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Abstract This paper proposes a mathematical model and an exact algorithm for
a novel problem, the k-Color Shortest Path Problem. This problem is defined on a
edge-colored weighted graph, and its aim is to find a shortest path that uses at most
k different edge-colors. The main support and motivation for this problem arise
in the field of transmission networks design, where two crucial matters, reliability
and cost, can be addressed using both colors and arc distances in the solution of a
constrained shortest path problem. In this work, we describe a first mathematical
formulation of the problem of interest and present an exact solution approach based
on a branch and bound technique.

Keywords Constrained path problem · Edge-colored graph · Branch and bound

1 Introduction

Shortest Path Problems (SPPs) represent one of the most significant and investi-
gated family of problems in Operations Research. The formulations that describe
members of this class are often intuitive and easily relatable to real-world scenarios,
while their broad applicability implies that often SPPs need to be solved as sub-tasks

D. Ferone
Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende,
Italy
e-mail: daniele.ferone@unical.it

P. Festa
Department of Mathematics and Applications, University of Naples Federico II, Naples, Italy
e-mail: paola.festa@unina.it

T. Pastore (�)
Department of Structures for Engineering and Architecture, University of Naples Federico II,
Naples, Italy
e-mail: tommaso.pastore@unina.it

© Springer Nature Switzerland AG 2019
M. Paolucci et al. (eds.), Advances in Optimization and Decision Science
for Society, Services and Enterprises, AIRO Springer Series 3,
https://doi.org/10.1007/978-3-030-34960-8_32

367

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34960-8_32&domain=pdf
mailto:daniele.ferone@unical.it
mailto:paola.festa@unina.it
mailto:tommaso.pastore@unina.it
https://doi.org/10.1007/978-3-030-34960-8_32


368 D. Ferone et al.

in many other combinatorial problems, such as Maximum-Flow Minimum-Cost
Problems or Vehicle Routing Problems.

While notably the classical SPPs can be optimally solved using polynomial
algorithms, a more recent stream of research focused on the solution of either
dynamic [12, 13] or constrained-SPPs [11, 14, 20], studying both exact and heuristic
techniques. In this work, we define and formally state a novel problem: the k-
Color Shortest Path Problem (k-CSPP), whose objective is to find a shortest path
in a weighted edge-colored network, with a constraint on the maximum number of
different colors that can be used. In the following we will use interchangeably the
terms “colors” and “labels”.

Edge-colored networks received a fair share of attention in the scientific litera-
ture, given their aptness for the depiction of complex and diverse relations among
nodes. This feature proved to be beneficial in a wide variety of application fields,
such as: computational biology [9], telecommunications [23], as well as in the
analysis of transportation networks [1], and conflicts resolution [21].

In [4], it is proven that to find a path from a source node s to a destination node
t with maximum k colors is a NP-complete problem, by reduction from the 3-SAT
problem. We observe how any instance of the decisional problem of finding an s − t

path with at most k colors can be represented as an instance of k-CSPP, where
each edge has null cost. Therefore, a polynomial algorithm for the k-CSPP would
efficiently solve the decisional problem described in [4]. Consequently, k-CSPP is
NP-hard.

In the study of edge-colored graphs, many works—of both theoretical and
experimental interest—are concerned with the investigation of specific properly-
colored edge structures, where a coloring is said to be proper whenever any
two adjacent edges differ in color. These structures include for example: paths,
trails, trees and cycles; see for example [17]. On the other hand, some classical
optimization problems—such as the Minimum Spanning Tree (MST), the Traveling
Salesman Problem (TSP), and the Longest Path Problem (LPP)—have all been
extended to the case of edge-colored graphs, taking labels into account either in
the objective function or in their constraints.

For example, the Minimum Label Spanning Tree is defined in [8] as a variant of
the classical MST in which the cost of the spanning tree is given by the number of
different edge-labels used. The authors of [8] describe a heuristic technique and an
exact method based on the A* algorithm. The problem is further investigated in [6]
which present a logarithmic approximation algorithm and a comparative study of
several metaheuristic techniques, respectively. A strictly related generalization, the
k-labeled Spanning Forest Problem, is studied in [7].

In [19], Jozefowiez et al. present an in-depth analysis of the Minimum Label
Hamiltonian Cycle Problem (MLHCP). The MLHCP consists in the determination
of an Hamiltonian cycle that presents the minimum total number of different
edge-labels used. Moreover, in [19] two variations are introduced: the MLHP
with length constraints and the Traveling Salesman Problem with label constraints
(LCTSP). Aim of the LCTSP is to minimize the length of the tour—as in the
classical TSP—while constraining the maximum number of different colors that
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can be used. The authors propose mathematical models and prove valid inequalities
that are then included in branch-and-cut algorithms for the MLHCP and its two
variants.

As an additional example, a special case of longest path on edge-colored graphs,
the Orderly Colored Longest Path Problem, was recently studied in [5] by Carrabs et
al. Suitably adapting existing formulations, the authors obtain several mathematical
descriptions for the problem, that are then compared over a broad set of instances.

The main ground of interest for the k-CSPP arises in the field of telecommunica-
tions. While designing transmission networks, reliability is a crucial matter to ensure
good performances and prevent data loss. As deeply discussed in [22] and [23], the
robustness of a path-routed communication network can be achieved by means of
path protection schemes, which make use of backup paths to ensure reachability in
the case of single link failures. The backup path and the primary path are link-
disjoint, and share the same source and destination. To prevent traffic loss, the
backup path is activated whenever the primary path fails. On the other hand, often a
single happening can cause the simultaneous failure of several links in the network.
For instance, in WDM networks it is customary to bundle multiple fiber links in the
same conduit. Consequently, even if these links are disjoint in the network layer,
a damage to the conduit will cause the failure of all the links there bundled. The
fibers sharing a common risk factor are said to be in the same Shared Risk Link
Group, and are modeled with arcs of the same color. In [23], Yuan et al. address
the failure minimization problem as a minimum-color path problem, in which each
path is associated with one or more colors and each color is related to a given failure
event. The authors support their approach arguing that by minimizing the number
of colors involved in the path, the failure probability of the path can consequently
be minimized. At the same time, while this argument handles different edge-labels,
it does not include lengths in the comparison of different paths. Accordingly, a path
with at most k different colors is connected if and only if failures do not occur in any
of the k colors traversed in the path. If we make the assumption that color failures
are mutually independent, and equiprobable—with probability p ∈ [0, 1]—, then
the reliability of the path can be computed as (1 − p)k . Consequently, an upper
bound on the number of different colors allows to have a probabilistic estimate on
the reliability of the network. A similar argument can be repeated in the case of
independent failure events with different probabilities.

With in mind a similar network reliability scenario, the k-CSPP handles risk
adversity as a strict requirement, while optimizing path length. Hence, the mathe-
matical models introduced in the present paper include distances in the objective
function, while encompassing the use of few colors in a problem constraint.

The main contributions of this work are: (1) a first formal description of the k-
CSPP and (2) the design of a branch and bound algorithm. The work is organized
as follows: in Sect. 2 some related works on Constrained Shortest Path Problems
are presented. The problem is formally introduced in Sect. 3, where a mathematical
model is proposed. Section 4 describes the Branch and Bound implementation used
to optimally solve the problem. Computational results and a comparative analysis
of the performances of our Branch and Bound with respect to the CPLEX solver are
presented in Sect. 5. Concluding remarks are given in Sect. 6.
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2 A Brief Taxonomy of Shortest Path Problems with Edge
Constraints

The goal of this section is to provide a brief classification of some Shortest Path
Problem variants that include edge constraints, with the aim of pointing out their
differences with the k-CSPP.

One of the most broad and notable classes of edge-constrained SPPs is given by
Resource Constrained Shortest Path Problems (RCSPPs) [3, 20].

In RCSPPs, in addition to the customary directed graph G = (V ,E) and edge-
distance function dij : E → R

+
0 , a L-dimensional vector of resources R is defined.

Essentially, each resource is related to relevant link attributes that needs to be
accounted in the planning of the path. Indeed, for each l = 1, . . . , L, to each
(i, j) ∈ E is associated a resource attribute rl

ij . Accordingly, a path P ∗ is optimal
whenever it is minimal w.r.t. the distance function d, and satisfies the restrictions
enforced on the resources rl

ij .
As argued in [2], the resources and the subsequent constraints can be of multifold

nature. In fact, resources can model both numerical (either cumulative or non-
cumulative) and categorical (or index) attributes. Straightforward examples of
cumulative numerical attributes are travel time or fuel consumption, whose total
use in a path P is obtained adding up all the travel times or consumption along the
edges belonging to P , as in [10].

On the other hand, road width is an example of numerical non-cumulative
parameter; in cases like this the feasibility of a path P can be subject to average or
bottleneck restrictions, in which either the average of the resource or its minimum
(respectively maximum) has to respect some bounds. Finally, RCSPPs can include
categorical attributes, that can be used to specify the type of connection among
two nodes. Whenever the problem considers arcs with categorical attributes, the
formulation can feature constraints such as: a feasible path cannot contain links
whose attribute is equal to a specific value (or a set of specific values). For a more
detailed discussion see [2, 18].

The fundamental difference between the k-CSPP and RCSPPs lies in the fact that
the k-CSPP does not restricts color-sets a priori and there is a strong interdependence
among arcs. In our scenario, indeed, the cost of a color as a resource is not constant
during the exploration of the solution space: once that an arc with a certain color is
traversed, all other arcs sharing the same colors turn free and thus can be inserted in
the solution without placing additional burden on the color constraint.

Another related idea studied in path problems on edge colored graphs consists
in the use of reload costs. For each couples of colors (b, c) a reload cost ρb,c is the
amount to be paid if in the path P an arc of color c is traversed after an arc of color b.
Gourvès et al. [16] studied the problem of minimizing reload costs for walks, trails
and paths, deriving the resulting computational complexities. On the other hand,
[1] consider a general form of objective function that includes both distances and
reload cost. Aside from their presence in the objective function rather than in the
constraints, the main difference between reload costs and the modeling paradigm
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of the k-CSPP is that reload costs are fixed, and have to be taken into account any
given time there is a change from a color to another. On the contrary, bounding the
maximum number of different colors, as required in the k-CSPP, means to count
just once a transition to a specific color, whatever the preceding color (if any) may
be.

3 Mathematical Model

Let G = (V ,E) be an undirected graph, with n nodes and m edges. Let the functions
C : E −→ N and d : E −→ R

+
0 be an edge-coloring and a non-negative distance

function defined on E, respectively. The positive integer C(e), ∀e ∈ E, is said to be
the color of edge e.

Let c(G) be the number of colors used to label the edges of G, for each color
h ∈ {1, . . . c(G)} all edges labeled with h are collected in color class Ch, in a way
that E = ⋃c(G)

h=1 Ch.
The k-CSPP consists in finding a shortest path P ∗ = (v1, v2, . . . , vh) from a

source node v1 = s to a destination node vh = t , with s, t ∈ V , such that the
number of different colors traversed in the path does not exceed k.

Introducing a Boolean decision variable xij , for each edge [i, j ] ∈ E, such that:

xij =
{

1, if [i, j ] belongs to P ∗,
0, otherwise,

and for each possible color h, a Boolean decision variable yh such that: yh = 1, if
color h is traversed in P ∗, yh = 0 otherwise. Then, the problem can be formulated
as follows:

z = min
∑

[i,j ]∈E

dij xij (1a)

subject to:
∑

j∈V \{i}
xji −

∑

j∈V \{i}
xij = bi, ∀i ∈ V

(1b)

xij ≤ yh, ∀[i, j ] ∈ Ch, h = 1, . . . , c(G)

(1c)

c(G)∑

h=1

yh ≤ k (1d)
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xij ∈ {0, 1}, [i, j ] ∈ E

(1e)

yh ∈ {0, 1}, ∀h = 1, . . . , c(G)

(1f)

with bi = −1 for i = s, bi = 1 for i = t , and bi = 0 otherwise.
The objective function (1a) minimizes the total cost d(p∗) of the solution

path p∗. The constraints (1b) represent the flow balance constraint at each node.
Constraints (1c) correlate arc traversal to color selection, and constraints (1d)
impose the maximum number of colors that can be used in the path. Finally, the
binary constraints are given in Eqs. (1e) and (1f).

4 Branch and Bound

The basic idea of the branch and bound here proposed consists in the observation
that relaxing the color constraints (1d), the problem can be solved very efficiently
by a classical shortest path algorithm. Consequently, at each node of the branching
tree, a shortest path problem is solved on a given edge-colored graph G′ = (V ,A′).
Then, if p∗

G′ is the optimal solution obtained, and c(p∗
G′) is the number of different

colors used in p∗
G′ , four cases can occur:

• d(p∗
G′) = +∞: there is no path from s to d, the feasible region is empty, and the

branching node becomes a leaf;
• d(p∗

G′) ≥ d(p̂): where p̂ is the incumbent solution. In this case, the branching
node is fathomed due to the bounding criterion;

• c(p∗
G′) ≤ k: the solution is feasible for the original problem, and the incumbent

is updated if necessary;
• c(p∗

G′) = l > k: the solution is not feasible for the original problem.

In the last case, a branching operation is performed. Let C∗ = {c1, . . . , cl} be the
colors used by the path p∗

G′ , for each i = 1, . . . , l a new branching node is generated
on the graph G′′ = (V ,E′′), where E′′ = E′ \ {evw ∈ E′ : C(evw) = ci}.

Moreover, the strategy guiding the exploration of the branching tree is a depth-
first mechanism, and the nodes of the tree are generated excluding colors according
to their absolute frequencies in p∗

G′ . The lesser used the color, the earlier it is
excluded from G′. The main target of this strategy is to obtain a feasible solution
in the quickest way possible, in order exploit the bounding operation as much as
possible. This aim is reflected by both the choice of the depth first strategy, and in
the exclusion criterion considered for colors. The latter, indeed, tries to define a sub-
problem favoring the constriction of colors that are less used in the computed path
p∗

G′ .
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5 Experimental Results

This section presents some computational experiments designed to compare the
performances of the two exact solution strategies, the Branch and Bound technique
described in Sect. 4, and the model presented in Sect. 3 and solved with ILOG
CPLEX 12.9. Both the algorithms were coded in C++ using the flags -std=c++17
-O3 and compiled with g++ 8.2. The experiments were run on a INTEL
i5-6400@2.70 GHz processor with 8GB of RAM. A time limit of 10 min has
been used for both the algorithms.

The instances used in the experiments can be divided in two separate classes,
both obtained with the a generator adapted from [15] to suitably introduce edge-
colors. More specifically, the networks considered are either grid graphs or fully
random networks. The total number of colors introduced in each graph amounts to
either the 15% or 20% of the total number of edges.

Table 1 reports a summary of the instances included in the experimental phase.
For each type, ten instances have been generated with different seeds.

The computational results obtained by our Branch and Bound (B&B), and
CPLEX—executed either with depth first (df) or breadth first (bf) strategy—are
reported in Tables 2 and 3 for fully random and grid graphs, respectively. More
specifically, for each instance type we report: the average time spent by the
algorithms solving instances of that type (avg. time), and the number of instances

Table 1 Instance parameters

Fully random graphs Grid graphs

Problem Nodes Arcs Colors Problem Size Colors

R1 75,000 750,000 112,500 G1 100 × 100 5940

R2 75,000 750,000 150,000 G2 100 × 100 7920

R3 75,000 112,500 168,750 G3 100 × 200 11,910

R4 75,000 112,500 225,000 G4 100 × 200 15,880

R5 75,000 150,000 225,000 G5 250 × 250 37,350

R6 75,000 150,000 300,000 G6 250 × 250 49,800

R7 100,000 1,000,000 150,000 G7 250 × 500 74,775

R8 100,000 1,000,000 200,000 G8 250 × 500 99,700

R9 100,000 1,500,000 225,000 G9 500 × 500 149,700

R10 100,000 1,500,000 300,000 G10 500 × 500 199,600

R11 100,000 2,000,000 300,000 G11 500 × 1000 299,550

R12 100,000 2,000,000 400,000 G12 500 × 1000 399,400

R13 125,000 1,250,000 187,500

R14 125,000 1,250,000 250,000

R15 125,000 1,875,000 281,250

R16 125,000 1,875,000 375,000

R17 125,000 2,500,000 375,000

R18 125,000 2,500,000 375,000
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Table 2 Results on random graphs

B&B CPLEX (df) CPLEX (bf)

Instance type Avg. time O + F Avg. time O + F Avg. time O + F

R1 306.72 5 + 4 126.18 10 + 0 92.43 10 + 0

R2 308.49 5 + 4 118.66 9 + 0 89.12 9 + 0

R3 197.47 7 + 2 159.84 9 + 0 158.54 9 + 0

R4 199.00 7 + 2 210.22 8 + 0 163.05 9 + 0

R5 322.67 5 + 5 600.00 0 + 0 521.92 2 + 0

R6 324.29 5 + 5 600.00 0 + 0 513.47 2 + 0

R7 300.54 5 + 4 214.57 8 + 0 123.57 10 + 0

R8 300.62 5 + 2 289.92 6 + 0 218.52 8 + 0

R9 360.75 4 + 6 600.00 0 + 0 600.00 0 + 0

R10 361.01 4 + 6 600.00 0 + 0 600.00 0 + 0

R11 121.40 8 + 2 600.00 0 + 0 600.00 0 + 0

R12 121.75 8 + 2 600.00 0 + 0 600.00 0 + 0

R13 383.90 4 + 5 564.25 1 + 0 600.00 0 + 0

R14 384.42 4 + 5 557.50 1 + 0 512.84 2 + 0

R15 420.33 3 + 6 600.00 0 + 0 600.00 0 + 0

R16 420.31 3 + 6 600.00 0 + 0 600.00 0 + 0

R17 305.85 5 + 5 600.00 0 + 0 600.00 0 + 0

R18 305.84 5 + 5 600.00 0 + 0 600.00 0 + 0

Average 302.52 457.84 432.97

Bold values indicate the algorithm with the shortest computational time average

of that type for which either an optimal (O) or feasible (F) solution has been found.
This last information is collected in the column (O + F). Note that since each class
is made up by 10 different instances, we have O +F ≤ 10; whenever the preceding
inequality its strict, then for some of the instances not even a feasible solution could
be found within the time limit.

The results show how CPLEX is performing well on the smaller instances of the
dataset, while the Branch and Bound approach is able to tackle larger instances,
where the model becomes too large to be managed by CPLEX. For example,
referring to graph types R15–R18, it is worthy to note that CPLEX can obtain just
two feasible solutions—that happen to be optimal as well—within the required time
limit. On the other hand, the branch and bound approach is able to obtain at least a
feasible solution in 56 out of 60 total cases, guaranteeing optimality in 24.

Similarly, we can observe in Table 3 that even in the case of grid graphs
our Branch and Bound outperforms CPLEX as the size of the network grows.
Additionally, the results evidence higher computational times and a lower number
of optimal solution found with respect to those reported in Table 2. For example,
comparing the results obtained on instance classes G8 and R13—that have the same
number of nodes—we can observe how the time spent by our Branch and Bound
increased by 40%, and the number of optimal solution found within the time limit
dropped by 50%. This behaviour is probably due to the greater sparsity of grid
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Table 3 Results on grid graphs

B&B CPLEX (df) CPLEX (bf)

Instance type Avg. time O + F Avg. time O + F Avg. time O + F

G1 404.78 4 + 6 41.69 10 + 0 41.05 10 + 0

G2 403.93 4 + 6 57.15 10 + 0 42.16 10 + 0

G3 485.14 2 + 6 230.77 10 + 0 200.71 10 + 0

G4 543.64 1 + 7 230.45 10 + 0 225.43 9 + 0

G5 578.72 1 + 9 597.25 1 + 8 596.76 1 + 7

G6 583.95 1 + 9 587.59 2 + 7 587.55 2 + 7

G7 532.55 3 + 7 601.45 0 + 10 602.28 0 + 10

G8 540.59 2 + 8 601.28 0 + 10 602.36 0 + 10

G9 540.24 1 + 9 601.26 0 + 5 607.63 0 + 9

G10 510.76 2 + 7 600.00 0 + 0 607.07 0 + 10

G11 540.36 1 + 9 600.00 0 + 0 600.00 0 + 0

G12 540.46 1 + 9 600.00 0 + 0 600.00 0 + 0

Average 517.09 445.74 442.75

Bold values indicate the algorithm with the shortest computational time average

graphs, that implies increased difficulties in the construction of a feasible k-color
path.

6 Conclusions and Future Work

This paper presented a new variant of constrained shortest path problem, the k-
Color Shortest Path (k-CSPP). The problem is formally described and a Branch
and Bound is proposed for its solution. The performances of the exact method here
described are then compared to those achieved by CPLEX in the solution of the
integer programming model. The results evidence how our Branch and Bound can
manage larger instances with respect to CPLEX, achieving good performances in
terms of both optimal and feasible solutions found.

As future research perspectives—inspired by classical constrained shortest path
literature—we plan to investigate the use of an exact dynamic programming
algorithm. Additionally, given the complexity of the problem, future investigation
will exploit metaheuristic techniques to quickly obtain good sub-optimal solutions.
Moreover, a larger set of instances will be generated to properly assess a comparison
between the methods, and to establish a shareable benchmark for future works.
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