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Abstract. Assurance cases (ACs) are often required to certify critical
systems. The use of integrated formal methods (FMs) in assurance can
improve automation, increase confidence, and overcome errant reasoning.
However, ACs can rarely be fully formalised, as the use of FMs is contin-
gent on models that are validated by informal processes. Consequently,
assurance techniques should support both formal and informal artifacts,
with explicated inferential links between them. In this paper, we con-
tribute a formal machine-checked interactive language for the computer-
assisted construction of ACs called Isabelle/SACM. The framework guar-
antees well-formedness, consistency, and traceability of ACs, and allows
a tight integration of formal and informal evidence of various provenance.
To validate Isabelle/SACM, we present a novel formalisation of the Toke-
neer benchmark, verify its security requirements, and form a mechanised
AC that combines the resulting formal and informal artifacts.

1 Introduction

Assurance cases (ACs) are structured arguments, supported by evidence,
intended to demonstrate that a system meets its requirements, such as safety
or security, when applied in a particular operational context [24,30]. They are
recommended by several international standards, such as ISO26262 for auto-
motive applications. An AC consists of a hierarchical decomposition of claims,
through appropriate argumentation strategies, into further claims, and eventu-
ally supporting evidence. Several AC languages exist, including the Goal Struc-
turing Notation (GSN) [24], Claims, Arguments, and Evidence (CAE) [2], and
the Structured Assurance Case Metamodel (SACM)1 [30], a standard that unifies
several notations.

AC creation can be supported by model-based design, which utilises architec-
tural and behavioural models over which requirements can be formulated [30].
However, ACs can suffer from logical fallacies and inadequate evidence [20]. A
proposed solution is formalisation in a machine-checked logic to enable verifica-
tion of consistency and well-foundedness [28]. As confirmed by avionics standard

1 OMG Structured Assurance Case Metamodel : http://www.omg.org/spec/SACM/.
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Fig. 1. Overview of our approach to integrative model-based assurance cases

DO-178C, the evidence gathering process can also benefit from the rigour of for-
mal methods (FMs). However, it is also the case that (1) ACs are intended pri-
marily for human consumption, and (2) that formal models must be validated
informally [21]. Consequently, ACs usually combine informal and formal con-
tent, and so tools must support this. Moreover, there is a need to integrate sev-
eral FMs [26], potentially with differing computational paradigms and levels of
abstraction [22], and so it is necessary to manage the resulting heterogeneity [19].

Vision. Our vision, illustrated in Fig. 1, is a unified framework for machine-
checked ACs with heterogeneous artifacts and integrated FMs. We envisage an
assurance backend for a variety of graphical assurance tools [9,30] that utilise
SACM as a unified interchange format, and an array of FM tools provided by
our Isabelle-based verification platform, Isabelle/UTP [16,17]. Our framework
aims to improve existing assurance processes by harnessing formal verification
to produce mathematically grounded ACs with guarantees of consistency and
adequacy of the evidence. In the context of safety regulation, it can help with
AC evaluation through machine-checking and automated verification.

Contributions. A first step in this direction is made by the contributions of
this paper, which are: (1) Isabelle/SACM, an implementation of SACM in
Isabelle [25], (2) a front-end for Isabelle/SACM called interactive assurance lan-
guage (IAL), which is an interactive DSL for the definition of machine-checked
SACM models, (3) a novel formalisation of Tokeneer [1] in Isabelle/UTP, (4) the
verification of the Tokeneer security requirements2, and (5) the definition of an
AC with the claims that Tokeneer meets its security requirements. Our Tokeneer
AC demonstrates how to integrate formal artifacts, resulting from Isabelle/UTP
(4), and informal artifacts, such as the Tokeneer documentation.

Isabelle provides a sophisticated executable document model for presenting
a graph of hyperlinked formal artifacts, like definitions, theorems, and proofs.
It provides automatic and incremental consistency checking, where updates to
artifacts trigger rechecking. Such capabilities can support efficient maintenance

2 Supporting materials, including Isabelle theories, can be found on our website.

https://www.cs.york.ac.uk/~simonf/iFM2019/
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and evolution of model-based ACs [30]. Moreover, the document model allows
both formal and informal content [32], and provides access to an array of auto-
mated proof tools [31,32]. Additionally, Brucker et al. [4] extend Isabelle with
DOF, a framework with a textual language for embedding of meta-models into
the Isabelle document model, which we harness to embed SACM.

Isabelle/UTP [16,17] harnesses Unifying Theories of Programming [22]
(UTP) to provide formal verification facilities for a variety of languages, with
paradigms as diverse as concurrency [13], real-time [14], and hybrid computa-
tion [15]. Moreover, verification techniques such as Hoare logic, weakest pre-
condition calculus, and refinement calculus are all available through a variety
of proof tactics. This makes Isabelle/UTP an obvious choice for modelling and
verification of Tokeneer, and more generally as a platform for integrated FMs
based on unifying semantics.

The paper is organised as follows. In Sect. 2 we outline preliminaries: SACM,
Isabelle, and DOF. In Sect. 3 we describe the Tokeneer system. In Sect. 4 we begin
our contributions by describing Isabelle/SACM, which consists of the embedding
of SACM into DOF (Sect. 4.1), and IAL (Sect. 4.2). In Sect. 5 we model and
verify Tokeneer in Isabelle/UTP. In Sect. 6 we describe the mechanisation of the
Tokeneer AC in Isabelle/SACM. In Sect. 7 we highlight related work, and in
Sect. 8 we conclude.

2 Preliminaries

Fig. 2. Goal Structuring Notation

SACM. ACs are often
presented using a nota-
tion like GSN [24] (Fig. 2).
Here, claims are rect-
angles, which are linked
with “supported by”
arrows, strategies are
parallelograms, and the
circles are evidence (“solu-
tions”). The other shapes
denote various types of
context, which are linked
to by the “in context
of” arrows. SACM is
an OMG standard meta-
model for ACs [30]. It
unifies, extends, and refines several predecessor notations, including GSN [24]
and CAE [2] (Claims, Arguments, and Evidence), and is intended as a definitive
reference model.
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Fig. 3. SACM argumentation meta-model (See footnote 1)

SACM models three crucial concepts: arguments, artifacts, and terminology.
An argument is a set of claims, evidence citations, and inferential links between
them. Artifacts represent evidence, such as system models, techniques, results,
activities, participants, and traceability links. Terminology fixes formal terms for
use in claims. Normally, claims are in natural languages, but in SACM they can
also contain structured expressions, which allows integration of formal languages.

The argumentation meta-model is shown in Fig. 3. The base class is Argu-
mentAsset, which groups the argument assets, such as Claims, ArtifactReferences,
and AssertedRelationships (which are inferential links). Every asset may contain a
MultiLangString that provides a description, potentially in multiple natural and
formal languages, and corresponds to contents of the shapes in Fig. 2.

AssertedRelationships represent a relationship that exists between several
assets. They can be of type AssertedContext, which uses an artifact to define
context; AssertedEvidence, which evidences a claim; AssertedInference which
describes explicit reasoning from premises to conclusion(s); or AssertedArtifact-
Support which documents an inferential dependency between the claims of two
artifacts.

Both Claims and AssertedRelationships inherit from Assertion, because in
SACM both claims and inferential links are subject to argumentation and refu-
tation. SACM allows six different classes of assertion, via the attribute asser-
tionDeclaration, including axiomatic (needing no further support), assumed, and
defeated, where a claim is refuted. An AssertedRelationship can also be flagged
as isCounter, where counter evidence for a claim is presented.
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Fig. 4. Document model
(Color figure online)

Isabelle. Isabelle/HOL is an interactive theorem
prover for higher order logic (HOL) [25], based on
the generic framework Isar [31]. The former pro-
vides a functional specification language, and an
array of automated proof tools [3]. The latter has
an interactive, extensible, and executable document
model [32], which describes Isabelle theories. Plug-
ins, such as Isabelle/HOL, DOF, Isabelle/UTP, and
Isabelle/SACM have document models that contain
conservative extensions to Isar.

Figure 4 illustrates the document model. The first
section for context definition describes imports of exist-
ing theories, and keywords which extend the con-
crete syntax. The second section is the body enclosed
between begin-end which is a sequence of commands.
The concrete syntax of commands consists of (1) a pre-
declared keyword (in blue), such as the command ML,
(2) a “semantics area” enclosed between ‹...›, and (3) optional subkeywords (in
green). Commands generate formal document artifacts. For example, the com-
mand lemma creates a new theorem within the underlying theory context. When
a document is edited by removal, addition, or alteration of formal artifacts, it
is immediately executed and checked by Isabelle, with feedback provided to the
frontend. This includes consistency checks for the context and well-formedness
checks for the commands. Isabelle is therefore ideal for ACs, which have to be
maintainable, well-formed, and consistent. In Sect. 4.2 we extend this document
model with commands that define our assurance language, IAL.

Moreover, informal artifacts in Isabelle theories can be combined with formal
artifacts using the command text ‹...›. It is a processor for markup strings con-
taining a mixture of informal artifacts and hyperlinks to formal artifacts through
antiquotations of the form @{aqname ...}. For example, text ‹The reflexivity
theorem @{thm HOL.refl}› mixes natural language with a hyperlink to the formal
artifact HOL.refl through the antiquotation @{thm HOL.refl}. This is important
since antiquotations are also checked by Isabelle as follows: (1) whether the ref-
erenced artifact exists within the underlying theory context; (2) whether the
type of the referenced artifact matches the antiquotation’s type.

DOF. A foundation for our work is DOF and its Isabelle Ontology Specifi-
cation Language (IOSL) [4]: a textual language to model document classes,
which extends the document model with new structures. We use the command
doc_class from IOSL to add new document classes for each of the SACM classes.
Instances of DOF classes sit at the meta-logical level, so they can be referenced
using antiquotations, and carry an enriched version of Isabelle’s markup string.
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3 Case Study: Tokeneer

Fig. 5. Tokeneer system overview

To demonstrate our approach,
we use the Identification Station
(TIS)3 illustrated in Fig. 5, a sys-
tem that guards entry to a secure
enclave. The pioneering work on
the TIS assurance was carried
out by Praxis High Integrity Sys-
tems and SPRE Inc. [1]. Barnes
et al. performed security analysis,
specification using Z, implementa-
tion in SPARK, and verification of the security properties. After independent
assessment, Common Criteria (CC) Evaluation Assurance Level (EAL) 5 was
achieved. Tokeneer is therefore a successful example of using FMs to assure
a system against CC Though now more than fifteen years old, it remains an
important benchmark for formal methods and assurance techniques.

The physical infrastructure consists of a door, fingerprint reader, display, and
card (token) reader. The main function is to check the credentials on a presented
token, read a fingerprint if necessary, and then either unlatch the door, or deny
entry. Entry is permitted when the token holds at least three data items: (1) a
user identity (ID) certificate, (2) a privilege certificate, with a clearance level,
and (3) an identification and authentication (I&A) certificate, which assigns a
fingerprint template. When the user first presents their token the three certifi-
cates are read and cross-checked. If the token is valid, then a fingerprint is taken,
which, if validated against the I&A certificate, allows the door to be unlocked
once the token is removed. An optional authorisation certificate is written upon
successful authentication, which allows the fingerprint check to be skipped.

The security of the TIS is assured by demonstrating six Security Functional
Requirements (SFRs) [7], of which the first three are shown below:

SFR1. If the latch is unlocked, then TIS must possess either a user token or an
admin token. The user token must either have a valid authorisation certifi-
cate, or valid ID, Privilege, and I&A Certificates, together with a template
that allowed to successfully validate the user’s fingerprint. Or, if the user
token does not meet this, the admin token must have a valid authorisation
certificate, with role of “guard”.

SFR2. If the latch is unlocked automatically by TIS, then the current time
must be close to being within the allowed entry period defined for the User
requesting access.

SFR3. An alarm will be raised whenever the door/latch is insecure.

Our objective is to construct a machine-checked assurance case that argues that
the TIS fulfils these security properties, and integrate evidential artifacts from
our mechanised model of the TIS behaviour in Isabelle/UTP.
3 Project website: https://www.adacore.com/tokeneer.

https://www.adacore.com/tokeneer
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4 Isabelle/SACM

Here, we encode SACM as a DOF ontology (Sect. 4.1), and use it to provide an
interactive machine-checked AC language (Sect. 4.2). Our embedding implements
ACs as meta-logical entities in Isabelle, rather than as formal elements embedded
in the HOL logic, as this would prevent the expression of informal reasoning and
explanation. Therefore, antiquotations to formal artifacts can be freely mixed
with natural language and other informal artifacts.

4.1 Modelling: Embedding SACM in Isabelle

We embed the SACM meta-model in Isabelle using IOSL, and we focus on mod-
elling ArgumentAsset4 and its child classes from Fig. 3, as these are the most
relevant classes for the TIS assurance argument that we develop in Sect. 6. The
class ArgumentAsset has the following textual model:

doc class ArgumentAsset = ArgumentationElement +
content_assoc:: MultiLangString

Here, doc_class defines a new class, and automatically generates an antiquota-
tion type, @{ArgumentAsset ‹...›}, which can be used to refer to entities of this
type. ArgumentationElement is a class which ArgumentAsset inherits from, but is
not discussed further. content_assoc models the content association in Fig. 3. To
model MultiLangString in Isabelle/SACM, we use DOF’s markup string. Thus,
the usage of antiquotations is allowed for artifacts with the type MultiLangString.

ArgumentAsset has three subclasses: (1) Assertion, which is a unified type
for claims and their relationships; (2) ArgumentReasoning, which is used to expli-
cate the argumentation strategy being employed; and (3) ArtifactReference,
that evidences a claim with an artifact. Since DOF extends the Isabelle/HOL
document model, we can use the latter’s types, such as sets and enumerations
(algebraic datatypes), in modelling SACM classes, as shown below:

datatype assertionDeclarations_t =
Asserted|Axiomatic|Defeated|Assumed|NeedsSupport|AsCited

doc class Assertion = ArgumentAsset +
assertionDeclaration::assertionDeclarations_t

doc class ArgumentReasoning = ArgumentAsset +
structure_assoc::"ArgumentPackage option"

doc class ArtifactReference = ArgumentAsset +
referencedArtifactElement_assoc::"ArtifactElement set"

Here, datatype defines a HOL enumeration type, assertionDeclarations_t is the
defined enumeration type, set is the set type, and option is the optional type.
Attribute assertionDeclaration is of type assertionDeclarations_t, which spec-
ifies the status of instances of type Assertion. Examples of Assertions in SACM
are claims, justifications, and both kinds of arrows from Fig. 2. The attribute

4 We model all parts of SACM in DOF, but omit details for sake of brevity.
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structure_assoc is an association to the class ArgumentPackage, which is not dis-
cussed here. Finally, the attribute referencedArtifactElement_assoc is an asso-
ciation to ArtifactElements from the ArtifactPackage, allowing instances of type
ArgumentAsset to be supported by evidential artifacts.

The class Claim from Fig. 3 inherits from the class Assertion. This means
that Claim inherits the attributes gid, content_assoc, and assertionDeclaration
of type assertion Declarations_t. The other child class of Assertion is:

doc class AssertedRelationship = Assertion +
isCounter::bool
reasoning_assoc:: "ArgumentReasoning option"

This models the relationships between instances of type ArgumentAsset, such
as the “supported by” and “in context of” arrows of Fig. 2. isCounter speci-
fies whether the target of the relation is supported or refuted by the source,
and reasoning_assoc is an association to ArgumentReasoning, which models GSN
strategies in SACM. The child classes of AssertedRelationship also have the
attributes source and target, both of type ArgumentAsset.

4.2 Interactive Assurance Language (IAL)

IAL is our assurance language with a concrete syntax consisting of various
Isabelle commands that extend the document model in Fig. 4. Each command
generates SACM class instances and performs a number of checks: (1) stan-
dard Isabelle checks (Sect. 2); (2) OCL constraints imposed on the attributes by
SACM (provided by DOF); (3) well-formedness checks against the meta-model,
i.e. instances comply to the type restrictions imposed by the SACM datatypes.

IAL instantiates doc_classes from Sect. 4.1 to create SACM models in
Isabelle, for example, the command CLAIM creates an instance of the class Claim.
Attributes and associations of a class have a concrete syntax represented by
an Isabelle (green) subcommand. For example, the association content_assoc::
MultiLangString is represented by CONTENT ‹...›; where ‹...› is DOF’s markup
string. A selection of IAL commands is given below.

CLAIM isABS isCITE ASSERTED <gid> CONTENT <MultiLangString>
ASSERTED INFERENCE <gid> SOURCE <gid>* TARGET <gid>*
ASSERTED CONTEXT <gid> SOURCE <gid>* TARGET <gid>*
ASSERTED EVIDENCE <gid> SOURCE <gid>* TARGET <gid>*

CLAIM creates an instance of type Claim with an identifier (gid), and content
described by a MultiLangString. The antiquotation @{Claim ‹<gid>›} can be used
to reference the created instance. The subcommands isABS, isCITE and ASSERTED
are optional. ASSERTED_INFERENCE creates an inference between several instances
of type ArgumentAsset. It has subcommands SOURCE and TARGET that are both lists
of antiquotations pointing to ArgumentAssets. The use of antiquotations to ref-
erence the instances ensures that Isabelle will do the checks explained in Sect. 2.
ASSERTED_CONTEXT similarly asserts that an instance should be treated as con-
text for another, and ASSERTED_EVIDENCE associates evidence with a claim. All



Assurance Cases in Isabelle 387

instances created by IAL are semi-formal, since they can contain both informal
content and references to formal content that are machine checked.

Fig. 6. Interactive DSL

Figure 6 shows the interactive nature
of IAL. It represents an inferential link
between the semi-formal artifacts Claim_A
and Claim_C. The semi-formal artifact Rel_A,
which is the inferential link between Claim_A
and Claim_C, is created via the command
ASSERTED_INFERENCE. However, Claim_C does
not exist, and so the error message at the
top is issued. The command text is then used
to reference Rel_A using the antiquotation
@{AssertedInference Rel_A}. This also leads
to an error, shown at the bottom, since Rel_A
was not introduced to the context of the doc-
ument model, due to the error at the top.

We have now developed Isabelle/SACM
and our IAL. In the next section we consider the modelling verification of the
Tokeneer system.

5 Modelling and Verification of Tokeneer

Here, we present a novel mechanisation of Tokeneer in Isabelle/UTP [16,17] to
provide evidence for the AC. In [7], the SFRs are argued semi-formally, but
here we provide a formal proof. We focus on the verification of SFR15, the most
challenging of the six SFRs, and describe the necessary model elements.

5.1 Modelling and Mechanisation

The TIS specification [6] describes an elaborate state space and a collection of
relational operations. The state is bipartite, consisting of (1) the digital state
and (2) the monitored and controlled variables shared with the real world. The
TIS monitors the time, enclave door, fingerprint reader, token reader, and several
peripherals. It controls the door latch, an alarm, a display, and a screen.

The specification describes a state transition system, illustrated in Fig. 7 (cf.
[6, page 43]), where each transition corresponds to an operation. Several opera-
tions are omitted due to space constraints. Following enrolment, the TIS becomes
quiescent (awaiting interaction). ReadUserToken triggers if the token is presented,
and reads its contents. Assuming a valid token, the TIS determines whether a
fingerprint is necessary, and then triggers either BioCheckRequired or BioChec-
kNotRequired. If required, the TIS then reads a fingerprint (ReadFingerOK), vali-
dates it (ValidateFingerOK), and finally writes an authorisation certificate to the
token (WriteUserTokenOK). If the access credentials are available (waitingEntry),
then a final check is performed (EntryOK), and once the user removes their token
(waitingRemoveTokenSuccess), the door is unlocked (UnlockDoor).
5 The administrator (role “guard”) part is verified but omitted for space reasons.
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Fig. 7. TIS main states

We mechanise the TIS using hierarchical state space types, with invariants
adapted from the Z specification [6]. We define the operations using guarded
command language [10] (GCL) rather than the Z schemas directly, to enable
syntax-directed reasoning. GCL has a denotational semantics in UTP’s relational
calculus [22], so that it is possible to prove equivalence with the corresponding
Z operations. We use a GCL variant that follows the following syntax:

P ::= skip | abort | P � P | E −→ P | P � P | V := E | V :[P]

Here, P is a program, E is an expression, and V is a variable. The language
provides sequential composition, guarded commands, non-deterministic choice,
and assignment. We adopt a frame operator a :[P ], which states that P changes
only variables in the namespace a [16,17]. This enables modular reasoning about
the TIS internal and real-world states, which is a further novelty of our work.
State Types. We first describe the state space of the TIS state machine:

IDStation �

⎡
⎣
currentUserToken : TOKENTRY , currentTime : TIME ,
userTokenPresence : PRESENCE , status : STATUS ,
issuerKey : USER �→ KEYPART, · · ·

⎤
⎦

Controlled �
[
latch : LATCH , alarm : ALARM , · · · ]

Monitored �
[
now : TIME ,finger : FINGERPRINTTRY,
userToken : TOKENTRY , · · ·

]

RealWorld � [mon : Monitored , ctrl : Controlled ]

SystemState � [rw : RealWorld , tis : IDStation]

We define state types for the TIS state, controlled variables, monitored variables,
real-world, and the entire system, respectively. The controlled variables include
the physical latch, the alarm, the display, and the screen. The monitored vari-
ables correspond to time (now), the door (door), the fingerprint reader (finger),
the tokens, and the peripherals. RealWorld combines the physical variables, and
SystemState composes the physical world (rw) and the TIS (tis).

Variable currentUserToken represents the last token presented to the TIS,
and userTokenPresence indicates whether a token is currently presented. The
variable status is used to record the state the TIS is in, and can take the values
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indicated in the state bubbles of Fig. 7. Variable issuerKey is a partial function
representing the public key chain, which is needed to authorise user entry.
Operations. We now specify a selection of the operations over IDStation6:

BioCheckRequired �

(
status = gotUserToken ∧ userTokenPresence = present
∧ UserTokenOK ∧ (¬UserTokenWithOKAuthCert)

)

−→ status := waitingFinger � currentDisplay := insertFinger

ReadFingerOK �

(
status = waitingFinger ∧ fingerPresence = present
∧ userTokenPresence = present

)

−→ status := gotFinger � currentDisplay := wait

UnlockDoorOK �

(
status = waitingRemoveTokenSuccess
∧ userTokenPresence = absent

)

−→ UnlockDoor � status := quiescent �

currentDisplay := doorUnlocked

Each operation is guarded by execution conditions and consist of several assign-
ments. BioCheckRequired requires that the current state is gotUserToken, the
user token is present, and sufficient for entry (UserTokenOK ), but there is no
authorisation certificate (¬UserTokenWithOKAuthCert). The latter two pred-
icates essentially require that (1) the three certificates can be verified against
the public key store, and (2) additionally there is a valid authorisation cer-
tificate present. Their definitions can be found elsewhere [6]. BioCheckRe-
quired updates the state to waitingFinger and the display with an instruc-
tion to provide a fingerprint. UnlockDoorOK requires that the current state
is waitingRemoveTokenSuccess, and the token has been removed. It unlocks the
door, using the elided operation UnlockDoor, returns the status to quiescent, and
updates the display.

These operations act only on the TIS state space. During their execution
monitored variables can also change, to reflect real-world updates. Mostly these
changes are arbitrary, with the exception that time must increase monotonically.
We therefore promote the operations to SystemState with the following schema.

UEC (Op) � tis :[Op] � rw :[mon:now ≤ mon:now ′ ∧ ctrl ′ = ctrl ]

In Z, this functionality is provided by the schema UserEntryContext [6], from
which we derive the name UEC. It promotes Op to act on tis, and com-
poses this with a relational predicate that constrains the real-world variables
(rw); this separation enables modular reasoning. The behaviour of all mon-
itored variables other than now is arbitrary, and all controlled variables are
unchanged. Then, we promote each operation, for example TISReadTokenOK �
UEC (ReadTokenOK ). The overall behaviour of the entry operations is given
below:

TISUserEntryOp �

⎛
⎝

TISReadUserToken � TISValidateUserToken
� TISReadFinger � TISValidateFinger
� TISUnlockDoor � TISCompleteFailedAccess � · · ·

⎞
⎠

6 Most TIS operations have been mechanised, using the same names as in [6].
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In each iteration of the state machine, we non-deterministically select an enabled
operation and execute it. We also update the controlled variables, which is done
by composition with the following relational update operation.

TISUpdate � rw :[mon:now ≤ mon:now ′] � rw:ctrl:latch := tis:currentLatch �

rw:ctrl:display := tis:currentDisplay

This allows time to advance, allows other monitored variables to change, and
copies the digital state of the latch and display to the corresponding con-
trolled variables. The system transitions are described by TISUserEntryOp �

TISUpdate.

5.2 Formal Verification of SFR1

We first formalise the TIS state invariants necessary to prove SFR1:

Inv1 � status ∈
{
gotFinger,waitingFinger,waitingUpdateToken
waitingEntry,waitingUpdateTokenSuccess

}

⇒ (UserTokenWithOKAuthCert ∨ UserTokenOK )

Inv2 � status ∈ {waitingEntry,waitingRemoveTokenSuccess}
⇒ (UserTokenWithOKAuthCert ∨ FingerOK )

TIS-inv � Inv1 ∧ Inv2 ∧ · · ·

Inv1 states that whenever the TIS is in a state beyond gotUserToken, then either
a valid authorisation certificate is present, or else the user token is valid; it
corresponds to the first invariant in the IDStation schema [6, page 26]. Inv2 states
that whenever in state waitingEntry or waitingRemoveTokenSuccess, then either
an authorisation certificate or a valid finger print is present. Inv2 is actually not
present in [6], but we found it necessary to satisfy SFR17. We elide the additional
eight invariants that deal with administrators, the alarm, and audit data [6].

Unlike [6], which imposes the invariants by construction, we prove that each
operation preserves the invariants using Hoare logic, similar to [27]:

Theorem 5.1. {TIS-inv}TISUserEntryOp {TIS-inv}
This theorem shows that the state machine never violates the 10 state invariants,
and we can assume that they hold, to satisfy any requirements. This involves
discharging verification conditions for a total of 22 operations in Isabelle/UTP,
a process that is automated using our proof tactic hoare_auto.

We use this to assure SFR1, which is formalised by the formula FSFR1,
that characterises the conditions under which the latch will become unlocked
having been previously locked. We can determine these states by application of
the weakest precondition calculus [10], which mirrors the (informal) Z schema

7 There seems to be no invariant that ensures the presence of a valid fingerprint in [6].
We also believe that a necessary invariant regarding admin roles is missing.

https://github.com/isabelle-utp/utp-main/blob/a82901eee22fcb371ce26510eb4b31c14e8c39a7/casestudies/Tokeneer/Tokeneer.thy#L1657
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domain calculations in [7, page 5]. Specifically, we characterise the weakest pre-
condition under which execution of TISUserEntryOp followed by TISUpdate
leads to a state satisfying rw:ctrl:latch = unlocked. We formalise this in the
theorem below.

Theorem 5.2 (FSFR1)
(
TIS-inv ∧ tis:currentLatch = locked
∧ (TISUserEntryOp � TISUpdate)wp (rw:ctrl:latch = unlocked)

)

⇒ ((UserTokenOK ∧ FingerOK) ∨ UserTokenWithOKAuthCert)

Proof. Automatic, by application of weakest precondition and relational
calculus.

We conjoin the wp formula with tis:currentLatch = locked to capture behaviours
when the latch was initially locked. The only operation that unlocks the door for
users is UnlockDoorOK , as confirmed by the calculated unlocking precondition:

status = waitingRemoveTokenSuccess ∧ userTokenPresence = absent

that is, access is permitted and the token has been removed. We conjoin this
with TIS-Inv, since we know it holds in any state. We show that this composite
precondition implies that either a valid user token and fingerprint were present
(using Inv2), or else a valid authorisation certificate. We have now verified a
formalisation of SFR1. In the next section we place this in the context of an AC.

Fig. 8. TIS claim formalization

https://github.com/isabelle-utp/utp-main/blob/a82901eee22fcb371ce26510eb4b31c14e8c39a7/casestudies/Tokeneer/Tokeneer.thy#L2098
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6 Mechanising the Tokeener Assurance Case

Here, we use Isabelle/SACM to model an AC with the claim that TIS satisfies
SFR1, using Theorems 5.1 and 5.2 from Sect. 5 as evidential artifacts. The GSN
diagram for the AC is shown in Fig. 8, which is inspired by the “formalisation
pattern” [9]. Figure 8 is translated to IAL and the result is show in Figs. 9 and 10,
which illustrate (1) a machine checked AC; (2) integration of informal, formal,
and semi-formal artifacts; and (3) use of Isabelle/UTP verification techniques.

The Formalisation Pattern. [9] shows how results from a formal method can
be used to provide evidence to an AC that claims to satisfy a given requirement
{R}. The strategy used to decompose the claim “Informal requirement {R} is
met by {S}” is contingent on the validation of both the formal model of {R} and
the formal model of {S}. Consequently, the pattern breaks down the satisfaction
of {R} into 3 claims stating that (1) the formal model of {S} is validated, (2) the
formalisation of {R} correctly characterises {R}, and (3) the formal model of {S}
satisfies the formalisation of {R}. The former two claims usually have an informal
process argument. In Fig. 8, we adapt this pattern as follows. Firstly, instead of
using two validation claims, we use two justification elements, C2 and C3. This is
to preserve the well-formedness of the AC – the “requirement validation” claims
have a type different from the “requirement satisfaction” claims. An example
of a “requirement satisfaction” claim is C4. Secondly, we add the “requirement
satisfaction” claim C5 for the state invariant of TIS.

In Fig. 8, we apply our adapted pattern to C1. This claim states that the
informal requirement SFR1 is met, and references SFR1, with its natural lan-
guage description, and the assumption TIS-STATE. The latter is important, as
the AC’s requirements are only satisfied when the invariant in Sect. 5 holds. C1 is
decomposed by the formalisation strategy, S1, which references the three formal
artifacts TIS-INV (TIS-Inv), FSFR1 and TIS-model (TISUserEntryOp) from
Sect. 5. This decomposition is contingent on the validation arguments expressed
by C3 and C2. The latter could be an explanation of how FSFR1 formalises
SFR1, such as the description of Theorem 5.2 in Sect. 5. S1 subclaims are C4
and C5. The former is supported by the evidence FSFR1-PROOF which refers
to Theorem 5.2, and the latter by TIS-INV-PROOF which refers to Theorem 5.1.

Claims. Figure 9 shows the model of C1–C5 from Fig. 8. In SACM, justifica-
tions, asusmptions, and claims are unified by the class Assertion. Thus, the
claims and justifications from Fig. 8 are all represented by claims in Fig. 9. They
are created using the command CLAIM, with a name and content associated. Since
the checks done by IAL are successful, no errors are issued.

Formal, Semi-formal, and Informal. The CONTENT of the claims in Fig. 9
integrate hyperlinks, which are generated by antiquotations that reference semi-
formal artifacts, i.e. instances created by IAL, formal artifacts, i.e. theorems and
proof techniques created by Isabelle/HOL commands, and informal artifacts, i.e.,
natural language. For example, the CONTENT of C4 combines natural language with
the antiquotation @{const ‹FSFR1›} to insert a hyperlink to the formal artifact
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FSFR1. Also, C1 refers to the semi-formal artifact SFR1, and SFR1 copies the natural
language requirement from the Tokeneer documentation.

Fig. 9. TIS argument: claims and their relations in Isabelle/SACM

Relations Between Claims. The strategy S1 from Fig. 8, connecting the ele-
ments C1–C5, is modelled by S1 in Fig. 9. S1 is created using the command
ASSERTED_INFERENCE, which uses antiquotations to reference the premise claims
C4, C5, C2 and C3, i.e., the SOURCE, and the conclusion claim C1, i.e., the TARGET. C4
and C5 are left undeveloped, and hence marked as NEEDS_SUPPORT: the argument
should be completed later. Moreover, C2 and C3 are marked as ASSUMED, meaning
that this argument is contingent on their satisfaction elsewhere.

Context. We model the relations between the context elements TIS-INV,
FSFR1, TIS-model and the strategy S1 from Fig. 8. This is done in Fig. 9 using
the command ASSERTED_CONTEXT which creates the relation AC1. It uses antiquo-
tations to connect S1 with: (1) ISABELLE_2018_REF, which is an “SACM reference”
to the artifact RESOURCE ISABELLE_2018, which is created in Fig. 10 and models
the verification tool; and (2) TIS_FSFR1_DEF_ACT_REF, TIS_INV_DEF_ACT_REF. and
TIS_MODEL_DEF_ACT_REF, which are all artifact references to their corresponding
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artifacts created in Fig. 10 using ACTIVITY. From the point of view of SACM, arti-
facts created using ARTIFACT_REFERENCE are references to the artifacts, and not
the artifacts themselves. Similarly, relationships created using ASSERTED_CONTEXT
and ASSERTED_EVIDENCE link Assertions to artifact references.

Evidence. We model the relationships from Fig. 8 that link C4, C5 to FSFR1-
PROOF and TIS-INV-PROOF respectively. This is done in Fig. 9 by AE1
and AE2, which are created using the command ASSERTED_EVIDENCE. They sup-
port claims C4 and C5 by the “SACM references” TIS_FSFR1_PROOF_REF and
TIS_INV_PROOF_REF, respectively. One can see that TIS_FSFR1_PROOF_REF and
TIS_INV_PROOF_REF point to TIS_FSFR1_PROOF_ACT and TIS_INV_PROOF_ACT using
antiquotations. The latter are created in Fig. 10 using the command ACTIVITY,
which records an activity with a StartTime and EndTime. They also have a CONTENT
with antiquotations pointing to the formal artifacts @{thm FSFR1_proof} and
@{thm TIS_inv_proof}, which are Theorems 5.2 and 5.1, respectively. Also, the
antiquotations @{method hoare_auto} and @{method rel_auto} reference the for-
mal artifacts hoare_auto and rel_auto, which are Isabelle/UTP proof tactics.

Fig. 10. TIS argument: artifacts and their relations in Isabelle/SACM

7 Related Work
Woodcock et al. [34] highlight defects of the Tokeneer SPARK implementation,
indicate undischarged verification conditions, and perform robustness tests gen-
erated by the Alloy SAT solver [23] model. Using De Bono’s lateral thinking,
these test cases go beyond the anticipated operational envelope and stimulate
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anomalous behaviours. In shortening the feedback cycle for verification and test
engineers, theorem proving can help using this approach more intensively.

Despite its age, we see Tokeneer as a highly relevant benchmark specification,
particularly since it is one of the grand challenges of the “Verified Software
Initiative” [33]. As we have argued elsewhere [19], such benchmarks allow us to
conduct objective analyses of assurance techniques to aid their transfer to other
domains. The issues highlighted in [34] are systematic design problems that can
be fixed by a change of the benchmark (e.g. by a two-way biometric identification
on both sides of the enclave entrance). However, this is out of scope of our work
and does not harm Tokeneer in its function as a benchmark.

Rivera et al. [27] present an Event-B model of the TIS, verify this model,
generate Java code from it using the Rodin tool, and test this code by JUnit tests
manually derived from the specification. The tests validate the model in addition
to the Event-B invariants derived from the same specification, and aim to detect
errors in the Event-B model caused by misunderstandings of the specification.
Using Rodin, the authors verify the security properties (Sect. 3) using Hoare
triples. Our work uses a similar abstract machine specification, but with weakest
precondition as the main tool for the requirements. Beyond the replication of
the Tokeneer case study, [27] deals with the relationship between the model
and the code via testing, whereas we focus on the construction of certifiable
assurance arguments from formal model-based specifications. Nevertheless, we
believe Isabelle’s code generation features could be similarly applied.

We believe that our work is the first to put formal verification effort into the
wider context of structured assurance argumentation, in our case, a machine-
checked security case using Isabelle/SACM. We have also recently applied our
technique to collision avoidance for autonomous robots [18]; a modern bench-
mark.

Several works bring formality to assurance cases [8,9,11,29]. AdvoCATE is
a powerful graphical tool for the construction of GSN-based safety cases [9].
It uses a formal foundation called argument structures, which prescribe well-
formedness checks for the graph structure, and allow instantiation of assurance
case patterns. Our work likewise ensures well-formedness, and additionally allows
the embedding of formal content. Denney’s formalisation pattern [9] is an inspi-
ration for our work. Our framework is an assurance backend, which complements
AdvoCATE with a deep integration of modelling and specification formalisms.

Rushby shows how assurance arguments can be embedded into formal logic to
overcome logical fallacies [29]. Our framework similarly allows reasoning using
formal logic, but additionally allows us to combine formal and informal arti-
facts. We were also inspired by the work on evidential toolbus [8], which allows
the combination of evidence from several formal and semi-formal analysis tools.
Isabelle similarly allows integration of a variety of formal analysis tools [31].

8 Conclusions

We have presented Isabelle/SACM, a framework for computer-assisted assur-
ance cases with integrated formal methods. We showed how SACM is embedded
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into Isabelle as an ontology, and provided an interactive assurance language
that generates valid instances. We applied it to part of the Tokeneer security
case, including verification of one of the security functional requirements, and
embedded these results into a mechanised assurance argument. Isabelle/SACM
enforces the usage of formal ontological links which represent the provenance
between the assurance arguments and their claims, a feature inherited from
DOF. Isabelle/SACM combines features from Isabelle/HOL, DOF, and SACM
in a way that allows integration of formal methods and ACs [18].

In future work, we will connect Isabelle/SACM to a graphical AC tool, such
as ACME [30], which will make the platform more accessible. We will consider the
integration of AC pattern execution [9], to facilitate AC production. We will also
complete the mechanisation of the TIS security case, including the overarching
argument for how the formal evidence can satisfy the requirements of CC [5]. In
parallel, we are developing our verification framework, Isabelle/UTP [16,17] to
support a variety of software engineering notations. We recently demonstrated
formal verification facilities for a statechart-like notation [12,13], and are also
working towards tools to support hybrid dynamical languages [15] like Modelica
and Simulink. Our overarching goal is a comprehensive assurance framework
supported by a variety of integrated formal methods in order to support complex
certification tasks for cyber-physical systems such as autonomous robots [18,19].

Acknowledgements. This work is funded by EPSRC projects CyPhyAssure8, (grant
reference EP/S001190/1), and RoboCalc (grant reference EP/M025756/1), and addi-
tionally German Science Foundation (DFG) grant 381212925.
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