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Abstract. The growing availability of hardware-based trusted exe-
cution environments (TEEs) in commodity processors has recently
advanced support (i.e., design, implementation and deployment frame-
works) for network-based secure services. Examples of such TEEs include
Arm TrustZone or Intel SGX, largely available in embedded, mobile
and server-grade processors. TEEs shield services from compromised
hosts, malicious users or powerful attackers. TEE-enabled devices are
largely being deployed on the edge of the network, paving the way for
large-scale deployments of trusted applications. These applications allow
processing and disseminating sensitive data without having to trust cloud
providers. However, uncovering network performance limitations of such
trusted applications is difficult and currently lacking, despite the interest
and reliance by developers and system deployers.

iperfTZ is an open-source tool to uncover network performance bot-
tlenecks rooted at the design and implementation of trusted applications
for Arm TrustZone and underlying runtime systems. Our evaluation
based on micro-benchmarks shows current trade-offs for trusted appli-
cations, both from a network as well as an energy perspective; an often
overlooked yet relevant aspect for edge-based deployments.

Keywords: Network · Performance · Bottleneck · Measurement ·
ARM TrustZone · OP-TEE

1 Introduction

Services are being moved from the cloud to the edge of the network. This migra-
tion is due to several reasons: lack of trust in the cloud provider [7], energy
savings [19,24] or reclaiming control over data and code. Edge devices are used
to accumulate, process and stream data [20,30]. The nature of such data can
be very sensitive: edge devices can be used to process health-based data emit-
ted by body sensors (e.g., cardiac data [26]), data originated by smart home
sensors indicating the presence of humans inside a household, or even financial
transactions [16,28]. In this context, applications using this information must
be protected against powerful attackers, potentially even with physical access to
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the devices. Additionally, communication channels for inter-edge device applica-
tions must also be secured to prevent attacks such as man-in-the-middle attacks.
Edge devices are low-energy units with limited processing and storage capac-
ity. As such, it is unpractical to rely on sophisticated software-based protection
mechanisms (e.g., homomorphic encryption [22]), currently due to their high
processing requirements and low performance [12]. Alternatively, new hardware-
based protection mechanisms can be easily leveraged by programmers to provide
prior protection guarantees. Specifically, trusted execution environments (TEEs)
are increasingly made available by hardware vendors in edge-devices [29]. Several
Arm-based devices, such as the popular Raspberry Pi1, embed native support
for TEEs called TrustZone [4,23]. TrustZone can be leveraged to deploy
trusted applications (TAs) with additional security guarantees.

There exist several programming frameworks and runtime systems to develop
TAs for TrustZone with varying capabilities and different degrees of stability
and support (e.g., SierraTEE2, Op-Tee3, and [21]). While a few studies look at
the interaction between TEEs and the corresponding untrusted execution envi-
ronments [2,14], little is known on the network performance bottlenecks expe-
rienced by TAs on Arm processors. We fill this gap by contributing iperfTZ,
a tool to measure accurately the network performance (e.g., latency, through-
put) of TAs for TrustZone. iperfTZ consists of three components, namely
(1) a client application, (2) a TA, and (3) a server. Our tool can be used to
guide the calibration of TAs for demanding workloads, for instance understand-
ing the exchanges with untrusted applications or for secure inter-TEE applica-
tions [28]. In addition, iperfTZ can be used to study the impact of network and
memory performance on the energy consumption of running TAs. By adjusting
iperfTZ’s parameters, users evaluate the network throughput of their TAs and
can quickly uncover potential bottlenecks early in the development cycle. For
instance, internal buffer sizes affect the achievable network throughput rates by
a factor of 1.8×, almost halving throughput rates.

The rest of the paper is organized as follows. Section 2 motivates the need
for tools analyzing TAs. We provide an in-depth background on TrustZone in
Sect. 3, as well as covering details on the TrustZone runtime system Op-Tee.
In Sect. 4 we present the architecture of iperfTZ and some implementation
details in Sect. 5. We report our evaluation results in Sect. 6. We cover related
work in Sect. 7 before concluding in Sect. 8.

2 Motivating Scenario

We consider scenarios with simple yet practical services deployed as TAs. For
instance, in [13] authors deploy key-value stores inside a TrustZone runtime
system. Benchmarks show a 12×–17× slowdown when compared to plain (yet
1 https://www.raspberrypi.org, accessed on 30.07.2019.
2 https://www.sierraware.com/open-source-ARM-TrustZone.html, accessed on

30.07.2019.
3 https://www.op-tee.org, accessed on 30.07.2019.

https://www.raspberrypi.org
https://www.sierraware.com/open-source-ARM-TrustZone.html
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Fig. 1. Block diagrams highlighting relevant software components

unsecure) deployments, due to shared memory mechanisms between the trusted
and untrusted environments. As further detailed in Sect. 4, networking in Op-
Tee is supported by similar shared memory mechanisms. Yet, we observe the
lack of tools to clearly highlight the root causes of such bottlenecks. Further,
in the TrustZone ecosystem, there is a lack of proper tools to evaluate net-
work bottlenecks contrary to untrusted environments (e.g., iperf34, netperf5,
nuttcp6). The overhead originating from the shared memory mechanism can be
identified by comparing the measured network throughput inside and outside the
TEE. Measuring such overheads is of particular relevance in embedded, mobile
and IoT environments. In those scenarios, devices are often battery powered,
limited both in time and capacity. Hence, network performance tools should
further highlight energy costs, pointing users to specific bottlenecks.

3 Background

This section provides a background on Arm TrustZone (Sect. 3.1), the Glob-
alPlatform specifications (Sect. 3.2) and Op-Tee, the TrustZone runtime
system used for iperfTZ (Sect. 3.3). This background helps understanding tech-
nical challenges in our context and how iperfTZ addresses them.

3.1 ARM TrustZone in a Nutshell

TrustZone is a security architecture designed for Arm processors and was
introduced in 2003 [3]. It partitions hardware and software resources into two
worlds, i.e., secure and normal world, as shown in Fig. 1a. A dedicated NS bit [4]
drives this world separation and allows to execute secure (NS bit set low) or

4 https://software.es.net/iperf/, accessed on 30.07.2019.
5 https://hewlettpackard.github.io/netperf/, accessed on 30.07.2019.
6 https://www.nuttcp.net/Welcome%20Page.html, accessed on 30.07.2019.

https://software.es.net/iperf/
https://hewlettpackard.github.io/netperf/
https://www.nuttcp.net/Welcome%20Page.html
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non-secure (NS bit set high) transactions on the system bus. In general, non-
secure transactions cannot access system resource secured by a low NS bit. The
TrustZone architecture spans beyond the system bus, including peripherals
(e.g., GPUs [31] and I/O). Every TrustZone-enabled processor is logically split
into a secure and a non-secure (virtual) core, executing in a time-shared manner.
Hence, accessible system resources are determined by the executing core: secure
cores can access all system resources, while non-secure cores can only access non-
secure ones. Arm processors embed one memory management unit (MMU) per
virtual core in charge of mapping virtual addresses to physical addresses. The
translation lookaside buffer (TLB) in the MMU is used to maintain the mapping
translations from virtual to physical memory addresses. Tagging TLB entries
with the identity of the world allows secure and non-secure address translation
entries to co-exist. With tags the TLB no longer has to be flushed making fast
world switches possible.

The implementation of TrustZone is organized into four exception levels
(EL) with increasing privileges [5] (Fig. 1a). EL0, the lowest one, executes unpriv-
ileged software. EL1 executes operating systems, while EL2 provides support for
virtualization. Finally, Arm Trusted Firmware is running at EL3 dispatching
boot stages at boot time and monitoring secure states. Switches between the
two worlds are supervised by a secure monitor [6]. It is invoked in two ways:
(1) by executing a secure monitor call (SMC), or (2) by a subset of hardware
exception mechanisms [4]. When invoked, the secure monitor saves the state
of the currently executing world, before restoring the state of the world being
switched to. After dealing with the worlds’ state, the secure monitor returns
from exception to the restored world.

3.2 The GlobalPlatform Standard

GlobalPlatform7 publishes specifications for several TEEs (e.g., Op-Tee
and [21]). We provide more details on Op-Tee in Sect. 3.3 (an implementation
of such specifications), while briefly explaining the terminology in the remainder
to understand Fig. 1b. An execution environment (EE) provides all components
to execute applications, including hardware and software components. A rich
execution environment (REE) runs a rich OS, generally designed for perfor-
mance. However, it lacks access to any secure component. In contrast, TEEs
are designed for security, but programmers have to rely on a reduced set of fea-
tures. A trusted OS manages the TEE under constrained memory and storage
bounds. TEE and REE run alongside each other. In recent Arm releases (since
v8.4), multiple TEEs can execute in parallel [3], each with their own trusted
OS. TAs rely on system calls usually implemented by the trusted OS as specific
APIs [10]. Client applications (CA) running in the rich OS can communicate
with TAs using the TEE Client API. Similarly, TAs can access resources such as
secure elements (i.e., tamper-resistant devices), trusted storage, and peripherals,
or send messages outside the TEE. Communication agents in the TEE and REE

7 https://globalplatform.org, accessed on 30.07.2019.

https://globalplatform.org
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mediate exchanges between TAs and CAs. Finally, the TEE Socket API can be
used by TAs to setup network connections with remote CAs and TAs.

3.3 Op-Tee: Open Portable Trusted Execution Environment

Op-Tee is an open-source implementation of several GlobalPlatform speci-
fications [8–11] with native support for TrustZone. The Op-Tee OS manages
the TEE resources, while any Linux-based distribution can be used as rich OS
alongside it. Op-Tee supports two types of TAs: (1) regular TAs [11] running
at EL0, and (2) pseudo TAs (PTAs), statically linked against the Op-Tee OS
kernel. PTAs run at EL1 as secure privileged-level services inside Op-Tee OS’s
kernel. Finally, Op-Tee provides a set of client libraries to interact with TAs
and to access secure system resources from within the TEE.

4 Networking for Trusted Applications

For networked TAs, i.e., generating or receiving network traffic respectively from
and to TAs, runtime systems must provide support for sockets and corresponding
APIs. To do so, either (1) the TEE borrows the network stack from the REE, or
(2) the TEE relies on trusted device drivers. The former solution implies leverag-
ing remote procedure calls (RPC) to a tee-supplicant (an agent which responds
to requests from the TEE), and achieves a much smaller trusted computing base.
The latter allows for direct access to the network device drivers for much lower
network latencies. Furthermore, it simplifies confidential data handling as the
data does not have to leave the TEE. The former requires developers to pro-
vide data confidentiality before network packets leave the TEE, for instance by
relying on encryption.

iperfTZ leverages libutee8 and its socket API, supporting streams or data-
grams. The socket interface exposes common functions: open, send, recv, close,
ioctl and error. The GlobalPlatform specification allows TEE implemen-
tations to extend protocol-specific functionalities via command codes and ioctl
functions. For example, it is possible to adjust the receiving and sending socket
buffer sizes with TCP socket or changing the address and port with UDP sockets.

The libutee library manages the lifecycle of sockets via a TA session to
the socket’s PTA. The socket PTA handles the RPC to the tee-supplicant,
in particular allocating the RPC parameters and assigning their values. After-
wards, a SMC instruction is executed to switch back to the normal world.
The tee-supplicant constantly checks for new service requests from the TEE.
Once a new request arrives, its arguments are read by the tee-supplicant and
the specified command is executed. Finally, when the data is received by the
tee-supplicant, it is relayed over Posix sockets to the rich OS. In essence,
when data is sent or received over a socket, it traverses all exception levels, both
secure (from EL0 up to EL3) and non-secure (from EL2 to EL0 and back up).
8 https://optee.readthedocs.io/architecture/libraries.html#libutee, accessed on

30.07.2019.

https://optee.readthedocs.io/architecture/libraries.html#libutee
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Fig. 2. Execution flow inside Op-Tee. Fig. 3. Interaction of iperfTZ’s
components in the client-server
model.

Figure 2 summarizes the previous paragraphs and shows the interaction
between the secure and normal worlds in Op-Tee. The secure world hosts
the TA, which interacts directly with libutee (Fig. 2-➊). When using Glob-
alPlatform’s Socket API, libutee does a system call (Fig. 2-➋) to Op-Tee.
Op-Tee then delegates the request to the socket PTA (Fig. 2-➌). The secure
monitor is invoked through a SMC (Fig. 2-➍), which maps the data from the
TEE to the REE’s address space. From there execution switches into the normal
world and the Op-Tee driver (Fig. 2-➎) resumes operation. Requests are then
handled by the tee-supplicant (Fig. 2-➏) over ioctl system calls. The agent
executes system calls using libc (Fig. 2-➐) to directly relate the underlying net-
work driver (Fig. 2-➑) over the Posix interface. Once data reaches the network
driver, it can be sent over the wire (Fig. 2-➒).

4.1 Threat Model

For our threat model we consider a malicious user that has physical access or is
able to obtain remote access on the devices used to deploy iperfTZ as depicted
in Fig. 3. By gaining access to the network or devices connected to it, the mali-
cious user can break security by either compromising these devices or exploiting
iperfTZ for denial-of-service (DoS) attacks. We assume that the REE, which
includes the rich OS and the user space, cannot be trusted. However, we consider
that the devices and the TEE, which includes dispatcher, Op-Tee, and secure
monitor, can be trusted. As also stated in [4], side-channel attacks are out of
scope of our threat model. We also point out that some ARM systems on a chip
(SoCs) are affected by the Meltdown [18] and Spectre [15] attacks9.

For use of iperfTZ in production, we recommend hardcoding network test
parameters in the TA and disabling any argument passing to reduce the poten-
tial of DoS attacks. Furthermore, the signing key used for TAs should be kept
9 https://developer.arm.com/support/arm-security-updates/speculative-processor-

vulnerability, accessed on 30.07.2019.

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
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confidential as it allows the malicious user to modifiy TA binaries and create
authentic TA binaries. Assuming the TrustZone-enabled device is equipped
with an embedded MultiMediaCard (eMMC), then TAs can be securely stored
on the eMMC and the malicious user cannot tamper with a TA’s binary. In
development use, manipulation of the CA’s parameters by the malicious user to
exploit a buffer overflow can be excluded. During a network bandwidth mea-
surement, the malicious user can run a (distributed) DoS attack to reduce the
network bandwidth, such that a lower network throughput is measured and
reported by iperfTZ. At the time of writing, Op-Tee does not provide sup-
port for the TLS protocol which renders secure connections unusable. Although
irrelevant to iperfTZ but applicable in general to networked TAs, the malicious
user could run a man-in-the-middle attack, either directly within the REE or on
the network, and intercept the traffic exchanged between the two devices.

5 Implementation

We describe the implementation challenges of the three components included in
iperfTZ,10 namely (1) a CA acting as proxy for iperfTZ’s (2) TA, and (3) the
server component which the TA is interfacing. All components are implemented
in the C language, and consists of 927 lines of code: 243 for the client, 314 for
iperfTZ’s TA, and 430 for the server.11

5.1 iperfTZ: Client Application

When the CA starts, the TEE context is initialized (TEEC_InitializeContext)
using the file descriptor fetched from the Op-Tee driver. Two distinct dynamic
shared-memory areas are allocated (TEEC_AllocateSharedMemory) at this time,
to (1) exchange arguments passed over the command line interface with the
TA (see Sect. 5.2) and (2) to retrieve metrics gathered by the TA during the
network measurement. Several arguments (e.g.,, IP of the target server node,
dummy data size, socket buffer size) are written in the shared memory area.
The dummy data size is used by the TA to read/write data to the interface
socket. Both shared memory areas get registered with the operation data struc-
ture (TEEC_OpenSession) before calling the TEEC_InvokeCommand function. The
executing thread in the CA is blocked until the TA completes. The execution
inside the TEE is resumed at the TA’s main entry point upon world switch.
Once the TA completes, an SMC instruction drives the CPU core to switch back
into the normal world, where execution is resumed. The metrics gathered from
the TA are available to the user as persistent files.

5.2 iperfTZ: Trusted Application

The iperfTZ TA is the primary executing unit. It takes the role of the client
in the client-server model. The TA allocates a buffer for the dummy data on the
10 https://github.com/ChrisG55/iperfTZ.
11 Numbers for individual components include local header lines of code.

https://github.com/ChrisG55/iperfTZ
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Table 1. Comparison of evaluation platforms.

heap, filled with random data generated by Op-Tee’s Cryptographic Operations
API [10]. With the information from the arguments, the TA finally sets up a
TCP interface socket and opens a client connection before assigning the socket
buffer sizes. Our implementation relies on the Time API [10] to measure the
elapsed time during the network throughput measurement inside the TEE. Op-
Tee computes the time value from the physical count register and the frequency
register. The count register is a single instance register shared between normal
and secure world EL1. The network throughput measurement is then started
while either maintaining a constant bit rate, transmitting a specific number of
bytes or running for 10 seconds. During the measurement, the TA gathers metrics
on the number of transmit calls, i.e., recv and send, bytes sent, time spent in
the transmit calls and the total runtime. Upon completion, results are written to
the shared memory area and the execution switches back to the normal world.

5.3 iperfTZ: Server

The server component is deployed and executed inside the normal world. This is
used to wait for incoming TCP connections (or inbound UDP datagrams) from
iperfTZ’s TA. While executing, it gathers similar network metrics as the other
components. Additionally, this component collects TCP specific metrics, such as
the smoothed round trip time or the maximum segment size. This TCP specific
data is not accessible for TAs and can only be retrieved on the server side using
a getsockopt system call.

6 Evaluation

In this section we will demonstrate how iperfTZ can measure the network
throughput. We further draw conclusions regarding hardware and software
implementation designs. We report that it is particularly challenging to assess
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network throughput, given the remarkable diversity one can find on embedded
and mobile Arm systems.

Evaluation Settings. We deploy iperfTZ on the Raspberry Pi platform. Due
to the limited network bandwidth of Raspberry Pi devices supported by Op-Tee,
we also include results under emulation using QEMU.12 With QEMU we can run
the same evaluation as on the Raspberry Pi and we also profit from a higher
network bandwidth. Table 1 compares in detail the two setups. For both setups
we use the same machine as server, on which we collect power consumptions and
run the iperfTZ server component.

Server. The server is connected to a Gigabit switched network, with access to
power meter measurements. The nodes being measured are at a single-hop from
the server. During the micro-benchmarks server components will be deployed
on the server with fixed dummy buffer and socket buffer sizes of 128KiB. This
allows creating an accurate time series of the recorded throughput, latency and
power metrics by concentrating the data acquisition on a single node.

QEMU. We deploy Op-Tee with QEMU v3.1.0-rc3 running on a Dell Pow-
erEdge R330 server. The Op-Tee project has built-in support for QEMU and
uses it in system emulation mode. In system emulation mode QEMU emulates
an entire machine, dynamically translating different hardware instruction sets
when running a virtual machine with a different architecture. In order to provide
full network capability, we replace the default SLiRP network13 deployed with
Op-Tee by a bridged network with a tap device.

Raspberry Pi. Op-Tee only supports the Raspberry Pi 3B. We deploy
Op-Tee on a Raspberry Pi 3B v1.2 equipped with a Broadcom BCM2837
SoC. The SoC implements an ARM Cortex-A53 with ARMv8-A architecture.
The BCM2837 chip lacks support for cryptographic acceleration instructions
and is not equipped with TrustZone Protection Controller (TZPC), Trust-
Zone Address Space Controller (TZASC), Generic Interrupt Controller (GIC)
or any other proprietary security control interfaces on the bus [27]. The Rasp-
berry Pi 3B lacks an on-chip memory or eMMC to provide a securable mem-
ory. We take these limitations into account in our evaluation, and leave further
considerations once a more mature support for the Raspberry Pi platform is
released.

Power Measurement. To measure the power consumption of the two plat-
forms, we connect the Dell PowerEdge server to a LINDY iPower Control 2×6M
power distribution unit (PDU) [17] and the Raspberry Pi 3B to an Alciom Pow-
erSpy2 [1]. The LINDY PDU provides a HTTP interface queried up to every
second with a resolution of 1W and a precision of 1.5%. Alciom PowerSpy2
devices rely on Bluetooth channels to transfer the collected metrics. Both mea-
suring devices collect voltage, current and power consumption in real time.
12 https://www.qemu.org, accessed on 30.07.2019.
13 https://wiki.qemu.org/Documentation/Networking#User_Networking_.28SLIRP.

29, accessed on 30.07.2019.

https://www.qemu.org
https://wiki.qemu.org/Documentation/Networking#User_Networking_.28SLIRP.29
https://wiki.qemu.org/Documentation/Networking#User_Networking_.28SLIRP.29
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Fig. 4. Throughput-latency plots for different kinds of shared memory.

Memory Bandwidth. We use an existing key-value store TA [13] to evalu-
ate the overhead of the different types of shared memory. The hash-table at
the core of the key-value store uses separate chaining for collision resolution
and implements modular hashing. The GlobalPlatform specification defines
three different types of shared memory: whole (an entire memory area), partial
(a subset of an entire memory area with a specified offset), and temporarily (a
memory area within the REE with an optional offset). The temporarily shared
memory area is only shared with the TA for the duration of the TEE method
invocation; the two others get registered and unregistered with the TEE ses-
sion. The key-value store supports common operations such as DEL, GET and
PUT on key-value pairs. We benchmark each operation in isolation as well as
combining GET and PUT operations (MIXed benchmark). The benchmarks oper-
ate as follows: for whole and partially shared memory, the CA will request a
shared memory region of 512KiB from the TEE and fills it with random data
from /dev/urandom. With temporarily shared memory, the CA will allocate a
512KiB buffer and initialize it similarly with random data. Before invoking a
key-value operation a chunk size of 1KiB is selected as data object at a ran-
dom offset in the shared memory respectively buffer. The random offset is then
used as key and every operation is timed using CLOCK_MONOTONIC.14 During the
benchmark 256 operations are issued at a fixed rate between 1 and 32768 oper-
ations per second. Figure 4 shows the throughput-latency plots for each type of
shared memory as well as for running the key-value store as a CA in the REE.

Compared to the Raspberry Pi, the results on QEMU are predominantly
superposed and only achieve about half the throughput. We believe this is due
14 Manual page: man time.h.
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Fig. 5. TCP network throughput measurements for 128 KiB buffer sizes.

to an I/O bound from the Arm instruction and TrustZone emulation using
QEMU. We further observe with QEMU that the DEL benchmark for temporar-
ily shared memory (Fig. 4b) and as CA (Fig. 4d) is clearly distinguishable from
the other benchmarks. On the Raspberry Pi platform the graphs are well sepa-
rated and ranked according to our expectations (lowest to highest throughput):
PUT, MIX50, MIX20, GET, and DEL. The PUT operation has the lowest throughput
because of memory allocation, memory copy and object insertion in the TA. The
GET operation looks up the data object and copies it to the shared memory result-
ing in a higher throughput than the PUT operation. The mixed benchmarks show
a similar behavior: the higher the PUT ratio, the lower the throughput. Hence,
the MIX50 (50% PUT operations) has a lower average throughput than MIX20.
The DEL operation avoids any time intensive memory operation and only has to
free a data object after looking it up in the store. An interesting observation is
made when comparing the memory throughput of the benchmarks executed in
the REE against the benchmarks executed in the TEE. Key-value store oper-
ations executed inside TAs experience a 12×-14× overhead with QEMU and a
12×-17× overhead on the Raspberry Pi. This overhead is due to the world and
context switches associated to TA method invocations.

Network Bandwidth. This micro-benchmark compares the network through-
put measured with iperfTZ in Op-Tee to the network throughput measured
with iperf3 in Linux. We deploy both programs with the same set of parame-
ters, i.e., 128KiB socket and dummy buffer sizes. Upon each iteration the data
send is doubled starting at 1MiB up to 10GiB. We allocate not more than
512KiB for the dummy data on the TA’s heap, since TAs are by default limited
in Op-Tee to 1MiB in size. Linux has two kernel parameters which limit the
maximum size of read and write socket buffers: /proc/sys/net/core/rmem_max
and /proc/sys/net/core/wmem_max. These kernel parameters can be changed
at runtime using sysctl, in order to allocate larger socket buffers.

As shown in Fig. 5, iperfTZ generally exceeds the network throughput of
iperf3 in both setups. On the Raspberry Pi 3B we cannot observe any degrada-
tion of the network throughput due to an overhead from frequent world switches.
This result does not come as a surprise. The memory bandwidth benchmark
operates at a throughput of several hundred MB/s, while the network bandwidth
benchmark operates at about 10MB/s. There is a gap of one order of magnitude
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Fig. 6. Energy consumption during TCP network throughput measurements. Bit rates
on the x-axis are given in logarithm to base 2.

in throughput between the two benchmarks, which we assume to be sufficient
for the overhead not to arise. However, on QEMU we observe a serious degra-
dation of the network throughput, when trying to achieve Gbit/s bit rate with
Op-Tee. Remarkably, high throughput rates are strongly affected by the world
switching overhead, even degrading beyond unaffected throughput rates. Our
measurements indicate that network throughput beyond 500Mbit/s is affected
by a 1.8× world switching overhead, almost halving the network throughput.

Energy. During the network bandwidth benchmark, we recorded the power con-
sumed by both setups. The LINDY iPower Control and the Alciom PowerSpy2
both record the timestamp as Unix time in seconds and the instantaneous power
in watts. We use those units to execute a numerical integration over time using
the trapezoidal method to obtain the total energy consumed by both setups
during a benchmark run. Figure 6 shows these results. The total energy on the
y-axis (in joule) is consumed by the device while executing a benchmark run for
a specific bit rate on the x-axis (as binary logarithmic scale in Mbit/s). On the
Raspberry Pi (Fig. 6a) we observe that before reaching saturation, iperfTZ is
consuming about 2 J (11%) more than iperf3. In the highly saturated range, the
energy doubles with the throughput. However, with QEMU (Fig. 6b), the energy
difference between the execution in the REE and the TEE is significant. Given
that QEMU is running on an energy-demanding and powerful server, iperfTZ
consumes about 173 J (36%) more before the overhead arises than iperf3 in
the REE. We can clearly attribute this additional energy consumption observed
on both setups to the execution of iperfTZ in the TEE. Certainly, the world
switching overhead also contributes to an increase of the energy consumption
with QEMU. By assuming a similar behavior for the energy consumption on
QEMU as in the saturated range on the Raspberry Pi, we obtain a 1.6× energy
overhead due to world switching.

7 Related Work

There exists a plethora of network benchmarking and tuning tools. We note that
the implementation of iperfTZ is heavily inspired by the well-known iperf tool.
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In this sense, iperfTZ supports a subset of its command-line parameters, for
instance to facilitate the execution of existing benchmarking suites.15

The ttcp (Test TCP) tool was one of first programs implemented to mea-
sure the network performance over TCP and UDP protocols. Lately, it has been
superseded by nuttcp.16 A tool with similar features is netperf.17 Unlike the
aforementioned tools, tcpdump18 is a packet analyzer that captures TCP packets
being sent or received over a network. iperfTZ does not provide packet analysis
tools. Instead, it does offer client and server-side measurements both for TCP
and UDP data flows. More recently, iperf integrated most of the functionalities
of ttcp, extending it with multi-threading capabilities (since iperf v2.0) and
allowing bandwidth measurements of parallel streams. While it would be possi-
ble to provide similar support in iperfTZ, the execution of code inside the TAs
is currently single-threaded, hence limiting the achievable outbound throughput.
The most recent version of iperf (v3.0) ships a simplified (yet single-threaded)
implementation specifically targeting non-parallel streams. Flowgrind19 is a dis-
tributed TCP traffic generator. In contrast, iperfTZ follows a client-server
model, with traffic generated between a server and a TA. StreamBox-TZ [25] is
a stream analytics engine, which processes large IoT streams on the edge of the
cloud. The engine is shielded from untrusted software using TrustZone. Similar
to iperfTZ, StreamBox-TZ runs on top of Op-Tee in a TA. Yet, iperfTZ does
not process data streams but can generate and measure network performance of
those streams.

To summarize and to the best of our knowledge, iperfTZ is the first tool
specifically designed to run as a TA for TrustZone that can measure the achiev-
able network throughput for such applications.

8 Conclusion and Future Work

The deployment of TAs is becoming increasingly pervasive for the management
and processing of data over the network. However, due to constraints imposed
by the underlying hardware and runtime system, network performance of TAs
can be affected negatively. iperfTZ is a tool to measure and evaluate network
performance of TAs for Arm TrustZone, a widely available TEE on embed-
ded, IoT and mobile platforms. We implemented the iperfTZ prototype on top
of Op-Tee and we evaluated it on the Raspberry Pi platform. Our experimental
results highlight performance and energy trade-offs deployers and programmers
are confronted with both on hardware and emulated environments. We believe
the insights given by our work can be exploited to improve design and configu-
ration of TEEs for edge devices handling real-world workloads for TAs.

15 Full compatibility with iperf would require substantial engineering efforts that we
leave out of the scope of this work.

16 See footnote 6.
17 See footnote 5.
18 https://www.tcpdump.org, accessed on 30.07.2019.
19 www.flowgrind.net, accessed on 30.07.2019.
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We intend to extend our work to support different types of sockets (e.g., data-
gram sockets) and to leverage on-chip cryptographic accelerators. This would
allow us to provide TLS-like channels for TAs, a feature that has not yet been
implemented in Op-Tee. Finally, we aim for supporting various kinds of TEEs,
especially in the context of embedded platforms and SoC, such as Keystone20

for RISC-V processors.
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