
Brief Announcement: Fully Anonymous
Shared Memory Algorithms

Michel Raynal1,2 and Gadi Taubenfeld3(B)

1 Univ Rennes IRISA, Rennes, France
2 Department of Computing, Polytechnic University, Kowloon, Hong Kong

3 The Interdisciplinary Center, 46150 Herzliya, Israel
tgadi@idc.ac.il

Abstract. Process anonymity has been studied for a long time. Memory
anonymity is more recent. In an anonymous memory system, there is no
a priori agreement among the processes on the names of the shared reg-
isters they access. This article introduces the fully anonymous model,
namely a model in which both the processes and the memory are anony-
mous. It is shown that fundamental problems such as mutual exclu-
sion, consensus, and its weak version called set agreement, can be solved
despite full anonymity, the first in a failure-free system, the others in the
presence of any number of process crashes.

1 Introduction

Process Anonymity. The notion of process anonymity has been studied for a long
time from an algorithmic and computability point of view, both in message-
passing systems and shared memory systems. Process anonymity means that
processes have no identity, have the same code and the same initialization of their
local variables (otherwise they could be distinguished). We assume a system that
is composed of a finite set of n ≥ 2 asynchronous, anonymous processes denoted
p1, . . . , pn. Each process knows the number of processes and the number of
registers. The subscript i in pi is only a notational convenience, which is not
known by the processes.

Memory Anonymity. The notion of memory anonymity has been recently intro-
duced in [8]. Let us consider a shared memory R made up of m atomic registers.
Such a memory can be seen as an array with m entries, namely R[1 . . . m]. In
a non-anonymous memory system, for each index x, the name R[x] denotes the
same register for each process that accesses the address R[x]. Hence in a non-
anonymous memory, there is an a priori agreement on the names of the shared
registers.

The situation is different in an anonymous memory, where there is no a
priori agreement on the names of the registers. Moreover, all the registers of an
anonymous memory are assumed to be initialized to the same value (otherwise,
their initial values could provide information allowing processes to distinguish
c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 301–306, 2019.
https://doi.org/10.1007/978-3-030-34992-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_24


302 M. Raynal and G. Taubenfeld

them). The interested reader will find an introductory survey on both process
and memory anonymity in [4].

Anonymous Shared Memory. The shared memory is made up of m ≥ 1 atomic
anonymous registers denoted R[1 . . . m]. Hence, all the registers are anonymous.
As already indicated, due to its anonymity, R[x] does not necessarily indicate
the same object for different processes. More precisely, a memory-anonymous
system is such that:

– For each process pi an adversary is defining a permutation fi() over
{1, 2, · · · ,m}, such that when pi uses the address R[x], it actually accesses
R[fi(x)],

– No process knows the permutations, and
– All the registers are initialized to the same default value denoted ⊥.

Table 1. Illustration of an anonymous memory model

Identifiers for an
external observer

Local identifiers
for process pi

Local identifiers
for process pj

R[1] Ri[2] Rj [3]

R[2] Ri[3] Rj [1]

R[3] Ri[1] Rj [2]

Permutation fi() : [2, 3, 1] fj() : [3, 1, 2]

An example is presented in Table 1. To make apparent the fact that R[x] can
have a different meaning for different processes, we write Ri[x] when pi invokes
R[x].

Anonymous Register Models. We consider two types of anonymous register mod-
els.

– RW (read/write) model. In this model all, the registers can be atomically
read or written by any process.

– RMW (read/modify/write) model. In this model, each register can be atom-
ically read, written or accessed by an operation that atomically reads the
register and (according to the value read) possibly modifies it.

Practical Motivation. It was recently shown that epigenetic cell modifications
can be modeled by anonymous entities cooperating through anonymous com-
munication media [6]. Hence, fully anonymous distributed systems could inspire
bio-informatics (and be inspired by it) [2].

This article considers the following problems.



Brief Announcement: Fully Anonymous Shared Memory Algorithms 303

Mutual Exclusion. Mutual exclusion is the oldest and one of the most important
synchronization problems. Formalized by E.W. Dijkstra in the mid-sixties, it
consists in building what is called a lock (or mutex) object, defined by two
operations, denoted acquire() and release(). For a formal definition, we refer the
reader to [3,7].

Consensus. The consensus problem consists in building a one-shot operation,
denoted propose(), which takes an input parameter (called proposed value) and
returns a result (called decided value). A process may invoke the operation at
most once. The meaning of this operation is defined as follows: (1) Validity: A
decided value must be a proposed value; and (2) Agreement: No two processes
decide on different values.

The problem must also satisfy one of the following progress conditions: (1)
Wait-freedom: If a process does not crash, it must decide; or the weaker (2)
Obstruction-freedom: If a process does not crash, and executes alone during a
long enough period, it must decide. While wait-free consensus can be solved
from registers in a non-anonymous RMW system, it cannot be solved in a non-
anonymous RW system. It is possible to solve (the weaker) obstruction-free con-
sensus in non-anonymous RW system.

Set Agreement. Set agreement captures a weaker form of consensus in which the
agreement property is weakened as follows: At most n − 1 different values are
decided upon. That is, in any given run, the size of the set of the decision values
is at most n − 1.

The set agreement problem as defined above is also called the (n − 1)-set
agreement problem. While much weaker than consensus, as consensus, wait-free
set agreement cannot be solved in non-anonymous RW memory systems.

Content of the Paper. Table 2 describes the technical content of the paper.
As an example, the second line states that Sect. 3 presents a consensus algo-
rithm for an anonymous RMW system for n > 1 and m ≥ 1. As far as
the mutex algorithm is concerned, it is also shown that m ∈ M(n), where
M(n) = {m such that ∀ � : 1 < � ≤ n: gcd(�,m) = 1} is a necessary and
sufficient condition on the size of the memory.

Table 2. Results and the structure of the paper

Problem SectionTolerate
failures

Register
type

Progress condition Number of
processes n

Number of
registers m

Mutual exclusion2 No RMW Deadlock-freedom n > 1 m ∈ M(n)

Consensus 3 Yes RMW Wait-freedom n > 1 m ≥ 1

Set agreement 4 Yes RW Obstruction-freedomn > 1 m ≥ 3

Consensus 5 Yes RW Obstruction-freedomn = 2 m ≥ 3



304 M. Raynal and G. Taubenfeld

2 Fully Anonymous Mutex Using RMW Registers

The mutual exclusion problem can be solved for non-anonymous processes in
both the anonymous RW register model and the anonymous RMW register
model [1,8]. However, there is no mutual exclusion algorithm when the pro-
cesses are anonymous, even when using non-anonymous RW registers. To see
that, simply consider an execution in which the anonymous processes run in
lock-steps (i.e., one after the other) and access the RW registers in the same
order. In such a run it is not possible to break symmetry as the local states of
the processes will be exactly the same after each such lock-step.

Let us recall that two integers x and y are said to be relatively prime if their
greatest common divisor is 1, notice that a number is not relatively prime to
itself. Let M(n) = {m such that ∀� : 1 < � ≤ n : gcd(�,m) = 1}.

Theorem 1. There is a deadlock-free mutual exclusion algorithm for n ≥ 2
anonymous processes using m ≥ 1 anonymous RMW registers if and only if
m ∈ M(n).

The proof of the if direction, follows from the very existence of the deadlock-
free mutual exclusion algorithm for n anonymous processes using m anonymous
RMW registers, where m ∈ M(n), presented in the full version of the paper
[5]. The proof of only if direction, is a consequence of the lower bound result
from [1], which states that m ∈ M(n) is a necessary and sufficient condition for
symmetric deadlock-free mutual exclusion for n non-anonymous processes and
m anonymous RMW registers.

3 Fully Anonymous Wait-Free Consensus
Using RMW Registers

We describe below a straightforward wait-free consensus algorithm for any num-
ber m ≥ 1 of anonymous registers. This algorithm assumes that the set of pro-
posed values is totally ordered. Each process tries to write the value it proposes
into each anonymous register. Assuming that at least one process that does not
crash invokes propose(), there is a finite time after which (whatever the con-
currency/failure pattern is) each anonymous register contains a proposed value.
Then, using the same deterministic rule (for example by choosing the maximum
value) the processes decide on the same value.

4 Fully Anonymous Obstruction-Free Set Agreement
Using RW Registers

We describe below an obstruction-free set agreement algorithm for n ≥ 2 anony-
mous processes using m ≥ 3 anonymous RW registers. Each anonymous RW
register can store the preference of a process. Each participating process scans
the m RW registers trying to write its preference into each one of the m registers.
Before each write, the process scans the shared array and operates as follows:



Brief Announcement: Fully Anonymous Shared Memory Algorithms 305

– If its preference appears in all the m registers, it reads the array again, and
if, for the second time, its preference appears in all the m registers, it decides
on its preference and terminates.

– Otherwise, if some preference appears in more than half of the registers, the
process adopts this preference as its new preference.

Afterward, the process finds some arbitrary entry in the shared array that does
not contain its current preference and writes its current preference into that
entry. Once the process finishes writing it repeats the above steps. The exact
code and a detailed subtle proof of the algorithm can be found in the full version
of this paper [5].

5 Fully Anonymous 2-Process Obstruction-Free
Consensus Using RW Registers

As the reader can easily check, instantiating of the obstruction-free set agreement
algorithm from the previous section with n = 2 provides us with 2-process
obstruction-free consensus built using m ≥ 3 RW registers.

A Conjecture. Let us consider the set agreement algorithm from the previous
section, in which it is assumed that n ≥ 2. We conjecture that when the require-
ment m ≥ 3 in this algorithm is strengthened to m ≥ 2n − 1 the resulting
algorithm solves obstruction-free consensus for n processes.

Finally, it was recently proved in [9] that there is no obstruction-free con-
sensus algorithm for two non-anonymous processes using only anonymous bits.
Thus, as was shown in [9], anonymous bits are strictly weaker than anonymous
(and hence also non-anonymous) multi-valued registers.

6 Discussion

This article has several contributions. The first is the introduction of the notion
of fully anonymous shared memory systems, namely, systems where the processes
are anonymous and there is no global agreement on the names of the shared reg-
isters. The article has then addressed the design of mutual exclusion, consensus
and set agreement algorithms in specific contexts where the anonymous regis-
ters are read/write (RW) registers or more powerful read/modify/write (RMW)
registers. It has been shown that, for fully anonymous mutual exclusion using
RMW registers, the condition on the number m of registers, namely m ∈ M(n),
is both necessary and sufficient, extending thereby a result of [1] (which was for
non-anonymous processes and anonymous registers).
A full version of this paper is available at [5].

Acknowledgments. M. Raynal was partially supported by the French ANR project
DESCARTES (16-CE40-0023-03) devoted to layered and modular structures in dis-
tributed computing.



306 M. Raynal and G. Taubenfeld

References

1. Aghazadeh, Z., Imbs, D., Raynal, M., Taubenfeld, G., Woelfel, Ph.: Optimal
memory-anonymous symmetric deadlock-free mutual exclusion. In: Proceedings of
38th ACM Symposium on Principles of Distributed Computing, PODC 2019, 10 p.
ACM Press (2019)

2. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and
computational systems. Commun. ACM 58(1), 94–102 (2015)

3. Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations, 515
p. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32027-9. ISBN
978-3-642-32026-2

4. Raynal, M., Cao, J.: Anonymity in distributed read/write systems: an introductory
survey. In: Podelski, A., Täıani, F. (eds.) NETYS 2018. LNCS, vol. 11028, pp. 122–
140. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05529-5 9

5. Raynal M., Taubenfeld G.: Fully anonymous shared memory algorithms, 16 p.
ArXiv-1909.05576 (2019)

6. Rashid S., Taubenfeld G., Bar-Joseph Z.: Genome wide epigenetic modifications as
a shared memory consensus problem. In: 6th Workshop on Biological Distributed
Algorithms, BDA 2018, London (2018)

7. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming. Pearson
Education/Prentice Hall, London/Upper Saddle River, 423 p. (2006). ISBN 0-131-
97259-6

8. Taubenfeld, G.: Coordination without prior agreement. In: Proceedings of 36th
ACM Symposium on Principles of Distributed Computing, PODC 2017, pp. 325–
334. ACM Press (2017)

9. Taubenfeld, G.: Set agreement power is not a precise characterization for obliv-
ious deterministic anonymous objects. In: Censor-Hillel, K., Flammini, M. (eds.)
SIROCCO 2019. LNCS, vol. 11639, pp. 293–308. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24922-9 20

https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-030-05529-5_9
https://doi.org/10.1007/978-3-030-24922-9_20
https://doi.org/10.1007/978-3-030-24922-9_20

	Brief Announcement: Fully Anonymous Shared Memory Algorithms
	1 Introduction
	2 Fully Anonymous Mutex Using RMW Registers
	3 Fully Anonymous Wait-Free Consensus Using RMW Registers
	4 Fully Anonymous Obstruction-Free Set Agreement Using RW Registers
	5 Fully Anonymous 2-Process Obstruction-Free Consensus Using RW Registers
	6 Discussion
	References




