em-induced instruction skip fm. Most of them
assessed single instruction skips (in the same 8-bit microcontroller we used as tar-
get for [3], and on a 32-bit microcontroller for [13]). To the best of our knowledge,
the only works reporting several successive instruction skips are [15] and [20].
[15] assessed four successive skips of instructions stored in the target instruction
cache while [20] succeeded in faulting instructions stored in the target’s pipeline.

Several works also deal with laser-induced instruction skips. [5,6] obtained
single instruction skips with high accuracy and high success rate (on the same
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microcontroller we studied) and used it to perform a successful differential fault
attack on aes. Still on the same target, [11] reports instruction skips based on
resetting one or two bits of the targeted instruction opcode. The authors of
[17] induced instruction skips on a more complex 32-bit cortex-M3 microcon-
troller. They were able to inject two single instruction skips distant from 58 ms
to defeat a protected CRT-RSA algorithm. In terms of target complexity, [19]
reports injection of single instruction skips into a quad core ARM cortex A9
microprocessor running at 1.4 GHz clock frequency. Hence, the state-of-the-art
in laser-induced instruction skip was limited to single instruction skips (with a
repetition rate in the range of tens of ms).

2.3 Study of Laser-Induced Instruction Skips

There is to date very few explanations of how an instruction skip is induced
at the gate level, with the notable exception of [1]. It describes how increasing
progressively the stress applied by a clock glitch to a microcontroller induces
an increasing number of bit-reset faults into an instruction opcode. It results
in (1) instruction modification at low stress or (2) in turning the instruction
into an actual nop at high stress (i.e. the no operation instruction). Instruction
modification achieves an instruction skip if the modified instruction has no effect
on the code operations (instruction skips are often actual code modification);
the same is true for turning an instruction into a nop. An analysis of single
instruction skips due to instruction modification induced by laser is reported in
[8]. It relates how faulting one bit of an instruction opcode led to two successful
fas.

Our research objective was to reproduce laser-induced instruction skips on
a microcontroller and to study the main characteristics of its fm: accuracy,
extent, success rate, time between successful skips, etc. Our aim was also to
assess whether the single instruction skip fault model could be extended further
to multiple instruction skips. This latter aim was of interest because cms are
based on the known fms. Hence, a cm based on a too narrow fm may reveal
vulnerabilities at test time. From previous experiments and taking into account
the results of [1,5,6], we focused our experiments toward achieving instruction
skips by turning the target instructions into nop instructions. Our experiments
were carried out with the same 8-bit microcontroller studied by [1,3,5,6,11] for
comparison purposes and also to ease the analysis of the obtained results.

3 Experimental Settings

3.1 Laser Bench

Laser Source Parameters. Our laser source is a nanosecond range laser source
able to output a laser pulse with a 50 ns to 1 s tunable duration. It has a latency
of less than 300 ns (i.e. the time interval between the trigger signal and the
moment an actual laser pulse hits the target). Its wavelength is 1,064 nm (or
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Fig. 1. Schematic of the main components of the used ir laser source.

near infrared, nir). The use of a nir laser source allowed us to perform our laser
fault injection experiments through the target’s rear side because it is able to
pass through several hundreds of micrometers of silicon without being totally
attenuated (the silicon die was also thinned down from 500µm to 300µm). The
laser source max power is 3 W (measured at the fiber optic output) which is
enough to inject faults into the target. We performed our experiments with a
×20 objective lens: it outputs a laser spot diameter of 5µm. An infrared camera
was used to adjust the laser spot focus and location w.r.t. the target’s layout.

Laser Source Technology. Figure 1 provides a schematic view of the laser
source technology. Any outputted laser pulse is carved from a continuous laser
beam produced by a nir laser diode thanks to an electro-optical switch (the
laser diode operates on an ON/OFF basis). It takes 25 ns to open (resp. close)
the optical switch of our source and to output a laser pulse that reaches the
3 W nominal power (resp. to extinguish a laser pulse). This explains that the
shortest achievable laser pulse is 50 ns long. It also offers the ability to generate
several consecutive laser pulses with a pause time in between as short as 50 ns.
This repetition rate of 50 ns is a useful property for an attacker as underlined in
Subsect. 4.4. An electronic board drives the optical switch (denoted Electronic
cmd in Fig. 1). It features two laser shot modes, (1) the Trigger Mode and (2)
the GateIn Mode:

– in Trigger Mode, a single laser pulse is produced in response to a voltage
pulse delivered on the input bnc connector TrigIn (its duration, its power,
and its delay w.r.t. the trigger signal are programmable),

– in GateIn Mode, the optical switch openings and closings follow the shape
of the voltage signal applied on the input bnc connector GateIn. It makes
it possible to generate a succession of voltage pulses of arbitrary shape (only
constrained by the 25 ns open/close time of the switch).

A beam splitter captures a small amount of the laser pulse power that is con-
verted into a voltage by a photodiode (see Fig. 1). It may be observed on the
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source PulseOut output bnc connector. This feature is useful to observe the
synchronization of the actual laser pulse with the target activity.

Fig. 2. Frontside view of the ATmega328P test chip - Flash, ram and eeprom mem-
ories highlighted in red. (Color figure online)

Laser Bench. The target is placed on a XYZ stage (with 0.1µm accuracy).
An ir camera is used to observe the location of the laser spot. The activity of
the target and the laser source signals are recorded with an oscilloscope.

Laser-Sensitivity Map Drawing Process. Using a control pc to automate
the process, we moved the laser over the area of the targeted device by dis-
placement steps from 50µm to 5µm. For each position, we shot the laser while
the microcontroller was running the test codes described in Subsect. 3.3. This
allowed us to draw XY maps of laser-sensitivity: for each position where a fault
was recorded, we drew a dot colored according to the obtained faults. Such
laser-sensitivity maps were drawn for various laser power and timing.

3.2 Test Chip

We chose a simple target for the purpose of being able to analyse easily its
answers to fault injection: an 8-bit non-secure ATmega328P microcontroller
designed in the old cmos 0.35µm technology. It has 2 kB ram, 3 kB Flash and
1 kB eeprom memories; a Harvard architecture with a 2-stage fetch-execute
pipeline. It runs at 16 MHz and has 32 general purpose registers. Registers r16
to r25 were used during our experiments. Figure 2 gives a front view of the test
chip with its Flash, ram and eeprom memories highlighted in red. A red cross
near the device bonding pads on its left shows the XY origin we used as a
reference.
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3.3 Test Codes

We studied the effect of laser-induced faults on dedicated test codes mostly
written in assembly language. Our intent was to induce and analyze instruction
skips by examining their effect on the assembly instructions of the test codes.

For each test series, we used two trigger signals for synchronization purposes
(two outputs of the test chip):

Listing 1 Test code - Instruction skip analysis.
1 # Store 0x39 to 0x30 in RAM at address Z
2 # Initialize r16 to r25 at 0x55
3 # Set synchronization trigger
4 nop # 400 ns
5 # Set core trigger
6 ld r16,Z+ ld r16,Z+

7 ld r17,Z+ ld r17,Z+

8 ld r18,Z+ ld r18,Z+

9 ld r19,Z+ nop

10 ld r20,Z+ ld r20,Z+

11 ld r21,Z+ ld r21,Z+

12 ld r22,Z+ ld r22,Z+

13 ld r23,Z+ ld r23,Z+

14 ld r24,Z+ ld r24,Z+

15 ld r25,Z+ ld r25,Z+

16 # Clear core trigger
17 nop # 700 ns
18 # Clear synchronization trigger
19 # read back r16 to r25

– a synchronization trigger signal to accommodate for the latency of the laser
source,

– a core trigger signal to synchronize the actual laser shot (thanks to the
PulseOut signal) with the part of the assembly code of interest.

Listing 1 provides a description of the test code we used to tune our settings in
order to induce instruction skips. The core part of the test code (encompassed by
the core trigger) is a series of ten ld rX,Z+ instructions, each one corresponding
to a load in a destination register rX of a byte value stored in ram memory at
address Z with a post increment of Z. Prior to that, the ten destination registers,
r16 to r25, are initialized at 0x55 and an array of ten byte values 0x39 to 0x30
are stored in ram with Z storing the address of its first element. Registers r16
to r25 are read back after the synchronization trigger is reseted (the two top
blue signals in Fig. 4 are the synchronization and core triggers drawn for a fault
free execution). The top part of Table 1 displays the values read back from r16
to r25 for a fault-free execution.
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Table 1. Registers r16 to r25 readback values, for a fault free execution (top) and for
an instruction skip targeting r19 (bottom, highlighted in red).

Register 16 17 18 19 20 21 22 23 24 25
Fault free 0x39 0x38 0x37 0x36 0x35 0x34 0x33 0x32 0x31 0x30

Faulted 0x39 0x38 0x37 0x55 0x36 0x35 0x34 0x33 0x32 0x31

As an example, the right column of the test code core part in Listing 1 displays
the effect of a laser shot turning the ld instruction of line 9 into a nop instruction.
The effect of such a laser-induced instruction skip is highlighted in the bottom
part of Table 1: the initialization value 0x55 is read back from r19 (in red), and
because an increment of address Z is missing, all the values read back from r20
to r25 are shifted (in gray).

4 Experimental Results

4.1 Finding the Points-of-Interest

General Overview. Our first series of experiments aimed at finding a point
where laser illumination of our target would induce an instruction skip in the
test code of Listing 1. Using the synchronization trigger, the delay was set to
target the ld operation into register r19. The laser pulse duration was set to
200 ns (a little more than three clock periods) and its power to 0.5 W. In order to
gain a first insight of potential points of interest (i.e. inducing instruction skips),
we scanned the whole target area with XY steps of 50µm. The obtained results
are depicted in Fig. 3(a), while the color and shape code describing the faulty
behavior is given in Fig. 3(c). The color denotes the number of registers storing
the initialization value at read back indicating that the corresponding ld oper-
ations were not executed (from no register noted S0 to 10 registers noted SA),
the shape indicates the number of other incorrect values stored into the registers
at read back (from 0 noted E0 to 10 noted EA). As an example, the instruction
skip exemplified in the bottom part of Table 1 is depicted by a black× shape
(r19 storing the initialization value and r20 to r25 storing six incorrect values,
i.e. S1E6).

We identified the following faulty behaviors:

– Red squares on top near an analog block, locations for which the registers
read back was all zero. We did not study further this faulty mechanism.

– Red barred squares near the bottom left corner of the Flash memory for which
communication with the test chip was lost (until reset).

– Horizontal patterns spanning along the width of the Flash memory (identified
with letters from A to E) which were consistent with instruction skips as
explained in Table 1.
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Fig. 3. Laser sensitivity maps obtained while running Listing 1 test code: general
overview (a) and focused overviews (b, d); fault key (c). (Color figure online)

Spatial Focus on Points of Interest. Our next experiments focused on the
left edge of the Flash memory with an increased spatial accuracy: XY step set
to 10µm. On its left, Fig. 3(b) reports the observed fault model for a register
initialization value of 0x55. The green color of patterns B to E revealed fault
models that are not consistent with an instruction skip (the initialization value
was not found in any of registers r16 to r25 at read back). We do not report
any further analysis of the corresponding fault models since this research work
focuses on instruction skips. Note that the authors of [11] obtained similar fault
patterns on the same microcontroller, which they identified as bit reset faults
induced at read back on the 16-bit opcode instructions.

Instruction Skip Sensitive Area. Fault pattern A reveals a different behavior
(see sensitivity map of Fig. 3(d)). Several consecutive instruction skips, from one
(depicted in black) to six (depicted in grey), were obtained. The corresponding
shapes also revealed that the skips where followed by shifts of the values stored
into the registers following the skipped registers. In addition, the right map in
Fig. 3(b) shows with red crosses the fault locations where the duration of the
trigger signals was shortened by one or more clock periods. It further reinforces
our analysis that the instruction skips in pattern A are obtained by turning the
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ld instructions into nop instructions. Because execution of a ld instruction takes
two clock periods contrary to a nop instruction which takes one clock period, each
consecutive instruction skip shall correspond to a reduction of the test code of
one clock period. This phenomenon is displayed in Fig. 4 for a single instruction
skip. The test code execution time is shortened as well as the duration of the
triggers signals: the fault free execution triggers in blue last one clock period
more than the faulted execution that is drawn in red (the third signal, in red,
is the laser source PulseOut output which shows the actual timing of the laser
pulse). For each fault injection location of pattern A, we observed a shortening
of the trigger signals equals to the number of instruction skips multiplied by the
clock period.

Fig. 4. Synchronisation trigger signals with and without a laser shot (depicted in red
and blue resp.), and PulseOut laser source output signal. (Color figure online)

4.2 Laser-Induced Instruction Skip, Test of Accuracy

The left part of pattern A, lying outside the Flash memory, seemed more promis-
ing in terms of ability to induce instruction skips. We performed there a set of
experiments with an increased XY step accuracy of 5µm and laser settings rang-
ing from 0.2 W to 0.5 W (0.1 W step) and 50 ns to 125 ns duration (25 ns step).
Our objective was to find parameters allowing to induce single instruction skips
with high repeatability. We were indeed able to find several locations where we
induced such single instruction skips on r19 with a 100% success rate (the laser
parameters were set to 75 ns pulse duration and 0.4 W power). These locations,
close to (950µm; 1,350µm) (see map of Fig. 3(d)), were used for the experiments
reported hereafter.
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Fig. 5. Faulted registers as a function of laser injection time: laser power of 0.4 W and
duration of 75 ns (a) and 125 ns (b).

In terms of accuracy, we also tested whether this single instruction skip fault
model was still valid while targeting the ld instruction of the other test registers.
Our aim was to assess an attacker ability to target arbitrarily a single instruction
of a program. To do so, we varied the time delay between the laser shot and the
synchronization trigger signal to span the whole test code. Figure 5(a) reports
the obtained results. It displays the skipped registers as a function of the delay.
It reveals that an attacker is able to inject laser-induced single instruction skips
into a running microcontroller with high timing accuracy. For each instruction,
we were able to find an injection timing leading to 100% success rate (this success
rate may be lower than 100% while passing from one instruction to the other).
At some timings, two consecutive instructions were skipped (e.g. at 1,390 ns or
1,625 ns in Fig. 5(a)), suggesting that several consecutive instructions may be
skipped simultaneously. For the purpose of verifying this suggestion, we again
carried out our experiments with a laser duration increased to 125 ns (two clock
cycles) and a delay step set to 20 ns. The corresponding results are displayed in
Fig. 5(b). It shows that increasing the laser duration to 125 ns makes it possible
to skip two consecutive instructions with a still high timing accuracy (i.e. the
ability to choose the two skipped instructions).

4.3 Laser-Induced Arbitrary Number of Instruction Skips

We also tested whether increasing the laser pulse duration would make it possible
to skip an arbitrary number of consecutive instructions. The laser power was kept
constant at 0.4 W, and the delay was set to target the ld instruction of register
r19. The test series were carried out for a pulse duration ranging from 50 ns to
410 ns with an increment step of 30 ns. Figure 6 reports the obtained results.

A first instruction skip was obtained for a laser pulse duration of 80 ns. Then,
the number of instruction skips increased progressively with the pulse duration
up to 7 consecutive skips at 350 ns. On average an additional instruction skip was
obtained for every 60 ns increment of the laser pulse duration. For each number
of instruction skips between 1 and 7, we were able to find settings leading to a
100% success rate.
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This suggested that a fault model for which an attacker has the ability to skip
an arbitrary number of code instructions (i.e. a chosen number) is feasible. We
used the test code shown in Listing 2 to ascertain the highest possible number
of consecutive skips. Its structure is similar to the code of Listing 1: a set of
target assembly instructions marked by a core trigger encompassed by a larger
synchronization trigger with nop instructions in between. We chose the adiw,
or add immediate to word, instruction as target. The target part of the test
code had several successive adiw instructions used to increment by one the 16-
bit word stored in the r25:r24 registers pair. We chose it over other addition
instructions because it lasts two clock cycles, hence each adiw faulted into a
nop shall be ascertained both by the final value stored in r25:r24 and by a
shortening of the trigger signals.

Fig. 6. Faulted registers as a function of the laser pulse duration (laser duration from
50 ns to 410 ns, 0.4 W laser power).

Listing 2 Test code - Max. number of instruction skips.
1 # Initialize r25:r24 at 0x0000
2 # Set synchronization trigger
3 nop # 300 ns
4 # Set core trigger
5 adiw r24,0x01

6 ... # 300 times
7 adiw r24,0x01

8 # Clear core trigger
9 nop # 300 ns

10 # Clear synchronization trigger
11 # read back r25:r24

For our experiments, r25:r24 was initialized at 0x0000 and the sequence
of adiw instructions set to 300. The laser power and delay were set to 0.5 W
and 800 ns. As we increased progressively the laser pulse duration, an increased
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number of adiw instructions were skipped, for which the shortening of the trigger
signals was in accordance with the number of missing additions into r25:r24.
Table 2 gives the number of obtained successive instruction skips for a selection
of laser pulse durations. It took a 20,400 ns long laser pulse to skip the whole 300
adiw instructions. Note that the reproducibility of the experiments decreased a
bit as the laser pulse duration increased: the number of induced skips varied from
1 or 2 skips at 1,000 ns to 4–5 skips above 10,000 ns from one experiment to the
other. We did not test the number of skipped instructions beyond 300. There is
a maximal number of instruction skips set by the endurance to laser illumination
of the target circuit. Indeed, our device was destroyed when accidentally exposed
to a continuous laser pulse at the same 0.5 W power. However, the device we used
for these experiments showed no sign of fatigue after several tests at 20,400 ns
laser pulse duration.

Table 2. Number of obtained instruction skips vs laser pulse duration

Laser pulse duration (ns) 1,000 2,000 5,000 10,000 20,400

Number of instr. skips 17 33 82 143 300

4.4 PIN Bypass with Several Laser Pulses

The technology of our laser source (see description given in Subsect. 3.1) makes
it possible to carve several consecutive pulses in the continuous laser beam deliv-
ered by a laser diode. Using such a sequence of laser pulses an attacker might
be able to skip several sections of arbitrary length in the target’s firmware.

In order to assess the feasibility of this fault injection technique, we targeted
a 4-digit PIN verification algorithm (described in [9]). It is protected against
side channel timing analysis by a constant-time implementation: every of the
digits entered by the user are compared with those of a reference PIN. The four
corresponding comparison loops are shown in Listing 3, where i is the index of
the user and reference PIN arrays (resp. a1[i] and a2[i]), PINSIZE the PIN
code length, BOOL TRUE and BOOL FALSE are resp. the true and false boolean
values, and diff a variable indicating whether the user and reference PINs
differ or not. diff set to BOOL TRUE indicates that the user and reference PINs
are different: as a result the user identification will be rejected (this part of the
code is not shown). diff is initialized at BOOL FALSE before running the PIN
arrays compare loops.
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Listing 3 C code of the PIN arrays compare loops.
1 BOOL diff = BOOL_FALSE;

2 ...

3 for(i = 0; i < PINSIZE; i++) {

4 if(a1[i] != a2[i]) {

5 diff = BOOL_TRUE;

6 }

7 }

Laser-induced fault injection may be used to force the identification of an
attacker using a wrong PIN. As illustrated in [8], where a laser-induced mod-
ification of one instruction of a similar PIN algorithm permits to perform a
PIN bypass. [9] describes, on simulation basis, several instruction skip attacks
that may result in a successful PIN bypass: most of them targeting one or a
few successive code instructions. We chose to implement that which consists in
skipping the four instructions in charge of setting diff to BOOL TRUE when a
false user PIN is used (line 5 of Listing 3). This fault model is often considered
as unlikely because the laser pulse repetition rate of laser sources may be too
long. However, our laser is able to meet the 875 ns duration of the PIN compare
loops (it is able to emit successive pulses in less than 50 ns). We were able to
synchronize four 60 ns long laser pulses in order to skip the instructions used to
set diff to BOOL TRUE (with a 0.5 W laser power) and gain identification with a
false user PIN. Figure 7 displays the core trigger signal encompassing tightly the
comparison loops and the PulseOut signal showing the actual timing and shape
of the four laser pulses.

Fig. 7. Laser-induced PIN code bypass induced by four laser pulses emitted in a row
(4 × 60 ns, 0.5 W, 875 ns interval).
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5 Discussion

5.1 Laser-Induced Instruction Skip Fault Model

A Powerful Fault Model. This work, based on experimental results, studied
the instruction skip fm obtained on an 8-bit microcontroller exposed to laser
illumination. It demonstrates that a very high accuracy is achievable: we were
able to choose and skip a single instruction into a test sequence with a 100%
success rate. Moreover, what gives a particular strength to this fm (and where
its novelty lie w.r.t. [15,20]) is the ability, by increasing the duration of the laser
pulse, to skip an arbitrary number of consecutive instructions of the target’s
firmware. Provided an attacker is able to find out the adequate laser settings,
he shall be able to erase an entire section of a program. Using a laser source
with low repetition rate (less than 50 ns in our case), we were also able to skip
instructions in the four comparison loops of a PIN code verification algorithm.
It made it possible to bypass the PIN verification. This further extends the fm’s
ability to skip (i.e. erase) several sections of arbitrary length of a microcontroller
firmware at runtime.

The strength of this fault model may questions the feasibility of software
cms (a question already raised by [20]): if an attacker has the ability to erase
arbitrary sections of a firmware, he will also skip the software cms it contains.
However, secure ics embed various types of cms (e.g. laser sensors, hardware
redundancy, etc.) that are not put at risk by this fm.

Denomination of the Fault Model. The laser-induced instruction skip fm
relies on two possible mechanisms: (1) injecting faults into an instruction opcode
[8,11] that turn it into another instruction, or (2) replacing it by a nop instruction
(this work). In neither case is the instruction really skipped over. The faults
we obtained may rather be described as nop-ization or as instruction erasure.
However, we stuck with the instruction skip denomination for the purpose of
avoiding confusion; though, the underlying phenomenon is not an actual skip.

5.2 Synchronization

The fault model we explored is powerful both in terms of accuracy (the ability to
skip a single chosen instruction) and of extent (ability to skip several consecutive
instructions). However, we used a white box approach for which we used trigger
signals to synchronize the laser shots with the test codes. The lack of a trigger
signal shall be one of the main difficulty to be tackle with for a real attack case:
difficulty of synchronization constitutes a useful and effective counter-measure.

Though, the use of a smart trigger based on real-time pattern recognition of
a side channel signal (e.g. the power consumption of the target) may allow an
attacker to obtain an accurate synchronization with the operations of its target
(as in [18]). Then, the use of a first synchronization may be used to perform
a complex attack. As an example, consider the PIN bypass case described in
Subsect. 4.4. An attacker may reverse a PIN verification algorithm in a black
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box scenario for which the PIN algorithm is unknown, provided he owns a valid
identification PIN in order to reinitialize periodically the number of PIN trials (it
is usually limited to three). This is a four steps process (considering a four digits
PIN code). The first step consists in synchronizing a first laser pulse with the
first compare loop (see Listing 3) by using a PIN code having a first false digit
and three other correct digits. The first synchronization step is achieved when
the PIN identification is obtained. Then, iteratively the same process may be
used one digit after the other to obtained a full synchronization of the attack. As
soon as, the time profile (and laser settings) of a successful PIN bypass is known
to the attacker, he will be able to reproduce the attack and gain illegitimate
access to whatever is protected by the same PIN verification algorithm.

5.3 Generalization

Our experiments were carried out on a non-secure AVR 8-bit microcontroller
which architecture was introduced in 1997. This raises the question of the gen-
eralization of the obtained fm to up-to-date microcontrollers. A firm answer to
this question is certainly to be based on actual experiments on other targets
(e.g. 32-bit microcontrollers).

However, several research works provide indications in favor of generalization.
[17] reports laser-induced single instruction skips obtained on a 32-bit cortex-
M3 target. The laser sensitive area they identified is located close to the Flash
memory of their target, in a similar way of our work. This suggest that a similar
mechanism may be at work, even though they did not test the feasibility of
successive instruction skips. The authors of [8] also induced single instruction
skips through laser illumination into a cortex-M3 microcontroller by faulting a
single bit of the targeted instruction (hence inducing an instruction modification
equivalent to an instruction skip because the modified instruction had no effect
on the executed test code). The physical mechanism they revealed as the root
cause of this instruction skip (a laser-induced discharge of a bitline of the Flash
memory) appears compatible with induction of several skips if a long laser pulse
is used. In terms of accuracy, [10] reports that single bit faults may be induced
by laser in targets designed in a technology as advanced as the 28 nm cmos
process. These different research works suggest that a fm for which a single or
several successive instruction skips may be feasible with careful tuning of a laser
shot parameters and should be considered when designing a secure circuit.

6 Conclusion

This research work assesses on experimental basis an extended fault model for
laser-induced instruction skips. The main characteristics of this fault model are:

– its accuracy, or ability to choose the skipped instruction with a 100% success
rate provided a precise synchronization is obtained,

– its extension, or ability to skip an arbitrary number of successive instructions,
– its flexibility, or ability to skip several sections of the targeted firmware.
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Simply put, laser fa may offer an attacker the ability to erase chosen parts of
a microcontroller firmware at runtime. Generalization of this fm beyond the case
of our 8-bit target is to be proven, though several results provides arguments in
favor of such a possibility. However, this first experimental assessment speaks in
favor of considering it when designing cms. A task that may prove difficult to
complete given the assumption that any part of a software cm might be skipped.

Acknowledgment. This research has been partially supported by the European Com-
mission under H2020 SPARTA (Grant Agreement 830892).

References

1. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box charac-
terization of the effects of clock glitches on 8-bit MCUs. In: Fault Diagnosis and
Tolerance in Cryptography (2011)

2. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100,
3056–3076 (2012)

3. Beckers, A., et al.: Characterization of EM faults on ATmega328P. In: International
Symposium on Electromagnetic Compatibility. IEEE (2019)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

5. Breier, J., Jap, D.: Testing feasibility of back-side laser fault injection on a micro-
controller. In: Proceedings of the WESS 2015: Workshop on Embedded Systems
Security, New York, NY, USA (2015)

6. Breier, J., Jap, D., Chen, C.N.: Laser profiling for the back-side fault attacks: with
a practical laser skip instruction attack on AES. In: Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security, New York, NY, USA (2015)

7. Buchner, S., Miller, F., Pouget, V., McMorrow, D.: Pulsed-laser testing for single-
event effects investigations. IEEE Trans. Nuclear Sci. 60(3), 1852–1875 (2013)

8. Colombier, B., Menu, A., Dutertre, J.M., Moëllic, P.A., Rigaud, J.B., Danger, J.L.:
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Linköping University, Linköping, Sweden
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Abstract. Microarchitectural attacks such as Meltdown and Spectre
have attracted much attention recently. In this paper we study how effec-
tive these attacks are on the Genode microkernel framework using three
different kernels, Okl4, Nova, and Linux. We try to answer the question
whether the strict process separation provided by Genode combined with
security-oriented kernels such as Okl4 and Nova can mitigate microar-
chitectural attacks. We evaluate the attack effectiveness by measuring
the throughput of data transfer that violates the security properties of
the system. Our results show that the underlying side-channel attack
Flush+Reload used in both Meltdown and Spectre, is effective on all
investigated platforms. We were also able to achieve high throughput
using the Spectre attack, but we were not able to show any effective
Meltdown attack on Okl4 or Nova.

Keywords: Genode · Meltdown · Spectre · Flush+Reload · Okl4 ·
Nova

1 Introduction

It used to be the case that general-purpose operating systems were mostly found
in desktop computers and servers. However, as IoT devices are becoming increas-
ingly more sophisticated, they tend more and more to require a powerful operat-
ing system such as Linux, since otherwise all basic services must be implemented
and maintained by the device developers. At the same time, security has become
a prime concern both in IoT and in the cloud domain. This is driven both by
increasing regulatory demands as well as end-user expectations in this regard.
Putting these two trends together we see that operating system security is now
more important than ever.
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The principle of least privilege is a fundamental pillar in security engineer-
ing and dictates that any entity should only have access to the information
and resources that it needs to fulfil its purpose. In the context of operating
systems, this principle supports the use of microkernels, or microvisors (i.e.,
minimal hypervisors operating on the same principle). There are many variants
of these, but the basic idea is to have as little of the operating system func-
tionalities implemented in the kernel/hypervisor itself. Services such as process
and memory management require the CPU to operate in privileged mode and
are therefore part of most microkernels, whereas much of the filesystems and
many device drivers can be implemented in user mode (given the right system
call interfaces). There are today a number of operating system components and
framework developed with security in mind. A prominent example is Genode
which is a framework for building secure OSs using a microkernel and provides
strong isolation guarantees and resource budgeting for individual components.
The basic idea is that Genode enforces a recursive and capability based struc-
ture, such that components have exact capabilites and may grant any subset of
those capabilites to its children. Genode has been developed to run on multiple
kernels, such as Nova, Okl4 and Linux.

The security property of such frameworks which guarantees process isolation
hinges on basic assumptions on the underlying hardware that have in recent
years been shown not to hold. Attacks such as Meltdown and Spectre and later
variants thereof rely on CPU optimisations where the processor performs activ-
ities that might be useful in future computations, but which are supposed to
be invisible to the processes if they are not used. However, by using some side-
channel attack (e.g., involving the cache), the microarchitectural state of these
tentative computations can leak to the outside.

It would be naive to assume that a microkernel architecture necessarily pro-
tects against microarchitectural attacks. On the other hand, strong isolation
properties could potentially mitigate some of the proposed attacks by making
some or other step in the attack impossible or less powerful. It has been sug-
gested1 that the impact should be smaller on Genode than on standard OSs, but
so far, there has not been any proper scientific studies on this topic. Schmidt
et al. [13] demonstrated ways to circumvent security policies for Genode’s IPC
and implemented a covert channel which abused a file system cache. However,
to the best of our knowledge, there has been no previous work demonstrating a
violation of Genode’s memory separation.

In this paper we ask the question of whether and if so to what extent a
microkernel framework together with state-of-the art secure microkernels such
as Okl4 and Nova protects against microarchitectural attacks such as Spectre
and Meltdown. Building on previous work (often only provided in blogs and
discussion forums) we describe how these attacks can be implemented on three
different kernels (Okl4, Nova and Linux), all on top of the Genode framework.
Since these attacks are inherently based on time-measurements, we discuss how

1 N. Feske. Side-channel attacks(Meltdown, Spectre). 2018. URL: https://sourceforge.
net/p/genode/mailman/message/36178974/ (visited on 2019-01-16).

https://sourceforge.net/p/genode/mailman/message/36178974/
https://sourceforge.net/p/genode/mailman/message/36178974/
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to tune the mechanisms to achieve the highest possible throughput, and also
what other measures must be taken to make the attacks work. We demonstrate
that the underlying side-channel attack (Flush+Reload) of both Meltdown and
Spectre works well on all three platforms and that same holds for the Spec-
tre V1 attack. For Meltdown on the other hand, while running without prob-
lems on Genode+Linux, we have not been able to show a successful attack on
Genode+Okl4 or Genode+Nova. We discuss the reasons for this and potential
implications.

The contributions of the paper can be summarised as follows.

– Demonstration of how the Flush+Reload side-channel attack and Spectre V1
attack can be successfully performed on Genode using three different kernels.

– An experimental evaluation of the throughput of Flush+Reload and Spectre
achieved under different parameter settings.

– Partial results on the effectiveness of the Meltdown attack.

2 Background and Related Work

In this section, we first give a brief introduction to the two main microarchi-
tectural attacks studied in this paper, Meltdown and Spectre, followed by a
description of related work.

2.1 Meltdown and Spectre

Meltdown is a microarchitectural attack which exploits the fact that some mod-
ern CPUs may execute instructions out of order [9]. Specifically, Meltdown can
read memory from an addressable memory space which it should not be able
to read from. Lipp et al. [9] used a Meltdown exploit to read memory from the
kernel and other user processes in Linux. This was possible as the Linux ker-
nel’s memory was mapped into the address space of each user process. Genode’s
founder Feske has stated that some in-kernel data structures in Genode are likely
vulnerable to the Meltdown attack (see footnote 3).

Spectre relies on the fact that some modern CPUs may speculatively execute
instructions [6]. There are different versions of the Spectre attack (e.g., [6,11]),
we will be looking at Spectre version 1. Spectre version 1 exploits speculative exe-
cution to bypass boundary checks. An attacker could use this attack to execute
code which bypasses a boundary check and leaks information to the attacker.

Both Meltdown and Spectre rely on an attacker being able to transmit gath-
ered data to and from the cache. Flush+Reload is a Side-Channel Attack (SCA)
which abuses the time difference of fetching uncached and cached data [17]. This
channel can be used in the context of Meltdown and Spectre to first read ker-
nel memory into a cache exploiting their respective CPU optimisations. If the
address which is cached is carefully crafted, the time with which a process can
access this address can be measured to retrieve information.
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SCAs extract information from another system or user by abusing some
aspects of the system which are not supposed to transmit information. A side
channel can also be used as a covert channel, i.e., a channel in which two col-
luding actors communicate via a side channel.

2.2 Related Work

There has been work on Genode related to security, such as Constable et al. [3]
who worked on extending formal Sel4 verification to Virtual Machine Monitor
(VMM) running on Genode. Other works have focused on using Genode as a
means to achieve a secure OS. Brito et al. [1] used Genode as a secure kernel base
to process images securely on an ARM TrustZone cloud environment. However,
Genode has seen little work related to microarchitectural attacks and side chan-
nels. Schmidt et al. [13] constructed a covert channel in Genode which exploited
a software cache to construct a timing channel. However, to the best knowledge
of the authors, there has been no other work relating to SCAs in Genode.

Side Channels. Xiao et al. [16] demonstrate a covert channel using execution
time for write accesses to shared memory pages. They leverage the Copy-On-
Write (COW) technique, which is commonly used for shared memory imple-
mentations. They also demonstrate, using this technique, examples of a covert
channel transmitting 50–90 bps for practical applications.

Pessl et al. [12] present a covert cross CPU channel utilising varying access
times of memory banks in DRAM. They demonstrated a channel with a capacity
of 2.1 Mbps with an error probability of 1.8% and across VM channel with a
capacity of 596 kbps with an error probability of 0.4%

Microarchitectural Attacks. Mcilroy et al. [11] examined the deep seated impli-
cations of how Spectre and incorrect hardware models affect confidentiality-
enforcing programming languages. The authors show that these confidentiality
guarantees are completely compromised by Spectre. Koruyeh et al. [7] show that
the Return Stack Buffer (RSB) could be exploited instead of the BPU, thus
introducing a class of SpectreRSB attacks. Koruyeh et al. were not successful
in demonstrating these attacks on ARM and AMD CPUs. However, ARM and
AMD CPUs also utilise an RSB and should therefore be vulnerable.

There has also been work examining SCAs targeting ARM Trustzone. Lapid
and Wool [8] mounted a side-channel cache attack against the ARM32 AES
implementation used by the Keymaster trustlet. Another work by Bukasa et al.
[2] demonstrate the ineffectiveness of Trustzone to prevent power analysis SCAs.

Microarchitectural attacks are also a quickly progressing field. A recent work
by Schwarz et al. demonstrated the ZombieLoad attack, a new type of microar-
chitectural attack which exploits a fill buffer to read data from other processes
[14]. This fill buffer is a type of load queue which is shared between hyper threads.
This buffer can under certain circumstances trigger a load which has been ini-
tially issued on another core and thereby can leak data from loads issued by
other processes [14].
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Security by Virtualisation. Using a small kernel is not the only way to potentially
enhance the security of a system. Another feasible option is to use different
virtual systems to separate processes. The virtual systems need to be running
on a hypervisor, which may be attacked. Thongthua and Ngamsuriyaroj [15]
discusses some weaknesses they found in popular hypervisor software. However,
the abstraction of virtualisation does not prevent microarchitectural attacks such
as Meltdown or Spectre [6,9]. Irazoqui et al. [5] recovered an AES key in a cross-
virtual machine setup using a SCA that abused the Last-Level Cache (LLC).
The attack is not dependent on the virtual machine running on the same core
since the LLC cache was used. Virtualisation also adds to overhead by handling
multiple OSs running on the hardware.

3 Methodology Overview

In this section we provide an overview of the methodology used in the paper.
First, we elaborate on the problem statement by asking three questions regard-
ing the feasibility of performing microarchitectural attacks on the Genode frame-
work. We then proceed to explain our choices of platforms (i.e., what kernels we
investigate) and metric (how the attacks have been evaluated).

3.1 Problem Statement

This paper aims to study the impact of microarchitectural attacks on micro-
kernels. In particular, we investigate effectiveness of Meltdown and Spectre on
microkernels. Our investigation can be summarised with the following three
research questions.

1. Can Flush+Reload be used to create a covert channel between two processes
in Genode, measured as the throughput of demonstrated channel?

2. Are Remote Procedure Call (RPC) mechanisms in the microkernels Nova and
Okl4 vulnerable to the Spectre Version 1 (Spectre V1) attack, measured as
throughput of demonstrated attack?

3. Can the Meltdown attack be executed on Genode?

We try to answer these questions by implementing these attacks on the Gen-
ode framework using three different kernels as explained below.

3.2 Choice of Platforms

The overall goal of this paper is to study how well a microkernel architecture
can withstand the new class of microarchitectural attacks such as Meltdown
and Spectre. There is of course a large number of microkernels available and we
have opted to study two of them, Okl4 and Nova. Moreover, we decided to use
the Genode framework as a common base for both these kernels as well as in
combination with Linux. Genode was chosen since it provides the surrounding
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services needed to run several different microkernels. Moreover, its strict process
separation, adherence to a minimal kernel and open-source code nature make it
interesting as a basis for secure operating system design.

We chose two microkernels/microvisors Okl4 and Nova that are designed with
security in mind and therefore could potentially provide some protection against
the studied attacks. We also tried to use the Sel4 microkernel as it has been
formally verified against its specification. Unfortunately, Sel4 on Genode was at
the time of our study not well-supported and we did not manage to perform any
tests using this kernel.

The Nova kernel, which is a microvisor, is a research project aimed at secure
virtualisation. Similar to a microkernel, it provides essential functionality for
virtualisation like communication, scheduling and resource management2.

Okl4 is an open-source microkernel based on the L4 microkernel. It can be
used as a hypervisor or as a real-time OS and has been used practically by
General Dynamics3.

3.3 Measuring Attack Effectiveness

To measure the channel’s or the attacks’ throughput, a fixed string message m
of length n was transmitted. Throughput T was then calculated as the number
of correctly transmitted bytes per second (Bps) of transmission. This definition
of throughput has been used to measure other microarchitectural attacks [7,9].
A byte in position i was considered correctly transmitted if the received byte ri
had the same value as the message byte mi. The throughput of the channel, T ,
was calculated as

T =
∑n

i=0 C(mi, ri)
tn

, (1)

where tn is the total execution time in seconds, and C(m, r) = 1 if m = r and 0
otherwise. An array of size 2048 bytes was used to measure throughput. Every
leaked byte was forwarded via serial communication to the measuring system.

Genode’s timer object was used in Nova and Linux to measure the total
execution time, tn, with millisecond accuracy. The timer object was not used
on Okl4; instead, a timer at the measuring system was used to measure tn.
On Okl4, a start-timer command was transmitted via the serial port before
the first transmission byte and an end-timer command after the last byte. The
timer on the measuring system was started and stopped by these commands.
The execution time, tn was transmitted after transmitting all bytes if Genode’s
timer object was used.

4 Attack Implementation

In this section, we first describe how the Flush+Reload channel was imple-
mented, followed by a description of the Meltdown and Spectre implementations.
2 NOVA Microhypervisor. URL: http://hypervisor.org/ (visited on 2019-03-19).
3 https://gdmissionsystems.com/en/products/secure-mobile/hypervisor.

http://hypervisor.org/
https://gdmissionsystems.com/en/products/secure-mobile/hypervisor
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4.1 Implementing the Flush+Reload Channel

We implemented a Flush+Reload channel on all three platforms. Some adap-
tations were required such as using the rdtsc instruction rather than rdtscp for
time measurements on Nova.

To setup the Flush+Reload channel, we allocated shared memory to a size
of (256 + 2) * Padding. There were 256 addresses to distinguish addresses as
different values. These addresses were offset using a padding to prevent prefetch-
ing between values (another CPU optimisation). Padding was also used at the
beginning and at the end of the array to prevent prefetching of shared memory
addresses from accesses outside of the array. By performing memory accesses on
this array at a given location the memory location is cached and therefore this
is indirectly transmitted. The receiver can then measure access times to each
address in the array and conclude which corresponding value was transmitted.

Measuring Cache Hits. A threshold was used to decide whether a value was
cached or not cached. This threshold was determined by profiling the time it
took for the CPU to access cached and uncached values [17]. The Level 1 (L1)
cache or LLC was used depending on the attack design. Therefore, two thresholds
were defined. One threshold above the L1 cache and one above the LLC.

We assume a memory model of access times as shown in Fig. 1. In this figure,
tLLC is the upper bound for the LLC and tL1 is the upper bound to access
the L1 cache. The thresholds tLLC and tL1 are chosen as the upper bound of
the measurements for the LLC and L1 cache respectively. This choice was made
arbitrarily, with the intent of minimizing false positives while preserving true
positives.

DRAMLLC

tLLC

L1

tL1

Access Time →

Fig. 1. A model of memory access times for different memory levels.

The time of accessing uncached values was measured by first removing the
array from the cache, and then measuring the time for accessing each address. A
similar method was used to measure the timings for the L1 cache. Two processes
were used to measure the access times to the LLC, one process which cached
the values and one process which timed the access time. If the two processes get
scheduled on the same core, the values may be cached in either the L1 cache or
the LLC.
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Preventing Data Prefetching. If a program accesses some sequential data from
memory, the CPU will prefetch the coming data items to reduce waiting times.
However, since the goal of a Flush+Reload channel is to detect cache hits, this
prefetching interferes with these measurements. By adding space between the
accessed data items (padding), we can avoid prefecthing. However, too large
padding results in excessive memory footprint and slower performance. There-
fore, we adopt the use of Strided Read Generator (SRG) [10], which effectively
reduces the padding size, while still preventing prefetching. The access pattern
is then xsi = ai + b mod m, where a ≡ 1 (mod p) for all prime factors p in m.

The SRGs were evaluated for the padding sizes 4096, 2048, 1024, 512, 256
and 128. The limits 4096 and 128 were used as they are the page size and cache
line size on the tested system. Consequently, the CPU does not prefetch for
padding sizes over 4096 bytes and padding below 128 bytes does not guarantee
separation between values.

All SRGs where m = 256, a ∈ [1, 255] and b = 0 were evaluated. The offset
b = 0 was chosen as a constant offset should not affect prefetching and to limit
the number of SRGs to evaluate. Two SRGs are presented, the one with the
best performance in Eq. (2) and an arbitrarily chosen worse SRG in Eq. (3).
The second is used to illustrate the characteristics of a poor performance SRG.

xi = 49i + 0 mod 256 (2)

xi = 33i + 0 mod 256 (3)

Reducing Noise. To obtain a reliable Flush+Reload channel it may be neces-
sary to make multiple measurements, as done by others [7,9]. R different mea-
surements, mij , were taken for any value i with the purpose of increasing the
accuracy. A cache hit detection function fc was used with a threshold of tc to
build a histogram H of recorded cache hits where each entry hi is the count of
detected cache hits for value i. The estimation v̂ of the transmitted value v was
calculated as v̂ = maxi hi where,

hi =
R∑

j=0

fc(mij)

and,

fc(x) =

{
1 if x < tc

0 otherwise

In addition, synchronising was needed to increase the probability of a successful
transmission. Locking was used in order to synchronise the transmitter with the
receiver.

4.2 Implementing Meltdown

The methodology for Meltdown was based on the proof-of-concept by Lipp
et al. [9]. Specifically, Meltdown required methodologies for recovering from a
segmentation fault, identifying a target address, obtaining an observable result
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via a Flush+Reload channel and synchronising the transmitter with the receiver.
On the Linux kernel, we disabled the KPTI patch for the attack to work since
the purpose was not to evaluate whether Linux was vulnerable to the attack,
but to have it as a baseline implementation.

Recovering from Segmentation Fault. Since Genode does not provide support
for segmentation fault handlers [4], another method was needed. One possible
method is to start a new child process for each read which leads to a segmentation
fault [9]. This method allows for transmitting a single byte with each started
child. Another method is to use Intel TSX to suppress the fault [9]. Both methods
were evaluated, Intel TSX was chosen due to a more straightforward attack
design and fewer resource requirements. If Intel TSX is used, no inter-process
synchronisation is needed. A process will continue its execution even if non-
accessible memory was accessed during a transaction. The attacker can therefore
run Flush+Reload directly after the Meltdown attack.

Choosing a Target Address. Two target addresses were used, the Linux ver-
sion banner and a victim process. Previous work has had success with these
variants4,5. Furthermore, they were chosen due to the ease of confirming success
using an existing working attack.

In the first alternative, the attacker targets a location for a version string
defined in the Linux kernel. Confirmation of correct data was done by reading a
file using root privileges.

For the second alternative, a victim process was set up to allocate a secret
array of 2048 bytes. The array was cached by the victim. Thereby, the address
and value of the target addresses are known, and the addresses along with its
values are cached.

4.3 Implementing Spectre

The design of the Spectre V1 attack consisted of an overall design based on
previous work6,7. Specifically methodologies for ensuring speculative execution,
training the branch predictor and increasing accuracy by tuning parameters was
used.

The attack setup consisted of a victim process and an attacker which shared
a common output buffer. The victim was a vulnerable RPC which accessed an
array based on an input index and a bounds check, see Listing 1.1. The attacker
exploits this by issuing Ta−1 training requests to a victim function. After Ta−1
requests the attacker issues a malicious request malicious = target address with
an index targeting an address beyond the bounds of the array. For the attack
to work, the vulnerable RPC needs to be speculatively executed and the branch
predictor needs to be trained.
4 https://github.com/paboldin/meltdown-exploit.
5 https://github.com/IAIK/meltdown.
6 https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a.
7 https://github.com/crozone/SpectrePoC.

https://github.com/paboldin/meltdown-exploit
https://github.com/IAIK/meltdown
https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a
https://github.com/crozone/SpectrePoC


Can Microkernels Mitigate Microarchitectural Attacks? 247

Listing 1.1. Victim Function which is Vulnerable to Spectre V1

1 void victim(size_t idx) {

2 if(idx < array_size) {

3 int foo = array[idx]; // May speculatively execute

4 do_something(foo); // array_size is not in cache

5 }

6 }

Ensuring Speculative Execution. Speculative execution, according to documents
from Intel, is highly dependant on microarchitectural implementation and may
vary across different processor families. Kocher et al. [6] state that one trigger
for speculative execution is a cache-miss prior to or during branch condition
evaluation. Therefore, the boundary check values needs to be removed from the
cache. This is done with a heuristic flush of the cache by performing a large
amount of memory accesses.

Configuring Variables for Spectre. Three parameters are needed to execute the
Spectre attack: number of attacks per measurement Na, the attack period Ta

and the number of memory accesses used to flush the cache Hs. Attacks per
measurement Na and Ta were chosen by testing all integers Na ∈ [1, 10] and
Ta ∈ [2, 10] to find which combination gave the highest throughput in reading
2048 bytes from the vulnerable process. To determine values for Na and Ta, Hs

was initially chosen to 4096 · 32, it was then tested using an exponential sample
between 64 and the size of the CPU’s cache to find a local optimum. It should be
noted that the purpose of these local optimisations is not to achieve an optimum,
but rather to gauge the possible throughput of this attack.

5 Evaluating Attack Effectiveness

In this section we describe the setup and results of evaluating the effectiveness
of the Flush+Reload, Spectre, and Meltdown attacks on the three investigated
platforms.

5.1 Setting Up System Under Test

The System Under Test (SUT) is composed of Genode with a microkernel core,
an attack implementation and an output channel. This setup was executed on
an Intel Core i5-7500 CPU.

We used Genode’s build tools and documentation to build our implemen-
tation for each kernel8. These build tools were available at Genode’s Github
page9. To run a build, Genode requires an init-component which is assigned all
system resources. Genode then delegates the task of assigning resources to this
8 https://genode.org/documentation/developer-resources/index.
9 https://github.com/genodelabs/genode/tree/18.11.

https://genode.org/documentation/developer-resources/index
https://github.com/genodelabs/genode/tree/18.11
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init-component. We build our implementation by assigning an initial resource
budget to our process, thus enabling it to execute, use RPC and allocate mem-
ory. Genode’s build tools will from our configuration create files which are used
to boot the kernel with our implementation. These files can be used by Grub2
to multi-boot the tested SUT.

5.2 Flush+Reload

Since Flush+Reload is a necessary component both in Meltdown and Spectre,
and in itself an interesting subject of study in the context of microkernels we
show some results both on how to tune this channel for maximum throughput
as well as the final performance achieved.

Choosing Cache-Hit Thresholds. Table 1 shows the choices of tLLC and tL1 for
each kernel along with a valid interval for the choices. The valid interval describes
the interval in which there are no measurements from the cache level above and
all from the desired one. For example, there are no measurements from LLC
below 73 cycles on Okl4. Thus, the valid interval for tL1 on Okl4 is [56, 72]. The
choice of tLLC and tL1 was chosen as the lowest value in the valid interval.

Table 1. The Cache-hit thresholds measured in CPU cycles for each kernel.

Kernel Chosen tLLC Valid interval for tLLC Chosen tL1 Valid interval fortL1

Okl4 81 [81, 239] 56 [56, 72]

Nova 80 [80, 219] 42 [42, 64]

Linux 139 [139, 239] 54 [54, 78]

Preventing Data Prefetching. Figure 2a shows the number of detected cache hits
from the array reads using the SRGs from Eqs. (2) and (3) and different sizes
of the internal padding. For each padding size the kernels are denoted using
O for Okl4, N for Nova and L for Linux. The SRG 49i mod 256 is preventing
prefetching at the smallest internal padding and thus results in the smallest
memory footprint of the Flush+Reload channel. In Fig. 2b, it can also be seen
that the SRG idx = 49i mod 256 results in memory access times of almost 300
CPU cycles which is comparable to DRAM access times. Therefore, the SRG in
Eq. (2) and the internal padding of length 256 was used to obtain further results.

Measuring Throughput. Figure 3 shows the throughput of the Flush+Reload
channel in six different configurations. For each kernel the transfer was performed
within a single process as well as between two different processes. On the x-axis
the number of read attempts are shown. Note the logarithmic scale on the x
axis.
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Fig. 2. Number of cache hits for different padding sizes and kernels (left) and access
time for different access patterns (right).

Clearly, the Flush+Reload channel is effective on all three platforms. In four
out of the six configurations the throughput is over 1kBps and sometimes much
higher than that. However, when transferring data between two different pro-
cesses on Okl4 and Nova the throughput is less than 100Bps and reduces to
just a few Bps for higher number or read attempts. The most likely explanation
we could find for this outcome is due to the way the process synchronisation
interferes with the data transfer in these setups. It does not seem to be caused
by any attack mitigation mechanism in the kernels.

In all six cases, either a single or two read attempts achieves the best through-
put, since while repeating the reads reduces the error rate, it also takes longer
time.

Fig. 3. Reading 2048 bytes within a process or between two processes, for a varying
number of attempts
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5.3 Meltdown

We were only able to get Meltdown working on the Genode+Linux platform
(after disabling the KPTI mitigation). The resulting throughput when read 2048
bytes from another process is shown in Fig. 4. The result shows a fluctuating
throughput, ranging from 63 to 11070 Bps. This result demonstrates that the
Genode framework in itself does not prevent Meltdown (even if we had to adapt
the attack as described in Sect. 4.2)
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Fig. 4. Throughput from reading 2048 bytes from another process in Genode using
Meltdown on Genode+Linux.

Also interesting is the fact that we were not able to make this attack successful
on the Genode+Okl4 or Genode+Nova platforms. Genode makes this attack
more difficult to execute by for example not supporting control over which core
a process should execute on. However, the main reason we were not able to
launch the Meltdown attack on Okl4 or Nova is the lack of mappable address
space from another process that can be used in the attack.

5.4 Spectre

We now turn to the Spectre attack. First we show how the parameters were
tuned to optimise throughput and then go on to show the resulting throughput.

Attack period, Ta, and number of attacks per measurement, Na, were tested
for 2 ≤ Ta ≤ 10 and 1 ≤ Na ≤ 10 on Okl4, Nova and Linux. The result from the
tests are shown in Figs. 5a to 5c. The results shows that all the kernels have the
highest throughput at Na = 1 and Ta = 3. Furthermore, the throughput tends
to be lower when Na or Ta approaches higher values.

We also performed an experiment where Hs was varied to find the value that
maximised the throughput. The results indicated that the Spectre V1 attack on
Okl4, Nova and Linux had its highest through puts at Hs = 215, 217 and 220

respectively. Note that the difference in Hs varies a factor of 25 between kernels,
thus, choosing a single value for all kernels is likely not suitable.
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Fig. 5. Throughput of the Spectre attack for different choices of Ta and Na, when
reading a total of 2048 bytes. Then for (a) Throughput for Genode+Okl4, for (b)
Throughput for Genode+Nova, and (c) Throughput for Genode+Linux.

The result from trying to read 2048 bytes from an array containing random
values with our Spectre V1 implementation is presented in Table 2. The results
shows the highest throughput for Nova at 1760 Bps.

Table 2. Result of reading 2048 bytes with Spectre V1 with chosen parameters.

Kernel Retries Na Ta Hs Throughput (Bps)

Okl4 1 1 3 215 1029

Nova 1 1 3 217 1760

Linux 2 1 3 220 525

Clearly, the Spectre V1 attack is effective on all three platforms and with
even better performance on the microkernels compared to Linux.

6 Conclusions

In this paper we have examined the vulnerability of microkernels with respect to
the microarchitectural attacks Meltdown and Spectre V1. The targeted microker-
nels were Okl4, Nova and Linux. These kernels were run within the Genode OS
framework for evaluation. Relating back to the problem formulation in Sect. 3.1
we draw the following conclusions.

– A covert Flush+Reload channel was demonstrated in Genode with a through-
put of 36 Bps on Okl4, 44 Bps on Nova and 13409 Bps on Linux. The large
discrepancy between Linux and microkernels deemed likely to stem from
scheduling differences.
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– The investigated microkernels are vulnerable to Spectre V1 and a proof-of-
concept was produced with a throughput 1029 Bps on Okl4, 1760 Bps on
Nova and 525 Bps on Linux.

– Results regarding microkernels vulnerability to Meltdown are inconclusive.
However, an attack reading the secret of another process in Genode running
on Linux was demonstrated with a throughput of 11070 Bps.

Clearly, microkernels and Genode are not secure by design against microar-
chitectural attacks. Microkernels do have some benefits with regards to mitigat-
ing Meltdown as several kernels do not map kernel space into user space and
are consequently only affected by Meltdown in a limited way. In addition, Gen-
ode does not support for custom segmentation fault handlers. Consequently, the
Meltdown attack requires another recovery tool, one such viable option is Intel
TSX.

One might ask whether these attacks should be dealt with in software at all
or if we should simply wait for chip manufacturers to come up with new chip
designs. Intel and AMD have announced fixes to some of the known attacks, but
at the same time new ones such as Zombieload and Fallout are being discovered.
This does not seem to be a problem that will go away by itself. Moreover,
given the huge amount of vulnerable processors already out there, often running
critical applications, we cannot just sit back and wait. Perhaps future software
systems must fundamentally distrust the hardware on which is running, calling
for a completely new security model.

For future work, it would be interesting to find an appropriate target for the
Meltdown attack against microkernels in Genode and rigorously attack these
targeted addresses. It can also be interesting to pursue another segmentation
fault recovery design; this is interesting as Intel TSX is only present on some
Intel CPUs. With respect to Spectre V1, it may be interesting to target existing
Genode components which expose vulnerable RPCs or implement other Spectre
variants which use different techniques, such as variants 2, 3 or SpectreRSB
[6,7]. Trying these different variants can further establish the scope of Spectre’s
impact on microkernels.
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Abstract. Secure cloud storage is considered as one of the most impor-
tant problems that both businesses and end-users take into account
before moving their private data to the cloud. Lately, we have seen some
interesting approaches that are based either on the promising concept
of Symmetric Searchable Encryption (SSE) or on the well-studied field
of Attribute-Based Encryption (ABE). Our construction, MicroSCOPE,
combines both ABE and SSE to utilize the advantages of each technique.
Finally, we enhance our construction with an access control mechanism
by utilizing the functionality provided by SGX.

Keywords: Access control · Attribute-Based Encryption · Cloud
security · Hybrid encryption · Policies · Storage protection · Symmetric
Searchable Encryption

1 Introduction

We are in a period where cloud computing has been established as an essen-
tial platform for many businesses looking to build innovative services. However,
concerns about security and privacy still remain – especially for companies and
users moving their data between multiple public cloud services. The main rea-
son behind this, is that most implementations assume an honest and there-
fore fully trusted cloud service provider (CSP) – a significant obstacle towards
enabling a secure cloud posture. Having this in mind, researchers try to address
the problem of secure data storage on untrusted clouds by looking at how mod-
ern cryptographic techniques such as Symmetric Searchable Encryption (SSE)
and Attribute-Based Encryption (ABE) can be used to protect users’ data.
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SSE is a promising encryption technique in which users encrypt their data
locally using a symmetric key prior sending them to the CSP. The most exciting
thing about SSE though, is that it enables users to search directly over the
encrypted data without having the need to decrypt them first. Thus, the CSP
learns nothing about the content of the data, except for the information leaked
during the execution of the scheme (i.e. access and search pattern). However, a
drawback of such scheme is that it does not support efficient revocation since
sharing an encrypted file implies sharing the underlying symmetric key.

On the other hand, in ABE schemes all files are encrypted under a master
public key but in contrast to traditional public-key encryption, the resulted
ciphertext is bounded by a policy. Each user has a unique secret key, which is
associated with specific attributes. Hence, decryption of a ciphertext can work
if and only if the user’s attributes satisfy the policy of the ciphertext. However,
using assymetric encryption to encrypt large volumes of data is rather inefficient.

Contribution: In MicroSCOPE we construct a hybrid encryption scheme that
utilizes the advantages of both SSE and ABE as well as the functionality offered
by SGX [11]. In particular, the symmetric key of the SSE scheme, is encrypted
under the ABE scheme and is then stored in an SGX enclave. Moreover, we
design an efficient access control mechanism that is agnostic to the ABE scheme.

2 Related Work

In [15], authors use an enclave-based, tree-based search index to design a search-
able encryption scheme. Their scheme, HardIDX, addresses the problem of
searching in large volumes of encrypted data by making use of the functionalities
offered by SGX enclaves. Their solution places the integrity and confidentiality
of the search tree in unprotected memory. Thus, every search operation leaks
information, such as the access pattern and the size of the output. A promis-
ing idea is presented in [14], where the authors present an SGX-based functional
encryption scheme called IRON. IRON’s main functionalities, such as decryption
of a file and application of a function on the decrypted file, both occur in the
isolated environment offered by SGX. Moreover, all enclaves can attest to each
other and exchange data over secure communication channels. We use the same
hardware principles to achieve our hybrid encryption scheme. Another approach
is presented in [20] where authors propose a revocable hybrid encryption scheme
enhanced with a key-rotation mechanism to prevent key-scrapping attacks. The
scheme uses an All-or-Nothing-Transformation (AONT) [10] to prevent revoked
users from accessing stored data. More precisely, Optimal Asymmetric Encryp-
tion Padding (OAEP) is used due to the fact that reversing OAEP, requires
the entire output to be known. As a result, changing random bits of the out-
put renders OAEP’s inversion infeasible. However, to decrypt a file, the changed
bits need to be stored so that the AONT can be later reversed. To make the
scheme more efficient, authors suggest that the AONT could be applied by the
server. However, this implies the existence of a fully trusted the server – thus,
internal attacks cannot be prevented. In [18] a revocable Ciphertext-Policy ABE
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(CP-ABE) scheme in which a revocation list is embedded into the ciphertexts
was presented. Naturally, as the revocation list grows, the ciphertexts would
become larger, thus rendering any decryption or file modification operation more
expensive. To deal with this, a method based on Hierarchical Identity Based
Encryption (HIBE) [9], where users’ secret keys expire after a certain period of
time was proposed. Hence, the revocation list can only include those keys that
were revoked before their expiration date. This work is an extension of [7,19],
where authors presented a hybrid encryption scheme by combining SSE and
ABE. However, their work lacked a proper implementation as well as an access
control mechanism like the one we introduce.

3 Cryptographic Primitives

In this section, we present formal definitions for the two main encryption schemes
of our construction, CP-ABE and SSE, as described in [8] and [6] respectively.

Definition 1 (Ciphertext-Policy ABE). A revocable CP-ABE scheme is a
tuple of the following five algorithms:

1. CPABE.Setup is a probabilistic algorithm that takes as input a security param-
eter λ and outputs a master public key MPK and a master secret key MSK.
We denote this by (MPK,MSK) ← Setup(1λ).

2. CPABE.Gen is a probabilistic algorithm that takes as input a master secret
key, a set of attributes A ∈ Ω and the unique identifier of a user and outputs
a secret key which is bound both to the corresponding list of attributes and the
user. We denote this by (skA,ui) ← Gen(MSK,A, ui).

3. CPABE.Enc is a probabilistic algorithm that takes as input a master public
key, a message m and a policy P ∈ P. After a proper run, the algorithm
outputs a ciphertext cP which is associated to the policy P . We denote this
by cP ← Enc(MPK,m, P ).

4. CPABE.Dec is a deterministic algorithm that takes as input a user’s secret key
and a ciphertext and outputs the original message m iff the set of attributes
A that are associated with the underlying secret key satisfies the policy P that
is associated with cp. We denote this by Dec(skA,ui , cP ) → m.

Definition 2 (Dynamic Index-based SSE). A dynamic index-based sym-
metric searchable encryption scheme is a tuple of five polynomial algorithms
DSSE = (KeyGen, InGen,AddFile,Search,Delete) such that:

– DSSE.KeyGen is probabilistic key-generation algorithm that takes as input a
security parameter λ and outputs a secret key K. It is used by the client to
generate her secret-key.

– DSSE.InGen is a probabilistic algorithm that takes as input a secret key K and
a collection of files f and outputs an encrypted index γ and a sequence of
ciphertexts c. It is used by the client to get ciphertexts corresponding to her
files as well as an encrypted index which are then sent to the storage server.
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– DSSE.AddFile is a probabilistic algorithm that takes as input a secret key K
and a file f and outputs an add token τα(f) and a ciphertext cf . The token
and the ciphertext are then sent to the storage server, where cf will be added
to the collection of ciphertexts and the index γ will be updated accordingly.

– DSSE.Search is a deterministic algorithm that takes as input a secret key K
and a keyword w and outputs a search token τs(w). The token is then sent to
the storage server who will output a sequence of file identifiers Iw ⊂ c.

– DSSE.Delete is a deterministic algorithm that takes as input a secret key K
and a file identifier id(f) and outputs a delete token τd(f) for f . The token
will be sent to the storage server, who will delete cf and update the index γ
accordingly.

To define the security of DSSE we make use of the leakage functions
Lin,Ls,La,Ld associated to index creation, search, add and delete opera-
tions [13].

Definition 3 (Dynamic CKA 2-security). Let DSSE = (KeyGen, InGen,
AddFile,Search,Delete) be a dynamic index based symmetric searchable encryp-
tion scheme and Lin,Ls,La,Ld be leakage functions associated to index creation,
search, add and delete operations. We consider the following experiments between
an adversary ADV and a challenger C:
RealADV (λ)

C runs Gen(1λ) to generate a key K. ADV outputs a file f and receives (γ, c) ←
Enc(K, f) from C. ADV makes a polynomial time of adaptive queries q = {w, f1, f2}
and for each q he receives back either a search token for w, τs(w), an add token and a
ciphertext for f1, (τα(f1), c1) or a delete token for f2, τd(f2). Finally, ADV outputs
a bit b.

IdealADV,S(λ)

ADV outputs a file f . S is given Lin and generates (γ, c) which is sent back to ADV.
ADV makes a polynomial time of adaptive queries q = {w, f1, f2} and for each q, S
is given either Ls(f , w), La(f , f1) or Ld(f , f2). S then returns a token and, in the case
of addition, a ciphertext c. Finally, ADV outputs a bit b.

We say that the DSSE scheme is L-i secure if for all probabilistic polynomial
adversaries ADV, there exists a probabilistic simulator S such that:

|Pr[(Real) = 1] − Pr[(Ideal) = 1]| ≤ negl(λ)

In the cases of file addition and deletion, the simulator must also generate
ciphertexts and update the current indexes.

4 Architecture

In this section, we provide an overview of the underlying system model by
describing all the different components1 along with their functionality.
1 We assume the existence of a registration authority which is responsible for the
registration of users. However, registration is out of the scope of this paper and we
assume that all users have been already registered.
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Cloud Service Provider (CSP): We consider a cloud computing environment
similar to the one described in [21]. CSP is responsible for storing encrypted
data and must be SGX-enabled since core entities will be running in the trusted
execution environment offered by SGX.

Master Authority (MS): MS is responsible for setting up all the necessary
public parameters for the proper run of the involved protocols and for generating
and distributing ABE keys to the registered users. MS is running in an enclave
called the Master Enclave.

Key Tray (KT): KT is a key storage that stores ciphertexts of the symmetric
keys generated by various data owners needed to recover data. Every registered
user can directly contact KT and request access to the stored ciphertexts. KT
is running in an enclave called the KT Enclave.

Revocation Authority (REV): REV is responsible for controlling access
rights. REV maintains a mapping of each user with her valid scopes. Each time a
scope is revoked from a user, REV updates its database. Similar to MS and KT,
REV is also SGX-enabled and is running in an enclave called the REV Enclave.

User (ui): A user interacts with the CSP to manage certain files that has access
to according to her assigned scopes (access rights). The set of access rights of ui

is denoted as SCi = {(j, sj
i ), . . . (k, sz

i )} where j, . . . , z represent a collection of
files encrypted under the symmetric keys Kj, . . . ,Kz and sj

i is a one dimensional
bit array of length four that represents the scopes (i.e. view, add, delete, revoke)
assigned to ui for each data collection. For example, if sj

i = [1010], then ui has
access rights view and delete for data encrypted under the symmetric key Kj.

Threat Model: Our threat model is similar to the one described in [21], based
on the Dolev-Yao adversarial model [12]. We extend the above threat model by
defining a set of new attacks.

Attack 1 (Successful Scope Substitution Attack – SSA). Let ADV be
an adversary that corrupts a registered user um, whose set of valid scopes is
given by si

m for data encrypted under the symmetric key Ki. ADV wishes to
tamper with um’s access rights by providing her with more scopes. We say that
ADV successfully launches an SSA attack iff she can change bits from 0 to 1
in si

m and produce a new array s′i
m �= si

m that will be accepted as valid by the
corresponding authorities.

Attack 2 (Successful Revocation of Legitimate User Attack – RLUA).
Let ADV be an adversary that corrupts a registered user um who has access
only to data encrypted under a secret key Km. Additionally, let u� be a legit-
imate user that has access to data encrypted under a secret key K�, � �= m.
ADV successfully launches an RLUA attack iff she manages to revoke scopes
to u� for data that is encrypted under K�.

Attack 3 (Successful Compromise of Revoked User Attack – CRUA).
Let RKi be the set of all users that their access to the data encrypted under
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Ki has been revoked completely (i.e. si
RKi

= [0000]). Moreover, let ADV be an
adversary that corrupts a user um where um ∈ RKi . ADV successfully launches
a CRUA attack iff she manages to extract any valuable information about the
content of the files that are encrypted with Ki.

5 MicroSCOPE (MSCOPE)

In this section, we present MicroScope (MSCOPE). MSCOPE is built around nine
main protocols:

MSCOPE.Setup: Each entity generates a public/private key pair (pk, sk) for
a CCA2 secure public cryptosystem as well as a signing and a verification key
for a EUF-CMA secure signature scheme. Furthermore, MS runs CPABE.Setup
and generates a master public/private key pair (MPK,MSK).

MSCOPE.ABEUserKey: This algorithm is executed by a user ui to receive
a secret CP-ABE key. Since MS is responsible for generating such keys, ui

needs to contact MS and request a key. MS will then execute skA,ui ←
CPABE.Gen(MSK,A, ui), where A is the set of attributes that is derived from
ui’s registered information. Finally, skA,ui is sent back to ui over a secure channel.

MSCOPE.Store: After ui successfully received skA,ui she can start using
the CSP to store files remotely. To do so, she first sends a store request
StoreReq to the CSP. Specifically, ui sends m1 = 〈r1,EpkCSP(credi),
StoreReq, σi(H(r1||credi||StoreReq))〉 where r1 is a random number. The CSP
authenticates ui as legitimate and sends back an authorization Auth as m2 =
〈r2, (Auth), σCSP (H(r2||ui||Auth))〉. At this point, ui generates a symmetric key
Ki to encrypt her files and sends m3 = 〈r3,EpkCSP(idxKi), γi, ci,H(r3||γi||idxKi ||ci)〉
to the CSP.

MSCOPE.Store

Input: User’s authenticator Auth, a collection of files fi
Output: A collection of ciphertexts ci along with an encrypted index γi are stored
on the CSP

1. ui sends m1 = 〈r1,EpkCSP (credi), StoreReq, σi(H(r1||credi||StoreReq))〉 to the
CSP

2. CSP sends : m2 = 〈r2, (Auth), σCSP (H(r2||ui||Auth))〉 to ui

3. ui runs (ci, γi) ← DSSE.Add(Ki, fi) and further generates a unique index idxKi
for

the symmetric key Ki

4. ui sends m3 = 〈r3,EpkCSP (idxKi
), γi, ci, H(r3||γi||idxKi

||ci)〉 to the CSP
5. CSP stores {ci, γi, idxKi

}

MSCOPE.KeyTrayStore: Executed by the data owner to store Ki in KT.
First runs cKi

P ← CPABE.Enc(MPK,Ki,P ) to obtain cKi

P which is then sent
to KT via m4 =

〈
r4,EpkKT(ui, idxKi), c

Ki

P , σi

(
H

(
r4||ui||cKi

P ||idxKi

))〉
. Then, ui

assigns scopes to the users that wishes to share ci with. To do so, she sends
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m5 =
〈
r5,EpkREV(idxKi , {

(
u1, s

i
1

)
, . . .}), σi(H(r5||idxKi ||u1|| . . . ))

〉
to REV. KT

stores user’s identifier along with the unique index idxKi of the symmetric key,
next to cKi

p .

MSCOPE.KeyTrayStore

Input: Ki, policy P .
Output: KT stores c

Ki
p

1. ui sends m4 =
〈
r4,EpkKT (ui, idxKi

), c
Ki
P , σi

(
H

(
r4||ui||cKi

P ||idxKi

))〉
to KT and

m5 =
〈
r5,EpkREV (idxKi

, {(
u1, si

1

)
, . . .}), σi(H(r5||idxKi

||u1|| . . . ))〉 to REV

2. KT stores: {ui, c
Ki
P , idxKi

}
3. REV stores

〈
idxKi

, {(
u1, si

1

)
,
(
u2, si

2

)
, . . . }〉

into the list of valid scopes LV S .

MSCOPE.KeyShare: We now assume that another registered user uj ,
j �= i wishes to access ci. The important thing to notice here is that
the data sharing will be done without the involvement of ui. To this end,
uj sends m6 = 〈r6,EpkKT(uj , ui), σj(H(r6||uj ||ui))〉 to KT. KT will then
reply with m7 =

〈
r7,EpkREV

(
uj , idxKi

)
, σKT

(
H

(
r7||uj ||idxKi

))〉
. This message

will then be forwarded to REV who will locate si
j and will send m8 =

〈
r8,EpkKT

(
si

j

))
, σREV

(
H

(
r8||si

j

))〉
to KT. At this point, KT retrieves cKi

P and
sends m9 =

〈
r9,EpkCSP(uj , t, s

i
j , idxKi), c

Ki

P , σKT (H(r9||uj ||t||si
j ||idxKi ||cKi

P )
〉

to uj .
Finally, uj uses her private CP-ABE key to recover Ki.

MSCOPE.KeyShare

Input: User’s id uj and data owner’s id ui

Output: uj receives c
Ki
p

1. uj sends m6 =
〈
r6,EpkKT (uj , ui), σj(H(r6||uj ||ui))

〉
to KT

2. KT replies with m7 =
〈
r7,EpkREV

(
uj , idxKi

)
, σKT

(
H

(
r7||uj ||idxKi

))〉
to the user

who forwards the message to REV.
3. REV generates and sends m8 =

〈
r8,EpkKT

(
si
j

))
, σREV

(
H

(
r8||si

j

))〉
to KT.

4. KT sends m9 =
〈
r9,EpkCSP (uj , t, si

j , idxKi
), c

Ki
P , σKT (H(r9||uj ||t||si

j ||idxKi
||cKi

P )
〉
to

the user.

MSCOPE.Search/Update/Delete: Once uj has gained access to Ki, she can
access the encrypted data to either search, add or delete a file (depending on her
access rights). To do so, uj first generates the corresponding DSSE token and
sends it to the CSP via m10 =<m9, token>. Upon reception, CSP checks if uj

is eligible to perform the operation specified by the token by opening m9, looking
at the timestamp provided by KT and verifying that si

j [n] = 1, for n < 3. If the
verifications are correct, CSP proceeds as specified by the DSSE scheme.
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MSCOPE.Search/Update/Delete

Input: DSSE token
Output:

1. uj generates token = τs(w)/τa(f)/τd(f) .
2. uj sends m10 = 〈m9, token〉 to the CSP
3. CSP opens m9 to check if the timestamp is valid and if si

j [n] = 1, n < 3
4. Assuming that all verifications are successful, CSP executes the DSSE algorithm.

MSCOPE.Revoke: A registered user uj , for whom si
j [3] = 1, can revoke

scopes from other users. To do so, uj sends m11 =
〈
r11,EpkREV

(
uj , u�, n

)
, cKi

P ,

σj(H
(
r11||uj ||u�||n||cKi

P )
)〉

to REV, where n ∈ [0, 3] specifies which scope will be
revoked. REV will then send m12 =

〈
r12,EpkKT

(
u�

)
, cKi

P , σREV (H
(
r12||cKi

P ||u�

))〉

to KT. Upon reception, KT checks if u� = ui by looking at the value stored
next to cKi

P . If u� �= ui, KT will send idxKi to REV. REV will retrieve LV S to
check whether si

j [3] = 1 or not. Assuming that the verification is successful, REV
removes the specified scope by setting si

�[n] = 0.

MSCOPE.Revoke

Input: u�, n
Output: si

�[n] → 0.

1. uj sends m11 =
〈
r11,EpkREV

(
uj , u�, n

)
, c

Ki
P , σj(H

(
r11||uj ||u�||n||cKi

P )
)〉

to REV.

2. REV sends m12 =
〈
r12,EpkKT

(
u�

)
, c

Ki
P , σREV (H

(
r12||cKi

P ||u�

))〉
to KT.

3. KT verifies that u� �= ui and sends idxKi
to REV.

4. REV checks if si
j [3] = 1 and sets si

�[n] = 0.

6 Security Analysis

6.1 Simulation-Based Security

We construct a simulator S that simulates MSCOPE in a way that any PPT
adversary ADV cannot distinguish between the real protocol and S.

Definition 4 (Sim-Security). We consider two experiments. In the real experi-
ment, all algorithms run as defined in our construction. In the ideal experiment,
a simulator S intercepts ADV’s queries and replies with simulated responses.
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Real Experiment

1. EXPreal
MSCOPE(1λ) :

2. (MPK,MSK) ← MSCOPE.Setup(1λ)
3. skA,ui ← ADVMSCOPE.ABEUserKey(MSK,A)

4. ct ← CPABE.Enc(mpk, m)
5. (γ, c) ← ADVDSSE.Add(K,f)

6. MSCOPE.Search(“search”, ms) → Iw
7. MSCOPE.Update(“update”, madd) → (γ , c )
8. MSCOPE.Delete(“delete”, mdelete) → (γ , c )
9. Output b

Ideal Experiment

1. EXPideal
MSCOPE(1λ) :

2. (MPK) ← S(1λ)
3. skA,ui ← ADVS(1λ)

4. ct ← S(1λ, 1|m|)
5. (γ, c) ← ADVS(Lin(f))

6. S(“search”,ms) → Iw
7. S(“update”, madd) → (γ , c )
8. S(“delete”, mdelete) → (γ , c )
9. Output b

We say that MSCOPE is sim-secure if for all PPT adversaries ADV :

EXPreal
MSCOPE(1λ) ≈ EXPideal

MSCOPE(1λ)

At a high-level, S simulates Key generation and encryption oracles and is
given the leakage functions of the DSSE scheme. In the ideal experiment Ki is
not given to ADV. In our game, we exclude MSCOPE.Revoke since LV S is not
retrievable during the execution of the protocol. Also, LV S is stored in plaintext
and since its values do not depend on sensitive data, side channel attacks on
SGX will not reveal any private information.

Theorem 1. Assuming that PKE is an IND-CCA2 secure public key cryptosys-
tem and Sign is an EUF-CMA secure signature scheme then MSCOPE is a
sim-secure protocol according to Definition 4.

Proof. We start by defining the algorithms used by the simulator. Then, we will
replace them with the real algorithms. Finally, the help of a Hybrid Argument
we will prove that the two distributions are indistinguishable.

– MSCOPE.Setup∗: Will only generate MPK that will be given to ADV.
– MSCOPE.ABEUserKey∗: Will generate a random key to be sent to the

adversary. That is, S simulates CPABE.KeyGen and output sk∗
A,ui

. This key
is a random string that has the same length as the output of the real
MSCOPE.ABEUserKey∗. The key will be given to ADV.

– MSCOPE.KeyShare∗: In the ideal experiment, after ADV requests a secret
key, S will encrypt a sequence of bits under MPK. The ciphertext will be
returned to ADV.

– MSCOPE.Search∗/Update∗/Delete∗: When ADV wishes to generate a DSSE
token, S gets as input the corresponding leakage function L and outputs a
simulated response in accordance with Definition 3.

– MSCOPE.Revoke∗: In contrast to the real experiment, the system does not
revoke any user.

In a pre-processing phase, the challenger C generates a symmetric key Ki. We
use a hybrid argument to prove that ADV cannot distinguish between the real
and the ideal experiments.
Hybrid 0 MSCOPE runs normally.
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Hybrid 1 Everything runs like in Hybrid 0, but we replace MSCOPE.Setup

with MSCOPE.Setup∗ and MSCOPE.ABEUserKey with MSCOPE.ABEUserKey∗.
These algorithms are identical from ADV’s perspective and as a result the

hybrids are indistinguishable.
After Hybrid 1, we have ensured that ADV has followed all the required

steps in order to ask for Ki. We are now ready to replace MSCOPE.KeyShare
with MSCOPE.KeyShare∗.
Hybrid 2 Like Hybrid 1, but MSCOPE.KeyShare∗ runs instead of
MSCOPE.KeyShare. Also, the algorithm outputs ⊥ if ADV sends m8 but never
contacted REV.

Lemma 1. Hybrid 2 is indistinguishable from Hybrid 1.

Proof. By replacing the two algorithms, nothing changes from ADV’s point of
view. If ADV can generate m8, then she can forge REV’s signature. However,
this can only happen with negligible probability. So ADV can only distinguish
between Hybrid 3 and Hybrid 2 with negligible probability. �

At this point, ADV has received what she thinks is a valid Ki. However, S
sent her an encryption of a random string of the same length as Ki. The last part
of the proof concerns the DSSE phase of MSCOPE. For the rest of the proof we
assume that ADV performs search, add and delete queries. The simulator now
gets access to all leakage functions L from the DSSE scheme.
Hybrid 3 Like Hybrid 2, but when ADV makes a search, add or delete query,

S is given the corresponding leakage function Li and simulates a response. More-
over, the algorithm outputs ⊥ if ADV submits such a query but never contacted
KT.

Lemma 2. Hybrid 3 is indistinguishable from Hybrid 2.

Proof. Assuming the Li− security of the DSSE scheme, the token sent by ADV
to the CSP is generated by S with Li as input. As a result, when the CSP receives
m9, it will reply in accordance to Definition 4. Hence, ADV cannot distinguish
between the real and the ideal experiment. Moreover, if ADV generates m9

without contacting KT, then she can also forge KT’s signature which can only
happen with negligible probability. Thus, ADV can only distinguish between
hybrids 4 and 3 with negligible probability. �

With this Hybrid our proof is complete. We managed to replace the expected
outputs with simulated responses in a way that ADV cannot distinguish between
the real and the ideal experiment.

SGX Security: Recent works [11,17] have shown that SGX is vulnerable to
software attacks. However, according to [14], these attacks can be prevented if
the programs running in the enclaves are data-obvious. Thus, leakage can be
avoided if the programs do not have memory access patterns or control flow
branches that depend on the values of sensitive data. In our construction, no
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sensitive data (such us decryption keys) are used by the enclaves. KT acts as a
storage space for the symmetric keys and does not perform any computation on
them. Hence, all the cKi

p are data-obvious. Moreover, LV S is stored in plaintext
and every entry in the list is padded to achieve same length. Finally, we can
prevent timing attacks on LV S by ensuring that every time REV accesses the
list either sends back a token, or add a new id, it goes through the entire list.

6.2 Protocol Security

Proposition 1 (SSA Soundness). Let ADV be a malicious adversary that
corrupts a user um with valid scopes sj

m for data encrypted under a symmetric
key Kj. Then ADV can not successfully perform an SSA attack.

Proof. Assume that ADV produces a new set of valid scopes SC′
m and success-

fully replaces um’s valid scopes SCm. To do so, ADV needs to successfully flip at
least one bit sj

m[n] to its opposite value sj
m[n], resulting to the new scope array

s
′j
m. We examine ADV ’s behavior by analyzing two distinct cases:

α. If 0 ≤ n ≤ 2, then sj
m[n] will correspond to one of the following:

{view, add, delete}. In that case, ADV sends m = <m8, token>, where token
is the component of the message which is associated with search, add or delete
operations. However, ADV cannot know idxKi and thus, can never construct
this message. As a result n /∈ [0, 2]

β. If n = 3, then sj
m[n] corresponds to the scope revoke. ADV sends m11 =〈

r11,EpkREV

(
uj , u�, n

)
, cKi

P , σj(H
(
r11||uj ||u�||n||cKi

P )
)〉

(n� is the index of the
one dimensional array sj

� specifying which scope to be revoked for u�) to
REV. At this point, REV will retrieve the list of scopes LV S and will check
whether sj

m[3] = 1 or not. Since ADV can not tamper with LV S , REV will
see that sj

m[3] = 0 and the attack will fail.

As a result, the attack will fail ∀n ∈ [0, 3] and this concludes our proof. �

Proposition 2 (RLUA Soundness). Let ADV be a malicious adversary that
corrupts a user um with access rights SCm. Furthermore, let u� be a legitimate
user, with access rights SC� �= SCm. Moreover, we assume that ∃j : (j, sj

�) ∈ SCl,
and (j, sj

m) /∈ SCm. Then ADV cannot successfully perform an RLUA attack.

Proof. User um launches an attack to u� by sending m11 =〈
r11,EpkREV(um, u�, n), cKj

p , σm

(
H(r11||um||u�||n||cKj

p )
)〉

to REV. Upon reception,
REV checks the integrity and the freshness of the message. Since this mes-
sage can be constructed by anyone, REV proceeds by contacting KT to receive
idxKj . Upon reception of the index, REV retrieves the list LV S to check whether〈
idxKj , {um, sj

m[3] = 1}〉 ∈ LV S or not. However, since (j, sj
m) /∈ SCm, sj

m[3] �= 1
the verification fails and ADV cannot successfully launch the attack. �

Proposition 3 (CRUA Soundness). Let ADV be a malicious adversary that
corrupts a user um whose access to data encrypted under Ki has been revoked
(i.e. um ∈ RKi). Then ADV cannot successfully perform a CRUA attack.
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Proof. ADV can successfully perform such an attack if and only if both of the
following conditions hold:

α. ADV can access the symmetric key Ki.
Since um ∈ RKi , this is always true.

β. ADV can bypass the authentication of the different components of
the system model.
For condition β to hold, CSP must be convinced that um /∈ RKi . To do so,
ADV must generate a valid m8 which can be done with the following ways:

– Replay an old message: ADV sends m9 she received from KT during
the execution of MSCOPE.KeyShare. Since m9 used to be valid, ∃ n :
si

m[n] �= 0 and it also contains a valid signature from KT. However, since
the timestamp contained in this message is not fresh, verification will
fail.

– Impersonate a legitimate user: Another approach for um would be to
impersonate a registered user u�, such that si

� �= [0000]. We assume that
um obtains m9 =

〈
r9,EpkCSP(uj , t, s

i
j , idxKi), c

Ki

P , σKT (H(r9||uj ||t||si
j ||

idxKi ||cKi

P )
〉

to uj and tries to tamper with it. However, without knowing
the index of the encryption key idxKi , she cannot alter the first part of
the message and replaces u� with um. Therefore, the attack will again
fail.

Hence, only one of the two conditions holds. Therefore, the attack fails. �

Table 1. Size of datasets and keywords

TXT files Dataset size Unique keywords

425 184MB 1,370,023

815 357MB 1,999,520

1,694 670MB 2,688,552

1,883 1GB 7,453,612

2,808 1.7GB 12,124,904

Table 2. Keywords and filenames
pairs

Unique keywords (w, id) pairs

1,370,023 5,387,216

1,999,520 10,036,252

2,688,552 19,258,625

7,453,612 28,781,567

12,124,904 39,747,904

7 Experimental Results

For the implementation of the CP-ABE scheme, we used the library provided by
Bethencourt et al. [8], while for the DSSE scheme we used the one described in [6]
and for the parts that run in enclaves we used the SGX-OpenSSL library [3].

To evaluate the performance of MicroSCOPE under realistic conditions, we
used different machines – depending on the process to be measured. The setup
of the DSSE scheme was measured on a Microsoft Surface Book laptop with a
2.1 GHz Intel Core i7 processor and 16 GB RAM running Windows 10 64-bit.
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The reason being that in a practical scenario, this process would take place on
a user’s machine. Conducting the experiments on a powerful server would result
in a set of non-realistic results. The parts running in an enclave were measured
in a powerful desktop PC with Intel Core i7-8700 at 3.20 GHz (6 cores), 32 GB
of RAM running Ubuntu 64-bit and Intel SGX Hardware Debug mode build
configurations. The reason for running these parts on such a computer is based
on the assumption that these processes will be running on the CSP.

7.1 Symmetric Searchable Encryption

This part of the experiments was implemented in Python 2.7 using the
PyCrypto [1] library. To test the overall performance of the DSSE scheme,
we used files of different size and structure from the Gutenberg dataset [2].
Our experiments focused on two main aspects: (1) Indexing and (2) Searching
for a specific keyword. Additionally, our dictionaries were stored in a MySQL
database.

Dataset: We created five different datasets with random text files from the
Gutenberg dataset. The selected datasets ranged from text files with a total
size of 184 MB to a set of text files with a total size of 1.7 GB. Using pure text
files resulted in a very large number of extracted keywords (12 million distinct
keywords without counting the stop words). Table 1 shows the different datasets
we used along with the total number of the extracted unique keywords.

Indexing & Encryption: Indexing is the setup phase of the DSSE scheme dur-
ing which the following steps take place: (1) reading plaintext files and generat-
ing the dictionary, (2) encrypting files, and (3) building the encrypted indexes.
We measured the total setup time for the datasets shown in Table 1. We ran
each process ten times and measured the average completion time. Figure 1a
illustrates the time needed for indexing and encrypting text files ranging from
184 MB to 1.7 GB. To index and encrypt text files that contained 1,370,023 dis-
tinct keywords the average processing time was 22.48 min while for 12,124,904
distinct keywords the average processing time was 203.28 min. Considering that
this phase is the most demanding one, the required time is considered as accept-
able not only based on the size of the datasets but also based on the results of
other schemes that do not offer forward privacy [13] as well as on the fact that
we ran our experiments on a commodity laptop.

Apart from the unique keywords indexer, the incorporated DSSE scheme also
creates an indexer that maintains a mapping between a keyword (w) and the
filename (id) that w is contained. The total number of the generated pairs in
relation to the size of the underlying datasets is shown in Table 2.

Search: On average, the time needed to generate the search token is 9µs while
the actual matching of the files that contain the keyword that is being searched
is just a SELECT and UPDATE query to the database. Searching for a specific
keyword over a set of 12,124,904 distinct keywords and 39,747,904 addresses
required 3.2 s.
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Fig. 1. (a) Indexing and encrypting files (b) message creation and verification

7.2 Implementation/Evaluation of MicroSCOPE

We used the SGX OpenSSL cryptographic library [3] to implement the RSA
cryptosystem with 4096-bit key sizes, and a set of cryptographic hash functions.
Development was done in C using Intel(R) SGX SDK 2.6 for Linux [4].

In an SGX environment there are two main components: (1) the trusted com-
ponent (enclave), and (2) the untrusted component (application). The untrusted
application makes a call to an enclave by using SGX’s ECall function which
allows the application to enter the enclave. To temporarily exit the enclave and
call a function in untrusted space, SGX’s function OCall is used.

Enclave Creation & Key Generation: First, we measured the time needed
to launch the four enclaves (MS, CSP, KT, and REV). Each enclave contains a
different set of functions that corresponds to different parts of the protocol. We
launched each enclave 10,000 times and measured the average completion time.
The time to launch the MS enclave, containing functions for the generation of
fresh RSA key pairs, was 25.29 ms while the time to launch the REV enclave,
containing MSCOPE.KeyShare and MSCOPE.Revoke functions, was 27.19 ms.
Time required to launch the KT enclave, containing MSCOPE.KeyShare,
MSCOPE.Revoke and MSCOPE.KeyTrayStore functions, was 28.3 ms while for the
CSP enclave that contained MSCOPE.Store, MSCOPE.Search, MSCOPE.Update,
and MSCOPE.Delete functions, 28.12 ms was required. Since the process of
launching enclave can run in parallel, the average time required by MicroSCOPE
to launch all four enclaves is 28.3 ms. Table 3 summarizes the results by pre-
senting the time needed to launch each enclave of MicroSCOPE as well as the
specific functions from the protocol that each enclave contains. Additionally,
we also measured the time needed to launch an empty enclave. Launching an
empty enclave took on average 9.2 ms. Even though launching the enclaves of
MicroSCOPE needed 28.3 ms the difference of 19 ms is considered as negligible
considering that the setup of MicroSCOPE runs only once.

Each enclave generates an RSA key pair of 4096-bit length. As can be seen
in Table 3 the average time to generate an RSA key pair of 4096-bit size was
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840 ms. Again, this is a process that can run in parallel. As a result, the total
time required for a complete setup of the enclaves is estimated at 921.71 ms.

Enclave Attestation: Intel’s SGX supports two forms of attestation: Local
attestation, and Remote attestation. Local attestation involves two or more
enclaves running on the same platform, whereas the Remote attestation allows a
remote third party to attest an enclave. This currently demands to contact Intel’s
Attestation Server – a process that requires a license. As a result, in our experi-
ments we only measured the time needed to perform Local Attestation between
REV and KT enclaves. We ran local attestation 10,000 times and found that the
average time needed to successfully complete the process was 1.1 ms.

Execution Time: To evaluate the total execution time we measured the run-
ning time of MicroSCOPE’s core functions by calculating the time to gener-
ate, send and verify the exchanged messages. We ran each function 100,000
times and calculated average execution time. Our primary focus was to mea-
sure the execution time of all involved ECalls and OCalls. Figure 1b sum-
marizes the results of this experiment by showing the average processing
time needed for each one of the core functions. As can be seen in Fig. 1b,
MSCOPE.KeyShare and MSCOPE.Revoke are the two most demanding processes.
MSCOPE.KeyShare needed on average 31.5 ms while 22.6 ms was the execution
time of MSCOPE.Revoke. However, the running time of MSCOPE.Revoke also
depends on the length of the revocation list. Currently, we only measured the
time to construct, send and verify the required messages. Moreover, the execu-
tion time for MSCOPE.Store was measured at 19 ms. The corresponding times
needed for MSCOPE.Search, MSCOPE.Update and MSCOPE.Delete appeared to
be the same – 11 ms on average. Finally, MSCOPE.KeyTrayStore appeared to be
the lightest function with an average execution time of 8.1 ms.

Table 3. Setup time for main MSCOPE components

Enclave creation MSCOPE functions Time

RSA setup Average time for generating a 4,096 bit long RSA
key pair

840ms

EMPTY enclave Average time for launching an empty enclave 9.2ms

MS encalve Containing MSCOPE’s key generation functions 25.29ms

REV enclave MSCOPE.KeyShare 27.18ms

KT enclave MSCOPE.KeyShare 28.3ms

MSCOPE.KeyTrayStore
MSCOPE.Revoke

CSP enclave MSCOPE.Store 28.12ms

MSCOPE.Search
MSCOPE.Update
MSCOPE.Delete

Local attestation KT & REV 1.1ms
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7.3 Ciphertext-Policy Attribute-Based Encryption

MSCOPE only uses CP-ABE to encrypt a symmetric key and not large volumes
of data. To this end, we measured the time needed to encrypt and decrypt a
symmetric key under policies of different sizes. We used access policies of the type
‘Attribute 1 AND ...AND Attribute n’ as in [5]. Such policies are the most
demanding since all attributes are required for the decryption. For the encryption
of a file with a policy consisting of the conjunction of 1000 attributes the time
needed was 11 s, while the corresponding decryption time was measured at 4.5 s.
However, for a realistic scenario in which the policy consists of 200 attributes, the
encryption and decryption times were measured at 2.1 s and 0.6 s respectively.
Thus, the use of CP-ABE scheme does not put any real computational burden
to the performance of MSCOPE.

8 Conclusion

We proposed a hybrid encryption scheme that combines SSE and ABE in a
way that the advantages of each encryption technique are used. MicroSCOPE
allows clients to search over encrypted data while the symmetric key required
for the decryption is protected via a CP-ABE scheme. Our construction allows
data owners to share their data based on certain access rights. Finally, we have
shown how to rely on SGX to provide an efficient revocation mechanism that is
agnostic to the underlying encryption schemes.
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Abstract. Organizations often focus their IT security strategy on pro-
tecting the perimeter from outside attacks, but internal attacks can often
cause the greatest damage. Version control systems are frequently used
in software development, including processes for automated build and
deployment. Malicious insider manipulations in a version control sys-
tem can, for example, lead to a clandestine distribution of software with
implanted vulnerabilities, backdoors, or other malicious functionality.

In this paper, we present VMIGuard, a solution that leverages virtual
machine introspection (VMI) to detect integrity violations and prevent
the propagation of unauthorized changes to a version control system
caused by an insider attack. VMIGuard logs metadata about all authen-
ticated modifications, and for each retrieval of version control system con-
tent, it verifies on-the-fly if the retrieved content matches the expected
state. VMIGuard prevents the delivery of manipulated version control
system content and notifies the user about integrity violations. We eval-
uate VMIGuard based on the open-source version control system git with
several scenarios, in which it increases the response time in the worst case
of the version control system server by a maximum of only 10%.

Keywords: Integrity protection · Virtual machine introspection ·
Version control systems · Malicious insider

1 Introduction

Over the past two decades, there has been a dramatic increase in the need for
reliable services that allow software developers to collaborate from all over the
world and merge their code easily. Today, developers rely on a version control
system (VCS) to ensure their collaboration going smoothly.

In recent years, git [14] has evolved to be the most widely used VCS. Devel-
opers can use git via third-party hosted services such as GitHub [6], GitLab [7]
and BitBucket [3].

Developers can also self-host a VCS by installing VCS solutions such as
Gogs [8], Gitea [5], or Gitlab [7] on their infrastructure. The major advantages
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https://doi.org/10.1007/978-3-030-35055-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35055-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-35055-0_17


272 S. Sentanoe et al.

of self-hosted solutions are that the developers have full control of their data
and such a VCS can be placed inside a private network that is not accessible
publicly.

Developers rely on the VCS services to accurately store their code and the
history of their modification. Besides, VCS systems are frequently used to ensure
smooth workflows. For example, a VCS can allow modifications to a master
or release branch only after review and approval. A VCS such as git provides
reasonable mechanisms to enforce such guarantees if all changes are made via
a (web) service that enforces access control. However, insider attacks, such as
malicious administrators who have low-level access to the server, can bypass
access control and make unauthorized changes that compromise the integrity of
the repository.

To mitigate that problem, we present VMIGuard that helps users to detect
integrity violations caused by a malicious insider. The goals of VMIGuard are the
following: VMIGuard should be able to detect manipulations of a git repository,
and prevent their propagation to clients. We do not want to design a completely
new VCS or substantially modify an existing one. Instead, we aim at designing a
generic security solution that transparently enhances an existing VCS with the
desired properties. As a basis for our work, we choose git, because today it is
the most commonly used VCS.

VMIGuard uses virtual machine introspection (VMI), which is a technique
to analyze the state (passive VMI) and the control flow (active VMI) of a virtual
machine (VM) from the hypervisor point of view [9]. VMI allows us to access all
information regarding a VM state such as CPU registers and memory. For exam-
ple, VMI allows us to access the decrypted data from encrypted network data in
memory. We demonstrate that VMIGuard can offer the desired additional pro-
tection. We measure the performance of VMIGuard with some scenarios where
it increases the response time by at most 10% in the worst case and 6.5% in the
best case.

The rest of the paper is organized as follows: Sect. 2 introduces the problem;
Sect. 3 discusses the threat model and assumptions that we use; Sect. 4 describes
the design goals and the architecture of VMIGuard; Sect. 5 describes the imple-
mentation of VMIGuard; Sect. 6 evaluates the performance of VMIGuard; Sect. 7
discusses related work; and Sect. 8 concludes the paper.

2 Background

In this section, we first describe the integrity mechanisms that are an integral
part of git. Next, we outline several possible integrity attacks that can be per-
formed by a malicious insider. The problem that this paper aims to solve is
finding a solution that helps detect and prevent these attacks.

2.1 Git and Its Security

Git is a distributed VCS where every user’s working copy of the code is a repos-
itory and it holds the whole history of changes [1]. During the initialization,
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Fig. 1. Git object

the git command creates a folder called .git where git stores and manipulates
the metadata. Git has four types of objects: blob, tree, commit, and tag. The
commit and the tag are the most relevant objects for this paper.

Git stores content in the manner of a simplified UNIX filesystem. All contents
are stored in a tree with blobs. A tree corresponds to a directory and a blob
corresponds to the file contents (Fig. 1-A).

A commit contains the information of the author, time of the commit, a
reference to the previous commit and a reference to the files that are being
committed. When users commit their changes, they can propagate the changes
to other users via a server by invoking two commands: push to send the local
changes to the remote repository and pull or fetch to retrieve the changes from
the remote repository to the local repository.

A tag is a reference to a commit object. Git stores references in the .git/refs
folder. References are also used by branches where it stores the hash value that
points to the particular commit (Fig. 1-B). Git stores the reference as plain-text
that can be modified directly, which can cause problems that are explained in
the next section.

To detect manipulations in a software repository, it is necessary that a client
can validate the integrity of the source code and detect unauthorized manipu-
lations. To achieve that, git implements these security mechanisms that make
sure that all changes in a repository are logged in the git history [18]:

– Each commit object contains the hash of the commit metadata (commit mes-
sage, committer, commit date, author and date), tree, and parent. Where
the tree is the hash of the working directory and the parent is the hash of
the commit before that being modified. Those hashes ensure the integrity of
commits.

– Users have the option to sign a commit using GNU Privacy Guard (GPG).
It ensures non-repudiation of a commit.

– Users can use a certificate to sign the references. These certificates address
man-in-the-middle attacks.
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These mechanisms enable a client to trace down all manipulations for each
commit back to the first commit of a repository.

2.2 Attack Types

Nevertheless, there are still approaches that allow attackers to manipulate soft-
ware repositories without violating integrity mechanisms. However, this requires
access to the file system that stores the repository. In particular, Torres-Arias
et al. [18] describe the following three attack scenarios on git:

– Teleport Attacks: modification of a git reference to point to an arbitrary
object;

– Rollback Attacks: modification of a git branch reference to point to an
older commit in that branch;

– Deletion Attacks: removal of a branch or a tag references.

We introduce one more type of low-level attacker, powerful malicious
administrator, who can access the git server with sufficient privilege to add
some files to the repository and uses the teleport attack to include the new files
into a reference as shown in Fig. 2. First, a benign user sets a tag (V1.0) on the
last commit (C3) as shown on Fig. 2-A. Second, the benign user pushes a new
commit (C4) ahead of C3 as shown on Fig. 2-B. Lastly, the malicious administra-
tor injects a new commit (E1) from inside the server and modifies the reference
of V1.0 tag to point to the malicious commit as shown on Fig. 2-C.

C1 C2 C3

V1.0

C1 C2 C3

V1.0

C4 C1 C2 C3

V1.0

C4

E1

B CA

Fig. 2. Powerful malicious administrator attack scenario

3 Threat Model and Assumptions

For this paper, we assume that an attacker has access to the virtual machine
that runs the git server and can manipulate the files of the software repositories.
This applies, for example, to a malicious insider as well as to an external attacker
who exploits software bugs to gain access to the system. We assume that the
operating system is trusted and that an attacker does not manipulate the kernel
and system call functions.

For our research prototype, we assume that all communication between the
server and a client is established via SSH and that the SSH communication is
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trustworthy. We assume that an attacker can replace the SSH binary used by
the git server to bypass the monitoring. A different SSH binary as the original
one might contain different data structure and symbols layout that may make
the monitoring impossible. We assume that the monitoring and database virtual
machines are well isolated where the attacker is unable to intercept and temper
the log files.

4 Design Goals and Architecture of VMIGuard

We approach the threats described in the previous sections with our VMIGuard
approach that leverages virtual machine introspection for detecting and prevent-
ing VCS service integrity violations. This section discusses the design goals and
presents the architecture of VMIGuard.

4.1 Goals

From the high-level perspective, VMIGuard aims at achieving the following
design goals:

G1 Detection: VMIGuard shall detect all attacks on the git services that have
been described in Sect. 2.2.
G2 Isolation: VMIGuard shall not require any in-guest agents (i.e., monitoring
software installed on the VCS server itself) so that attackers that have access to
that server are not able to modify the extracted data nor manipulate or disable
VMIGuard.
G3 Persistent logs: VMIGuard shall store the logs of VCS operations that are
necessary for integrity violation checks inside persistent storage using a database
solution.
G4 Notification: VMIGuard shall have a mechanism to notify the user that
the git repository has been modified or is in a faulty state. VMIGuard shall
prevent the propagation of the inconsistent repository.
G5 Performance: VMIGuard shall add only a small overhead to the response
time of the VCS.

With those goals in mind, our implementation covers these requirements:

R1 Extract transferred data (SSH traffic) without any modification on the
client-side and the presence of Man-in-the-Middle (MiTM).
R2 Process the extracted data which is related to git activity over SSH.

R3 Store specific information of the filtered data based on the specific git activity
such as: commit, pull, or push.
R4 Check the integrity of the git repository that is being accessed by the user.

R5 Direct notification to the user if a violation happens.

R6 Produces small overhead on the running system.

R7 Detect any modification on the SSH process.
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Fig. 3. VMIGuard’s architecture

4.2 Components

Figure 3 shows the architecture of VMIGuard. On the left-hand side, there
is a standard git client interacting with a git server using an SSH channel
(encrypted). Git supports both SSH and HTTPS-based communication. Our
approach could similarly be applied to both variants, but in the following, we
limit the discussion to the case of using SSH channels. The git server is a stan-
dard off-the-shelf installation of git in a virtual machine.

On the right-hand side, there is the monitoring component of VMIGuard.
The monitoring component needs permissions to perform virtual machine intro-
spection (VMI) on the git server, and the VMI mechanisms must support active
VMI, i.e., enable tracing operations in the monitored system by intercepting the
control flow. Our prototype implementation uses the Xen hypervisor and the
CloudPhylactor architecture [17], which leverages Xen security modules (XSM)
to enable running the VMIGuard monitor in a dedicated virtual machine, with
permission to introspect the git server. The git server has no access to the mon-
itoring virtual machine. This allows us to isolate the monitoring VM that holds
the database and protect it against malicious insiders.

The connection between the client and the server uses an encrypted and
authenticated SSH channel. Due to the encryption, simple network-based mon-
itoring of the interaction between git client and server is not feasible. However,
the communication endpoint in the server (the SSH daemon) will decrypt client
requests and pass them to the git service, and receive plain-text responses before
encrypting and sending them to the client. Our monitor module extracts the
SSH data from the SSH daemon’s memory by leveraging VMI R1 R2 and
stores the information into a database and for our implementation, we use Elas-
ticSearch [4] R3 . The monitor module reads previous logs (if exist) that related
to the repository and produces a decision whether there is an integrity violation
or not R4. If there is a violation, the monitor module changes the payload of the
SSH connection in the git virtual machine so that the manipulated git content
is not passed to the client. Also, a message is added inside the transmitted SSH
packet to notify the user directly about the integrity violation R5.
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VMIGuard uses function tracing of the SSH daemon to intercept the control
flow and extract function call input parameters. We use software breakpoints to
intercept function calls and implement Xen Altp2m [10] to increase the stealthi-
ness and minimize the overhead of the monitoring R6. We download the debug-
ging symbols of the OpenSSH that is installed on the git server. We use the
debugging symbol to extract the symbols’ (functions’) offsets to calculate the
function’s memory address and the data structure layout to extract the SSH
network packet payload.

VMIGuard checks the integrity of the SSH daemon to ensure that the trac-
ing mechanism is working as intended R7. We periodically read the executable
section of the SSH daemon on the memory. If the results differ, we assume that
the process has been changed and no longer can be trusted. We also block the
network traffic to prevent un-monitored client’s activities.

To detect manipulations of an attacker to a git repository, we monitor and
log changes of clients via the SSH service to rebuild the state of the repository.
When a user requests information of the repository, we crosscheck if the content
sent (that is read from the filesystem) matches the state in our database.

5 Implementation

We have implemented a prototype version of VMIGuard. For the git server, we
install Ubuntu 16.04 and gitea as a lightweight git frontend. On the monitoring
virtual machine, we install LibVMI [11] as a library for basic VMI function. In
this section, we provide additional implementation details of our prototype.

5.1 Extracted Information

VMIGuard extracts some information from git client–server interaction. We pro-
vide more details on how this extraction process works in Sect. 5.2 below. VMI-
Guard stores the extracted information into a database (we use ElasticSearch
(ES) [4] for the current implementation). The relevant elements that are con-
tained in client–server messages and recorded to the database are the following:

– repository: The git repository’s name that is being accessed.
– timestamp: The time when a particular repository is being accessed.
– ip: The IP address of the client who accesses the repository.
– refs: The git reference that is being accessed.
– hash: The hash value of the latest commit that is uploaded to the server.
– old hash: The old hash value of the older commit that is being replaced by

the new one.
– new hash: The new hash value that replaces the older commit.
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5.2 Data Extraction

Git uses either HTTPS or SSH protocol to ensure the security of the transmitted
data. Conceptually, the method of this paper works for both protocols but, we
use SSH for our implementation.

VMIGuard extracts the data of an SSH connection by tracing two OpenSSH
functions, they are: sshbuf get u8 and ssh packet send2 wrapped. Those functions
are responsible for doing the encryption and decryption of a packet. We extract
the packet’s payload to analyze it before it is encrypted (send) and after it is
decrypted (receive).

VMIGuard filters the SSH packets by matching the executed command. If
it executes git-receive-pack, it means that the server is receiving content that
should be pushed into the repository.

exec . . . . $g i t−r e c e i v e−pack ’ s tewart / t e s t 1 . g i t ’
557 bd81abf33322115324a379d225d86fcdbd618

↪→ ad47e374c23280a3024420cfed423dc1e8f f117a r e f s /heads/
↪→ master .

Where, ‘stewart/test1.git’ is the repository name, 557bd8... is the old hash,
ad47e3... is the new hash , and ref/heads/master is the refs that being updated.
If, it executes git-upload-pack, it means that the server is pushing the repository
to the user.

exec . . . . # g i t−upload−pack ‘ s tewart / t e s t 1 . g i t ’
ad47e374c23280a3024420cfed423dc1e8f f117a r e f s /heads/master .

Where the repository name is the same and ad47e3... is the hash commit of
ref refs/heads/master that is being accessed.

VMIGuard extracts the IP address of the user by accessing the SSH session
data structure on the memory. It holds the private session state metadata such
as origin IP, origin port, incoming packet, and outgoing packet.

If VMIGuard detects a violation, it performs two actions:

1. Adds a warning message on the SSH’s network packet to notify the user.
2. Replaces the transferred files with the empty string which produce an error

on the client-side that prevents the user to receive the files.

Those actions will be shown on the git client of the user:

Cloning in to ‘ t e s t1 ’ . . .
remote : WARNING! ! i n c o n s i s t e n t
f a t a l : pack s i gna tu r e mismatch
f a t a l : index−pack f a i l e d

5.3 Cross Checking – Integrity Violation Detection

When users push changes to their repositories, VMIGuard records all commit
hash values and their references accordingly. When a user clones or pulls a repos-
itory, VMIGuard checks the last commit hash and compares it against the most
recent commit hash R4.
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Algorithm 1. Push
1: procedure store log(repo,ref ,hash)
2: if repo exist then

3: create new repo record(repo)
4: end if

5: store new hash value(repo,ref ,hash)

6: end procedure

Algorithm 2. Pull
procedure is valid(repo,ref ,hash)

2: a ← false
if repo and ref exist then

4: temp ← latest stored hash
if temp == hash then

6: a ← true
end if

8: end if
return a

10: end procedure

5.4 SSH Integrity Check

To ensure the integrity of the SSH daemon, VMIGuard analyze the executable
section of the process as shown in Fig. 4. First, in an initial training phase,
VMIGuard reads the (read-only) address range of the executable section that
are mapped in memory. Second, it reads 4 KB each time from the beginning until
the end of the section and computes a hash over it. Third, it appends all the
hashes and computes the final hash over them. Lastly, it stores the final hash
value inside the database.

At normal run-time, the integrity of the SSH daemon is ensured repeatedly
by computing the hash of the program and comparing it with the hash stored
in the database.

6 Evaluation

We measure the performance impact of VMIGuard. We use three scenarios that
simulate normal usage of a git server, they are:

S1 Generate one file with x MB in size, push it to the server, and pull the
change onto a different folder; where x = [1, 10].
S2 Generate two files with x MB in size (for each file), push it to the server,
and pull the change onto a different folder; where x = [1, 10].

/usr/sbin/sshd addr 1 - addr 2 r-xp

/usr/sbin/sshd addr 3 - addr 4 r–p

/usr/sbin/sshd addr 5 - addr 6 rw-p

.... .... - .... ....

4KB

addr 1

4KB 4KB 4KB

addr 2

SHA256SHA256 SHA256 SHA256

Append + SHA256

Hash

Fig. 4. Executable memory region hashing
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Fig. 5. VMIGuard’s performance evaluation

S3 Generate a 50 KB file, push to the server, and pull the change onto a
different folder. This is repeated 200 times so that the repository will end up
with 200 files.

We execute scenario S1 and S2 100 times, and scenario S3 for ten times then,
we calculate the average of elapsed time on the client-side. We run the client and
the server on the same host machine to minimize the networking delay. Figure 5
a-d shows the result of scenario S1 and S2 where the overhead in average is
6.5% and 7.1% for push and pull respectively. Figure 5e and f shows the result of
scenario S3 where the overhead is 8.2% and 10% for push and pull respectively.

6.1 Limitations

There are several limitations that we do not address in the current version of
VMIGuard:

– An adversary that has access to the dom0 can shut down the monitoring VM.
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– The client is not able to detect whether the monitoring is running. Hence,
the current version is usable for providers or companies that want to increase
their security level against adversaries.

– The current version does not apply encryption for the log, but we assume that
the isolation is secure enough that the adversary is not able to eavesdrop or
tamper the log.

7 Related Work

Aublin et al. introduce LibSEAL [2]. LibSEAL detects integrity violation of a
public file services by modifying the TLS library implementation to extract the
data, stores the extracted data inside a relational database, with the system
protected by a Trusted Execution Environment (TEE) such as Intel SGX. In
contrast, VMIGuard does not require any modification of the monitored system
and produces lower overhead.

Logging-as-a-service [12,19] leverages a trusted third party (TTP) to main-
tain the logs. The TTP helps to detect the integrity violation. The user can
compare their locally stored logs against the TTP. On the other hand, VMI-
Guard does not require the presence of a trusted third party. The system owner
can decide what to do with the stored data that is generated by VMIGuard.

TLSKex [16] uses VMI to extract TLS sessions keys from the memory with
a brute-force (trial and error) approach to determine the key’s location in the
memory in order to decrypt the communication. Similarly, DroidKex [15] also
use brute-force approach but, it learns the data structure layout to reduce the
overhead of finding the key’s location. Unlike those approaches, VMIGuard does
not require the extraction of the key to decrypt the encrypted connection since
it directly extracts the plain data in memory.

We introduce Sarracenia [13], a VMI based SSH honeypot. Sarracenia dumps
the SSH data into log files for later analysis. VMIGuard uses the same data
extraction mechanism as Sarracenia, but VMIGuard analyzes the SSH data on-
the-fly and stores only the data that is considered necessary.

8 Conclusions

To detect integrity violation of a git repository, we introduce VMIGuard, a
VMI based VCS integrity violation detection. The main strength of this study
is the exclusion of needs to do modification of the server. Our implementa-
tion shows that VMIGuard produces a small increase in the system’s response
time. Although this study focuses on git via SSH, the findings may well have a
bearing on other protocols. This would be a fruitful area for further work. To
support other work, we published the source code on GitHub https://github.
com/libvmtrace/libvmtrace.
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