
An Integrated Approach
to a Combinatorial Optimisation Problem

J.Bowles(B) and M.B.Caminati

School of Computer Science, University of St Andrews,
St Andrews KY16 9SX, UK

{jkfb,mbc8}@st-andrews.ac.uk

Abstract. We take inspiration from a problem from the healthcare
domain, where patients with several chronic conditions follow different
guidelines designed for the individual conditions, and where the aim is to
find the best treatment plan for a patient that avoids adverse drug reac-
tions, respects patient’s preferences and prioritises drug efficacy. Each
chronic condition guideline can be abstractly described by a directed
graph, where each node indicates a treatment step (e.g., a choice in
medications or resources) and has a certain duration. The search for
the best treatment path is seen as a combinatorial optimisation problem
and we show how to select a path across the graphs constrained by a
notion of resource compatibility. This notion takes into account interac-
tions between any finite number of resources, and makes it possible to
express non-monotonic interactions. Our formalisation also introduces
a discrete temporal metric, so as to consider only simultaneous nodes
in the optimisation process. We express the formal problem as an SMT
problem and provide a correctness proof of the SMT code by exploiting
the interplay between SMT solvers and the proof assistant Isabelle/HOL.
The problem we consider combines aspects of optimal graph execution
and resource allocation, showing how an SMT solver can be an alterna-
tive to other approaches which are well-researched in the corresponding
domains.

1 Introduction

In complex systems it is common for processes to execute in parallel. The under-
lying composed behavioural model is complex and, unless strictly necessary, it
is preferable to avoid computing it. We developed an approach to find opti-
mal paths across multiple models denoting preferred scenarios of execution. The
choice of a path across a model may be influenced by external factors, available
resources and further constraints on such resources. Models are given as directed

This research is supported by MRC grant MR/S003819/1 and Health Data Research
UK, an initiative funded by UK Research and Innovation, Department of Health and
Social Care (England) and the devolved administrations, and leading medical research
charities.

c© Springer Nature Switzerland AG 2019
W. Ahrendt and S. L. Tapia Tarifa (Eds.): IFM 2019, LNCS 11918, pp. 284–302, 2019.
https://doi.org/10.1007/978-3-030-34968-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34968-4_16&domain=pdf
http://orcid.org/0000-0002-5918-9114
http://orcid.org/0000-0002-4529-5442
https://doi.org/10.1007/978-3-030-34968-4_16

An Integrated Approach to a Combinatorial Optimisation Problem 285

graphs, and the challenge is to find paths across all graphs satisfying not just all
constraints but optimised against one or more arithmetic measures.

Our approach has been inspired by a problem in healthcare where patients
with two or more ongoing chronic conditions, also known as multimorbidity, do
not receive adequate treatment. Typically patients follow treatment guidelines
for individual conditions in isolation, and the presence of multimorbidity requires
them to follow several guidelines simultaneously. However, there is a lack of guid-
ance on how best to prioritise recommendations for multimorbidity [17]. Patients
with multimorbidity are often required to take many medications for their con-
ditions, which can cause adverse drug reactions often leading to unnecessary
complications and hospitalisations [15]. It is also possible that taking several
medications together decreases the effectiveness of the individual drugs when
administered at the same time, or that a patient is intolerant to a combination
of medications. In precision therapeutics, the aim is to tailor medical treatment
to the individual characteristics of each patient which includes finding the right
set of medications for patients with multimorbidities.

Besides the small example in Sect. 2, where the healthcare setting is used
for illustrative purposes, we abstract from the medical problem and terminol-
ogy in this paper, and it suffices to understand each guideline as a directed
graph whereby a patient may be at a given node at a particular moment in
time, resources are (groups of) medications (aka drugs), and external factors
can denote patient specific intolerances, and so on.

Resources have a known value of how effective they are individually for the
purpose they are used for (e.g., metformin when used for treating diabetes), as
well as a measure of conflict (interaction constraints) with others. Our aim is
to find the optimal path across all graphs which maximises effectiveness and
minimises conflicts. Such a path selects the drugs across multiple graphs that
suit the patient best.

This paper is structured as follows. Section 2 motivates and describes the con-
text of our approach in more detail. Related work is described in Sect. 3. Section 4
describes the abstraction used for capturing guidelines as directed graphs, and
how paths and interaction constraints are defined. Our translation to SMT (Sat-
isfiability Modulo Theories) code is shown in Sect. 5 and how verification is done
is described in Sect. 6. This is followed by concluding remarks in Sect. 7.

2 Problem Motivation and Informal Description

Assume that a patient with an acute condition is hospitalised on day 0. There are
two possible treatments for the condition: a non-surgical treatment and surgery.
The two alternatives are represented by the two branches in the directed graph
of Fig. 1 (left), where the source node represents the hospitalisation. The right
branch represents the choice of surgery with nodes n3 and n4 denoting the steps
implied by this choice (n3: pre-surgical testing and n4: the surgery itself). Each
node execution in a treatment graph may correspond to a choice of actions. For
example, in the case of pre-surgical testing it involves administering one of two

286 J. Bowles and M. B. Caminati

drugs (d1 or d2), while in the case of the surgery, only one possibility is present.
The left branch (with n2) models the non-surgical choice, here associated to the
prescription of drug d0 (with no other choice available). The bracketed number
besides each node represent its duration: for example, pre-surgical testing (node
n3) lasts 2 days. Furthermore, this particular patient suffers from two chronic
conditions: C1 requires him to take drug d3 on even days and d4 on odd days
(Fig. 1 middle), and C2 requires him to take drug d5 on even days followed by
either d6 or d7 on odd days whereby d7 further delays the subsequent adminis-
tering of d5 by two days (Fig. 1 right).

Fig. 1. A simple example problem

Surgery is preferable, but d1 interacts negatively with d3 and d2 with d4.
It is known that d6 is more effective than d7 when used for treating C2. How-
ever, d7 can act as an inhibitor in the reaction between d1 and d3, mitigating
the ensuing negative effects on the patient. In this fictitious example, we want
to determine the best course of action in the hospitalisation of a patient with
chronic conditions C1 and C2 taking into account drug efficacy and known drug
interactions.

The simple example above expresses the family of problems we want to deal
with. In what follows, we abstract away from the healthcare application domain
expressed above in terms of directed graphs, one for each separate treatment
a patient undergoes, and where each node is annotated with a duration and a
potential choice of resources. This makes it possible to reduce the problem to a
path finding problem across several directed graphs, respecting constraints on
interactions among several resources and their temporal overlapping. In other
words, we want to find paths in given directed graphs (digraphs, [2,9]) such that:

P1 for each visited node a resource (e.g., in our context this can be a medication)
is selected amongst a set of allowed ones for that node, and

P2 the interactions between selected resources are minimised and their individ-
ual effectiveness maximised in the obtained solution.

The effect of the mutual interactions (see point (P2) above) on the compu-
tation of the solution takes into account the duration of each node which, in

An Integrated Approach to a Combinatorial Optimisation Problem 287

turn, determines the required temporal distance between possibly interacting
resources (e.g., two interacting resources happening at close temporal distance
can be given more weight than the same interacting resources happening at dis-
tant times). The efficiency of modern SMT solvers makes them feasible to search
for a solution satisfying the criteria above. However, only (P2) above makes use
of the arithmetic capabilities of the solver, while we otherwise only made use of
the basic SAT solver for the remaining computations in our previous work [5–7].
Given that SMT solvers are SAT solvers with awareness of additional facts (e.g.,
arithmetics), we wonder whether this can be used to better exploit SMT solvers
capabilities. In our case, motivations for working in this direction include:

M1 Given that resource interactions are expressed by numerical functions having
the resources as arguments, the current basic SAT implementation only
allows us to consider binary interactions as opposed to interactions of an
arbitrary number of resources.

The limitation to binary interactions arises because the arity of SMT functions is
fixed, and more elaborated datatypes such as lists or function operators are not
directly available. We will see in Sect. 5 how this limitation can be worked around
by the theory of Bit-Vectors through which the SMT-LIB standard [3] extends
the basic domain of propositional logic in which a standard SAT solver oper-
ates. We use this theory to emulate a variadic function, i.e., a function taking a
variable number of variables, thereby granting the possibility of expressing inter-
actions between a variable number of resources. This makes it possible to express
the particular case of non-monotonic interactions whereby adding a resource to,
say, a pair of conflicting resources not necessarily exacerbates the conflict. The
interest in this was illustrated in our healthcare example earlier, where drug d7
inhibits an interaction between two other drugs.

M2 Expressing the problem of path finding in SAT terms leads to assertions
rapidly increasing in complexity with the dimension of the given graphs,
and hence unintelligible SAT code.

We addressed the problem through a novel combination of the SMT solver itself
and the theorem prover Isabelle [21], formally proving the correctness of the com-
plicated SAT code used for path finding. However, any path naturally admits
a discrete linear ordering, which suggests an alternative route to expressing the
path finding problem in the SMT-LIB language: the solution, rather than con-
sisting of a function over the nodes being true exactly for all the nodes in the
path, can be expressed by a function from the integers into the set of nodes,
telling, when its argument has value i, which node is the i-th in the path. This is
possible because SMT solvers, contrary to SAT solvers, are aware of the theory
of integers (i.e., in the latter, arithmetic operators can only be introduced as
uninterpreted operators). For this strategy to work, one must be able to express
the requirement that the i + 1-th node visited in the path belongs to the set of
children of the i-th node visited. However, the notion of “set” and “belongs to”
are not directly available in SMT solvers: we will see in Sect. 5 how, again, the

288 J. Bowles and M. B. Caminati

theory of Bit-Vectors allows us to find a workaround to this problem which, in
our previous work, caused increased complexity in the produced SMT code.

Furthermore, we note that sorting path nodes by exploiting the natural num-
ber linear ordering allows us to restrict the scope of the sought solution. This is
useful since in practice we are often only interested in considering a solution for
future steps not too distant from the current one.

3 Related Work and Justification of an SMT Approach

The problem we propose features (as we will more formally express in Sect. 4)
path finding across multiple directed (non necessarily acyclic) graphs, resources
selection among sets of resources annotating each path-belonging node, overall
optimisation of the selected resources under constraints of arbitrary arity, and a
dependency of these constraints on the temporal separation of selected resources.

The fact that it combines traits of the distinct, widely explored problems
in combinatorial optimisation (CO) which are mentioned above does not imply
that the corresponding, well-explored solutions for these distinct problems can
be easily combined to obtain a solution to the problem considered in this paper.
For example, one could try to apply existing, well-known algorithms for the path-
finding portion of our problem, and then hope to reduce the remaining portions of
the problem to well-understood problems in CO, maybe by applying integer pro-
gramming (IP), one of the domains of CO richest in methods and algorithms, to
the sub-problem of resource subset selection. However, the problem of resources
subset selection is not natively expressed in terms of integer variables and func-
tions; and, more importantly, even if one finds a IP rendition of it, that rendition
is bound to be, in general, non-linear, due to the fact that our notion of resource
interactions aims by the design at dealing with the non-monotonic case (in more
formal terms, the function ι we will introduce in (4) is completely arbitrary).
This implies that we do not have direct access to the powerful and well-developed
methods of integer linear programming (ILP), and have to deal with the more
difficult approaches available in the less developed field of non-linear program-
ming, where typically one has to resort to techniques (reconnecting the problem
to special cases) such as continuous relaxation, branch and bound algorithms,
approximation algorithms, ad-hoc heuristics, fractional programming [1,8,16].
All these approaches typically require significant amounts of work, add com-
plexity to the solutions and require assumptions about the problem specification
(for example, concavity/convexity requirements on the continuous relaxation’s
feasible region).

Before choosing the problem treatment presented in this paper, as explained
above in the case of IP, we reviewed many other combinatorial optimisation sub-
domains, without finding techniques able to capture all the aspects of the prob-
lem we consider. For example, resource scheduling [22, Section 22], an actively
researched field, deals with executing a set of activities, each needing to employ
some resources, while respecting the resource capacities, temporal constraints,
and while optimising a given objective function. While this can accommodate

An Integrated Approach to a Combinatorial Optimisation Problem 289

the concepts of nodes (as activities) and resources featured in our problem,
the focus about the constraints in resource scheduling is on the capacities of the
resources and maybe (through the objective function) on temporal optimisations
(e.g., minimising the number of late activities); in contrast, in our problem, the
optimisation focuses on the mutual (and non necessarily binary) interaction of
resources, as we will see in Sect. 4 (e.g. formula (8) featured there).

The considerations above about the difficulties we encountered in adapting
existing techniques in the broad domain of combinatorial optimisation to the
several facets of the problem at hand suggests that this problem presents some
degree of hardness. This is confirmed by noting that the simpler problem of
finding a path in a single graph with the additional constraint of the binary
exclusion (e.g., on an either selected or unselected basis, as opposed to our
problem featuring a score-based selection criterion) of given sets of node pairs is
established to be NP-hard in [14].

Further justification for the adoption of SMT techniques is given by the fact
that other authors also employ SAT or SMT solvers for simpler problems. SMT
solvers are applied, in [11], to a particular optimal path selection problem in the
semi-conductor manufacturing domain; besides the use of Bit-Vector capabilities
of the SMT solver, there are little further similarities: the problem there can be
described by only one graph, having one single cost annotation for each edge
(we have multiple “costs” on each node). Work bearing some similarity with
ours is in [19], presenting an graph-theoretical representation of a problem in
computational task parallel scheduling, and also featuring a notion of temporal
separation between nodes and of resources. Only one graph is needed to represent
that problem, however, and the notion of conflict there is quite different from
the one presented here. Besides the example above in clock routing, Bit-Vector
capabilities of SMT solvers have been employed typically (but not only) to soft-
ware and hardware validation as, for example, in [12], [13], [23]. This happened
before and after the remarkable complexity of Bit-Vector reasoning was empha-
sised in [18], confirming the practical relevance and convenience of the theory
nevertheless [10]. Our work provides a further witness of this phenomenon.

Our own recent works [5–7] propose the use of SMT solvers for finding optimal
paths along processes executed in parallel, combined with the problem of picking
resources at each selected path node under the constraint of mutual resource
interaction. None of them can accommodate either cyclic graphs or interactions
with arity greater than 2, which is a first contribution of the present paper; in
those works, we expose the issue (largely under-explored in the current literature)
of ascertaining the correctness of the SMT code we use, and provide a theorem-
prover based solution. As a second contribution, we will show in Sect. 6 that
technique is quite general, by applying it to the considered case to obtain correct-
by-construction SMT code using the theorem prover Isabelle/HOL. As a final
contribution, the approach presented in this paper avoids the issues entailed by
more standard techniques in the field of non-linear programming (see the second
paragraph of this section) by adopting a holistic attitude, in that it expresses

290 J. Bowles and M. B. Caminati

all the constraints and the optimality requirements for our problem as a single
stack of SMT assertions, without splitting it into sub-problems.

4 Formal Model of the Problem and of Its Solution

In what follows, domP , ranP and P [X] will represent, respectively, the domain,
range of a relation P , and the image through P of the set X ⊆ dom P , while
2Y will denote the power set of a set Y . We are given n finite, simple, directed
graphs G1, . . . , Gn; we assume their node sets to be mutually disjoint. Usually,
the graphs will also be connected, but we will not assume that. Since each of
the graphs Gi is simple, it can be thought of as a finite set of ordered pairs of
nodes (j, k) (that is, the set representing the covering relation corresponding to
Gi), each representing a directed edge from node j to node k. Therefore, we can
define

G :=
n⋃

i=1

Gi,

and denote by V (G′) the set of nodes touched by any edge in G′ ⊆ G, that is

V : 2G → 2domG∪ranG V (G′) :=
⋃

(v,v′)∈G′⊆G

{v, v′} ,

G, being a set of ordered pairs, can be regarded as the set-theoretical represen-
tation of a relation, and has, therefore, a domain and a range. The requirement
for the node sets of distinct graphs to be disjoint can now be expressed as

∀j ∈ {1, . . . , n} , j′ ∈ {1, . . . , n} \ {j} . V (Gj) ∩ V (Gj′) = ∅.

We want to describe where a given agent, who is simultaneously executing
all the n graphs, is located at a given time (this agent could, for instance, be a
patient being following n guidelines recommendations): the agent must start at
a given node for each of the graphs, and go through the nodes of some path in
each graph, spending, in each of these nodes, an amount of time which is given
by a map d : V (G) → N. The paths will be determined from constraints we will
express later on (Sect. 5); for the moment, we focus on how such a description
can be achieved.

4.1 Paths Calculation

A representation of an agent’s position could be achieved, for example, by n
functions (one for each graph), each defined on N (we assume a discrete rep-
resentation of time) and yielding values in the node set of the relevant graph.
However, as we explained in point (M2) of Sect. 2, we would like to exploit the
discrete linear ordering naturally definable over a given path. Therefore, rather
than introducing n functions yielding the node at which the executing agent is

An Integrated Approach to a Combinatorial Optimisation Problem 291

at a given time, we introduce the auxiliary concept of stage: rather than directly
saying that the agent, at a given time and in a given graph, is at some node, we
will split this piece of information into two functions: one expressing the stage
of the solution path for graph j which the agent is at time t:

sj : N → N j = 1 . . . n;

and a second one expressing the sorting of nodes belonging to the solution path
for the j-th graph:

ηj : N → V (Gj) j = 1 . . . n.

Thus, the description of the solution paths according to the notions of stage and
of time are kept separated. The function relating them is

τj : N → N j = 1 . . . n,

yielding, for each stage in the solution path of a given digraph j ∈ {1, . . . , n},
the time at which that stage starts.

Although these functions are formally defined on the whole N, we will actually
restrict their computation to given, finite natural intervals S and T of stages
and times, respectively, so that the above families of functions are related by the
following assertions:

∀j ∈ {1, . . . , n} , t ∈ T.

sj (t + 1) =

{
sj (t) if t + 1 < τj (1 + sj (t))

1 + sj (t) else.
(1)

∀j ∈ {1, . . . , n} , i ∈ S.

τj (i + 1) = τj (i) + d (ηj (i)) . (2)

The role of S and T is to put a bound on the scope of future evolution
we want to follow. On one hand, this allows to reduce the search space for the
SMT solver; on the other hand, the finiteness thus imposed does not prevent to
consider theoretically infinite paths (e.g., when cycles are present in the graphs),
reconciling their presence with the need of finite computations. One can therefore
compute optimal executions for given (S1, T1), ending up in some configuration;
then have another computational session starting from the reached configuration
for some other (S2, T2), thus reaching another configuration, etc: although the
single sessions involve finite objects, there is no bound on the number of the
sessions. This implies that the computations given by (1) and (2) must assume
some starting point; that is, at the smallest stage and time, the executing agent
must be located in a given node ηj for each j ∈ {1, . . . , n}:

∀j ∈ {1, . . . , n} .

⎧
⎪⎨

⎪⎩

ηj (min S) = ηj

τj (min S) = min T

sj (min T) = min S

292 J. Bowles and M. B. Caminati

Since S and T are not in general constant through any sequence of computational
sessions, we had to define our maps (sj , τj , ηj , etc) on the whole N rather than
directly on the subsets S and T ; another reason for doing so is that SMT solvers
do not directly provide support for partial functions.

Finally, we must impose that ηj actually describes a walk in the directed
graph Gj :

∀j ∈ {1, . . . , n} , i ∈ S. ηj (i + 1) ∈ Gj [{ηj (i)}] , (3)

which asks that the i + 1-th node is a child (according to the digraph Gj) of the
i-th node in the path selected for the digraph Gj . The notation using the square
brackets was introduced at the very beginning of this section.

4.2 Interaction Constraints

In Sect. 4.1, we have set up the problem of representing (through functions η, τ ,
s) a path in each Gj , and of computing the representing functions. Here we add
constraints regulating how the path in distinct digraphs interact, so as to select
the paths solving the earlier points (P1) and (P2) in Sect. 2.

We assume a finite set R of resources is given, together with maps rj :
V (Gj) → 2R describing the subset of resources available to be chosen for a given
node. We now want to solve the problem of picking, for each node appearing in
the walks calculated in Sect. 4.1, resources allowed by the maps rj (see point (P1)
in the list of Sect. 2). Additionally, we want to do that such as to maximise the
effectiveness of the picked resources along the executed path and to minimise the
negative interactions between resources occurring at the same time in distinct
simultaneous nodes (see point (P2) in the list of Sect. 2). To achieve this, we
must have a database map

ι : 2R → Z (4)

providing, for each possible combination of resources, their overall score, which
is a numerical representation of how much each single resource in a given subset
is effective and of how much different resources in the same subset possibly
interact. Since it would be a computational waste to consider resources which
cannot be prescribed in any possibly visited node, we add the constraint

R =
⋃

X∈ran rj
j∈{1,...,n}

X, (5)

imposing that any resource must appear in
⋃

(ran rj) for some digraph j. Now,
the solution to the problem just introduced can be represented by maps

ρj : N → R, j = 1, . . . , n

An Integrated Approach to a Combinatorial Optimisation Problem 293

associating a stage number to the resource picked at that stage, for each digraph
G1, . . . , Gn. The first requirement to be imposed on ρ is that the resource picked
at any stage is in the permitted resources for the node corresponding to that
stage:

∀j ∈ {1, . . . , n} , i ∈ S. ρj (i) ∈ rj (ηj (i)) , (6)

where, as explained in Sect. 4.1, we limit the stages we are looking at to a finite
natural interval S.

Finally, we need to optimise the interactions of resources happening at any
same instant. To this end, we introduce a map Δ : N → 2R, yielding for each
time the subset of all the resources picked in all the nodes happening at the
given time in the selected paths across all the digraphs G1, . . . , Gn. That is, we
impose

Δ (t) :=
⋃

j∈{1,...,n}
{ρj (sj (t))} (7)

for each t in T , and then we require the SMT solver to maximise
∑

t∈T

ι (Δ (t)) . (8)

5 SMT Translation

This section presents the choices we made to represent the elements expressed
mathematically in Sect. 4 in ways amenable to an SMT solver.

For each of the formulas introduced and motivated in that section, we will
choose suitable SMT-LIB code to express it, and motivate our choice. The math-
ematical entities (functions, sets, etc.) used in that section will be given ASCII
names in order for them to be invoked in SMT-LIB code: we will make clear
which ASCII name corresponds to which mathematical object as soon as it is
introduced in this section. However, for the reader’s convenience, Table 1 sum-
marises these correspondences.

A typical issue when translating into SMT code is to find a feasible repre-
sentation, given the fact that SMT solvers are constrained to first-order logic
together with a limited list of theories (e.g., integer arithmetics or Bit-Vectors).
For example, sets are usually complicated to handle: while it is true that a sub-
set of a given universe can be represented as a monadic boolean predicate over
that universe, the problem is that predicates and relations are not themselves
first-class objects in first-order logic. Therefore, quantifications, sets of sets, oper-
ations on sets and set-valued functions or relations are either not expressible or
quickly become too complex, impacting both on performance and readability
(and therefore reliability) of the code.

In our case, we do have sets of sets and operations on sets occurring in our
treatment, for instance in (7). Our solution is to represent subsets of R as Bit-
Vectors of length |R|: in this way, we can easily introduce an SMT function
resourceSelectionBV as a counterpart of Δ:

294 J. Bowles and M. B. Caminati

Table 1. Correspondence between mathematical and SMT-LIB names

Mathematical notation SMT-LIB notation

Δ resourceSelectionBV

ρ stage2ResourceSetBV

s time2Stage

t ∈ T isInTimeBounds t

i ∈ S isInStageBounds i

τ stage2StarTime

d duration

Gj adjMatrix j

η stage2Node

V (Gj) nodeType j

r node2AllowedResources

⊆ isSubsetBv

(declare−fun resourceSelectionBV (Int) (_ BitVec |R|))

where |R| must be replaced by its actual numerical value, since the length of
a Bit-Vector cannot be a variable in SMT. This is not a problem because our
model considers a fixed, finite universe of available resources (see (5)). Now, the
problem of a union set operation appearing in (7) is also solved, because we can
express (7) as

Listing 1.1. Assertion for (7)

(assert (forall ((t Int)) (=> (isInTimeBounds t)
(= (resourceSelectionBV t) (bvor

(stage2ResourceSetBV 1 (time2Stage1 t))
. . .
(stage2ResourceSetBVn (time2Stagen t)))))))

where stage2ResourceSetBV, time2Stage take the place of ρ and s, respec-
tively. Moreover, isInTimeBounds t is the first-order logic way of saying t ∈ T ,
while bvor takes the bit-wise or of its Bit-Vector arguments (there can be any
finite number of such arguments, as long as they are Bit-Vectors of the same
length), effectively resulting in the union of the sets they represent. Represent-
ing an overall selection of resources at a given instant as Bit-Vector is a way
of working around the limitation of fixed arity of SMT-LIB functions, in the
sense that now we are allowed to specify an interaction between an arbitrary
number of resources among the |R| available ones by setting to one the corre-
sponding bits in the resource selection Bit-Vector. Theoretically, the same could
have been attained by describing such an interaction via a number-valued SMT
function of |R| boolean arguments; however, in this case the resource selection
would have no longer have been a first-class object in SMT, making it the trans-

An Integrated Approach to a Combinatorial Optimisation Problem 295

lation of some assertions (e.g., (6) and (7)) clumsier than with Bit-Vectors. An
important point to be made is that the assertion above requires representing ρ
as a function (stage2ResourceSetBV) returning a set of resources, rather than
a resource. This is necessary exactly to take the union through bvor, and cre-
ates no problem as long as we add the specification that stage2ResourceSetBV
returns a singleton. In Bit-Vector terms, this means requiring that the returned
Bit-Vector has exactly one bit set to 1, which can be achieved by the following
assertions (one for each digraph):

Listing 1.2. Assertion imposing that stage2ResourceSetBV j returns a singleton

(assert (forall ((i Int))
(=> (isInStageBounds i)

(and (isPowerOfTwo (stage2ResourceSetBV j i))
(not (= (_ bv0 |R|) (stage2ResourceSetBV j i)))))))

where, similarly to isInTimeBounds, isInStageBounds is the first-order logic
way of requiring i ∈ S, and isPowerOfTwo is defined as

(define−fun isPowerOfTwo ((x (_ BitVec |R|))) Bool

(= (_ bv0 |R|) (bvand x (bvsub x (_ bv1 |R|)))))

isPowerOfTwo works by taking the bitwise “and” of its argument and of its
argument diminished by 1. It is easy to check that this yields 0 if and only if at
most one bit of the argument (assumed to have length at least two) is 1.

The remaining constraints of Sect. 4 are more straightforward, with (1) trans-
lating to

Listing 1.3. Assertions for (1)

(assert (forall ((t Int))
(=> (isInTimeBounds (+ 1 t))

(= (time2Stagej (+ 1 t))

(ite (< (+ 1 t)
(stage2StarTimej (+ 1 (time2Stagej t))))

(time2Stagej t) (+ 1 (time2Stagej t)))))))

and (2) to

(assert (forall ((i Int)) (=> (isInStageBounds (+ 1 i))
(= (stage2StarTimej (+ 1 i)) (+ (stage2StarTimej i)

(duration_j (stage2Node_j i)))))))

Here, stage2StarTime and duration have the roles of τ and of d, respectively.
Condition (3) again features a set-theoretical aspect (the membership relation
∈). Although in this case the formula would be simple enough to represent
the relevant sets through predicates, we chose to keep using Bit-Vectors. One
reason is that, by doing so, the set of nodes adjacent, in graph Gj , to a given
node (appearing as Gj (ηj (i)) in (3)) becomes exactly the row for that node of
the adjacency matrix for Gj , thus allowing us to use a well-known formalism.
Therefore, we enumerate all the nodes of a given Gj through an SMT map
nodeEnum j, and represent the edges touching the k-th node as the k-th row
of the adjacency matrix for Gj , which is a Bit-Vector. In other words, Gj gets
represented, in our SMT formalism, as a function adjMatrix j, of the form

296 J. Bowles and M. B. Caminati

(define−fun adjMatrix_j (nodeType_j) (_ BitVec |V (Gj)|) . . .)

where nodeType j is a finite enumeration type encompassing all the nodes of
Gj . Now, formula (3) is rendered in SMT-LIB as

(assert (forall ((i Int)) (=> (isInStageBounds i)
(= #b1

(extractBit_j (− (nodeEnum_j (stage2Node_j (+ 1 i))) 1)
(adjMatrix_j (stage2Node_j i)))))))

where stage2Node is the SMT name for η, and extractBit j k v extracts
the k+1-th rightmost bit of v as a 1-long Bit-Vector. I.e., extractBit_j 0 v
returns the rightmost bit of v, extractBit_j 1 v returns the bit on the left of
the rightmost, and so on. This behaviour can be obtained as follows:

Listing 1.4. SMT function extracting the i-th bit from a Bit-Vector of fixed length

(define−fun extractBit_j ((i Int)
(v (_ BitVec |V (Gj)|)))

(_ BitVec 1)
((_ extract 0 0) (bvlshr v ((_ int2bv |V (Gj)|) i))))

which works by shifting the bits in v right by k places, and then extracting
the last bit. This is done via the SMT-LIB functions bvlshr and extract. It
should be observed that one cannot directly use extract because its arguments
must be constants. For similar reasons, we needed to define multiple copies of
extractBit, one for each digraph, because in general the digraphs will have
different numbers of nodes, while in SMT-LIB one cannot overload functions to
operate on Bit-Vectors of different sizes.

Condition (6) can be easily translated into SMT-LIB thanks to the fact that
we used Bit-Vectors to represent sets of resources:

Listing 1.5. Assertion for (6)

(assert (forall ((i Int))
(=> (isInStageBounds i)

(isSubsetBv (stage2ResourceSetBV j i)
(node2AllowedResources_j (stage2Node_j i))))))

where node2AllowedResources is the SMT-LIB name of r, and the auxiliary
function isSubsetBv encodes the relation ⊆ in terms of Bit-Vectors:

(define−fun isSubsetBv ((x (_ BitVec |R|))
(X (_ BitVec |R|))) Bool

(= (bvand x (bvnot X)) (_ bv0 |R|)))

Note that, referring to constraint (6), we are actually requiring that {ρj (i)} ⊆
rj (ηj (i)) in lieu of ρj (i) ∈ rj (ηj (i)) . We can do this because we already imposed
that node2AllowedResources returns a singleton in the assertion above using
isPowerOfTwo.

Note that the following time2Stage, stage2Node, stage2ResourceSetBV,
and resourceSelectionBV completely describe the solution to our problem
given by the solver. The last two represent sets as Bit-Vectors: in some occa-
sions, it can be convenient to have a solution involving equivalent SMT objects

An Integrated Approach to a Combinatorial Optimisation Problem 297

not making use of Bit-Vectors. Such equivalent objects can be obtained from
the following assertions, defining counterparts of resourceSelectionBV and of
stage2ResourceSetBV expressed by using an enumeration sort resourceSort
of cardinality |R| rather than using Bit-Vectors of length |R|:

Listing 1.6. Assertions for Bit-Vectors-free solutions

(assert (forall ((t Int) (d resourceSort))
(=> (isInTimeBounds t) (= (resourceSelection t d)
(= #b1 (extractBit (− (resourceEnum d) 1)

(resourceSelectionBV t)))))))
(assert (forall ((g graphSort) (s Int) (d resourceSort))
(=> (isInStageBounds s) (= (stage2ResourceSet g s d)
(= #b1 (extractBit (− (resourceEnum d) 1)

(stage2ResourceSetBV g s)))))))

which must be preceded by the obvious declarations of the newly intro-
duced functions resourceSelection and stage2ResourceSet, omitted here.
extractBit is definied in a way analogous as that of the similar functions appear-
ing in Listing 1.4.

6 Verification

To achieve a way of formulating our problem as an SMT problem, we have
split its description and that of the solution into several first-order functions
(time2Stage, stage2Node, stage2Resource, node2AllowedResources, etc).
While this device made it easier to formulate the assertions for the constraints
exposed in Sect. 4, one could wonder whether the SMT assertions faithfully repro-
duce the problem we started from. One way to gain confidence about this is to
re-express those first-order functions inside a theorem prover and then to for-
mally prove the correctness theorems one may want to secure. For example, it
can be reassuring to show that, at each time t ∈ T , the selected resource for
each graph is among the resources allowed for the node of that graph where the
executing agent is at time t. We proved the following Isabelle theorem expressing
this property (where N represents the set of graph indices {1, . . . , n}):

Listing 1.7. A Isabelle/HOL correctness theorem

lemma assumes assertionUnion :
”∀ t ∈ T . resourceSelection t =

Union {stage2Resource j (time2Stage j t) | j . j ∈ N}”
and assertionAllowed : ”∀ i ∈ S . ∀ j ∈ N .

stage2Resource j i ⊆ node2AllowedResources j (stage2Node j i)”
and assertionSomeResource : ”∀ i ∈ S . ∀ j∈ N .
(stage2Resource j i) �= {}”
and StageInBounds :

”∀ t∈ T . ∀ j ∈ N . time2Stage j t ∈ S”
and TimeInBounds : ”tt ∈ T”
and ”J ∈ N” shows

”(node2AllowedResources J (stage2Node J (time2Stage J tt))) ∩
(resourceSelection tt) �= {}” .

298 J. Bowles and M. B. Caminati

The Isabelle formula following the keyword shows is the thesis of the lemma,
stating the property that we just discussed, and that we wanted to grant: it says
that for any chosen graph (indexed by J), the intersection between the resources
allowed for the visited node at time tt and the set of all resources selected at
that time is non-empty. Note that we cannot claim, in general, that this inter-
section is a singleton, because there could be resources allowed in more than one
node at a given time. Before the show keyword, there are six assumptions (the
hypotheses of the lemma), each corresponding to SMT-LIB code parts. Hypoth-
esis assertionUnion corresponds to assertion in Listing 1.1, assertionAllowed
to that in Listing 1.5, assertionSomeResource is implied by assertion in List-
ing 1.2. The theorem says that, upon the further natural assumption that S is
given to be compatible with T , resourceSelection indeed has the expected
property.

The natural objection is that what we just proved applies to an Isabelle/HOL
object, and that the mere fact that we christened it with the same name as
the SMT object computed in Sect. 5 does not fix the problem that our proof
applies to the former, not to the latter. This is because the hypotheses of
the Isabelle/HOL theorem above suffer from the same problem: they apply to
Isabelle/HOL objects which are totally unrelated to the homonymous SMT-LIB
objects introduced and computed in Sect. 5. The idea to overcome this issue is to
formally prove that those hypotheses also apply to the SMT-LIB objects of that
section. To do so, we will take advantage of the Isabelle in-built SMT-LIB gen-
erator provided by the Isabelle component sledgehammer, originally intended to
be used for automating theorem-proving purposes (a goal we are not interested
in, in this paper).

6.1 First Step: Generating SMT-LIB Code from Theorem
Hypotheses

We start from re-expressing the theorem in Listing 1.7 without using set-
theoretical concepts. This can be done by replacing sets by boolean predicates:

lemma fixes

resourceSelection : : ” ’ t => ’d => bool” and

node2AllowedResources : : ” (’ g => ’n => ’d => bool)” and

stage2ResourceSet : : ” ’ g => ’s => ’d => bool” and

time2Stage : : ” ’g => ’t => ’s”
assumes assertionUnion : ”∀ t d . (T t →

(resourceSelection t d ↔
(∃ g . (N g & stage2ResourceSet g (time2Stage g t) d)))) ”

and assertionAllowed : ”∀ g s d .
(S s & N g & stage2ResourceSet g s d) →

node2AllowedResources g (stage2Node g s) d”
and assertionSomeResource : ”∀ s g .

(S s & N g) →
(∃ d . (stage2ResourceSet g s d))”

and ”∀t g . T t & N g → S (time2Stage g t)”

An Integrated Approach to a Combinatorial Optimisation Problem 299

and ”T tt” and ”N gg”
shows ”∃ d . ((resourceSelection tt d) &
(node2AllowedResources gg (stage2Node gg (time2Stage gg tt)) d

))”

The fact that Isabelle/HOL is higher-order means that it has no problem
in passing from the proof for the original version of the theorem to the proof
for the new one. The reason for this translation is that this new version gets
translated in computable SMT-LIB code, because it is expressed in first-order
logic. To obtain this code, we simply prepend the proof of the new theorem with
the line

sledgehammer run [provers=z3 , minimize=false , timeout=1,
overlord=true , verbose=true] (assms)

This will result in automatically-generated SMT-LIB assertions, one for each
hypothesis of the theorem.

6.2 Second Step: Linking Generated SMT Code to the Existing
Code

We can now use the SMT solver to formally prove that the Isabelle-generated
SMT assertions and the existing ones introduced in Sect. 5 are equivalent: this
will imply that the correctness theorem also applies to the latter. To achieve
this, we name the bodies of each assertion we are interested in: for example,
let us call unionPredicateOriginal the conjunction of the predicates being
asserted in Listings 1.1 and 1.6, and unionPredicateIsabelle the predicate
asserted by the code automatically generated from hypothesis assertionUnion
in the theorem above. The following assertion returning unsat is a proof that
the Isabelle-generated assertion, for which the formal theorem above holds, is
equivalent to the corresponding ones introduced in Sect. 5:
(assert (or (and unionPredicateIsabelle (not unionPredicateOriginal))
(and (not unionPredicateIsabelle) unionPredicateOriginal)))

This gives a method of linking the Isabelle correctness theorem to the code
from Sect. 5, the one effectively used for actual computations.

This method is general and can be applied to whichever correctness theorem
one could desire for their SMT code (which we already did, e.g., in [5–7]). One
aspect of this generality is that the method is not limited to a pair of SMT asser-
tion sets (such as unionPredicateOriginal and unionPredicateIsabelle
above): one could refine her SMT code, for example to improve performance,
in a third set of SMT assertions (let us call it unionPredicateOptimised, and
then show, in the same manner as done with the assertion above, that it is also
equivalent to the other two assertion sets. A typical application of this consists
in replacing universal quantifiers over a finite set with separate assertions, one
for each instantiation of the quantified variable, usually resulting in improved
performance: this can be done, for example, with most of the occurrences of
forall in Sect. 5. In this particular case, the verification method ensures that
the instantiation of the quantifying variable has been done correctly. We omit
further details for space reasons, and further details can be found in [7].

300 J. Bowles and M. B. Caminati

7 Conclusions

We have presented an approach for finding optimal paths across multiple directed
graphs annotated with sets of resources. An optimal path is such that it max-
imises the value of the resources used across the nodes it traverses (e.g., overall
drug efficacy) whilst minimising the value of resource interactions (e.g., an over-
all measure of the severity of drug interactions). A core feature of our approach
is the possibility of enriching the constraint of interacting resources with the
awareness of their temporal separation: this is represented by Δ being a func-
tion of a discrete time argument. A novelty of our work is the function ι which
captures interactions between an arbitrary number of resources, and can be used
to represent non-monotonic interactions between resources. For instance, we can
model the case where two drugs together are problematic, but adding a further
drug reduces some of the effects of the drug interaction. Another novel aspect
is the presence of the bounds represented by S and T which split hard compu-
tation into sessions of limited time and stage scopes, and where the output can
be used as input for the next session. In turn, this capability has permitted us
to remove the limitation of acyclic graphs, typically imposed in similar work.
All these features give a more realistic framework for our original application
domain in healthcare.

We presented a general technique to employ rigorous formal proofs in HOL
to verify first-order SMT code, and applied it to prove a particular property of
our SMT encoding. A current limitation is that, since first-order logic is used in
our approach as a bridge between an SMT solver and a higher-order theorem
prover, the verification possibilities brought by the latter must be limited to the
aspects of the SMT code which are expressible in first-order logic. In particu-
lar, we cannot currently verify the optimality aspect of our code: the optimising
feature [4] is a speciality of Z3 [20] not covered by the SMT-LIB standard [3].
However, we emphasise that this limitation has limited practical impact, because
typically the SMT code executed in concrete problems features a vast majority
of assertions in pure SMT (i.e., expressed in the SMT-LIB standard language),
and one line of code adding the requirement for optimality. It is therefore usually
clear that the optimality part is correct while, in contrast, the same cannot be
guaranteed for the assertions in pure SMT. Future work will explore the devel-
opment of support for parallel SMT solving (e.g., using the parallel.enable
option recently introduced in version 4.8.0 of the Z3 SMT solver).

References

1. Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized Concavity, vol. 63.
SIAM, Philadelphia (2010)

2. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications.
Springer, Berlin (2007)

An Integrated Approach to a Combinatorial Optimisation Problem 301

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories, Edinburgh, UK, vol. 13, p. 14 (2010)

4. Bjørner, N., Phan, A.-D., Fleckenstein, L.: vz - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 14

5. Bowles, J., Caminati, M.B.: Correct composition of dephased behavioural models.
In: Proença, J., Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 233–250.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68034-7 14

6. Bowles, J.K.F., Caminati, M.B.: A flexible approach for finding optimal paths with
minimal conflicts. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp.
209–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68690-5 13

7. Bowles, J.K.F., Caminati, M.B.: Balancing prescriptions with constraint solvers.
In: Liò, P., Zuliani, P. (eds.) Automated Reasoning for Systems Biology and
Medicine. CB, vol. 30, pp. 243–267. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17297-8 9

8. Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a
survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)

9. Chartrand, G., Lesniak, L., Zhang, P.: Graphs & Digraphs. Chapman and Hal-
l/CRC, Boca Raton (2010)

10. Dershowitz, N., Nadel, A.: Is bit-vector reasoning as hard as nexptime in practice.
In: 13th International Workshop on Satisfiability Modulo Theories. Citeseer (2015)

11. Erez, A., Nadel, A.: Finding bounded path in graph using SMT for automatic clock
routing. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp.
20–36. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 2

12. Falke, S., Merz, F., Sinz, C.: LMBC: improved bounded model checking of C pro-
grams using. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol.
7795, pp. 623–626. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36742-7 48

13. Franzén, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT in
symbolic execution of microcode. In: Proceedings of the 2010 Conference on Formal
Methods in Computer-Aided Design, pp. 121–128. FMCAD Inc. (2010)

14. Gabow, H.N., Maheshwari, S.N., Osterweil, L.J.: On two problems in the generation
of program test paths. IEEE Trans. Softw. Eng. 3, 227–231 (1976)

15. Government, S.: Polypharmacy Guidance (2nd edn.). Scottish Government Model
of Care Polypharmacy Working Group, March 2015

16. Hemmecke, R., Köppe, M., Lee, J., Weismantel, R.: Nonlinear integer program-
ming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958–2008, pp.
561–618. Springer, Berlin (2010). https://doi.org/10.1007/978-3-540-68279-0 15

17. Hughes, L., McMurdo, M.E.T., Guthrie, B.: Guidelines for people not for diseases:
the challenges of applying UK clinical guidelines to people with multimorbidity.
Age Ageing 42, 62–69 (2013)

18. Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector
logics with binary encoded bit-width. In: SMT@ IJCAR, pp. 44–56 (2012)

19. Lombardi, M., Milano, M., Benini, L.: Robust scheduling of task graphs under
execution time uncertainty. IEEE Trans. Comput. 62(1), 98–111 (2013)

20. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-319-68034-7_14
https://doi.org/10.1007/978-3-319-68690-5_13
https://doi.org/10.1007/978-3-030-17297-8_9
https://doi.org/10.1007/978-3-030-17297-8_9
https://doi.org/10.1007/978-3-319-21668-3_2
https://doi.org/10.1007/978-3-642-36742-7_48
https://doi.org/10.1007/978-3-642-36742-7_48
https://doi.org/10.1007/978-3-540-68279-0_15
https://doi.org/10.1007/978-3-540-78800-3_24

302 J. Bowles and M. B. Caminati

21. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer, London (2002)

22. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

23. Wille, R., Große, D., Haedicke, F., Drechsler, R.: SMT-based stimuli generation
in the SystemC verification library. In: 2009 Forum on Specification & Design
Languages FDL 2009, pp. 1–6. IEEE (2009)

	An Integrated Approach to a Combinatorial Optimisation Problem
	1 Introduction
	2 Problem Motivation and Informal Description
	3 Related Work and Justification of an SMT Approach
	4 Formal Model of the Problem and of Its Solution
	4.1 Paths Calculation
	4.2 Interaction Constraints

	5 SMT Translation
	6 Verification
	6.1 First Step: Generating SMT-LIB Code from Theorem Hypotheses
	6.2 Second Step: Linking Generated SMT Code to the Existing Code

	7 Conclusions
	References

