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Abstract. Conventional approaches to control systems still present a reason-
able solution for a variety of different tasks in control engineering problems.
Controllers based on the PID approach are used in a wide range of applications
due to their easy handling, realization and set up, as well as their modest need of
computational resources during the runtime. In order to heuristically find near-
optimal parameters for the controller design, different approaches to tuning PID
controllers have been developed. The Ziegler–Nichols methods are still com-
monly used despite that they have long been known, though modern methods,
such as the T-Sum method, have also emerged. In this work, a comparison of the
tuned PID controllers with a Mamdani-Fuzzy-Logic controller and an adaptive
neural network controller is offered. A unified step response is used to classify
the performance of controllers. It is shown that a PID control can work just as
well as a fuzzy logic or neural network control for simple applications with time-
invariant parameters or in applications where the parameters only change
slightly and no strict constancy of the plant output is necessary.

Keywords: Control engineering � PID � Fuzzy control � Neural network
control � PID tuning � Fuzzy logic

1 Introduction

Although well known since the 1930s, the proportional–integral–derivative
(PID) controllers are popularly used in many applications of control engineering even
today. Huge efforts are made in order to optimize its control behaviour and to optimally
adjust a PID controller’s parameters to a specific use case. Therefore, classical PID
control is still subject to many ongoing projects of applied research.

To optimally adjust the PID controller’s parameters, an accurate model of the plant
which should be controlled should be known or developed. Depending on the level of
abstractness of a specific process, this step can pose a problem. Thus, different tuning
methods for PID controllers exist. With the help of these methods, such as the Ziegler-
Nichols (ZN) [1] or T-Sum [2] methods, it is possible to heuristically find close enough
parameters to achieve a good performance of the process. Kumar et al. [3] as well as
Wang et al. [4] compare in their works the various tuning paradigms with respect to
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different plant and controller topographies. The current research offers an online
adaption of PID controllers in dependence from time-variant parameters to overcome
one of the major downsides in the PID control. Approaches to this have been available
since the 1990s, as is shown, for example, by Sung et al. in [5]. Despite that, two
modern and more sophisticated approaches for controllers are now used more and more
often, to control not only nonlinear, time-variant processes. The Fuzzy Set Theory [6],
or Fuzzy-Logic (FL) was first applied to control problems in 1974 by Mamdani [7], and
a general overview of the possible industrial applications of Fuzzy Control as compared
to PID controllers is given in [8]. By its help the system behaviour and the desired
control reaction can be described by linguistic variables and, therefore, is easy to adapt
to a plant the exact parameters of which are unknown. The second modern control
approach is based on Artificial Neural Networks (ANN). Even though the theory
behind simple ANN is also fairly old, first postulated in 1943 by McCulloch and Pitts
[9], only recently it was actually applied to different problems in engineering and
information technology. Different principles of Neural Network Control (NNC) have
evolved since the 1990s as is shown in [10]. Current research in control theory focuses
on merging the advantages of classical PID control with FL (Deng et al. [11]) and ANN
approaches in order to adapt PID parameters during the process runtime. Application of
NNC to robotic manipulators is shown in [12] by Shuzhi et al., whereas Potekhin et al.
[13] investigate a Fuzzy Neural Network for controlling autonomous decentralized
energy grids.

This work shows a comparison between the PID tuning methods, FL and ANN
control. The aim of this work is to indicate which of the methods has the best per-
formance as along with the lowest implementation effort. For the PID tuning methods,
the ZN and T-Sum ones, are chosen, while a Mamdani-FL controller and another one
based on Feed-Forward-ANN is used for simulation of the controllers and the process.

2 Different Control Approaches

Three classes of controllers are compared in this work. PID Controllers and those based
on FL and ANN are the main control paradigms used in closed-loop control applica-
tions. This section gives an overview of the theory and systematic schemes behind the
different types of controllers and their respective tuning methods.

2.1 PID-Control

A PID controller is composed of three individual parts, hence is the name of propor-
tional–integral–derivative controller. Linking these three blocks in parallel results in the
general transfer function for a PID controller in the Laplacian domain

KPID sð Þ ¼ KP þ Kl

s
þKDs ¼ KP 1þ 1

Tls
þ TDs

� �
; ð2:1Þ
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where Tl ¼ KP=Kl is called the reset time and TD ¼ KD=KP is called the lead time [14].
By transforming Eq. (2.1) back to the time domain as shown in Eq. (2.2), the
dependence of the controller’s output u(t) from the control error e(t) is easily derived:

u tð Þ ¼ KPe tð Þþ KP

Tl

Z t

0

e sð ÞdsþKPTD
de tð Þ
dt

: ð2:2Þ

A graphical presentation of a PID controller with the control error and control
output in the Laplacian domain can be seen in Fig. 1. If the plant is well known and can
be modelled mathematically without further difficulties, numerical methods to set the
parameters are preferred. However, it is not always practical to invest a lot of time and
resources into developing an adequate mathematical model of the respective plant.
Therefore, different tuning methods exist which make it possible to heuristically find
near-optimal solutions for the parameters of the PID controller.

2.1.1 Ziegler-Nichols Tuning Method
While the Ziegler-Nichols method [1] has been known since 1942, it is still used today,
mainly for strongly delayed processes. The ZN method proposes two different
approaches; one of the two being presented here. The plant is approximated as a first-
order plus time delay model. The time delay of the plant Tdead , the time constant T and
the stationary amplification Ks have to be known or determined experimentally from
the system’s step response by adding an inflexion tangent to the step response of the
system. The time between the zero point of the time scale, when the step was applied to
the plant, and the intersection of the inflexion tangent with the time axis can be
considered equal to Tdead , while the time between the intersection of the inflection
tangent with the x-axis and with the stable output of the plant is equal to T. The PID
controllers’ parameters are then adjusted in the following way: KP ¼ 1:2=Ks � T=Tdead ,
Tl ¼ 2 � Tdead and TD ¼ 0:5 � Tdead . Other tuning methods, like Chien-Hrones-Reswick
[15], are based on the second method of ZN.

2.1.2 T-Sum Tuning Method
The T-Sum method was first introduced in 1995 by Kuhn [2]. Together with other
approaches, like the one proposed by Åström and Hägglund [16], it stands for a modern
and more sophisticated approach to PID tuning. It can be used for plants which can be
characterized by a low-pass behaviour and have the transfer function as:

G sð Þ ¼ Ks
1þ TU;1s
� �

1þ TU;2s
� �

. . . 1þ TU;ms
� �

1þ TL;1s
� �

1þ TL;2s
� �

. . . 1þ TL;ns
� � e�sTdead ð2:3Þ
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Fig. 2. Graphical determination of the T-Sum

Fig. 1. Block diagram of a PID controller

Table 1. Parameters for the T-Sum method (Original)

Parameter Value

KP Ks

Tl 0:66 � TR
TD 0:167 � TR

Table 2. Parameters for the T-Sum method (Fast)

Parameter Value

KP 2=Ks

Tl 0:8 � TR
TD 0:194 � TR
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The T-Sum tuning method is named after the main operation necessary to adjust the
PID parameters with its help, the sum of the delaying time constants TL in the
numerator of Eq. (2.3) minus the deriving time constants in the denominator and plus
the dead time:

TR ¼ Tdead þ
Xn
i¼1

TL;i �
Xm
j¼1

TU;j: ð2:4Þ

If the transfer function of the plant is unknown, the T-Sum shown in Eq. (2.4) can
also be obtained from the experimentally found step response of the plant, either
arithmetically (2.5)

TR ¼
Z1
0

1� y tð Þ
Ks

� �
dt ð2:5Þ

or graphically from the step response of the system, which is denoted as y(t) in (2.5).
Graphically, the value of TR can be derived by introducing a straight line, perpendicular
to the time axis. This straight line divides the area between it and the y-axis under the
step response and above the x-axis from the area above the step response and below the
steady state of it between this straight line and the steady state of the step response.
When these two areas are equal (A1 ¼ A2 in Fig. 2), the value for TR can be directly
seen from the position of this straight line on the time axis, as shown in Fig. 2. The
values for the PID’s parameters can then be directly seen from Table 1 the original T-
Sum method and from Table 2 the fast T-Sum method, which compromises a higher
overshoot for a faster settling time.

2.2 Fuzzy Control

Unlike PID controllers, which are parametrized either by mathematical modelling or
experimental knowledge, fuzzy control relies more on previous knowledge in terms of
heuristic IF <condition> THEN <action> rules. Therefore, designing a fuzzy controller
is actually similar to the experimental method for constructing a table of inputs and
corresponding output values called a ruleset in Fuzzy Logic. What makes FL inter-
esting, though, is that due to the fuzzification of the inputs, not only the situations
actually listed in the respective ruleset result in an action, but also all intermediate
values which at least partially correspond to one of the if-conditions. To achieve this,
the reference input e(t) of the FL controller is mapped to a value in the range [0, 1].

This certain value is called degree of belief in FL and is achieved by applying the
fuzzy membership functions (see Fig. 3) to the crisp input e(t). A typical FL controller
is composed of the fuzzification of the reference input, which is then led to the Fuzzy
Inference System (FIS). Depending on the respective if-then rules in the rule base, the
FIS infers a certain fuzzy control input u(t), which is then defuzzified and applied to the
plant of the control loop [17]. This can be seen schematically in Fig. 4.

78 C. Gross and H. Voelker



A big advantage of fuzzy controllers is their ability to work with plants with
uncontinuous transfer functions and their robustness when a plant with time-variant
behaviour is controlled [17]. The first applications of FL to control problems were
proposed by Sugeno in [18].

2.3 Neural Network Control

Neural Network Control is another approach to control systems that has emerged lately
from the huge interest in ANN. In the general ANN research, ANN are classified by
their structure, which are feed-forward, radial-basis functions, convolutional or long-
short term memory ANN among others. For NNC, though, Agarwal [10] tried to
classify different controllers. The basic principle of ANN relies on small, independent
neurons, inspired by the biological processes of the brain of living organisms, which
multiply n input signals, by the respective weights w1; . . .;wn. The weighted input
signals are then summed up with a possible bias of the тeuron and fed to a specific
activation function, which gives back the output of the neuron. Literature sources, e.g.,
[19] or [20], present a more detailed introduction to ANN.

One of the main advantages of NNC is the ability of feed-forward ANN with
nonlinear, differentiable activation functions to approximate any given function, even if
the function is nonlinear [21]. This is used in the first step towards building a NNC,

Fig. 3. Exemplary membership functions

Fig. 4. Schema of a fuzzy controller

A Comparison of Tuning Methods for PID-Controllers 79



when the plant’s transfer function is approximated with the help of ANN, instead of
being analytically modelled manually. The second step, the actual NNC, profits from
one of the main reasons why the ANN are so popular nowadays: i.e., their ability to
learn. Due to this fact, it is possible to build adaptive controllers with the help of ANN
[22]. However, the necessity of the structure of the ANN to be determined a-priori, the
control task can pose a problem because it can lead to an overdetermined network
structure resulting in high computational complexity, or to an underdetermined struc-
ture causing poor performance of an actual controller [21].

3 Experimental Set-Up

In the course of this work, three different control paradigms are simulated in
Matlab/Simulink R2016B. The control reference e(t) is implemented by a unified step
at the time t = 0. The obtained unified step response of the plant for different con-
trollers is then compared.

3.1 Plant

In order to compare the performance of the controllers, a plant for the control loop
should be chosen. Due to its wide range of applications, a DC motor is selected; it can
be modelled according to the Newton (3.1) and Kirchhoff (3.2) laws

J
d2h
dt2

¼ t � b
dh
dt

; ð3:1Þ

La
di
dt

¼ �RaiþV � e ð3:2Þ

as a second order plant. A DC motor can be modelled in more detail as well, the
representation in the form of a linear PT2 element is chosen due to the possibility to
model a variety of different control problems in this form of a second order plant.
Figure 5 represents the model of the plant which is created in Simulink. In order to
study the impact that time-variant behaviour of the plant produces on the different
controllers, the values of the plant parameters are altered after the controllers have been
adjusted to it. This adjustment lies in the range of plus or minus 20% for each
parameter and is, therefore, by all means within the range of deviations that the
parameters of individual components of the same series may have or may acquire over
the time [23]. The changes applied to the plant parameters after the optimization of the
controllers can be seen in Table 3.

3.2 Controllers

A PID controller is realized by the use of respective gain blocks, integrators and
derivative blocks, just as shown in Fig. 1 The different parameters of the PID controller
are then derived from the step response of the plant, using the 2nd ZN method, as well
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as the original and fast adjustment values from the T-Sum method. This results in the
following parameters for PID controllers that are shown in Table 4.

The fuzzy controller as well as the neural network controller is chosen from the
respective toolbox in Simulink. For the fuzzy controller, a Mamdani approach with two
input variables (control reference e(t) and fed-back plant output y(t)) and the control
output u(t) is applied. Five triangular membership functions (a positive and negative
ones for the control reference and a positive, negative and zero ones for the feedback
signal) and three output membership functions are implemented with a respective
ruleset. The membership functions for the input and output variables can be seen in
Fig. 6.

Similarly, a controller from the neural network toolbox in Simulink is chosen to
characterize the implementation and the behaviour of such a type of controller. The
chosen NN predictive controller [24] has a specific control horizon of discrete steps in
which the plant’s behaviour is predicted and the necessary control actions are per-
formed (the control horizon). These parameters are set to ten and eight respectively.
The controller is trained by random control reference inputs in a given range of values
and time. During a training session with the presented plant, a series of 5000 discrete
time steps is run over the NN with a batch size of 10. The layers consist of eight
neurons each, and the weights are optimized by using a 1-dimensional backtracking
algorithm in Matlab. Figure 7 shows the architecture of the NN used in the controller.

Table 3. Change of plant parameters to simulate change over the time

La;new ¼ 0:9 � La Ra;new ¼ 0:9 � Ra Kt;new ¼ 1:2 � Kt

Jnew ¼ 0:8 � J bnew ¼ 1:1 � b Ke;new ¼ 1:05 � Ke

Fig. 5. DC motor modelled as a linear second order plant in simulink

Table 4. Parameters for the PID controller

Parameter 2nd Ziegler-Nichols T-Sum (original) T-Sum (fast)

Kp 4.505 1.000 2.000
Tl 1.334 1.815 2.200
TD 0.333 0.459 0.535
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4 Results

The simulation is first carried out with the plant’s parameters for which the controllers
were optimised and it can be seen in Fig. 8. In order to assess the performance of
different controllers, a unified method to quantify the plant’s output is necessary.
Important parameters used to evaluate controller’s performance with the use of the step
response are the overshoot of the plant’s output y(t) over the reference signal e(t), the
settling time (in dependence from a certain error criteria), and the stationary error. In
this work, the settling time is evaluated with respect to a deviation of 0.8% from the
stationary signal. In order to include all of these parameters in the estimation, the root
mean squared error (RMS) of the discrete signals y and e (4.1) is used:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ei � yið Þ2
n

s
: ð4:1Þ

The RMS, the overshoot and the settling time are shown in the following Table 5
for different controllers. None of the controllers showed a stationary error. After the
plant’s parameters were altered, the simulation is carried out again. The results can be

Fig. 6. Membership functions of the implemented fuzzy controller

Fig. 7. Architecture of the NN predictive controller
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seen in Fig. 9 and Table 6 respectively. In order to be able to quantify the influence that
the change of the plant’s parameters has on the controller’s performance, the difference
of the RMS from Table 5 RMSold and the RMS with the changed plant’s parameters
RMSnew is computed (4.2):

DRMS ¼ RMSold � RMSnew
RMSold

� 100% ð4:2Þ

It can be seen that the results of the different control paradigms differ. In view of the
minimal error criteria, the ZN-tuned PID controller shows the best result, even though
it has the highest overshoot exceeding those of the controller with the parameters set by
the fast T-Sum method by more than the factor three. The FL controller shows the best
behaviour in terms of the overshoot but in terms of the RMS error criteria it is at the
bottom together with the NN predictive controller. This would not even change when
the plant’s parameters are changed to simulate time-variant plant behaviour. If a low
overshoot is required, though, the examined FL controller has a feasible behaviour.

Table 5. Key performance indicators for the controllers, original plant parameter

Parameter PID Control Fuzzy Control NN pred. Control
2nd ZN T-Sum (or.) T-Sum (fast)

RMS 0.232 0.301 0.259 0.312 0.317
Overshoot [%] 40.65 6.81 12.37 2.39 6.65
Settling t. [s] 8.12 11.4 8.8 10.24 9.24

Table 6. Key performance indicators for the controllers, changed plant parameter

Parameter PID Controller Fuzzy Controller NN pred. Control
2nd ZN T-Sum (or.) T-Sum (fast)

RMS 0.212 0.285 0.244 0.285 0.293
DRMS [%] 8.352 5.357 5.946 8.665 7.556
Overshoot [%] 35.52 0.46 7.43 6.79 11.47
Settling t. [s] 7.05 10.4 7.95 8.41 10.41
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Fig. 9. Comparison of the step responses of the control loop with the changed parameters
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5 Conclusion

Controllers – and different tuning methods – can be compared to each other by the
basic criteria that are mandatory for every control system. All of the tested controllers
showed stable behaviour, had good accuracy as measured by the resting control
deviation, and could be considered robust, as all the controllers were able to satis-
factorily control the plant, even when the parameters of the plant altered over time. The
coherence of speed and attenuation of control loops is shown in this work again. The
controllers which have a lower setting time, as a general rule, have a higher overshoot.
Therefore, a trade-off has to be made when choosing the right controller for a control
application. For the set-up used in this work, the ZN-tuned PID controller showed the
fastest settling time, whereas the FL controller had the lowest overshoot.

It has to be said, though, that the behaviour of the FL controller highly depends on
the chosen ruleset and membership functions, and a different characteristic for the step
response can, therefore, be obtained with an FL controller. This is also true for the NN
predictive controllers, where the chosen architecture of a controller, as well as the
training data, influences the future control action. Therefore, these two certain types of
controllers stand only prototypical for the respective control approaches, as no gen-
eralized methods of bestpractice design of these controllers exists so far.

It should be noted that for small control problems that can be linearized with
sufficient accuracy, like the one examined in this work, neither a fuzzy controller nor a
neural-network controller are of certain advantageous character. In all performance
indices shown in Tables 5 and 6, the PID controller with a specific tuning method can
keep up with more sophisticated control approaches. By choosing other tuning methods
for a PID controller and manual fine tuning of the parameters, the shown behaviour can
be changed if necessary. Especially when taking into account the lesser implementation
expenses and the lower computational complexity of a PID controller, fuzzy and NN
controllers cannot be considered practicable for such a control application.
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