
Justifiable Exceptions in General Contextual
Hierarchies

Loris Bozzato1(B), Thomas Eiter2, and Luciano Serafini1

1 Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
{bozzato,serafini}@fbk.eu

2 Institute of Logic and Computation, Technische Universität Wien,
Favoritenstraße 9-11, 1040 Vienna, Austria

eiter@kr.tuwien.ac.at

Abstract. The problem of representing and reasoning with context dependent
knowledge has recently gained interest in the area of description logics: among
the several proposals, we consider the Contextualized Knowledge Repository
(CKR) framework. In CKR applications it is often useful to reason over a hierar-
chical organization of contexts: for this reason, in our recent work we extended
the CKR model to allow for the representation of exception handling in the inher-
itance of knowledge across contexts. However, to simplify the definition of rea-
soning procedures, we limited our approach to a particular kind of context orga-
nization, i.e. ranked hierarchies. In this paper, we further develop the proposal
to extend the reasoning on exception handling for CKRs with general contextual
hierarchies. We adapt the semantics (on a core version of CKR) to cope with con-
textual defeasible axioms in general hierarchies; on the base of this, we define an
ASP based reasoning procedure that is complete w.r.t. instance checking under
the proposed semantics for general contextual hierarchies.

1 Introduction

Representing and reasoning with contexts has recently gained increasing interest in the
Semantic Web area, due to the need for interpreting knowledge resources with respect
to contextual information given in their metadata. This led to a number of (description)
logic based approaches e.g. [13,14,17,18]. In this line of works, we consider the recent
proposal of the Contextualized Knowledge Repository (CKR) framework [6,17], with
its latest formulation in [4].

A CKR knowledge base is a two-layer structure where the higher level consists of a
global context and the lower level consists of a set of local contexts. The global context
contains context-independent knowledge about the domain of discourse (global object
knowledge) and the structure and properties of the local contexts (meta-knowledge).
Local contexts contain knowledge that holds under specific situations (e.g. during a
certain period of time, region in space). The global object knowledge is propagated
to the local contexts and it is used to constrain local knowledge in different contexts.
In [4] an extension to CKR was proposed by introducing a notion of justifiable excep-
tions. Axioms in the global context may be specified as defeasible, meaning that in
general they are “inherited” in local instances, but these can be “overridden” on some
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exceptional instance if they would cause a local contradiction. A limitation of the pro-
posal in [4] is that inheritance of defeasible axioms is restricted to the direction from the
global to the local contexts: in general, one may want to specify more complex struc-
tures of contexts and control the knowledge propagation across such structures e.g. in
the case of hierarchies of contexts specified by a context coverage relation [17].

Thus, in [7] we generalize this approach by allowing for local defeasible axioms in
coverage contextual hierarchies. For the interpretation of overridings, we prefer models
that prioritize the validity of defeasible axioms at the most specific contexts. In [7] we
concentrate on ranked contextual hierarchies, namely hierarchies that can be divided in
a linear order of levels: this restriction allows us to define a simple “global” preference
on models based on the level of the overridden defeasible axioms. This also permits to
easily adapt the translation to ASP programs from [4] by computing preference across
answer sets by means of weak constraints [16] on the level of overridings.

In this paper, we continue the work in [7] by considering the case of CKRs with gen-
eral contextual coverage structures. In order to cope with the interpretation of overrid-
ing in generic hierarchies, we need to adopt a “local” preference on models. Intuitively,
a (non-strict) preference on local defeasible axioms is derived from their position in
the coverage hierarchy: we prefer models which override the axioms in the higher con-
texts in the hierarchy, in order to prefer the most specific axioms in the lower contexts.
However, while in [7] preference was mapped on the linear approximation provided by
levels, with general hierarchies such preference has to be defined by considering the
local coverage relations of the contexts of the overridden axioms. This provides a more
accurate definition of the preference, but the comparison on the models is more com-
plex. This aspect reflects on the reasoning method we provide for instance checking: we
provide an algorithm, based on the preference semantic definition, that is able to derive
the “preferred” answer sets which encode the expected interpretation of inheritance.

The contributions of this paper can be summarized as follows:

– We describe the extension of the CKR semantics with defeasible axioms in local
contexts, as provided in [7]. Inheritance and overriding of defeasible axioms is
defined over a hierarchical coverage relation across local contexts: in order to con-
centrate on the contextual structure, we work on a restriction of CKR that we call
simple CKR (sCKR). In this paper we consider general contextual hierarchies: in the
definition of the semantics, we refine the definition of model preference to consider
the “local” ordering of overridings in the contextual hierarchy.

– We summarize the computational complexity of major reasoning tasks, in particular
axiom entailment and conjunctive query (CQ) answering in the case of reasoning
on general hierarchies. Under the new definition of model preference, we can show
that axiom entailment is Πp

2 -complete and CQ-answering is Πp
2 -complete: as in the

case of level-based preference, reasoning with preference increases the complexity
of entailment, but it does not for CQ answering.

– We extend to general hierarchies the reasoning method by a translation to data-
log (with negation under answer set semantics) for simple CKRs in SROIQ-RL
proposed in [7]. In order to restrict reasoning on preferred models, we provide an
algorithm for comparing answer sets based on the semantic definition of the local
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preference of overridings. The resulting reasoning procedure provides a sound and
complete method for instance checking and conjunctive query answering on sCKR.

For space limitations, we refer the reader to [4,7] for preliminaries on the definitions
of SROIQ-RL language and datalog programs under answer set semantics that we
assume in the following sections.

2 Simple CKR with Justifiable Exceptions

We provide in this section the definition of simple CKR (sCKR) introduced in [7]
adapted to the case of general hierarchies. With respect to the original formulation of
CKR presented in [3,4,6], a simple CKR is still a two layered structure: however, in
order to emphasize the role of the coverage relation, we simplify the upper layer to be
a poset based on such relation.

Syntax. Consider a non empty-set of context names N ⊆ NI. We define a coverage
relation ≺⊆ N × N. Given context names c1, c2 ∈ N, we say that c2 covers c1 if c1 ≺
c2. The coverage relation ≺ is a strict partial order relation onN, i.e. it is irreflexive and
transitive. Intuitively, c1 ≺ c2 means that c2 is more general than c1, in the sense that
c2 refers to a portion of the world that covers the one described by c1 [17]. We may use
the non-strict relation c1 � c2 to indicate that c1 can be covered by c2 or is the same
context.
We can now define the language used in the local contexts to express their knowledge.

Definition 1 (contextual language).Given a set of context namesN, for every descrip-
tion language LΣ we define LΣ,N as the description language L with the following
additional rule for concept and role formation: eval(X, c) is a concept (resp. role) of
LΣ,N if X is a concept (resp. role) of LΣ and c ∈ N.

Definition 2 (defeasible axiom). A defeasible axiom is any expression of the form
D(α), where α is an axiom of LΣ . The DL language LD

Σ,N extends LΣ,N with the
set of defeasible axioms in LΣ .

Using these definitions, simple CKRs are defined as follows:

Definition 3 (simple Contextualized Knowledge Repository, sCKR). A Simple Con-
textualized Knowledge Repository (sCKR) over Σ and N is a structure K = 〈C,KN〉
where:

– C is a poset (N,≺) and
– KN = {Kc}c∈N for each context name c ∈ N, Kc is a DL knowledge base over
LD

Σ,N.

Example 1. We adapt the corporation example from [7] to the case of a simple non-
ranked hierarchy. Let us consider a sCKR Korg = 〈C,KN〉 describing the organization
of a corporation. The corporation wants to define different policies with respect to its
local branches. The hierarchy of contexts C, representing the corporation organization,
is shown in Fig. 1.
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cworld

cbranch1 cbranch2

clocal1 clocal2

Fig. 1. Context hierarchy of example sCKR.

The company can enforce policies depending on the branch and its influence on the
local sites. The corporation is active in the fields of Musical instruments (M ), Electron-
ics (E ) and Robotics (R). A supervisor (S ) can be assigned to manage only one of these
fields. By putting defeasible axioms in the correct contexts in KN, we can assign local
supervisors to their field:

cworld : {M � E 	 ⊥,M � R 	 ⊥,E � R 	 ⊥,D(S 	 E )}
cbranch1 : {D(S 	 M )} cbranch2 : {D(S 	 R)}
clocal1 : {S (i)}
In cworld we say that supervisors are assigned to Electronics, while in the sub-

context for cbranch2 we contradict this by assigning all local supervisors to the Robotics
area and in cbranch1 we further specialize this by assigning supervisors to the Musical
instruments area. In the contexts for local sites we have information about the instances
(here we consider only clocal1 for simplicity). Note that different assignments of areas
for i are possible by instantiating the defeasible axioms: intuitively, we want to prefer
the interpretations that override the higher defeasible axioms in cworld and cbranch2 . ♦

sCKRs restrict the original CKR definition in [3,4,6] in order to concentrate on aspects
of defeasibility across contexts. Any sCKR can be easily translated in a CKR (by suit-
ably adapting the interpretation of coverage context relation like in the following def-
inition of semantics). Differently from [7], we do not restrict the form of the poset C.
Thus, the definition of preference across different models can not be based on syntactic
properties of the hierarchy: it will be defined over a local ordering on elements of the
semantics (clashing assumptions).

Semantics. An interpretation for a sCKR is a set containing an interpretation for each
local context.

Definition 4 (sCKR interpretation). An interpretation for LΣ,N is a family I =
{I(c)}c∈N ofLΣ interpretations, such that ΔI(c) =ΔI(c′) and aI(c) = aI(c′), for every
a∈NIΣ and c, c′ ∈N.

The interpretation of concepts and role expressions inLΣ,N is obtained by extending the
standard interpretation to eval expressions: for every c ∈ N, eval(X, c′)I(c) = XI(c′).
We consider the notion of axiom instantiation and clashing assumption as defined in [4].
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Definition 5 (axiom instantiation). Given an axiom α ∈ LΣ with FO-translation
∀x.φα(x), the instantiation of α with a tuple e of individuals in NI, written α(e), is
the specialization of α to e, i.e., φα(e), depending on the type of α.

Definition 6 (clashing assumptions and sets). A clashing assumption for a context c
is a pair 〈α, e〉 such that α(e) is an axiom instantiation of α, and D(α) ∈ Kc′ is a
defeasible axiom of some c′ � c. A clashing set for 〈α, e〉 is a satisfiable set S of ABox
assertions such that S ∪ {α(e)} is unsatisfiable.

A clashing assumption 〈α, e〉 represents that α(e) is not (DL-)satisfiable, and a clashing
set S provides an assertional “justification” for the assumption of local overriding of α
on e. We extend our interpretations to account for such notions.

Definition 7 (CAS-interpretation). A CAS-interpretation is a pair ICAS = 〈I, χ〉
where I is an interpretation and χ maps every c ∈ N to a set χ(c) of clashing assump-
tions for context c.

Definition 8 (CAS-model). Given a sCKR K, a CAS-interpretation ICAS = 〈I, χ〉 is
a CAS-model for K (denoted ICAS |= K), if the following holds:

(i) for every α ∈ Kc (strict axiom), and c′ � c, I(c′) |= α;
(ii) for every D(α) ∈ Kc, I(c) |= α;
(iii) for everyD(α) ∈ Kc and c′ ≺ c, if d /∈ {e | 〈α, e〉 ∈ χ(c′)}, then I(c′) |= φα(d).

In order to generalize the model preference to general hierarchies, in this paper we
consider a local preference on clashing assumption sets (cf. discussion in [7]). The
preference is defined directly along the coverage relation:

χ1(c) > χ2(c), if for every η = 〈α1, e〉 ∈ χ1(c) \ χ2(c) with D(α1) at a context
c1 � c, there exists an η′ = 〈α2, f〉 ∈ χ2(c)\χ1(c)withD(α2) at context c2 � c
such that c1 � c2.

This definition reflects the intuition that if we make in χ1(c) an exception at c1, then a
“more costly” exception should be made at a context c2 below c1 by χ2(c) that is not
made by χ1(c).

Two DL interpretations I1 and I2 are NI-congruent, if cI1 = cI2 holds for every
c ∈ NI. This naturally extends to a (CAS) interpretation ICAS = 〈I, χ〉 by considering
all context interpretations I(c) in I. We say that a clashing assumption 〈α, e〉 ∈ χ(c)
is justified for a CAS model ICAS , if some clashing set S = S〈α,e〉,c exists such that,
for every CAS-model I′

CAS = 〈I′, χ〉 of K that is NI-congruent with ICAS , it holds
that I′(c) |= S〈α,e〉,c.

Definition 9 (justified CAS model). A CAS model ICAS of a sCKR K is justified, if
every 〈α, e〉 ∈ CAS is justified in CKR.

To interpret the intended preference on defeasible axioms, sCKR models not only need
to require the existence of a CAS model justifying the exceptions, but also require that
such CAS model “minimizes” the position in the hierarchy of the overridden defeasible
axioms: in this way, in case of alternative solutions, axioms at the lower parts of the
coverage hierarchy (i.e. more specific) are preferred to axioms at the higher contexts
(i.e. more general). In the current setting, model preference is defined from local priority
by the following condition:
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I1
CAS = 〈I1, χ1〉 is preferred to I2

CAS = 〈I2, χ2〉 iff there exists some c ∈ N
s.t. χ1(c) > χ2(c) and not χ2(c) > χ1(c), and for no context c′ �= c ∈ N it
holds that χ1(c′) < χ2(c′) and not χ2(c′) < χ1(c′).

We note that this definition of model preference (together with the ordering on clashing
assumption sets) provides a non-symmetric and non-transitive relation over models.

Definition 10 (CKR model). An interpretation I is a CKR model of a sCKR K (in
symbols, I |= K) if:

– K has some justified CAS model ICAS = 〈I, χ〉;
– there exists no justified CAS model I′

CAS = 〈I, χ′〉 that is preferred to ICAS .

Example 2. Considering the sCKR Korg of previous example, we note that different
justified CAS models are possible, corresponding to the different assignments of the
supervisor individual i in the clocal1 context to the alternative product areas denoted
by the defeasible axioms in the upper contexts. We have three possible assignments,
corresponding to three different clashing assumptions maps for the local context:

χ1(clocal1 ) = {〈S 	 E, i〉, 〈S 	 R, i〉}
χ2(clocal1 ) = {〈S 	 M, i〉, 〈S 	 R, i〉}
χ3(clocal1 ) = {〈S 	 M, i〉, 〈S 	 E, i〉}

By the definition of ordering on clashing assumption sets, we have in particular that:

χ1(clocal1 ) > χ2(clocal1 ) χ1(clocal1 ) > χ3(clocal1 ) χ3(clocal1 ) > χ2(clocal1 )

Thus, following the definition of model preference, there is one preferred model for our
sCKR which corresponds to χ1: note that it corresponds to the intended interpretation
in which the defeasible axiom D(S 	 M) associated to the most specific context wins
over the more general rules asserted for the higher contexts. ♦

We remark that the presented local model preference relation is only one of the possible
solutions for an ordering condition that encodes our intended reading for the priority of
overridings. Further ordering conditions can be devised e.g. by considering instances
and axioms in comparisons or different properties of the ordering relation. We leave
the formulation and study of properties for such alternative orderings as a direction for
future work.

Reasoning and Complexity. We summarize in the following the reasoning tasks and
the main complexity results as in [7]. We consider these reasoning tasks:

– c-entailment, where K |= c : α denotes for an axiom α that α is entailed in every
CKR-model of K at context c (i.e., I(c) |= α);

– (Boolean) conjunctive query (CQ) answering K |= ∃yγ(y), where γ(y) = γ1 ∧
· · · ∧ γm is a conjunction of atoms γi = ci :αi(ti), where each ci is a context name
and αi(ti) is an assertion in which variables occur, which is existentially closed.
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It has been shown in [4] that justified CAS -model checking, i.e. deciding whether a
given CAS -interpretation is a justified CAS -model of a given CKR K is feasible in
polynomial time, and that satisfiability (existence of a CKR-model) is NP-complete.
Furthermore, c-entailment testing and (Boolean) CQ-answering were shown to be
coNP- and Πp

2 -complete problems, respectively.
In the case of reasoning with contextual hierarchies, while the complexity of satis-

fiability remains unchanged, model checking is intractable already for the ranked hier-
archies of [7]. As a consequence, the complexity of c-entailment increases, while CQ
answering remains unchanged. In what follows, we assume the setting of [4] for the
complexity analysis.

Proposition 1. Deciding whether a CAS-interpretation ICAS of a sCKR K is a CKR-
model is coNP-complete.

Informally, ICAS can be refuted if it is not a justified CAS-model of K, which can be
checked in polynomial time using the techniques in [4], or some preferred model I′

CAS

exists; the latter can be guessed and checked in polynomial time. The coNP-hardness
can be shown by a reduction from a variant of UNSAT.

Theorem 1. Suppose K is a sCKR with global preference induced by a local preference
> that is polynomial-time decidable. Then deciding c-entailment K |= c : α is Πp

2 -
complete.

In particular, we note that the model ordering we propose in this paper satisfies the
condition (CP) considered in [7] to motivate the Πp

2 -hardness.

Theorem 2. Deciding whether an sCKR K entails a Boolean CQ γ is Πp
2 -complete for

profile-based preference.

These results can be motivated similarly: intuitively, a CKR-model ICAS that does not
entail γ can be guessed and checked with the help of an NP oracle (ask whether no
preferred I′

CAS exists and whether γ is entailed), and similarly for local preference.
The Πp

2 -hardness is inherited from ordinary CKR.
For data complexity (i.e. the CKR K is fixed and only the assertions in the knowl-

edge modules vary), while CKR model checking remains coNP-complete, the com-
plexity of c-entailment drops to Δp

2[O(log n)] = PNP|‖[k] (cf. [10]): the problem can
be decided with a constant number k of rounds of parallel NP oracle queries and it is
complete for this class. On the other hand, CQ entailment remains Πp

2 -complete.

3 Reasoning Procedure for General Hierarchies

In this section we adapt the reasoning method for sCKR in SROIQ-RL presented in [7]
to the case of general hierarchies. Basically, the datalog translation presented in [7] (and
based on the one in [4]) can be adopted to the current setting for reasoning with simple
CKRs and local defeasible axioms: while in the translation in [4] inference is obtained
from all answer sets of the resulting program (i.e. cautious reasoning), in order to reason
on the inheritance of local defeasible axioms we need to select the preferred answer sets
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accordingly to the model ordering defined on sCKR models. However, in this case we
can not take advantage of a specific form of the contextual hierarchies: thus, we provide
a general algorithm (based on the semantic definition of model preference) to compute
the preferred models w.r.t. the ordering of their clashing assumptions.

Language and Normal Form. As in the original version of the translation, we limit the
defeasible axioms to the language of SROIQ-RLD: i.e. in defeasible axioms, D � D
can not appear as a right-side concept and each right-side concept ∀R.D has D ∈ NC.
Also, we consider the normal form and normal form transformation proposed in [4]
for the formulation of the rules (considering the formulas that can appear in the simple
CKRs) and we assume again the Unique Name Assumption.

Translation Overview. The translation to datalog extends the one presented in [4]: the
non-trivial use of non-monotonic negation and inference on negative literals by contra-
diction for the interpretation of exceptions is here extended to reason on local defea-
sible inheritance. However, since we do not consider the computation of preference in
the translation, differently from rules in [7] we do not consider weak constraints on the
level of overriding.

Formally, we consider the datalog translation composed by the rules in [8] by leav-
ing out the rules in Table 8 and the global input rule for the interpretation of levels
(igl-level) in Table 3.

As in the original formulation (inspired by the materialization calculus in [15]),
the translation includes sets of input rules (which encode DL axioms and signature in
datalog), deduction rules (datalog rules providing instance level inference) and output
rules (that encode in terms of a datalog fact the ABox assertion to be proved). The
translation is composed by the following sets of rules:

SROIQ-RL Input and Deduction Rules: rules in Irl(S, c) translate to datalog facts
(in a given context c) SROIQ-RL axioms and signature. For example, atomic concept
inclusions are translated with the rule A 	 B �→ {subClass(A,B, c)}. Deduction
rules in Prl encode the inference rules for SROIQ-RL axioms: e.g., for atomic concept
inclusions:

instd(x, z, c, t) ← subClass(y, z, c), instd(x, y, c, t).

Global and Local Translations: global input rules Iglob(C) encode the interpretation of
the contextual structure. E.g., c1 ≺ c2 �→ {prec(c1, c2)} translates coverage across
contexts as instances of the prec predicate. Local input and deduction roles implement
the interpretation of eval: note that differently from [4], eval can be only defined over
single contexts instead of context classes.

Defeasible Axioms Input Translations: defeasible input rules ID(S, c) declare that a
local axiom is defeasible: differently from the translation in [4], the resulting atoms also
contain the context in which the axiom has been introduced. For example, D(A 	 B)
in context c translates to def subclass(A,B, c).
Overriding Rules: overriding rules in PD provide rules defining when an axiom of a
certain form is locally overridden. With respect to rules in [4], this version of overriding
rules has to consider the context in which the defeasible axiom has been declared: this
is needed in order to reason on the local preference of the overridden axiom in the
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algorithm for the computation of preferred models. For example, for axioms of the
form D(A 	 B) in context c:

ovr(subClass, x, y, z, c1, c) ← def subclass(y, z, c1), prec(c, c1),
instd(x, y, c,main), not test fails(nlit(x, z, c)).

Inheritance Rules: PD provides the rules for defeasible inheritance of axioms from
the higher to the lower local contexts in the coverage structure. The definition of rules
in the case of (general) hierarchies also considers the prec relation across contexts,
which defines the direction of inheritance. E.g., the following rule propagates a (possi-
bly defeasible) atomic concept inclusion axiom:

instd(x, z, c, t)← subClass(y, z, c1), instd(x, y, c, t),
prec(c, c1), not ovr(subClass, x, y, z, c1, c).

Note that this rule propagates also to instances of strict axioms, since their overriding is
never verified.

Test Rules: the test rules in PD are used to instantiate and define the “environments” for
the tests for negative literals in overriding rules. The mechanism is analogous to the one
in [4], but rules need to be adapted to the new definition of ovr atoms and prec (i.e.,
they need to consider the context in which the axiom has been declared).

Fig. 2. Procedure PrefModels for computation of answer set preference

Model Preference Algorithm. The presented translation computes all justified models
for the input sCKR: in order to recognize the preferred models, we need to apply to
the computed answer sets the conditions of the model ordering definition. In the case
of general hierarchies, we provide the algorithm PrefModels that, given the sCKR
translation PK(K) as input, produces the set of preferred answer sets as output.

A pseudo-code for PrefModels is presented in Fig. 2: for every answer set A of the
input program, the procedure tests whether there does not exist a different answer set
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Fig. 3. Procedure lessThanM for comparison of answer sets

B for which lessThanM(A,B) holds (i.e. A is minimal w.r.t. the preference). If that is
the case, A is added to the set of results (i.e. preferred models).

The procedure for lessThanM is shown in Fig. 3. Intuitively, it provides a com-
parison between two input answer sets A and B by implementing the condition for
model comparison: A is recognized as preceding B if there exists a context c ∈ N
such that the preference on clashing assumptions in context c (tested by the procedure
lessThanCAS) is verified and in no other context this order is disregarded.

The procedure for lessThanCAS is presented in Fig. 4. It provides a comparison
across clashing assumptions sets for the specific context c from the input answer sets
A and B, based on the definition of local (clashing assumption sets) preference in the
semantics: with respect to c, B is preferred to A if, for every clashing assumption (i.e.
ovr atom) fromB (and not inA) on a defeasible axiom in c2 � c, there exists a clashing
assumption from A (and not in B) on a defeasible axiom in c1 � c such that c1 ≺ c2.

Fig. 4. Procedure lessThanCAS for comparison on clashing assumptions sets
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We note that, in case of a transitive definition of the model preference, we can
modify PrefModels so that the pre-computation and storage of all answer sets is not
needed: we can compute an answer set A of P at a time and verify if the lessThanM
condition holds w.r.t. a set of candidate models Cand (initially empty); in case A is
recognized as a candidate for preferred model, it is added to Cand and any other model
B in Cand s.t. lessThanM(B,A) is removed from Cand .
Translation Process. Given a sCKR K = 〈C,KN〉 in SROIQ-RLD normal form, a
program PK(K) that encodes K is obtained as follows:

1. the global program for C is built as: PG(C) = Iglob(C)
2. for each c ∈ N, we define each local program PC(c,K) as:

PC(c,K) = Prl ∪ Ploc ∪ PD ∪ Iloc(Kc, c) ∪ Irl(Kc ∪ KD
c , c) ∪ ID(Kc, c)

where KD
c = {α ∈ LΣ |D(α) ∈ Kc}.

3. The CKR program PK(K) is defined as: PK(K) = PG(C) ∪ ⋃
c∈N PC(c,K)

Query answering K |= c : α is then obtained by testing whether the (instance)
query, translated to datalog by O(α, c), is a consequence of the preferred models of
PK(K), i.e., whether PrefModels(PK(K)) |= O(α, c) holds. Analogously, this can
be extended to conjunctive queries as in [4].

Correctness. We can show that the presented process provides a sound and complete
reasoning method for instance checking (with respect to c-entailment) and conjunctive
query answering for normal form SROIQ-RLD simple CKRs with general context
hierarchies. The result is shown by extending the correspondence between minimal jus-
tified CKR-models of K and answer sets of PK(K) from [4] to the “preferred” answer
sets computed by the PrefModels algorithm. As in the original formulation, the adop-
tion of UNA and named models (i.e. restricting to models having a N ⊆ NI \ NIS s.t.
the interpretation of atomic concepts and roles belongs to NI) allows to concentrate on
Herbrand models for K, denoted as Î(χ).

Let ICAS = 〈I, χ〉 be a justified named CAS-model. We can build from its com-
ponents a corresponding Herbrand interpretation I(ICAS ) of the program PK(K): the
construction is similar to the one in [4] (and its adaptation to hierarchies detailed in [8]).

It is then possible to show that the answer sets of the final program PK(K) corre-
spond with the least justified models of K by the following result:

Lemma 1. Let K be a sCKR in SROIQ-RLD normal form, then:

(i). for every (named) justified clashing assumption χ, the interpretation S = I(Î(χ))
is an answer set of PK(K);

(ii). every answer set S of PK(K) is of the form S = I(Î(χ)) with χ a (named)
justified clashing assumption for K.

As in the case of [7], the result can be proved along the lines of Lemma 6 in [4] by
showing that the answer sets of PK(K) coincide with the sets S = I(Î(χ)) where χ is
a justified clashing assumption of K.

In the case of general hierarchies, the correspondence with sCKRmodels is obtained
by considering the set of answer sets returned by the PrefModels algorithm and the
notion of model preference on justified CAS -models in the semantics.
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Lemma 2. Let K be a sCKR in SROIQ-RLD normal form. Then, Î is a CKR model of
K iff there exists a (named) justified clashing assumption χ s.t. I(Î(χ)) is a preferred
answer set of PrefModels(PK(K)).

Proof (Sketch). The existence of a justified χ corresponds to the first condition of
Definition 10 and is derived from Lemma 1. Then, we have to show that I(Î(χ)) is
an answer set returned by PrefModels(PK(K)) if it corresponds to a preferred (jus-
tified) model of K as in the second condition of Definition 10. This can be verified by
the formulation of the algorithm: the procedure lessThanCAS applies the definition of
preference on clashing assumption sets to the corresponding ovr atoms of the answer
sets; the preference is then lifted to preference on answer sets by lessThanM using
the definition of model preference; finally, PrefModels applies this preference test on
all answer sets, in order to verify that there does not exist other answer sets that are
preferred to the ones that are returned. �

The correctness for instance checking is obtained as consequence of previous
results:

Theorem 3. Let K be a sCKR in SROIQ-RLD normal form. α and c such that O(α, c)
is defined. Then K |= c : α iff PrefModels(PK(K)) |= O(α, c).

Similarly to [4], this result can be extended to answering of a conjunctive query Q, by
constructing its translation O(Q) by applying output rules to its atoms.

Theorem 4. Let K be a sCKR in SROIQ-RLD normal form. and let Q = ∃yγ(y) be
a Boolean CQ on K. Then K |= Q iff PrefModels(PK(K)) |= O(Q).

4 Related Work

We briefly recall some relevant works related to CKR that include notions of defeasi-
bility in contextual systems and in DLs (we refer to [4,7] for an extended comparison).

We first notice an analogy with non-monotonic multi-context systems (MCS) [9].
The idea of MCS is to align knowledge from different contexts (locally based on pos-
sibly different logics) in a single system using non-monotonic bridge rules. CKRs with
defeasible inheritance may be realized in the MCS framework by controlling knowl-
edge propagation by bridge rules: on the other hand, in sCKR the knowledge propaga-
tion is implicitly defined by the coverage semantics. A different non-monotonic seman-
tics for MCS was proposed in [1], based on argumentation semantics of Defeasible
Logic extended with distribution of knowledge and preferences across contexts. Con-
flicts over external literals are resolved using a local context preference, where clashes
across arguments are considered. In CKR, preference is defined by the interpretation of
the coverage structure. Our notion of overriding compares to a “conflict” among two
arguments for conflicting literals.

Different proposals have been made in DLs to incorporate notions of “normality”
in concepts and subsumptions. For example, [12] formalize in their logic ALC+Tmin

the intuition that a prototypical element of a concept C is a “typical element” of C.
The typicality operator T on concepts is interpreted by extending DL interpretations
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with a preference relation on the domain: each element in T(C) is a member of C
minimal w.r.t. such preference. The models of ALC+Tmin are restricted to the ones
which minimize the set of exceptional instances. Similarly to our approach, in this work
membership of an element in a concept must be blocked: however, instead of using
model minimization, in CKR exceptions have to be justified in terms of a semantic
consequence.

Another approach to represent overriding in DLs is [2]: it proposes a family DLN

of non monotonic DLs defined by extending DLs with an operator NC for normal-
ity concepts and with defeasible inclusions (DIs) C 	n D, interpreted as “normally,
instances of C are instances of D, unless stated otherwise”. The semantics of a defea-
sible inclusion C 	n D w.r.t. normal individuals NE is defined to manage the conflicts
of inclusions on NE: to decide which DIs should be overridden, a priority relation ≺
is defined on DIs. The idea of axiom overriding is similar in spirit to our approach. A
difference stands in the definition of precedence between defeasible axioms: in CKR,
precedence is defined by the coverage hierarchy. As shown in [4], similarly to this app-
roach we can deal with property inheritance at the instance level: however, in case of
clashing inheritances that can not be resolved using preference, our semantics allows to
reason by cases on all alternative models.

5 Conclusions

In this paper we extended the work introduced in [7] on CKR contextual framework
with defeasible axioms in local contexts and knowledge propagation along a con-
text hierarchy. We considered the case of general coverage hierarchies: we defined a
CKR model preference relation by lifting a local preference on overridings (i.e. clash-
ing assumptions). The ordering preserves the intuition of prioritizing the validity of
defeasible axioms at more specific contexts. Then, we extended the ASP based reason-
ing method proposed in our previous works with an algorithm for the computation of
preferred models: we have shown that this leads to a complete reasoning method for
instance checking and CQ answering with respect to the proposed semantics.

There are different directions for future work. As discussed in previous sections,
we are interested in defining different notion of preference on defeasible axioms: we
aim to study their different semantic properties, their behavior with respect to com-
plexity of reasoning and their different effects of knowledge propagation. We can also
consider to introduce different contextual relations other than coverage (with different
rules for knowledge propagation) and study their interaction. We are also interested
in applying the current work on contextual hierarchies to CKRs in different DL lan-
guages (see e.g. [5]) and study different reasoning approaches and their implementa-
tion. For example, the datalog translation and the computation of preferred models by
the PrefModels algorithm can be implemented under a common formalism in nested
HEX-programs [11].
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15. Krötzsch, M.: Efficient inferencing for OWL EL. In: Janhunen, T., Niemelä, I. (eds.) JELIA
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