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Abstract. To utilize the multi-core processors properly concurrent pro-
gramming is needed. The main challenge is to design a correct and
efficient concurrent program. Software Transactional Memory Systems
(STMs) provide ease of multithreading to the programmer without wor-
rying about concurrency issues as deadlock, livelock, priority inver-
sion, etc. Most of the STMs work on read-write operations known
as RWSTMs. Some STMs work at higher-level operations and ensure
greater concurrency than RWSTMs. Such STMs are known as Single-
Version Object-based STMs (SVOSTMs). The transactions of SVOSTMs
can return commit or abort. Aborted SVOSTMs transactions retry. But
in the current setting of SVOSTMs, transactions may starve. So, we pro-
pose a Starvation-Freedom in SVOSTM as SF-SVOSTM that satisfies
the correctness criteria conflict-opacity.

Databases and STMs say that maintaining multiple versions cor-
responding to each shared data-item (or key) reduces the number of
aborts and improves the throughput. So, to achieve greater concur-
rency further, we propose Starvation-Freedom in Multi-Version OSTM
as SF-MVOSTM algorithm. The number of versions maintains by
SF-MVOSTM either be unbounded with garbage collection as SF-
MVOSTM-GC or bounded with latest K-versions as SF-KOSTM. SF-
MVOSTM satisfies the correctness criteria as local opacity and shows the
performance benefits as compared with state-of-the-art STMs.
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1 Introduction

In the era of multi-core processors, we can exploit the cores by concurrent pro-
gramming. But developing an efficient concurrent program while ensuring the
correctness is difficult. Software Transactional Memory Systems (STMs) are a
convenient programming interface to access the shared memory concurrently
while removing the concurrency responsibilities from the programmer. STMs
ensure that consistency issues such as deadlock, livelock, priority inversion, etc
will not occur. It provides a high-level abstraction to the programmer with
the popular correctness criteria opacity [1], local opacity [2] which consider all
the transactions (a piece of code) including aborted one as well in the equiva-
lent serial history. This property makes it different from correctness criteria of
database serializability, strict-serializability [3] and ensures even aborted trans-
actions read correct value in STMs which prevent from divide-by-zero, infinite
loop, crashes, etc. Another advantage of STMs is composability which ensures
the effect of multiple operations of the transaction will be atomic. This paper
considers the optimistic execution of STMs in which transactions are writing
into its local log until the successful validation.

A traditional STM system invokes following methods:(1) STM begin(): begins
a transaction Ti with unique timestamp i. (2) STM readi(k) (or ri(k)): Ti reads
the value of key k from shared memory. (3) STM writei(k, v) (or wi(k, v)): Ti

writes the value of k as v locally. (4) STMtryCi(): on successful validation, the
effect of Ti will be visible to the shared memory and Ti returns commit otherwise
(5) STMtryAi(): Ti returns abort. These STMs are known as read-write STMs
(RWSTMs) because it is working at lower-level operations such as read and
write.

Herlihy et al. [4], Hassan et al. [5], and Peri et al. [6] have shown that working
at higher-level operations such as insert, delete and lookup on the linked-list and
hash table gives better concurrency than RWSTMs. STMs which work on higher-
level operations are known as Single-Version Object-based STMs (SVOSTMs) [6].
It exports the following methods: (1) STM begin(): begins a transaction Ti with
unique timestamp i same as RWSTMs. (2) STMlookupi(k) (or li(k)): Ti lookups
key k from shared memory and returns the value. (3) STMinserti(k, v) (or
ii(k, v)): Ti inserts a key k with value v into its local memory. (4) STMdeletei(k)
(or di(k)): Ti deletes key k. (5) STMtryCi(): the actual effect of STM insert()
and STM delete() will be visible to the shared memory after successful validation
and Ti returns commit otherwise (6) STMtryAi(): Ti returns abort.

Motivation to Work on SVOSTMs: Figure 1 represents the advantage of
SVOSTMs over RWSTMs while achieving greater concurrency and reducing the
number of aborts. Figure 1(a) depicts the underlying data structure as a hash
table (or ht) with M buckets and bucket 1 stores three keys k1, k4 and k9 in the
form of the list. Thus, to access k4, a thread has to access k1 before it. Figure 1(b)
shows the tree structure of concurrent execution of two transactions T1 and T2

with RWSTMs at layer-0 and SVOSTMs at layer-1 respectively. Consider the
execution at layer-0, T1 and T2 are in conflict because write operation of T2 on key
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Fig. 1. Advantage of SVOSTMs over RWTSMs

k1 as w2(k1) is occurring between two read operations of T1 on k1 as r1(k1). Two
transactions are in conflict if both are accessing the same key k and at least one
transaction performs write operation on k. So, this concurrent execution cannot
be atomic as shown in Fig. 1(c). To make it atomic either T1 or T2 has to return
abort. Whereas execution at layer-1 shows the higher-level operations l1(k1),
d2(k4) and l1(k9) on different keys k1, k4 and k9 respectively. All the higher-level
operations are isolated to each other so the tree can be pruned [7, Chap 6] from
layer-0 to layer-1 and both the transactions return commit with equivalent serial
schedule T1T2 or T2T1 as shown in Fig. 1(d). Hence, some conflicts of RWSTMs
does not matter at SVOSTMs which reduce the number of aborts and improve
the concurrency using SVOSTMs.

Starvation-Freedom: For long-running transactions along with high con-
flicts, starvation can occur in SVOSTMs. So, SVOSTMs should ensure the
progress guarantee as starvation-freedom [8, chap 2]. SVOSTMs is said to be
starvation-free, if a thread invoking a transaction Ti gets the opportunity to
retry Ti on every abort (due to the presence of a fair underlying scheduler [9]
with bounded termination) and Ti is not parasitic, i.e., if scheduler will give a fair
chance to Ti to commit then Ti will eventually return commit. If a transaction
gets a chance to commit, still it is not committing because of the infinite loop
or some other error such transactions are known as Parasitic transactions [10].

We explored another well known non-blocking progress guarantee wait-
freedom for STM which ensures every transaction commits regardless of the
nature of concurrent transactions and the underlying scheduler [11]. However,
Guerraoui and Kapalka [10,12] showed that achieving wait-freedom is impos-
sible in dynamic STMs in which data-items (or keys) of transactions are not
known in advance. So in this paper, we explore the weaker progress condition
of starvation-freedom for SVOSTM while assuming that the keys of the trans-
actions are not known in advance.

Related Work on Starvation-Free STMs: Some researchers Gramoli et
al. [13], Waliullah and Stenstrom [14], Spear et al. [15], Chaudhary et al. [9]
have explored starvation-freedom in RWSTMs. Most of them assigned prior-
ity to the transactions. On conflict, higher priority transaction returns commit
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whereas lower priority transaction returns abort. On every abort, a transaction
retries a sufficient number of times, will eventually get the highest priority and
returns commit. We inspired by this research and propose a novel Starvation-
Free SVOSTM (SF-SVOSTM) which assigns the priority to the transaction on
conflict. In SF-SVOSTM whenever a conflicting transaction Ti aborts, it retries
with Tj which has higher priority than Ti. To ensure the starvation-freedom, this
procedure will repeat until Ti gets the highest priority and eventually returns
commit.

Fig. 2. Benefits of Starvation-Free multi-version OSTM over SF-SVOSTM

Motivation to Propose Starvation-Freedom in Multi-version OSTM:
In SF-SVOSTM, if the highest priority transaction becomes slow (for some rea-
son) then it may cause several other transactions to abort and bring down the
progress of the system. Figure 2(a) demonstrates this in which the highest pri-
ority transaction T1 became slow so, it is forcing the conflicting transactions T2

and T3 to abort again and again until T1 commits. Database, RWSTMs [16–19]
and SVOSTMs [20] say that maintaining multiple versions corresponding to each
key reduces the number of aborts and improves throughput.

So, this paper proposes the first Starvation-Free Multi-Version OSTM
(SF-MVOSTM) which maintains multiple versions corresponding to each key.
Figure 2(b) shows the benefits of using SF-MVOSTM in which T1 lookups from
the older version with value v0 created by transaction T0 (assuming as initial
transaction) for key k1 and k4. Concurrently, T2 and T3 create the new versions
for key k4. So, all the three transactions commit with equivalent serial schedule
T1T2T3. So, SF-MVOSTM improves the concurrency than SF-SVOSTM while
reducing the number of aborts and ensures the starvation-freedom.

Contributions of the Paper: We propose two Starvation-Free OSTMs as
follows:

– Initially, we propose Starvation-Freedom for Single-Version OSTM as SF-
SVOSTM which satisfies correctness criteria as conflict-opacity (or co-
opacity) [6].

– To achieve the greater concurrency further, we propose Starvation-Freedom
for Multi-Version OSTM as SF-MVOSTM in Sect. 3 which maintains multiple
versions corresponding to each key and satisfies the correctness as local opacity
[2].



SF in Multi-Version Object-based Transactional Memory Systems 213

– We propose SF-SVOSTM and SF-MVOSTM for hash table and linked-list
data structure describe in SubSect. 3.2 but its generic for other data structures
as well.

– SF-MVOSTM works for unbounded versions with Garbage Collection (GC)
as SF-MVOSTM-GC which deletes the unwanted versions from version list
of keys and for bounded/finite versions as SF-KOSTM which stores finite say
latest K number of versions corresponding to each key k. So, whenever any
thread creates (K + 1)th version of key, it replaces the oldest version of it.
The most challenging task is achieving starvation-freedom in bounded version
OSTM because say, the highest priority transaction relies on the oldest version
that has been replaced. So, in this case, highest priority transaction has to
return abort and hence make it harder to achieve starvation-freedom unlike
the approach follow in SF-SVOSTM. Thus, in this paper, we propose a novel
approach SF-KOSTM which bridges the gap by developing starvation-free
OSTM while maintaining bounded number of versions.

– Section 4 shows that SF-KOSTM is best among all proposed Starvation-
Free OSTMs (SF-SVOSTM, SF-MVOSTM, and SF-MVOSTM-GC) for both
hash table and linked-list data structure. Proposed hash table based SF-
KOSTM (HT-SF-KOSTM) performs 3.9x, 32.18x, 22.67x, 10.8x and 17.1x
average speedup on max-time for a transaction to commit than state-of-
the-art STMs HT-KOSTM [20], HT-SVOSTM [6], ESTM [21], RWSTM [7,
Chap. 4], and HT-MVTO [16] respectively. Proposed list based SF-KOSTM
(list-SF-KOSTM) performs 2.4x, 10.6x, 7.37x, 36.7x, 9.05x, 14.47x, and 1.43x
average speedup on max-time for a transaction to commit than state-of-the-
art STMs list-KOSTM [20], list-SVOSTM [6], Trans-list [22], Boosting-list
[4], NOrec-list [23], list-MVTO [16], and list-KSFTM [9] respectively.

2 System Model and Preliminaries

This section follows the notion and definition described in [12,20], we assume
a system of n processes/threads, th1, . . . , thn that run in a completely asyn-
chronous manner and communicate through a set of keys K (or transaction-
objects). We also assume that none of the threads crash or fail abruptly. In this
paper, a thread executes higher-level methods on K via atomic transactions
T1, . . . , Tn and receives the corresponding response.

Events and Methods: Threads execute the transactions with higher-level
methods (or operations) which internally invoke multiple read-write (or lower-
level) operations known as events (or evts). Transaction Ti of the system at read-
write level invokes STM begin(), STM readi(k), STM writei(k,v), STM tryCi()
and STM tryAi() as defined in Sect. 1. We denote a method mij as the jth

method of Ti. Method invocation (or inv) and response (or rsp) on higher-level
methods are also considered as an event.

A thread executes higher-level operations on K via transaction Ti are known
as methods (or mths). Ti at object level (or higher-level) invokes STM begin(),
STM lookupi(k) (or li(k)), STM inserti(k, v) (or ii(k, v)), STM deletei(k) (or
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di(k)), STM tryCi(), and STM tryAi() methods described in Sect. 1. Here,
STM lookup(), and STM delete() return the value from underlying data struc-
ture so, we called these methods as return value methods (orrv methods).
Whereas, STM insert(), and STM delete() are updating the underlying data
structure after successful STM tryC() so, we called these methods as update
methods (or upd methods).

Transactions: We follow multi-level transactions [7] model which consists of
two layers. Layer 0 (or lower-level) composed of read-write operations whereas
layer 1 (or higher-level) comprises of object-level methods which internally calls
multiple read-write events. Formally, we define a transaction Ti at higher-level
as the tuple 〈evts(Ti), <Ti

〉, here <Ti
represents the total order among all the

events of Ti. Transaction Ti cannot invoke any more operation after returning
commit (C ) or abort (A ). Any operation that returns C or A are known as
Term(Ti) represented as Term(Ti). The transaction which neither committed
nor aborted is known as live transactions (or trans.live).

Histories: A history H consists of multiple transactions, a transaction calls mul-
tiple methods and each method internally invokes multiple read-write events. So,
a history is a collection of events belonging to the different transactions is repre-
sented as evts(H). Formally, we define a history H as the tuple 〈evts(H), <H〉,
here <H represents the total order among all the events of H. If all the
method invocation of H match with the corresponding response then such his-
tory is known as complete history denoted as H. Suppose total transactions
in H is H.trans, in which number of committed and aborted transactions are
H.committed and H.aborted then the incomplete history or live history is defined
as: H.incomp = H.live = (H.trans - H.committed - H.aborted). This paper
considers only well-form history which ensures (1) the response of the previous
method has received then only the transaction Ti can invoke another method.
(2) transaction can not invoke any other method after receiving the response as
C or A .

Due to lack of space, we define other useful notions and definitions used
in this paper such as sequential histories [2], real-time order and serial history
[3], valid and legal history [20], sub-histories [9], conflict-opacity [6], opacity
[1], strict-serializability [3], local opacity [2] formally in accompanying technical
report [24].

3 The Proposed SF-KOSTM Algorithm

In this section, we propose Starvation-Free K-version OSTM (SF-KOSTM) algo-
rithm which maintains K number of versions corresponding to each key. The
value of K is application dependent and may vary from 1 to ∞. When K is
equal to 1 then SF-KOSTM boils down to Starvation-Free Single-Version OSTM
(SF-SVOSTM). When K is ∞ then SF-KOSTM maintains unbounded versions
corresponding to each key known as Starvation-Free Multi-Version OSTM (SF-
MVOSTM) algorithm. To delete the unused version from the version list of
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SF-MVOSTM, we develop a separate Garbage Collection (GC) method [16]
and propose SF-MVOSTM-GC. In this paper, we propose SF-SVOSTM and
all the variants of SF-KOSTM (SF-MVOSTM, SF-MVOSTM-GC, SF-KOSTM)
for two data structures hash table and linked-list but it is generic for other data
structures as well.

SubSection 3.1 describes the definition of starvation-freedom followed by our
assumption about the scheduler that helps us to achieve starvation-freedom
in SF-KOSTM. SubSection 3.2 explains the design and data structure of SF-
KOSTM. SubSection 3.3 shows the working of SF-KOSTM algorithm.

3.1 Description of Starvation-Freedom

Definition 1. Starvation-Freedom: An STM system is said to be starvation-
free if a thread invoking a non-parasitic transaction Ti gets the opportunity to
retry Ti on every abort, due to the presence of a fair scheduler, then Ti will
eventually commit.

Herlihy and Shavit [11] defined the fair scheduler which ensures that none of
the thread will crash or delayed forever. Hence, any thread Thi acquires the lock
on the shared data-items while executing transaction Ti will eventually release
the locks. So, a thread will never block other threads to progress. To satisfy the
starvation-freedom for SF-KOSTM, we assumed bounded termination for the
fair scheduler.

Assumption 1 Bounded-Termination: For any transaction Ti, invoked by
a thread Thi, the fair system scheduler ensures, in the absence of deadlocks, Thi

is given sufficient time on a CPU (and memory, etc) such that Ti terminates
(C or A ) in bounded time.

In the proposed algorithms, we have considered TB as the maximum time-
bound of a transaction Ti within this either Ti will return commit or abort in the
absence of deadlock. Approach for achieving the deadlock-freedom is motivated
from the literature in which threads executing transactions acquire the locks in
increasing order of the keys and releases the locks in bounded time either by
committing or aborting the transaction. We consider an assumption about the
transactions of the system as follows.

Assumption 2. We assume, if other concurrent conflicting transactions do not
exist in the system then every transaction will commit. i.e. (a) If a transaction
Ti is executing in the system with the absence of other conflicting transactions
then Ti will not self-abort. (b) Transactions of the system are non-parasitic as
explained in Sect. 1.

If transactions self-abort or parasitic then ensuring starvation-freedom is impos-
sible.
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3.2 Design and Data Structure of SF-KOSTM Algorithm

In this subsection, we show the design and underlying data structure of SF-
KOSTM algorithm to maintain the shared data-items (or keys).

To achieve the Starvation-Freedom in K-version Object-based STM (SF-
KOSTM), we use chaining hash table (or ht) as an underlying data structure
where the size of the hash table is M buckets as shown in Fig. 3(a) and we pro-
pose HT-SF-KOSTM. Hash table with bucket size one becomes the linked-list
data structure for SF-KOSTM represented as list-SF-KOSTM. The representa-
tion of SF-KOSTM is similar to MVOSTM [20]. Each bucket stores multiple
nodes in the form of linked-list between the two sentinel nodes Head(-∞) and
Tail(+∞). Figure 3(b) illustrates the structure of each node as 〈key, lock, mark,
vl, nNext〉. Where key is the unique value from the range of [1 to K ] stored in
the increasing order between the two sentinel nodes similar to linked-list based
concurrent set implementation [25,26]. The lock field is acquired by the trans-
action before updating (inserting or deleting) on the node. mark is the boolean
field which says anode is deleted or not. If mark sets to true then node is logi-
cally deleted else present in the hash table. Here, the deletion is in a lazy manner
similar to concurrent linked-list structure [25]. The field vl stands for version list.
SF-KOSTM maintains the finite say latest K-versions corresponding to each key
to achieving the greater concurrency as explained in Sect. 1. Whenever (K +1)th

version created for the key then it overwrites the oldest version corresponding
to that key. If K is equal to 1, i.e., version list contains only one version corre-
sponding to each key which boils down to Starvation-Free Single-Version OSTM
(SF-SVOSTM). So, the data structure of SF-SVOSTM is same as SF-KOSTM
with one version. The field nNext points to next available node in the linked-list.
From now onwards, we will use the term key and node interchangeably.

Fig. 3. Design and data structure of SF-KOSTM

The structure of the vl is 〈ts, val, rvl, vrt, vNext〉 as shown in Fig. 3(b). ts
is the unique timestamp assigned by the STM begin(). If the value (val) is nil
then version is created by the STM delete() otherwise STM insert() creates a
version with not nil value. To satisfy the correctness criteria as local opacity,
STM delete() also maintains the version corresponding to each key with mark
field as true. It allows the concurrent transactions to lookup from the older
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Fig. 4. Searching k9 over lazy-list (Color
figure online)

Fig. 5. Searching k9 over rblazy-list
(Color figure online)

version of the marked node and returns the value as not nil. rvl stands for return
value list which maintains the information about lookup transaction that has
lookups from a particular version. It maintains the timestamp (ts) of rv methods
(STM lookup() or STM delete()) transaction in it. vrt stands for version real-
time which helps to maintain the real-time order among the transactions. vNext
points to the next available version in the version list.

Maintaining the deleted node along with the live (not deleted) node will
increase the traversal time to search a particular node in thelist. Consider Fig. 4,
where red color depicts the deleted node 〈k1, k2, k4〉 and blue color depicts the
live node 〈k9〉. When any method of SF-KOSTM searches the key k9 then it has
to traverse the deleted nodes 〈k1, k2, k4〉 as well before reach to k9 that increases
the traversal time.

This motivated us to modify the lazy-list structure of a node to form a
skip list based on red and blue links. We called it as a red-blue lazy-list or
rblazy-list. This idea has been explored by Peri et al. in SVOSTMs [6]. rblazy-list
maintains two-pointer corresponding to each node such as red link (RL) and
blue link (BL). Where BL points to the live node and RL points to live node
as well as a deleted node. Let us consider the same example as discussed above
with this modification, key k9 is directly searched from the head of the list
with the help of BL as shown in Fig. 5. In this case, traversal time is efficient
because any method of SF-KOSTM need not traverse the deleted nodes. To
maintain the RL and BL in each node we modify the structure of lazy-list as
〈key, lock, mark, vl, RL, BL, nNext〉 and called it as rblazy-list.

3.3 Working of SF-KOSTM Algorithm

In this subsection, we describe the working of SF-KOSTM algorithm which
includes the detail description of SF-KOSTM methods and challenges to make
it starvation-free. This description can easily be extended to SF-MVOSTM and
SF-MVOSTM-GC as well.

SF-KOSTM invokes STM begin(),STM lookup(),STM delete(),STM insert(),
and STM tryC() methods. STM lookup() and STM delete() work as rv methods()
which lookup the value of key k from shared memory and return it. Whereas
STM insert() and STM delete() work as upd methods() that modify the value
of k in shared memory. We propose optimistic SF-KOSTM, so, upd methods()
first update the value of k in transaction local log txLog and the actual effect of
upd methods() will be visible after successful STM tryC(). Now, we explain the
functionality of each method as follows:
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STM begin(): When a thread Thi invokes transaction Ti for the first time (or
first incarnation), STM begin() assigns a unique timestamp known as current
timestamp (cts) using an atomic global counter (gcounter). If Ti gets aborted
then thread Thi executes it again with the new incarnation of Ti, say Tj with the
new cts until Ti commits but retains its initial cts as initial timestamp (its). Thi

uses its to inform the SF-KOSTM system that whether Ti is a new invocation
or an incarnation. If Ti is the first incarnation then its and cts are same as ctsi
so, Thi maintains 〈itsi, ctsi〉. If Ti gets aborted and retries with Tj then Thi

maintains 〈iti, ctj〉.
By assigning priority to the lowest its transaction (i.e. transaction have been

in the system for a longer time) in Single-Version OSTM, Starvation-Freedom
can easily be achieved as explained in Sect. 1. The detailed working of Starvation-
Free Single-Version OSTM (SF-SVOSTM) is in accompanying technical report
[24]. But achieving Starvation-Freedom in finite K-versions OSTM (SF-KOSTM)
is challenging. Though the transaction Ti has lowest its but Ti may return abort
because of finite versions Ti did not find a correct version to lookup from or over-
write a version. Table 1 shows the key insight to achieve the starvation-freedom
in finite K-versions OSTM. Here, we considered two transaction T10 and T20

with cts 10 and 20 that performs STM lookup() (or l) and STM insert() (or i)
on same key k. We assume that a version of k exists with cts 5, so, STM lookup()
of T10 and T20 find a previous version to lookup and never return abort. Due
to the optimistic execution in SF-KOSTM, effect of STM insert() comes after
successful STM tryC(), so STM lookup() of a transaction comes before effect of
its STM insert(). Hence, a total of six permutations are possible as defined in
Table 1. We can observe from Table 1 that in some cases T10 returns abort. But
if T20 gets the lowest its then T20 never returns abort. This ensures that a trans-
action with lowest its and highest cts will never return abort. But achieving
highest cts along with lowest its is a bit difficult because new transactions are
keep on coming with higher cts using gcounter. So, to achieve the highest cts,
we introduce a new timestamp as working timestamp (wts) which is significantly
larger than cts.

STM begin() maintains the wts for transaction Ti as wtsi, which is potentially
higher timestamp as compare to ctsi. So, we derived,

wtsi = ctsi + C ∗ (ctsi − itsi); (1)

where C is any constant value greater than 0. When Ti is issued for the first time
then wtsi, ctsi, and itsi are same. If Ti gets aborted again and again then drift
between the ctsi and wtsi will increases. The advantage for maintaining wtsi
is if any transaction keeps getting aborted then its wtsi will be high and itsi
will be low. Eventually, Ti will get chance to commit in finite number of steps
to achieve starvation-freedom. For simplicity, we use timestamp (ts) i of Ti as
wtsi, i.e., 〈wtsi = i〉 for SF-KOSTM.

Observation 1. Any transaction Ti with lowest itsi and highest wtsi will never
abort.
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Table 1. Possible permutations of methods

S. No Execution sequence Possible actions by transactions

1 l10(k), i10(k), l20(k), i20(k) T20(k) lookups the version inserted by T10. No conflict

2 l10(k), l20(k), i10(k), i20(k) Conflict detected at i10(k). Either abort T10 or T20

3 l10(k), l20(k), i20(k), i10(k) Conflict detected at i10(k). Hence, abort T10

4 l20(k), l10(k), i20(k), i10(k) Conflict detected at i10(k). Hence, abort T10

5 l20(k), l10(k), i10(k), i20(k) Conflict detected at i10(k). Either abort T10 or T20

6 l20(k), i20(k), l10(k), i10(k) Conflict detected at i10(k). Hence, abort T10

Sometimes, the value of wts is significantly larger than cts. So, wts is unable
to maintain real-time order between the transactions which violates the correct-
ness of SF-KOSTM. To address this issue SF-KOSTM uses the idea of timestamp
ranges [27–29] along with 〈itsi, ctsi, wtsi〉 for transaction Ti in STM begin(). It
maintains the transaction lower timestamp limit (tltli) and transaction upper
timestamp limit (tutli) for Ti. Initially, 〈itsi, ctsi, wtsi, tltli〉 are the same for
Ti. tutli would be set as a largest possible value denoted as +∞ for Ti. After
successful execution of rv methods() or STM tryC() of Ti, tltli gets incremented
and tutli gets decremented1 to respect the real-time order among the transac-
tions. STM begin() initializes the transaction local log (txLogi) for each trans-
action Ti to store the information in it. Whenever a transaction starts it atom-
ically sets its status to be live as a global variable. Transaction status can be
〈live, commit, false〉. After successful execution of STM tryC(), Ti sets its status
to be commit. If the status of the transaction is false then it returns abort. For
more details of STM begin() please refer the accompanying technical report [24].

STM lookup() and STM delete() as rv methods(): rv methods(ht, k, val)
return the value (val) corresponding to the key k from the shared memory as hash
table (ht). We show the high-level overview of the rv methods() in Algorithm 1.
First, it identifies the key k in the transaction local log as txLogi for transaction
Ti. If k exists then it updates the txLogi and returns the val at Line 3.

If key k does not exist in the txLogi then before identify the location in
share memory rv methods() check the status of Ti at Line 6. If status of Ti (or
i) is false then Ti has to abort which says that Ti is not having the lowest its
and highest wts among other concurrent conflicting transactions. So, to propose
starvation-freedom in SF-KOSTM other conflicting transactions set the status
of Ti as false and force it to abort.

If the status of Ti is not false and key k does not exist in the txLogi
then it identifies the location of key k optimistically (without acquiring the
locks similar to the lazy-list [25]) in the shared memory at Line 8. SF-KOSTM
maintains the shared memory in the form of a hash table with M buckets as
shown in SubSect. 3.2, where each bucket stores the keys in rblazy-list. Each

1 Practically ∞ can not be decremented for tutli so we assign the highest possible
value to tutli which gets decremented.



220 C. Juyal et al.

node contains two pointer 〈RL,BL〉. So, it identifies the two predecessors (pred)
and two current (curr) with respect to each node. First, it identifies the pred
and curr for key k in BL as 〈preds[0], currs[1]〉. After that it identifies the
pred and curr for key k in RL as 〈preds[1], currs[0]〉. If 〈preds[1], currs[0]〉
are not marked then 〈preds[0] = preds[1], currs[1] = currs[0]〉. SF-KOSTM
maintains the keys are in increasing order. So, the order among the nodes are
〈preds[0].key ≤ preds[1].key < k ≤ currs[0].key ≤ currs[1].key〉.

rv methods() acquire the lock in predefined order on all the identified preds
and currs for key k to avoid the deadlock at Line 9 and do the rv Validation() at
Line 10. If 〈preds[0] ∨ currs[1]〉 is marked or preds are not pointing to identified
currs as 〈(preds[0].BL �= currs[1]) ∨ (preds[1].RL �= currs[0])〉 then it releases
the locks from all the preds and currs and identify the new preds and currs for
k in shared memory.

Algorithm 1 rv methods(ht, k, val): It can either be STM deletei(ht, k, val) or
STM lookupi(ht, k, val) on key k by transaction Ti.

1: procedure rv methodsi(ht, k, val)
2: if (k ∈ txLogi) then
3: Update the local log of Ti and return val.
4: else
5: /*Atomically check the status of its own transac-

tion Ti (or i).*/
6: if (i.status == false) then return 〈aborti〉.
7: end if
8: Identify the preds[] and currs[] for key k in

bucket Mk of rblazy-list using BL and RL.
9: Acquire locks on preds[]& currs[] in increasing

order of keys to avoid the deadlock.
10: if (!rv Validation(preds[], currs[])) then
11: Release the locks and goto Line 8.
12: end if
13: if (k /∈ Mk.rblazy-list) then
14: Create a new node n with key k as:

〈key=k, lock=false, mark=true, vl=ver,
nNext=φ〉./*n is marked*/

15: Create version ver as:〈ts=0, val=nil, rvl=i,
vrt=0, vNext=φ〉.

16: Insert n into Mk.rblazy-list s.t. it is accessi-
ble only via RLs. /*lock sets true*/

17: Release locks; update the txLogi with k.

18: return 〈val〉. /*val as nil*/
19: end if
20: Identify the version verj with ts = j such that

j is the largest timestamp smaller (lts) than i.
21: if (verj == nil) then /*Finite Versions*/
22: return 〈aborti〉
23: else if (verj .vNext != nil) then
24: /*tutli should be less then vrt of next ver-

sion verj*/
25: Calculate tutli = min(tutli, verj .vNext

.vrt − 1).
26: end if
27: /*tltli should be greater then vrt of verj*/
28: Calculate tltli = max(tltli, verj .vrt + 1).
29: /*If limit has crossed each other then abort Ti*/
30: if (tltli > tutli) then return 〈aborti〉.
31: end if
32: Add i into the rvl of verj .
33: Release the locks; update the txLogi with k

and value.
34: end if
35: return 〈verj .val〉.
36: end procedure

If key k does not exist in the rblazy-list of corresponding bucket
Mk at Line 13 then it creates a new node n with key k as
〈key=k, lock=false, mark=true, vl=ver, nNext=φ〉 at Line 14 and creates a ver-
sion (ver) for transaction T0 as 〈ts = 0, val = nil, rvl = i, vrt= 0, vNext= φ〉 at
Line 15. Transaction Ti creates the version of T0, so, other concurrent conflicting
transaction (say Tp) with lower timestamp than Ti, i.e., 〈p < i〉 can lookup from
T0 version. Thus, Ti save Tp to abort while creating a T0 version and ensures
greater concurrency. After that Ti adds its wtsi in the rvl of T0 and sets the vrt 0
as the timestamp of T0 version. Finally, it inserts the node n into Mk.rblazy-list
such that it is accessible via RL only at Line 16. rv methods() releases the locks
and update the txLogi with key k and value as nil (Line 17). Eventually, it
returns the val as nil at Line 18.
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If key k exists in the Mk.rblazy-list then it identifies the current version
verj with ts = j such that j is the largest timestamp smaller (lts) than i at
Line 20 and there exists no other version with timestamp p by Tp on same key k
such that 〈j < p < i〉. If verj is nil at Line 21 then SF-KOSTM returns abort for
transaction Ti because it does not found a version to lookup otherwise it identifies
the next version with the help of verj .vNext. If next version (verj .vNext as verk)
exist then Ti maintains the tutli with the minimum of 〈tutli ∨verk.vrt − 1〉 at
Line 25 and tltli with a maximum of 〈tltli ∨ verj .vrt + 1〉 at Line 28 to respect
the real-time order among the transactions. If tltli is greater than tutli at Line
30 then transaction Ti returns abort (fail to maintains real-time order) otherwise
it adds the ts of Ti (wtsi) in the rvl of verj at Line 32. Finally, it releases the
lock and updates the txLogi with key k and value as the current version value
(verj .val) at Line 33. Eventually, it returns the value as verj .val at Line 35.

STM insert() and STM delete() as upd methods(): Actual effect of
STM insert() and STM delete() come after successful STM tryC(). They cre-
ate the version corresponding to the key in shared memory. We show the high
level view of STM tryC() in Algorithm 2. First, STM tryC() checks the status
of the transaction Ti at Line 39. If the status of Ti is false then Ti returns abort
with similar reasoning explained above in rv methods().

If the status is not false then STM tryC() sort the keys (exist in txLogi
of Ti) of upd methods() in increasing order. It takes the method (mij) from
txLogi one by one and identifies the location of the key k in Mk.rblazy-list as
explained above in rv methods(). After identifying the preds and currs for k it
acquire the locks in predefined order to avoid the deadlock at Line 46 and calls
tryC Validation() to validate the methods of Ti.

tryC Validation() identifies whether the methods of invoking transaction Ti

are able to insert or delete a version corresponding to the keys while ensuring
the progress guarantee as starvation-freedom and maintaining the real-time order
among the transactions. It does four steps for validation. Step 1: First, it does the
rv Validation() as explained in rv methods() above. Step 2: If rv Validation() is
successful and key k is exist in the Mk.rblazy-list then it identifies the current
version verj with ts = j such that j is the largest timestamp smaller (lts) than i.
If verj is not exist then SF-KOSTM returns abort for transaction Ti because it
does not found the version to replace. Step 3: If verj exist then Ti compares itsi
with its of other live transactions present in verj .rvl. If itsi of Ti is less than
the its of such transactions then Ti sets the status of all those transactions to
be false, otherwise, Ti returns abort. Step 4: To maintain the real-time order,
Ti update the tltli and tutli of it with the help of verj and its next version
(verj .vNext) respectively (explained in rv methods() above). Please find the
detailed descriptions of tryC Validation() in accompanying technical report [24].

If all the steps of the tryC Validation() is successful then the actual effect
of the STM insert() and STM delete() will be visible to the shared memory. At
Line 53, STM tryC() checks for poValidation(). When two subsequent methods
〈mij ,mik〉 of the same transaction Ti identify the overlapping location of preds
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and currs in rblazy-list. Then poValidation() updates the current method mik

preds and currs with the help of previous method mij preds and currs.
If mij is STM insert() and key k is not exist in the Mk.rblazy-list

then it creates the new node n with key k as 〈key=k,lock=false,mark=false,
vl=ver,nNext=φ〉 at Line 55. Later, it creates a version (ver) for trans-
action T0 and Ti as 〈 ts=0, val=nil, rvl=i, vrt=0, vNext=i 〉 and
〈ts=i, val=v, rvl=φ, vrt=i, vNext=φ〉 at Line 56. The T0 version created by
transaction Ti to helps other concurrent conflicting transactions (with lower
timestamp than Ti) to lookup from T0 version. Finally, it inserts the node n
into Mk.rblazy-list such that it is accessible via RL as well as BL at Line 57. If
mij is STM insert() and key k exists in the Mk.rblazy-list then it creates the
new version veri as 〈ts=i, val=v, rvl=φ, vrt=i, vNext=φ〉 corresponding to key
k. If the limit of the version reaches to K then SF-KOSTM replaces the oldest
version with (K + 1)th version which is accessible via RL as well as BL at Line
60.

Algorithm 2 STM tryC (Ti): Validate the upd methods() of Ti and returns commit.
37: procedure STM tryC(Ti)
38: /*Atomically check the status of its own transaction

Ti (or i)*/
39: if (i.status == false) then return 〈aborti〉.
40: end if
41: /*Sort the keys of txLogi in increasing order.*/
42: /*Method (m) will be either STM insert or STM -

delete*/
43: for all (mij ∈ txLogi) do
44: if(mij==STM insert ||mij==STM delete)then
45: Identify the preds[] & currs[] for key k in

bucket Mk of rblazy-list using BL & RL.
46: Acquire the locks on preds[] & currs[] in

increasing order of keys to avoid deadlock.
47: if (! tryC V alidation()) then
48: return 〈aborti〉.
49: end if
50: end if
51: end for
52: for all (mij ∈ txLogi) do
53: poValidation() modifies the preds[] & currs[] of

current method which would have been updated
by previous method of the same transaction.

54: if ((mij==STM insert)&&(k/∈Mk .rblazy-list))
then

55: Create new node n with k as: 〈key=k,
lock=false, mark= false, vl=ver, nNext=φ〉.

56: Create first version ver for T0 and next for
i: 〈ts=i, val=v, rvl=φ, vrt=i, vNext=φ〉.

57: Insert node n into Mk .rblazy-list such that
it is accessible via RL as well as BL.

58: /*lock sets true*/
59: else if (mij == STM insert) then
60: Add ver: 〈ts=i, val=v, rvl=φ, vrt=i,

vNext=φ〉 into Mk .rblazy-list & accessible
via RL, BL. /*mark=false*/

61: end if
62: if (mij == STM delete) then
63: Add ver:〈ts=i, val=nil, rvl=φ, vrt=i,

vNext=φ〉 into Mk .rblazy-list & accessible
via RL only. /*mark=true*/

64: end if
65: Update preds[] & currs[] of mij in txLogi.
66: end for
67: Release the locks; return 〈commiti〉.
68: end procedure

If mij is STM delete() and key k exists in the Mk.rblazy-list then it creates the
new version veri as 〈ts=i, val=nil, rvl=φ, vrt=i, vNext=φ〉 which is accessible via
RL only at Line 63. At last it updates the preds and currs of each mij into its
txLogi to help the upcoming methods of the same transactions in poValidation()
at Line 65. Finally, it releases the locks on all the keys in a predefined order and
returns commit at Line 67.

Theorem 1. Any legal history H generated by SF-SVOSTM satisfies co-
opacity.
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Theorem 2. Any valid history H generated by SF-KOSTM satisfies local-
opacity.

Theorem 3. SF-SVOSTM and SF-KOSTM ensure starvation-freedom in pres-
ence of a fair scheduler that satisfies Assumption 1(bounded-termination) and
in the absence of parasitic transactions that satisfies Assumption 2.

Please find the proof of theorems in accompanying technical report [24].

4 Experimental Evaluation

This section represents the experimental analysis of variants of the pro-
posed Starvation-Free Object-based STMs (SF-SVOSTM, SF-MVOSTM, SF-
MVOSTM-GC, and SF-KOSTM)2 for two data structure hash table (HT-SF-
SVOSTM, HT-SF-MVOSTM, HT-SF-MVOSTM-GC and HT-SF-KOSTM) and
linked-list (list-SF-SVOSTM, list-SF-MVOSTM, list-SF-MVOSTM-GC and list-
SF-KOSTM) implemented in C++. We analyzed that HT-SF-KOSTM and list-
SF-KOSTM perform best among all the proposed algorithms. So, we compared
our HT-SF-KOSTM with hash table based state-of-the-art STMs HT-KOSTM
[20], HT-SVOSTM [6], ESTM [21], RWSTM [7, Chap. 4], HT-MVTO [16] and
our list-SF-KOSTM with list based state-of-the-art STMs list-KOSTM [20], list-
SVOSTM [6], Trans-list [22], Boosting-list [4], NOrec-list [23], list-MVTO [16],
list-KSFTM [9].

Experimental Setup: The system configuration for experiments is 2 socket
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz with 14 cores per socket and
2 hyper-threads per core, a total of 56 threads. A private 32 KB L1 cache and
256 KB L2 cache is with each core. It has 32 GB RAM with Ubuntu 16.04.2
LTS running Operating System. Default scheduling algorithm of Linux with
all threads have the same base priority is used in our experiments. This satisfies
Assumption 1 (bounded-termination) of the scheduler and we ensure the absence
of parasitic transactions for our setup to satisfy Assumption 2.

Methodology: We have considered three different types of workloads namely,
W1 (Lookup Intensive - 5% insert, 5% delete, and 90% lookup), W2 (Mid Inten-
sive - 25% insert, 25% delete, and 50% lookup), and W3 (Update Intensive
- 45% insert, 45% delete, and 10% lookup). To analyze the absolute benefit
of starvation-freedom, we used a customized application called as the Counter
Application (refer the pseudo-code in the technical report [24]) which provides
us the flexibility to create a high contention environment where the probabil-
ity of transactions undergoing starvation on an average is very high. Our high
contention environment includes only 30 shared data-items (or keys), number of
threads ranging from 50 to 250, each thread spawns upon a transaction, where
each transaction performs 10 operations depending upon the workload chosen.
To study starvation-freedom of various algorithms, we have used max-time which

2 Code is available here: https://github.com/PDCRL/SF-MVOSTM.

https://github.com/PDCRL/SF-MVOSTM
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Fig. 6. Performance analysis of SF-KOSTM and state-of-the-art STMs on hash table

is the maximum time required by a transaction to finally commit from its first
incarnation, which also involves time taken by all its aborted incarnations. We
perform each of our experiments 10 times and consider the average of it to avoid
the effect of outliers.

Results Analysis: All our results reflect the same ideology as proposed show-
casing the benefits of Starvation-Freedom in Multi-Version OSTMs. We started
our experiments with hash table data structure of bucket size 5 and compared
max-time for a transaction to commit by proposed HT-SF-KOSTM (best among
all the proposed algorithms shown in the technical report [24]) with hash table
based state-of-the-art STMs. HT-SF-KOSTM achieved an average speedup of
3.9x, 32.18x, 22.67x, 10.8x and 17.1x over HT-KOSTM, HT-SVOSTM, ESTM,
RWSTM and HT-MVTO respectively as shown in Fig. 6.

We further considered another data structure linked-list and compared max-
time for a transaction to commit by proposed list-SF-KOSTM (best among
all the proposed algorithms shown in the technical report [24]) with list based
state-of-the-arts STMs. list-SF-KOSTM achieved an average speedup of 2.4x,
10.6x, 7.37x, 36.7x, 9.05x, 14.47x, and 1.43x over list-KOSTM, list-SVOSTM,
Trans-list, Boosting-list, NOrec-list, list-MVTO, and list-KSFTM respectively
as shown in Fig. 7. We consider the number of versions in the version list K as
5 and value of C as 0.1.
For additional experiments please refer the technical report [24] which shows
the performance of HT-SF-KOSTM and list-SF-KOSTM under low contention
is slightly lesser than non starvation-free HT-KOSTM and list-KOSTM. It also
has plots of abort counts while varying the threads, best value of K and C,
stability and memory consumption.
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Fig. 7. Performance analysis of SF-KOSTM and state-of-the-art STMs on list

5 Conclusion

We proposed a novel Starvation-Free K-Version Object-based STM (SF-
KOSTM) which ensure the starvation-freedom while maintaining the latest K-
versions corresponding to each key and satisfies the correctness criteria as local-
opacity. The value of K can vary from 1 to ∞. When K is equal to 1 then SF-
KOSTM boils down to Single-Version Starvation-Free OSTM (SF-SVOSTM).
When K is ∞ then SF-KOSTM algorithm maintains unbounded versions cor-
responding to each key known as Multi-Version Starvation-Free OSTM (SF-
MVOSTM). To delete the unused version from the version list of SF-MVOSTM,
we developed a separate Garbage Collection (GC) method and proposed SF-
MVOSTM-GC. SF-KOSTM provides greater concurrency and higher through-
put using higher-level methods. We implemented all the proposed algorithms for
hash table and linked-list data structure but it is generic for other data struc-
tures as well. Results of SF-KOSTM shows significant performance gain over
state-of-the-art STMs.

Acknowledgments. We are thankful to the anonymous reviewers for carefully read-
ing the paper and providing us valuable suggestions.
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