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Abstract. Transactional memory has been receiving much attention
from both academia and industry. In transactional memory, program
code is split into transactions, blocks of code that appear to execute
atomically. Transactions are executed speculatively and the speculative
execution is supported through data versioning and conflict detection
and resolution mechanisms. Lazy versioning makes aborts fast but penal-
izes commits, whereas eager versioning makes commits fast but penalizes
aborts. In this paper, we present an adaptive versioning approach that
dynamically switches between eager and lazy versioning at runtime based
on appropriate system parameters so that the performance of a transac-
tional memory system is always better than that is obtained using either
eager or lazy versioning individually. We implemented our adaptive ver-
sioning approach in the latest TinySTM distribution and extensively
evaluated it through 5 micro-benchmarks and 8 complex benchmarks
from STAMP and STAMPEDE suites. The results show significant ben-
efits of our approach, giving performance improvements as much as 6.3x
for execution time and as much as 170x for number of aborts.

1 Introduction

Concurrent processes (threads) need to synchronize to avoid introducing incon-
sistencies while accessing shared data objects. Traditional synchronization mech-
anisms such as locks and barriers have well-known limitations and pitfalls, includ-
ing deadlock, priority inversion, reliance on programmer conventions, and vul-
nerability to failure or delay. Transactional memory (TM) [16,27] has emerged
as an attractive alternative. Several commercial processors provide direct hard-
ware support for TM, including Intel’s Haswell [17] and IBM’s Blue Gene/Q [14],
zEnterprise EC12 [23], and Power8 [6]. There are proposals for adapting TM to
clusters of GPUs [5,12,20].

Using TM, program code is split into transactions, blocks of code that appear
to execute atomically. Transactions are executed speculatively : synchronization
conflicts or failures may cause an executing transaction to abort : its effects are
rolled back and the transaction is restarted. In the absence of conflicts or failures,
a transaction typically commits, causing its effects to become visible. Supporting
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Fig. 1. An illustration of how a transaction Tx is executed using (a) eager versioning
and (b) lazy versioning. Figure (a) depicts two kinds of operations in eager versioning,
the first to copy the data from original memory locations to a log area (called undo
log) in main memory and the second to copy the data back from the log area to the
original memory locations, in case Tx aborts. If Tx commits, the data in the log area
is simply discarded. Figure (b) depicts two kinds of operations in lazy versioning, the
first to copy the updated values in cache to a log area (called redo log) in cache and
the second to copy data from the log area to the original memory locations, in case
Tx commits. If Tx aborts, the data in the log area is simply discarded. (Color figure
online)

this speculative execution requires data version management and conflict detec-
tion and resolution mechanisms. The majority of the existing TM systems can
be distinguished on how they implement these concepts. This is true for TM
systems in hardware, called hardware TMs (HTMs) [4,13,22,26], as well as in
software, called software TMs (STMs) [2,8,9].

Versioning handles the simultaneous storage of both new data (to be visible
if transaction commits) and old data (retained if transaction aborts). At most
one of these values can be stored “in place” (the original memory location), while
the other value must be stored “on the side” (e.g., in cache or main memory). On
a store, a TM system can either use eager versioning and put the new value in
place or use lazy versioning to (temporarily) leave the old value in place. Figure 1
depicts how a transaction Tx is executed using eager and lazy versioning. Due to
the working principle, lazy versioning makes aborts fast, but penalizes (the most
frequent) commits, whereas eager versioning makes commits fast, but penalizes
(the most frequent) aborts [22].

Conflict detection signals an overlap between the write set (data written) of
one transaction and the write set or read set (data read) of other concurrent
transactions. Conflict detection is called eager if it detects offending loads or
stores immediately and lazy if it defers detection until later when transactions
commit. Table 1 illustrates some existing TM systems that use lazy versus eager
versioning and lazy versus eager conflict detection. Conflict resolution (or man-
agement) strategies are then used to decide on which conflicting transaction(s) to
continue and which transaction(s) to wait (or abort and restart) the execution.
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Table 1. Versioning and conflict detection mechanisms used in some TM systems.

Versioning

Lazy Eager

Conflict Lazy TCC [13], Norec [8], RSTM [2], SwissTM [9] None

Eager LTM [4], VTM [26], RSTM [2], SwissTM [9] UTM [4], LogTM [22], RSTM [2]

Both eager and lazy versioning along with both eager and lazy conflict
detection and resolution have been studied heavily in the past for TM systems
[2,4,8,9,13,22,26]. However, which versioning is better is still not clear and the
studies provide contradictory conclusions. For example, consider two widely pop-
ular HTM implementations LogTM [22] and UTM [4]. They advocate that TM
should ideally use eager versioning and eager conflict detection since in eager
versioning transaction commits are faster than transactions aborts. Moreover,
commits are much more common than aborts in practical applications. In addi-
tion, eager conflict detection finds conflicts early and reduces the wasted work by
conflicting transactions. On the other hand, consider again widely popular HTM
implementation TCC [13]. They use lazy versioning and lazy conflict detection.
Other HTMs such as VTM [26] and LTM [4] advocate lazy versioning with eager
conflict detection. This is also the case in STMs as some use eager, some use
lazy, and some use the combination of eager and lazy approaches [2,8,9].

Fig. 2. An illustration of performance discrepancies in execution time (left) and number
of aborts (right) in genome and kmeans benchmarks using eager and lazy versioning.

There is no study that elaborates the performance gap between eager and lazy
versioning for TM systems. Figure 2 illustrates the performance discrepancies
using eager and lazy versioning while executing genome and kmeans benchmarks
from STAMP benchmark suite [21]. Lazy versioning performs well for genome
where as for kmeans the opposite is true. This is mainly because of the fact that
the versioning used is not appropriate for the workload and caused more num-
ber of aborts, subsequently increasing the execution time. Nevertheless, there
are two major issues in selecting an appropriate versioning for TM systems.
First, to select an appropriate versioning, a priori knowledge on the workload
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(write-dominated or read-dominated) and contention scenario (low or high) is
needed. Second, such knowledge is difficult to obtain prior to runtime.

Contributions. In this paper, we demonstrate that we can obtain the best of
both worlds without any a priori knowledge on the workload and contention
scenario. Particularly, we present an adaptive versioning for TM systems, which
we call Adaptive, that dynamically switches the execution using either lazy
or eager versioning at runtime, always achieving performance on any work-
load and contention scenario better than that is obtained using either lazy or
eager versioning individually. For the experimental evaluation, we incorporated
Adaptive in the latest TinySTM implementation [10,11] and ran experiments
against a diverse set of TM benchmarks [10,11,15]. Specifically, we used 5 micro-
benchmarks (bank, red black tree, hash set, linked list, and skip list) and 8 com-
plex benchmarks (yada, vacation, ssca2, labyrinth, kmeans, intruder, genome,
and bayes) from STAMP and STAMPEDE benchmarks [21,24]). We measured
the performance of Adaptive w.r.t. two crucial performance metrics.

– execution time: the total time to complete executing a set of transactions.
This is the time interval from the beginning of the first transaction executed
until the last transaction finishes and commits. In a dynamic setting, the exe-
cution time translates to throughput, the number of committed transactions
per time step.

– number of aborts: the total number of transaction aborts until the current
time. If compared with the total number of transaction commits until the
current time, it provides abort-to-commit ratio (ACR), a useful metric.

Both metrics are fundamental and used extensively in evaluating TM sys-
tems. The number of aborts directly affect execution time since it is likely that
the execution time increases with the increasing number of aborts requiring more
number of transaction restarts.

The results show that, when using lazy versioning with eager conflict detec-
tion, Adaptive achieves up to 6.3× better performance than lazy versioning and
up to 5.5× better performance than eager versioning. When using lazy versioning
with lazy conflict detection, Adaptive achieves up to 3.7× better performance
than lazy versioning and up to 5× better performance than eager versioning.
The minimum performance gain for Adaptive is 1.12. These results suggest
that switching between eager and lazy versioning dynamically at runtime pro-
vides a way to exploit the positive aspects of both versioning methods for TM
systems. Adaptive is general enough to be applied to both HTMs and STMs,
although we only report results from a STM implementation. In summary, we
have the following three contributions.

– (Section 4) We introduce a novel versioning approach, Adaptive, that
switches between eager and lazy versioning dynamically at runtime.

– (Section 5) We discuss implementation issues related to Adaptive and
present two optimizations.
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– (Section 6) We evaluate experimentally the performance of Adaptive using
five micro-benchmarks and 8 complex benchmarks from STAMP and STAM-
PEDE, report the results obtained, and provide observations on the obtained
results.

2 Related Work

The previous studies on TM mostly supported speculative execution of trans-
actions using either eager or lazy versioning. There is no work that elaborates
on the impact of using eager and lazy versioning on the performance of TM
systems. In fact, as outlined in Table 1, the majority of well-known TM sys-
tems make contradictory conclusions on whether to use eager or lazy versioning.
We focus in this paper on the impact of the eager and lazy versioning on the
performance of TM systems. Particularly, we propose an adaptive versioning
(switching between eager and lazy versioning at runtime without needing any a
priori knowledge on workload and contention scenarios) and achieve significant
improvements in execution time and number of aborts (two crucial performance
metrics for evaluating a TM system) compared to that of using either eager or
lazy versioning individually. Our approach is simple and may provide insights
into future TM system designs and implementations.

The performance gap of using eager and lazy versioning is relatively well-
studied for crash consistency in non-volatile memories. One recent work is [25]
where they presented an adaptive versioning approach like the one presented here
but specifically tailored to non-volatile memories. In particular, they focused on
minimizing the number of data movements while running workloads through
these versioning methods. However, their approach increased the execution time
in several benchmarks. The approach we study here is tailored for TM systems
in volatile memories.

The other closely related works are as follows. Wan et al. [29] empirically
evaluated eager and lazy versioning on the open source non-volatile memory
library (NVML) [1] for some constrained workloads, and suggested that “one
logging method does not fit all workloads”. Particularly, they reported that (i)
lazy versioning significantly outperforms eager versioning for workloads in which
a transaction updates large number of different objects, while it underperforms
eager versioning for read-dominated workloads, and (ii) eager versioning is more
sensitive to read-to-write ratios whereas lazy versioning is less sensitive to those
ratios [29]. The other works mostly proposed methods to provide crash consis-
tency through either eager or lazy versioning, and there is no work that elabo-
rates the performance gap between eager and lazy versioning. Coburn et al. [7]
suggested a STM implementation for persistent memory NV-Heaps using eager
versioning. Volos et al. [28] suggested a TinySTM [10,11] variation Mnemosyne

for persistent memory using lazy versioning. NV-Heaps [7] and Mnemosyne

[28] drew absolutely opposite conclusions on whether eager or lazy versioning is
better for persistent memory. The former prefers to use eager versioning, and
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the latter opts to use lazy versioning. Recently, Alistarh et al. [3] studied two
variants of the transactional conflict problem and provided optimal solutions for
both the variants.

3 Preliminaries

Model. We consider a computer system with volatile shared main memory,
many processing cores, and hard disk drive. All shared main memory is cacheable
and caches are volatile and coherent. We assume that all the writes of a com-
mitted transaction can be accommodated in the cache, i.e., once a transaction
commits but before the commit is reflected in original memory locations in main
memory, all its newly modified data is in volatile cache. We run workloads using
the TinySTM execution model [10,11]. We assume that the execution starts at
time t0 = 0. We measure in execution time the time for all the transactions within
a benchmark to finish execution and commit, except for micro-benchmarks where
we consider time to execute and commit 10,000 transactions. We also assume
that only a single-version of data is stored in each eager, lazy, and adaptive
versioning, which is essentially different from techniques, such as those given in
[18], of storing multiple versions.

Eager Versioning. Eager versioning is supported through so-called undo logs.
Undo logs are stored in cacheable main memory. In this method, a transaction
works by first copying the data in original memory locations to a undo log
area and then performs updates in-place in the original data locations (in main
memory). In the event the transaction aborts, any modifications to the original
memory locations are rolled back using the old data stored in the undo log. The
left of Fig. 1 illustrates eager versioning.

Lazy Versioning. Lazy versioning is supported through so-called redo logs.
Redo logs are stored in cache. In this method, a transaction copies data in each
memory location that it is going to read/write to a redo log area, appends all its
data updates to that log area, and then writes the data back to original memory
locations when transaction commits. If the transaction fails, the updates in log
area are simply discarded. Therefore, the writing of data in redo log back to the
original memory locations happens only when transaction commits. The right of
Fig. 1 illustrates lazy versioning.

4 Basic Adaptive Versioning

We now describe our approach, Adaptive, that runs transactions using either
eager or lazy versioning, switching between them dynamically at runtime.
Figure 3 compares Adaptive with eager and lazy versioning. We will introduce
techniques to improve Adaptive in Sect. 5.
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Fig. 3. An illustration of (a) eager, (b) lazy, and (c) basic adaptive versioning. The
time gap σ∗ while switching from eager (lazy) to lazy (eager) is to let finish executing
in-flight transactions. This helps in avoiding potential data versioning inconsistencies.

High Level Overview. The high level idea in Adaptive is to switch the
versioning method depending on performance. That is, if the versioning currently
used is hampering the performance, then we switch the versioning to improve
the performance.

Now a fundamental question is how to identify and measure an indicator that
reflects appropriately the effect of the versioning method on performance. For-
tunately, in TM, if the number of aborts are increasing compared to the number
of commits, then it might be a valid indicator of performance degradation due to
the versioning method currently used. Therefore, we pick abort to commit ratio
(ACR) as a performance indicator for any versioning method. ACR has also been
used quite heavily in the TM literature as a vital indicator of performance, for
example, see [19]. Ideally, the goal is to have no aborts, i.e., ACR = 0. However,
in practice, this may not be feasible and the goal is to minimize ACR as much
as possible.

Formally, ACR can be defined as follows: ACR = Nabort

Ncommit
, where Nabort is the

total number of aborted transactions and Ncommit is the total number of commit-
ted transactions from time 0 up to t. For eager (and lazy) versioning, we can com-
pute ACREager (and ACRLazy) based on the number of transactions committed
and aborted using eager (lazy) versioning. To facilitate when to switch from one
to another, we identify a threshold on ACR for both eager and lazy. We denote
them by ThresholdEager and ThresholdLazy, respectively. Let a transaction T
be running at current time t using lazy versioning. If ACRLazy < ThresholdLazy,
then the versioning method is switched to Eager for transactions that start (or
restart) execution after time t′ > t. An analogous approach is used if currently
T is executing using eager versioning.

Detailed Description. Let NEcommit(NLcommit) be the number of transaction
commits in Adaptive from time t0 = 0 until the current time t > t0 executed
using eager (lazy) versioning. Similarly, let NEabort(NLabort) be the total number
of transaction aborts in Adaptive from time t0 = 0 until time t > t0 executed
using eager (lazy) versioning. Furthermore, let Ncommit and Nabort be the total
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number of commits and aborts in Adaptive from t0 = 0 until time t > t0.
Notice that Ncommit = NEcommit + NLcommit and Nabort = NEabort + NLabort.

Based on NEcommit, NLcommit, NEabort, and NLabort, we compute ACREager

and ACRLazy at each time step t > t0. These ratios ACREager and ACRLazy are
then compared with ThresholdEager and ThresholdLazy parameters (computed
in the next section). Therefore, at any time t > t0, the transaction T that is
ready-to-execute will be executed as follows.

– Suppose the versioning currently used is Lcur = Eager. If ACREager >
ThresholdEager, then Lcur is switched to Lazy (i.e., Lcur ← Lazy) and T
will be executed using lazy versioning.

– Suppose the versioning method currently used is Lcur = Lazy. If ACRLazy <
ThresholdLazy, then Lcur is switched to Eager (i.e., Lcur ← Eager) and T
will be executed using eager versioning.

In the special case of t0 = 0, NEcommit, NLcommit, NEabort, and NLabort are
all zero. Therefore, a simple approach is to execute T using either lazy or eager
versioning. However, if some information regarding the workload is available,
then we can decide on which versioning method to use. Suppose, the read and
write sets of T are available. Let Wset(T ) be the write set of T which is essen-
tially the memory locations that T would modify while executing. Similarly, let
Rset(T ) be the read set of T which is essentially the memory locations that T
would read (but not modify) while executing. RW (T ) = Rset(T ) + Wset(T ),
where RW (T ) denotes the total number of memory locations that T reads and
modifies while executing. If |Wset(T )| > |Rset(T )|, then T is executed using
lazy versioning, otherwise using eager versioning.

Computing Switching Thresholds ThresholdEager and ThresholdLazy. Let
N be the total number of transactions in any workload. When the workload
finishes execution and all transactions commit, we have that Ncommit = N and
Nabort ≥ 0 (if each transaction commits without aborting, then Nabort = 0,
otherwise Nabort > 0).

Suppose, each transaction T spends α amount of time while moving data
from one memory location to other. Consider the case of executing T using
eager versioning. Let τEager be the total amount of time spent while (i) ver-
sioning data from the original memory locations to the undo log area and (ii)
updating data from the undo log area back to the original memory locations.
The first kind of operations are shown as a blue arrow in Fig. 1(a) and the second
kind of operations are shown as a red arrow in Fig. 1(a). The first kind of opera-
tions are always done in eager versioning and the second kind of operations are
done only when the transaction aborts. That means, for an aborted transaction,
data movement is performed two times, one for versioning, other for rollback.
Therefore, for eager versioning, τEager = (Ncommit + 2Nabort) · α.

Similarly, for lazy versioning, τLazy = (2Ncommit + Nabort) · α.
Based on 3 different cases below, we can see 3 scenarios for τEager and τLazy:

– Case 1: If Ncommit = Nabort, then τEager = τLazy
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– Case 2: If Ncommit > Nabort, then τEager < τLazy

– Case 3: If Ncommit < Nabort, then τEager > τLazy

Moreover, equation for τEager suggests that in eager versioning, total time spent
for an aborted transaction is twice as much as the time spent for a committed
transaction. Then it is immediate that the eager versioning performs better
until Ncommit ≥ 2Nabort; i.e. Nabort

Ncommit
≤ 1

2 . Thus, we get ThresholdEager = 1
2

and switch to lazy versioning when ACREager > 1
2 . Similarly, equation for τLazy

suggests that the lazy versioning performs better until 2Ncommit ≤ Nabort; i.e.
Nabort

Ncommit
≥ 2. Then, we get ThresholdLazy = 2 and switch to eager versioning

when ACRLazy < 2.

Fig. 4. An illustration of the better time barrier design. The interval δ∗ between Eager
and Lazy represents the time taken by in-flight transactions to finish their executions
after versioning method is switched. The new transaction that do not conflict with
transactions using previous versioning can execute concurrently with in-flight transac-
tions.

Fig. 5. An illustration of the better switching mechanism. λ∗ represents the time inter-
val in which versioning is not switched. δ∗ resembles better time barrier of Fig. 4.

Time Barrier Requirement and Design. The ideal scenario in Adaptive

is to let each transaction T run Algorithm and decide which versioning (eager or
lazy) to use for it to execute individually based on the parameters obtained at
runtime. Let Sj be a set of transactions arrived before T . Suppose Lcur = Eager,
which means that Lprev = Lazy. Suppose the versioning changed to Eager from
Lazy after the transactions in Sj started execution but before T . If we run
T using Eager immediately and T conflicts with any of the transaction Tj ∈
Sj , then the conflict detection and resolution mechanisms interfere, hampering
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consistency. A simple approach to handle this situation is to ask T to wait until
all transactions in Sj finish execution, which we call a basic time barrier (as
shown in Fig. 3). The barrier reduces total number of aborts but due to a time
delay before switching, it increases total execution time [25]. We provide a better
time barrier design (described in Sect. 5) that will minimize this overhead.

5 Optimizations on Basic Adaptive Versioning

We provide two optimizations to basic Adaptive. The first optimization is on
time barrier design. The second optimization is on switching mechanism.

Better Time Barrier Design. Figure 4 illustrates the idea of better time
barrier design. Consider a transaction T . Let Sj be a set of transactions arrived
before T . Suppose Lcur = Eager, which means Lprev = Lazy. Suppose the
versioning changed to Eager from Lazy after the transactions in Sj started
execution but before T starts execution. In the basic time barrier design, T has
to wait until all transactions in Sj finish execution. In this design, we ask T to
start execution as soon as it is ready. If T does not conflict with transactions in
Sj , we are done, otherwise, T aborts. If T conflicts with T ′ /∈ Sj , it is handled
as per the conflict resolution strategy used.

Better Switching Mechanism. Let Lcur = Eager. Suppose at time t, Adap-

tive decides to switch to Lazy. We discuss here a mechanism so that Adap-

tive does not switch to Lazy at t but waits until a switching interval threshold
SW INT . We define SW INT as the number of transactions after t for which
the decision is to execute using Lazy. Let λ be the execution time interval dur-
ing which all transactions in the interval SW INT finish execution. Execution
switches from Eager to Lazy at time t + λ. Figure 5 illustrates the design of
better switching mechanism.

6 Experimental Evaluation

In this section, we evaluate the performance of optimized1
Adaptive (better

time barrier and switching mechanism). The evaluation is performed in a STM
implementation using TinySTM [10,11] modified appropriately to incorporate
Adaptive. The tests were executed on an Intel Xeon(R) E5-2620 v4 @ 4.20 GHz,
64-bit processor with 32 cores. Each core has private L1 and L2 caches, whose
sizes are 64 KB and 256 KB, respectively. There is also an 20 MB L3 cache shared
by all 32 cores and 32 GB main memory. The results are the average of 10
experimental runs. The results are for varying number of threads from 1 to

1 The experimental results conducted on basic Adaptive showed that the number of
aborts always decrease in all the benchmarks but execution time for some bench-
marks increase compared to the execution times obtained using eager and lazy ver-
sioning individually.
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32. First, we present the experimental results for optimized Adaptive with
better time barrier using suicide conflict resolution strategy. Later, we extend
the results using both better time barrier and switching mechanism. We also
compare the performance of optimized Adaptive against four different conflict
resolution strategies.

Compared Versioning Methods. We developed a STM-based implemen-
tation using TinySTM [10,11]. TinySTM has implemented separately both
lazy and eager versioning (called Lazy and Eager) through Write Back and
Write Through designs, respectively. With Write Through design, transactions
directly write to original memory locations and revert their updates in case the
transactions abort. However, with Write Back design, transactions work on a
copy of data and delay their updates to the original memory locations until
commit [10,11]. Furthermore, Write Back design has two different implementa-
tions: Write Back ETL and Write Back CTL. Encounter-time locking (ETL)
detects conflicts early at the time of write and acquires the lock on the memory
address before it is written. Commit-time locking (CTL) defers conflict detection
on memory address until commit, i.e., the lock is acquired on the memory address
at the commit time. Therefore, there are two different implementations of Lazy
in TinySTM: one based on ETL called Lazy ETL and another based on CTL
called Lazy CTL. We obtain adaptive design Adaptive ETL using Lazy ETL
and Eager versioning. Similarly, we obtain adaptive design Adaptive CTL using
Lazy CTL and Eager versioning. We run experiments with five different designs
Lazy ETL, Lazy CTL, Eager, Adaptive ETL, and Adaptive CTL.

Results on Micro-benchmarks. The execution time results in 5 different
micro-benchmarks are provided in Fig. 6. Figure 7 provides the result for the
number of aborts. The results are for 10,000 transactions, each executed with
update rate of 20%. Figure 6 shows that the execution time decreases notably
in Adaptive as compared to the other versioning methods with the increase
in number of threads for all the micro-benchmarks. Specifically, Adaptive ETL
achieved up to 6.3× better execution time than Lazy ETL and Adaptive CTL
achieved up to 3.7× better execution time than Lazy CTL. Compared to Eager,
Adaptive ETL achieved up to 5.5× better execution time and Adaptive CTL
achieved up to 5× better execution time. The minimum execution gain for
Adaptive ETL beyond 4 number of threads is 1.23 and for Adaptive CTL is
1.20. Due to high contention for memory access when transactions are executed
with more number of threads, the number of aborts increases with the increasing
number of threads. Figure 7 shows that Adaptive minimizes number of aborts.
Specifically, Adaptive ETL achieved up to 2.6× less number of aborts than
Lazy ETL and up to 5.8× less number of aborts than Eager. Adaptive CTL
achieved up to 2.2× less number of aborts than Lazy CTL and up to 8× less
number of aborts than Eager.
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Fig. 6. Execution time in micro and bayes benchmark using better time barrier.

Fig. 7. Number of aborts in micro and bayes benchmark using better time barrier.

Results on STAMP Benchmarks. Figures 8 and 9, respectively, provide the
execution time and number of aborts results for STAMP benchmarks. Regarding
execution time, Adaptive ETL has up to 1.78× better time than Lazy ETL
and Adaptive CTL has up to 1.74× better time than Lazy CTL. Compared to
Eager, the execution time improvement in Adaptive ETL and Adaptive CTL
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Fig. 8. Execution time in STAMP benchmarks using better time barrier.

is up to 2.36× and 2×, respectively. The minimum execution gain obtained in
Adaptive ETL is 1.13 and in Adaptive CTL is 1.12 with the threads grater than
4. From Fig. 9, we observed that the number of aborts significantly increases in
all the applications of STAMP benchmark when transactions are executed in
more than 8 number of threads. Still, Adaptive has significantly less aborts
compared to Lazy and Eager. Adaptive ETL has up to 16× less aborts than
Lazy ETL and up to 13× less aborts than Eager. Similarly, Adaptive CTL has
up to 2.5× less aborts than Lazy CTL and up to 170× less aborts than Eager.

Results on STAMPEDE Benchmarks. Similar to micro and STAMP
benchmarks, Adaptive has better performance compared to Lazy and Eager
in STAMPEDE benchmarks, for both execution time and number of aborts
(Fig. 10). For execution time, Adaptive ETL performed up to 1.72× bet-
ter than Lazy ETL and Adaptive CTL performed up to 1.54× better than
Lazy CTL. Compared to Eager, Adaptive ETL performed up to 1.68× bet-
ter and Adaptive CTL performed up to 1.91× better. The minimum execution
gain obtained in Adaptive ETL is 1.14 and in Adaptive CTL is 1.12 with the
threads greater than 4. For number of aborts, Adaptive ETL performed up to
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Fig. 9. Number of aborts in STAMP benchmarks using better time barrier.

4.1× better than Lazy ETL and Adaptive CTL performed up to 72× better
than Lazy CTL. Compared to Eager, Adaptive ETL performed up to 10×
better and Adaptive CTL performed up to 124× better.

In all the benchmarks, the minimum execution gain for Adaptive ranges
between 1 and 1.16 when running with threads up to 4 numbers.

Further Results. The results in Figs. 6, 7, 8, 9 and 10 only considered optimized
Adaptive w.r.t. better time barrier. We also performed experiments for Adap-

tive using both, better time barrier and better switching mechanism. We varied
the switching interval threshold (SW INT ) from 2 up to 10. The results indicate
that instead of switching versioning immediately, using the better switch mech-
anism increases the performance. However, for SW INT > 2, the performance
gradually reduces and becomes worse while reaching SW INT = 10. Figure 11
shows the execution time for STAMP benchmarks when executed with both
better time barrier and better switch mechanism (SW INT = 2). The improve-
ment is up to 1.09× compared to Adaptive with better time barrier. Alongwith
decreasing the total number of aborts, the better switch mechanism decreases
the total number of switches between the versioning methods which helps to get
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Fig. 10. Execution time in STAMPEDE benchmarks using better time barrier.

the improvement on execution time. Figure 12 illustrates the reduction of total
number of switches using better switch mechanism for STAMP benchmarks. The
experiments on micro-benchmarks and STAMPEDE showed similar results.

The experiments so far use ThresholdEager = 1
2 and ThresholdLazy = 2 as

computed in Sect. 4. It is natural to ask whether these are the ideal threshold val-
ues. Therefore, for ThresholdEager, we used 1

4 and 3
4 , whereas for ThresholdLazy,

we used 1 and 3. We performed experiments by using two different combinations
of ThresholdEager and ThresholdLazy, (1

4 , 1) and (3
4 , 3). We noticed the increase

in both execution time and number of aborts in all the benchmarks for both the
combinations. This suggests that the threshold values computed in Sect. 4 are
appropriate.

The results reported in Figs. 6, 7, 8, 9, 10, 11 and 12 use suicide as a conflict
resolution strategy. We were interested to see whether other strategies perform
better than suicide. Therefore, we performed experiments using 4 different con-
flict resolution strategies suicide, delay, back-off, and kill. The results showed
not significant change on performance in some of the benchmarks, while in the
rest, the selection of conflict resolution strategy affected the performance. For
example, genome and intruder performed better with suicide whereas, kmeans
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Fig. 11. Execution time in STAMP benchmarks using better barrier and better switch.

performed better with back-off. In overall, suicide performed better than the rest
in most of the benchmarks.

Finally, we performed experiments starting the execution initially using eager
and lazy versioning. We observed that the initial selection of versioning does not
affect performance significantly in both micro and complex benchmarks except
intruder and kmeans from STAMP in which Adaptive performed better when
starting with Eager than Lazy for up to 4 threads. This is mainly because
transactions have almost constant abort rate and versioning method change is
not necessary.
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Fig. 12. Illustration of decrease in total number of switches between versioning meth-
ods using better switch mechanism.

7 Concluding Remarks

TM has been receiving much attention from both academia and industry. One
of the most challenging issues in TM is how to ensure consistency of the shared
data through speculative execution. Eager and lazy versioning have been used
individually to support speculative execution in existing TM systems. However,
whether to use eager or lazy versioning is better is not clear and previous stud-
ies contradict on the recommendations. In this paper, we have presented an
adaptive framework that dynamically switches between eager and lazy version-
ing at runtime. Our framework is quite simple and achieves significantly better
performance for execution time and number of aborts compared to eager and
lazy versioning running individually in 5 micro-benchmarks and 8 applications
from STAMP and STAMPEDE benchmarks. We believe that our results and
techniques will be helpful in choosing proper versioning for TM systems.
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