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Abstract. This paper proposed a lightweight CNN architecture called Binary-8
for ball detection on NAO robots together with a labelled dataset of 1000+ images
containing balls in various scenarios to address the most basic and key issue in robot
soccer games: detecting the ball. In contrast to the existing ball detection methods
base on traditional machine learning and image processing, this paper presents
a lightweight CNN object detection approach for CPU. In order to deal with the
problems of tiny size, blurred image, occlusion and many other similar objects dur-
ing detection, the paper designed a network structure with strong enough feature
extraction ability. In order to achieve real time performance, the paper uses the
ideas of depthwise separable convolution and binary weights. Besides, we also
use SIMD (Single Instruction Multiple Data) to accelerate the operations. Full
procedure and net structure have been given in this paper. Experimental results
show that the proposed CNN architecture can run at full frame rate (140 Fps on
CPU) with an accurate percentage of 97.13%.
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1 Introduction

In the RoboCup Soccer Standard Platform League (SPL), ball detection is a fundamental
and crucial ability for robotics, which is used to provide target distance and specific loca-
tion for robots in various light environment. In addition, as the only standard device used
in the SPL, the Softbank Robotics NAO has very limited resources, such as constrained
computational abilities, and limited camera resolution. So, designing a real-time and
efficient ball detection system has been a challenging task to address in the games: tiny
size, blurred image, uneven illumination, occlusion and many similar objects. Tradi-
tional machine learning and image processing methods for ball recognition usually lead
to a lot of and false positives and missed recognition.

State-of-the-art CNN shows excellent abilities of classification and object detection,
but existing CNN-based detectors suffer from massive computational cost with server-
class GPUs. When it comes to the application of CNN to mobile devices, there are several
progresses in lightweight object detectors based on CNN, like YOLO-LITE, tiny- Yolo,
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Xception, MobileNet, XNOR-Net [1, 11-16], to improve the less computational cost on
GPUs. However, the real-time operation performances are not able to meet the compe-
tition requirements when the nets are transferred to NAO robots vision application. In
order to ensure the competitiveness of the game, we have to consider the balance between
the real-time performance and detection accuracy. Furthermore, because the input res-
olutions are related to the model operation performance, we use the NAO’s camera to
capture a lot of images in various light conditions in our lab and competition field. In
total, we captured 1008 unique images. While guaranteeing the detection performance,
we pay more attention to the detection efficiency.

In this paper, we firstly provide a dataset, and then we investigate the effectiveness
of depthwise convolution with binary weight in achieving real-time operational ability
and desired detection accuracy on NAO robot. In the network design part, we described
the process of building the network structure step by step in detail. The experimental
results show that the computing time of the network structure designed by us decreases
gradually without significant performance degradation. Satisfactory results have also
been achieved in practical application.

The remainder of this letter is organized as follows. Section 2 introduces related
works and analyses the existing shortcomings. Section 3 introduces our dataset in detail.
Section 4 describes the procedure of developing the network structure step by step.
Followed by Sect. 5 experiments and Sect. 6 conclusions.

2 Related Works

Lightweight CNN. As state-of-the-art one-stage object detection algorithms, YOLO
[12-14] and SSD [18] enable to run in real time on GPUs with high accuracy. And
YOLOV3-tiny [14] further improve efficiency of detection with acceptable accuracy on
GPUs. But all of them suffer from massive computational cost. Recently, there have
been several progresses in developing object detection algorithms to attribute to mobile
and embedded vision applications, like MobileNet [15], and ShuffieNet [17]. However,
these architecture designs are inspired by depthwise separable convolution which lacks
efficient implementation. And other Pelee [3] enables to be executed on mobile devices
at low frame rates. Compared with SSD MobileNet V1, YOLO-LITE [1] achieves the
progress of computational speed improvement, but at the cost of losing the detection
accuracy. So considering the balance between the real-time performance and detection
accuracy on NAO robot vision application, we propose a real time lightweight CNN
based on depthwise convolution with binary weight in NAO Robots for ball detection
with better performance. Our design is mainly focused on efficiency.

Compression of CNNs. Generally, compression of CNNs enables to reduce the param-
eters and storage space of the model by means of related methods, such as pruning,
quantization and approximation. Different methods have been proposed for pruning a
network in [4-7]. Besides, quantization techniques were shown in [8, 9] for weights
and representation of layers quantized in CNNs. With respect to approximation method,
the authors proposed using FFT to compute the required convolutions in [10]. [11] Pro-
posed a novel CNN which introduced two efficient approximations to CNNs by weight
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binary: Binary-Weight-Networks and XNOR Networks. In Binary-Weight-Networks,
the weight values are approximated with the closest binary values, resulting in a 32x
size smaller. Furthermore, XNOR Networks in which both the weights and the input of
convolutional layers are binary values offers 58x speed up on a CPU, but 12.4% accu-
racy dropping in top-1 measure, by utilizing mostly XNOR and bit-counting operations.
Inspired from the idea, our work utilizes the binary weight to compress our model.

Detection Algorithms on NAQO. In response to the ball detection task, different recog-
nition algorithms are proposed by the teams participating in the competition from all
over the world. UChile, the Chilean team, has proposed a classification algorithm based
on pentagonal recognition, which can better classify the positive and negative samples
of the ball, but when the image is blurred, there are many missing recognition. German
team HULK proposed a classification algorithm using Haar features. Although it enables
to improve the accuracy of recognition to some extent, it takes a long time to compute
and operation, resulting in the slow reaction of the robotics. Nao-Team HTWK and
UT Austin Villa utilize a shallow CNN classifier, but they have to add other traditional
image processing methods to generate Hypotheses first, and then use the CNN classifier
to determine whether each hypothesis is a ball. However, in this way, the process of
generating hypotheses with traditional methods will lead to leak recognition in all like-
lihood. Additionally, good features of the ball will be lost in the resize process. Except
those, the shallow network with only 1-2 convolutional layers, generally consisting of
convolution, Batch Normalization, ReLU activation and Max pooling layers, results in
the weak feature extraction ability and poor generalization of the classifier.

3 Data Set

The proposed dataset was collected in our lab and real RoboCup competition fields,
consisting of 1008 unique images with ball. Generally, the original images captured
from the NAO’s cameras is YUV format and the size of the images are lowered to 640 x
480 pixels and 320 x 240 pixels from the upper and lower camera, respectively. In order
to speed up the operation process and improve the robustness under various scenarios,
only the luminance (Y) channel of each image was extracted from NAO in action with
various light conditions. Only when the original dataset obtained, were the ball pixels
manually labelled. For the purpose of acceleration while ensuring detection accuracy,
we resized the input images with label to a middle size of 416 x 416 pixels for later
training and testing. An example of the proposed dataset is shown as Fig. 1. And the
specific Dataset is online at https://github.com/qyan0131/Binary-8-DataSet.git.
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Fig. 1. Dataset for training and testing: It consists of 1008 Y channel images with ball captured
from the NAO’s cameras. The size of the images is lowered to 640 x 480 pixels and 320 x 240
pixels from the upper and lower camera, respectively

4 Network Design

In this section, we demonstrate the network design procedure in detail. The proposed
network mainly focuses on the effectiveness and still maintain acceptable performances
when transferred to NAO. And the design guidelines are composed of four parts. In the
backbone part, we first design a small standard CNN as the fundamental network, which
is enable to extract enough features for NAO vision detection. And under the premise
of maintaining the accuracy for detection, we compress the standard CNN model as
the backbone by reducing the number of layers and filters as much as possible. Then
inspired from MobileNet ideas, we use the depthwise separable convolution based on
the backbone to greatly reduce the number of parameters. Besides, a binary-weights
approach is utilized in the point-wise convolution operation to further speed up the
computational performance, because point-wise convolution operation takes more than
80% float type computation cost in MobileNet architecture while binary-weights use
mostly XNOR and bit-counting operation. Finally, in view of the Intel CPU used by the
NAO robot, we rewrite the convolution operation, batch normalization operation and
ReLU none-linear activation operation of CNN network with SIMD instructions, which
once again increases the speed by many times.

4.1 Backbone

In this paper, we no longer only apply CNN to classifier, we hope to use CNN to achieve
end-to-end object detection. As consequence, we first build a backbone with sufficient
feature extraction and generalization capabilities. Then, in order to deal with tiny size
problem, we use anchor mechanism and design three anchors for different size objects.
Finally, the output data structure of the network is given.

In the backbone design procedure, we adopt the sequential iteration method. We
weigh the running time, accuracy against the number of layers and channels of the
network. Because the number of network layers and layer filters will affect the network
parameters and computation costs. The more network layers, the stronger the non-linear
ability of the whole network, the stronger the ability to extract features, the stronger
the robustness and generalization ability. The more layer filters, the more information
flows between adjacent two layers of network, the richer and more accurate the extracted
features are. However, increasing the number of network layers or increasing the number
of layer filters will result in real-time performance degradation.



28 Q. Yan et al.

Darknet Reference Model is a small but efficient network proposed by [20]. Inspired
by it, we prune Darknet Reference network layer by layer and keep training and testing.
When the accuracy drops dramatically, we stop pruning the network layer. Then we start
reducing layer filters. Similarly, when the accuracy on training and test sets declines
significantly, we stop reducing the number of filters. In this way, the backbone containing
8 convolutional layers has been built, as shown in Table 1. We call it Backbone-S§.

Table 1. Backbone-8 architecture

Type/stride | Filter shape Input size
Conv/s2 3x3x3x16 416 x 416 x 3
Conv/sl 3x3x16x32 208 x 208 x 16
Conv/s2 3x3x32x64 104 x 104 x 32
Conv/sl 3 x3x64x64 104 x 104 x 64
Conv/s2 3x3x64x128 |52 x52x64
Conv/s2 3 x 3 x 128 x 256 |26 x 26 x 128
Conv/sl 3 x 3 x 256 x 256 | 26 x 26 x 256
Conv/s2 3 x3x256 x512 |13 x 13 x 256
Conv/sl 1 x1x512x18 |13 x 13 x 512
Yolo

4.2 Using Depthwise Convolution

MobileNet [15] uses depthwise separable convolutions, as opposed to YOLO’s method,
to lighten a model for real-time object detection. The idea of depthwise separable con-
volutions combines depthwise convolution and point-wise convolution. Depthwise con-
volution applies one filter on each channel then pointwise convolution applies a 1 x 1
convolution [15] to expand channels.

Based on [15], related to standard convolutions, using depthwise separable convo-
Iutions can get a reduction in computational cost of:

Dxk-Dxk-M-Dp-Drp+M-N-Dp-Dp _ 1+ 1
Dk -Dk-M-N-Dp - Dp N DI

(1

where Dk - Dk - M - N is the size of a parameterized convolution kernel K, and Dr x
Dr x M is the size of the feature map taken as input.

In order to make the network mentioned in Sect. 4.1 more real-time, we rewrite
the backbone in MobileNet structure called Depthwise-8. In the model, we also use
3 x 3 depthwise separable convolutions to achieve 8 to 9 times less computation than
Backbone-8 (Table 2).
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Table 2. Depthwise-8 architecture

Type/stride | Filter shape Input size
Conv/s2 3x3x3x16 416 x 416 x 3
Conv dw/sl |3 x 3 x 16 dw 208 x 208 x 16
Conv/s1 1 x1x16x 32 208 x 208 x 32
Conv dw/s2 |3 x 3 x 32 dw 104 x 104 x 32
Conv/sl 1 x1x32x064 104 x 104 x 64
Conv dw/sl |3 x 3 x 64 dw 104 x 104 x 64
Conv/sl 1 x1x64x64 104 x 104 x 64
Conv dw/s2 |3 x 3 x 64 dw 52 x 52 x 64
Conv/sl 1 x1x64x128 52 x 52 x 128
Conv dw/s2 | 3 x 3 x 128 dw 26 x 26 x 128
Conv/s1 1 x1x 128 x 256 26 x 26 x 128
Conv dw/s1 |3 x 3 x 256 dw 26 x 26 x 256
Conv/sl 1 x 1 x 256 x 256 26 x 26 x 256
Conv dw/s2 | 3 x 3 x 256 dw 13 x 13 x 128
Conv/s1 1 x1x256x512 13 x 13 x 128
Conv/s1 1 x1x512x18 13 x 13 x 512
Yolo

4.3 Using Weight Binarization

29

Floating-point operation is time-consuming for device CPU, which is one of the most
important factors restricting CNN running on CPU. Weights binarization can convert
complex floating-point operations into simple XOR operations to accelerate the compu-
tation procedure. In the experiment we found that in Mobilenet architecture, point-wise
convolution has limited feature extraction ability but it takes more than 80% of the total
computation cost, while depthwise convolution can extract features effectively. Based
on the above findings, we apply binary-weight operation to point-wise convolution to
further accelerate the whole computation process. According to [11], the convolutional
weight can be approximated by:

1
A = ;||Wztk||11 ()
B = sign(Wl’k) 3)
Wik = AuBu 4

Where W € R”, ¢, k represent k™ filter in 1 layer.
Since the number of network layers proposed in this paper is small and the input is
8-bit unsigned integer, if we binaries the network input i.e. the image or the output of
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each layer, it will take even more time to traverse the whole image. Therefore, this paper
only binaries the network weight. The structure of binary-weighted network structure is
shown in Table 3. We call it Binary-8.

Table 3. Binary-8 architecture

Type/stride | Filter shape Input size Binary or not
Conv/s2 3x3x3x16 416 x 416 x 3 |0
Conv dw/sl |3 x 3 x 16 dw 208 x 208 x 16 |0
Conv/sl 1x1x16x32 208 x 208 x 32| 1
Conv dw/s2 | 3 x 3 x 32dw 104 x 104 x 32 |0
Conv/s1 1x1x32x64 104 x 104 x 64 | 1
Conv dw/s1 | 3 x 3 x 64 dw 104 x 104 x 64 | 0
Conv/s1 1x1x64x64 104 x 104 x 64 | 1
Conv dw/s2 | 3 x 3 x 64 dw 52x52x64 |0
Conv/s1 1x1x64x128 52 x 52 x 128 |1
Conv dw/s2 | 3 x 3 x 128 dw 26 x 26 x 128 |0
Conv/s1 1x1x128 x256 |26 x26x 128 |1
Conv dw/sl | 3 x 3 x 256 dw 26 x 26 x 256 |0
Conv/sl 1 x1x256x256 |26 x26x256 |1
Conv dw/s2 | 3 x 3 x 256 dw 13 x 13 x 128 |0
Conv/s1 1x1x256x%x512 |13 x13x128 |1
Conv/s1 1x1x512x18 13 x13x512 |0
Yolo

4.4 Boost Real Time Performance

The network in Sect. 4.3 already has strong real-time performance, but we can still use
the SIMD instructions provided by Intel CPU to accelerate the operation on NAO robots
to further enhance real-time performance. SIMD stands for Single Instruction Multiple
Data. It can copy multiple operands and package them in a set of instructions in a single
register. SSE is one of the instructions sets of SIMD which is supported by NAO’s CPU.
NAO uses 32-bit Intel CPU with 128-bit register length and 8-bit unsigned integer for
CNN image input. Therefore, the operation of 32 pixel values can be processed at one
time with SSE, leading to several times faster CNN calculation.

We rewrite the convolution operation, batch normalization operation and ReLU none-
linear activation operation of CNN network with SIMD instructions.
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5 Experimental Results

5.1 Comparison Among Proposed Networks

We evaluate the performance of our proposed approach on the task of NAO camera
image. After successfully training models for our dataset, the network architectures
accompany with their respective weights were test on the customized test set. The number
of parameters, inference time and accuracy of the three proposed network is shown in
Table 4. Figure 2 shows the APs during training phase.

Table 4. Comparison of three proposed network (Intel Atom 1.9 Hz CPU @ 320 * 240 pix)

Model Million Inference time | Test set accuracy
parameters

Backbone-8 | 2.208 94 ms 98.17%

Depthwise-8 | 0.2612 17.5 ms 98.02%

Binary-8 0.2612 14.9 ms 97.13%

Binary-8-SSE | — 7.1 ms -
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Fig. 2. Average precision of the three propose network

As shown in the table, every step of the network design improves the speed of
computation while keep the correct rate is similar. And the final designed network with
SSE optimization only takes 7.1 ms to process an image at the resolution of 320 x 240,
which is fast enough to run on NAO robot.

Figure 3 shows the IoU and Loss during training phase of our proposed network.
From the figure we can discover that the order of IoU rising speed is Backbone-8 >
Depthwise-8 > Binary-8, however, with the increase of training epochs, the IoU of the
three networks tends to be stable and the values are very similar. Loss in the figure is
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similar: although Backbone-8 declined the fastest, Binary-8 declined the slowest, they
eventually tend to be stable. The difference is that, the Backbone-8 network’s stable loss
is the smallest, while the Binary-8 network is the highest. But considering the trade-off
between computation time and performance, Binary-8 is the most efficient network.
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Fig. 3. IoU and Loss among proposed networks

5.2 Comparison Among Typical CNN Models

We also compare our proposed network with some of the famous or state-of-the-art
lightweight network as shown in Table 5. Weights size, accurate percentage, BFLOPS
and inference time on NAO robot are considered.

Table 5. Comparison of typical CNN models on Ball Dataset

Model Weights size (MB) | AP@IOUO.5 | BFLOPS | Inference time on NAO
[ms]

AlexNet 238 98.78 2.862 1029

VGG 528 98.83 46.978 17310

Tiny-yolov3 35.19 98.86 1.773 566

MobilenetV1l | 12.22 98.65 3.798 113

Binary-8-SSE | 1.05SM 97.22 0.189 7.1

According to the result in Table 5, compared with other typical lightweight models,
the network we designed shows superior performance. The network structure proposed
in this paper improves the computation speed greatly when accuracy is similar.

Experiments show that the proposed network has strong real-time performance
(about 140 Fps on NAO robot CPU), and the accuracy (above 97%) can meet the
recognition requirements.
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6 Conclusion and Future Work

We propose a simple, efficient, and accurate CNN for object detection (ball) on NAO
robots. We train a neural network that learns to find binary values for weights with
depthwise convolution. In order to speed up execution on NAO CPU, we present a
method of rewriting convolution layer, batch normalization layer and ReLU activation
function using SSE. We also present a RoboCup Standard Platform image dataset with
annotations, allowing other RoboCup researchers to train new models. The proposed
network can detect balls accurately and run on NAO CPU in real-time.

In the future, we may continue focus on investigating more real-time CNNs on NAO
robots with new tricks or new network architecture. We may research on the group point-
wise convolution as proposed in ShuffleNet [17], as the point-wise convolution takes up
a lot of computation in our network. We many also research on concatenating different
layers to combine more feature information and further reduce the parameters. As for
the RoboCup competition, we may use this network to detect all objects in games (i.e.
ball, robot, obstacle, goalpost etc.). We may also use the backbone and similar tricks to
build a real-time semantic segmentation algorithm on NAO robots to segment different
objects/regions on the field.

Acknowledgements. The authors would like to acknowledge Team TJArk in RoboCup Standard
Platform League for providing NAO robots and robot soccer field to capture dataset images. They
also offer a lot of technical supports on operating and programming on NAO.
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