
Mohsen Ghaffari · Mikhail Nesterenko ·
Sébastien Tixeuil · Sara Tucci ·
Yukiko Yamauchi (Eds.)

LN
CS

 1
19

14

21st International Symposium, SSS 2019
Pisa, Italy, October 22–25, 2019
Proceedings

Stabilization, Safety,
and Security
of Distributed Systems

Lecture Notes in Computer Science 11914

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Mohsen Ghaffari • Mikhail Nesterenko •

Sébastien Tixeuil • Sara Tucci •

Yukiko Yamauchi (Eds.)

Stabilization, Safety,
and Security
of Distributed Systems
21st International Symposium, SSS 2019
Pisa, Italy, October 22–25, 2019
Proceedings

123

Editors
Mohsen Ghaffari
ETH Zurich
Zurich, Switzerland

Mikhail Nesterenko
Kent State University
Kent, OH, USA

Sébastien Tixeuil
Sorbonne University
Paris, France

Sara Tucci
CEA LIST
Gif-sur-Yvette, France

Yukiko Yamauchi
Kyushu University
Fukuoka, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-34991-2 ISBN 978-3-030-34992-9 (eBook)
https://doi.org/10.1007/978-3-030-34992-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0948-7172
https://orcid.org/0000-0001-9738-9021
https://doi.org/10.1007/978-3-030-34992-9

Preface

The papers in this volume were presented at the 21st International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS 2019), held during
October 22–25, 2019, in Pisa, Italy.

SSS is an international forum for researchers and practitioners in the design and
development of distributed systems with a focus on systems that are able to provide
guarantees on their correctness, performance, and/or security in the face of an adverse
operational environment. Research in distributed systems is now at a crucial point in its
evolution, marked by the importance and variety of dynamic distributed systems such
as robotic networks, large-scale sensor networks, mobile ad hoc networks, blockchains
and peer-to-peer networks, cloud computing, and many others. Moreover, new
applications such as grid and Web services, distributed command and control, and a
vast array of decentralized computations in a variety of disciplines have driven the need
to ensure that distributed computations are self-stabilizing, safe, secure, and efficient.

SSS started as the Workshop on Self-Stabilizing Systems (WSS), the first two of
which were held in Austin in 1989 and in Las Vegas in 1995. Starting in 1995, the
workshop was held biennially; it was held in Santa Barbara (1997), Austin (1999), and
Lisbon (2001). As interest grew and the community expanded, in 2003 the title of the
forum was changed to the Symposium on Self-Stabilizing Systems (SSS). SSS was
organized in San Francisco in 2003 and in Barcelona in 2005. As SSS broadened its
scope and attracted researchers from other communities, significant changes were made
in 2006. It became an annual event, and the name of the conference was changed to the
International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS). From then, SSS conferences were held in Dallas (2006), Paris (2007), Detroit
(2008), Lyon (2009), New York (2010), Grenoble (2011), Toronto (2012), Osaka
(2013), Paderborn (2014), Edmonton (2015), Lyon (2016), Boston (2017), and Tokyo
(2018). This edition marks the 30th year of the conference.

This year the program was organized into four tracks reflecting major trends related
to distributed systems: (A) Foundations of Distributed Computing (chaired by Mohsen
Ghaffari), (B) Moving and Computing (chaired by Yukiko Yamauchi), (C) Theoretical
and Practical Aspects of Self-stabilizing Systems (chaired by Mikhail Nesterenko), and
(D) Security and Privacy (chaired by Sara Tucci). We received 45 submissions from 20
countries. Each submission was reviewed by at least three Program Committee
members with the help of external reviewers. Out of the submitted papers, 21 were
selected for presentation as regular papers. The symposium also included seven brief
announcements. Selected extended papers from the symposium will be published in a
special issue of the journal Information and Computation. The committee also selected
the following papers to be awarded:

– Best Paper: Armando Castaneda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum,
Matthieu Roy, and Corentin Travers: “Synchronous t-Resilient Consensus in
Arbitrary Graphs.”

– Best Student Paper: Shota Nagahama, Fukuhito Ooshita, and Michiko Inoue:
“Ring Exploration of Myopic Luminous Robots with Visibility More than One.”

On behalf of the Program Committee, we would like to thank all the authors who
submitted their work to SSS.

We sincerely acknowledge the tremendous time and effort that the Program
Committee members invested in the symposium. We are grateful to the external
reviewers for their valuable and insightful comments and to EasyChair for largely
simplifying the reviewing process and the preparation of the proceedings.

We also thank the SSS Steering Committee for invaluable advice. We gratefully
acknowledge the Organizing Committee chaired by Giuseppe Prencipe and the pub-
licity chair Doina Bein for their time and effort that greatly contributed to the success of
this symposium. This conference was supported by the “Gruppo Nazionale per il
Calcolo Scientifico” (GNCS – INdAM).

September 2019 Mohsen Ghaffari
Mikhail Nesterenko

Sébastien Tixeuil
Sara Tucci

Yukiko Yamauchi

vi Preface

Organization

Program Committee

Yehuda Afek Tel-Aviv University, Israel
Dan Alistarh IST Austria, Austria
Leonardo Aniello University of Southampton, UK
James Aspnes Yale, USA
Hagit Attiya Technion, Israel
Alysson Bessani Universidade de Lisboa, Portugal
Lélia Blin Sorbonne University, France
Borzoo Bonakdarpour Iowa State University, USA
Francois Bonnet Tokyo Institute of Technology, Japan
Silvia Bonomi Sapienza University of Rome, Italy
Quentin Bramas University of Strasbourg, France
Miguel Correia Universidade de Lisboa, Portugal
Shantanu Das Aix-Marseille University, France
Sylvie Delaet University Paris-Saclay, France
Stephan Devismes University of Grenoble, France
Swan Dubois Sorbonne University, Inria, France
Kokoris Kogias Eleftherios Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Sándor Fekete TU Braunschweig, Germany
Paola Flocchini University of Ottawa, Canada
Dianne Foreback University of Akron, USA
Rati Gelashvili University of Toronto, Canada
Chryssis Georgiou University of Cyprus, Cyprus
Mohsen Ghaffari ETH Zurich, Switzerland
Sukumar Ghosh University of Iowa, USA
Seth Gilbert National University of Singapore, Singapore
Niv Gilboa Ben Gurion University, Israel
Vincent Gramoli The University of Sydney, Australia
Magnus Halldorsson Reykjavik University, Iceland
Sayaka Kamei Hiroshima University, Japan
Rüdiger Kapitza TU Braunschweig, Germany
Evangelos Kranakis Carleton University, Canada
Mario Larangeira Tokyo Institute of Technology, Japan
Christoph Lenzen MPI for Informatics, Germany
Euripides Markou University of Thessaly, Greece
Toshimitsu Masuzawa Osaka University, Japan
Othon Michail The University of Liverpool, UK
Zarko Milosevic Interchain Foundation, Switzerland
Achour Mostefaoui University of Nantes, France
Alfredo Navarra University of Perugia, Italy

Mikhail Nesterenko Kent State University, USA
Nicolas Nicolaou KIOS Research and Innovation Center of Excellence,

University of Cyprus, Cyprus
Fukuhito Ooshita NAIST, Japan
Sriram Pemmaraju The University of Iowa, USA
Seth Pettie University of Michigan, USA
Maria Potop-Butucaru Sorbonne University, France
Walter Rudametkin University of Lille, Inria, France
Christian Scheideler University of Paderborn, Germany
Elad Schiller Chalmers University of Technology, Sweden
Gokarna Sharma Kent State University, USA
Weidong Shi University of Houston, USA
Sébastien Tixeuil Sorbonne University, France
Corentin Travers LaBRI, University of Bordeaux, France
Sara Tucci CEA, France
Koichi Wada HOSEI University, Japan
Jennifer Welch Texas A&M University, USA
Yukiko Yamauchi Kyushu University, Japan

Additional Reviewers

Cicerone, Serafino
Connor, Matthew
Dufoulon, Fabien
Durand, Anaïs
Fraigniaud, Pierre
Gasieniec, Leszek
Giachoudis, Nikos
Hinnenthal, Kristian
Hood, Kendric
Katayama, Yoshiaki
Kshemkalyani, Ajay
Lahav, Ori

Lamani, Anissa
Pai, Shreyas
Palios, Leonidas
Rabie, Mikael
Rieck, Christian
Rosenbaum, Will
Rovedakis, Stephane
Schmidt, Arne
Shibata, Masahiro
Skretas, George
Theofilatos, Michail
Trahan, Jerry

Sponsors

viii Organization

Keynote Talks

Moving and Computing
in Time-Varying Graphs

Paola Flocchini

University of Ottawa, Canada
paola.flocchini@uottawa.ca

Abstract. The study of mobile entities operating in discrete environments or in
continuous spaces (Moving and Computing) has been quite extensive in the past
two decades (for a recent account of the research in the area, see [16] and
chapters therein).

The investigations in discrete spaces have been carried out under a variety of
models and assumptions, depending on the environment where the entities
operate (the graph topology), the type of communication mechanisms they use
(e.g., face to face, whiteboards, wireless), the degree of synchronization of the
network (e.g., fully synchronous, semi-synchronous, asynchronous), the level of
knowledge the entities have about the environment (e.g., topological knowledge,
sense of direction, size of the agents’ team), the amount of persistent memory
of the entities (e.g., no memory, constant memory, unbounded memory), etc.

In spite of all these differences, until recently a common assumption has been
the fact that the environment where the entities move is static, that is the
topology of the graph does not change during the computation.

Researchers in distributed computing have recently started to investigate
classical problems by mobile agents moving on time-varying graphs (TGV) [4],
that is graphs where the structure of the links keeps changing and where these
topological changes are not sporadic or anomalous, but rather inherent in the
nature of the network.

Moving and computing in TVGs has been studied especially in the context of
graph exploration, both in centralized settings (e.g., [10–12, 19, 22]) as well as
in distributed ones [2, 3, 8, 14, 15, 17, 18, 20, 21]. Other mobile agents prob-
lems have been studied as well, e.g., gathering [9], patrolling [5], grouping [6],
dispersion [1], and cops and robbers [13]; for a recent survey, see [7].

In this talk, I review recent results on distributed computations by mobile
agents operating in time-varying graphs, indicating open questions, unexplored
problems, and future research directions.

References

1. Agarwalla, A., Augustine, J., Moses, Jr. W.K., Madhav, S., Sridhar, A.K.: Deterministic
dispersion of mobile robots in dynamic rings. In: 19th International Conference on Distributed
Computing and Networking (ICDCN), pp. 1–4 (2018)

This work was supported in part by an NSERC Discovery Grant and the University Research Chair.

xii P. Flocchini

2. Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic environ-
ments. Theor. Comput. Sci. 772, 88–110 (2019)

3. Bournat, M., Dubois, S., Petit, F.: Computability of perpetual exploration in highly dynamic
rings. In: 37th International Conference on Distributed Computing Systems (ICDCS),
pp. 794–804 (2017)

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and
dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)

5. Das, S., Di Luna, G.A., Gasieniec, L.A.: Patrolling on dynamic ring networks. In: Catania,
B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS, vol. 11376,
pp. 150–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10801-4_13

6. Das, S., Di Luna. G., Pagli. L., Prencipe. G.: Compacting and grouping mobile agents on
dynamic rings. In: Gopal, T., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 114–
133. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6_8

7. Di Luna, G.A.: Mobile Agents on Dynamic Graphs. Chap. 20 of [16], pp. 549–584 (2019)
8. Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic rings. In:

IEEE 36th International Conference on Distributed Computing Systems (ICDCS), pp. 570–
579 (2016)

9. Di Luna, G.A., Flocchini, P., Pagli, L., Santoro, N., Viglietta, G.: Gathering in dynamic
rings. Theor. Comput. Sci. (2019)

10. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In: Halldórsson,
M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134,
pp. 444–455 . Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_36

11. Erlebach, T., Kammer, F., Luo, K., Sajenko, A., Spooner, J.T.: Two moves per time step
make a difference. In: 46th International. Colloquium on Automata, Languages, and Pro-
gramming (ICALP), pp. 1–14 (2019)

12. Erlebach, T., Spooner, J.T.: Faster exploration of degree-bounded temporal graphs. In: 43rd
International Symposium on Mathematical Foundations of Computer Science (MFCS 2018),
pp. 1–13 (2018)

13. Erlebach, T., Spooner, J.T.: A game of cops and robbers on graphs with periodic
edge-connectivity, CoRR abs/1908.06828 (2019)

14. Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Searching for black holes in subways.
Theory Comput. Syst. 50(1), 158–184 (2012)

15. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor.
Comput. Sci. 469, 53–68 (2013)

16. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities.
Springer (2019)

17. Gotoh, T., Flocchini, P., Masuzawa, T., Santoro, N.: Tight bounds on exploration of tem-
poral graphs. Manuscript (2019)

18. Gotoh, T., Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Group exploration of
dynamic tori. In: IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), pp. 775–785 (2018)

19. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic graphs
based on cactuses. In: Halldórsson, M.M. (eds.) SIROCCO 2014. LNCS, vol. 8576,
pp. 250–262. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9_20

20. Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation
systems. In: 15th International Conference on Principles of Distributed Systems (OPODIS),
pp. 451–464 (2011)

21. Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case
of the ring. Theory Comput. Syst. 62(4), 1144–1160 (2018)

22. Michail, O., Spirakis, P.: Traveling salesman problems in temporal graphs. Theor. Comput.
Sci. 634, 1–23 (2016)

https://doi.org/10.1007/978-3-030-10801-4_13
https://doi.org/10.1007/978-3-030-14812-6_8
https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.1007/978-3-319-09620-9_20

What Can Be Computed Asynchronously

Petr Kuznetsov

LTCI, Télécom Paris, Institut Polytechnique Paris
petr.kuznetsov@telecom-paris.fr

Abstract. When we devise a computing system, it makes sense to assume as
little as possible about the environment in which the system is expected to run.
For example, asynchronous distributed systems do not rely on timing assump-
tions, which makes them extremely robust with respect to communication dis-
ruptions and computational delays. It is, however, notoriously difficult and
sometimes even impossible to make such systems fault-tolerant.

In this talk, we try to understand what can and what cannot be computed in
an asynchronous and fault-tolerant manner. We focus on the problem of
implementing a replicated service, where a collection of servers maintain
replicas of the service state and respond to the clients requests.

The folklore CAP theorem [2, 3] states that no replicated service can
combine (strong) consistency, availability, and partition-tolerance. To encom-
pass scenarios in which partitions cannot be avoided, the notion of eventual
consistency has been introduced [12] and classes of objects that allow for
asynchronous eventually consistent implementations have been studied [11]. We
show, however, that a universal eventually consistent replicated service which,
intuitively, can be used to obtain an eventually consistent distributed version of
any sequential service, cannot be implemented without nontrivial synchrony
assumptions [4].

In the case when partitions are excluded, e.g., by assuming that a majority of
replicas are correct, building a strongly consistent universal construction is
equivalent to solving consensus [9, 10]. Intuitively, consensus is used here to
ensure that concurrent operations on the replicated service are totally ordered.
As no fault-tolerant asynchronous solution to consensus exists [6], one may ask
if there is an asynchronous universal abstraction, analogous to consensus in
partially synchronous systems. We argue that lattice agreement [1, 5] can be
seen as such an abstraction. We observe that many important applications
tolerate specific lattice partial orders on their operations and, therefore, can be
implemented asynchronously using lattice agreement. As an example, we
consider the asset transfer problem that lies at the core of modern cryptocur-
rencies [7]. Finally, we discuss how randomized asynchronous algorithms can
circumvent consistency and complexity barriers of deterministic ones [8].

References

1 Attiya, H., Herlihy, M., Rachman, O.: Atomic snapshots using lattice agreement. Distrib.
Comput. 8(3), 121–132 (1995)

2. Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC, p. 7 (2000)

3. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst. (TOCS) 20(4), 398–461 (2002)

4. Dubois, S., Guerraoui, R., Kuznetsov, P., Petit, F., Sens, P.: The weakest failure detector for
eventual consistency. In: PODC, pp. 375–384 (2015)

5. Faleiro, J., Rajamani, S., Rajan, K., Ramalingam, G., Vaswani, K.: Generalized lattice
agreement. In: PODC, pp. 125–134 (2012)

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. J. ACM, 32(2), 374–382 (1985)

7. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovic, M., Seredinschi, D.: The consensus
number of a cryptocurrency. In: PODC, pp. 307–316 (2019)

8. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovic, M., Seredinschi, D.: Scalable Byzantine
reliable broadcast. In: DISC (2019)

9. Herlihy, M.: Wait-free synchronization. ACM Trans. Prog. Lang. Syst. 13(1), 123–149
(1991)

10. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998)
11. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data types. In:

Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 386–400. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-3_29

12. Vogels, W.: Eventually consistent. Commun. ACM 52(1), pp. 40–44 (2009)

xiv P. Kuznetsov

https://doi.org/10.1007/978-3-642-24550-3_29

Amoebots and Beyond: Models
and Approaches for Programmable Matter

Christian Scheideler

Department of Computer Science, Paderborn University, Paderborn, Germany
scheideler@upb.de

Abstract. “Programmable matter” is a term originally coined by Toffoli and
Margolus in 1991 to refer to an ensemble of fine-grained computing elements
that has the ability to change its physical properties (such as shape, density,
moduli, conductivity, optical properties, etc.) based on user input or autonomous
sensing. There has already been a significant amount of research on pro-
grammable matter across multiple disciplines, including physics (e.g., crystals
and complex fluids), chemistry (e.g., metamaterials and shape-changing mole-
cules), bioengineering (DNA self-assembly and cell engineering), and robotics
(modular robotics and nano robotics). However, so far there does not exist any
particular guideline for designing and managing programmable matter. Hence,
now is the ideal time to investigate reasonable models and primitives for this
matter so that it can be used effectively in applications that it is destined for.
I will present the amoebot model (with some recent extensions) and show that it
can be used for typical applications like shape formation and coating. However,
many aspects have not been considered yet though they are crucial for pro-
grammable matter to become a reality, including energy, fault-tolerance, forces
(like gravity in the 3D case), and non-local coordination and movements.
Therefore, I will also discuss possible extensions of the amoebot model to
address these issues.

Tutorials

Hands on Blockchains

Quentin Bramas

ICUBE, University of Strasbourg, CNRS, France
bramas@unistra.fr

Abstract. When Bitcoin was introduced 11 years ago, it created a lot of
opportunities for academics and industrial. Basically, the Bitcoin protocol is a
distributed database specifically built for exchanging cryptocurrency, but it
works between any number of unknown participants. The core protocol was
soon after used to store other kind of data for different purposes. Each appli-
cation, running on its own Blockchain, is executed by all the participants that
may or may not know or trust each other.

Then, Ethereum was created as a single clockchain that can execute arbitrary
applications, called smart-contracts. Applications can interact together on the
Ethereum blockchain and functions can be triggered by transactions. Ethereum
makes it very easy to develop new distributed applications. And looking at its
code, one can easily trust an applications, even if it has been developed by
someone unknown. This adds value to the data stored by an application in the
blockchain as a participant really owns its data (input data comes from signed
transactions).

One famous example is the cryptokitties game where anyone can buy,
exchange and breed virtual cats. The game would probably not have gained
much attention if the virtual cat owners were just defined by rows in a standard
database. Instead, cats are associated with the public key of their owner and only
the owner of the private key can sell a cat, without intermediary.

In this tutorial I will present quickly how Ethereum makes that possible.
Then, I will develop a small application. To achieve this, I will present the
Solidity language, how to compile, deploy, and interact with a smart-contract.
I will also present several important cryptographic primitives that allow, for
instance, proving something without revealing too much information.

Keywords: Blockchain � Distributed ledger technologies � Ethereum �
Smart-contract.

http://orcid.org/0000-0003-0612-5616

The Theory of Blockchains

Antonella Del Pozzo

CEA LIST, PC 174, 91191, Gif-sur-Yvette, France
antonella.delpozzo@cea.fr

Abstract. The blockchain technology appeared for the first time in 2008 in the
white paper of Satoshi Nakamoto, where it was designed to be the fully dis-
tributed ledger behind the first decentralized cryptocurrency: Bitcoin. Briefly,
the blockchain is an append-only chain of blocks, such that in the Bitcoin case, it
contains all the Bitcoin transactions that, once confirmed in the blockchain, can
be reverted only with a small probability that becomes negligible with time.

Blockchain is not only Bitcoin. Indeed after 2008, different kind of block-
chains have been further defined and for different purposes rather than cryp-
tocurrencies, making clear that the Blockchain technology can serve as a more
general notarization tool that can be employed when there is the need to notarize
information produced by entities that do not necessarily trust each other. Indeed,
with the blockchain they can trust that the information in the blockchain are
immutable.

The goal of this tutorial is to understand the main mechanisms behind the
Bitcoin blockchain such as the blockchain object structure itself, how the blocks
are appended, and the kind of information contained in the blocks. Indeed,
blocks do not contain only transactions but also non-turing complete scripts
allowing flexibility in the transaction management or the creation of side chains
payment channels.

The takeaway of this tutorial is the understanding of the blockchain tech-
nology itself, its potentialities and limitations, using the Bitcoin blockchain as a
case study.

Contents

Invited Paper: On the Characterization of Blockchain Consensus
Under Incentives . 1

Sara Tucci-Piergiovanni

Brief Announcement FORGIVE & FORGET: Self-stabilizing Swarms
in Spite of Byzantine Robots . 16

Yotam Ashkenazi, Shlomi Dolev, Sayaka Kamei, Fukuhito Ooshita,
and Koichi Wada

Stationary and Deterministic Leader Election in Self-organizing
Particle Systems . 22

Rida A. Bazzi and Joseph L. Briones

Robust Privacy-Preserving Gossip Averaging . 38
Amaury Bouchra Pilet, Davide Frey, and Francois Taiani

Synchronous t-Resilient Consensus in Arbitrary Graphs 53
Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum,
Matthieu Roy, and Corentin Travers

Tasks in Modular Proofs of Concurrent Algorithms. 69
Armando Castañeda, Aurélie Hurault, Philippe Quéinnec,
and Matthieu Roy

On Gathering of Semi-synchronous Robots in Graphs 84
Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra

Brief Announcement: Analysis of a Memory-Efficient Self-stabilizing
BFS Spanning Tree Construction . 99

Ajoy K. Datta, Stéphane Devismes, Colette Johnen,
and Lawrence L. Larmore

Brief Announcement: Distributed Computing in the Asynchronous
LOCAL Model . 105

Carole Delporte-Gallet, Hugues Fauconnier, Pierre Fraigniaud,
and Mikaël Rabie

An Environment for Specifying and Model Checking Mobile Ring
Robot Algorithms . 111

Ha Thi Thu Doan, Adrián Riesco, and Kazuhiro Ogata

Brief Announcement: Self-stabilizing LCM Schedulers for Autonomous
Mobile Robots Using Neighborhood Mutual Remainder. 127

Shlomi Dolev, Sayaka Kamei, Yoshiaki Katayama, Fukuhito Ooshita,
and Koichi Wada

Reducing the Number of Messages in Self-stabilizing Protocols 133
Anaïs Durand and Shay Kutten

A Loosely Self-stabilizing Protocol for Randomized Congestion Control
with Logarithmic Memory . 149

Michael Feldmann, Thorsten Götte, and Christian Scheideler

Exploration of Dynamic Ring Networks by a Single Agent
with the H-hops and S-time Steps View . 165

Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita,
and Toshimitsu Masuzawa

IPERFTZ: Understanding Network Bottlenecks for TrustZone-Based
Trusted Applications . 178

Christian Göttel, Pascal Felber, and Valerio Schiavoni

Atomic Cross-Chain Swaps with Improved Space and Local
Time Complexity . 194

Soichiro Imoto, Yuichi Sudo, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa

Achieving Starvation-Freedom with Greater Concurrency in Multi-Version
Object-based Transactional Memory Systems . 209

Chirag Juyal, Sandeep Kulkarni, Sweta Kumari, Sathya Peri,
and Archit Somani

Improved-Zigzag: An Improved Local-Information-Based Self-optimizing
Routing Algorithm in Virtual Grid Networks . 228

Yonghwan Kim, Masahiro Shibata, Yuichi Sudo, Junya Nakamura,
Yoshiaki Katayama, and Toshimitsu Masuzawa

Fault Tolerant Network Constructors . 243
Othon Michail, Paul G. Spirakis, and Michail Theofilatos

Ring Exploration of Myopic Luminous Robots with Visibility More
Than One. 256

Shota Nagahama, Fukuhito Ooshita, and Michiko Inoue

Brief Announcement: Self-stabilizing Construction of a Minimal Weakly
ST -Reachable Directed Acyclic Graph . 272

Junya Nakamura, Masahiro Shibata, Yuichi Sudo, and Yonghwan Kim

xxii Contents

Adaptive Versioning in Transactional Memories . 277
Pavan Poudel and Gokarna Sharma

Brief Announcement Blockguard: Adaptive Blockchain Security 296
Shishir Rai, Kendric Hood, Mikhail Nesterenko, and Gokarna Sharma

Brief Announcement: Fully Anonymous Shared Memory Algorithms 301
Michel Raynal and Gadi Taubenfeld

A Topological View of Partitioning Arguments: Reducing k-Set
Agreement to Consensus . 307

Hugo Rincon Galeana, Kyrill Winkler, Ulrich Schmid,
and Sergio Rajsbaum

Logarithmic Expected-Time Leader Election in Population
Protocol Model . 323

Yuichi Sudo, Fukuhito Ooshita, Taisuke Izumi, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa

A Self-stabilizing 1-Maximal Independent Set Algorithm 338
Hideyuki Tanaka, Yuichi Sudo, Hirotsugu Kakugawa,
Toshimitsu Masuzawa, and Ajoy K. Datta

Black Hole Search Despite Byzantine Agents . 354
Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue

Self-adjusting Linear Networks . 368
Chen Avin, Ingo van Duijn, and Stefan Schmid

Author Index . 383

Contents xxiii

Invited Paper: On the Characterization
of Blockchain Consensus Under Incentives

Sara Tucci-Piergiovanni(B)

CEA LIST, PC 174, 91191 Gif-sur-Yvette, France
sara.tucci@cea.fr

Abstract. One of the novel aspects of blockchains is the intertwining
of consensus properties and incentives. An incentive model determines
participant behaviors and then the possibility to reach consensus. In
this paper we propose a methodological approach to characterize an
incentive model for blockchain consensus. An incentive model is defined
through the characterization of an oracle, along with its failure model,
and blockchain participants behaviors. The oracle assures Safety prop-
erties at the expense of Liveness, since Liveness is in the hands of par-
ticipants that can behave obediently, strategically or in an adversarial
way. We then apply the proposed methodology to define and analyze
incentive models of popular blockchain solutions. The paper concludes
on future research directions that can take advantage of the proposed
characterization.

Keywords: Blockchains · Consensus · Incentives models

1 Introduction

Consensus in blockchains means to get an agreement on a unique version of
a ledger where each block in the blockchain offers an updated version of the
ledger state chained to a previous block. In an ideal blockchain, there is a single
sequence of blocks on which participants agree. In contrast to this situation,
forks might happen leading to multiple versions of the ledger.

The fairly unique aspect of blockchains is that consensus is driven by incen-
tives. In blockchains an incentive model implements specific financial arrange-
ments for participants influencing their behavior.

To make an example, the maintenance of the ledger in Bitcoin proceeds as
follows: participants create blocks including users transactions along with the
pointer to the previous block and the solution of a cryptopuzzle; diffuse each
newly created block in the network; and store blocks arranged in a tree struc-
ture. In Bitcoin, the protocol embeds a rule, which is the longest chain rule,
which allows selecting a chain in the tree. This way, blockchain creators chain
their newly created block to the selected chain. It is important to highlight that
strategic participants do not obey blindly to the longest chain rule but they
act strategically selecting the longest chain only if this maximize their utility.
c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 1–15, 2019.
https://doi.org/10.1007/978-3-030-34992-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_1

2 S. Tucci-Piergiovanni

Recently, it has been shown that the longest chain rule under the Bitcoin incen-
tive model is the best choice for strategic agents, i.e., the Bitcoin consensus
mechanism along with its incentive model is incentive compatible [9]1. The Bit-
coin’s incentive model provides rewards for block creators and takes into account
proof-of-work expenditures. We can then state that incentive models and the pos-
sibility of reaching an agreement on a common chain are intertwined, therefore,
to preserve consensus properties proper incentive models must be defined.

This paper considers the problem of characterization of blockchain consen-
sus and related incentive models. The objective is to capture incentive models
for consensus in abstract way, without entering in the detail of specific (often
complex) protocols. To this end, we propose a specification of blockchain con-
sensus that extends the abstract formal specification of blockchains proposed by
Anceaume et al. in [7]. Anceaume et al. [7] model a blockchain as a concurrent
abstract data type that can be concurrently accessed by an unlimited number N
of participants. The data type is a rooted tree, called block tree, in which vertices
represent blocks, its root corresponds to the genesis block, and each root-to-leaf
path is a blockchain. The two supported operations are append, which adds a
new vertex to the tree, and read, which returns a blockchain of the tree selected
according to some fitting function.

The main feature of [7]’s formalisation is the presence of an oracle that helps
to append blocks to the tree. Intuitively, the oracle, called by participants during
the append() operation, controls the maximum branching factor of the block tree.
The oracle allows a vertex in the tree to have up to some parameter k children.
In [7] it has been shown that strong consistency, i.e., no-forks, can be achieved
only assuming an oracle with branching factor k = 1 and that this oracle is at
least as strong as Consensus. The relationship within blockchain consistency and
consensus has been then formally established. The branching factor of an oracle,
moreover, fully characterizes a blockchain, where an oracle with k = 1 charac-
terizes blockchains resorting to consensus and k > 1 characterizes consensus-free
blockchains. In other terms, the essence of any blockchain is captured by the
assumed oracle, which is a simple abstraction.

In this paper we then characterize incentive models by augmenting oracles
(not the block tree) with costs and rewards associated to its execution. In this
respect we will focus on characterization of consensus-based blockchains, i.e.
blockchains using an oracle with branching factor equal to 1. Let us note that
since consensus cannot run among an unbounded number of processes, current
solutions, e.g. [19,21], attempt to solve the problem through rotating committees
of fixed size n. In this case the production of a single block needs coordination
among the n committee members and rewards are distributed among members
once the block is produced. The oracle then needs to feature a selection phase:
for each height of the chain n committee members out of the total number

1 Incentive compatibility can be established considering different solution concepts,
such as dominant strategies and Nash equilibria. Incentive compatibility of Bitcoin
has been shown assuming Nash equilibria as solution concept. Formal definitions of
these notions will be presented later in the paper.

Blockchain Consensus Under Incentives 3

of participants N ≥ n are selected, members that need to agree on the next
block. After the selection phase, a voting phase among the n members starts.
We abstract the voting phase considering a function f that maps votes on a
set of proposals to a joint decision. Since participants may decide to vote or
not and voting has a cost, we define a quorum ν, the minimum number of
votes necessary to trigger a decision. Once the voting phase completes, if a valid
decision is reached, the oracle distributes rewards to participants.

The incentive model characterization is then completed by proceeding to the
following steps: (1) definition of the failure model of the oracle – the oracle
can be either correct or it can lose/corrupt votes, (2) definition of the type of
participants, which can obedient, strategic or adversarial and (3) definition of
the rewarding function, i.e., how rewards are distributed to the committee.

Different incentive models capturing current popular blockchain solutions
are then analyzed. Incentive models are analyzed exploring their influence on
Liveness (eventually a block is decided) only. Safety properties are indeed always
guaranteed by the oracle at the expense of Liveness, driven by the whole incentive
model. The paper concludes highlighting that the quest for liveness-preserving
incentive models is in its early days.

The paper is organized as follows. Section 2 introduces blockchain oracles pre-
viously presented in [7]. Section 3 characterizes incentive models for consensus-
based blockchains. Section 4 presents analyses of incentive models of current
popular solutions and finally Sect. 5 discusses research directions.

2 Blockchain Core Abstractions

Anceaume et al. [7] present an abstract and formal characterization of
blockchains that allows to capture their properties independently from protocol-
specific mechanisms (Proof-of-Work, Proof-of-Stake, Consensus, etc) and system
model assumptions (synchrony, type of faults, number of participants). The main
feature of the characterization is the presence of so-called blockchain oracles that
(i) abstract the validation process of blocks in the chain, (ii) regulate forks and
(iii) abstract the communication medium.

In this section we briefly present this characterization, but for readability we
omit all the formal notations giving only the essential concepts.

2.1 The Blocktree and Oracle Models

Following [7], any blockchain is characterized by a concurrent data structure
representing the blockchain and the type of oracle that helps maintaining it,
specified as follows.

The Blockchain Tree. A blockchain is a direct rooted tree bt that can be accessed
by read() and append(b) operations. Each vertex of the tree is a block and any
edge points backward to the root, called genesis block and denoted as b0. The
height of a block refers to its distance to the root.

4 S. Tucci-Piergiovanni

The read operation read() returns a branch of the tree, from the genesis to one
leaf, selected through a so-called fitting function f(bt), which is protocol specific.
Each walk, or chain, in the tree as has an associated score that is monotonically
increasing w.r.t. inclusion of blocks.

The append(b) operation takes one parameter, the block to be appended. To
be appended a block must be valid. The validity of a block is protocol-specific.
The append(b) operation returns true if the block is appended to the tree, false
otherwise. If the block has been appended it is valid.

Concurrent Specification. Both append and read operation can be invoked con-
currently by blockchain participants. Under concurrency, the data type satisfies
Block Validity: Blocks in the blockchain returned by the read operation are
valid with respect to a validity predicate; Local monotonic read: The score of
the blockchain returned by subsequent reads from the same process is mono-
tonically nondecreasing; and the Ever-growing tree property: The score of the
returned blockchain eventually grows. As for consistency, two alternative con-
sistency criteria are defined, namely: (i) Strong consistency : In addition to the
above properties, for any two blockchains returned by a read operation, one is a
prefix of the other; or alternatively (ii) Eventual consistency : In addition to the
above properties, if a blockchain with score s is returned, then at most a finite
number of read operations return blockchains that do not share the same prefix
up to score s.

Strongly consistent blockchains do not allow forks, while eventually consistent
blockchain admit occurrences of forks that are eventually solved.

Blockchain Oracles. Oracles are generic modules able to abstract the genera-
tion of valid blocks, the communication medium and to regulate the branching
factor of the block tree. During the append(b) operation, the oracle is called
through a getV alidBlock(b∗, b) operation that takes two parameters, the pro-
posed block b and a block of the block tree b∗, chosen as proposed parent of b.
Let us note that b∗ is freely chosen by the invoking process and that the block b
is valid only if the getV alidBlock(b∗, b) operation successfully terminates. It is
assumed that only the oracle is able to make the block valid, i.e. to implement
the getV alidBlock(b∗, b) operation.

The oracle releases valid blocks depending on the merit parameter αi ∈ [0, 1]
of the invoking process i. In [7], for each αi the oracle endows an infinite tape
tapeαi

of elements in the set {�,⊥}. Each time the getValidBlock is invoked by
a process with merit αi, an element is popped by tapeαi

. If the popped element
is �, then the valid block is released, otherwise the operation returns false.
In this deterministic version2 the oracle, if invoked infinitely often by i with
αi > 0 with the same pair of blocks (b∗, b), will eventually release a valid block
guaranteeing a form of fairness. In this paper, for sake of generality and to ease
the presentation we assume the presence of a higher-level function select(αi) that

2 Even if oracles defined in [7] are deterministic, probabilistic versions can be easily
derived by associating a probability to pop � proportional to the merit.

Blockchain Consensus Under Incentives 5

Algorithm 1. getValidBlock operation at b∗

1: upon 〈getV alidBlock(b∗, bi)〉 from process i with αi do
2: if (select(αi)) then
3: validBlocks = validBlocks ∪ {bi}
4: return bi
5: else
6: return false

Algorithm 2. setValidBlock operation at b∗

1: upon 〈setV alidBlock(b∗, bi)〉 from process i do
2: if (b∗.children.size < k) ∧ (bi ∈ validBlocks) ∧ (bi /∈ b∗.children) then
3: b∗.children ← b∗.children ∪ {bi}
4: return b∗.children

accesses the tape and returns true if the popped element is �. The pseudo-code
of the getValidBlock operation is shown in Algorithm 1.

Once a process gets a valid block from the oracle, it can now set it through
a setV alidBlock(b∗, b). As soon as the setValidBlock operation returns we have
two cases: if b is returned then append(b) returns true, otherwise append(b)
returns false. It is possible that more than one participant gets a valid block to
append to b∗, in that case the oracle regulates forks depending on its branching
factor k. If the oracle has a bounded branching factor, then the oracle guarantees
that the returned set of any successfully executed setV alidBlock(b∗, b), returns a
set of children of bounded size k containing successfully set blocks, then possibly
not containing b. If k is unbounded, then the oracle returns a set of children con-
taining b. The pseudo-code of the setValidBlock operation is shown in Algorithm
2. In case of unbounded branching factor, the pseudo-code is either modified by
removing the first term of the if condition or by considering k = ∞.

In [7] it has been shown that (i) the oracle with k = 1 is equivalent to
Consensus and (ii) Consensus is necessary for strongly consistent blockchains.

2.2 Oracles, a Closer Look

Oracles, as already mentioned, abstract away the consensus mechanism used
in blockchains. Let us to have a closer look at the oracle characteristics. The
getValidBlock operation abstracts away the validation process of blocks. For
instance, if we think to the proof-of-work mechanism, we can see the getValid-
Block invocation as a query to an oracle that gives to the process the solution
of the proof-of-work or false otherwise.

The setValidBlock operation, has a subtler role. Let us take our weakest
oracle, with k = ∞. The setValidBlock operation only means in this case to
make the block visible in the blockchain. Once the setValidBlock returns, the
block is accepted by the blockchain, i.e., it is appended. We can think to the
set operation as a successful write of a new block in the blockchain state. It is
important to stress out that actual update of a state change is far from being

6 S. Tucci-Piergiovanni

trivial in a open peer-to-peer network, subject to participant churn. For that
reason, it is extremely useful to resort to oracles. In this perspective, all the
blocks returned by setValidBlock operations can be viewed as stable vertexes in
the tree: if some processes sets a given block b, than successive setValidBlock
will report b in the returned set3.

The Shared Burden Between Oracles and Blockchain Participants. Oracles, by
definition, are local to one particular vertex of the tree: each participant chooses
to call the getValidBlock on the parent vertex of her choice, and to call setValid-
Block to try to append the block. This suggests that it is up to participants to
guarantee the consistency of the blockchain and not to oracles. For instance, if
there is just one participant in the blockchain that keeps calling the oracle to
append a block to the genesis one, and the oracle has k = ∞, the ever-growing
tree property will never be guaranteed. At some point the process must jump
to a leaf to make the tree growing. This is also true by assuming, for the same
scenario, an oracle with k = 1: the calling participant will always terminate her
append operation by returning false, but the tree will stop growing. In case of
weaker oracles with k > 1, if there are two processes jumping alternatively and
concurrently on two parallel branches of the tree, it is up to them to eventually
select and read the same chain to guarantee eventual consistency and repair forks.
The separation of duties between oracles and blockchain participants described
so far is particularly meaningful when strategic behavior is assumed. Blockchain
participants thanks to the oracle have the possibility to update the block tree,
but it is up to them to choose the chain they prefer when reading and appending;
this choice is done strategically. In this respect it is interesting to highlight that
stronger oracles reduce the strategic space with respect to weaker ones, but even
assuming our strongest oracle with branching factor k = 1, strategic choices are
relevant to guarantee progress.

2.3 Enriching Oracles with Incentives

In all the implementations employing the proof-of-work, a cost must be asso-
ciated to block validation. For those implementations exempted by the proof-
of-work, to avoid spamming – a process maliciously sending too many blocks –
either a mini proof-of-work is employed or a so-called slashing mechanism allows
to burn some coins of the malicious process [14,19]. In all cases we can abstract
a cost associated with the generation of valid blocks. This cost can be allocated
to the process either at the end of the invocation of the getValidBlock or when
then process invokes the setValidBlock operation – this is to take into account
a cost only when a block is sent in the system.

As for rewarding, current solutions can roughly be divided in two families:
those where only one participant is accountable for the appended block and those
where more than one participant is accountable for it. Rewarding is then given

3 In [7] the consumeValidBlock, called in [7] consumeToken operation, has been
reduced to the Generalized Lattice Agreement abstraction [12].

Blockchain Consensus Under Incentives 7

to accountable participants for the block. We are interested in the second family
where the oracle has branching factor k = 1, i.e., an oracle implemented through
Consensus in a deterministic setting. In current solutions based on Consensus [19,
21] a block is created coordinately by committees of n participants selected out of
N blockchain participants and the reward is shared among committee members.
We will define an incentive model for this class of blockchains. We will introduce
all the elements needed to define a so-called Consensus Incentive Model: (i) an
adaptation of the oracle with branching factor k = 1 to model selection and
rewarding, (ii) a failure model for the oracle, (iii) participants characterization
in terms of their type (obedient, adversarial, strategic) and behavior.

3 Consensus Incentive Model Definition

Oracle Characterization. The oracle is an oracle with branching factor k = 1
called hereafter Consensus oracle, with a cost associated to the invocation of
setValidBlock. The oracle, as current solutions, e.g. [11,14,18,19], selects com-
mittee members that have most merit and share the reward among committee
members, even though more sophisticated models have been devised4. The oracle
is specified as follows (Algorithms 3 and 4). The oracle when invoked at a given
block b∗ through getV alidBlock(b∗, ∗) grants valid blocks up to n invokers, by
following a given selection criterion and puts the process i in a validator set.
Once the process i gets a valid block it may decide to try to append the block
in the blockchain, through setV alidBlock(b∗, b). The operation starts a voting
phase to collect proposals. When the phase ends, only if ν ≤ n proposals are
collected a decision is taken through a function f that maps proposals to the
block to be set. Note that the duration of a voting phase depends on the system
model assumed. In synchronous systems the voting phase lasts at least the time
required to gather the ν proposals, but it could last more and gather more than
ν proposals. In case ν proposals are gathered, but the decision is not valid the
oracle returns false. The reward function takes as parameter the validator set,
the proposal and the decision. If all the validators are rewarded no matter if
they voted or not, then we have a reward all rewarding scheme; alternatively, if
only voters get the reward, we have a reward only voters scheme.

Failure models of the oracle. The oracle can be:

– correct : The pseudo-code (Algorithms 3 and 4) is correctly executed.
– vote corruption: the proposals set at line 7 can contain up to c non-valid

votes, because of a failure of the valid block test.
– vote omission: in the proposals set at line 7 up to m votes can be lost.

The oracle is not a strategic entity, the failure model assumed abstracts away
possible system failures. The reward function is always executed correctly.
4 Some implementations [11,14] provide a delegation mechanism in which a participant

can delegate its merit to another one, in this case the reward is shared among
delegators as well.

8 S. Tucci-Piergiovanni

Algorithm 3. Consensus Oracle with Incentives: getValidBlock operation at b∗

1: upon 〈getV alidBlock(b∗, bi)〉 from process i with αi do
2: if ((select(αi) ∧ (n ≤ j)) then
3: validBlocks = validBlocks ∪ {i}
4: validatorSet ← validatorSet ∪ {bi}
5: j + +
6: return bi
7: else
8: return false

Algorithm 4. Consensus Oracle with Incentives: setValidBlock operation at b∗

1: upon 〈setV alidBlock(b∗, bi)〉 from process i do
2: if (b∗.children.size < 1) ∧ (bi ∈ validBlocks) then
3: if voting phase not started then
4: start voting phase
5: b∗.proposals ← b∗.proposals ∪ {bi}

6: upon ((end voting phase) ∧ (proposals.size = ν)) do
7: decision ← f(proposals)
8: reward(validatorSet, proposals, decision)
9: if decision ∈ validBlocks then
10: return b∗.children
11: else
12: return false

Participants Characterization

Participants Action Space. Each participant has a strategy si from an action
set. In one single voting phase,

si ∈ {0, 1,⊥}, where 1 maps to the decision of sending a vote, 0 of not sending
a vote, and ⊥ of sending an invalid vote.

Types of Participants. We define then three types of participants:

– strategic: a player that chooses the strategy that maximizes her payoff
– obedient : a player whose strategy is fixed to 1 under the condition that utility

is greater than a given threshold γ. In other terms the obedient participant
has limited resources, needing then some degree of fairness [5,15].

– adversary : a player whose strategy is disrupting system properties. In the one
voting phase case, it is either 0 or ⊥.

Later we will extend our oracle to a multi-ballot oracle, to include in the
action set the action of sending two different votes in two different ballots in
the same voting phase. This is to include the classical Byzantine misbehavior of
sending different messages to different processes. This extended action set will
be discussed for solutions based on BFT consensus.

Properties to Guarantee. Properties to guarantee at each height of the chain
are traditional Consensus properties: Agreement (at most one decision is taken),

Blockchain Consensus Under Incentives 9

Validity (the decision value must be valid) and Termination (eventually a deci-
sion is taken). Agreement and Validity are safety properties while Termination
is a Liveness property. In our proposed oracle construction participant behav-
iors can only hinder Liveness, leading to never return a valid block (line 10).
This is easy to see if the oracle is assumed correct. In case of votes corruptions
(modeling a vote for an invalid block), the decision function f is able to filter
out corrupted proposals. If no valid proposal can be chosen, the f returns ⊥ and
the block is not returned.

The agreement property is by construction not threatened by the given action
set, but easily guaranteed with a multi-ballot oracle capturing PBFT solutions
as we will see later.

The main principle is to have an oracle assuring Safety at the expense of
Liveness and to study how participants behavior under the assumed incentive
model influences Liveness.

Utility Functions. Before being able to establish participant strategies we need
to define utility functions. A utility function depends on the oracle failure model
and the action set. The simplest utility function, defined assuming a correct
oracle, is as follows.

ui = Σnr
i

κ=0R
κ
i − Σnv

i

�=0C
�
i (1)

where

– nr
i is the number of setValidBlocks operations successfully executed and such

that i belongs to validatorSet (reward all) or i’s proposal belongs to proposals
(reward only voters) at line 8.

– nv
i is the number of setValidBlocks operations successfully executed and such

that i voted, i.e., i’s proposal belongs to proposals at line 5.

Weaker oracles can also envisage punishments. For instance an oracle suffer-
ing from vote corruptions, can contain in the proposal set some invalid blocks.
We consider that the decision function f could in this case select an invalid
block but that the decision is not returned, leading to Liveness violation. The
participants, if an invalid block is decided or even proposed, can be punished.

Participants Strategies. Once the utility function is in place participant
strategies can be defined.

Strategies of obedient participants correspond to the expected behavior from
the designer point of view. The strategy under our oracle models and action
space is then naturally 1 as long as the participant can pay the inflicting costs.
For obedient participants it is assumed that the participant enters the system
with an endowment and that such endowment is modified solely by costs and
rewards defined by her utility function. The threshold γ must be set to make
sure that the participant is rewarded often enough to not exhaust her resources.
In the weakest model γ is greater than zero.

10 S. Tucci-Piergiovanni

Strategies for adversarial players can be determined considering strategies
that undermine properties to guarantee, i.e. Termination. It assumed that the
utility function is known by adversarial processes.

Strategies for strategic participants can be determined in the framework of
game theory. Game theory focuses on predicting individual players’ strategy and
payoffs. For each combination of players and possible strategies, there is a payoff.
Game theory analyzes which strategies strategic players will play in the game.

Given a game, it is interesting to look for dominant strategies. A dominant
strategy for a player is a strategy leading to the best payoff, no matter how other
players may play. However, dominant strategies there not always exist.

Nash Equilibrium is an equilibrium where each player’s strategy is optimal
given the strategies of all other players. A Nash Equilibrium exists when no
player would take a different action as long as every other player remains the
same. Nash Equilibria are self-enforcing; when players are at a Nash Equilibrium
they have no desire to deviate, otherwise they will be worse off. Interestingly,
given any finite game a Nash equilibrium there always exists.

More formally a Nash equilibrium can be defined as follows:

Nash equilibrium. Let (S,U) a game with n players where Si is the strategy set
for the agent, S = S1 × . . .×Sn is the set of strategy profiles and U is the set
of utility functions U = u1 × . . . × un mapping a strategy si ∈ Sn to a payoff
ui(si).
A strategy si ∈ Si for the agent i is a mapping from each state of the game
to an action in the action space of the agent. A strategy tells a player what
to do for every possible state of the game throughout the game5. When each
agent chooses a strategy from its strategy set we get a strategy profile s =
(s1, . . . , sn) ∈ S.
Let us denote with (s |i, s∗

i) the fact that i deviates from s by doing s∗
i ∈ Si.

A strategy profile s is a pure Nash Equilibrium if and only if for each i, and
for all strategies s∗

i ∈ Si : ui(s |i, s∗
i) ≤ ui(s).

In the following we will analyze incentive models with strategic players under
the Nash equilibrium solution concept.

Failure Models of Participants. We assume that obedient and strategic par-
ticipants are able to correctly execute their strategy, i.e. they are correct processes
with respect to their strategy. We also assume that adversarial participants can
execute their strategy in the worst case, but they can be affected by unexpected
failures, i.e. they are Byzantine processes6. Note that our model separates failures

5 A strategy can be viewed as an algorithm. The state in game theory is called the
information set that is evaluated each time it is updated, to select the next action
or move.

6 Even if Byzantine failures are defined as arbitrary deviations from the prescribed
behavior, an adversarial argument is assumed to prove protocols under Byzantine
processes. This way the strategy of the Byzantine participant is determined.

Blockchain Consensus Under Incentives 11

from strategies (that could deviate or not from designer’s one). This separation,
inspired by [13], defines a slightly different model than the BAR model [2]. Our
obedient participants are neither altruistic (they do not maximize the benefits of
others in the general case) nor correct since they have limited resources. More-
over, any strategic player is assumed correct with respect to her chosen strategy
(on the contrary the participant must be assumed Byzantine).

Efficiency. Any incentive model can be analyzed under the efficiency point of
view. Given ν the threshold to produce a block, efficiency is the ratio between
ν and the number of votes determined by chosen strategies.

4 Analysis of Current Solutions

In this section we illustrate first how to capture current solutions under an
incentive model and then we analyze the incentive model itself. The section has
a pedagogical purpose and let us observe how assumptions on the particular
combination of oracle failure model, participants types and the reward schemes
impact Liveness. We analyze two reward schemes: reward only voters and reward
all.

Strategic Incentive Models for Synchronous Leader-Based Solutions
in a One Shot Game. In solutions like [11,14], a single leader is elected for
each height of the chain. The leader sends its block and the n−1 other processes
send a vote for the block. We can abstract these solutions by our oracle without
failures, n participants and a decision function f that selects the proposal of the
leader where all the proposals are votes. We need for the block to be produced at
least ν votes, otherwise liveness will not be guaranteed. Assuming a synchronous
system means to collect at the end of the vote phase all the votes to potentially
reward them (the oracle is assumed correct, no message losses occur). We assume
n strategic participants, utility function (1) for only one height of the tree with
R > C, assuming a one shot game. Strategies of participants are as follows [3].

Reward Only Voters. For the reward only voters scheme we have two cases: ν > 1
and ν = 1. The case of ν > 1 has two Nash equilibria. In the first equilibrium all
the participants send a vote, i.e., they call the setValidBlock operation. In the
second equilibrium nobody sends a vote; violating Liveness. In the case of ν = 1
we have a single Nash equilibrium where all n participants vote. The efficiency
of the mechanism is ν

n .

Reward All. For the reward all mechanism, we have two cases: ν > 1 and ν = 1.
The case of ν > 1 has multiple Nash equilibria, where either ν participants send
a vote or nobody sends a vote; violating Liveness. In the case of ν = 1 we have n
Nash equilibria, in each equilibrium, exactly one process sends a vote. Efficiency
is optimal.

Note that a good Nash equilibrium for both schemes is reached when ν = 1,
because the participant is pivotal: in the strategy profile where nobody send the

12 S. Tucci-Piergiovanni

vote, she will be better off by deviating, i.e. sending the vote. This is true for
all the participants if only voters are rewarded. In the reward all scheme, this is
true for ν participants.

Comparing the two mechanisms the reward all is more efficient, in the sense
that less money is distributed to participants in good equilibria. Both of them,
however, if ν > 1 have bad equilibria resulting in a coordination failure and
liveness violation.

Adversarial-Strategic Incentive Model for Synchronous Leader-Based
Solutions in a Repeated-Game. In [3] a more complex model has been
considered, where a combination of adversarial and strategic players is assumed
and more leaders can be elected in a round-robin fashion to produce a block at
a given height of the chain. The oracle used is an oracle accepting invalid blocks
but able to filter invalid decisions out. The reward scheme assumed is a reward
only voters with a cost inflicted to all the committee members if an invalid
block is selected by the decision function f , i.e. if the leader proposed an invalid
block that has been accepted by ν participants. The study assumes as well that
participants have the possibility to check upfront if the leader’s proposal is valid
or not at some additional cost. Moreover, it is assumed that the reward is greater
than the inflicted cost and the cost of accepting an invalid block is greater than
the reward (see [3] for the utility function formal definition).

It is easy to see that the adversarial strategy to inflict the maximum damage
to other participants is to propose an invalid block and hope to get a sufficient
number of votes to have the block accepted. In this case all of them will be
penalized and Liveness threatened.

As for strategic players, strategies have been found considering multiple vot-
ing rounds (for the same height of the chain) where for each round a leader is
chosen in a round robin fashion. The study finds multiple Nash equilibria (we
encourage the reader to look at the entire paper). Among many bad equilibria
leading to coordination failure and liveness violation, the rewarding mechanism
in the proposed model shows a good equilibrium if ν > a where a is the upper
bound on adversarial participants. In good equilibrium invalid blocks (proposed
by adversarial players) are rejected, while valid blocks (proposed by strategic
players) are accepted. This implies that, if round t = a + 1 is reached, the play-
ers know that during all the previous a rounds the proposers were Byzantine (to
draw this inference, the strategic players use their anticipation that all partici-
pants play equilibrium strategies). Consequently, at round a + 1, the proposer
must be strategic, and all players anticipate the proposed block is valid. So, no
strategic player needs to check the validity of the block but all send a vote, which
brings them an expected gain equal reward minus the cost to send a vote. This
is larger than their gain from deviating by not sending a message or by checking
the block.

Obedient-Adversarial Incentive Models for BFT Blockchains.
Blockchains as [19,21] use BFT Consensus protocols, e.g. [4,6,22], inside

Blockchain Consensus Under Incentives 13

committees with n processes where at most f = 	n−1
3
 participants are Byzan-

tine faulty. The other n − f processes are assumed correct.
For this class of applications, the model assumed is abstracted by our Con-

sensus oracle with f adversarial participants, n − f obedient participants and
ν = n − f . These solutions are leader-based, then multiple voting phases can be
activated with leaders selected in a round-robin fashion. The eventual synchrony
assumption is dealt with an adaptive timeout meant to catch the unknown mes-
sage delay eventually on some voting phase. We abstract this behavior assuming
that at the end of a single voting phase all sent votes are collected, but the
oracle can lose at most one third of sent votes. After an finite but unknown
number of voting phases, the oracle ceases to lose messages. To capture these
solutions we need as well to extend our action set, to let an adversarial partici-
pant to behave like a Byzantine process sending two different votes to different
processes, instead of one single vote. To this aim the oracle can be extended to a
n ballot voting phase where each participant votes in n different ballots, one for
each participant i. Each ballot has n entries indexed by the participant identifier
and ballots are filled up to at least ν votes. This way an adversary j can vote
different blocks in different ballots. The decision function f takes the first entry
that have two third of common valid values. Let us to make an example. Process
p1 is Byzantine, while p2, p3, p4 are correct. Values proposed on the n ballots
are as follows p1 = {1, 1, 0, 1}, p2 = {2, 2, 2, 2}, p3 = {3, 3, 3, 3}, p4 = {4, 4, 4, 4}.
The oracle can lose at most one vote per ballot. Values lost by the oracle are the
values proposed by pi for the (i + 1)th ballot. The ballots state, where {}i is the
ith ballot, at the end of the vote phase is as follows: {1, 2, 3,⊥}1, {⊥, 2, 3, 4}2,
{0,⊥, 3, 4}3, {1, 2, 3,⊥}4. The oracle takes a decision that must be the same
for obedient participants, without knowing who the Byzantines are. The ora-
cle takes the common value contained in the first entry of two-thirds of ballots
(if any), then 2 in the scenario above, and notifies all about the decision. We
say that p1, p2 and p4 voted for the decided value because their corresponding
ballot contained the decided value. Note that “more than two-thirds correct”
processes assumption neutralizes the effect of the byzantine misbehavior, i.e. in
these conditions the decision value there always exists. Under these conditions,
the adversarial behavior of a Byzantine will then try to hinder the participation
of obedient participants to violate Liveness (to lower the threshold of correct
processes). This behavior depends on the rewarding scheme. Let us recall that
unlike a correct process an obedient one has limited resources, dictated by her
endowment. An obedient process must be rewarded often enough to maintain
a balance greater than zero. If not, the process with no endowment will not be
able to cover the cost of sending her votes. Let us consider rewarding as follows.
Rewarding the Processes that Voted the Decided Value. In the above mentioned
scenario if the oracle does not lose the vote of the Byzantine, then the Byzantine
gets a reward and p3 does not. p3 can be excluded from the reward also in the
case the Byzantine sends the same valid value, but the oracle loses the first entry
of p3. If these scenarios repeat too long, p3 can exhaust her resources and will
not be able to vote anymore. The best strategy for the adversarial participant

14 S. Tucci-Piergiovanni

to hinder Liveness is then to participate with valid values hoping p3 reaches
endowment 0 and then to stay silent forever.

Rewarding All. This scheme gives a reward to all the processes, even those that
do not send her vote. Note that this is the safer method here, even if less efficient,
because a Byzantine has no power to make the obedient worse off.

5 Discussion and Research Directions

The proposed characterization highlighted the interlacement of participants’
strategy and rewarding schemes in various incentive models based on oracles
with branching factor equal to 1. Recent research [20] is now focusing on BFT
consensus to see how to increase the threshold f of corruption faults. In this
direction, some effort is spent in detecting corrupted processes [10] because this
capability could allow to exclude them from the reward, or to punish them,
hoping to tolerate the presence of more than one third of adversarial processes.
As a recommendation it is important not to sacrify liveness for efficiency here
and to clearly state the incentive model under study. In our characterization,
for instance, an adversary is punishment-insensitive. An interesting research
question would be to characterize adversarial participants sensitive to reward-
ing/punishment by assuming limited resources for them. Another interesting line
of research is to consider preferences about transactions contained in blocks.
Approaches that explored leader election [1] and consensus [8,16] under these
assumptions could be analyzed under our incentive models. Finally, obedient
models could be refined to consider more sophisticated fairness-related concepts
and the interlacement between merit and participant endowment [5,15,17]. We
hope that the provided characterization can help in exploring these research
directions.

Acknowledgments. This position paper assembles ideas and results emerged through
research conducted with E. Anceaume, A. del Pozzo, M. Potop-Butucaru and
O. Gurcan. A special thanks goes to Y. Amoussou-Guenou working hard in this mid-
dle earth between distributed computing and economy and to Prof. Bias that literally
opened us the door to economic methodologies.

References

1. Abraham, I., Dolev, D., Halpern, J.Y.: Distributed protocols for leader election: a
game-theoretic perspective. ACM Trans. Econ. Comput. 7(1), 4:1–4:26 (2019)

2. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: Bar fault
tolerance for cooperative services. In: Proceedings of the 20th ACM Symposium
on Operating Systems Principles, SOSP 2005, pp. 45–58 (2005)

3. Amoussou-Guenou, Y., Biais, B., Potop-Butucaru, M., Tucci-Piergiovanni, S.:
Rationals vs Byzantines in consensus-based blockchains. CoRR abs/1902.07895
(2019)

4. Amoussou-Guenou, Y., Del Pozzo, A., Potop-Butucaru, M., Tucci-Piergiovanni,
S.: Dissecting tendermint. In: NETYS 2019 (2019)

Blockchain Consensus Under Incentives 15

5. Amoussou-Guenou, Y., Del Pozzo, A., Potop-Butucaru, M., Tucci-Piergiovanni, S.:
Correctness and fairness of Tendermint-core blockchain protocols. Research report
(2018). https://hal.archives-ouvertes.fr/hal-01790504

6. Amoussou-Guenou, Y., Pozzo, A.D., Potop-Butucaru, M., Tucci-Piergiovanni, S.:
Correctness of tendermint-core blockchains. In: 22nd International Conference
on Principles of Distributed Systems, OPODIS 2018, Hong Kong, China, 17–19
December 2018, pp. 16:1–16:16 (2018)

7. Anceaume, E., Del Pozzo, A., Ludinard, R., Potop-Butucaru, M., Tucci-
Piergiovanni, S.: Blockchain abstract data type. In: SPAA 2019 (2019)

8. Bei, X., Chen, W., Zhang, J.: Distributed consensus resilient to both crash failures
and strategic manipulations. CoRR abs/1203.4324 (2012)

9. Biais, B., Bisière, C., Bouvard, M., Casamatta, C.: The blockchain folk theorem.
Rev. Financ. Stud. 32, 1662–1715 (2019)

10. Civit, P., Gilbert, S., Gramoli, V.: Polygraph: accountable byzantine agreement.
IACR Cryptology ePrint Archive 2019/587 (2019)

11. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS. Part II, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

12. Falerio, J.M., Rajamani, S.K., Rajan, K., Ramalingam, G., Vaswani, K.: Gener-
alized lattice agreement. In: ACM Symposium on Principles of Distributed Com-
puting, PODC 2012, Funchal, Madeira, Portugal, 16–18 July 2012, pp. 125–134
(2012)

13. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: recent
results and future directions, distributed computing column. Bull. EATCS 79,
101–121 (2003)

14. Goodman: Tezos: a self amending crypto ledger. https://tezos.com/static/white
paper-2dc8c02267a8fb86bd67a108199441bf.pdf

15. Gürcan, Ö., Del Pozzo, A., Tucci-Piergiovanni, S.: On the bitcoin limitations to
deliver fairness to users. In: Panetto, H., et al. (eds.) On the Move to Meaningful
Internet Systems, vol. 10573, pp. 589–606. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69462-7 37

16. Halpern, J.Y., Vilaça, X.: Rational consensus: extended abstract. In: Proceedings
of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
2016, Chicago, IL, USA, 25–28 July 2016, pp. 137–146 (2016)

17. Karakostas, D., Kiayias, A., Nasikas, C., Zindros, D.: Cryptocurrency egalitar-
ianism: a quantitative approach. In: Tokenomics International Conference on
Blockchain Economics, Security and Protocols 2019 (2019)

18. Kwon, J., Buchman, E.: Cosmos: A Network of Distributed Ledgers. https://
cosmos.network/resources/whitepaper. Accessed 22 May 2018

19. Kwon, J., Buchman, E.: Tendermint. https://tendermint.readthedocs.io/en/
master/specification.html. Accessed 22 May 2018

20. Malkhi, D., Nayak, K., Ren, L.: Flexible byzantine fault tolerance. In: ACM CCS
(2019)

21. Various: The Libra Blockchain. https://developers.libra.org/docs/assets/papers/
the-libra-blockchain.pdf

22. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: Hotstuff: BFT
consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, 29 July–2 August 2019, pp. 347–356 (2019)

https://hal.archives-ouvertes.fr/hal-01790504
https://doi.org/10.1007/978-3-319-78375-8_3
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://doi.org/10.1007/978-3-319-69462-7_37
https://doi.org/10.1007/978-3-319-69462-7_37
https://cosmos.network/resources/whitepaper
https://cosmos.network/resources/whitepaper
https://tendermint.readthedocs.io/en/master/specification.html
https://tendermint.readthedocs.io/en/master/specification.html
https://developers.libra.org/docs/assets/papers/the-libra-blockchain.pdf
https://developers.libra.org/docs/assets/papers/the-libra-blockchain.pdf

Brief Announcement Forgive & Forget:
Self-stabilizing Swarms in Spite

of Byzantine Robots

Yotam Ashkenazi1, Shlomi Dolev1(B), Sayaka Kamei2, Fukuhito Ooshita3,
and Koichi Wada4

1 Department of Computer Science, Ben-Gurion University of the Negev,
Be’er Sheva, Israel

{yotamash,dolev}@post.bgu.ac.il
2 Department of Information Engineering, Graduate School of Engineering,

Hiroshima University, Higashihiroshima, Japan
s-kamei@se.hiroshima-u.ac.jp

3 Graduate School of Science and Technology,
Nara Institute of Science and Technology, Ikoma, Japan

f-oosita@is.naist.jp
4 Department of Applied Informatics, Faculty of Science and Engineering,

Hosei University, Tokyo, Japan
wada@hosei.ac.jp

Abstract. In this paper, we consider the case in which a swarm of robots
collaborates in a mission, where a few of the robots behave maliciously.
These malicious Byzantine robots may be temporally or constantly con-
trolled by an adversary. The scope is synchronized full information robot
operations, where a robot that does not follow the program/policy of the
swarm is immediately identified and can be remembered as Byzantine.
As robots may be suspected of being Byzantine due to benign temporal
malfunctions, it is imperative to Forgive & Forget (F&F), otherwise, a
robot cannot assume collaborative actions with any other robot in the
swarm. Still, remembering for a while may facilitate a policy of surround-
ing, isolating and freezing the movement of the misbehaving robots, by
several robots, allowing the rest to perform the swarm task with no inter-
vention.

We demonstrate the need to periodically F&F to realize swarm several
tasks including patrolling/cleaning in the presence of possible Byzantine
robots. The policy for achieving the task consists of blocking the move-
ment of the Byzantine robot(s) by some of the robots, while the rest
patrol/clean the plane.

This work was supported in part by JSPS KAKENHI No. 17K00019, 18K11167
and 19K11828, Frankel Center for Computer Science, Rita Altura Trust Chair in
Computer Science, the Ministry of Science and Technology, Israel & JST SICORP
(Grant#JPMJSC1806) and the German Research Funding Organization (DFG,
Grant#8767581199).
c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 16–21, 2019.
https://doi.org/10.1007/978-3-030-34992-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_2

Brief Announcement Forgive & Forget: Self-stabilizing Swarms 17

1 Introduction

Swarms of robots acting towards a common task are already part of our lives, be
it a swarm of autonomic cars, a swarm of the unmanned aerial vehicle (UAV),
or a swarm of nano-robots.

When dealing with robots in practice, we better assume that some of the
robots are Byzantine, faulty or malicious. These robots may not follow the algo-
rithm either because of a fault or because of a malicious adversarial takeover.
Such malicious takeover may imply the most disturbing behavior of the mali-
ciously controlled robot. Obviously, when all participants are Byzantine the
swarm can be regarded as malicious as well, not following actions for achiev-
ing the planned goal. Since faults and takeovers can be accumulated over time,
the possibility for swarm participants to stop functioning as they should do grows
with time. Self-stabilizing algorithms may cope with such faults, imposing auto-
matic recovery of individuals in the swarm, and regaining collaboration among
the recovered participants.

Many researches were made on how to cope with a given threshold (e.g.,
less than one third) of Byzantine participants. However, these researches are not
aimed to cope with temporal periods in which all (or almost all) participants
are Byzantine. The correctness of (non-stabilizing) algorithms is based on the
consistency of the initial configuration and the preservation of the consistency
as long as the threshold on the number of Byzantine is respected. This approach
is too optimistic, the approach of self-stabilization is more promising, recreating
the consistency thread from any arbitrary configuration whenever the minimal
conditions hold (e.g., less than one-third of the participants are Byzantine).

In this paper, we consider the case of a self-stabilizing robot swarm in the
presence of Byzantine robots. Typically, Byzantine robots are assumed to be
Byzantine forever. Correct robots may detect and record the identity of Byzan-
tine robots in their variables, so they can ignore or take a countermeasure to the
Byzantine robots activities. In the scope of self-stabilization, such records can
be set to different records for each participant, where the records of the other
participants are not mutually known. For example, starting in a configuration in
which each participant has a (possibly wrong) record that all other participants
(but itself) were identified as Byzantine. Then all may try to take a countermea-
sure to all, even if none is actually Byzantine. Thus, in fact, nullifying possible
swarm collaboration. Note that the unknown records of the other participants
may imply that their observable moves will be regards as Byzantine by others.

Many algorithms are based on failure detectors, where each participant
lists the suspected participants. Such an abstraction is useful in a fault-prone
system, excluding the suspected participants’ actions and concentrating on
the non-suspected participants to gain progress. In our settings, where the
program and identifiers of all participants, as well as all actions and all
inputs of all participants, are observed by each participant, an indication on a
Byzantine participant is immediate following a step that does not obey the pro-
gram and inputs. Once there is an indication that a participant is Byzantine,

18 Y. Ashkenazi et al.

other non-Byzantine robots may surround the Byzantine robot and block its
movements, allowing the rest of the robots achieve the swarm task with no
intervention.

However, in the scope of self-stabilization, the recorded indication on a par-
ticipant being Byzantine may be corrupt as well, and therefore we propose the
forgive and forget (F&F) framework. The period in which the robots remem-
ber the indications (before the robots simultaneously forgive and forget) has to
be tuned to allow us to perform the task in addition to the possible need of
capturing the Byzantine participants.

The F&F approach is useful in coping with unreliable indication on whether a
participant was Byzantine. Even in case that the indication is reliable, such F&F
approach allows the (self) recovery of a robot (say, by a periodical restart). We
assume that many of the Byzantine participants can recover after a while, say by
periodically rebooted, patched with new software parts, or scanned and cleaned
from malware. Thus, the impression of one robot that another is Byzantine
should be constantly reexamined and verified. Obviously, a robot may suspect
all other participants being Byzantine, and if the suspicion is not periodically
verified, global collaboration is at risk. This is why, in this research, we will
assume that all the robots periodically and (to simplify arguments, use self-
stabilizing Byzantine clock synchronization to impose that the robots (see [1]
for a new self-stabilizing (for non-two faced) Byzantine pulse and clock synchro-
nizations algorithms that are of independent interest) simultaneously forget their
suspicions in their Byzantine suspicion list.

We will present a method to decide when should the robots forget their
suspicions and reset the Byzantine list. The method reset the suspicions in a way
that ensures that the robot in the swarm can repeatedly succeed in achieving a
useful task in spite of the presence of several Byzantine participants. The task
is repeatedly achieved even though many, or even all of the participants were
Byzantine in some instances in the past.

The proposed method is based on calculating the minimum continuous time
we can suspect a Byzantine robot before we consider the robot as a non-
Byzantine robot again. Roughly speaking, once the suspicion lists are simul-
taneously reset, the Byzantines may avoid identifying themselves as such, and
while doing so assist in completing the task. Alternatively, the Byzantines devi-
ate from their program and are discovered as Byzantine by all non-Byzantine
participants. Once discovered, our method suggests to surround and block the
Byzantine movement by several robots, and let the other robots complete the
task/mission with no (further) interventions.

We demonstrate our approach by presenting several games.1 These games
are based on periodical restart (respected by the non-Byzantine robots), where
every K time units (measured in number of movement steps a robot can take)
the non-Byzantine robots reset their Byzantine suspected list and show that K
is big enough to ensure that if a robot exhibits Byzantine behavior before the

1 Note that, this paper includes only the simplest instance of the ring cleaning game,
we considered more games (e.g., fan game) and details can be found in [1].

Brief Announcement Forgive & Forget: Self-stabilizing Swarms 19

tasks/missions are achieved, then some non-Byzantine robots can catch/block
the Byzantine robot while other non-Byzantine robots complete the tasks.

Cleaning Game. In a cleaning game, Byzantine robots contaminate all the
tiles of the board, and the non-Byzantine robots cooperate to clean the board
infinitely often. Non-Byzantine robots can clear tiles if they visit the tiles. In
addition, non-Byzantine robots can stop the contamination behavior of a Byzan-
tine robot by capturing the Byzantine robot. If a Byzantine robot is not cap-
tured, it can contaminate all tiles instantaneously by staying at the same tile for
even one step. We say the board is clean if all tiles except for tiles occupied by
Byzantine robots are clean.

Definition 1 (Cleaning game task). The cleaning game task is defined by a
set of executions LE such that each E in LE consists of infinitely many config-
urations in which the board is clean.

2 Cleaning a Ring Board

In this section, we demonstrate the usefulness of our F&F approach by consid-
ering a simple cleaning game for the case of a small ring.

Consider a 3 × 3 board where robots can move only on the outward bound
of the board. That is, the board is regarded as an 8-tile ring board. The eight
tiles are named as t1, t2, . . . , t8 clockwise from the left upper tile. Four robots,
at most one of which is Byzantine, reside on this ring board.

The Ring Algorithm in a Nutshell. In the proposed algorithm, all robots
move clockwise. When robots identify that another robot stops, the robot adds
the Byzantine robot to the Byzantine list. Each Byzantine robot has two neigh-
bors, ri and rj , their goal is to move to the Byzantine direction from both sides.
The third non-Byzantine robot rc moves to the Byzantine direction using the
shortest path. If distances are equal, rc moves clockwise. When the cleaning
robot rc cannot move and the Byzantine robot is blocked, rc starts to clean
the board. Every K steps all robots reset the Byzantine list and continue with
cleaning the borders (the board can still be infected from actions taken prior to
the reset).

Execution Example. Each non-Byzantine robot is represented by a green
square, each detected Byzantine robot is represented by a red square, Byzantine
robot that acts correctly so far (thus, sill not detected as Byzantine) is repre-
sented by a yellow square. Contaminated tiles are marked with diagonal lines
and cleaned tiles marked as white squares. The next figure depicts the following
situations:

(01) Initial configuration, (02) non-Byzantine robots move clockwise, Byzantine
stops (yielding an immediate detection by non-Byzantine robots) and contam-
inates the board, (03–04) non-Byzantine robots try to block (the board is still
infected), (05) non-Byzantine robots blocked the Byzantine (the board is still
infected), (06–08) Two robots blocked the Byzantine, one robot cleans the board,

20 Y. Ashkenazi et al.

(09) Two non-Byzantine robots blocked the Byzantine, the board is clean, (10)
Two non-Byzantine robots blocked the Byzantine until resets.

(01) (02) (03) (04) (05)

(06) (07) (08) (09) (10)

We now demonstrate that when K = 5 the Byzantine wins, as the non-
Byzantine robots are unable to fulfill their cleaning task. Notice that the non-
Byzantine robots forgive and forget, when the Byzantine changes color from red
to yellow. Let k (0 ≤ k ≤ K) be a variable to countup until the resets.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

k = 0 1 2 3 4 0 1 2 3 4 0 1 2

Lemma 1. When our swarm algorithm is applied to a ring board with four
robots, one of which is Byzantine, if the (non-Byzantine) robots forget when
K = 5, then the cleaning requirement does not hold.

We demonstrated a scenario which c13 and c3 are the same with an indentation
of two steps with k = 2. This scenario can be reproduced by Byzantine robot
infinitely often, preventing the non-Byzantine robots to complete the cleaning
task.

Lemma 2. When our swarm algorithm is applied to a ring board with four
robots, one of which is Byzantine, if the (non-Byzantine) robots forget when
K = 15, then the cleaning requirement holds.

Sketch of Proof. We first establish that at most four steps are needed to block
the Byzantine robot since non-Byzantine robots detect it. Following figures rep-
resents an example of such execution (in the second configuration from left, the
Byzantine is detected, and in the first configuration from right, it is blocked).

Next we show that we can clean the board after blocking, which takes, in the
worst case scenario, five steps. Following figures represent an example of such
execution (cleaning starts in the first configuration from left).

Brief Announcement Forgive & Forget: Self-stabilizing Swarms 21

Cleaning the board with no Byzantine can take up to four steps. Assume all
four robots create a row, and there are four free tiles to clean. Consider the case
that the robots forgive and forget while the board is not clean. If the Byzantine
moves four steps the non-Byzantine robots will be able to complete the task.
The non-Byzantine robots will be able to block the Byzantine after five more
steps and then cleaning the board in five more. If we choose K to be equal to
fifteen the robots will be able to complete the task infinitely often. ��

Reference

1. Ashkenazi, Y., et al.: Forgive & Forget: self-stabilizing swarms in spite of Byzantine
robots. Department of Computer Science BGU, Technical report #04-19 (2019).
https://www.cs.bgu.ac.il/frankel/reports.html

https://www.cs.bgu.ac.il/frankel/reports.html

Stationary and Deterministic Leader
Election in Self-organizing Particle

Systems

Rida A. Bazzi(B) and Joseph L. Briones

Arizona State University, Tempe, AZ, USA
{bazzi,jbrione3}@asu.edu

Abstract. We propose the first stationary and deterministic protocol
for the leader election problem for non-simply connected particle systems
in the geometric Amoebot model in which particles have no unique iden-
tifiers but have common chirality. The solution does not require particle
movement to break symmetry (stationary) and does not allow particles
to make probabilistic choices (deterministic). We show that leader elec-
tion is possible if and only if the proposed protocol succeeds in electing a
unique leader. We show that if the protocol fails to elect a leader, it will
always succeed in finding a finite set of k ≤ 6 leader candidates and the
system must have k-symmetry that prevents the selection of less than k
candidates. The protocols runs in O(n2) steps, where n is the number of
particles in the system. Other solutions to the leader election problem in
the Amoebot model are either probabilistic, assume that the system is
simply connected, and/or require stronger primitives to break symmetry.

1 Introduction

Leader election is a fundamental problem that has been studied under a variety
of system assumptions including message passing systems [18], shared memory
systems [19], radio networks [13] and swarm robotics [10,15]. It is a prototypical
symmetry breaking problem [14] upon which solutions to problems that can
benefit from a central coordinator can be based [17]. The goal of leader election
is to select a unique node of the system as the leader. In systems with unique
identifiers, the requirement for leader election is that there is a unique node
identifier agreed upon by all nodes in the system as the identifier of the leader.
In anonymous systems, the requirement is restated so that one unique node
self-identifies as the leader and every other node agrees that a leader has been
self-identified. In this paper, we are interested in solving the leader election
problem in self-organizing particle systems. Specifically, we consider the well-
studied Amoebot model [5]. In the Amoebot model, particles occupy cells in a
hexagonal grid. Particles have finite memory, can communicate with adjacent
particles, and can expand into unoccupied adjacent cells. Electing a leader in a
particle system can facilitate solving problems such as shape-formation [8,16],
object coating [6,7] and system compression [3].
c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 22–37, 2019.
https://doi.org/10.1007/978-3-030-34992-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_3

Stationary and Deterministic Leader Election 23

Solutions to the leader election problem in the Amoebot model can be com-
pared according to the following measures:

– Connectivity of system graph. The system graph is the graph whose vertices
are the cells of the grid with edges between two cells if and only if both
cells are occupied or both cells are unoccupied. A system is said to be simply
connected if the unoccupied cells form one connected component (system has
no holes), otherwise the system is generally connected. Typically, the occupied
cells are assumed to form one connected component. Otherwise, there is no
way to achieve coordination between different connected components without
modifying the system model [11].

– Use of randomness. Local random choices by the particles can help in breaking
symmetry with high probability.

– Use of movement to break symmetry. When two adjacent particles attempt
to move to an empty cell adjacent to both of them, it is typically assumed
that one of them will succeed which helps in breaking local symmetry. We
say that a solution is stationary if it does not require particle movement.

– Scheduler assumption. Particles read, write and move. If the scheduler is
strong, reading, writing and moving can be done together in one atomic step.
For weak schedulers, reading, writing and moving are individually atomic,
but cannot be combined in one atomic step. As is well known from work in
shared memory systems [1], the agreement problem can be solved under the
strong scheduler assumption, but not under the weak one (test&set objects
have higher consensus number than shared registers (read and write memory).

– Chirality assumption. Chirality is the local sense of rotational direction. Some
solutions assume that all particles share the same chirality while other solu-
tions have particles agree on a common chirality using a chirality agreement
algorithm that relies on movement (and possibly the scheduler) to break sym-
metry.

– Running time. The running time is measured in rounds. In each round, each
particle is activated at least once at which time, depending on the model, it
can read, write, and/or move.

Table 1 summarizes the results of this and other works. We comment further
on the differences between the various works. Prior to this work, solutions for the
leader election problem in generally connected systems were randomized [4,8].
Further, the more efficient solution in [4] has a success probability that depends
on the number of particles in the system which makes it unusable for systems
with a small number of particles (for example, for 100,000 particles, the proba-
bility of failure is only guaranteed to be no more than 14%). The only existing
deterministic solution for leader election prior to this work are [16] and [12],
but they only work for simply connected systems and [12] relies on a stronger
scheduler.

To overcome the limitation of earlier work, we come up with a novel app-
roach to determine a small number of candidate leaders (1, 2, 3, or 6) on the
unique outer border of the system. The algorithm starts with many candidate

24 R. A. Bazzi and J. L. Briones

Table 1. Comparing solutions to the leader election problem: “Holes” refers to gener-
ally connected systems. n is the number of particles. Lmax is the length of the longest
border and L is the length of the outer border. [12] also computes local identifiers and
consider other lattice models. Its model of the scheduler is one that does not allow
simultaneous computations for particles at distance 2 or less. It is strictly stronger
that the weak scheduler of this paper but weaker than the stronger scheduler of [9].
The running time of [12] is worst-case linear. It is a function of the the radius r(G)
and largest height mtree(G) of a subtree of the particles graph G. [9] uses the results
of this paper (previously reported in a brief announcement) in its solution. Both [12]
and [9] always elect a unique leader, but use a strong scheduler (see discussion above).

Paper Deterministic Holes Weak scheduler Stationary No chirality Time

[8] ✗ ✓ ✓ ✓ ✗ O(Lmax) expected

[4] ✗ ✓ ✓ ✓ ✗ O(L) w.h.p.

[16] ✓ ✗ ✓ ✗ ✓ O(n2)

[12] ✓ ✗ ✗ ✓ ✗ r(G) + mtree(G) + 1

[9] ✓ ✓ ✗ ✗ ✓ O(Ln2)

This paper ✓ ✓ ✓ ✓ ✗ O(n2)

leaders each of which is associated with a stretch, a structure that we introduce
in this paper. A stretch is a sequence of adjacent border nodes with a head and a
finite count that summarizes a relevant geometric property of the nodes forming
the stretch1. Stretches go through a stretch expansion phase in which stretches
expand to merge with other stretches. Stretches operate independently and asyn-
chronously until termination is detected at which point either one stretch remains
on the outer border and its head is elected as the leader or a finite number of
symmetric stretches remain on the outer border in which case their heads are the
candidate leaders. After the candidate leaders are determined, the solution pro-
ceeds as in [16]. Candidate leaders grow trees that are then compared to break
symmetry. If breaking symmetry is not possible, then we show that deterministic
leader election is not possible. Unlike [16], in which candidate leaders are adja-
cent, in our setting, candidate leaders are on the outer border and coordinating
their actions for tree comparison requires more care. Our solution assumes com-
mon chirality but does not require particle movement. Other solutions that do
not assume common chirality use particle movement [16] or particle movement
together with stronger assumptions on the scheduler [9] to agree on chirality.
Emek et al. [9] showed that the results of this paper, which were previously
reported in a brief announcement, can be used (as a subroutine) in develop-
ing a deterministic leader election algorithm that always succeeds in finding a
leader. They use the strong scheduler model which is strictly stronger than our
model. They proposed an interesting deterministic algorithm that always elects
a unique leader. The solution takes advantage of particle movement and the
strong scheduler.

1 We should note here that the concept of a border node is a logical construct intro-
duced by this paper and is different from particles.

Stationary and Deterministic Leader Election 25

The rest of the paper is organized as follows. Section 2 presents the system
model. Section 3 gives an overview of our solution. Section 4 presents the leader
election algorithm on the outer border. Section 5 presents the algorithm for elect-
ing a unique leader or determining that the system has symmetry that prevents
deterministic leader election. Section 6 concludes the paper.

2 System Model

The geometric Amoebot model [5] is an amoeba-inspired model for pro-
grammable matter, in which anonymous particles with finite memory occupy
cells in a hexagonal lattice. We assume that particles have the same sense of
rotational direction (chirality). In the model, particles can occupy one cell (con-
tracted) or two cells (expanded) and no cell can be occupied by more than one
particle. Without loss of generality we consider a system in which each particle
initially occupies one cell. Since our leader election algorithm does not involve
any expansion, each particle has six ports ordered clockwise from port 0 through
port 5, one port on each of the adjacent cells. The ports are used to communicate
with other particles in adjoining cells and to sense if an adjacent cell is occupied
by another particle or is empty. A communication edge between two particles
consists of a pair of corresponding ports. For example, between cells A and B in
Fig. 1, port 3 of A and port 4 of B form a communication edge between A and B.
Since we are considering a system of contracted particles, there is a unique edge
between any two adjacent particles. Two adjacent particles know the port num-
bers that form the edge between them. Particles communicate by writing to their
local memory and reading the local memory of adjacent particles. These actions
are atomic, but a particle cannot read the memory of adjacent particles and write
to its own memory in one atomic step. Reading memory of adjacent particles and
writing to local memory allows for a simple message passing between particles
in which adjacent particles can have a sequence of distinct messages using an
alternating bit or a finite sliding window protocol [2]. We assume that the system
graph whose vertices are the particles with edges between vertices corresponding
to adjacent particles is connected, but, unlike [16], we do not assume that the
graph is simply connected.

In the algorithms we present, we introduce six virtual nodes for each particle,
one node per port, ordered clockwise from 0 to 5. These nodes are represented
in Fig. 1 by black dots at the vertices of the cells occupied by the particle. Port
i is on the edge between node i − 1 mod 6 and node i. It follows that for two
adjacent particles, two nodes of one particle overlap with two nodes of the other
particle. We treat these overlapping nodes as one and implicitly assume in the
algorithm that the two adjacent particles treat them as such. For example, in
Fig. 1, node 3 of A overlaps with node 5 of B and node 4 of A overlaps with
node 4 of B. When running an algorithm that requires node 3 of A to send a
message to the next node in clockwise order on the border, A sends a message B
requesting that the node corresponding to node 3 of A (node 5 of B) sends the

26 R. A. Bazzi and J. L. Briones

Fig. 1. Particle system surrounded by unoccupied cells

message to the next node (on the border) in the clockwise direction and B will
send the message to its own node 6. In the pseudocode we present, we omit the
details of this handover and treat each node including the overlapping nodes as
independent.

Nodes execute steps when they are activated by the scheduler. Nodes can be
activated in any order and a node can be activated any finite number of times
before another node is activated. In a step, a node can read the local memory
of adjacent nodes, do some internal computation or write to the memory of
adjacent nodes, but cannot in one atomic step read and write to the memory of
adjacent nodes. A round is a sequence of steps in which each particles executes
at least one step. We measure the complexity of the algorithms in terms of the
number of rounds that they require.

3 Leader Election: Overview

The algorithm has two main phases. In the first phase, a small number of candi-
date leaders (1, 2, 3, or 6) are selected on the unique outer border of the system
and in the second phase further reduction of this number is attempted. If the
algorithm does not elect a unique leader in the second phase, we show that the
system must have symmetry that prevents deterministic leader election.

In the first phase, the deterministic leader election algorithm starts by run-
ning separate instances of a border leader election algorithm on all the borders of
the system (a node is on a border if it is adjacent to an empty cell). An instance
of a border leader election algorithm is designed to work correctly if the partici-
pants in the election consist of all nodes of a border. On the inner borders, if any,
it is guaranteed that no leader is elected. On the unique outer border, 1, 2, 3, or
6 candidate leaders are selected. Each leader candidate also has what we call a
stretch, a sequence of contiguous nodes, associated with it. If there is a unique
leader, the algorithm terminates, otherwise, the outer border has symmetry that
prevents this phase from electing a unique leader. This initial phase is the more
involved phase of the algorithm and is done in a sequence of phases that are not

Stationary and Deterministic Leader Election 27

strictly synchronized. It is the phase that allows us to deal with systems with
holes. Unlike the relatively simple, and elegant, erosion phase of [16], our first
phase requires subtle coordination between particles on the outer border. In the
second phase, the candidate leaders attempt to further reduce their numbers. We
use the tree comparison approach of [16]. Each particle with a leader node tries
to recruit as many particles as it can to form a tree with the particle itself as the
root of the tree. After all particles in the systems have joined a tree, each root
compares its tree to the tree of the root to its right on the outer border accord-
ing to an order relation. Every candidate leader then shares the results of these
comparisons will all other candidate leaders on the border. If the results of all
these comparison are equality, then there is symmetry in the system and deter-
ministic leader election is not possible. If the result of one of the comparisons is
inequality, then one or more candidate leaders are eliminated and the process is
repeated a constant number of times until either there is one unique remaining
leader or there are multiple leaders who are all tied in the tree comparison. If
there is a unique leader, we are done, otherwise, there is symmetry that prevents
deterministic leader election. We should note that the tree comparison requires
more coordination in our case because the candidate leaders are not adjacent as
is the case in [16].

4 Leaders on the Outer Border

This phase operates in a sequence of stages that are not strictly synchronized.
The first two stages identify border nodes and execute an initial labeling of
border nodes. The other two stages, stretch expansion and termination detection
are more involved.

4.1 Border Nodes and Vertex Labeling

1. Identifying border nodes. In the initialization phase, each particle senses
its surrounding to determine if one or more cells around it are unoccupied.
A particle can be on more than one border, but each node can be on at most
one border. In this step, the nodes of the particle that are adjacent to an
unoccupied cell are identified and their successors and predecessors on the
border are identified. Border nodes that are overlapping between adjacent
particles are also identified (nodes 3 and 5 in Fig. 1 for example). These
overlapping nodes are treated as one node in what follows.

2. Initial vertex labeling. Each particle labels its nodes with a unary label
which is +1 for border nodes that belong to only one particle and −1 for
border nodes that are shared between adjacent particles (Fig. 2).

28 R. A. Bazzi and J. L. Briones

Fig. 2. Vertex label-
ing and initialization
of stretches

Fig. 3. Intermediate
step with two stretches
remaining on the outer
border

Fig. 4. Final configura-
tion: termination detected
on the outer border

Algorithm 1. Stretch Expansion
1: function AttemptExpansion()
2: � s and s′ are two adjacent stretches. s′ is to the right of s.
3: if s.count > 0 ∧ s > s′ ∧ s.count + s′.count ≤ 6 then
4: Merge(s, s′)
5: else if s =lex s′ ∧ s.count = 1, 2, 3, or 6 then
6: DetectTermination() � initiate termination detection

7:
8: function Merge(s, s′)
9: merge pending ← true

10: send MERGE REQUEST message to s′

11: if MERGE ACK message received then � ack can only be from s′

12: s.tail.successor ← s′.head � Link s′ to s
13: s′.head.predecessor ← s.tail
14: s.count ← s.count + s′.count � s′ is no longer a leader candidate
15: s′.count ← 0
16: merge pending ← false
17: else if MERGE NACK message received then � nack also from s′

18: merge pending ← false

4.2 Stretch Expansion

After labeling each node on the outer border, nodes initialize stretches and start
stretch expansion. A stretch is a sequence of contiguous nodes. Initially, all nodes
on the outer border are stretches of size 1 with a counter equal to their unary
label. After stretch initializations, each border (inner or outer) will be completely
covered by stretches. The leftmost node in a stretch is considered the leader (or
head) of the stretch. The rightmost node in a stretch is called the tail of a
stretch. Within a stretch, each node has a predecessor and a successor pointer
that point to the successor and predecessor nodes within the stretch. The leader
node’s predecessor pointer is null and the tail node’s successor pointer is null.
Every other node in the stretch points to its predecessor and to its successor.
The leader of a stretch maintains a counter which is equal to the sum of the
unary labels of the nodes in the stretch. The counter value never exceeds 6.

Stationary and Deterministic Leader Election 29

Figures 3 and 4 illustrate stretches. The node with the integer value is the
head with the stretch count and the tail is the node with a diamond. We note
here that the sum of all counters of all stretches on the outer border is guaranteed
to be equal at all times to +6. The sum is −6 on each inner border (if any).

Stretches interact with one another and are eliminated through stretch expan-
sion. Stretches can expand by merging with other adjacent stretches to their right
(clockwise). This is shown in Algorithm 1. When two stretches merge, the leader
of the stretch on the left (s in the algorithm) becomes the leader of the resulting
stretch and its new count is the sum of its old count and the count of the stretch
being merged into. A merge is allowed only if the sum of the two counts is less
than or equal to 6. In the algorithm s > s′ means that the count of s is larger
than that of s′ or the two counts are equal but s is lexicographically larger than
s′ (the sequence of unary labels of s viewed as a string is lexicographically larger
than that of s′). To avoid deadlocks, we require that s > s′ for the merge to
occur. For s to merge with s′, s must receive an explicit ack message from s′,
at which point the merge is executed, or an explicit nack, at which point a new
attempt at stretch expansion can be made. The code does not explicitly show
the sending of ack and nack messages. The rule is very simple. Each stretch head
maintains a boolean variable merge pending to indicate if it has a pending merge
request. If a stretch has a pending merge request, it rejects every merge request
it receives, otherwise it accepts the merge request. We can show that before
termination is detected (see below), there will always be one stretch that does
not reject a merge request, thereby ensuring progress. If the condition for merge
does not hold, and s and s′ are lexicographically equal and have a count of 1, 2,
3, or 6, then termination detection is initiated. In fact, in this case, it is possible
that two, or more, adjacent, lexicographically equal stretches (and hence geo-
metrically congruent), encompass the entire outer border in which case leader
election would not be possible on the outer border. A stretch that is being com-
pared lexicographically to another stretch will not necessarily refuse the merge
request but will do CleanUp() (Algorithm 2) before accepting the request.

Lexicographic comparison is done by iteratively comparing the unary labels of
the nodes of each stretch, starting with the head and finishing with the tail. This
process is driven by the leader of s who repeatedly requests the next unary label
of a node in its stretch and requests from the leader of s′ the next unary label of a
the next node in s′ using the RetrieveNextLabel() function (Algorithm2).
If two stretches s and s′ are lexicographically equal, we write s =lex s′ After
lexicographic comparison, the CleanUp() function (Algorithm 2) removes any
auxiliary state information related to the comparison.

If s and s′ are lexicographically equal, it is possible that the outer border
consists of identical stretches that cover it completely and that there is sym-
metry that prevents further stretch expansion. To determine if this is the case,
termination detection is initiated. Termination detection is also needed if there
is a single stretch on the outer border with a count of 6.

30 R. A. Bazzi and J. L. Briones

Algorithm 2. Lexicographic Comparison: Supporting Functions
.

1: function RetrieveNextLabel()
2: � Initially all values of p.retrieved are false.
3: p ← s.head
4: while p.retrieved ∧ p �= s.tail do � Find node with non-retrieved label
5: p ← p.successor

6: if p.retrieved then � If all nodes are retrieved
7: return END OF STRETCH to s.head
8: else
9: p.retrieved ← true

10: send p.label to s.head � pass p.label to p.predecessor
11: � until it reaches s.head
12:
13: function CleanUp()
14: p ← s.head
15: while ¬ p.successor do
16: p.retreived ← false
17: p ← p.successor

Algorithm 3. Termination Detection
1: function DetectTermination()
2: terminate ← true
3: for i ← 1, 6/s.count do
4: s′ ← s
5: for j ← 1, i − 1 do
6: s′ ← s′.left � Rotate to the stretch left of s’
7: terminate ← (terminate ∧ (s′.count = s.count))

8: s′ ← s′.left
9: terminate ← (terminate ∧ (s′.count = s.count)) ∧ s′ =lex s

10: return terminate

4.3 Termination Detection

To detect termination, a stretch attempts to establish that the whole border
on which it resides is covered with k + 1 identical stretches that have the same
positive count (k = 1, 2, 3, or 6). It relies on the following theorem that can be
shown to hold for the Amoebot model:

Theorem 1 (Termination detection theorem). If there exists a sequence
of 1 + 6/c adjacent and lexicographically equal stretches whose common count is
c, c = 1, 2, 3 or 6, then the border is fully covered by these stretches and the last
stretch in the sequence is also the first stretch in the sequence.

Since the sum of all counters of stretches on each inner border is always −6,
the condition for termination detection cannot hold on any inner border and can
only hold on the unique outer border. Termination detection is done counter-
clockwise, opposite to the direction of merges (Algorithm 3). In the algorithm, s

Stationary and Deterministic Leader Election 31

Fig. 5. Merging stretches during termination detection

is a stretch with count c (c = 1, 2, 3, or 6) attempting termination detection. If
s is lexicographically identical to k/c stretches to its left, then it detects termi-
nation. In each iteration, the algorithm also checks (in an inner loop) that the
counts of the first i − 1 previously checked stretches have not changed. These
checks ensure that previously checked stretches indeed have not changed and,
therefore, if a stretch detects termination, then the termination condition indeed
holds. To implement the pseudocode by the particles at a low level, we still need
to specify how to handle: (1) overlapping termination messages and responses
and (2) merges happening during termination detection.

4.4 Overlapping Termination Detection Messages

In the discussion that follows, we assume that stretches do not merge during ter-
mination detection and we only concentrate on overlapping termination detec-
tion messages and responses. For such messages, we use a time to live (TTL)
for the message and keep track of the stretches that are traversed in a traversed
value. The TTL value specifies how many stretches the message needs to travel.
The traversed value keeps track of how many stretches the message has trav-
eled. The value of traversed is incremented every time they are handled by a
stretch head (in either direction). A recipient knows that it is receiving a mes-
sage addressed to it if the message’s TTL and traversed are equal. In addition to
the basic operation, we allow a message to not reach its destination because it
encounters an earlier condition that necessitates short-circuiting the handling of
the message. The response message has a TTL equal to the value of traversed to
ensure that the sender receives the response. Since termination detection mes-
sages have a finite TTL (no more than 6), messages originating from different
stretches will be received by their intended recipients (again we assume here that

32 R. A. Bazzi and J. L. Briones

stretches are not changing). Next we discuss how to handle stretch merges that
occur during termination detection.

4.5 Stretches Merging During Termination Detection

Since termination detection can be initiated while the stretches are still changing,
it is possible that stretches that have been checked in loop i of the algorithm
(Algorithm 3) have been merged with other stretches when loop i+1 is executed.

We consider the case shown in Fig. 5 as an example. In the upper part of
the figure, we illustrate two rounds of the termination detection loop in which A
established that A =lex A1 and then that A =lex A2. In general, it possible that
a previously checked stretch is absorbed by another stretch. In Algorithm3, we
guard against this by checking that the counters of the first i − 1 stretches are
unchanged. An unchanged counter ensures that the stretch itself is unchanged
because only stretches with positive count (1, 2, 3, or 6) initiate termination
detection, so previously checked stretches must have positive count and if a
stretch with a positive count gets absorbed by another stretch, the count of
the resulting stretch will be different from the count of the stretch that got
absorbed. Checking for counter change is straightforward. When the stretch
header of A1 handles a termination detection message addressed to A2, it checks
that the counter value in the message data is the same as its own counter value.
Otherwise, the termination detection message is short-circuited (prevented from
reaching its destination) and a response to that effect is sent to the initiator.
So, we conclude that if a message intended to A2 actually reaches A2, then all
stretches between A and A2 have not changed. Another possibility is that a
merge message has already been sent by A2 and not yet received by A1 (lower
part of Fig. 5). In this case, the termination detection message is guaranteed to
cross paths with the merge message at some node The shortcircuit predicate
will also hold and a negative response is sent back to the initiator. What makes
this work is the fact that merge messages travel to the right and termination
detection messages from an initiator travel to the left.

One last concern is whether the stretch head that initiates a termination
detection message is guaranteed to still be the head of the same stretch when
the response is sent back. This will not be the case if the stretch of the initiator
is absorbed by another stretch to its right. We argue that this cannot happen
without the termination detection message having encountered the merge mes-
sage that will eliminate the initiator. There are two cases to consider: (1) the
initiator already checked that its stretch is lexicographically equal to the stretch
to its left, or (2) the initiator has not finished checking that it is lexicographi-
cally equal to the stretch to its left. In the first case, the stretch to the left of the
initiator and that is lexicographically equal to it will not initiate a merge. The
merge can only happen if the stretch to the left of the initiator is first merged
with another stretch. In that case, the initiator message will either discover the
changed count or will encounter the merge message as explained above. In the
second case, the merge message and the initiator message will occur between the
initiator and the head of the stretch to its left. In this case the traversed value on

Stationary and Deterministic Leader Election 33

the termination detection message must be 0. If the termination detection mes-
sages encounters a merge message when the value of traversed is 0, the response
message is simply not sent.

4.6 Progress

We can show that if the condition for termination detection does not hold, two
stretches on the outer border will merge. Since the number of stretches is finite,
eventually the condition for termination detection will hold.

5 Global Leader Election

Once termination has been detected and verified on the outer border, the
stretches attempt to elect a unique leader. If there is one remaining stretch,
the particle that contains the head node of the stretch is the leader (the head
node of a stretch with positive count cannot be shared by two particles). If there
are 2, 3 or 6 remaining leader candidates, a new global leader election phase is
needed. The goal of this phase is to elect a single leader, if possible. In what
follows we assume that particles that have more than one candidate leader node
first reduce the total number of candidates by eliminating all but one of the
candidate leader nodes that they have, so all candidate leader nodes will be on
separate particles.

5.1 Trees to Break Symmetry

To elect a leader or determine that there is symmetry that prevents determin-
istic leader election, we adopt the tree-growing approach of [16]. The idea is to
have each particle containing a leader grow a tree that includes other particles
in the system with itself as the root until every particle in the system is included
in one of the trees. These trees are compared using a tree comparison operator
(implicitly defined in [16]) to break symmetry and reduce the number of candi-
dates. We refer the reader to [16] for the details of tree building and comparison.
The two crucial properties that we need and that are satisfied by the trees and
the comparison on them as defined in [16] are the following:

1. Trees and their neighborhoods are congruent (strong congruence).
If two trees are equal according to the comparison, then there is a mapping
between nodes of the two trees such that the neighborhoods of a node and
the node it is mapped to look the same. More formally, if two trees T and T ′

are equal according to the comparison then there exists a mapping I from
the set of cells occupied by T and the cells that are adjacent to those cells
(whether occupied or not) to the cells of the system such that: (1) the cell
occupied by the root of T maps to the cell occupied by the root of T ′; (2)
cells that are occupied by particles of T maps to cells that are occupied by
particles of T ′; (3) unoccupied cells map to unoccupied cells; (4) if two cells

34 R. A. Bazzi and J. L. Briones

cp1 and cp2 are occupied respectively by two particles p1 and p2 of T such
that p1 is a parent/child of p2, then I(cp1) is a parent/child particle of I(cp2);
(5) and, for every cell cp that is occupied by a particle p of T , there exists
an ordering of the 6 cells c1, c2, . . . , c6 that are adjacent to cp and the 6 cells
c′
1, c

′
2, . . . , c

′
6 that are adjacent to I(cp) such that I(ci) = c′

i.
2. Order relation on trees. The tree comparison operator defines an order

relation on trees.

The properties of the mapping are guaranteed through the use of neighborhood
codes [16]. In our setting we need more involved coordination for comparing the
trees because the leader candidates are not adjacent as in [16] and we can have
up to 6 candidates instead of 3. Also, since leaders are not adjacent, we require
a particle on a stretch to be added to the tree of its leader or the closest leader
to its left and that for equal trees stretches map to each other. This ensures that
if all trees are equal they can be mapped to one another by rotation.

5.2 Coordination for Breaking Symmetry

Comparing the trees and reducing the number of leader candidates might take
more than one iteration (phases) to conclude and coordination between the
leader candidates is needed to be able to proceed from one phase to the next.

A leader candidate can send a message to all other candidates by setting a
TTL equal to the number of candidates and sending the message in one direction
around the border. Once the sender receives the message back with TTL =
traversed, it knows that every other candidate has received its message. This is
not enough to go from one phase to the next. What is needed is the knowledge
that all leader candidates have finished the previous phase. This can be easily
established once an end-of-phase message is received from every other candidate
(the number of candidates in a given phase is known). There is no concern
for messages from different candidates to be mixed up because end-of-phase
messages received by a particular candidate will have different TTLs depending
on the initiator of the message. So, if there are k leader candidates and every one
of them sends an end-of-phase message with TTL equal to k, a leader candidate
knows that all other candidates finished the previous phase once it receives end-
of-phase messages with TTLs 1 through k.

After growing the trees, each leader compares its tree to that of the leader
to its right. The result of the comparison can be <, =, or >. Every leader sends
the results of its comparison to all other leaders. Once all leaders have received
results of comparisons from all other leaders, they send a message to every
other leader to that effect. If all comparisons results are =, we show below that
the system’s symmetry prevents deterministic leader election. If one comparison
result is not =, then we would like all leaders to agree on some leaders to be
eliminated. The leader candidates to be eliminated are determined as follows.
Each leader calculates maximal non-descending sequences of leaders ordered in
clockwise direction by the results of tree comparisons. The candidates that are
eliminated are those candidates that are the leftmost elements of those sequences.

Stationary and Deterministic Leader Election 35

For example, if the results of the comparison starting from a given leader l1
are: l1 = l2, l2 = l3, l3 < l4, l4 > l5, l5 = l6, and l6 < l1, then l5 should
be eliminated because it is the leftmost element of the maximal non-descending
sequence l5 = l6 < l1 = l2 = l3 < l4. All leader candidates calculate the same non
descending sequences and choose the same candidates to be eliminated (defined
by relative TTL distance). So, at the end of this step we know that either the
number of leaders will stay the same and there is symmetry or that the number
of leaders will be reduced. We do not have to worry about all leaders being
eliminated because the tree comparison operator induces a total order and the
largest tree will not be eliminated. Once a leader elimination phase ends, the
remaining leaders resume from the tree-growing phase and after the trees are
grown, they proceed to the tree comparison phase. This process continues until
no further candidates can be eliminated at which time either there is a unique
leader in the system or there are multiple leaders left whose trees are strongly
congruent.

5.3 Impossibility of Leader Election with k-symmetry (k > 1)

If the algorithm terminates with k > 1 leaders whose trees are strongly congru-
ent, we show that deterministic and stationary election of less than k candidate
leaders is not possible in the system. The idea of the proof is simple. We divide
the particles into k groups of equal size, say l, corresponding to the particles in
each tree. We choose one of the trees, say T1, and we denote the j’th particle
in the depth order traversal of T1 with p1j , 1 ≤ j ≤ l. For the other trees, we
number the particles so that the j’th particle of a tree is the image of the j’s
particle of T1 under the strong congruence mapping. We give a schedule of acti-
vations of the particles so that after any number of rounds, particles pij has the
same state as particle pi′j , 1 ≤ i, i′ ≤ k and 1 ≤ j ≤ l. It follows that if any
particle in one group is a leader, k − 1 other particles in the other groups are
also leaders. The schedule is the following: all particles read the memory of their
neighbors, then all particles write to their own memory and the cycle repeats
any number of times. It is straightforward to show that if the state of pij and
pi′j , 1 ≤ i, i′ ≤ k and 1 ≤ j ≤ l, are the same at the beginning of a cycle of
activations, their states will be the same at the end of the cycle.

6 Conclusion

In this paper we established the conditions under which stationary and deter-
ministic leader election is possible in generally-connected particle systems with a
weak scheduler and in which particles have common chirality: (1) leader election
is possible if and only if the system does not have k-symmetry (k = 2, 3, or 6)
(the only possible symmetries greater than one in the hexagonal grid), and (2) if
the system has k-symmetry (k = 2, 3, or 6), then the election of k candidate lead-
ers is possible and the election of less than k leaders is not possible. The paper
leaves open a number of interesting problems. If we allow a strong scheduler,

36 R. A. Bazzi and J. L. Briones

then leader election can be possible in the presence of k-symmetry (k > 1) even
without movement. For example, in a system of two adjacent particles (a system
with 2-symmetry), each particle can have a flag, initially false, to indicate if it
is the leader. The first particle to be activated can atomically read the flag of
the other particle and declare itself a leader if the other particle is not already a
leader. This is clearly more than what can be achieved in the presence of a weak
scheduler. Characterizing what is possible to achieve in the presence of a strong
scheduler but without movement is an open problem. Another interesting open
problem is deterministic and stationary leader election for systems with a weak
scheduler and no common chirality; we conjecture that the election of a finite
number of leaders is possible by building on the results of this paper.

Acknowledgements. We would like to thank Shay Kutten for helpful discussions
about the topic of this paper and for suggesting the example with two particles that
we used in the conclusion section.

References

1. Abu-Amara, H.H.: Fault-tolerant distributed algorithms for agreement and elec-
tion. Ph.D. thesis, University of Illinois, Champaign, IL, USA (1988)

2. Afek, Y., Brown, G.M.: Self-stabilization of the alternating-bit protocol. In: SRDS
1989, pp. 80–83. IEEE (1989)

3. Cannon, S., Daymude, J.J., Randall, D., Richa, A.W.: A Markov chain algorithm
for compression in self-organizing particle systems. In: PODC, pp. 279–288. ACM
(2016)

4. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved
leader election for self-organizing programmable matter. In: Fernández Anta, A.,
Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS,
vol. 10718, pp. 127–140. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-72751-6 10

5. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Stroth-
mann, T.: Brief announcement: amoebot–a new model for programmable matter.
In: SPAA, pp. 220–222. ACM (2014)

6. Derakhshandeh, Z., Gmyr, R., Porter, A., Richa, A.W., Scheideler, C., Strothmann,
T.: On the runtime of universal coating for programmable matter. In: Rondelez,
Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 148–164. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-43994-5 10

7. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal coating for programmable matter. Theoret. Comput. Sci. 671, 56–68 (2017)

8. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R.A., Richa, A.W., Schei-
deler, C.: Leader election and shape formation with self-organizing programmable
matter. Comput. Mol. Program. DNA 21, 117–132 (2015)

9. Emek, Y., Kutten, S., Lavi, R., Moses Jr., W.K.: Deterministic leader election in
programmable matter. In: ICALP, 9–12 July, pp. 140:1–140:14 (2019)

10. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile
robots. Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)

11. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theoret. Comput. Sci. 407(1–3),
412–447 (2008)

https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-319-43994-5_10

Stationary and Deterministic Leader Election 37

12. Gastineau, N., Abdou, W., Mbarek, N., Togni, O.: Distributed leader election and
computation of local identifiers for programmable matter. In: Gilbert, S., Hughes,
D., Krishnamachari, B. (eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 159–
179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14094-6 11

13. Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio net-
works. In: SODA, pp. 748–766 (2013)

14. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput.
88(1), 60–87 (1990)

15. Karpov, V., Karpova, I.: Leader election algorithms for static swarms. Biol.
Inspired Cogn. Archit. 12, 54–64 (2015)

16. Luna, G.A.D., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape for-
mation by programmable particles. In: 21st International Conference on Principles
of Distributed Systems, OPODIS 2017, pp. 31:1–31:16 (2017)

17. Lynch, N.A.: Distributed Algorithms. Elsevier, Amsterdam (1996)
18. Peleg, D.: Time-optimal leader election in general networks. J. Parallel Distrib.

Comput. 8(1), 96–99 (1990)
19. Styer, E.F.: Symmetry Breaking on networks of processes. Ph.D. thesis, Georgia

Institute of Technology, Atlanta, GA, USA (1989)

https://doi.org/10.1007/978-3-030-14094-6_11

Robust Privacy-Preserving Gossip
Averaging

Amaury Bouchra Pilet1,2(B), Davide Frey1, and Francois Taiani1

1 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
Amaury.Bouchra-Pilet@IRISA.fr

2 École Normale Supérieure «Ulm», Paris, France

Abstract. Decentralized solutions are emerging as promising candi-
dates to overcome the privacy risks associated with centralized data
services. Such solutions suffer however from their own range of privacy
vulnerabilities, arising from untrusted and malicious peers. In this paper,
we consider the emblematic problem of privacy-preserving decentralized
averaging, and propose a novel gossip protocol that exchanges noise for
several rounds before starting to exchange actual data. This makes it
hard for an honest but curious attacker to know whether a user is trans-
mitting noise or actual data. Our protocol and analysis do not assume
a lock-step execution, and demonstrate improved resilience to colluding
attackers. We prove the correctness of this protocol as well as several pri-
vacy results. Finally, we provide simulation results about the efficiency
of our averaging protocol.

1 Introduction

The recent evolution of applications like the Internet of Things has fostered
interest in protocols that enable large networks of devices to perform collabo-
rative computations on their own data. For these protocols, privacy protection
acquires paramount importance, since the data being processed may be personal
or otherwise confidential, e.g. location or medical data. While it is possible to
simply centralize data processing, centralization raises privacy and durability
issues. The provider of a centralized service has access to the personal data of
all users and may cut off the service at any time. To prevent these issues, several
authors have proposed decentralized solutions to the problem of data aggrega-
tion [8,20], including peer-to-peer protocols that compute the average of values
initially held by individual peers, an important topic in a range of statistical and
machine-learning applications [7].

These peer-to-peer solutions remove the need for a central server, and the
risk of being spied by the server’s operator or by third parties that may obtain
access to server-side data. While this goes in the direction of privacy protection,
these algorithms also have serious disadvantages for privacy. They require users
to send information to unknown peers, which may allow not only big companies
or governmental agencies, but also criminal organizations or “curious” people to
c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 38–52, 2019.
https://doi.org/10.1007/978-3-030-34992-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_4

Robust Privacy-Preserving Gossip Averaging 39

access personal data rather easily, without having to compromise heavily secured
servers and communications.

In order to overcome this central weakness of peer-to-peer averaging proto-
cols, several algorithms have been proposed that allow gossip averaging while
protecting their users’ privacy [1,2,8,26]. These algorithms unfortunately suffer
from a number of limitations that expose them to some eavesdropping attacks [1],
constrain how peers must coordinate their exchanges [8,23,26], or require the use
of costly cryptographic primitives such as homomorphic encryption [19].

In this paper, we propose to overcome these limitations with a novel peer-to-
peer protocol for decentralized averaging. Following earlier solutions [1,26,28],
our approach injects randomized values into the averaging process while ensur-
ing deterministic convergence to the exact wanted value. In contrast to earlier
attempts, the successive values exposed by an individual node in our protocol’s
early stage are independent of this node’s initial value. Contrary to [26], we also
do not assume a fully lock-step execution model to implement our protocol and
perform our analysis.

Our design relies on a random peer sampling (RPS) service [21]. For our
algorithm to attain its goals in a context where the RPS service itself may be
attacked, this RPS service need to be resilient to attacks, especially attacks
trying to isolate a specific peer, surrounding it by malicious peers. One example
of such an attack-resilient RPS protocol is Brahms [4].

Overall, the random injection we present combined with random peer sam-
pling removes the need for peers to tightly coordinate their actions, allows
peers to protect their privacy without having to make explicit privacy protec-
tion requests to others, and improves resilience to attacks involving the use of
numerous malicious peers controlled by an attacker. We evaluate our protocol
by first proving its correctness as well as several privacy properties. We present
simulation results in combination with two different peer sampling protocols.

2 System Model and Problem

System Model. We consider an asynchronous decentralized system consisting
of a large number of peers {p1, . . . , pi, . . . , pN} that can communicate through
message passing. We use the terms “node” and “peer” interchangeably throughout
this paper. We assume the network is reliable (messages do not get lost), but
we do not make any assumption regarding the synchrony of the network or of
the execution at different peers. Messages may take an arbitrary (albeit finite)
time to arrive, while the protocol’s execution evolves independently at each peer.
Peers synchronize only in pairs for the duration of a message exchange. A node
involved in a message exchange with another node simply waits for a response
or for a failure-detection timeout before engaging in other exchanges.

We assume peers have access to a random peer sampling service (RPS for
short) [21] that provides each individual peer with a sample stream of other
peers present in the network. For our analysis, we assume this RPS protocol is
resilient to attempts to bias its results by individual peers [4].

40 A. Bouchra Pilet et al.

1 Function gAvg(val):
2 while true do
3 peer ← randomPeer()
4 sendTo(peer, val)
5 rcv ← recvFrom(peer)
6 val ← val+rcv

2

7 Function answer():
8 rcv ← recvFrom(peer)
9 sendTo(peer, val)

10 val ← val+rcv
2

Algorithm 1. Non-private Gossip Averaging

The Private Averaging Problem. Each peer pi possesses a local initial value val i
and wants to compute the average value of all the peers in the system 1

N

∑
i val i,

while giving other peers as little information as possible regarding its own local
value. We consider honest but curious attackers in the sense that they observe
exchanged values, but they do not inject fake values or try to prevent the algo-
rithm from computing a correct result.

We consider the two kinds of attackers defined in [1], possibly coexisting in a
single entity. Edge attackers eavesdrop on data exchanged by other peers; they
may, for example, try to obtain a user’s value by retrieving all the values s/he
exchanges with other users. Node attackers use a set of peers under their control
to get information from other peers.

Algorithm1 [20] describes the classical approach to decentralized averaging
(which does not protect privacy). Each peer starts with an initial value. Pairs
of peers regularly exchange their local values (lines 4–5) and replace them with
their average (line 6)—the function answer is invoked when receiving a message
sent using sendTo. While this method ensures eventual convergence of all values
to their average, provided that the network’s graph is connected, peers have to
expose their local values to potential strangers, thus raising critical privacy issues
if this value is sensitive and other peers cannot be fully trusted. Our private-
averaging problem consists in computing the same average while hiding initial
values from edge and node attackers.

3 Privacy-Preserving Averaging

We address private averaging with a protocol that uses random values to protect
the initial values of peers. Unlike some existing work [26], our protocol does not
require synchronous lock-step rounds. Moreover, a peer can protect its value
without any of its neighbors doing so and without explicitly informing anyone.
In particular, we can have a mix of peers using privacy protection and peers not
using it.

Robust Privacy-Preserving Gossip Averaging 41

1 Function privGAvg(val , privLvl):
2 err ← 0
3 for i = 0 to i = privLvl − 1 do
4 peer ← randomPeer()
5 fakeVal ← rand()
6 err+ = val − fakeVal
7 sendTo(peer, fakeVal)
8 rcv ← recvFrom(peer)
9 val ← fakeVal+rcv

2

10 val+ = err
11 while true do
12 peer ← randomPeer()
13 sendTo(peer, val)
14 rcv ← recvFrom(peer)
15 val ← val+rcv

2

16 Function answer():
17 rcv ← recvFrom(peer)
18 if i < privLvl then
19 fakeVal ← rand()
20 err+ = val − fakeVal
21 sendTo(peer, fakeVal)
22 val ← fakeVal+rcv

2

23 sendTo(peer, val)
24 val ← val+rcv

2

Algorithm 2. Private Gossip Averaging

3.1 The Algorithm

The solution we proposed is described in Algorithm 2. (As in Algorithm1 the
function answer is called upon receiving a message.)

Our proposal consists in adding a simple privacy-generation phase to the
averaging algorithm. The privacy-generation phase (lines 2–10) behaves exactly
in the same way as the averaging protocol. However, a peer performing this phase
sends a random value fakeVal (line 7) instead of its current value to the selected
peer. The difference between its current value and the sent random value being
accumulated in a local error variable err (line 6).

After having performed the desired number of random exchanges (determined
by the protocol parameter privLvl at line 3), the peer sums its accumulated error
variable and its original value (line 10), and then it continues with the original
averaging protocol by using this sum as its value (lines 11–15). Furthermore,
all communication between peers is encrypted using standard techniques. So
we assume that an eavesdropper may only know the time, the sender and the
receiver of any communication, not its content.

Different termination conditions can be used with this algorithm: time based,
communication-round based, value-change based, etc. The best termination con-
dition being dependent on the considered use-case, and this paper being about

42 A. Bouchra Pilet et al.

private gossip averaging in general, we do not suggest any specific condition for
our algorithm.

An example of the execution of the algorithm is shown in Fig. 1 on a toy
example of four peers with privLvl = 1, assuming a static synchronous network
for simplicity’s sake. Each peer is represented by a circle with two numbers. The
top number is the current value val held by the peer: its initial value at the start
of the protocol (Step 1, top-left corner), which should converge arbitrarily close
to the network’s average (here 6) as the protocol progresses. (In this particular
example, peers do converge to the exact average value at Step 6, bottom-right
corner.) The bottom number if the error err progressively accumulated by each
peer.

During the first two rounds (shown at Steps 2 and 3), the peers execute the
privacy-generation phase of Algorithm2. During this phase, peers exchange fully
random values, while accumulating the resulting error in their local err variable.
At Step 4, each peer executes line 10 of Algorithm 2 and corrects its initial value
val with the error accumulated so far. Note how at each step the overall average
value of the network remains 6. Finally, at Steps 5 and 6, our protocol executes
a standard decentralized averaging protocol with the corrected values.

Fig. 1. Four peers executing our algorithm

3.2 Peer-Sampling Adjustments

As mentioned above, we assume a Byzantine-resilient peer sampling protocol [4].
This ensures that peers can select their communication partner from a uniformly
random sample of the network. However, a malicious peer could still try to
contact and exchange information with a target peer by bypassing the peer
sampling mechanism. For this reason, we introduce an adjustment to connection
establishment. When a peer receives a connection request from another one, A, it
never answers directly. Rather, it waits for another peer B’s contact and forwards
to it the information received from A. Then it replies to A with the response
received from B. This simple mechanism makes it difficult for an attacker to
target a peer in order to monitor its exchanges.

Robust Privacy-Preserving Gossip Averaging 43

4 Evaluation

We evaluate the performance of our averaging algorithm by means of a theoret-
ical analysis and an experimental evaluation of its performances in conjunction
with different peer sampling protocols.

4.1 Averaging Correctness

We start by proving that, in a classical gossip averaging algorithm as proposed
in [20], if some of the values exchanged by peers are replaced by random val-
ues and, if later, an appropriate correction is done on the value of peers, then,
the algorithm will converge the same way as without these operations. Let us
consider a classical theoretical continuous-time model of gossip averaging where
each peer is a vertex of a complete graph K(V) (which we use to capture the
RPS protocol we rely on). For conciseness, we note in the following xi(t) the
value of the variable val i of peer pi at time t, and yi,k is the kth value fakeVal
used by peer pi.

Theorem 1 (Correctness Theorem). Let pi ∈ {p0, . . . , pk} ⊆ V be a
peer, and let us replace its value, xi(t), by the values yi,0; . . . ; yi,ri

at times
ti,0; . . . ; ti,ri

(i.e. ∀0�i�kxi(ti,j + ε) = yi,j). If we later add (at time t∗) the value∑ri

j=0(xi(ti,j) − yi,j) to xi(t∗) (i.e. ∀0�i�kxi(t∗ + ε) = xi(t∗) +
∑ri

j=0(xi(ti,j) −
yi,j)), then, executing a classical gossip averaging algorithm on this graph will
ultimately make every vertex’s value converge to the average of all initial values.

Proof. Let us consider a single peer pi and a single replacement occurring at
time ti,j , j ∈ [0, ri]. In this transformation, we remove xi(t)−yi,j from the value
of xi. This modifies the average of all values into avg(t+ ε) = avg(t)− xi(t)−yi,j

|V | .
Since averaging operations have no effect on the average value, if we later, at
time t′, add xi(t)− yi,j to the value of any peer, we restore the original value of
avg . Iterating this reasoning over all values of i and j proves the theorem. ��

Now we know that we can replace the value of a peer by a random value
an arbitrary number of times. The averaging algorithm will still work, provided
that we later add to the value of our peer the sum of all the differences between
the value our peer had at the time of replacement and the random value. The
correctness of our algorithm follows trivially.

Property 1 (Correctness property). If the Gossip Privacy Protector algo-
rithm is applied by any number of peers at the start of a classical gossip averaging
algorithm, this does not change the value to which all peers will converge.

The proof is a simple application of our Correctness Theorem.

44 A. Bouchra Pilet et al.

4.2 Attack Resilience

We now show that our protocol has good privacy properties. We start by observ-
ing that by definition, all the random values sent by peers are independent of
each other and of the original value of the peer. We then distinguish two types
of attack: direct and indirect. Throughout the analysis, we let l (instead of
privLvl) denote the privacy level chosen by the considered peer. In addition,
we let τ = #corrupted peers

#peers represent the fraction of corrupted peers. Other than
that, we use the same notation as in the algorithm (with time indexes added).

Direct Attacks. In direct attacks, the attacker tries to learn the value of a
peer by communicating directly with it. We prove two properties in this context.

Property 2 (Deterministic Privacy Property)
An attacker needs to get all the random values sent to compute the exact original
value of the peer.

Proof. We will use the same notation as in the algorithm (with time indexes
added, and l instead of privLvl). The first non-random value is exactly the
value exchanged at the l-th round, val l.

vall = vall−1 + err l−1 =
fakeVall−1 + rcv l−1

2
+

l−1∑

i=0

(vali − fakeVali)

vall =
fakeVall−1 + rcv l−1

2
+

l−1∑

i=1

(
fakeVali−1 + rcvi−1

2
− fakeVali

)
+ val0 − fakeVal0

vall =

l−1∑

i=0

(
rcvi − fakeVali

2

)
+ val0 =⇒ val0 = vall −

l−1∑

i=0

(
rcvi − fakeVali

2

)

We see that computing the original value from the first non-random value
requires knowledge of all the random values (and of the answers from contacted
peers). All later non-random values having even more noise from other peers and
no non-random values being transmitted before, this proves the property. ��
Property 3 (Probabilistic Privacy Property)
If the attacker lacks k random values (but not necessarily the associated answers),
the best s/he can do is take their expected values (if known), with a level of
uncertainty at least as large as that of guessing the value of

∑k
i=0 fakeVali

2 .

Proof. Since peers generate independent random values, it is impossible to guess
anything from them, except by using their relation to val l.
Since val0 = val l − ∑l−1

i=0

(
rcvi−fakeVali

2

)
, if the attacker lacks k values, s/he

has to guess them without any hint. Therefore, the best s/he can do consists in
taking their expected values and nothing will give her a lower level of uncertainty
than the natural level of uncertainty of these random variables. ��

From the Deterministic Privacy Property, we can derive that, if the peer
sampling is effectively random, the chance that an attacker will get the exact
original value of a peer is �τ l. See Fig. 2a for a plot.

Robust Privacy-Preserving Gossip Averaging 45

Fig. 2. Success probabilities for direct and indirect attacks (upper bounds). l: privacy
level, τ : fraction of corrupted peers

Indirect Attacks. In indirect attacks, the attacker exploits information
exchanged between the target and other peers. For example, the attacker may
guess the value of a peer p by observing that p communicates with another peer
q whose value changes from val ′q to val ′′q as a result of the exchange. This is
only possible if the attacker is both a node and an edge attacker. The attacker
requires fake peers to obtain the values of nodes, and eavesdroppers to know
which values s/he needs. Also, note that the attacker needs to get values older
than the ones s/he wants to obtain. Moreover, the attack will only work if all
involved peers, but the target, have ended their privacy-generation phases since
values sent by a peer generating privacy are all independent of each other. This
implies that, if all peers start the process at the same time, it is unlikely that
these attacks will be possible. Except for the very simple case of spying the tar-
get peer’s neighbors, this kind of attack will probably be very impractical for
most, if not all, cases on a real network.

Indirect attacks rely on the following principle: if peer i exchanges values
with peer j at time t, it is possible to compute the exchanged values by knowing
vj(t) (the value sent by j) and vj(t+1) = vi(t)+vj(t)

2 . This attack can be iterated:
if the attacker lacks one, or both, of vj(t) and vj(t+1), s/he may get it using the
same attack. We call this a Higher Order Indirect Attack, the base case being a
First Order Indirect Attack.

First order indirect attacks give the attacker a second chance to get a value
with respect to a direct attack, but require two contacts instead of one. This
increases the upper bound of the probability of an exact evaluation from � τ l

to � (τ + (1 − τ)τ2))l = (τ + τ2 − τ3))l. See Fig. 2b for a plot.
Higher-order indirect attacks are very unlikely in practice. But from a theo-

retical point of view, they can be very powerful. We will prove two results show-
ing the limitations of these attacks. We consider a node-edge attacker which
is a universal eavesdropper (s/he can see all messages). The attacker may take
an arbitrarily long (finite) time to get the desired information and may have
to use arbitrarily old information. We state our first theorem under Assump-
tion 1, which holds with high probability in the presence of a uniform random

46 A. Bouchra Pilet et al.

Fig. 3. Lower bounds on survival and escape probabilities. τ : fraction of corrupted
peers, θ fraction or unsafe edges

peer sampling over an infinite set of peers. The theorem states that as long
as the assumption holds, the target can survive a higher-order indirect attack
from a universal eavesdropper. We therefore refer to it as Higher Order Survival
Theorem. We plot the theorem result in Fig. 3a.

Assumption 1. There is neither a pair of consecutive exchanges between the
same two peers, nor a pair of exchanges with one (or both) peer(s) in common
separated by only one exchange.

Theorem 2. (Higher Order Survival Theorem)
As long as Assumption 1 holds, and τ < 1/2, a universal attacker will never

obtain the value of the target peer with probability � 1 − 1−2τ(1−τ)−
√

1−4τ(1−τ)

2(1−τ)2 .

Proof. We model the tree of exchanges induced by the higher order attack by
a Galton–Watson process. The number of descendants of an individual is the
number of exchanges made just before and after the exchange corresponding to
the individual which are not made with a corrupted peer. This gives the following
probabilities: p0 = τ2, p1 = 2τ(1 − τ), p2 = (1 − τ)2. The average number of
descendants is m = p1+2p2 = 2τ(1−τ)+2(1−τ)2. Let us analyze the branching
process’ behavior as a function of τ .

m = 2τ(1 − τ) + 2(1 − τ)2 = 2τ − 2τ2 + 2 − 4τ + 2τ2 = 2 − 2τ

So m = 1 ⇔ 2τ = 1 ⇔ τ = 1/2. Since p1 = 2τ(1 − τ) = 21/22 = 1/2 < 1, the
probability of extinction in the critical case is 1.

For the super-critical case, m > 1, let us analyze the generating function.

ϕ(s) =
∑

n�0

pnsn = p2s
2 + p1s + p0 = (1 − τ)2s2 + 2τ(1 − τ)s + τ2

To solve ϕ(s) = s, we search for the roots r of the polynomial ϕ(s) − s.

ϕ(s) − s = (1 − τ)2s2 + (2τ(1 − τ) − 1)s + τ2

Robust Privacy-Preserving Gossip Averaging 47

r =
1 − 2τ(1 − τ) ± √

1 − 4τ(1 − τ)
2(1 − τ)2

, (0 � τ < 1/2, 1 − 4τ(1 − τ) > 0)

Of the two solutions, the lower one living in [1] is always

r = 1−2τ(1−τ)−
√

1−4τ(1−τ)

2(1−τ)2 (the other being always 1 for 0 � τ < 1/2). The
probability of extinction (the attacker obtains the information) in the super-

critical case is 1−2τ(1−τ)−
√

1−4τ(1−τ)

2(1−τ)2 , so, the probability of survival (the attacker

does not obtain the information) is: 1 − 1−2τ(1−τ)−
√

1−4τ(1−τ)

2(1−τ)2 . ��

The above theorem relies on a major assumption (Assumption 1) and does not
provide anything for τ � 1/2. We therefore introduce a second theorem that does
not have these limitations but that is not applicable to universal eavesdroppers.
Let θ = #unsafe edges

#edges in the sub-graph from which all corrupted peers have been
removed. We assume 0 < τ < 1 (if not, there is either no attacker or the attacker
controls the whole network) and 0 < θ < 1 (if not, we have either a universal
eavesdropper or no eavesdropper at all). In this case we have no assumption that
needs to remain valid for an extended period. Rather, the theorem states the
probability that the target will escape from the attack. We therefore refer to this
theorem as Higher Order Escape Theorem as opposed to survival. We plot the
result in Fig. 3b.

Theorem 3 (Higher Order Escape Theorem)
There is a � 1 − τ

1−θ(1−τ) probability that the attacker will never get the value
of an exchange.

Proof. This theorem relies on the fact that, if, at some time, a communication
is made via a safe edge (which the eavesdropper cannot spy), then, the attacker
will never know which peer to spy for the next step of the indirect attack. Since
we do not assume that the same peer will not be randomly selected several times,
and we only want a lower bound on the probability of success of an attack, we
will consider a worst case, where only one new exchange needs to be captured
at each step.

For the first step, the probability of the exchange not being captured is 1− τ
and then, its probability of happening on a safe edge is 1 − θ, which gives a
(1 − τ)(1 − θ) probability that the attacker will never learn the value of the
exchange. If the communication happens on an unsafe edge, then, at each step,
the chance of reaching a safe edge is multiplied by θ(1 − τ) (the previous edge
was not safe and the next peer is not corrupted). So, at step k (assuming that
the first step is 0), the probability of not having reached a corrupted peer and
reaching a safe edge for the first time at this step is θk(1− τ)k+1(1− θ). This is
a geometric series, so we can compute its sum.

En =
n∑

k=0

θk(1 − τ)k+1(1 − θ) = (1 − τ)(1 − θ)
1 − θk+1(1 − τ)k+1

1 − θ(1 − τ)

48 A. Bouchra Pilet et al.

Since θ(1− τ) < 1, we have E+∞ = (1− τ)(1− θ)
1

1 − θ(1 − τ)
=

(1 − τ)(1 − θ)
1 − θ(1 − τ)

E+∞ =
1 − θ − τ + θτ

1 − θ + θτ
= 1 − τ

1 − θ + θτ
= 1 − τ

1 − θ(1 − τ)
��

4.3 Averaging Performance

We now report on our simulations1 of a system consisting of 1000 peers with
uniformly distributed values between −100 and 100. We first evaluate the con-
vergence speed of the averaging protocol when running with a perfect peer sam-
pling (complete graph, Fig. 4a) and a Req-Pull peer sampling [3] (Fig. 4b) in
a simulator. To this end, we plot the values of 40 peers for each case omit-
ting the privacy-generation phase. We first let the peer sampling construct local
views before starting the averaging process. The time unit is a tick of c++
std::chrono::steady_clock (10−9 s on our test system).

Figure 5 shows instead the convergence time (no peers with >1% error) of the
averaging process depending on the required privacy level, with different peer
sampling protocols and network sizes. We observe that neither the peer sampling
used nor the number of nodes has great influence on the convergence time. We
see that the convergence time grows linearly with the privacy level. It is worth
noting that, in our theoretical analysis, we proved that the probability of success
of a direct attack decreases exponentially with the privacy level, compared to
the linear growth of the convergence time.

Fig. 4. Value convergence with different peer sampling protocols.

1 The code used for these experiments is available at https://github.com/ALRBP/
Private_Gossip_Average.

https://github.com/ALRBP/Private_Gossip_Average
https://github.com/ALRBP/Private_Gossip_Average

Robust Privacy-Preserving Gossip Averaging 49

Fig. 5. Convergence time versus privacy level.

5 Related Work

Several authors have tackled the problem of privacy-preserving averaging in a
decentralized setting, mostly within the automatic control community, where
this problem is known as average consensus [5,13,16,18,19,31]. But most of
these algorithms either rely on central components or assume static networks
that operate in synchronous rounds with a lock-step execution model.

For example, [13] requires a central authority that distributes concealing
factors before the beginning of the computation. Nodes then use this information
to perturb the values sent during the averaging algorithm. Similarly, [27] assumes
synchronous lock-step rounds and proposes a solution in which nodes exchange
values together with a decaying noise. Moreover, due to the nature of this noise,
the algorithm does not converge to the average in an exact sense but only in a
mean-square sense. The work in [16] considers an ad hoc network setting, and
thus also relies on an update rule that reaches all neighbors at the same time.
But unlike [27] it provides deterministic convergence to the average value.

The work in [26] presents close similarities to our approach. Each node adds
a zero-average noise to message exchanges for an independently chosen number
of steps. The paper establishes topological conditions for the effectiveness of its
privacy preservation, but this relies on the assumption that nodes communicate
with all their neighbors at each communication step. Moreover, like in most other
protocols, nodes start by exchanging their value plus some noise, whereas our
protocol only exchanges noise for several rounds and adds the actual value only
later in the process.

The work in [12] adopts an approach similar to [26] in the context of a
push-sum averaging protocol [22] but still assumes that the network evolves
in synchronous lock-step rounds. The authors of [38] further show that [26] is
vulnerable to attacks on some topologies (for example on a ring). Our approach
does not suffer from the same vulnerability thanks to its dynamic topology and
the use of encrypted communication for all exchanges.

Some authors [14,24,37] have combined noise addition with homomorphic
cryptography [11]. For example, [24] improves [27] by using homomorphic

50 A. Bouchra Pilet et al.

encryption in order to establish a confidential interaction protocol between
nodes, while [30] proposes an averaging protocol that exploits partial homomor-
phic encryption in pairwise interactions. The work in [8] applies homomorphic
encryption in an asynchronous setting, but it requires random noise to be gener-
ated by pairs of peers, which implies that a peer cannot protect its value without
collaborating with another peer that is also protecting its value. Overall, even if
partially homomorphic cryptographic starts to be viable, these approaches still
incur a computational cost that appears unsuitable for small, battery-operated,
devices. Moreover, in the case of our protocol, simple public-key encryption is
enough to protect communication against eavesdroppers.

Other authors have combined the idea of adding noise with that of state
decomposition. [35] divides each node into two virtual nodes, one that talks to
the original node’s neighbors and the other that only talks to the first virtual
node. The approach has the advantage that the attacker cannot estimate the
value with any guaranteed accuracy, but only if the target has at least one
neighbor which is not under the influence of or observable by the attacker. [1]
creates instead virtual nodes to divide the node’s original value into random
shares. But this allows attackers that control a sufficiently large sample of the
network to guess the actual value of the peer with a low level of uncertainty.
Finally, [32] considers a random-share protocol incorporating wiretap codes [36]
to reduce message overhead. This yields low message complexity but only thanks
to the use of a broadcast channel that is not available in large-scale networks.

Another recent contribution [34] proposes a hybrid architecture where a set
of servers collect data from a set of nodes and compute the average. The paper
focuses on providing nodes with heterogeneous privacy guarantees with respect
to different privacy violators. It uses noise addition and employs KL divergence
to measure a privacy preserving degree (PPD). However, it cannot compute the
precise average but just an approximation.

This is similar to what happens with differential privacy [9,10]. Converging to
a perturbed value guarantees that attacker cannot guess information about the
original data distribution from the value of the final average. But this comes at
the cost of being unable to converge to the exact average value, as proven in [29]
and in [15]. As a further example, [33] proposes a differentially private averaging
protocol with an optimization that groups node interactions to minimize network
usage, while [2] proposes a differentially private protocol that uses homomorphic
encryption in the context of k-means computation. Finally, some authors have
started to tackle the problem of dealing with dishonest nodes that lie on their
values [17]. This could be an interesting improvement for our work.

6 Conclusion

We proposed a novel protocol for privacy-preserving gossip averaging that
addresses several limitations of previous approaches. While our protocol can-
not be completely immune to attacks, we characterized its guarantees by for-
mally proving several privacy properties. Now that we have a working averaging
protocol, we plan to apply it in the context of higher-level applications such

Robust Privacy-Preserving Gossip Averaging 51

as decentralized machine-learning. Another direction consists in exploring its
relations with recent work in the context of multi-party computation [6,25].

References

1. Allard, T., Frey, D., Giakkoupis, G., Lepiller, J.: Lightweight privacy-preserving
averaging for the Internet of Things (2016)

2. Allard, T., Hébrail, G., Masseglia, F., Pacitti, E.: Chiaroscuro: transparency and
privacy for massive personal time-series clustering. In: ACM SIGMOD 2015, pp.
779–794 (2015)

3. Allavena, A., Demers, A., Hopcroft, J.E.: Correctness of a gossip based member-
ship protocol. In: Proceedings of the Twenty-fourth Annual ACM Symposium on
Principles of Distributed Computing, pp. 292–301. ACM (2005)

4. Bortnikov, E., Gurevich, M., Keidar, I., Kliot, G., Shraer, A.: Brahms: Byzantine
resilient random membership sampling. Comput. Netw. 53(13), 2340–2359 (2009)

5. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy
preserving distributed data mining. ACM SIGKDD Explor. Newsl. 4, 28–34 (2002)

6. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6_33

7. Danner, G., Jelasity, M.: Fully distributed privacy preserving mini-batch gradient
descent learning. In: Bessani, A., Bouchenak, S. (eds.) DAIS 2015. LNCS, vol. 9038,
pp. 30–44. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19129-4_3

8. Dellenbach, P., Bellet, A., Ramon, J.: Hiding in the crowd: a massively distributed
algorithm for private averaging with malicious adversaries. CoRR (2018)

9. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4_1

10. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

11. Frikken, K.B.: Secure multiparty computation. In: Atallah, M.J., Blanton, M. (eds.)
Algorithms and Theory of Computation Handbook, pp. 14.1–14.16. Chapman &
Hall/CRC (2010)

12. Gao, H., Zhang, C., Ahmad, M., Wang, Y.: Privacy-preserving average consensus
on directed graphs using push-sum. In: 2018 IEEE Conference on Communications
and Network Security (CNS), pp. 1–9. IEEE (2018)

13. Gupta, N., Chopra, N.: Confidentiality in distributed average information consen-
sus. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6709–6714.
IEEE (2016)

14. Hadjicostis, C.N.: Privacy preserving distributed average consensus via homomor-
phic encryption. In: 2018 IEEE Conference on Decision and Control (CDC), pp.
1258–1263. IEEE (2018)

15. He, J., Cai, L.: Differential private noise adding mechanism: basic conditions and its
application. In: 2017 American Control Conference (ACC), pp. 1673–1678. IEEE
(2017)

16. He, J., Cai, L., Cheng, P., Pan, J., Shi, L.: Consensus-based privacy-preserving
data aggregation. IEEE Trans. Autom. Control (2016)

https://doi.org/10.1007/978-3-662-53890-6_33
https://doi.org/10.1007/978-3-319-19129-4_3
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/11681878_14

52 A. Bouchra Pilet et al.

17. He, J., Cai, L., Cheng, P., Pan, J., Shi, L.: Distributed privacy-preserving data
aggregation against dishonest nodes in network systems. IEEE Internet Things J.
6(2), 1462–1470 (2019)

18. He, J., Cai, L., Zhao, C., Cheng, P., Guan, X.: Privacy-preserving average con-
sensus: privacy analysis and optimal algorithm design. IEEE Trans. Signal Inf.
Process. Netw. 5(1), 127–138 (2019)

19. Huang, Z., Mitra, S., Dullerud, G.: Differentially private iterative synchronous
consensus. In: Proceedings of the 2012 ACM Workshop on Privacy in the Electronic
Society, WPES 2012, pp. 81–90. ACM (2012)

20. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large
dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)

21. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-
based peer sampling. ACM ToCS 25(3), 8 (2007)

22. Kempe, D., Dobra, A., Gehrke, J.E.: Gossip-based computation of aggregate infor-
mation. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Prin-
ciples of Distributed Computing, pp. 482–491 (2003)

23. Lepiller, J.: Private decentralized aggregation (2016)
24. Liu, Q., Ren, X., Mo, Y.: Secure and privacy preserving average consensus. In:

2017 11th Asian Control Conference (ASCC), pp. 274–279. IEEE (2017)
25. Liu-Zhang, C.-D., Loss, J., Maurer, U., Moran, T., Tschudi, D.: Robust MPC:

asynchronous responsiveness yet synchronous security. In: Theory and Practice of
Multi-Party Computation Workshops (2019)

26. Manitara, N.E., Hadjicostis, C.N.: Privacy-preserving asymptotic average consen-
sus. In: 2013 European Control Conference (ECC), pp. 760–765. IEEE (2013)

27. Mo, Y., Murray, R.M.: Privacy preserving average consensus. In: 53rd IEEE Con-
ference on Decision and Control, pp. 2154–2159. IEEE (2014)

28. Nédelec, B., Tanke, J., Molli, P., Mostéfaoui, A., Frey, D.: An adaptive peer-sampling
protocol for building networks of browsers. World Wide Web 21, 629–661 (2017)

29. Nozari, E., Tallapragada, P., Cortés, J.: Differentially private average consensus:
obstructions, trade-offs, and optimal algorithm design. Automatica 81, 221–231
(2015)

30. Ruan, M., Gao, H., Wang, Y.: Secure and privacy-preserving consensus. IEEE
Trans. Autom. Control (2019)

31. Sheikh, R., Kumar, B., Mishra, D.K.: A distributed k-secure sum protocol for
secure multi-party computations. J. Comput. 2, 68–72 (2010)

32. Thobaben, R., Dán, G., Sandberg, H.: Wiretap codes for secure multi-party com-
putation. In: 2014 IEEE Globecom Workshops (GC Wkshps), pp. 1349–1354. IEEE
(2014)

33. Wang, A., Liao, X., He, H.: Event-triggered differentially private average consensus
for multi-agent network. IEEE/CAA J. Automatica Sinica 6(1), 75–83 (2019)

34. Wang, X., He, J., Cheng, P., Chen, J.: Privacy preserving collaborative computing:
heterogeneous privacy guarantee and efficient incentive mechanism. IEEE Trans.
Signal Process. 67(1), 221–233 (2018)

35. Wang, Y.: Privacy-preserving average consensus via state decomposition. IEEE
Trans. Autom. Control (2019)

36. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)
37. Yin, T., Lv, Y., Yu, W.: Accurate privacy preserving average consensus. IEEE

Trans. Circuits Syst. II: Express Briefs (2019)
38. Zhou, H., Yang, W., Yang, C.: Privacy preserving consensus under interception

attacks. In: 2017 36th Chinese Control Conference (CCC), pp. 8485–8490. IEEE
(2017)

Synchronous t-Resilient Consensus
in Arbitrary Graphs

Armando Castañeda1(B), Pierre Fraigniaud2, Ami Paz2, Sergio Rajsbaum1,
Matthieu Roy3,4, and Corentin Travers5

1 UNAM, Mexico City, Mexico
{armando.castaneda,rajsbaum}@im.unam.mx

2 CNRS and Université de Paris, Paris, France
{pierref,amipaz}@irif.fr

3 Laboratorio Solomon Lefschetz - UMI LaSoL, CNRS, CONACYT, UNAM,
Cuernavaca, Mexico

4 LAAS-CNRS, CNRS, Université de Toulouse, Toulouse, France
roy@laas.fr

5 CNRS and University of Bordeaux, Bordeaux, France
travers@labri.fr

Abstract. We study the number of rounds needed to solve consensus
in a synchronous network G where at most t nodes may fail by crash-
ing. This problem has been thoroughly studied when G is a complete
graph, but very little is known when G is arbitrary. We define a notion
of radius that considers all ways in which t nodes may crash, and present
an algorithm that solves consensus in radius rounds. Then we derive a
lower bound showing that our algorithm is optimal for vertex-transitive
graphs, among oblivious algorithms.

Keywords: Crash failures · Consensus · Combinatorial topology ·
Distributed graph algorithms

1 Introduction

The Problem. We consider a synchronous message-passing distributed system,
where at most t out of n nodes may fail by crashing. The nodes communicate
by sending messages to each other over the edges of an undirected graph G. In
the consensus problem each node is given an input, and after some number of
rounds produces an output, such that all outputs are the same and must be
equal to one of the inputs.

One of the earliest and most well-know facts in distributed computing is
that the number of rounds needed to solve consensus when G is the complete
graph, Kn, is t + 1. Namely, consensus can be solved in t + 1 rounds, for t < n,
and any algorithm requires this number of rounds in the worst case. The round

Supported by ANR Project DESCARTES, INRIA Project GANG, UNAM-PAPIIT
IA102417 and IN109917, and Fondation des Sciences Mathématiques de Paris.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 53–68, 2019.
https://doi.org/10.1007/978-3-030-34992-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_5

54 A. Castañeda et al.

complexity to solve consensus in Kn has been thoroughly studied, but not for
graphs other than the complete graph.

1.1 Results

This paper studies the number of rounds needed to solve consensus, as a function
of G and t. It presents two main contributions.

First, it shows that for any given (t + 1)-vertex-connected graph G, it is
possible to solve consensus tolerating t failures, in radius(G, t) rounds. Roughly,
the eccentricity of v against t failures, ecc(v, t), is the smallest number of rounds
needed for a node v to broadcast its input value, independently of the failure
pattern (when and how nodes crash). Then, radius(G, t) is equal to the smallest
ecc(v, t), over all nodes v. For example, radius(Kn, t) = t + 1 for the complete
graph and radius(Cn, 1) = n−1 for the cycle. For the wheel, radius(Wn, 2) = n−1
and radius(Wn, 1) = 1 + �(n − 1)/2�.

Second, we present a corresponding lower bound, showing that our algorithm
is optimal among oblivious algorithms, in any graph that is vertex-transitive. In
an oblivious algorithm, the decision value of a node is based on the set of input
values it has seen so far, and not on the particular failure pattern. Roughly
speaking, a graph is vertex-transitive if it is highly symmetric. This is a large
and well studied class of graphs (see, e.g., [18]).

The question of achieving consensus in a network prone to failures was inten-
sively studied when the communication pattern is the complete graph. However,
it seems difficult to obtain direct generalizations of these classical upper and
lower bound techniques from a complete graph to a general graph. Instead, both
our upper and lower bounds use novel ideas, that we discuss next.

Our Upper Bound Techniques. In a classic algorithm to solve consensus on
a complete graph, e.g. [29], nodes repeatedly send all the inputs they know, and
at the end of round t + 1, each node that has not crashed, decides the smallest
input value among the values it has seen. The usual agreement argument is that
among the t+1 rounds there must be at least one in which no node crashes. All
nodes that are alive at the end of such a round have seen the same set of inputs,
i.e., there is common knowledge [14] on a set of inputs. This argument holds only
under the assumption that the graph is complete. We use a similar algorithm
on an arbitrary graph, but apply a more fine-grained argument, of information
flow, to prove its correctness and running time.

Given a node v and its ecc(v, t), we show that at the end of round ecc(v, t),
either all alive nodes have received v’s input, or none has. For the complete
graph, ecc(v, t) = t + 1 for all nodes v, and indeed, for any node v, either all
nodes have received the input of v by round t+1, or no node will ever receive it.
This implies the correctness of the algorithm for the complete graph described
above. Notice that the eccentricity is not less than t + 1, because the adversary
may create a hidden path, v1, . . . , vt such that v1 = v and each vi, 1 ≤ i ≤ t − 1,
fails in round i and sends a message to only vi+1 before failing.

Synchronous t-Resilient Consensus in Arbitrary Graphs 55

We use this information flow perspective to derive simple consensus algo-
rithms for arbitrary graphs. Each node repeatedly forwards all the pairs (v, inv)
it knows about, where inv is the input value of node v. Then, an algorithm is
specified by two functions: R(G, t) which returns the the number of rounds to
execute, and D(G, t) which tells a node which value to decide, among the input
values it has seen. After R(G, t) rounds, the active nodes have the same view of
the inputs of a carefully chosen subset of t+1 nodes, thus, after R(G, t) rounds,
D(G, t) can pick deterministically the input of one of these nodes. Remarkably,
our lower bound shows that this is not necessarily the case after less rounds.

Our Lower Bound Techniques. There are several lower bound proofs for the
number of rounds to solve consensus under crash failures for the case when G is
a complete graph. The classic t+1 lower bound proof style proceeds by a rather
complex backward induction (a detailed description appears in [25]). Later on,
simpler forward induction proofs were discovered [1,26], following the classical
bivalency arguments that were originally developed for proving the impossibility
of solving consensus in asynchronous systems [17].

The aforementioned proofs hold for general graphs as well, namely, t + 1
rounds is a lower bound for solving consensus on any graph G. However, in
general graphs this bound is very weak, as it does not take into consideration
the graph’s structure. An obvious example is a cycle with t = 1: our lower bound
is n − 1, while the standard approaches give a lower bound of 2 rounds.

Our lower bound technique is different from both the backward and the
forward arguments. It is inspired by the topological techniques for distributed
computing [20], though we do not use topology explicitly in the current paper.
Our lower bound technique is similar to the connectivity analysis of the protocol
complex, the structure of states at the end of executions of an algorithm after a
certain number of rounds. However, instead of working with the protocol com-
plex, we consider an information flow directed graph version based on failure
patterns, without including input values. We prove that consensus is solvable by
an oblivious algorithm if and only if all connected components of the information
flow graph have a dominating vertex, namely, a vertex with an edge from it to
any other vertex in its connected component. In [6], we study these information
flow techniques and their relation to set agreement and approximate agreement.

The seminal paper [14] shows that, as soon as there is common knowledge of
a clean round (where a node that crashes does not send any messages), it is also
common knowledge that nodes have identical views of the initial configuration.
As a consequence, any action that depends on the system’s initial configuration
can be carried out simultaneously in a consistent way by the set of active nodes
at any round k ≥ t + 1, if it can be carried out at all. Our lower bound is larger
than t + 1 on general graphs, and hence shows how the round in which nodes
have common knowledge of a subset of the input configuration is affected also
by the structure of the graph.

56 A. Castañeda et al.

1.2 Related Work

Consensus in the failure-prone synchronous model has been thoroughly studied
since the beginning of the distributed computing field in the late 1970’s [34].
A variety of aspects have been considered, including the number of rounds (in
great detail, including worst case, early deciding, simultaneous, unbeatability,
etc.), number and size of messages, variants of consensus, in static and dynamic
networks, and under various failure models. We only mention some of the most
relevant papers, among a vast literature, which even surveys e.g. [8,29] and
textbooks on the field cover only partially, e.g., [4,25,30].

For general graphs, since early on there has been an interest in characterizing
the graphs where consensus is solvable, initially for Byzantine failures [11,12,16].
It was observed early on [24] that t+1 connectivity is necessary and an exponen-
tial algorithm was described. The algorithms for Byzantine settings also work in
our model. However, they have not been optimized for the number of rounds, and
furthermore, our setting requires only t + 1 vertex-connectivity, while an algo-
rithm tolerating Byzantine failures requires n ≥ 3t + 1, and vertex-connectivity
at least 2t + 1 [12]. Very recently, consensus algorithms for general graphs were
designed, for local broadcast Byzantine failures [22]. One algorithm works in the
local broadcast model on a graph under the weakest requirements—minimum
degree 2t, and (�3t/2+1�) vertex-connected; however, it has an exponential time
complexity. A different consensus algorithm terminates in 3n rounds, but only
assuming the graph is 2t-connected. There has also been work in characterizing
the directed graphs for which fault tolerant synchronous consensus is solvable,
both under crash and under Byzantine failures [32,33].

We are not aware of any previous lower bounds techniques for arbitrary
graphs. The t + 1 lower bound on the number of rounds to solve consensus in
Kn was originally proved in [15] for Byzantine failures, and was later extended
to the case were digital signatures can be used [11], and finally to crash failures
(see, e.g., [19]).

Our lower bound technique is mainly inspired by the topological techniques
for distributed computing [20], and more specifically by the topological struc-
ture of the executions of a synchronous algorithm after a certain number of
rounds [21]. Indeed, the technique used for deriving our second algorithm is
reminiscent of topological existential upper bounds proofs used in the past [3].
Hidden paths have played an important role in the design of early-deciding con-
sensus algorithms in the complete graph [7].

Research on dynamic networks also characterizes families of networks for
which consensus (or a variant of it) is solvable [9,10,27,31,35]. Interestingly,
dynamic networks research and works on synchronous fault-tolerant consen-
sus [32,33] share the idea of picking a node as a source, and having all nodes
deciding on the input of this source. In Theorem3 we present an information
flow characterization for consensus, in terms of such a source. Our notion of a
core set (see Sect. 3.2) can be seen as a refinement of such notions, defined in
order to optimize the number of rounds. Interestingly, [27] presents a topological

Synchronous t-Resilient Consensus in Arbitrary Graphs 57

solvability characterization of consensus using the point set topology techniques
introduced in [2].

The line of work on almost everywhere agreement initiated in [5,13], was
motivated by the impossibility of tolerating t crashes when the network is not
t + 1 connected (these works also consider Byzantine failures). They present
algorithms for networks where consensus is actually unsolvable due to weak
connectivity.

2 Preliminaries

Model of Computation. We consider the standard synchronous message-passing
model of computation where at most t nodes may fail by crashing. A set of
n ≥ 2 nodes V communicate through bidirectional channels E defining a graph
G = (V,E). In the remainder of the paper, we fix G and t, and assume t < κ(G),
the vertex connectivity of G, i.e., the minimum number of nodes whose deletion
disconnects G.

An execution proceeds in a infinite sequence of synchronous rounds, starting
in round 1. In every round, each node v first performs some local computation,
then sends a message to each of its neighbors in G, denoted N(v), and then
receives the messages sent to it from N(v) in that round. When a node crashes
in round r, it fails to send its message to some of its neighbors in round r, and
sends no message in subsequent rounds.

A failure pattern ϕ for G, t specifies, for each node that fails, in which round
number it fails, and which messages it fails to send. It is a set of triples of the
form (v, Fv, fv), indicating that v crashes in round fv, in which it does not send
the messages to ∅ �= Fv ⊆ N(v). Since at most t nodes can fail, |ϕ| ≤ t, and since
nodes do not recover from a failure, if (v, Fv, fv), (u, Fu, fu) ∈ ϕ then v �= u.

For an execution with failure pattern ϕ, the faulty nodes are those that
appear in a triplet in ϕ; the others are the correct nodes. A node is active in
round r in ϕ if it is correct, or if it fails in a round later than r. A node that
crashes with Fv = N(v) is said to crash cleanly in ϕ.

Consider any input assignment to the nodes, and a failure pattern ϕ. Our
algorithms are of the following form. Initially, for each node v with input inv, its
view is {(v, inv)}. In each round, each node v sends its view to N(v), and at the
end of the round it updates its view with the new input value-pairs it receives.

We say that u hears from v in ϕ, if in some round u receives a message
containing the input of v. Similarly, we way that u hears from v by round r in ϕ
if u receives a message with v’s input in round r, or before. In other words, there
is a causal path from u to v [23] in an infinite execution with failure pattern
ϕ. Clearly, the existence of such a path depends on ϕ, but not on the input
assignment. Thus, to analyze the structure of all possible failure patterns, we
ignore the input values. This is what we do next, where we may identify ϕ with
the infinite execution with that failure pattern.

58 A. Castañeda et al.

Eccentricity and Radius in Failure Patterns. Let distG(u, v) denote the distance
between nodes u and v in G = (V,E). The eccentricity of a node v ∈ V is
defined as eccG(v) = maxu∈V distG(u, v). The diameter of a graph is defined as
maxv∈V eccG(v), and its radius as minv∈V eccG(v). We generalize the notions of
eccentricity and radius to the synchronous t-resilient model.

In the following, failure patterns are denoted by lower case Greek letters
ϕ,ψ, . . ., and sets of failure patterns are denoted by upper case Greek letters
Φ, Ψ, We denote by Φ

(t)
all the set of all failure patterns for G and t. The

failure pattern in which no nodes crash is ϕ∅, and hence Φ
(0)
all = {ϕ∅}.

Definition 1. Given a node v ∈ V and a failure pattern ϕ ∈ Φ
(t)
all , the eccentric-

ity eccG(v, ϕ) ∈ N ∪ {∞} of v in ϕ is the minimum number of rounds required
for all correct nodes to hear from v (i.e., there is causal path from v to every
correct node), or ∞ if not all correct nodes hear from v. If eccG(v, ϕ) ∈ N, we
say that v floods to the correct nodes in ϕ.

Consider any ϕ. Notice that since G is at least (t+1)-connected, and at most
t nodes crash, if a correct node u hears from v, then every correct node receives
a message from v (because it can get from u to every correct node). We thus
have the following claim.

Fact 1. For every v ∈ V , and every ϕ ∈ Φ
(t)
all , if eccG(v, ϕ) = ∞ then no correct

node hears from v in ϕ.

Definition 2. For v ∈ V and Φ ⊆ Φ
(t)
all , such that there is at least one ϕ ∈ Φ

with eccG(v, ϕ) ∈ N, let

eccG(v, Φ) = max{eccG(v, ϕ) : ϕ ∈ Φ, eccG(v, ϕ) ∈ N}.

Notice that there is at least one ϕ ∈ Φ with eccG(v, ϕ) ∈ N, for any Φ
containing failure patterns where v is correct.

Lemma 1. For v ∈ V and ϕ ∈ Φ
(t)
all , let A be the set of all active nodes in round

eccG(v, Φ
(t)
all) under ϕ. Either all nodes in A hear from v by round eccG(v, Φ

(t)
all),

or no node in A hears from v by round eccG(v, Φ
(t)
all) in ϕ.

Proof. Let ϕ′ ∈ Φ
(t)
all be the failure pattern identical to ϕ in the first eccG(v, Φ

(t)
all)

rounds, but with all the nodes of A correct in ϕ′. Then, the nodes in A have the
same view in both ϕ and ϕ′ in round eccG(v, Φ

(t)
all).

If eccG(v, ϕ′) ∈ N, by Definition 1, all nodes in A hear from v by time
eccG(v, ϕ′), which is at most eccG(v, Φ

(t)
all), by Definition 2. The same is true

for ϕ, as ϕ and ϕ′ are identical in the first eccG(v, Φ
(t)
all) rounds.

If eccG(v, ϕ′) = ∞, no node in A hears from v in ϕ′, by Fact 1, and then
no node in A hears from v by round eccG(v, Φ

(t)
all) in ϕ because ϕ and ϕ′ are

identical in the first eccG(v, Φ
(t)
all) rounds. �

Synchronous t-Resilient Consensus in Arbitrary Graphs 59

Definition 3. Let Φ ⊆ Φ
(t)
all such that for every v ∈ V there is at least one

ϕ ∈ Φ with eccG(v, ϕ) ∈ N. The radius of G with respect to Φ is defined as
radius(G,Φ) = minv∈V eccG(v, Φ).

For t = 0, our notion of eccentricity and radius coincides with the classical
graph-theoretic definition, i.e., eccG(v, Φ

(0)
all) = eccG(v) and radius(G,Φ

(0)
all) =

radius(G). Moreover, in the complete graph Kn, we have radius(Kn, Φ
(t)
all) = t+1,

which together with Lemma 1 implies the correctness of the simple algorithm
discussed in the Introduction.

3 Consensus Algorithms in Arbitrary Graphs

We consider the usual consensus problem in which each node starts with an
input value, defined by the following properties. Termination: Every correct
node decides a value; Validity: The decision of a node is equal to the input of
some node; Agreement: The decisions of any pair of nodes are the same.

Oblivious Algorithms. Recall that in our algorithms, a node resends to its neigh-
bors the set of input values it has received, each one together with the name
of the node that has the corresponding input value. Thus, to specify a consen-
sus algorithm, we define a function R(G, t) that returns a round number, stating
that all correct nodes decide in round R(G, t). Also, we define a decision function
D(G, t) used by a node to select a consensus value from its view (possibly taking
in consideration the names of the nodes that proposed this inputs). Namely, in
a t-fault tolerant oblivious consensus algorithm for G, after R(G, t) rounds of
communication (independently of the failure pattern or the input assignment),
each node selects a value from its view, as specified by the function D(G, t). We
stress that R(G, t) and D(G, t) are not computed by the nodes, they are given
as part of the algorithm (alternatively, if the nodes “know” G and t, then they
can compute these functions locally).

3.1 A Naive Algorithm

We describe algorithm PG,t
ecc = (Recc(G, t),Decc(G, t)), based on a simple idea. Let

us order the n vertices of G as v1, . . . , vn, with

eccG(vi, Φ
(t)
all) ≤ eccG(vi+1, Φ

(t)
all) (1)

for 1 ≤ i < n. In particular, we have radius(G,Φ
(t)
all) = eccG(v1, Φ

(t)
all).

Let Recc(G, t) = eccG(vt+1, Φ
(t)
all), and Decc(G, t) be the function that returns

the input of the smallest1 node among the nodes in {v1, . . . , vt+1}.

Theorem 1. Algorithm PG,t
ecc solves consensus in eccG(vt+1, Φ

(t)
all) rounds.

1 Assuming V is a totally ordered set.

60 A. Castañeda et al.

Proof. The algorithm satisfies termination as all correct nodes run Recc(G, t) =
eccG(vt+1, Φ

(t)
all) rounds. For validity, the definition of eccG(vt+1, Φ

(t)
all) and Eq. 1

imply that all nodes receive at least one input of a node in {v1, . . . , vt+1} by
round eccG(vt+1, Φ

(t)
all), in every ϕ ∈ Φ

(t)
all . For agreement, consider any ϕ ∈

Φ
(t)
all and the set A of all nodes that are active in round eccG(vt+1, Φ

(t)
all) in ϕ.

Lemma 1 and Eq. 1 imply that either all nodes in A have received vi’s input,
1 ≤ i ≤ t + 1, in round eccG(vt+1, Φ

(t)
all) in ϕ, or none of them has received it in

that round. Therefore, all nodes in A have the same view of the inputs of the
nodes v1, . . . , vt+1, hence Decc(G, t) returns the same value to all of them. �

It is easy to come up with graphs for which this solution is not optimal, in
terms of number of rounds.

x1 x2 x3 x4 x5 x6 x7 x8 x9

y

Fig. 1. A graph for which PG,t
ecc is not time optimal.

Lemma 2. There is a graph G for which PG,t
ecc is not time optimal, with t = 1.

Algorithm PG,t
ecc is not optimal in the graph in Fig. 1 because v2 = x4 needs

many rounds in order to broadcast its input, even when v1 = x5 crashes. Instead,
y broadcasts very quickly when v1 = x5 crashes. As a consequence, y is a better
choice for replacing x5 whenever this latter node crashes. More generally, the
sequence v1, . . . , vn defined in Eq. (1) is not adaptive. In the next subsection, we
define an adaptive sequence, in which the performances of vi are measured only
for failure patterns in which v1, . . . , vi−1 are prevented from flooding.

3.2 An Adaptive-Eccentricity Based Algorithm

The algorithm PG,t
ecc is based on a core set of nodes {v1, . . . , vt+1}, consisting

of the first t + 1 nodes in order of ascending eccentricity. We show here that
there is a more clever way of selecting a core set of t + 1 nodes. The corre-
sponding algorithm, PG,t

adapt = (Radapt(G, t),Dadapt(G, t)), is similar, except that,

Radapt(G, t) = radius(G,Φ
(t)
all). As before, Dadapt(G, t) returns the input of the

smallest node among the core set, but now the core set is {s1, . . . , st+1}, as
defined next.

The first node s1 is the same v1 as in PG,t
ecc . To choose the i-th node, we

consider all the un-chosen nodes, and their eccentricity only among the failure

Synchronous t-Resilient Consensus in Arbitrary Graphs 61

patterns where the previously selected nodes have ∞ eccentricity, and take the
node that minimizes this quantity.

Formally, to define the core set of t + 1 nodes, we construct a sequence of
pairs (si, Φi), with si ∈ V , and Φi ⊆ Φ

(t)
all , for i = 1, . . . , t + 1, inductively, as

follows. For every node v ∈ V , let Φ∞
v = {ϕ ∈ Φ

(t)
all : eccG(v, ϕ) = ∞} and

ΦN

v = {ϕ ∈ Φ
(t)
all : eccG(v, ϕ) ∈ N}. Let Φ0 = Φ

(t)
all , and, for i = 1, . . . , t + 1, let

{
si = arg minv∈V �{s1,...,si−1} eccG(v, ΦN

v ∩ Φi−1),
Φi = Φ∞

si
∩ Φi−1,

(2)

where, for i = 1, we interpret {s1, . . . , si−1} as the empty set. In other words,
Φi = Φ∞

s1
∩ · · · ∩ Φ∞

si
, and also Φi = Φi−1 � ΦN

si
. Observe that, for every i =

1, . . . , t+1, and every v ∈ V �{s1, . . . , si−1}, ΦN

v ∩Φi−1 is not empty as it contains
the failure pattern in which all nodes s1, . . . , si−1 crash cleanly at the first round,
and no other node crashes. Also note that eccG(s1, Φ

N

s1
) = radius(G,Φ

(t)
all).

For example, in Kn, we have eccKn
(si, Φ

N

si
) = t − i + 2 for i = 1, . . . , t + 1

whenever t < n − 1. For t = n − 1, we have eccKn
(si, Φ

N

si
) = n − i for

i = 1, . . . , n. In the cycle Cn with t = 1, we have eccCn
(s1, Φ

N

s1
) = n − 1

and eccCn
(s2, Φ

N

s2
) = �n−1

2 �. For the graph G in Fig. 1, s1 = x5 and s2 = y,
eccG(s1, Φ

N

s1
) = radius(G,Φ

(1)
all) = 4, and eccG(s2, Φ

N

s2
) = 1.

The core set for G, t is {s1, . . . , st+1}, and the core sequence for G is the
ordered sequence (s1, . . . , st+1). A crucial property of this sequence is that, while
the sequence (eccG(vi, Φ

N

vi
))1≤i≤t+1 defined in Eq. (1) is non decreasing, and may

even be increasing, the sequence (eccG(si, Φ
N

si
∩Φi−1))1≤i≤t+1 defined in Eq. (2)

is non increasing, and is actually always decreasing. Intuitively, this is because
the maximization in the computation of eccG(v, ΦN

v ∩Φi) for determining si+1 is
taken over the set ΦN

v ∩ Φi which is smaller than the set ΦN

v ∩ Φi−1 used for the
computation of si.

Lemma 3. Consider the core sequence (s1, . . . , st+1) and the pairs defined in
Eq. (2). Then, eccG(si, Φ

N

si
∩ Φi−1)) > eccG(si+1, Φ

N

si+1
∩ Φi)), for i ∈ {1, . . . , t}.

The correctness proof of PG,t
adapt is very similar to that of PG,t

ecc .

Theorem 2. Algorithm PG,t
adapt solves consensus in radius(G,Φ

(t)
all) rounds.

Finally, observe that PG,t
ecc performs in eccG(vt+1, Φ

(t)
all) rounds according to

the notations of Eq (1), while PG,t
adapt performs in radius(G,Φ

(t)
all) = eccG(v1, Φ

(t)
all)

rounds according to the same notations.

4 The Lower Bound

In this section we show that PG,t
adapt is time optimal for vertex-transitive graphs,

among oblivious algorithms. Recall that in an oblivious algorithm, the decision
value of a node is based on the set of input values it has seen so far, and not on
the particular failure pattern. Our algorithms PG,t

ecc and PG,t
adapt are oblivious.

62 A. Castañeda et al.

4.1 Information Flow Graph

Recall that the view of a node u in a given round r is the set of all pairs (v, inv)
such that u hears from v by round r. The vertices of the information flow graph
have the form (v, viewv), meaning that node v has view viewv in round r, and
there is a directed edge from (v, viewv) to (u, viewu) if and only if (v, inv) ∈ viewu,
i.e., u hears from v by round r. Of course, these properties are conditioned by
the actual failure pattern.

Consider a set of failure patterns Φ ⊆ Φ
(t)
all . Let u be a node that is active in

round r in ϕ, for some r ≥ 1. Let viewG(u, ϕ, r) denote the view of u in round r
in ϕ.

Definition 4. The information flow graph in round r with respect to Φ is the
directed graph IFG,Φ,r:

– V (IFG,Φ,r) = {(u, viewG(u, ϕ, r)) : u ∈ V is active in round r in ϕ ∈ Φ};
– E(IFG,Φ,r) =

{(
(u, viewG(u, ϕ, r)), (v, viewG(v, ϕ, r))

)
: u ∈ viewG(v, ϕ, r)

}
.

Note that a node u may have the same view in two distinct ϕ,ψ ∈ Φ in
round r, i.e., viewG(u, ϕ, r) = viewG(u, ψ, r), in which case (u, viewG(u, ϕ, r))
and (u, viewG(u, ψ, r)) correspond to the same vertex of IFG,Φ,r. Moreover, for
any two distinct nodes u, v, we have (u, viewG(u, ϕ, r)) �= (v, viewG(v, ϕ, r)), even
if viewG(u, ϕ, r) = viewG(v, ϕ, r).

The set configG(ϕ, r) = {(v, viewG(v, ϕ, r)) : v ∈ V is active in round r in ϕ}
is called the r-round configuration for failure pattern ϕ. See Fig. 2 for the infor-
mation flow graph of the triangle K3, with one failure, and one communication
round.

configK3
(ϕu clean, 1)

configK3
(ϕu dirty, 1)

configK3
(ϕ∅, 1)

(u, {u, v, w})

(v, {u, v, w})(w, {u, v, w})

(u, {u, v})

(v, {u, v})

(u, {u, w})

(w, {u, w})

(w, {v, w})(v, {v, w})

Fig. 2. IF
K3,Φ

(1)
all ,1

, with the configK3
(ϕ, 1) sets marked, for some ϕ ∈ Φ

(1)
all ; ϕ∅ denotes

the failure pattern without failures, ϕu clean the failure patter where u fails cleanly in
round 1 and ϕu dirty the failure patter where u fails in round 1 and sends a message
only to v.

Synchronous t-Resilient Consensus in Arbitrary Graphs 63

Lemma 4. For every failure pattern ϕ ∈ Φ, and every r ≥ 1, the set
configG(ϕ, r) induces a connected subgraph of IFG,Φ,r.

Note that there is an edge from (u, viewG(u, ϕ, r)) to (v, viewG(v, ψ, r)) in
IFG,Φ,r if and only if there exists � ∈ Φ such that u and v are active in round
r in �, and viewG(u, ϕ, r) = viewG(u, �, r), viewG(v, ψ, r) = viewG(v, �, r) and
u ∈ viewG(v, �, r). Furthermore, if there are two failure patterns ϕ and ψ yielding
the same view for a node v but two different views for a node u, then either the
edges from the two views of u to the view of v both exist, or neither exists. This
is specified in the following lemma.

Lemma 5. Let ϕ,ψ ∈ Φ and u, v ∈ V such that u and v are active in round r
in both ϕ and ψ. If

(
(u, viewG(u, ϕ, r)), (v, viewG(v, ϕ, r))

) ∈ E(IFG,Φ,r) and
viewG(v, ϕ, r) = viewG(v, ψ, r), then

(
(u, viewG(u, ψ, r)), (v, viewG(v, ψ, r))

) ∈
E(IFG,Φ,r).

4.2 The Solvability Characterization

The next result provides a solvability characterization for consensus by oblivious
algorithms. In essence, it states that the number r of rounds should be large
enough so that every connected component of IFG,Φ,r has a dominating node.
A connected component of IFG,Φ,r is a connected component of the underlying,
undirected graph of IFG,Φ,r. We say that a node v ∈ V of the graph G dominates
a connected component C of IFG,Φ,r, if the set {(v, viewG(v, ϕ, r)) : ϕ ∈ Φ}
dominates C. That is, for every (w, viewG(w,ϕ, r)) in C, there is an arc from the
vertex (v, viewG(v, ϕ, r)) to (w, viewG(w,ϕ, r)).

Theorem 3. There is an oblivious algorithm solving consensus in r rounds
under the set of failure patterns Φ ⊆ Φ

(t)
all if and only if every connected compo-

nent C of IFG,Φ,r has a dominating node in V .

The two directions of the theorem are proved by the next two lemmas.

Lemma 6. For any Φ ⊆ Φ
(t)
all , if every connected component C of IFG,Φ,r has a

dominating node in V , then there is an oblivious algorithm solving consensus in
r rounds under the set of failure patterns Φ.

Proof. To solve consensus we only need to specify the decision function after r
rounds of communication. For every connected component C of IFG,Φ,r, pick a
dominating node v ∈ V of C. Let w be a node. The view vieww of w determines
to which connected component C the vertex (w, vieww) belongs. The decision of
w is the input value of the node v that dominates C.

Clearly, the algorithm satisfies termination and validity. For agreement, con-
sider any ϕ ∈ Φ. Let w and w′ be two nodes that are active in round r in ϕ. By
Lemma 4, the subgraph of IFG,Φ,r induced by configG(ϕ, r) is connected. There-
fore, (w, view(w,ϕ, r)) and (w′, view(w′, ϕ, r)) belongs to the same connected
component C of IFG,Φ,r, thus w and w′ decide the input of the same node. �

64 A. Castañeda et al.

Lemma 7. For any Φ ⊆ Φ
(t)
all , if there is an oblivious algorithm solving consensus

in r rounds under the set of failure patterns Φ, then every connected component
C of IFG,Φ,r has a dominating node in V .

Proof (Sketch of proof). We prove the contrapositive: if there is a connected
component C of IFG,Φ,r with no dominating node in V , then there is no oblivious
algorithm solving consensus in r rounds under Φ.

In the proof, we consider a standard connectivity argument a chain of failure
patterns (executions). More specifically, we exhibit a sequence of failure patterns
ϕ1, . . . , ϕn such that (1) all nodes start with 0 in ϕ1, (2) all nodes start with 1
in ϕn, and (3) there is a node vi that has the same view in round r in both ϕi

and ϕi+1. For proving (3), we exploit the fact that there is no node in V that
dominates C, and thus it is possible to find a node that has the same view in
both failure patterns, in round r. An algorithm cannot exist because the decision
in ϕ1 has to be 0, while the decision in ϕn has to be 1 and, then there are ϕi

and ϕi+1 with distinct decisions, which is a contradiction. �

4.3 Optimality of PG,t
adapt for Symmetric Graphs

To conclude, we use the characterization in Theorem3 to show that PG,t
adapt is

time optimal for vertex-transitive graphs, among oblivious algorithms.
An automorphism of G is a bijection π : V → V such that, for every two

nodes u and v, {u, v} ∈ E ⇐⇒ {π(u), π(v)} ∈ E. A graph G = (V,E) is
vertex-transitive if, for every two nodes u and v, there exists an automorphism
π of G such that π(u) = v. For instance, the complete graphs Kn, the cycles Cn,
the d-dimensional hypercubes Qd, the d-dimensional toruses Cn1 × · · · × Cnd

,
the Kneser graphs KGn,k, the Cayley graphs, etc., are all vertex-transitive. The
wheel, composed of a cycle and a central node, is not vertex-transitive, since the
center node has degree n − 1 while the cycle nodes have degree 3.

Theorem 4. If G is vertex-transitive, then there is no oblivious algorithm that
solves consensus in fewer than radius(G,Φ

(t)
all) rounds.

Proof (Sketch of proof). Clearly, the result holds if radius(G,Φ
(t)
all) = 1, as con-

sensus is trivially not solvable in zero rounds in any graph with at least 2 nodes,
even with no failures. So we assume now that radius(G,Φ

(t)
all) ≥ 2.

In a vertex-transitive graph G, we have that for every s ∈ V , radius(G,Φ
(t)
all) =

eccG(s, Φ(t)
all). Therefore, for every s ∈ V , we can assign a failure pattern ϕs ∈ Φ

(t)
all

such that radius(G,Φ
(t)
all) = eccG(s, ϕs). Let Φ = {ϕs : s ∈ V } ∪ {ϕ∅}. These

execution sets configG(ϕ, t) for ϕ ∈ Φ are depicted in Fig. 3 for the case K3 and
t = 1. We will show a result stronger than the one expressed in the statement of
the theorem. Namely, we show that no oblivious algorithms can solve consensus
in a vertex-transitive graph G under Φ in less than radius(G,Φ

(t)
all) rounds. That

is, even if the algorithm has only to deal with the n + 1 failure patterns in

Synchronous t-Resilient Consensus in Arbitrary Graphs 65

configK3
(ϕu dirty, 1)

configK3
(ϕw dirty, 1)

configK3
(ϕv dirty, 1)

configK3
(ϕ∅, 1)

Fig. 3. The information flow graph IFK3,Φ,1 appearing in the proof of Theorem4, for
K3 and the failure pattern Φ defined there. ϕ∅ denotes the failure patter without
failures, while ϕx dirty denotes the failure patter where x fails in round 1, sending a
message to only one node.

Φ ⊆ Φ
(t)
all , still consensus is not solvable in fewer than radius(G,Φ

(t)
all) rounds. To

establish this result, let R = radius(G,Φ
(t)
all). Using Theorem 3, it is sufficient to

prove that the following lemma:

Lemma 8. The underlying graph of the information flow graph IFG,Φ,R−1 is
connected and has no dominating vertex.

The theorem directly follows from the previous lemma and the characteriza-
tion in Theorem3. �
Theorem 5. If G is vertex-transitive, PG,t

adapt is time optimal among oblivious
algorithms.

We conjecture that PG,t
adapt is time optimal for all graphs, among oblivious

algorithms. This conjecture is grounded on the fact that Lemma 3 holds for all
graphs, and not only for those that are vertex-transitive.

5 Conclusions

We have studied for the first time the number of rounds needed to solve fault-
tolerant consensus in a crash prone synchronous network with arbitrary struc-
ture. We have defined a notion of dynamic radius of a graph G when t nodes
may crash, which precisely determines the worst case number of rounds needed
to solve oblivious consensus for vertex-transitive networks. The optimality of our
algorithm was shown through a novel consensus solvability characterization in

66 A. Castañeda et al.

arbitrary networks, using the notion of information flow. A second consequence
of the characterization is an abstract consensus algorithm that is optimal for all
graphs. Our focus has been in the worst-case number of rounds. An interest-
ing challenge would be to design early deciding algorithms (a problem that is
well-studied in the case of the complete graph e.g. [8]).

An interesting future line of research is to study the case of non-oblivious
algorithms (such algorithms have been considered in the past, e.g. [30]). Remark-
ably, for the case of the complete communication graph, there is no difference
between these two types of algorithms: at the end of round t + 1, every pair of
nodes have the same set of pairs (v, inv) (formally, there is common knowledge
on a set of inputs), hence decisions can be taken considering only this set.

Recall that, in our algorithms, R(G, t) and D(G, t) are hard-coded for a given
G and t. It is worth exploring if our techniques are useful for the case where the
graph G is not known to the nodes. Indeed, it is a challenge to combine fault-
tolerant arguments with techniques of (failure-free) network computing [28]. Our
results for t = 0 correspond to network computing. Yet, the case of t > 0 for
arbitrary or evolving networks is an intriguing and complex research question.

References

1. Aguilera, M.K., Toueg, S.: A simple bivalency proof that t-resilient consensus
requires t+1 rounds. Inf. Process. Lett. 71(3), 155–158 (1999)

2. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985)

3. Attiya, H., Castañeda, A., Herlihy, M., Paz, A.: Bounds on the step and namespace
complexity of renaming. SIAM J. Comput. 48(1), 1–32 (2019)

4. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley Series on Parallel and Distributed Computing. Wiley,
Hoboken (2004)

5. Berman, P., Garay, J.A.: Fast consensus in networks of bounded degree. Distrib.
Comput. 7(2), 67–73 (1993)

6. Castañeda, A., Fraigniaud, P., Paz, A., Rajsbaum, S., Roy, M., Travers, C.: A
topological perspective on distributed network algorithms. In: Censor-Hillel, K.,
Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 3–18. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-24922-9 1

7. Castañeda, A., Gonczarowski, Y.A., Moses, Y.: Unbeatable consensus. In: Kuhn,
F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 91–106. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45174-8 7

8. Castañeda, A., Moses, Y., Raynal, M., Roy, M.: Early decision and stopping in syn-
chronous consensus: a predicate-based guided tour. In: El Abbadi, A., Garbinato,
B. (eds.) NETYS 2017. LNCS, vol. 10299, pp. 206–221. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59647-1 16

9. Charron-Bost, B., Moran, S.: Minmax algorithms for stabilizing consensus. CoRR,
abs/1906.09073 (2019)

10. Coulouma, É., Godard, E., Peters, J.G.: A characterization of oblivious message
adversaries for which consensus is solvable. Theor. Comput. Sci. 584, 80–90 (2015)

11. Dolev, D., Strong, H.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

https://doi.org/10.1007/978-3-030-24922-9_1
https://doi.org/10.1007/978-3-662-45174-8_7
https://doi.org/10.1007/978-3-319-59647-1_16

Synchronous t-Resilient Consensus in Arbitrary Graphs 67

12. Dolev, D.: The Byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)
13. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of

bounded degree. In: Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing, STOC 1986, pp. 370–379. ACM (1986)

14. Dwork, C., Moses, Y.: Knowledge and common knowledge in a Byzantine environ-
ment: crash failures. Inf. Comput. 88(2), 156–186 (1990)

15. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. 14(4), 183–186 (1982)

16. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distrib. Comput. 1(1), 26–39 (1986)

17. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

18. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics,
vol. 207. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0163-9

19. Hadzilacos, V.: A lower bound for Byzantine agreement with fail-stop processors.
Technical report 21–83, Department of Computer Science, Harvard University,
Cambridge, MA, July 1983

20. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Morgan Kaufmann, Burlington (2013)

21. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: An axiomatic approach to computing
the connectivity of synchronous and asynchronous systems. Electr. Notes Theor.
Comput. Sci. 230, 79–102 (2009)

22. Khan, M.S., Naqvi, S.S., Vaidya, N.H.: Exact Byzantine consensus on undirected
graphs under local broadcast model. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC, pp. 327–336 (2019)

23. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News
42(1), 82–96 (2011)

24. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

25. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco (1996)

26. Moses, Y., Rajsbaum, S.: A layered analysis of consensus. SIAM J. Comput. 31(4),
989–1021 (2002)

27. Nowak, T., Schmid, U., Winkler, K.: Topological characterization of consensus
under general message adversaries. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC, pp. 218–227 (2019)

28. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadel-
phia (2000)

29. Raynal, M.: Consensus in synchronous systems: a concise guided tour. In: 9th
Pacific Rim International Symposium on Dependable Computing (PRDC), pp.
221–228 (2002)

30. Raynal, M.: Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic
Approach. Springer, Cham (2018)

31. Santoro, N., Widmayer, P.: Agreement in synchronous networks with ubiquitous
faults. Theor. Comput. Sci. 384(2–3), 232–249 (2007)

32. Tseng, L., Vaidya, N.H.: Fault-tolerant consensus in directed graphs. In: Proceed-
ings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC,
pp. 451–460. ACM (2015)

https://doi.org/10.1007/978-1-4613-0163-9

68 A. Castañeda et al.

33. Tseng, L., Vaidya, N.H.: A note on fault-tolerant consensus in directed networks.
SIGACT News 47(3), 70–91 (2016)

34. Wensley, J.H., et al.: Sift: design and analysis of a fault-tolerant computer for
aircraft control. Proc. IEEE 66, 1240–1255 (1978)

35. Winkler, K., Schmid, U.: An overview of recent results for consensus in directed
dynamic networks. Bull. Eur. Assoc. Theor. Comput. Sci. (EATCS) 128, 41–72
(2019)

Tasks in Modular Proofs of Concurrent
Algorithms

Armando Castañeda1, Aurélie Hurault2, Philippe Quéinnec2(B),
and Matthieu Roy3,4

1 Instituto de Matemáticas, UNAM, Mexico City, Mexico
armando.castaneda@im.unam.mx

2 IRIT – Université de Toulouse, Toulouse, France
{hurault,queinnec}@enseeiht.fr

3 Laboratorio Solomon Lefschetz - UMI LaSoL, CNRS, CONACYT, UNAM,
Cuernavaca, Mexico

4 LAAS-CNRS, CNRS, Université de Toulouse, Toulouse, France
roy@laas.fr

Abstract. Proving correctness of distributed or concurrent algorithms
is a mind-challenging and complex process. Slight errors in the reason-
ing are difficult to find, calling for computer-checked proof systems. In
order to build computer-checked proofs with usual tools, such as Coq or
TLA+, having sequential specifications of all base objects that are used
as building blocks in a given algorithm is a requisite to provide a modular
proof built by composition. Alas, many concurrent objects do not have
a sequential specification.

This article describes a systematic method to transform any task, a
specification method that captures concurrent one-shot distributed prob-
lems, into a sequential specification involving two calls, set and get.
This transformation allows system designers to compose proofs, thus
providing a framework for modular computer-checked proofs of algo-
rithms designed using tasks and sequential objects as building blocks.
The Moir&Anderson implementation of renaming using splitters is an
iconic example of such algorithms designed by composition.

Keywords: Formal methods · Verification · Concurrent algorithms ·
Renaming

1 Introduction

Fault-tolerant distributed and concurrent algorithms are extensively used in crit-
ical systems that require strict guarantees of correctness [23]; consequently, ver-
ifying such algorithms is becoming more important nowadays. Yet, proving dis-
tributed and concurrent algorithms is a difficult and error-prone task, due to the
complex interleavings that may occur in an execution. Therefore, it is crucial to
develop frameworks that help assessing the correctness of such systems.

A major breakthrough in the direction of systematic proofs of concurrent
algorithms is the notion of atomic or linearizable objects [20]: a linearizable
c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 69–83, 2019.
https://doi.org/10.1007/978-3-030-34992-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_6

70 A. Castañeda et al.

object behaves as if it is accessed sequentially, even in presence of concurrent
invocations, the canonical example being the atomic register. Atomicity lets us
model a concurrent algorithm as a transition system in which each transition
corresponds to an atomic step performed by a process on a base object. Human
beings naturally reason on sequences of events happening one after the other;
concurrency and interleavings seem to be more difficult to deal with.

However, it is well understood now that several natural one-shot base objects
used in concurrent algorithms cannot be expressed as sequential objects [9,16,33]
providing a single operation.

An iconic example is the splitter abstraction [31], which is the basis of the
classical Moir&Anderson renaming algorithm [31]. Intuitively, a splitter is a con-
current one-shot problem that splits calling processes as follows: whenever p pro-
cesses access a splitter, at most one process obtains stop, at most p − 1 obtain
right and at most p − 1 obtain down. Moir&Anderson renaming algorithm uses
splitters arranged in a half grid to scatter processes and provide new names to
processes. It is worth to mention that, since its introduction almost thirty years
ago, the renaming problem [4] has become a paradigm for studying symmetry-
breaking in concurrent systems (see, for example, [1,8]).

A second example is the exchanger object provided in Java, which has
been used for implementing efficient linearizable elimination stacks [16,24,36].
Roughly speaking, an exchanger is a meeting point where pairs of processes can
exchange values, with the constraint that an exchange can happen only if the
two processes run concurrently.

Splitters and exchangers are instances of one-shot concurrent objects known
in the literature as tasks. Tasks have played a fundamental role in understand-
ing the computability power of several models, providing a topological view of
concurrent and distributed computing [18]. Intuitively, a task is an object pro-
viding a single one-shot operation, formally specified through an input domain,
an output domain and an input/output relation describing the valid output con-
figurations when a set of processes run concurrently, starting from a given input
configuration. Tasks can be equivalently specified by mappings between topo-
logical objects: an input simplicial complex (i.e., a discretization of a continuous
topological space) modeling all possible input assignments, an output simplicial
complex modeling all possible output assignments, and a carrier map relating
inputs and outputs.

Contributions. Our main contribution is a generic transformation of any task T
(with a single operation) into a sequential object S providing two operations, set
and get. The behavior of S “mimics” the one of T by splitting each invocation
of a process to T into two invocations to S, first set and then get. Intuitively, the
set operation records the processes that are participating to the execution of the
task. A process actually calls the task and obtains a return value by invoking
get. Each of the operations is atomic; however, set and get invocations of a given
process may be interleaved with similar invocations from other processes.

We show that these two operations are sufficient for any task, no matter how
complicated it may be; since a task is a mapping between simplicial complexes,

Tasks in Modular Proofs of Concurrent Algorithms 71

it can specify very complex concurrent behaviors, sometimes with obscure asso-
ciated operational semantics.

A main benefit of our transformation is that one can replace an object solving
a task T by its associated sequential object S, and reason as if all steps happen
sequentially. This allows us to obtain simpler models of concurrent algorithms
using solutions to tasks and sequential objects as building blocks, leading to
modular correctness proofs. Concretely, we can obtain a simple transition system
of Moir&Anderson renaming algorithm, which helps to reason about it. In a
companion paper [22], our model is used to derive a full and modular TLA+

proof of the algorithm, the first available TLA+ proof of it.
In Sect. 2, we explain the ideas in Moir&Anderson renaming algorithm that

motivated our general transformation, which is presented in Sect. 3. Due to lack
of space, some basic definitions, proofs and detailed constructions are omitted.
They can be found in the extended version [7].

2 Verifying Moir&Anderson Renaming

We consider a concurrent system with n asynchronous processes, meaning that
each process can experience arbitrarily long delays during an execution. More-
over, processes may crash at any time, i.e., permanently stopping taking steps.
Each process is associated with a unique ID ∈ N. The processes can access base
objects like simple atomic read/write registers or more complex objects.

The original Moir&Anderson renaming algorithm [31] is designed and
explained with splitters. Their seminal work first introduces the splitter algo-
rithm based on atomic read/write registers and discusses its properties. Then,
they describe a renaming algorithm that uses a grid of splitters. The actual
implementation inlines splitters into the code of the renaming algorithm, and
their proof is performed on the resulting program that uses solely read/write
registers as base objects.

The Splitter Abstraction. A splitter [31] is a one-shot concurrent task in which
each process starts with its unique ID ∈ N and has to return a value satisfying
the following properties: (1) Validity. The returned value is right, downor stop.
(2) Splitting. If p ≥ 1 processes participate in an execution of the splitter, then
at most p−1 processes obtain the value right, at most p−1 processes obtain the
value down, at most one process obtains the value stop. (3) Termination. Every
correct process (which doesn’t crash) returns a value.

Notice that if a process runs solo, i.e., p = 1, it must obtain stop, since the
splitting property holds for any p ≥ 1.

Figure 1 contains the simple and elegant splitter implementation based on
atomic read/write registers from [31] (register names have been changed for
clarity). After carefully analyzing the code, the reader can convince herself that
the algorithm described in Fig. 1 implements the splitter specification. The fact
that the implementation is based on atomic registers allows us to obtain a tran-
sition system of it in which each transition corresponds to an atomic operation

72 A. Castañeda et al.

initially CLOSED = false
operation splitter():
(01) LAST ← my ID;
(02) if (CLOSED)
(03) then return(right)
(04) else CLOSED ← true;
(05) if (LAST = my ID)
(06) then return(stop)
(07) else return(down)
(08) end if
(09) end if.

Fig. 1. Implementation of a Splitter [31]. Fig. 2. Renaming using Splitters.

on an object. The benefit of this modelization is that every execution of the
implementation is simply described as a sequence of steps, as concurrent and
distributed systems are usually modeled (see, for example, [19,35])). Although
the splitter implementation is very short and simple, its TLA+ proof is long and
rather complex —particularly when considering that it uses a boolean register
and a plain register only—(see [22] for details).

The Renaming Problem. In the M -renaming task [4], each process starts with its
unique ID ∈ N, and processes are required to return an output name satisfying
the following properties: (1) Validity. The output name of a process belongs to
[1, . . . , M]. (2) Uniqueness. No two processes obtain the same output name. (3)
Termination. Every correct process returns an output name.

Let p be the number of processes that participate in a given renaming
instance. A renaming implementation is adaptive if the size M of the new name
space depends only on p, the number of participating processes. We have then
M = f(p) where f(p) is a function on p such that f(1) = 1 and, for 2 ≤ p ≤ n,
p − 1 ≤ f(p − 1) ≤ f(p).

Moir&Anderson Splitter-Based Renaming Algorithm. Moir and Anderson pro-
pose in [31] a read/write renaming algorithm designed using the splitter abstrac-
tion. The algorithm is conceptually simple: for up to n processes, a set of
n(n+1)/2 splitters are placed in a half-grid, each with a unique name, as shown
in Fig. 2 for n = 5. Each process starts invoking the splitter at the top-left
corner, following the directions obtained at each splitter. When a splitter invo-
cation returns stop, the process returns the name associated with the splitter.
We use here an adaptive version of their algorithm that allows p participating
processes to rename in at most p(p + 1)/2 names; the original solution in [31] is
non-adaptive and the only difference is the labelling of the splitters in the grid.

Splitters as Sequential Objects? Although Moir&Anderson renaming algorithm
is easily described in a modular way, the actual program is not modular as each
splitter in the conceptual grid is replaced by an independent copy of the split-
ter implementation of Fig. 1. Thus, the correctness proof in [31] deals with the

Tasks in Modular Proofs of Concurrent Algorithms 73

State: Sets Participants, Stop, Down, Right
all sets are initialized to ∅

Function set(id)
Pre-condition: id /∈ Participants
Post-condition: Participants′ ← Participants ∪ {id}
Output: void

endFunction

Function get(id)
Pre-condition: id ∈ Participants ∧ id /∈ Stop, Down, Right
Post-condition:

D ← ∅
if |Stop| = 0 then D ← D ∪ {stop}
if |Down| < |Participants| − 1 then D ← D ∪ {down}
if |Right| < |Participants| − 1 then D ← D ∪ {right}
Let dec be any value in D
if dec = stop then Stop ← Stop ∪ {id}
if dec = down then Down ← Down ∪ {id}
if dec = right then Right ← Right ∪ {id}

Output: dec
endFunction

Fig. 3. An ad hoc specification of the Splitter.

possible interleavings that can occur, considering all read/write splitter imple-
mentations in the grid.

In the light of the simple splitter based conceptual description, we would
like to have a transition system describing the algorithm based on splitters as
building blocks, in which each step corresponds to a splitter invocation. Such a
description would be very beneficial as it would allow us to obtain a modular
correctness proof showing that the algorithm is correct as long as the building
blocks are splitters, hence the correctness is independent of any particular splitter
implementation.

As it is formally proved in Sect. 3, it is impossible to obtain such a transi-
tion system. The obstacle is that a splitter is inherently concurrent and cannot
be specified as a sequential object with a single operation. The intuition of the
impossibility is the following. By contradiction, suppose that there is a sequen-
tial object corresponding to a splitter. Since the object is sequential, in every
execution, the object behaves as if it is accessed sequentially (even in presence of
concurrent invocation). Then, there is always a process that invokes the splitter
object first, which, as noted above, must obtain stop. The rest of the processes
can obtain either down or right, without any restriction (the value obtained by
the first process precludes that all obtain right or all down). However, such an
object is allowing strictly fewer behaviors: in the original splitter definition it

74 A. Castañeda et al.

is perfectly possible that all processes run concurrently and half of them obtain
right and the other half obtain down, while none obtains stop.

The Splitter Task as a Sequential Object. One can circumvent the impossibil-
ity described above by splitting the single method provided by a splitter into
two (atomic) operations of a sequential object. Figure 3 presents a sequential
specification of a splitter with two operations, set and get, using a standard
pre/post-condition specification style. Each process invoking the splitter, first
invokes set and then get (always in that order). The idea is that the set opera-
tion first records in the state of the object the processes that are participating in
the splitter, so far, and then the get operation nondeterministically produces an
output to a process, considering the rules of the splitter. In Sect. 3, we formally
prove that this sequential object indeed models the splitter defined above.

Proving Moir&Anderson Renaming with Splitters as Base Sequential Objects.
Using the sequential specification of a splitter in Fig. 3, we can easily obtain
a generic description of the original Moir&Anderson splitter-based algorithm:
each renaming object is replaced with an equivalent sequential version of it, and
every process accessing a renaming object asynchronously invokes first set and
then get, which returns a direction to the process. The resulting algorithm does
not rely on any particular splitter implementation, and uses only atomic objects,
which allows us to obtain a transition system of it. This is the algorithm that
is verified in TLA+ in [22]. The equivalence between the concurrent renaming
specification and the sequential set/get specification imply that the proof in [22]
also proves for the original Moir&Anderson splitter-based algorithm.

3 Dealing with Tasks Without Sequential Specification

In this section, we show that the transformation in Sect. 2 of the splitter task
into a sequential object with two operations, get and set, is not a trick but rather
a general methodology to deal with tasks without a sequential specification. Our
get/set solution proposed here is reminiscent to the request-follow-up transfor-
mation in [25] that allows to transform a partial method of a sequential object
(e.g. a queue with a blocking dequeue method when the queue is empty) into two
total methods: a total request method registering that a process wants to obtain
an output, and a total follow-up method obtaining the output value, or false if
the conditions for obtaining a value are not yet satisfied (the process invokes the
follow-up method until it gets an output). We stress that the request-follow-up
transformation [25] considers only objects with a sequential specification and is
not shown to be general as it is only used for queues and stacks.

Model of Computation in Detail. We consider a standard concurrent system
with n asynchronous processes, p1, . . . , pn, which may crash at any time dur-
ing an execution of the system, i.e., stopping taking steps (for more detail
see for example [19,35]). Processes communicate with each other by invok-
ing operations on shared, concurrent base objects. A base object can provide

Tasks in Modular Proofs of Concurrent Algorithms 75

Read/Write operations (also called register), more powerful operations, such as
Test&Set,Fetch&Add,Swap or Compare&Swap, or solve a concurrent distributed
problem, for example, Splitter, Renaming or Set Agreement.

Each process follows a local state machines A1, . . . , An, where Ai specifies
which operations on base objects pi executes in order to return a response when
it invokes a high-level operation (e.g. push or pop operations). Each of these
base-objects operation invocations is a step. An execution is a possibly infinite
sequence of steps and invocations and responses of high-level operations, with
the following properties:

1. Each process first invokes a high-level operation, and only when it has a corre-
sponding response, it can invoke another high-level operation, i.e., executions
are well-formed.

2. For any invocation inv(〈opType, pi, input〉) of a process pi, the steps of pi
between that invocation and its corresponding response (if there is one),
are steps that are specified by Ai when pi invokes the high-level operation
〈opType, pi, input〉.
A high-level operation in an execution is complete if both its invocation and

response appear in the execution. An operation is pending if only its invocation
appears in the execution. A process is correct in an execution if it takes infinitely
many steps.

Sequential Specifications. A central paradigm for specifying distributed prob-
lems is that of a shared object X that processes may access concurrently [19,35],
but the object is defined in terms of a sequential specification, i.e., an automaton
describing the outputs the object produces when it is accessed sequentially. Alter-
natively, the specification can be described as (possibly infinite) prefix-closed set,
SSpec(X), with all sequential executions allowed by X.

Once we have a sequential specification, there are various ways of defining
what it means for an execution to satisfy an object, namely, that it respects
the sequential specification. Linearizability [20] is the standard notion used to
identify correct executions of implementations of sequential objects. Intuitively,
an execution is linearizable if its operations can be ordered sequentially, without
reordering non-overlapping operations, so that their responses satisfy the speci-
fication of the implemented object. To formalize this notion we define a partial
order on the completed operations of an execution E: op <E op′ if and only
if the response of op precedes the invocation of op′ in E. Two operations are
concurrent if they are incomparable by <E . The execution is sequential if <E is
a total order.

An execution E is linearizable with respect to X if there is a sequential
execution S of X (i.e., S ∈ SSpec(X)) such that: (1) S contains every completed
operation of E and might contain some pending operations. Inputs and outputs
of invocations and responses in S agree with inputs and outputs in E, and (2) for
every two completed operations op and op′ in E, if op <E op′, then op appears
before op′ in S.

76 A. Castañeda et al.

Using the linearizability correctness criteria for sequential objects, we can
define the set of valid executions for X, denoted V E(X), as the set containing
every execution E that consists of invocations and responses and is linearizable
w.r.t. X. V E(X) contains the behavior one might expect from any building-block
implementation of X, e.g., any algorithm that implements X.

Tasks. A task is the basic distributed equivalent of a function in sequential
computing, defined by a set of inputs to the processes and for each (distributed)
input to the processes, a set of legal (distributed) outputs of the processes,
e.g., [18].

In an algorithm designed to solve a task, each process starts with a private
input value and has to eventually decide irrevocably on an output value. A
process pi is initially not aware of the inputs of other processes. Consider an
execution where only a subset of k ≤ n processes participate; the others crash
without taking any steps. A set of pairs σ = {(id1, x1), . . . , (idk, xk)} is used to
denote the input values, or output values, in the execution, where xi denotes the
value of the process with identity idi, either an input value or an output value. A
set σ as above is called a simplex, and if the values are input values, it is an input
simplex, if they are output values, it is an output simplex. The elements of σ are
called vertices, and any subset of σ is a face of it. An input vertex v = (idi, xi)
represents the initial state of process idi, while an output vertex represents its
decision. The dimension of a simplex σ, denoted dim(σ), is |σ| − 1, and it is full
if it contains n vertices, one for each process. A complex K is a set of simplexes
(i.e. a set of sets) closed under containment. The dimension of K is the largest
dimension of its simplexes, and K is pure of dimension k if each of its simplexes
is a face of a k-dimensional simplex. In distributed computing, the simplexes
(and complexes) are often chromatic: vertices of a simplex are labeled with a
distinct process identities. The set of processes identities in an input or output
simplex σ is denoted ID(σ).

A task T for n processes is a triple (I,O,Δ) where I and O are pure chro-
matic (n − 1)-dimensional complexes, and Δ maps each simplex σ from I to a
subcomplex Δ(σ) of O, satisfying: (1) Δ(σ) is pure of dimension dim(σ), (2) for
every τ in Δ(σ) of dimension dim(σ), ID(τ) = ID(σ), and (3) if σ, σ′ are two
simplexes in I with σ′ ⊂ σ then Δ(σ′) ⊂ Δ(σ). A task is a very compact way of
specifying a distributed problem, and indeed typically it is hard to understand
what exactly is the problem being specified. Intuitively, Δ specifies, for every
simplex σ ∈ I, the valid outputs Δ(σ) for the processes in ID(σ) assuming they
run to completion, and the other processes crash initially, and do not take any
steps.

As an example consider the splitter task [31]. Figure 4 shows a graphic
description of the splitter task for three processes with IDs 1, 2 and 3. The
input complex, shown at the left, consists of a triangle and all its faces. The
output complex, at the right, contains all possible valid output simplexes (the
triangle with all right outputs is not in the complex). The Δ function maps the
input vertex with ID 1 to the output vertex (1, stop), the input edge with IDs
1 and 2 to the complex with the bold edges in the output complex, and the

Tasks in Modular Proofs of Concurrent Algorithms 77

2 3

3 2

1

23

1

1
down

stop

right right

right

stop

downdown

stop

32

1
Δ

Fig. 4. The Splitter Task for Three Processes.

input triangle is mapped to the whole output complex. The rest of Δ is defined
symmetrically.

Let E be an execution where each process invokes a task 〈I,O,Δ〉 once.
Then, σE is the input simplex defined as follows: (idi, xi) is in σE iff in E there
is an invocation of task(xi) by process idi. The output simplex τE is defined
similarly: (idi, yi) is in τE iff there is a response yi to a process idi in E. We say
that E satisfies (I,O,Δ) if for every prefix E′ of E, it holds that τE′ ∈ Δ(σE′).

Using the satisfiability notion of tasks we can now consider the set of valid
executions, V E(T), for a given task T = (I,O,Δ): the set containing every
execution E that has only invocations and responses and satisfies T . Arguably,
the set V E(T) contains the behavior one might expect from a building-block (e.g.
an algorithm) that implements T .

Modeling Tasks as Sequential Objects. Intuitively, tasks and sequential specifi-
cations are inherently different paradigms for specifying distributed problems:
while a task specifies what a set of processes might output when running con-
currently, a sequential specification specifies the behavior of a concurrent object
when accessed sequentially (and linearizability tells when a concurrent execution
“behaves” like a sequential execution of the object). A natural question is if any
task can be modeled as a sequential object with a single operation, namely, the
object defines the same set of valid executions. A well-known example for which
this is possible is the consensus distributed coordination problem that can be
equivalently defined as a task or as a sequential object (see for example [19]
where it is defined as an object1 and [18] where it is defined as a task).
1 Sometimes, for clarity or efficiency, the object is defined with two operations (in the

style of the Theorem 1); however, consensus can be equivalently defined with one
operation.

78 A. Castañeda et al.

State: a pair (σ, τ) of input/output simplexes, initialized to (∅, ∅)

Function set(idi, xi)
Pre-condition: idi ∈ ID ∧ idi /∈ ID(σ)
Post-condition: σ′ ← σ ∪ {(idi, xi)}
Output: void

endFunction

Function get(idi)
Pre-condition: idi ∈ ID ∧ idi /∈ ID(τ)
Post-condition: Let yi be any output value such that τ ∪ {(idi, yi)} ∈ Δ(σ).

Then, τ ′ ← τ ∪ {(idi, yi)}
Output: yi

endFunction

Fig. 5. A Generic Sequential Specification of a Task T = (I,O, Δ).

Lemma 1. Consider the splitter task Tspl = (Ispl,Ospl,Δspl). There is no sequen-
tial object Xspl with a single operation satisfying V E(Tspl) = V E(Xspl).

In a very similar way, one can prove that the following known tasks cannot
be specified as sequential objects with a single operation: exchanger [17,36],
adaptive renaming [4], set agreement [10], immediate snapshot [5], adopt-
commit [6,13] and conflict detection [3].2

To circumvent the impossibility result in Lemma 1, we model any given task
T through a sequential object S with two operations, set and get, that each
process access in a specific way: it first invokes set with its input to the task T
(receiving no output) and later invokes get in order to get an output value from
T . Intuitively, decoupling the single operation of T into two (atomic) operations
allows us to model concurrent behaviors that a single (atomic) operation cannot
specify. In what follows, let SSpec(S) be the set with all sequential executions
of S in which each process invokes at most two operations, first set and then get,
in that order.

Theorem 1. For every task T = (I,O,Δ) there is a sequential object S with
two operations, set(idi, xi) and get(idi) : yi, such that there is a bijection α
between V E(T) and SSpec(S) satisfying that: (1) each invocation or response
of process idi is mapped to an operation of process idi, and (2) each invocation
inv (response resp) with input (output) x is mapped to a completed set (get)
operation with input (output) x.

An implication of Theorem 1 is that if one is analyzing an algorithm that
uses a building-block (subroutine, algorithm, etc.) B that solves a task T , one

2 There are non-deterministic sequential specifications of these tasks with unavoidable
and pathological executions in which some operations guess the inputs of future
operations. See [9, Section 2] for a detailed discussion.

Tasks in Modular Proofs of Concurrent Algorithms 79

can safely replace B with the sequential object S related to T described in the
theorem (each invocation to the operation of B is replaced with an (atomic)
invocation to set and then an (atomic) invocation to get), and then analyze
the algorithm considering the atomic operations of S. The advantage of this
transformation is that (1) if all operations in an algorithm are atomic, we can
think that each process takes a step at a time in an execution, hence obtaining a
a transition system with atomic events, (2) at all times we have a concrete state
of S in an execution (which is not clear in a task specification) and (3) given
a state of S, an output for a get operation can be easily computed using the
sequential object S (something that is typically complicated for B as it might
be accessed concurrently).

The construction used (for simplicity) in the proof of Theorem 1 (in the full
version of the paper) might be too coarse to be helpful for analyzing an algo-
rithm. We would like to have a construction producing an equivalent sequential
automaton modeling the task in a simpler way. Consider the simple sequential
object in Fig. 5 obtained from any given task T = (I,O,Δ), which is described
in a classic pre/post-condition form. Intuitively, the meaning of a state (σ, τ)
is the following: σ contains the processes that have invoked the task so far
(this represents the participating set of the current execution) while τ contains
the outputs that have been produced so far. The main invariant of the spec-
ification is that τ ∈ Δ(σ). It directly follows from the properties of the task:
when a process invokes set(idi, xi), we have that τ ∈ Δ(σ ∪ {(idi, xi)}) because
Δ(σ) ⊂ Δ(σ ∪ {(idi, xi)}), and when a process invokes get(idi), it holds that
τ ∪ {(idi, yi)} ∈ Δ(σ) because Δ(σ) is a pure complex of dimension dim(σ) and
thus there must exist a simplex in Δ(σ) (properly) containing τ and with an
output for idi. One can formally prove that this sequential object and the one
in the proof Theorem 1 define the same set of sequential executions.

Finally, one can obtain ad-hoc and equivalent specifications for specific tasks,
like the one for splitters in Fig. 3 in Sect. 2.

4 Related Work

Linearizability Criteria. Neiger observed for the first time that some fundamen-
tal tasks, like set agreement [10] and immediate snapshot [5], cannot be modeled
as sequential objects [33] (with a single operation). Motivated by the need of
a unified framework for tasks and objects, he proposed set-linearizability [33].
Roughly speaking, a set sequential object is generalization of a sequential object
in which transitions between states involve more than one operation (formally,
a set of operations), meaning that these operations are allowed to occur concur-
rently, and their results can be concurrency-dependent. Set linearizability is the
consistency condition for set-sequential objects, where one needs to find lineariz-
ability points (same as in linearizability) and several operations can be linearized
at the same point (different from linearizability).

Later on, it was again observed that for some concurrent objects it is impos-
sible to provide a sequential specification, and concurrency-aware linearizability

80 A. Castañeda et al.

was defined [16]. Set linearizability and concurrency-aware linearizability are
very closely related, both based on the same principle: sets of operations can
occur concurrently. Also, a non-automatic verification technique for reasoning
about concurrency-aware objects is presented in [16].

Recently it was observed in [9] that some natural tasks specify concurrency
dependencies that are beyond the set-linearizability and concurrency-aware
formalisms, hence that paper proposed interval linearizability. In an interval-
sequential object not only sets of operations can occur concurrently but some
of these operations might be pending and then overlap operations in the next
transition; thus each operation corresponds to an interval instead of a single
point. Interval linearizability is the related consistency condition in which, for
each operation, one needs to find an interval in which the operation happens. It
is shown in [9] that interval-linearizability is complete for tasks in the sense that
it is possible to specify any task as an interval-sequential object (with a single
operation).

Although interval-sequential specifications can model any task, this approach
does not seem to be useful when one is searching for machine-checked proofs of
concurrent algorithms. The main reason is that by replacing a task with its
equivalent interval-sequential object, we obtain a transition system in which one
still needs to think in concurrent behaviors, which is usually hard to deal with. In
contrast, our proposed get-set transformation allows to “decouple” the inherent
concurrency in tasks in a way that in the resulting transition system all events
are atomic, namely, they happen one after the other.

Mechanized Verification of Distributed Algorithms. Mechanized (or machine-
assisted) verification of distributed and concurrent algorithms is usually done
with model checking or theorem proving or a combination of both. Enumerative
model-checking is the oldest fully automatic method with tools like Spin [21] or
TLC, the TLA+ model checker [27]. To avoid the well-known problem of state
explosion, various optimisations such as symmetry or reduction have been intro-
duced, and recent work is on going on parameterized model checking, for instance
with MCMT (Model Checking Modulo Theory) [14], Cubicle [11] or ByMC [26].
Nevertheless, automatic verification of a distributed/concurrent algorithm is still
restricted to small finite instances of the algorithm or imposes significant con-
straints on its description, due to the limited expressiveness of the specification
language.

Fully automatic theorem proving is based on a proof decision procedure. For
useful logics, it is often semi-decidable at best and heavily depends on heuristics
to achieve good performance. Recent work on SMT has made a substantial leap
forward checking complex formulae combining first-order reasoning with deci-
sion procedures for theory such as arithmetic, equality, arrays. Nonetheless, the
overall proof of a distributed algorithm is still largely manual and, when seeking
confidence in this proof, an interactive proof assistant is the current approach.
Several examples of verification of complex distributed algorithms exist: Chord

Tasks in Modular Proofs of Concurrent Algorithms 81

with Alloy [38], Pastry with TLA+ [29,30], Paxos also with TLA+ [28], snapshot
algorithms in Event-B [2], just to cite a few.

Several wait-free implementations of tasks have been mechanically proven
(e.g. [12,34,37]). However, to the best of our knowledge, no non-trivial algorithm
built upon concurrent tasks have been mechanically proved. Our intuition for
this situation is that proofs cannot be made modular and compositional when
using bricks which are inherently concurrent if their internal structure must
be visible to take into account this concurrency. Several complex and original
algorithms can be found in the literature such as Moir and Anderson renaming
algorithm [31] that we have considered in this paper, stacks implemented with
elimination trees [36], lock-free queues with elimination [32]. In these papers,
the correctness proofs are intricate as they must consider the algorithm as a
whole, including the tricky part involving wait-free objects, and they have not
been mechanically checked. Our approach which exposes a more simple and
sequential specification (instead of a complex concurrent implementation) seeks
to alleviate this limitation.

5 Final Remarks and Future Work

In this paper, we showed a technique to circumvent the known impossibility of
specifying a task as a sequential object. Our technique consists in modeling the
single operation of the task with two atomic operations, set and get. This trans-
formation leads to a framework for developing transitional models of concurrent
algorithms using tasks and sequential objects as building blocks. As a proof of
concept, we developed in a companion paper [22] a full and modular TLA+ proof
of the Moir&Anderson renaming algorithm [31].

A natural extension of our work is to apply the framework to other concur-
rent algorithms. Another direction is to extend our techniques to the case of
refined tasks and interval-sequential objects, recently defined in [9]. These two
formalisms are generalization of the task and sequential object formalism with
strictly more expressiveness; particularly, contrary to the task formalism, refined
task are multi-shot, namely, each process may perform several invocations, pos-
sibly infinitely many.

A third direction is to study if the duality between the epistemic logic app-
roach and the topological approach shown in [15] might be useful in verifying
concurrent algorithms. Generally speaking, it is shown in [15] that a task can be
represented as a Kripke model with an action model, specifying the knowledge
obtained by processes when solving the task. It could be interesting to explore
how this knowledge could be reflected in our set/get construction and if it could
be useful in proving correctness.

Acknowledgements. Armando Castañeda was supported by PAPIIT project
IA102417.

82 A. Castañeda et al.

References

1. Alistarh, D.: The renaming problem: recent developments and open questions. Bull.
EATCS 3, 117 (2015)

2. Andriamiarina, M.B., Méry, D., Singh, N.K.: Revisiting snapshot algorithms by
refinement-based techniques. Comput. Sci. Inf. Syst. 11(1), 251–270 (2014)

3. Aspnes, J., Ellen, F.: Tight bounds for adopt-commit objects. Theory Comput.
Syst. 55(3), 451–474 (2014)

4. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. J. ACM 37(3), 524–548 (1990)

5. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC 1993: Proceedings of the ACM Symposium on
Theory of computing, pp. 91–100. ACM, New York (1993)

6. Borowsky, E., Gafni, E., Lynch, N.A., Rajsbaum, S.: The BG distributed simulation
algorithm. Distrib. Comput. 14(3), 127–146 (2001)

7. Castañeda, A., Hurault, A., Quéinnec, P., Roy, M.: Tasks in modular proofs of
concurrent algorithms. CoRR, arXiv:1909.05537 [cs.DC] (2019)

8. Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared mem-
ory systems: an introduction. Comput. Sci. Rev. 5(3), 229–251 (2011)

9. Castañeda, A., Rajsbaum, S., Raynal, M.: Unifying concurrent objects and dis-
tributed tasks: interval-linearizability. J. ACM 65(6), 45 (2018)

10. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

11. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 55

12. Drăgoi, C., Gupta, A., Henzinger, T.A.: Automatic linearizability proofs of con-
current objects with cooperating updates. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 174–190. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 11

13. Gafni, E.: Round-by-round fault detectors: unifying synchrony and asynchrony
(extended abstract). In: Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, PODC 1998, pp. 143–152 (1998)

14. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1 3

15. Goubault, É., Ledent, J., Rajsbaum, S.: A simplicial complex model for dynamic
epistemic logic to study distributed task computability. In: Ninth International
Symposium on Games, Automata, Logics, and Formal Verification, GandALF
2018, pp. 73–87 (2018)

16. Hemed, N., Rinetzky, N., Vafeiadis, V.: Modular verification of concurrency-aware
linearizability. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 371–387.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5 25

17. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. J.
Parallel Distrib. Comput. 70(1), 1–12 (2010)

18. Herlihy, M., Kozlov, D.N., Rajsbaum, S.: Distributed Computing Through Com-
binatorial Topology. Morgan Kaufmann, Burlington (2013)

19. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, Burlington (2008)

http://arxiv.org/abs/1909.05537
https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/978-3-642-39799-8_11
https://doi.org/10.1007/978-3-642-39799-8_11
https://doi.org/10.1007/978-3-642-14203-1_3
https://doi.org/10.1007/978-3-662-48653-5_25

Tasks in Modular Proofs of Concurrent Algorithms 83

20. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

21. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

22. Hurault, A., Quéinnec, P.: Proving a non-blocking algorithm for process renaming
with TLA+. In: Beyer, D., Keller, C. (eds.) TAP 2019. LNCS, vol. 11823, pp.
147–166. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31157-5 10

23. IEC: IEC-61508: Functional safety. https://www.iec.ch/functionalsafety/
24. Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. Commun.

ACM 52(5), 100–111 (2009)
25. Scherer, W.N., Scott, M.L.: Nonblocking concurrent data structures with condition

synchronization. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 174–187.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30186-8 13

26. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: Formal Meth-
ods in Computer-Aided Design, FMCAD 2013, pp. 201–209. IEEE, October 2013

27. Lamport, L.: Specifying Systems. Addison Wesley, Boston (2002)
28. Lamport, L.: Byzantizing paxos by refinement. In: Peleg, D. (ed.) DISC 2011.

LNCS, vol. 6950, pp. 211–224. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24100-0 22

29. Lu, T.: Formal verification of the pastry protocol. Ph.D. thesis, Université de Lor-
raine - Universität des Saarlandes, July 2013

30. Lu, T., Merz, S., Weidenbach, C.: Towards verification of the pastry protocol
using TLA+. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS,
vol. 6722, pp. 244–258. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21461-5 16

31. Moir, M., Anderson, J.H.: Wait-free algorithms for fast, long-lived renaming. Sci.
Comput. Program. 25(1), 1–39 (1995)

32. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free FIFO queues. In: 17th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2005, pp. 253–262. ACM (2005)

33. Neiger, G.: Set-linearizability. In: Proceedings of the Thirteenth Annual ACM Sym-
posium on Principles of Distributed Computing, Los Angeles, California, USA,
14–17 August 1994, p. 396 (1994)

34. O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: 29th Annual ACM Symposium on Principles of
Distributed Computing, PODC 2010, pp. 85–94. ACM (2010)

35. Raynal, M.: Concurrent Programming - Algorithms, Principles, and Foundations.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32027-9

36. Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks.
Theory Comput. Syst. 30(6), 645–670 (1997)

37. Tofan, B., Schellhorn, G., Reif, W.: A compositional proof method for linearizabil-
ity applied to a wait-free multiset. In: Albert, E., Sekerinski, E. (eds.) IFM 2014.
LNCS, vol. 8739, pp. 357–372. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10181-1 22

38. Zave, P.: Using lightweight modeling to understand Chord. SIGCOMM Comput.
Commun. Rev. 42(2), 49–57 (2012)

https://doi.org/10.1007/978-3-030-31157-5_10
https://www.iec.ch/functionalsafety/
https://doi.org/10.1007/978-3-540-30186-8_13
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-24100-0_22
https://doi.org/10.1007/978-3-642-21461-5_16
https://doi.org/10.1007/978-3-642-21461-5_16
https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-319-10181-1_22
https://doi.org/10.1007/978-3-319-10181-1_22

On Gathering of Semi-synchronous
Robots in Graphs

Serafino Cicerone1, Gabriele Di Stefano1, and Alfredo Navarra2(B)

1 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, 67100 L’Aquila, Italy
{serafino.cicerone,gabriele.distefano}@univaq.it

2 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
06123 Perugia, Italy

alfredo.navarra@unipg.it

Abstract. We consider the Gathering problem where a swarm of weak
robots disposed on the vertices of an anonymous graph are required to
meet at one vertex from where they do not move anymore. In our recent
work [Cicerone et al., SIROCCO’19], we have shown how synchronicity
heavily affects the design of resolution algorithms within the standard
Look-Compute-Move (LCM) model. In particular, we have investigated
two dense and highly symmetric topologies: complete graphs and com-
plete bipartite graphs. We characterized all solvable configurations for
synchronous robots, whereas it is known that in complete graphs asyn-
chronous robots cannot solve the problem, ever. Instead of approaching
directly the asynchronous case in complete bipartite graphs, we asked
what happens in the so-called semi-synchronous model, that is robots
are synchronized but they are not necessarily all active within all LCM
cycles. It turns out that still the gathering can never be accomplished
on complete graphs, whereas challenging cases arise in complete bipar-
tite graphs. We provide a distributed algorithm solving the problem for
a wide set of possible configurations. For most of the remaining ones
instead we provide impossibility results and a few of ad hoc resolution
algorithms studied for very specific cases. Over all, still a full charac-
terization is missing but our study points out how difficult might be to
derive a general argument that catches all peculiarities. Moreover, some
of our approaches reveal new insights that might be very useful for the
resolution of other tasks.

1 Introduction

The Gathering problem is one of the primitives widely investigated in the con-
text of computing with mobile entities. The task aims to move a swarm of very

The work has been supported in part by the European project “Geospatial based
Environment for Optimisation Systems Addressing Fire Emergencies” (GEO-SAFE),
contract no. H2020-691161, and by the Italian National Group for Scientific Compu-
tation (GNCS-INdAM).

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 84–98, 2019.
https://doi.org/10.1007/978-3-030-34992-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_7

On Gathering of Semi-synchronous Robots in Graphs 85

weak robots initially disposed on different vertices of a graph toward a common
vertex, from where they do not move anymore. Robots are assumed to be: Anony-
mous: no unique identifiers; Autonomous: no centralized control; Oblivious: no
memory of past events; Homogeneous: they all execute the same deterministic
algorithm; Silent : no means of communication; Disoriented : no common orienta-
tion. Robots operate in standard Look -Compute-Move (LCM) cycles. In one cycle
a robot takes a snapshot of the current global configuration (Look) in terms of
robots’ locations. Successively, in the Compute phase it decides whether to move
toward a neighboring vertex or not, and in the positive case it moves (Move).

Cycles might be performed with respect to different levels of synchronicity:

– Fully-Synchronous (FSync): The activation phase (i.e. the execution of a
LCM-cycle) of all robots can be logically divided into global rounds. In each
round all the robots are activated, obtain the same snapshot of the environ-
ment, compute and perform their move.

– Semi-Synchronous (SSync): It coincides with the FSync model, with the
only difference that not all robots are necessarily activated in each round.

– Asynchronous (Async): The robots are activated independently, and the
duration of each phase is finite but unpredictable.

It is worth to remark that when dealing with SSync (as well as for Async ones)
any gathering algorithm cannot rely on the concurrent movement of two or more
robots as the adversary can always linearize their activation. Whereas FSync
robots can be forced to move concurrently as they are always active. The amount
of time between two LCM-cycles performed by a robot is assumed to be finite but
unpredictable. In particular, in both the SSync and Async cases it is assumed
that the adversary determines such a time. The timing is assumed to be fair,
that is, each robot performs its LCM-cycle within finite time and infinitely often.

Due to impossibility results within the LCM-model, robots are endowed with
the so-called multiplicity detection capability (see e.g. [7,18]). Basically, when
more than one robot resides on the same vertex x, then x is said to be occupied
by a multiplicity. A robot is said to have the (global strong) multiplicity detection
ability when it can detect the exact number of robots composing a multiplicity at
any given vertex. Other weaker forms of multiplicity detection could be defined
but they would lead to wider impossibility results.

While the gathering problem has been deeply investigated and fully charac-
terized for robots moving on the Euclidean plane [7] (also with respect to given
fixed points [3,4]), not much is known for the graph environment.

Recently, in [6] we have provided some general properties for the gatherability
of FSync robots on graphs. However, a full characterization is still missing, apart
for some specific topologies like complete graphs and complete bipartite graphs.

For Async robots [5], the considered topologies so far are trees [8,15],
rings [9–13,15,17,18], regular bipartite graphs [16], finite [8] or infinite [14] grids
and hypercubes [1], also from an optimization perspective [2,3].

Most of the considered topologies are very symmetric when dealing with
anonymous graphs, that is all vertices look equivalent. This choice has been
done so that robots cannot exploit much topological properties. For instance if a

86 S. Cicerone et al.

tree or a finite grid admit only one center, then all robots can detect it and move
there, even asynchronously. Contrary, in complete graphs, rings, or hypercubes,
all vertices are equivalent and the synchronicity may heavily impact on feasibility.

A main observation coming out from the literature about gathering in graphs
is that feasibility is very constrained with respect to synchronicity. On the one
hand, dealing with Async robots is much harder than considering SSync or
FSync ones. On the other hand, it may happen that Async robots simply
cannot solve some instances, hence sensibly reducing the scope of research for
resolution algorithms. In other words, the graph context seems requiring deep
investigation on the different results one may achieve when switching from the
Async to the SSync or FSync cases.

Our Results. First, we study general properties of graphs that can be exploited
in order to establish the unsolvability of the gathering task in the FSync (and
hence also in the SSync or Async) setting. We extend the knowledge of par-
titive configurations, introduced in [15] to catch more ungatherable cases. We
also define what we call weak-partitive configurations that concern a wider set
of configurations with respect to the partitive ones and that can be exploited
in the SSync setting to further extend the ungatherability result. We then con-
sider SSync robots on dense and symmetric graphs like complete and complete
bipartite graphs where Async robots cannot solve much. For complete graphs we
prove that still the problem remains unsolvable. For complete bipartite graphs,
instead we are able to provide some specific impossibility results and some reso-
lution algorithms. Still a full characterization is missing but our study points out
how difficult might be to derive a general argument that catches all peculiarities.
Moreover, some of our approaches reveal new insights that might be very useful
for the resolution of other tasks.

2 Problem Definition and Impossibility Results

The topology where robots are placed on is represented by a simple and con-
nected graph G = (V,E), with vertex set V and edge set E. The cardinality of
V is represented as |V | or |G|. A function λ : V → N represents the number
of robots on each vertex of G, and we call C = (G,λ) a configuration when-
ever

∑
v∈V λ(v) is bounded and greater than zero. A vertex v ∈ V such that

λ(v) > 0 is said occupied, unoccupied otherwise. A subset V ′ ⊆ V is said occupied
if at least one of its elements is occupied, unoccupied otherwise. A configuration
is initial if each robot is placed on a different vertex (i.e., λ(v) ≤ 1 for each
v ∈ V). A configuration is final if all the robots are on a single vertex (i.e.,
∃u ∈ V : λ(u) > 0 and λ(v) = 0, ∀v ∈ V \ {u}). The Gathering problem can
be informally defined as the problem of transforming an initial configuration
into a final one. Throughout the paper we assume that each initial configuration
is composed of at least two robots (otherwise the problem is trivially solved).
A gathering algorithm for this problem is a deterministic distributed algorithm
that brings the robots in the system to a final configuration in a finite number of

On Gathering of Semi-synchronous Robots in Graphs 87

LCM-cycles from any given initial configuration, regardless of the adversary. For-
mally, an algorithm A solves the Gathering problem for an initial configuration
C if, for any execution E : C = C(0), C(1), . . . of A, there exists a time instant
i > 0 such that C(i) is final and no robots move after i, i.e., C(t) = C(i) holds
for all t ≥ i. We say that an initial configuration C = (G,λ) is gatherable if there
exists a gathering algorithm for C, otherwise we say that C is ungatherable. For
FSync/SSync robots, the time complexity of a gathering algorithm A is the
maximum amount of time units (that is the number of LCM-cycles) required by
A for processing any gatherable initial configuration.

During an execution, Λ(t) denotes the number of occupied vertices at time t;
formally, Λ(t) = |{u ∈ V : λ(v) > 0}|. Given a subset V ′ ⊆ V , Rob(V ′) denotes
the set containing all robots placed on vertices in V ′.

Configuration Automorphisms and Symmetries. Two undirected graphs G =
(V,E) and G′ = (V ′, E′) are isomorphic if there is a bijection ϕ from V to
V ′ such that {u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E′. An automorphism
on a graph G is an isomorphism from G to itself, that is a permutation of the
vertices of G that maps edges to edges and non-edges to non-edges. The set of
all automorphisms of G, under the composition operation, forms a group called
automorphism group of G and denoted by Aut(G). If |Aut(G)| = 1, that is G
admits only the identity automorphism, then G is said asymmetric, otherwise it
is said symmetric.

Definition 1. Given a graph G = (V,E), two vertices u, v ∈ V are equivalent in
G (or G-equivalent) if there exists an automorphism ϕ ∈ Aut(G) s.t. ϕ(u) = v.

The concept of graph automorphism can be extended to configurations in a
natural way: (1) two configurations C = (G,λ) and C ′ = (G′, λ′) are isomorphic
if G and G′ are isomorphic via a bijection ϕ and λ(v) = λ′(ϕ(v)) for each vertex
v in G; (2) an automorphism on a configuration C = (G,λ) is an isomorphism
from C to itself and the set of all automorphisms of C forms a group that we
call automorphism group of C, denoted by Aut(C). Analogously to the case of
graphs, if |Aut(C)| = 1, we say that the configuration C is asymmetric, otherwise
it is symmetric.

Definition 2. Given any configuration C = (G,λ), two vertices u and v are
equivalent in C (or C-equivalent) if there exists an automorphism ϕ ∈ Aut(C)
s.t. ϕ(u) = v.

For sake of simplicity, in the remainder we extend the same definition to robots:
two distinct robots r and r′ are equivalent if they reside on C-equivalent ver-
tices u and v (not necessarily distinct). An important consequence of the above
definition is that when two equivalent robots r and r′ reside on vertices u and
v, then r cannot distinguish its position at vertex u from its equivalent robot
r′ located at vertex v. As a consequence, no algorithm can distinguish between
two equivalent robots.

Definition 3. Let C = (G,λ) be a configuration and V ′ ⊆ V . V ′ is a G-batch
(C-batch, resp.) if its elements are pairwise G-equivalent (C-equivalent, resp.).

88 S. Cicerone et al.

Notice that any C-batch is also a G-batch. We simply use the term batch when
we are not interested in distinguishing between G- or C-batches or it is clear
from the context. Notice that given a batch B, any non-empty subset of B is a
batch as well. A batch B is maximal if there does not exists a batch B′ such
that B ⊂ B′. If there exists at least one edge connecting vertices belonging to
two distinct batches, then such batches are adjacent.

Lemma 1. Let G = (V,E) be a graph and C = (G,λ) be a configuration. The
partition of V into maximal C-batches is unique. The same holds for the partition
of V into G-batches.

Given any batch B, we use the following additional notions: (1) the order of B
is denoted as λ(B) and corresponds to the multiplicity in any vertex in B (note
that, by definition, each vertex in B contains the same number of robots); (2)
the size of B is simply |B|, that is the number of vertices it contains; (3) the
occupancy of B is |Rob(B)|, that is the total number of robots residing in B -
notice |Rob(B)| = |B| · λ(B).

In the remainder we make use the following additional notation. Bmin and
Bmax will denote occupied batches of minimum and maximum order, respec-
tively. Given some integers k1, k2, . . . , kt, with t ≥ 2 and ki > 0 for each 1 ≤ i ≤ t,
we use lcpf (k1, k2) to denote the least common prime factor of k1 and k2, and
lcm(k1, k2, . . . , kt) to denote the least common multiple of all such integers. Given
a graph G = (V,E), v ∈ V and V ′ ⊆ V , we use deg(v, V ′) to denote the number
of edges connecting v to any vertex in V ′.

The New Impossibility Results. The next theorem provides a sufficient condition
for a configuration to be ungatherable, but we first need the following definition
of partitive configuration.

Definition 4. Let G = (V,E) be a graph and C = (G,λ) be a non-final con-
figuration. C is said partitive on V ′ ⊆ V if there exists a partition V =
{V1, V2, . . . , Vt} of V ′ into (not necessarily maximal) C-batches where each set
Vi fulfills the following conditions:

1. |Vi| ≥ 2;
2. if Vi is occupied, then |Rob(Vi)| is a multiple of |Vj | for each Vj ∈ V.
3. if Vi, Vj ∈ V are two adjacent batches, then they remain G-batches in the

subgraph induced by Vi ∪ Vj.

When a configuration C is partitive on the entire set of vertices V we simply say
that C is partitive. Notice that when C is both initial and partitive, then the
partition in the above definition necessarily requires that each occupied batch
Vi has the same size and the same occupancy. In fact, if Vi and Vj are both
occupied, then |Rob(Vi)| = |Vi| is a multiple of |Vj | and |Rob(Vj)| = |Vj | is a
multiple of |Vi|: this implies |Vi| = |Vj |.

It is worth to remark that this definition leads to the following observations:
if Vi and Vj are two adjacent sets of V, then according to the definition of
equivalent vertices in C, we get that deg(v, Vj) is the same for each vertex v ∈ Vi

On Gathering of Semi-synchronous Robots in Graphs 89

and, symmetrically, deg(v, Vi) is the same for each vertex v ∈ Vj . This implies
that, if we denote by Ei,j the set of edges between Vi and Vj , then |Ei,j | is a
multiple of both |Vi| and |Vj |; in particular |Ei,j | ranges from lcm(|Vi|, |Vj |) to
|Vi| · |Vj |. A relevant property arising from this observation - and also showing
the rationale of the above definition - is the following.

Lemma 2. Let G = (V,E) be a graph and C = (G,λ) be a non-final configura-
tion. Assume C partitive with respect to the partition V = {V1, V2, . . . , Vt}. If an
algorithm moves robots from an occupied batch Vi toward Vj then the following
properties hold:

(a) the adversary can equally distribute all robots in Vi on all the vertices of Vj;
(b) after the move, the adversary can lead to configuration C ′ with the following

properties: (1) it is still partitive, (2) if Vj is occupied in C, then C ′ has one
occupied batch less than C, and (3) if Vj is unoccupied in C, then C ′ has
the same number of occupied batches of C.

The next theorem provides a general impossibility result for the gathering prob-
lem on graphs of FSync (hence also for SSync and Async) robots.

Theorem 1. Let G = (V,E) be any graph and let C = (G,λ) be any non-final
configuration composed of FSync robots. If C is partitive then C is ungatherable.

Proof. Let A be any gathering algorithm for C. Since C is partitive, assume that
V = {V1, V2, . . . , Vt} is the partition of V fulfilling the conditions of Definition 4.
Assume that A wants to move robots in a set R ⊆ Rob(V) toward a target
set T ⊆ V adjacent to the vertices where robots in R reside. Since A cannot
distinguish between equivalent robots and between equivalent vertices, R and T
must consist of all robots located on vertices of some batches in V and all vertices
of some batches in V, respectively. In what follows we describe the behavior of
the adversary when R and T refer to two single batches (not necessarily distinct)
- in case of multiple batches the same behavior is applied to each batch.

If there is only one occupied batch Vi in V, each move can only specify whether
robots must move toward an unoccupied batch different from Vi or toward a ver-
tex already occupied within Vi. If the move is toward a vertex already occupied,
then the adversary can always make all robots move concurrently toward dif-
ferent destinations, in such a way that the robots just exchange their positions
on the same set of occupied vertices. Then A will always produce a configura-
tion isomorphic to C. If A moves robots from Vi toward some unoccupied batch
Vj ∈ V and this move creates a new configuration C ′, according to Lemma 2
we have: (1) the adversary equally distributes all robots in Vi on the vertices of
Vj , (2) C ′ still fulfills the same conditions of the statement, and (3) C ′ contains
only one occupied C-batch. It is evident that such properties hold regardless the
number of moves performed by A. This implies that A cannot accomplish the
gathering.

If there are several occupied C-batches, regardless whether A moves robots
from any Vi toward an occupied or unoccupied batch Vj ∈ V, the adversary is

90 S. Cicerone et al.

able to apply the strategy described before (which is based on Lemma 2): it
equally distributes all robots in Vi on the vertices of Vj . Let C ′ be the produced
configuration. If Vj is unoccupied in C, the same number of occupied batches
remains in C ′. If Vj is occupied, C ′ has one occupied batch less than C. Notice
that in any case C ′ still fulfills the same conditions of the statement. This implies
that during the execution of A the number of occupied C-batches can be eventu-
ally reduced to one, but, as observed before, the algorithm is not able to reduce
to one the size of this single batch (according to the definition of partitive con-
figuration, each batch has size greater than one) and hence it cannot accomplish
the gathering. ��

Notice that this theorem extends the impossibility result provided in [15].
The following corollary states that some configurations can be gathered only at
some predetermined vertices.

Corollary 1. Let G = (V,E) be any graph, C = (G,λ) be any non-final config-
uration, and V ′ ⊂ V unoccupied. If C is partitive on V \V ′, then each gathering
algorithm for C (if any) must move robots toward V ′.

The rationale of this corollary is the following: if the algorithm limits the
movements of robots within V \V ′ then Theorem 1 applies which in turn means
the obtained configurations always remain partitive on V \ V ′. Hence, in order
to gather, the move toward V ′ must be performed, eventually.

Theorem 1 is a central means for studying the gathering problem in general
graphs. We now extend this theorem to specific graph topologies.

Definition 5. Let G = (V,E) be a graph and C = (G,λ) be a non-final con-
figuration. C is said weak-partitive if there exists an unoccupied subset V ′ ⊆ V
such that the following conditions hold:

1. C is partitive on V \ V ′, and let V = {V1, V2, . . . , Vt} be the corresponding
partition into C-batches of V \ V ′;

2. for each maximal C-batch B contained in V ′, let B′ be the maximal G-batch
of C containing B. Then, |B| ≥ d · t, where: (a) d is the least common prime
factor of |Rob(Vi)| for any occupied batch Vi ∈ V; (b) t is the number of
occupied maximal C-batches not contained in B′.

The rationale of this definition is the following. According to Corollary 1, each
gathering algorithm for C (if any) must move robots toward V ′. Let B be any
maximal batch contained into V ′, and let B′ be a G-batch containing B. As soon
as the algorithm moves robots into B, the size of B is reduced and the number
of occupied vertices in B′ increases. We will discuss later what happens to the
decomposition into batches after robots moved into B′. The above definition
takes care of assuring enough space (i.e., number of unoccupied vertices) to host
all robots not in B′. Notice that, in the above definition, the integer d could
be defined as the size of the smallest batch in V - the current definition simply
imposes a weaker constraint on d. To see that this definition captures a wider
set of configurations with respect to those captured by Definition 4, observe that

On Gathering of Semi-synchronous Robots in Graphs 91

d)c)b)a)

Fig. 1. A gray vertex indicates the presence of one robot; arrows indicate C-equivalent
vertices/robots relationship (and its closure generates C-batches). (a) A partitive con-
figuration C1 with three C-batches, each containing two vertices. (b) A configuration
partitive on V \ V ′, where V ′ is the set containing all the unoccupied vertices. For
observing this, the four vertices on the left side must be considered as formed by two
G-batches. Notice that the five vertices on the right side form a G-batch B′ that fulfills
Condition 2 of Definition 5. This implies that this configuration is weak-partitive; (c)
and (d) Configurations C3 and C4 which are neither partitive nor weak-partitive.

when each maximal batch B contained in V ′ guarantees that |B| is exactly a
multiple of d, then C is partitive on the entire set V .

The following theorem shows that weak-partitive configurations restricted to
specific topologies are ungatherable by SSync robots.

Theorem 2. Let G = (V,E) be any graph, C = (G,λ) be any non-final con-
figuration composed of SSync robots, and C be weak-partitive. If the subgraph
induced by each G-batch B′ in the Condition 2 of Definition 5 is either a complete
graph or a stable set, then C is ungatherable.

Actually, when all the batches B′ stated in the above theorem are stable sets,
the result holds even for FSync robots.

Corollary 2. Let G = (V,E) be any complete graph or complete bipartite graph,
C = (G,λ) be any non-final configuration composed of SSync robots. If C is
weak-partitive then it is ungatherable

Figure 1(a) shows a partitive configuration C1 - by Theorem 1 we deduce
that C1 is ungatherable by means of FSync robots. Figure 1(b) shows a weak-
partitive configuration C2 fulfilling the condition of the statement of Theorem 2,
hence it is ungatherable by means of SSync robots. Figures 1(c) and (d) show
two configurations that are neither partitive nor weak-partitive. Actually C3 is
partitive on V \ V ′, where V ′ is the subset containing the unoccupied vertices
- by Corollary 1 any gathering algorithm (if it there exists) must move robots
toward V ′.

The characterization for the unsolvability of the gathering problem by means
of SSync robots on complete graphs directly follows from Theorem 2.

Theorem 3. Let G = (V,E) be a complete graph, and let C = (G,λ) be an
initial configuration. If C is composed of SSync robots, then C is ungatherable.

92 S. Cicerone et al.

3 A Sufficient Condition for Gathering in Arbitrary
Graphs

In this section we recall from [6] a sufficient condition for gathering FSync
robots in arbitrary graphs. This condition is based on the concepts of recognizable
subgraphs and d-primality.

Recognizable Subgraphs. Informally, a subgraph H of a graph G is said rec-
ognizable if any automorphism of G maps H on itself, that is, H cannot be
confused with other subgraphs. Formally:

Definition 6. [6] A subgraph H = (VH , EH) of a graph G = (V,E) is recogniz-
able if VH = {ϕ(v) | v ∈ VH} for each automorphism ϕ ∈ Aut(G).

According to Definition 3, it can be observed that any maximal G-batch
induces a recognizable subgraph. Moreover, we have already observed by
Lemma 1 that the set containing all the maximal G-batches forms a unique
partition of V . This implies that each robot can agree on the elements of the
unique partition of V into maximal C-batches.

Let G = (V,E) be a graph and H be a subgraph induced by any maximal
batch of G. If H is disconnected, all the connected components are pairwise
isomorphic. We denote by c(H) and s(H) the number of connected components
of H and the size of each connected component of H, respectively.

d -primality. Concerning the concept of d-primality, it is useful for characterizing
when moving k equivalent robots over d equivalent vertices always produces
batches with different orders.

Definition 7. [6] Let k and d be two positive integers. We say that k is d–prime
if lpf (k) > d, where lpf (k) denotes the least prime factor of k.

Note that when k is d–prime the next properties hold: (1) k > d > 0; (2) if d = 1
then every k > 1 is d–prime; (3) for any integer 2 ≤ d′ ≤ d, d′ does not divide k.

The Sufficient Condition. The notions of recognizable graphs and d-primality
are used in the following result to provide a sufficient condition to the solvability
of the gathering problem by means of SSync robots. This condition is applicable
to any graph topology.

Theorem 4. [6] Let G = (V,E) be a graph with n vertices, and let C = (G,λ)
be an initial configuration composed of k SSync robots, 2 ≤ k ≤ n. If there exists
a minimal recognizable subgraph H of G such that k is max{c(H), s(H)}–prime,
then C is gatherable.

As observed, configurations in Fig. 1(a) and 1(b) are partitive and weak-
partitive, respectively: according to Theorems 1 and 2 they are both ungather-
able by SSync robots. On the contrary, Fig. 1(c) and 1(d) show configurations
where Theorem 4 applies: C3 is gatherable since k = 3 and there exists a max-
imal batch inducing a subgraph H with c(H) = 2 and s(H) = 1 (the empty
vertices form such a subgraph); C4 is gatherable since k = 5 and there exists a
maximal batch inducing a subgraph H with c(H) = 2 and s(H) = 3. Subgraph
H is given by the six internal vertices that form two disjoint triangles.

On Gathering of Semi-synchronous Robots in Graphs 93

4 Complete Bipartite Graphs

In this section we study the gathering problem of SSync robots on complete
bipartite graphs. Throughout the section, we use the following notation. If
G = (V1 ∪ V2, E) is a complete bipartite graph and C = (G,λ) is any initial
configuration, then:

– n1 and n2 denote the number of vertices of V1 and V2, resp.; k1 and k2 denote
the number of robots on V1 and V2, resp.

– (k1, n1; k2, n2) is a compact representation for C; sometimes, instead of a
fixed number, in this notation we will use intervals for denoting vertices. For
instance, (13, [13, 15]; 2, 2+) denotes all the configurations where k1 = 13,
13 ≤ n1 ≤ 15, k2 = 2, and n2 ≥ 2.

– if ki = 0 we say that set Vi, i = 1, 2, is unoccupied,occupied otherwise.
– B1

max = Bmax ∩ V1 and B2
max = Bmax ∩ V2;

– Λ1 and Λ2 denote the number of occupied vertices in V1 and V2, respectively.

All the notation provided above refers to an initial configuration C, but it
can be extended to any configuration C(t) obtained during the execution
E : C(0), C(1), C(2), . . . of any gathering algorithm by simply fixing the time
t: i.e. Λ1(t) denotes the number of occupied vertices in V1 of configuration C(t).

The Gatherable Cases G1. The following theorem shows there exists a set G1 of
gatherable configurations. A configuration C belongs to G1 if at least one of the
following conditions holds:

– k1 + k2 is min{n1, n2}–prime, but for (1, 1; 1, 1);
– k1 + k2 is min{k1, k2}–prime, but for (1, n/2; 1, n/2), for any n ≥ 2 even.

Theorem 5. Let G = (V1 ∪ V2, E) be a complete bipartite graph with n1 + n2

vertices, and let C = (G,λ) be an initial configuration composed of k1+k2 SSync
robots. If C ∈ G1 then C is gatherable.

The proof of Theorem 5 basically concerns the correctness of Algorithm Abip

(Fig. 2).

The Gatherable Cases G2. In this section we show there are some special con-
figurations, not belonging to G1, that can be gathered as well. All such configu-
rations form a set denoted as G2. A configuration C belongs to G2 if it is one of
the following:

– (2, 2+; k2, k2 + 1) and (k1, k1 + 1; 2, 2+), for each k2 ≥ 0;
– (3, 3+; k2, k2 + 2) and (k1, k1 + 2; 3, 3+), for each k2 ≥ 0;
– (5, 5+; 3, 3), (6, 6+; 2, 3), (7, 7+; 3, 3), and (8, 8+; 2, 3).

Before proving that each configuration in G2 is gatherable, we provide a
simple result useful for the current task.

94 S. Cicerone et al.

Algorithm: Abip

Input: Configuration C = (G, λ), where G is a complete bipartite graph,
fulfilling conditions of Theorem 5.

1 if n1 > n2 and k1 + k2 is n2–prime then
2 call Ag // gathering accomplished on a vertex in V2

3 else if n2 > n1 and k1 + k2 is n1–prime then
4 call Ag // gathering accomplished on a vertex in V1

5 else
6 if Λ1 ≤ Λ2 then let α = 1 else let α = 2 ;
7 let ᾱ = 3 − α // Vᾱ is the side with more robots ;
8 if both V1 and V2 are occupied then
9 let Origin = Rob(Vᾱ) ;

10 if Bmax intersects both V1 and V2 then
11 let Dest = Bmax ∩ Vα

12 else
13 let Dest = Bmax

14 else
15 let Origin = Rob(Vα \ Bmax) ;
16 let Dest = Vᾱ ;
17 each robot in Origin moves toward an arbitrary vertex in Dest ;

Fig. 2. Algorithm Abip for gathering SSync robots in a complete bipartite graph G.
Ag denotes the algorithm related to Theorem 4.

Lemma 3. Let G = (V1 ∪ V2, E) be a complete bipartite graph with n1 + n2

vertices, let C = (G,λ) be a non-initial configuration composed of k = k1 + k2

SSync robots. If |B1
max| = 1 or |B2

max| = 1 or Λ1 = 1 or Λ2 = 1 then C is
gatherable.

Theorem 6. Let G = (V1 ∪ V2, E) be a complete bipartite graph with n1 + n2

vertices, and let C = (G,λ) be an initial configuration composed of k1+k2 SSync
robots. If C belongs to G2 then C is gatherable.

Proof. Consider C in the form (2, 2+; k2, k2 + 1), with k2 ≥ 0 (equivalently we
may consider (k1, k1 + 1; 2, 2+)). Notice that in C there is only one unoccupied
vertex u ∈ V2. By moving robots from V1 to u we get the following cases. If the
adversary moves only one robot, then a configuration C(1) is obtained where
condition Λ1 = 1 holds. Then, C(1) is gatherable by Lemma 3. Conversely, if
from C(0) the adversary moves two robots from V1 to u, then |B2

max| = 1 and
Lemma 3 applies.

Consider C in the form (3, 3+; k2, k2+2), with k2 ≥ 0. Notice that in C there
are two unoccupied vertices in V2. By moving robots from V1 to such unoccupied
vertices we get the following cases. If the adversary moves only one robot, then
a configuration C(1) of the form (2, 2+; k2, k2 + 1) is obtained. We have already
proved it is gatherable. If the adversary moves two robots, C(1) is gatherable
by Lemma 3 as Λ1 = 1 holds. Finally, if from C(0) the adversary moves all the
robots from V1, then condition |B2

max| = 1 of Lemma 3 applies.

On Gathering of Semi-synchronous Robots in Graphs 95

When C = (6, 6+; 2, 3) (or C = (8, 8+; 2, 3)) a gathering algorithm A can
allow robots in V1 to move toward the unoccupied vertex in V2.

If more than one robot move, Lemma 3 becomes true as |B2
max| = 1 and

the gathering can be easily finalized. Whereas, if only one robot moves, C =
(5, 5+; 3, 3) (or C = (7, 7+; 3, 3), resp.) is obtained.

From C = (5, 5+; 3, 3), algorithm A allows robots in V2 to move onto occupied
vertices in V1. If only one robot moves, again Lemma 3 applies |B1

max| = 1. If
two robots move Lemma 3 applies Λ2 = 1. If all the three robots move, then
the adversary may create three multiplicities of size 2 in V1 as otherwise still
Lemma 3 applies. The only possible move now is given by the two singletons
moving toward V2. This leaves the three multiplicities in V1 and two singletons
in V2. Now the algorithm can move the robots in V1 toward the unoccupied
vertex in V2. If only one robot moves, there is a unique singleton in V1 which
is moved by the algorithm toward V2, hence creating |B2

max| = 1; in more than
one robot move, again it is obtained |B2

max| = 1.
A similar case analysis can be discussed when C = (7, 7+; 3, 3). ��

About Gatherability of Remaining Configurations. In this section we consider
configurations of SSync robots defined on a complete bipartite graph. In partic-
ular, denote by I, G1, G2, P, and W the set containing the initial configurations,
the gatherable configurations considered in Theorem 5, the partitive configura-
tions, and the weak-partitive configurations, respectively.

Here we study the gathering problem for configurations in R = I \ (G1 ∪
G2 ∪P ∪W). By Theorem 5 and Definition 7, any configuration in R fulfills: (a)
min{k1, k2} ≥ lpf (k1 + k2), and (b) min{n1, n2} ≥ lpf (k1 + k2).

In the remainder of this section we address each configuration C ∈ Re, where
Re is the subset of R formed by configuration with an even number of robots.
From the first of the above conditions, we derive that in any configuration of
Re, both k1 ≥ 1 and k2 ≥ 1 holds. Symmetrically, from the second of the above
conditions, we derive that in any configuration of Re, both n1 ≥ 1 and n2 ≥ 1
holds, otherwise the configuration is clearly gatherable.

Lemma 4. Let G = (V1 ∪ V2, E) be a complete bipartite graph with n1 + n2

vertices, let C = (G,λ) be any configuration in Re composed of k = k1 + k2

SSync robots, k1 ≥ k2. If there are at least three unoccupied vertices in both V1

and V2, then C is ungatherable.

Proof. Let C(0) = C ∈ Re. By definition of Re we get k2 ≥ 2. We now show
that k2 > 2. In fact, since C ∈ Re then k is even and hence when k2 = 2 then
k1 is even as well. Moreover, since n1 − k1 ≥ 3 and n2 − k2 ≥ 3, then C is
weak-partitive and hence not belonging to Re. In the remainder of the proof we
analyze the cases k2 = 3 and k2 > 3. Let A be any possible algorithm for C.

If k2 = 3 consider the four possible targets in C(0) given by the occupied
and unoccupied set of vertices in V1 and V2. We first show that if A moves the
robots towards unoccupied vertices, we can apply Theorem 2 at the resulting
configuration C(1). In fact: (1) if robots are moved from V2 to the unoccupied
vertices in V1, then, since n1 −k1 ≥ 3, each robots can occupy a different vertex;

96 S. Cicerone et al.

(2) if robots are moved from V1 to the unoccupied vertices in V2, then, the
adversary can form a configuration C(1) with four vertices occupied by a single
robot and two multiplicities with k/2−2 robots each. In both cases the resulting
configuration C(1) is weak-partitive and hence ungatherable.

We now show that if A moves the robots from V1 to the occupied vertices
in V2, then necessarily a weak-partitive configuration C(2) is obtained. If in
C(0) the targets are the three occupied vertices of V2, the adversary creates in
C(1) a multiplicity with two robots and two multiplicities with k/2 − 1 robots
each. From C(1), if A moves the robots from the multiplicity with two robots a
configuration C(2) with two vertices occupied in V1 and two multiplicities with
k/2−1 in V2 is created. From C(1), if A moves the robots from the multiplicities
with k/2−1 then a configuration C(2) with two multiplicities with k/2−2 robots
in V2 and two multiplicities with two robots in V2 is created. In both cases, C(2)
is weak-partitive and hence ungatherable.

We now show that if A moves the robots from V2 to the occupied vertices
in V1, then necessarily a weak-partitive configuration is obtained. If in C(0)
the targets are the occupied vertices of V1, the adversary creates in C(1) three
multiplicities with two robots each. From C(1) the only possibility for A that
avoids C(2) = C(0) is to move the robots non belonging to multiplicities (which
are k − 6 in total). Notice that if k − 6 = 0 then C(1) is weak-partitive. When
k − 6 > 0 the adversary create a configuration C2 by moving all such robots
on two vertices of V2 with (k − 6)/2 robots each. From C2, if robots on V1

are moved toward the unoccupied vertices, two further multiplicities with three
robots each are created. If robots V1 are moved on the occupied vertices of
V2, two multiplicities of k/2 robots are created. In both cases, a weak-partitive
configuration C(3) is obtained. On the other hand, if in C(2) algorithm A moves
robots from V2 toward the unoccupied vertices then a configuration isomorphic to
C(1) is re-created. When A moves robots from V2 towards the occupied vertices
in V1, the adversary moves all the robots by creating a configuration C(3) with
two multiplicities with k/2−1 robots each and a multiplicity with two robots. To
avoid C(4) isomorphic to C(2) the only possible move is to move the robots in
the multiplicity with two robots toward V2. In this case the adversary moves the
two robots on two different vertices of V2 thus creating again a weak-partitive
configuration. This concludes the proof for the case k2 = 3.

If k2 > 3, we can assume k1 and k2 both odd in C(0), otherwise the config-
uration is weak-partitive. In C(0), as in the previous case, we have four targets,
but if the initial move is toward a target with unoccupied vertices, the adversary
moves a single robot generating a configuration C(1) weak-partitive since k1 and
k2 become both even.

We now show that if in C(0) algorithm A moves the robots from V1 to
the occupied vertices in V2, then necessarily a weak-partitive configuration is
obtained. The adversary forms C(1) by moving all the k1 robots on V2 forming
two multiplicities with (k1 − k2 + 2)/2 + 1 robots and k2 − 2 multiplicities with
two robots. If (k1 − k2 + 2)/2 + 1 = 2 the configuration is ungatherable since it
consists of a single batch. Then we can assume there are two batches in C(1),
both entirely contained in V2. If A moves the robots from Bmin, the adversary

On Gathering of Semi-synchronous Robots in Graphs 97

moves the robots only on two vertices creating two multiplicities on V1 with
the same number of robots. The resulting configuration is weak-partitive. If A
moves the robots in Bmax, again two multiplicities on V1 with the same number
of robots are created, but two robots of Bmax are left on a single vertex of V2.
Again, the resulting configuration is weak-partitive.

We now show that if in C(0) algorithm A moves the robots from V2 to
the occupied vertices in V1, then necessarily a weak-partitive configuration is
obtained. If in C(0) the targets are the occupied vertices of V1, all the k2 robots
are moved to form C(1) such that they create k2 multiplicities with two robots
on V1. Then in C(1), k1 − k2 vertices of V1 are occupied by a single robot. Note
that k1 − k2 ≥ 2 and that k1 − k2 is even. To avoid C(2) = C(0), the algorithm
A can move only the robots not in multiplicities. Then the adversary moves
all these robots creating a configuration C(2) with two multiplicities on V2 with
(k1−k2)/2 robots each and k2 multiplicities with two robots on V1. From C(2), if
the robots on V1 are moved towards the unoccupied vertices of V2, the adversary
forms two new multiplicities with k2 robots each, and the resulting configuration
is weak-partitive. If the robots on V1 are moved towards the occupied vertices
of V2, the adversary forms two multiplicities on V2 with k/2 robots each and the
configuration is ungatherable since it is formed by a single batch. From C(2),
the only remaining move that avoids C(3) = C(1) is to move the robots form V2

to the occupied vertices of V1. In this case, the configuration C(3) created by the
adversary consists of two multiplicities with (k1 − k2)/2 + 2 robots and k2 − 2
multiplicities with two robots on V1, whereas V2 is empty. From C(3), the only
move that avoids C(4) = C(2) is to move the robots in the multiplicities with
two robots. The adversary forms a configuration C(4) with two multiplicities
with k2 − 2 robots each in V2 and since in V1 there are two multiplicities left,
the configuration is weak-partitive. ��

5 Conclusion

We have considered the gathering problem in graphs. First we have extended the
set of ungatherable configurations with respect to what was previously known in
the literature for FSync robots. Then we have further extended ungatherability
for SSync robots. Still in the SSync context we have focussed on symmetric
and dense network topologies such as complete and complete bipartite graphs.
The obtained results point out how the problem becomes difficult to be handled
by means of a general approach, hence requiring specific strategies for different
cases. Our study confirms how the graph environment reveals to be rather hostile
with respect to the gathering task.

References

1. Bose, K., Kundu, M.K., Adhikary, R., Sau, B.: Optimal gathering by asynchronous
oblivious robots in hypercubes. In: Gilbert, S., Hughes, D., Krishnamachari, B.
(eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 102–117. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-14094-6 7

https://doi.org/10.1007/978-3-030-14094-6_7

98 S. Cicerone et al.

2. Cicerone, S., Di Stefano, G., Navarra, A.: MinMax-distance gathering on given
meeting points. In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol.
9079, pp. 127–139. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
18173-8 9

3. Cicerone, S., Di Stefano, G., Navarra, A.: Gathering of robots on meeting-points:
feasibility and optimal resolution algorithms. Distrib. Comput. 31(1), 1–50 (2018)

4. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous arbitrary pattern forma-
tion: the effects of a rigorous approach. Distrib. Comput. 32(2), 91–132 (2019)

5. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous robots on graphs: gath-
ering. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing
by Mobile Entities. Lecture Notes in Computer Science, vol. 11340, pp. 184–217.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7 8

6. Cicerone, S., Di Stefano, G., Navarra, A.: Gathering synchronous robots in graphs:
from general properties to dense and symmetric topologies. In: Censor-Hillel, K.,
Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 170–184. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24922-9 12

7. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

8. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids and trees without multiplicity detection. Theor. Comput. Sci.
610, 158–168 (2016)

9. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-
compute-move model. Distrib. Comput. 27(4), 255–285 (2014)

10. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering six oblivious robots on anony-
mous symmetric rings. J. Discret. Algorithms 26, 16–27 (2014)

11. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on
rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4),
1055–1096 (2015)

12. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclu-
sive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48
(2017)

13. D’Emidio, M., Di Stefano, G., Frigioni, D., Navarra, A.: Characterizing the com-
putational power of mobile robots on graphs and implications for the Euclidean
plane. Inf. Comput. 263, 57–74 (2018)

14. Di Stefano, G., Navarra, A.: Gathering of oblivious robots on infinite grids with
minimum traveled distance. Inf. Comput. 254, 377–391 (2017)

15. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous
graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017)

16. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with local vision
in regular bipartite graphs. Theor. Comput. Sci. 509, 86–96 (2013)

17. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Time-optimal gathering algorithm
of mobile robots with local weak multiplicity detection in rings. IEICE Trans.
96–A(6), 1072–1080 (2013)

18. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering
of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411, 3235–
3246 (2010)

https://doi.org/10.1007/978-3-319-18173-8_9
https://doi.org/10.1007/978-3-319-18173-8_9
https://doi.org/10.1007/978-3-030-11072-7_8
https://doi.org/10.1007/978-3-030-24922-9_12

Brief Announcement: Analysis of a
Memory-Efficient Self-stabilizing BFS

Spanning Tree Construction

Ajoy K. Datta1, Stéphane Devismes2(B), Colette Johnen3,
and Lawrence L. Larmore1

1 Department of Computer Science, University of Nevada, Reno, USA
2 Université Grenoble Alpes, VERIMAG, UMR 5104, Grenoble, France

stephane.devismes@univ-grenoble-alpes.fr
3 Université de Bordeaux, LaBRI, UMR 5800, Bordeaux, France

Abstract. We present preliminary results on the last topic we collabo-
rate with our late friend, Professor Ajoy Kumar Datta (1958–2019), who
prematurely left us a few months ago. In this work, we shed new light on
a self-stabilizing wave algorithm proposed by Colette Johnen in 1997 [12].
This algorithm constructs a BFS spanning tree in any connected rooted
network. Nowadays, it is still the best existing self-stabilizing BFS span-
ning tree construction in terms of memory requirement, i.e., it only
requires Θ(1) bits per edge. However, it has been proven assuming a
weakly fair daemon. Moreover, its stabilization time was unknown. Here,
we study the slightly modified version of this algorithm, still keeping the
same memory requirement. We prove the self-stabilization of this vari-
ant under the distributed unfair daemon and show a stabilization time
in O(D ·n2) rounds, where D is the network diameter and n the number
of processes.

Keywords: Self-stabilization · BFS spanning tree · Distributed unfair
daemon · Stabilization time · Round complexity

1 Introduction

We consider the problem of constructing a spanning tree in a self-stabilizing
manner. Numerous self-stabilizing spanning tree constructions have been studied
until now, e.g., the spanning tree may be arbitrary (see [4]), depth-first (see [5]),
breadth-first (see [6]). Deterministic solutions to these problems have been inves-
tigated in either fully identified networks [2], or rooted networks [5]. Here, we
consider rooted connected networks. By “rooted” we mean that one process,
called the root and noted r, is distinguished from the others. All other processes
are fully anonymous. We focus on the construction of a Breadth-First Search

This study was partially supported by the French anr projects ANR-16-CE40-0023
(descartes) and ANR-16 CE25-0009-03 (estate).

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 99–104, 2019.
https://doi.org/10.1007/978-3-030-34992-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_8

100 A. K. Datta et al.

(BFS) spanning tree in such a rooted connected network, i.e., a spanning tree in
which the (hop-)distance from any node to the root is minimum. Spanning tree
construction is a fundamental task in communication networks. Indeed, spanning
trees are often involved in the design of routing [10] and broadcasting tasks [3],
for example. Moreover, improving the efficiency of the underlying spanning tree
algorithm usually also implies an improvement of the overall solution.

We consider here the atomic state model, also called the locally shared mem-
ory model with composite atomicity. In this model, the daemon assumption
accepted by the algorithm is crucial since it captures the asynchrony of the sys-
tem. More generally, self-stabilizing solutions are also discriminated according
to their stabilization time (usually in rounds) and their memory requirement.

Related Work. There are many self-stabilizing BFS spanning tree construc-
tions in the literature. Maybe the first one is that of Chen et al. [4]. It is proven
in the atomic state model under the central unfair daemon and no time com-
plexity analysis is given. The algorithm of Huang and Chen [11] is proposed
in the atomic state model, yet under a distributed unfair daemon. In [8], the
stabilization time of this algorithm is shown to be Θ(n) rounds in the worst
case, where n is the number of processes. Another algorithm, implemented in
the link-register model, is given in [9]. It uses unbounded process local memories.
However, it is shown in [8] that a straightforward bounded-memory variant of
this algorithm, working in the atomic state model, achieves an optimal stabiliza-
tion time in rounds, i.e., O(D) rounds where D is the network diameter. In [1],
Afek and Bremler design a solution for unidirectional networks in the message-
passing model, assuming bounded capacity links. The stabilization time of this
latter algorithm is O(n) rounds. The algorithm given in [7] has a stabilization
time O(D2) rounds, assuming the atomic state model and a distributed unfair
daemon. All aforementioned solutions [1,4,7,9,11] also achieve silence. Two other
non-silent, a.k.a. talkative, self-stabilizing BFS spanning tree constructions have
been proposed in the atomic state model. The algorithm in [6] is proven under
the distributed unfair daemon and has a stabilization time in O(n) rounds.
In [12], the proposed solution assumes a distributed weakly fair daemon and
its stabilization time is not investigated. Except for [12], in all these aforemen-
tioned algorithms, each process has a distance variable which keeps track of the
current level of the process in the BFS tree. Thus, these BFS spanning tree con-
structions have a space complexity in Ω(log(D)) bits per process. In contrast,
the solution given in [12] does not compute any distance value (actually, the
construction is done using synchronization phases). Consequently, the obtained
memory requirement only depends on local parameters, i.e., Θ(log(δp)) bits per
process p, where δp the local degree of p. In other words, the space complexity of
this algorithm is intrinsically Θ(1) bits per edge. Moreover, the algorithm does
not need a priori knowledge of any global parameter on the network such as
D or n. It is worth noticing that today it is still the best self-stabilizing BFS
spanning tree construction in terms of memory requirement.

Analysis of a Memory-Efficient Self-stabilizing BFS Spanning Tree Construction 101

Contribution. We fill the blanks in the analysis of the memory-efficient self-
stabilizing BFS spanning tree construction given in [12]. Precisely, we study a
slightly modified (maybe simpler) version of the algorithm. This variant still
achieves a memory requirement in Θ(1) bits of memory per edge. We prove its
self-stabilization under the distributed unfair daemon, the weakest scheduling
assumption. Moreover, we establish a stabilization time in O(D · n2) rounds,
where D is the network diameter and n the number of processes. All the technical
material has been omitted from this brief announcement and is available online
at the following address:

https://arxiv.org/abs/1907.07944

2 The Algorithm

Our algorithm executes infinitely many tree constructions in sequence: at the
end of each construction, the root of the network (r), called here the legal root,
initiates a new one. The algorithm alternatively builds 0-colored and 1-colored
BFS spanning trees. The color is used to eventually distinguish processes belong-
ing to the legal tree (rooted at r) from those which do not. We denote by r color
the current color of the legal tree.

One of the difficulty to build a BFS tree without using a distance variable is
to ensure that the path from any process to r in the tree is minimal. To solve this
issue, each construction is split into phases synchronized at r: when r detects
the end of the current phase, it initiates the next one, if the construction is not
yet complete; otherwise, r starts a new tree construction. Once the system is
stabilized, each construction is made of at most D phases: during the kth phase,
all processes at distance k from r join the current tree (by choosing as a parent
a neighbor at distance k − 1 from r). However, during the convergence, a tree
construction can contain up to n phases.

Shared Variables. In the following, for every process u, we denote by N(u)
the set of u’s neighbors and by dist(u) the distance from u to r.

Each non-root process u maintains the following variables:

TS.u ∈ N(u)∪{⊥}: the output parent pointer of u. Once the system is stabilized,
TS variables are constant and distributedly define a BFS spanning tree rooted
at r. More precisely, when the system is stabilized, dist(u) = dist(TS.u) + 1
if u �= r, dist(u) = 0 otherwise.

P.u ∈ N(u) ∪ {⊥}: another parent pointer. Once the system is stabilized, if
P.u �=⊥, then P.u = TS.u. Actually, P.u is used to inform the pointed neigh-
bors about whether or not the construction of the subtree rooted at u is
terminated. Precisely, if at end of a phase u is childless, i.e., ∀v ∈ N(u),
P.v �= u, then the subtree construction rooted at u is done.

C.u ∈ {0, 1}: the color of u. Once the system is stabilized, the processes in the
current tree have color C.r = r color, while other processes have color r color.

https://arxiv.org/abs/1907.07944

102 A. K. Datta et al.

S.u ∈ {Idle,Working, Power,WeakE, StrongE}: the status of u. Status
WeakE and StrongE are only used to correct errors. Process u is said to
have an Erroneous status if S.u ∈ {WeakE, StrongE}. Only processes of
status Power can gain new children. Once the system is stabilized, during
the kth phase, only processes at distance k − 1 from r, i.e., leaves of the tree
under construction, will acquire the status Power. If u is an internal process
in the tree under construction and is participating to the current phase, then
u has the status Working. If u is not involved in the current tree construction
(i.e., P.u =⊥), or the current phase is either not started or finished in the
subtree of u, then u has the status Idle.

ph.u ∈ {a, b}: the current phase. This variable is used to distinguish any two
consecutive phases. In particular, it allows to solve the following ambiguity.
A process in the tree is Idle either when it has completed or has not yet
started the current phase. In order to distinguish these two cases, we use the
phase variable. If the phase value of an Idle process u is the same as that of
its parent P.u, then u has finished the current phase. Otherwise, it has not
yet initiated the current phase.

The root r maintains the same variables, except P and TS: r does not have a
parent. Moreover, S.r ∈ {Power,Working, StrongE}: Status WeakE does not
exist for r.

Tree Construction. This part is identical to [12]. The current tree construction
is over when r becomes childless, i.e., ∀v ∈ N(r), P.v �= r. Then, r starts a new
tree construction: it changes its color and initiates the first phase by taking the
status Power.

A phase is divided into three stages: forwarding, tree expansion, and backward.
The processes in the tree under construction first propagate the phase initiated
by r to the leaves of the tree under construction (forwarding part). Then, the
neighbors of the leaves that are not in the tree join it (tree expansion part).
Finally, non-root tree nodes backtrack to inform r of the end of the tree expansion
(backward part).

In the forwarding stage of the kth phase, along the tree under construction,
internal nodes take the status Working and copy the phase value of r in a top-
down fashion; then, the leaves (at distance k − 1 from r) take the status Power
and also copy the phase value of r. This stage requires h rounds, where h ≤ n is
the height of the tree rooted at r under construction.

In the tree expansion stage of the kth phase, all processes at distance k from
r join the tree under construction: they choose a neighbor of status Power as a
parent (by updating their variables P and TS), copy both the phase value and
color of their new parent, and take the status Idle. Each tree expansion stage
requires O(1) round (n.b., this stage may be slow down by a constant number
of rounds due to local corrections).

In the backward stage of the kth phase, the processes of status Power finalize
the kth phase by switching their status to Idle when the current phase is over
in their neighborhood: all their neighbors are in the tree (they have the color

Analysis of a Memory-Efficient Self-stabilizing BFS Spanning Tree Construction 103

r color). The Working processes then finalize the current phase by switching
their status to Idle bottom-up when their children have finished the current
phase (they have the status Idle and the same phase value as them). Moreover,
when the subtree rooted at a process u is completely built (i.e., ∀v ∈ N(u) we
have P.v �= u), u additionally sets its P variable to ⊥. The backward part of tree
phase construction requires h − 1 rounds.

When the kth phase is over (i.e., all processes of the legal tree have the status
Idle, the same phase as r, and their color is r color), r initiates the k + 1 phase
if the construction is not done (otherwise, it starts a new tree construction): r
changes its phase value and takes the status Working.

Thus, a phase lasts O(n) rounds and a tree construction costs O(n2) rounds.

Error Correction. There are two major correction tasks: one is to remove the
illegal trees, the other is to break the (parent) cycles. We solve these two tasks
using mechanisms that are simpler than those proposed in [12].

The error correction is based on conflicts, faulty process, and illegal root
detection. There are two kinds of conflicts, the (weak) conflicts and the strong
ones.

When a process detects a conflict, is faulty, or is an illegal root, it switches
to an Erroneous status, either StrongE (if it is a strong conflict), or WeakE
(in all other cases), and leaves its tree by setting their P variable to ⊥. Then, its
children take status WeakE and leave the tree, and so on: these corrections are
propagated toward the leaves. The Erroneous detached processes (i.e., processes
without parent and children) recover by changing their status to Idle. We have
two cases. If the process has the status WeakE, it directly recovers. Otherwise,
it waits until none of its neighbors has the status Power (these latter, if any, are
enabled to take the status WeakE and leave their tree, as explained later).

Let u be a non-root process. First, if u has children but no parent, it is an
illegal root. Then, u is faulty if it has a parent, but its state is not consistent
with that of its parent. In either case, u takes the status WeakE and leaves its
tree, as previously explained.

The major difficulty for the error correction is to remove parent cycles while
no distance value is available. A process having a parent assumes that it is in
the legal tree and its color is equal to r color (even if it is inside a cycle). Based
on this assumption, it detects a conflict when one of its neighbors does not have
its color but has the status Power (both processes cannot be inside the legal
tree). Once a conflict detected by a process u �= r, it takes WeakE and leaves
its tree. Hence, the potential cycle is transformed into an illegal tree.

If a process u �= r has in its closed neighborhood two Power processes, but
not of the same color, then u detects a strong conflict: both processes cannot
be in the legal tree, u takes the status StrongE, and leaves its tree. The root r
detects a strong conflict if one of its neighbors v has the status Power but either
v has not its color, or r is childless. When the root detects a strong conflict it
simply takes the status StrongE (recall that r has no P variable and so cannot
leave its tree). All Power neighbors of a StrongE process take the status WeakE

104 A. K. Datta et al.

and leave their tree. So, a StrongE process has to wait until the status Power
vanishes from its neighborhood before recovering.

Overview of the Round Complexity. After O(n) rounds, no process in the
legal tree may detect a conflict, and so create a new illegal branch that may
contain Power processes. After one more O(n) rounds, only process in the legal
tree may have the status Power. Let γ be a configuration where only processes
in the legal tree may have the Power status. After at most d complete tree
constructions from γ, processes at distance less than d from r never more belong
to any cycle or illegal tree, i.e., they are stabilized. So after at most D + 1
complete tree construction from γ, there is no cycle or illegal tree at all: all
processes are stabilized. Any complete tree construction requires O(n2) rounds.
So, the round complexity of our algorithm is O(D · n2) rounds.

References

1. Afek, Y., Bremler-Barr, A.: Self-stabilizing unidirectional network algorithms by
power supply. Chicago J. Theor. Comput. Sci. (1998)

2. Afek, Y., Kutten, S.,Yung, M. : Memory-efficient self-stabilizing protocols for gen-
eral networks. In: WDAG 1990, pp. 15–28 (1990)

3. Bui, A., Datta, A.K., Petit, F., Villain, V.: Optimal PIF in tree networks. In:
WDAS 1999, pp. 1–16 (1999)

4. Chen, N., Yu, H., Huang, S.: A self-stabilizing algorithm for constructing spanning
trees. IPL 39, 147–151 (1991)

5. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. IPL 49(6), 297–301 (1994)
6. Cournier, A., Devismes, S., Villain, V.: Light enabling snap-stabilization of funda-

mental protocols. ACM TAAS. 4(1), 6 (2009)
7. Cournier, A., Rovedakis, S., Villain, V.: The first fully polynomial stabilizing algo-

rithm for BFS tree construction. In: OPODIS 2011, pp. 159–174 (2011)
8. Devismes, S., Johnen, C.: Silent self-stabilizing BFS tree algorithms revisited.

JPDC 97, 11–23 (2016)
9. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuring only

read/write atomicy. Distrib. Comput. 7, 3–16 (1993)
10. Glacet, C., Hanusse, N., Ilcinkas, D., Johnen, C.: Disconnected components detec-

tion and rooted shortest-path tree maintenance in networks. In: SSS 2014, pp.
120–134 (2014)

11. Huang, S.-T., Chen, N.-S.: A self-stabilizing algorithm for constructing breadth-
first trees. IPL 41, 109–117 (1992)

12. Johnen, C.: Memory-efficient self-stabilizing algorithm to construct BFS spanning
trees. In: WSS 1997, pp. 125–140 (1997)

Brief Announcement: Distributed
Computing in the Asynchronous

LOCAL Model

Carole Delporte-Gallet1, Hugues Fauconnier1, Pierre Fraigniaud1(B),
and Mikaël Rabie2

1 IRIF, CNRS and Université de Paris, Paris, France
pierre.fraigniaud@irif.fr

2 LIP6, Sorbonne Université, Paris, France

Abstract. We show that, for any task T associated to a locally checkable
labeling (lcl), if T is solvable in t rounds by a deterministic algorithm in
the local model, then T remains solvable by a deterministic algorithm
in O(t) rounds in an asynchronous variant of the local model whenever
t = O(polylogn).

1 The LOCAL model

Distributed network computing [10] deals with the power and limitation of a col-
lection of computing entities (a.k.a. processes) occupying the nodes of a network,
and exchanging messages along the links of this network. In this framework, a
primary interest has been placed on locality, that is, determining what tasks can
be solved whenever every process has to output after having exchanged informa-
tion with processes in its vicinity only, i.e., at bounded distance in the network.
The local model [8] has been extensively used for studying locality in network
computing over the last 25 years [13]. In this model, the network is modeled as a
connected simple graph G = (V,E), with processing nodes occupying the vertices
of G, and communicating through the edges of G. Initially, every process is aware
solely of its identity, which is supposed to be unique in the network. The local
model is synchronous: computation proceeds as a sequence of rounds, with all
nodes starting at the same round. At each round, every node sends messages
to its neighbors in G, receives messages from its neighbors, and performs some
individual computation. The round complexity of an algorithm is the number of
rounds until all nodes output. For instance, a celebrated result in this context is
Linial’s lower bound [8] stating that 3-coloring the n-node ring requires at least
1
2 log∗ n − O(1) rounds. This bound is tight up to additive constants, thanks
to Cole and Vishkin’s algorithm [4], which 3-colors the n-node ring in at most
1
2 log∗ n+O(1) rounds (see [14], and [12] for the exact constant additive factors).

This research is supported by the ANR project DESCARTES (ref. DS0702-2016). Addi-
tional support from the INRIA project GANG.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 105–110, 2019.
https://doi.org/10.1007/978-3-030-34992-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_9

106 C. Delporte-Gallet et al.

Moreover, the local model can be further simplified. Indeed, as pointed out
in [8], a t-round algorithm in the local model can be simulated by another
t-round algorithm which proceeds in two phases: first, each node collects all
the data present at the nodes at distance at most t around it, and, second,
each node individually simulates the behavior of the original algorithm, without
communication. In other words, a t-round algorithm in the local model can
simply be viewed as a function from the ball BG(v, t) of radius t around every
node v in G to the output set. This vision of the local model considerably
simplifies the design of algorithms, and the analysis of the complexity of the
problems.

2 Criticisms of the LOCAL model

Despite all its positive aspects, the local model is subject to pertinent criti-
cisms. One such criticism is that the model assumes no bound on the computing
power of the nodes, and on the throughput of the links. While this criticism is
valid, it must be underlined that this apparent weakness of the model insures
that lower bounds such as the one in [8] are non-conditional, i.e., they hold
even if processes have infinite computing power, and even for full information
protocols—where every node is forwarding at each round all the knowledge that
it accumulated during the previous rounds. Moreover, most of (but indeed not
all) the upper bounds do not abuse this power, that is, most algorithms involve
polynomial-time computation at the nodes, like the Cole and Vishkin’s algo-
rithm [4]. Furthermore, the congest model [10] has been designed especially
for measuring the impact of limiting the bandwidth of the links for tasks involv-
ing high throughput, whose study in the context of the local model would be
inappropriate. For instance, C4 detection, i.e., determining whether the given
network contains a cycle of length 4, is a trivial task in the local model, but it
requires Θ(

√
n) rounds to be solved in the congest model [6]. The conclusion is

that research in the context of the local model does not (too frequently) abuse
of infinite computation power at the nodes, or of infinite link bandwidth.

Another criticism is the fact that all nodes start at the same time, and pro-
ceed in locksteps. Indeed, in practice, the processes may proceed at different
speed depending on various factors including heterogeneity of the CPUs, clock
drifts, cache misses, poor load balancing, etc. Moreover, the speeds of the differ-
ent processes may vary with time, and processes may even be subject to all kinds
of failures. In this context, the celebrated FLP theorem [7] states that binary
consensus cannot be solved in the asynchronous message passing systems, even
if at most one process can crash. The argument opposed to the criticism about
synchrony in the local model is the ability to use synchronizers [1,2,11] for
implementing synchronous algorithms in an asynchronous environment. How-
ever, while synchronizers are well suited to handle delays in the communications,
they use waiting mechanisms allowing each node to figure out when a round fin-
ishes. Such mechanisms are not suited for an environment in which processes
can vary in speed and eventually crash. Indeed, waiting can cause deadlocks

Distributed Computing in the Asynchronous LOCAL Model 107

occurring when a process forever waits for a process that has crashed. Instead,
in asynchronous computing with an unbounded number of crashes, algorithms
are required to be wait-free, that is, the algorithms must guarantee that every
process can terminate and output correctly, independently from the behavior of
the other processes.

To sum up, one must admit that there is still a gap between the study of asyn-
chronous crash-prone computing and the study of locality in network computing.
The main issue addressed in the paper is therefore: Is making the localmodel
slightly more realistic, e.g., by introducing some form of asynchrony and failures,
resulting in a weaker model, for which stronger lower bounds could be derived?
Surprisingly, the answer to this question is shown to be essentially negative:
we show that introducing asynchrony in the computation (while keeping syn-
chronous communication between all nodes) does not reduce much the power of
the local model, at least as far as the large class of tasks are concerned.

3 Decoupling Computations from Communications

Castañeda et al. [3] has initiated a line of work aiming at bridging the
asynchrony-locality gap, by demonstrating that one can study locality in net-
work computing even in the framework of asynchronous crash-prone processes.
For this purpose, they introduced an asynchronous variant of the local model,
called decoupled, applied to symmetric networks (rings, toruses, etc.). This lat-
ter model decouples the computing entities (processes) from the communicating
entities (routers). The communications remain synchronous, that is, there is still
a notion of rounds. However, the processes are fully asynchronous and subject to
crash failures. In particular, the processes may wake up at different times. It is
shown in [3] that 3-coloring the n-node ring can still be done in 1

2 log∗ n + O(1)
rounds in the decoupled model. I.e., it is sufficient that every node v waits for
at most t = 1

2 log∗ n + O(1) rounds after it wakes up for 3-coloring the n-node
ring, even if processes are fully asynchronous and subject to crash failures.

In this paper, we simplify the operational decoupled model into an abstract
model, called abst-decoupled, that will be shown not stronger than the
decoupled model (in symmetric networks), but easier to handle, and defined
for all kinds of networks. In a nutshell, one can view an algorithm in the abst-
decoupled model as performing in two phases, like in the standard local
model. The first phase consists, for every awake process v, of taking a snapshot
of the ball BG(v, t) of radius t around v in G. This snapshot returns the structure
of the ball BG(v, t), and the identifiers of some processes in BG(v, t), depending
on the wake up times of these processes. The second phase consists of an indi-
vidual computation at v eventually resulting in the output of node v. The main
difference between the abst-decoupled model and the (synchronous) local
model is the following. In the abst-decoupled model, if w ∈ BG(v, t) is not
awake when v is making its snapshot, then the identity of w and its input remain
unknown to v. Instead, in the local model, a snapshot of BG(v, t) systemati-
cally returns the identifiers and inputs of all nodes in BG(v, t).

108 C. Delporte-Gallet et al.

Before presenting our results, we want to stress the fact that, in practice,
the communication links as well as the memory registers can be viewed as syn-
chronous, but the access to the links and to the registers is asynchronous, due to,
e.g., scheduling and contention issues. The decoupled and abst-decoupled
models are aiming at taking this phenomenon into account, as least some aspects
of it. We also want to stress the fact that, as we shall discuss further in the text,
although the abst-decoupled model includes a strong snapshot functionality,
it is not stronger than the realistic operational decoupled model, at least as
far as symmetric networks are concerned.

4 Our Results

We extend the results in [3] to the entire class of locally checkable labeling (LCL)
tasks [9], which is of primary interest for the research in the framework for local
computing in networks. Many classical graph problems, e.g., vertex or edge-
coloring, maximal matching, maximal independent set, minimal dominating set,
etc., are LCL tasks. In a nutshell, an (input-free) LCL task is specified by a set
L of labels, and a family F of balls with constant radius r ≥ 0, in which every
node is labeled by a label in L. For instance, c-coloring corresponds to the LCL
task with L = {1, . . . , c} and F is the family of balls with radius 1, such that
the label of the center is different from the labels of all its neighbors.

In the abst-decoupled model, solving an LCL task (L,F) of radius r in
a graph G = (V,E) asks every correct process v ∈ V to output a label in L
such that every ball BG(v, r) in which nodes corresponding to correct processes
are labeled by their outputs, and nodes corresponding to processes that crashed
are unlabeled, can be extended to a ball in F , by assigning labels in L to the
unlabeled nodes.

We prove the following general result, which shows that asynchronous crash-
prone processes are essentially as efficient as reliable synchronous processes. A
particular case of the statement below is when processes are initially aware of
the size n of the network, and that the identifiers are in [0, n − 1].

Lemma 1. Let (L,F) be an LCL task. Assume that, in the local model, (L,F)
can be solved by a deterministic algorithm in t(N) rounds in n-node graphs
whenever the processes are initially aware of an upper bound N for n, and that
the identifiers are in the range [0, N). Then, in the abst-decoupled model,
(L,F) can be solved by a deterministic algorithm in at most 3 t(N2) rounds in
n-node graphs, whenever the processes are initially aware of an upper bound N
for n, and that the identifiers are in the range [0, N).

In particular, every LCL task that can be solved in a polylogarithmic number
of rounds in the local model, whenever the processes are initially aware of an
upper bound N = O(poly(n)) on the number of nodes and the range of IDs, can
also be solved in a polylogarithmic number of rounds in the abst-decoupled
model.

Distributed Computing in the Asynchronous LOCAL Model 109

Since the abst-decoupled model will be shown not to be stronger than
the decoupled model in symmetric graphs, we get the following, as a direct
consequence of Lemma 1.

Theorem 1. Let (L,F) be an LCL task. Assume that, in the local model,
(L,F) can be solved by a deterministic algorithm in t(N) rounds in symmetric
n-node graphs whenever the processes are initially aware of an upper bound N
for n, and that the identifiers are in the range [0, N). Then, in the decoupled
model, (L,F) can be solved by a deterministic algorithm in at most 3 t(N2)
rounds in symmetric n-node graphs whenever the processes are initially aware of
an upper bound N for n, and that the identifiers are in the range [0, N).

In particular, 3-coloring the n-node ring whose processes are given the initial
knowledge of n and that identifiers are in the range [1, n], and where processes
are sharing a consistent notion of clockwise and counterclockwise directions, can
be solved in 3

2 log∗ n + O(1) rounds in the decoupled model. The algorithm
in [3] performs in 1

2 log∗ n+O(1) rounds, but it is specific to 3-coloring the ring,
while our approach is generic, and applies to all LCL tasks.

The full version of this paper, including the proofs of the above claims, can
be found in [5].

References

1. Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823
(1985)

2. Awerbuch, B., Peleg, D.: Network synchronization with polylogarithmic overhead.
In: 31st Symposium on Foundations of Computer Science (FOCS), pp. 514–522
(1990)

3. Castañeda, A., Delporte, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: Making
local algorithms wait-free: the case of ring coloring. Theory Comput. Syst. 63(2),
344–365 (2019)

4. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Inf. Control 70(1), 32–53 (1986)

5. Delporte-Gallet, C., Fauconnier, H., Fraigniaud, P., Rabie, M.: Distributed com-
puting in the asynchronous LOCAL model. CoRR abs/1904.07664 (2019)

6. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In 33rd ACM Symposium on Principles of Distributed Computing (PODC), pp.
367–376 (2014)

7. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

8. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

9. Naor, M., Stockmeyer, L.J.: What can be computed locally? SIAM J. Comput.
24(6), 1259–1277 (1995)

10. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadel-
phia (2000)

11. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.
Comput. 18(4), 740–747 (1989)

110 C. Delporte-Gallet et al.

12. Rybicki, J., Suomela, J.: Exact bounds for distributed graph colouring. In 22nd
International Colloquium on Structural Information and Communication Com-
plexity (SIROCCO), pp. 46–60 (2015)

13. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24:1–24:40
(2013)

14. Szegedy, M., Vishwanathan, S.: Locality based graph coloring. In: 25th ACM Sym-
posium on Theory of Computing (STOC), pp. 201–207 (1993)

An Environment for Specifying and
Model Checking Mobile Ring Robot

Algorithms

Ha Thi Thu Doan1(B) , Adrián Riesco2 , and Kazuhiro Ogata1

1 Japan Advanced Institute of Science and Technology, Ishikawa, Japan
{doanha,ogata}@jaist.ac.jp

2 Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

Abstract. An environment for specifying and model checking mobile
robot algorithms on rings (or mobile ring robot algorithms) is proposed.
We have developed the Maude Ring Specification Enviaude RSE), a
specification environment that explicitly supports ring-shaped networks.
Maude RSE is implemented on top of Maude, a rewriting logic-based
specification language. The underlying key behind the tool is pattern
matching between ring patterns and ring instances, called “ring pattern
matching.” Because rings are not commonly available data structures
in any existing specification language, we encode ring patterns as sets of
sequence patterns and simulate ring pattern matching by pattern match-
ing between sets of sequence patterns and sequence instances, which is
proven correct and transparent to Maude RSE users. The advantages of
Maude RSE are demonstrated by case studies analyzing exploration and
gathering algorithms.

Keywords: Distributed mobile robot system · Ring discrete model ·
Specification environment · Formal verification · Model checking

1 Introduction

The past two decades, theoretical computer science has seen the rapid growth
and development of distributed computing by mobile entities. Recent develop-
ments focus on models and algorithms for autonomous mobile robots that self-
organize and cooperate in order to achieve global goals. Autonomous mobile
robots have been proposed for several important applications, such as rescue
activities in disaster areas and outer space activities. The seminal model pro-
poses a distributed system of k robots that have low capacities: they are identical

This research was partially supported by JSPS KAKENHI Grant Number JP19H04082,
Comunidad de Madrid project BLOQUES-CM (S2018/TCS-4339) co-funded by
EIE Funds of the European Union, and MINECO project TRACES (TIN2015-67522-
C3-3-R).

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 111–126, 2019.
https://doi.org/10.1007/978-3-030-34992-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_10&domain=pdf
http://orcid.org/0000-0001-7524-4497
http://orcid.org/0000-0002-9716-4612
https://doi.org/10.1007/978-3-030-34992-9_10

112 H. T. T. Doan et al.

(they are indistinguishable and all execute the same algorithm), oblivious (they
have no memory of their past actions), and disoriented (they share no common
orientation). Moreover, the robots do not communicate by sending or receiving
messages, but have the ability to sense their environment and see the relative
positions of the other robots.

Various models and algorithms [20,25] have been proposed to solve particu-
lar problems for autonomous mobile robots. This paper focuses on ring discrete
models [4,5,10], in which robots perform their activities in a ring-shaped net-
work. What and how problems can be solved by a group of autonomous mobile
robots on ring-shaped networks is an important topic in the area, as shown by
the large number of algorithms that have been proposed: e.g. the papers [4,12–
14,18,27] propose algorithms for ring exploration, robot gathering on rings is
solved in [5,9,11,24,26,30], and some other problems are solved in [10,19]. It
is possible to make virtual rings over arbitrary-shaped network topologies and
then mobile ring robot algorithms can be essentially applied to such topologies.
Therefore, mobile ring robot algorithms are generic and worth investigating.

In the literature, the correctness of such algorithms relies on handmade math-
ematical proofs, which are error-prone. The untrustfulness of handmade mathe-
matical proofs has been pointed out in [1,3,15,16]. Formal, automatic techniques
could help us increase the confidence of the existing algorithms/proofs, as shown
in [1,3,8,15,16]. For discrete models, model-checking has been proven useful to
find errors in the proposed algorithms [3,15,16]. However, ring discrete models
are not well supported by any existing specification language, such as DVE [2],
SPIN [22], and Maude [7]. This is because of the particular symmetries owned
by rings. Consequently, the specifiers, such as Berard et al. in [3] and Doan et
al. in [15,16], need to specify rings by adapting other defined structures, such
as sequences. It, therefore, makes the specification task tedious as well as time-
consuming, while the specifications obtained are complicated and lengthy.

Context. Because rings cannot be directly supported by any existing spec-
ification language, we defined rings as associative sequences that satisfy two
properties: rotative and reversible. We used Maude [7] as specification language
because it allows us to use associative sequences. Now, the Maude Ring Speci-
fication Environment (Maude RSE), which explicitly supports ring-shaped net-
works, has been implemented on top of Maude. One key behind the tool is
pattern matching between ring patterns and ring instances, called “ring pat-
tern matching.” Because of the above-mentioned reason, however, we encode
ring patterns as sets of sequence patterns and simulate ring pattern matching
by standard pattern matching between sets of sequence patterns and sequence
instances, which is proven correct and transparent to Maude RSE users.

Contributions. Maude RSE itself and its theoretical foundations are the main
achievements. Our research illustrates the power of rewriting logic in that Maude
RSE can be implemented by extending Maude, more precisely Full Maude. That
is, we do not need to implement such formal tools from scratch but we can do so
by extending Maude and/or new formal tools on top of Maude. The case studies
conducted in Maude RSE demonstrate that, because Maude RSE supports ring

An Specification Environment for Mobile Ring Robot Algorithms 113

structures, mobile ring robot algorithm specifications in Maude RSE are more
concise and compact than those in Maude, while the time overhead incurred
by handling rings is almost irrelevant. From a theoretical point of view, we
prove that ring pattern matching can be simulated by pattern matching between
sets of sequence patterns and sequence instances. Therefore, Maude RSE will
benefit researchers in both the formal methods community and the distributed
computing community.

Outline. Section 2 overviews mobile robots on ring architectures and the prob-
lems of specifying mobile ring robot algorithms. Section 3 introduces Maude RSE
and outlines the theory of ring-pattern matching. It, then, presents how to spec-
ify mobile ring robot algorithms in Maude RSE. Section 4 evaluates Maude RSE.
Finally, Sect. 5 concludes the paper. The source code of the tool and three case
studies, the detailed descriptions of the ring pattern match theory, and more
information in Sect. 3 are available at [29].

2 Problems

In this paper, we restrict our attention to discrete models, and more specifically
to the ring topology. About timing assumption, we consider the more general
asynchronous model ASYNC. In addition, we take into account multiplicities,
which make much harder to formalize mobile robot algorithms. Multiplicities
appear in robot algorithms when more than one robot is allowed in one node; in
the following, we will call multiplicities to these nodes.

Robots follow a three-phase behavior: Look, Compute, and Move. During
its Look phase a robot takes a snapshot of other robots’ positions. The col-
lected information is used in the Compute phase during which the robot decides
whether to move or stay idle. There may be lag between the Compute phase and
the subsequent Move phase and then some other movements by other robots may
be done in-between. A move that has been decided by a robot in a Compute
phase but has not yet been conducted by the robot in the subsequent Compute
phase is called a pending move. In the Move phase, the robot may move to
one of the two adjacent nodes, as computed in the previous phase. Rings are
anonymous, that is, there are neither node nor edge labeled.

Anonymous rings have rotative and reversible characteristics, which cannot
be directly handled by any existing specification language. Let us illustrate these
problems with a simple example. Assume that we specify the ring (the system
state on a ring) shown in Fig. 1(a), in which robots are disoriented. Such a
system state can be expressed as a sequence q0 q1 . . . qj−1 qj of intervals, where
an interval qi is the number of consecutive empty nodes between two non-empty
nodes, in a view starting from any robot and traversing the ring in one arbitrary
direction. System state representations are called configurations.

The system state as shown in Fig. 1(a) could be expressed as 2 1 0 3 1
in the (clockwise) view starting from the one at the bottom. Because it is a
ring, the state could be also expressed, starting from other robots, as 1 0 3 1
2, 0 3 1 2 1, 3 1 2 1 0, and 1 2 1 0 3. Since robots are disoriented, the state

114 H. T. T. Doan et al.

Fig. 1. (a) A system with two adjacent robots and (b) The system after the movement.

could be expressed as 1 3 0 1 2, 2 1 3 0 1, 1 2 1 3 0, 0 1 2 1 3, and 3 0 1
2 1 by reversing (i.e., considering counterclockwise) these sequences. All these
configurations should be considered the same. Generally, given a sequence q0

q1 . . . qj−1 qj , the state it expresses is equivalent, in a ring, to all sequences
obtained by rotating it — q0 q1 . . . qj−1 qj , q1 . . . qj−1 qj q0, . . ., qj q0, q1 . . .
qj−1 — and by reversing them — qj qj−1 . . . q1 q0, qj−1 . . . q1 q0 qj , . . ., q0 qj
qj−1 . . . q1. Unfortunately, it is impossible to directly specify this in any existing
specification language. Actually, all the expressions above are considered totally
different from any existing specification language point of view, so specifiers
are required to implement their own strategies to handle them. Consequently,
specifiers need to specify rings by adapting other defined structures, such as
sequences. For instance, in [16], Doan et al. use associative operators in Maude.

To illustrate the idea used in [16], let us show how to specify a mobile ring
robot algorithm in Maude. Given a ring on which there are two robots located
at two adjacent nodes, respectively (such two robots are called adjacent robots),
we want to put them together (i.e., create a multiplicity) by moving one of them
to the node at which the other is located, where there is a non-empty node closer
to the node at which the former is located than to the other node. For example,
in Fig. 1(a) (where we define nodes with respect to the bottom node, with an
arrow) we have two adjacent robots on the top, the one on the left (the fifth,
clockwise, from the bottom) is separated from the rest of nodes by one empty
node, while the one on the right is separated by three empty nodes. Hence, we
would move the one on the left to the node at which the other one is located, as
shown Fig. 1(b), where the black node indicates a multiplicity. Assuming we use
-1 to denote multiplicities, we can use a rewrite rule to specify this transition.
The source state would use (i) 0 to indicate that two robots are adjacent, (ii)
variables I1 and I2 to denote the intervals next to the adjacent robots, and (iii)
a variable S to denote the remaining sequences. Assuming I2 is larger than I1,
we will increment the smaller interval (I1) and replace 0 (robots are adjacent)
by -1 (two robots are in the same node):
crl 0 I2 S I1 => -1 I2 S (I1 + 1) if I2 > I1.

In the particular case depicted in Fig. 1(a) the state could be expressed, clockwise
and starting from the fifth node clockwise from the bottom, as 0 3 1 2 1. This

An Specification Environment for Mobile Ring Robot Algorithms 115

configuration matches (the left-hand side of) the rule1 by substituting I2 with 3,
I1 with 1, and S with 1 2. The state is rewritten to −1 3 1 2 2, which expresses
the configuration in Fig. 1(b).

However, the state shown in Fig. 1(a) could be also expressed, clockwise from
the top, as 3 1 2 1 0. In this case, there is no substitution such that the sequence
can match the rule. For this reason we need another rule to handle it:

crl I2 S I1 0 => -1 I2 S (I1 + 1) if I2 > I1.

The configuration 3 1 2 1 0 matches this rule by substituting I2 with 3, I1 with
1, and S with 1 2.

Splitting Problem. The state in Fig. 1(a) could be also expressed, clockwise
from the bottom, as 2 1 0 3 1, but it is impossible to apply any of the rules above
to this configuration. The rest of the sequence is split into two sub-sequences at
both sides of the whole sequence. Thus, it is necessary to split the variable S into
two variables S1 and S2 that denote the remaining sequences at the left side and
the right side, respectively.

crl S2 I1 0 I2 S1 => -1 I2 S1 S2 (I1 + 1) if I2 > I1.

In our theoretical framework we need to formally define and work on splitting
and joining (which puts together two sub-sequences that substitute two sequence
variables obtained from the splitting before) functions that deal with these cases.

Reversing Problem. Let us take a look at the state in Fig. 1(a), which could
be expressed, counter-clockwise from the fifth node (clockwise) from the bottom,
as 1 2 1 3 0. We need the following rule for this case:

crl I1 S I2 0 => -1 I2 rev(S) (I1 + 1) if I2 > I1.

When the configuration matches the rule, what substitutes S is 2 1. We need to
reverse 2 1, the sequence that substitutes S because otherwise what is obtained
by applying the rule to the configuration is −1 3 2 1 2, which is different from −1
3 1 2 2. The function rev reverses a sequence, e.g rev(2 1) is 1 2. The configuration
1 2 1 3 0 matches this rule by substituting I2 with 3, I1 with 1, and S with 2 1.
The state is rewritten to −1 3 1 2 2, the configuration in Fig. 1(b).

Hence, we need to have all the rules by rotating and reversing the left-hand
side of the first rule to handle all possible sequences. We need 10 rules to specify
the above-mentioned transition. Note that we name the rules RL1 to RL10.

crl[RL1] 0 I2 S I1 => -1 I2 S (I1 + 1) if I2 > I1.

crl[RL2] I2 S I1 0 => -1 I2 S (I1 + 1) if I2 > I1.

crl[RL3] S I1 0 I2 => -1 I2 S (I1 + 1) if I2 > I1.

crl[RL4] I1 0 I2 S => -1 I2 S (I1 + 1) if I2 > I1.

crl[RL5] S2 I1 0 I2 S1 => -1 I2 S1 S2 (I1 + 1) if I2 > I1.

1 In the actual specification, we need an operator enclosing the sequence, such as { } to
avoid rewriting sub-sequences. However, to make the explanation as close as possible
to mathematical description, we omit it here.

116 H. T. T. Doan et al.

crl[RL6] I1 S I2 0 => -1 I2 rev(S) (I1 + 1) if I2 > I1.

crl[RL7] 0 I1 S I2 => -1 I2 rev(S) (I1 + 1) if I2 > I1.

crl[RL8] I2 0 I1 S => -1 I2 rev(S) (I1 + 1) if I2 > I1.

crl[RL9] S I2 0 I1 => -1 I2 rev(S) (I1 + 1) if I2 > I1.

crl[RL10] S1 I2 0 I1 S2 => -1 I2 rev(S1) rev(S2) (I1 + 1) if I2 > I1.

This makes the specification complicated and lengthy and specifiers exhausted.
If a ring is not faithfully specified, the formal verification of a mobile ring robot
algorithm may overlook cases.

3 Maude Ring Specification Environment (Maude RSE)

One possible way to solve these problems is to develop a specification environ-
ment in which rings are explicitly supported. It is reasonable, and saves time
and effort, if the environment is built on top of an existing specification system.
For this reason, Maude Ring Specification Environment (Maude RSE) is imple-
mented on top of Maude, a rewriting logic-based programming and specifica-
tion language, taking advantage of its meta-programming features. This section
outlines a theory of pattern matching on rings (“ring-pattern matching”) that
guarantees that our way of dealing with ring-pattern matching makes sense and
briefly describes how Maude RSE is built, its architecture, and how to define a
ring topology in it.

3.1 Ring Pattern Match Theory

Sequences. Let sequence patterns be in the form ES1 ES2 . . . ESn , where
each ESi is an element, an element variable, or a sequence variable. We suppose
that the juxtaposition operator used as the constructor in sequence patterns is
associative and the empty sequence, denoted ε, is its identity. Sequence instances
are sequence patterns that do not contain variables. Let SP and Seq be the sets
of sequence patterns and sequence instances, respectively. Let Elt be the set of
(concrete) elements, EV be the set of element variables, and SV be the set of
sequence variables.

Definition 1 (Sequence pattern match). Pattern match between sp ∈ SP
& seq ∈ Seq is to find all substitutions σ such that σ(sp) = seq. Let sp =?= seq
be the set of all such substitutions.

Definition 2 (Split sequence patterns). For sp ∈ SP, split(sp) is a
sequence pattern such that each sequence variable S in sp is replaced with
sv(S, 0) sv(S, 1). Then, the inductive definition of split is split(ε) = ε, split(e) =
e for e ∈ Elt, split(E) = E for E ∈ EV, split(S) = sv(S, 0) sv(S, 1) for S ∈ SV
and split(SP1 SP2) = split(SP1) split(SP2) for SP1, SP2 ∈ SP.

Definition 3 (Joining split sequence variables). For sp ∈ SP and seq ∈
Seq, let σ be in (split(sp) =?= seq). join(σ) is the substitution σ′ such that
for each sequence variable S in sp σ′(S) = σ(sv(S, 0)) σ(sv(S, 1)) and for any

An Specification Environment for Mobile Ring Robot Algorithms 117

other variables X σ′(X) = σ(X). The domain of join can be naturally extended
to the set of substitutions such that join(split(sp) =?= seq) is {join(σ) |σ ∈
(split(sp) =?= seq)}.

Rings

Definition 4 (Rings). For sp ∈ SP, [sp] is called a ring pattern and satisfies
(1) the rotative law ([sp] = [rtt(sp)]) and (2) the reversible law ([sp] = [rev(sp)]).
When sp is a sequence seq ∈ Seq, [seq] is called a ring. rtt(sp) rotates sp
rightward; rev(sp) reverses sp.

Definition 5 (Ring pattern match). For sp ∈ SP and seq ∈ Seq, pattern
match between [sp] and [seq] is to find all substitutions σ such that [σ(sp)] =
[seq]. Let [sp] =?= [seq] be the set of all such substitutions.

Definition 6 (Sequences rotated and/or reversed). For sp ∈ SP, [[sp]]
is the set of sequences inductively defined as follows: (1) sp ∈ [[sp]] and (2) if
sp′ ∈ [[sp]], then rtt(sp′) ∈ [[sp]] and rev(sp′) ∈ [[sp]].

The intuitive idea is that [sp] is an implicit notation indicating that sp
behaves as a ring while [[sp]] is a explicit notation that lists all possible combi-
nations after applying rotation and reverse to sp. In this way, given a particular
sequence seq it is possible to use standard pattern matching between the elements
in [[sp]] and seq, so ([[sp]] =?= seq) = {σ | σ = (sp′ =?= seq), for sp′ ∈ [[sp]]}.
The following theorem shows that it is possible to use [[sp]] as an effective imple-
mentation of [sp] (see Ring pattern match theory in [29] for details):

Fig. 2. Architecture of Maude RSE.

Theorem 1. For any sequence pattern sp ∈ SP and any sequence seq ∈ Seq,
join([[split(sp)]] =?= seq) = ([sp] =?= [seq]).

118 H. T. T. Doan et al.

3.2 Extending Maude with Ring Attributes

It has been demonstrated in [16,17,21,28] that Maude allows programmers to
specify distributed algorithms/systems more succinctly than others program-
ming languages. In particular, we extend Full-Maude [7], which is an extension
of Maude written in Maude itself that provides extra features to extend Maude.
The specification environment is built as depicted in Fig. 2. A specification in
Maude RSE is considered as a user specification, which may contain specifica-
tions of a ring topology that would not be supported by the standard Maude
engine. The main player in the system is Transformer that takes a user specifica-
tion and transforms it into an ordinary Maude specification. Technically, a user
specification is represented as a term at the meta-level. Transformer, then, ana-
lyzes and modifies it by adding extra equations/rules that handle rings. Pattern
matching is a key functionality in Maude. Because pattern matching between
ring patterns and ring instances is not supported by Maude and any other exist-
ing specification languages, we need to simulate it. There are two possible ways
to simulate ring pattern matching. For a sequence pattern SP and a sequence
instance SI, (1) we generate all sequence instances that denote the ring instance
denoted by SI and model check each sequence instance with SP, and (2) we gener-
ate all sequence patterns that denote the ring pattern denoted by SP and model
check SI with each ring pattern. We have adopted (2) because Maude automat-
ically matches one sequence instance with many sequence patterns, while (1)
would force us to manually handle a collection of sequence instances. It is non-
trivial, however, to decide whether a matching between a ring pattern and a ring
instance can be simulated by pattern matching between a collection of sequence
patterns and a sequence instance. We have formally proved that the former can
be simulated by the latter, see Sect. 3.1. The main idea is that given a user ring
specification as a ring pattern, Maude RSE generates all corresponding sequence
patterns to deal with the “ring” characteristic. Intuitively, given a ring pattern
[ES1 . . .ESi . . .ESn], Transformer generates as the left-hand side of a rule: n
rotative patterns [ES1 . . .ESi . . .ESn], . . . , [ESi . . .ESn ES1], . . . , [ESn ES1

. . .ESi] and n reversible patterns [ES1 ESn . . .ESi], . . . , [ESi . . .ES1 . . .ESn],

. . . , [ESn . . .ESi . . .ES1]. When ESi (i = 1, 2, . . . , n) is a variable, it is split
and jointed afterwards. We can basically use the right-hand side of the given rule
as the right-hand side for the other 2n− 1 patterns generated as the left-hand
side. We, however, need to reverse sequences that substitute sequence variables
occurring in the right-hand side for the n reversible patterns. For example, in the
problem in Sect. 2, users only need to specify the first rule RL1 while all other
rules are automatically generated by Transformer by 1. Splitting: All sequence
variables are splitted. e.g. variable S is splitted into S1 and S2.

crl 0 I2 S1 S2 I1 => -1 I2 S1 S2 (I1 + 1) if I2 > I1.

2. Rotating and 3. Joining: All elements in the sequence of the left-hand side
are rotated. After that, some pairs of sequence variables that are splitted from
one sequence variable and appeared in the splitted order are joined. We get the
rules RL2 to RL5. 4. Reversing: All sequences on the left-hand sides are reversed

An Specification Environment for Mobile Ring Robot Algorithms 119

(rules RL6 to RL10). As the result, we get all 10 rules. Users do not need to deal
with the “ring” characteristic, which is handled transparently by Maude RSE.

In fact, Transformer needs to handle more complicated user specification
rules/equations, all of them guarateed correct by Theorem 1. Because the result
of the transformation is a standard Maude specification, we can guarantee that
all Maude facilities, such as the LTL model checker, can be directly used.

3.3 Syntax Declaration

We consider two kinds of rings: oriented rings in which the orientation of the
ring (clockwise and anti-clockwise order) is taken into account, and disoriented
rings in which there is no orientation. In Maude, types are called sorts. A sort
denotes the set of elements of the same type. For example, the sort Nat denotes
the set of natural numbers. A sort is a subsort of another sort if and only if the
set denoted by the former is a subset of the one denoted by the latter, and the
latter is called a supersort of the former. Keywords sort and subsort are used
to declare sort and subsort relation, respectively. Elements of a given sort are
built by constructors, with keyword op, together with the keyword ctor, given
the arity and the coarity. Moreover, operators can have equational axioms, such
as associativity (assoc) and identity (id:).

We first consider disoriented rings, implemented by the ring attribute. In
particular, rings are constructed as a sequence of elements with this attribute.
Let us assume Elem and Seq the sorts for elements and sequences, respectively.
The configurations of a system as rings could be defined as:

subsort Elem < Seq.

op emp : -> Seq [ctor].

op __ : Seq Seq -> Seq [ctor assoc id: emp].

op [_] : Seq -> Config [ring ctor].

An operator without any argument is called a constant, such as emp, which
stands for the empty sequence. Underscores are placeholders where arguments
are placed. Similarly, id: emp indicates that operator emp is the identity element
of the juxtaposition (empty syntax) operator __. Seq is a supersort of Elem, which
means that each Elem is treated as the singleton sequence only consisting of this
element. The operator __ is used to construct sequences of elements: for s1
and s2 of sort Seq, s1 s2 has sort Seq. The structure __ is presented just as an
example; it could be replaced by any other structure that depends on the user’s
preferences, such as _,_ and _|_. Likewise, the structure [_] is an optional
preference. A configuration is defined as a ring structure that is specified based
on a sequence of elements. Because a ring is disoriented, the mirror image of a
ring represents the same state as the original state. When we use intervals as
ring elements, we could use Int for Elem, where Int is the sort for integers. The
system shown in Fig. 1(a) is expressed using this syntax as [0 3 1 2 1], [3 1 2 1
0], [1 2 1 0 3], [1 2 1 3 0], and so on.

120 H. T. T. Doan et al.

For oriented rings, Maude RSE provides the r-ring attribute that could be
considered as a sub-class attribute of the ring attribute. The oriented ring and
its mirror image do not necessarily represent the same state.

3.4 Applications

We have specified and model checked three algorithms for exploration with stop,
exploration, and gathering. The two last algorithms have been also specified in
standard Maude. We compare our new specifications with existing ones (see
Sect. 4). Due to page limitation, this section only presents how to formalize and
specify the algorithm for exploration with stop in Maude RSE.

Robots Exploration with Stop on Ring Under ASYNC. The ASYNC
(or asynchronous) model is considered. Each robot can distinguish whether a
node is empty, occupied by one robot, or occupied by more than one robot. The
problem of exploring with stop requires that, regardless of the initial placement
of the robots, each node must be visited by at least one robot and the robots
must be in a configuration in which they all remain idle.

Exploration Algorithm [18]. The algorithm works following a sequence of
three distinct phases: Set-Up, Tower-Creation, (towers are the equivalent notion
to multiplicities in our notation) and Exploration. The Set-Up phase transforms
any initial configuration into one that is in a predetermined set of configurations
(called no-towers-final) with special properties. After that, the Tower-Creation
phase and then the Exploration phase are executed. Finally, all nodes are visited
and no robot will make any further moves.

Formal Specification of Exploration Algorithm. Let us suppose that there
are n nodes denoted u0 u1 . . . un−1 and each node may be occupied by more
than one robot. The multiplicity of robots located at node ui is denoted di: di
= 0, di = 1, and di = 2 indicate that there are no robots, there is exactly one
robot, and there are more than one robot, respectively.

State Expressions. So far the state of a system on a ring has been represented
as a sequence of elements, e.g, for the system in Fig. 1(a), elements are intervals.
For this system, each element is a node of the ring. Remember from Sect. 2
that robots move in two phases: first they decide where to move and then the
movement is performed; when the movement has been decided but not applied
yet it is called pending move. A pending move is represented as a snapshot of
the ring from the node the robot will move; to avoid ambiguities due to the
symmetries of the ring, the same snapshot is stored in the target node.

Once the pending move is completed a new movement can be computed, so
we have at most one pending move at a time (this is true because of the particular
structure of the algorithm given above, that first creates multiplicities and does
not move them afterwards); on the other hand, many target-pending moves can
be stored in each node, because robots from different nodes may want to move

An Specification Environment for Mobile Ring Robot Algorithms 121

Trans 1

(a) (b)

r

r

r

r
Trans 2

(d)(c)

Trans 3

Fig. 3. One possible transitions from the initial configuration: a dashed arrow repre-
sents a pending move and a black node represents a tower.

to the same node. because robots from different nodes may want to move to the
same node. In this way, executing a movement is as simple as finding two nodes,
one with the pending move and another one with the same pending move as a
target. Note that, in this stage, robots just know that they have to move, but
they cannot access other robots’ pending moves.

Hence, we denote a node as a tuple 〈di, pi, psi〉, where di denotes the mul-
tiplicity of the node, pi denotes a pending move, and psi denotes the set of
pending moves that will be done by other robots. pi is either one pending move
or nil meaning that there are no pending moves. Given this definition of node,
a snapshot (i.e., the pending move) for a robot at node ui is the sequence di
di+1 . . . di−1 of the multiplicities taken from that node. psi is either a set of
pending moves or emp, the empty set. The sort Pending denotes pending moves,
PendingSet pending move sets, and Node nodes. A configuration, of sort Config,
is expressed as a ring of nodes with the ring attribute:

subsort Node < Seq.

op <_,_,_> : Nat Pending PendingSet -> Node [ctor].

op emp : -> Seq [ctor].

op __ : Seq Seq -> Seq [ctor assoc id: emp].

op [_] : Seq -> Config [ctor ring].

The structure <_,_,_> is used to construct nodes. For d ∈ Nat, p ∈ Pend-
ing, ps ∈ PendingSet, we have 〈d, p, ps〉 ∈ Node. A configuration is defined as
a ring [_], which takes as argument a sequence of nodes. For example, let
v and v′ be the pending moves 1 0 1 0 1 0 1 0 0 0 and 1 0 1 0 1 0 0 0 1
0 for r and r′, respectively. Note that each snapshot is taken from the node
making the movement in clockwise order, although the anti-clockwise order
would be valid as well. The configuration of the system with two pending
moves as shown in Fig. 3(b) could be expressed from robot r′ clockwise as
[〈1, v′,emp〉〈0, nil, emp〉〈1, nil, emp〉〈0, nil, emp〉 〈1, nil, emp〉〈0, nil, emp〉〈0, nil,
emp〉〈0, nil, emp〉〈1, v, emp〉〈0, nil, (v; v′)〉]. We see that two nodes (standing for
r and r′, respectively) have pending moves in the second component of the tuple
while the target node has both pending moves in the third component.

State Transitions. When either (1) a robot takes the snapshot of the system
and then computes a move, or (2) a robot executes its pending move, the current
configuration of the system changes. Such changes, called (state) transitions, are

122 H. T. T. Doan et al.

specified by rewrite rules. For example, one possible transition path is as shown
in Fig. 3. The following rewrite rule describes the action when a robot performs
its pending move (note that variable P appears twice, once as pending move and
then as part of the set in the target node; it disappears once the rule is applied):

rl [S1 < 1, P, PS > < D, P’, (P; PS’) > S2] =>

[S1 < 0, nil, PS > < D + 1, P’, PS’ > S2].

where S1 and S2 are variables of sort Seq, P and P’ are variables of sort Pending,
PS and PS’ are variables of sort PendingSet, and D is a variable of sort Nat.

The configuration [S1 〈 1, P, PS 〉〈 D, P’, (P; PS’) 〉 S2] represents any
state such that the robot 〈 1, P, PL 〉 has a pending move P and the next
node is 〈 D, P’, (P; PL’) 〉 in which P is in the set of pending moves.
In addition to these two nodes, such a state may have some more nodes
that are expressed as S1 and S2. The term [〈1, v′, emp 〉〈0, nil, emp 〉〈1,
nil, emp〉〈 0, nil, emp 〉〈1, nil, emp〉〈0, nil, emp〉 〈0, nil, emp〉〈0, nil, emp〉〈1, v,
emp〉〈0, nil, (v; v′)〉] expresses the state of Fig. 3(b). The left-hand side of the
above rewrite rule matches this term by using the substitution S1 �→ 〈1, v′,
emp〉〈0, nil, emp〉〈1, nil, emp〉〈0, nil, emp〉〈1, nil, emp〉 〈0, nil, emp〉〈0, nil, emp〉
〈0, nil, emp〉, P �→ v, PS �→ emp, D �→ 0, P ′ �→ nil , PS′ �→ v′ and
S2 �→ emp, and the rewrite rule can be applied to the term, creating the
state [〈1, v′, emp〉〈0, nil, emp〉〈1, nil, emp〉 〈0, nil, emp〉〈1, nil, emp〉 〈0, nil, emp〉
〈0, nil, emp〉〈0, nil, emp〉〈0, nil, emp〉〈1, nil, v′ 〉], which corresponds to the state
in Fig. 3(c). Note that the size of the ring is not fixed.

Model Checking the Algorithm. We use the Maude LTL model checker to
verify that the algorithm enjoys desired properties. The authors in [18] give some
important theorems, such as Theorems 3.1 and 3.2, that must hold to guarantee
the correctness of the algorithm. For example, Theorem 3.1 states a property
that must be satisfied at the end of the Set-Up phase: any initial configuration
is transformed into a no-towers-final configuration. We have formally expressed
these theorems as LTL formulas [23]. For example, Theorem 3.1 then is expressed
as the LTL formula:

theorem3-1 = [] (endOf -> SetUp) /\ <> endOf.

where [] is the always operator and <> is the eventually operator. The proposi-
tion endOf holds if and only if the Set-Up phase has finished and the proposition
SetUp holds if and only if the state does not have any towers and all robots are
located adjacent to each other in one or two groups.

As the result of the model checking, no counterexamples are found for the
LTL formula. This makes us more confident on the correctness of the algorithm.

4 Evaluation

We compare the sizes and performance of specifications in plain Maude [15,16]
and in Maude RSE and report on the overheads (which is almost nothing) intro-
duced by Maude RSE for model checking. We consider two algorithms solving

An Specification Environment for Mobile Ring Robot Algorithms 123

two main problems on ring: the perpetual exploration algorithm, which was
defined in [4] and specified in [15], and the gathering algorithm, designed in [9]
and specified in [16]. Note that Maude RSE successfully reproduces the model
checking experiments reported in [15,16], finding the counterexamples demon-
strating that the algorithms do not enjoy some properties.

4.1 A Perpetual Exploration Algorithm [4]

In [15], the ring is represented as the set of all non-empty nodes. The ring fea-
tures, namely rotation and reversibility, are dealt with by using associative and
commutative sets. However, the commutative attribute makes it impossible to
keep the order in the ring. Specifiers, thus, are forced to use complex constraints
to specify the algorithms because the order of elements might change. For this
reason, several functions are defined to handle these constrains.

By using Maude RSE, we do not need to handle ring characteristics and we
do not need to use commutativity as the attribute of the constructor used to
construct configurations. Our specification gets rid of all these extra functions.
In total, we reduce over 50% of the code.

(2&5) (3&11) (5&8) (5&12) (8&19) (8&39) (9&16) (9&21)

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0.171 0.270 0.546
0.927

1.999

4.116
4.823

7.130

0.163 0.240
0.723

1.247

2.181

3.929

4.912

6.812

System

Se
co
nd

Time taken by the ordinary Maude
Time taken by Maude RSE

Fig. 4. Maude RSE preserves the performance of the ordinary Maude environment.

4.2 A Gathering Algorithm [9]

In [16], the authors use 44 rules to specify the system and 53 equations to handle
some constraints about configurations. Many of these rules and equations are
defined to handle rings. In Maude RSE, the specification requires 17 rules and
18 equations, that is, we obtain a code reduction of more than 60%.

124 H. T. T. Doan et al.

Performance Analysis. We conducted model checking experiments for the
gathering algorithm to compare the performances. 8 different systems in terms
of the number of robots and the size of the ring, e.g. System 1 with 2 robots and
5 nodes denoted as (2&5), are taken. Experiments were conducted on a 4 GHz
Intel Core i7 processor with 32 GB of RAM. The results are shown in Fig. 4.
Based on these experiments, we can conclude that Maude RSE preserves the
performance of the ordinary Maude environment; no extra time consuming.

5 Conclusion

Because mobile robot systems are a new form of distributed system, the existing
specification methods (and tools) do not support these systems appropriately. In
this case, a new language or an extension of an existing language is needed. This
paper introduces an extension of Maude to mobile ring robot algorithms: Maude
RSE. Maude RSE makes it possible to specify ring structures, which need to
be used to specify mobile ring robot algorithms. As extensions of ring topology,
recent research on rings consider dynamic rings where edges may appear and
disappear unpredictably [6]. Furthermore, more kinds of robots, such as myopic
luminous robots [31] are proposed to work on rings. As future work, we try to
tackle other kinds of robots on rings, such as myopic luminous robots. We then
consider extending Maude RSE in the following directions: (1) to support other
features on ring, such that rings are dynamic, and (2) to support other topologies
by making virtual rings over them.

References

1. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering
without multiplicity detection: a certified algorithm. In: Bonakdarpour, B., Petit,
F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 7–19. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49259-9 2

2. Barnat, J., Brim, L., Češka, M., Ročkai, P.: Divine: parallel distributed model
checker. In: Parallel and Distributed Methods in Verification and High Performance
Computational Systems Biology. IEEE (2010)

3. Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y.,
Tixeuil, S.: Formal verification of mobile robot protocols. Distrib. Comput. 29(6),
459–487 (2016)

4. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring
exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15763-9 29

5. Bonnet, F., Potop-Butucaru, M., Tixeuil, S.: Asynchronous gathering in rings with
4 robots. In: Mitton, N., Loscri, V., Mouradian, A. (eds.) ADHOC-NOW 2016.
LNCS, vol. 9724, pp. 311–324. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40509-4 22

6. Bournat, M., Dubois, S., Petit, F.: Computability of perpetual exploration in highly
dynamic rings. In: IEEE 37th International Conference on Distributed Computing
Systems, pp. 794–804 (2017)

https://doi.org/10.1007/978-3-319-49259-9_2
https://doi.org/10.1007/978-3-319-49259-9_2
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-319-40509-4_22
https://doi.org/10.1007/978-3-319-40509-4_22

An Specification Environment for Mobile Ring Robot Algorithms 125

7. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

8. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in R
2

for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS,
vol. 9888, pp. 187–200. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53426-7 14

9. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-
compute-move model. Distrib. Comput. 27, 255–285 (2014)

10. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on
rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4),
1055–1096 (2015)

11. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclu-
sive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48
(2017)

12. Datta, A.K., Lamani, A., Larmore, L.L., Petit, F.: Enabling ring exploration with
myopic oblivious robots. In: IEEE International Parallel and Distributed Process-
ing Symposium Workshop, Hyderabad, pp. 490–499 (2015)

13. Devismes, S.: Optimal exploration of small rings. In: Proceedings of the Third
International Workshop on Reliability, Availability, and Security, pp. 91–96 (2010)

14. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-
synchronous oblivious robots. Theor. Comput. Sci. 498, 10–27 (2013). https://doi.
org/10.1016/j.tcs.2013.05.031

15. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots per-
petual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.)
SOFL+MSVL 2016. LNCS, vol. 10189, pp. 201–219. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57708-1 12

16. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of robot gathering. In: Pro-
ceedings of The 21th Conference on Principles of Distributed Systems, pp. 12:1–
12:16 (2017)

17. Doan, H.T.T., Bonnet, F., Ogata, K.: Specifying a distributed snapshot algorithm
as a meta-program and model checking it at meta-level. In: Proceedings of The 37th
IEEE International Conference on Distributed Computing Systems, pp. 1586–1596
(2017)

18. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communi-
cating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3),
562–583 (2013)

19. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile
agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol.
2976, pp. 599–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24698-5 62

20. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool Publishers (2012)

21. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s megastore in
real-time maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra,
and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54624-2 25

22. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston (2004)

23. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, Cambridge (2004)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1016/j.tcs.2013.05.031
https://doi.org/10.1016/j.tcs.2013.05.031
https://doi.org/10.1007/978-3-319-57708-1_12
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-642-54624-2_25
https://doi.org/10.1007/978-3-642-54624-2_25

126 H. T. T. Doan et al.

24. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algo-
rithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13284-1 9

25. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. Distrib. Comput. 28(2), 147–154 (2015)

26. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)

27. Lamani, A., Potop-Butucaru, M.G., Tixeuil, S.: Optimal deterministic ring explo-
ration with oblivious asynchronous robots. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 183–196. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13284-1 15

28. Liu, S., Ölveczky, P.C., Wang, Q., Meseguer, J.: Formal modeling and analysis of
the walter transactional data store. In: Rusu, V. (ed.) WRLA 2018. LNCS, vol.
11152, pp. 136–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99840-4 8. https://sites.google.com/ site/siliunobi/walter

29. Our Maude source files. https://goo.gl/6AnwHE
30. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile

robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 237–251. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11764-5 17

31. Ooshita, F., Tixeuil, S.: Ring exploration with myopic luminous robots. In: Izumi,
T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 301–316. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 20

https://doi.org/10.1007/978-3-642-13284-1_9
https://doi.org/10.1007/978-3-642-13284-1_15
https://doi.org/10.1007/978-3-319-99840-4_8
https://doi.org/10.1007/978-3-319-99840-4_8
https://sites.google.com/ site/siliunobi/walter
https://goo.gl/6AnwHE
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/978-3-030-03232-6_20

Brief Announcement: Self-stabilizing
LCM Schedulers for Autonomous Mobile

Robots Using Neighborhood Mutual
Remainder

Shlomi Dolev1, Sayaka Kamei2(B), Yoshiaki Katayama3, Fukuhito Ooshita4,
and Koichi Wada5

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

dolev@cs.bgu.ac.il
2 Graduate School of Engineering, Hiroshima University, Higashihiroshima, Japan

s-kamei@se.hiroshima-u.ac.jp
3 Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan

katayama@nitech.ac.jp
4 Nara Institute of Science and Technology, Ikoma, Japan

f-oosita@is.naist.jp
5 Faculty of Science and Engineering, Hosei University, Tokyo, Japan

wada@hosei.ac.jp

Abstract. A vast number of algorithms for robots assume a given sched-
ule that ensures the simultaneous LOOK (observing the location of all
other non-moving robots), only then simultaneous COMPUTE (comput-
ing the target for moving) and only then simultaneous MOVE (LCM).
The assumption on the existence of synchronization signal for movements,
when other robots do not LOOK is questionable. We present several self-
stabilizing techniques to implement such a scheduler using global/local
clock pulses and thus converting the vast numbers of robot algorithms
that assume the LCM schedule, to eliminate this assumption at once.
Namely, we present implementation of a move-atomic property sched-
uler, where robots possess an independent clock that is advanced at the
same speed.We realize it by applying the neighborhood mutual remain-
der. This research presents the first self-stabilizing implementations of
the LCM synchronization.

Keywords: Self-stabilization · LCM robot system · Move-atomic ·
Neighborhood mutual remainder

This work was supported in part by JSPS KAKENHI No. 17K00019, 18K11167,
19K11823 and 19K11828, Rita Altura Trust Chair in Computer Science, the Min-
istry of Science and Technology, Israel &Japan Science and Technology Agency (JST)
SICORP (Grant#JPMJSC1806) and the German Research Funding Organization
(DFG, Grant#8767581199).

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 127–132, 2019.
https://doi.org/10.1007/978-3-030-34992-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_11

128 S. Dolev et al.

1 Introduction

There is a vast literature on algorithms for swarms of robots that are sched-
uled to perform steps simultaneously, abstracting away the mechanism used to
synchronize the simultaneous operations. An abstraction in which the opera-
tions between two successive robot configurations consists of a global period for
LOOK (observing the location of the other robots) after which a global period
for COMPUTE (computing the next move step) and at the end a global period
for MOVE (moving to the computed location). The LCM abstraction simplifies
the algorithm design and proof processes.

In distributed computing, synchronizers are used to “compile” such syn-
chronous distributed algorithm to work in a more realistic asynchronous dis-
tributed systems. The synchronizer supplies a local indication on a clock pulse,
that triggers the next operation. The synchronizer is designed to preserve the
invariants and proofs of the synchronous algorithm. Thus, automatic conver-
gence of a synchronous algorithm works in asynchronous settings. In the case
of LCM, one needs to supply a local indication on three pulses, one for LOOK,
one for COMPUTE and one for MOVE. In fact, LOOK and COMPUTE can be
regarded as one period in which no robot moves.

Requiring all robots not to move at a certain period may be too restrictive.
Our LCM synchronizer compiler obtains the effect of an atomic move (preserving
the invariants and proofs of atomic LCM algorithm) by local means. Namely,
when a robot looks no other robot in its neighborhood moves (thus, avoiding
race conditions).

To implement such synchronizers, we introduce a new synchronization con-
cept, called the neighborhood mutual remainder (NMR), and give a simple self-
stabilizing NMR algorithm in the full paper [1]. A distributed algorithm that
satisfies the NMR requirement should satisfy global fairness, l-exclusion, and
local rendezvous requirements. Global fairness is satisfied when each participant
executes the critical section (CS) infinitely often, l-exclusion is satisfied when
at most l neighboring processes enter the CS at the same time, and local ren-
dezvous is satisfied when for each participant infinitely often no participant in
the closed neighborhood is in the CS or a trying section.

In this BA, we give a self-stabilizing synchronization algorithm for an LCM
robot system by using the NMR. We realize the move-atomic property in a self-
stabilizing manner on the assumption that robots repeatedly receive clock pulses
at the same time, where the move-atomic property guarantees that, while some
robot executes LOOK and COMPUTE phases, no robot in its sight executes
a MOVE phase. This research presents the first self-stabilizing implementation
of the LCM synchronization, allowing the implementation in practice of any
self-stabilizing or stateless robot algorithm.

In the full paper [1], we extend the above algorithm to the assumption that
robots receive clock pulses at different times but the duration between two pulses
is identical for all robots. Then, on the same assumption, we implement the fully
synchronous (FSYNC) model.

Self-stabilizing Implementation of LCM Schedule for Robots 129

2 Preliminaries for Robot Systems

Fig. 1. Structure of
robot system.

By applying NMR, we implement traditional LCM
robot models on an ordinary distributed system com-
posed of mobile terminals (Fig. 1). In the rest of this
section, we describe an underlying mobile terminal
model where NMR is executed, and a simulated robot
model where algorithms for LCM robot model can be
executed.

Underlying Mobile Terminal Model. In the sys-
tem, k mobile terminals exist in a plane. Every terminal
does not know the value of k. They do not have unique
IDs and execute the same deterministic algorithm. Every terminal has no direct
communication means except lights which can emit a color to other terminals.
They also have an observation device to obtain other terminals’ positions and
colors of lights within a fixed distance φ from its current position.

The terminal can move up to y in one time unit (one move). If the terminal
moves toward the target position, it may stop moving before arriving at the
target position, however it precedes the distance of at least σ. If the distance
from the current position to the target position is at most σ, the terminal always
reaches the target position.

A communication graph is defined as G = (V,E) where V is a set of terminals
and E is a set of terminal pairs that can observe each other. Note that the
communication graph may change when terminals move. We say terminal ri is
a neighbor of rj if (ri, rj) ∈ E holds. A neighborhood of terminal ri is denoted
by N(i) = {rj |(ri, rj) ∈ E}, and a closed neighborhood of ri is denoted by
N [i] = N(i) ∪ {ri}.

Every terminal operates based on pulses. When a terminal receives a pulse,
it instantaneously takes a snapshot by using its observation device and obtains
positions and colors of neighboring terminals. And then, it executes an algorithm
based on the snapshot before the next pulse. We consider global pulses as external
pulses. All terminals receive these pulses at the same time, and the duration
between two successive pulses is identical for all robots. We regard the duration
between two successive pulses as one time unit.

Simulated Robot Model. Next, we describe simulated robot models that we
will implement on the underlying mobile terminal model. Our objective robot
models are in the traditional LCM (Look-Compute-Move) robot model.

In the traditional LCM robot model, each robot repeats three-phase cycles:
LOOK, COMPUTE, and MOVE. During the LOOK phase, the robot obtains
positions and colors of its neighboring robots using its observation device. During
the COMPUTE phase, the robot computes its next state, color, and movement
according to the observation in the LOOK phase. The robot may change its state
and color at the end of the COMPUTE phase. If the robot decides to move, it
moves toward the target position during the MOVE phase. The robot may stop

130 S. Dolev et al.

moving before arriving at the target position, however it precedes the distance
of at least σ. If the distance from the current position to the target position is at
most σ, the robot always reaches the target position. In the following, we simply
describe that a robot executes LOOK, COMPUTE, and MOVE instead of
executing the LOOK, COMPUTE, and MOVE phase, respectively.

The simulated robot also operates based on pulses as the underlying terminal
model. When the terminal receives a pulse, the simulated robot also operates
one or more of the phases among LOOK, COMPUTE or MOVE immediately
after the underlying terminal finished the operation. The underlying terminal
tells the simulated robot which phase(s) can be executed. When the simulated
robot executes LOOK, it obtains positions and colors of other robots (terminals)
within the distance φ − y. The reason why this view restriction is necessary will
be described later.

In literature, some synchronization models are considered in the LCM model.
In this paper, we focus on the move-atomic model. The move-atomic model
guarantees that, while a robot executes MOVE, none of its neighbors executes
LOOK or COMPUTE.

Dynamic Graph Reduction. Let φ be the distance of underlying terminal
views, namely, the NMR algorithm of a terminal is executed with all terminals
within φ distance from the terminal. At this point, we must assume that each
simulated robot should move up to y < φ in a single time unit and uses neighbors
within distance up to φ − y when it executes LOOK, the only neighborhood
dynamism is from another simulated robot rj that is not viewed by ri in the NMR
algorithm, therefore is not included in the local synchronization, but penetrates
to be in the COMPUTE zone of ri while ri executes LOOK. Hence having a
y-tier eliminates such a scenario by any rj .

Self-stabilizing LCM Implementations. We aim to implement the move-
atomic model on the underlying system model in a self-stabilizing manner. To
do this, we assign some time units to execute LOOK, COMPUTE, and MOVE,
and trigger the phases upon pulses. We assume that each phase does not last
beyond the next pulse. This implies that the duration from a pulse to the next
pulse is sufficiently long so that robots precede the distance of at least σ.

Definition 1. The system implements a self-stabilizing move-atomic model if
there exists some time t such that, after time t, (1) every robot repeats three-phase
cycles infinitely and (2) while a robot executes MOVE, none of its neighbors
executes LOOK or COMPUTE.

3 Self-stabilizing Move-Atomic Algorithm

The main idea of the implementation is to apply the NMR algorithm [1] to ter-
minals that simulate robots. Let robot(ri) be the robot simulated by terminal ri.
Terminal ri can make robot(ri) execute LOOK and COMPUTE only when ri

Self-stabilizing Implementation of LCM Schedule for Robots 131

Algorithm 1. Self-Stabilizing Move-Atomic Algorithm with Global Pulses for ri.
Upon a global pulse

MaxN i := max{Nlightj | rj ∈ N [i]}
if Light i = 0 ∧ LC i = true then{

// Enter the CS
make robot(ri) execute LOOK and COMPUTE
LC i := false

} else if ∀rj ∈ N [i][Lightj �= 0] ∧ LC i = false then{
// Rendezvous (No closed neighbors enter the CS)
make robot(ri) execute MOVE
Nlight i:=|N [i]|
LC i := true

}
Clock i:= (Clock i + 1) mod (MaxN i + 1)
Light i := Clock i

enters the CS, and it can make robot(ri) execute MOVE only when the neighbor-
hood of ri is in rendezvous, namely, rendezvousi. When rendezvousi takes place,
no neighbor of ri is in the CS (i.e., no neighbor rj of ri makes robot(rj) execute
LOOK or COMPUTE), and thus ri can make robot(ri) execute MOVE. By
this behavior, we can achieve the move-atomic property: While a robot executes
MOVE, none of its neighbors executes LOOK or COMPUTE.

Each terminal ri has following two lights: Nlight i ∈ {1, . . . , k} is the color
representing |N [i]|, and Light i ∈ {0, . . . , k} is the color representing the local
clock phase based on global pulses. Additionally, ri maintains the following vari-
ables: MaxN i ∈ {1, . . . , k} is the maximum value of Nlight among the closed
neighborhood of ri, LC i is a Boolean which represents whether the next opera-
tion is LOOK or not, and Clock i ∈ {0, . . . , k} is a local counter of global pulses,
not necessarily identical among robots.

When ri detects a global pulse, ri obtains visible neighbors’ Nlight values and
updates MaxN i

1. The local counter of global pulses Clock i is bounded by MaxN i,
and maintained by each terminal ri, that is, they are not necessarily the same. By
the value of its counter, each terminal decides its color of Light i. When Light i is
0, ri can make robot(ri) execute LOOK and COMPUTE (i.e., ri enters the CS).
Only immediately after all values of Light of ri’s closed neighbors become not 0,
meaning none is planning to make its robot execute LOOK and COMPUTE
in the next (long) global pulse, ri can make robot(ri) execute MOVE (i.e., no
closed neighbors enter the CS and hence rendezvous is satisfied). Then, if the

1 Because the maximal number of neighboring terminals is typically much less than
the total number of terminals, the number of colors is typically much smaller than
the number of terminals. Moreover, when a global upper bound on the number of
neighbors is known and used, only two colors of light suffices (indicating whether
Clock value is 0 or not) for the entire operation of the algorithm.

132 S. Dolev et al.

visible graph changes, |N [i]| also changes. Thus, after a MOVE execution, ri
updates the color of Nlight i.

Reference

1. Dolev, S., Kamei, S., Katayama, Y., Ooshita, F., Wada, K.: Neighborhood mutual
remainder: Self-stabilizing implementation of look compute move. arXiv:1903.02843
(2019)

http://arxiv.org/abs/1903.02843

Reducing the Number of Messages
in Self-stabilizing Protocols

Anäıs Durand1(B) and Shay Kutten2

1 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
anais.durand@lip6.fr

2 Technion - Israel Institute of Technology, Haifa, Israel
kutten@ie.technion.ac.il

Abstract. Self-stabilizing algorithms recover from sever faults, such as
inconsistent initialization. Traditionally, when designing a self-stabilizing
message-passing algorithm, the main goal was to reduce the time until
stabilization. The message cost was neglected. In this work, we strive
to reduce the number of messages sent on the average per time period.
As a tool, we present a stabilizing module that can message-efficiently
determine when a task (from a wide family of tasks) is terminated. False
positive detection is possible, but only when faults occurred. This module
can then be used in the transformation of non self-stabilizing algorithms
into self-stabilizing ones.

Keywords: Fault-tolerance · Self-stabilization · Message complexity ·
Quiescence detection · Termination detection

1 Introduction

In 1974, Dijkstra [11] introduced the self-stabilization as a property of distributed
algorithms that withstand sever faults. If a self-stabilizing system is led by faults
into any incorrect global state, it eventually recovers a correct behavior. For
example, the token circulation algorithms proposed in [11] can recover from an
arbitrary initial configuration where several processes hold a token instead of
only one. After recovery, exactly one token remains. Self-stabilizing protocols
for various problems have been devised: leader election, synchronization, etc.
However, when designing a self-stabilizing algorithm, the message complexity is
traditionally neglected and the designers only aim at reducing the stabilization
time, i.e., the time before recovering a correct behavior. This happened prob-
ably because a self-stabilizing message-passing algorithm cannot stop. It needs
to continuously send messages in order to check whether faults occurred and
recovery is needed.

In particular, multiple transformers that convert a non self-stabilizing algo-
rithm A into a self-stabilizing one have been designed [1,3–5]. Most of those

This study has been partially supported by the anr project Estate (ANR-16-CE25-
0009).

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 133–148, 2019.
https://doi.org/10.1007/978-3-030-34992-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_12

134 A. Durand and S. Kutten

transformers work roughly as follows. First, A is executed. Then, once the exe-
cution of A terminates, a local checking algorithm is executed (called a “local
detection” algorithm [1] or the local verifier of a Proof Labeling Scheme [19]).
This checking detects when the state is illegal (because a fault occurred). For
example, if A is an algorithm to construct a routing tree of shortest paths (SPT),
the verifier checks that the state of every node (but the root) includes a par-
ent pointer, and that the collection of parent pointers forms a tree of shortest
paths. If a fault is actually detected, a self-stabilizing reset algorithm, e.g., [2],
is executed in order to bring all the nodes to a legal initial state of A. Then, the
process starts again, i.e., A is executed, termination detected, etc.1

In most transformers, being able to detect termination is necessary in order to
know when the verifier should be activated. Otherwise, if the verification is done
before the output is computed, a fault would be signaled. For example, before
algorithm A of the above example terminates, the SPT is not yet computed
so the verifier may interpret that as a fault. The above transformers assume a
synchronous network to detect that enough time has passed so A must have
terminated. However, we do not want such an assumption. Alternatively [18],
such transformers can use a self-stabilizing synchronizer [2,6]. Unfortunately, a
self-stabilizing synchronizer is very costly in number of exchanged messages. It
uses Ω(m) messages per round (where m is the number of edges). For example,
if A’s time complexity is Ω(n), its self-stabilizing version (using such a trans-
former), would need Ω(nm) messages till stabilization (and would continue using
Ω(m) messages forever). An earlier transformer uses even more messages [17].
(It assumed a self stabilizing leader election, which was then provided by [1]).

In this work, we present a method for reducing the number of messages sent
on the average per time period (compared to using synchronizers), at least for
the termination detection of a wide class of tasks called diffusing computations
[12] (e.g., DFS, broadcast and echo, two-phase commit, token circulation). In
a diffusing computation, only a single process, the initiator, can spontaneously
send a message to one or more of its neighbors and only once. Whenever receiving
a message, any process can send messages to its neighbors. Indeed, we propose
a snap-stabilizing2 quiescence detection algorithm tailored to detect when the
execution of A is terminated by proposing a termination detection method more
message-efficient than a self-stabilizing synchronizer. Note that both detection
methods may have a one sided error. That is, if faults occurred, the detector may
detect termination even though A has not terminated; such a false detection is
still useful for a transformer, since triggering reset to rerun A would be the right
thing to do in the case faults occurred.

Another component is needed for the transformer. If the execution of A starts
in an arbitrary configuration because of faults, it may never terminate since
A is not self-stabilizing. Thus, the transformer needs a mechanism to enforce

1 A proof labeling scheme has to be designed especially for A, and some changes to A
may be needed in order to generate the specific “label” for the proof labeling scheme.

2 A snap-stabilizing [7] algorithm is a self-stabilizing algorithm that recovers immedi-
ately after faults occurred.

Reducing the Number of Messages in Self-stabilizing Protocols 135

A
Termination
enforcement

Termination
detection

Reset
error

Local
checking

termination
error

ok

Fig. 1. Schematic overview of the proposed transformer.

termination. We can use a very simple enforcer as follows. Assume that an upper
bound x on the number of messages that a node sends in A when there is no
fault is known. For example, in broadcast and echo, the number of messages each
node sends is bounded by twice the number of its neighbors. To implement the
enforcer, each node just refuses to send more than x messages. Figure 1 proposes
a schematic overview of the transformer.

Quiescence Detection. Quiescence [8] is a global property of distributed systems.
A distributed system is quiet when the communication channels are empty and
a local indicator of stability holds at every process. Termination is an example
of quiescence property. Detecting quiescence is a known fundamental problem
in distributed computing. For example, in addition to its usefulness in the self-
stabilizing transformer, detecting the termination of a task allows the system to
know the computed result is ready for output. Moreover, termination detection
simplifies the design of a complex task. The task is broken into modules, such
that some module m2 must wait until some other module m1 terminates. It
is easier to design a terminating m1, and then couple it with a termination
detection protocol [15].

Since the seminal works of Dijkstra and Scholten [12] and Francez [14] on
termination detection in distributed systems, the quiescence detection and its
sub-problems have been extensively studied. For a survey, see [21]. Two main
kinds of quiescence detection algorithms can be distinguished. Ongoing detec-
tion algorithms monitor the execution since its beginning and eventually detects
quiescence when it is reached, e.g., [12]. A different approach is the immediate
detection algorithms that answer whether the system has reached quiescence by
now or not, e.g., [14]. Ongoing quiescence detection is needed for the transformer,
and for most other applications. Ongoing detection can be designed using an
immediate detection algorithm by repeatedly executing the detection algorithm
until it actually detects quiescence, however this may be highly inefficient.

A self-stabilizing Propagation of Information and Feedback (PIF) algo-
rithm [10,20,22] can be used to design an immediate termination detection
algorithm, see [9]. Varghese [22] proposes a self-stabilizing PIF algorithm in the
message-passing model. Snap-stabilizing PIF algorithms are proposed in [10,20].
Such an application would have high communication and memory complexity
even without the need to convert this farther to an ongoing detection.

Contributions. First, we propose a new measure for message efficiency for asyn-
chronous networks, where we count the number of messages in executions that

136 A. Durand and S. Kutten

are “reasonable” synchronous, i.e., k-synchronous executions. Then, we pro-
pose a self-stabilizing and snap-stabilizing ongoing quiescence detection algo-
rithm Q for diffusing computations. Using Q, one can implement a message-
efficient self-stabilizing transformer. When Q monitors an algorithm A, it detects
quiescence or signals an error in O(tA + n) rounds, where tA is the round
complexity of A and n is the number of processes. Its memory complexity is
O(Δ log n) bits per process, where Δ is the maximum degree. If the execution
is k-synchronous, the message complexity of the quiescence detection algorithm
is O

(
k(m+n(tA +n)+MA)

)
, where m is the number communication links and

MA is the message-complexity of A.

Roadmap. In the next section, we detail the considered computational model
and the specification of the quiescence detection problem. Section 3 presents the
new snap-stabilizing quiescence detection algorithm Q and an analysis of its
correctness and complexities is given in Sect. 4.

2 Preliminaries

Consider connected distributed systems of n processes operating in the asyn-
chronous message-passing model. The topology of the system is represented by
a graph G = (V,E) where V is the set of processes and E is the set of com-
munication links. Each process can send messages to and receive messages from
a subset of other process called neighbors. Np denotes the set of neighbors of
process p, i.e., (p, q) ∈ E ⇔ q ∈ Np. Communications are bidirectional, i.e.,
p ∈ Nq ⇔ q ∈ Np. We assume reliable (no message is lost) and FIFO (messages
are received in the order they are sent) channels of bounded capacity c. Messages
are received in finite time. The size of a message is restricted to Θ(log n) bits.

Variables and Executions. Every process has a finite number of variables. Let us
denote p.x the variable x of process p. Assume a unique process is distinguished
as the initiator of the diffusing computation, i.e., every process p has a constant
p.init that evaluates to true at a unique process. The state of a process is the
vector of the values of its variables. The state of a channel is the list of messages
it contains. A configuration is a vector of states, one for every process or channel
in the network. Denote by γ(p).x the value of variable p.x in configuration γ.

Let �→ be a binary relation over configurations such that γ �→ γ′ is a step,
i.e., γ′ can be obtained from γ by the activation of one or more processes (some
messages are received and/or sent, some internal computation is done). It is
required that during a step, a process receives and sends at most one message. An
execution is a sequence of configurations Γ = γ0, γ1, . . . , γi, . . . , such that ∀i ≥ 0,
γi �→ γi+1. Configuration γ0 is the initial configuration of Γ . Infinitely often
during an execution, a process triggers a timeout and processes it to do some
internal computation and/or to send some messages. The diffusing computation
algorithms monitored by the quiescence detection algorithm do not use timeouts
but are only message-driven. In a stabilizing context, we consider executions

Reducing the Number of Messages in Self-stabilizing Protocols 137

starting from an arbitrary configuration that may be caused by faults, yet we
assume that no faults occur during the execution.

A round is a unit of complexity measure and is defined as follows. The first
round of an execution Γ = γ0, γ1, . . . , γi, . . . is the minimal prefix Γ ′ of Γ such
that every message in transit (i.e., inside the channels) in γ0 is received (and
processed) by its recipient and every process triggers (and processes) a timeout.
Let γj be the last configuration of Γ ′. The second round of Γ is the first round
of Γ ′′ and so on, where Γ ′′ is the suffix of Γ starting from γj .

Quiescence Detection. A (global) quiescent property is characterized by a local
quiescence-indicator Quiet(p) at each process p such that:

– Quiescence: If Quiet(p) holds, p does not send messages and, as long as p
does not receive a message, Quiet(p) continues to hold.

– Local Indicativity: The channels are empty and Quiet(p) holds at every pro-
cess p if and only if quiescence is reached.

For example, for the termination property, Quiet(p) holds when p is disabled.
A distributed algorithm is snap-stabilizing [7] w.r.t. some specification S if

any execution starting from an arbitrary configuration satisfies S. In this con-
text, we define the set of regular initial configurations of the quiescence detec-
tion algorithm, i.e., initial configurations where the detection algorithm is well
initialized. Notice that, since the initial configuration is arbitrary, it can be
non-regular. (The definition of regular initial configurations for the quiescence
detection algorithm is given in Definition 7.)

The goal of a quiescence detection algorithm Q is to detect when the execu-
tion of another algorithm A that Q monitors reaches quiescence.

Definition 1. Q is a snap-stabilizing quiescence detection algorithm for diffus-
ing computations if for every execution Γ where Q monitors an algorithm A
since the beginning of its execution the following holds:

– Eventual Detection: If the execution of A reaches quiescence, some process
eventually calls SigQuiet() or SigError().

– Soundness: If SigQuiet() is called, either the execution of A reached quies-
cence or was not a diffusing computation, or the initial configuration of Q
was not regular.

– Relevance: If the execution of A is a diffusing computation and the initial
configuration of Q is regular, no process ever calls SigError().

SigQuiet() and SigError() are two output signals. When such a signal is emit-
ted, it can be used to trigger an external response from the system, e.g., a reset
[1–3]. Notice that there is no hypothesis on A, i.e., we do not require A to be
self-stabilizing or even to compute a correct result.

138 A. Durand and S. Kutten

3 Quiescence Detection Algorithm Q
In this section, we propose a self-stabilizing ongoing quiescence detection algo-
rithm Q for diffusing computations written in the message-passing model. The
code of Q is presented in Algorithm 1.

Algorithm 1. Algorithm Q for Process p

1: upon PIF rcv(q, 〈pckt, dist〉) do
2: if ¬Error(p) then
3: p.status := Act ; Deliver(q, pckt) ;
4: if ¬p.init ∧ p.par = ⊥ then p.par := q ; p.dist := dist + 1 ;

5: if p.par = q then PIF send fbck(q, 〈true〉);
6: else PIF send fbck(q, 〈false〉);
7: upon PIF fbck(q, 〈isChild〉) do
8: if ¬Error(p) then
9: p.pckt[q] := ⊥ ;

10: if isChild then // q is a child of p
11: if p.status = Act ∧ (p.init ∨ p.par �= ⊥) then p.child[q] := true ;
12: else p.status := Err ; SigError() ;

13: else p.child[q] := false ;

14: upon rcv(q, 〈Par〉) do // q thinks it is the parent of p
15: if ¬Error(p) ∧ p.par �= q then send(q, 〈NoChild〉) ;

16: upon rcv(q, 〈Child, dist〉) do // q is a child of p
17: if ¬Error(p) then
18: if p.status = Act ∧ (p.init ∨ p.par �= ⊥) ∧ dist = p.dist + 1 then
19: p.child[q] := true;
20: else p.status := Err ; SigError() ;

21: upon rcv(q, 〈NoChild〉) do // q is not a child of p
22: if ¬Error(p) then p.child[q] := false;

23: upon timeout do
24: if Error(p) then p.status := Err ; SigError() ;
25: else if Passive(p) then
26: p.status := Pass ;
27: if p.par �= ⊥ then send(p.par, 〈NoChild〉) ; p.par := ⊥ ;
28: if p.init then SigQuiet() ;

29: else
30: foreach q ∈ Np : p.pckt[q] �= ⊥ do
31: p.status := Act ;
32: PIF send(q, 〈p.pckt[q], p.dist〉) ;

33: foreach q ∈ Np : p.child[q] = true do send(q, 〈Par〉) ;
34: if p.par �= ⊥ then send(p.par, 〈Child, p.dist〉) ;

Overview. The idea of Q adapts the algorithm of Dijkstra and Scholten [12] to
the stabilizing context using local checking [1,3]. To monitor an algorithm A
and detect its quiescence, Q handles the sending and reception of messages of
A, that we will call packets in order to avoid confusion. Q builds the tree of

Reducing the Number of Messages in Self-stabilizing Protocols 139

the execution defined as follows. The initiator of the diffusing computation is
the root of the tree. When a process p receives a packet pckt, it joins the tree
by choosing the sender of pckt as its parent by updating variable p.par. Each
process p has also a Boolean variable p.child[q] for each of neighbor q, stating
if q is a child of p. When a process p has no children and predicate Passive(p)
holds, p leaves the tree by notifying its parent and removing its parent pointer,
if p is not the initiator. Otherwise, it signals quiescence.

Algorithm 2. Macro of
Modification of Algorithm A
/* Replace every: */

1: send(q, pckt);
/* by: */

2: wait until p.pckt[q] = ⊥;
3: p.pckt[q] := pckt;

Handling the messages of A. In order
to allow Q to manage the packets of the
monitored algorithm A, we assume that
the functions of A to send and receive
packets are slightly altered as shown in
Algorithm 2. Every process p has a vari-
able p.pckt[q] for each neighbor q used to
communicate between A and Q. Indeed,
p.pckt[q] contains the packet of A that
p wants to send to q, or ⊥ if no packet
has to be sent. When p needs to send some packet pckt to q in A, p must wait
until the previous packet is processed, i.e., until Q sets p.pckt[q] to ⊥. On the
other hand, when a process p receives a packet pckt from q in Q, this packet is
delivered to A at p using Deliver(q, pckt), i.e., it triggers a rcv(q, pckt) in A.

In order to ensure that the packets of A are delivered and quiescence is not
signaled when some messages are in transit, Q uses a snap-stabilizing Propaga-
tion of Information with Feedback (PIF) algorithm [10], denoted here PIF . A
PIF allows a process to send a messages to other processes (propagation) and
to receive in return an acknowledgment from those other processes (feedback).
Let us use PIF as follows. To send packets to a neighbor q, a process p uses a
dedicated instance of PIF involving only p and q. Notice that one instance of
PIF between only two processes requires a constant number of bits per process
and so O(Δ) bits per process to send and receive packets from all neighbors
(where Δ is the maximum degree). Primitives of the PIF algorithm are prefixed
with PIF . When a message msg is sent from p to q through the PIF pro-
tocol (i.e., using PIF send(q,msg)), it triggers a PIF rcv(p,msg) at process
q. Then q sends a feedback to p using PIF send fbck(p, ack) that triggers a
PIF fbck(q, ack). Notice that the messages of Q used to do the detection are
not transmitted through PIF since no feedback on those message is required.

Those three protocols – A, Q, and PIF – are composed using a fair com-
position [13]. Figure 2 illustrates how the packets of A are handled and the
interactions between the three protocols.

Quiescence and Error Detection. To check whether the execution tree is correctly
built and to update the knowledge of a process about its children, every process
p regularly send control messages along the tree: 〈Par〉 to its children (Line 33)
and 〈Child, p.dist〉 to its parent (Line 34), where p.dist is the distance from p
to the root. In particular, if a process q receives a message 〈Child, dist〉 from

140 A. Durand and S. Kutten

A Q PIF PIF Q A
p q

p.pckt[q] := pckt
PIF send(q, pckt)

PIF rcv(p, pckt)
Deliver(p, pckt)

PIF send fbck(p, ack)

PIF fbck(q, ack)
p.pckt[q] := ⊥

Fig. 2. Schematic view of how the packets of A from process p to process q are handled.
The wavy arrows illustrate the communications between p and q through protocol PIF .

one of its children p and dist �= q.dist + 1, the distances in the tree are not well
computed (e.g., the tree contains a cycle) so q signals an error. If a process q
receives a message 〈Par〉 from a neighbor p that is not its parent, it sends back
a message 〈NoChild〉 and p can update its variable p.child[q].

In addition, process p locally checks the correctness of the tree, i.e., if pred-
icate LCorrect(p) holds. For example, p can verify that it has no children if it
is not attached to the tree. (Notice that the formal definition of LCorrect(p) is
given in Definition 3.) If Error(p) ≡ (¬LCorrect(p) ∨ p.status = Err

)
holds, p

signals an error (Lines 24). A process p which calls SigError() also sets p.status
to Err.

A process p leaves the tree when it becomes passive, i.e., the following pred-
icate Passive(p) holds.

Definition 2. Predicate Passive(p) holds if Quiet(p) holds,3 p has no packets to
send and no received packets to process (i.e., there is no incoming event PIF rcv
and ∀q ∈ Np, p.pckt[q] = ⊥), and p has no children (that it knows of), i.e.,
∀q ∈ Np,¬p.child[q].

4 Analysis

In this section, we show that Q is a snap-stabilizing ongoing quiescence detec-
tion algorithm and we analyze its complexities. Due to the lack of space, some
straightforward proofs are omitted. Notice that since the three algorithms A,
Q, and PIF are fairly composed, a process executes a round of one of these
algorithms every 3 rounds.

4.1 Properties of the PIF Protocol

First, let us state some useful property of the snap-stabilizing PIF protocol PIF
from [10].

3 Predicate Quiet(p) is defined in Sect. 2.

Reducing the Number of Messages in Self-stabilizing Protocols 141

Proposition 1. If a process p initiates a PIF to send a message m to its neigh-
bor q through the protocol PIF (i.e., using PIF send(q,m)), m is received by
q (PIF rcv(p,m)) in at most 8 rounds of PIF . Then, p receives the feedback
from q in at most 1 additional round of PIF (PIF fbck(q, fbck)). Moreover,
under such condition, p cannot receive a feedback from q before q received m.

Notice that it does not prevent situations where the arbitrary initial config-
uration generates faulty communications of the PIF protocol leading to some
process p receiving feedback without initiating any PIF. However, once p actually
initiated some PIF with a neighbor q, i.e., the call to function PIF send(q,m)
is terminated and PIF will manage the communications between p and q to
ensure the transmission of m, p cannot receive any feedback that is sent by q
before q receives m. Let tainted messages be messages of PIF present in the
arbitrary initial configuration or generated afterwards and that are not related
to a PIF actually initiated by some process.

Proposition 2. If there are no tainted messages in the channels (i.e., in transit
or in the incoming mailboxes of processes but not yet processed by their recipient),
a process p cannot receive any feedback from a neighbor q if p does not initiate
any PIF to send a packet to q.

Since one PIF lasts at most 9 rounds of PIF (by Proposition 1), we can
deduce the following corollary.

Corollary 1. After 9 × 3 = 27 rounds, there are no more tainted messages.

4.2 Execution Trees

Now, let us show that par-variables actually define trees. If the structure of the
tree is incorrect, process p locally detects the errors using predicate LCorrect(p)
defined as follows.

Definition 3. Predicate LCorrect(p) holds at some process p if all of the four
following conditions are satisfied:

C1(p). (p.status �= Err ∧ p.init) ⇒ (p.par = ⊥ ∧ p.dist = 0)
C2(p). (p.status �= Err ∧ ¬p.init ∧ p.par = ⊥) ⇒ (∀q ∈ Np : ¬p.child[q])
C3(p). (p.status �= Err ∧ ¬p.init ∧ p.par = ⊥) ⇒ (∀q ∈ Np : p.pckt[q] = ⊥)
C4(p). p.status = Pass ⇒ p.par = ⊥
Lemma 1. Let p ∈ V . If the execution of A is a diffusing computation, the
following two claims hold.

1. Let γ �→ γ′. If LCorrect(p) holds in γ then LCorrect(p) holds in γ′.
2. In at most 3 rounds, LCorrect(p) holds.

Now, let us prove that par-variables actually define trees. We define three
conditions on the relationship between p and its parent q ∈ Np.

142 A. Durand and S. Kutten

Definition 4. Let p ∈ V and q ∈ Np.

C5(p). (p.status �= Err ∧ q.status �= Err ∧ p.par = q) ⇒ (q.child[p] ∨ q.pckt[p] �= ⊥)

C6(p). (p.status �= Err ∧ q.status �= Err ∧ p.par = q) ⇒ (q.init ∨ q.par �= ⊥)
C7(p). (p.status �= Err ∧ q.status �= Err ∧ p.par = q) ⇒ p.dist = q.dist + 1

Lemma 2. Let p ∈ V and q ∈ Np.

1. Let γ �→ γ′ s.t. no tainted messages are in the channels. If C5(p, q), C6(p, q),
and C7(p, q) hold in γ then C5(p, q), C6(p, q), and C7(p, q) hold in γ′.

2. In at most 33 rounds, C5(p, q), C6(p, q), and C7(p, q) hold.

Definition 5. The execution graph Gex = (Vex, Eex) is the subgraph of non-
error processes induced by par-variables, i.e., Vex = {p ∈ V : p.status �= Err}
and Eex = {(p, q) ∈ E : p.par = q ∧ p, q ∈ Vex}.

From Lemmas 1 and 2, one can deduce the following corollary.

Corollary 2. In at most 33 rounds, Gex is a forest.

4.3 Detection of Quiescence

In this subsection, we show that Q fulfills the three properties of quiescence
detection: eventual detection (Theorem 1), soundness (Theorem 2), and relevance
(Theorem 3). Let γ0 be the initial configuration and let γ0(A) be the projection
of γ0 on the variables and messages of A.

Theorem 1 (Eventual Detection). If an execution of A starting from γ0(A)
reaches quiescence, then a process calls SigError() or SigQuiet() in O(tA + n)
rounds, where n is the number of processes and tA is the maximum number of
rounds for A to reach quiescence from γ0(A).

Proof. First, notice that if the execution is not a diffusing computation, i.e., if
some process p that is not the initiator of A spontaneously requires the sending
of some packet of A in Q (i.e., p.pckt[q] becomes different than ⊥ with q ∈ Np),
p signals an Err (see Line 24). If Q signals an error, we are done. Now, assume
that SigError() is never called.

Since every packet of A is eventually delivered through PIF and thanks
to the fair composition, Q does not block the execution of A. Let γ be the
first configuration after which Gex is a forest (see Corollary 2) and A reached
quiescence, i.e., at every process p, Quiet(p) holds and p does not require the
sending of a packet of A (∀q ∈ Np, p.pckt[q] = ⊥).

When some process p requires the sending of a packet in A to some neighbor
q, i.e., p.pckt[q] �= ⊥, p initiates a PIF (Line 32) in at most 3 rounds. The
PIF lasts 27 rounds (Proposition 1) before p sets p.pckt[q] to ⊥ and allows the
sending of the next packet of A. Thus, in at most 30tA rounds, every packet of
A has been delivered. So γ is reached in at most 33tA + 27 rounds. Notice that

Reducing the Number of Messages in Self-stabilizing Protocols 143

no process has status Err or it would have signaled an error in the meantime
(Lines 24).

Now, let us show that the height of the trees decreases in at most 12 rounds
and that eventually every process has status Pass. First, since ∀p ∈ V , ∀q ∈ Np,
p.pckt[q] = ⊥, no PIF is initiated after γ. Hence, no process can get a PIF rcv
anymore. Let p be a leaf in Gex. By definition, ∀q ∈ Np, γ(q).par �= p. Since p
will never send a packet to q, q.par cannot become equal to p anymore. Now, let
us show that p.child[q] becomes false in finite time.

If γ(p).child[q] = true, p sends a message 〈Par〉 to q in at most 3 rounds
(Line 33). At most 3 rounds later, q receives this message (Line 14) and sends
back a message 〈NoChild〉 since q.par �= p (Line 15). When p receives this
message at most 3 rounds later (Line 16), it sets p.child[q] to false (Line 21).
Since q.par remains different than p afterwards, q can never send a feedback
containing 〈true〉 or a message 〈Child, ∗〉 to p. Thus, p never sets p.child[q] to
true again. Hence, in at most 9 rounds after γ, ∀q ∈ Np, p.child[q] = false
so Passive(p) continuously holds. In at most 3 additional rounds, p gets status
Pass and leaves the tree by setting p.par to ⊥ (Lines 25–28). So the height of
the tree that contained p in γ decreases in at most 12 rounds.

By repeating this argument, eventually every tree is composed of only one
process of status Pass. In particular, the initiator signals quiescence when it
gets status Pass (Line 28). Since the height of the trees is at most n − 1, the
initiator signals quiescence at most 12n rounds after γ. ��

Let us define a last property on p ∈ V and its neighbors q ∈ Np.

Definition 6. Let p ∈ V and q ∈ Np.

C8(p). p.status = Pass ∧ q.status �= Err ⇒ q.par �= p

Lemma 3. Let p ∈ V and q ∈ Np.

1. Let γ �→ γ′ s.t. no tainted messages are in the channels. If C5(p, q) and
C8(p, q) hold in γ then C8(p, q) holds in γ′.

2. In at most 33 rounds, C8(p, q) holds.

Proof.

1. Let γ �→ γ′ s.t. there is no tainted messages in the channels, and C5(p, q)
and C8(p, q) hold in γ. A process with status Err cannot change it. Assume
γ′(p).status = Pass and γ′(q).status �= Err.
(a) If γ(p).status = Pass then, by C8, γ(q).par �= p. Assume by contradiction

that q sets q.par to p during γ �→ γ′, this means that it receives a packet
pckt from p (Line 4). However, when p initiates the PIF to send pckt
(Line 32), p.pckt[q] �= ⊥ and p.status = Act. Moreover, p cannot get
status Pass without receiving a feedback from q, which must happen
after γ �→ γ′ in which pckt is assumed to be received by q (Proposition 2),
a contradiction. Hence γ′(q).par �= p.

144 A. Durand and S. Kutten

(b) If p gets status Pass during γ �→ γ′, γ(p).pckt[q] = ⊥ and γ(p).child[q] =
false. Thus, by the contrapositive of C5(p, q), γ(q).par �= p. Similarly to
case 1a, q cannot set q.par to p.

2. Let γT be the first configuration after 27 rounds. By Corollary 1, no tainted
messages are in the channels. If γT (p).status = Pass but γT (q).par = p then
q sends a message 〈Child, ∗〉 to p in at most 3 rounds (Line 34). When p
receives this message at most 3 rounds later, it gets status Err (Line 20). ��

Definition 7. An initial configuration γ0 is regular if:

R1 ∀p ∈ V, γ0(p).init ⇒ (γ0(p).dist = 0 ∧ γ0(p).par = ⊥)
R2 ∀p ∈ V, ¬γ0(p).init ⇒ (γ0(p).par = ⊥ ∧ ∀q ∈ Np,¬γ0(p).child[q])
R3 ∀p ∈ V, γ0(p).status = Pass ∧ ∀q ∈ Np, γ0(p).pckt[q] = ⊥
R4 There is no messages in the channels in γ0.

By Definition 7 and Lemmas 1, 2, and 3, we have the following corollary.

Corollary 3. In any configuration γ of an execution starting from a regular
initial configuration γ0 such that every execution of A starting from γ0(A) is
a diffusing computation, ∀p ∈ V , LCorrect(p) holds and Gex is a forest in γ.
Moreover, ∀p ∈ V , ∀q ∈ Np, C5(p, q), C6(p, q), C7(p, q), and C8(p, q) hold in γ.

Theorem 2 (Soundness). If SigQuiet() is called, either the execution of A
actually reached quiescence or was not a diffusing computation, or the initial
configuration of Q was not regular.

Proof. We prove this theorem by the contrapositive. Assume the execution of A
never reaches quiescence (i.e., there is always some enabled process in A or a
process that needs to send or receive a packet of Q) and is a diffusing computa-
tion, and the initial configuration of Q is regular. Assume by contradiction that
Q signals quiescence.

By hypothesis, quiescence is signaled before any error signal. Moreover, recall
that a process gets status Err before signaling an error and the initial status
of every process is Pass. Hence no process ever gets status Err. Let r be the
only initiator and thus the process that signaled quiescence. Let γi �→ γi+1 be
the step where r calls SigQuiet() (Line 28). Thus, Passive(r) holds in γi. Since
the execution of A has not reached quiescence, there are three cases:

1. ∃p ∈ V s.t. ¬Quiet(p) holds in γi. Thus, ¬Passive(p) holds in γi.
2. A packet of A is required to be sent, i.e., ∃p ∈ V , ∃q ∈ Np, s.t. γi(p).pckt[q] �=

⊥. Thus, ¬Passive(p) holds in γi.
3. A PIF has been initiated by some process p to send a packet pckt to some

neighbor q, yet q did not received pckt yet. In this latter case, when p initiated
the PIF (Line 32), p.pckt[q] = pckt �= ⊥. Moreover, p cannot set p.pckt to ⊥
until p receives a feedback from q. However, q cannot send such a feedback
before receiving pckt. Thus, γi(p).pckt[q] �= ⊥ and ¬Passive(p) holds in γi.

Reducing the Number of Messages in Self-stabilizing Protocols 145

In those three cases, ∃p ∈ V s.t. ¬Passive(p) holds in γi. Notice that p �= r.
The initial configuration is regular, ¬Passive(p) holds in γi, and p is not

the initiator. Thus, p received a first packet from some neighbor x (Line 1) at
some point in the execution. Again, since the initial configuration is regular, p
set p.par to x and got status Act. Consider the last time p changes its status
from Pass to Act (say in γj �→ γj+1) before γi, i.e., j < i, γj(p).status = Pass,
and ∀j′ ∈ {j + 1, . . . , i}, γj′(p).status = Act. Again, in order to get status Act,
p had received a packet from some neighbor y (Line 1) in γj �→ γj+1. Hence,
γj+1(p).par = y. Process p cannot change the value of p.par after γj+1 without
getting status Pass (Line 27). Hence, γi(p).par = y �= ⊥.

By Corollary 3, Property C6, and since Gex is a forest, there is a sequence
of distinct processes seq = p0, p1, . . . , pk, 0 < k ≥ n, such that p0 = p, ∀i ∈
{0, . . . , k − 1}, γ(pi).par = pi+1, and pk = r. Now, by recursively applying
C5(pi, pi+1) for i ∈ {0, . . . , k−1}, we have γ(pi+1).pckt[pi] �= ⊥∨γ(pi+1).child[pi].
Thus, ¬Passive(pi+1) holds in γi. In particular, ¬Passive(r) holds in γi, a
contradiction. ��
Theorem 3 (Relevance). If the initial configuration of Q is regular and the
execution of A is a diffusing computation, no process ever calls SigError().

Proof. Let p ∈ V . By Corollary 3, LCorrect(p) holds throughout the execution
so p cannot call SigError() executing Lines 24 without already being in status
Err. Initially, p.status �= Err since the initial configuration is regular. Except
by executing Lines 24, p can get status Err in two cases.

1. If p gets status Err and calls SigError() executing Line 12, it has just
received a feedback fbck containing 〈true〉 from some q ∈ Np while p.status =
Pass or ¬p.init∧ p.par = ⊥. When q sent fbck (say in γ �→ γ′), q.par = p. By
Corollary 3, C5(q, p), C6(q, p), and the contrapositive of C8(q, p), γ(p).status =
Act, γ(p).pckt[q] �= ⊥∨γ(p).child[q], and γ(p).init∨γ(p).par �= ⊥. So p cannot
get status Pass or change the value of its par-variable before receiving fbck
(Proposition 2), a contradiction.

2. If gets status Err and p calls SigError() executing Line 20, it received
some message msg = 〈Child, dist〉 from a neighbor q ∈ Np while (a)
p.status = Pass, or (b) ¬p.init∧ p.par = ⊥, or (c) dist �= p.dist + 1. When q
sent msg (say in γ �→ γ′), q.par = p and q.dist = dist. Thus, situations (a) and
(b) are similar to case 1. Now, consider situation (c). By Corollary 3, C5(q, p),
C7(q, p), and the contrapositive of C8(q, p), we have γ(p).status = Act,
γ(p).pckt[q] �= ⊥ ∨ γ(p).child[q], and γ(p).dist = γ(q).dist + 1 = dist + 1.
Process p cannot change its distance without getting status Pass and so,
without q.par becoming different than p. If q.par remains equal to p in between
γ and the reception of m by p, p never changes its distance, a contradiction.
Otherwise, q.par becomes different than p at some point between γ and the
reception of m by p. To allow p to get status Pass, q must send a message
msg′ = 〈NoChild〉 or a feedback fbck containing 〈false〉 to p after chang-
ing its par-variable, i.e., after sending msg. Moreover, p must receive msg′ or
fbck before msg even if the channels are FIFO, a contradiction. ��

146 A. Durand and S. Kutten

4.4 Message Complexity

Finally, we study the message complexity of Q in k-synchronous execution. We
adapt the definition of k-synchronous executions from [16] to message-passing
systems.

Definition 8. An execution Γ is k-synchronous if the following conditions hold.

(a). The ratio of speed between the slowest and fastest messages is at most k.
More precisely, let γsm �→ γsm+1 and γrm �→ γrm+1 be the steps during
which the message m is sent and received, respectively. For every pair of
messages m,m′ sent during Γ , (rm − sm) ≤ k(rm′ − sm′).

(b). The ratio of speed between the slowest and fastest processes is at most k.
More precisely, for any Γ0, Γ1, Γ

′ such that Γ = Γ0Γ1Γ
′, and for any two

processes p and q, if q triggers at least k + 1 timeout during Γ1 then p
triggers at least one timeout during Γ1.

Let Γ be an execution of the composition of Q and A.

Theorem 4 (Message Complexity). If Γ is k-synchronous of and any exe-
cution of A starting from γ0(A) reaches quiescence, then O

(
k(m + n(tA + n) +

MA)
)

messages are sent before some process calls SigQuiet() or SigError(),
where n is the number of processes, m is the number of edges, tA (respectively,
MA) is the maximum number of rounds (respectively, of exchanged messages in
A) for A to reach quiescence from γ0(A).

Proof. Let p be a process. Γ is k-synchronous and a process sends at most one
message per neighbor at each activation, so p sends at most k messages per
neighbor during one round. By Corollary 2, Gex becomes a forest in at most 33
rounds. During these 33 rounds, up to O(k m) messages are exchanged. The
remaining of the computation before a process signals quiescence or an error
lasts O(tA+n) rounds. During this part of the computation, messages 〈Child, ∗〉
and 〈Par〉 are only exchanged along the trees, i.e., a total of O(k(n − 1)(tA +
n)) messages. Moreover, PIF requires 27 rounds to transmit a packet and the
corresponding feedback (Proposition 1), i.e., a total of O(kMA) messages. Hence
O

(
k(m + (n − 1)(tA + n) + MA)

)
messages are exchanged before a signal. ��

Remark 1. Notice that, if the initial configuration of Q is regular and the exe-
cution of A is a diffusing computation, Gex is always a forest. Thus, in this case,
O

(
k(n(tA + n) + MA)

)
messages are exchanged before a signal.

5 Discussion and Future Work

We proposed the first self-stabilizing and snap-stabilizing ongoing quiescence
detection algorithm Q. This algorithm works for diffusing computations. One
can use Q to detect termination before safely re-starting a task or starting a
new one, for example to transform a non self-stabilizing algorithm into a self-
stabilizing one. This transformer is more message-efficient than the Awerbuch

Reducing the Number of Messages in Self-stabilizing Protocols 147

and Varghese transformation. For example, let us consider a non self-stabilizing
algorithm A whose time and message complexity are x and y, respectively. If no
faults hit the system (in particular, the initial configuration of Q is regular), the
transformer using Q requires O(k(n x + n2 + y)) messages before detecting the
termination of A, if the execution is k-synchronous (where k is a constant). In a
similar context, the transformer of Awerbuch and Varghese uses m messages per
time unit for the synchronizer. Hence, Ω

(
k m x + y

)
messages are exchanged.

In addition to the improved performance, the resulting transformer has other
advantages over the method with a synchronizer. Indeed, it does not require to
know the time complexity of A contrary to the methods that use this bound
to know when the execution of A is terminated. Moreover, the time complexity
of A is an upper bound on the time before A terminates, but an execution of
A can actually terminate (far) earlier. In this case, our method stabilizes faster
since it detects termination when it happens. These advantages hold only if
the execution of A terminates. Otherwise, it requires a termination enforcement
method like the one proposed above.

One natural open problem is the generalization of this quiescence detection
algorithm to non-diffusing computations. Another open problem would be to
design more general and more efficient methods for termination enforcement.

References

1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application
to self-stabilization. Theor. Comput. Sci. 186(1–2), 199–229 (1997)

2. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time opti-
mal self-stabilizing synchronization. In: STOC 1993, pp. 652–661 (1993)

3. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction (extended abstract). In: FOCS 1991, pp. 268–277 (1991)

4. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local
checking and global reset. In: WDAG 1994, pp. 326–339 (1994)

5. Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. In: FOCS 1991, pp. 258–267 (1991)

6. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In:
PODC 2004, pp. 150–159 (2004)

7. Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in
tree networks. In: WSS 1999, pp. 78–85 (1999)

8. Chandy, K.M., Misra, J.: An example of stepwise refinement of distributed pro-
grams: quiescence detection. ACM TOPLAS 8(3), 326–343 (1986)

9. Cournier, A., Datta, A.K., Devismes, S., Petit, F., Villain, V.: The expressive power
of snap-stabilization. Theor. Comput. Sci. 626, 40–66 (2016)

10. Delaët, S., Devismes, S., Nesterenko, M., Tixeuil, S.: Snap-stabilization in message-
passing systems. J. Parallel Distrib. Comput. 70(12), 1220–1230 (2010)

11. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

12. Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations.
Inf. Process. Lett. 11(1), 1–4 (1980)

13. Dolev, S.: Self-stabilization. MIT press, Cambridge (2000)

148 A. Durand and S. Kutten

14. Francez, N.: Distributed termination. ACM TOPLAS 2(1), 42–55 (1980)
15. Francez, N., Rodeh, M., Sintzoff, M.: Distributed termination with interval asser-

tions. In: Dı́az, J., Ramos, I. (eds.) ICFPC 1981. LNCS, vol. 107, pp. 280–291.
Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10699-5 105

16. Hendler, D., Kutten, S.: Bounded-wait combining: constructing robust and high-
throughput shared objects. Distrib. Comput. 21(6), 405–431 (2009)

17. Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Dis-
trib. Comput. 7(1), 17–26 (1993)

18. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self-stabilizing verifica-
tion, computation, and fault detection of an MST. In: PODC 2011, pp. 311–320
(2011)

19. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

20. Levé, F., Mohamed, K., Villain, V.: Snap-stabilizing PIF on arbitrary connected
networks in message passing model. In: SSS 2016, pp. 281–297 (2016)

21. Matocha, J., Camp, T.: A taxonomy of distributed termination detection algo-
rithms. J. Syst. Softw. 43(3), 207–221 (1998)

22. Varghese, G.: Self-stabilization by counter flushing. SIAM J. Comput. 30(2), 486–
510 (2000)

https://doi.org/10.1007/3-540-10699-5_105

A Loosely Self-stabilizing Protocol
for Randomized Congestion Control

with Logarithmic Memory

Michael Feldmann(B), Thorsten Götte, and Christian Scheideler

Department of Computer Science, Paderborn University, Paderborn, Germany
{michael.feldmann,thorsten.goette,scheideler}@upb.de

Abstract. We consider congestion control in peer-to-peer distributed
systems. The problem can be reduced to the following scenario: Con-
sider a set V of n peers (called clients in this paper) that want to send
messages to a fixed common peer (called server in this paper). We assume
that each client v ∈ V sends a message with probability p(v) ∈ [0, 1) and
the server has a capacity of σ ∈ N, i.e., it can receive at most σ messages
per round and excess messages are dropped. The server can modify these
probabilities when clients send messages. Ideally, we wish to converge to
a state with

∑
p(v) = σ and p(v) = p(w) for all v, w ∈ V .

We propose a loosely self-stabilizing protocol with a slightly relaxed
legitimate state. Our protocol lets the system converge from any initial
state to a state where

∑
p(v) ∈ [σ ± ε] and |p(v) − p(w)| ∈ O(1

n
). This

property is then maintained for Ω(nc) rounds in expectation. In particu-
lar, the initial client probabilities and server variables are not necessarily
well-defined, i.e., they may have arbitrary values.

Our protocol uses only O(W + log n) bits of memory where W is
length of node identifiers, making it very lightweight. Finally we state a
lower bound on the convergence time an see that our protocol performs
asymptotically optimal (up to some polylogarithmic factor) in certain
cases.

1 Introduction

Consider a set of n nodes (called clients in this paper) that want to continu-
ously send messages to a fixed node (called server) with a certain probability in
each round. The server is not aware of its connections and has limited capabil-
ities with regard to the number of messages it is able to receive in each round
and its internal memory. The task for the server is to use a congestion control
protocol to modify the client probabilities such that the server receives only a
constant amount of messages in each round (on expectation). As client proba-
bilities may be arbitrary at the beginning, we further require the protocol to be

This work was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Center On-The-Fly Computing (GZ: SFB 901/3) under the
project number 160364472.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 149–164, 2019.
https://doi.org/10.1007/978-3-030-34992-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_13

150 M. Feldmann et al.

self-stabilizing, i.e., it should be able to reach its goal starting from any arbitrary
initial state. Self-stabilization comes with the advantage that the protocol is able
to recover from transient faults like message loss or blackout of processes auto-
matically. As the system grows larger, these kinds of faults occur more often,
which makes self-stabilization as a concept very desirable.

At first glance, one may think that this setting only applies to client/server-
architectures. However, we believe that solving this problem is quite important
for distributed systems where nodes constantly have to communicate with their
neighbors. Also there are distributed systems where nodes are not aware of their
incoming connections, e.g. in rooted trees, random graphs [19] or linearized de
Bruijn networks [20]. On these networks one is able to effectively perform many
important techniques relevant to distributed computing such as aggregation,
sampling, or broadcast which are important for applications like distributed
data structures (e.g. hash tables [17], queues [11] or heaps [10]). Also nodes with
limited capabilities can be found in internet of things applications like wireless
networks [23].

In this paper we present a loosely self-stabilizing protocol for congestion con-
trol. In contrast to classical self-stabilization, loose self-stabilization relaxes the
closure property. Our protocol guarantees that the server only receives a constant
amount of messages on expectation in each round while only using a logarithmic
amount of bits for its internal protocol variables for a period of O(nc) rounds
(and not forever as classical self-stabilization would require). Furthermore we
can guarantee fairness, i.e., the probabilities of all clients are the same (up to
some small constant deviation). By slightly weakening the definition for a legit-
imate state, we are able to analyze the runtime of our protocol and show that
it is able to quickly reach a state that is already practical for both, the clients
and the server.

2 Model and Definitions

2.1 System Model

Network Model. Since we only consider communication of nodes with their
direct neighborhood in the overlay network, we consider the following directed
graph G = (V ∪ {s}, E). V = {v1, . . . , vn} represents the set of n clients and
s represents the server. We assume n to be fixed. The set of edges is defined
by E = {(v, s) | v ∈ V }, i.e., all clients know the server, but the server does
not know which client is connected to it. More particularly, the server does not
know the value n. All clients and the server can be identified via their unique
reference, represented by values vi.id ∈ N for all i ∈ {1, . . . , n} and s.id ∈ N

respectively. We assume that identifiers can be stored by at most W bits, where
W ≥ log n is known to the server. If a node v knows the reference of another
node w, then v is allowed to send messages to w.

Each client v ∈ V maintains a probability p(v) ∈ (0, p̂], where p̂ ≤ 1 is a
protocol-specific constant. Denote by pmin ∈ (0, p̂] the minimum client proba-
bility, i.e., pmin = minv∈V {p(v)} and denote the sum of all client probabilities

Loosely Self-stabilizing Congestion Control 151

by P , i.e., P =
∑n

v∈V p(v). We assume that the probability p(v) for a client v

cannot become smaller than 1/2b·W for some fixed constant b > 0, i.e., it can be
encoded by O(W) bits. This means that all probabilities are multiples of 1/2b·W .

Computational Model and Definition of a Round. We divide time into
synchronous rounds, where a single round consists of the following steps:

(i) Each client v tosses a biased coin that shows ‘heads’ with probability p(v).
If v’s coin shows ‘heads’, v sends a message m = (v.id, p(v)) to the server s.
Otherwise v stays idle for the rest of the round. We assume that the server
is only able to receive up to σ messages from clients per round for a fixed
constant σ ∈ Θ(1) that is known to the server. If more than σ clients decide
to send a message to the server in this step, then exactly σ of those messages
are determined uniformly at random to arrive at the server, while the other
ones are dropped.

(ii) The server makes some internal computation based on the messages it
received in the previous step.

(iii) For each message m = (v.id, p(v)) that the server received, it may send a
message m′ = (p(v)′) back to v.

(iv) Each client v ∈ V that received a message m = (p(v)′) in the previous step
sets p(v) to p(v)′.

A message sent by a client to the server in step (i) is denoted as a ping or
ping message and we may also just say that the client pings the server in this
case. We say that a client successfully pings the server (in round t) if it sends a
ping message to the server (in round t) that is actually being processed by the
server, i.e., that is not dropped. We may use pt(v) to refer to the probability
of client v in round t. Note that the server s is able to answer v in step (iii)
because v sent its reference v.id to s in step (i). Once the round is over, the
server forgets about v.id. Also observe that the server is not required to send an
answer to each message it received in (iii).

Last, the state St of the system before round t is defined by the assignment
of variables p(v) at each client v ∈ V and internal variables at the server. The
system transitions from St to St+1 by performing the steps (i) to (iv) mentioned
above.

2.2 Problem Statement

We wish to state a protocol that reaches a state with the following two conditions,
namely Busyness and Fairness. They are defined as follows:

Definition 1 (Busyness). Let L,R ∈ O(σ) be protocol-specific constants. We
say that the server is busy in some state S of the system if P ∈ [L,R] holds in
S. We say that a state is busy for short.

Definition 2 (Fairness). The system satisfies fairness in some state S, if
∑

v∈V

(
p(v) − P

n

)2 ≤ 1
nc holds in S for some constant c > 0. We say that a

state is fair for short.

152 M. Feldmann et al.

We believe these to be natural and reasonable safety properties given our problem
and model setup. With the first property we ensure that the server operates
close to its limits and is not under- or overutilized. Note that L,R ≥ 1 can
be chosen freely by the server, so it can adjust these values depending on its
computational power in practice. Note that this is not fully precise in a sense
that P does converge to some desired fixed value, but we can guarantee that P
will eventually converge to some value within the interval [L,R]. Moreover, the
notion of busyness prevents the trivial solution of letting all clients send with
probability 1. Fairness assures that all clients (roughly) send the same amount
of data to the server and every client will eventually send. This prevents the
trivial solution of letting σ clients send with probability 1 and all others with 0.

Note that in a distributed setting errors are the norm rather than the excep-
tion, which means that the probabilities of the clients and the variables can be
corrupted through malicious messages, crashes, and memory faults. Thus, we
are specifically interested in a self-stabilizing protocol that reaches a safe state
even if all probabilities and server variables are corrupted.

In the classical sense, a protocol is self-stabilizing w.r.t. a set of legitimate
states if it satisfies Convergence and Closure: Convergence means that the pro-
tocol is guaranteed to arrive at a legitimate state in a finite amount of time when
starting from an arbitrary initial state. Closure means that if the protocol is in
a legitimate state, it remains in legitimate states thereafter as the set of clients
does not change and no faults occur. However, our protocol will not meet these
strong requirements of classical self-stabilization due to the clients’ probabilistic
nature. To account for this, we will instead show that our protocol is loosely
self-stabilizing.

The notion of probalistic loose self-stabilization was introduced by Sudo et
al. in [21] to deal with probabilistic protocols that violate the Closure with very
small probability. Instead of a set of legitimate states that are never left, a loosely
self-stabilizing protocol maintains a safety condition for a sufficiently long time.
More precisely, a protocol is (α, β)-loose self-stabilizing, if it fulfills the following
two properties: First, it reaches a legitimate state after α rounds (in expectation)
starting from any possible initial state. Second, given that the execution starts
in a legitimate state, the protocol fulfills a safety condition for at least β rounds
(in expectation). That means for β consecutive rounds, all states fulfill a certain
condition if their execution started in a legitimate state. We call this the holding
time. To put it more formally, let S be the set of all possible system states and
L ⊂ S be the set of all legitimate states. Then the random variable C(s,L)
denotes the convergence time if the algorithm started in s ∈ S. Likewise, let L∗

the be set of all states that fulfill the safety condition, then H(�,L∗) denotes the
holding time given that we start in � ∈ L. Thus, for a (α, β)-loose self-stabilizing
protocol, it holds

max
s∈S

E [C(s,S)] ≤ α and min
�∈L

E [H(�,L∗)] ≥ β

Note that for an efficient protocol it should hold α << β, i.e, we quickly reach
a legitimate state and then stay safe for a long time.

Loosely Self-stabilizing Congestion Control 153

2.3 Technical Contributions

Our goal is to construct a self-stabilizing protocol for the server that converges
the system into a state where busyness (Definition 1) and fairness (Definition 2)
hold. In the following we discuss the most major obstacles that we have to
overcome when constructing a solution.

Dealing with Arbitrary Initial States. In initial states the variables at both
the clients and the server may contain arbitrary values. Particularly, each client
probability may initially be an arbitrary value out of (0, p̂]. Due to the restrictions
on the message size this may lead to P being as low as O(1/poly(n)) initially
which means that it may take a long time until the server receives the first ping
message. This means that our protocol needs to be designed in a way such that
for initially low values of P we make significant progress in reaching a legitimate
state once the probability of a client is modified.

Knowledge of Θ(log n). Our algorithm requires the server to estimate Θ(log n).
The problem of approximating Θ(log n) can be non-trivial when additionally
requiring a self-stabilizing solution for this, i.e., the server may think of any
value to be log n initially. Our loosely self-stabilizing solution for approximating
Θ(log n) at the server may be of independent interest.

2.4 Our Contribution

We propose a congestion control protocol that is loosely self-stabilizing. It con-
verges to a legitimate state that is busy and fair within Õ(c

(
p−1

min + n3)
)
1 rounds

starting from any initial state where clients may have arbitrary probabilities.
Then all following states are also busy and fair for at least another O(nc) rounds
in expectation. Here, c is a parameter and can be chosen depending on the
context. Note that even for small c the system stays stable long enough for prac-
tical purposes. Furthermore, the server uses only O(W +log n) bits in legitimate
states. This makes the protocol very lightweight and ideal for servers with strong
memory constraints, e.g., in sensor networks.

The rest of the paper is structured as follows: First, we review some related
work in Sect. 3. Then, we present our protocol in Sect. 4. Last, in Sect. 5 we
rigorously analyze our protocol and show that it is loosely self-stabilizing. Due to
space constraints, the full proofs are deferred to the full version of this paper [9].

3 Related Work

Congestion Control. There exists a wealth of literature on congestion control
in the internet. Classical approaches that have been considered are MIMD (Mul-
tiplicative Increase, Multiplicative Decrease [15]) and AIMD (Additive Increase,
Multiplicative Decrease [5]). Many other researchers studied congestion control
for the AIMD model, which resulted in various extensions of the original work,

1 We use Õ to hide polylogarithmic factors.

154 M. Feldmann et al.

see for example [6,16,18]. Although these protocols work for arbitrary initial
probabilities, their auxiliary variables are always assumed to be well-initialized.
In contrast, our protocol also tolerates completely arbitrary initial states includ-
ing auxiliary variables, making it truly self-stabilizing. Also, to the best of our
knowledge, prior congestion control protocols do not provide a rigorous theoret-
ical analysis on their convergence time.

Flow Control. Close to congestion control problems are flow control prob-
lems (see [12] for a survey). These protocols differ from our setting in the sense
that they operate on a continuous data stream, whereas we consider discrete
rounds where only small self-contained control-messages are exchanged between
the server and multiple clients, so flow control strategies are not applicable here.

Contention Resolution. Close but different to congestion control protocols is
the area of contention resolution in multiple access channels (see for example [1,
2,4] or [13] for a survey). A multiple access channel (MAC) is a medium shared
among all nodes through which they can send messages. In each round a node
may either send a message or sense the channel. Messages that have been sent in
the same round by two or more nodes collide and are not transmitted. By sensing
the channel a node gets informed whether the channel is idle (no message has
been sent), busy (a collision occurred) or it receives a message (in case there has
been exactly one message sent). Contention resolution differs from congestion
control in a sense that once two or more messages are sent in the same round
there already is a collision, whereas in congestion control multiple messages are
allowed to be processed by the receiver. Also the MAC allows clients to only
receive binary feedback, making it less powerful compared to our server.

Distributed Consensus and Load Balancing. Further related areas on a
technical level are distributed average consensus (see [14] for a survey) and (dis-
crete) load balancing (see [3,22] and the references therein). In both problems,
multiple agents try to find the arithmetic mean of a given set of initial values.
Our protocol tries the same in order to achieve fairness. However, we need to
deal with dynamically changing probabilities as the adaption of the nodes’ values
directly influences their sampling probabilities. In other settings the probabilities
may be arbitrary but are fixed in advance.

Self-stabilization. Self-stabilization was first proposed in [8]. Since inventing
self-stabilizing protocols can be quite difficult, people came up with relaxed
versions for the convergence property like probabilistic self-stabilization or weak-
stabilization [7]. The notion of loose-stabilization [21] that is used in this paper
relaxes the closure property instead of the convergence property.

4 Protocol Description

Intuitively our protocol works as follows: We constantly let the server count the
number of pings it received in each round for an interval of Δ rounds. Proba-
bilities of clients that ping are averaged in these rounds. Once an interval of Δ

Loosely Self-stabilizing Congestion Control 155

rounds ends, the server is able to precisely approximate P in case Δ ∈ Θ(log n)
and decide whether to either raise the probability of a client that has pinged in
that round (if P is too small), decrease the probability of a client (if P is too
large) or adjust the probabilities of clients by computing the average (if P lies
within a desired interval).

We describe the protocol in greater detail now starting with the introduction
of variables and constants. Afterwards we describe how the approximation for
Θ(log n) and P at the server works, followed by the description of the core
protocol.

4.1 Variables and Constants

Table 1 shows the variables and constants that are maintained by the server.

Table 1. Variables and constants used by our algorithm

ε > 0 A constant used for the approximation of P

L, R ∈ Θ(1) Constants for the left and right border of the desired interval
[L, R] to which P should converge. In order to guarantee that
eventually P ∈ [L, R], we require that |R − L| > p̂ + 2ε. Note
that L, R are chosen such that 1 ≤ L < R ≤ σ, i.e., on
expectation, the server receives at least L, but no more than R
messages in legitimate states

Δ ∈ Θ(log n) A variable indicating the interval of rounds in which the server
counts the number of incoming pings

δ ∈ [0, Δ] A counter that is incremented each round and reset to 0 once it
is equal to Δ

X ∈ N0 A counter that sums up the number of incoming pings within a
period of Δ rounds

Note that the constants L,R and ε are protocol-based constants, which means
they are chosen preemptively by the server and thus are fixed while the stabi-
lization process of the system is going on. On the other side the variables δ,Δ
and X may contain arbitrary values out of their domains in initial states.

4.2 Approximating Θ(log n) at the Server

In order to work properly, our protocol needs an approximation of Θ(log n). In
the following we sketch a protocol to obtain such an approximation given that
we have one server and n clients.

We let the server maintain a table of log log N columns where each column
i represents a value ci = 2i

√
N and a timestamp ti ≥ 0 (see Table 2). The

first column c0 represents the value N , which may be arbitrary large in initial
states. Therefore the table along with its timestamps may initially be completely

156 M. Feldmann et al.

Table 2. Table maintained at the server.

c0 = N c1 =
√

N c2 = 4
√

N . . . clog logN−1 = 2

t0 t1 t2 . . . tlog logN−1

arbitrary. The table is maintained as follows by the server: We map the identifiers
of the server and the clients to the interval [0, 1) via a uniform hash function
h : N → [0, 1). Whenever a client v with |h(s.id)−h(v.id)| ≤ 1

ci
successfully pings

the server, the server resets all timestamps ti, . . . , tlog log N−1 to 0. Aside from
this, each timestamp ti gets incremented by one in each round. Once the entry
ti for column ci gets larger than O(ci · polylog(ci)), all columns c0, . . . , ci are
deleted from the table and the value N is set to the column ci+1. On the other
side, once a client v pings for which |h(s.id)−h(v.id)| ≤ 1

c20
holds we update the

table by adding that many columns to the left until 1
c20

< |h(s.id)−h(v.id)| ≤ 1
c0

holds. The server always sets Δ = Θ(log c0) to approximate Θ(log n).
This protocol will run in parallel to anything described in the remainder of

this section.

4.3 Approximating P at the Server

At the end of an interval of rounds of size Δ, the server checks whether P is
(approximately) less than L, larger than R or within [L,R]. We use the operator
≺ to indicate the result of the approximation, for example if P is approximately
less than L we say P ≺ L and otherwise P
 L. In order to check whether
P ≺ L or P
 L, the server checks whether X/Δ < L holds. If that is the case
then the server decides on P ≺ L, otherwise it decides P
 L. By comparing
X/Δ to R the server can do the same to decide whether P ≺ R or P
 R holds.

4.4 Core Protocol

The server executes Algorithm 2 in each round after each client has decided
whether to ping the server or not (Algorithm 1, Line 3). Here v1, . . . , vk are the
clients that successfully pinged the server in round t.

Algorithm 1. Pseudocode executed at each client v in each round
1: Toss a coin that shows ’heads’ with probability p(v)
2: if Coin shows ’heads’ then
3: Send m = (v.id, p(v)) to s

4: if v received p′(v) from s then
5: p(v) ← p′(v)

Loosely Self-stabilizing Congestion Control 157

Algorithm 2. Pseudocode executed at the server in each round
1: Let v1, . . . , vk be the clients that successfully pinged the server in ascending order

of their probabilities, i.e., p(v1) ≤ . . . ≤ p(vk)
2: X ← X + k
3: δ ← (δ + 1) mod Δ
4: if δ = 0 then
5: if P ≺ L then
6: Send p̂ to v1 	 Increase minimum probability
7: else if P � R and k ≥ 2 then
8: Send p(vk)/(1 + 1/σ) to vk 	 Decrease maximum probability

9: X ← 0
10: else
11: for all i ∈ {1, . . . , k} do
12: Send 	∑k

i=1 p(vi)/k)
 + ri to vi 	 Average probailities

The protocol given by Algorithm2 works as follows: At the beginning of
each round we let clients ping the server with their corresponding probabilities.
Assume that k clients v1, . . . , vk pinged the server ordered by their probabilities,
i.e., p(v1) ≤ . . . ≤ p(vk). The server first increments X by k (Line 2) and then
sets δ to (δ + 1) mod Δ (Line 3). In case δ �= 0, the server sets each probability
p ∈ {p(v1), . . . , p(vk)} to the average of these probabilities (Line 12). In a round
where δ = 0 holds the server instead approximates P based on X and Δ. Using
the approximation for P , the server checks whether P ≺ L, i.e., whether P
is currently too low. If that is the case, then the server raises the minimum
probability p(v1) to p̂ (Line 6). On the other hand, if P is too large (P
 R)
and at least k ≥ 2 clients pinged, the server sets the maximum probability p(vk)
to p(vk)/(1 + 1/σ) (Line 8). Once this has been done, the server resets X to 0
(Line 9).

Notice that parts of our algorithm (specifically the way we choose client
probabilities to be decreased) are related to the well-known two-choice process
where we (greedily) choose the process with minimum probability to have its
probability reduced (Line 8). As it turns out in the analysis, we can make use of
this by modelling our setting as a balls-and-bins process for which we can apply
a result from [22].

Due to messages being restricted to only O(W) bits it may happen that we
lose accuracy on the overall sum of probabilities P if we were to simply compute
the averages of client probabilities and round it up or down. To overcome this
problem, we use the following rounding approach when computing average client
probabilities (Line 12): In a round where k clients ping the server and the average
of these clients has to be computed, we initially set the probabilities to the
average rounded down on W bits, i.e., the least significant bit is set to 0. As the
real average value leaves some residue value of the form r · 1

2b·W for an integer
r < k, we set the least significant bit of r clients (chosen randomly among the
vi’s) to 1. This is indicated by the values ri ∈ {0, 1

2b·W }. By doing so we ensure
that P does not get modified when only computing averages and all the client

158 M. Feldmann et al.

probabilities remain multiples of 1
2b·W . For the analysis we assume for simplicity

that we compute the average value without rounding and only consider the
rounding approach when it actually influences a proof.

5 Analysis

We analyze our algorithm in this section and show that it is loosely self-
stabilizing. Therefore, we need to give a formal definition for a legitimate state
and a safety condition. Obviously, we want our system to be in a busy and fair
state, but moreover, in order to guarantee a long holding time, we need a correct
estimate of Θ(log n). Therefore, we introduce the notion of stability.

Definition 3 (Stability). A state s ∈ S fulfills the stability property, if c0, the
biggest entry in the table, is in Ω(n

1
2) and all ti are 0. We call such a state s

stable for short.

As we will see, this ensures that the protocol correctly estimates Θ(log n) for at
least Ω(nc) rounds in expectation.

Furthermore, we need to weaken the fairness property a bit to get more
practical results. This comes from the fact that the algorithm may erroneously
increase or decrease the probabilities, even if Δ ∈ Θ(log n). We wish to acknowl-
edge that our protocol does reach an arbitrarily fair state after O(poly(n)) rounds
and then stays that way for another O(poly(n)) rounds (both in expectation),
i.e., it would hold α ≈ β. We sketch this in the full version of the paper [9] and
focus here on the so-called weakly fair state as we deem it more practical. It is
defined as follows:

Definition 4 (Weakly Fairness). A state S of the system is a weaklyfair
state if ∀v ∈ V : p(v) ∈ Ω

(
P
n

)
.

Given this definition, we can now simply define the legitimate state. Over the
course of this chapter, we will show that the following holds:

Theorem 1. Let c be a big enough constant. Further, let L,R ∈ O(σ) and ε > 0
be protocol-specific constants. Then it holds:

– A state � ∈ L(L,R, ε) of the system is a legitimate state if it is busy,
weaklyfair, and stable.

– A state � ∈ L∗(L,R, ε) of the system fulfills the safety condition if it is busy
and weaklyfair.

Then, our protocol is
(
Õ(p1

min + n3), Ω(nc)
)
-loosely self-stabilizing with regard

to the legal states L(L,R, ε) and safe states L∗(L,R, ε).

Loosely Self-stabilizing Congestion Control 159

5.1 Convergence Time

Now we show that the system converges to a legitimate state after Õ(p−1
min +n3)

rounds w.h.p. We split the analysis into three phases: First we analyze the time
it takes until Δ ∈ Θ(log n) is fixed. In the second phase we analyze the time it
takes for P to reach a value within [L,R]. Finally we show a bound on the time
it takes until weak fairness is reached, i.e., until all probabilities are in Ω(P/n).
Note that these phases exist purely for analytical purposes and the algorithm
itself is oblivious of them.

Phase I: Approximating Θ(log n). We start by showing that there exists a
appropriate self-stabilizing approximation algorithm for Θ(log n) given that the
communication graph is a star graph of Θ(n) nodes. In particular, the following
holds:

Theorem 2. Our protocol provides a fixed estimation of Θ(log n) for the server
within O(p−1

min + n2 · polylog(n)) rounds w.h.p. starting from any configuration,
and reaches a stable state every O(n2) rounds with probability 1 − o(n−c).

Proof (Sketch). For the analysis of this approach we first show that after
O(n2 ·polylog(n)) rounds all superfluous columns that may exist in initial states
have been deleted and thus Δ ≤ Θ(log n) holds. Afterwards we show that after
Θ(n/ log n) clients have successfully pinged the server at least once (which needs
O(p−1

min +n · log2 n) rounds), at least Θ(n/ log n) clients are visible, i.e., they have

a probability of at least Ω
(

P
n·polylog(n)

)
. This suffices to show convergence for

our strategy. For the second property we show that no columns gets added or
deleted w.h.p. and that a visible client remains visible throughout the algorithm
via a slight adaptation of the server’s behavior. This leads to the timestamp t0
of the first column c0 being reset to 0 after at most O(n2) rounds w.h.p. ��

Phase II: Convergence for P . In the following we bound the time until we
arrive at a configuration with P ∈ [L,R] once Δ ∈ Θ(log n) has stabilized. Here,
we need to take into account that in the first phase all probabilities could be arbi-
trarily adapted by the algorithm. In particular, through negative feedback the
smallest probability pmin could be further reduced. This could potentially delay
the stabilization of our algorithm ad infinitum. However, recall that the minimal
probability is only decreased when two nodes of (almost) minimal probability
successfully ping the server. Thus, the smaller pmin gets, the more unlikely it is
for it to be reduced further. Formally, we can show the following:

Lemma 1. During the execution of the first phase, no node will be assigned a
probability smaller than O

(
min{pmin ,n−2}

log n

)
w.h.p.

Proof (Sketch). The proof works similar to the analysis of a ball-into-bins process
with d choices. Whenever the probabilities are reduced through the algorithm,
this can be seen as throwing a ball to the biggest of the d randomly chosen nodes
that pinged in that round. Through a careful adaption of the corresponding

160 M. Feldmann et al.

proof, we see that the minimal node’s probability is reduced at most log log n
times if the protocol runs for O(p−1

min) rounds. This corresponds to reducing
the probability by a factor

(
1 + 1

σ

)− log log n. Since σ is constant, this is within
O

(
log n−1

)
. ��

Given this insight, we can now show the following:

Theorem 3 (Convergence Time for P). Let the system be in any state
where Δ ∈ Θ(log n) is already fixed. After O((p−1

min+n) log2 n) rounds, the system
reaches a state where P ∈ [L,R] w.h.p.

Proof (Sketch). We need to consider the cases P < L and P > R. In case
P < L we can show that it takes O(p−1

min log n) rounds until P ∈ [L,R] w.h.p.
This follows from the time needed to set the probabilities of at least α different
clients to p̂ for a constant α ∈ N with α · p̂ > L. For P > R we can conclude that,
with at least constant probability, at least one client out of the set V ′ = {v ∈
V | p(v) ≥ P

2n} pings the server successfully in a round where δ = 0 and thus gets
its probability reduced. It follows by calculation that after O(n log n) of these
reductions P < R holds. These reductions can be achieved within O(n log2 n)
rounds w.h.p. ��

Phase III: Convergence to Weak Fairness. Finally, we show that we reach
(weakly) fair state after at most Õ(p−1

min +n3) rounds w.h.p. given that the initial
state is already busy and stable. Our definition of a weakly fair state requires that
all probabilities are close to P

n (and moreover will stay close for O(nc) rounds).
To achieve this, the protocol must not in- or decrease the client probabilities too
often. On the first glance, one might think that Δ ∈ Θ(log n) and P ∈ [L,R]
are sufficient to ensure that. A closer look reveals that in cases where P is close
to the borders of the interval [L,R] this might not be the case. However, if we
assume that P only changes very infrequent, then we can adapt the results of
Berenbrink et al. [3] and obtain the following result.

Theorem 4. Let the system be in a legitimate state where P ∈ [L,R]. Then it
holds:

1. After at most O(n3 log n) rounds, P changes only with prob o(n−2).
2. After O(p−1

min · log n) rounds the system reaches a weaklyfair state w.h.p.

Proof (Sketch). For the first claim note that the probability to decrease P
depends on P itself. The main idea is that after n reductions (which take n3

rounds in expectation), P is so small that further reductions are very unlikely.
For the second part, we model our system as a balls-and-bins process. The

clients represent the bins and the client probabilities represent balls, where the
number of balls depends on P , i.e., if the probability of a client v is p(v) =

c
2b·W (recall that client probabilities are multiples of 1/2b·W), then we say that
v has c balls. At the beginning the P · 2b·W balls are arbitrarily distributed
among all clients. Then, we use an adaption of the potential function analysis
from [3]. As potential, we/they use the sum of squared differences, i.e., Φt :=
∑

v∈V

(
pt(v) − Pn−1

)2. In particular, we need to adapt the following:

Loosely Self-stabilizing Congestion Control 161

1. The probabilities are not uniform and change dynamically during the process.
We solve this by observing that with constant probability, the sampled values
are close to the arithmetic mean. Therefore, clients with small probability are
increased quickly once they send.

2. The probabilities can be reduced. However, since the probability for a change
is small, i.e., o(n−2), we can amortize it through the balancing.

Given these adaptations, we can show that after O(p−1
min · log n) rounds the sum

of the squared differences between all clients and the average is at most n. This
corresponds to the sum of the squared differences between all client probabilities
and the average probability P/n being at most 1/n, which suffices to show
fairness. Together with the time it takes for probabilities to be small enough,
the theorem follows. ��

5.2 Holding Time

It remains to bound the holding time. However, this simply follows from the
observations we made so far.

Theorem 5. Let c be an arbitrary constant. Suppose the system is in a legiti-
mate state � ∈ L(L,R, ε), then it will remain in a safe state for Ω(nc) rounds in
expectation.

Proof (Sketch). We show that both busyness and fairness are maintained with
probability 1 − o(nc) if we start in a stable state. First, note that starting in
a stable state, the system maintains Δ ∈ Θ(log n) until the first entry in the
table is deleted. For a deletion, a node (which pings with probability P

n) must
not ping for consecutive O(cn log n) rounds. The probability for this is O(n−c)
and hence this holds for O(nc) round in expectation. Given that Δ ∈ Θ(log n)
remains fixed, we can show the following.

1. The system remains in a busy state. We violate busyness if and only if P leaves
the interval [L,R]. Therefore, the probabilities need to be de- or increased at
least ω(n) times. This only happens if the server (wrongly) predicts P
 L
or P ≺ R, which happens with prob. 1 − o(nc) given that Δ ∈ Θ(log n).

2. The system remains in a weakly fair state. By a similar argument, we see
that fairness is violated if few nodes are decreased too often. This also only
happens if the server (wrongly) predicts P
 L or P ≺ R and is therefore
evenly unlikely. In particular, the times between two decreases are so long
that the nodes can re-balance themselves and thus stay weaklyfair. ��

5.3 Tightness

Last, we observe the tightness of our convergence time. One can easily see that
any self-stabilizing protocol needs Ω(p−1

min log n+n) rounds to reach a legitimate
state. This follows from the fact that each client need to ping the server at least
once to get a probability in O(P

n). As we see, our protocol is indeed optimal if

162 M. Feldmann et al.

pmin ∈ O(1
n3), but is slower otherwise. However, note that the slowdown only

happens because of two important properties that our protocol fulfills. First,
it takes an additional O(n3) rounds in phase I, i.e., during approximation of
Θ(log n). Given that the protocol has a stable estimation of Θ(log n) (which is
reasonable in many contexts) the convergence time is asymptotically optimal in
this phase. Second, it takes O(n3) rounds until the probability for a decrease is
so low that the protocol converges to a weakly fair state. For an even notion of
fairness (e.g. at most o(n) nodes may have very low probability) this could be
improved.

6 Conclusion

We proposed a self-stabilizing protocol for congestion control in overlay networks
that performs reasonably well in our model. Finally we want to make a remark
on the system’s performance in arbitrary topologies.

Remark 1. Consider an overlay network G = (V,E) with indegree at most ζ.
Further, let each node know a (probably rough) estimation N of n. Assume we
apply our protocol for loose self-stabilizing congestion control such that each
node acts as a server for its incoming connections and as a (separate) client for
each of its outgoing connections. This way we obtain (O((p−1

min+ζ3)·polylog(N)),
N c) loosely self-stabilizing protocols for all servers.

This follows from Theorem 1, if we assume that all nodes v ∈ V run our
algorithm with neighbors as clients. However note that in cases where ζ is con-
stant our results would hold only with probability in Θ(e−ζ) and not w.h.p. To
circumvent this we just use the estimation N of n for nodes and let the value for
Δ at each node be in Θ(log N) instead of Θ(log ζ). Given that all nodes know
Θ(log N), the approximation algorithm is obsolete and all states are stable. Note
that all other bounds only depend on the number of client. Thus, we plug in the
maximum degree ζ of a node instead of n. This gives us the polylog(N)-factor
in the runtime above.

References

1. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adver-
sarial contention resolution for simple channels. In: SPAA, pp. 325–332. ACM
(2005). https://doi.org/10.1145/1073970.1074023

2. Bender, M.A., Fineman, J.T., Gilbert, S., Young, M.: Scaling exponential backoff:
constant throughput, polylogarithmic channel-access attempts, and robustness. J.
ACM 66(1), 6:1–6:33 (2019). https://doi.org/10.1145/3276769

3. Berenbrink, P., Friedetzky, T., Kaaser, D., Kling, P.: Tight & simple load balancing.
In: IPDPS, pp. 718–726. IEEE (2019). https://doi.org/10.1109/IPDPS.2019.00080

4. Chang, Y., Jin, W., Pettie, S.: Simple contention resolution via multiplicative
weight updates. In: SOSA@SODA, OASICS, vol. 69, pp. 16:1–16:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/
OASIcs.SOSA.2019.16

https://doi.org/10.1145/1073970.1074023
https://doi.org/10.1145/3276769
https://doi.org/10.1109/IPDPS.2019.00080
https://doi.org/10.4230/OASIcs.SOSA.2019.16
https://doi.org/10.4230/OASIcs.SOSA.2019.16

Loosely Self-stabilizing Congestion Control 163

5. Chiu, D., Jain, R.: Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Comput. Netw. 17, 1–14 (1989). https://doi.org/
10.1016/0169-7552(89)90019-6

6. Corless, M.J., Shorten, R.: Deterministic and stochastic convergence properties of
AIMD algorithms with nonlinear back-off functions. Automatica 48(7), 1291–1299
(2012). https://doi.org/10.1016/j.automatica.2012.03.014

7. Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. self vs. probabilistic stabiliza-
tion. Int. J. Found. Comput. Sci. 26(3), 293–320 (2015)

8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974). https://doi.org/10.1145/361179.361202

9. Feldmann, M., Götte, T., Scheideler, C.: A loosely self-stabilizing protocol for
randomized congestion control with logarithmic memory. CoRR abs/1909.04544
(2019). https://arxiv.org/abs/1909.04544

10. Feldmann, M., Scheideler, C.: Skeap & seap: scalable distributed priority queues
for constant and arbitrary priorities. In: SPAA, pp. 287–296. ACM (2019). https://
doi.org/10.1145/3323165.3323193

11. Feldmann, M., Scheideler, C., Setzer, A.: Skueue: a scalable and sequentially consis-
tent distributed queue. In: IPDPS, pp. 1040–1049. IEEE Computer Society (2018).
https://doi.org/10.1109/IPDPS.2018.00113

12. Gerla, M., Kleinrock, L.: Flow control: a comparative survey. IEEE Trans. Com-
mun. 28(4), 553–574 (1980). https://doi.org/10.1109/TCOM.1980.1094691

13. Goldberg, L.A.: Notes on contention resolution (2002). https://www.cs.ox.ac.uk/
people/leslieann.goldberg/contention.html

14. Guerraoui, R., Hurfinn, M., Mostefaoui, A., Oliveira, R., Raynal, M., Schiper,
A.: Consensus in asynchronous distributed systems: a concise guided tour. In:
Krakowiak, S., Shrivastava, S. (eds.) Advances in Distributed Systems. LNCS,
vol. 1752, pp. 33–47. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
46475-1 2

15. Kelly, T.: Scalable TCP: improving performance in highspeed wide area networks.
Comput. Commun. Rev. 33(2), 83–91 (2003). https://doi.org/10.1145/956981.
956989

16. Kesselman, A., Mansour, Y.: Adaptive AIMD congestion control. Algorithmica
43(1–2), 97–111 (2005). https://doi.org/10.1007/s00453-005-1160-3

17. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: CONE-DHT: a distributed self-
stabilizing algorithm for a heterogeneous storage system. In: Afek, Y. (ed.) DISC
2013. LNCS, vol. 8205, pp. 537–549. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41527-2 37

18. Lahanas, A., Tsaoussidis, V.: Performance evaluation of τ -AIMD over wireless
asynchronous networks. In: Braun, T., Carle, G., Koucheryavy, Y., Tsaoussidis,
V. (eds.) WWIC 2005. LNCS, vol. 3510, pp. 86–96. Springer, Heidelberg (2005).
https://doi.org/10.1007/11424505 9

19. Mahlmann, P., Schindelhauer, C.: Distributed random digraph transformations for
peer-to-peer networks. In: SPAA, pp. 308–317. ACM (2006). https://doi.org/10.
1145/1148109.1148162

20. Richa, A., Scheideler, C., Stevens, P.: Self-stabilizing De Bruijn networks. In:
Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 416–430.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-3 31

21. Sudo, Y., Nakamura, J., Yamauchi, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.:
Loosely-stabilizing leader election in a population protocol model. Theor. Comput.
Sci. 444, 100–112 (2012). https://doi.org/10.1016/j.tcs.2012.01.007

https://doi.org/10.1016/0169-7552(89)90019-6
https://doi.org/10.1016/0169-7552(89)90019-6
https://doi.org/10.1016/j.automatica.2012.03.014
https://doi.org/10.1145/361179.361202
https://arxiv.org/abs/1909.04544
https://doi.org/10.1145/3323165.3323193
https://doi.org/10.1145/3323165.3323193
https://doi.org/10.1109/IPDPS.2018.00113
https://doi.org/10.1109/TCOM.1980.1094691
https://www.cs.ox.ac.uk/people/leslieann.goldberg/contention.html
https://www.cs.ox.ac.uk/people/leslieann.goldberg/contention.html
https://doi.org/10.1007/3-540-46475-1_2
https://doi.org/10.1007/3-540-46475-1_2
https://doi.org/10.1145/956981.956989
https://doi.org/10.1145/956981.956989
https://doi.org/10.1007/s00453-005-1160-3
https://doi.org/10.1007/978-3-642-41527-2_37
https://doi.org/10.1007/978-3-642-41527-2_37
https://doi.org/10.1007/11424505_9
https://doi.org/10.1145/1148109.1148162
https://doi.org/10.1145/1148109.1148162
https://doi.org/10.1007/978-3-642-24550-3_31
https://doi.org/10.1016/j.tcs.2012.01.007

164 M. Feldmann et al.

22. Talwar, K., Wieder, U.: Balanced allocations: a simple proof for the heavily loaded
case. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8572, pp. 979–990. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43948-7 81

23. Tang, B., Gupta, H., Das, S.R.: Benefit-based data caching in ad hoc networks.
IEEE Trans. Mob. Comput. 7(3), 289–304 (2008). https://doi.org/10.1109/TMC.
2007.70770

https://doi.org/10.1007/978-3-662-43948-7_81
https://doi.org/10.1007/978-3-662-43948-7_81
https://doi.org/10.1109/TMC.2007.70770
https://doi.org/10.1109/TMC.2007.70770

Exploration of Dynamic Ring Networks
by a Single Agent with the H-hops

and S-time Steps View

Tsuyoshi Gotoh1(B), Yuichi Sudo1, Fukuhito Ooshita2,
and Toshimitsu Masuzawa1

1 Graduate School of Information Science and Technology, Osaka University,
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{t-gotoh,y-sudou,masuzawa}@ist.osaka-u.ac.jp
2 Nara Institute of Science and Technology,

8916-5 Takayamacho, Ikoma, Nara 630-0101, Japan
f-oosita@is.naist.jp

Abstract. The researches about a mobile entity (called agent) on
dynamic networks have attracted a lot of attention in recent years. Explo-
ration which requires an agent to visit all the nodes in the network
is one of the most fundamental problems. While the exploration with
complete information or with no information about network changes is
proposed, despite its practical scenario and applicability, an agent with
partial information about the network changes has not been considered
yet. In this paper, we consider the exploration of 1-interval connected
rings by a single agent with the H-hops and S-time steps view such that
the agent can see not all but a part of network changes, i.e., the network
changes of links within H-hops for the next S-time steps. In the setting,
we show that H + S ≥ n and S ≥ �n/2� (n is the size of networks) is
necessary and sufficient condition to explore 1-interval connected rings
by a single agent. Moreover, we investigate the upper-bounds and the
lower-bounds of the exploration time. It is proven that the exploration
time is O(n2) for S < n − 1, O(n2/H + n log H) for S ≥ n − 1, and
Ω(n2/H) for any S.

1 Introduction

More applications of dynamic networks have arisen in recent years, for example,
wireless mobile ad hoc, transportation, inter vehicle, or social networks and so
on, more important the researches about the dynamic networks have got. In such
networks, the topology changes with time due to faults or movements of nodes
and the existing method for static networks (which do not change with time)

This work was supported by JSPS KAKENHI Grant Numbers 17K19977, 18K11167,
18K18000 and 19H04085 and JST SICORP Grant Numbers JPMJSC1606 and
JPMJSC1806.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 165–177, 2019.
https://doi.org/10.1007/978-3-030-34992-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_14

166 T. Gotoh et al.

might no longer work. For this reason, the researchers have started to consider
several problems on dynamic networks [4].

The exploration which requires a mobile entity called an agent (e.g., a soft-
ware agent, a robot, or a vehicle) to visit all the nodes of the network is one
of the most fundamental problems. The exploration is useful for solving funda-
mental tasks on the networks such as broadcast or network maintenance. It has
been well-studied for static networks [7] and recently been studied for dynamic
networks. In the previous works about the exploration of dynamic networks,
two extreme cases are considered: an agent has the complete knowledge about
changes of all the links for all the future time steps a priori [7,9,10]; or an agent
can only see whether the links adjacent to its current node are present or not
at the moment [2,3,6,8]. The former one models the situation where the net-
work changes are completely predictable as the public transportation networks
in which the network changes are introduced by totally scheduled movements of
the nodes. The latter one models the situation where the network changes are
caused by unscheduled events, for example, faults or unscheduled movements of
the nodes.

Although the above two models are plausible and also theoretically impor-
tant, the intermediate model, i.e., an agent with partial information or, in other
words, capability to know link changes within some distance in the near future
should be considered due to the following reason: even in the totally scheduled
situation (if exists), computing all the future changes often costs computation
time and it is desirable to compute only the necessary information to solve a
problem to save computing time or memories; the visibility of an agent to mon-
itor whether there are faults or environmental changes roughly depends on the
quality (or costs) of its sensor and it can save some costs to compute only the
necessary information needed for a problem. Moreover, such a model is so inter-
esting from a theoretical viewpoint: how the amount of information available for
an agent influences the solvability or the time complexity of problems.

To formalize such a concept and analyze its influences, in this paper, we
first introduce the H-hops andS-times view such that the agent with the view
can see the link scheduling (when and which links disappear or appear) of the
links within H hops from its location for S time steps from the current time.
Then, we consider how the value of H or S influences the solvability or the time
complexity of the exploration of 1-interval connected rings by a single agent.

1.1 Related Works

To see various settings and exploration algorithms on static networks, there is a
good survey [5].

The following works consider the exploration of dynamic networks. As a
randomized approach, Avin et al. [1] or Lamprou et al. [11] use a random walk to
explore dynamic networks using only the local degree to decide the destination
in each time step. The deterministic exploration of dynamic networks by an
agent with the full knowledge of a link scheduling (the information about when
and which links disappear or appear) is considered in [7] for carrier networks,

Exploration of Dynamic Ring Networks 167

[10] for T-interval connected rings or [9] for T-interval connected cactuses. The
deterministic exploration of dynamic networks by multiple agents (or robots)
without the knowledge of a link scheduling (or only with the ability to detect
whether the adjacent links are present or not at the moment) is considered in
[6] for 1-interval connected rings. The perpetual exploration (i.e., the exploration
without termination) on connected-over-time rings in the setting is considered
in [2,3]. The difference between with or without the ability to detect whether
the adjacent links are present or not at the moment (called the link presence
detection) is considered in [8] for n×m dynamic tori which consist of n horizontal
rings and m vertical rings each of which is a 1-interval connected ring. It is shown
that the optimal number of agents with the link presence detection to explore the
networks is a half of the optimal number of agents without the one to explore.

1.2 Our Contributions

In this paper, we consider the exploration of 1-interval connected rings by a
single agent with the H-hops and S-time steps view where the agent can see
not all but a part of network changes, i.e., a link scheduling of the links within
H-hops from its location for S-time steps from the current time. With our best
knowledge, this is the first work to generalize the agent capacity to see a link
scheduling.

The results are summarized in Table 1. For the proposed model, we show
that H + S ≥ n and S ≥ �n/2� (n is the size of networks) is the necessary and
sufficient condition to explore 1-interval connected rings by a single agent. The
result is proved by showing the impossibility of the exploration for H + S < n
or S < �n/2� and proposing an exploration algorithm for H + S ≥ n and
S ≥ �n/2�. The algorithm also gives an upper-bound of the exploration time,
O(n2). Moreover, we show a lower-bounds of the exploration time is Ω(n2/H)
for any S. This implies that the upper and lower bounds for H + S ≥ n and
�n/2� ≤ S < n − 1 are tight (Θ(n2)) when H is constant. Finally, we gives
an algorithm for S ≥ n − 1 by which a single agent can explore a 1-interval
connected ring within O(n2/H +n log n) time. This also leads to O(n log n) time
when H = Θ(n) and indicates the upper and lower bounds for S ≥ n − 1 are
tight (Θ(n log n)) when H = O(n/ log n).

Table 1. Upper and lower bound of the exploration time in 1-interval connected rings.

H and S Upper bound Lower bound

H + S < n or S < �n/2� The exploration is impossible

H + S ≥ n and �n/2� ≤ S < n − 1 O(n2) Ω(n2/H)

S ≥ n − 1 O(n2/H + n log H)

168 T. Gotoh et al.

2 Models and Terminologies

We consider a time variant ring R = (V,E, ρ) where G = (V,E) is a ring
network, i.e., V = {v0, v1, . . . , vn−1} is a set of n nodes, E = {e0, e1, . . . , en−1}
is a set of n links such that ei = (vi, vi+1 mod n). The nodes of the network
is anonymous. For simplicity, we omit mod n in the following. A function ρ :
E ×N ← {0, 1} is called a link presence function such that ρ(e, t) is 1 (resp. 0) if
link e is present (resp. missing) at time step (or step) t ∈ N. A network at each
step t is denoted as Rt = (V,Et) where Et = {ei ∈ E | ρ(ei, t) = 1}. We assume
that R is 1-interval connected, i.e., at each step t, a network Rt is connected. In
other words, at each step t, there is at most one missing link ei ∈ E such that
ei /∈ Et.

We say the ascending (resp. descending) order of node indices is the right
(resp. left) direction. Each port of ei has a globally consistent label at vi and
vi+1 which gives an entity on the ring a global direction (the right direction at vi
and the left direction at vi+1) of the ring. Given a connected component V ′

� V ,
the right (resp. left) extremity of V ′ is the node vi ∈ V ′ such that vi+1 /∈ V ′

(resp. vi−1 /∈ V ′). If |V ′| = 1, the unique node in V ′ is both the right extremity
and the left extremity of V ′.

In the network, a single agent A is operational. Agent A knows the network
size n, has computation capacity and its own memory, and can traverse at most
one link in each step. In addition to them, A can get the view which contains
information of presence of nearby links in near future as defined later. In a
step t, A at a node, say vi, first computes and decides which direction it moves
depending on its memory and the view from vi. If the corresponding link is
present at t, A succeeds to move and reaches a neighbor of vi. Otherwise, A fails
to move and stays at vi.

Informally speaking, the H-hops and S-time steps view that agent A can get
shows which link is missing within H hops from the current node and within S
steps from the current step. Formally speaking, for �n/2� ≥ H > 0 and S > 0,
A gets the H-hops and S-time steps view βH,S(i, s) = {(ej , t, ρ(ej , t)) | i − H ≤
j ≤ i+H −1, s ≤ t ≤ s+S−1} when A exists on vi at step s. For example, when
H = 2, S = 2, and A exists on v0 at step 5, A can see β2,2(0, 5) = {(e1, 5, 0),
(e0, 5, 1), (en−1, 5, 1), (en−2, 5, 1), (e1, 6, 1), (e0, 6, 0), (en−1, 6, 1), (en−2, 6, 1)}.
When no confusion arises, we simply write the view instead of writing the “H-
hops and S-time steps view.”

It is assumed that a link scheduling (or ρ(ei, t) for every ei and every step
t > 0) is decided by the adversary. The adversary knows the algorithm of A, has
infinite computation capacity, and tries to prevent A from exploring the ring.

In this paper, we consider the exploration problem by a single agent A: A is
required to visit all the nodes in the ring. A node is said to be explored when it
is visited by A for the first time. The set of explored (resp. unexplored) nodes
at the start of step t is denoted by V t (resp. V t). In the following, without loss
of generality, we assume A starts the exploration from v0.

Exploration of Dynamic Ring Networks 169

3 Impossibility Result

We show an impossibility result in this section. Specifically, we show that the
exploration is impossible when H + S < n or S < �n/2� holds.

Lemma 1. If H + S < n or S < �n/2�, a deterministic single agent with the
H-hops and S-time steps view cannot explore 1-interval connected rings.

Proof. We first consider the condition S < �n/2�. Note that H ≤ �n/2�. It
suffices to show that the exploration is impossible when S = �n/2� − 1. We
assume for contradiction, that there is an algorithm by which A can explore any
ring under any link scheduling when S = �n/2�−1. Since A can explore the ring,
A starting from v0 eventually reaches vn−1 (no matter whether the exploration
is completed or not).

The adversary can decide a link scheduling so that en−1 (resp. en−2) is
missing when A exists on v0 (resp. vn−2). The adversary first keeps showing
a link scheduling where en−1 is kept deleted for S steps from the current step
until A moves to vn−�n/2�. If A does not move to vn−�n/2� and stays vi for
0 ≤ i < n − �n/2�, en−1 is kept deleted and A cannot reach vn−1 (A must pass
through en−1 or en−�n/2�−1 to reach vn−1 from v0), which is a contradiction.
Thus, A eventually moves to vn−�n/2� at some step, say t. Then, the adversary
deletes en−2 from the (t+S)-th step (the (t+ �n/2�− 1)-th step) until A moves
to vn−�n/2�−1. By the scheduling, since A reaches vn−2 at earliest at the end of
the (t + n − 2 − (n − �n/2�))-th step (or at the start of the (t + �n/2� − 1)-th
step) from vn−�n/2�, en−2 starts to disappear when (or before) A reaches vn−2

and keeps disappearing unless A moves to vn−�n/2�−1. Thus, if A does not move
to vn−�n/2�−1, A cannot reaches vn−1. This is a contradiction. This means that
A moves to vn−�n/2�−1 after the (t + 1)-th round. However, by the similar way,
the adversary can prevent A from reaching vn−1. This is a contradiction. Hence,
when S < �n/2�, a single agent cannot explore 1-interval connected rings.

Secondly, we consider the condition H +S < n and S ≥ �n/2�. It is sufficient
to show that A cannot explore the ring when S = n−H−1 for 1 ≤ H ≤ �n/2	−1
since H < �n/2	 from the conditions. Again, we assume for contradiction, that
there is an algorithm by which A can explore any ring under any link scheduling.
Since A can explore the ring, A starting from v0 eventually reaches vn−1 (no
matter whether the exploration is completed or not).

The adversary first keeps showing a link scheduling where en−1 is kept deleted
for S steps from the current step until A moves to vH . If A does not move to
vH and stays at vi for 0 ≤ i ≤ H − 1, en−1 is kept deleted and A cannot reach
vn−1, which is a contradiction. Thus, A eventually moves to vH at some step,
say t. Then, depending on whether A visits vH−1 before vn−H−1 after t or not,
the missing link is decided (see Fig. 1). Note that A can see neither en−1 nor
en−2 in its view when existing at vi for H ≤ i ≤ n − H − 2 and such nodes vi
(H ≤ i ≤ n − H − 2) always exist since H ≤ �n/2	 − 1.

If A visits vH−1 before vn−H−1, the adversary keeps deleting en−1. By the
link scheduling, unless A decides to reach vn−H−1 from vH , en−1 is kept deleted

170 T. Gotoh et al.

Fig. 1. Illustrating the proof of Theorem 1.

and A cannot reach vn−1, which is a contradiction. This means that A eventually
reaches vn−H−1. Let t′ be the last step before A reaches vn−H−1 such that A
exists at vH−1 at the start of t′.

When A leaves vH−1 at the t′-th step, the adversary makes a scheduling so
that en−2 starts and keeps disappearing from the (t′ + n − H − 1)-th step until
A comes back to vn−H−2. This does not conflict with the link scheduling in the
past view of A since at the t′-th step, en−1 is scheduled to be deleted for the
next S = n − H − 1 steps and for the next n − H − 1 − x steps at the (t′ + x)-th
step. Since it takes at least n − H − 2 steps to reach vn−2 from vH , A reaches
vn−2 at earliest at the end of the (t′ + n − H − 2)-th step. However, at the
(t′ + n − H − 1)-th step, en−2 is missing and the adversary keeps deleting en−2

until A moves to vn−H−2. Then, A cannot reach vn−1 unless moving to vn−H−2.
However, by the similar way, the adversary can prevent A from reaching vn−1.
This is a contradiction. Hence, when H + S < n or S < �n/2�, a single agent
cannot explore 1-interval connected rings.
�

4 Solvability Result and Upper Bound of Exploration
Time

In this section, we prove the exploration is possible when H + S ≥ n and S ≥
�n/2� by proposing an exploration algorithm by a single agent. The algorithm
also gives an upper bound of the exploration time, O(n2). Note that S ≥ H since
S ≥ �n/2� and H ≤ �n/2�. Moreover, to simplify the time complexity analysis,
when H +S > n or S > n−1, A uses the H ′-hops and S′-time steps view where
S′ = min(S, n − 1) and H ′ + S′ = n (clearly, βH′,S′(i, s) ⊆ βH,S(i, s) for every
vi and every step s). Thus, we assume H + S = n in this section.

The algorithm is described in Algorithm 1. The algorithm consists of n − 1
phases. In each phase i (0 ≤ i ≤ n−2), A starts from vi and ends at vi+1. Let ti
be the first step of phase i. Agent A starting from vi moves to vi+1 through ei if

Exploration of Dynamic Ring Networks 171

A sees ei appear in its view (see Fig. 2). Otherwise, A moves one hop in the left
direction and sees whether ei appears in its view or not. This movement in the
left direction continues as long as ei does not appear in its view until A reaches
vi−H where ei is no longer included in the view of A. If A reaches vi−H at the
(ti + H − 1)-th step, A keeps moving the left direction from vi−H until reaching
vi+1 and the exploration finishes at the time (see Fig. 3). If A sees ei appear in
its view before reaching vi−H , A moves in the right direction and reaches vi+1

through ei.

Fig. 2. The move in the right direction of Algorithm 1.

Fig. 3. The move in the left direction of Algorithm 1.

Theorem 1. For H + S ≥ n and S ≥ �n/2�, the exploration time of 1-interval
connected rings by a single agent with the H-hops and S-time steps view is
upper-bounded by O(n2).

172 T. Gotoh et al.

Algorithm 1. Exploration algorithm for S + P ≥ n

1: nexp → 1 //v0 has been explored before the first step.
2: while (nexp < n) do
3: d → 0
4: let vi be the current node
5: tmp = i
6: //trying to reach vi+1 from vi in the following loop.
7: while (d < H) do
8: if ((vtmp, vtmp+1) is always missing in the next S steps) then
9: move one hop in the left direction.

10: d → d + 1
11: else
12: move d hops in the right direction //returning vi
13: wait for etmp to appear and pass through etmp as soon as it appears
14: exit from the inner while loop (at lines 7-14)

//A does not reach vi+1 in the above loop
15: if (d ≥ H) then
16: move n − 1 − H hops in the left direction //reaching vi+1 in the left

direction
17: exit from the outer while loop (at lines 2-18) //the exploration ends
18: nexp → nexp + 1

Proof. It suffices to show that A with the H-hops and S-time steps view com-
pletes exploration within O(n2) steps by Algorithm 1. We show that, in each
phase i, A starting from vi can reach vi+1 within H + S − 1 (= n − 1) steps by
Algorithm 1.

We first show the claim for the case ei appears in the view of A at vj for
i ≥ j > i − H. For the first step of phase i, A can clearly reach vi+1 within S
steps from the current step if ei appears in its view. When A sees ei appear in
its view at step t at vj for i > j > i−H, ei must appear at the (t+S−1)-th step
and be missing at step t′ for t ≤ t′ ≤ t + S − 2 by the construction. This means
that all the other links than ei are present at step t′ (t ≤ t′ ≤ t+S−2), and thus
A can move for S − 1 steps from vj in the right direction without interference
by missing links. Since i − j < H and H ≤ S, A always reaches vi by the start
of the (t + S − 1)-th step. Then, A reaches vi+1 as soon as ei appears. Since A
moves at most H − 1 hops in the left direction and ei appears S steps after A
starts to move in the right direction, it takes H +S − 1 steps to reach vi+1 from
vi through ei.

When A reaches vi−H at step t′, ei must be deleted for at least S − 1 steps
from t′ and all the other links than ei are present in the S − 1 steps and thus, A
can move for S − 1 steps from vi−H in the left direction without interference by
missing links. Since H + S − 1 = n − 1, A reaches vi−(n−1) = vi+1 after S − 1
steps and the exploration is completed.

The exploration time of Algorithm 1 is O(n2) since each phase consists of at
most H + S − 1 = n − 1 steps and the number of phases is at most n − 1.
�

Exploration of Dynamic Ring Networks 173

From Lemma 1 and Theorem 1, the following theorem holds.

Theorem 2. If and only if H + S ≥ n and S ≥ �n/2�, a single agent with the
H-hops and S-time steps view can explore of 1-interval connected rings within
finite time steps.

5 Lower Bound of Exploration Time

The lower bound of the exploration time for any S is considered in this section.
The following theorem holds.

Theorem 3. The exploration time of 1-interval connected rings by a single
agent with the H-hops and S-time steps view is lower-bounded by Ω(n2/H).

Proof. The adversary separates the whole steps into phases, which are defined
as follows: the first phase starts from step 1 and ends at the t-th step such
that |V t| = H and |V t+1| = H + 1. Letting tp be the first step of phase p,
phase p for 2 ≤ p ≤ �(n − 1)/H	 − 1 directly follows the previous phase and
ends at the (tp+1 − 1)-th step such that |V tp+1 − V tp | = H. In other words,
A newly explores H nodes in each phase. Clearly, |V tp | is (p − 1)H + 1. Note
that (�(n − 1)/H	 − 1)H + 1 < n and some nodes remain unexplored at the
(�(n − 1)/H)-th phase. We will handle the nodes later in this proof. Let vip be
the node where A exists at the start of phase p.

The adversary decides a link scheduling so that each phase includes at least
pH steps. For this goal, the adversary deletes eip+H−1 (resp. eip−H) for |V tp | +
H −2 = pH −1 steps from tp including tp if vip is the right (resp. left) extremity
of V tp . Without loss of generality, we assume vip is the right extremity of V tp .

Under the link scheduling, A explores H nodes from vip . Let nr be the number
of the explored nodes on the right of V tp and nl be the number of the explored
nodes on the left of V tp in phase p. We show that, in phase p, it takes at least pH
steps to explore the H nodes for A by contradiction. We assume that A explores
the H nodes in phase p within less than pH steps. If A traverses eip+H−1, it
takes at least pH steps (pH − 1 steps by appearance of eip+H−1 and one step
to pass the link). This is a contradiction. Then, nr < H and thus nl > 0. Since
A does not traverse eip+H−1 and nl > 0, it takes at least |V tp | − 1 + H = pH
steps (not pH + 1 steps when A always moves in the left direction) to explore
H nodes. This is a also contradiction. Hence, each phase p includes at least pH

steps. Thus, the exploration takes at least Σ�(n−1)/H�−1
p=1 pH = Ω(n2/H).
�

In total, the exploration takes at least Σ�(n−1)/H�−1
p=1 pH + n − 1 + �((n −

1) mod H)/2	 = Ω((n − H)2/H + n) = Ω(n2/H).
�

6 Upper Bound of Exploration Time for S ≥ N − 1

In this section, we show the upper bound of exploration for S ≥ n − 1 by
proposing an exploration algorithm described in Algorithm2.

174 T. Gotoh et al.

The exploration algorithm is separated into phases. There are �(n−1)/H	−
1 + �log(H + 1 + ((n − 1) mod H))� phases. We call the first �(n − 1)/H� − 1
phases poly phases and the following �log(H + 1 + ((n − 1) mod H))� phases log
phases. Let tp be the first step of phase p and vip be the node where A exists at
tp. In each poly phase, A explores H nodes, i.e., |V tp | = (p − 1)H + 1. In each
log phase p, a half of the nodes in V tp are explored. Without loss of generality,
we assume vip be the right extremity of V tp in the following.

In each poly phase p, the agent first sees its view from vip . If A can reach
vip+H by the (tp+1−1)-th step by moving in the right direction where tp+1−1 =
tp + 2H + |V tp | − 3 = tp + (p + 1)H − 2 is the last step of phase p, A moves
in the right direction during the p-th phase. Otherwise, A moves in the left
direction during the p-th phase and reaches vip−|V tp |+1−H by (tp+1 − 1)-th step
(see Fig. 4).

A log phase includes n − 1 steps. Also in each log phase p, the agent first
sees its view from vip . If A can explore at least �|V tp |/2� within n − 1 steps
by moving in the right direction, A moves in the right direction during the p-
th phase. Otherwise, A moves in the left direction during the p-th phase and
explores at least �|V tp |/2� (see Fig. 5).

The following theorem holds.

Theorem 4. For S ≥ n−1, the exploration time of 1-interval connected rings by
a single agent with the H-hops and S-time steps is upper-bounded by O(n2/H +
n log H).

Proof. It suffices to show that A completes exploration within O(n2/H +
n log H) steps by Algorithm 2 when S ≥ n − 1.

We first consider poly phases and show that A can explore H nodes in each
poly phase, which leads to that the total exploration time of poly phases is
O(n2/H). By the construction, each poly phase p lasts for (p + 1)H − 1 steps.
Since p ≤ �(n − 1)/H	 − 1, (p + 1)H − 1 is always less than n − 1 and S during
the poly phases. If A can reach vip+H by the (tp + (p + 1)H − 2)-th step, A
moves in the right direction during the p-th phase and explores H nodes within
tp+(p+1)H−2 steps. Otherwise, A can move at least pH (= |V tp |−1+H) steps
in the left direction and reaches vi−|V tp |+1−H since moving in the right direction
succeeds at most H − 1 steps and thus fails at least (p + 1)H − 1 − (H − 1) =
pH steps. This means that the total exploration time of the poly phases is
Σ�(n−1)/H�−1

p=1 ((p + 1)H − 1) = O((n − H)2/H) = O(n2/H).
Then, we consider log phases and show that A can explore at least �|V tp |/2�

nodes, which leads to that the total exploration time of poly phases is O(n log H).
By the construction, each log phase lasts for n−1 steps. If A can explore �|V tp |/2�
by moving in the right direction, A moves in the right direction and the claim
holds. Otherwise, letting vmidp the middle node of V tp (when there are two
middle nodes, vmidp

is the one closer to vip in the right direction), A can move
less than midp − ip steps in the right direction. This means A can move at least
n−1− (midp− ip)+1 in the left direction during the p-th phase. Combining this
with ((midp − ip) mod n) + ((ip − midp) mod n) = n, we have n − 1 − (midp −

Exploration of Dynamic Ring Networks 175

ip) + 1 = ip − midp. In the expression, ip − midp corresponds to the distance
from vip to vmidp

in the left direction. Thus, A reaches vmidp
in the p-th phase.

Since each log phase includes n − 1 steps, the number of the remaining nodes
at the first log phase is at most 2H − 1 and at least a half of the remaining
nodes is explored in each log phase, the total exploration time of the log phases
is (n − 1)�log(2H − 1 + 1)� = O(n log H).

By combining the above steps, we obtain the total exploration steps as O(n2+
n log H).
�

Fig. 4. The move in a poly phase of Algorithm 2.

Fig. 5. The move in a log phase of Algorithm 2.

176 T. Gotoh et al.

Algorithm 2. Exploration algorithm for S + P ≥ n

1: p → 1 //starting poly phases
2: while (p < �(n − 1)/H� − 1) do
3: let t be the current step and vi be the current node
4: if vi is the right extremity of V t then
5: if A can reach vi+H in the right direction by the (t+(p+1)H−1)-th step then
6: move H hops in the right direction
7: else
8: move pH hops in the left direction
9: else

10: if A can reach vi−H in the left direction by the (t+(p+1)H−1)-th step then
11: move H hops in the left direction
12: else
13: move pH hops in the right direction
14: p → p + 1
15: p → 1 //starting log phases
16: while (p ≤ �log(H + ((n − 1) mod H) + 1)�) do
17: let t be the current step and vi be the current node
18: if vi is the right extremity of V t then
19: if A can reach v

i+�|V t|/2� in the right direction by the (t+n−2)-th step then

20: move in the right direction until the (t+n−2)-th step
21: else
22: move in the left direction until the (t+n−2)-th step
23: else
24: if A can reach v

i−�|V t|/2� in the left direction by the (t+n−2)-th step then

25: move in the right direction until the (t+n−2)-th step
26: else
27: move in the left direction until the (t+n−2)-th step
28: p → p + 1

7 Conclusions and Future Works

In this paper, we introduced the H-hops and S-time steps view which can be
used to model some situations where an agent (or robot) can partly see their
nearby environment or can predict the near-future changes of the environment.
This is the first paper considering such a model to the best of our knowledge.
Then, for a single agent with the H-hops and S-time steps view, we studied the
exploration of 1-interval connected rings. We give some fundamental results, i.e.,
impossibility of the exploration for H + S < n or S < �n/2�, solvability of the
exploration for H + S ≥ n and S ≥ �n/2�, and the upper bound and the lower
bound of the exploration time for some cases. Although these results themselves
are important, there remain a few works to do in the future, for example, the
efficient exploration in the case H + S ≥ n and S < n − 1, the tight bound for
the exploration time for all the cases. We will work for these problems.

It is also interesting to consider the exploration of other topologies with the
H-hops and S-time steps view. Although in dense networks the view of a few

Exploration of Dynamic Ring Networks 177

diameter gives an agent almost global information (thus, it may be improper
for modeling an ability of the agent to get a partial information of a dynamic
network), our model can be applied to sparse networks.

References

1. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover
time of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8 11

2. Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic
environments. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083,
pp. 54–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 5

3. Bournat, M., Dubois, S., Petit, F.: Computability of perpetual exploration in highly
dynamic rings. In: IEEE 37th International Conference on Distributed Computing
Systems, pp. 794–804. IEEE (2017)

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

5. Das, S.: Mobile agents in distributed computing: network exploration. Bull. EATCS
1(109), 54–69 (2013)

6. Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Distributed exploration of
dynamic rings. Distrib. Comput. 1–27 (2018)

7. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theoret. Comput. Sci. 469, 53–68 (2013)

8. Gotoh, T., Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Group exploration
of dynamic Tori. In: IEEE 38th International Conference on Distributed Comput-
ing Systems, pp. 775–785. IEEE (2018)

9. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic
graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS,
vol. 8576, pp. 250–262. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09620-9 20

10. Ilcinkas, D., Wade, A.M.: Exploration of the t-interval-connected dynamic graphs:
the case of the ring. Theory Comput. Syst. 62(5), 1144–1160 (2018)

11. Lamprou, I., Martin, R., Spirakis, P.: Cover time in edge-uniform stochastically-
evolving graphs. Algorithms 11(10), 149 (2018)

https://doi.org/10.1007/978-3-540-70575-8_11
https://doi.org/10.1007/978-3-540-70575-8_11
https://doi.org/10.1007/978-3-319-49259-9_5
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-09620-9_20

iperfTZ: Understanding Network
Bottlenecks for TrustZone-Based

Trusted Applications

Christian Göttel , Pascal Felber , and Valerio Schiavoni(B)

University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
{christian.gottel,pascal.felber,valerio.schiavoni}@unine.ch

Abstract. The growing availability of hardware-based trusted exe-
cution environments (TEEs) in commodity processors has recently
advanced support (i.e., design, implementation and deployment frame-
works) for network-based secure services. Examples of such TEEs include
Arm TrustZone or Intel SGX, largely available in embedded, mobile
and server-grade processors. TEEs shield services from compromised
hosts, malicious users or powerful attackers. TEE-enabled devices are
largely being deployed on the edge of the network, paving the way for
large-scale deployments of trusted applications. These applications allow
processing and disseminating sensitive data without having to trust cloud
providers. However, uncovering network performance limitations of such
trusted applications is difficult and currently lacking, despite the interest
and reliance by developers and system deployers.

iperfTZ is an open-source tool to uncover network performance bot-
tlenecks rooted at the design and implementation of trusted applications
for Arm TrustZone and underlying runtime systems. Our evaluation
based on micro-benchmarks shows current trade-offs for trusted appli-
cations, both from a network as well as an energy perspective; an often
overlooked yet relevant aspect for edge-based deployments.

Keywords: Network · Performance · Bottleneck · Measurement ·
ARM TrustZone · OP-TEE

1 Introduction

Services are being moved from the cloud to the edge of the network. This migra-
tion is due to several reasons: lack of trust in the cloud provider [7], energy
savings [19,24] or reclaiming control over data and code. Edge devices are used
to accumulate, process and stream data [20,30]. The nature of such data can
be very sensitive: edge devices can be used to process health-based data emit-
ted by body sensors (e.g., cardiac data [26]), data originated by smart home
sensors indicating the presence of humans inside a household, or even financial
transactions [16,28]. In this context, applications using this information must
be protected against powerful attackers, potentially even with physical access to
c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 178–193, 2019.
https://doi.org/10.1007/978-3-030-34992-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_15&domain=pdf
http://orcid.org/0000-0002-4465-6197
http://orcid.org/0000-0003-1574-6721
http://orcid.org/0000-0003-1493-6603
https://doi.org/10.1007/978-3-030-34992-9_15

iperfTZ: Understanding Network Bottlenecks for TrustZone 179

the devices. Additionally, communication channels for inter-edge device applica-
tions must also be secured to prevent attacks such as man-in-the-middle attacks.
Edge devices are low-energy units with limited processing and storage capac-
ity. As such, it is unpractical to rely on sophisticated software-based protection
mechanisms (e.g., homomorphic encryption [22]), currently due to their high
processing requirements and low performance [12]. Alternatively, new hardware-
based protection mechanisms can be easily leveraged by programmers to provide
prior protection guarantees. Specifically, trusted execution environments (TEEs)
are increasingly made available by hardware vendors in edge-devices [29]. Several
Arm-based devices, such as the popular Raspberry Pi1, embed native support
for TEEs called TrustZone [4,23]. TrustZone can be leveraged to deploy
trusted applications (TAs) with additional security guarantees.

There exist several programming frameworks and runtime systems to develop
TAs for TrustZone with varying capabilities and different degrees of stability
and support (e.g., SierraTEE2, Op-Tee3, and [21]). While a few studies look at
the interaction between TEEs and the corresponding untrusted execution envi-
ronments [2,14], little is known on the network performance bottlenecks expe-
rienced by TAs on Arm processors. We fill this gap by contributing iperfTZ,
a tool to measure accurately the network performance (e.g., latency, through-
put) of TAs for TrustZone. iperfTZ consists of three components, namely
(1) a client application, (2) a TA, and (3) a server. Our tool can be used to
guide the calibration of TAs for demanding workloads, for instance understand-
ing the exchanges with untrusted applications or for secure inter-TEE applica-
tions [28]. In addition, iperfTZ can be used to study the impact of network and
memory performance on the energy consumption of running TAs. By adjusting
iperfTZ’s parameters, users evaluate the network throughput of their TAs and
can quickly uncover potential bottlenecks early in the development cycle. For
instance, internal buffer sizes affect the achievable network throughput rates by
a factor of 1.8×, almost halving throughput rates.

The rest of the paper is organized as follows. Section 2 motivates the need
for tools analyzing TAs. We provide an in-depth background on TrustZone in
Sect. 3, as well as covering details on the TrustZone runtime system Op-Tee.
In Sect. 4 we present the architecture of iperfTZ and some implementation
details in Sect. 5. We report our evaluation results in Sect. 6. We cover related
work in Sect. 7 before concluding in Sect. 8.

2 Motivating Scenario

We consider scenarios with simple yet practical services deployed as TAs. For
instance, in [13] authors deploy key-value stores inside a TrustZone runtime
system. Benchmarks show a 12×–17× slowdown when compared to plain (yet
1 https://www.raspberrypi.org, accessed on 30.07.2019.
2 https://www.sierraware.com/open-source-ARM-TrustZone.html, accessed on

30.07.2019.
3 https://www.op-tee.org, accessed on 30.07.2019.

https://www.raspberrypi.org
https://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.op-tee.org

180 C. Göttel et al.

Fig. 1. Block diagrams highlighting relevant software components

unsecure) deployments, due to shared memory mechanisms between the trusted
and untrusted environments. As further detailed in Sect. 4, networking in Op-
Tee is supported by similar shared memory mechanisms. Yet, we observe the
lack of tools to clearly highlight the root causes of such bottlenecks. Further,
in the TrustZone ecosystem, there is a lack of proper tools to evaluate net-
work bottlenecks contrary to untrusted environments (e.g., iperf34, netperf5,
nuttcp6). The overhead originating from the shared memory mechanism can be
identified by comparing the measured network throughput inside and outside the
TEE. Measuring such overheads is of particular relevance in embedded, mobile
and IoT environments. In those scenarios, devices are often battery powered,
limited both in time and capacity. Hence, network performance tools should
further highlight energy costs, pointing users to specific bottlenecks.

3 Background

This section provides a background on Arm TrustZone (Sect. 3.1), the Glob-
alPlatform specifications (Sect. 3.2) and Op-Tee, the TrustZone runtime
system used for iperfTZ (Sect. 3.3). This background helps understanding tech-
nical challenges in our context and how iperfTZ addresses them.

3.1 ARM TrustZone in a Nutshell

TrustZone is a security architecture designed for Arm processors and was
introduced in 2003 [3]. It partitions hardware and software resources into two
worlds, i.e., secure and normal world, as shown in Fig. 1a. A dedicated NS bit [4]
drives this world separation and allows to execute secure (NS bit set low) or

4 https://software.es.net/iperf/, accessed on 30.07.2019.
5 https://hewlettpackard.github.io/netperf/, accessed on 30.07.2019.
6 https://www.nuttcp.net/Welcome%20Page.html, accessed on 30.07.2019.

https://software.es.net/iperf/
https://hewlettpackard.github.io/netperf/
https://www.nuttcp.net/Welcome%20Page.html

iperfTZ: Understanding Network Bottlenecks for TrustZone 181

non-secure (NS bit set high) transactions on the system bus. In general, non-
secure transactions cannot access system resource secured by a low NS bit. The
TrustZone architecture spans beyond the system bus, including peripherals
(e.g., GPUs [31] and I/O). Every TrustZone-enabled processor is logically split
into a secure and a non-secure (virtual) core, executing in a time-shared manner.
Hence, accessible system resources are determined by the executing core: secure
cores can access all system resources, while non-secure cores can only access non-
secure ones. Arm processors embed one memory management unit (MMU) per
virtual core in charge of mapping virtual addresses to physical addresses. The
translation lookaside buffer (TLB) in the MMU is used to maintain the mapping
translations from virtual to physical memory addresses. Tagging TLB entries
with the identity of the world allows secure and non-secure address translation
entries to co-exist. With tags the TLB no longer has to be flushed making fast
world switches possible.

The implementation of TrustZone is organized into four exception levels
(EL) with increasing privileges [5] (Fig. 1a). EL0, the lowest one, executes unpriv-
ileged software. EL1 executes operating systems, while EL2 provides support for
virtualization. Finally, Arm Trusted Firmware is running at EL3 dispatching
boot stages at boot time and monitoring secure states. Switches between the
two worlds are supervised by a secure monitor [6]. It is invoked in two ways:
(1) by executing a secure monitor call (SMC), or (2) by a subset of hardware
exception mechanisms [4]. When invoked, the secure monitor saves the state
of the currently executing world, before restoring the state of the world being
switched to. After dealing with the worlds’ state, the secure monitor returns
from exception to the restored world.

3.2 The GlobalPlatform Standard

GlobalPlatform7 publishes specifications for several TEEs (e.g., Op-Tee
and [21]). We provide more details on Op-Tee in Sect. 3.3 (an implementation
of such specifications), while briefly explaining the terminology in the remainder
to understand Fig. 1b. An execution environment (EE) provides all components
to execute applications, including hardware and software components. A rich
execution environment (REE) runs a rich OS, generally designed for perfor-
mance. However, it lacks access to any secure component. In contrast, TEEs
are designed for security, but programmers have to rely on a reduced set of fea-
tures. A trusted OS manages the TEE under constrained memory and storage
bounds. TEE and REE run alongside each other. In recent Arm releases (since
v8.4), multiple TEEs can execute in parallel [3], each with their own trusted
OS. TAs rely on system calls usually implemented by the trusted OS as specific
APIs [10]. Client applications (CA) running in the rich OS can communicate
with TAs using the TEE Client API. Similarly, TAs can access resources such as
secure elements (i.e., tamper-resistant devices), trusted storage, and peripherals,
or send messages outside the TEE. Communication agents in the TEE and REE

7 https://globalplatform.org, accessed on 30.07.2019.

https://globalplatform.org

182 C. Göttel et al.

mediate exchanges between TAs and CAs. Finally, the TEE Socket API can be
used by TAs to setup network connections with remote CAs and TAs.

3.3 Op-Tee: Open Portable Trusted Execution Environment

Op-Tee is an open-source implementation of several GlobalPlatform speci-
fications [8–11] with native support for TrustZone. The Op-Tee OS manages
the TEE resources, while any Linux-based distribution can be used as rich OS
alongside it. Op-Tee supports two types of TAs: (1) regular TAs [11] running
at EL0, and (2) pseudo TAs (PTAs), statically linked against the Op-Tee OS
kernel. PTAs run at EL1 as secure privileged-level services inside Op-Tee OS’s
kernel. Finally, Op-Tee provides a set of client libraries to interact with TAs
and to access secure system resources from within the TEE.

4 Networking for Trusted Applications

For networked TAs, i.e., generating or receiving network traffic respectively from
and to TAs, runtime systems must provide support for sockets and corresponding
APIs. To do so, either (1) the TEE borrows the network stack from the REE, or
(2) the TEE relies on trusted device drivers. The former solution implies leverag-
ing remote procedure calls (RPC) to a tee-supplicant (an agent which responds
to requests from the TEE), and achieves a much smaller trusted computing base.
The latter allows for direct access to the network device drivers for much lower
network latencies. Furthermore, it simplifies confidential data handling as the
data does not have to leave the TEE. The former requires developers to pro-
vide data confidentiality before network packets leave the TEE, for instance by
relying on encryption.

iperfTZ leverages libutee8 and its socket API, supporting streams or data-
grams. The socket interface exposes common functions: open, send, recv, close,
ioctl and error. The GlobalPlatform specification allows TEE implemen-
tations to extend protocol-specific functionalities via command codes and ioctl
functions. For example, it is possible to adjust the receiving and sending socket
buffer sizes with TCP socket or changing the address and port with UDP sockets.

The libutee library manages the lifecycle of sockets via a TA session to
the socket’s PTA. The socket PTA handles the RPC to the tee-supplicant,
in particular allocating the RPC parameters and assigning their values. After-
wards, a SMC instruction is executed to switch back to the normal world.
The tee-supplicant constantly checks for new service requests from the TEE.
Once a new request arrives, its arguments are read by the tee-supplicant and
the specified command is executed. Finally, when the data is received by the
tee-supplicant, it is relayed over Posix sockets to the rich OS. In essence,
when data is sent or received over a socket, it traverses all exception levels, both
secure (from EL0 up to EL3) and non-secure (from EL2 to EL0 and back up).
8 https://optee.readthedocs.io/architecture/libraries.html#libutee, accessed on

30.07.2019.

https://optee.readthedocs.io/architecture/libraries.html#libutee

iperfTZ: Understanding Network Bottlenecks for TrustZone 183

Fig. 2. Execution flow inside Op-Tee. Fig. 3. Interaction of iperfTZ’s
components in the client-server
model.

Figure 2 summarizes the previous paragraphs and shows the interaction
between the secure and normal worlds in Op-Tee. The secure world hosts
the TA, which interacts directly with libutee (Fig. 2-➊). When using Glob-
alPlatform’s Socket API, libutee does a system call (Fig. 2-➋) to Op-Tee.
Op-Tee then delegates the request to the socket PTA (Fig. 2-➌). The secure
monitor is invoked through a SMC (Fig. 2-➍), which maps the data from the
TEE to the REE’s address space. From there execution switches into the normal
world and the Op-Tee driver (Fig. 2-➎) resumes operation. Requests are then
handled by the tee-supplicant (Fig. 2-➏) over ioctl system calls. The agent
executes system calls using libc (Fig. 2-➐) to directly relate the underlying net-
work driver (Fig. 2-➑) over the Posix interface. Once data reaches the network
driver, it can be sent over the wire (Fig. 2-➒).

4.1 Threat Model

For our threat model we consider a malicious user that has physical access or is
able to obtain remote access on the devices used to deploy iperfTZ as depicted
in Fig. 3. By gaining access to the network or devices connected to it, the mali-
cious user can break security by either compromising these devices or exploiting
iperfTZ for denial-of-service (DoS) attacks. We assume that the REE, which
includes the rich OS and the user space, cannot be trusted. However, we consider
that the devices and the TEE, which includes dispatcher, Op-Tee, and secure
monitor, can be trusted. As also stated in [4], side-channel attacks are out of
scope of our threat model. We also point out that some ARM systems on a chip
(SoCs) are affected by the Meltdown [18] and Spectre [15] attacks9.

For use of iperfTZ in production, we recommend hardcoding network test
parameters in the TA and disabling any argument passing to reduce the poten-
tial of DoS attacks. Furthermore, the signing key used for TAs should be kept
9 https://developer.arm.com/support/arm-security-updates/speculative-processor-

vulnerability, accessed on 30.07.2019.

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

184 C. Göttel et al.

confidential as it allows the malicious user to modifiy TA binaries and create
authentic TA binaries. Assuming the TrustZone-enabled device is equipped
with an embedded MultiMediaCard (eMMC), then TAs can be securely stored
on the eMMC and the malicious user cannot tamper with a TA’s binary. In
development use, manipulation of the CA’s parameters by the malicious user to
exploit a buffer overflow can be excluded. During a network bandwidth mea-
surement, the malicious user can run a (distributed) DoS attack to reduce the
network bandwidth, such that a lower network throughput is measured and
reported by iperfTZ. At the time of writing, Op-Tee does not provide sup-
port for the TLS protocol which renders secure connections unusable. Although
irrelevant to iperfTZ but applicable in general to networked TAs, the malicious
user could run a man-in-the-middle attack, either directly within the REE or on
the network, and intercept the traffic exchanged between the two devices.

5 Implementation

We describe the implementation challenges of the three components included in
iperfTZ,10 namely (1) a CA acting as proxy for iperfTZ’s (2) TA, and (3) the
server component which the TA is interfacing. All components are implemented
in the C language, and consists of 927 lines of code: 243 for the client, 314 for
iperfTZ’s TA, and 430 for the server.11

5.1 iperfTZ: Client Application

When the CA starts, the TEE context is initialized (TEEC_InitializeContext)
using the file descriptor fetched from the Op-Tee driver. Two distinct dynamic
shared-memory areas are allocated (TEEC_AllocateSharedMemory) at this time,
to (1) exchange arguments passed over the command line interface with the
TA (see Sect. 5.2) and (2) to retrieve metrics gathered by the TA during the
network measurement. Several arguments (e.g.,, IP of the target server node,
dummy data size, socket buffer size) are written in the shared memory area.
The dummy data size is used by the TA to read/write data to the interface
socket. Both shared memory areas get registered with the operation data struc-
ture (TEEC_OpenSession) before calling the TEEC_InvokeCommand function. The
executing thread in the CA is blocked until the TA completes. The execution
inside the TEE is resumed at the TA’s main entry point upon world switch.
Once the TA completes, an SMC instruction drives the CPU core to switch back
into the normal world, where execution is resumed. The metrics gathered from
the TA are available to the user as persistent files.

5.2 iperfTZ: Trusted Application

The iperfTZ TA is the primary executing unit. It takes the role of the client
in the client-server model. The TA allocates a buffer for the dummy data on the
10 https://github.com/ChrisG55/iperfTZ.
11 Numbers for individual components include local header lines of code.

https://github.com/ChrisG55/iperfTZ

iperfTZ: Understanding Network Bottlenecks for TrustZone 185

Table 1. Comparison of evaluation platforms.

heap, filled with random data generated by Op-Tee’s Cryptographic Operations
API [10]. With the information from the arguments, the TA finally sets up a
TCP interface socket and opens a client connection before assigning the socket
buffer sizes. Our implementation relies on the Time API [10] to measure the
elapsed time during the network throughput measurement inside the TEE. Op-
Tee computes the time value from the physical count register and the frequency
register. The count register is a single instance register shared between normal
and secure world EL1. The network throughput measurement is then started
while either maintaining a constant bit rate, transmitting a specific number of
bytes or running for 10 seconds. During the measurement, the TA gathers metrics
on the number of transmit calls, i.e., recv and send, bytes sent, time spent in
the transmit calls and the total runtime. Upon completion, results are written to
the shared memory area and the execution switches back to the normal world.

5.3 iperfTZ: Server

The server component is deployed and executed inside the normal world. This is
used to wait for incoming TCP connections (or inbound UDP datagrams) from
iperfTZ’s TA. While executing, it gathers similar network metrics as the other
components. Additionally, this component collects TCP specific metrics, such as
the smoothed round trip time or the maximum segment size. This TCP specific
data is not accessible for TAs and can only be retrieved on the server side using
a getsockopt system call.

6 Evaluation

In this section we will demonstrate how iperfTZ can measure the network
throughput. We further draw conclusions regarding hardware and software
implementation designs. We report that it is particularly challenging to assess

186 C. Göttel et al.

network throughput, given the remarkable diversity one can find on embedded
and mobile Arm systems.

Evaluation Settings. We deploy iperfTZ on the Raspberry Pi platform. Due
to the limited network bandwidth of Raspberry Pi devices supported by Op-Tee,
we also include results under emulation using QEMU.12 With QEMU we can run
the same evaluation as on the Raspberry Pi and we also profit from a higher
network bandwidth. Table 1 compares in detail the two setups. For both setups
we use the same machine as server, on which we collect power consumptions and
run the iperfTZ server component.

Server. The server is connected to a Gigabit switched network, with access to
power meter measurements. The nodes being measured are at a single-hop from
the server. During the micro-benchmarks server components will be deployed
on the server with fixed dummy buffer and socket buffer sizes of 128KiB. This
allows creating an accurate time series of the recorded throughput, latency and
power metrics by concentrating the data acquisition on a single node.

QEMU. We deploy Op-Tee with QEMU v3.1.0-rc3 running on a Dell Pow-
erEdge R330 server. The Op-Tee project has built-in support for QEMU and
uses it in system emulation mode. In system emulation mode QEMU emulates
an entire machine, dynamically translating different hardware instruction sets
when running a virtual machine with a different architecture. In order to provide
full network capability, we replace the default SLiRP network13 deployed with
Op-Tee by a bridged network with a tap device.

Raspberry Pi. Op-Tee only supports the Raspberry Pi 3B. We deploy
Op-Tee on a Raspberry Pi 3B v1.2 equipped with a Broadcom BCM2837
SoC. The SoC implements an ARM Cortex-A53 with ARMv8-A architecture.
The BCM2837 chip lacks support for cryptographic acceleration instructions
and is not equipped with TrustZone Protection Controller (TZPC), Trust-
Zone Address Space Controller (TZASC), Generic Interrupt Controller (GIC)
or any other proprietary security control interfaces on the bus [27]. The Rasp-
berry Pi 3B lacks an on-chip memory or eMMC to provide a securable mem-
ory. We take these limitations into account in our evaluation, and leave further
considerations once a more mature support for the Raspberry Pi platform is
released.

Power Measurement. To measure the power consumption of the two plat-
forms, we connect the Dell PowerEdge server to a LINDY iPower Control 2×6M
power distribution unit (PDU) [17] and the Raspberry Pi 3B to an Alciom Pow-
erSpy2 [1]. The LINDY PDU provides a HTTP interface queried up to every
second with a resolution of 1W and a precision of 1.5%. Alciom PowerSpy2
devices rely on Bluetooth channels to transfer the collected metrics. Both mea-
suring devices collect voltage, current and power consumption in real time.
12 https://www.qemu.org, accessed on 30.07.2019.
13 https://wiki.qemu.org/Documentation/Networking#User_Networking_.28SLIRP.

29, accessed on 30.07.2019.

https://www.qemu.org
https://wiki.qemu.org/Documentation/Networking#User_Networking_.28SLIRP.29
https://wiki.qemu.org/Documentation/Networking#User_Networking_.28SLIRP.29

iperfTZ: Understanding Network Bottlenecks for TrustZone 187

Fig. 4. Throughput-latency plots for different kinds of shared memory.

Memory Bandwidth. We use an existing key-value store TA [13] to evalu-
ate the overhead of the different types of shared memory. The hash-table at
the core of the key-value store uses separate chaining for collision resolution
and implements modular hashing. The GlobalPlatform specification defines
three different types of shared memory: whole (an entire memory area), partial
(a subset of an entire memory area with a specified offset), and temporarily (a
memory area within the REE with an optional offset). The temporarily shared
memory area is only shared with the TA for the duration of the TEE method
invocation; the two others get registered and unregistered with the TEE ses-
sion. The key-value store supports common operations such as DEL, GET and
PUT on key-value pairs. We benchmark each operation in isolation as well as
combining GET and PUT operations (MIXed benchmark). The benchmarks oper-
ate as follows: for whole and partially shared memory, the CA will request a
shared memory region of 512KiB from the TEE and fills it with random data
from /dev/urandom. With temporarily shared memory, the CA will allocate a
512KiB buffer and initialize it similarly with random data. Before invoking a
key-value operation a chunk size of 1KiB is selected as data object at a ran-
dom offset in the shared memory respectively buffer. The random offset is then
used as key and every operation is timed using CLOCK_MONOTONIC.14 During the
benchmark 256 operations are issued at a fixed rate between 1 and 32768 oper-
ations per second. Figure 4 shows the throughput-latency plots for each type of
shared memory as well as for running the key-value store as a CA in the REE.

Compared to the Raspberry Pi, the results on QEMU are predominantly
superposed and only achieve about half the throughput. We believe this is due
14 Manual page: man time.h.

188 C. Göttel et al.

Fig. 5. TCP network throughput measurements for 128 KiB buffer sizes.

to an I/O bound from the Arm instruction and TrustZone emulation using
QEMU. We further observe with QEMU that the DEL benchmark for temporar-
ily shared memory (Fig. 4b) and as CA (Fig. 4d) is clearly distinguishable from
the other benchmarks. On the Raspberry Pi platform the graphs are well sepa-
rated and ranked according to our expectations (lowest to highest throughput):
PUT, MIX50, MIX20, GET, and DEL. The PUT operation has the lowest throughput
because of memory allocation, memory copy and object insertion in the TA. The
GET operation looks up the data object and copies it to the shared memory result-
ing in a higher throughput than the PUT operation. The mixed benchmarks show
a similar behavior: the higher the PUT ratio, the lower the throughput. Hence,
the MIX50 (50% PUT operations) has a lower average throughput than MIX20.
The DEL operation avoids any time intensive memory operation and only has to
free a data object after looking it up in the store. An interesting observation is
made when comparing the memory throughput of the benchmarks executed in
the REE against the benchmarks executed in the TEE. Key-value store oper-
ations executed inside TAs experience a 12×-14× overhead with QEMU and a
12×-17× overhead on the Raspberry Pi. This overhead is due to the world and
context switches associated to TA method invocations.

Network Bandwidth. This micro-benchmark compares the network through-
put measured with iperfTZ in Op-Tee to the network throughput measured
with iperf3 in Linux. We deploy both programs with the same set of parame-
ters, i.e., 128KiB socket and dummy buffer sizes. Upon each iteration the data
send is doubled starting at 1MiB up to 10GiB. We allocate not more than
512KiB for the dummy data on the TA’s heap, since TAs are by default limited
in Op-Tee to 1MiB in size. Linux has two kernel parameters which limit the
maximum size of read and write socket buffers: /proc/sys/net/core/rmem_max
and /proc/sys/net/core/wmem_max. These kernel parameters can be changed
at runtime using sysctl, in order to allocate larger socket buffers.

As shown in Fig. 5, iperfTZ generally exceeds the network throughput of
iperf3 in both setups. On the Raspberry Pi 3B we cannot observe any degrada-
tion of the network throughput due to an overhead from frequent world switches.
This result does not come as a surprise. The memory bandwidth benchmark
operates at a throughput of several hundred MB/s, while the network bandwidth
benchmark operates at about 10MB/s. There is a gap of one order of magnitude

iperfTZ: Understanding Network Bottlenecks for TrustZone 189

Fig. 6. Energy consumption during TCP network throughput measurements. Bit rates
on the x-axis are given in logarithm to base 2.

in throughput between the two benchmarks, which we assume to be sufficient
for the overhead not to arise. However, on QEMU we observe a serious degra-
dation of the network throughput, when trying to achieve Gbit/s bit rate with
Op-Tee. Remarkably, high throughput rates are strongly affected by the world
switching overhead, even degrading beyond unaffected throughput rates. Our
measurements indicate that network throughput beyond 500Mbit/s is affected
by a 1.8× world switching overhead, almost halving the network throughput.

Energy. During the network bandwidth benchmark, we recorded the power con-
sumed by both setups. The LINDY iPower Control and the Alciom PowerSpy2
both record the timestamp as Unix time in seconds and the instantaneous power
in watts. We use those units to execute a numerical integration over time using
the trapezoidal method to obtain the total energy consumed by both setups
during a benchmark run. Figure 6 shows these results. The total energy on the
y-axis (in joule) is consumed by the device while executing a benchmark run for
a specific bit rate on the x-axis (as binary logarithmic scale in Mbit/s). On the
Raspberry Pi (Fig. 6a) we observe that before reaching saturation, iperfTZ is
consuming about 2 J (11%) more than iperf3. In the highly saturated range, the
energy doubles with the throughput. However, with QEMU (Fig. 6b), the energy
difference between the execution in the REE and the TEE is significant. Given
that QEMU is running on an energy-demanding and powerful server, iperfTZ
consumes about 173 J (36%) more before the overhead arises than iperf3 in
the REE. We can clearly attribute this additional energy consumption observed
on both setups to the execution of iperfTZ in the TEE. Certainly, the world
switching overhead also contributes to an increase of the energy consumption
with QEMU. By assuming a similar behavior for the energy consumption on
QEMU as in the saturated range on the Raspberry Pi, we obtain a 1.6× energy
overhead due to world switching.

7 Related Work

There exists a plethora of network benchmarking and tuning tools. We note that
the implementation of iperfTZ is heavily inspired by the well-known iperf tool.

190 C. Göttel et al.

In this sense, iperfTZ supports a subset of its command-line parameters, for
instance to facilitate the execution of existing benchmarking suites.15

The ttcp (Test TCP) tool was one of first programs implemented to mea-
sure the network performance over TCP and UDP protocols. Lately, it has been
superseded by nuttcp.16 A tool with similar features is netperf.17 Unlike the
aforementioned tools, tcpdump18 is a packet analyzer that captures TCP packets
being sent or received over a network. iperfTZ does not provide packet analysis
tools. Instead, it does offer client and server-side measurements both for TCP
and UDP data flows. More recently, iperf integrated most of the functionalities
of ttcp, extending it with multi-threading capabilities (since iperf v2.0) and
allowing bandwidth measurements of parallel streams. While it would be possi-
ble to provide similar support in iperfTZ, the execution of code inside the TAs
is currently single-threaded, hence limiting the achievable outbound throughput.
The most recent version of iperf (v3.0) ships a simplified (yet single-threaded)
implementation specifically targeting non-parallel streams. Flowgrind19 is a dis-
tributed TCP traffic generator. In contrast, iperfTZ follows a client-server
model, with traffic generated between a server and a TA. StreamBox-TZ [25] is
a stream analytics engine, which processes large IoT streams on the edge of the
cloud. The engine is shielded from untrusted software using TrustZone. Similar
to iperfTZ, StreamBox-TZ runs on top of Op-Tee in a TA. Yet, iperfTZ does
not process data streams but can generate and measure network performance of
those streams.

To summarize and to the best of our knowledge, iperfTZ is the first tool
specifically designed to run as a TA for TrustZone that can measure the achiev-
able network throughput for such applications.

8 Conclusion and Future Work

The deployment of TAs is becoming increasingly pervasive for the management
and processing of data over the network. However, due to constraints imposed
by the underlying hardware and runtime system, network performance of TAs
can be affected negatively. iperfTZ is a tool to measure and evaluate network
performance of TAs for Arm TrustZone, a widely available TEE on embed-
ded, IoT and mobile platforms. We implemented the iperfTZ prototype on top
of Op-Tee and we evaluated it on the Raspberry Pi platform. Our experimental
results highlight performance and energy trade-offs deployers and programmers
are confronted with both on hardware and emulated environments. We believe
the insights given by our work can be exploited to improve design and configu-
ration of TEEs for edge devices handling real-world workloads for TAs.

15 Full compatibility with iperf would require substantial engineering efforts that we
leave out of the scope of this work.

16 See footnote 6.
17 See footnote 5.
18 https://www.tcpdump.org, accessed on 30.07.2019.
19 www.flowgrind.net, accessed on 30.07.2019.

https://www.tcpdump.org
www.flowgrind.net

iperfTZ: Understanding Network Bottlenecks for TrustZone 191

We intend to extend our work to support different types of sockets (e.g., data-
gram sockets) and to leverage on-chip cryptographic accelerators. This would
allow us to provide TLS-like channels for TAs, a feature that has not yet been
implemented in Op-Tee. Finally, we aim for supporting various kinds of TEEs,
especially in the context of embedded platforms and SoC, such as Keystone20

for RISC-V processors.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful comments and suggestions. The research leading to these results has
received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under the LEGaTO Project (legato-project.eu), grant agreement No. 780681.

References

1. Alciom: PowerSpy2, 1.01 edn, 4 March 2013
2. Amacher, J., Schiavoni, V.: On the performance of ARM TrustZone. In: Pereira,

J., Ricci, L. (eds.) DAIS 2019. LNCS, vol. 11534, pp. 133–151. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22496-7_9

3. Arm Limited: Isolation using virtualization in the Secure world. https://developer.
arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_
World_Whitepaper.pdf?revision=c6050170-04b7-4727-8eb3-ee65dc52ded2

4. Arm Limited: ARM Security Technology: Building a Secure System using Trust-
Zone Technology, April 2009. http://infocenter.arm.com/help/topic/com.arm.doc.
prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.
pdf. Accessed 30 July 2019

5. Arm Limited: Arm Cortex-A53 MPCore Processor: Technical Reference Manual,
8 February 2016. https://developer.arm.com/docs/ddi0500/g. Revision: r0p4

6. Arm Limited: Fundamentals of ARMv8-A, March 2017. https://static.docs.arm.
com/100878/0100/fundamentals_of_armv8_a_100878_0100_en.pdf. Accessed
30 July 2019

7. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with Haven. ACM Trans. Comput. Syst. 33(3), 8:1–8:26 (2015). https://doi.
org/10.1145/2799647

8. GlobalPlatform, Inc.: TEE Client API Specification Version 1, July 2010
9. GlobalPlatform, Inc.: TEE Sockets API Specification Version 1.0.1, January 2017

10. GlobalPlatform, Inc.: TEE Internal Core API Specification 1.1.2.50, June 2018
11. GlobalPlatform, Inc.: TEE System Architecture Version 1.2, November 2018
12. Göttel, C., et al.: Security, performance and energy implications of hardware-

assisted memory protection mechanisms on event-based streaming systems. In:
2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS), pp. 264–
266 (2018). https://doi.org/10.1109/SRDS.2018.00042

13. Göttel, C., Felber, P., Schiavoni, V.: Developing secure services for IoT with OP-
TEE: a first look at performance and usability. In: Pereira, J., Ricci, L. (eds.) DAIS
2019. LNCS, vol. 11534, pp. 170–178. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-22496-7_11

14. Jang, J.S., Kong, S., Kim, M., Kim, D., Kang, B.B.: SeCReT: secure channel
between rich execution environment and trusted execution environment. In: NDSS,
pp. 1–15 (2015)

20 https://keystone-enclave.org, accessed on 30.07.2019.

https://legato-project.eu/
https://doi.org/10.1007/978-3-030-22496-7_9
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf?revision=c6050170-04b7-4727-8eb3-ee65dc52ded2
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf?revision=c6050170-04b7-4727-8eb3-ee65dc52ded2
https://developer.arm.com/-/media/Files/pdf/Isolation_using_virtualization_in_the_Secure_World_Whitepaper.pdf?revision=c6050170-04b7-4727-8eb3-ee65dc52ded2
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://developer.arm.com/docs/ddi0500/g
https://static.docs.arm.com/100878/0100/fundamentals_of_armv8_a_100878_0100_en.pdf
https://static.docs.arm.com/100878/0100/fundamentals_of_armv8_a_100878_0100_en.pdf
https://doi.org/10.1145/2799647
https://doi.org/10.1145/2799647
https://doi.org/10.1109/SRDS.2018.00042
https://doi.org/10.1007/978-3-030-22496-7_11
https://doi.org/10.1007/978-3-030-22496-7_11
https://keystone-enclave.org

192 C. Göttel et al.

15. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 40th IEEE
Symposium on Security and Privacy (S&P 2019) (2019)

16. Lind, J., Eyal, I., Pietzuch, P., Sirer, E.G.: Teechan: payment channels using trusted
execution environments. ArXiv preprint arXiv:1612.07766 (2016)

17. Lindy Electronics Ltd.: iPower Control 2x6M/2x6XM, 1 edn, June 2015
18. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th

USENIX Security Symposium (USENIX Security 2018) (2018)
19. Lyu, X., et al.: Selective offloading in mobile edge computing for the green internet

of things. IEEE Netw. 32(1), 54–60 (2018). https://doi.org/10.1109/MNET.2018.
1700101

20. Mäkinen, O.: Streaming at the edge: local service concepts utilizing mobile edge
computing. In: 2015 9th International Conference on Next Generation Mobile
Applications, Services and Technologies, pp. 1–6 (2015). https://doi.org/10.1109/
NGMAST.2015.35

21. McGillion, B., Dettenborn, T., Nyman, T., Asokan, N.: Open-TEE - an open vir-
tual trusted execution environment. In: 2015 IEEE Trustcom/BigDataSE/ISPA,
TRUSTCOM 2015, vol. 1, pp. 400–407. IEEE Computer Society, Washington, DC
(2015). https://doi.org/10.1109/Trustcom.2015.400

22. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW 2011, pp. 113–124. ACM, New York (2011). https://doi.org/10.
1145/2046660.2046682

23. Ngabonziza, B., Martin, D., Bailey, A., Cho, H., Martin, S.: TrustZone explained:
architectural features and use cases. In: 2016 IEEE 2nd International Conference
on Collaboration and Internet Computing (CIC), pp. 445–451 (2016). https://doi.
org/10.1109/CIC.2016.065

24. Ning, Z., Kong, X., Xia, F., Hou, W., Wang, X.: Green and sustainable cloud of
things: enabling collaborative edge computing. IEEE Commun. Mag. 57(1), 72–78
(2019). https://doi.org/10.1109/MCOM.2018.1700895

25. Park, H., Zhai, S., Lu, L., Lin, F.X.: StreamBox-TZ: secure stream analytics at the
edge with TrustZone. In: 2019 USENIX Annual Technical Conference (USENIX
ATC 2019), pp. 537–554. USENIX Association, Renton, July 2019. https://www.
usenix.org/conference/atc19/presentation/park-heejin

26. Segarra, C., Delgado-Gonzalo, R., Lemay, M., Aublin, P.-L., Pietzuch, P., Schi-
avoni, V.: Using trusted execution environments for secure stream processing of
medical data. In: Pereira, J., Ricci, L. (eds.) DAIS 2019. LNCS, vol. 11534, pp.
91–107. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22496-7_6

27. Sequitur Labs Inc.: Easing Access to ARM TrustZone - OP-TEE and Raspberry
Pi 3, 26 September 2016

28. Shepherd, C., Akram, R.N., Markantonakis, K.: Establishing mutually trusted
channels for remote sensing devices with trusted execution environments. In: Pro-
ceedings of the 12th International Conference on Availability, Reliability and Secu-
rity, ARES 2017, pp. 7:1–7:10. ACM, New York (2017). https://doi.org/10.1145/
3098954.3098971

29. Shepherd, C., et al.: Secure and trusted execution: past, present, and future - a
critical review in the context of the internet of things and cyber-physical systems.
In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 168–177 (2016). https://doi.org/
10.1109/TrustCom.2016.0060

30. Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., Nikolopoulos, D.S.: Chal-
lenges and opportunities in edge computing. In: 2016 IEEE International Confer-

http://arxiv.org/abs/1612.07766
https://doi.org/10.1109/MNET.2018.1700101
https://doi.org/10.1109/MNET.2018.1700101
https://doi.org/10.1109/NGMAST.2015.35
https://doi.org/10.1109/NGMAST.2015.35
https://doi.org/10.1109/Trustcom.2015.400
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1109/CIC.2016.065
https://doi.org/10.1109/CIC.2016.065
https://doi.org/10.1109/MCOM.2018.1700895
https://www.usenix.org/conference/atc19/presentation/park-heejin
https://www.usenix.org/conference/atc19/presentation/park-heejin
https://doi.org/10.1007/978-3-030-22496-7_6
https://doi.org/10.1145/3098954.3098971
https://doi.org/10.1145/3098954.3098971
https://doi.org/10.1109/TrustCom.2016.0060
https://doi.org/10.1109/TrustCom.2016.0060

iperfTZ: Understanding Network Bottlenecks for TrustZone 193

ence on Smart Cloud (SmartCloud), pp. 20–26 (2016). https://doi.org/10.1109/
SmartCloud.2016.18

31. Volos, S., Vaswani, K., Bruno, R.: Graviton: trusted execution environments on
GPUs. In: Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, pp. 681–696, OSDI 2018. USENIX Association, Berke-
ley (2018). http://dl.acm.org/citation.cfm?id=3291168.3291219

https://doi.org/10.1109/SmartCloud.2016.18
https://doi.org/10.1109/SmartCloud.2016.18
http://dl.acm.org/citation.cfm?id=3291168.3291219

Atomic Cross-Chain Swaps
with Improved Space and Local Time

Complexity

Soichiro Imoto1(B), Yuichi Sudo1, Hirotsugu Kakugawa2,
and Toshimitsu Masuzawa1

1 Osaka University, Suita, Japan
{s-imoto,y-sudou,masuzawa}@ist.osaka-u.ac.jp

2 Ryukoku University, Kyoto, Japan
kakugawa@rins.ryukoku.ac.jp

Abstract. An effective atomic cross-chain swap protocol is introduced
by Herlihy [Herlihy, 2018] as a distributed coordination protocol in order
to exchange assets across multiple blockchains among multiple parties.
An atomic cross-chain swap protocol guarantees; (1) if all parties conform
to the protocol, then all assets are exchanged among parties, (2)even if
some parties or coalitions of parties deviate from the protocol, no party
conforming to the protocol suffers a loss, and (3) no coalition has an
incentive to deviate from the protocol. Herlihy [Herlihy, 2018] invented
this protocol by using hashed timelock contracts.

A cross-chain swap is modeled as a directed graph D = (V, A). Ver-
tex set V denotes a set of parties and arc set A denotes a set of pro-
posed asset transfers. Herlihy’s protocol uses the graph topology and
signature information to set appropriate hashed timelock contracts. The
space complexity of the protocol (i.e., the total number of bits written
in the blockchains in a swap) is O(|A|2). The local time complexity of
the protocol (i.e., the maximum execution time of a contract in a swap
to transfer the corresponding asset) is O(|V | · |L|), where L is a feedback
vertex set computed by the protocol.

We propose a new atomic cross-chain swap protocol which uses only
signature information and improves the space complexity to O(|A| · |V |)
and the local time complexity to O(|V |).

1 Introduction

1.1 Motivation

The seminal work [2] by Nakamoto in 2008 for developing bitcoins has attracted
many researchers to the research of blockchains. However, the blockchain has
problems in privacy level, increased transaction time and scalability. In order

This work was supported by JSPS KAKENHI Grant Numbers 17K19977, 18K18000,
19H04085, and 19K11826 and JST SICORP Grant Number JPMJSC1606.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 194–208, 2019.
https://doi.org/10.1007/978-3-030-34992-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_16

Atomic Cross-Chain Swaps 195

to overcome them, new cryptocurrencies with a wide variety of advantages are
developed. There are also blockchains that handle physical rights as well as
virtual currency (e.g., ownership of cars, copyrights of songs, proof of circulation
and so on) [3]. It is a great advantage of blockchains that it allows us to exchange
them in the absence of any trusted third parties.

As trading on blockchains becomes popular, demands for trading across mul-
tiple blockchains increase [3]. As a specific example of exchanging assets across
multiple blockchains among multiple parties, consider the case that Alice wants
to sell the copyrights of her songs for bitcoins. Bob is willing to buy her copy-
rights with alt-coins. Carol wants to exchange alt-coins for bitcoins. An atomic
cross-chain swap protocol is a mechanism by which multiple parties exchange
their assets managed by multiple blockchains. It is common that some parties do
not know and do not trust each other, thus the protocol must guarantee that no
party conforming to the protocol suffers from a loss in their trading. Specifically,
this protocol guarantees the following three conditions. (1) if all parties conform
to the protocol, then all assets are exchanged among parties, (2) even if some
parties or coalitions of parties deviate from the protocol, no party conforming
to the protocol suffers a loss, and (3) no coalition has an incentive to deviate
from the protocol. The more blockchain users have request to trade as blockchain
technology develops in the future, the more important atomic cross-chain swaps
will be [10–17].

In many blockchains, assets are transferred from one party to another party
by using smart contracts. A smart contract is a program that runs on a blockchain
and has its correct execution enforced by the consensus protocol [4,5]. In this
paper, hashed timelock contracts (HTLCs) [6,7] are used. In HTLC, recipients of
a transaction have to acknowledge payment by generating cryptographic proof
within a certain timeframe. Otherwise, the transaction does not take place. For
example, consider the case Alice wants to send an asset to Bob by using HTLCs
in gratitude for taking money from Bob. Alice first generates random secret data
s, called a secret, and produces hashlock h = H(s), where H is a cryptographic
hash function. Next, Alice publishes the contract with hashlock h. After that, if
Alice takes money form Bob, Alice reveals the secret s to Bob. When Bob sends
the secret s to the contract, the contract irrevocably transfers Alice’s asset to
Bob. Alice also sets timelock t so that her escrowed asset can be returned if Bob
does not give money to Alice within the time.

In this paper, we consider the case that more than two parties exchange their
assets, as shown in Fig. 1.

In the following, we quote a simple protocol presented by Herlihy [1] for
exchanging assets among Alice, Bob, and Carol. In that exchanging, Alice sends
the copyrights of her songs to Bob, Bob sends alt-coins to Carol and Carol sends
bitcoins to Alice. Let Δ be time enough for one party to publish a smart contract
on any of the blockchains, or to change the state of a contract, and for the other
party to detect the change:

196 S. Imoto et al.

Fig. 1. Several parties exchange their assets by using (possibly) different blockchains.
For example, the party A gets ownership of a car and the copyright of a song for 1.1
BTC and 2 ether.

1. Alice creates a secret s, hashlock h = H(s), and publishes a contract on the
music copyright blockchain with hashlock h and timelock 6Δ in the future,
to transfer her music copyrights to Bob.

2. When Bob confirms that Alice’s contract has been published on the copyright
blockchain, he publishes a contract on the alt-coin blockchain with the same
hashlock h but with timelock 5Δ in the future, to transfer his alt-coins to
Carol.

3. When Carol confirms that Bob’s contract has been published on the alt-coin
blockchain, she publishes a contract on the Bitcoin blockchain with the same
hashlock h, but with timelock 4Δ in the future, to transfer her bitcoins to
Alice.

4. When Alice confirms that Carol’s contract has been published on the Bitcoin
blockchain, she sends the secret s to Carol’s contract, acquiring the bitcoins
and revealing s to Carol.

5. Carol then sends s to Bob’s contract, acquiring the alt-coins and revealing s
to Bob.

6. Bob sends s to Alice’s contract, acquiring the copyrights and completing the
swap.

Everyone can stop the swap if published contracts are different from prede-
termined ones. There is no possibility that Alice transfers to Bob the copyrights
without acquiring the bitcoins because only Alice initially knows secret s. If
Carol’s bitcoins have been transferred, this guarantees that she can get s and
acquire the alt-coins as well because she publishes her contract after confirm-
ing publication of Bob’s contract and the timeout specified by the time lock of
Bob’s contract is one Δ greater than that of her contract. Bob also acquires the
copyrights if his alt-coins have transferred. Even if Alice and Bob conspire to
deceive Carol, they can not get the bitcoins without payment for Carol, thus
Carol never suffers from a loss. As seen from these facts, every party should
publish his contracts only after all the contracts for assets transferred to him are
published unless he generates a secret for a swap. We call a party who generates
a secret for a swap a leader, and denote the set of leaders by L. From the above

Atomic Cross-Chain Swaps 197

discussion, L must be a feedback vertex set. This simple protocol works if and
only if we have exactly one leader l such that {l} is a feedback set.

Generally, a cross-chain swap is modeled as a directed graph D = (V,A).
Vertex set V denotes a set of parties and arc set A denotes a set of proposed
asset transfers. When there are multiple cycles, this simple protocol does not
work. The leader can publish his two contracts without anxiety about a result
of the swap. However, each of other two parties cannot publish his contracts
until he confirms the other publishes a contract to him. Therefore, at least one
leader is necessary on each cycle of a swap graph. Moreover, if there are multiple
cycles, it is not possible to assign consistent timeouts across cycles in a way that
guarantees a gap of at least Δ between contracts for giving assets and those for
taking assets. That is, it is not easy to realize a mechanism such that each leader
reveals its secret with confidence when there are multiple leaders.

To circumvent the problem, Herlihy [1] sets complicated conditions for each
smart contract to design an atomic cross-chain swap protocol. In the Herlihy’s
protocol, each leader creates a secret and one hashlock for each of the |L| secrets
is set in each contract in order to publish contracts safely. Each leader sends
his own secret with his signature to the contracts corresponding the asset which
he wants to get. The party who published the contract looks at it and gets the
secret with the leader’s signature. Each party unlocks the hashlock created by
the leader by sending all secrets with the signature and his own signature. Each
hashlock has its timelock, which depends on the length of the path along which
the secret is transferred from the leader generating the secret. The sequence of
signatures of parties indicates the path. It is necessary to check whether the path
actually exists in a given swap. Therefore, topology information of a swap graph
is stored in every contract, which requires O(|A|) bits. A contract is triggered
when all secrets of each leader are sent into its timelock to the contract and the
network nodes of the blockchain of the corresponding contract verify that these
paths exist.

1.2 Our Contributions

Let D(V,A) be a given directed graph that represents a cross-chain swap to
general graphs. We propose an atomic cross-chain swap protocol, which improves
the space complexity (bits stored on all blockchains) of Herlihy’s protocol [1] from
O(|A|2) to O(|A| · |V |), and the local time complexity (the maximum execution
time of a contract in a swap to transfer the corresponding asset) from O(|V | · |L|)
to O(|V |). The protocol does not store the swap topology in a contract. Instead, it
simply assigns each contract the timelock depending on the number of signatures
of parties. Specifically, we set the timelock of a contract as follows: the contract
is triggered if and only if the contract is given signatures of distinct x parties
in a swap before time t + xΔ for some x ∈ [1, n] where t is the time instance
we will explain later (the starting time of the execution plus alpha). Suppose
that an asset of party v is transferred to another party by executing a contract.
This means that the signature of x parties are published in the corresponding
blockchain before time t + xΔ. Then, party v can trigger all the contracts that

198 S. Imoto et al.

transfer an asset to v because v can obtain the signature of x parties from that
blockchain and can give those contracts x + 1 signatures by adding its own
signature before time t + (x + 1)Δ. As a result, it is not necessary to store the
topology information of a swap in any contract, thus the space complexity is
improved.

Let local time complexity be how long a contract takes to be triggered from
executing a first action for triggering, which is sending a secret to the contract
from a party at first. The local time complexity is much smaller than the exe-
cution time of the protocol. However, it is worthwhile to mention that each
contract is executed by all network nodes that host the copies of the ledger of
the corresponding blockchain. Therefore, the local time complexity is an index
independent of the execution time and reducing local time complexity of a smart
contract is of practical importance. In Herlihy’s protocol, a contract must verify
at most |V | signatures for the hashlock of each leader. Thus, we need Θ(|V | · |L|)
time to trigger one contract. On the other hand, in the proposed protocol, we
only need to verify |L|(≤ |V |) secrets and at most |V | signatures. That is why
the proposed protocol improves local time complexity from |V | · |L| to |V |. We
summarize our contribution to Table 1.

Table 1. Comparison between the performances of Herlihy’s protocol and our protocol.

Local time complexity Execution time Space complexity

Herlihy’s protocol O(|V | · |L|) O(|V |Δ) O(|A|2)
Our protocol O(|V |) O(|V |Δ) O(|A| · |V |)

2 Model

2.1 Graph Model

D = (V,A) is a directed graph, where V is a finite set of vertexes, and A is a finite
set of ordered pairs of distinct vertexes called arcs. The number of vertexes |V | is
denoted by n. An arc (u, v) has tail u and head v. An arc leaves its tail and enters
its head. Therefore, an arc (u, v) is leaving arc from u and entering arc to v. A
digraph D′ = (V ′, A′) is a subgraph of D = (V,A) if V ′ ⊆ V , A′ ⊆ A∩ (V ′ ×V ′).

A path p in D is a sequence of vertexes (v0, v1, ..., vk) with (vi, vi+1) ∈ A for
every i = 0, 1, . . . , k−1, where we define k as the length of the path. The distance
dist(u, v) from vertex u to vertex v is the length of the shortest path from u to
v in D. D’s diameter diam(D) is the largest distance between two vertexes in
D. A vertex v is reachable from vertex u if there is a path from u to v. Directed
graph D is strongly connected if every vertex is reachable from any other vertex
in D. A path (u0, ..., uk) with k ≥ 1 is a cycle if u0 = uk. A feedback vertex set
of D is a set of vertexes whose removal makes a graph acyclic. By definition, any
feedback vertex set contains at least one vertex in any cycle in D.

Atomic Cross-Chain Swaps 199

2.2 Blockchain and Smart Contract Model

A blockchain is a distributed ledger that can record transactions between parties
in a verifiable and permanent way. We do not assume any specific blockchain
algorithm. We only assume that every blockchain used in a cross-chain swap
supports smart contracts. An owner of an asset can transfer ownership of the
asset to a counterparty by creating a smart contract. The owner specifies condi-
tions in the contract to transfer the asset. A counterparty can get ownership of
the asset when the conditions are satisfied. We say that a contract is published
when the owner of the corresponding asset releases the contract on a blockchain.
A contract is triggered when all conditions of the contract are satisfied and the
ownership of the asset on the contract is transferred to the counterparty. The
owner of an asset can also specify conditions to get back the asset on a smart
contract. If the conditions are satisfied before the contract is triggered, the asset
is returned to the owner. Thereafter, the asset is never transferred to the coun-
terparty by this contract. Typically, the owner can specify the condition to get
back the asset in the form of timeout condition. The owner can regain the asset
anytime after the specified time in a contract. Smart contracts are immutable,
which means smart contracts can never be changed and no one can tamper with
or break the contract. We assume that every operation on any blockchain can
be completed within a known amount of time Δ. In particular, every party can
publish a contract within Δ unit time and every party can trigger a contract
within Δ unit time (if he has all information to satisfy all conditions of the
contract). Blockchains require each party v to create the public key pkeyv and
the private key skeyv for transactions. A signature sign(x, v) is the signature on
data x signed with skeyv. Every party can verify the signature sign(x, v) with
the public key pkeyv.

2.3 Swap Model

Parties v1, v2, . . . , vn are given a digraph D = (V,A), where each vertex in V
represents a party, and each arc (u, v) ∈ A represents an asset on a blockchain
to be transferred from party u to party v. When ownership of an asset on an
arc (u, v) transfers from u to v, we say the asset transfer happens, or the arc is
triggered.

We denote the corresponding asset for arc (u, v) ∈ A as au,v. The value of
each asset may vary from one party to another; for example, v may find a higher
value on the asset than u. Otherwise, that is, if all the parties see the same value
about an asset, exchanging their assets following D = (V,A) is meaningless (no
one can gain unless someone loses.). The value of au,v for u (resp. v) is denoted
by value−

u,v (resp. value+
u,v). We define value+

D,v as the sum of the values for v

of all entering arcs to v in D, i.e., value+
D,v =

∑
(u,v)∈A value+

u,v. We also define
value−

v,D =
∑

(v,u)∈A value−
v,u as the sum of the values for v of all leaving arcs

from v in D.
We assume that D meets the following condition because otherwise party v

should not participate in a swap D.

200 S. Imoto et al.

∀v ∈ V : value+
D,v > value−

v,D

Moreover, we assume that there exists no connected subgraph D′ = (V ′, A)
of D such that

∃C ⊂ V ′ : (
∑

v′∈C

(value+
D′,v′ − value−

v′,D′) >
∑

v′∈C

(value+
D,v′ − value−

v′,D)) (1)

∧(∀v′′ /∈ C : value+
D′,v′′ − value−

v′′,D′ ≥ value+
D,v′′ − value−

v′′,D). (2)

Inequality (1) means that one coalition C in D′ gets more benefits in D′

than D, and (2) means that any party in D′ − C gets equal to or more benefits
in D′ than D. If swap D has such a subgraph D′, we can say that D forces C
to perform disadvantage exchanges because C gets larger benefits in swap D′.
Therefore, D is not an appropriate swap. This is the reason why we exclude
such a swap. As we will explain in Sect. 5, this assumption is weaker than the
assumption that Herlihy [1] makes to guarantee that no party and coalition can
get more benefits by deviating from the protocol than following the protocol.
Even without this assumption, the proposed protocol is an atomic cross-chain
swap protocol under another specific assumption about value function which
Herlihy’s protocol requires. We discuss that in the Sect. 5.

A protocol is a strategy for a party, that is, a set of rules that determines
which action the party takes. Ideally, all parties in a swap D = (V,A) follows
the common protocol P . However, we must consider the case that some party
does not follow (i.e, deviates from) the common protocol to get larger benefits.
To make the matter worse, those parties may make a coalition and take actions
cooperatively to get larger benefits in total (some party in the coalition willingly
loses aiming at larger total benefits of the coalition). We must design a protocol
such that any party following the protocol does not suffer from a loss even if
such selfish parties or coalitions exist. We assume that every party in a swap
D = (V,A) can send any message to any party in the swap. Space complexity of
a protocol is measured by the total number of bits required store information on
all blockchains in a swap. Local time complexity of a protocol is measured by the
maximum execution time of a contract in a swap to transfer the corresponding
asset.

Definition 1. A swap protocol P is uniform if it guarantees the followings:

– If all parties follow P , all arcs in D = (V,A) are triggered.
– Even if there are parties arbitrarily deviating from P , every party v following

P gets all assets of entering arcs to v or regains all assets of leaving arcs
from v.

Definition 2. A swap protocol P is Nash equilibrium if no party can get more
benefits by deviating from P than following P unless he joins a coalition.

Definition 3. A swap protocol P is strong Nash equilibrium if it guarantees
that no party and coalition can get more benefits by deviating from P than fol-
lowing P .

Atomic Cross-Chain Swaps 201

Definition 4. A swap protocol P is atomic if it guarantees to be uniform and
strong Nash equilibrium.

3 Proposed Protocol

3.1 Outline of Proposed Protocol

The proposed protocol P consists of four phases. In Phase 1, every party finds a
common feedback vertex set L of D = (V,A) locally by using the same algorithm.
Although finding a minimum feedback vertex set is NP-hard [8], we do not need
the minimum set, thus we can use any approximate solution. For example, there
exists an algorithm to find a 2-approximate solution [9]. The parties belonging
to the vertex set L = {l1, l2, . . . , lk} are called leaders. We call the other parties
f1, f2, . . . , fn−k followers. In this phase, every leader generates a secret which
is a random bit string and calculates a hashlock based on the secret. In Phase
2, a smart contract corresponding to each arc of D is published. Each leader
spontaneously publishes contracts for all his leaving arcs. Each follower publishes
contracts for all his leaving arcs after confirming that the contracts for all his
entering arcs are already published. In Phase 3, each of the leaders l2, l3, . . . , lk
sends its secret to l1 after confirming that the contracts for all its entering arcs
have been published. The leader l1 starts Phase 4 after l1 confirms that the
contracts for all the entering arcs to l1 have been published and all secret have
been sent from each other leaders. In Phase 4, each arc of D is sequentially
triggered, which starts from leader l1.

As described in Sect. 3.2, we design the contracts in Phase 2 so as to guar-
antee the following three properties. (i) For any arc, no party can trigger the
corresponding contract without knowing the secrets of all leaders. (ii) For any
party v, if a contract on leaving arc from v is triggered, v can trigger the con-
tracts published on all entering arcs to v. (iii) For any arc (u, v), party v can
regain au,v if the contract on (u, v) are not triggered during a certain period after
it was published. If a leader li follows the proposed protocol, li sends its secret
to the leader l1 after confirming that the contracts on all entering arcs have been
published. Therefore, from Property (i) and (ii), it is guaranteed that no leaving
arc from li is triggered unless all entering arcs to li are triggered. Moreover, from
property (iii), after a certain period of time, li gets assets of all entering arcs to
li, or regains assets of all leaving arcs from li. If a follower fi follows the proposed
protocol, fi publishes the contracts for all leaving arcs after confirming that the
contracts for all entering arcs have been published. Therefore, according to the
same argument, after a certain period of time, fi gets assets of all entering arcs
to fi, or regains assets of all leaving arcs from fi.

In the following, we describe the trigger condition and regain condition of
the smart contract in Sect. 3.2, and the detailed operation in Phases 1, 2, 3 and
4 in Sects. 3.3, 3.4, 3.5 and 3.6, respectively.

202 S. Imoto et al.

3.2 The Conditions of Smart Contracts

In this subsection, we specify what each party writes in a contract. In a contract,
its publisher specifies the conditions for transferring and regaining the asset.
Each leader li makes hashlock H(si) = hi with random secret data si, called
a secret, where H() is a cryptographic hash function common to all parties.
In any blockchain, as mentioned in Sect. 2.2, time Δ is enough to publish and
trigger a contract. The condition of the contract on arc (u, v) to transfer asset
au,v is as follows: Asset au,v is transferred to counterparty v if v sends the
secrets s1, s2, . . . , sk of all leaders and x signatures1 on k-tuple (s1, s2, . . . , sk)
by arbitrary x parties to the contract before time ts+((diam(D)+1)Δ+2ε)+xΔ,
where ts is the starting time of the protocol. That is, the more a party collects
the signatures of the parties, the later he can trigger the contracts on his entering
arcs. Let ε(<< Δ) be the time required to complete each of Phases 1 and 3. We
set the deadline of the smart contract to time ts + ((diam(D) + 1)Δ + ε) + nΔ,
so that the publisher can regain his asset on the contract if the corresponding
contract is not triggered before that time.

3.3 Phase 1: Preparation

Every party takes D = (V,A) as input. At first, he chooses leaders l1, l2, . . . , lk
such that the leaders form a feedback vertex set of D. Since all parties are
given the same swap D = (V,A) as input, they can independently find the same
leaders l1, l2, . . . , lk without communication. We call l1 the top leader and the
other leaders l2, l3, ..., lk sub-leaders.

Next, each leader li generates a sequence of random bits si called a secret
and computes hashlock hi = H(si), after which it sends only the hashlock to
all parties. Finally, all parties send their public keys pkeyv1 , pkeyv2 , ..., pkeyvn

for verifying their signatures. We assume that all of these can be done in time
ε � Δ.

3.4 Phase 2: Publication

Every leader spontaneously publishes contracts for all their leaving arcs with the
conditions described in Sect. 3.2.

When a follower finds that the contracts on all his entering arcs are already
published, he checks whether the contents of the contracts are consistent with
the conditions of Sect. 3.2. Especially, he checks whether the public keys of all
the parties and the hashlocks of all leaders that he receives in Phase 1 match
the public keys of all parties and the hashlocks of all leaders specified in the
contracts on entering arcs. He quits the swap without publishing any contract if
those public keys or hashlocks do not match. Thus, even if the party deviating
from P may send a fake hashlock or a public key to the other parties in Phase 1,
no other party following P suffers from a loss. If all the published contracts are

1 sign((s1, s2, . . . , sk), v1), sign((s1, s2, . . . , sk), v2), . . . , sign((s1, s2, . . . , sk), vx).

Atomic Cross-Chain Swaps 203

consistent, he publishes contracts for all his leaving arcs. As will be described
later, each party v reveals the signature on s1, s2, . . . , sk with v’s secret key skeyv
only when v triggers all entering arcs. Therefore, all entering arcs of v can be
triggered if any leaving arc of v is triggered. Hence, no follower suffers from a
loss, that is, every follower gets assets of all his entering arcs or regains assets of
all his leaving arcs.

As described in Sect. 4, Phase 2 can be completed within at most (diam(D)+
1)Δ time.

3.5 Phase 3: Share Secrets

Every sub-leader reveals his secret to the top-leader if the contracts are published
on all his entering arcs. This is to ensure that the top-leader can trigger contracts
at first in Phase 4.

The top-leader confirms whether or not the secrets acquired from the sub-
leaders are correct using hashlocks shared at Phase 1. If the top-leader finds an
incorrect secret, it quits the swap without going to Phase 4.

We assume that Phase 3 can be done in time ε � Δ.

3.6 Phase 4: Trigger

The top-leader starts Phase 4 if he acquires the secrets of all the sub-leaders
within time (diam(D) + 1)Δ + 2ε which is enough to complete Phases 1, 2
and 3. This is because the top-leader only need to send secrets of all leaders
s1, s2, ..., sk and its signature within the time ts + ((diam(D) + 1)Δ + 2ε) + Δ
to all his entering arcs in order to get the assets of all his entering arcs. The
top-leader sends these secrets and his signature to all his entering arcs, by which
he triggers the contracts and acquires all assets of the entering arcs.

If the top-leader deviates from P , he may not trigger some (or all) contracts
that transfer assets to the top leader. However, those actions are irrational. We
explain the reason in Lemma 8, (Sect. 4).

Next, we describe the behavior of the sub-leaders and followers in Phase 4.
Each party v of them waits until any of his leaving arcs is triggered. Consider
that one of his leaving arcs is triggered with the information of the secrets
s1, s2, . . . , sk and the signature of x distinct parties (1 ≤ x < n) on k-tuple
(s1, s2, . . . , sk). By definition of contracts, the leaving arc must be triggered
before ts +(diam(D)+1)Δ+2ε+xΔ. Then, party v acquires from the contract
the secrets s1, s2, . . . , sk and those x signatures within time ts+(diam(D)+1)Δ+
2ε+xΔ. He immediately sends s1, s2, . . . , sk and the x signatures in addition to
his signature (thus x + 1 signatures in total) to all entering arcs. As a result, v
sends all necessary information to the contracts on all his entering arcs before
time ts+((diam(D)+1)Δ+2ε+(x+1)Δ, which guarantees that all his entering
arcs are triggered. We describe these in Fig. 2.

Every party regains the asset of each of leaving arcs if it is not triggered by
the deadline (specified by the timeout) ts + (diam(D) + n + 1)Δ + 2ε.

204 S. Imoto et al.

Fig. 2. The party v can trigger all his entering arcs when a leaving arc is triggered.

4 Correctness and Complexity of Protocol

We prove that proposed protocol P is atomic (i.e., uniform and strong Nash
equilibrium). First, we prove that P is uniform.

Lemma 1. Assume that top-leader l1 follows P . If any leaving arc of l1 is trig-
gered, all of entering arcs to l1 are triggered.

Proof. Assume by contradiction that there is an execution of P such that a
leaving arc (l1, v) of the top-leader l1 is triggered and an entering arc (u, l1)
is not triggered. After (l1, v) is triggered, l1 immediately obtains secrets of all
leaders, which is before the time ts + diam(D) + 1)Δ + 2ε. Thus, l1 sends all
the secrets and its own signature to the contract on (u, l1) before the time ts +
diam(D) + 1)Δ + 2ε, which means that l1 triggers (u, l1) in the execution. This
contradicts the assumption.

Lemma 2. Assume that sub-leader li(i �= 1) follows P . If any leaving arc of li
is triggered, all of entering arcs to li are triggered.

Proof. Assume for contradiction that there is an execution of P such that a
leaving arc (li, v) of sub-leader li is triggered but an entering arc (u, li) is not
triggered. All secrets s1, s2, ..., sk and the signature of x(< n) parties are revealed
in the contract of (li, v) by time ts+(diam(D)+x+1)Δ+2ε. By the assumption,
those x signatures do not include the signature of li because li reveals its signa-
ture only when it triggers the contracts of all entering arcs. The contract on (li, v)
requires the secret of all leaders and li does not reveal its secret si until the con-
tracts of all its entering arcs are published. Therefore, the contracts of all entering
arcs of li are published before time ts+(diam(D)+x+1)Δ+2ε. From the above,
li sends the secrets s1, s2, . . . , sk and the x signatures in addition to its signature
on s1, s2, . . . , sk to the contract on (u, li) by time ts + (diam(D) + x + 1)Δ + 2ε.
This implies that edge (u, li) is triggered in the execution. This is a contradiction.

Lemma 3. Assume that follower f follows P . If any leaving arc of f is triggered,
all of entering arcs to f are triggered.

Atomic Cross-Chain Swaps 205

Proof. Follower f publishes a contract for a leaving arc from f only after the
contracts of all entering arcs to f are published. Therefore, all entering arcs to
f are already published when any leaving arc from f is triggered. We can prove
the lemma in the same way as the proof of Lemma 2.

Lemma 4. Assume that party v follows P . If any leaving arc of v is triggered,
all of entering arcs to v are triggered.

Proof. The lemma immediately follows from Lemmas 1, 2, and 3

Lemma 5. Let SC be the smart contract published on any leaving arc from party
v that follows P . It happens before time ts+(diam(D)+n+2)Δ+2ε that contract
SC is triggered or the asset of SC is regained by v.

Proof. If a leaving arc from v is not triggered before time ts + (diam(D) + n +
1)Δ + 2ε, party v calls the timeout function of the contract on the arc within at
most Δ unit time after the deadline ts + (diam(D) + n + 1)Δ + 2ε.

Lemma 6. If every party follows P , all arcs are triggered within the time ts +
2(diam(D) + 1)Δ + 2ε.

Proof. If all parties follow P , each leader l immediately publishes contracts for
all leaving arcs from l after the start of Phase 2, and each follower f publishes
contracts for all leaving arcs from f immediately after the contracts for all enter-
ing arcs to f are published. Since the time required to publish each contract is
at most Δ, we can see that all parties complete Phase 2 in (diam(D)+1)Δ time.
Therefore, since the upper bound ε of the time is required for the local compu-
tation and the message transmission of Phases 1 and 3, Phase 3 is completed
by time ts + (diam(D) + 1)Δ + 2ε. Thus, top-leader l1 will immediately begin
Phase 4.

After Phase 4 has started, the leader l1 immediately triggers the contracts
of all entering arcs to l1. Each party v other than l1 immediately triggers the
contracts of all entering arcs to v, once a contract on any leaving arc from v has
been triggered. The signature on (s1, s2, . . . , sk) by v is never used to trigger the
contract on the arc which is triggered for the first time among all leaving arcs
from v. Therefore, v triggers all entering arcs to v by using the signatures used to
trigger the leaving arc and his own signatures. Since the time required to trigger
each contract is at most Δ, we can show, by the induction on distance from top-
leader l1, that the time required to trigger the contracts on all arcs in a given
swap in Phase 4 is at most (diam(D) + 1)Δ. Summing up these time for Phases
1 to 4, we can show that all arcs are triggered by time ts+2(diam(D)+1)Δ+2ε.

Lemma 7. Protocol P is uniform.

Proof. The lemma immediately follows from Lemmas 4, 5, and 6

Lemma 8. Protocol P is strong Nash equilibrium.

206 S. Imoto et al.

Proof. Assume by contradiction that, in an execution of P , a coalition C formed
from some parties gets more profits by deviating from protocol P when the other
parties follow P . That is, for C, the profits gained by D′ is bigger than that C
gets with D, where D′ = (V ′, A′) is the subgraph of D induced by all arcs trig-
gered in the execution. In other words, the following inequality holds:

∑
v∈C(value+

D′,v − value−
v,D′) >

∑
v∈C(value+

D,v − value−
v,D)

Every party in V ′ \ C triggers all his entering arcs by Lemma 4. Therefore,
all entering arcs to v′ in V ′ \ C are included in A′. Therefore, the following
inequality holds for every party v′ ∈ V ′ \ C.

∀v′ ∈ V ′ \ C : value+
D′,v′ − value−

v′,D′ = value+
D,v′ − value−

v′,D′ ≥
value+

D,v′ − value−
v′,D

However, these condition contradicts the assumption on a swap D = (V,A)
introduced in Sect. 2.3.

Theorem 1. Protocol P is an atomic cross-chain swaps protocol. If every party
follows P , the swap can be completed in time 2(diam(D)+1)Δ+2ε. Even if any
set of parties deviates from P , the swap finishes in at most time (diam(D)+n+
1)Δ + 2ε. Protocol P requires space complexity (the total number of bits on all
the blockchains) of O(|A| · · · |V |). Protocol P requires local time complexity (the
maximum execution time of a contract in a swap to transfer the corresponding
asset) of O(|V |).
Proof. Protocol P is atomic by Lemmas 7 and 8. The execution time of P follows
from Lemmas 5 and 6. Space complexity of P is O(|A| · |V |) because each arc has
one contract and each contract requires public keys of |V | parties and hashlocks
of |L| ≤ |V | leaders. Local time complexity of P is O(|V |) because we only need
to verify |L|(≤ |V |) secrets and at most |V | signatures.

5 Discussion

We made two assumptions, in Sect. 2.3, on the value function specifying the
values of assets to parties. Remind that, we assume that for any subgraph D′ of
D, no coalition C in D′ gets more benefits in D′ than D when every other party
in D′ gets benefits in D′ no less than in D.

The first alternative is to replace coalition C in the above assumption with
just a party v. That is, we assume that for any subgraph D′ of D, no party v in
D′ gets more benefits in D′ than D when every other party in D′ gets benefits
in D′ no less than in D. Under this assumption, the proposed protocol P is not
strong Nash equilibrium but is Nash equilibrium, which can be proved in the
same way as Lemma 8.

Atomic Cross-Chain Swaps 207

The second alternative is the assumption that Herlihy made for his protocol
[1]. Specifically, He classifies the parties v ∈ V into four groups as follows, based
on the status of the arcs entering and leaving v in the end of an execution of a
swap algorithm.

DEAL: All arcs entering and leaving v are triggered.
NO DEAL: No arc entering or leaving v is triggered.
FREE RIDE: Some arc entering v is triggered, but no arc leaving v is triggered.
DISCOUNT: All arcs entering v are triggered, but some arc leaving v is not

triggered.
UNDER WATER: Some arcs entering v is triggered and some arc leaving v

is not triggered.

He assumes that no party accepts to be UNDER WATER, more generally, every
coalition tries to avoid the case that any member of the coalition becomes
UNDER WATER, with the highest priority. He also assumes that every party
prefer DEAL to NO DEAL and some parties or coalitions may deviate from the
swap protocol because they prefer FREE RIDE and DISCOUNT to DEAL. Our
model has a sufficient power to represent this assumption. It suffices to define the
benefit of v in D′ as value+

D′,v −value−
v,D′ +exp(D′, v) where the exception value

exp(D′, v) is defined as follows: exp(D′, v) = −∞ if there exist arc (u, v) ∈ A\A′

and arc (v, w) ∈ A′, otherwise exp(D′, v) = 0. If a party (or some party of a
coalition) ends up with UNDER WATER, then the benefit of the party (or the
coalition) is −∞, thus they try to avoid the situation with the highest priority.
The situation ending up with FREE RIDE or DISCOUNT brings a party or a
coalition a larger benefit than DEAL.

In what follows, we show that our protocol P is strong Nash equilibrium under
the second assumption, equivalent to the Herlihy’s assumption [1]. Assume by
contradiction that, in an execution of P , some coalition C gets more benefits by
deviating from protocol P than by conforming to P . Let D′ = (V ′, A′) be the
subgraph of D induced by the set of the arcs triggered in the execution. Since we
introduce the exception value, every party in C must trigger all his entering arcs
in D if one of his leaving arc in D is triggered. Since D is strongly connected, if
there exists an arc (u, v) ∈ A′, there exists an arc (v, w) ∈ A′, thus all entering
arcs to v are included in A′. Therefore, every entering arc of every party in V ′

is included in A′, which implies D = D′. This contradicts the assumption that
C gets more benefits in D′ than in D.

6 Conclusions

In this paper, we proposed an atomic cross-chain protocol to improve space
complexity and local time complexity. Herlihy’s protocol [1] requires to store
the swap topology in each contract and set timelocks to each secret by using
the topology. The proposed protocol need not store the swap topology in any
contract. Instead, we set the time condition to trigger a contract depending
on the number of signatures sent to the contract. Therefore, every party v can

208 S. Imoto et al.

immediately trigger the contracts of all entering arcs to v, once a contract on
some leaving arc from v is triggered. This is because the signature of v is not
included in the signatures used to trigger the leaving contract.

References

1. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing. ACM (2018)

2. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
3. Underwood, S.: Blockchain beyond bitcoin. Commun. ACM 59(11), 15–17 (2016)
4. Szabo, N.: The idea of smart contracts (1997). http://szabo.best.vwh.net/

smartcontractsidea.html
5. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts

smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 24–28 October 2016. ACM (2016)

6. Bowe, S., Hopwood, D.: Hashed time-locked contract transactions. https://github.
com/bitcoin/bips/blob/master/bip-0199.mediawiki. Accessed 9 Jan 2018

7. BitCoin Wiki. Hashed timelock contracts Timelock Contracts, October 2018
8. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Sym-

posium on the Complexity of Computer Computations, Held 20–22 March 1972,
at the IBM omas J. Watson Research Center, Yorktown Heights, New York, pp.
85–103 (1972)

9. Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artif. Intell.
83(1), 167–188 (1996)

10. Abraham, D.J., Blum, A., Sandholm, T.: Clearing algorithms for barter exchange
markets: enabling nationwide kidney exchanges. In: Proceedings of the 8th ACM
Conference on Electronic Commerce, EC 2007, pp. 295–304. ACM, New York
(2007)

11. Dickerson, J.P., Manlove, D.F., Plaut, B., Sandholm, T., Trimble, J.: Position
indexed formulations for kidney exchange. CoRR, abs/1606.01623 (2016)

12. Jia, Z., Tang, P., Wang, R., Zhang, H.: Efficient near-optimal algorithms for barter
exchange. In: Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2017, pp. 362–370. International Foundation for
Autonomous Agents and Multiagent Systems, Richland (2017)

13. Shapley, L., Scarf, H.: On cores and indivisibility. J. Math. Econ. 1(1), 23–37 (1974)
14. Kaplan, R.M.: An improved algorithm for multi-way trading for exchange and

barter. Electron. Commer. Res. Appl. 10(1), 67–74 (2011). Special Section: Service
Innovation in E-Commerce

15. Herlihy, M., Liskov, B., Shrira, L.: Cross-chain Deals and Adversarial Commerce.
CoRR, abs/1905.09743 (2019)

16. Borkowski, M., Sigwart, M., Frauenthaler, P., Hukkinen, T., Schulte, S.: Determin-
istic Cross-Blockchain Token Transfers. CoRR, abs/1905.06204 (2019)

17. Anta, A.F., Georgiou, C., Nicolaou, N.: Atomic Appends: Selling Cars and Coor-
dinating Armies with Multiple Distributed Ledgers. CoRR, abs/1812.08446 (2018)

http://szabo.best.vwh.net/smart contracts idea.html
http://szabo.best.vwh.net/smart contracts idea.html
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki

Achieving Starvation-Freedom
with Greater Concurrency

in Multi-Version Object-based
Transactional Memory Systems

Chirag Juyal1(B), Sandeep Kulkarni2(B), Sweta Kumari1(B), Sathya Peri1(B),
and Archit Somani1(B)

1 Department of Computer Science and Engineering, IIT Hyderabad,
Kandi, Telangana, India

{cs17mtech11014,cs15resch01004,sathya p,cs15resch01001}@iith.ac.in
2 Department of Computer Science, Michigan State University,

East Lansing, MI, USA
sandeep@cse.msu.edu

Abstract. To utilize the multi-core processors properly concurrent pro-
gramming is needed. The main challenge is to design a correct and
efficient concurrent program. Software Transactional Memory Systems
(STMs) provide ease of multithreading to the programmer without wor-
rying about concurrency issues as deadlock, livelock, priority inver-
sion, etc. Most of the STMs work on read-write operations known
as RWSTMs. Some STMs work at higher-level operations and ensure
greater concurrency than RWSTMs. Such STMs are known as Single-
Version Object-based STMs (SVOSTMs). The transactions of SVOSTMs
can return commit or abort. Aborted SVOSTMs transactions retry. But
in the current setting of SVOSTMs, transactions may starve. So, we pro-
pose a Starvation-Freedom in SVOSTM as SF-SVOSTM that satisfies
the correctness criteria conflict-opacity.

Databases and STMs say that maintaining multiple versions cor-
responding to each shared data-item (or key) reduces the number of
aborts and improves the throughput. So, to achieve greater concur-
rency further, we propose Starvation-Freedom in Multi-Version OSTM
as SF-MVOSTM algorithm. The number of versions maintains by
SF-MVOSTM either be unbounded with garbage collection as SF-
MVOSTM-GC or bounded with latest K-versions as SF-KOSTM. SF-
MVOSTM satisfies the correctness criteria as local opacity and shows the
performance benefits as compared with state-of-the-art STMs.

Keywords: Software Transactional Memory Systems · Concurrency
control · Starvation-Freedom · Multi-version · Opacity · Local opacity

A. Somani—Author sequence follows the lexical order of last names.
This research is partially supported by IMPRINT India project 6918F & gift from
Intel, USA.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 209–227, 2019.
https://doi.org/10.1007/978-3-030-34992-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_17

210 C. Juyal et al.

1 Introduction

In the era of multi-core processors, we can exploit the cores by concurrent pro-
gramming. But developing an efficient concurrent program while ensuring the
correctness is difficult. Software Transactional Memory Systems (STMs) are a
convenient programming interface to access the shared memory concurrently
while removing the concurrency responsibilities from the programmer. STMs
ensure that consistency issues such as deadlock, livelock, priority inversion, etc
will not occur. It provides a high-level abstraction to the programmer with
the popular correctness criteria opacity [1], local opacity [2] which consider all
the transactions (a piece of code) including aborted one as well in the equiva-
lent serial history. This property makes it different from correctness criteria of
database serializability, strict-serializability [3] and ensures even aborted trans-
actions read correct value in STMs which prevent from divide-by-zero, infinite
loop, crashes, etc. Another advantage of STMs is composability which ensures
the effect of multiple operations of the transaction will be atomic. This paper
considers the optimistic execution of STMs in which transactions are writing
into its local log until the successful validation.

A traditional STM system invokes following methods:(1) STM begin(): begins
a transaction Ti with unique timestamp i. (2) STM readi(k) (or ri(k)): Ti reads
the value of key k from shared memory. (3) STM writei(k, v) (or wi(k, v)): Ti

writes the value of k as v locally. (4) STMtryCi(): on successful validation, the
effect of Ti will be visible to the shared memory and Ti returns commit otherwise
(5) STMtryAi(): Ti returns abort. These STMs are known as read-write STMs
(RWSTMs) because it is working at lower-level operations such as read and
write.

Herlihy et al. [4], Hassan et al. [5], and Peri et al. [6] have shown that working
at higher-level operations such as insert, delete and lookup on the linked-list and
hash table gives better concurrency than RWSTMs. STMs which work on higher-
level operations are known as Single-Version Object-based STMs (SVOSTMs) [6].
It exports the following methods: (1) STM begin(): begins a transaction Ti with
unique timestamp i same as RWSTMs. (2) STMlookupi(k) (or li(k)): Ti lookups
key k from shared memory and returns the value. (3) STMinserti(k, v) (or
ii(k, v)): Ti inserts a key k with value v into its local memory. (4) STMdeletei(k)
(or di(k)): Ti deletes key k. (5) STMtryCi(): the actual effect of STM insert()
and STM delete() will be visible to the shared memory after successful validation
and Ti returns commit otherwise (6) STMtryAi(): Ti returns abort.

Motivation to Work on SVOSTMs: Figure 1 represents the advantage of
SVOSTMs over RWSTMs while achieving greater concurrency and reducing the
number of aborts. Figure 1(a) depicts the underlying data structure as a hash
table (or ht) with M buckets and bucket 1 stores three keys k1, k4 and k9 in the
form of the list. Thus, to access k4, a thread has to access k1 before it. Figure 1(b)
shows the tree structure of concurrent execution of two transactions T1 and T2

with RWSTMs at layer-0 and SVOSTMs at layer-1 respectively. Consider the
execution at layer-0, T1 and T2 are in conflict because write operation of T2 on key

SF in Multi-Version Object-based Transactional Memory Systems 211

Fig. 1. Advantage of SVOSTMs over RWTSMs

k1 as w2(k1) is occurring between two read operations of T1 on k1 as r1(k1). Two
transactions are in conflict if both are accessing the same key k and at least one
transaction performs write operation on k. So, this concurrent execution cannot
be atomic as shown in Fig. 1(c). To make it atomic either T1 or T2 has to return
abort. Whereas execution at layer-1 shows the higher-level operations l1(k1),
d2(k4) and l1(k9) on different keys k1, k4 and k9 respectively. All the higher-level
operations are isolated to each other so the tree can be pruned [7, Chap 6] from
layer-0 to layer-1 and both the transactions return commit with equivalent serial
schedule T1T2 or T2T1 as shown in Fig. 1(d). Hence, some conflicts of RWSTMs
does not matter at SVOSTMs which reduce the number of aborts and improve
the concurrency using SVOSTMs.

Starvation-Freedom: For long-running transactions along with high con-
flicts, starvation can occur in SVOSTMs. So, SVOSTMs should ensure the
progress guarantee as starvation-freedom [8, chap 2]. SVOSTMs is said to be
starvation-free, if a thread invoking a transaction Ti gets the opportunity to
retry Ti on every abort (due to the presence of a fair underlying scheduler [9]
with bounded termination) and Ti is not parasitic, i.e., if scheduler will give a fair
chance to Ti to commit then Ti will eventually return commit. If a transaction
gets a chance to commit, still it is not committing because of the infinite loop
or some other error such transactions are known as Parasitic transactions [10].

We explored another well known non-blocking progress guarantee wait-
freedom for STM which ensures every transaction commits regardless of the
nature of concurrent transactions and the underlying scheduler [11]. However,
Guerraoui and Kapalka [10,12] showed that achieving wait-freedom is impos-
sible in dynamic STMs in which data-items (or keys) of transactions are not
known in advance. So in this paper, we explore the weaker progress condition
of starvation-freedom for SVOSTM while assuming that the keys of the trans-
actions are not known in advance.

Related Work on Starvation-Free STMs: Some researchers Gramoli et
al. [13], Waliullah and Stenstrom [14], Spear et al. [15], Chaudhary et al. [9]
have explored starvation-freedom in RWSTMs. Most of them assigned prior-
ity to the transactions. On conflict, higher priority transaction returns commit

212 C. Juyal et al.

whereas lower priority transaction returns abort. On every abort, a transaction
retries a sufficient number of times, will eventually get the highest priority and
returns commit. We inspired by this research and propose a novel Starvation-
Free SVOSTM (SF-SVOSTM) which assigns the priority to the transaction on
conflict. In SF-SVOSTM whenever a conflicting transaction Ti aborts, it retries
with Tj which has higher priority than Ti. To ensure the starvation-freedom, this
procedure will repeat until Ti gets the highest priority and eventually returns
commit.

Fig. 2. Benefits of Starvation-Free multi-version OSTM over SF-SVOSTM

Motivation to Propose Starvation-Freedom in Multi-version OSTM:
In SF-SVOSTM, if the highest priority transaction becomes slow (for some rea-
son) then it may cause several other transactions to abort and bring down the
progress of the system. Figure 2(a) demonstrates this in which the highest pri-
ority transaction T1 became slow so, it is forcing the conflicting transactions T2

and T3 to abort again and again until T1 commits. Database, RWSTMs [16–19]
and SVOSTMs [20] say that maintaining multiple versions corresponding to each
key reduces the number of aborts and improves throughput.

So, this paper proposes the first Starvation-Free Multi-Version OSTM
(SF-MVOSTM) which maintains multiple versions corresponding to each key.
Figure 2(b) shows the benefits of using SF-MVOSTM in which T1 lookups from
the older version with value v0 created by transaction T0 (assuming as initial
transaction) for key k1 and k4. Concurrently, T2 and T3 create the new versions
for key k4. So, all the three transactions commit with equivalent serial schedule
T1T2T3. So, SF-MVOSTM improves the concurrency than SF-SVOSTM while
reducing the number of aborts and ensures the starvation-freedom.

Contributions of the Paper: We propose two Starvation-Free OSTMs as
follows:

– Initially, we propose Starvation-Freedom for Single-Version OSTM as SF-
SVOSTM which satisfies correctness criteria as conflict-opacity (or co-
opacity) [6].

– To achieve the greater concurrency further, we propose Starvation-Freedom
for Multi-Version OSTM as SF-MVOSTM in Sect. 3 which maintains multiple
versions corresponding to each key and satisfies the correctness as local opacity
[2].

SF in Multi-Version Object-based Transactional Memory Systems 213

– We propose SF-SVOSTM and SF-MVOSTM for hash table and linked-list
data structure describe in SubSect. 3.2 but its generic for other data structures
as well.

– SF-MVOSTM works for unbounded versions with Garbage Collection (GC)
as SF-MVOSTM-GC which deletes the unwanted versions from version list
of keys and for bounded/finite versions as SF-KOSTM which stores finite say
latest K number of versions corresponding to each key k. So, whenever any
thread creates (K + 1)th version of key, it replaces the oldest version of it.
The most challenging task is achieving starvation-freedom in bounded version
OSTM because say, the highest priority transaction relies on the oldest version
that has been replaced. So, in this case, highest priority transaction has to
return abort and hence make it harder to achieve starvation-freedom unlike
the approach follow in SF-SVOSTM. Thus, in this paper, we propose a novel
approach SF-KOSTM which bridges the gap by developing starvation-free
OSTM while maintaining bounded number of versions.

– Section 4 shows that SF-KOSTM is best among all proposed Starvation-
Free OSTMs (SF-SVOSTM, SF-MVOSTM, and SF-MVOSTM-GC) for both
hash table and linked-list data structure. Proposed hash table based SF-
KOSTM (HT-SF-KOSTM) performs 3.9x, 32.18x, 22.67x, 10.8x and 17.1x
average speedup on max-time for a transaction to commit than state-of-
the-art STMs HT-KOSTM [20], HT-SVOSTM [6], ESTM [21], RWSTM [7,
Chap. 4], and HT-MVTO [16] respectively. Proposed list based SF-KOSTM
(list-SF-KOSTM) performs 2.4x, 10.6x, 7.37x, 36.7x, 9.05x, 14.47x, and 1.43x
average speedup on max-time for a transaction to commit than state-of-the-
art STMs list-KOSTM [20], list-SVOSTM [6], Trans-list [22], Boosting-list
[4], NOrec-list [23], list-MVTO [16], and list-KSFTM [9] respectively.

2 System Model and Preliminaries

This section follows the notion and definition described in [12,20], we assume
a system of n processes/threads, th1, . . . , thn that run in a completely asyn-
chronous manner and communicate through a set of keys K (or transaction-
objects). We also assume that none of the threads crash or fail abruptly. In this
paper, a thread executes higher-level methods on K via atomic transactions
T1, . . . , Tn and receives the corresponding response.

Events and Methods: Threads execute the transactions with higher-level
methods (or operations) which internally invoke multiple read-write (or lower-
level) operations known as events (or evts). Transaction Ti of the system at read-
write level invokes STM begin(), STM readi(k), STM writei(k,v), STM tryCi()
and STM tryAi() as defined in Sect. 1. We denote a method mij as the jth

method of Ti. Method invocation (or inv) and response (or rsp) on higher-level
methods are also considered as an event.

A thread executes higher-level operations on K via transaction Ti are known
as methods (or mths). Ti at object level (or higher-level) invokes STM begin(),
STM lookupi(k) (or li(k)), STM inserti(k, v) (or ii(k, v)), STM deletei(k) (or

214 C. Juyal et al.

di(k)), STM tryCi(), and STM tryAi() methods described in Sect. 1. Here,
STM lookup(), and STM delete() return the value from underlying data struc-
ture so, we called these methods as return value methods (orrv methods).
Whereas, STM insert(), and STM delete() are updating the underlying data
structure after successful STM tryC() so, we called these methods as update
methods (or upd methods).

Transactions: We follow multi-level transactions [7] model which consists of
two layers. Layer 0 (or lower-level) composed of read-write operations whereas
layer 1 (or higher-level) comprises of object-level methods which internally calls
multiple read-write events. Formally, we define a transaction Ti at higher-level
as the tuple 〈evts(Ti), <Ti

〉, here <Ti
represents the total order among all the

events of Ti. Transaction Ti cannot invoke any more operation after returning
commit (C) or abort (A). Any operation that returns C or A are known as
Term(Ti) represented as Term(Ti). The transaction which neither committed
nor aborted is known as live transactions (or trans.live).

Histories: A history H consists of multiple transactions, a transaction calls mul-
tiple methods and each method internally invokes multiple read-write events. So,
a history is a collection of events belonging to the different transactions is repre-
sented as evts(H). Formally, we define a history H as the tuple 〈evts(H), <H〉,
here <H represents the total order among all the events of H. If all the
method invocation of H match with the corresponding response then such his-
tory is known as complete history denoted as H. Suppose total transactions
in H is H.trans, in which number of committed and aborted transactions are
H.committed and H.aborted then the incomplete history or live history is defined
as: H.incomp = H.live = (H.trans - H.committed - H.aborted). This paper
considers only well-form history which ensures (1) the response of the previous
method has received then only the transaction Ti can invoke another method.
(2) transaction can not invoke any other method after receiving the response as
C or A .

Due to lack of space, we define other useful notions and definitions used
in this paper such as sequential histories [2], real-time order and serial history
[3], valid and legal history [20], sub-histories [9], conflict-opacity [6], opacity
[1], strict-serializability [3], local opacity [2] formally in accompanying technical
report [24].

3 The Proposed SF-KOSTM Algorithm

In this section, we propose Starvation-Free K-version OSTM (SF-KOSTM) algo-
rithm which maintains K number of versions corresponding to each key. The
value of K is application dependent and may vary from 1 to ∞. When K is
equal to 1 then SF-KOSTM boils down to Starvation-Free Single-Version OSTM
(SF-SVOSTM). When K is ∞ then SF-KOSTM maintains unbounded versions
corresponding to each key known as Starvation-Free Multi-Version OSTM (SF-
MVOSTM) algorithm. To delete the unused version from the version list of

SF in Multi-Version Object-based Transactional Memory Systems 215

SF-MVOSTM, we develop a separate Garbage Collection (GC) method [16]
and propose SF-MVOSTM-GC. In this paper, we propose SF-SVOSTM and
all the variants of SF-KOSTM (SF-MVOSTM, SF-MVOSTM-GC, SF-KOSTM)
for two data structures hash table and linked-list but it is generic for other data
structures as well.

SubSection 3.1 describes the definition of starvation-freedom followed by our
assumption about the scheduler that helps us to achieve starvation-freedom
in SF-KOSTM. SubSection 3.2 explains the design and data structure of SF-
KOSTM. SubSection 3.3 shows the working of SF-KOSTM algorithm.

3.1 Description of Starvation-Freedom

Definition 1. Starvation-Freedom: An STM system is said to be starvation-
free if a thread invoking a non-parasitic transaction Ti gets the opportunity to
retry Ti on every abort, due to the presence of a fair scheduler, then Ti will
eventually commit.

Herlihy and Shavit [11] defined the fair scheduler which ensures that none of
the thread will crash or delayed forever. Hence, any thread Thi acquires the lock
on the shared data-items while executing transaction Ti will eventually release
the locks. So, a thread will never block other threads to progress. To satisfy the
starvation-freedom for SF-KOSTM, we assumed bounded termination for the
fair scheduler.

Assumption 1 Bounded-Termination: For any transaction Ti, invoked by
a thread Thi, the fair system scheduler ensures, in the absence of deadlocks, Thi

is given sufficient time on a CPU (and memory, etc) such that Ti terminates
(C or A) in bounded time.

In the proposed algorithms, we have considered TB as the maximum time-
bound of a transaction Ti within this either Ti will return commit or abort in the
absence of deadlock. Approach for achieving the deadlock-freedom is motivated
from the literature in which threads executing transactions acquire the locks in
increasing order of the keys and releases the locks in bounded time either by
committing or aborting the transaction. We consider an assumption about the
transactions of the system as follows.

Assumption 2. We assume, if other concurrent conflicting transactions do not
exist in the system then every transaction will commit. i.e. (a) If a transaction
Ti is executing in the system with the absence of other conflicting transactions
then Ti will not self-abort. (b) Transactions of the system are non-parasitic as
explained in Sect. 1.

If transactions self-abort or parasitic then ensuring starvation-freedom is impos-
sible.

216 C. Juyal et al.

3.2 Design and Data Structure of SF-KOSTM Algorithm

In this subsection, we show the design and underlying data structure of SF-
KOSTM algorithm to maintain the shared data-items (or keys).

To achieve the Starvation-Freedom in K-version Object-based STM (SF-
KOSTM), we use chaining hash table (or ht) as an underlying data structure
where the size of the hash table is M buckets as shown in Fig. 3(a) and we pro-
pose HT-SF-KOSTM. Hash table with bucket size one becomes the linked-list
data structure for SF-KOSTM represented as list-SF-KOSTM. The representa-
tion of SF-KOSTM is similar to MVOSTM [20]. Each bucket stores multiple
nodes in the form of linked-list between the two sentinel nodes Head(-∞) and
Tail(+∞). Figure 3(b) illustrates the structure of each node as 〈key, lock, mark,
vl, nNext〉. Where key is the unique value from the range of [1 to K] stored in
the increasing order between the two sentinel nodes similar to linked-list based
concurrent set implementation [25,26]. The lock field is acquired by the trans-
action before updating (inserting or deleting) on the node. mark is the boolean
field which says anode is deleted or not. If mark sets to true then node is logi-
cally deleted else present in the hash table. Here, the deletion is in a lazy manner
similar to concurrent linked-list structure [25]. The field vl stands for version list.
SF-KOSTM maintains the finite say latest K-versions corresponding to each key
to achieving the greater concurrency as explained in Sect. 1. Whenever (K +1)th

version created for the key then it overwrites the oldest version corresponding
to that key. If K is equal to 1, i.e., version list contains only one version corre-
sponding to each key which boils down to Starvation-Free Single-Version OSTM
(SF-SVOSTM). So, the data structure of SF-SVOSTM is same as SF-KOSTM
with one version. The field nNext points to next available node in the linked-list.
From now onwards, we will use the term key and node interchangeably.

Fig. 3. Design and data structure of SF-KOSTM

The structure of the vl is 〈ts, val, rvl, vrt, vNext〉 as shown in Fig. 3(b). ts
is the unique timestamp assigned by the STM begin(). If the value (val) is nil
then version is created by the STM delete() otherwise STM insert() creates a
version with not nil value. To satisfy the correctness criteria as local opacity,
STM delete() also maintains the version corresponding to each key with mark
field as true. It allows the concurrent transactions to lookup from the older

SF in Multi-Version Object-based Transactional Memory Systems 217

Fig. 4. Searching k9 over lazy-list (Color
figure online)

Fig. 5. Searching k9 over rblazy-list
(Color figure online)

version of the marked node and returns the value as not nil. rvl stands for return
value list which maintains the information about lookup transaction that has
lookups from a particular version. It maintains the timestamp (ts) of rv methods
(STM lookup() or STM delete()) transaction in it. vrt stands for version real-
time which helps to maintain the real-time order among the transactions. vNext
points to the next available version in the version list.

Maintaining the deleted node along with the live (not deleted) node will
increase the traversal time to search a particular node in thelist. Consider Fig. 4,
where red color depicts the deleted node 〈k1, k2, k4〉 and blue color depicts the
live node 〈k9〉. When any method of SF-KOSTM searches the key k9 then it has
to traverse the deleted nodes 〈k1, k2, k4〉 as well before reach to k9 that increases
the traversal time.

This motivated us to modify the lazy-list structure of a node to form a
skip list based on red and blue links. We called it as a red-blue lazy-list or
rblazy-list. This idea has been explored by Peri et al. in SVOSTMs [6]. rblazy-list
maintains two-pointer corresponding to each node such as red link (RL) and
blue link (BL). Where BL points to the live node and RL points to live node
as well as a deleted node. Let us consider the same example as discussed above
with this modification, key k9 is directly searched from the head of the list
with the help of BL as shown in Fig. 5. In this case, traversal time is efficient
because any method of SF-KOSTM need not traverse the deleted nodes. To
maintain the RL and BL in each node we modify the structure of lazy-list as
〈key, lock, mark, vl, RL, BL, nNext〉 and called it as rblazy-list.

3.3 Working of SF-KOSTM Algorithm

In this subsection, we describe the working of SF-KOSTM algorithm which
includes the detail description of SF-KOSTM methods and challenges to make
it starvation-free. This description can easily be extended to SF-MVOSTM and
SF-MVOSTM-GC as well.

SF-KOSTM invokes STM begin(),STM lookup(),STM delete(),STM insert(),
and STM tryC() methods. STM lookup() and STM delete() work as rv methods()
which lookup the value of key k from shared memory and return it. Whereas
STM insert() and STM delete() work as upd methods() that modify the value
of k in shared memory. We propose optimistic SF-KOSTM, so, upd methods()
first update the value of k in transaction local log txLog and the actual effect of
upd methods() will be visible after successful STM tryC(). Now, we explain the
functionality of each method as follows:

218 C. Juyal et al.

STM begin(): When a thread Thi invokes transaction Ti for the first time (or
first incarnation), STM begin() assigns a unique timestamp known as current
timestamp (cts) using an atomic global counter (gcounter). If Ti gets aborted
then thread Thi executes it again with the new incarnation of Ti, say Tj with the
new cts until Ti commits but retains its initial cts as initial timestamp (its). Thi

uses its to inform the SF-KOSTM system that whether Ti is a new invocation
or an incarnation. If Ti is the first incarnation then its and cts are same as ctsi
so, Thi maintains 〈itsi, ctsi〉. If Ti gets aborted and retries with Tj then Thi

maintains 〈iti, ctj〉.
By assigning priority to the lowest its transaction (i.e. transaction have been

in the system for a longer time) in Single-Version OSTM, Starvation-Freedom
can easily be achieved as explained in Sect. 1. The detailed working of Starvation-
Free Single-Version OSTM (SF-SVOSTM) is in accompanying technical report
[24]. But achieving Starvation-Freedom in finite K-versions OSTM (SF-KOSTM)
is challenging. Though the transaction Ti has lowest its but Ti may return abort
because of finite versions Ti did not find a correct version to lookup from or over-
write a version. Table 1 shows the key insight to achieve the starvation-freedom
in finite K-versions OSTM. Here, we considered two transaction T10 and T20

with cts 10 and 20 that performs STM lookup() (or l) and STM insert() (or i)
on same key k. We assume that a version of k exists with cts 5, so, STM lookup()
of T10 and T20 find a previous version to lookup and never return abort. Due
to the optimistic execution in SF-KOSTM, effect of STM insert() comes after
successful STM tryC(), so STM lookup() of a transaction comes before effect of
its STM insert(). Hence, a total of six permutations are possible as defined in
Table 1. We can observe from Table 1 that in some cases T10 returns abort. But
if T20 gets the lowest its then T20 never returns abort. This ensures that a trans-
action with lowest its and highest cts will never return abort. But achieving
highest cts along with lowest its is a bit difficult because new transactions are
keep on coming with higher cts using gcounter. So, to achieve the highest cts,
we introduce a new timestamp as working timestamp (wts) which is significantly
larger than cts.

STM begin() maintains the wts for transaction Ti as wtsi, which is potentially
higher timestamp as compare to ctsi. So, we derived,

wtsi = ctsi + C ∗ (ctsi − itsi); (1)

where C is any constant value greater than 0. When Ti is issued for the first time
then wtsi, ctsi, and itsi are same. If Ti gets aborted again and again then drift
between the ctsi and wtsi will increases. The advantage for maintaining wtsi
is if any transaction keeps getting aborted then its wtsi will be high and itsi
will be low. Eventually, Ti will get chance to commit in finite number of steps
to achieve starvation-freedom. For simplicity, we use timestamp (ts) i of Ti as
wtsi, i.e., 〈wtsi = i〉 for SF-KOSTM.

Observation 1. Any transaction Ti with lowest itsi and highest wtsi will never
abort.

SF in Multi-Version Object-based Transactional Memory Systems 219

Table 1. Possible permutations of methods

S. No Execution sequence Possible actions by transactions

1 l10(k), i10(k), l20(k), i20(k) T20(k) lookups the version inserted by T10. No conflict

2 l10(k), l20(k), i10(k), i20(k) Conflict detected at i10(k). Either abort T10 or T20

3 l10(k), l20(k), i20(k), i10(k) Conflict detected at i10(k). Hence, abort T10

4 l20(k), l10(k), i20(k), i10(k) Conflict detected at i10(k). Hence, abort T10

5 l20(k), l10(k), i10(k), i20(k) Conflict detected at i10(k). Either abort T10 or T20

6 l20(k), i20(k), l10(k), i10(k) Conflict detected at i10(k). Hence, abort T10

Sometimes, the value of wts is significantly larger than cts. So, wts is unable
to maintain real-time order between the transactions which violates the correct-
ness of SF-KOSTM. To address this issue SF-KOSTM uses the idea of timestamp
ranges [27–29] along with 〈itsi, ctsi, wtsi〉 for transaction Ti in STM begin(). It
maintains the transaction lower timestamp limit (tltli) and transaction upper
timestamp limit (tutli) for Ti. Initially, 〈itsi, ctsi, wtsi, tltli〉 are the same for
Ti. tutli would be set as a largest possible value denoted as +∞ for Ti. After
successful execution of rv methods() or STM tryC() of Ti, tltli gets incremented
and tutli gets decremented1 to respect the real-time order among the transac-
tions. STM begin() initializes the transaction local log (txLogi) for each trans-
action Ti to store the information in it. Whenever a transaction starts it atom-
ically sets its status to be live as a global variable. Transaction status can be
〈live, commit, false〉. After successful execution of STM tryC(), Ti sets its status
to be commit. If the status of the transaction is false then it returns abort. For
more details of STM begin() please refer the accompanying technical report [24].

STM lookup() and STM delete() as rv methods(): rv methods(ht, k, val)
return the value (val) corresponding to the key k from the shared memory as hash
table (ht). We show the high-level overview of the rv methods() in Algorithm 1.
First, it identifies the key k in the transaction local log as txLogi for transaction
Ti. If k exists then it updates the txLogi and returns the val at Line 3.

If key k does not exist in the txLogi then before identify the location in
share memory rv methods() check the status of Ti at Line 6. If status of Ti (or
i) is false then Ti has to abort which says that Ti is not having the lowest its
and highest wts among other concurrent conflicting transactions. So, to propose
starvation-freedom in SF-KOSTM other conflicting transactions set the status
of Ti as false and force it to abort.

If the status of Ti is not false and key k does not exist in the txLogi
then it identifies the location of key k optimistically (without acquiring the
locks similar to the lazy-list [25]) in the shared memory at Line 8. SF-KOSTM
maintains the shared memory in the form of a hash table with M buckets as
shown in SubSect. 3.2, where each bucket stores the keys in rblazy-list. Each

1 Practically ∞ can not be decremented for tutli so we assign the highest possible
value to tutli which gets decremented.

220 C. Juyal et al.

node contains two pointer 〈RL,BL〉. So, it identifies the two predecessors (pred)
and two current (curr) with respect to each node. First, it identifies the pred
and curr for key k in BL as 〈preds[0], currs[1]〉. After that it identifies the
pred and curr for key k in RL as 〈preds[1], currs[0]〉. If 〈preds[1], currs[0]〉
are not marked then 〈preds[0] = preds[1], currs[1] = currs[0]〉. SF-KOSTM
maintains the keys are in increasing order. So, the order among the nodes are
〈preds[0].key ≤ preds[1].key < k ≤ currs[0].key ≤ currs[1].key〉.

rv methods() acquire the lock in predefined order on all the identified preds
and currs for key k to avoid the deadlock at Line 9 and do the rv Validation() at
Line 10. If 〈preds[0] ∨ currs[1]〉 is marked or preds are not pointing to identified
currs as 〈(preds[0].BL �= currs[1]) ∨ (preds[1].RL �= currs[0])〉 then it releases
the locks from all the preds and currs and identify the new preds and currs for
k in shared memory.

Algorithm 1 rv methods(ht, k, val): It can either be STM deletei(ht, k, val) or
STM lookupi(ht, k, val) on key k by transaction Ti.

1: procedure rv methodsi(ht, k, val)
2: if (k ∈ txLogi) then
3: Update the local log of Ti and return val.
4: else
5: /*Atomically check the status of its own transac-

tion Ti (or i).*/
6: if (i.status == false) then return 〈aborti〉.
7: end if
8: Identify the preds[] and currs[] for key k in

bucket Mk of rblazy-list using BL and RL.
9: Acquire locks on preds[]& currs[] in increasing

order of keys to avoid the deadlock.
10: if (!rv Validation(preds[], currs[])) then
11: Release the locks and goto Line 8.
12: end if
13: if (k /∈ Mk.rblazy-list) then
14: Create a new node n with key k as:

〈key=k, lock=false, mark=true, vl=ver,
nNext=φ〉./*n is marked*/

15: Create version ver as:〈ts=0, val=nil, rvl=i,
vrt=0, vNext=φ〉.

16: Insert n into Mk.rblazy-list s.t. it is accessi-
ble only via RLs. /*lock sets true*/

17: Release locks; update the txLogi with k.

18: return 〈val〉. /*val as nil*/
19: end if
20: Identify the version verj with ts = j such that

j is the largest timestamp smaller (lts) than i.
21: if (verj == nil) then /*Finite Versions*/
22: return 〈aborti〉
23: else if (verj .vNext != nil) then
24: /*tutli should be less then vrt of next ver-

sion verj*/
25: Calculate tutli = min(tutli, verj .vNext

.vrt − 1).
26: end if
27: /*tltli should be greater then vrt of verj*/
28: Calculate tltli = max(tltli, verj .vrt + 1).
29: /*If limit has crossed each other then abort Ti*/
30: if (tltli > tutli) then return 〈aborti〉.
31: end if
32: Add i into the rvl of verj .
33: Release the locks; update the txLogi with k

and value.
34: end if
35: return 〈verj .val〉.
36: end procedure

If key k does not exist in the rblazy-list of corresponding bucket
Mk at Line 13 then it creates a new node n with key k as
〈key=k, lock=false, mark=true, vl=ver, nNext=φ〉 at Line 14 and creates a ver-
sion (ver) for transaction T0 as 〈ts = 0, val = nil, rvl = i, vrt= 0, vNext= φ〉 at
Line 15. Transaction Ti creates the version of T0, so, other concurrent conflicting
transaction (say Tp) with lower timestamp than Ti, i.e., 〈p < i〉 can lookup from
T0 version. Thus, Ti save Tp to abort while creating a T0 version and ensures
greater concurrency. After that Ti adds its wtsi in the rvl of T0 and sets the vrt 0
as the timestamp of T0 version. Finally, it inserts the node n into Mk.rblazy-list
such that it is accessible via RL only at Line 16. rv methods() releases the locks
and update the txLogi with key k and value as nil (Line 17). Eventually, it
returns the val as nil at Line 18.

SF in Multi-Version Object-based Transactional Memory Systems 221

If key k exists in the Mk.rblazy-list then it identifies the current version
verj with ts = j such that j is the largest timestamp smaller (lts) than i at
Line 20 and there exists no other version with timestamp p by Tp on same key k
such that 〈j < p < i〉. If verj is nil at Line 21 then SF-KOSTM returns abort for
transaction Ti because it does not found a version to lookup otherwise it identifies
the next version with the help of verj .vNext. If next version (verj .vNext as verk)
exist then Ti maintains the tutli with the minimum of 〈tutli ∨verk.vrt − 1〉 at
Line 25 and tltli with a maximum of 〈tltli ∨ verj .vrt + 1〉 at Line 28 to respect
the real-time order among the transactions. If tltli is greater than tutli at Line
30 then transaction Ti returns abort (fail to maintains real-time order) otherwise
it adds the ts of Ti (wtsi) in the rvl of verj at Line 32. Finally, it releases the
lock and updates the txLogi with key k and value as the current version value
(verj .val) at Line 33. Eventually, it returns the value as verj .val at Line 35.

STM insert() and STM delete() as upd methods(): Actual effect of
STM insert() and STM delete() come after successful STM tryC(). They cre-
ate the version corresponding to the key in shared memory. We show the high
level view of STM tryC() in Algorithm 2. First, STM tryC() checks the status
of the transaction Ti at Line 39. If the status of Ti is false then Ti returns abort
with similar reasoning explained above in rv methods().

If the status is not false then STM tryC() sort the keys (exist in txLogi
of Ti) of upd methods() in increasing order. It takes the method (mij) from
txLogi one by one and identifies the location of the key k in Mk.rblazy-list as
explained above in rv methods(). After identifying the preds and currs for k it
acquire the locks in predefined order to avoid the deadlock at Line 46 and calls
tryC Validation() to validate the methods of Ti.

tryC Validation() identifies whether the methods of invoking transaction Ti

are able to insert or delete a version corresponding to the keys while ensuring
the progress guarantee as starvation-freedom and maintaining the real-time order
among the transactions. It does four steps for validation. Step 1: First, it does the
rv Validation() as explained in rv methods() above. Step 2: If rv Validation() is
successful and key k is exist in the Mk.rblazy-list then it identifies the current
version verj with ts = j such that j is the largest timestamp smaller (lts) than i.
If verj is not exist then SF-KOSTM returns abort for transaction Ti because it
does not found the version to replace. Step 3: If verj exist then Ti compares itsi
with its of other live transactions present in verj .rvl. If itsi of Ti is less than
the its of such transactions then Ti sets the status of all those transactions to
be false, otherwise, Ti returns abort. Step 4: To maintain the real-time order,
Ti update the tltli and tutli of it with the help of verj and its next version
(verj .vNext) respectively (explained in rv methods() above). Please find the
detailed descriptions of tryC Validation() in accompanying technical report [24].

If all the steps of the tryC Validation() is successful then the actual effect
of the STM insert() and STM delete() will be visible to the shared memory. At
Line 53, STM tryC() checks for poValidation(). When two subsequent methods
〈mij ,mik〉 of the same transaction Ti identify the overlapping location of preds

222 C. Juyal et al.

and currs in rblazy-list. Then poValidation() updates the current method mik

preds and currs with the help of previous method mij preds and currs.
If mij is STM insert() and key k is not exist in the Mk.rblazy-list

then it creates the new node n with key k as 〈key=k,lock=false,mark=false,
vl=ver,nNext=φ〉 at Line 55. Later, it creates a version (ver) for trans-
action T0 and Ti as 〈 ts=0, val=nil, rvl=i, vrt=0, vNext=i 〉 and
〈ts=i, val=v, rvl=φ, vrt=i, vNext=φ〉 at Line 56. The T0 version created by
transaction Ti to helps other concurrent conflicting transactions (with lower
timestamp than Ti) to lookup from T0 version. Finally, it inserts the node n
into Mk.rblazy-list such that it is accessible via RL as well as BL at Line 57. If
mij is STM insert() and key k exists in the Mk.rblazy-list then it creates the
new version veri as 〈ts=i, val=v, rvl=φ, vrt=i, vNext=φ〉 corresponding to key
k. If the limit of the version reaches to K then SF-KOSTM replaces the oldest
version with (K + 1)th version which is accessible via RL as well as BL at Line
60.

Algorithm 2 STM tryC (Ti): Validate the upd methods() of Ti and returns commit.
37: procedure STM tryC(Ti)
38: /*Atomically check the status of its own transaction

Ti (or i)*/
39: if (i.status == false) then return 〈aborti〉.
40: end if
41: /*Sort the keys of txLogi in increasing order.*/
42: /*Method (m) will be either STM insert or STM -

delete*/
43: for all (mij ∈ txLogi) do
44: if(mij==STM insert ||mij==STM delete)then
45: Identify the preds[] & currs[] for key k in

bucket Mk of rblazy-list using BL & RL.
46: Acquire the locks on preds[] & currs[] in

increasing order of keys to avoid deadlock.
47: if (! tryC V alidation()) then
48: return 〈aborti〉.
49: end if
50: end if
51: end for
52: for all (mij ∈ txLogi) do
53: poValidation() modifies the preds[] & currs[] of

current method which would have been updated
by previous method of the same transaction.

54: if ((mij==STM insert)&&(k/∈Mk .rblazy-list))
then

55: Create new node n with k as: 〈key=k,
lock=false, mark= false, vl=ver, nNext=φ〉.

56: Create first version ver for T0 and next for
i: 〈ts=i, val=v, rvl=φ, vrt=i, vNext=φ〉.

57: Insert node n into Mk .rblazy-list such that
it is accessible via RL as well as BL.

58: /*lock sets true*/
59: else if (mij == STM insert) then
60: Add ver: 〈ts=i, val=v, rvl=φ, vrt=i,

vNext=φ〉 into Mk .rblazy-list & accessible
via RL, BL. /*mark=false*/

61: end if
62: if (mij == STM delete) then
63: Add ver:〈ts=i, val=nil, rvl=φ, vrt=i,

vNext=φ〉 into Mk .rblazy-list & accessible
via RL only. /*mark=true*/

64: end if
65: Update preds[] & currs[] of mij in txLogi.
66: end for
67: Release the locks; return 〈commiti〉.
68: end procedure

If mij is STM delete() and key k exists in the Mk.rblazy-list then it creates the
new version veri as 〈ts=i, val=nil, rvl=φ, vrt=i, vNext=φ〉 which is accessible via
RL only at Line 63. At last it updates the preds and currs of each mij into its
txLogi to help the upcoming methods of the same transactions in poValidation()
at Line 65. Finally, it releases the locks on all the keys in a predefined order and
returns commit at Line 67.

Theorem 1. Any legal history H generated by SF-SVOSTM satisfies co-
opacity.

SF in Multi-Version Object-based Transactional Memory Systems 223

Theorem 2. Any valid history H generated by SF-KOSTM satisfies local-
opacity.

Theorem 3. SF-SVOSTM and SF-KOSTM ensure starvation-freedom in pres-
ence of a fair scheduler that satisfies Assumption 1(bounded-termination) and
in the absence of parasitic transactions that satisfies Assumption 2.

Please find the proof of theorems in accompanying technical report [24].

4 Experimental Evaluation

This section represents the experimental analysis of variants of the pro-
posed Starvation-Free Object-based STMs (SF-SVOSTM, SF-MVOSTM, SF-
MVOSTM-GC, and SF-KOSTM)2 for two data structure hash table (HT-SF-
SVOSTM, HT-SF-MVOSTM, HT-SF-MVOSTM-GC and HT-SF-KOSTM) and
linked-list (list-SF-SVOSTM, list-SF-MVOSTM, list-SF-MVOSTM-GC and list-
SF-KOSTM) implemented in C++. We analyzed that HT-SF-KOSTM and list-
SF-KOSTM perform best among all the proposed algorithms. So, we compared
our HT-SF-KOSTM with hash table based state-of-the-art STMs HT-KOSTM
[20], HT-SVOSTM [6], ESTM [21], RWSTM [7, Chap. 4], HT-MVTO [16] and
our list-SF-KOSTM with list based state-of-the-art STMs list-KOSTM [20], list-
SVOSTM [6], Trans-list [22], Boosting-list [4], NOrec-list [23], list-MVTO [16],
list-KSFTM [9].

Experimental Setup: The system configuration for experiments is 2 socket
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz with 14 cores per socket and
2 hyper-threads per core, a total of 56 threads. A private 32 KB L1 cache and
256 KB L2 cache is with each core. It has 32 GB RAM with Ubuntu 16.04.2
LTS running Operating System. Default scheduling algorithm of Linux with
all threads have the same base priority is used in our experiments. This satisfies
Assumption 1 (bounded-termination) of the scheduler and we ensure the absence
of parasitic transactions for our setup to satisfy Assumption 2.

Methodology: We have considered three different types of workloads namely,
W1 (Lookup Intensive - 5% insert, 5% delete, and 90% lookup), W2 (Mid Inten-
sive - 25% insert, 25% delete, and 50% lookup), and W3 (Update Intensive
- 45% insert, 45% delete, and 10% lookup). To analyze the absolute benefit
of starvation-freedom, we used a customized application called as the Counter
Application (refer the pseudo-code in the technical report [24]) which provides
us the flexibility to create a high contention environment where the probabil-
ity of transactions undergoing starvation on an average is very high. Our high
contention environment includes only 30 shared data-items (or keys), number of
threads ranging from 50 to 250, each thread spawns upon a transaction, where
each transaction performs 10 operations depending upon the workload chosen.
To study starvation-freedom of various algorithms, we have used max-time which

2 Code is available here: https://github.com/PDCRL/SF-MVOSTM.

https://github.com/PDCRL/SF-MVOSTM

224 C. Juyal et al.

Fig. 6. Performance analysis of SF-KOSTM and state-of-the-art STMs on hash table

is the maximum time required by a transaction to finally commit from its first
incarnation, which also involves time taken by all its aborted incarnations. We
perform each of our experiments 10 times and consider the average of it to avoid
the effect of outliers.

Results Analysis: All our results reflect the same ideology as proposed show-
casing the benefits of Starvation-Freedom in Multi-Version OSTMs. We started
our experiments with hash table data structure of bucket size 5 and compared
max-time for a transaction to commit by proposed HT-SF-KOSTM (best among
all the proposed algorithms shown in the technical report [24]) with hash table
based state-of-the-art STMs. HT-SF-KOSTM achieved an average speedup of
3.9x, 32.18x, 22.67x, 10.8x and 17.1x over HT-KOSTM, HT-SVOSTM, ESTM,
RWSTM and HT-MVTO respectively as shown in Fig. 6.

We further considered another data structure linked-list and compared max-
time for a transaction to commit by proposed list-SF-KOSTM (best among
all the proposed algorithms shown in the technical report [24]) with list based
state-of-the-arts STMs. list-SF-KOSTM achieved an average speedup of 2.4x,
10.6x, 7.37x, 36.7x, 9.05x, 14.47x, and 1.43x over list-KOSTM, list-SVOSTM,
Trans-list, Boosting-list, NOrec-list, list-MVTO, and list-KSFTM respectively
as shown in Fig. 7. We consider the number of versions in the version list K as
5 and value of C as 0.1.
For additional experiments please refer the technical report [24] which shows
the performance of HT-SF-KOSTM and list-SF-KOSTM under low contention
is slightly lesser than non starvation-free HT-KOSTM and list-KOSTM. It also
has plots of abort counts while varying the threads, best value of K and C,
stability and memory consumption.

SF in Multi-Version Object-based Transactional Memory Systems 225

Fig. 7. Performance analysis of SF-KOSTM and state-of-the-art STMs on list

5 Conclusion

We proposed a novel Starvation-Free K-Version Object-based STM (SF-
KOSTM) which ensure the starvation-freedom while maintaining the latest K-
versions corresponding to each key and satisfies the correctness criteria as local-
opacity. The value of K can vary from 1 to ∞. When K is equal to 1 then SF-
KOSTM boils down to Single-Version Starvation-Free OSTM (SF-SVOSTM).
When K is ∞ then SF-KOSTM algorithm maintains unbounded versions cor-
responding to each key known as Multi-Version Starvation-Free OSTM (SF-
MVOSTM). To delete the unused version from the version list of SF-MVOSTM,
we developed a separate Garbage Collection (GC) method and proposed SF-
MVOSTM-GC. SF-KOSTM provides greater concurrency and higher through-
put using higher-level methods. We implemented all the proposed algorithms for
hash table and linked-list data structure but it is generic for other data struc-
tures as well. Results of SF-KOSTM shows significant performance gain over
state-of-the-art STMs.

Acknowledgments. We are thankful to the anonymous reviewers for carefully read-
ing the paper and providing us valuable suggestions.

References

1. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPoPP (2008)

2. Kuznetsov, P., Peri, S.: Non-interference and local correctness in transactional
memory. Theor. Comput. Sci. 688, 103–116 (2017)

3. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979)

4. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-
concurrent transactional objects. In: PPOPP (2008)

226 C. Juyal et al.

5. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In:
PPoPP (2014)

6. Peri, S., Singh, A., Somani, A.: Efficient means of achieving composability using
transactional memory. In: NETYS 2018 (2018)

7. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann,
Burlington (2002)

8. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint,
1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2012)

9. Chaudhary, V.P., Juyal, C., Kulkarni, S., Kumari, S., Peri, S.: Achieving starvation-
freedom in multi-version transactional memory systems. In: Atig, M.F., Schwarz-
mann, A.A. (eds.) NETYS 2019. LNCS, vol. 11704, pp. 291–310. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31277-0 20

10. Bushkov, V., Guerraoui, R., Kapalka, M.: On the liveness of transactional memory.
In: PODC 2012 (2012)

11. Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A., Lipari,
G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25873-2 22

12. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory, Synthesis Lec-
tures on Distributed Computing Theory. Morgan and Claypool, San Rafael (2010)

13. Gramoli, V., Guerraoui, R., Trigonakis, V.: TM2C: a software transactional mem-
ory for many-cores. In: EuroSys 2012 (2012)

14. Waliullah, M.M., Stenström, P.: Schemes for avoiding starvation in transactional
memory systems. Practice Exp. Concurr. Comput. 21, 859–873 (2009)

15. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: A comprehensive strat-
egy for contention management in software transactional memory (2009)

16. Kumar, P., Peri, S., Vidyasankar, K.: A timestamp based multi-version STM algo-
rithm. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN
2014. LNCS, vol. 8314, pp. 212–226. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-45249-9 14

17. Lu, L., Scott, M.L.: Generic multiversion STM. In: Afek, Y. (ed.) DISC 2013.
LNCS, vol. 8205, pp. 134–148. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41527-2 10

18. Fernandes, S.M., Cachopo, J.: Lock-free and scalable multi-version software trans-
actional memory. In: PPoPP 2011, New York, NY, USA (2011)

19. Perelman, D., Byshevsky, A., Litmanovich, O., Keidar, I.: SMV: selective multi-
versioning STM. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 125–140.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0 9

20. Juyal, C., Kulkarni, S., Kumari, S., Peri, S., Somani, A.: An innovative approach to
achieve compositionality efficiently using multi-version object based transactional
systems. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 284–
300. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6 19

21. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. J. Parallel Distrib.
Comput. 100, 103–127 (2017)

22. Zhang, D., Dechev, D.: Lock-free transactions without rollbacks for linked data
structures. In: SPAA 2016, New York, NY, USA (2016)

23. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: Govindarajan, R., Padua, D.A., Hall, M.W. (eds.) PPOPP.
ACM (2010)

https://doi.org/10.1007/978-3-030-31277-0_20
https://doi.org/10.1007/978-3-642-25873-2_22
https://doi.org/10.1007/978-3-642-45249-9_14
https://doi.org/10.1007/978-3-642-45249-9_14
https://doi.org/10.1007/978-3-642-41527-2_10
https://doi.org/10.1007/978-3-642-41527-2_10
https://doi.org/10.1007/978-3-642-24100-0_9
https://doi.org/10.1007/978-3-030-03232-6_19

SF in Multi-Version Object-based Transactional Memory Systems 227

24. Juyal, C., Kulkarni, S.S., Kumari, S., Peri, S., Somani, A.: Obtaining progress
guarantee and greater concurrency in multi-version object semantics. CoRR
abs/1904.03700 (2019)

25. Heller, S., Herlihy, M., Luchangco, V., Moir, M., III, W.N.S., Shavit, N.: A lazy
concurrent list-based set algorithm. Parallel Process. Lett. 17(4), 411–424 (2007)

26. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,
J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45414-4 21

27. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg
(2006). https://doi.org/10.1007/11864219 20

28. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memo-
ries. In: DISC, pp. 305–319 (2008)

29. Crain, T., Imbs, D., Raynal, M.: Read invisibility, virtual world consistency and
probabilistic permissiveness are compatible. In: Xiang, Y., Cuzzocrea, A., Hobbs,
M., Zhou, W. (eds.) ICA3PP 2011. LNCS, vol. 7016, pp. 244–257. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24650-0 21

https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1007/11864219_20
https://doi.org/10.1007/978-3-642-24650-0_21

Improved-Zigzag : An Improved
Local-Information-Based Self-optimizing

Routing Algorithm in Virtual Grid
Networks

Yonghwan Kim1(B), Masahiro Shibata2, Yuichi Sudo3, Junya Nakamura4,
Yoshiaki Katayama1, and Toshimitsu Masuzawa3

1 Nagoya Institute of Technology,
Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan

kim@nitech.ac.jp
2 Kyushu Institute of Technology, Fukuoka, Japan

3 Osaka University, Osaka, Japan
4 Toyohashi University of Technology, Toyohashi, Aichi, Japan

Abstract. A wireless network consisting of many wireless devices
becomes popular and essential in distributed systems. In the wireless
networks, each wireless device, also called nodes, can directly communi-
cate with other devices located within its communication range. However,
to communicate with the nodes outside the communication range, the
message should be relayed to the target node via some other nodes. A
virtual grid network is an overlay network on a wireless network which
can be constructed by virtually dividing the area covered by the wire-
less network into geographical square regions of the same size, select-
ing a representative node at each region, and connecting the nodes of
neighboring regions. A virtual grid network is utilized for realizing an
energy-efficient wireless network because not all of the nodes in the sys-
tem need to join the routing, moreover, a routing algorithm can be easily
designed thanks to regularity of the grid topology. A local-information-
based self-optimizing routing algorithm, Zigzag, in virtual grid networks
was proposed. In this paper, we propose the locality-based model, named
(α, β)-range model, based on the snapshot range α and communication
range β to clearly specify the locality. Moreover, we propose a new self-
optimizing routing algorithm Improved-Zigzag which improves Zigzag by
reducing the snapshot range.

1 Introduction

Recently, various wireless devices, like smartphones or tablet computers, become
popular and necessary to take advantages of many services. As the spread of wire-
less devices, a wireless network consisting of many wireless devices becomes also
popular and important in the field of distributed systems [7–9]. In the wireless
networks, each wireless device, also called a node, has limited wireless communi-
cation range, and can directly communicate, i.e., send or receive some messages,
c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 228–242, 2019.
https://doi.org/10.1007/978-3-030-34992-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_18

Improved-Zigzag 229

Fig. 1. A virtual grid network

with only the other devices located within its communication range. When the
target node is outside the communication range, the message should be relayed
to the target node via some other nodes, which is called multi-hop communica-
tion or multi-hop routing. A routing protocol is a protocol to determine the route
(usually presented as the sequence of the relaying nodes) for sending messages
to the target node. Many routing protocols in the wireless networks have been
proposed [1–4,11,12] to realize effective multi-hop communication.

A virtual grid network is an overlay network for an energy-efficient routing.
A virtual grid network can be constructed by virtually dividing the area covered
by a wireless network into a grid of geographical square regions, called cells,
of the same size. The size of each cell is determined by the communication
range of each node such that any two nodes located in the adjacent two cells
respectively can directly communicate with each other. Figure 1 represents an
example of a virtual grid network. In each cell, a single node is selected as a
router which is responsible for a relaying node, which means that every multi-
hop communication is realized by the routers. And the non-routers, i.e., the
nodes that are not selected as routers, need not relay messages, thus they can
become inactive to save energy consumption. To increase the total lifetime of
the wireless network, in each cell, the role of the router can be taken over among
the nodes in the same cell, periodically or when needed.

In the virtual wireless network, a source node (the node initiates a message)
sends a message to the router in the same cell, the router transfers, via routers,
the message to the router in the cell containing the target node (the node delivers
the message). As a result, the target node can receive the message from the router
in the same cell. Figure 2(a) illustrates an example path from the router rs which
received a message from the source node to the router rt sent a message to
the target node. A wireless network consists of many (mobile) wireless devices.
Hence, some wireless devices may move from the current cell to a (adjacent)
different cell like Fig. 2(b). Consider that the source node or the target node in
the virtual grid network moves to a different cell. In this case, the path (route)
from the source node to the target node has to be extended to the next cell that
the source or target node moves to like Fig. 2(c). However, if the source or target
node repeatedly moves around the network, the path may become redundantly
long (Fig. 2(c)). Since energy efficiency is one of the most important issues in

230 Y. Kim et al.

Fig. 2. Redundant path constructed by movements of a node

wireless networks, a redundantly long path should be shortened to decrease the
number of the relaying nodes like Fig. 2(d).

The shortest path between the source and the target node can be easily
constructed from scratch using global information of the entire network, however,
unacceptable communication cost and large memory are required in a large-
scale wireless network. To solve this problem, Takatsu et al. proposed a local-
information-based self-optimizing routing algorithm Zigzag [5] in virtual grid
networks. In algorithm Zigzag, each router applies only local update rules based
on its local information. Algorithm Zigzag requires no global information, e.g.,
a global coordination, locations of the source and target nodes, or the length
of the path, but it can effectively optimize the path, i.e., construct the shortest
path, regardless of the scale of the wireless network.

Algorithm Zigzag opened the possibility of local-information-based routing
algorithms, which transforms any given path between two nodes into a shortest
path between the nodes. Algorithm Zigzag uses only the local information of the
path within a constant distance. This implies that each router uses the constant-
range local information and communicates with the routers within a constant
distance to execute the local updates.

In the field of the distributed computing, how to solve a problem using only
local information, like algorithm Zigzag, is the one of the important challenges.
Especially, to clarify the amount of information to solve the given problem is
an important issue. However, there exist many types of the system models in
the field of the distributed computing, and the evaluation of the amount of the
information deeply depends on the assumed system model. In this paper, we
introduce the locality-based model for the virtual grid network to evaluate the
amount (range) of information to solve the problem.

Our Contribution: The contribution of this paper is twofold: (a) we propose a
locality-based model, named (α, β)-range model, which is based on the snapshot
range α (the range of the routing information that each router can refer to) and
the communication range β (the range such that each router can send a message
in one atomic step) in virtual grid networks to clearly specify the locality of

Improved-Zigzag 231

local-information-based routing algorithms, and (b) we propose a new local-
information-based self-optimizing routing algorithm which improves Zigzag by
reducing the snapshot range α. This comparison can be realized by the proposed
locality-based model.

2 Related Works

A virtual grid network is introduced in [10] which presents a routing protocol
named GAF (Geographic Adaptive Fidelity). GAF reduces energy consumption
of the wireless networks such as an ad-hoc network by turning off nodes that
are unnecessary for routing messages with keeping a consistent level of routing
fidelity. In [10], the entire area is divided into square regions called cells such
that they form a grid. If each node has the communication range R, the length
of each side of each cell r is set to satisfy r ≤ R√

5
. Thus all nodes in the cell can

communicate with all the nodes in its adjacent cells. A single node is selected as
a router in every cell, and each router has responsibility for communication with
the routers in its adjacent cells for routing. These routers compose a virtual grid
network.

In a virtual grid network, each router communicates with the other routers in
its adjacent cells for routing and non-router nodes communicate with the router
in the same cell when they need to communicate with nodes outside of their
communication range. When the non-router node does not need to communicate
with any other nodes, it can sleep for saving energy.

Takatsu et al. proposed a local-information-based self-optimizing routing
algorithm in virtual grid networks which is named Zigzag [5]. Algorithm Zigzag
consists of only three simple rules for local updates to optimize the path shown in
Fig. 3. In algorithm Zigzag, each node (or router in the virtual grid network) does
not know the locations of the source and the target nodes. There is no coordina-
tion system, this means that each node does not have any location information.
The detailed system model will be described in Sect. 3.

Algorithm Zigzag ensures convergence of any given path into a shortest path
within reasonable convergence time O(|P |), where |P | is the length of the given
path. Zigzag also preserves the connection between the source and the target
nodes during the convergence.

Kim et al. [6] extended a virtual grid network from two-dimensional (2D)
plane into three-dimensional (3D) space. Nodes are deployed in 3D space, and

Fig. 3. Three rules of algorithm Zigzag

232 Y. Kim et al.

they have a spherical communication range instead of a circular one. Kim et al.
proposed a local-information-based algorithm in the 3D space. Like algorithm
Zigzag, the algorithm by Kim et al. uses only local information of the path within
a constant distance and it consists of four local update rules. However, unlike
algorithm Zigzag, the algorithm by Kim et al. requires the global coordination,
i.e., every node agrees on the directions of three axes1.

3 Preliminaries

3.1 System Model

A virtual grid network can be constructed by dividing the area covered by the
wireless network into geographical square regions, called cells, of the same size,
selecting a node, called a router, from each region, and connecting the routers
of neighboring regions. In this paper, we assume that a virtual grid network is
already constructed (Refer [10] for construction of a virtual grid network).

There are two special nodes, a source node vs and a target node vt. A message
is firstly sent from vs to the router in the same cell, denoted rs. And the message
is relayed by the routers from rs to rt which is the router in the cell where vt

exists, as a result, the message is forwarded to vt by rt. Note that vs and rs may
be the same node, and vt and rt also may be the same. We say that two routers
pi and pj are neighbors if the two corresponding cells are neighbors, i.e. the two
cells share a common edge.

The virtual grid network is modeled as an undirected graph G = (V,E) where
V is a set of routers and E is a set of communication links between routers. The
link set E represents all neighboring pairs of routers, that is, (pi, pj) ∈ E holds
if and only if two routers pi, pj ∈ V are in neighboring cells. A path P from rs

to rt is a sequence of routers: P = (p0, p1, p2, · · · , pn) satisfying (pi, pi+1) ∈ E
for each i (0 ≤ i < n).

Fig. 4. Labels of
links

Each router has no knowledge of its own location in a vir-
tual grid network. However, all the nodes agree on the direc-
tions of two axes. This means each router does not have its
own (x, y)-coordinate, instead, it has common sense of direc-
tion, e.g., every router knows the positive directions of both x-
axis and y-axis. Each communication link incident to a router
is locally labeled with U (Up), R (Right), L (Left), or D
(Down) (Fig. 4).

Each router pi in path P maintains the routing informa-
tion consisting of the pair of (local) labels of the links: one is
incoming link (rs side) and another one is outgoing link (rt side).

1 In [5], algorithm Zigzag assumes the agreement of the directions of two axes, however
the algorithm can be easily modified for the model so that every node agrees on only
the chirality which means the orientation of the axes, e.g., clockwise.

Improved-Zigzag 233

3.2 Path Optimization Problem

The path optimization problem for transforming the given rs-rt path into the
shortest rs-rt path in virtual grid networks is defined as follows.

Definition 1 (Path optimization problem). Let rs and rt be any two
distinct routers in a virtual grid network G = (V,E) and let P = (rs =
p0, p1, p2, · · · , pn = rt) be any path from rs to rt. The path optimization problem
is to transform a given path P into a shortest path from rs to rt while rs and rt

do not move.

In this paper, we focus on a local-information-based self-optimizing algorithm
to solve the path optimization problem which uses only the local information
within a constant distance. This means that each router autonomously executes
local updates (self-optimizing) with preserving the connection between rs and rt

using the routing information of the routers within a constant distance (local-
information-based).

We assume that a source or a target node moves slowly compared with the
required amount of the time to computations or communications. This means
that path extending by any node’s move is occurred, the path can be instantly
transformed into a shortest path by some computations and/or communications.

4 (α, β)-Range Model for Locality

We introduce a new locality-based model, (α, β)-range model, which has two
parameters, the snapshot range α and the communication range β, to specify
the locality of local-information-based routing algorithms.

4.1 Definition of (α, β)-Range Model

The Snapshot Range α. At first, we consider the range of the routing informa-
tion that each router can refer to. Each router pi in path P maintains its routing
information, a pair (in, out) such that in, out ∈ {U,R,L,D,−}, which represents
the directions of the previous (in) and next routers (out) in P . In the example
illustrated in Fig. 5, router p4 has (D,R) and router p7 has (U,R), which mean
that p3 and p5 are located downward and rightward from p4, respectively and
that p6 and p8 are located upward and rightward from p7, respectively. Symbol
‘-’ represents “no router”, which is used in rs and rt. In the example of Fig. 5,
the routing information of rs is (−, L).

A local-information-based routing algorithm allows nodes to locally change
the path based on local information (or local shape of the path). If each router pi

in P has no information of other nodes, it can use only its routing information
from which pi can get the shape of the partial path of length 2 (pi is in the
middle). Otherwise, if each router pi in path P can know the routing information
of the other two nodes (or pi−1 and pi+1) one hop away from itself in P , it can
use the routing information of the two nodes. In the same way, if each router pi

234 Y. Kim et al.

Fig. 5. An example path P

in path P can know the information of the other nodes within α hops (if exists)
from itself, it can use the information of the partial path of length 2 ∗ (α + 1)
(if exists) such that pi is located in the middle. For example, if α is 2, router
p6 knows the routing information of p4, p5, p7, p8, and p6 itself. We call α a
snapshot range.

Recall the previous work Zigzag consisting of three local update rules.
Figure 3 illustrates the three rules, and each local update is executed by the
black router. In the first rule (Fig. 3(a)), the black router can detect whether the
rule is applicable or not using only its own routing information (α = 0). For the
second or third rule, the black router requires the information of the node one
hop away from itself (α = 1) to detect whether the rules are applicable or not.
However, as we will see later, information of further nodes is required to solve the
conflicts between the applicable rules such that simultaneous application cannot
preserve connection between rs and rt.

The Communication Range β. Now, we introduce the communication range
β. This parameter represents the range such that each router can send a message
in one atomic step to make the receiver node locally update its routing informa-
tion. Specifically, each router pi can send a message to all the routers within β
hops, i.e., pi−β , pi−β+1, . . . , pi+β , in one atomic step.

Now we define the locality-based model of the virtual grid network as follows.

Definition 2. ((α, β)-Range Model). (α, β)-Range Model is a virtual grid
network model such that (a) each router in path P knows the information of
the routers within α hops from itself along path P , (b) each router can commu-
nicate with the routers within β hops, in one atomic step.

To help to understand, we show an example using Fig. 5. If the virtual grid
network in Fig. 5 is the (3,2)-range model, p5 knows the routing information of
routers from p2 to p8 (or the partial path from p1 to p9). Note that the routing
information of p2 includes the routing direction from p1, and this implies that
p5 can knows the (relative) location of p1. If router p5 detects some rules are
applicable, it can send messages to p3, p4, p6, or p7. Not only these routers, but
p5 can also send a message to router pa which is adjacent to its link labeled D
if necessary (in Fig. 5).

Improved-Zigzag 235

4.2 Solvability of the Previous Work

In this subsection, we evaluate the previous work, algorithm Zigzag [5], using the
(α, β)-range model. Algorithm Zigzag consists of three rules, and these rules may
conflicted with each other. According to [5], there exist 12 patterns of conflicts.
Table 1 shows the list of the local update rules that are conflicting with a local
update rule at pi and have higher priorities. For example, even if pi detects rule
1 is applicable, it never executes its local update if pi−1 also detects rule 1 is
applicable. Thus algorithm Zigzag uses information to resolve the conflicts.

Table 1. Conflicting rules with higher priority for local update at pi

local update at pi Rule 1 Rule 2 Rule 3

local update at pi−2 – Rule 2 –

local update at pi−1 Rule 1 Rule 1 or 2 Rule 2 or 3

local update at pi+1 – Rule 1 Rule 1 or 2

local update at pi+2 – Rule 1 Rule 1 or 2

Now we evaluate the actual value of parameter α so that every pi can detect
applicability of the rules and resolve the conflicts between local update rules.

– Rule 1: Router pi can evaluate rule 1 using only its own routing information.
However, pi has to know the information of pi−1 to actually apply rule 1 since
applicability of rule 1 at pi−1 prevents pi from applying rule 1. Thus α ≥ 1
must hold.

– Rule 2: Router pi can evaluate rule 2 if it knows pi+1’s information. To check
all conflicts, pi has to know pi−2’s information (for rule 2 at pi−2) and pi+2’s
information (for rule 1 at pi+2). Thus α ≥ 2 must hold.

– Rule 3: Router pi can evaluate rule 3 if it knows pi+1’s information. To check
all conflicts, pi has to know pi−1’s information (for rule 2 or 3 at pi−1) and
pi+3’s information (for rule 2 at pi+2). Thus α ≥ 3 must hold.

As a result, to execute local updates correctly in algorithm Zigzag, each
router has to know the information of the router within three hops from itself.
Therefore, α ≥ 3 must hold.

In algorithm Zigzag, when pi detects some local update rule can be applied
without any conflict, it executes the appropriate local update with some other
routers. Hence, some message communications are required to execute a local
update. For rule 1, pi−1 and pi+1 have to update their routing information
(β = 1). For rule 2, pi−1, pi+1, and pi+2 have to update their routing information
(β = 2). Finally, for rule 3, pi+1, pi+2, and pi’s neighboring router (which is not in
P) have to update their routing information (β = 2). Consequently, the following
observation holds.

Observation 1. Algorithm Zigzag [5] solves the path optimization problem in
(3,2)-range model.

236 Y. Kim et al.

Observation 1 considers the minimum snapshot range to detect applicability
and conflict of update rules. However, if the snapshot range is larger, every
router can know that the other nearby routers detect applicability and conflicts
of some local updates, and thus it can detect whether its local rule can be actually
applied. For instance, consider router pi detect rule 2 is applicable without any
conflict with pi−2 or pi−1. If pi+2 know the routing information of pi−2, pi+2 can
know that pi can actually apply local update for rule 2. Thus we consider an
enough snapshot range α for β = 0.

To represent the range of the routers, we use the range notation: [pa : pb]
(where a ≤ b) which means all the routers from pa to pb in P . And we assume
that two ranges can be merged. We can present the required range of the routing
information to detect applicability (without considering any conflict) at pi using
the range notation: (a) pi can evaluate rule 1 using only its routing information
(denote α1[pi] = [pi]), (b) pi can evaluate rule 2 using its routing information
and pi+1’s (denote α2[pi] = [pi : pi+1]), and (c) pi can evaluate rule 3 using its
routing information and pi+1’s (denote α3[pi] = [pi : pi+1]).

Now we can calculate the snapshot range α for β = 0 of each rule, from the
length of the range by merging two ranges as follows: (i) all the routers to detect
applicability and conflict of update rules, and (ii) all the routers of which each
rule causes the update of the routing information.

– Rule 1 at pi: (i) Local update for Rule 1 causes the update of the routing
information of pi−1, pi, and pi+1 (range [pi−1:pi+1]). (ii) To detect applica-
bility of rule 1 at pi, the evaluation of both rule 1 at pi−1 and rule 1 at pi,
and this range can be represented as α1[pi−1] + α1[pi] = [pi−1 : pi]. The
summation of these two ranges becomes [pi−1:pi+1], and its length is 2. Thus
α ≥ 2 must hold.

– Rule 2 at pi: (i) Local update for Rule 2 causes the update of the routing
information of the routers in [pi−1:pi+2]. (ii) To detect applicability of rule 2
at pi, the routing information of the routers in (α2[pi−2] + α1[pi−1] + α2[pi−1]
+ α2[pi] + α1[pi+1] + α1[pi+2]) = [pi−2 : pi+2] are necessary. Thus α ≥ 4
must hold.

– Rule 3 at pi: (i) Local update for Rule 3 causes the update of the routing
information of the routers in [pi−1:pi+2]. (ii) To detect applicability of rule 3
at pi, the routing information of the routers in (α2[pi−1] + α3[pi−1] + α3[pi]
+ α1[pi+1] + α2[pi+1] + α1[pi+2] + α2[pi+2]) = [pi−1 : pi+3] are necessary.
Thus α ≥ 4 must hold.

From the above discussion, the following observation holds.

Observation 2. Algorithm Zigzag solves the path optimization problem in
(4,0)-range model. 2

2 Note that a router which is not in path P is joined into path P as the result of the
local update for rule 3. Thus we assume that a router, which is not in path P but
adjacent to the router in P , knows the routing information of its adjacent routers in
P within the snapshot range.

Improved-Zigzag 237

5 The Proposed Algorithm Improved-Zigzag

In this section, we propose a new (local-information-based) self-optimizing rout-
ing algorithm Improved-Zigzag which is an improved version of Zigzag in virtual
grid networks.

5.1 Algorithm Improved-Zigzag

By Observations 1 and 2, algorithm Zigzag solves the path optimization problem
in (3,2)-range model or (4,0)-range model. In this section, we propose a new
self-optimizing algorithm, I-Zigzag (Improved Zigzag) which can solves the path
optimization problem in smaller (α, β)-range model, (2,1)-range model or (3,0)
range-model.

Algorithm I-Zigzag consists of three local update rules which are similar to
those in Zigzag. Figure 6 illustrates the three rules.

Fig. 6. Three rules of algorithm I-Zigzag

Each router in P has its routing information consisting of two (local) labels
of the links: one is the label of the link which is nearer to the source node, and
another is the label of the link which is nearer to the target node. We denote
these two link as pi.in and pi.out respectively. For example, in Fig. 6(b), pi.in
remains D and pi.out becomes D from R.

Table 2 represents the predicates to evaluate local rules in algorithm I-Zigzag.
We use the dot product to present the relationship between the directions of two
links: if the directions of two links are the same, the result of the dot product
becomes 1, e.g., R ·R = 1, and if they are orthogonal, the result becomes 0, e.g.,
D · L = 0. And if they are in the opposite directions, the result becomes −1,
e.g., U · D = −1.

238 Y. Kim et al.

Table 2. Predicates to evaluate local rules

isRuleA(pi) ≡ (pi.out · pi+1.out = −1)

isRuleB(pi) ≡ (pi−1.out · pi.out = 0) ∧ (pi−1.out · pi+1.out = −1)

isRuleC(pi) ≡ (pi−2.out · pi−1.out = 1) ∧ (pi−1.out · pi.out = 0)

Table 3. Conflicting rules with higher priority in algorithm I-Zigzag

local update at pi Rule A Rule B Rule C

local update at pi−1 Rule A or B Rule B –

local update at pi Rule C Rule C –

Table 3 shows the list of the local update rules that are conflicting with a local
update rule at pi and have higher priorities. Different from algorithm Zigzag, in
algorithm I-Zigzag, pi may evaluate two rules at the same time: (i) rules A and
C, or (ii) rules B and C. Router pi never executes rule A nor B if it detects rule
C is applicable at the same time, i.e., rule C has a higher priority.

Algorithm I-Zigzag is basically based on algorithm Zigzag, but the second
rule is changed and the other rules are evaluated by the different routers. These
changes allow less conflicting rules compared with algorithm Zigzag’s (Table 1).
Moreover, algorithm I-Zigzag can solve the path optimization problem using less
information (smaller α). The evaluation of the proposed algorithm I-Zigzag will
be presented in the next subsection.

Algorithm 1 presents the proposed algorithm I-Zigzag using the predicates
in Table 2. Router pi checks rule C at first because pi may evaluate rules A
or B at the same time and rule C has a higher priority. If rule C is evaluated
by pi (line 1), the local update for rule C is executed. Note that the message
communications to pi+1 and pi+2 from pi are required for this local update. Even
if pi detects rule A or rule B is applicable, to actually execute the local update
for rule B or rule A, pi has to verify no conflict exists (lines 7 and 12).

5.2 Proof Sketch of I-Zigzag

In this subsection, we show the correctness of the proposed algorithm. We do
not give a complete proof, but give a proof sketch due to the lack of space.

Lemma 1. Algorithm I-Zigzag never disconnects the path even if any set of
updates is executed.

Proof. Trivially, if there is no conflict among rules, the path is never disconnected
by the definition of each rule. Therefore, we consider only the case two or more
applicable rules are conflicted. If rule C is applicable at pi, rule A or B can be
applicable at the same time, but it is ignored by the priority among rules (refer
Table 3) to preserve the disconnection of the path. Moreover, rules A and B are

Improved-Zigzag 239

Algorithm 1. Local-information-based path optimization algorithm I-Zigzag
1: if isRuleC(pi) then
2: pi−1.out ← pi.out � Local update for rule C
3: Let pa be the router which is adjacent to pi−1’s link labeled pi.out
4: pa.in ← pi+1.in, pa.out ← pi−1.out
5: pi+1.in ← pi.in
6: the part (pi−1, pi, pi+1) of P is replaced with (pi−1, pa, pi+1)
7: else if isRuleB(pi) ∧ ¬(isRuleC(pi) ∨ isRuleB(pi−1)) then
8: pi.out ← pi+1.out � Local update for rule B
9: pa ← pi−1, pa.in ← pi+2.in, pa.out ← pi.out

10: pi+2.in ← pi+1.in
11: the part (pi, pi+1, pi+2) of P is replaced with (pi, pa, pi+2)
12: else if isRuleA(pi) ∧ ¬(isRuleC(pi) ∨ isRuleA(pi−1) ∨ isRuleB(pi−1)) then
13: pi.out ← pi+2.out � Local update for rule A
14: the part (pi, pi+1, pi+2) of P is replaced with (pi)
15: end if

never applicable at pi at the same time by the definitions of the rules. Hence,
each router executes at most one local update.

Now we consider the conflict between two consecutive local updates by two
different routers. If pi executes the local update by rule A, two hops subpath
after pi is deleted. The local update for rule B changes two hops subpath after pi,
and the local update by rule C changes two hops subpath within one hop from
pi. This implies that even if rule A or B are applicable at routers pi and pi−2 at
the same time, these consecutive two local updates never cause the disconnection
of the path. Moreover, the case such that rule A or B is applicable at pi−2 and
rule C is applicable at pi never occurs by the definition of the rules. Therefore,
we need to consider only the conflict between the two concurrent local updates
at pi−1 and pi. Note that there are 9 patterns of the conflicts by the combination
of the rules, and we denote each pattern of the conflict as (X,Y)-conflict where
X and Y are the applicable rules at pi−1 and pi respectively, for example, (B,C)-
conflict means the conflict such that rule B is applicable at pi−1 and rule C is
applicable at pi at the same time.

By the priority among rules (Table 3), the three conflicts, (A,A)-conflict,
(B,A)-conflict, and (B,B)-conflict, do not occur because pi does not execute its
local update. (C,A)-conflict and (C,B)-conflict update two disjoint subpaths,
thus the path is not disconnected. The other four conflicts cannot occur by the
definitions of the rules. ��
Lemma 2. Algorithm I-Zigzag eventually transforms any given arbitrary path
to a shortest one.

Proof. If the current path is not a shortest path, there must be exist one or more
routers which any local update rule is applicable at (we omit the proof). And we
consider that the path is partitioned into the sequence of the line segments, each
line segment consists of the consecutive same directions of the path. For example,

240 Y. Kim et al.

in Fig. 2(a), the initial path is partitioned into the 4 line segments (px, p1), (p1,
p2), (p2, p3, p4), and (p4, p5, py), where each pi denotes i− th router in the path.
We define the potential function F of the path P using the line segments as
follows: a sequence F (P) = (|P |, |s1|, |s2|, . . . , |sk|), where |P | is the total length
of the path P and each |si| is the length of each line segment, which can be totally
ordered by the lexicographical order. Note that |P | =

∑k
i=1 |si| holds. Finally we

show that whenever any local update is executed, the potential function F (P)
decreases. The local update of rule A shorten the path, thus F (P) decreases.
The local update of rule C bends the straight line of the path, which decreases
F (P). However, the local update of rule B sometimes increases F (P), because
if router pi executes the local update of rule B, the line segment starting with
pi+1 may lengthen by one. However, after the local update of rule B, the local
update of rule A is eventually executed and this shorten the length of the path.
Hence F (P) eventually decreases. ��

5.3 Evaluation Using Range Model

In this subsection, we show the algorithm I-Zigzag works in (1,2)-range model
and (3,0)-range model.

Lemma 3. Algorithm I-Zigzag solves the path optimization problem in (1,2)-
range model.

Proof. (1) Parameter α: At first, we verify the snapshot range for the predi-
cates in algorithm I-Zigzag. To judge the predicates in Table 2, the first predicate
requires the routing information of pi+1, the second one requires that of pi+1

(note that the routing information of pi−1 is not necessary for rule B because
pi can know pi−1.out from pi.in), and the last one requires the information of
pi−1 (the information of pi−2 is not necessary for the same reason above). Con-
sequently, α should be 1 or more for predicates in algorithm I-Zigzag.

In Algorithm 1, router pi should know the predicate of router pi−1 to check
the conflicts. In line 7 of Algorithm 1, pi checks isRuleB(pi−1) which requires
the routing information of pi−1 and pi, hence α ≥ 1 must hold. In line 12 of
Algorithm 1, pi checks two predicates of isRuleA(pi−1) and isRuleB(pi−1), and
both of them can also be determined by the information of pi−1 and pi. Therefore,
α ≥ 1 must hold.

(2) Parameter β: Router pi+2 is the farthest router from pi when the local
update for rule A or B is executed. And, router pi−2 is the farthest router from
pi when the local update for rule C. Therefore, β ≥ 2 must hold. ��

From Observation 1 and Lemma 3, the proposed algorithm I-Zigzag uses less
information to solve the path optimization problem compared with algorithm
Zigzag. We can consider algorithm I-Zigzag as the non-communication model
(β = 0).

Lemma 4. Algorithm I-Zigzag solves the path optimization problem in (3,0)-
range model.

Improved-Zigzag 241

Proof. (1) Rule A: Router pi+2 has to know the information of pi−1 to check
the conflict of rule A of pi without any message communication. Thus, α ≥ 3
must hold for rule A.

(2) Rule B: Router pi+2 has to know the information of pi−1 to check the
conflict of rule B of pi without any message communication. Thus, α ≥ 3 must
hold for rule B.

(3) Rule C: Router pi−2 has to know the information of pi to evaluate rule
C of pi without any message communication. Thus, α ≥ 2 must hold for rule C.

Therefore, α ≥ 3 holds for the non-communication model where β = 0. ��
From Lemmas 3 and 4, the following theorem holds.

Theorem 3. Algorithm I-Zigzag solve the path optimization problem in (1,2)-
range model or (3,0)-range model.

By Theorem 3, Observations 1, and 2, the proposed algorithm I-Zigzag solves
the path optimization problem using less information compared with algorithm
Zigzag which solves the path optimization problem in (3,2)-range model or (4,0)-
range model.

6 Conclusion

In this paper, to clarity locality for checking conditions (predicates of rules)
and executing actions, we proposed a locality-based system model, (α, β)-range
model, where α is the snapshot range α and β is the communication range.
The (α, β)-range model can be used for clearly specifying path optimization
algorithms from the viewpoint of the locality. Base on the (α, β)-range model,
we showed that the local-information-based self-optimizing algorithm Zigzag [5]
works in (3,2)-range model and (4,0)-range model. On the other hand, the pro-
posed algorithm I-Zigzag can solve the path optimization problem in (1,2)-range
model and (3,0)-range model, which improves the locality of Zigzag.

(α, β)-range model provides the measure for the locality of the local-
information-based routing algorithm in virtual grid networks. As a result, we
show that (1,2)-range and (3,0)-range are the upper bounds of the routing algo-
rithms with and without communication respectively. It is clear that no algo-
rithm solves the path optimization problem in (0,0)-range model because of the
following reason: Each router can use its routing information only, therefore,
only the rule 1 of Zigzag (or rule A of the proposed algorithm) can be used
for the path optimization. Any other rule consisting of only its routing infor-
mation cannot be used (we omit the proof). However, even this rule becomes
applicable by any router, the router cannot inform some other router of the rule
(β = 0). Moreover, any other routers never knows the applicable rule of the
other router (α = 0). On the other hand, we do not know whether the path
optimization problem is solvable or not even in (1,0)-range model or (0,1)-range
model yet. The future work is to find the lower bound of (α, β)-range model for
the local-information-based routing algorithm.

242 Y. Kim et al.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Num-
bers 18K18000, 18K18029, 18K18031, 19H04085, 19K11823, and JST SICORP Grant
Numbers JPMJSC1606 and JPMJSC1806, Japan.

References

1. Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory
and Practice. Wiley, Hoboken (2010)

2. Perkins, C., Royer, E.: Ad hoc on demand distance vector routing. In: Proceed-
ings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA 1999), pp. 90–100 (1999)

3. Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a
survey. IEEE Wirel. Commun. 11(6), 6–28 (2004)

4. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: Proceedings of the 33rd
Hawaii International Conference on System Sciences (HICSS 2000) (2000)

5. Takatsu, S., Ooshita, F., Kakugawa, H., Masuzawa, T.: Zigzag: local-information-
based self-optimizing routing in virtual grid networks. In: Proceedings of the 33rd
International Conference on Distributed Computing Systems (ICDCS), pp. 358–
368, July 2013

6. Kim, Y., Katayama, Y.: A self-optimizing routing algorithm using local information
in a 3-dimensional virtual grid network with theoretical and practical analysis. Int.
J. Netw. Comput. 7(2), 349–371 (2017)

7. Toh, C.-K.: Ad hoc mobile wireless networks: protocols and systems, 1st edn.
Prentice Hall PTR, Upper Saddle River (2002)

8. de Morais Cordeiro, C., Agrawal, D.P.: Ad Hoc and Sensor Networks: Theory and
Applications, 2nd edn. World Scientific, Singapore (2011)

9. Zheng, J., Jamalipour, A.: Wireless Sensor Networks: A Networking Perspective.
Wiley-IEEE Press (2009)

10. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed energy conservation for ad
hoc routing. In: Proceedings of the 7th Annual International Conference on Mobile
Computing and Networking (MobiCom 2001), pp. 70–84 (2001)

11. Braginsky, D., Estrin, D.: Rumor routing algorithm for sensor networks. In: The
Proceedings of the First Workshop on Sensor Networks and Applications (WSNA)
(2002)

12. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A Two-tier data dissemination model
for large-scale wireless sensor networks. In: Proceedings of ACM/IEEE MOBICOM
(2002)

Fault Tolerant Network Constructors

Othon Michail1(B), Paul G. Spirakis1,2(B), and Michail Theofilatos1(B)

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{Othon.Michail,P.Spirakis,Michail.Theofilatos}@liverpool.ac.uk

2 Computer Engineering and Informatics Department, University of Patras,
Patras, Greece

Abstract. In this work, we consider adversarial crash faults of nodes
in the network constructors model [Michail and Spirakis, 2016]. We first
show that, without further assumptions, the class of graph languages that
can be (stably) constructed under crash faults is non-empty but small.
When there is a finite upper bound f on the number of faults, we show
that it is impossible to construct any non-hereditary graph language and
leave as an interesting open problem the hereditary case. On the positive
side, by relaxing our requirements we prove that: (i) permitting linear
waste enables to construct on n/(2f)−f nodes, any graph language that
is constructible in the fault-free case, (ii) partial constructibility (i.e., not
having to generate all graphs in the language) allows the construction
of a large class of graph languages. We then extend the original model
with a minimal form of fault notifications, and our main result here is
a fault-tolerant universal constructor that requires linear waste in the
population. Finally, we show that logarithmic local memories can be
exploited for a no-waste fault-tolerant simulation of any such protocol.

Keywords: Network construction · Distributed protocol · Self
stabilization · Fault tolerant protocol · Dynamic graph formation ·
Fairness · Self-organization

1 Introduction and Related Work

In this work, we address the issue of the dynamic formation of graphs under
faults. We do this in a minimal setting, that is, a population of agents run-
ning Population Protocols that can additionally activate/deactivate links when
they meet. This model, called Network Constructors, was introduced in [MS16],
and is based on the Population Protocol (PP) model [AAD+06,AAER07] and
the Mediated Population Protocol (MPP) model [MCS11]. We are interested in
answering questions like the following: If one or more faults can affect the for-
mation process, can we always re-stabilize to a correct graph, and if not, what

All authors were supported by the EEE/CS initiative NeST. The last author was also
supported by the Leverhulme Research Centre for Functional Materials Design. This
work was partially supported by the EPSRC Grant EP/P02002X/1 on Algorithmic
Aspects of Temporal Graphs.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 243–255, 2019.
https://doi.org/10.1007/978-3-030-34992-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_19

244 O. Michail et al.

is the class of graph languages for which there exists a fault-tolerant protocol?
What are the additional minimal assumptions that we need to make in order to
find fault-tolerant protocols for a bigger class of languages?

Population Protocols run on networks that consist of computational entities
called agents (or nodes). One of the challenging characteristics is that the agents
have no control over the schedule of interactions with each other. In a popula-
tion of n agents, repeatedly a pair of agents is chosen to interact. During an
interaction their states are updated based on their previous states. In general,
the interactions are scheduled by a fair scheduler. When the execution time of
a protocol needs to be examined, a typical fair scheduler is the one that selects
interactions uniformly at random.

Network Constructors (and its geometric variant [Mic18]) is a theoretical
model that may be viewed as a minimal model for programmable matter oper-
ating in a dynamic environment [MS17]. Programmable matter refers to any
type of matter that can algorithmically transform its physical properties, for
example shape and connectivity. The transformation is the result of execut-
ing an underlying program, which can be either a centralized algorithm or a
distributed protocol stored in the material itself. There is a wide range of appli-
cations, spanning from distributed robotic systems [GKR10], to smart materials,
and many theoretical models (see, e.g., [DDG+14,DDG+18,MSS19,DLFS+19]
and references therein), try to capture some aspects of them.

The main difference between PPs and Network Constructors is that in the
PP (and the MPP) models, the focus is on computation of functions of some
input values, while Network Constructors are mostly concerned with the sta-
ble formation of graphs that belong to some graph language. Fault tolerance
must deal with the graph topology, thus, previous results on self-stabilizing PPs
[AAFJ08,BBB13,DLFI+17,CLV+17] and MPPs [MOKY12] do not apply here.

In [MS16], Michail and Spirakis gave protocols for several basic network
construction problems, and they proved several universality results by presenting
generic protocols that are capable of simulating a Turing Machine and exploiting
it in order to stably construct a large class of networks, in the absence of crash
failures.

In this work, we examine the setting where adversarial crash faults may
occur, and we address the question of which families of graph languages can be
stably formed. Here, adversarial crash faults mean that an adversary knows the
rules of the protocol and can select some node to be removed from the population
at any time. For simplicity, we assume that the faults can only happen sequen-
tially. This means that in every step at most one fault may occur, as opposed to
the case where many faults can occur during each step. These cases are equiva-
lent in the Network Constructors model w.l.o.g., but not in the extended version
of this model (which allows fault notifications) that we consider later.

A main difference between our work and traditional self-stabilization
approaches is that the nodes are supplied with constant local memory, while
in principle they can form linear (in the population size) number of connec-
tions per node. Existing self-stabilization approaches that are based on restarting

Fault Tolerant Network Constructors 245

techniques cannot be directly applied here [DIM93,Dol00], as the nodes cannot
distinguish whether they still have some activated connections with the remain-
ing nodes, after a fault has occurred. This difficulty is the reason why it is not
sufficient to just reset the state of a node in case of a fault. In addition, in
contrast to previous self-stabilizing approaches [GK10,DT01] that are based on
shared memory models, two adjacent nodes can only store 1 bit of memory in the
edge joining them, which denotes the existence or not of a connection between
them.

Angluin et al. [AAFJ08] incorporated the notion of self-stabilization into the
population protocol model, giving self-stabilizing protocols for some fundamental
tasks such as token passing and leader election. They focused on the goal of stably
maintaining some property such as having a unique leader or a legal coloring of
the communication graph.

Delporte-Gallet et al. [DGFGR06] studied the issue of correctly computing
functions on the node inputs in the Population Protocol model [AAD+06], in
the presence of crash faults and transient faults that can corrupt the states of the
nodes. They construct a transformation which makes any protocol that works
in the failure-free setting, tolerant in the presence of such failures, as long as
modifying a small number of inputs does not change the output. Guerraoui and
Ruppert [GR09] introduced an interesting model, called Community Protocol,
which extends the Population Protocol model with unique identifiers and enough
memory to store a constant number of other agents’ identifiers. They show that
this model can solve any decision problem in NSPACE(n log n) while tolerating
a constant number of Byzantine failures.

Peleg [Pel09] studies logical structures, constructed over static graphs, that
need to satisfy the same property on the resulting structure after node or edge
failures. He distinguishes between the stronger type of fault-tolerance obtained
for geometric graphs (termed rigid fault-tolerance) and the more flexible type
required for handling general graphs (termed competitive fault-tolerance). It dif-
fers from our work, as we address the problem of constructing such structures
over dynamic graphs.

1.1 Our Contribution

The goal of any Network Constructor (NET) protocol is to stabilize to a graph
that belongs to (or satisfies) some graph language L, starting from an initial
configuration where all nodes are in the same state and all connections are
disabled. In [MS16], only the fault-free case was considered. In this work, we
formally define the model that extends NETs allowing crash failures, and we
examine protocols in the presence of such faults. Whenever a node crashes, it is
removed from the population, along with all its activated edges. This leaves the
remaining population in a state where some actions may need to be taken by
the protocol in order to eventually stabilize to a correct network.

We first study the constructive power of the original NET model in the
presence of crash faults. We show that the class of graph languages that is in
principle constructible is non-empty but very small: for a potentially unbounded

246 O. Michail et al.

number of faults, we show that the only stably constructible language is the
Spanning Clique. We also prove a strong impossibility result, which holds even
if the size of graphs that the protocol outputs in populations of size n need
only grow with n (the remaining nodes being waste). For a bounded number
of faults, we show that any non-hereditary graph language is impossible to be
constructed. However, we show that by relaxing our requirements we can extend
the class of constructible graph languages. In particular, permitting linear waste
enables to construct on n/(2f) − f nodes, where f is a finite upper bound on
the number of faults, any graph language that is constructible in a failure-free
setting. Alternatively, by allowing our protocols to generate only a subset of all
graphs in the language (called partial constructibility), a large class of graph
languages becomes constructible (see Sect. 3).

In light of the impossibilities in the Network Constructors model, we intro-
duce the minimal additional assumption of fault notifications. In particular, after
a fault on some node u occurs, all nodes that maintain an active edge with u at
that time (if any) are notified. If there are no such nodes, an arbitrary node in
the population is notified. In that way, we guarantee that at least one node in
the population will sense the removal of u. Nevertheless, some of our construc-
tions work without notifications in the case of a crash fault on an isolated node
(Sect. 4).

We obtain two fault-tolerant universal constructors. One of the main tech-
nical tools that we use in them, is a fault-tolerant construction of a stable path
topology (i.e., a line). We show that this topology is capable of simulating a
Turing Machine (abbreviated “TM” throughout this paper), and, in the event of
a fault, is capable of always reinitializing its state correctly (Sect. 4.1). Our pro-
tocols use a subset of the population (called waste) in order to construct there a
TM, while the graph which belongs to the required language L is constructed in
the rest of the population (called useful space). Throughout this paper, we call
waste all nodes that do not belong to the constructed graph G ∈ L after sta-
bilization, and remain either isolated nodes or part of a component such as the
TM. The idea is based on [MS16], where they show several universality results
by constructing on k nodes of the population a network G1 capable of simulat-
ing a TM, and then repeatedly drawing a random network G2 on the remaining
n − k nodes. The idea is to execute on G1 the TM which decides the language
L with input the network G2. If the TM accepts, it outputs G2, otherwise the
TM constructs a new random graph.

This allows a fault-tolerant construction of any graph accepted by a TM
in linear space, with waste min{n/2 + f(n), n}, where f(n) is the number of
faults in the execution. We finally prove that increasing the permissible waste to
min{2n/3 + f(n), n} allows the construction of graphs accepted by an O(n2)-
space Turing Machine, which is asymptotically the maximum simulation space
that we can hope for in this model.

In the full version, we also provide a protocol Π ′ based on restarts such that,
given any network constructor Π with notifications, Π ′ is a fault-tolerant version
of Π without waste. However, the required memory per node in this protocol is
O(log n) bits.

Fault Tolerant Network Constructors 247

Finally, in Sect. 5 we conclude and discuss further research directions opened
by this work.

The following table summarizes all results proved in this paper (Table 1).

Table 1. Summary of our results.

Constructible languages

Without notifications With notifications

Unbounded faults Bounded faults Unbounded faults

Only Spanning Clique Non-hereditary
impossibility

Fault-tolerant protocols:
Spanning Star, Cycle
Cover, Spanning Line

Strong impossibility
even with linear waste

A representation of any
finite graph (partial
constructibility)

Universal Fault-tolerant
Constructors (with waste)

Any constructible
graph language with
linear waste

Universal Fault-tolerant
Restart (without waste)

Due to space constraints, several technical details are omitted from this
extended abstract. A full version with all proofs can be found at [MST19].

2 Model and Definitions

A Network Constructor (NET) is a distributed protocol defined by a 4-tuple
(Q, q0, Qout, δ), where Q is a finite set of node-states, q0 ∈ Q is the initial node-
state, Qout ⊆ Q is the set of output node-states, and δ : Q × Q × {0, 1} →
Q × Q × {0, 1} is the transition function, where {0, 1} is the set of edge states.

In the generic case, there is an underlying interaction graph GU = (VU , EU)
specifying the permissible interactions between the nodes, and on top of GU ,
there is a dynamic overlay graph GO = (VO, EO). A mapping function F maps
every node in the overlay graph to a distinct underlay node. In this work, GU is
a complete undirected interaction graph, i.e., EU = {uv : u, v ∈ VU and u �= v},
while the overlay graph consists of a population of n initially isolated nodes (also
called agents).

The NET protocol is stored in each node of the overlay network, thus, each
node u ∈ GO is defined by a state q ∈ Q. Additionally, each edge e ∈ EO is
defined by a binary state (active/connected or inactive/disconnected). Initially,
all nodes are in the same state q0 and all edges are inactive. The goal is for the
nodes, after interacting and activating/deactivating edges for a while, to end up
with a desired stable overlay graph, which belongs to some graph language L.

During a (pairwise) interaction, the nodes are allowed to access the state of
their joining edge and either activate it (state = 1) or deactivate it (state = 0).

248 O. Michail et al.

When the edge state between two nodes u, v ∈ GO is activated, we say that u
and v are connected, or adjacent at that time t, and we write u ∼

t
v.

In this work, we present a version of this model that allows adversarial crash
failures. A crash (or halting) failure causes an agent to cease functioning and
play no further role in the execution. This means that all the adjacent edges of
F (u) ∈ GU are removed from EU , and, at the same time, all the adjacent edges
of u ∈ GO become inactive.

The execution of a protocol proceeds in discrete steps. In every step, an edge
e ∈ EU between two nodes F (u) and F (v) is selected by an adversary scheduler,
subject to some fairness guarantee. The corresponding nodes u and v interact
with each other and update their states and the state of the edge uv ∈ GO

between them, according to a joint transition function δ. If two nodes in states
qu and qv with the edge joining them in state quv encounter each other, they
can change into states q′

u, q′
v and q′

uv, where (q′
u, q′

v, q′
uv) ∈ δ(qu, qv, quv). In the

original model, GU is the complete directed graph, which means that during
an interaction, the interacting nodes have distinct roles. In our protocols, we
consider a more restricted version, that is, symmetric transition functions, as
we try to keep the model as minimal as possible. In particular, δ(qu, qv, quv) =
(a, b, c) implies δ(qv, qu, qvu) = (b, a, c).

A configuration is a mapping C : VI ∪EI → Q∪{0, 1} specifying the state of
each node and each edge of the interaction graph. An execution of the protocol
on input I is a finite or infinite sequence of configurations, C0, C1, C2, . . . , each of
which is a set of states drawn from Q∪{0, 1}. In the initial configuration C0, all
nodes are in state q0 and all edges are inactive. Let qu and qv be the states of the
nodes u and v, and quv denote the state of the edge joining them. A configuration
Ck is obtained from Ck−1 by one of the following types of transitions:

1. Ordinary transition: Ck = (Ck−1 − {qu, qv, quv}) ∪ {q′
u, q′

v, q′
uv} where

{qu, qv, quv} ⊆ Ck−1 and (q′
u, q′

v, q′
uv) ∈ δ(qu, qv, quv).

2. Crash failure: Ck = Ck−1 −{qu}−{quv : uv ∈ EI} where {qu, quv} ⊆ Ck−1.

We say that C ′ is reachable from C and write C � C ′, if there is a sequence of
configurations C = C0, C1, . . . , Ct = C ′, such that Ci → Ci+1 for all i, 0 � i < t.
The fairness condition that we impose on the scheduler is quite simple to state.
Essentially, we do not allow the scheduler to avoid a possible step forever. More
formally, if C is a configuration that appears infinitely often in an execution, and
C → C ′, then C ′ must also appear infinitely often in the execution. Equivalently,
we require that any configuration that is always reachable is eventually reached.

We define the output of a configuration C as the graph G(C) = (V,E) where
V = {u ∈ VO : C(u) ∈ Qout} and E = {uv : u, v ∈ V, u �= v, and C(uv) = 1}.
If there exists some step t ≥ 0 such that G(Ci) = G for all i ≥ t, we say that
the output of an execution C0, C1, . . . stabilizes (or converges) to graph G, every
configuration Ci, for i ≥ t, is called output-stable, and t is called the running time
under our scheduler. We say that a protocol Π stabilizes eventually to a graph
G of type L if and only if after a finite number of pairwise interactions, the graph
defined by ‘on’ edges does not change and belongs to the graph language L.

Fault Tolerant Network Constructors 249

Definition 1. We say that a protocol Π constructs a graph language L if: (i)
every execution of Π on n nodes stabilizes to a graph G ∈ L s.t. |V (G)| = n and
(ii) ∀G ∈ L there is an execution of Π on |V (G)| nodes that stabilizes to G.

Definition 2. We say that a protocol Π partially constructs a graph language
L, if: (i) requirement (i) from Definition 1 holds and (ii) ∃G ∈ L s.t. no execution
of Π on |V (G)| nodes stabilizes to G.

Definition 3 (Fault-tolerant protocol). Let Π be a NET protocol that, in a
failure-free setting, constructs a graph G ∈ L. Π is called f -fault-tolerant if for
any population size n > f , any execution of Π constructs a graph G ∈ L, where
|V (G)| = n − f . We also call Π fault-tolerant if the same holds for any number
f ≤ n − 2 of faults.

Definition 4 (Constructible language). A graph language L is called con-
structible (partially constructible) if there is a protocol that constructs (partially
constructs) it. Similarly, we call L constructible under f faults, if there is an
f-fault-tolerant protocol that constructs L, where f is an upper bound on the
maximum number of faults during an execution.

Definition 5 (Critical node). Let G be a graph that belongs to a graph lan-
guage L. Call u a critical node of G if by removing u and all its edges, the
resulting graph G′ = G − {u} − {uv : v ∼ u}, does not belong to L. In other
words, if there are no critical nodes in G, then any (induced) subgraph G′ of G
that can be obtained by removing nodes and all their edges, also belongs to L.

Definition 6 (Hereditary Language). A graph language L is called hered-
itary if for any graph G ∈ L, every induced subgraph of G also belongs to L. In
other words, there is no graph G ∈ L with critical nodes.

This notion is known in the literature as hereditary property of a graph w.r.t.
(with respect to) some graph language L. Observe that if there exists a graph G
s.t. for any induced subgraph G′ of G, G′ ∈ L, does not imply that the same holds
for any graph in L. Some examples of hereditary languages are “Bipartite graph”,
“Planar graph”, “Forest of trees”, “Clique”, “Set of cliques”, and “Maximum
node degree ≤ Δ”.

In this work, unless otherwise stated, a graph language L is an infinite set of
graphs satisfying the following properties:

1. (No gaps): For all n ≥ c, where c ≥ 2 is a finite integer, ∃G ∈ L of order n.
2. (No Isolated Nodes): ∀G ∈ L and ∀u ∈ V (G), it holds that d(u) ≥ 1 (where

d(u) is the degree of u).

Even though graph languages are not allowed to contain isolated nodes, there are
cases in which a protocol might be allowed to output one or more isolated nodes.
In particular, if a protocol Π constructing L is allowed a waste of at most w,
then whenever Π is executed on n nodes, it must output a graph G ∈ L of order
|V (G)| ≥ n − w, leaving at most w nodes in one or more separate components
(could be all isolated).

250 O. Michail et al.

3 Network Constructors Without Fault Notifications

In this section, we study the constructive power of the original NET model in the
presence of bounded and unbounded crash faults when no form of notification
is available to the nodes.

3.1 Unbounded Number of Faults

We here consider the setting where the number of faults can be any number up to
n−2. We prove that the only constructible graph language is Spanning Clique =
{G : G is a spanning clique}.

We first present a protocol which constructs the language Spanning Clique
and we show that it can tolerate any number of faults. Let Clique be the following
2-state symmetric protocol.

Protocol Clique: Q = {b, r}, initial state b, and transition function δ :
(b, b, 0) → (b, r, 0), (b, r, 0) → (r, r, 0), (r, r, 0) → (r, r, 1)

Lemma 1. Clique is a fault-tolerant protocol for Spanning Clique.

In addition, we show that (due to the power of the adversary), no other graph
language is constructible under unbounded faults.

Lemma 2. Let Π be a protocol constructing a language L and G ∈ L be a graph
that Π outputs on |V (G)| nodes. If G has an independent set S ⊆ V , s.t. |S| ≥ 2,
then there is an execution of Π on n nodes which stabilizes on |S| isolated nodes
(where |S| = n − f and f is the number of faults in that execution).

Theorem 1. Let L be any graph language such that L �= Spanning Clique.
Then, there is no protocol that constructs L if an unbounded number of crash
failures may occur.

The proof following theorem is a direct application of Lemma2.

Theorem 2. Let L be any graph language such that the graphs G ∈ L have
maximum independent sets whose size grows with |V (G)|. If the useful space of
protocols is required to grow with n, then there is no protocol that constructs L
in the unbounded-faults case.

3.2 Bounded Number of Faults

The exact characterization established above, shows that under unbounded fail-
ures and without further assumptions, we cannot hope for non-trivial construc-
tions. We now relax the power of the faults adversary, so that there is a finite
upper bound f on the number of faults. In particular, fixing any such 0 ≤ f ≤ n
in advance, it is guaranteed that ∀n ≥ 0 and all executions of a protocol on n
nodes, at most f nodes may fail during the execution. Then the class of con-
structible graph languages is naturally parameterized in f .

We first show that non-hereditary languages are not constructible under a
single fault.

Fault Tolerant Network Constructors 251

Theorem 3. If there exists a critical node in G, there is no 1-fault-tolerant
NET protocol that stabilizes to it.

By Definition 6 and Theorem 3 it follows that.

Corollary 1. If a graph language L is non-hereditary, it is impossible to be
constructed under a single fault.

Note that this does not imply that any hereditary language is constructible under
a constant number of faults. We leave this as an interesting open problem.

On the positive side we show that in the case of a bounded number of faults,
there is a non-trivial class of languages that is partially constructible. Consider
the class of graph languages defined as follows. Any such language LD,f in the
family is uniquely specified by a graph D = ([k],H) and the finite upper bound
f < k on the number of faults. A graph G = (V,E) belongs to LD,f iff there
are k partitions V1, V2, . . . , Vk of V s.t. for all 1 ≤ i, j ≤ k, ||Vi| − |Vj || ≤
f +1. In addition, E is constructed as follows. The graph D = ([k],H), possibly
containing self-loops, defines a neighboring relation between the k partitions. For
every (i, j) ∈ H (where possibly i = j), E contains all edges between partitions
Vi and Vj , i.e., a complete bipartite graph between them (or a clique in case
i = j). As no isolated nodes are allowed, every Vi must be fully connected to at
least one Vj (possibly itself).

We first consider the case where k = 2δ, for some constant δ ≥ 0, and we
provide a protocol that divides the population into k partitions. The protocol
works as follows: initially, all nodes are in state c0 (we call this the partition 0).
When two nodes in states ci, where i ≥ 0 interact with each other, they update
their states to c2i+1 and c2i+2, moving to partitions 2i+1 and 2i+2 respectively.
Interactions between nodes in different c-states (ci, cj , where i �= j) do not affect
the configuration. When j = 2i + 1 ≥ k − 1 (or j = 2i + 2 ≥ k − 1) for the first
time, it means that the node has reached its final partition. It updates its state
to Pm, where m = j − k + 1, thus, the final partitions are {P0, P1, . . . , Pk−1}.

This process divides each partition into two partitions of equal size. However,
in the case where the number of nodes is odd, a single node remains unmatched.
For this reason, all nodes participate to the final formation of H regardless of
whether they have reached their final partitions or not. There is a straightforward
mapping of each internal partition to a distinct leaf of the binary tree, that is,
each partition ci behaves as if it were in partition Pi. In order to avoid false
connections between the partitions, we also allow the nodes to disconnect from
each other if they move to a different partition. This process guarantees that
eventually all nodes end up in a single partition, and their connections are strictly
described by H.

Lemma 3. In the absence of faults, the above protocol divides the population
into k partitions of at least n/k − 1 nodes each.

Lemma 4. In the case where up to f faults occur during the execution, each
final partition has at least n/k−f −1 nodes, where k is the number of partitions
and f < k.

252 O. Michail et al.

Corollary 2. ||Vi| − |Vj || ≤ f + 1, ∀1 ≤ i, j ≤ k.

Theorem 4. The language LD,f , where k is a constant number, is partially
constructible under f faults.

Finally, we show that if we permit a waste linear in n, any graph language
that is constructible in the fault-free NET model, becomes constructible under
a bounded number of faults.

Theorem 5. Take any NET protocol Π of the original fault-free model. There
is a NET Π ′ such that when at most f faults may occur on any population of
size n, Π ′ successfully simulates an execution of Π on at least n

2f − f nodes.

4 Notified Network Constructors

In light of the impossibility results of Sect. 3, we allow fault notifications when
nodes crash, aiming at constructing a larger class of graph languages. In partic-
ular, we introduce a fault flag in each node, which is initially zero. When a node
u crashes at time t, every node v which was adjacent to u at time t is notified,
that is, the fault flag of all v becomes 1. In the case where u is an isolated node
(i.e., it has no active edges), an arbitrary node w in the graph is notified, and
its fault flag becomes 2. Then, the fault flag becomes immediately zero after
applying a corresponding rule from the transition function.

More formally, the set of node-states is Q × {0, 1, 2}, and for clarity in our
descriptions and protocols, we define two types of transition functions. The first
one determines the node and connection state updates of pairwise interactions
(δ1 : Q × Q × {0, 1} → Q × Q × {0, 1}), while the second transition function
determines the node state updates due to fault notifications (δ2 : Q×{0, 1, 2} →
Q×{0}). This means that during a step t that a node u crashes, all its adjacent
nodes are allowed to update their states based on δ2 at that same step. If there
are no any adjacent nodes to u, an arbitrary node is notified, thus, updating its
state based on δ2 at step t.

Proposition 1. We provide fault-tolerant protocols for spanning star and cycle
cover (see Protocol 3 and Protocol 4 in [MST19]).

4.1 Universal Fault-Tolerant Constructors

In this section, we ask whether there is a generic fault-tolerant constructor capa-
ble of constructing a large class of graphs. We first give a fault-tolerant protocol
that constructs a spanning line, and then we show that we can simulate a given
TM on that line, tolerating any number of crash faults. The rules of the protocol
and the proof of its correctness can be found in [MST19]. Finally, we exploit that
in order to construct any graph language that can be decided by an O(n2)−space
TM, paying at most linear waste.

Lemma 5. FT Spanning Line (see Protocol 5 in [MST19]) is fault-tolerant.

Fault Tolerant Network Constructors 253

Lemma 6. There is a NET Π (with notifications) such that when Π is executed
on n nodes and at most k faults can occur, where 0 ≤ k < n, Π will eventually
simulate a given TM M of space O(n − k) in a fault-tolerant way.

Lemma 7. There is a fault-tolerant NET Π (with notifications) which parti-
tions the nodes into two groups U and D with waste at most 2f(n), where f(n)
is an upper bound on the number of faults that can occur. U is a spanning line
with a unique leader in one endpoint and can eventually simulate a TM M . In
addition, there is a perfect matching between U and D.

Theorem 6. For any graph language L that can be decided by a linear space
TM, there is a fault-tolerant NET Π (with notifications) that constructs a graph
in L with waste at most min{n/2 + f(n), n}, where f(n) is an upper bound on
the number of faults that can occur.

We now show that if the constructed network is required to occupy 1/3
instead of half of the nodes, then the available space of the TM-constructor dra-
matically increases from O(n) to O(n2). We provide a protocol which partitions
the population into three sets U , D and M of equal size k = n/3 (see Protocol
6 in [MST19]). The idea is to use the set M as a Θ(n2) binary memory for the
TM, where the information is stored in the k(k − 1)/2 edges of M .

Theorem 7. For any graph language L that can be decided by an O(n2)−
space TM, there is a protocol that constructs L equiprobably with waste at most
min{2n/3 + f(n), n}, where f(n) is an upper bound on the number of faults.

5 Conclusions and Open Problems

A number of interesting problems are left open for future work. Our only exact
characterization was achieved in the case of unbounded faults and no notifica-
tions. If faults are bounded, non-hereditary languages were proved impossible to
construct without notifications but we do not know whether hereditary languages
are constructible. Relaxations, such as permitting waste or partial constructibil-
ity were shown to enable otherwise impossible transformations, but there is still
work to be done to completely characterize these cases. In case of notifications,
we managed to obtain fault-tolerant universal constructors, but it is not yet clear
whether the assumptions of waste and local coin tossing that we employed are
necessary and how they could be dropped. Apart from these immediate tech-
nical open problems, some more general related directions are the examination
of different types of faults such as random, Byzantine, and communication/edge
faults. Finally, a major open front is the examination of fault-tolerant protocols
for stable dynamic networks in models stronger than NETs.

References

[AAD+06] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computa-
tion in networks of passively mobile finite-state sensors. Distrib. Comput.
18(4), 235–253 (2006)

254 O. Michail et al.

[AAER07] Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational
power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)

[AAFJ08] Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing popula-
tion protocols. ACM Trans. Auton. Adapt. Syst. 3(4), 1–28 (2008)

[BBB13] Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election
in population protocols over arbitrary communication graphs. In: Baldoni,
R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp.
38–52. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03850-
6 4

[CLV+17] Cooper, C., Lamani, A., Viglietta, G., Yamashita, M., Yamauchi, Y.: Con-
structing self-stabilizing oscillators in population protocols. Inf. Comput.
255, 336–351 (2017)

[DDG+14] Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C.,
Strothmann, T.: Brief announcement: amoebot-a new model for pro-
grammable matter. In: Proceedings of the 26th ACM Symposium on Par-
allelism in Algorithms and Architectures, pp. 220–222. ACM (2014)

[DDG+18] Daymude, J.J., et al.: On the runtime of universal coating for pro-
grammable matter. Nat. Comput. 17(1), 81–96 (2018)

[DGFGR06] Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When
birds die: making population protocols fault-tolerant. In: Gibbons, P.B.,
Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol.
4026, pp. 51–66. Springer, Heidelberg (2006). https://doi.org/10.1007/
11776178 4

[DIM93] Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems
assuming only read/write atomicity. Distrib. Comput. 7(1), 3–16 (1993)

[DLFI+17] Di Luna, G.A., Flocchini, P., Izumi, T., Izumi, T., Santoro, N., Viglietta,
G.: Population protocols with faulty interactions: the impact of a leader.
In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS,
vol. 10236, pp. 454–466. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57586-5 38

[DLFS+19] Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi,
Y.: Shape formation by programmable particles. Distrib. Comput. 1–33
(2019)

[Dol00] Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
[DT01] Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators. Distrib.

Comput. 14(3), 147–162 (2001)
[GK10] Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for

independence, domination, coloring, and matching in graphs. J. Parallel
Distrib. Comput. 70(4), 406–415 (2010)

[GKR10] Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: one centimeter modules
for programmable matter through self-disassembly. In: 2010 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 2485–2492.
IEEE (2010)

[GR09] Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile agents
can tolerate byzantine failures. In: Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol.
5556, pp. 484–495. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-02930-1 40

[MCS11] Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population pro-
tocols. Theoret. Comput. Sci. 412(22), 2434–2450 (2011)

https://doi.org/10.1007/978-3-319-03850-6_4
https://doi.org/10.1007/978-3-319-03850-6_4
https://doi.org/10.1007/11776178_4
https://doi.org/10.1007/11776178_4
https://doi.org/10.1007/978-3-319-57586-5_38
https://doi.org/10.1007/978-3-319-57586-5_38
https://doi.org/10.1007/978-3-642-02930-1_40
https://doi.org/10.1007/978-3-642-02930-1_40

Fault Tolerant Network Constructors 255

[Mic18] Michail, O.: Terminating distributed construction of shapes and patterns
in a fair solution of automata. Distrib. Comput. 31(5), 343–365 (2018)

[MOKY12] Mizoguchi, R., Ono, H., Kijima, S., Yamashita, M.: On space complexity
of self-stabilizing leader election in mediated population protocol. Distrib.
Comput. 25(6), 451–460 (2012)

[MS16] Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed
stable network construction. Distrib. Comput. 29(3), 207–237 (2016)

[MS17] Michail, O., Spirakis, P.G.: Network constructors: a model for pro-
grammable matter. In: Steffen, B., Baier, C., van den Brand, M., Eder, J.,
Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp.
15–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-
0 3

[MSS19] Michail, O., Skretas, G., Spirakis, P.G.: On the transformation capability
of feasible mechanisms for programmable matter. J. Comput. Syst. Sci.
102, 18–39 (2019)

[MST19] Michail, O., Spirakis, P.G., Theofilatos, M.: Fault tolerant network con-
structors. arXiv preprint arXiv:1903.05992 (2019)

[Pel09] Peleg, D.: As good as it gets: competitive fault tolerance in network struc-
tures. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp.
35–46. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
05118-0 3

https://doi.org/10.1007/978-3-319-51963-0_3
https://doi.org/10.1007/978-3-319-51963-0_3
http://arxiv.org/abs/1903.05992
https://doi.org/10.1007/978-3-642-05118-0_3
https://doi.org/10.1007/978-3-642-05118-0_3

Ring Exploration of Myopic Luminous
Robots with Visibility More Than One

Shota Nagahama(B), Fukuhito Ooshita, and Michiko Inoue

Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, Japan
{nagahama.shota.nl1,f-oosita,kounoe}@is.naist.jp

Abstract. In this paper, we investigate ring exploration algorithms for
autonomous myopic luminous robots. Myopic robots mean that they can
observe nodes only within a certain fixed distance, and luminous robots
mean that they have light devices that can emit a color from a set of
constant number of colors. We consider the constraint that the visible
distance is any constant of at least two and the number of colors of light
devices is two. As a main contribution, in the fully synchronous, semi-
synchronous, and asynchronous models, we prove that (1) two robots are
necessary and sufficient to achieve perpetual exploration and (2) three
robots are necessary and sufficient to achieve terminating exploration,
where perpetual exploration requires every robot to visit every node
infinitely many times and terminating exploration requires robots to ter-
minate after every node is visited by a robot at least once. These results
show the power of large visibility for luminous robots because, when the
visible distance is one and the number of colors is two, three and four
robots are necessary to achieve perpetual and terminating exploration,
respectively, in the semi-synchronous and asynchronous models. We also
show that the proposed perpetual exploration algorithm is universal, that
is, the algorithm achieves perpetual exploration from any solvable ini-
tial configuration with two robots. On the other hand, we show that no
universal algorithm exists for terminating exploration with three robots.

Keywords: Autonomous mobile robots · Exploration problem ·
Discrete environments

1 Introduction

1.1 Background and Motivation

Theoretical research on computing by autonomous mobile robots has attracted a
lot of attention in the field of distributed computing. The research focuses on the
minimum capabilities of robots that permit to achieve a given task, and clarifies
the limitation of computing in such settings. As a model of robot operations,

This work was supported in part by JSPS KAKENHI Grant Number 18K11167 and
JST SICORP Grant Number JPMJSC1806.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 256–271, 2019.
https://doi.org/10.1007/978-3-030-34992-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_20

Ring Exploration of Myopic Luminous Robots with Visibility More Than One 257

the Look-Compute-Move (LCM) model [17] is commonly used. In the LCM
model, each robot repeats cycles of look, compute, and move phases. In the
look phase, the robot observes positions of other robots. In the compute phase,
the robot executes its algorithm using the observation as its input, and decides
whether it moves somewhere or stays idle. In the move phase, it moves to a
new position if the robot decided to move in the compute phase. To consider
minimum capabilities, most studies assume that robots are identical (i.e., robots
execute the same algorithm and have no identifier), oblivious (i.e., robots have
no memory to record past history), and silent (i.e., robots cannot communicate
with other robots explicitly). Indeed, communication among robots is done only
in the implicit way by observing positions of other robots and moving to a new
position. Previous works considered task solvability of LCM robots in continuous
environments (aka two- or three-dimensional Euclidean space) [14,17,18], while
others considered discrete environments (aka graph networks) [5,13,15].

In this paper, we focus on graph networks. One of the most fundamental
tasks in graph networks is exploration. Two types of exploration tasks have
been well studied: perpetual exploration requires every robot to visit every node
infinitely many times, and terminating exploration requires robots to terminate
after every node is visited by a robot at least once. Perpetual exploration has
been studied for rings [1] and grids [2]. Terminating exploration has been studied
for rings [11,13], trees [12], grids [9], tori [10], and arbitrary networks [4].

All aforementioned works for exploration make the assumption that each
robot has unlimited visibility, i.e., it observes all other robots in the networks.
However, this powerful ability somewhat contradicts the principle of very weak
mobile entities. For this reason, recent studies consider the more realistic case of
myopic robots [7,8]. A myopic robot has limited visibility, i.e., it can see nodes
(and robots on them) only within a certain fixed distance φ. Datta et al. studied
terminating exploration of rings for φ = 1 [7] and φ = 2, 3 [8].

Since most results for φ = 1 are negative, Ooshita and Tixeuil [16] consider
a non-volatile visible light [6] to improve the task solvability. A robot endowed
with such a light is called a luminous robot. Each luminous robot is equipped
with a light device that can emit a constant number of colors to other robots,
a single color at a time. The light color is non-volatile, so it can be used as a
constant-space memory. Ooshita and Tixeuil [16] studied perpetual and termi-
nating exploration of rings for φ = 1 and showed that the number of robots
required to achieve the tasks can be reduced compared to non-luminous robots.
A remaining natural question is whether the number of required robots can be
further reduced with φ ≥ 2. The question is the main topic in this paper.

Recently Bramas et al. studied exploration of an infinite grid in case of myopic
luminous robots with φ = 1 and in case of myopic non-luminous robots with
φ = 2 [3]. In their protocols, a few constant number of robots operate so that
every node is visited by a robot at least once.

258 S. Nagahama et al.

1.2 Our Contributions

We focus on ring exploration with myopic luminous robots in case of φ ≥ 2 (but
φ �= ∞) and two colors. We give answers to the question: whether the number
of required robots can be reduced in case of φ ≥ 2. Table 1 summarizes our
contributions and related works. Note that robots with no light are equivalent
to robots with a single color light.

Table 1. Ring exploration with myopic robots.

Reference Exploration Synchrony φ #colors#robots

NecessarySufficient

[7] TerminatingFSYNC 1 1 5 5

[7] TerminatingSSYNC & ASYNC 1 1 Impossible

[8] TerminatingSSYNC & ASYNC 2 1 5 7

[8] TerminatingSSYNC & ASYNC 3 1 5 5

[16] Perpetual FSYNC 1 2 2 2

[16] TerminatingFSYNC 1 2 3 3

[16] Perpetual SSYNC & ASYNC 1 2 3 3

[16] TerminatingSSYNC & ASYNC 1 2 4 4

This paperPerpetual FSYNC, SSYNC & ASYNC≥2 2 2 2

This paperTerminatingFSYNC, SSYNC & ASYNC≥2 2 3 3

The answers to the question are that (i) in the fully synchronous model, the
number of required robots cannot be reduced, and (ii) in the semi-synchronous
and asynchronous models, the number of required robots can be reduced by one.
In case of φ ≥ 2, we prove that, in the fully synchronous, semi-synchronous, and
asynchronous models, two and three robots are necessary and sufficient to achieve
perpetual and terminating exploration, respectively. Ooshita and Tixeuil [16]
proved that, in case of φ = 1, (1) in the fully synchronous model, two and
three robots are necessary and sufficient to achieve perpetual and terminating
exploration, respectively, and (2) in the semi-synchronous and asynchronous
models, three and four robots are necessary and sufficient to achieve perpetual
and terminating exploration, respectively. Therefore, the answers are true, and
they characterize the power of large visibility for luminous robots.

Similarly to previous works for myopic robots, all algorithms proposed in this
paper assume some specific initial configurations because most configurations
are not solvable. For example, when myopic robots are deployed so that no
robot can observe other robots, they cannot achieve exploration. However, our
perpetual exploration algorithm achieves the best possible property, that is,
they are universal. This means that, in the fully synchronous, semi-synchronous,
and asynchronous models, the proposed algorithm solves perpetual exploration
from any solvable initial configuration with two robots and two colors. As for

Ring Exploration of Myopic Luminous Robots with Visibility More Than One 259

terminating exploration, we show that no universal algorithm exists. That is, in
the fully synchronous, semi-synchronous, and asynchronous models, no algorithm
may solve terminating exploration from any solvable initial configuration with
three robots. The approach used in this proof is also an important contribution
of this paper. Although most works prove non-existence of universal algorithms
by considering possible behaviors exhaustively, our proof does not require such
consideration.

2 Preliminaries

In this section, we define the system model and terminologies used in this paper.
They are almost identical to those in [16].

2.1 System Model

The system consists of n nodes and k mobile robots. The nodes v0, v1, ..., vn−1

form an undirected and unoriented ring-shaped graph, where a link exists
between vi and vi+1, for i < n − 1, and between vn−1 and v0. For simplicity
we consider mathematical operations on node indices as operations modulo n.
The indices 0, ..., n − 1 are used for notation purposes only and robots do not
know them. Neither nodes nor links have identifiers or labels, and consequently
robots cannot distinguish nodes and cannot distinguish links. Robots do not
know n, the size of the ring. Each robot is on a node of the ring at each instant.
When a robot r is on a node v, we say r occupies v. The distance between two
nodes is the number of links in a shortest path between the nodes. The distance
between two robots a and b is the distance between two nodes occupied by a
and b. Two robots a and b are neighbors if the distance between a and b is one.

Robots we consider have the following characteristics and capabilities. Robots
are identical, that is, robots execute the same deterministic algorithm and do not
have unique identifiers. Robots are luminous, that is, each robot has a light (or
state) that is visible to itself and other robots. A robot can choose the color of
its light from a discrete set Col. When the set Col is finite, l denotes the number
of available colors (i.e., l = |Col|). Robots have no other persistent memory and
cannot remember the history of past actions. Each robot can communicate by
observing positions and colors of other robots (for collecting information), and
by changing its color and moving (for sending information). Robots are myopic,
that is, each robot r can observe positions and colors of robots within a fixed
distance φ (φ > 0) from its current position. Since robots are identical, they
share the same φ.

Each robot executes an algorithm by repeating three-phase cycles: Look,
Compute, and Move (L-C-M). During the Look phase, the robot takes a snapshot
of positions and colors of robots within distance φ. During the Compute phase,
the robot computes its next color and movement according to the observation
in the Look phase. The robot may change its color at the end of the Compute
phase. If the robot decides to move, it moves instantaneously to a neighboring

260 S. Nagahama et al.

node during the Move phase. To model asynchrony of executions, we introduce
the notion of scheduler that decides when each robot executes phases. When
the scheduler makes robot r execute some phase, we say the scheduler activates
the phase of r or simply activates r. We consider three types of synchronicity:
the FSYNC (full-synchronous) model, the SSYNC (semi-synchronous) model,
and the ASYNC (asynchronous) model. In all models, time is represented by an
infinite sequence of instants 0, 1, 2, No robot has access to this global time. In
the FSYNC and SSYNC models, all the robots that are activated at an instant
t execute a full cycle synchronously and concurrently between t and t + 1. In
the FSYNC model, at every instant, the scheduler activates all robots. In the
SSYNC model, at every instant, the scheduler selects a non-empty subset of
robots and activates the selected robots. In the ASYNC model, the scheduler
activates cycles of robots asynchronously: the time between Look, Compute,
and Move phases is finite but unpredictable. Note that in the ASYNC model,
a robot r can move based on the outdated view obtained during the previous
Look phase. Throughout the paper we assume that the scheduler is fair, that is,
each robot is activated infinitely often.

In the sequel, Mi(t) denotes the multiset of colors of robots located in node
vi at an instant t. If vi is not occupied by any robot at t, then Mi(t) = ∅ holds,
and vi is free at t. Then, vi is a tower at t if |Mi(t)| ≥ 2. A configuration C(t) of
the system at an instant t is defined as C(t) = (M0(t),M1(t), ...,Mn−1(t)). If t is
clear from the context, we simply write C = (M0,M1, ...,Mn−1). If there exists
an index x such that Mx+i = Mx−i holds for any i, or if Mx+i = Mx−(i+1) holds
for any i (i.e., there exists at least one axis of symmetry in the configuration),
configuration C is called symmetric.

Let S be a set of robots. The visibility graph of S in configuration C is defined
as graph GC(S) = (S,LC), where {r1, r2} ∈ LC holds iff robots r1 and r2 can
see each other (i.e., on the ring, the distance between r1 and r2 is at most φ) in
configuration C. We say S is connected in C if GC(S) is connected; otherwise,
S is disconnected in C.

When a robot takes a snapshot of its environment, it gets a view up to
distance φ. Consider a robot r on node vi; then, r obtains two views: the forward
view and the backward view. The forward and backward views of r are defined as
Vf = (cr,Mi−φ, ...,Mi−1,Mi,Mi+1, ...,Mi+φ), and Vb = (cr,Mi+φ, ...,Mi+1,Mi,
Mi−1, ...,Mi−φ), respectively, where cr denotes r’s color. If the forward view
and the backward view of r are identical, then r’s view is symmetric. In this
case, since we assume unoriented rings, r cannot distinguish between the two
directions when it moves, and the scheduler decides which direction r moves to.
If r observes no other robot in its view, r is isolated.

2.2 Algorithm

An algorithm is described as a set of rules. Each rule is represented in the
following manner < Label >:< Guard >::< Action >. The guard < Guard >
represents possible views obtained by a robot. If a forward or backward view
of robot r matches a guard in some rule, we say r is enabled. We also say the

Ring Exploration of Myopic Luminous Robots with Visibility More Than One 261

corresponding rule < Label > is enabled. If a robot is enabled, the robot may
change its color and move based on the corresponding action < Action > during
the Compute and Move phases. If a forward or backward view of r matches
several guards, one of the corresponding rules is enabled (it is decided by the
scheduler). However, every algorithm proposed in this paper is described as a
set of rules such that no two guards include the same view.

2.3 Execution, Problem, and Exploration Problem

An execution from initial configuration C0 is a maximal sequence of configura-
tions E = C0, C1, ..., Ci, ... such that, for any j > 0, we have (i) Cj−1 �= Cj ,
(ii) Cj is obtained from Cj−1 after some robots move or change their colors,
and (iii) for every robot r that moves or changes its color between Cj−1 and
Cj , there exists 0 ≤ j′ ≤ j such that r takes its decision to move or change its
color according to its algorithm and its view in Cj′ . The term “maximal” means
that the execution is either infinite or ends in a terminal configuration, i.e., a
configuration in which no robot is enabled.

A problem P is defined as a set of executions: An execution E solves P if
E ∈ P holds. An algorithm A solves problem P from initial configuration C0 if
any execution from C0 solves P. We simply say an algorithm A solves problem
P if there exists an initial configuration C0 such that A solves P from C0. For
configuration C and problem P, C is solvable for P if there exists an algorithm
(specific to C) that solves P from initial configuration C. Let Cs(P) be a set of
all configurations solvable for P. We say algorithm A is universal with respect
to problem P if A solves P from any initial configuration in Cs(P). That is, a
universal algorithm solves P from any solvable initial configuration.

In this paper, we consider the perpetual exploration problem and terminating
exploration problem in case of φ ≥ 2.

Definition 1 (Perpetual exploration problem). Perpetual exploration is
defined as a set of executions E such that every robot visits every node infinitely
many times in E.

Definition 2 (Terminating exploration problem). Terminating explo-
ration is defined as a set of executions E such that (1) every node is visited
by at least one robot in E and (2) there exists a suffix of E such that no robots
are enabled.

2.4 Descriptions

Let C = (M0, ...,Mn−1) be a configuration. We say C ′ = (M ′
0, ...,M

′
n′−1) is a

sub-configuration of C if there exists x such that Mx+i = M ′
i holds for any i

(0 ≤ i ≤ n′ − 1). In this case, we say n′ is the length of sub-configuration C ′.
We sometimes describe a sub-configuration C ′ = (M ′

0, ...,M
′
n′−1) by listing all

262 S. Nagahama et al.

colors in M ′
i as the i-th column. That is, when M ′

i = {ci
1, ..., c

i
|M ′

i |} holds for
each i (0 ≤ i ≤ n′ − 1), we describe C ′ as follows:

c0
|M ′

0|
c0
|M ′

0|−1

...
c0
1

c1
|M ′

1|
...
c1
1

· · ·

ci
|M ′

i |
ci
|M ′

i |−1

...
ci
1

· · ·
cn′−1
|M ′

n′−1
|

...
cn′−1
1

When M ′
i = ∅ holds, we write ∅ as the i-th column. If h free nodes exist succes-

sively, we sometimes write ∅h instead of writing h columns with ∅. For simplicity,
when C ′ is a sub-configuration of C and all robots appear in C ′, we use C ′ instead
of C to represent configuration C. We also use this description to represent views
of robots.

Throughout the paper, we consider the case of φ ≥ 2. We describe a rule in
an algorithm in the following manner:

Rrule :
c−φ,m−φ

...
c−φ,1

· · ·

c0,m0

c0,m0−1

...
(c0,1)

· · ·

cφ,mφ

cφ,mφ−1

...
cφ,1

:: cnew,Movement

Notation Rrule is a label of the rule. The middle part represents a guard.
This represents a view V = (c0,1,M−φ, ...,M−1,M0,M1, ...,Mφ), where Mi =
{ci,1, ..., ci,mi

} holds for i ∈ {−φ, ...,−1, 0, 1, ..., φ}. Intuitively, each column rep-
resents colors of robots on a single node and a color within parentheses represents
its current color. To simplify the description, we will use a wild card X to rep-
resent the guard. When we write X as the i-th column, Mi is arbitrary. If h
columns with X exist successively, we sometimes write Xh instead of writing h
columns with X. Similarly, if h columns with ∅ exist successively, we sometimes
write ∅h instead of writing h columns with ∅. The notation h sometimes includes
a variable i. In this case, we describe the range of i on the right side of the guard.
If a forward or backward view of robot r is equal to V , r is enabled. In this case, if
the scheduler activates r, it executes an action represented by cnew,Movement.
Notation cnew represents a new color of the robot. Notation Movement can be
⊥, ←, →, or ← ∨ → and represents the movement: (1) ⊥ implies a robot does
not move, (2) ← (resp., →) implies a robot moves toward the node such that a
set of robot colors is M−1 (resp., M1), and (3) ← ∨ → implies a robot moves
toward one of two directions (the scheduler decides the direction). When the
view V described in a guard is symmetric, Movement should be either ⊥ or
← ∨ →. As an example, consider the following rule.

Rex : ∅φ−i−1 W ∅i
G

(W) Xφ (1 ≤ i ≤ φ − 1) :: G,←

Robot r is enabled by Rex if (1) the color of r is W, (2) the current node is
occupied by two robots with colors G and W, (3) in one direction, there exists a

Ring Exploration of Myopic Luminous Robots with Visibility More Than One 263

node occupied by exactly one robot with color W and the distance to the node
is i + 1 (1 ≤ i ≤ φ − 1), and (4) in the same direction as the third condition, the
other nodes are free. If r is enabled by Rex, r changes its color to G and moves
in the same direction as the third and fourth conditions.

3 Perpetual Exploration

In this section, we provide a perpetual exploration algorithm for n ≥ 2φ +
1 in case of φ ≥ 2, l = 2, and k = 2. Note that one robot cannot achieve
perpetual exploration clearly because the direction of its movement is decided
by the scheduler. A set of colors is Col = {G,W}. The algorithm is given in
Algorithm 1. In the initial configurations, two robots with colors G and W are
connected. Each robot can see the other robot only in one direction because of
n ≥ 2φ+1. When the distance between two robots is one or zero, the robot with
color W moves against the other robot by rule R1 or R2. When the distance
between two robots is two or greater, the robot with color G moves toward the
other robot by rule R3. This implies two robots move in the same direction.
Hence, two robots continue to move and achieve perpetual exploration. Clearly
we have the following theorem.

Theorem 1. In case of φ ≥ 2, Col = {G,W}, and k = 2, Algorithm1 solves

perpetual exploration from initial configurations
W
G

, G ∅i W , W ∅i G (0 ≤ i ≤
φ − 1) for n ≥ 2φ + 1 in the ASYNC model.

Algorithm 1. Asynchronous Perpetual Exploration for φ ≥ 2, l = 2, k = 2
Initial configurations

W
G

, G ∅i W, and W ∅i G (0 ≤ i ≤ φ − 1)

Rules

R1 : ∅φ
G

(W) ∅φ :: W, ← ∨ →
R2 : ∅φ (W) G ∅φ−1 :: W, ←
R3 : ∅φ−i−1 W ∅i (G) ∅φ (1 ≤ i ≤ φ − 1) :: G, ←

In addition, we can prove that Algorithm1 is universal with respect to per-
petual exploration for n ≥ 2φ + 4 in case of φ ≥ 2, l = 2, and k = 2. This is
because other initial configurations are unsolvable for n ≥ 2φ + 4. To prove the
impossibilities, we first introduce Lemma 1 (due to the lack of space, we omit the
proof of Lemma 1). For configuration C, we define Vr(C) as a set of nodes occu-
pied by at least one robot. We say a set of two neighboring nodes T = {vi, vi+1}
is a territory of robots on node v if v ∈ T holds. We say a territory set T is
independent if, for every pair of territories T1, T2 ∈ T , the distance between any
node in T1 and any node in T2 is at least φ + 1.

264 S. Nagahama et al.

Lemma 1. Consider a configuration C such that every distance between two
nodes in Vr(C) is at least φ + 1 and, for every node v ∈ Vr(C), robots on v
have the same color. If there exists a territory set T such that T is independent
and every node in Vr(C) belongs to some territory in T , there is an execution
starting with C where robots on v ∈ Vr(C) cannot go out of their territory in T
in the FSYNC, SSYNC, and ASYNC models.

Now we can prove that Algorithm 1 is universal with respect to perpetual
exploration for n ≥ 2φ + 4 in case of φ ≥ 2, l = 2, and k = 2.

Theorem 2. In case of φ ≥ 2, Col = {G,W}, and k = 2, Algorithm1 is univer-
sal with respect to perpetual exploration for n ≥ 2φ + 4 in the FSYNC, SSYNC,
and ASYNC models.

Proof. (Sketch) Initial configurations other than ones described in Algorithm1
are divided into two cases: (1) two robots are disconnected or (2) two robots
have the same color. In Case 1, we can define an independent territory set. In
Case 2, robots move in symmetric manners, and hence, to achieve exploration,
eventually each robot moves against the other robot. Consequently they become
disconnected and we can define an independent territory set. Therefore, in both
cases, there is an execution where two robots cannot achieve exploration from
Lemma 1.

4 Terminating Exploration

4.1 Impossibility of Two Robots

In this subsection, we prove that no algorithm solves terminating exploration for
k = 2.

Theorem 3. In case of k = 2, no algorithm solves terminating exploration in
the FSYNC model. This holds even if robots can use an infinite number of colors.

Proof. Assume that such algorithm A exists. Consider an execution E =
C0, C1, ... of A in a n1-node ring R1 (n1 ≥ 2φ + 4). Let i be the minimum
index such that two robots terminate or become disconnected at Ci. Next, for
some n2 > 2(i+1), let us consider an execution E′ = C ′

0, C
′
1, ... of A in a n2-node

ring R2. Clearly, as long as two robots keep connected, they do not recognize
the difference between R1 and R2. Hence, in E′, two robots move similarly to E
until C ′

i. If two robots terminate at C ′
i, they have visited at most 2(i + 1) nodes

and thus they do not achieve exploration. If two robots become disconnected at
C ′

i, we can define an independent territory set at C ′
i. From Lemma 1, two robots

cannot visit the remaining nodes and thus they cannot achieve exploration. This
is a contradiction.

Ring Exploration of Myopic Luminous Robots with Visibility More Than One 265

Algorithm 2. Asynchronous Terminating Exploration for φ ≥ 2, l = 2, k = 3
Initial configurations

W ∅i W ∅j G and G ∅i W ∅j W (0 ≤ i ≤ φ − 1, 0 ≤ j ≤ φ − 1)
Rules

R1 : Xφ−i−1 W ∅i (G) Xφ (1 ≤ i ≤ φ − 1) :: G, ←
R2 : Xφ−i−1 W ∅i (W) G Xφ−1 (1 ≤ i ≤ φ − 1) :: W, ←
R3 : Xφ−1 W (W) G Xφ−1 :: G, ⊥
R4 : ∅φ (W) G Xφ−1 :: W, ←

Fig. 1. An execution of Algorithm 2 (φ = 2)

4.2 A Terminating Exploration Algorithm for Three Robots

In this subsection, we give a terminating exploration algorithm for n ≥ 3φ+1 in
case of φ ≥ 2, l = 2, and k = 3. A set of colors is Col = {G,W}. The algorithm
is given in Algorithm 2.

An execution of Algorithm2 for φ = 2 and n ≥ 3φ+1 is given in Fig. 1. In the
figure, Wi (resp., Gi) represents robot ri with color W (resp., G). Arrows represent
that indicated robots are enabled. Let us consider a configuration W ∅i W ∅j G
(0 ≤ i ≤ φ − 1, 0 ≤ j ≤ φ − 1), and assume that r1, r2, and r3 compose the
configuration in this order (Fig. 1(a)). Here if the distance between r2 and r3 is
two or greater, r3 is enabled with rule R1 and moves toward r2. Since a robot with
color W is enabled only in configurations where it finds a robot with color G at its
neighboring node, only r3 is enabled until the configuration becomes W ∅i WG
(Fig. 1(b)). At configuration W ∅i WG, r2 moves toward r1 by rule R2, and then
the configuration becomes W ∅i−1 W ∅G (Fig. 1(c)). From this configuration, r3

moves toward r2 by rule R1. After that, r2 and r3 continue to move by rules
R2 and R1 until the configuration becomes WWG (Fig. 1(d)). At configuration
WWG, r2 changes its color to G by rule R3. At configuration WGG (Fig. 1(e)),
r1 moves against r2 by rule R4. At configuration W ∅GG (Fig. 1(f)), r2 moves
toward r1 by rule R1, and then the configuration becomes WG ∅G (Fig. 1(g)).
After that, r1 and r2 continue to move to the same direction by rule R4 and
R1. After r1 and r2 explore the ring, the configuration becomes G ∅φ−1 W ∅G

266 S. Nagahama et al.

(Fig. 1(h)). From this configuration, r2 and r3 move toward r1 by rule R1. Since
a robot is not enabled when it sees other robots with color G in both directions,
r1 is not enabled while r2 and r3 move. Hence, the configuration becomes GWG
(Fig. 1(i)). In this configuration, no robots are enabled.

Thus Algorithm 2 solves terminating exploration. Hence we have the following
theorem.

Theorem 4. In case of φ ≥ 2, Col = {G,W}, and k = 3, Algorithm2 solves
terminating exploration from initial configurations W ∅i W ∅j G and G ∅i W ∅j W
(0 ≤ i ≤ φ − 1, 0 ≤ j ≤ φ − 1) for n ≥ 3φ + 1 in the ASYNC model.

Note that we can construct another algorithm by swapping the roles of colors
G and W in Algorithm 2. Clearly this algorithm solves terminating exploration
from configurations such that colors G and W are swapped from solvable config-
urations for Algorithm2. This implies configurations G ∅i G ∅j W and W ∅i G ∅j G
(0 ≤ i ≤ φ − 1, 0 ≤ j ≤ φ − 1) are also solvable. Hence, we have the following
lemma.

Lemma 2. In case of φ ≥ 2, Col = {G,W}, k = 3, and n ≥ 3φ + 1, configura-
tions W ∅i W ∅j G, G ∅i W ∅j W, G ∅i G ∅j W, and W ∅i G ∅j G (0 ≤ i ≤ φ − 1, 0 ≤
j ≤ φ − 1) are solvable for terminating exploration in the ASYNC model.

4.3 Nonexistence of Universal Algorithm

In this subsection, we prove that there exists no universal algorithm with respect
to terminating exploration for in case of φ ≥ 2, l = 2, and k = 3. This
validates the assumption that Algorithm2 starts from some designated initial
configuration.

Theorem 5. In case of φ ≥ 2, l = 2, and k = 3, no universal algorithm exists
with respect to terminating exploration in the FSYNC, SSYNC, and ASYNC
models.

The outline of the proof is as follows. Let CS be the set of configurations where
all robots are connected and no tower exists in case of φ ≥ 2, Col = {G,W},
and k = 3. We first prove that all initial configurations in CS are solvable in
the ASYNC model. Then, we prove that, in the FSYNC model, there exists
no algorithm that solves terminating exploration from any initial configuration
in CS . Consequently, no universal algorithm exists with respect to terminating
exploration in the FSYNC, SSYNC, ASYNC models.

Now we prove that all initial configurations in CS are solvable in the ASYNC
model. We describe CS as follows:

CS = C1 ∪ C2 ∪ C3

C1 = ∪0≤i≤φ−1,0≤j≤φ−1{W ∅i W ∅j G,G ∅i W ∅j W,

G ∅i G ∅j W,W ∅i G ∅j G }
C2 = ∪0≤i≤φ−1,0≤j≤φ−1{G ∅i W ∅j G,W ∅i G ∅j W }
C3 = ∪0≤i≤φ−1,0≤j≤φ−1{G ∅i G ∅j G,W ∅i W ∅j W }

Ring Exploration of Myopic Luminous Robots with Visibility More Than One 267

From Lemma 2, initial configurations in C1 are solvable. In addition, we can con-
struct algorithms that solve terminating exploration from initial configurations
in C2 and C3 (due to the lack of space, we omit algorithms for C2 and C3).
From the above discussion, initial configurations in C1, C2, and C3 are solvable.
Therefore, we have the following lemma.

Lemma 3. In case of φ ≥ 2, Col = {G,W}, k = 3, and n ≥ 3φ + 1, configura-
tions in CS, namely, configurations where all robots are connected and no tower
exists are solvable for terminating exploration in the ASYNC model.

In the following, we prove that, even in the FSYNC model, no single algo-
rithm solves terminating algorithm from any configuration in CS .

Lemma 4. In the FSYNC model, there exists no algorithm that solves termi-
nating exploration from any initial configuration in CS.

To prove Lemma 4 by contradiction, we assume that such an algorithm A
exists. Consider an execution E = C0, C1, . . . of A in a n-node ring R1 (n ≥
3φ + 3) starting from an initial configuration C0 ∈ CS . Without loss of generality,
we assume that, in C0, robots r1, r2, and r3 occupy nodes v0, vx (0 < x ≤ φ),
and vy (x < y ≤ x + φ), respectively. We define the left and right directions
as directions from vi to vi−1 and vi to vi+1, respectively. Next we define the
leftmost and rightmost nodes. In C0, since all robots stay at nodes from v0

to vy, we regard v0 and vy as the leftmost and rightmost nodes, respectively.
Intuitively, the leftmost node moves to the left (resp., right) direction if a robot
on the leftmost node moves to the left (resp., right) direction. The rightmost
node is also defined similarly. Formally the leftmost node L(i) and the rightmost
node R(i) in Ci are defined as follows.

– In C0, the leftmost node L(0) is v0 and the rightmost node R(0) is vy.
– In Ci (i > 0), the leftmost node L(i) is defined from the leftmost node vL =

L(i − 1) in Ci−1. If at least one robot moves from vL to vL−1 during Ci−1

to Ci, L(i) is vL−1. Otherwise, if some robot still exists on vL in Ci, L(i) is
vL. Otherwise (i.e., during Ci−1 to Ci, all robots on vL move to vL+1 and no
robot moves from vL+1 to vL), L(i) is vL+1.

– In Ci (i > 0), the rightmost node R(i) is defined from the rightmost node
vR = R(i − 1) in Ci−1. If at least one robot moves from vR to vR+1 during
Ci−1 to Ci, R(i) is vR+1. Otherwise, if some robot still exists on vR in Ci,
R(i) is vR. Otherwise, R(i) is vR−1.

At each configuration Ci, we define a leftmost (resp., rightmost) robot as a
robot on the leftmost (resp., rightmost) node. In the following, we prove that, for
any configuration in CS , there exists an execution that reaches a configuration
in CS again. This implies that A cannot terminate and hence cannot solve the
terminating exploration. To prove the proposition, we focus on an execution
E = C0, C1, . . . starting from C0 ∈ CS that satisfies the following conditions:

– If leftmost robots have symmetric views and decide to move, the scheduler
make them move to the right direction.

268 S. Nagahama et al.

– If rightmost robots have symmetric views and decide to move, the scheduler
make them move to the left direction.

Intuitively, the scheduler tries to make leftmost robots and rightmost robots
move so that leftmost (resp., rightmost) robots do not observe rightmost (resp.,
leftmost) robots in the left (resp., right) direction. Despite this behavior, we have
the following lemma.

Lemma 5. There exists an index ic such that a leftmost robot sees a rightmost
robot in the left direction at Cic

.

Proof. For contradiction, assume that such instant does not exist. Let i be the
index such that robots terminate at Ci in E. Next, in a n′-node ring R2 (n′ >
3(i + 1)), let us consider an execution E′ = C ′

0, C
′
1, ... of A such that three

robots form the same sub-configuration as C0 at C ′
0. From the assumption,

since leftmost robots do not see rightmost robots in the left direction at each
configuration, three robots do not recognize the difference between R1 and R2.
Hence, in E′, they move similarly to E and terminate at C ′

i. Three robots have
visited at most 3(i + 1) nodes until the configuration becomes C ′

i and thus they
do not achieve exploration. This is a contradiction.

Let i′c be the minimum index such that a leftmost robot sees a rightmost
robot in the left direction at Ci′

c
. By proving the following two lemmas, we show

that Ci′
c

is in CS .

Lemma 6. All robots are connected at Ci′
c
.

Proof. For contradiction, assume that not all robots are connected at Ci′
c
. Since

a leftmost robot and a rightmost robot are connected at Ci′
c
, the other robot is

isolated at Ci′
c
. In a n′-node ring R2 (n′ ≥ n + 3), let us consider an execution

E′ = C ′
0, C

′
1, ... of A such that three robots form the same sub-configuration as

C0 at C ′
0. Since leftmost robots do not see rightmost robots in the left direction

until instant i′c − 1, three robots do not recognize the difference between R1 and
R2 until instant i′c −1. Hence, in E′, they move similarly to E until C ′

i′
c−1. Since

n′ ≥ n + 3, the distance between the leftmost robot and the rightmost robot
is φ + 2 or greater at C ′

i′
c
. In addition, the other robot is isolated at C ′

i′
c
. Thus

we can define an independent territory set at C ′
i′
c
. From Lemma 1, three robots

cannot visit the remaining nodes and thus they cannot achieve exploration. This
is a contradiction.

Lemma 7. No tower exists at Ci′
c
.

Proof. Consider configuration Ci′
c−1, that is, a configuration immediately before

a leftmost robot sees a rightmost robot in the left direction. Since there exist
only three robots and n ≥ 3φ + 3 holds, either a leftmost robot or a rightmost
robot is isolated in Ci′

c−1.
We consider the case that the rightmost robot, say r, is isolated. We can

prove the other case in the same manner. Since the view of r is symmetric in

Ring Exploration of Myopic Luminous Robots with Visibility More Than One 269

Ci′
c−1, the scheduler decides the direction of the movement from the construction

of E. That is, the scheduler makes r move to the left direction if r decides to
move. However, if r moves to the left direction, leftmost robots cannot see r
in the left direction in Ci′

c
. Hence, r does not move in Ci′

c−1. Thus a leftmost
robot must move in the left direction during Ci′

c−1 to Ci′
c
. Otherwise, leftmost

robots cannot see r in the left direction in Ci′
c
. If leftmost robots make a tower

in Ci′
c−1, since the views of them are symmetric in Ci′

c−1, the scheduler decides
the direction of the movement from the construction of E. That is, the scheduler
makes leftmost robots move to the right direction if they decide to move, and
thus they cannot see r in the left direction in Ci′

c
. Hence, no tower exists at

Ci′
c−1. Since the leftmost robot moves in the left direction during Ci′

c−1 to Ci′
c
,

it does not make a tower in Ci′
c
. In addition, since r is isolated at Ci′

c−1, r does
not make a tower in Ci′

c
. Therefore, no tower exists at C ′

i′
c
.

From Lemmas 6 and 7, in the FSYNC model, for any configuration in CS ,
there exists an execution that reaches a configuration in CS again. This implies
that A cannot terminate and hence cannot solve the terminating exploration.
Therefore, we have Lemma 4.

Lemma 4 implies, also in the SSYNC and ASYNC models, there exists no
algorithm that solves terminating exploration from any initial configuration in
CS . In addition, from Lemma3, all configurations in CS are solvable in the
FSYNC, SSYNC, and ASYNC models. This implies, in the FSYNC, SSYNC, and
ASYNC models, there exists no algorithm that solves terminating exploration
from any solvable initial configuration. Therefore, we have Theorem5.

5 Conclusions

In this paper, we investigated ring exploration algorithms for myopic luminous
robots. Previous work considered the case where the visible distance φ is one and
the number of colors of lights is two, and revealed the number of required robots
to achieve perpetual and terminating exploration. A remaining natural question
is whether the number of required robots can be further reduced in case of
φ ≥ 2. In this case, we proved that, in the fully synchronous, semi-synchronous,
and asynchronous models, two and three robots are necessary and sufficient
to achieve perpetual and terminating exploration, respectively. These results
revealed the answers to the question: (i) in the fully synchronous model, the
number of required robots cannot be reduced, and (ii) in the semi-synchronous
and asynchronous models, the number of required robots can be reduced by one.
We also showed that our perpetual exploration algorithm is universal, and that
no universal algorithm exists for terminating exploration with three robots.

For the future work, it is interesting to consider exploration algorithms that
handle continuous ring environments or tolerate some faults. It is also interesting
to consider other tasks and topologies with myopic luminous robots.

270 S. Nagahama et al.

References

1. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring
exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15763-9 29

2. Bonnet, F., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Asynchronous exclusive
perpetual grid exploration without sense of direction. In: Fernàndez Anta, A.,
Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 251–265. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25873-2 18

3. Bramas, Q., Devismes, S., Lafourcade, P.: Brief announcement: infinite grid explo-
ration by disoriented robots. In: 26th International Colloquium onStructural Infor-
mation and Communication Complexity SIROCCO 2019. L’Aquila, Italy, Jul 2019.
https://hal.archives-ouvertes.fr/hal-02145822

4. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent
and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–
219. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7 20

5. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering andexclusive
searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48 (2017).
https://doi.org/10.1007/s00446-016-0274-y

6. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theoret. Comput. Sci. 609, 171–184 (2016). https://
doi.org/10.1016/j.tcs.2015.09.018

7. Datta, A.K., Lamani, A., Larmore, L.L., Petit, F.: Ring exploration by oblivious
agents with local vision. In: IEEE 33rd International Conference on Distributed
Computing Systems, pp. 347–356 (2013). https://doi.org/10.1109/ICDCS.2013.55

8. Datta, A.K., Lamani, A., Larmore, L.L., Petit, F.: Ring exploration by oblivious
robots with vision limited to 2 or 3. In: Higashino, T., Katayama, Y., Masuzawa,
T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp.
363–366. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03089-0 31

9. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid explo-
ration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS
2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33536-5 7

10. Devismes, S., Lamani, A., Petit, F., Tixeuil, S.: Optimal torus exploration by
oblivious robots. In: Bouajjani, A., Fauconnier, H. (eds.) NETYS 2015. LNCS,
vol. 9466, pp. 183–199. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26850-7 13

11. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-
synchronous oblivious robots. Theoret. Comput. Sci. 498, 10–27 (2013). https://
doi.org/10.1016/j.tcs.2013.05.031

12. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
tree exploration by asynchronous oblivious robots. Theoret. Comput. Sci. 411(14–
15), 1583–1598 (2010). https://doi.org/10.1016/j.tcs.2010.01.007

13. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communi-
cating: Ring exploration by asynchronous oblivious robots. Algorithmica 65(3),
562–583 (2013). https://doi.org/10.1007/s00453-011-9611-5

14. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theoret. Comput. Sci. 337(1–3), 147–168 (2005).
https://doi.org/10.1016/j.tcs.2005.01.001

https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-25873-2_18
https://hal.archives-ouvertes.fr/hal-02145822
https://doi.org/10.1007/978-3-642-16926-7_20
https://doi.org/10.1007/s00446-016-0274-y
https://doi.org/10.1016/j.tcs.2015.09.018
https://doi.org/10.1016/j.tcs.2015.09.018
https://doi.org/10.1109/ICDCS.2013.55
https://doi.org/10.1007/978-3-319-03089-0_31
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-642-33536-5_7
https://doi.org/10.1007/978-3-319-26850-7_13
https://doi.org/10.1007/978-3-319-26850-7_13
https://doi.org/10.1016/j.tcs.2013.05.031
https://doi.org/10.1016/j.tcs.2013.05.031
https://doi.org/10.1016/j.tcs.2010.01.007
https://doi.org/10.1007/s00453-011-9611-5
https://doi.org/10.1016/j.tcs.2005.01.001

Ring Exploration of Myopic Luminous Robots with Visibility More Than One 271

15. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering
of many asynchronous oblivious robots on a ring. Theoret. Comput. Sci. 411(34–
36), 3235–3246 (2010). https://doi.org/10.1016/j.tcs.2010.05.020

16. Ooshita, F., Tixeuil, S.: Ring exploration with myopic luminous robots. In: Izumi,
T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 301–316. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 20

17. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999). https://doi.org/
10.1137/S009753979628292X

18. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots in the three-dimensional Euclidean space. J. ACM 64(3),
16 (2017). https://doi.org/10.1145/3060272

https://doi.org/10.1016/j.tcs.2010.05.020
https://doi.org/10.1007/978-3-030-03232-6_20
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1145/3060272

Brief Announcement: Self-stabilizing
Construction of a Minimal Weakly

ST -Reachable Directed Acyclic Graph

Junya Nakamura1(B), Masahiro Shibata2, Yuichi Sudo3, and Yonghwan Kim4

1 Toyohashi University of Technology, 1–1 Tempaku, Hibarigaoka,
Toyohashi, Aichi 441–8580, Japan

junya@imc.tut.ac.jp
2 Kyushu Institute of Technology, Iizuka, Fukuoka, Japan

3 Osaka University, Suita, Osaka, Japan
4 Nagoya Institute of Technology, Nagoya, Aichi, Japan

Abstract. In this paper, we propose a self-stabilizing algorithm to con-
struct a minimal weakly ST -reachable directed acyclic graph (DAG).
Given an arbitrary simple, connected, and undirected graph G = (V,E)
and two sets of vertices, senders S(⊂ V) and targets T (⊂ V), a directed

subgraph
−→
G of G is a weakly ST -reachable DAG on G if

−→
G is a DAG

and every sender can reach at least one target, and every target is reach-

able from at least one sender in
−→
G . We say that a weakly ST -reachable

DAG
−→
G on G is minimal if any proper subgraph of

−→
G is no longer a

weakly ST -reachable DAG. The weakly ST -reachable DAG on G, which
we consider here, is a relaxed version of the original (or strongly) ST -
reachable DAG on G where all targets are reachable from all senders. A
strongly ST -reachable DAG G does not always exist; even if we focus
on the case |S| = |T | = 2, some G has no strongly ST -reachable DAG.
On the other hand, the proposed algorithm always construct a weakly
ST -reachable DAG for any given graph G = (V,E) and any S, T ⊂ V .

Keywords: Directed acyclic graph · ST-reachable DAG ·
Self-stabilization

1 Introduction

Nowadays, wireless networks, e.g., Wireless Sensor Networks (WSN) or Internet
of Things (IoT), attract lots of attention in the area of distributed computing.
In a wireless network, generally, each node can communicate with only other
nodes within a limited range; thus, routing a message from a sender node to a
destination node via other nodes plays an important role. In the literature, many
routing algorithms for wireless networks were proposed. In the routing task for
wireless networks, the following properties are important due to the instability of
nodes and their limited power source: (1) reachability between sender and target

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 272–276, 2019.
https://doi.org/10.1007/978-3-030-34992-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_21

BA: Self-stabilizing Construction of Minimal Weakly ST -Reachable DAG 273

Table 1. Summary of the related DAG construction algorithms. FT and SS are abbre-
viations of Fault-Tolerance and Self-stabilizing, respectively.

Alg. Type |S| |T | Topology Edge direction Reachability FT

[1] Distributed 1 1 Biconnected All Strong SS

[2] Distributed 1 1 Biconnected All Strong SS

[4] Distributed 1 1 Connected Maximal Strong SS

[3] Distributed 1 2 Connected Maximal Strong SS

[3] Distributed 2 2 Connected Maximal Weak SS

[5] Distributed 2 2 Connected∗ Minimal Strong SS

Our result Distributed Any Any Connected Minimal Weak SS
∗Each node detects an error if a graph does not satisfy a necessary condition
to construct an ST -reachable DAG.

nodes guaranteed by a routing algorithm, (2) the number of nodes necessary to
participate in the task, and (3) fault-tolerance.

For this routing task, Kim et al. proposed an ST -reachable directed acyclic
graph (DAG) [5] on a wireless network, which provides reachability from every
sender node s ∈ S to every target node t ∈ T . However, they also proved in
[5] that this construction problem is not always solvable. A graph G, and sets
S and T must satisfy a certain condition to have an ST -reachable DAG even if
|S| = |T | = 2.

To circumvent this impossibility, in this paper, we consider a weaker version
of ST -reachable DAG called weakly ST -reachable DAG. A subgraph

−→
G of G is

a weakly ST -reachable DAG if (1) every sender node s ∈ S can reach at least
one target node t ∈ T , (2) every target node t ∈ T is reachable from at least one
sender node s ∈ S, and (3)

−→
G has no cycle. This DAG can be constructed on

any connected network since this DAG weakens the requirements of the original
(or strong) ST -reachable DAG on reachability from the senders to the targets.

We propose a distributed algorithm that constructs a minimal weakly ST -
reachable DAG on given a simple, connected, and undirected graph G = (V,E)
and two sets S, T ⊂ V . The algorithm is self-stabilizing; thus, it tolerates any
number of transient failures. The convergence time of the proposed algorithm is
O(D) (asynchronous) rounds where D is the diameter of a given graph G.

2 Related Work

Table 1 summarizes the related algorithms that construct some kinds of DAG
from sender nodes to target nodes on a given graph. The most important aspect
of the table is reachability. A DAG with strong reachability ensures that every
target node is reachable from every sender node. On the other hand, a DAG with
weak reachability guarantees that every sender can reach at least one target node,
and every target node is reachable from at least one sender node; thus, a sender
node may not be able to reach some target node.

274 J. Nakamura et al.

Fig. 1. A given example graph G = (V,E,S, T) where S = {s1, s2, . . . , s8} and T =
{t1, t2, . . . , t5}. A dashed line represents an edge e ∈ E.

3 Problem Specification

Let G′ = (V ′, E′) be any (undirected) subgraph of G (note that G = G′ may
hold). We say that a directed graph or digraph

−→
G = (V ′′, A) is a directed

subgraph of G′ if a set V ′′ of nodes satisfies V ′′ ⊆ V ′ and a set A of arcs satisfies
(u, v) ∈ A ⇒ {u, v} ∈ E′ where (u, v) denotes an arc from u to v. We say that
a directed subgraph

−→
G of G = (V,E,S, T) is a weakly ST -reachable DAG of G

if all of the following conditions hold:

C1 every sender in S can reach at least one target in T in
−→
G ,

C2 every target in T is reachable from a sender in S in
−→
G , and

C3 there is no directed cycle in
−→
G .

Here, for any two nodes u and v, we say that v is reachable from u, or u can
reach v in

−→
G if there exists a directed path from u to v in

−→
G . In addition, we

say that a weakly ST -reachable DAG
−→
G of G is minimal if condition C1 or C2

becomes unsatisfied when any arc of
−→
G is removed.

4 Proposed Algorithm

In this section, we propose a self-stabilizing algorithm called MWSTDAG that
constructs a minimal weakly ST -reachable DAG on a given graph G =
(V,E,S, T). This algorithm is built by fair-composition and has four layers.
Each node may have red or blue color. The red color assigned in layer 1 indi-
cates that the node can reach a target node by tracing an L1 tree. The blue
color assigned in layer 2 indicates that the node can reach a red node; thus, a
blue node can reach a target node through the red node (if the configuration is
legitimate for layers 1 and 2). These colors are propagated from a lower node to
a higher node in their L1 and L2 trees.

We describe how each layer works with an example graph depicted in Fig. 1.
The first layer builds Breadth-First-Search (BFS) trees on a given network G and
checks reachability from sender nodes to target nodes on the trees (Fig. 2). Also,
the second layer builds another kind of BFS trees to ensure reachability to target

BA: Self-stabilizing Construction of Minimal Weakly ST -Reachable DAG 275

Fig. 2. A legitimate configuration of Layer 1. Solid arrows represent the generated L1
BFS trees rooted at sender nodes, and a red square is a red node. (Color figure online)

Fig. 3. A legitimate configuration of layer 2. Dashed arrows represent the constructed
L2 BFS trees rooted at red nodes, and a blue octagon is a blue node. For simplicity, an
arrow of an L1 tree rooted at a colorless sender node is omitted. (Color figure online)

nodes from the sender nodes that cannot reach to any target node in the layer 1
trees (Fig. 3). The third layer constructs a (possibly non-minimal) weakly ST -
reachable DAG based on the trees constructed in layers 1 and 2 (Fig. 4). The
final layer detects and removes redundant arcs in the DAG to guarantee the
minimality of the generated weakly ST -reachable DAG (Fig. 5).

The removal in layer 4 plays an important role to guarantee the minimality
of a constructed weakly ST -reachable DAG and is conducted with the following
idea: Basically, if a red node v has at least one incoming arc from a blue node, we
can remove all but one arc from red nodes to v without violating the reachability
requirement of a weakly ST -reachable DAG. However, there is an exception. If
a sender node becomes unreachable to any target node by the removal, the
algorithm must not remove such an arc. Because only a red node u having
two or more outgoing arcs to red nodes can detect such an arc, we propagate
information whether there is a red node having an incoming arc from a blue
node, from u’s descendant nodes to u in an L1 tree.

We can prove the following theorem for the proposed algorithm MWSTDAG
although its proof is omitted due to the space limitation.

Theorem 1. Algorithm MWSTDAG is a silent self-stabilizing algorithm for the
minimal weakly ST -reachable DAG construction problem. Starting from any con-
figuration, every fair execution of MWSTDAG reaches a final configuration within
O(D) asynchronous rounds.

276 J. Nakamura et al.

Fig. 4. A legitimate configuration of layer 3. Black bold arrows represent the con-
structed weakly ST -reachable DAG. For simplicity, a dashed arrow of an L2 tree from
a colorless node is omitted. (Color figure online)

Fig. 5. A legitimate configuration of layer 4. A double red square is a branch node.
(Color figure online)

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
18K18000, 18K18029, and 18K18031.

References

1. Chaudhuri, P., Thompson, H.: A self-stabilizing algorithm for the st-order problem.
Int. J. Parallel Emergent Distrib. Syst. 23(3), 219–234 (2008)

2. Karaata, M.H., Chaudhuri, P.: A dynamic self-stabilizing algorithm for constructing
a transport net. Computing 68(2), 143–161 (2002)

3. Kim, Y., Aono, H., Katayama, Y., Masuzawa, T.: A self-stabilizing algorithm for
constructing a maximal (2,2)-directed acyclic mixed graph. In: the 6th International
Symposium on Computing and Networking (CANDAR) (2018)

4. Kim, Y., Ohno, H., Katayama, Y., Masuzawa, T.: A self-stabilizing algorithm for
constructing a maximal (1, 1)-directed acyclic mixed graph. Int. J. Netw. Comput.
8(1), 53–72 (2018)

5. Kim, Y., Shibata, M., Sudo, Y., Nakamura, J., Katayama, Y., Masuzawa, T.: A self-
stabilizing algorithm for constructing an ST -reachable directed acyclic graph when
|S| ≤ 2 and |T | ≤ 2. In: Proceedings of the 39th IEEE International Conference on
Distributed Computing Systems (ICDCS), pp. 2228–2237 (2019)

Adaptive Versioning in Transactional
Memories

Pavan Poudel and Gokarna Sharma(B)

Department of Computer Science, Kent State University, Kent, OH 44242, USA
{ppoudel,sharma}@cs.kent.edu

Abstract. Transactional memory has been receiving much attention
from both academia and industry. In transactional memory, program
code is split into transactions, blocks of code that appear to execute
atomically. Transactions are executed speculatively and the speculative
execution is supported through data versioning and conflict detection
and resolution mechanisms. Lazy versioning makes aborts fast but penal-
izes commits, whereas eager versioning makes commits fast but penalizes
aborts. In this paper, we present an adaptive versioning approach that
dynamically switches between eager and lazy versioning at runtime based
on appropriate system parameters so that the performance of a transac-
tional memory system is always better than that is obtained using either
eager or lazy versioning individually. We implemented our adaptive ver-
sioning approach in the latest TinySTM distribution and extensively
evaluated it through 5 micro-benchmarks and 8 complex benchmarks
from STAMP and STAMPEDE suites. The results show significant ben-
efits of our approach, giving performance improvements as much as 6.3x
for execution time and as much as 170x for number of aborts.

1 Introduction

Concurrent processes (threads) need to synchronize to avoid introducing incon-
sistencies while accessing shared data objects. Traditional synchronization mech-
anisms such as locks and barriers have well-known limitations and pitfalls, includ-
ing deadlock, priority inversion, reliance on programmer conventions, and vul-
nerability to failure or delay. Transactional memory (TM) [16,27] has emerged
as an attractive alternative. Several commercial processors provide direct hard-
ware support for TM, including Intel’s Haswell [17] and IBM’s Blue Gene/Q [14],
zEnterprise EC12 [23], and Power8 [6]. There are proposals for adapting TM to
clusters of GPUs [5,12,20].

Using TM, program code is split into transactions, blocks of code that appear
to execute atomically. Transactions are executed speculatively : synchronization
conflicts or failures may cause an executing transaction to abort : its effects are
rolled back and the transaction is restarted. In the absence of conflicts or failures,
a transaction typically commits, causing its effects to become visible. Supporting

This work is supported by the National Science Foundation grant CCF-1936450.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 277–295, 2019.
https://doi.org/10.1007/978-3-030-34992-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_22

278 P. Poudel and G. Sharma

Fig. 1. An illustration of how a transaction Tx is executed using (a) eager versioning
and (b) lazy versioning. Figure (a) depicts two kinds of operations in eager versioning,
the first to copy the data from original memory locations to a log area (called undo
log) in main memory and the second to copy the data back from the log area to the
original memory locations, in case Tx aborts. If Tx commits, the data in the log area
is simply discarded. Figure (b) depicts two kinds of operations in lazy versioning, the
first to copy the updated values in cache to a log area (called redo log) in cache and
the second to copy data from the log area to the original memory locations, in case
Tx commits. If Tx aborts, the data in the log area is simply discarded. (Color figure
online)

this speculative execution requires data version management and conflict detec-
tion and resolution mechanisms. The majority of the existing TM systems can
be distinguished on how they implement these concepts. This is true for TM
systems in hardware, called hardware TMs (HTMs) [4,13,22,26], as well as in
software, called software TMs (STMs) [2,8,9].

Versioning handles the simultaneous storage of both new data (to be visible
if transaction commits) and old data (retained if transaction aborts). At most
one of these values can be stored “in place” (the original memory location), while
the other value must be stored “on the side” (e.g., in cache or main memory). On
a store, a TM system can either use eager versioning and put the new value in
place or use lazy versioning to (temporarily) leave the old value in place. Figure 1
depicts how a transaction Tx is executed using eager and lazy versioning. Due to
the working principle, lazy versioning makes aborts fast, but penalizes (the most
frequent) commits, whereas eager versioning makes commits fast, but penalizes
(the most frequent) aborts [22].

Conflict detection signals an overlap between the write set (data written) of
one transaction and the write set or read set (data read) of other concurrent
transactions. Conflict detection is called eager if it detects offending loads or
stores immediately and lazy if it defers detection until later when transactions
commit. Table 1 illustrates some existing TM systems that use lazy versus eager
versioning and lazy versus eager conflict detection. Conflict resolution (or man-
agement) strategies are then used to decide on which conflicting transaction(s) to
continue and which transaction(s) to wait (or abort and restart) the execution.

Adaptive Versioning in Transactional Memories 279

Table 1. Versioning and conflict detection mechanisms used in some TM systems.

Versioning

Lazy Eager

Conflict Lazy TCC [13], Norec [8], RSTM [2], SwissTM [9] None

Eager LTM [4], VTM [26], RSTM [2], SwissTM [9] UTM [4], LogTM [22], RSTM [2]

Both eager and lazy versioning along with both eager and lazy conflict
detection and resolution have been studied heavily in the past for TM systems
[2,4,8,9,13,22,26]. However, which versioning is better is still not clear and the
studies provide contradictory conclusions. For example, consider two widely pop-
ular HTM implementations LogTM [22] and UTM [4]. They advocate that TM
should ideally use eager versioning and eager conflict detection since in eager
versioning transaction commits are faster than transactions aborts. Moreover,
commits are much more common than aborts in practical applications. In addi-
tion, eager conflict detection finds conflicts early and reduces the wasted work by
conflicting transactions. On the other hand, consider again widely popular HTM
implementation TCC [13]. They use lazy versioning and lazy conflict detection.
Other HTMs such as VTM [26] and LTM [4] advocate lazy versioning with eager
conflict detection. This is also the case in STMs as some use eager, some use
lazy, and some use the combination of eager and lazy approaches [2,8,9].

Fig. 2. An illustration of performance discrepancies in execution time (left) and number
of aborts (right) in genome and kmeans benchmarks using eager and lazy versioning.

There is no study that elaborates the performance gap between eager and lazy
versioning for TM systems. Figure 2 illustrates the performance discrepancies
using eager and lazy versioning while executing genome and kmeans benchmarks
from STAMP benchmark suite [21]. Lazy versioning performs well for genome
where as for kmeans the opposite is true. This is mainly because of the fact that
the versioning used is not appropriate for the workload and caused more num-
ber of aborts, subsequently increasing the execution time. Nevertheless, there
are two major issues in selecting an appropriate versioning for TM systems.
First, to select an appropriate versioning, a priori knowledge on the workload

280 P. Poudel and G. Sharma

(write-dominated or read-dominated) and contention scenario (low or high) is
needed. Second, such knowledge is difficult to obtain prior to runtime.

Contributions. In this paper, we demonstrate that we can obtain the best of
both worlds without any a priori knowledge on the workload and contention
scenario. Particularly, we present an adaptive versioning for TM systems, which
we call Adaptive, that dynamically switches the execution using either lazy
or eager versioning at runtime, always achieving performance on any work-
load and contention scenario better than that is obtained using either lazy or
eager versioning individually. For the experimental evaluation, we incorporated
Adaptive in the latest TinySTM implementation [10,11] and ran experiments
against a diverse set of TM benchmarks [10,11,15]. Specifically, we used 5 micro-
benchmarks (bank, red black tree, hash set, linked list, and skip list) and 8 com-
plex benchmarks (yada, vacation, ssca2, labyrinth, kmeans, intruder, genome,
and bayes) from STAMP and STAMPEDE benchmarks [21,24]). We measured
the performance of Adaptive w.r.t. two crucial performance metrics.

– execution time: the total time to complete executing a set of transactions.
This is the time interval from the beginning of the first transaction executed
until the last transaction finishes and commits. In a dynamic setting, the exe-
cution time translates to throughput, the number of committed transactions
per time step.

– number of aborts: the total number of transaction aborts until the current
time. If compared with the total number of transaction commits until the
current time, it provides abort-to-commit ratio (ACR), a useful metric.

Both metrics are fundamental and used extensively in evaluating TM sys-
tems. The number of aborts directly affect execution time since it is likely that
the execution time increases with the increasing number of aborts requiring more
number of transaction restarts.

The results show that, when using lazy versioning with eager conflict detec-
tion, Adaptive achieves up to 6.3× better performance than lazy versioning and
up to 5.5× better performance than eager versioning. When using lazy versioning
with lazy conflict detection, Adaptive achieves up to 3.7× better performance
than lazy versioning and up to 5× better performance than eager versioning.
The minimum performance gain for Adaptive is 1.12. These results suggest
that switching between eager and lazy versioning dynamically at runtime pro-
vides a way to exploit the positive aspects of both versioning methods for TM
systems. Adaptive is general enough to be applied to both HTMs and STMs,
although we only report results from a STM implementation. In summary, we
have the following three contributions.

– (Section 4) We introduce a novel versioning approach, Adaptive, that
switches between eager and lazy versioning dynamically at runtime.

– (Section 5) We discuss implementation issues related to Adaptive and
present two optimizations.

Adaptive Versioning in Transactional Memories 281

– (Section 6) We evaluate experimentally the performance of Adaptive using
five micro-benchmarks and 8 complex benchmarks from STAMP and STAM-
PEDE, report the results obtained, and provide observations on the obtained
results.

2 Related Work

The previous studies on TM mostly supported speculative execution of trans-
actions using either eager or lazy versioning. There is no work that elaborates
on the impact of using eager and lazy versioning on the performance of TM
systems. In fact, as outlined in Table 1, the majority of well-known TM sys-
tems make contradictory conclusions on whether to use eager or lazy versioning.
We focus in this paper on the impact of the eager and lazy versioning on the
performance of TM systems. Particularly, we propose an adaptive versioning
(switching between eager and lazy versioning at runtime without needing any a
priori knowledge on workload and contention scenarios) and achieve significant
improvements in execution time and number of aborts (two crucial performance
metrics for evaluating a TM system) compared to that of using either eager or
lazy versioning individually. Our approach is simple and may provide insights
into future TM system designs and implementations.

The performance gap of using eager and lazy versioning is relatively well-
studied for crash consistency in non-volatile memories. One recent work is [25]
where they presented an adaptive versioning approach like the one presented here
but specifically tailored to non-volatile memories. In particular, they focused on
minimizing the number of data movements while running workloads through
these versioning methods. However, their approach increased the execution time
in several benchmarks. The approach we study here is tailored for TM systems
in volatile memories.

The other closely related works are as follows. Wan et al. [29] empirically
evaluated eager and lazy versioning on the open source non-volatile memory
library (NVML) [1] for some constrained workloads, and suggested that “one
logging method does not fit all workloads”. Particularly, they reported that (i)
lazy versioning significantly outperforms eager versioning for workloads in which
a transaction updates large number of different objects, while it underperforms
eager versioning for read-dominated workloads, and (ii) eager versioning is more
sensitive to read-to-write ratios whereas lazy versioning is less sensitive to those
ratios [29]. The other works mostly proposed methods to provide crash consis-
tency through either eager or lazy versioning, and there is no work that elabo-
rates the performance gap between eager and lazy versioning. Coburn et al. [7]
suggested a STM implementation for persistent memory NV-Heaps using eager
versioning. Volos et al. [28] suggested a TinySTM [10,11] variation Mnemosyne
for persistent memory using lazy versioning. NV-Heaps [7] and Mnemosyne
[28] drew absolutely opposite conclusions on whether eager or lazy versioning is
better for persistent memory. The former prefers to use eager versioning, and

282 P. Poudel and G. Sharma

the latter opts to use lazy versioning. Recently, Alistarh et al. [3] studied two
variants of the transactional conflict problem and provided optimal solutions for
both the variants.

3 Preliminaries

Model. We consider a computer system with volatile shared main memory,
many processing cores, and hard disk drive. All shared main memory is cacheable
and caches are volatile and coherent. We assume that all the writes of a com-
mitted transaction can be accommodated in the cache, i.e., once a transaction
commits but before the commit is reflected in original memory locations in main
memory, all its newly modified data is in volatile cache. We run workloads using
the TinySTM execution model [10,11]. We assume that the execution starts at
time t0 = 0. We measure in execution time the time for all the transactions within
a benchmark to finish execution and commit, except for micro-benchmarks where
we consider time to execute and commit 10,000 transactions. We also assume
that only a single-version of data is stored in each eager, lazy, and adaptive
versioning, which is essentially different from techniques, such as those given in
[18], of storing multiple versions.

Eager Versioning. Eager versioning is supported through so-called undo logs.
Undo logs are stored in cacheable main memory. In this method, a transaction
works by first copying the data in original memory locations to a undo log
area and then performs updates in-place in the original data locations (in main
memory). In the event the transaction aborts, any modifications to the original
memory locations are rolled back using the old data stored in the undo log. The
left of Fig. 1 illustrates eager versioning.

Lazy Versioning. Lazy versioning is supported through so-called redo logs.
Redo logs are stored in cache. In this method, a transaction copies data in each
memory location that it is going to read/write to a redo log area, appends all its
data updates to that log area, and then writes the data back to original memory
locations when transaction commits. If the transaction fails, the updates in log
area are simply discarded. Therefore, the writing of data in redo log back to the
original memory locations happens only when transaction commits. The right of
Fig. 1 illustrates lazy versioning.

4 Basic Adaptive Versioning

We now describe our approach, Adaptive, that runs transactions using either
eager or lazy versioning, switching between them dynamically at runtime.
Figure 3 compares Adaptive with eager and lazy versioning. We will introduce
techniques to improve Adaptive in Sect. 5.

Adaptive Versioning in Transactional Memories 283

Fig. 3. An illustration of (a) eager, (b) lazy, and (c) basic adaptive versioning. The
time gap σ∗ while switching from eager (lazy) to lazy (eager) is to let finish executing
in-flight transactions. This helps in avoiding potential data versioning inconsistencies.

High Level Overview. The high level idea in Adaptive is to switch the
versioning method depending on performance. That is, if the versioning currently
used is hampering the performance, then we switch the versioning to improve
the performance.

Now a fundamental question is how to identify and measure an indicator that
reflects appropriately the effect of the versioning method on performance. For-
tunately, in TM, if the number of aborts are increasing compared to the number
of commits, then it might be a valid indicator of performance degradation due to
the versioning method currently used. Therefore, we pick abort to commit ratio
(ACR) as a performance indicator for any versioning method. ACR has also been
used quite heavily in the TM literature as a vital indicator of performance, for
example, see [19]. Ideally, the goal is to have no aborts, i.e., ACR = 0. However,
in practice, this may not be feasible and the goal is to minimize ACR as much
as possible.

Formally, ACR can be defined as follows: ACR = Nabort

Ncommit
, where Nabort is the

total number of aborted transactions and Ncommit is the total number of commit-
ted transactions from time 0 up to t. For eager (and lazy) versioning, we can com-
pute ACREager (and ACRLazy) based on the number of transactions committed
and aborted using eager (lazy) versioning. To facilitate when to switch from one
to another, we identify a threshold on ACR for both eager and lazy. We denote
them by ThresholdEager and ThresholdLazy, respectively. Let a transaction T
be running at current time t using lazy versioning. If ACRLazy < ThresholdLazy,
then the versioning method is switched to Eager for transactions that start (or
restart) execution after time t′ > t. An analogous approach is used if currently
T is executing using eager versioning.

Detailed Description. Let NEcommit(NLcommit) be the number of transaction
commits in Adaptive from time t0 = 0 until the current time t > t0 executed
using eager (lazy) versioning. Similarly, let NEabort(NLabort) be the total number
of transaction aborts in Adaptive from time t0 = 0 until time t > t0 executed
using eager (lazy) versioning. Furthermore, let Ncommit and Nabort be the total

284 P. Poudel and G. Sharma

number of commits and aborts in Adaptive from t0 = 0 until time t > t0.
Notice that Ncommit = NEcommit + NLcommit and Nabort = NEabort + NLabort.

Based on NEcommit, NLcommit, NEabort, and NLabort, we compute ACREager

and ACRLazy at each time step t > t0. These ratios ACREager and ACRLazy are
then compared with ThresholdEager and ThresholdLazy parameters (computed
in the next section). Therefore, at any time t > t0, the transaction T that is
ready-to-execute will be executed as follows.

– Suppose the versioning currently used is Lcur = Eager. If ACREager >
ThresholdEager, then Lcur is switched to Lazy (i.e., Lcur ← Lazy) and T
will be executed using lazy versioning.

– Suppose the versioning method currently used is Lcur = Lazy. If ACRLazy <
ThresholdLazy, then Lcur is switched to Eager (i.e., Lcur ← Eager) and T
will be executed using eager versioning.

In the special case of t0 = 0, NEcommit, NLcommit, NEabort, and NLabort are
all zero. Therefore, a simple approach is to execute T using either lazy or eager
versioning. However, if some information regarding the workload is available,
then we can decide on which versioning method to use. Suppose, the read and
write sets of T are available. Let Wset(T) be the write set of T which is essen-
tially the memory locations that T would modify while executing. Similarly, let
Rset(T) be the read set of T which is essentially the memory locations that T
would read (but not modify) while executing. RW (T) = Rset(T) + Wset(T),
where RW (T) denotes the total number of memory locations that T reads and
modifies while executing. If |Wset(T)| > |Rset(T)|, then T is executed using
lazy versioning, otherwise using eager versioning.

Computing Switching Thresholds ThresholdEager and ThresholdLazy. Let
N be the total number of transactions in any workload. When the workload
finishes execution and all transactions commit, we have that Ncommit = N and
Nabort ≥ 0 (if each transaction commits without aborting, then Nabort = 0,
otherwise Nabort > 0).

Suppose, each transaction T spends α amount of time while moving data
from one memory location to other. Consider the case of executing T using
eager versioning. Let τEager be the total amount of time spent while (i) ver-
sioning data from the original memory locations to the undo log area and (ii)
updating data from the undo log area back to the original memory locations.
The first kind of operations are shown as a blue arrow in Fig. 1(a) and the second
kind of operations are shown as a red arrow in Fig. 1(a). The first kind of opera-
tions are always done in eager versioning and the second kind of operations are
done only when the transaction aborts. That means, for an aborted transaction,
data movement is performed two times, one for versioning, other for rollback.
Therefore, for eager versioning, τEager = (Ncommit + 2Nabort) · α.

Similarly, for lazy versioning, τLazy = (2Ncommit + Nabort) · α.
Based on 3 different cases below, we can see 3 scenarios for τEager and τLazy:

– Case 1: If Ncommit = Nabort, then τEager = τLazy

Adaptive Versioning in Transactional Memories 285

– Case 2: If Ncommit > Nabort, then τEager < τLazy

– Case 3: If Ncommit < Nabort, then τEager > τLazy

Moreover, equation for τEager suggests that in eager versioning, total time spent
for an aborted transaction is twice as much as the time spent for a committed
transaction. Then it is immediate that the eager versioning performs better
until Ncommit ≥ 2Nabort; i.e. Nabort

Ncommit
≤ 1

2 . Thus, we get ThresholdEager = 1
2

and switch to lazy versioning when ACREager > 1
2 . Similarly, equation for τLazy

suggests that the lazy versioning performs better until 2Ncommit ≤ Nabort; i.e.
Nabort

Ncommit
≥ 2. Then, we get ThresholdLazy = 2 and switch to eager versioning

when ACRLazy < 2.

Fig. 4. An illustration of the better time barrier design. The interval δ∗ between Eager
and Lazy represents the time taken by in-flight transactions to finish their executions
after versioning method is switched. The new transaction that do not conflict with
transactions using previous versioning can execute concurrently with in-flight transac-
tions.

Fig. 5. An illustration of the better switching mechanism. λ∗ represents the time inter-
val in which versioning is not switched. δ∗ resembles better time barrier of Fig. 4.

Time Barrier Requirement and Design. The ideal scenario in Adaptive
is to let each transaction T run Algorithm and decide which versioning (eager or
lazy) to use for it to execute individually based on the parameters obtained at
runtime. Let Sj be a set of transactions arrived before T . Suppose Lcur = Eager,
which means that Lprev = Lazy. Suppose the versioning changed to Eager from
Lazy after the transactions in Sj started execution but before T . If we run
T using Eager immediately and T conflicts with any of the transaction Tj ∈
Sj , then the conflict detection and resolution mechanisms interfere, hampering

286 P. Poudel and G. Sharma

consistency. A simple approach to handle this situation is to ask T to wait until
all transactions in Sj finish execution, which we call a basic time barrier (as
shown in Fig. 3). The barrier reduces total number of aborts but due to a time
delay before switching, it increases total execution time [25]. We provide a better
time barrier design (described in Sect. 5) that will minimize this overhead.

5 Optimizations on Basic Adaptive Versioning

We provide two optimizations to basic Adaptive. The first optimization is on
time barrier design. The second optimization is on switching mechanism.

Better Time Barrier Design. Figure 4 illustrates the idea of better time
barrier design. Consider a transaction T . Let Sj be a set of transactions arrived
before T . Suppose Lcur = Eager, which means Lprev = Lazy. Suppose the
versioning changed to Eager from Lazy after the transactions in Sj started
execution but before T starts execution. In the basic time barrier design, T has
to wait until all transactions in Sj finish execution. In this design, we ask T to
start execution as soon as it is ready. If T does not conflict with transactions in
Sj , we are done, otherwise, T aborts. If T conflicts with T ′ /∈ Sj , it is handled
as per the conflict resolution strategy used.

Better Switching Mechanism. Let Lcur = Eager. Suppose at time t, Adap-
tive decides to switch to Lazy. We discuss here a mechanism so that Adap-
tive does not switch to Lazy at t but waits until a switching interval threshold
SW INT . We define SW INT as the number of transactions after t for which
the decision is to execute using Lazy. Let λ be the execution time interval dur-
ing which all transactions in the interval SW INT finish execution. Execution
switches from Eager to Lazy at time t + λ. Figure 5 illustrates the design of
better switching mechanism.

6 Experimental Evaluation

In this section, we evaluate the performance of optimized1 Adaptive (better
time barrier and switching mechanism). The evaluation is performed in a STM
implementation using TinySTM [10,11] modified appropriately to incorporate
Adaptive. The tests were executed on an Intel Xeon(R) E5-2620 v4 @ 4.20 GHz,
64-bit processor with 32 cores. Each core has private L1 and L2 caches, whose
sizes are 64 KB and 256 KB, respectively. There is also an 20 MB L3 cache shared
by all 32 cores and 32 GB main memory. The results are the average of 10
experimental runs. The results are for varying number of threads from 1 to

1 The experimental results conducted on basic Adaptive showed that the number of
aborts always decrease in all the benchmarks but execution time for some bench-
marks increase compared to the execution times obtained using eager and lazy ver-
sioning individually.

Adaptive Versioning in Transactional Memories 287

32. First, we present the experimental results for optimized Adaptive with
better time barrier using suicide conflict resolution strategy. Later, we extend
the results using both better time barrier and switching mechanism. We also
compare the performance of optimized Adaptive against four different conflict
resolution strategies.

Compared Versioning Methods. We developed a STM-based implemen-
tation using TinySTM [10,11]. TinySTM has implemented separately both
lazy and eager versioning (called Lazy and Eager) through Write Back and
Write Through designs, respectively. With Write Through design, transactions
directly write to original memory locations and revert their updates in case the
transactions abort. However, with Write Back design, transactions work on a
copy of data and delay their updates to the original memory locations until
commit [10,11]. Furthermore, Write Back design has two different implementa-
tions: Write Back ETL and Write Back CTL. Encounter-time locking (ETL)
detects conflicts early at the time of write and acquires the lock on the memory
address before it is written. Commit-time locking (CTL) defers conflict detection
on memory address until commit, i.e., the lock is acquired on the memory address
at the commit time. Therefore, there are two different implementations of Lazy
in TinySTM: one based on ETL called Lazy ETL and another based on CTL
called Lazy CTL. We obtain adaptive design Adaptive ETL using Lazy ETL
and Eager versioning. Similarly, we obtain adaptive design Adaptive CTL using
Lazy CTL and Eager versioning. We run experiments with five different designs
Lazy ETL, Lazy CTL, Eager, Adaptive ETL, and Adaptive CTL.

Results on Micro-benchmarks. The execution time results in 5 different
micro-benchmarks are provided in Fig. 6. Figure 7 provides the result for the
number of aborts. The results are for 10,000 transactions, each executed with
update rate of 20%. Figure 6 shows that the execution time decreases notably
in Adaptive as compared to the other versioning methods with the increase
in number of threads for all the micro-benchmarks. Specifically, Adaptive ETL
achieved up to 6.3× better execution time than Lazy ETL and Adaptive CTL
achieved up to 3.7× better execution time than Lazy CTL. Compared to Eager,
Adaptive ETL achieved up to 5.5× better execution time and Adaptive CTL
achieved up to 5× better execution time. The minimum execution gain for
Adaptive ETL beyond 4 number of threads is 1.23 and for Adaptive CTL is
1.20. Due to high contention for memory access when transactions are executed
with more number of threads, the number of aborts increases with the increasing
number of threads. Figure 7 shows that Adaptive minimizes number of aborts.
Specifically, Adaptive ETL achieved up to 2.6× less number of aborts than
Lazy ETL and up to 5.8× less number of aborts than Eager. Adaptive CTL
achieved up to 2.2× less number of aborts than Lazy CTL and up to 8× less
number of aborts than Eager.

288 P. Poudel and G. Sharma

Fig. 6. Execution time in micro and bayes benchmark using better time barrier.

Fig. 7. Number of aborts in micro and bayes benchmark using better time barrier.

Results on STAMP Benchmarks. Figures 8 and 9, respectively, provide the
execution time and number of aborts results for STAMP benchmarks. Regarding
execution time, Adaptive ETL has up to 1.78× better time than Lazy ETL
and Adaptive CTL has up to 1.74× better time than Lazy CTL. Compared to
Eager, the execution time improvement in Adaptive ETL and Adaptive CTL

Adaptive Versioning in Transactional Memories 289

Fig. 8. Execution time in STAMP benchmarks using better time barrier.

is up to 2.36× and 2×, respectively. The minimum execution gain obtained in
Adaptive ETL is 1.13 and in Adaptive CTL is 1.12 with the threads grater than
4. From Fig. 9, we observed that the number of aborts significantly increases in
all the applications of STAMP benchmark when transactions are executed in
more than 8 number of threads. Still, Adaptive has significantly less aborts
compared to Lazy and Eager. Adaptive ETL has up to 16× less aborts than
Lazy ETL and up to 13× less aborts than Eager. Similarly, Adaptive CTL has
up to 2.5× less aborts than Lazy CTL and up to 170× less aborts than Eager.

Results on STAMPEDE Benchmarks. Similar to micro and STAMP
benchmarks, Adaptive has better performance compared to Lazy and Eager
in STAMPEDE benchmarks, for both execution time and number of aborts
(Fig. 10). For execution time, Adaptive ETL performed up to 1.72× bet-
ter than Lazy ETL and Adaptive CTL performed up to 1.54× better than
Lazy CTL. Compared to Eager, Adaptive ETL performed up to 1.68× bet-
ter and Adaptive CTL performed up to 1.91× better. The minimum execution
gain obtained in Adaptive ETL is 1.14 and in Adaptive CTL is 1.12 with the
threads greater than 4. For number of aborts, Adaptive ETL performed up to

290 P. Poudel and G. Sharma

Fig. 9. Number of aborts in STAMP benchmarks using better time barrier.

4.1× better than Lazy ETL and Adaptive CTL performed up to 72× better
than Lazy CTL. Compared to Eager, Adaptive ETL performed up to 10×
better and Adaptive CTL performed up to 124× better.

In all the benchmarks, the minimum execution gain for Adaptive ranges
between 1 and 1.16 when running with threads up to 4 numbers.

Further Results. The results in Figs. 6, 7, 8, 9 and 10 only considered optimized
Adaptive w.r.t. better time barrier. We also performed experiments for Adap-
tive using both, better time barrier and better switching mechanism. We varied
the switching interval threshold (SW INT) from 2 up to 10. The results indicate
that instead of switching versioning immediately, using the better switch mech-
anism increases the performance. However, for SW INT > 2, the performance
gradually reduces and becomes worse while reaching SW INT = 10. Figure 11
shows the execution time for STAMP benchmarks when executed with both
better time barrier and better switch mechanism (SW INT = 2). The improve-
ment is up to 1.09× compared to Adaptive with better time barrier. Alongwith
decreasing the total number of aborts, the better switch mechanism decreases
the total number of switches between the versioning methods which helps to get

Adaptive Versioning in Transactional Memories 291

Fig. 10. Execution time in STAMPEDE benchmarks using better time barrier.

the improvement on execution time. Figure 12 illustrates the reduction of total
number of switches using better switch mechanism for STAMP benchmarks. The
experiments on micro-benchmarks and STAMPEDE showed similar results.

The experiments so far use ThresholdEager = 1
2 and ThresholdLazy = 2 as

computed in Sect. 4. It is natural to ask whether these are the ideal threshold val-
ues. Therefore, for ThresholdEager, we used 1

4 and 3
4 , whereas for ThresholdLazy,

we used 1 and 3. We performed experiments by using two different combinations
of ThresholdEager and ThresholdLazy, (1

4 , 1) and (3
4 , 3). We noticed the increase

in both execution time and number of aborts in all the benchmarks for both the
combinations. This suggests that the threshold values computed in Sect. 4 are
appropriate.

The results reported in Figs. 6, 7, 8, 9, 10, 11 and 12 use suicide as a conflict
resolution strategy. We were interested to see whether other strategies perform
better than suicide. Therefore, we performed experiments using 4 different con-
flict resolution strategies suicide, delay, back-off, and kill. The results showed
not significant change on performance in some of the benchmarks, while in the
rest, the selection of conflict resolution strategy affected the performance. For
example, genome and intruder performed better with suicide whereas, kmeans

292 P. Poudel and G. Sharma

Fig. 11. Execution time in STAMP benchmarks using better barrier and better switch.

performed better with back-off. In overall, suicide performed better than the rest
in most of the benchmarks.

Finally, we performed experiments starting the execution initially using eager
and lazy versioning. We observed that the initial selection of versioning does not
affect performance significantly in both micro and complex benchmarks except
intruder and kmeans from STAMP in which Adaptive performed better when
starting with Eager than Lazy for up to 4 threads. This is mainly because
transactions have almost constant abort rate and versioning method change is
not necessary.

Adaptive Versioning in Transactional Memories 293

Fig. 12. Illustration of decrease in total number of switches between versioning meth-
ods using better switch mechanism.

7 Concluding Remarks

TM has been receiving much attention from both academia and industry. One
of the most challenging issues in TM is how to ensure consistency of the shared
data through speculative execution. Eager and lazy versioning have been used
individually to support speculative execution in existing TM systems. However,
whether to use eager or lazy versioning is better is not clear and previous stud-
ies contradict on the recommendations. In this paper, we have presented an
adaptive framework that dynamically switches between eager and lazy version-
ing at runtime. Our framework is quite simple and achieves significantly better
performance for execution time and number of aborts compared to eager and
lazy versioning running individually in 5 micro-benchmarks and 8 applications
from STAMP and STAMPEDE benchmarks. We believe that our results and
techniques will be helpful in choosing proper versioning for TM systems.

294 P. Poudel and G. Sharma

References

1. The Persistent Memory Development Kit (PMDK). https://github.com/pmem/
pmdk/. Accessed 14 Feb 2019

2. RSTM. http://www.cs.rochester.edu/research/synchronization/rstm/index.shtml.
Accessed 14 Feb 2019

3. Alistarh, D., Haider, S.K., Kübler, R., Nadiradze, G.: The transactional conflict
problem. In: SPAA, pp. 383–392 (2018)

4. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: HPCA, pp. 316–327 (2005)

5. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for
large scale clusters. In: PPoPP, pp. 247–258 (2008)

6. Cain, H.W., Michael, M.M., Frey, B., May, C., Williams, D., Le, H.Q.: Robust
architectural support for transactional memory in the power architecture. In: ISCA,
pp. 225–236 (2013)

7. Coburn, J., et al.: NV-Heaps: making persistent objects fast and safe with next-
generation, non-volatile memories. In: ASPLOS, pp. 105–118 (2011)

8. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: PPOPP, pp. 67–78 (2010)

9. Dragojevic, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In:
PLDI, pp. 155–165 (2009)

10. Felber, P., Fetzer, C., Marlier, P., Riegel, T.: Time-based software transactional
memory. IEEE Trans. Parallel Distrib. Syst. 21(12), 1793–1807 (2010)

11. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: PPOPP, pp. 237–246 (2008)

12. Fung, W.W.L., Singh, I., Brownsword, A., Aamodt, T.M.: Hardware transactional
memory for GPU architectures. In: MICRO, pp. 296–307 (2011)

13. Hammond, L., et al.: Transactional memory coherence and consistency. SIGARCH
Comput. Archit. News 32(2), 102 (2004)

14. Haring, R., et al.: The IBM Blue Gene/Q compute chip. IEEE Micro 32(2), 48–60
(2012)

15. Herlihy, M., Luchangco, V., Moir, M., Scherer III., W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC, pp. 92–101 (2003)

16. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: ISCA, pp. 289–300 (1993)

17. Intel (2012). http://software.intel.com/en-us/blogs/2012/02/07/transactional-
synchronization-in-haswell

18. Keidar, I., Perelman, D.: Multi-versioning in transactional memory. In: Guerraoui,
R., Romano, P. (eds.) Transactional Memory. Foundations, Algorithms, Tools, and
Applications. LNCS, vol. 8913, pp. 150–165. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-14720-8 7

19. Keidar, I., Perelman, D.: On avoiding spare aborts in transactional memory. Theory
Comput. Syst. 57(1), 261–285 (2015)

20. Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concur-
rency in a transactional memory cluster. In: PPoPP, pp. 198–208 (2006)

21. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: IISWC, pp. 35–46 (2008)

22. Moore, K.E.: LogTM: log-based transactional memory. In: HPCA, pp. 258–269
(2006)

https://github.com/pmem/pmdk/
https://github.com/pmem/pmdk/
http://www.cs.rochester.edu/research/synchronization/rstm/index.shtml
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://doi.org/10.1007/978-3-319-14720-8_7
https://doi.org/10.1007/978-3-319-14720-8_7

Adaptive Versioning in Transactional Memories 295

23. Nakaike, T., Odaira, R., Gaudet, M., Michael, M.M., Tomari, H.: Quantitative
comparison of hardware transactional memory for Blue Gene/Q, zEnterprise EC12,
Intel Core, and POWER8. In: ISCA, pp. 144–157 (2015)

24. Nguyen, D., Pingali, K.: What scalable programs need from transactional memory.
In: ASPLOS, pp. 105–118 (2017)

25. Poudel, P., Sharma, G.: An adaptive logging framework for persistent memories. In:
Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 32–49. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03232-6 3

26. Rajwar, R., Herlihy, M., Lai, K.: Virtualizing transactional memory. In: ISCA, pp.
494–505. IEEE Computer Society, Washington, DC (2005)

27. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2),
99–116 (1997)

28. Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight persistent memory. In:
ASPLOS, pp. 91–104 (2011)

29. Wan, H., Lu, Y., Xu, Y., Shu, J.: Empirical study of redo and undo logging in
persistent memory. In: NVMSA, pp. 1–6 (2016)

https://doi.org/10.1007/978-3-030-03232-6_3

Brief Announcement Blockguard:
Adaptive Blockchain Security

Shishir Rai, Kendric Hood, Mikhail Nesterenko(B), and Gokarna Sharma

Department of Computer Science, Kent State University, Kent, OH 44242, USA
{srai,khood5}@kent.edu, {mikhail,sharma}@cs.kent.edu

Abstract. We change the security of blockchain transactions by varying
the size of consensus committees. To improve performance, such commit-
tees operate concurrently. We present two algorithms that allow adaptive
security by forming concurrent variable size consensus committees on
demand. One is based on a single joint blockchain, the other is based on
separate sharded blockchains. For in-committee consensus, we implement
synchronous Byzantine fault tolerance algorithm (BFT), asynchronous
BFT and proof-of-work consensus. We evaluate the performance of our
adaptive security algorithms.

1 Definitions and Committee Consensus Algorithms

A set of n peer processes (or peers) forms a network to maintain the blockchain.
The blockchain is a sequence of blocks or transactions. We use the terms inter-
changeably, i.e. we assume that a block contains a single transaction. A trans-
action is a unit of blockchain recording. Each subsequent transaction is crypto-
graphically linked to the previous one. The first transaction in the blockchain is
the genesis transaction. Peers communicate through broadcasts. Message deliv-
ery is FIFO. There is no message loss. Messages cannot be forged. Peers are
either honest or Byzantine. A set of peers that cooperate to approve a transac-
tion despite actions of Byzantine peers is a consensus committee.

Sharding. A (recording) group is a set of processes that maintain a single
blockchain. There are as many groups as there are separate blockchains. In case
of sharding, a peer in the consensus committee that approves a certain trans-
action in a blockchain does not necessarily belong to the group that records it.
However, a peer may belong to only one recording group and only one consensus
committee at a time.

PBFT and SBFT. In PBFT [2] The committee of peers elect the leader.
The leader runs consensus on every transaction. It initiates several message
exchanges with other committee peers. A non-leader Byzantine peer may delay
messages or send incorrect messages. A Byzantine leader may temporarily block
the consensus by sending different messages to different peers or not sending

See [4] for full text of the paper.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 296–300, 2019.
https://doi.org/10.1007/978-3-030-34992-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_23&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_23

Brief Announcement Blockguard: Adaptive Blockchain Security 297

messages altogether. In either case, the honest peers discover the Byzantine
leader and replace it by forcing a view change. PBFT is guaranteed to withstand
up to f < n/3 Byzantine peers regardless of the message propagation delay. The
operation of SBFT [1] is similar to PBFT. This algorithm relies on at least
one honest peer confirming the transaction. However, it assumes that there is a
bound on communication delay between honest peers. If a message is not received
after a certain delay, it is guaranteed never to arrive. Thus, the algorithm has to
delay to ascertain this lack of message receipt. In practice this may make SBFT
slower. However, it has higher resilience threshold. It can tolerate up to f < n/2
Byzantine peers.

PoW. We implement proof-of-work consensus similar to Nakamoto [3]. To attach
a new transaction to the blockchain, a peer mines the transaction by solving a
computationally intensive task that links the new and previous transaction. Sev-
eral peers may mine transactions concurrently. This is a fork in the blockchain.
A branch of a fork may be extended by the addition of mined transactions on top
of the current block. The shorter branch is discarded. PoW consensus operates
correctly provided that the computational power of honest peers exceeds that of
Byzantine peers. If peers have the same computational power, PoW consensus
tolerates up to f < n/2 Byzantine peers.

2 The Adaptive Security Problem and Solutions

The Problem. The Adaptive Security Problem requires, as a solution, an adap-
tive security algorithm, to assign committees to the transactions such that each
committee satisfies the transaction security level. We consider an adaptive secu-
rity algorithm that selects appropriate size committees and processes transac-
tions with as much parallelism as possible. We present two such algorithms:
Composite Blockguard and Dynamic Blockguard.

Composite Blockguard Adaptive Security Algorithm. In this algorithm,
peers are divided into storage groups maintaining independent blockchains. The
algorithm maintains a list of idle groups and pending transactions. Once a new
transaction arrives or a consensus committee is done, Composite Blockguard
finds appropriate number of available groups, forms a consensus committee to
process the next pending transaction and dispatches the transaction. If not
enough idle groups are available, the pending transactions wait.

Dynamic Blockguard Adaptive Security Algorithm. This algorithm has
a single blockchain and thus a single recording group. A consensus committee is
selected out of this group of peers. Multiple consensus committees may operate
concurrently if their members do not intersect. This means that the committees
have to concurrently write to the same blockchain. To ensure the integrity of
the blockchain, the computation proceeds by alternating two stages: consensus
stage and recording stage. In the consensus stage, committees agree on blocks
to be written to the blockchain. Every committee must reach consensus before

298 S. Rai et al.

any committee may proceed to the next stage. In the recording stage, each
committee broadcasts the transaction to the group maintaining the blockchain.
That is, they broadcast it to the whole network. Each written transaction is
cryptographically linked to all the written transaction in the previous recording
stage. This way, the resultant blockchain is a series-parallel graph. Committee
selection window is the set of unique peers that published in the blockchain most
recently. Committee peers are picked at random from the committee selection
window.

3 Performance Evaluation

Setup. We evaluate the performance of Composite and Dynamic Blockguard
using abstract simulation. The behavior of each algorithm is represented as a
sequence of rounds. In every round, each peer may receive a single new message,
do local computation and send messages to other peers.

Byzantine peers’ goal is to successfully commit a fraudulent transaction to
the blockchain, we model this as follows. A committee is reliable if the number of
Byzantine peers in it does not exceed its tolerance threshold, defeated otherwise.
The tolerance threshold is 1/3 for PBFT and 1/2 for SBFT and PoW. Defeated
committees commit only fraudulent transactions to the blockchain, and reliable
committees never commit fraudulent transactions. Byzantine leaders propose
only fraudulent transactions. If a fraudulent transaction is proposed in a reliable
committee then a view change occurs. This repeats until a non-byzantine leader
is found. In PoW, if a Byzantine peer is the first to mine in a reliable committee
then nothing is recorded and mining restarts.

Experiment Parameters and Evaluation Metrics. Unless stated other-
wise, in the below experiments, the parameters are set as follows. The fraction
of Byzantine faults is n/10. The number of peers in the network is 1024. There
are 1000 rounds in a computation. Each data point is the average of 10 compu-
tations. A new transaction is generated every two rounds. We have 5 security
levels. The highest security level is the 5-th level which contains the whole net-
work. Each lower level contains half of the peers of the higher level. We use
geometric distribution to select the security level of newly generated transac-
tion. In PoW, we use binomial distribution to determine the number of rounds
it takes the peers to mine a transaction. The mode, i.e. most frequently occur-
ring value, is 5 and variance 2.5. We vary maximum message delay and the
fraction of Byzantine peers in the network. We consider a transaction approval
as a consensus. We compute the following metrics. Throughput is the number
of consensuses per round. Consensuses of defeated committees are not counted.
(Transaction) waiting time is computed as follows. For coordinated consensus
algorithms, i.e. PBFT and SBFT, it is the number of rounds from the moment
the transaction is generated till the first peer determines that the transaction is
committed. For PoW, it is the time for this transaction to be mined. The waiting
time for transactions of defeated committees is counted.

Brief Announcement Blockguard: Adaptive Blockchain Security 299

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
hr

ou
gh

pu
t,

tr
an

sa
ct

io
ns

 p
er

 r
ou

nd

Delay, rounds

PBFT
SBFT
PoW

(a) Throughput, Composite Blockguard,
varying delay

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
hr

ou
gh

pu
t,

tr
an

sa
ct

io
ns

 p
er

 r
ou

nd

Delay, rounds

PBFT
SBFT
PoW

(b) Throughput, Dynamic Blockguard,
varying delay

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
hr

ou
gh

pu
t,

tr
an

sa
ct

io
ns

 p
er

 r
ou

nd

Byzantine, fraction

PBFT
SBFT
PoW

(c) Throughput, Composite Blockguard,
varying Byzantine fraction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
hr

ou
gh

pu
t,

tr
an

sa
ct

io
ns

 p
er

 r
ou

nd

Byzantine fraction

PBFT
SBFT
PoW

(d) Throughput, Dynamic Blockguard,
varying Byzantine fraction

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
ai

tin
g

tim
e,

 r
ou

nd
s

Delay, rounds

PBFT
SBFT
PoW

(e) Waiting time, Composite Blockguard,
varying delay

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
ai

tin
g

tim
e,

 r
ou

nd
s

Delay, rounds

PBFT
SBFT
PoW

(f) Waiting time, Dynamic Blockguard,
varying delay

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

W
ai

tin
g

tim
e,

 r
ou

nd
s

Byzantine fraction

PBFT
SBFT
PoW

(g) Waiting time, Composite Blockguard,
varying Byzantine fraction

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

W
ai

tin
g

tim
e,

 r
ou

nd
s

Byzantine fraction

PBFT
SBFT
PoW

(h) Waiting time, Dynamic Blockguard,
varying Byzantine fraction

Fig. 1. Performance of Blockguard adaptive security algorithms.

300 S. Rai et al.

Algorithm Performance Experiments. The results of the performance eval-
uation of the adaptive security algorithms are shown in Fig. 1. Figures 1a and b
demonstrate how throughput depends on the network delay for Composite and
Dynamic Blockguard respectively. As network delay increases, the throughput
declines. However, different consensus committees react to this increase differ-
ently. PBFT has the best performance and lowest decline since the committees
just wait for the actual messages to arrive. SBFT exhibits the most sensitivity to
the network delay. The reason is that SBFT has to wait for the maximum delay
to determine that the message is not coming. Let us discuss Figs. 1c and d. It
shows that the performance of Composite and Dynamic Blockguard decreases as
the fraction of Byzantine peers in the network increase. This is due to Byzantine
peers slowing down the consensus algorithms. PBFT suffers the most since its
tolerance threshold is only a third of the peers.

Figures 1e and f show the dependency of transaction waiting time on network
delay. As expected, the waiting time increases with delay. SBFT is the most vul-
nerable to this increase since it has to wait for maximum delay time. Figures 1g
and h show how waiting time varies with the fraction of Byzantine peers. Let
us explain the trends in the data. As the consensus committee approaches its
resiliency threshold, the number of view changes or repeated transaction mining
increases which increases the transaction waiting time. If the fraction is away
from this threshold, the committees are either reliable or defeated. In either case
the waiting time is relatively low. Thus, there is a peak near n/3 for PBFT and
near n/5 for SBFT and PoW. This trend is less pronounced in Dynamic Block-
guard since it is masked by synchronization across consensus committees in the
same stage.

The results of our experiments indicate that both Composite and Dynamic
blackguard algorithm provide adaptive security with a trade-off between perfor-
mance and security parameters.

References

1. Abraham, I., Devadas, S., Nayak, K., Ren, L.: Brief announcement: practical syn-
chronous Byzantine consensus. In: DISC, pp. 41:1–41:4 (2017)

2. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

3. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

4. Rai, S., Hood, K., Nesterenko, M., Sharma, G.: Blockguard: adaptive blockchain
security. arXiv e-prints arXiv:1907.13232, July 2019

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1907.13232

Brief Announcement: Fully Anonymous
Shared Memory Algorithms

Michel Raynal1,2 and Gadi Taubenfeld3(B)

1 Univ Rennes IRISA, Rennes, France
2 Department of Computing, Polytechnic University, Kowloon, Hong Kong

3 The Interdisciplinary Center, 46150 Herzliya, Israel
tgadi@idc.ac.il

Abstract. Process anonymity has been studied for a long time. Memory
anonymity is more recent. In an anonymous memory system, there is no
a priori agreement among the processes on the names of the shared reg-
isters they access. This article introduces the fully anonymous model,
namely a model in which both the processes and the memory are anony-
mous. It is shown that fundamental problems such as mutual exclu-
sion, consensus, and its weak version called set agreement, can be solved
despite full anonymity, the first in a failure-free system, the others in the
presence of any number of process crashes.

1 Introduction

Process Anonymity. The notion of process anonymity has been studied for a long
time from an algorithmic and computability point of view, both in message-
passing systems and shared memory systems. Process anonymity means that
processes have no identity, have the same code and the same initialization of their
local variables (otherwise they could be distinguished). We assume a system that
is composed of a finite set of n ≥ 2 asynchronous, anonymous processes denoted
p1, . . . , pn. Each process knows the number of processes and the number of
registers. The subscript i in pi is only a notational convenience, which is not
known by the processes.

Memory Anonymity. The notion of memory anonymity has been recently intro-
duced in [8]. Let us consider a shared memory R made up of m atomic registers.
Such a memory can be seen as an array with m entries, namely R[1 . . . m]. In
a non-anonymous memory system, for each index x, the name R[x] denotes the
same register for each process that accesses the address R[x]. Hence in a non-
anonymous memory, there is an a priori agreement on the names of the shared
registers.

The situation is different in an anonymous memory, where there is no a
priori agreement on the names of the registers. Moreover, all the registers of an
anonymous memory are assumed to be initialized to the same value (otherwise,
their initial values could provide information allowing processes to distinguish
c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 301–306, 2019.
https://doi.org/10.1007/978-3-030-34992-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_24

302 M. Raynal and G. Taubenfeld

them). The interested reader will find an introductory survey on both process
and memory anonymity in [4].

Anonymous Shared Memory. The shared memory is made up of m ≥ 1 atomic
anonymous registers denoted R[1 . . . m]. Hence, all the registers are anonymous.
As already indicated, due to its anonymity, R[x] does not necessarily indicate
the same object for different processes. More precisely, a memory-anonymous
system is such that:

– For each process pi an adversary is defining a permutation fi() over
{1, 2, · · · ,m}, such that when pi uses the address R[x], it actually accesses
R[fi(x)],

– No process knows the permutations, and
– All the registers are initialized to the same default value denoted ⊥.

Table 1. Illustration of an anonymous memory model

Identifiers for an
external observer

Local identifiers
for process pi

Local identifiers
for process pj

R[1] Ri[2] Rj [3]

R[2] Ri[3] Rj [1]

R[3] Ri[1] Rj [2]

Permutation fi() : [2, 3, 1] fj() : [3, 1, 2]

An example is presented in Table 1. To make apparent the fact that R[x] can
have a different meaning for different processes, we write Ri[x] when pi invokes
R[x].

Anonymous Register Models. We consider two types of anonymous register mod-
els.

– RW (read/write) model. In this model all, the registers can be atomically
read or written by any process.

– RMW (read/modify/write) model. In this model, each register can be atom-
ically read, written or accessed by an operation that atomically reads the
register and (according to the value read) possibly modifies it.

Practical Motivation. It was recently shown that epigenetic cell modifications
can be modeled by anonymous entities cooperating through anonymous com-
munication media [6]. Hence, fully anonymous distributed systems could inspire
bio-informatics (and be inspired by it) [2].

This article considers the following problems.

Brief Announcement: Fully Anonymous Shared Memory Algorithms 303

Mutual Exclusion. Mutual exclusion is the oldest and one of the most important
synchronization problems. Formalized by E.W. Dijkstra in the mid-sixties, it
consists in building what is called a lock (or mutex) object, defined by two
operations, denoted acquire() and release(). For a formal definition, we refer the
reader to [3,7].

Consensus. The consensus problem consists in building a one-shot operation,
denoted propose(), which takes an input parameter (called proposed value) and
returns a result (called decided value). A process may invoke the operation at
most once. The meaning of this operation is defined as follows: (1) Validity: A
decided value must be a proposed value; and (2) Agreement: No two processes
decide on different values.

The problem must also satisfy one of the following progress conditions: (1)
Wait-freedom: If a process does not crash, it must decide; or the weaker (2)
Obstruction-freedom: If a process does not crash, and executes alone during a
long enough period, it must decide. While wait-free consensus can be solved
from registers in a non-anonymous RMW system, it cannot be solved in a non-
anonymous RW system. It is possible to solve (the weaker) obstruction-free con-
sensus in non-anonymous RW system.

Set Agreement. Set agreement captures a weaker form of consensus in which the
agreement property is weakened as follows: At most n − 1 different values are
decided upon. That is, in any given run, the size of the set of the decision values
is at most n − 1.

The set agreement problem as defined above is also called the (n − 1)-set
agreement problem. While much weaker than consensus, as consensus, wait-free
set agreement cannot be solved in non-anonymous RW memory systems.

Content of the Paper. Table 2 describes the technical content of the paper.
As an example, the second line states that Sect. 3 presents a consensus algo-
rithm for an anonymous RMW system for n > 1 and m ≥ 1. As far as
the mutex algorithm is concerned, it is also shown that m ∈ M(n), where
M(n) = {m such that ∀ � : 1 < � ≤ n: gcd(�,m) = 1} is a necessary and
sufficient condition on the size of the memory.

Table 2. Results and the structure of the paper

Problem SectionTolerate
failures

Register
type

Progress condition Number of
processes n

Number of
registers m

Mutual exclusion2 No RMW Deadlock-freedom n > 1 m ∈ M(n)

Consensus 3 Yes RMW Wait-freedom n > 1 m ≥ 1

Set agreement 4 Yes RW Obstruction-freedomn > 1 m ≥ 3

Consensus 5 Yes RW Obstruction-freedomn = 2 m ≥ 3

304 M. Raynal and G. Taubenfeld

2 Fully Anonymous Mutex Using RMW Registers

The mutual exclusion problem can be solved for non-anonymous processes in
both the anonymous RW register model and the anonymous RMW register
model [1,8]. However, there is no mutual exclusion algorithm when the pro-
cesses are anonymous, even when using non-anonymous RW registers. To see
that, simply consider an execution in which the anonymous processes run in
lock-steps (i.e., one after the other) and access the RW registers in the same
order. In such a run it is not possible to break symmetry as the local states of
the processes will be exactly the same after each such lock-step.

Let us recall that two integers x and y are said to be relatively prime if their
greatest common divisor is 1, notice that a number is not relatively prime to
itself. Let M(n) = {m such that ∀� : 1 < � ≤ n : gcd(�,m) = 1}.

Theorem 1. There is a deadlock-free mutual exclusion algorithm for n ≥ 2
anonymous processes using m ≥ 1 anonymous RMW registers if and only if
m ∈ M(n).

The proof of the if direction, follows from the very existence of the deadlock-
free mutual exclusion algorithm for n anonymous processes using m anonymous
RMW registers, where m ∈ M(n), presented in the full version of the paper
[5]. The proof of only if direction, is a consequence of the lower bound result
from [1], which states that m ∈ M(n) is a necessary and sufficient condition for
symmetric deadlock-free mutual exclusion for n non-anonymous processes and
m anonymous RMW registers.

3 Fully Anonymous Wait-Free Consensus
Using RMW Registers

We describe below a straightforward wait-free consensus algorithm for any num-
ber m ≥ 1 of anonymous registers. This algorithm assumes that the set of pro-
posed values is totally ordered. Each process tries to write the value it proposes
into each anonymous register. Assuming that at least one process that does not
crash invokes propose(), there is a finite time after which (whatever the con-
currency/failure pattern is) each anonymous register contains a proposed value.
Then, using the same deterministic rule (for example by choosing the maximum
value) the processes decide on the same value.

4 Fully Anonymous Obstruction-Free Set Agreement
Using RW Registers

We describe below an obstruction-free set agreement algorithm for n ≥ 2 anony-
mous processes using m ≥ 3 anonymous RW registers. Each anonymous RW
register can store the preference of a process. Each participating process scans
the m RW registers trying to write its preference into each one of the m registers.
Before each write, the process scans the shared array and operates as follows:

Brief Announcement: Fully Anonymous Shared Memory Algorithms 305

– If its preference appears in all the m registers, it reads the array again, and
if, for the second time, its preference appears in all the m registers, it decides
on its preference and terminates.

– Otherwise, if some preference appears in more than half of the registers, the
process adopts this preference as its new preference.

Afterward, the process finds some arbitrary entry in the shared array that does
not contain its current preference and writes its current preference into that
entry. Once the process finishes writing it repeats the above steps. The exact
code and a detailed subtle proof of the algorithm can be found in the full version
of this paper [5].

5 Fully Anonymous 2-Process Obstruction-Free
Consensus Using RW Registers

As the reader can easily check, instantiating of the obstruction-free set agreement
algorithm from the previous section with n = 2 provides us with 2-process
obstruction-free consensus built using m ≥ 3 RW registers.

A Conjecture. Let us consider the set agreement algorithm from the previous
section, in which it is assumed that n ≥ 2. We conjecture that when the require-
ment m ≥ 3 in this algorithm is strengthened to m ≥ 2n − 1 the resulting
algorithm solves obstruction-free consensus for n processes.

Finally, it was recently proved in [9] that there is no obstruction-free con-
sensus algorithm for two non-anonymous processes using only anonymous bits.
Thus, as was shown in [9], anonymous bits are strictly weaker than anonymous
(and hence also non-anonymous) multi-valued registers.

6 Discussion

This article has several contributions. The first is the introduction of the notion
of fully anonymous shared memory systems, namely, systems where the processes
are anonymous and there is no global agreement on the names of the shared reg-
isters. The article has then addressed the design of mutual exclusion, consensus
and set agreement algorithms in specific contexts where the anonymous regis-
ters are read/write (RW) registers or more powerful read/modify/write (RMW)
registers. It has been shown that, for fully anonymous mutual exclusion using
RMW registers, the condition on the number m of registers, namely m ∈ M(n),
is both necessary and sufficient, extending thereby a result of [1] (which was for
non-anonymous processes and anonymous registers).
A full version of this paper is available at [5].

Acknowledgments. M. Raynal was partially supported by the French ANR project
DESCARTES (16-CE40-0023-03) devoted to layered and modular structures in dis-
tributed computing.

306 M. Raynal and G. Taubenfeld

References

1. Aghazadeh, Z., Imbs, D., Raynal, M., Taubenfeld, G., Woelfel, Ph.: Optimal
memory-anonymous symmetric deadlock-free mutual exclusion. In: Proceedings of
38th ACM Symposium on Principles of Distributed Computing, PODC 2019, 10 p.
ACM Press (2019)

2. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and
computational systems. Commun. ACM 58(1), 94–102 (2015)

3. Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations, 515
p. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32027-9. ISBN
978-3-642-32026-2

4. Raynal, M., Cao, J.: Anonymity in distributed read/write systems: an introductory
survey. In: Podelski, A., Täıani, F. (eds.) NETYS 2018. LNCS, vol. 11028, pp. 122–
140. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05529-5 9

5. Raynal M., Taubenfeld G.: Fully anonymous shared memory algorithms, 16 p.
ArXiv-1909.05576 (2019)

6. Rashid S., Taubenfeld G., Bar-Joseph Z.: Genome wide epigenetic modifications as
a shared memory consensus problem. In: 6th Workshop on Biological Distributed
Algorithms, BDA 2018, London (2018)

7. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming. Pearson
Education/Prentice Hall, London/Upper Saddle River, 423 p. (2006). ISBN 0-131-
97259-6

8. Taubenfeld, G.: Coordination without prior agreement. In: Proceedings of 36th
ACM Symposium on Principles of Distributed Computing, PODC 2017, pp. 325–
334. ACM Press (2017)

9. Taubenfeld, G.: Set agreement power is not a precise characterization for obliv-
ious deterministic anonymous objects. In: Censor-Hillel, K., Flammini, M. (eds.)
SIROCCO 2019. LNCS, vol. 11639, pp. 293–308. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24922-9 20

https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-030-05529-5_9
https://doi.org/10.1007/978-3-030-24922-9_20
https://doi.org/10.1007/978-3-030-24922-9_20

A Topological View of Partitioning
Arguments: Reducing k-Set Agreement

to Consensus

Hugo Rincon Galeana1 , Kyrill Winkler2 , Ulrich Schmid2(B) ,
and Sergio Rajsbaum1

1 Instituto de Matemáticas, UNAM, CDMX, 04510 Mexico, D.F., Mexico
2 TU Wien, ECS Group (E191-02), Treitlstrasse 1–3, 1040 Vienna, Austria

s@ecs.tuwien.ac.at

Abstract. The objective of this paper is to understand the effect of
partitioning in distributed computing models. In spite of being quite
similar agreement problems, (deterministic) consensus (1-set agreement)
and k-set agreement (for k > 1) require surprisingly different techniques
for proving impossibilities. There is a widely applicable generic theorem,
however, which allows to reduce the impossibility of k-set agreement
to consensus in message-passing models that allow some partitioning.
In this paper, we provide the topological representation of this theo-
rem, which reveals how partitioning is reflected in the protocol com-
plex: It turns out that this leads to a “color splitting” of the algorithm’s
decision map, which separates the sub-complexes representing the par-
titioned processes. We also harvest a general advantage of topological
results, which allowed us to carry over our findings to shared memory
systems. We first demonstrate the utility of our reduction theorem by
proving that d-set agreement cannot be solved in the d-solo asynchronous
read-write model even when a single process may crash, not just in the
wait-free case. Moreover, our new insights into the structure of protocol
complexes gave us the idea for a simple proof of the fact that no par-
titioning argument can provide a valid impossibility proof for wait-free
set agreement in the iterated immediate snapshot model: For any set of
partition-compatible runs (which do not contain runs where all processes
always have a complete view), we provide a way to construct a simple
algorithm that solves set agreement.

Keywords: Algebraic topology · Consensus · Set agreement ·
Partitioning arguments · Shared memory

1 Introduction

Partitions, i.e., sets of processes that cannot always communicate with each
other, are a fundamental combinatorial notion in distributed computability

This work has been supported by the PAPIIT-UNAM grant IN109917 and the Austrian
Science Fund (FWF) projects RiSE/SHiNE (S11405) and ADynNet (P28182).

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 307–322, 2019.
https://doi.org/10.1007/978-3-030-34992-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_25&domain=pdf
http://orcid.org/0000-0002-8152-1275
http://orcid.org/0000-0002-7310-1748
http://orcid.org/0000-0001-9831-8583
http://orcid.org/0000-0002-0009-5287
https://doi.org/10.1007/978-3-030-34992-9_25

308 H. Rincon Galeana et al.

[13,16]. Studying the effect of partitioning on the (im)possibility of agreement
problems has been a focal point at least since the realization that asynchronous
consensus is solvable with a minority of initially crashed processes [15] and the
observation that a shared register cannot be implemented on top of a message
passing system with a majority of faulty processes [5]. Since then, partitioning
arguments have been applied successfully to many distributed computing prob-
lems [14]. Essentially, these arguments exploit the fact that one cannot guarantee
agreement among processes of a distributed system that never, neither directly
nor indirectly, communicate with each other.

The objective of this paper is to understand the computational power of
models where partitioning can occur. For this purpose, we focus on the k-set
agreement problem and its special cases consensus and set agreement. In these
problems, every process owns a local input value taken from a finite domain V (to
rule out trivial solutions, we assume that |V| ≥ k), and must irrevocably assign
a local output value (also called decision value) that must be the input value of
some process and satisfy certain properties. For consensus, no two processes may
decide on, i.e., assign, different values. For set agreement among n processes, the
number of different decision values must be at most n − 1 system-wide. The
general case is k-set agreement, which requires that the number of different
decision values is at most k. We will focus solely on deterministic algorithms.

Due to the landmark FLP impossibility result [15], which employs (now clas-
sic) bivalence proofs, it is well-known that consensus is impossible to solve in
asynchronous systems if a single process may crash. The corresponding result
for general k-set agreement is the impossibility of solving this problem in asyn-
chronous systems where f ≥ k processes may crash. Surprisingly, establishing
the latter result requires quite involved techniques based on algebraic topology
resp. a variant of Sperner’s lemma [11,20,23], which have not been matched by
combinatorial proofs so far in their full generality (see the related work for some
exceptions for special cases).

Despite this apparent “proof-incompatibility” of consensus and k-set agree-
ment for k > 1, Biely, Robinson, and Schmid showed in [9] that, in message-
passing models that allow partitioning, impossibility proofs for k-set agreement
can be reduced to impossibility proofs for consensus: They provided a theorem
(called BRS theorem in the sequel), which uses a partitioning argument as a
means for reduction and is generic w.r.t. the underlying system model: Essen-
tially, if failures and asynchrony allow for runs where the system partitions into
k parts, the processes must decide on their own in every partition. By choosing
distinct proposal values, solving k-set agreement in such runs requires solving
consensus in every partition. Consequently, the impossibility of k-set agreement
can be proved by showing that it is impossible to reach consensus in at least
one of these partitions. Note that the BRS theorem actually works for fairly
weak forms of partitioning, where some communication between partitions is
still possible.

In [9], the authors applied the BRS theorem to various message-passing mod-
els, including purely asynchronous systems with crash failures, synchronous sys-

A Topological Reduction of k-Set Agreement to Consensus 309

tems with omission failures, dynamic networks with omission failures, and even
asynchronous systems with failure detectors.
Main Contributions: In order to understand the impact of partitioning in
distributed computing models, we present a topological version/interpretation
of the BRS theorem and, on the positive side, show that it can even be applied
in the shared memory setting. On the negative side, we prove that one cannot
show the impossibility of set agreement in the iterated immediate snapshot model
based on a partitioning argument. In more detail:

(1) We provide a topological variant of a slightly generalized version of the BRS
theorem and its proof for message-passing systems, which reveals that par-
titioning is reflected in the protocol complex by a “color splitting” of the
algorithm’s decision map that separates the sub-complexes representing the
partitioned processes. This insight into the structure of the protocol com-
plexes of partitionable models is of independent interest, as the second major
contribution of our paper reveals.

(2) We exploit the natural genericity of topological results to translate the BRS
theorem to the shared memory model. First, we apply it to d-set agreement in
the d-solo asynchronous read-write model, where up to d processes may run
solo: We provide a simple and illustrative proof that this problem is not just
wait-free impossible, as has been shown in [18] already, but even impossible
if just a single process may crash. Second, we used our new insights obtained
in (1) to prove that one cannot hope to show the impossibility of wait-free
set agreement in the iterated immediate snapshot model using any form
of partitioning arguments: For any set of partition-compatible runs (which
do not contain runs where all processes always have a complete view), we
provide a way to construct a simple algorithm that solves set agreement.

In a nutshell, the results of our paper reveal how the partitioning argument
implemented by means of the BRS theorem actually works: It is the “color-split”
structure of the resulting protocol complex, which effectively allows to avoid a
complex global topological analysis and to perform a simple reduction to the
solvability of consensus in some partition instead. In the case of set agreement,
the existence of any such splitting already guarantees a solution algorithm. We
conjecture that we will be able to come up with similar statements also for
other problems, in particular, for general k-set agreement. It is important to
note, though, that our results apply only to systems where some partitioning
can occur. They cannot hence replace results like [11,20,23] in general.

Related Work: We are not aware of much research that considers non-trivial
reductions of k-set agreement to consensus. However, quite some papers, like
[21], prove the impossibility of k-set agreement by partitioning the system into
more than k sets of processes that decide independently.

For message-passing systems, besides [9], Biely et al. have employed reduc-
tion already in [8] to show that consensus is impossible in certain partially syn-
chronous models, and to prove the tightness of the generalized loneliness failure
detector L(k) for k-set agreement. Similar reduction arguments were employed in
[12] and, in particular, in [10], where certain k-set agreement runs with disjoint

310 H. Rincon Galeana et al.

participants are pasted together in order to prove the necessity of the generalized
quorum failure detector Σk for solving k-set agreement. In [4], a reduction to
asynchronous set agreement is used to derive a lower bound on the minimum
size of a “synchronous window” that is necessary for k-set agreement.

For shared memory systems, [1] shows the wait-free equivalence of k-set agree-
ment and k-simultaneous consensus using read/write atomic registers. The latter
problem allows processes to participate, with the same input, in k independent
consensus instances that run simultaneously, but requires a decision only in one
of those. Whereas this can be seen as an explicit form of partitioning, it is obvi-
ously much less general than the partitioning allowed by the BRS theorem.

Regarding different proof techniques for consensus and k-set agreement,
the only alternatives to the celebrated impossibility proofs for k-set agreement
[11,20,23] known to us, which are all based on algebraic topology resp. dif-
ferent proofs of Sperner’s lemma, are the combinatorial impossibility proof for
k-set agreement in wait-free environments provided in [6] and the counting-based
impossibility of general wait-free colored and colorless tasks in [7]. The latter two
results do not generalize to k = f < n − 1 crash failures, however.

In [2,3], Alistarh et al. described an approach for proving general impossibil-
ities for wait-free tasks in the iterated immediate snapshot model by introducing
extension-based proofs. The idea is to consider a game between a prover (con-
structing a schedule) and the protocol (specified by its decision map Δ, unknown
to the prover). By constructing a protocol on the fly, via an adversarial strategy
w.r.t. the prover, the authors could prove that the wait-free k-set agreement
impossibility cannot be established by an extension-based proof. Part (2) of our
work differs from [2] in that we restrict our attention to partitioning arguments,
i.e., do not aim at general combinatorial proofs (not to speak of bivalence argu-
ments) as does the latter. This restriction greatly reduces the effort needed to
show that partitioning arguments are not sufficient for showing the wait-free
set agreement impossibility: Rather than adversarially constructing a protocol
following the prover’s strategy, the construction of our set agreement protocol
just instantiates a simple generic algorithm and is hence relatively easy.

Paper Organization: After a short introduction to topological modeling of dis-
tributed systems in Sect. 2, we translate the definitions and concepts underlying
the original BRS theorem and prove1 some basic lemmas in Sect. 3. In Sect. 4, we
develop our topological version of the BRS theorem, in Sect. 5, we prove that set
agreement can be solved for any set of partition-compatible runs. We conclude
in Sect. 6 with some open questions.

2 Topological Modeling of Distributed Systems

We now briefly describe the basics of modeling distributed systems using alge-
braic topology, see e.g. [17] for a comprehensive introduction. Whereas this pow-
erful approach became particularly popular for asynchronous shared memory
systems [20], it is well-suited for message passing systems as well [19].
1 Lacking space forced us to relegate all proofs into the full version [22] of our paper.

A Topological Reduction of k-Set Agreement to Consensus 311

We consider a set Π = {p1, . . . , pn} of processes, each with its own unique
identifier, which may suffer from crash or omission failures, i.e., may also lose
messages. Except in Sect. 5, where we use the standard iterated snapshot asyn-
chronous shared memory model, we will primarily deal with message passing
protocols, where each process pi ∈ Π has an individual message buffer mj for
received messages from every potential sender process pj ∈ Π in its local state
(pi,m1, . . . ,mn), where (m1, . . . ,mn) is called pi’s view. Note that mi is assumed
to contain pi’s local variables. Valid messages are taken from a possibly infinite
set M . Typically, we will consider deterministic full information protocols, where
processes send messages that consist of the entire history of local states. We rep-
resent “p2 receives message m ∈ M from p1” by appending m to the message
buffer of p2 that corresponds to p1. We will assume that the initial input is
given as a message from a process pi to itself, and that the decision value is also
appended to the message buffer reserved for itself. A global state of the system
is a vector of local states, one for each pi ∈ Π.

We define a run of a given protocol as a valid infinite sequence of global
states, in which eventually each non-crashing process reaches a final decision
state, i.e., a state where it has decided. Note carefully that, since we consider
full-history protocols, the final decision state of a process contains its view of the
entire run. Clearly, the decision of the process is determined by its local view at
the first time it reached a decision state. We call such local views minimal final
views. Note that we will assume that processes may still send messages after they
have decided; messages that reach a process after a final decision state do not
change the process’ decision, however. Observe that if run α and run β have the
same minimal final views for each process, then they have the same decisions.
Therefore, we can restrict our attention to the equivalence classes of runs where
two runs are equivalent if all processes have the same minimal final view.

We define a task TΠ = 〈I,O,Δ〉 as a tuple, where I and O are chromatic
simplicial complexes, which model the valid inputs and outputs for a set Π
of processes, and Δ : I → 2O is a valid decision function that maps valid
input configurations to sets of valid output configurations. Both complexes are
chromatic, with coloring χ (formally, a simplicial map from the complex to a
simplex of matching dimension, i.e., one that maps simplices to simplices) that
attaches a unique label (in fact, a process id from Π) to every vertex such that
no two neighbors in any 1-simplex have the same label. Note that we will usually
write T instead of TΠ for brevity.

More formally, the input complex I = 〈V (I), F (I)〉 is given by its
set of vertices V (I) and its set of faces F (I): V (I) = {(pi, vi) | pi ∈
Π, vi ∈ Vi} where Vi is the set of valid inputs for pi, and F (I) = {σ ⊆
V (I) | σ is part of a valid input cfg.}.

The output complex O = 〈V (O), F (O)〉 is given by its set of vertices V (O)
and its set of faces F (O): V (O) = {(pi, vi) | pi ∈ Π, vi ∈ V̂i} where V̂i is the set
of valid outputs for pi, F (O) = {σ ⊆ V (O) | σ is part of a valid output cfg.}.

The decision function Δ : F (I) → 2F (O) is a function with the property that,
for every σ ⊆ ρ and ρ′ ∈ Δ(ρ), there is some σ′ ⊆ ρ′ with σ′ ∈ Δ(σ). Moreover,

312 H. Rincon Galeana et al.

Δ is a chromatic map, i.e., χ(Δ(σ)) ⊆ χ(σ), where χ(σ) gives the set of colors
of the vertices in σ and χ(S) =

⋃
σ∈S χ(σ) for every set S of simplices.

We define the protocol complex PM = 〈V (PM), F (PM)〉 for a given protocol
P and model M as V (PM) = {(pi, vi) | pi ∈ Π, vi ∈ V i}, where V i is the set of
valid minimal final views for pi in protocol P under a given model M. The set of
faces is F (PM) = {σ ⊆ V (PM)}, where σ corresponds to a valid configuration
of minimal final views of a run. The chromatic function χ : V (PM) → Π is
given by the id of each process, that is χ(pi, vi) = pi. The decision map for a
protocol μ : V (PM) → 2V (O) is a chromatic vertex map that maps final views
of a process to valid outputs for a task.

Since the initial input values are self-messages in our model, each run is
produced by a unique configuration of initial input values. Therefore, for each
task T , there exists a chromatic simplicial map iT : F (PM) → F (I) that maps
simplices to simplices of matching dimension, such that iT (σ) is the initial input
configuration for each process in σ. A protocol P solves a task T in model M
if and only if the decision map for the protocol is a simplicial map that carries
Δ, i.e., ensures μ(σ) ⊆ Δ(iT (σ)). Note that, since the decision map μ needs
to be chromatic, it is determined by the mapping values at the facets, i.e., the
maximal faces. Therefore, the facet decision map μ̂ : F̂ (PM) → 2V (O), which is
just the restriction of μ to the facets F̂ (PM) in F (PM), fully determines μ.

3 BRS Basic Definitions

In this section, we recast the foundations of the BRS theorem introduced in
[9] in our topological framework. Most of the concepts introduced here allow to
relate the runs of different algorithms in different models. After all, our purpose
is to reduce a run of a k-set agreement algorithm A in some model M to a run
of a consensus algorithm B in some model M′, with a different set of processes
and possibly different synchrony assumptions and failure models. The restricted
model only requires that algorithm A is computationally compatible with M′,
i.e, that A can be executed in M′. Since it is primarily the number of processes
in M′ and M′ that matter here, we will follow [9]and sloppyly write M = 〈Π〉
and M′ = 〈D〉 in the sequel. Note carefully, however, that the runs in M′ do
not necessarily correspond to runs in M and vice versa, due to |〈D〉| �= |〈Π〉|
and the usually different synchrony assumptions and failure models.

A pivotal concept here is a restricted algorithm.

Definition 1 (Restricted algorithm). Let A be an algorithm for a model
M = 〈Π〉 that consists of the set of processes Π, and D ⊆ Π a nonempty set
of processes. Consider a restricted model M′ = 〈D〉. To restrict algorithm A for
model M to an algorithm for model M′, we just drop all messages sent from D
to the outside. We call the restricted algorithm A|D = B.

Restricted algorithms induce protocol complexes with specific properties.
However, even if protocol B corresponds to a restriction of A to D, since message
buffers for processes not in D are not present in B (the protocol complex of B),

A Topological Reduction of k-Set Agreement to Consensus 313

B is strictly different from any protocol complex that includes Π in its set of
processes. Therefore, we need to define a way to extend the views in B in a way
that could possibly match a protocol complex with processes Π executed in M.
The natural way of doing this is by adding empty message buffers denoted by ⊥
for any process not in D.

Definition 2 (Protocol complexes of restricted algorithms). Given an
algorithm A for M and a restricted algorithm B for M′, let B be the proto-
col complex for B executed in M′. We define the extended complex of B with
respect to Π, AD, as follows: V (AD) = {(p,w,⊥, . . . ,⊥) | (p,w) ∈ V (B)} and
⊥ represents empty message buffers for processes in Π\D, F (AD) = {σ ⊆
V (AD) | ∃σ̂ ∈ F (B), (p,w,⊥, . . . ,⊥) ∈ σ ⇒ (p,w) ∈ σ̂}.

The following Lemma 1 shows that AD is isomorphic to B, i.e., AD is an
“extended view copy” of B. This isomorphic copy AD of the protocol complex
B will turn out to be essential, since it corresponds to a subcomplex of A under
certain conditions (Definition 4). Note carefully that, per se, this is not neces-
sarily the case as, e.g., the synchrony model for M may forbid empty message
buffers.

Lemma 1 (Isomorphic complex). Let AD and B be as defined above. Then
there exists a chromatic bijective simplicial map μ : AD → B.

The following definition captures the notion of indistinguishability of runs:

Definition 3 (Indistinguishability of runs). Runs α and β are indistin-
guishable for a process p if p has the same sequence of states in α and β until p

decides. For a non-empty set D of processes, we say that α
D∼ β if α is indistin-

guishable from β until decision for all p ∈ D.

Note that since p has the same sequence of states until decision for runs α and
β, then the minimal final view for p (that contains the full history) is the same
for both runs α and β. This means that the simplices σα and σβ that correspond
to runs α and β share vertex (p, sw,m1, . . . ,mk), where (sw,m1, . . . ,mk) corre-
sponds to the minimal final view of p at both runs α and β. This translates nat-
urally to D-skel(σα) = D-skel(σβ), where D-skel(σα) = {(p,w) ∈ σα : p ∈ D}.

Definition 4 (Compatibility of Runs). Let R and R′ be sets of runs, possi-
bly from system models with different synchrony assumptions and failure models.
Runs R′ are compatible with runs R for processes in D, denoted by R′ D R,
if ∀α ∈ R′∃β ∈ R : a

D∼ β.

If R and R′ are sets of runs for the same protocol A, and in the same
model M, then both induce subcomplexes of a common protocol complex A.
We will call those subcomplexes R and R′ respectively. We define D-skel(R′)
as the subcomplex of R′ where all vertices correspond to processes of D with
views from R′. Given these definitions, it is clear that R′ D R if and only if
D-skel(R′) ⊆ D-skel(R). Note that the applicability of Definition 3 is limited, as

314 H. Rincon Galeana et al.

it only works for sets of runs from the same protocol in the same model. However,
we will give a more general definition below, which provides some correspondence
between runs of different protocols in different models: Herein, M and M′ only
need to be computationally compatible, but may otherwise differ in the number
of processes, synchrony assumptions, failure models, etc.

Definition 5 (D-View embedding). Let A and B be protocols with a non-
empty set of common processes S, and D ⊆ S with s = |S|, and let A and B be the
protocol complexes corresponding to A’s runs in model M (with s + r processes,
r ≥ 0) and B’s runs in model M′ (with s + k processes, k ≥ 0), respectively.
Consider sets of runs R and R′ from protocol A in model M and B in model M′

respectively, and the corresponding subcomplexes R ⊆ A and R′ ⊆ B. We say
that R′ is D-view embedded in R, if for every (p,ws,m1, . . . ,mk) ∈ D-skel(R′)
with ws denoting the message buffers for the processes in S the following holds
for every 1 ≤ i ≤ k: (i) pi /∈ S ⇒ mi = ⊥; (ii) There exists (p,ws,m

′
1, . . . m

′
r) ∈

V (R) such that

m′
j =

{
mj if pj ∈ S,

⊥ if pj /∈ S;

(iii) μ : D-skel(R′) → R defined by (p,ws,m1, . . . ,mk) �→ (p,ws,m
′
1, . . . ,m

′
r) is

a simplicial map. Note that μ is an embedding of D-skel(R′), i.e. an injective
simplicial map.

If both sets of runs come from the same protocol (B = A) and the same
synchrony model (M = M′), then the embedding is given by the inclusion
ι : D-skel(R′) → R with ι(p,w) = (p,w). This matches with the previous obser-
vation that R′ D R if and only if D-skel(R′) ⊆ D-skel(R) in this case. More
generally, we can formulate compatibility of runs in terms of D-view embeddings.

Lemma 2 (Compatible runs are D-view embedded). Let R and R′ be
sets of runs from algorithms A and B in model M and M′ respectively. Let S
be the set of common processes for R and R′ and D ⊆ S. Then R′ D R ⇔ R′
is D-view embedded in R.

The following Definition 6 is crucial for expressing the consequences of par-
titioning in our topological setting. Essentially, it says that it is reflected by a
splitting of the decision map.

Definition 6 (Decision map split). Let A be the protocol complex for a given
algorithm A on a model M = 〈Π〉 and A′ a non-empty subcomplex of A. Let
D ⊆ Π be a set of processes in M, D = Π\D and B = A|D the restriction of
algorithm A to D in a given model M′ = 〈D〉 with possibly different synchrony
assumptions and failure models, resulting in protocol complex B. We say that D
splits the decision map of A at A′ with respect to M′ if B is D-view embedded
in A′ and

μ|A′(p,w) = [μD ∗ μ|D](p,w) :=

{
μD(p,w) if p ∈ D,

μ|D(p,w) if p ∈ D.

A Topological Reduction of k-Set Agreement to Consensus 315

Herein, μ|A′ is the decision map μ of A restricted to A′, μD is the decision map
for restricted algorithm B at the extended complex AD, and μ|D is the decision
map μ restricted to D-skel(A′).

An illustration of decision map splitting for a fixed D = {r, q}, D̄ = {p}
can be found in Fig. 1b. Note that the subcomplex for D (at the bottom) is the
full 1-round subdivided complex for 2 processes, whereas the subcomplex for D̄
represents a process that only hears from itself. Figure 1a shows the analogous
splitting in the full one-round complex.

Fig. 1. 1-round protocol complex of d-solo runs for n = 3, d = 2: (a) full complex, (b)
zoom-in for D = {r, q}, D̄ = {p}. Nodes represent local process states (views), with the
color encoding the respective process and with the 3-tuple encoding (mp,mq,mr).

The following Lemma 3 shows that decision map splitting is equivalent to the
extended complex of the restricted algorithm being equal to the corresponding
D-skeleton:

Lemma 3 (Decision map splitting condition). Let A be the protocol com-
plex for a given algorithm A in a model M = 〈Π〉 and A′ a non-empty sub-
complex of A. Let D ⊆ Π be a set of processes in M, B = A|D a restriction
of algorithm A to D in a model M′ with possibly different synchrony assump-
tions and failure assumptions, AD the extended complex of B with respect to Π
and μ be the decision map for A, then D splits μ at A′ with respect to M′ ⇔
AD = D-skel(A′).

We will show in the next section that decision map splitting is equivalent
to finding a partition of Π into D,D and a set of runs where D decides inde-
pendently from D. However, notice that D could use information from D to
decide.

316 H. Rincon Galeana et al.

4 Topological BRS Theorem

Since we have already established an equivalence between topological conditions
and run compatibility, we can proceed to state a slightly more general version of
the BRS theorem from a topological perspective. The BRS theorem requires that
conditions (A)–(D), as stated in Theorem 1 below, hold, in order to guarantee the
k-set agreement impossibility. In the following lemmas, we will state topological
properties that are slightly weaker than the original conditions (A)–(D).

Let M = 〈Π〉 be a model and A an algorithm that runs in M. Assume that
each p ∈ Π starts with an input value taken from a set of at least k different
values.2 Also assume that there is a distinguished set D ⊆ Π, and a partition of
Π\D = D given by D1, . . . , Dk−1. Let {v1, . . . , vk−1} be a fixed set of different
values. Let MA denote the runs of algorithm A in model M.

Theorem 1 (Original BRS theorem [9]). We consider the following runs
of algorithm A in model M and a restricted model M′ = 〈D〉:

dec-D Any pj ∈ D receives no messages from any process in D until every
process in D has decided.
dec-D For every Di, there is some q ∈ Di that decides vi, which was proposed
by some p ∈ D.

R(D) denotes the set of runs from M where dec-D holds, R(D,D) denotes
the set of runs from M where both dec-D and dec-D hold. If all of the following
conditions (A) R(D) is nonempty, (B) R(D) D R(D,D), (C) Consensus is not
solvable in M′, (D) M′

A|D D MA, hold, then A does not solve k-set agreement.

We generalize the statement of the BRS theorem by slightly relaxing condi-
tions (A)–(D):

Lemma 4 (Condition equivalence). Let M, M′, A, D, D and Di be as
defined for the BRS theorem. Then, (A)-(D) imply (A’) R(D) is nonempty, (B’)
Consensus is not solvable in M′, (C’) M′

A|D D R(D,D).

The following Lemma 5 is the key technical lemma for the topological equiv-
alence of a slightly stronger version of the BRS theorem established in Theorem
2 below.

Lemma 5 (BRS equivalence). Let M, M′, A, D, D and Di be as defined
for the BRS theorem. Then (A’)–(C’) are equivalent to the following :

(1) There exists a non empty subcomplex A′ of A such that D-skel(A′) = AD

(the extended complex for A|D with respect to M).
(2) For each Di, the decision map μ|A′ maps every view from Di into a decision

configuration that includes vi as a decision value.
2 Note that the original BRS theorem actually assumed that every process starts with

a unique value.

A Topological Reduction of k-Set Agreement to Consensus 317

(3) Each vi is the input value for some process p ∈ D at subcomplex A′.
(4) Consensus is not solvable in M′ = 〈D〉.

The following Theorem 2 provides the main result of this section, the topo-
logical version of a generalization of the BRS theorem.

Theorem 2 (Decision split theorem). Let M = 〈Π〉 be a model and A an
algorithm that runs in M. Let A be the protocol complex of A, M′ = 〈D〉 be a
model with D a subset of Π, and μ the decision map for A. Assume that the
following conditions hold:

(a) There exists a non-empty subcomplex A′, such that D splits μ at A′ with
respect to M′.

(b) Consensus is not solvable in M′.
(c) Processes in D = Π\D always decide at least k − 1 input values from D for

runs in A′.

Then, A does not solve k-set agreement.

We conclude this section with some corollaries of Theorem 2.

Corollary 1. Let M, M′, A, D, D and Di be as defined for the original BRS
theorem (Theorem 1). If conditions (1)–(4) given in Lemma 5 hold, then A does
not solve k-set agreement.

Corollary 2. Let M, M′, A, D, D and Di be as defined for the original BRS
theorem (Theorem 1). If conditions (A’)–(C’) in Lemma 4 hold, then A does not
solve k-set agreement.

5 Partition Compatibility in Shared Memory and Set
Agreement

In the previous sections, we developed a topological version of the BRS theorem
[9], which allows to reduce the impossibility of k-set agreement to the impossibil-
ity of consensus in a wide variety of message-passing systems. In this section, we
will transfer some of the resulting insights to the standard asynchronous shared
memory (ASM) model. We thus consider a set of processes Π = {p1, . . . , pn}
and a shared snapshot memory M = (e,m1, . . . ,mn), where e is a buffer for
global shared variables [not used in our protocols], and each mi corresponds to
the local memory portion of process pi in the snapshot memory. To simplify
our reasoning, we will assume that the protocols are full information immediate
snapshot layered protocols, which does not change the computability power of
our algorithms [17,20].

In this model, each process executes a predefined number r of asynchronous
rounds, called layers. Each layer i consists of concurrent write-read snapshots. A
write-read snapshot at layer i consists of writing the full view (the complete local
state) of a process into its corresponding part of the memory, and immediately

318 H. Rincon Galeana et al.

after writing, taking a snapshot of the views from processes at the same layer i.
The initial view of a process consists only of its input value; therefore, during the
first round, each process only writes its input value to the shared memory. Note
that each process’ current view contains the history of previous views, so we need
not be concerned with overwriting previous views in the shared memory. The
final view of a process in an r-round protocol is its view after round r, and the
protocol’s decision map μ maps the process’s final view to some output value.

Definition 7 (Views). The view for a given process p at round k is defined
as follows: If k = 0, the view consists of a tuple (p, s, v), where p is the process
id, s is the initial local state of p and v is the input value for p. If k > 0, the
view consists of a tuple (p, s, v1, . . . , vn), where each vj corresponds to either the
view of process pj at the end of round k − 1 if the write-read execution for round
k happened before or at the same time as the write-read execution for process p,
or else ⊥, which represents that p finished its write-read in round k before pj.

Note that this definition of the processes’ views is extremely useful, since it
has a nice combinatorial structure: Herlihy and Shavit showed in [20] that there
is an isomorphism between the standard chromatic subdivision of the input
complex and the protocol complex for a general 1-layer immediate snapshot
protocol. Since each layer i is only determined by the previous layers and the
scheduling of layer i, it follows by induction that a k+1 layered protocol complex
corresponds to the k + 1-th chromatic subdivision of the input complex.

We start our considerations by using the BRS theorem to show that d-set
agreement cannot be implemented in the d-solo model introduced in [18] if at
most d processes may crash. In the d-solo model for asynchronous shared mem-
ory, up to d processes may run solo, i.e., have no other process in their view in
every round of a run. The wait-free 1-solo model is equivalent to asynchronous
read-write shared memory, and any d-solo model can be simulated in the 1-solo
model. Since d-set agreement for d < n cannot be implemented in the wait-free
read-write model [20], it cannot be implemented in the wait-free d-solo model
either. The following Theorem 3 shows that this does not change if one strength-
ens the model by allowing only up to a single crash.

Theorem 3 (d-set agreement impossibility in d-solo model). In the d-
solo model, it is impossible to solve d-set agreement if just a single process may
crash, not even with a colored, i.e., non-anonymous, algorithm.

The remaining part of this section is devoted to the very different result
of translating the insights gained from the topological version of the BRS the-
orem to the way of how partitioning is reflected in protocol complexes. More
specifically, we show that set agreement can always be solved in ASM systems
with partition-compatible runs, which are runs that allow some processes to hide
their information from others. Our key insight is that partition-compatible runs
“pierce” a hole at the center of the protocol complex, which allows the border to
be retracted continuously to the center, thereby allowing to solve set agreement.

A Topological Reduction of k-Set Agreement to Consensus 319

One implication of this result is that partitioning arguments cannot be used
to prove the set-agreement impossibility in general: Assume that there is such
a proof, which necessarily relies on some set of partition-compatible runs. After
all, any partitioning argument rules out runs where every process has a complete
view of all other processes in all iterations. Since we can construct a correct set
agreement protocol for this set of runs, however, we have a contradiction.

The central idea of partitioning arguments, which exploit limited communi-
cation between sets of processes, stimulated the notion of partition-compatible
views and (sets of) runs:

Definition 8 (Partition compatibility). A view (pi, s, v1, . . . , vn) of a pro-
cess pi at the end of some round k ≥ 1 is called partition-compatible, if pi did not
get information from some pj during round k, i.e., when vj = ⊥. A set of runs
S is partition-compatible if, for every run α ∈ S, there exists some participating
process pi and a round k at the end of which pi’s view is partition-compatible.

Note that it is the presence of the complete-view run, i.e., the presence of
the complete-view simplex in the corresponding protocol complex, that makes a
set of runs not partition compatible. This, once made, obvious observation gave
us the idea for the following simple set agreement protocol:

We define the following 1-layer protocol P for the immediate snapshot model
with a set of processes Π = {p0, . . . , pn}.

Definition 9 (1-layer protocol). Let pi ∈ Π = {p0, . . . , pn} be a process and
(m0, . . . ,mn) its view. Since we are considering the iterated immediate snapshot
model, the protocol is determined just by the number of communication rounds
(1 in this case) and the decision map. We define

μ(pi,m0, . . . ,mn) =

{
mi if ⊥ = mj for some j ∈ {1, . . . , n},

m(i+1)mod n+1 otherwise.

Obviously, since μ always chooses the input value for pi unless all other input
values have been observed, μ satisfies the validity condition. In fact, we can prove
the following result:

Lemma 6 (Correctness of the 1-round protocol). Let S be a set of parti-
tion compatible runs for a 1-round immediate snapshot protocol. Then, μ solves
set agreement in S.

An immediate consequence of Lemma 6 is that a partitioning argument can-
not be used for showing n-set agreement impossibility for 1-round immediate
snapshot protocols. However, in order to show that a partitioning argument can-
not be used for a general shared memory protocol, we need to show this result
for any number of layers. In order to do so, we define a k-round set agreement
protocol for any value of k:

Definition 10 (k-layer protocol). Consider a general k-layered immediate
snapshot protocol. Let pi ∈ Π be a process, and (m0, . . . ,mn) its final view. We

320 H. Rincon Galeana et al.

denote L�(m0, . . . ,mn) as the view for pi at layer
. Alternatively, if α is a run
of an r-layered protocol and s < r then Ls

α denotes the s-layered protocol run
induced by α. We say that a view v = (m0, . . . ,mn) of a process at a layer s
is incomplete if either ⊥ ∈ v or if there exists
 < s and 0 ≤ r ≤ n such that
L�(mr) is an incomplete view; recall that mr is pr’s view in round s − 1 or ⊥.
Let

µ1 = µ,

µk+1(pi,m0, . . . ,mn) =

{
µk(pi, L

k(m0, . . . ,mn)) if (m0, . . . ,mn) is incomplete,

µk(pi+1, L
k(m0, . . . ,mn)) otherwise.

We can prove the following result:

Lemma 7 (Correctness of the k-round protocol). Let S be a set of par-
tition compatible runs for a k-round immediate snapshot protocol. Then, the
decision map μk solves n-set agreement in S.

We can thus state the main result of this section:

Theorem 4. Let S be any set of partition compatible runs in the iterated imme-
diate snapshot model. Then, there exists a protocol P that solves set agreement
for any run in S.

6 Conclusions

We developed a topological version of a generalization of the BRS theorem.
Our findings reveal that partitioning is reflected by a “color splitting” of the
algorithm’s decision map, which separates the sub-complexes representing the
partitioned processes. We used these insights to show that the impossibility of
wait-free set agreement in the layered immediate snapshot model cannot be
proved using partitioning arguments: For any set of partition compatible runs it
is possible to construct a simple protocol that solves set agreement.

Extending the latter to k-set agreement and investigating the applicability
of the BRS theorem to alternative shared memory systems remain as open ques-
tions.

References

1. Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: The k-simultaneous
consensus problem. Distrib. Comput. 22(3), 185–195 (2010). https://doi.org/10.
1007/s00446-009-0090-8

2. Alistarh, D., Aspnes, J., Ellen, F., Gelashvili, R., Zhu, L.: Why extension-based
proofs fail. CoRR abs/1811.01421 (2018)

3. Alistarh, D., Aspnes, J., Ellen, F., Gelashvili, R., Zhu, L.: Why extension-based
proofs fail. In: Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, 23–26 June 2019, pp. 986–
996 (2019). https://doi.org/10.1145/3313276.3316407

https://doi.org/10.1007/s00446-009-0090-8
https://doi.org/10.1007/s00446-009-0090-8
https://doi.org/10.1145/3313276.3316407

A Topological Reduction of k-Set Agreement to Consensus 321

4. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: Brief announcement: new
bounds for partially synchronous set agreement. In: Lynch, N.A., Shvartsman,
A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 404–405. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15763-9 40

5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995). https://doi.org/10.1145/200836.200869

6. Attiya, H., Castañeda, A.: A non-topological proof for the impossibility of k-set
agreement. Theor. Comput. Sci. 512, 41–48 (2013)

7. Attiya, H., Paz, A.: Counting-based impossibility proofs for renaming and set
agreement. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 356–370.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33651-5 25

8. Biely, M., Robinson, P., Schmid, U.: Weak synchrony models and failure detectors
for message passing (k -)set agreement. In: Abdelzaher, T., Raynal, M., Santoro, N.
(eds.) OPODIS 2009. LNCS, vol. 5923, pp. 285–299. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10877-8 23

9. Biely, M., Robinson, P., Schmid, U.: Easy impossibility proofs for k -set agreement
in message passing systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.)
OPODIS 2011. LNCS, vol. 7109, pp. 299–312. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25873-2 21

10. Bonnet, F., Raynal, M.: On the road to the weakest failure detector for k-set
agreement in message-passing systems. Theor. Comput. Sci. 412(33), 4273–4284
(2011). https://doi.org/10.1016/j.tcs.2010.11.007

11. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC 1993: Proceedings of the 25th Annual ACM
Symposium on Theory of Computing, pp. 91–100. ACM, New York (1993). https://
doi.org/10.1145/167088.167119

12. Bouzid, Z., Travers, C.: (anti–Ωx ×Σz)–based k -set agreement algorithms. In: Lu,
C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 189–204.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1 16

13. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2000. ACM, New York (2000). https://doi.org/10.1145/343477.343502

14. Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing.
Distrib. Comput. 16, 121–163 (2003). https://doi.org/10.1007/s00446-003-0091-y

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

16. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002). https://
doi.org/10.1145/564585.564601

17. Herlihy, M., Kozlov, D.N., Rajsbaum, S.: Distributed Computing Through Com-
binatorial Topology. Morgan Kaufmann, Burlington (2013). https://store.elsevier.
com/product.jsp?isbn=9780124045781

18. Herlihy, M., Rajsbaum, S., Raynal, M., Stainer, J.: From wait-free to arbitrary
concurrent solo executions in colorless distributed computing. Theor. Comput. Sci.
683, 1–21 (2017). https://doi.org/10.1016/j.tcs.2017.04.007

19. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: An overview of synchronous message-
passing and topology. Electron. Notes Theor. Comput. Sci. 39(2), 1–17 (2000).
https://doi.org/10.1016/S1571-0661(05)01148-5

20. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999). https://doi.org/10.1145/331524.331529

https://doi.org/10.1007/978-3-642-15763-9_40
https://doi.org/10.1145/200836.200869
https://doi.org/10.1007/978-3-642-33651-5_25
https://doi.org/10.1007/978-3-642-10877-8_23
https://doi.org/10.1007/978-3-642-25873-2_21
https://doi.org/10.1007/978-3-642-25873-2_21
https://doi.org/10.1016/j.tcs.2010.11.007
https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/167088.167119
https://doi.org/10.1007/978-3-642-17653-1_16
https://doi.org/10.1145/343477.343502
https://doi.org/10.1007/s00446-003-0091-y
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://doi.org/10.1016/j.tcs.2017.04.007
https://doi.org/10.1016/S1571-0661(05)01148-5
https://doi.org/10.1145/331524.331529

322 H. Rincon Galeana et al.

21. de Prisco, R., Malkhi, D., Reiter, M.: On k-set consensus problems in asynchronous
systems. IEEE Trans. Parallel Distrib. Syst. 12(1), 7–21 (2001). https://doi.org/
10.1109/71.899936

22. Rincon, H., Winkler, K., Schmid, U., Rajsbaum, S.: A topological view of parti-
tioning arguments: reducing k-set agreement to consensus. Technical report TUW-
281149, TU Wien (2019). https://publik.tuwien.ac.at/files/publik 281149.pdf

23. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000). https://doi.org/10.
1137/S0097539796307698

https://doi.org/10.1109/71.899936
https://doi.org/10.1109/71.899936
https://publik.tuwien.ac.at/files/publik_281149.pdf
https://doi.org/10.1137/S0097539796307698
https://doi.org/10.1137/S0097539796307698

Logarithmic Expected-Time Leader
Election in Population Protocol Model

Yuichi Sudo1(B), Fukuhito Ooshita2, Taisuke Izumi3, Hirotsugu Kakugawa4,
and Toshimitsu Masuzawa1

1 Osaka University, Suita, Japan
y-sudou@ist.osaka-u.ac.jp

2 Nara Institute of Science and Technology, Ikoma, Japan
3 Nagoya Institute of Technology, Nagoya, Japan

4 Ryukoku University, Otsu, Japan

Abstract. In this paper, we present the first leader election protocol
in the population protocol model that stabilizes within O(log n) parallel
time in expectation with O(log n) states per agent, where n is the number
of agents. Given a rough knowledge m of the population size n such
that m ≥ log2 n and m = O(log n), the proposed protocol guarantees
that exactly one leader is elected and the unique leader is kept forever
thereafter.

1 Introduction

We consider the population protocol (PP) model [1] in this paper. A network
called population consists of a large number of finite-state automata, called
agents. Agents make interactions (i.e., pairwise communication) each other by
which they update their states. The interactions are opportunistic, that is, they
are unpredictable. Agents are strongly anonymous: they do not have identifiers
and they cannot distinguish their neighbors with the same states. As with the
majority of studies on population protocols [1–11], we assume that the network
of agents is a complete graph and that the scheduler selects an interacting pair
of agents at each step uniformly at random.

In this paper, we focus on leader election problem, which is one of the most
fundamental and well studied problems in the PP model. The leader election
problem requires that starting from a specific initial configuration, a population
reaches a configuration in which exactly one leader exists and the population
keeps that unique leader thereafter.

There have been many works which study the leader election problem in
the PP model (Tables 1 and 2). Angluin et al. [1] gave the first leader election
protocol, which stabilizes in O(n) parallel time in expectation and uses only
constant space of each agent, where n is the number of agents and “parallel

This work was supported by JSPS KAKENHI Grant Numbers 17K19977, 18K18000,
19H04085, and 19K11826 and JST SICORP Grant Number JPMJSC1606.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 323–337, 2019.
https://doi.org/10.1007/978-3-030-34992-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_26&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_26

324 Y. Sudo et al.

time” means the number of steps in an execution divided by n. If we stick to
constant space, this linear parallel time is optimal; Doty and Soloveichik [8]
showed that any constant space protocol requires linear parallel time to elect
a unique leader. Alistarh and Gelashvili [2] made a breakthrough in 2015; they
achieve poly-logarithmic stabilization time (O(log3 n) parallel time) by increas-
ing the number of states from O(1) to only O(log3 n). Thereafter, the stabiliza-
tion time has been improved by many studies [4–7,12]. G ↪asieniec et al. [6] gave
a state-of-art protocol that stabilizes in O(log n · log log n) parallel time with
only O(log log n) states. Its space complexity is optimal; Alistarh et al. [3] shows
that any leader election algorithm with o(n/(polylog n)) parallel time requires
Ω(log log n) states. Michail et al. [7] gave a protocol with O(log n) parallel time
but with a linear number of states. Those protocols with non-constant number
of states [2–6,12] are not uniform, that is, they require some rough knowledge of
n. For example, in the protocol of [5], an Θ(log log n) value must be hard-coded
to set the maximum value of one variable (named l in that paper). One can find
detailed information about the leader election in the PP model in two survey
papers [13,14].

The stabilization time of [7] is optimal; any leader election algorithm requires
Ω(log n) parallel time even if it uses any large number of states and assumes the
exact knowledge of population size n [9]. At the beginning of an execution, all
the agents are in the same initial state specified by a protocol. Therefore, simple
analysis on Coupon Collector’s problem shows that we cannot achieve o(log n)
parallel stabilization time if an agent in the initial state is a leader. The lower
bound of [9] shows that we cannot achieve o(log n) parallel time even if we define
the initial state such that all the agents are non-leaders initially.

Our Contribution. In this paper, we present the first time-optimal leader election
protocol PLL with sub-polynomial number of states. Specifically, PLL stabilizes
in O(log n) parallel time and uses only O(log n) states per agent. Compared to
a state of the art protocol [6], PLL achieves shorter (and best possible) stabi-
lization time but uses larger space of each agent. Compared to [7], PLL achieves
drastically small space while maintaining the same (and optimal) stabilization
time. The protocol PLL is non-uniform as with the existing non-constant space
protocols; it requires a rough knowledge m of n such that m ≥ log2 n and
m = Θ(log n).

We give PLL as an asymmetric protocol in the main part of this paper only
for simplicity of presentation and analysis of stabilization time. Actually, we can
change PLL to a symmetric protocol, which we discuss in Sect. 5. In particular,
that section proposes the first implementation of totally independent and fair
(i.e., unbiased) coin flips in the symmetric version of the PP model. Although
the implementation of coin flips in [3] is almost independent and fair, the totally
independent and fair coin clips achieved in this paper can contribute to a simple
analysis in a variety kind of protocols in the PP model.

Logarithmic Expected-Time Leader Election in Population Protocol Model 325

2 Preliminaries

A population is a network consisting of agents. We denote the set of all the
agents by V and let n = |V |. We assume that a population is complete graph,
thus every pair of agents (u, v) can interact, where u serves as the initiator and
v serves as the responder of the interaction. Throughout this paper, we use the
phrase “with high probability” to denote “with probability 1 − O(n−1)”.

A protocol P (Q, sinit, T, Y, πout) consists of a finite set Q of states, an initial
state sinit ∈ Q, a transition function T : Q × Q → Q × Q, a finite set Y
of output symbols, and an output function πout : Q → Y . Every agent is in
state sinit when an execution of protocol P begins. When two agents interact,
T determines their next states according to their current states. The output of
an agent is determined by πout: the output of an agent in state q is πout(q). As
with all papers listed in Table 1 except for the one of [1], we assume that a rough
knowledge of n is available. Specifically, we assume that an integer m such that
m ≥ log2 n and m = Θ(log n) is given, thus we can design P (Q, sinit, T, Y, πout)
using this input m, i.e., the parameters Q,sinit,T ,Y , and πout can depend on m.

A configuration is a mapping C : V → Q that specifies the states of all the
agents. We define Cinit,P as the configuration of P where every agent is in state
sinit. We say that a configuration C changes to C ′ by the interaction e = (u, v),
denoted by C

e→ C ′, if (C ′(u), C ′(v)) = T (C(u), C(v)) and C ′(w) = C(w) for all
w ∈ V \ {u, v}.

A schedule γ = γ0, γ1, · · · = (u0, v0), (u1, v1), . . . is a sequence of interactions.
A schedule determines which interaction occurs at each step, i.e., interaction
γt happens at step t. In particular, we consider a uniform random scheduler
Γ = Γ0, Γ1, . . . where each Γt (t ≥ 0) is a random variable that specifies the
interaction (ut, vt) at step t and satisfies Pr(Γt = (u, v)) = 1

n(n−1) for any
distinct u, v ∈ V . All interactions Γ0, Γ1, . . . are independent of each other. Given
an initial configuration C0, the execution of protocol P is uniquely defined as
ΞP (C0, Γ) = C0, C1, . . . such that Ct

Γt→ Ct+1 for all t ≥ 0. We say that agent

Table 1. Leader election protocols. (Stabilization time is shown in terms of parallel
time and in expectation.)

States Stabilization time

[1] O(1) O(n)

[2] O(log3 n) O(log3 n)

[3] O(log2 n) O(log5.3 n · log log n)

[4] O(log n) O(log2 n)

[5] O(log log n) O(log2 n)

[6] O(log log n) O(log n · log log n)

[7] O(n) O(log n)

This work O(log n) O(log n)

326 Y. Sudo et al.

Table 2. Lower bounds for leader election (Stabilization time is shown in terms of
parallel time and in expectation.)

States Stabilization time

[8] O(1) Ω(n)

[3] < 1/2 log log n Ω(n/(polylog n))

[9] any large Ω(log n)

v ∈ V participates in Γt if v is either the initiator or the responder of Γt. We
say that a configuration C of protocol P is reachable if the initial configuration
Cinit,P changes to C by some finite sequence of interactions γ0, γ1, . . . , γk. We
define Call(P) as the set of all reachable configurations of P .

The leader election problem requires that every agent should output L or F
which means “leader” or “follower” respectively. Let SP be the set of the con-
figurations such that, for any configuration C ∈ SP , exactly one agent outputs
L (i.e., is a leader) in C and no agent changes its output in execution ΞP (C, γ)
for any schedule γ. We say that a protocol P solves the leader election if exe-
cution ΞP (Cinit,P , Γ) reaches a configuration in SP with probability 1. For any
leader election protocol P , we define the expected stabilization time of P as
the expected number of steps during which execution ΞP (Cinit,P , Γ) reaches a
configuration in SP , divided by the number of agents n. The division by n is
needed because we evaluate the stabilization time in terms of parallel time.

We write the natural logarithm of x as ln x and the logarithm of x with base
2 as lg x. We do not indicate the base of logarithm in an asymptotical expression
such as O(log n). By an abuse of notation, we will identify an interaction (u, v)
with the set {u, v} whenever convenient.

In the proposed protocol, we often use the technique called one-way epidemic
[15]. See the full paper [16] for the formal definition of one-way epidemic and
rigorous analysis on the number of steps required to finish one-way epidemic,
especially when the epidemic is executed by a sub-population (i.e., a part of the
whole population).

3 Key Ideas of Logarithmic Leader Election

In this section, we give key ideas of the proposed protocol PLL. Each agent v
keeps an output variable v.leader ∈ {false, true}. An agent outputs L when the
value of leader is true and it outputs F when it is false. An execution of PLL

can be regarded as a competition by agents. At the beginning of the execution,
every agent has leader = true, that is, all agents are leaders. Throughout the
execution, every leader tries to remain a leader and tries to make all other
leaders followers so that it becomes the unique leader in the population. The
competition consists of three modules QuickElimination(), Tournament(), and
BackUp(), which are executed in this order. These three modules guarantee the
following properties:

Logarithmic Expected-Time Leader Election in Population Protocol Model 327

QuickElimination(): An execution of this module takes O(log n) parallel time
in expectation. For any i ≥ 2, exactly i leaders survive an execution of
QuickElimination() with probability at most 21−i. The execution never elim-
inates all leaders, i.e., at least one leader always survives.

Tournament(): An execution of this module takes O(log n) parallel time in expec-
tation. By an execution of Tournament(), which starts with i ≥ 2 leaders, the
unique leader is elected with probability at least 1 − O(i/ log n). This lower
bound of probability is independent of an execution of the previous module
QuickElimination(). The execution never eliminates all leaders, i.e., at least
one leader always survives.

BackUp(): An execution of this component elects a unique leader within O(log2 n)
parallel time in expectation.

From above, it holds that the number of leaders is exactly one with prob-
ability at least 1 − ∑n

i=2 O
(
i/(2i−1 log n)

)
= 1 − O(1/ log n) after execu-

tions of QuickElimination() and Tournament() finish. Therefore, combined with
BackUp(), protocol PLL elects a unique leader within (1 − O(1/ log n)) · log n +
O(1/ log n) · O(log2 n) = O(log n) parallel time in expectation.

In the remainder of this subsection, we briefly give key ideas to design the
three modules satisfying the above guarantees. We will present a way to imple-
ment the following ideas with O(log n) states per agent in the next subsection
(Sect. 4). In this subsection, keep in mind only that these ideas are easily imple-
mented with poly-logarithmic number of states per agent, that is, with a constant
number of variables with O(log log n) bits. For the following description of the
key ideas, we assume a kind of global synchronization, for example, we assume
that each agent begins an execution of Tournament() after all agents finish nec-
essary operations of QuickElimination(). We also present a way to implement
such a synchronization in Sect. 4.

3.1 Key Idea for QuickElimination()

The goal of this module is to reduce the number of leaders such that, for any
i ≥ 2, the resulting number of leaders is exactly i with probability at most 21−i

while guaranteeing that not all leaders are eliminated. This module is based on
almost the same idea as the lottery protocol in [3]. The protocol PLL achieves
much faster stabilization time than the lottery protocol thanks to tighter analysis
on the number of surviving leaders, which we will see below, and the combination
with the other two modules.

First, consider the following game:

– (i) Each agent in V executes a sequence of independent fair coin flips, each
of which results in head with probability 1/2 and tail with probability 1/2,
until it observes tail for the first time,

– (ii) Let sv be the number of heads that v observes in the above coin flips and
let smax = maxv∈V sv,

– (iii) The agents v with sv = smax are winners and the other agents are losers.

328 Y. Sudo et al.

Let i ≥ 2 and j ≥ 0. Consider the situation that exactly i agents observe that
their first j coin flips result in head and define pi,j as the probability that all the
i agents win the game in the end starting from this situation. Starting from this
situation, if all the i agents observe tail in their j + 1-st coin flips then exactly i
agents win the game with probability 1; if all the i agents observe head in their
j + 1-st coin flips then exactly i agents win with probability pi,j+1; Otherwise,
the number of winners of the game is less than i with probability 1. Therefore,
we have pi,j = 2−i+2−i ·pi,j+1. Since we have pi,j = pi,j+1 thanks to memoryless
property of this game, solving this equality gives pi,j = 1/(2i − 1) ≤ 21−i. Let
ki be the minimum integer j such that exactly i agents observe that all of their
first j coin flips result in head. We define kn = 0 for simplicity. Then, for any
i ≥ 0, we have

Pr(|{v ∈ V | sv = smax}| = i) =
∞∑

j=0

Pr(ki = j) · pi,j ≤ 21−i
∞∑

j=0

Pr(ki = j) ≤ 21−i.

Module QuickElimination() simulates this game in the population protocol
model. Every time an agent v has an interaction, we regard the interaction as the
coin flip by v. If v is an initiator at the interaction, we regard the result of the coin
flip as head; Otherwise we regard it as tail. The correctness of this simulation
for coin flips comes from the definition of the uniform random scheduler: at each
step, an interaction where v is an initiator happens with probability 1/n and an
interaction where v is a responder also happens with probability 1/n. Strictly
speaking, this simple simulation of coin flips does not guarantee independence of
coin flips by u and v for any distinct u, v ∈ V . However, the actual PLL defined
in Sect. 4 completely simulates independent coin flips of leaders and we will
explain it in Sect. 4. Each agent v computes and stores sv on variable v.levelQ

by counting the number of interactions that it participates in as an initiator
until it interacts as a responder for the first time. After every agent v computes
sv on v.levelQ, the maximum value of levelQ, i.e., smax, is propagated from
agent to agent via one-way epidemic [15], that is,

– each agent memorizes the largest value of levelQ it has observed, and
– the larger value is propagated to the agent with smaller value at every inter-

action.

It is proven in [15] that all agents obtain the largest value within O(log n) parallel
time with high probability by this simple propagation. If agent v knows sv <
smax, v changes v.leader from true to false, that is, v becomes a follower.
Thus, when one-way epidemic of smax finishes, only the agents v satisfying sv =
smax are leaders. From the above discussion, for any i ≥ 2, the number of such
surviving leaders is exactly i with probability at most 21−i. On the other hand,
there is at least one agent v with sv = smax, thus this module never eliminates
all leaders. A logarithmic number of states is sufficient for levelQ because each
agent v gets more than c lg n consecutive heads with probability at most n−c for
any c ≥ 1.

Logarithmic Expected-Time Leader Election in Population Protocol Model 329

3.2 Key Idea for Tournament()

Starting from a configuration where the number of leaders is i, the goal of
Tournament() is to reduce the number of leaders from i to one with probability
1 − O(i/ log n) while guaranteeing that not all leaders are eliminated. The idea
of this component is simple. As with the QuickElimination(), we use coin flips in
Tournament(). Every leader v maintains variable v.rand. Initially, v.rand = 0.
Every time it has an interaction, it updates v.rand by v.rand ← 2v.rand + j
where j indicates whether v is a responder in the interaction or not, i.e., j = 0
if v is a initiator and j = 1 if v is a responder. This operation stops when v
encounters �log2 m� = O(log log n) interactions. Thus, when all the i leaders
encounter at least �log2 m� interactions, for every leader v, v.rand is a random
variable uniformly chosen from {0, 1, . . . , 2�log2 m� − 1}. Although u.rand and
v.rand are not independent of each other for any distinct leader u and v, we
will present a way to remove any dependence between u.rand and v.rand in
Sect. 4. As with QuickElimination(), the maximum value rand is propagated to
the whole population via one-way epidemic within O(log n) parallel time with
high probability and only leaders with the maximum value remain leaders in the
end of Tournament().

Let v1, v2, . . . , vi be the i leaders that survive QuickElimination(),
r1, r2, . . . , ri be the resulting value of vi.rand, and rmax(j) = max(r1, r2, . . . , rj)
for any j = 1, 2, . . . , i. Clearly, the number of leaders at the end of Tournament()
is exactly one if rj+1 	= rmax(j) holds for all j = 1, 2, . . . , i − 1. By the union
bound and independence between r1, r2, . . . , ri, this holds with probability at
least 1−∑i−1

j=1 2−�log2 m� ≥ 1− i/m ≥ 1− i/(lg n). On the other hand, an execu-
tion of Tournament() never eliminates all leaders since there is always at least
one leader vj that satisfies rj = rmax(i).

3.3 Key Idea for BackUp()

The goal of BackUp() is to elect a unique leader within O(log2 n) parallel time in
expectation. We must guarantee this expected time regardless of the number of
the agents that survive both QuickElimination() and Tournament() and remain
leaders at the beginning of an execution of BackUp(). We can only assume that
at least one leader exists at the beginning of the execution. We use coin flips
also for BackUp(). Every leader v maintains v.levelB . Initially, v.levelB = 0.
Every leader v repeats the following procedure until v.levelB reaches 5m or v
becomes a follower.

– Make a coin flip. If the result is head (i.e., v participates in an interaction
as an initiator), v increments v.levelB by one. If the result is tail, v does
nothing.

– Wait for sufficiently long but logarithmic parallel time so that the maxi-
mum levelB propagates to the whole population via one-way epidemic. If it
observes larger value in the epidemic, it becomes a follower, that is, it exe-
cutes v.leader ← false. Furthermore, if v interacts with another leader with

330 Y. Sudo et al.

the same level during this period and v is a responder in the interaction, v
becomes a follower.

Let j be an arbitrary integer such that 1 ≤ i ≤ 5m. Consider the first time
that levelB of some leader, say v, reaches j. Let V ′ ⊆ V be the set of leaders
at that time. By the definition of the above procedure, every u ∈ V ′ other
than v satisfies u.levelB < j, and u makes a coin flip at most once with high
probability until the maximum value j is propagated from v to u. If the result
of the one coin flip is tail, u becomes a follower. Therefore, with probability at
least 1/2−O(n−1) > 1/3, no less than half of leaders in V ′ \v becomes followers,
that is, the number of leaders decreases to at most 1+ �|V ′|/2�. Chernoff bound
guarantees that the number of leaders becomes one with high probability until
v.levelB for every leader v reaches 5m. Even if multiple leaders survive at
that time, we have simple election mechanism to elect a unique leader; when
two leaders with the same level interacts with each other, one of them becomes
a follower. This simple election mechanism elects a unique leader within O(n)
parallel time in expectation. Therefore, the total expected parallel time to elect
a unique leader is O(m log n) + O(n−1) · O(n) = O(log2 n).

4 Implementation of Logarithmic Leader Election

In this section, we present detailed description of the proposed protocol PLL. The
key ideas presented in the previous subsection achieve O(log n) stabilization time
if it is implemented correctly. For implementation, they need some kind of global
synchronization and independent coin flips. Furthermore, a naive implementation
of the key ideas requires a poly-logarithmic number of states (i.e., O(logc n)
states for c > 1) per agent while our goal is to achieve O(log n) states per agent.
We present how to address these issues in this section.

Table 3. Variables of PLL

Groups Variables Initial values

All agents leader ∈ {false, true} true

tick ∈ {false, true} false

status ∈ {X, A, B} X

epoch, init ∈ {1, 2, 3, 4} 1

color ∈ {0, 1, 2} 0

VB count ∈ {0, 1, . . . , cmax − 1} Undefined

VA ∩ V1 levelQ ∈ {0, 1, . . . , lmax} Undefined

done ∈ {false, true} Undefined

VA ∩ (V2 ∪ V3) rand ∈ {0, 1, . . . , 2Φ − 1} Undefined

index ∈ {0, 1, . . . , Φ − 1} Undefined

VA ∩ V4 levelB ∈ {0, 1, . . . , lmax} Undefined

Logarithmic Expected-Time Leader Election in Population Protocol Model 331

All variables of PLL are listed in Table 3. All agents manage six vari-
ables leader, tick, status, epoch, init, and color. To implement the key
ideas above with O(log n) states, we divide the population into multiple sub-
populations or groups, as in [6], where agents in different groups manage dif-
ferent variables in addition to the above six variables. In the remainder of this
paper, we refer the above six variables by common variables and other variables
by additional variables. The population is divided to six groups based on two
common variables status ∈ {X,A,B} and epoch ∈ {1, 2, 3, 4}, that is, VX , VB,
VA ∩ V1, VA ∩ (V2 ∪ V3), VA ∩ V4 where we denote VZ = {v ∈ V | v.status = Z}
for Z ∈ {X,A,B} and Vi = {v ∈ V | v.epoch = i} for i ∈ {1, 2, 3, 4}. We
have no additional variables for agents in group VX , one additional variable
count ∈ {0, 1, . . . , cmax − 1} for agents in VB where cmax = 41m, two addi-
tional variables levelQ ∈ {0, 1, . . . , lmax} and done ∈ {false, true} for agents in
VA ∩V1 where lmax = 5m, two additional variables rand ∈ {0, 1, . . . , 2Φ −1} and
index ∈ {0, 1, . . . , Φ − 1} for agents in VA ∩ (V2 ∪ V3) where Φ = � 2

3 lg m�, and
one additional variable levelB ∈ {0, 1, . . . , lmax} for agents in VA∩V4. Agents in
any group have only O(log n) states. This is because every common variable has
constant size domain, every group other than VA∩(V2∪V3) has at most one non-
constant additional variable and any of such variables can take O(log n) values,
and an agent in VA ∩ (V2 ∪V3) has two additional variables rand and index and
the combination of the two variables can take 2Φ ·Φ = O(m2/3 log m) ⊂ O(log n)
values. Therefore, the number of states per agent used by PLL is O(log n).

Lemma 1. The number of states per agent used by PLL is O(log n).

Independently of the six groups defined above, we define another groups VL and
VF based on a common variable leader; VL (resp., VF) is the set of agents v ∈ V
such that v.leader = true (resp., v.leader = false). We introduce these two
groups only for simplicity of notation.

The pseudocode of PLL is given in Algorithm 1, which has four mod-
ules CountUp(), QuickElimination(), Tournament(), and BackUp(). Due to the
lack of space, we omit the pseudocodes of QuickElimination(), Tournament(),
and BackUp(), while the pseudocode of CountUp is presented in Algorithm 2.
See the full paper [16] for the omitted pseudocodes. The main function of PLL

(Algorithm 1) consists of four parts. The first part (Lines 1–6) assigns status A
or B to each agent. The second part (Lines 7–10) manages variable epoch using
module CountUp(). Initially, v.epoch = 1 holds, that is, v ∈ V1 holds for all
v ∈ V . In an execution of PLL, v.epoch never decreases and increases by one
every sufficiently large logarithmic parallel time in expectation until it reaches 4
as we will explain later. In the third part (Lines 11–15), we initialize additional
variables when an agent increases its epoch. Each agent v has a common variable
init, which is set to 1 initially. Whenever v.epoch increases, v.epoch > v.init
must hold, then v initialize additional variables according to v’s group and exe-
cutes v.init ← v.epoch. For example, when the epoch of agent v ∈ VA changes
from 3 to 4 i.e., v moves from group VA∩V3 to VA∩V4, it initializes an additional
variable ai.levelB to 0 (Line 13). Additional variables for groups VB and VA∩V1

332 Y. Sudo et al.

Algorithm 1. PLL

Notations:

lmax = 5m, cmax = 41m, Φ = � 2
3

lg m�
VZ = {v ∈ V | v.status = Z} for Z ∈ {X, A, B}
Vi = {v ∈ V | v.epoch = i} for i ∈ {1, . . . , 4}

Output function πout:

if v.leader = true holds, then the output of agent v is L, otherwise F .

Interaction between initiator a0 and responder a1:

1: if a0, a1 ∈ VX then
2: (a0.status, a0.levelQ, a0.done, a0.leader) ← (A, 0, false, true)
3: (a1.status, a1.count, a1.leader) ← (B, 0, false)
4: else if ∃i ∈ {0, 1} : ai ∈ VX ∧ a1−i /∈ VX then
5: (ai.status, ai.levelQ, ai.done, ai.leader) ← (A, 0, true, false)
6: end if

7: a0.tick ← a1.tick ← false
8: CountUp()
9: for all i ∈ {0, 1} such that ai.tick do ai.epoch = max(ai.epoch + 1, 4) endfor

10: a0.epoch ← a1.epoch ← max(a0.epoch, a1.epoch)

11: for all i ∈ {0, 1} such that ai.epoch > ai.init do // Initialize variables for each
group

12: if ai ∈ VA ∩ (V2 ∪ V3) then (ai.rand, ai.index) ← (0, 0) endif
13: if ai ∈ VA ∩ V4 then ai.levelB ← 0 endif
14: ai.init ← ai.epoch
15: end for

16: if a0, a1 ∈ V1 then
17: Execute QuickElimination()
18: else if a0, a1 ∈ V2 ∨ a0, a1 ∈ V3 then
19: Execute Tournament()
20: else if a0, a1 ∈ V4 then
21: Execute BackUp()
22: end if

are initialized not in this part but in the first part as we will explain in Sect. 4.1.
In the fourth part (Lines 16–22), agents execute modules based on the values
of their epoch. Specifically, agents execute QuickElimination(), Tournament(),
and BackUp() while they are in V1, V2 ∪ V3, and V4 respectively.

In the key idea depicted in Sect. 3.2, each leader v makes fair coin flips exactly
�lg m� = Θ(log log n) times. However, this requires Ω(log n · log log n) states per
agent because this procedure requires not only variable v.rand that stores the
results of those flips but also variable v.index to memorize how many times
v already made coin flips. Therefore, in an execution of Tournament(), each
agent makes fair coin flips only Φ = � 2

3 lg m� times, and we execute this module
Tournament() twice. That is why we assign two epochs (i.e., the second and the
third epochs) to Tournament().

Logarithmic Expected-Time Leader Election in Population Protocol Model 333

In the remainder of this section, we explain how to assign status to agents,
how to synchronize the population by CountUp(), and how to implement inde-
pendent coin flips in three modules QuickElimination(), Tournament(), and
BackUp().

Algorithm 2. CountUp()
Interaction between initiator a0 and responder a1:

23: for all i ∈ {0, 1} such that ai ∈ VB do
24: ai.count ← ai.count + 1 (mod cmax)
25: if ai.count = 0 then
26: ai.color ← ai.color + 1 (mod 3)
27: ai.tick ← true
28: end if
29: end for
30: if ∃i ∈ {0, 1} : a1−i.color = ai.color + 1 (mod 3) then
31: ai.color ← a1−i.color
32: ai.tick ← true
33: if ai ∈ VB then ai.count ← 0 endif
34: end if

4.1 Assignment of Status

At the beginning of an execution, all agents are in VX , that is, the statuses of
all agents are the “initial” status X. Every agent is given status A or B at its
first interaction where A means “leader candidate” and B means “timer agent”.
As we will explain later, the unique leader is elected from VA and agents in VB

are mainly used to synchronize the population with their count-up timers.
Agents determine their status, A or B, by the following simple way. When

two agents in VX meet, the initiator and the responder are given status A and B,
respectively (Line 2–3). The initiator initializes its additional variable levelQ

and done to 0 and false respectively and remains a leader (Line 2) while the
responder initializes its additional variable count to 0 and becomes a follower
by leader ← false (Line 3). When an agent in VX meets an agent in VA or VB , it
gets status A but it becomes a follower. It also initializes its additional variable
levelQ and done to 0 and true respectively (Line 5). For agent v, assigning true
to v.done means that v never joins a game with coin flips in QuickElimination().

No agent changes its status once it gets status A or B, and no follower
becomes a leader in an execution of PLL. Therefore, we have the following lemma.

Lemma 2. In an execution of PLL, |VA| ≥ n/2, |VF | ≥ n/2, and |VB | ≥ 1
always hold after every agent gets status A or B.

Proof. Consider any configuration in Call(PLL) where every agent has status A
or B. Let x (resp., y and z) be the the number of agents which get status A
(resp., B and A) by Line 2 (resp., Line 3 and Line 5). We have x = y ≤ n/2
by the definition of PLL, which gives |VA| = x + z = n − y ≥ n/2. Moreover,

334 Y. Sudo et al.

|VL| ≤ x ≤ n/2 holds because the number of leaders is monotonically non-
increasing in an execution of PLL. The first interaction of the execution assigns
one agent with status VB , hence |VB | ≥ 1 holds. ��

4.2 Synchronization and Epochs

When a unique leader exists in the population, we can synchronize the population
by phase clocks with constant space per agent [15]. Recently, in [5] and [6], it
is proven that even when we cannot assume the existence of the unique leader,
Phase clocks can be used for synchronization if we are allowed to use O(log log n)
states per agent. However, this synchronization with O(log log n) states without
the unique leader involves complicated analysis. Since we use O(log n) states for
another modules, we achieve synchronization in simpler way with O(log n) states
per agent.

The pseudocode of our synchronization is shown in Algorithm 2. We use
common variables color ∈ {0, 1, 2} in all agents and an additional variable
count ∈ {0, 1, . . . , cmax − 1} for agents in group VB . Initially, all agents have the
same color, namely, 0. The color of an agent is incremented by modulo 3 when
the agent changes its color. We say that the agent gets a new color when this
event happens. Roughly speaking, our goal is to guarantee that

– (i) whenever one agent gets a new color (e.g., changes its color from 0 to 1),
the new color spreads to the whole population within O(log n) parallel time
with high probability,

– (ii) thereafter, all agents keep the same color for sufficiently long but Θ(log n)
parallel time with high probability.

Specifically, “sufficiently long but Θ(log n) time” in (ii) means sufficiently long
period such that any O(log n) parallel time operations in QuickElimination(),
Tournament(), and BackUp(), such as one-way epidemic of some value, finishes
with high probability during the period.

At every interaction, module CountUp() is invoked (Line 8) and variables
color and count can be changed only in this module. In CountUp(), every agent
in VB increments its count by one modulo cmax (Line 24). For every v ∈ VB, if
this incrementation changes v.count from cmax − 1 to 0, v gets a new color by
incrementing v.color by one modulo 3 (Line 26). Once one agent gets a new
color, the new color spreads to the whole population via one-way epidemic in the
whole population. Specifically, if agents u and v satisfying u.color = v.color+1
(mod 3) meets, v executes v.color ← u.color and resets its count to 0 (Line
31–33). One-way epidemic requires Θ(log n) parallel time and each agent requires
Θ(cmax) parallel time to count up cmax times (i.e., encounter cmax interactions).
Therefore, this synchronization guarantees the above requirements (i) and (ii)
if we give cmax a sufficiently large Θ(log n) value (actually, cmax = 41m in this
paper). See the full paper [16] for detailed analysis.

Every time an agent v gets a new color, it raises a tick flag, i.e., assigns
v.tick ← true (Lines 27 and 32). This common variable v.tick is used only
for simplicity of the pseudocode and it does not affect the transition at v’s next

Logarithmic Expected-Time Leader Election in Population Protocol Model 335

interaction (v.tick is reset to false in Line 7), unlike the other variables. When
v.tick is raised, v.epoch increases by one unless it has already reached 4 (Line 9).
After two agents u and v execute Lines 7–9 at an interaction, u.epoch = v.epoch
usually holds. However, this equation does not hold when synchronization fails.
For this case, we substitute max(u.epoch, v.epoch) into u.epoch and v.epoch in
Line 10. Variable v.tick is also used to determine when each leader makes a
coin flip in module BackUp() because each leader must wait for sufficiently long
logarithmic parallel time between any two consecutive coin flips, as explained in
Sect. 3.3.

As mentioned above, every agent gets a new color in every sufficiently large
Θ(log n) parallel time with high probability. This means that, for every v ∈ V ,
v.tick is raised and v.epoch increases by one with high probability in every
sufficiently large Θ(log n) parallel time until v.epoch reaches 4. If this synchro-
nization fails, e.g., some agent gets a color 1 without keeping color 0 for Θ(log n)
parallel time, the modules QuickElimination() and Tournament() may not work
correctly. However, starting from any configuration after a synchronization fails
arbitrarily, module CountUp() and Lines 7–10 guarantee that all agents proceeds
to the forth epoch within O(log n) parallel time in expectation, and thereafter
BackUp() guarantees that exactly one leader is elected within O(n) parallel
time in expectation. Hence, PLL guarantees that a unique leader is elected with
probability 1. The above O(n) parallel time never prevent us from achieving
stabilization time of O(log n) parallel time in expectation because (i) synchro-
nization fails at each phase with probability O(1/n), (ii) our protocol PLL uses
O(log n) phases in total (i.e., one phase for QuickElimination(), two phases for
Tournament(), and lmax phases for BackUp()), and hence (iii) the synchroniza-
tion fails and damages the progress of an execution of PLL with probability
O(log n/n) in total.

4.3 Independent Coin Flips

In the three modules QuickElimination(), Tournament(), and BackUp(), only
leaders make coin flips. We implement independent coin flips in a simple way: A
leader makes a coin flip only if it interacts with a follower. In other words, when
a leader v wants to make a coin flip in an interaction with agent u, it does make
a coin flip if u is a follower, but it does not otherwise. After all agents get their
status A or B, |VF | ≥ n/2 always holds by Lemma 2. Therefore, the frequency
of coin-flipping decreases only by half, thus we can asymptotically ignore the
impact of this slowdown on the stabilization time of PLL.

Therefore, we can say that protocol PLL correctly implements the key ideas
in Sect. 3 with O(log n) states per agent. Thus, we obtain the following lemma.
(See the full paper [16] for the complete proof.)

Theorem 1. Let Ξ = ΞPLL
(Cinit,PLL

, Γ) = C0, C1, Execution Ξ reaches a
configuration in SPLL

1 within O(log n) parallel time in expectation.
1 Recall that SPLL is the set of configurations such that, for any configuration C ∈

SPLL , exactly one agent outputs L (i.e., is a leader) in C and no agent changes its
output in execution ΞPLL(C, γ) for any schedule γ.

336 Y. Sudo et al.

Proof (Proof Sketch). When an execution of PLL elects a unique leader, a con-
figuration at that time must belong to SPLL . This is because the number of
leaders are monotonically non-increasing and no interaction brings a configura-
tion with no leader in an execution of PLL. Modules QuickElimination() and
Tournament() guarantee that exactly one leader is elected within O(log n) par-
allel time with probability 1−O(1/ log n). Even if these two modules fail, module
BackUp() elects exactly one leader within O(log2 n) parallel time with probabil-
ity 1 − O(log n/n). Note that this error probability O(log n/n) comes from the
synchronization mechanism: synchronization fails during these O(log2 n) paral-
lel time with probability O(log n/n). Even if module BackUp() does not elect
exactly one leader within O(log2 n) parallel time, it elects exactly one leader
within O(n) parallel time in expectation. Therefore, we conclude that the stabi-
lization time of PLL is at most O(log n)+O(1/ log n)·O(log2 n)+O(1/n)·O(n) =
O(log n) parallel time. ��

5 Discussion Towards Symmetric Transitions

In the field of PP model, several works are devoted to design a symmetric pro-
tocol. A protocol P (Q, sinit, T, Y, πout) is symmetric if its transition function T
satisfies (p′, q′) = T (p, q) ⇔ (q′, p′) = T (q, p) for any p, q, p′, q′ ∈ Q. In other
words, a symmetric protocol is a protocol that does not utilize the roles of the
two agents at an interaction, initiator and responder. Suppose that two agents
have an interaction and their states changes from p, q to p′, q′, respectively. In
a symmetric protocol, p = q ⇒ p′ = q′ always hold. This property is important
for some applications such as chemical reaction networks.

The proposed protocol PLL described above is not symmetric, however, we
can make it symmetric by the following strategy. Protocol PLL performs asym-
metric actions only for assignment of status and flipping fair and independent
coins, described in Sects. 4.1 and 4.3, respectively. To assign the agents their
statuses by symmetric transitions, we only have to add additional status Y
and make the following three rules: X × X → Y × Y , Y × Y → X × X,
X × Y → A × B. Furthermore, similarly to the original rules of PLL, when an
agent v with status X or Y meets an agent with status A or B, v gets status A
but it becomes a follower. This modification does not make any harmful influ-
ence on the analysis of stabilization time, at least asymptotically. Coin flips are
dealt with in the same way. We assign a coin status J , K, F0, or F1 to each fol-
lower. Every time a leader v becomes a follower, initial status J is assigned to v.
Thereafter, when two followers meet, they change their coin statuses according
to the following rules: J × J → K × K, K × K → J × J , J × K → F0 × F1.
These rules guarantee that the numbers of the followers with state F0 and F1

are always equal. Therefore, a leader can make a fair and independent coin flip
every time it meets a follower whose coin state is not J or K.

Logarithmic Expected-Time Leader Election in Population Protocol Model 337

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

2. Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population pro-
tocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 479–491. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47666-6 38

3. Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.: Time-space
trade-offs in population protocols. In: Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 2560–2579. SIAM (2017)

4. Alistarh, D., Aspnes, J., Gelashvili, R.: Space-optimal majority in population pro-
tocols. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 2221–2239. SIAM (2018)

5. G ↪asieniec, L., Staehowiak, G.: Fast space optimal leader election in population
protocols. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 2653–2667. SIAM (2018)

6. G ↪asieniec, L., Stachowiak, G., Uznański, P.: Almost logarithmic-time space optimal
leader election in population protocols. arXiv preprint arXiv: 1802.06867 (2018)

7. Michail, O., Spirakis, P.G., Theofilatos, M.: Simple and fast approximate counting
and leader election in populations. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018.
LNCS, vol. 11201, pp. 154–169. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03232-6 11

8. Doty, D., Soloveichik, D.: Stable leader election in population protocols requires
linear time. Distrib. Comput. 31(4), 257–271 (2018)

9. Sudo, Y., Masuzawa, T.: Leader election requires logarithmic time in population
protocols. arXiv preprint arXiv:1906.11121 (2019)

10. Sudo, Y., Nakamura, J., Yamauchi, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.:
Loosely-stabilizing leader election in a population protocol model. Theor. Comput.
Sci. 444, 100–112 (2012)

11. Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T., Datta, A.K., Larmore, L.L.:
Loosely-stabilizing leader election with polylogarithmic convergence time. In: 22nd
International Conference on Principles of Distributed Systems, OPODIS 2018, pp.
30:1–30:16 (2018)

12. Bilke, A., Cooper, C., Elsässer, R., Radzik, T.: Brief announcement: population
protocols for leader election and exact majority with o(log2n) states and o(log2n)
convergence time. In: Proceedings of the 38th ACM Symposium on Principles of
Distributed Computing, pp. 451–453. Springer (2017)

13. Alistarh, D., Gelashvili, R.: Recent algorithmic advances in population protocols.
ACM SIGACT News 49(3), 63–73 (2018)

14. Elsässer, R., Radzik, T.: Recent results in population protocols for exact majority
and leaderelection. Bull. EATCS 3(126), 1–34 (2018)

15. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distrib. Comput. 21(3), 183–199 (2008)

16. Sudo, Y., Ooshita, F., Izumi, T., Kakugawa, H., Masuzawa, T.: Logarith-
mic expected-time leader election in population protocol model. arXiv preprint
arXiv:1812.11309 (2018)

https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/978-3-662-47666-6_38
http://arxiv.org/abs/1802.06867
https://doi.org/10.1007/978-3-030-03232-6_11
https://doi.org/10.1007/978-3-030-03232-6_11
http://arxiv.org/abs/1906.11121
http://arxiv.org/abs/1812.11309

A Self-stabilizing 1-Maximal Independent
Set Algorithm

Hideyuki Tanaka1(B), Yuichi Sudo1, Hirotsugu Kakugawa2,
Toshimitsu Masuzawa1, and Ajoy K. Datta3

1 Osaka University, Suita, Japan
tanaka.hideyuki@ist.osaka-u.ac.jp
2 Ryukoku University, Otsu, Japan

3 University of Nevada, Las Vegas, USA

Abstract. We consider the 1-maximal independent set (1-MIS) prob-
lem: given a graph G = (V,E), our goal is to find an 1-maximal indepen-
dent set (1-MIS) of a given network G, that is, a maximal independent
set (MIS) S ⊂ V of G such that S ∪ {v, w} \ {u} is not an indepen-
dent set for any nodes u ∈ S, and v, w /∈ S (v �= w). We give a silent,
self-stabilizing, and asynchronous distributed algorithm to construct 1-
MIS on a network of any topology. We assume the processes have unique
identifiers and the scheduler is unfair and distributed. The time complex-
ity, i.e., the number of rounds to reach a legitimate configuration in the
worst case, of the proposed algorithm is O(nD), where n is the number
of processes in the network and D is the diameter of the network. We
use a composition technique called loop composition [Datta et al. 2017]
to iterate the same procedure consistently, which results in a small space
complexity, O(log n) bits per process.

1 Introduction

Nowadays, distributed systems generally consist of numerous computers (or pro-
cesses) where the processes collaboratively solve a problem with communicating
each other. Because of the huge scale, distributed systems are prone to have faults
of their components. Therefore, it is important to design a algorithm, which cor-
rectly works even if some of the processes are crashed, the topology of a network
changes, and/or the memory of some processes are corrupted arbitrarily.

Self-stabilization [5] is a promising technique to achieve high fault tolerance.
An execution of a self-stabilizing algorithm is guaranteed to reach a legitimate
configuration eventually (Convergence property), which satisfies the specification
of a given problem and keeps the legitimacy thereafter (Closure property). These
two properties of self-stabilization make distributed systems tolerate any number
and any kind of transient faults in a sense that the system can recover and attain

This work was supported by JSPS KAKENHI Grant Numbers 17K19977, 18K18000,
19H04085, and 19K11826 and JST SICORP Grant Number JPMJSC1606.
A. K. Datta passed away on May 26, 2019. Rest in Peace, Ajoy.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 338–353, 2019.
https://doi.org/10.1007/978-3-030-34992-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_27&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_27

A Self-Stabilizing 1-Maximal Independent Set Algorithm 339

the desired behavior from any illegitimate configuration that those faults may
cause.

In this paper, we consider the 1-maximal independent set problems which
is the variant of the maximal independent set problem. Given a graph (or a
network) G = (V,E), a set S ⊆ V of nodes (or processes) is independent if any
two nodes in S are not neighbors. Finding a large independent set of a given
graph is important for many applications in distributed systems, for example,
clustering in wireless networks (See [1] in detail). However, finding the maximum
independent set is NP-hard [11]. Therefore, many studies in the literature give a
solution to find a maximal independent set (MIS), i.e., an independent set such
that no proper superset of it is independent. Unfortunately, the maximality of
an independent set does not always guarantee a large cardinality of the set. For
example, every star graph has an MIS consisting of only one node. Therefore,
we consider a stronger maximality called 1-maximality, which Bollobás et al. [2]
introduced1. An MIS S ⊆ V is 1-maximal if S ∪ {v, w} \ {u} is not independent
for any u ∈ S, and v, w /∈ S (v �= w). The 1-maximality offers better solution in
many cases. For example, the star graph of n nodes has exactly one 1-maximal
independent set (1-MIS), whose size is n − 1.

1.1 Related Work

The maximal independent set problem is one of the most fundamental problems
in graph theory and the field of distributed computing, thus it has been stud-
ied in many literature. Table 1 summarizes recent results on self-stabilizing MIS
algorithms, where n and D denote the number of processes and the diameter
of the network, respectively. In 1995, Shukla et al. [10] gave a self-stabilizing
MIS algorithm for any anonymous network. Their algorithm assumes the cen-
tral scheduler, i.e., exactly one process executes an atomic action at each step.
Its worst-case convergence from any configuration, to a configuration where an
MIS is constructed requires O(n) steps and it uses only O(1) bits per process.
Ikeda et al. [7] gave a different self-stabilizing MIS algorithm. Their algorithm
assumes the existence of the process-identifiers, however, it works correctly under
the distributed scheduler, which can activate any number of enabled processes
simultaneously at each step. The space complexity is still O(1), but the conver-
gence increases to O(n2) steps. Turau [11] gave a self-stabilizing MIS algorithm
with improved convergence time to O(n) in the same settings.

Shi et al. [9] gave the first self-stabilizing 1-MIS algorithm. It assumes that
the network topology is a tree and assumes the central scheduler. Its convergence
time is O(n2) steps and the space complexity is O(1) bits per process. Namba
[8] gave a self-stabilizing 1-MIS algorithm for any arbitrary graph with assuming
the central scheduler. No analysis was presented for convergence time in terms of
the number of steps, but its convergence time is O(n2) (asynchronous) rounds.
To construct 1-MIS, his algorithm runs n sub-algorithms in parallel, thus it uses
O(n log n) bits of memory space per process.

1 They actually introduce more general maximality, k-maximality for any k ≥ 1.

340 H. Tanaka et al.

It is worthwhile to mention that deterministic construction for MIS (and thus
1-MIS) is impossible in an anonymous network of an arbitrary topology with the
distributed scheduler, due to the lack of ability to break symmetry.

Table 1. Self-stabilizing maximal and 1-maximal independent set algorithms. n
denotes the number of processes, D denotes the diameter of the network.

Problem Topology ID Scheduler Convergence time Space

Steps Rounds

[10] MIS Any Unavailable Central O(n) O(n) O(1) bits

[7] MIS Any Available Distributed O(n2) O(n) O(1) bits

[11] MIS Any Available Distributed O(n) O(n) O(1) bits

[9] 1-MIS Tree Unavailable Central O(n2) O(n) O(1) bits

[8] 1-MIS Any Available Central – O(n2) O(n logn) bits

Proposed 1-MIS Any Available Distributed – O(nD) O(log n) bits

1.2 Our Contributions

We give a silent self-stabilizing 1-MIS algorithm under a distributed scheduler
for any arbitrary network. We assume the existence of process-identifiers. Its
convergence time is O(nD) rounds, where D is the diameter of the network, while
the space complexity is O(log n) per process. We use a composition technique
called loop composition, which Datta et al. [3] introduced recently. This technique
enables the processes to iterate the same subalgorithm an unbounded number of
times consistently until an 1-MIS is constructed, which results in a smaller space
complexity, O(log n) bits per process. To the best of our knowledge, the loop
composition technique is utilized only for the k-grouping problem [3] although
it seem applicable to many problems. Thus, our result shows the applicability
by providing the second success case of the loop composition in the literature.

2 Preliminaries

A undirected network G = (V,E) consisting of process set V and link set E
is given. We denote the number of processes and the diameter of G by n and
D, respectively. We assume n ≥ 2. We assume that the network G is connected
without loss of generality; if G is not connected, it suffices to construct an 1-MIS
for each component of G. Each process v has a unique identifier v.id chosen from
a set ID of non-negative integers where |ID| = O(poly(n)). Let Nv denote the
neighbors of a process v, i.e., Nv = {u ∈ V | {u, v} ∈ E}. We call the processes
in Nv v-neighbors. By an abuse of notation, we will identify each process with
its identifier, and vice versa, whenever convenient. We call a member of ID a
false identifier if it is not the identifier of any process in V .

A Self-Stabilizing 1-Maximal Independent Set Algorithm 341

We use the locally shared memory model [5]. A process is modeled by a
finite state machine. The state of a process is defined by the values of its vari-
ables. A process can read the variables of its own and its neighbors’ variables
simultaneously, but can update only its own variables. A distributed algorithm
defines behavior of each process v by a finite set of actions of the following from:
<label><guard> −→ <statement>. The label of each action is a number used
for reference. The guard is a predicate on the variables and identifiers of v and
it’s neighbors. The statement updates the state (or variables) of v. An action
can be executed only if it is enabled, i.e., its guard evaluates to true, and a pro-
cess is enabled if at least one of its actions is enabled. The evaluation of guard
and the execution of the corresponding statement are presumed to take place in
one atomic step. For simplicity, we use notation “v.x ←− χ(v)” to represent an
action “v.x �= χ(v) −→ v.x ← χ(v)” for any variable x and any function χ(v).
Thus, the action “v.x ←− χ(v)” is enabled if and only if v.x �= χ(v). We also use
a symbol ⊥ to represent “null value” and define min ∅ = ⊥ and min{a,⊥} = a.

A configuration of the network is an n-dimensional vector consisting of a
state for each process. We denote by γ(v).x the value of variable x of process
v in configuration γ. Each transition from a configuration to another, called a
step of the algorithm, is driven by a daemon. We assume the distributed daemon
in this paper; at each step, the distributed daemon selects one or more enabled
processes to execute an action. If a selected process has two or more enabled
actions, it executes the action with the smallest label number. We write γ �→A γ′

if configuration γ can change to γ′ by one step of algorithm A. We define an
execution of algorithm A to be a sequence of configurations γ0, γ1, · · · such that
γi �→A γi+1 for all i ≥ 0. We assume the daemon to be weakly-fair, meaning that
a continuously enabled process must be selected eventually.

A self-stabilization algorithm ensures that an execution eventually recovers
a correct configuration even if it is started from any configuration, i.e., each
process may start from any state. An execution is maximal if it is infinite, or
it terminates at a final configuration, i.e., a configuration where no process is
enabled. We say that a configuration γ of A is safe for L if every execution
γ0, γ1, . . . of A starting from γ (i.e., γ0 = γ) always satisfies L, that is, L(γi)
holds for all i ≥ 0. Algorithm A is said to be self-stabilizing for L if there exists
a set C of configurations of A such that every configuration in C is safe for L
and every maximal execution γ0, γ1, . . . of A reaches a configuration in C, i.e.,
γi ∈ C holds for some i ≥ 0. We also say that A is silent if every execution of A
is finite. Thus, a silent algorithm A is self-stabilizing for predicate L if and only
if every final configuration satisfies L.

We sometimes regard a predicate on configurations as the set of configura-
tions. For example, we write γ ∈ L1 ∩ L2 when a configuration γ satisfies both
predicates L1 and L2.

We measure time complexity of an execution in rounds [6]. We say that
process v is neutralized at step γi �→ γi+1 if v is enabled at γi and not at γi+1.
We define the first round of an execution � = γ0, γ1, . . . to be the minimum
prefix γ0 . . . γs during which every process enabled at γ0 executes an action or
is neutralized. The second round of � to be the first round of the execution

342 H. Tanaka et al.

γs, γs+1, . . . and so forth. We evaluate the number of rounds of �, denoted by
R(�), as the execution time of �.

2.1 Problem Specification

We specify the 1-maximal independent set problem. A set S ⊆ V of processes is
called a independent set (or just IS) of G if no two processes in S are neighbors
in G, that is, ∀u, v ∈ S : {u, v} /∈ E. An independent set of G is called a
maximal independent set (or just MIS) of G if it is not a proper subset of any
other independent set of G. A maximal independent set S of G is called an 1-
maximal independent set (or just 1-MIS) of G if we cannot increase cardinality
of S without violating the independent property by removing one process and
adding two or more processes, that is, for any process v ∈ S and any distinct
processes u,w /∈ S, set S ∪ {u,w} \ {v} is not an independent set. We assume
that each process v has a variable v.mis ∈ {true, false}. We define predicate
L1MIS on configurations as follows: L1MIS(γ) = true holds if and only if, in
configuration γ, {v ∈ V | v.mis = true} is an 1-maximal independent set. Our
goal is to give a silent and self-stabilizing algorithm for L1MIS.

3 Loop Compotision

We use the loop composition [3] to design a silent self-stabilizing 1-MIS algo-
rithm. The loop composition is a technique to iterate a given algorithm repeat-
edly in a harmonious way. To utilize the loop composition, we must design two
algorithms A and P and a predicate E for a given predicate L. Algorithm A is
a base algorithm that we aim to execute repeatedly. It must satisfy the three
requirements, shiftable convergence, loop convergence, and correctness. These
requirements are defined in the sequel. Predicate E : V �→ {false, true} is
an locally checkable error-detecting predicate. We say that a configuration γ is
erroneous for E if E(v) holds for some v ∈ V in γ. Otherwise, we say that γ
is non-erroneous for E. Algorithm P is a silent self-stabilizing algorithm that
brings the system to a non-erroneous configuration for E, starting from any con-
figuration. Then, we obtain a composite algorithm Loop(A, E,P) [3], which is
a silent self-stabilizing for L. Very roughly speaking, Loop(A, E,P) shows the
following behavior. Recall that a configuration is final for A if and only if no
action of A is enabled in any process.
1: repeat
2: if the current configuration is erroneous then
3: Execute P, which bring the system to a non-erroneous configuration.
4: else
5: Execute A, which bring the system to a final configuration for A
6: Copy the outputs of A to the inputs of A
7: end if
8: until The current configuration is final and the inputs and the outputs of A

are the same.

A Self-Stabilizing 1-Maximal Independent Set Algorithm 343

Fig. 1. An execution of Loop(A, E,P)

In what follows, we describe the conditions for A and P and explain the
meaning of copying from the output of A to the input of A. We define OA
(resp. OP) as the set of variables of A (resp.P) whose values can be updated
by actions of A (resp.P), and IA (resp. IP) as the set of variables A (resp.P)
whose values are never updated and only read by actions of A (resp. P). We
assume OA∩OP = ∅ and IP = ∅. The error detecting predicate E(v) is evaluated
by process v ∈ V , and its evaluation depends on variables in IA ∪ OP of the v-
neighbors and v itself. Let E be a predicate on configurations such that E(γ) holds
if and only if

∨
v∈V E(v) holds in configuration γ. We assume that algorithm A

has a copying variable x ∈ IA for every variable x ∈ OA. We define γcopy as
the configuration obtained by replacing the value of v.x with the value of v.x
for every process v and every variable x ∈ OA in configuration γ. We define
predicate Cgoal(A, E) as follows: configuration γ satisfies Cgoal(A, E) if and only
if γ ∈ ¬E , γcopy = γ, and no action of A is enabled in any process. We must
design A to satisfy the following three requirements for some RA and LA:

Shiftable Convergence. Every maximal execution of A that starts from a
configuration in ¬E terminates at a configuration γ such that γcopy ∈ ¬E .

Loop Convergence. If �0, �1 . . . is an infinite sequence of maximal executions
of A where �i = γi,0, γi,1, . . . , γi,si , γ0,0 ∈ ¬E , and γi+1,0 = γcopy

i,si
for each

i ≥ 0, then γj,sj ∈ Cgoal(A, E) and R(�0) + R(�1) + . . . R(�j) ≤ RA hold for
some j < LA, and

Correctness. γ ∈ Cgoal(A, E) ⇒ γ ∈ L holds for every configuration γ.

Two integers LA and RA are an upper bound on the number of interactions
of A’s executions and an upper bound on the total number of rounds of those
(iterated) executions in A. We also must design P such that every maximal
execution of P terminates at a configuration in ¬E within TP rounds.

If we design A, E, and P that satisfy the above conditions, the composited
algorithm Loop(A, E,P) presented in [3] has the property described in the
following theorem.

344 H. Tanaka et al.

Theorem 1 ([3,4]2). Algorithm Loop(A, E,P) is a silent and self-stabilizing
for predicate L. Every execution of Loop(A, E,P) terminates within O(n+TP +
RA + LAD) rounds. Its space complexity is O(SA + SP + log n) bits per process,
where SA (resp. SP) is space complexity of A (resp. P) in bits per process.

We briefly describe the behavior of Loop(A, E,P) in the rest of this section.
In an execution of Loop(A, E,P), the processes simulates an execution of A
or an execution of P. Starting from any configuration, the processes eventually
agree with which algorithm they should simulate. When they detect that the
current configuration does not satisfy ¬E , they simulate an execution of P, by
which a configuration in ¬E is reached. (See the (leftmost) thick arrow in Fig. 1).
If the current configuration satisfies ¬E , then the processes simulate A. (See
the solid arrows in Fig. 1). Whenever a simulated execution of A terminates,
the processes checks whether or not they already reaches a configuration in
Cgoal(A, E). If it does, they will do nothing thereafter. Otherwise, they copy the
values of all input variables to the corresponding copy variables, which results
in transition of the current configuration. (See the dashed arrows in Fig. 1).
After that they simulate a new execution of A again. From the property of the
shiftable convergence and the loop convergence of A, they eventually reach a
configuration in Cgoal(A, E) and they terminate (although they cannot detect
termination). Thereafter, legitimate predicate L is always satisfied thanks to the
correctness property of A.

4 Self-stabilizing 1-MIS Algorithm

In this section, we design a silent self-stabilizing algorithm for 1-MIS using the
loop composition method described in the previous section. Specifically, we give
a base algorithm Inc and an initialization algorithm Init and an error detecting
predicate EMIS such that Loop(Inc, EMIS, Init) is a silent and self-stabilizing
algorithm for L1MIS. The space complexity of Loop(Inc, EMIS, Init) is O(log n)
bits per process and the worst case time complexity is O(nD) rounds.

Every process v maintains a Boolean variable v.mis ∈ {false, true} and the
corresponding copying variable v.mis ∈ {false, true}. A variable v.mis is an
output variable of Init and an input variable of Inc. A variable v.mis is not
accessed by Init . It is updated only by Inc. We define two sets SI = {v ∈
V | v.mis} and SO = {v ∈ V | v.mis}. Define Linput as the predicate on
configurations such that Linput(γ) = true if and only if SI is an MIS in a
configuration γ.

Our goal is to design Inc, EMIS, and Init such that;

– If SI is not an MIS, i.e., the current configuration deviates from Linput, then at
least one process v must detect the deviation with error detecting predicate
EMIS(v), that is, Linput(γ) holds if and only if ¬∨

v∈V EMIS(v) holds in a
configuration γ,

2 Loop composition Loop(A, E,P) was originally given in [3], and its time complexity
was slightly improved by [4].

A Self-Stabilizing 1-Maximal Independent Set Algorithm 345

– Every maximal execution of Init starting from any configuration terminates
within O(n) rounds at a configuration in Linput,

– Every maximal execution � of Inc starting from a configuration in Linput

where SI is not an 1-MIS terminates at a configuration where SO is an MIS
such that |SO| ≥ |SI |+1, within O(ε+1) rounds where ε is |SO|− |SI | in the
final configuration of �, and

– Every maximal execution � of Inc starting from a configuration in Linput

where SI is an 1-MIS terminates within O(1) rounds at a configuration where
SO = SI .

Table 2. Init

[Actions of process v]
I1: v.mis (w Nv : w.mis (v.id < w.id))

Note that the predicate Linput corresponds to ¬E in the previous section. If the
above conditions hold, then Inc, EMIS, and Init satisfy all the conditions of the
loop composition for L = L1MIS, TInit = O(n), RInc = O(n), LInc = n, thus
Loop(Inc, EMIS, Init) is a silent and self-stabilizing algorithm for L1MIS and its
time complexity is O(n + TInit + Rinc + Linc · D) = O(nD) rounds.

We give Init and EMIS in Sect. 4.1 and give Inc in Sect. 4.2.

4.1 Error Detecting Predicate EMIS and Algorithm Init

First, we give the error detecting predicate EMIS as follows:

EMIS(v) ≡ (v.mis ∧ ∃u ∈ Nv : u.mis) ∨ (¬v.mis ∧ ∀w ∈ Nv : ¬w.mis).

Lemma 1. For any configuration γ, Linput(γ) holds if and only if
¬∨

v∈V EMIS(v) holds in γ.

Proof. Note that ¬EMIS(v) ≡ (v.mis ⇒ ∀u ∈ Nv : ¬u.mis) ∧ (¬v.mis ⇒ ∃w ∈
Nv : w.mis). Suppose that ¬∨

v∈V EMIS(v) holds in a configuration γ, that is,
we have ¬EMIS(v) for all v ∈ V in γ. Then, every process in SI has no neighbor
in SI and every process in V \ SI has at least one process in SI . Hence, SI is
an MIS in γ and Linput(γ) holds. Suppose the other case, that is,

∨
v∈V EMIS(v)

in γ. In this case, some process in SI has a neighbor in SI or some process in
V \ SI has no process in SI . Hence, SI is not an MIS in γ and Linput(γ) does
not hold.

��
Next, we give an algorithm Init . The goal of this algorithm is to bring the

network to a configuration where SI is an MIS within O(n) rounds starting from
any configuration. The algorithm Init consists of only one action I1 as given in

346 H. Tanaka et al.

Fig. 2. Example of SI

Fig. 3. Example of SO for Fig. 2

Table 2. In this algorithm, a process with a smaller identifier has a higher priority
to be a member of SI . If a process v finds that there is no neighbor with a smaller
identifier in SI , then v becomes a member of SI , that is, v executes v.mis ← true.
Otherwise, that is, if there exists a process with a smaller identifier in Nv ∩ SI ,
v executes v.mis ← false.

Lemma 2. Every maximal execution of Init starting from any configuration
terminates within O(n) rounds at a configuration in Linput.

Proof. First, we claim that any final configuration of Init satisfies Linput. By
definition of notation “v.x ←− χ(v)” (See Sect. 2), a process v is enabled if
and only if v.mis �≡ (∀w ∈ Nv : ¬w.mis ∨ (v.id < w.id))). Therefore, in a
final configuration γ, where no process is enabled, every process v in SI has no
neighbor in SI and every process v in V \ SI has at least one neighbor in SI .
Thus, any final configuration satisfies Linput.

Next, we prove that every maximal execution terminates within O(n) rounds.
Let v1, v2, . . . , vn be the processes in V such that v1.id < v2.id < · · · < vn.id .
The guard of I1 in process v, i.e., v.mis �≡ (∀w ∈ Nv : ¬w.mis∨ (v.id < w.id))),
depends only on v.mis and w.mis such that w.id ≤ v.id . Therefore, v1 becomes
disabled in the first round of any maximal execution of Init and never becomes
enabled thereafter. Similarly, vi becomes disabled within one round after all
neighboring processes with smaller identifiers than vi are disabled. Thus, any
maximal execution terminates within O(n) rounds. ��

4.2 Algorithm Inc

We give an algorithm Inc in this section. This algorithm assumes that SI is an
MIS of G. The goal of this algorithm is to bring the network to a configuration
where SO is an MIS such that |SO| ≥ |SI | + 1 if SI is not an 1-MIS. Otherwise
the goal is to reach a configuration where SO = SI holds. Note that if SI is not
an 1-MIS, SO such that |SO| ≥ |SI | + 1 holds necessarily exists. For example,
see Fig. 2 where SI = {5, 23, 71} is an MIS of G.

A Self-Stabilizing 1-Maximal Independent Set Algorithm 347

4.2.1 Key Idea
In this subsection, we give a key idea to find an MIS SO such that SO = SI if
SI is an 1-MIS of G, otherwise |SO| ≥ |SI | + 1. Implementation of this idea as
a distributed algorithm will be described in Sect. 4.2.2.

Fig. 4. The first and the second filters

First, we define the parent-child relationship on processes: If a process v ∈
V \ SI has exactly one neighbor u in SI , i.e., Nv ∩ SI = {u}, we say that u is
a parent of v and v is a child of u. That only constructs tree whose height is
1. As we will see later, each process v memorizes the identifier of its parent in
v.parent if v has a parent. Otherwise, we assign v.parent = ⊥. Define Cu as
the set of children of process u, that is, Cu = {v ∈ Nu | v.parent = u}. Let
u and v be any two processes such that u is a parent of v, i.e., v.parent = u.
If |Cu| − |Cu \ Nv| ≥ 2, we call v a candidate. In other words, v is a candidate
if and only if it has a parent and this parent has another child in V \ Nv. Let
us see an example (See Fig. 4). Process 31 is a candidate because its parent,
process 5, has another child, process 62, which is not a neighbor of process 31.
On the other hand, process 13 is not a candidate because all other children of
process 5 are neighbors of Process 13. We use the word “candidate” because
we can increase the size of MIS by adding some candidates and removing their
parent. For example, we obtain larger MIS than SI if we remove process 5 and
add the two non-neighboring candidates among its children, processes 31 and 62.
However, we cannot add all candidates to obtain a larger MIS. This is because
some of the candidates may be neighbors and thus have conflicts to join the
independent set. For example, we cannot add both processes 53 and 79, and we
cannot add both processes 11 and 81.

Next, we perform two distinct filers to avoid conflicts. We call a process that
survives the first filter (resp. the second filter) a qualifier (resp. a winner). If a
candidate v does not have any neighboring candidate w such that w.parent <
v.parent, v is a qualifier. Otherwise, v is not a qualifier. For example, in the
example of Fig. 4, process 79 is not a qualifier because the identifier of its parent
is 71 and one of its neighbors, process 53, has a parent with identifier 23 < 71.
The other candidates are qualifiers in this example. Any two qualifiers that have

348 H. Tanaka et al.

distinct parents are not neighbors, thus do not have a conflict while some two
qualifiers with the same parent may have a conflict. We chose winners among
the qualifiers in the second filter by comparing their identifiers in the same way
as algorithm Init . The winners are decided by each parent such that it has two
or more qualifiers. Let q1, q2, . . . , qs be the qualifiers of G in the ascending order,
i.e., q1 < q2 < . . . qs. Define the set W of qualifiers recursively as follows; q1 ∈ W ,
and for each i ≥ 2, qi ∈ W if and only if there is no qi-neighbor qj ∈ W such
that j < i. The qualifiers in the resulting W are winners and the other qualifiers
are non-winners. In the example of Fig. 4, Processes 11, 31, 37, 53, and 62 are
winners. We have the following two lemmas about winners.

Lemma 3. There is at least one process that has two or more winners in its
children if SI is not an 1-MIS of G.

Proof. Let u be the process with the minimum identifier such that it has a
candidate among its children. Such u must exist if SI is not an 1-MIS. Let c1 be
the candidate in Cu with the smallest identifier. By definition of the candidates,
there exists one or more other candidates in Cu that are not c1-neighbors. Let
c2 be the candidate with the smallest identifier among them. Both c1 and c2

survive the first and the second filters thanks to the minimality of u’s identifier
and the absence of a candidate in Cu that makes c1 or c2 drop in the second
filter. Hence, there exist at least two winners in u’s children. ��
Lemma 4. There exists no winner if SI is an 1-MIS of G.

Proof. Assume for contradiction that SI is an 1-MIS of G and there is a candidate
v ∈ V . Let u be the parent of v. By definition of a candidate, u has at least
one candidate other than v, say w, in its children, which is not a neighbor
of v. Since v and w are candidates, SI ∩ (Nv ∪ Nw) = {u} holds. Therefore,
SO = SI∪{v, w}\{u} is an independent set and |SO| = |SI |+1, which contradicts
the assumption that SI is an 1-MIS of G. ��

Finally, we choose SO = SA(SI) ∪ SB(SI) ∪ SC(SI) where SA(SI), SB(SI),
and SC(SI) are the sets of processes that we will define in the following. These
sets depend on SI , but we always omit SI from their notations, i.e., just write
SA, SB, and SC , whenever it is clear from the contest. Define SA as the set of
all processes u in SI such that u has less than two winners in its children. Define
SB as the set of all winners v such that v.parent /∈ SA. By definition, SA∪SB is
an independent set of G. Moreover, |SA ∪SB | ≥ |SI |+ |SB |/2 ≥ |SI |+1 holds if
SI is not an 1-MIS. This is because (i) SB �= ∅ holds by Lemma 3, and (ii) each
process in SI \SA has at least two winners in its children, thus |SB | ≥ 2|SI \SA|
holds. On the other hand, SA = SI and SB = ∅ holds if SI is an 1-MIS, by
Lemma 4. Note that SA ∪SB is an independent set but may not be an MIS of G
(if SI is not an 1-MIS). In the example of Fig. 4, SA ∪SB = {11, 31, 53, 62, 71} is
not an MIS because SA∪SB∪{28} is also an independent set of G. We define the
set SC as the maximal set of non-winners such that pi ∈ SC if and only if there
exists no pi-neighbor in SA ∪ SB and no pi-neighbor with a smaller identifier

A Self-Stabilizing 1-Maximal Independent Set Algorithm 349

than pi in SC The set SA ∪ SB ∪ SC is an independent set since each pi ∈ SC

does not have a neighbor in SA ∪SB ∪SC . Furthermore, SA ∪SB ∪SC is an MIS
of G because otherwise there must be a non-winner v ∈ V \ SI such that there
exists no v-neighbor in SA ∪ SB ∪ SC , but it implies v ∈ SC by definition of SC ,
a contradiction. Therefore, we have the following three lemmas.

Lemma 5. The set SA ∪ SB ∪ SC is an MIS of G if SI is an MIS of G.

Lemma 6. |SA ∪ SB ∪ SC | ≥ |SI | + |SB |/2 + |SC | ≥ |SI | + 1 if SI is an MIS
but not an 1-MIS of G.

Lemma 7. SA ∪ SB ∪ SC = SI and SB = SC = ∅ if SI is an 1-MIS of G.

Thus we achieve our goal by letting SO = SA ∪ SB ∪ SC . If SI is not an
1-MIS, |SO| ≥ |SI |+1. Otherwise, SO = SI . In the example of Fig. 4, SA = {71},
SB = {11, 31, 53, 62}, SC = {28}, and hence |SO| = 6 > 3 = |SI | (See Fig. 3).

Table 3. Inc

[Actions of process v]
M1: v.parent Parent(v)
M2: v.numchild Cv|
M3: v.cand Cand(v)
M4: v.qualifier Qualifier(v)
M5: v.winner Winner(v)
M6: v.mis InSA(v) InSB(v) InSC v

|

Table 4. Functions of Inc

Parent(v) =

{
min{w.id | w.mis} if |{w ∈ Nv | w.mis}| = 1
⊥ otherwise

Cv = {w ∈ Nv | w.parent = v}
Cand(v) ≡ v.parent �= ⊥

∧ (v.parent).numchild − |{w ∈ Nv | v.parent = w.parent}| ≥ 2

Qualifier(v) ≡ v.cand ∧ (∀w ∈ Nv : w.cand ⇒ v.parent ≤ w.parent)

Winner(v) ≡ v.qualifier ∧ (∀w ∈ Nv : v.id < w.id ∨ ¬w.winner)

InSA(v) ≡ v.mis ∧ |{w ∈ Cv | w.winner}| ≤ 1

InSB(v) ≡ ¬v.mis ∧ v.winner ∧ ¬(v.parent).mis

InSC(v) ≡ ¬v.mis ∧ ¬v.winner ∧
(

∀w ∈ Nv s.t. w.mis :

¬ w.mis ∨ w.winner ∨ w.id < v.id
)
)

350 H. Tanaka et al.

4.2.2 Distributed Implementation
Each process v has six variables v.parent ∈ ID , v.numchild ∈ {0, 1, 2, . . . , |Nv|},
v.cand ∈ {false, true}, v.qualifier ∈ {false, true}, v.winner ∈ {false, true},
and v.mis ∈ {false, true}, and the corresponding copying variables for the six
variables. Each child v, i.e., a process in V \ SI that has exactly one neighbor
in SI , stores the identifier of its parent on v.parent. Each process u in SI store
the number of its children, i.e., |Cv|, on u.numchild. Since |ID| = O(poly(n)),
two variables parent and numchild require O(log n) bits per each process. The
Boolean variable v.cand, v.qualifier, and v.winner represent whether or not
a process v is a candidate, a qualifier, and a winner, respectively.

Actions of Inc are given in Table 3 and the functions used in Table 3 are
given in Table 4. We use a hierarchical composition to design Inc. Actions
M1,M2, . . . ,M6 maintain variables parent, numchild, cand, qualifier,
winner, and mis, respectively. We say that an action Mi converges if all of
M1,M2, . . . ,Mi are disabled in all the processes. Generally, action Mi (i ≥ 2)
refers the variables maintained by M1,M2, . . . ,Mi−1. Therefore, before Mi−1

converges, some of those variables in some process may not be correct, thus
action Mi does not compute the correct value of the variable it maintains. How-
ever, after Mi−1 converges, those variables maintained by M1,M2, . . . ,Mi−1 are
correct in all the processes, thus action Mi can use the correct values of those
variables.

Actions M1, M2, M3, and M4 are simple and straightforward. By these
actions, each process v computes its parent (if it has), the number of its children,
whether or not it is a candidate, and whether or not it is a qualifier, respectively.
Actions M5 simulates the second filter. By M5, a qualifier v sets v.winner = true
(become a winner) if and only if every w ∈ Nv such that w.winner = true has
larger identifier than v. The second filter implemented by Action M5 obviously
computes the correct value of winner, i.e., v.winner holds if and only if v ∈ W .
However, it sometimes requires more than a constant number of rounds. In the
example shown in Fig. 4, process 53 may become the first winner because there
is no winner among its neighbors in the configuration shown in the figure. How-
ever, process 29 may become a winner later, and then, process 53 will get back
to a non-winner since process 29 has a smaller identifier. Process 29 also must
get back to a non-winner because process 11 is the smallest qualifier among its
neighbors and eventually becomes a winner. After that, process 53 will become a
winner again because now it has no winner among its neighbors. Eventually, an
execution of Inc reaches the configuration shown in Fig. 4. As we will see later,
the flipping behavior like this example may require Θ(k) rounds in the worst
case when some process in SI has k winners among its children after this filter
converges.

A variable v.mis is maintained by Action M6. Our goal is to set v.mis such
that SO = SA ∪ SB ∪ SC holds. After M5 converges, every process v ∈ SI

computes v.mis correctly within one round by M6; every v ∈ SI executes
v.mis ← true if and only if v ∈ SA, i.e., there is no more than one winner
among v’s children. Every v ∈ W computes v.mis correctly in the next round;

A Self-Stabilizing 1-Maximal Independent Set Algorithm 351

it executes v.mis ← true if and only if v ∈ SB , i.e., (v.parent).mis = false.
Thereafter, every process v /∈ SI ∪ W computes v.mis correctly; it executes
v.mis ← true if and only if v ∈ SC , i.e., there is no v’s neighbor w such that
w ∈ SA∪SB or w ∈ SC∧w.id < v.id . Since the last computation (for v /∈ SI∪W)
is recursive, it requires O(|SC |) rounds for the same reason as the computation
of M5.

Lemma 8. Every maximal execution � of Inc starting from a configuration in
Linput terminates at a configuration where SO = SA ∪ SB ∪ SC , within O(1 +
|SB | + |SC |) rounds.

Proof. By definition of the six actions of Inc, SO = SA∪SB∪SC holds when � ter-
minates. Therefore, it suffices to show that � terminates within O(1+|SB |+|SC |)
rounds. Actions M1, M2, M3, and M4 converges within O(1) rounds because
Action Mi (1 ≤ i ≤ 4) refers only variables that are maintained by the actions
M1 . . . ,Mi−1. The same does not hold for Actions M5 because it is recursive in
a sense that a qualifier v may refer a variable winner of some neighbors to com-
pute its own winner. In the following, for any process v and any variable x, we
say that v.x converges at a point of a maximal execution if v does not change the
value of v.x after the point. Let u be any process in SI and Wu be the set of win-
ners among w’s children, i.e., Wu = W ∩ Nv. Let wu,1, wu,2, . . . , wu,|Wu| be the
processes in Wu in the ascending order of their identifiers. After M4 converged,
wu,1.winner converges to true within one round and v.winner of all its neigh-
bors v converges to false within the next round. After that, wu,2.winner con-
verges within one round since wu,2 has a smaller identifier than any qualifier in
Nwu,2 \Nwu,1 . Generally, wu,i.winner converges to true within O(i) rounds after
M4 converged. Thus, Action M5 converges within O(maxu∈SI

|Wu|) = O(|SB |)
rounds. After M5 converges, M6 converges within O(|SC |) rounds for the same
reason. ��

In what follows, we show that algorithm Inc satisfies three requirements,
shiftable convergence, loop convergence, and correctness.

Lemma 9 (Shiftable Convergence). Every maximal execution � of Inc
starting from a configuration in Linput terminates at a configuration γ such that
γcopy ∈ Linput.

Proof. In the final configuration γ, SO = SA ∪ SB ∪ SC holds by Lemma 8. This
set SO is an MIS of G by Lemma 5. Clearly, SO in γ equals to SI in γcopy. Then,
SI is an MIS of G in γcopy, which yields γcopy ∈ Linput. ��

Recall that, for any configuration of Inc, γ ∈ Cgoal(Inc, EMIS) means that
γ ∈ Linput, γcopy = γ, and no action of Inc is enabled in any process.

Lemma 10 (Loop Convergence). If �0, �1 . . . is an infinite sequence of max-
imal executions of A where �i = γi,0, γi,1, . . . , γi,si , γ0,0 ∈ Linput, and γi+1,0 =
γcopy
i,si

for each i ≥ 0, then γj,sj ∈ Cgoal(Inc, EMIS) and R(�0)+R(�1)+. . . R(�j) =
O(n) hold for some j ≤ n.

352 H. Tanaka et al.

Proof. By Lemma 9, the initial configuration of every execution �i satisfies γi,0 ∈
Linput by induction on i ≥ 0. Let SI,0, SI,1, . . . be SI in the initial configurations
γ0,0, γ1,0, . . . of �0, �1, . . . , respectively. Let SO,0, SO,1, . . . be SO in the final
configurations γ0,s0 , γ1,s1 , . . . of �0, �1, . . . , respectively. By definition, SI,i+1 =
SO,i holds for all i ≥ 0. By Lemmas 6 and 8, |SI,i| < |SI,i+1| holds unless
SI,i is an 1-MIS of G. Since |SI,i| < n holds for all i and |SI,0| ≥ 1, there
exists j′ < n such that SI,j′ = SI,j′+1 = SI,j′+2 = . . . , i.e., SI,k is the same
for all k ≥ j′ by Lemmas 7 and 8. We consider the minimum such j′ in what
follows. Algorithm Inc refers only variable mis among the six copying variables.
Therefore, letting v ∈ V be any process and x be any output variable, v.x is
the same in γj′,sj′ and γj′+1,sj′+1

. Furthermore, v.x in γj′,sj′ equals to v.x in
γj′+1,sj′+1

because γcopy
j′,sj = γj′+1,0. and v.x never changes in execution �j′+1.

Therefore, γcopy
j′+1,sj′+1

= γj′+1,sj′+1
, which yields γj′+1,sj′+1

∈ Cgoal(Inc, EMIS).
Lemmas 6, 7, and 8 gives R(�0) + R(�1) + . . . R(�j′+1) = O(n). ��
Lemma 11 (Correctness). Every configuration γ ∈ Cgoal(Inc, EMIS) satisfies
L1MIS.

Proof. We have SI = SO because γ ∈ Cgoal(Inc, EMIS). Assume for contradiction
that SO(= SI) is not an 1-MIS of G in γ. Since γ is a final configuration (i.e.,
no process is enabled), SO = SA(SI) ∪ SB(SI) ∪ SC(SI) holds by Lemma 8.
Therefore, |SO| ≥ |SI | + 1 holds by the assumption and Lemma 6, which yields
SO �= SI , a contradiction. ��
Theorem 2. Algorithm Loop(Inc, EMIS, Init) is silent and self-stabilizing for
L1MIS. Every maximal execution of Loop(Inc, EMIS, Init) starting from any con-
figuration terminates within O(nD) rounds. Algorithm Loop(Inc, EMIS, Init)
uses O(log n) bits per process.

Proof. Immediately follows from Theorem 1 and Lemmas 1, 2, 9, 10, and 11
because O(n + TInit + Rinc + Linc · D) = O(nD). ��

References

1. Awerbuch, B., Luby, M., Goldberg, A.V., Plotkin, S.A.: Network decomposition
and locality in distributed computation. In: 30th Annual Symposium on Founda-
tions of Computer Science, pp. 364–369. IEEE (1989)

2. Bollobás, B., Cockayne, E.J., Mynhardt, C.M.: On generalised minimal domination
parameters for paths. In: Annals of Discrete Mathematics, vol. 48, pp. 89–97.
Elsevier (1991)

3. Datta, A.K., Larmore, L.L., Masuzawa, T., Sudo, Y.: A self-stabilizing minimal
k-grouping algorithm. In: Proceedings of the 18th International Conference on
Distributed Computing and Networking, p. 3. ACM (2017)

4. Datta, A.K., Larmore, L.L., Masuzawa, T., Sudo, Y.: A self-stabilizing minimal
k-grouping algorithm. arXiv preprint arXiv: 1907.10803 (2019)

5. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

http://arxiv.org/abs/1907.10803

A Self-Stabilizing 1-Maximal Independent Set Algorithm 353

6. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
7. Ikeda, M., Kamei, S., Kakugawa, H.: A space-optimal self-stabilizing algorithm

for the maximal independent set problem. In: The Third International Conference
on Parallel and Distributed Computing, Applications and Technologies (PDCAT),
pp. 70–74 (2002)

8. Namba, E.: A hierarchical self-stabilizing 1-MIS algorithm. Master’s thesis, Osaka
University (2017). (in Japanese)

9. Shi, Z., Goddard, W., Hedetniemi, S.T.: An anonymous self-stabilizing algorithm
for 1-maximal independent set in trees. Inf. Process. Lett. 91(2), 77–83 (2004)

10. Shukla, S.K., Rosenkrantz, D.J., Ravi, S.S., et al.: Observations on self-stabilizing
graph algorithms for anonymous networks. In: Proceedings of the SecondWorkshop
on Self-stabilizing Systems, vol. 7, p. 15 (1995)

11. Turau, V.: Linear self-stabilizing algorithms for the independent and dominating
set problems using an unfair distributed scheduler. Inf. Process. Lett. 103(3), 88–
93 (2007)

Black Hole Search Despite
Byzantine Agents

Masashi Tsuchida, Fukuhito Ooshita(B), and Michiko Inoue

Nara Institute of Science and Technology, Ikoma, Japan
{tsuchida.masashi.td8,f-oosita,kounoe}@is.naist.jp

Abstract. We study the black hole search problem of k mobile agents in
synchronous Byzantine environments. The goal of the black hole search
problem is to detect a black hole node, which deletes all agents visiting
the node without any trace. We assume that the graph topology is arbi-
trary, each agent has a unique ID, and at most fu strongly Byzantine
agents exist. Under these assumptions, we propose an algorithm that
detects a black hole node in O(fun) rounds when k ≥ 2fu + 2 holds,
where n is the number of nodes. We also show that it is impossible to
solve the black hole search problem when k ≤ 2cu + 1 holds, where cu
is an upper bound of the number of crash agents. Since a crash fault
is a special case of a Byzantine fault, the above result also applies to
strongly Byzantine agents. This implies that our proposed algorithm is
optimal in terms of the number of tolerable faulty agents. To the best
of our knowledge, this is the first work to address the black hole search
problem with Byzantine agents.

Keywords: Mobile agent · Black hole search problem · Synchronous
network · Byzantine fault

1 Introduction

In recent years, a distributed system with multiple computers (nodes) has
become larger. Since nodes communicate with each other, the communication
complexity increases in huge distributed systems. This makes it complicated
to design distributed systems because developers must maintain a huge num-
ber of nodes and treat massive data communication among them. To alleviate
these problems, mobile agents have attracted attention as a new paradigm [1].
Agents are software programs that can autonomously move from node to node
and execute various tasks in distributed systems. By using agents, nodes do not
need to communicate with each other because agents themselves can collect and
analyze data by moving around distributed systems. Therefore, we can simplify
design of distributed systems by using agents. In addition, agents can efficiently

This work was supported in part by JSPS KAKENHI Grant Number 18K11167 and
JST SICORP Grant Number JPMJSC1806.

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 354–367, 2019.
https://doi.org/10.1007/978-3-030-34992-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_28&domain=pdf
https://doi.org/10.1007/978-3-030-34992-9_28

Black Hole Search Despite Byzantine Agents 355

execute tasks by cooperating with other agents. Hence many researchers study
algorithms to realize cooperation among multiple agents.

Since a node exists as a physical entity, it may crash. In addition, as the
number of nodes in distributed systems increases, the possibility that some faulty
nodes exist also increases. To realize continuous availability, it is necessary to
cope with faults such as node crashes. Several works address the black hole
search problem of finding faulty nodes. In this problem, we assume that a faulty
node erases all visited agents without any trace, and we call this node a black
hole node. In addition, some of agents might be faulty because they move on
the distributed systems and might be affected by several noise. Faulty agents
may behave arbitrarily without following the algorithm. We call such agents
Byzantine agents.

As mentioned above, agents and nodes may become faulty and hence it is
important to design fault-tolerant algorithms. Many works assume that faults
occur in either agents or nodes in the mobile agent environment. However, it is
possible that faults of agents and nodes occur at the same time. In this paper, we
consider distributed systems such that at most one black hole node exists and,
at the same time, multiple Byzantine agents exist. Under this assumption, we
propose an algorithm that detects a black hole node regardless of the behavior
of Byzantine agents if the black hole exists. In addition, our proposed algorithm
is optimal in terms of the number of tolerable faulty agents. To the best of our
knowledge, this is the first work to address the black hole search problem in
Byzantine environments.

Table 1. Searching for a black hole node in graphs (F-to-F is “face-to-face”, Pure T
is “pure token”, Enhanced T is “enhanced token”, n is the number of nodes, fu is the
upper bound of the number of Byzantine agents).

Synchronicity Graph Network

knowledge

Starting

location

Comm.

models

Byzantine

agents

agents Time to

solve

[4] Sync. Ring Map Common F-to-F No ≥ 2 O(n log n)a

[8] Sync. Arbitrary Map Common F-to-F No 2 3 3
8 ·OPT

[2] Sync. Torus Sense of

direction

Arbitrary Pure T &

F-to-F

No ≥ 3 -

[5] Async. Ring Map Common Enhanced

T

No ≥ 2 Θ(n log n)b

[6] Async. Arbitrary Map Common Pure T No ≥ 2 Θ(n log n)b

Proposed Sync. Arbitrary Map Common F-to-F Yes ≥ 2fu + 2 O(fun)
aIt represents the number of rounds required to solve the problem.
bIt represents the number of movements of the agent to solve the problem.

1.1 Related Works

The black hole search problem has been widely studied in literature [2,4–6,
8]. Table 1 summarizes some of the results. In the face-to-face model, agents
communicate only when they stay at the same node [3]. In the pure token model,
a token indicates 1-bit information, and each agent can carry a constant number

356 M. Tsuchida et al.

of tokens and place them on nodes of the network [2,6]. In the enhanced token
model, a token indicates 1-bit information similarly to the pure token model,
but agents can place it in the middle of a node or on a port. For example, in [5],
tokens indicate that the node connected to the end of an edge is a black hole.

The purpose of these works is to clarify the solvability of the black hole
search problem in various environments, and to clarify the optimal cost if it can
be solved. Many results for the black hole search problem have already been
shown and they are surveyed by Peng et al. [9].

For synchronous networks, many deterministic algorithms to search for
a black hole node have been proposed [2,4,8]. Dobrev et al. [4] devise
Cautious Walk, which is a general technique to specify the location of the
black hole node with only two agents. In the cautious walk, two agents cooper-
atively identify that nodes are safe or not. To check an adjacent node by two
agents, first one agent ai moves to the node and the other agent aj waits for ai

to come back. If ai comes back in the next round, the adjacent node is identi-
fied to be safe, and otherwise aj finds that the node is a black hole node. Since
the cautious walk is an effective technique to locate a black hole node, many
related researches also use the cautious walk to reduce complexities including
the number of agent moves. Klasing et al. [8] prove that the black hole search
problem is NP-hard with respect to minimizing the number of rounds to solve
the problem in arbitrary graphs. In addition, they propose a 33

8 -approximation
algorithm, showing the first non-trivial approximation ratio upper bound for this
problem. The algorithm in [8] follows an intuitive approach of exploring the net-
work graph via a spanning tree and they prove that this approach cannot lead
to an approximation ratio better than 3

2 . Chalopin et al. [2] study oriented tori
under the following assumptions: agents start from different nodes, and the com-
munication model uses both the pure token model and the face-to-face model.
They show that three agents, each with two movable tokens, are necessary and
sufficient to solve the problem in any oriented torus.

For asynchronous networks, the cautious walk does not work well. This is
because it is impossible to distinguish whether an agent disappears by a black
hole node or it stacks in an asynchronous link [10]. The only way to detect a
black hole node in an asynchronous network is to explore the entire network [7].
Dobrev et al. [5] show that the black hole search problem can be solved by at least
two agents without knowledge of k in asynchronous ring networks with enhanced
tokens when there is exactly one black hole node, where k is the number of agents.
Dobrev et al. introduce an algorithm that allows agents to solve the problem with
Θ(n log n) moves, where n is the number of nodes. Flochini et al. [6] show that
the black hole search problem can be solved in any asynchronous network with
Θ(n log n) moves if there are two agents with a map and a token when there is
exactly one black hole node.

The main topics of related works are solvability and cost optimization in
various environments. In literature no work consider Byzantine agents for the
black hole search problem.

Black Hole Search Despite Byzantine Agents 357

1.2 Our Contributions

In this work, we focus on the black hole search problem considering faults of
agents. We assume that all agents start from the same node and that each agent
knows the graph topology and the number of agents. In addition, we assume
that agents can communicate only when they stay at the same node. We first
prove that no algorithm can correctly detect a black hole node with cu + 1
correct agents, where cu is an upper bound of the number of crash agents. Since
a crash fault is a special case of a Byzantine fault, the above result also applies
to strongly Byzantine agents. Here, a strongly Byzantine agent is an agent that
can behave arbitrarily, including changing its ID. Therefore, we can also say
that, if at most fu Byzantine agents exist, 2fu + 2 or more agents are necessary
to locate a black hole node.

Next, we propose an algorithm to locate a black hole node with 2fu+2 agents
when at most fu Byzantine agents exist. From the above impossibility result,
our algorithm is optimal in terms of the number of tolerable faulty agents. To
the best of our knowledge, this is the first work to address the black hole search
problem in Byzantine environments.

2 Preliminaries

2.1 A Distributed System

A distributed system is modeled by a connected undirected graph G = (V,E),
where V is a set of nodes and E is a set of edges. The set of nodes is denoted by
V = {v0, v1, · · · , vn−1} and the number of nodes is denoted by n = |V |. A set
of adjacent nodes of node vi is denoted by Nvi

= {vj |(vi, vj) ∈ E}. The degree
of node vi is defined as d(vi) = |Nvi

|. Each edge is labeled locally by function
λvi

: {(vi, vj)|vj ∈ Nvi
} → {1, 2, · · · , d(vi)} such that λvi

(vi, vj) �= λvi
(vi, vp)

holds for vj �= vp. We say λvi
(vi, vj) is a port number (or port) of edge (vi, vj)

on node vi.
Multiple agents exist in a distributed system. The number of agents is

denoted by k, and a set of agents is denoted by A = {a0, a1, · · · , ak−1}. Each
agent has a unique ID, and the ID of agent ai is denoted by IDi. In addition,
each agent is equipped with a graph map of G.

In this paper, we show an impossibility result that, if the number of correct
agents is less than cu + 2, agents cannot detect a black hole node even if agents
can leave information on a node. For this reason, we define a model such that
each node has a whiteboard, which is an area where agents can leave some
information.

In this paper, we assume that at most one black hole node exists in the dis-
tributed system. A black hole node has a stationary process of deleting any agent
arriving at the node without any trace. Deleted agents cannot be recognized by
other agents.

Each agent is modeled as a state machine (S, δ). The first element S is a set
of agent states, where each agent state is determined by values of variables in

358 M. Tsuchida et al.

its memory. The second element δ is the state transition function that decides
the behavior of an agent. The input of δ is IDs and agent states of all agents
on the current node, the content of the whiteboard on the current node, and
the incoming port number. The output of δ is the next agent state, the next
content of the whiteboard, decision of the next movement (stay or leave) and
the outgoing port number if the agent leaves. Here, we define two special states
sfault, sterminal ∈ S and transitions related to these states. State sfault is a state
in which agents cannot move to other nodes and cannot change other states.
When an agent gets crashed, it changes to sfault. We will discuss this transition
later. When an agent arrives at the black hole node, it changes to sfault. In
addition, no agent can observe the state and existence of the agent with sfault.
State sterminal is a terminal state in which agents decide to terminate. If ai

changes to sterminal, it never changes its state after that.
A global configuration C is defined as a 3-tuple C = (M,P,W). The first

element M is a k-tuple M = (m0,m1, · · · ,mk−1), where mi is a state of agent
ai(0 ≤ i ≤ k − 1). The second element P is a k-tuple P = (p0, p1, · · · , pk−1),
where pi is the position of agent ai(0 ≤ i ≤ k − 1). Here, we define that
positions of agents with sfault to be null. The third element W is a n-tuple
W = (w0, w1, · · · , wn−1), where wi is a state of the whiteboard of node
vi(0 ≤ i ≤ n − 1).

We denote by C the set of all possible configurations. In initial configuration
C0 ∈ C, all agents have the designated initial state sinitial ∈ S and placed at
a starting node vs(∈ V). In addition, states of whiteboards on all nodes are
wsempty ∈ WS in initial configuration. State wsempty is a state in which no
information is written on the whiteboard.

2.2 Fault Models of Agents

In this work, we consider two types of faults of agents: a Byzantine fault and a
crash fault.

We call an agent which has a Byzantine fault as a Byzantine agent. Each
Byzantine agent behaves arbitrarily without following the algorithm. In addition,
we assume that Byzantine agents do not necessarily disappear even when they
visit the black hole node, but they can disappear anywhere on their own. This
implies that they can simulate disappearance by the black hole on any node. We
consider Byzantine agents only in Sect. 4. In Sect. 4, we assume that at most fu

Byzantine agents exist in the distributed system, and it satisfies k ≥ 2fu + 2.
We assume that all agents know fu.

A crash fault makes an agent stop during the algorithm execution, and we call
such an agent a crash agent. A crash agent ac may stop operations in arbitrary
timing and it never works after that. We define that an agent ac transitions to
sfault when it stops operating. In addition, no agent can observe the state and
existence of ac after ac stops operations. We consider crash agents only in Sect. 3.
In Sect. 3, we assume that at most cu crash agents exist in the distributed system
and all agents know cu.

Black Hole Search Despite Byzantine Agents 359

We define correct agents as agents that always follow the algorithm. Note
that faulty agents cannot be distinguished from correct agents as long as they
correctly execute an algorithm.

2.3 Synchronicity

All agents start the algorithm at the same time, and then operate in sequential
synchronous rounds. Each correct agent ai executes the following operations
during the r-th round (r = 0, 1, 2, . . .):

1. At the beginning of the r-th round, ai obtains a snapshot of its current node
v. The snapshot includes a state of a whiteboard and states of all agents on
v. Note that all agents on v obtain the same snapshot.

2. Based on the snapshot, ai computes new states of the whiteboard and itself,
and decides whether it stays or moves. In order to cope with cases where
multiple agents write informations on the whiteboard at the same time, we
define the state transition of the whiteboard. We define the update function
of the whiteboard wk. Each agent outputs a next content of the whiteboard
in r-th round. The whiteboard wk executes the update function with these
contents as arguments and transits the state until r + 1-th round. Hence, the
whiteboard wk becomes the information obtained by merging the output of
agents in r + 1-th round.

3. If ai decides to move, it completes the movement before the beginning of the
(r + 1)-th round.

On the other hand, Byzantine agents can visit any number of nodes and
update states of whiteboards on the nodes during one round. An execution
E = C0, C1, . . . is an infinite sequence of configurations such that Ci is a config-
uration at the beginning of the r-th round.

2.4 Black Hole Search Problem

The goal of the black hole search problem is to satisfy the following conditions
in any execution.

– If a black hole node exists in the graph, (1) at least one correct agent remains
surviving, and (2) all surviving correct agents report the location of the black
hole node and terminate.

– If no black hole node exists in the graph, all correct agents report non-
existence of a black hole node and terminate.

To evaluate the performance of the algorithm, we consider the maximum
number of rounds required for a correct agent to terminate.

360 M. Tsuchida et al.

3 Impossibility with cu + 1 Correct Agents

In this paper, we propose an algorithm that can detect a black hole node regard-
less of the behavior of Byzantine agents. In this section, we consider an envi-
ronment in which some agents may crash. This is a weaker fault model than a
Byzantine fault. We prove that, when at most cu crash agents exist, k ≥ 2cu +2
is necessary to solve the black hole search problem. That is, we prove that no
algorithm can correctly detect a black hole node with cu + 1 correct agents.

Theorem 1. When cu crash agents exist, no deterministic algorithm exists for
the black hole search problem with k ≤ 2cu + 1 agents.

Proof. We prove this theorem by contradiction. Assume that there exists a deter-
ministic algorithm Alg that can solve the black hole search problem with 2cu +1
agents for an arbitrary graph. This implies that cu + 1 correct agents exist. We
consider graph G that has a starting node vs satisfying d(vs) = 2. Let va and vb

be the two adjacent nodes of vs. We consider two executions E = C0, C1, . . . and
E′ = C ′

0, C
′
1, . . . as executions on G. In execution E, we assume that va is a black

hole node and that first cu agents moving to vb crash when they arrive at vb.
Similarly, in execution E′, we assume that vb is a black hole node and that first
cu agents moving to va crash when they arrive at va. If multiple agents move to
vb (resp., va) at the same time and the total number of such agents exceeds cu in
E (resp., E′), some of them crash so that the number of crash agents become cu.

Let the t-th (resp., t′-th) round be the round in E (resp., E′) such that all
correct agents terminate before the end of the round. Let the h-th (resp., h′-th)
round be the last round in E (resp., E′) such that h ≤ t (resp., h′ ≤ t′) holds, at
most cu agents have moved to va before Ch (resp., C ′

h), and at most cu agents
have moved to vb before Ch (resp., C ′

h). Let h∗ = min(h, h′). By induction, we
prove the proposition that, for any � (0 ≤ � ≤ h∗), C� = C ′

� holds and all agents
exist only on vs or null in C�. For the base case, clearly C0 = C ′

0 holds and all
agents exist on starting node vs in C0.

For inductive steps, assume that, for some � < h∗, C� = C ′
� holds and all

agents exist only on vs or null in C�. Let us consider the behaviors of the �-th
round. Since Alg is deterministic, agents make the same behaviors in E and
E′. In addition, since all agents exist only on vs or null, only agents on vs can
move. Clearly, for the state of the whiteboard on vs and states of agents that
do not move during the �-th round, the states in C�+1 are the same as in C ′

�+1.
Consider agents that move from vs to va during the �-th round. In E, since va

is a black hole node, they change to state sfault. In E′, from the definition of
E′ and h∗, they crash and change to state sfault. Similarly, consider agents that
move from vs to vb during the �-th round. In E, from the definition of E and h∗,
they crash and change to sfault. In E′, since vb is a black hole node, they change
to sfault. Hence all agents that move from vs to va or vb change to sfault in
C�+1 and C ′

�+1. By definition, the position of these agents are null . Therefore,
C�+1 = C ′

�+1 holds and all agents exist only on vs or null in C�+1.
From the above proposition, we have Ch∗ = C ′

h∗ . Here, in Ch∗ and C ′
h∗ , some

correct agents have not yet terminated. This is because otherwise correct agents

Black Hole Search Despite Byzantine Agents 361

report the same node as the black hole node in E and E′ despite the fact that
black hole nodes are different.

Hence, since h < t and h′ < t′ hold, we can consider Ch∗+1. From the
definition of h∗, during the h∗-th round, the number of agents moving to va or
the number of agents moving to vb exceeds cu. If the number of agents moving
to va exceeds cu, agents cannot solve the black hole search problem in E because
all correct agents visit black hole node va. If the number of agents moving to vb

exceeds cu, agents cannot solve the black hole search problem in E′ because all
correct agents visit black hole node vb. This is a contradiction.

4 Algorithm with fu + 2 Correct Agents

In this section, we propose an algorithm that solves the black hole search prob-
lem. Here, we assume at most fu Byzantine agents exist and each agent knows
the graph topology and k. Since there exists no algorithm to search for a black
hole node with k ≤ 2fu+1 agents from Theorem 1, we assume k ≥ 2fu+2 holds.
Our algorithm solves the black hole search problem with fu + 2 correct agents.
In other words, our algorithm is optimal in terms of the number of tolerable
faulty agents.

4.1 Overview

First, we give an overview of our algorithm. This algorithm achieves the black
hole search problem in synchronous networks even if Byzantine agents exist. In
order to simplify the explanation, at first, we explain the case where Byzantine
agents do not exist. All agents start the algorithm from node vs, and mark vs

as an explored node and all other nodes as unexplored nodes. The agents try to
visit all nodes by using the DFS (depth-first search) traversal. Since all agents
know the topology of the network, they can try to visit in the same order. The
agents decide the next destination node vd from neighboring nodes of the current
node v. If vd is an explored node, they just move to vd. Otherwise, by using the
cautious walk [4], they determine whether vd is a safe node or a black hole node.
The cautious walk is a method to search for a black hole node by agents paired
on the same node. Let us assume that two agents ai and aj are paired. First,
ai stays in v and aj once visits vd. After that, aj returns to v. At this time, if
vd is a safe node, ai can see aj on v. On the other hand, if vd is a black hole
node, ai cannot see aj on v. Thus, ai can determine whether vd is a safe node
or a black hole node. If vd is a black hole node, all living agents detect the black
hole node vd and then terminate. If vd is a safe node, all agents mark vd as an
explored node and continue the DFS traversal. They repeat the same operations
until they visit all nodes. If they visit all nodes, they detect non-existence of a
black hole node and then terminate.

However, if Byzantine agents exist, the cautious walk does not work well.
When a Byzantine agent visits a safe node vd from v, it may not return to v to
make other agents believe that vd is a black hole node. On the other hand, when

362 M. Tsuchida et al.

a Byzantine agent visits a black hole node vd from v, it may return to v to make
other agents believe that vd is a safe node. These behaviors make information by
cautious walk unreliable, which implies that the black hole cannot be correctly
detected. To resolve this problem, we modify the cautious walk to work even if
Byzantine agents exist. In the modified cautious walk, at least fu +1 agents visit
the destination node vd. More concretely, agents execute the cautious walk for
one node until one of the following conditions holds; (1) fu + 1 agents return to
v from vd, or (2) fu +1 agents do not return to v from vd. If fu +1 agents return,
vd is a safe node because at least one correct agent returns. If fu + 1 agents do
not return, vd is a black hole because at least one correct agent disappears.

4.2 Details

The pseudo-code of the algorithm is given in Algorithm1. Each agent knows
the number of agents k and the upper bound of the number of Byzantine agents
fu. Each agent ai manages local variables ai.snap1, ai.snap2, ai.return, ai.alive
and ai.expid. We explain the variables ai.snap1, ai.snap2, ai.return and ai.alive
later.

Recall that, in each round, an agent obtains the snapshot, executes the local
calculation, and then, possibly leaves the node (and reaches to the next node
before the next round). In one round, each agent executes the operations until
it leaves (lines 4, 11 and 29), waits (line 13), or terminates (line 24 and 32).

Each agent ai stays at node vs in the initial configuration. After ai starts the
algorithm, ai visits all unexplored nodes to detect a black hole node. Since all
agents know the topology of the graph, they visit all nodes in the same order by
using the DFS traversal. As a specific method, at first, each agent simulates DFS
for its own map, and decides the order of visiting n nodes. We omit the details
of the DFS traversal from the pseudo-code. First, ai decides the destination
node vd from neighboring nodes of the current node v. If the destination node
is explored, ai moves to vd. Otherwise, ai determines whether the destination
node is a safe node or a black hole node.

In lines 6 to 30 of the pseudo-code, each agent checks the destination node
vd. Agent ai stores the result of function snapcount() in ai.snap1. Variable
ai.snap1 is an array which stores the number of agents for each agent ID. Func-
tion snapcount() is the function which obtains the number of agents for each
agent ID from the current snapshot. Note that, multiple agents with the same
ID may exist since Byzantine agents can freely change their IDs. We show the
pseudo-code of snapcount() in Algorithm 2. In order to simplify the pseudo-code,
we write count[x] for all x values, but actually agents hold only the values of
count[] for existing IDs.

After that, ai repeats the following operations until the condition of line 23
or 25 is satisfied. As we explain later, ai uses conditions of lines 23 and 25 to
judge whether the destination node is a safe node or a black hole node. First, ai

selects the ID of the explorer agents and sets this ID to ai.expid (line 8). The
selected agents are the agents with the smallest ID in ai.snap1. Note that, since
Byzantine agents can change their IDs, multiple agents may have the selected

Black Hole Search Despite Byzantine Agents 363

Algorithm 1. Pseudo-code of agent ai. The node v indicates the node which ai

is staying.
1: while there is an unexplored node in the graph do
2: Decide the destination node
3: if the destination node is explored then
4: Go to the destination node
5: else
6: ai.snap1 = snapcount()
7: while true do
8: ai.expid = min(id : ai.snap1[id] ≥ 1)
9: ai.snap1[ai.expid] = 0
10: if ai.expid == IDi then
11: Go to the destination node and then come back to v
12: else
13: Wait for two rounds
14: end if
15: ai.snap2 = snapcount()
16: ai.return = 0, ai.alive = 0
17: for all m such that ai.snap2[m] ≥ 1 do
18: ai.alive+ = ai.snap2[m]
19: if m ≤ ai.expid then
20: ai.return+ = ai.snap2[m]
21: end if
22: end for
23: if k − ai.alive ≥ fu + 1 then
24: Write the location of the black hole node to the map and terminate
25: else if ai.return ≥ fu + 1 then
26: break; //the destination node is correct
27: end if
28: end while
29: Go to the destination node
30: end if
31: end while
32: Report that there is no black hole node and terminate

ID. After that, ai sets 0 to ai.snap1[ai.expid] to record that ai.expid has already
been selected. If ai.expid == IDi holds, ai is an explorer. Otherwise, ai is an
observer. If ai is an explorer, ai moves to the destination node and then comes
back to v. If ai is an observer, ai waits for two rounds to see explorers again.

After exploring or waiting, ai stores the result of function snapcount() in
ai.snap2. Then ai computes ai.alive and ai.return from ai.snap2. Variable
ai.alive represents the number of living agents, and variable ai.return repre-
sents the number of agents that visit vd and then return to v. If vd is a safe
node, correct agents always come back to v and thus they are always counted
in ai.alive. In line 20, ai computes ai.return by counting the number of agents
whose ID is ai.expid or smaller because agents with smaller IDs have become
explorers before. We use ai.alive for the black hole detection and ai.return for

364 M. Tsuchida et al.

Algorithm 2. function : snapcount()
1: for all x do
2: count[x] = 0
3: end for
4: for all aj such that aj exists at v do
5: count[IDj]+ = 1
6: end for
7: return count

the safe node detection. If k − ai.alive ≥ ai.fu + 1 holds, vd is a black hole node
because the condition holds only if at least one correct agent is not included
in ai.alive (lines 23 to 24). On the other hand, if ai.return ≥ fu + 1 holds, vd

is a safe node because the condition holds only if at least one correct agent is
included in ai.return (line 25). If vd is a black hole node, the condition does
not hold because correct agents cannot return to v and they are not included in
ai.return. If ai determines that vd is a safe node, ai leaves the loop and moves to
the destination node. If neither line 23 nor 25 is satisfied, each agent continues
exploring for vd until it is satisfied.

When ai visits all unexplored nodes and does not detect a black hole node,
the algorithm detects that no black hole node exists.

4.3 Proof of Correctness

Lemma 1. Consider a configuration such that all correct agents exist on a safe
node v and start to search for its adjacent node vd. If vd is a safe node, all correct
agents determine that vd is a safe node.

Proof. We consider a correct agent ai staying at v. Since all correct agents behave
at the same time, they get the same snapshot of v in line 6. Thus, in line 8, each
correct agent ai calculates the same ID of an explorer and sets it to ai.expid.
Furthermore, all correct agents get the same snapshot again in line 15. Therefore,
in line 18, each correct agent ai has the same value in ai.alive. The algorithm
continues to send agents to vd until (1) k − ai.alive ≥ fu + 1 is satisfied or (2)
ai.return ≥ fu +1 is satisfied. We prove that condition 1 does not hold and that
condition 2 holds when at least fu + 1 correct agents go to vd and come back
to v.

Since correct agents always return to v after visiting vd, all correct agents
exist on v when each agent ai obtains ai.snap2. Consequently, at least all correct
agents are counted in ai.alive. Therefore, k − ai.alive ≥ fu + 1 is not satisfied
because at most fu Byzantine agents exist.

Let us consider the case where x(≤ fu) agents are missing from ai.snap1
at v. That means, x agents are Byzantine agents and k − x agents exists at v.
Byzantine agents can be caunted ai.return by joining v, but it is not enough
to satisfy ai, return ≥ fu + 1. In addition, the k − ai.alive ≥ fu + 1 cannot be
satisfied because at most x agents can exist on different nodes from v without
following the algorithm.

Black Hole Search Despite Byzantine Agents 365

Hence, condition 1 is not satisfied, and agents move to vd until condition
2 is satisfied. Since correct agents always return to v after visiting vd and are
counted in ai.return, eventually ai.return ≥ fu + 1 is satisfied. Therefore, the
lemma holds. �

Lemma 2. Consider a configuration such that all correct agents exist on a safe
node v and start to search for its adjacent node vd. If vd is a black hole node, at
least one correct agent determines that vd is a black hole node.

Proof. We consider a correct agent ai staying at v. Since all correct agents
behave at the same time, they get the same snapshot of v. Thus, in line 8, each
correct agent ai calculates the same ID of an explorer and sets it to ai.expid.
Furthermore, all correct agents get the same snapshot again in line 15. Therefore,
in line 18, each correct agent ai has the same value in ai.alive. The algorithm
continues to send agents to vd until (1) k − ai.alive ≥ fu + 1 is satisfied or (2)
ai.return ≥ fu + 1 is satisfied. Note that, since only agents with ID ai.expid
move to vd at the same time, at most one correct agent moves to vd at the same
time. We prove that condition 2 does not hold and that condition 1 holds before
fu + 2 correct agents go to vd.

Once correct agents visit vd, they cannot return to v and hence they are
not counted in ai.return or ai.alive. Since there are at most fu Byzantine
agents, even if all Byzantine agents are included in ai.return, condition 2 is
never satisfied. Let us consider condition 1. When fu + 1 correct agents visit vd,
k −ai.alive ≥ fu +1 holds because all of them are not counted in ai.alive. Since
at most one correct agent goes to vd at the same time, at least one agent is alive
when k − a.alive ≥ fu + 1 holds. Therefore, the lemma holds. �

Theorem 2. The algorithm solves the black hole search problem with O(fun)
rounds.

Proof. By the assumption, all correct agents start the algorithm from safe node
vs. From Lemmas 1 and 2, when all correct agents exist on a safe node and start
to search for its adjacent node vd, they can correctly determine whether vd is a
safe node or a black hole node. Thus, as long as all the correct agents search for
a safe node, they can continue searching. If they search for a black hole node,
they can detect a black hole node. Therefore, the algorithm solves the black hole
search problem.

Let us consider the time complexity. For each unexplored node, at most
2fu + 1 agents visit to determine whether it is a safe node or a black hole
node. This requires at most two rounds for each agent, and hence the algorithm
requires at most 2(2fu +1) rounds to search for each node. Since all agents know
the topology of the graph, they can visit all nodes by using the DFS traversal.
Since the length of the DFS traversal is O(n), the algorithm solves the black
hole search problem with O(fun) rounds. �

366 M. Tsuchida et al.

5 Conclusions

We consider the black hole search problem in synchronous Byzantine environ-
ments. In this work, we first showed the impossibility with cu +1 correct agents,
where cu is an upper bound of the number of crash agents. Since a crash fault
is a special case of a Byzantine fault, the above result also applies to strongly
Byzantine agents. Next, we proposed an algorithm to locate a black hole node
with 2fu +2 agents with O(fun) rounds when at most fu Byzantine agents exist
in synchronous networks (n is the number of nodes). From the above impossi-
bility result, our algorithm is optimal in terms of the number of tolerable faulty
agents. To the best of our knowledge, this is the first work to address the black
hole search problem in Byzantine environments.

A future task is to search for a black hole node in asynchronous Byzantine
environments. The cautious walk cannot work in asynchronous networks because
it is impossible to distinguish whether an agent disappeared in a black hole node
or is stuck in a slow edge of the network. Hence we need to devise a technique to
make correct agents collaboratively visit all nodes except for a black hole node
even if Byzantine agents try to send correct agents to the black hole node.

References

1. Cao, J., Das, S.K.: Mobile Agents in Networking and Distributed Computing.
Wiley, Hoboken (2012)

2. Chalopin, J., Das, S., Labourel, A., Markou, E.: Black hole search with finite
automata scattered in a synchronous torus. In: Peleg, D. (ed.) DISC 2011. LNCS,
vol. 6950, pp. 432–446. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24100-0 41

3. Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a net-
work using multiple agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006.
LNCS, vol. 4305, pp. 320–332. Springer, Heidelberg (2006). https://doi.org/10.
1007/11945529 23

4. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

5. Dobrev, S., Královič, R., Santoro, N., Shi, W.: Black hole search in asynchronous
rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC
2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006). https://doi.org/
10.1007/11758471 16

6. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: optimal
black hole search with pure tokens. In: Taubenfeld, G. (ed.) DISC 2008. LNCS,
vol. 5218, pp. 227–241. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-87779-0 16

7. Flocchini, P., Santoro, N.: Distributed security algorithms by mobile agents. In:
Chaudhuri, S., Das, S.R., Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol.
4308, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11947950 1

8. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation
results for black hole search in arbitrary networks. Theoret. Comput. Sci. 384(2–
3), 201–221 (2007)

https://doi.org/10.1007/978-3-642-24100-0_41
https://doi.org/10.1007/978-3-642-24100-0_41
https://doi.org/10.1007/11945529_23
https://doi.org/10.1007/11945529_23
https://doi.org/10.1007/11758471_16
https://doi.org/10.1007/11758471_16
https://doi.org/10.1007/978-3-540-87779-0_16
https://doi.org/10.1007/978-3-540-87779-0_16
https://doi.org/10.1007/11947950_1

Black Hole Search Despite Byzantine Agents 367

9. Peng, M., Shi, W., Corriveau, J.P., Pazzi, R., Wang, Y.: Black hole search in
computer networks: state-of-the-art, challenges and future directions. J. Parallel
Distrib. Comput. 88, 1–15 (2016)

10. Shi, W., Garcia-Alfaro, J., Corriveau, J.P.: Searching for a black hole in inter-
connected networks using mobile agents and tokens. J. Parallel Distrib. Comput.
74(1), 1945–1958 (2014)

Self-adjusting Linear Networks

Chen Avin1 , Ingo van Duijn2(B), and Stefan Schmid3

1 School of Electrical and Computer Engineering,
Ben Gurion University of the Negev, Beersheba, Israel

avin@cse.bgu.ac.il
2 Department of Computer Science, Aalborg University, Aalborg, Denmark

ingo@cs.aau.dk
3 Faculty of Computer Science, University of Vienna, Vienna, Austria

stefan schmid@univie.ac.at

Abstract. Emerging networked systems become increasingly flexible,
reconfigurable, and “self-∗”. This introduces an opportunity to adjust
networked systems in a demand-aware manner, leveraging spatial and
temporal locality in the workload for online optimizations. However, it
also introduces a tradeoff: while more frequent adjustments can improve
performance, they also entail higher reconfiguration costs. This paper
initiates the formal study of list networks which self-adjust to the demand
in an online manner, striking a balance between the benefits and costs
of reconfigurations. We show that the underlying algorithmic problem
can be seen as a distributed generalization of the classic dynamic list
update problem known from self-adjusting datastructures: in a network,
requests can occur between node pairs. This distributed version turns
out to be significantly harder than the classical problem it generalizes.
Our main results are a Ω(log n) lower bound on the competitive ratio,
and a (distributed) online algorithm that is O(log n)-competitive if the
communication requests are issued according to a linear order.

Keywords: Self-adjusting datastructures · Competitive analysis ·
Distributed algorithms · Communication networks

1 Introduction

Communication networks are becoming increasingly flexible, along three main
dimensions: routing (enabler: software-defined networking), embedding (enabler:
virtualization), and topology (enabler: reconfigurable optical technologies, for
example [17]). In particular, the possibility to quickly reconfigure communica-
tion networks, e.g., by migrating (virtualized) communication endpoints [9] or
by reconfiguring the (optical) topology [12], allows these networks to become
demand-aware: i.e., to adapt to the traffic pattern they serve, in an online and
“self-∗” manner. In particular, in a self-adjusting network, frequently communi-
cating node pairs can be moved topologically closer, saving communication costs
(e.g., bandwidth, energy) and improving performance (e.g., latency, throughput).
c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 368–382, 2019.
https://doi.org/10.1007/978-3-030-34992-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_29&domain=pdf
http://orcid.org/0000-0002-6647-8002
http://orcid.org/0000-0002-7798-1711
https://doi.org/10.1007/978-3-030-34992-9_29

Self-adjusting Linear Networks 369

However, today, we still do not have a good understanding yet of the algorith-
mic problems underlying self-adjusting networks. The design of such algorithms
faces several challenges. As the demand is often not known ahead of time, online
algorithms are required to react to changes in the workload in a clever way;
ideally, such online algorithms are “competitive” even when compared to an
optimal offline algorithm which knows the demand ahead of time. Furthermore,
online algorithms need to strike a balance between the benefits of adjustments
(i.e., improved performance and/or reduced costs) and their costs (i.e., frequent
adjustments can temporarily harm consistency and/or performance, or come at
energy costs).

The vision of self-adjusting networks is reminiscent of self-adjusting datas-
tructures such as self-adjusting lists and splay trees, which optimize themselves
toward the workload. In particular, the dynamic list update problem, introduced
already in the 1980s by Sleator and Tarjan in their seminal work [23], asks for
an online algorithm to reconfigure an unordered linked list datastructure, such
that a sequence of lookup requests is served optimally and at minimal reconfigu-
ration costs (i.e., pointer rotations). It is well-known that a simple move-to-front
strategy, which immediately promotes each accessed element to the front of the
list, is dynamically optimal, that is, has a constant competitive ratio.

This paper initiates the study of a most basic self-adjusting linear network,
which can be seen as a distributed variant of the dynamic list update problem,
generalizing the datastructure problem to networks: while datastructures serve
requests originating from the front of the list (the “root”) to access data items,
networks serve communication requests between pairs of nodes. The objective
is to move nodes which currently communicate frequently, closer to each other,
while accounting for reconfiguration costs.

1.1 Related Work

One important area of related work arises in the context of the dynamic list
update problem. Since the groundbreaking work by Sleator and Tarjan on
amortized analysis and self-adjusting datastructures [23], researchers have also
explored many interesting variants of self-adjusting datastructures, also using
randomized algorithms [21] or lookaheads [1,3], or offline algorithms [5,20]. The
deterministic Move-To-Front (MTF) algorithm is known to optimally solve the
standard formulation of the list update problem: it is 2-competitive [23], which
matches the lower bound [4]. To the best of our knowledge, the competitive
ratio in the randomized setting (against an oblivious adversary) is still an open
problem: the best upper bound so far is 1.6 [3], and the best lower bound
1.5 [24]. The randomized algorithm [3] makes an initial random choice between
two known algorithms that have different worst-case request sequences, relying
on the BIT [21] and TIMESTAMP [2] algorithms.

We also note that the self-adjusting linear network design problem can be
considered a special case of general online problems such as the online Metri-
cal Task System (MTS) problems. However, given the exponential number of
possible configurations, the competitive ratio of generic MTS algorithms will be

370 C. Avin et al.

high if applied to our more specific problems (at least according to the existing
bounds). Furthermore, we note that in case of list request graphs, the problem
can also be seen as a learning problem and hence related to bandits theory [13].

In terms of reconfigurable networks, there exist several static [8,11] and
dynamic [16,19,22] algorithms for bounded-degree networks, as well as hybrid
variants [15] which combine static and reconfigurable links. However, these solu-
tions do not apply to the list and do not provide performance guarantees over
time (with the notable exception of [16] in a different model); the latter also
applies to recent work on node migration models on the grid [7].

The paper closest to ours is by Olver et al. [18] who introduced the Itinerant
List Update (ILU) problem: a relaxation of the classic dynamic list update prob-
lem in which the pointer no longer has to return to a home location after each
request. The authors show an Ω(log n) lower bound on the randomized competi-
tive ratio and also present an offline polynomial-time algorithm and prove that it
achieves an approximation ratio of O(log2 n). In contrast, we in our paper focus
on online algorithms and request graphs forming a list (or grid). In fact, we show
that the lower bound Ω(log n) even holds in this case, at least for deterministic
algorithms. We also present an online algorithm which matches this bound in
our model.

1.2 Formal Model

We initiate the study of pairwise communication problems in a dynamic network
reconfiguration model, using the following notation:

– Let dG(u, v) denote the (hop) distance between u and v in a graph G.
– A communication request is a pair of communicating nodes from a set V .
– A configuration of V in a graph N (the host network) is an injection of V

into the vertices of N ; CV ↪→N denotes the set of all such configurations.
– A configuration h ∈ CV ↪→N is said to serve a communication request (u, v) ∈

V × V at cost dN (h(u), h(v)).
– A finite communication sequence σ = (σ0, σ1, . . . , σm) is served by a sequence

of configurations h0, h1, . . . , hm ∈ CV ↪→N .
– The cost of serving σ is the sum of serving each σi in hi plus the reconfigu-

ration cost between subsequent configurations hi, hi+1.
– The reconfiguration cost between hi, hi+1 is the number of migrations neces-

sary to change from hi to hi+1; a migration swaps the images of two nodes u
and v under h.

– Ei = {σ1, . . . , σi} denotes the first i requests of σ interpreted as a set of edges
on V , and R(σ) = (V,Em) denotes the request graph of σ.

In particular, we study the problem of designing a self-adjusting linear network :
a network whose topologoy forms a d-dimensional grid. We are particularly inter-
ested in the 1-dimensional grid in this paper, the line:

Definition 1 (Distributed List Update). Let V , h, and σ be as before, with

N = ({1, . . . , n}, {(1, 2), (2, 3), . . . , (n − 1, n)}

Self-adjusting Linear Networks 371

representing a list graph. The cost of serving a σi = (u, v) ∈ σ is given by
|h(u)−h(v)|, i.e. the distance between u and v on N . Migrations can only occur
between nodes configured on adjacent vertices in N .

Recall that the cost incurred by an algorithm A on σ is the sum of communi-
cation and reconfiguration costs. In the realm of online algorithms and compet-
itive analysis, we compare an online algorithm ON to an offline algorithm OFF
which has complete knowledge of σ ahead of time. We want to devise online
algorithms ON which minimize the competitive ratio ρ:

ρ = max
σ

cost(ON(σ))
cost(OFF(σ))

As a first step, we in this paper consider the Distributed List Update prob-
lem for the case where the request graph R(σ) has constant graph bandwidth:
i.e. graphs for which there is a configuration in a line network such that any
request can be served at constant cost. We refer to such a request graph as
linear demand.

1.3 Contributions

This paper initiates the study of a most basic self-adjusting network, a line,
which optimizes itself toward the dynamically changing linear demand, while
amortizing reconfiguration cost. The underlying algorithmic problem is natu-
ral and motivated by emerging reconfigurable communication networks (e.g.,
based on virtual machine migration or novel optical technologies [10,17]). The
problem can also be seen as a distributed version of the fundamental dynamic
list update problem. Our first result is a negative one: we show that unlike
the classic dynamic list update problem, which admits for constant-competitive
online algorithms, there is an Ω(log n) lower bound on the competitive ratio
of any deterministic online algorithm for the distributed problem variant. Our
second main contribution is a (distributed) online algorithm which is O(log n)-
competitive for long enough sequences, given that the communication patterns
exhibit linear demand.

1.4 Organization

The remainder of this paper is organized as follows. In Sect. 2, we put the problem
and its challenges into perspective with respect to the list update problem. We
then first derive the lower bound in Sect. 3 and present our algorithm and upper
bound in Sect. 4. We conclude in Sect. 5.

2 From List Update to Distributed List Update

To provide an intuition of the challenges involved in designing online algorithms
for distributed list update problems and to put the problem into perspective,

372 C. Avin et al.

we first revisit the classic list update problem and then discuss why similar
techniques fail if applied to communicating node pairs, i.e., where requests not
only come from the front of the list.

The (dynamic) list update problem [23] introduced by Sleater and Tarjan
over 30 years ago is one of the most fundamental and oldest online problems:
Given a set of n elements stored in a linked list, how to update the list over
time such that it optimally serves a request sequence τ = (τ1, τ2, . . .) where for
each i, τi ∈ V is an arbitrary element stored in the list? The cost incurred by an
algorithm is the sum of the access costs (i.e. scanning from the front of the list
to the accessed element) and the number of swaps (switching two neighboring
elements in the list). As accesses to the list elements start at the front of the
list, it makes sense to amortize high access costs by moving frequently accessed
elements closer to the front of the list. In fact, the well-known Move-To-Front
(MTF) algorithm even moves an accessed element to the front immediately, and
is known to be constant competitive: its cost is at most a factor 2 (or some other
constant, depending on the cost model) worse than that of an optimal offline
algorithm which knows the entire sequence τ ahead of time [23]. Throughout
the literature, slightly different cost models have been used for the list update
problem, though they only differ by a constant factor. Generally, a cursor is
located at the head of the list at each request. Then, the algorithm can perform
two operations, each operation incurring unit cost. (i) Move the cursor to the
left, or to the right, one position; the element in the new position is referred to
as touched. (ii) Swap the element at the cursor with the element one position to
the left or right; the cursor also moves.

In the Distributed List Update problem, upon a request σi = (si, ti), the
cursor is placed at si instead of the head of the list, and ti needs to be looked up.
To demonstrate the significance of this difference, we first present a paraphrased
version of the proof by Tarjan and Sleator showing the dynamic optimality of
mtf. After that, we showcase a simple access sequence differentiating the two
problems.

2.1 An Expositional Proof for the Optimality of MTF

While the potential argument used to show dynamic optimality of the move-to-
front strategy for the list access problem yields a very elegant and succinct proof
[23], it lacks intuition which makes it difficult to generalise the argument. The
key idea in the potential argument is to compare the execution of mtf to the
execution of an arbitrary algorithm A. The algorithm is fixed for the analysis,
but any valid algorithm can be used, e.g. the optimal offline algorithm. The state
(represented by a list) of mtf and A are juxtaposed at every access, comparing
how the order of elements in both lists differ. In fact, it is sufficient to only
consider the relative order of two arbitrary but fixed elements, call them u and
v. Consider the order of u and v in the state of A before it performs the ith
access. If this order is the same as in mtf before it performs the ith acces, let
bi = 0 and otherwise bi = 1.

Self-adjusting Linear Networks 373

Fig. 1. mtf (yellow) and
A (blue) on τ = 6, 3, 1, 3, 6
(Color figure online)

Similarly, if their relative order is the same in
mtf after its ith access, let ai = 0 and other-
wise ai = 1. This describes an inversion sequence
b1a1b2a2 . . . bmam. Figure 1 illustrates this for mtf
and an arbitrarily chosen algorithm A on a sequence
τ = 6, 3, 1, 3, 6, with the inversions of 1 and 6
described by the sequence 01111011100.

Suppose that τi ∈ {u, v} and that mtf touches
u and v while accessing τi. The proof by Tarjan and
Sleator boils down to three observations.

Observation 1. MTF inverts u and v relative to A
by accessing τi, i.e. bi �= ai.

Observation 2. If bi = 0, mtf and A agree on the
order of u and v before τi. Since mtf touches both, A
also touches both in order to access τi.

Observation 3. For bi = 1, let j < i be the largest
index such that bj = 0 or aj = 0 (note that j exists
because b1 = 0). When aj = 0, and thus bj+1 = 1, A
inverts u and v and therefore must have touched both.
When bj = 0, and thus aj = 1, mtf inverts u and v and one of them is τj. By
Observation 2, if bj = 0 and mtf touches u and v to access τj, then A does as
well.

The last observation is essentially the amortised argument rephrased as a charg-
ing argument. We can now easily prove the dynamic optimality of mtf.

Theorem 1 (Tarjan & Sleator). mtf is 4-competitive.

Proof. We prove that for all τi = v where mtf touches u, there is a move by
A touching u. mtf first moves the cursor to τi, and then swaps τi to the front.
Along the way it touches u twice, once with a move and once with a swap,
incurring a cost of 2.

For bi = 0 (resp. bi = 1), we use Observation 2 (resp. 3) to charge the cost to
A touching u while accessing τi (resp. τj). By Observation 1, bi �= ai, and thus
for any τk ∈ {u, v} with i < k, the largest index j′ < k with bj′ = 0 or aj′ = 0
must be at least i, and therefore j < i ≤ j′. This guarantees that mtf charges at
most a cost of 4 to one move of A. Since all the cost incurred by mtf is charged
to some move of A, the claim follows. ��
In the original work by Tarjan and Sleator, MTF is shown to be 2-competitive.
This is because their cost model allows accessed elements to be moved to the
front ‘for free’. If we allow this as well, the cursor touches u only once to access
v, resulting in a factor 2.

374 C. Avin et al.

2.2 The Challenge of Distributed List Update

Fig. 2. A star graph used to
construct a cyclic sequence of
requests σc = (c, v1), (c, v2), . . . ,
(c, vn−1), (c, v1), . . .

Generalizing dynamic list update to Dis-
tributed List Update introduces a number
of challenges which render the problem more
difficult. First, the natural inversion argument
no longer works: a reference point such as the
front of the list is missing in the distributed
setting. This makes it harder to relate algo-
rithms to each other and hence also to define
a potential. Second, for general request graphs
R(σ), an online algorithm needs to be able to
essentially “recognize” certain patterns over
time.

Regarding the latter, consider the set of
nodes V = {v1, ..., vn} and let τc be a cyclic
sequence: for all τi, τi+1 ∈ τc with τi = vj and
τi+1 = vk it holds that j + 1 = k(mod n − 1).
From this we construct a similar sequence σc

for Distributed List Update on the set of nodes V ∪ {c}, with σi = (c, τi).
This yields a star graph R(σc) as denoted in Fig. 2. An offline algorithm can
efficiently serve the cyclic order by first embedding the elements in the order
v1, ...vk, and then moving the element c one position further after every request.
If the cost of embedding the initial order is dominated by serving all requests,
then the amortized cost is O(1) per request (per cycle there are n − 1 moves of
cost O(1) and once c is moved a distance n). However, in the list update model,
any sequence cycling through all elements is a worst-case sequence with Ω(n)
per request. This demonstrates that a “dynamic cursor” can mean a factor n
difference in cost. What the sequence σc also demonstrates, is that aggregating
elements around a highly communicative node is suboptimal; in the particular
case of σc, it is this central node that needs to be moved.

Another pattern is a request sequence σ that forms a connected path in the
request graph R(σ). When restricted to only these patterns, Distributed List
Update corresponds to the Itinerant List Update Problem (ILU) studied in [18].
In this work it is shown that deriving non-trivial upper bounds on the compet-
itive ratio already seems notoriously hard (even offline approximation factors
are relatively high). Note that the star example can be expressed as a path,
i.e. σ′

c = (c, v1), (v1, c), (c, v2), (v2, c), (c, v3), . . ., demonstrating the significance
of understanding simple request patterns for Distributed List Update. This
is partly why in this paper we focus on request graphs with a linear demand.

3 A Lower Bound

This section derives a lower bound on the competitive ratio of any algorithm for
Distributed List Update.

Self-adjusting Linear Networks 375

Theorem 2. The competitive ratio ρ = maxσ
cost(ON(σ))
cost(OFF(σ)) for Distributed

List Update, with |σ| = Ω(n2), is at least Ω(log n). This bound holds for
arbitrarily long sequences, but if |σ| = O(n2), it even holds if the request graph
is a list graph.

To prove this, we consider an arbitrary online algorithm ON for Distributed
List Update. The main idea is to have an adaptive online adversary construct a
sequence σON that depends on the algorithm ON. The adversary constructs σON

so that the resulting request graph R(σON) is a list graph. Because an offline
algorithm knows R(σON) in advance, it can immediately configure it and serve
all requests at optimal cost of 1; since |σ| = Ω(n2), the configuration cost of
O(n2) is negligable. We show that the online algorithm is forced to essentially
reconfigure its layout log n times, resulting in the desired ratio. To facilitate our
analysis, we use the same notion of the distortion of an embedding as is used in
the Minimum Linear Arrangement (MLA) [14] problem.

Definition 2. Given a request graph G = (V,E) with E ⊆ V × V , let E+ =
{(u, v) | dG(u, v) < ∞} denote the transitive closure of E.
For h ∈ CV ↪→N , let dh(E) denote the distortion of E, which is defined as:

dh(E) =
∑

(u,v)∈E+

dh(u, v)

By summing over edges in E+ (instead of E), the cost of a badly embedded
edge e ∈ E is essentially multiplied by the number of paths in E that contain e.
This means that the distortion of an embedding of a list is worse if the badly
embedded edges occur in the middle of the list, see Fig. 3a. To build σON, the
adversary gradually commits to the edges of R(σON). Having already requested
σ1, . . . , σi, then depending on the distortion the adversary:

Option 1: picks σi+1 = arg max(u,v)∈Ei
dh(u, v).

Option 2: reveals a new batch of edges M ⊂ V × V .

From these two options, the adversary’s strategy becomes clear; Option 1 forces
the highest possible cost to ON based on Ei and h, and Option 2 introduces new
communication edges to force an increase in distortion. What is left to show is
how the value of dh(Ei) comes into play, and which edges the adversary commits
to. The adversary reveals at most n − 1 edges (since the final request graph is
a list), and they will be revealed in batches of size n/2, n/4, n/8, etc., resulting
in log n batches. After each batch, for ON to remain optimal it must permute
its layout at cost Ω(n2), totaling a cost of Ω(n2 log n) for all batches combined.
To ensure that R(σON) is a list graph, the partial request graph Ei (i.e., the
set of revealed edges) always comprises a set of disjoint sublists. Therefore, the
adversary only reveals edges that concatenate two sublists in Ei. Initially Ei is
empty and the corresponding sublists are all singleton sets of u ∈ V .

376 C. Avin et al.

Fig. 3. Illustrations of distortion.

To help decide which edges to reveal, we use the distortion to associate a cost
to batches of edges that the adversary can commit to. Let M ⊆ V ×V \Ei be any
set of edges such that the graph (V,Ei ∪ M) comprises a set of disjoint sublists.
For a configuration h of ON, the set M induces a distortion of dh(Ei ∪ M),
as shown in Fig. 3b. We show that for any embedding that ON chooses, the
adversary can find a set M so that the distortion is large.

Lemma 1. Let N be a list graph, and E ⊆ V ×V a set of edges so that the graph
G = (V,E) induces k disjoint sublists. For every h ∈ CV ↪→N , there exists a set
M ⊆ V × V of at most k/2 edges such that dh(E ∪ M) = Ω(n3

k) and (V,E ∪ M)
comprises a set of disjoint lists.

To prove this lemma, we use the following fact (with proof in the full paper [6]):

Theorem 3. Let x1, . . . , xk and y1, . . . , yk be sequences of k nonnegative num-
bers, and let x (resp. y) denote

∑k
i=1 xi. Let the weight of an involution1 over

the indices 1, . . . , k be defined as w(f) =
∑k

i=1 xiyf(i).
The average weight over all involutions is Ω(xy

k).

Proof (Lemma 1). Let L1, ..., Lk ⊆ E be the sublists in G. For all pairs (i, j),
let (Li, Lj) denote any edge so that Li ∪ Lj ∪ {(Li, Lj)} = Li ⊕ Lj is connected.
For any involution f on the sublists we have:

2dh(E ∪ {(Li, Lf(i)) | i �= f(i)}) ≥
k∑

i=1

dh(Li ⊕ Lf(i)). (1)

1 A function f such that f(f(x)) = x for all x.

Self-adjusting Linear Networks 377

The factor 2 is necessary because for i such that i �= f(i), the term dh(Li ⊕
Lf(i)) appears twice in the sum. Now partition N into three sublists: a left
part X = {1, . . . , �n/3�}, a right part Y = {�2n/3�, . . . , n}, and the centre part
C = N \ (X ∪ Y). Let hX(Li) (resp. hY (Li)) denote the number of elements of
Li that h maps onto X (resp. Y). Every two vertices u, v so that h(u) ∈ X and
h(v) ∈ Y are by construction at least |C| = Θ(n) apart on N , and therefore we
can lower bound dh(Li ⊕ Lj) by:

dh(Li ⊕ Lj) ≥ |C| · hX(Li)hY (Lj) (2)

For an involution f drawn uniformly at random, Theorem3 gives us a bound on
the expected value of the following:

E

(
k∑

i=1

hX(Li)hY (Lf(i))

)
= Ω

(
�n/3�2

k

)
(3)

Therefore, there exists an involution f for which we have:

2dh(E ∪ {(Li, Lf(i)) | i �= f(i)})
(1)

≥
k∑

i=1

dh(Li ⊕ Lf(i))

(2)

≥ |C| ·
k∑

i=1

hX(Li)hY (Lf(i))

(3)
= Θ(n) · Ω(n2/k) = Ω

(
n3

k

)

Since this holds for any choice of (Li, Lj), we can pick them so that (V,E ∪
{(Li, Lf(i)) | i �= f(i)}) comprises a set of disjoint lists. ��
This lemma (and the proof) reveals how the adversary commits to a new batch
of edges in Option 2 (essentially a random matching will do). Observe that the
number of edges is at most half the number of sublists in Ei. In the worst case we
have to assume it is exactly half, and thus that the number of sublists is halved
after every new batch of edges is selected. Next we show the precondition for
the adversary to opt for Option 1, including a lower bound on the corresponding
cost imposed on ON.

Lemma 2. Let N be a list graph, h ∈ CV ↪→N a configuration, and E ⊆ V × V
a set of edges so that the graph G = (V,E) has n/� disjoint sublists of size �.
If dh(E) = Ω(�n2), then there exists an edge (u, v) ∈ E such that dh(u, v) =
Ω(n/�).

Proof. There are at most n/� · (�
2

)
= O(�n) distinct simple paths in G, meaning

that the average distortion of these paths is Ω(�n2)
O(�n) = Ω(n). The highest distor-

tion is at least the average, and every path in G has length at most �. On this
path, there must exist an edge with distortion Ω(n/�), since if all edges have a
distortion of o(n/�), the total would be o(n). ��

378 C. Avin et al.

Combined, Lemmas 1 and 2 imply that the adversary can either request an edge
at cost Ω(n/�), or increase the distortion to Ω(�n2) by revealing a new batch
of edges. The final ingredient is a lower bound on how much cost the adversary
can impose on ON in between these batches.

Lemma 3. Let N be a list graph, E ⊂ V × V a set of communication edges.
If h, h′ ∈ CV ↪→N are two embeddings that differ only in the order of two adjacent
elements u and v, then dh(E) ≤ dh′(E) + 2�, where � is the size of the largest
sublist in E.

Proof. Consider all simple paths in E that end in u. At most � paths ending in
u (or v) are reduced by 1, and therefore dh(E) − dh′(E) ≤ 2�.

Combining the previous lemmata, we can prove the main technical result.

Lemma 4. For every online algorithm A, there is a sequence σON of length
O(εn1+ε log n) such that cost(ON(σON)) = Ω(εn2 log n), for 0 < ε ≤ 1. Further-
more, the resulting request graph R(σON) is a list graph.

Proof. W.l.o.g. assume that n = 2p for some integer p. This implies that the
number of edges in every new batch is a power of 2; consequently, the sublists
in any set Ei of revealed edges have size 2k = � for some integer k.

Consider the situation right after a batch of edges is revealed, where all
sublists have size �. By Lemma 1 this implies that the distortion is Ω(�n2). Let
σ = σi, σi+1, ..., σi+�n be the requests obtained by repeatedly requesting the edge
in Ei with largest distortion. There are two situations:

– Throughout serving σ, the distortion is always at least Ω(�n2). Then by
Lemma 2 each σj , i ≤ j ≤ i + �n incurred a cost of Ω(n/�), at total cost
Ω(n2).

– By serving σ, ON halves the distortion, thus reducing it by at least Ω(�n2).
Then, since by Lemma 3 every swap reduces the distortion by at most 2�, ON
must have used at least Ω(n2) swaps.

This argument holds for each batch of edges revealed. The adversary stops when
the sublists have size 2ε log n, yielding a sequence σON with

|σON| =
∑

�∈{20,...,2ε log n}
�n = O(n1+ε)

and cost(σON) = Ω(εn2 log n). By Lemma 2, the adversary only requests edges
that are introduced using the matching from Lemma1. Any edge introduced by
the latter Lemma concatenates two already existing sublists, hence R(σON) is a
list graph. ��
To wrap up the proof for Theorem2, we conclude by showing that for any online
algorithm ON, the sequence σON can be solved in O(n2) by an optimal offline
algorithm.

Self-adjusting Linear Networks 379

Proof (Proof of Theorem 2). Let ON be any online algorithm solving
Distributed List Update. Apply Lemma 4 with ε = 1/2, yielding
cost(ON(σON)) = Ω(n2 log n). Since σON is a list graph, an offline algorithm can
embed this graph at (worst case optimal) cost Θ(n2), and serve every request at
optimal cost O(1). This yields cost(OFF (σON)) = Θ(n2), and thus

ρ =
cost(ON(σ))
cost(OFF(σ))

= Ω(log n)

In order to make this bound hold for arbitrary long sequences, we slightly modify
the adversary. After every O(n2) requests it serves, it can reconfigure to a new
list at cost O(n2), and repeat the argument to force cost of Ω(n2 log n) to ON
for the subsequent O(n2) requests.

Remark. We can generalise the model for Distributed List Update to
include cases where both the request graph and the host graph G are a d-
dimensional grid, for constant d; we dub this problem Distributed Grid
Update. On a request (u, v), the cursor is placed at u and the request is served
when it touches v. The same operations are allowed: moving the cursor, or
swapping with on of its 2d neighbors (also moving the cursor).

Lemma 5. For every online algorithm ON for Distributed Grid Update,
there is a sequence σON of length O(εn1+ε log n) such that cost(ON(σON)) =
Ω(εn1+1/d log n), for 0 < ε ≤ 1. The resulting request graph R(σON) is a d-
dimensional grid graph.

The proof of Lemma 5 is essentially identical to that of Lemma 4. An overview
of the necessary modifications are given in the full paper [6].

4 An Upper Bound

This section presents a O(log n)-competitive online algorithm for Distributed
List Update. Our main technical lemma shows that the total cost spent on
learning the optimal embedding never exceeds O(n2 log n). We propose a simple
greedy algorithm that identifies a locally optimal embedding, and always moves
towards this embedding. Observe that a set of k sublists can be embedded per-
fectly on a line graph in at most 2kk! ways (they are permuted in some order,
and every list has at most two orientations). Given a configuration h ∈ CV ↪→N

of the lists, we define the locally optimal embedding to be an optimal embed-
ding one that takes the fewest number of reconfigurations to reach, starting at
h. Formally, if opt(E) is the set of optimal embeddings of a set edges, then the
h-optimal embedding of E is

h[E] = arg min
h′∈opt(E)

∑

v∈V

|h(v) − h′(v)|

With such a configuration we associate the cost:

Φh[E] =
∑

v∈V

|h(v) − h[E](v)|

380 C. Avin et al.

Let Gread be the algorithm (it GREedily ADjoins sublists), that upon seeing
a new edge σi, immediately moves to the embedding h[Ei ∪ {σi+1}].

For each Ei, let V(Ei) be the connected components of (V,Ei), so that Vσ =
∪1≤i≤mV(Ei) is the set of all sublists induced by σ. This naturally defines a
binary tree Tσ = (Vσ, Eσ): for every first occurence σi of (u,w) ∈ Em connecting
two sublists U,W in R(Ei), there are two corresponding edges (U,U ∪ W) and
(W,U ∪W) in Eσ. For every σi ∈ Em, Gread incurs some cost for reconfiguring,
and the following lemma bounds this cost.

Lemma 6. Let h be an optimal embedding of Ei, and let σi+1 be an edge con-
necting two sublists U and W of Ei. It holds that

Φh[Ei ∪ {σi+1}] ≤ n · min(|U |, |W |)

Proof. Since Ei is optimally embedded by h, we simply need to move the smaller
of U and W into its correct location so that Ei ∪ {σi+1} is optimally embedded.
This requires every element in the smaller list to be moved at most n locations,
therefore Φh[Ei ∪ {σi+1}] ≤ nmin(|U |, |W |).

For a node U ∈ Vσ, let left(U) and right(U) denote U ’s left and right child
respectively. Further, let w(U) denote the number of nodes in the subtree rooted
at U . Observe that for any binary tree with nodes N , it holds that

∑

v∈N

min(w(left(v)), w(right(v))) ≤ |N | log |N |

Theorem 4. For any σ, with |σ| = m, such that |Em| = k and R(σ) is a list,

cost(Gread(σ)) = O(m + nk log k)

Proof. Let hi denote the configuration after request σ1, and let h0 denote the
trivial optimal initial embedding. Then the total cost of Gread is the sum of
reconfiguring after every σi plus accessing every request at cost 1:

cost(Gread(σ)) − m =
m∑

i=0

Φhi
[Ei ∪ {σi+1}]

≤
∑

U∈Vσ

nmin(w(left(U)), w(right(U)))

≤ nk log k

As a corollary, it is not hard to show that Gread achieves optimal log n com-
petitiveness for the worst case sequence constructed in Sect. 3. Additionally, in
the full paper [6] we show a distributed implementation of this algorithm using
message passing.

Self-adjusting Linear Networks 381

5 Conclusion

We presented a first and asymptotically tight, i.e., Θ(log n)-competitive online
algorithm for self-adjusting reconfigurable linear networks with linear demand.
Both our lower and upper bounds are non-trivial, and we believe that our work
opens several interesting directions for future research. In particular, it would be
very interesting to shed light on the competitive ratio achievable in more general
network topologies, and to study randomized algorithms.

References

1. Albers, S.: A competitive analysis of the list update problem with lookahead. The-
oret. Comput. Sci. 197(1–2), 95–109 (1998)

2. Albers, S.: Improved randomized on-line algorithms for the list update problem.
SIAM J. Comput. 27(3), 682–693 (1998)

3. Albers, S., Von Stengel, B., Werchner, R.: A combined bit and timestamp algorithm
for the list update problem. Inf. Process. Lett. 56(3), 135–139 (1995)

4. Albers, S., Westbrook, J.: Self-organizing data structures. In: Fiat, A., Woeginger,
G.J. (eds.) Online Algorithms. LNCS, vol. 1442, pp. 13–51. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0029563

5. Ambühl, C.: Offline list update is NP-hard. In: Paterson, M.S. (ed.) ESA 2000.
LNCS, vol. 1879, pp. 42–51. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-45253-2 5

6. Avin, C., van Duijn, I., Schmid, S.: Self-adjusting linear networks. arXiv preprint
arXiv:1905.02472 (2019)

7. Avin, C., Haeupler, B., Lotker, Z., Scheideler, C., Schmid, S.: Locally self-adjusting
tree networks. In: 2013 IEEE 27th International Symposium on Parallel and Dis-
tributed Processing, pp. 395–406. IEEE (2013)

8. Avin, C., Hercules, A., Loukas, A., Schmid, S.: Towards communication-aware
robust topologies. ArXiv Technical Report (2017)

9. Avin, C., Loukas, A., Pacut, M., Schmid, S.: Online balanced repartitioning. In:
Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 243–256. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7 18

10. Avin, C., Mondal, K., Schmid, S.: Demand-aware network designs of bounded
degree. In: Proceedings International Symposium on Distributed Computing
(DISC) (2017)

11. Avin, C., Mondal, K., Schmid, S.: Demand-aware network design with minimal
congestion and route lengths. In: Proceedings of IEEE INFOCOM (2019)

12. Avin, C., Schmid, S.: Toward demand-aware networking: a theory for self-adjusting
networks. In: ACM SIGCOMM Computer Communication Review (CCR) (2018)

13. Bubeck, S., Cesa-Bianchi, N., et al.: Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Found. Trends R© Mach. Learn. 5(1), 1–122 (2012)

14. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput.
Surv. (CSUR) 34(3), 313–356 (2002)

15. Fenz, T., Foerster, K.T., Schmid, S., Villedieu, A.: Efficient non-segregated routing
for reconfigurable demand-aware networks. In: Proceedings of IFIP Networking
(2019)

https://doi.org/10.1007/BFb0029563
https://doi.org/10.1007/3-540-45253-2_5
https://doi.org/10.1007/3-540-45253-2_5
http://arxiv.org/abs/1905.02472
https://doi.org/10.1007/978-3-662-53426-7_18

382 C. Avin et al.

16. Huq, S., Ghosh, S.: Locally self-adjusting skip graphs. In: Proceedings of IEEE
37th International Conference on Distributed Computing Systems (ICDCS), pp.
805–815 (2017)

17. Ghobadi, M., et al.: Projector: agile reconfigurable data center interconnect. In:
Proceedings of ACM SIGCOMM, pp. 216–229 (2016)

18. Olver, N., Pruhs, K., Schewior, K., Sitters, R., Stougie, L.: The itinerant list update
problem. In: 13th Workshop on Models and Algorithms for Planning and Schedul-
ing Problems, p. 163 (2017)

19. Peres, B., Souza, O., Goussevskaia, O., Schmid, S., Avin, C.: Distributed self-
adjusting tree networks. In: Proceedings of IEEE INFOCOM (2019)

20. Reingold, N., Westbrook, J.: Off-line algorithms for the list update problem. Inf.
Process. Lett. 60(2), 75–80 (1996)

21. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms
for the list update problem. Algorithmica 11(1), 15–32 (1994)

22. Schmid, S., Avin, C., Scheideler, C., Borokhovich, M., Haeupler, B., Lotker, Z.:
Splaynet: towards locally self-adjusting networks. IEEE/ACM Trans. Netw. (ToN)
24, 1421–1433 (2016)

23. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

24. Teia, B.: A lower bound for randomized list update algorithms. Inf. Process. Lett.
47(1), 5–9 (1993)

Author Index

Ashkenazi, Yotam 16
Avin, Chen 368

Bazzi, Rida A. 22
Bouchra Pilet, Amaury 38
Briones, Joseph L. 22

Castañeda, Armando 53, 69
Cicerone, Serafino 84

Datta, Ajoy K. 99, 338
Delporte-Gallet, Carole 105
Devismes, Stéphane 99
Di Stefano, Gabriele 84
Doan, Ha Thi Thu 111
Dolev, Shlomi 16, 127
Durand, Anaïs 133

Fauconnier, Hugues 105
Felber, Pascal 178
Feldmann, Michael 149
Fraigniaud, Pierre 53, 105
Frey, Davide 38

Gotoh, Tsuyoshi 165
Götte, Thorsten 149
Göttel, Christian 178

Hood, Kendric 296
Hurault, Aurélie 69

Imoto, Soichiro 194
Inoue, Michiko 256, 354
Izumi, Taisuke 323

Johnen, Colette 99
Juyal, Chirag 209

Kakugawa, Hirotsugu 194, 323, 338
Kamei, Sayaka 16, 127
Katayama, Yoshiaki 127, 228

Kim, Yonghwan 228, 272
Kulkarni, Sandeep 209
Kumari, Sweta 209
Kutten, Shay 133

Larmore, Lawrence L. 99

Masuzawa, Toshimitsu 165, 194, 228, 323,
338

Michail, Othon 243

Nagahama, Shota 256
Nakamura, Junya 228, 272
Navarra, Alfredo 84
Nesterenko, Mikhail 296

Ogata, Kazuhiro 111
Ooshita, Fukuhito 16, 127, 165, 256, 323,

354

Paz, Ami 53
Peri, Sathya 209
Poudel, Pavan 277

Quéinnec, Philippe 69

Rabie, Mikaël 105
Rai, Shishir 296
Rajsbaum, Sergio 53, 307
Raynal, Michel 301
Riesco, Adrián 111
Rincon Galeana, Hugo 307
Roy, Matthieu 53, 69

Scheideler, Christian 149
Schiavoni, Valerio 178
Schmid, Stefan 368
Schmid, Ulrich 307
Sharma, Gokarna 277, 296
Shibata, Masahiro 228, 272
Somani, Archit 209

Spirakis, Paul G. 243
Sudo, Yuichi 165, 194, 228, 272, 323, 338

Taiani, Francois 38
Tanaka, Hideyuki 338
Taubenfeld, Gadi 301
Theofilatos, Michail 243

Travers, Corentin 53
Tsuchida, Masashi 354
Tucci-Piergiovanni, Sara 1

van Duijn, Ingo 368

Wada, Koichi 16, 127
Winkler, Kyrill 307

384 Author Index

	Preface
	Organization
	Keynote Talks
	Moving and Computing in Time-Varying Graphs
	What Can Be Computed Asynchronously
	Amoebots and Beyond: Models and Approaches for Programmable Matter
	Tutorials
	Hands on Blockchains
	The Theory of Blockchains
	Contents
	Invited Paper: On the Characterization of Blockchain Consensus Under Incentives
	1 Introduction
	2 Blockchain Core Abstractions
	2.1 The Blocktree and Oracle Models
	2.2 Oracles, a Closer Look
	2.3 Enriching Oracles with Incentives

	3 Consensus Incentive Model Definition
	4 Analysis of Current Solutions
	5 Discussion and Research Directions
	References

	Brief Announcement Forgive & Forget: Self-stabilizing Swarms in Spite of Byzantine Robots
	1 Introduction
	2 Cleaning a Ring Board
	Reference

	Stationary and Deterministic Leader Election in Self-organizing Particle Systems
	1 Introduction
	2 System Model
	3 Leader Election: Overview
	4 Leaders on the Outer Border
	4.1 Border Nodes and Vertex Labeling
	4.2 Stretch Expansion
	4.3 Termination Detection
	4.4 Overlapping Termination Detection Messages
	4.5 Stretches Merging During Termination Detection
	4.6 Progress

	5 Global Leader Election
	5.1 Trees to Break Symmetry
	5.2 Coordination for Breaking Symmetry
	5.3 Impossibility of Leader Election with k-symmetry (k > 1)

	6 Conclusion
	References

	Robust Privacy-Preserving Gossip Averaging
	1 Introduction
	2 System Model and Problem
	3 Privacy-Preserving Averaging
	3.1 The Algorithm
	3.2 Peer-Sampling Adjustments

	4 Evaluation
	4.1 Averaging Correctness
	4.2 Attack Resilience
	4.3 Averaging Performance

	5 Related Work
	6 Conclusion
	References

	Synchronous t-Resilient Consensus in Arbitrary Graphs
	1 Introduction
	1.1 Results
	1.2 Related Work

	2 Preliminaries
	3 Consensus Algorithms in Arbitrary Graphs
	3.1 A Naive Algorithm
	3.2 An Adaptive-Eccentricity Based Algorithm

	4 The Lower Bound
	4.1 Information Flow Graph
	4.2 The Solvability Characterization
	4.3 Optimality of PG,tadapt for Symmetric Graphs

	5 Conclusions
	References

	Tasks in Modular Proofs of Concurrent Algorithms
	1 Introduction
	2 Verifying Moir&Anderson Renaming
	3 Dealing with Tasks Without Sequential Specification
	4 Related Work
	5 Final Remarks and Future Work
	References

	On Gathering of Semi-synchronous Robots in Graphs
	1 Introduction
	2 Problem Definition and Impossibility Results
	3 A Sufficient Condition for Gathering in Arbitrary Graphs
	4 Complete Bipartite Graphs
	5 Conclusion
	References

	Brief Announcement: Analysis of a Memory-Efficient Self-stabilizing BFS Spanning Tree Construction
	1 Introduction
	2 The Algorithm
	References

	Brief Announcement: Distributed Computing in the Asynchronous LOCAL Model
	1 The LOCAL model
	2 Criticisms of the LOCAL model
	3 Decoupling Computations from Communications
	4 Our Results
	References

	An Environment for Specifying and Model Checking Mobile Ring Robot Algorithms
	1 Introduction
	2 Problems
	3 Maude Ring Specification Environment (Maude RSE)
	3.1 Ring Pattern Match Theory
	3.2 Extending Maude with Ring Attributes
	3.3 Syntax Declaration
	3.4 Applications

	4 Evaluation
	4.1 A Perpetual Exploration Algorithm ch10DISC2010
	4.2 A Gathering Algorithm ch10CORULCMM

	5 Conclusion
	References

	Brief Announcement: Self-stabilizing LCM Schedulers for Autonomous Mobile Robots Using Neighborhood Mutual Remainder
	1 Introduction
	2 Preliminaries for Robot Systems
	3 Self-stabilizing Move-Atomic Algorithm
	Reference

	Reducing the Number of Messages in Self-stabilizing Protocols
	1 Introduction
	2 Preliminaries
	3 Quiescence Detection Algorithm Q
	4 Analysis
	4.1 Properties of the PIF Protocol
	4.2 Execution Trees
	4.3 Detection of Quiescence
	4.4 Message Complexity

	5 Discussion and Future Work
	References

	A Loosely Self-stabilizing Protocol for Randomized Congestion Control with Logarithmic Memory
	1 Introduction
	2 Model and Definitions
	2.1 System Model
	2.2 Problem Statement
	2.3 Technical Contributions
	2.4 Our Contribution

	3 Related Work
	4 Protocol Description
	4.1 Variables and Constants
	4.2 Approximating (logn) at the Server
	4.3 Approximating P at the Server
	4.4 Core Protocol

	5 Analysis
	5.1 Convergence Time
	5.2 Holding Time
	5.3 Tightness

	6 Conclusion
	References

	Exploration of Dynamic Ring Networks by a Single Agent with the H-hops and S-time Steps View
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Models and Terminologies
	3 Impossibility Result
	4 Solvability Result and Upper Bound of Exploration Time
	5 Lower Bound of Exploration Time
	6 Upper Bound of Exploration Time for S N-1
	7 Conclusions and Future Works
	References

	iperfTZ: Understanding Network Bottlenecks for TrustZone-Based Trusted Applications
	1 Introduction
	2 Motivating Scenario
	3 Background
	3.1 ARM TrustZone in a Nutshell
	3.2 The GlobalPlatform Standard
	3.3 Op-Tee: Open Portable Trusted Execution Environment

	4 Networking for Trusted Applications
	4.1 Threat Model

	5 Implementation
	5.1 iperfTZ: Client Application
	5.2 iperfTZ: Trusted Application
	5.3 iperfTZ: Server

	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Atomic Cross-Chain Swaps with Improved Space and Local Time Complexity
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 Model
	2.1 Graph Model
	2.2 Blockchain and Smart Contract Model
	2.3 Swap Model

	3 Proposed Protocol
	3.1 Outline of Proposed Protocol
	3.2 The Conditions of Smart Contracts
	3.3 Phase 1: Preparation
	3.4 Phase 2: Publication
	3.5 Phase 3: Share Secrets
	3.6 Phase 4: Trigger

	4 Correctness and Complexity of Protocol
	5 Discussion
	6 Conclusions
	References

	Achieving Starvation-Freedom with Greater Concurrency in Multi-Version Object-based Transactional Memory Systems
	1 Introduction
	2 System Model and Preliminaries
	3 The Proposed SF-KOSTM Algorithm
	3.1 Description of Starvation-Freedom
	3.2 Design and Data Structure of SF-KOSTM Algorithm
	3.3 Working of SF-KOSTM Algorithm

	4 Experimental Evaluation
	5 Conclusion
	References

	Improved-Zigzag: An Improved Local-Information-Based Self-optimizing Routing Algorithm in Virtual Grid Networks
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 System Model
	3.2 Path Optimization Problem

	4 (,)-Range Model for Locality
	4.1 Definition of (,)-Range Model
	4.2 Solvability of the Previous Work

	5 The Proposed Algorithm Improved-Zigzag
	5.1 Algorithm Improved-Zigzag
	5.2 Proof Sketch of I-Zigzag
	5.3 Evaluation Using Range Model

	6 Conclusion
	References

	Fault Tolerant Network Constructors
	1 Introduction and Related Work
	1.1 Our Contribution

	2 Model and Definitions
	3 Network Constructors Without Fault Notifications
	3.1 Unbounded Number of Faults
	3.2 Bounded Number of Faults

	4 Notified Network Constructors
	4.1 Universal Fault-Tolerant Constructors

	5 Conclusions and Open Problems
	References

	Ring Exploration of Myopic Luminous Robots with Visibility More Than One
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions

	2 Preliminaries
	2.1 System Model
	2.2 Algorithm
	2.3 Execution, Problem, and Exploration Problem
	2.4 Descriptions

	3 Perpetual Exploration
	4 Terminating Exploration
	4.1 Impossibility of Two Robots
	4.2 A Terminating Exploration Algorithm for Three Robots
	4.3 Nonexistence of Universal Algorithm

	5 Conclusions
	References

	Brief Announcement: Self-stabilizing Construction of a Minimal Weakly ST-Reachable Directed Acyclic Graph
	1 Introduction
	2 Related Work
	3 Problem Specification
	4 Proposed Algorithm
	References

	Adaptive Versioning in Transactional Memories
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Basic Adaptive Versioning
	5 Optimizations on Basic Adaptive Versioning
	6 Experimental Evaluation
	7 Concluding Remarks
	References

	Brief Announcement Blockguard: Adaptive Blockchain Security
	1 Definitions and Committee Consensus Algorithms
	2 The Adaptive Security Problem and Solutions
	3 Performance Evaluation
	References

	Brief Announcement: Fully Anonymous Shared Memory Algorithms
	1 Introduction
	2 Fully Anonymous Mutex Using RMW Registers
	3 Fully Anonymous Wait-Free Consensus Using RMW Registers
	4 Fully Anonymous Obstruction-Free Set Agreement Using RW Registers
	5 Fully Anonymous 2-Process Obstruction-Free Consensus Using RW Registers
	6 Discussion
	References

	A Topological View of Partitioning Arguments: Reducing k-Set Agreement to Consensus
	1 Introduction
	2 Topological Modeling of Distributed Systems
	3 BRS Basic Definitions
	4 Topological BRS Theorem
	5 Partition Compatibility in Shared Memory and Set Agreement
	6 Conclusions
	References

	Logarithmic Expected-Time Leader Election in Population Protocol Model
	1 Introduction
	2 Preliminaries
	3 Key Ideas of Logarithmic Leader Election
	3.1 Key Idea for QuickElimination()
	3.2 Key Idea for Tournament()
	3.3 Key Idea for BackUp()

	4 Implementation of Logarithmic Leader Election
	4.1 Assignment of Status
	4.2 Synchronization and Epochs
	4.3 Independent Coin Flips

	5 Discussion Towards Symmetric Transitions
	References

	A Self-stabilizing 1-Maximal Independent Set Algorithm
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Problem Specification

	3 Loop Compotision
	4 Self-stabilizing 1-MIS Algorithm
	4.1 Error Detecting Predicate EMIS and Algorithm Init
	4.2 Algorithm Inc

	References

	Black Hole Search Despite Byzantine Agents
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Preliminaries
	2.1 A Distributed System
	2.2 Fault Models of Agents
	2.3 Synchronicity
	2.4 Black Hole Search Problem

	3 Impossibility with cu+1 Correct Agents
	4 Algorithm with fu+2 Correct Agents
	4.1 Overview
	4.2 Details
	4.3 Proof of Correctness

	5 Conclusions
	References

	Self-adjusting Linear Networks
	1 Introduction
	1.1 Related Work
	1.2 Formal Model
	1.3 Contributions
	1.4 Organization

	2 From List Update to Distributed List Update
	2.1 An Expositional Proof for the Optimality of MTF
	2.2 The Challenge of Distributed List Update

	3 A Lower Bound
	4 An Upper Bound
	5 Conclusion
	References

	Author Index

