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Preface

This volume is the third in the AIRO Springer Series. It contains very recent
results in the field of optimization and decision science, aimed at solving complex
problems.

The volume is mainly addressed to the operations research (OR) community
but, due to its interdisciplinary contents, it will also be of great interest for
scholars and researchers from many scientific disciplines, including computer
sciences, economics, mathematics, and engineering. OR is known as the discipline
of optimization applied to real-world problems and to complex decision-making
fields. The focus is on mathematical and quantitative methods aimed at determining
optimal or near-optimal solutions in acceptable computation times. Moreover, the
volume contains real industrial applications, making it interesting for practitioners
facing decision problems in logistics, manufacturing production, and services.
Readers will surely find innovative ideas, from both a methodological and an applied
perspective.

This volume includes both applications and theoretical results that represent
state-of-the-art research contributions in the following fields and areas: smart
port terminal operations; data exploitation: methods and applications; financial
modeling and portfolio optimization; optimization in public transport; optimization
in machine learning; support to Industry 4.0 and smart manufacturing; health
care management and planning; equilibrium problems, variational models, and
applications; mixed integer programming; transportation networks performance
and reliability; vehicle routing problems; stochastic programming: optimization
under uncertainty and applications; rail port operations; combinatorial optimization;
OR applications in routing; inventory; graphs; traveling salesman and arc touting
problems; and optimization in telecommunication networks and queuing systems.

The results published in this volume have been accepted for publication after a
double-blind peer review process by experts in OR that had the aim of guaranteeing
the quality of the contents. The editors want to thank the referees for their interesting
comments, for their suggestions on how to improve the contents, and for completing
the review process within the allowed time.
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vi Preface

The editorial choice for this volume was to force the authors to focus on
the central results obtained in their research. For this reason, the length of the
contributions has been limited, with only a few exceptions. As a consequence, the
volume provides very interesting results. As editors, we expect and hope that most of
the papers included in the volume will be further developed so that they are suitable
for publication in top-rated international journals. Indeed, the fact that some of the
contributions focus on theoretical results while others deal with applications leaves
much scope for empirical and theoretical aspects, respectively, to be developed
in future research. The adopted approach was also designed to encourage young
researchers with little experience in academic research, giving them the possibility
to publish preliminary results and to experience the review process.

The contributions included in this volume are a subset of the works presented
at ODS2019—International Conference on Optimization and Decision Science.
The conference was the 49th annual meeting organized by the Italian Operations
Research Society (AIRO) and took place in Genoa, Italy, on September 4–7, 2019.

Genoa, Italy Massimo Paolucci
Genoa, Italy Anna Sciomachen
Genoa, Italy Pierpaolo Uberti
September 2019



Contents

A Receding Horizon Approach for Berth Allocation Based
on Random Search Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Cristiano Cervellera, Mauro Gaggero, and Danilo Macciò

Integrating Ship Movement Scheduling and Tug Assignment
Within a Canal Harbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Giacomo di Tollo, Raffaele Pesenti, and Matteo Petris

The Maximum Nearby Flow Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Gennaro Auricchio, Stefano Gualandi, and Marco Veneroni

Linear Models for Portfolio Selection with Real Features . . . . . . . . . . . . . . . . . . . 35
Thiago Alves de Queiroz, Leandro Resende Mundim, and André Carlos
Ponce de Leon Ferreira de Carvalho

Portfolio Leverage in Asset Allocation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Mario Maggi and Pierpaolo Uberti

Energy-Efficient Train Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Valentina Cacchiani, Antonio di Carmine, Giacomo Lanza,
Michele Monaci, Federico Naldini, Luca Prezioso, Rosalba Suffritti,
and Daniele Vigo

Gradient Boosting with Extreme Learning Machines
for the Optimization of Nonlinear Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Cristiano Cervellera and Danilo Macciò

A MILP Model for Biological Sample Transportation in Healthcare . . . . . . 81
Mario Benini, Paolo Detti, and Garazi Zabalo Manrique de Lara

Infinite Kernel Extreme Learning Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Elisa Marcelli and Renato De Leone

Least Action Principles and Well-Posed Learning Problems. . . . . . . . . . . . . . . . 107
Alessandro Betti and Marco Gori

vii



viii Contents

Heuristic Data-Driven Feasibility on Integrated Planning
and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Marco Casazza and Alberto Ceselli

Evaluating Automated Storage and Retrieval System Policies
with Simulation and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Michele Barbato, Alberto Ceselli, and Marco Premoli

Rolling-Horizon Heuristics for Capacitated Stochastic Inventory
Problems with Forecast Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Emanuele Tresoldi and Alberto Ceselli

Paths and Matchings in an Automated Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Michele Barbato, Alberto Ceselli, and Giovanni Righini

Coordinating the Emergency Response of Ambulances to Multiple
Mass Casualty Incidents using an Optimization-based Approach . . . . . . . . . 161
Haya Aldossary and Graham Coates

A Game Theory Model of Online Content Competition . . . . . . . . . . . . . . . . . . . . . 173
Georgia Fargetta and Laura Scrimali

A Variational Formulation for a Human Migration Problem . . . . . . . . . . . . . . . 185
Giorgia Cappello and Patrizia Daniele

Flying Safely by Bilevel Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Martina Cerulli, Claudia D’Ambrosio, and Leo Liberti

Computational Evaluation of Data Driven Local Search for MIP
Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Saverio Basso and Alberto Ceselli

An Integer Programming Formulation for University Course
Timetabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Gabriella Colajanni

On the Sizing of Security Personnel Staff While Accounting
for Overtime Pay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Patrick Hosein, Victor Job, and Alana Sankar-Ramkarran

Dynamic Tabu Search for Enhancing the Productivity of a Bottle
Production Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Marie-Sklaerder Vié and Nicolas Zufferey

Swap Minimization in Nearest Neighbour Quantum Circuits:
An ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Maurizio Boccia, Adriano Masone, Antonio Sforza, and Claudio Sterle

A Traffic Equilibrium Nonlinear Programming Model
for Optimizing Road Maintenance Investments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Mauro Passacantando and Fabio Raciti



Contents ix

Opinion Dynamics in Multi-Agent Systems Under Proportional
Updating and Any-to-Any Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Loretta Mastroeni, Maurizio Naldi, and Pierluigi Vellucci

A New Formulation of the Single Door Truck Scheduling Problem . . . . . . . . 291
M. Flavia Monaco and Marcello Sammarra

Optimization of Car Traffic in Emergency Conditions . . . . . . . . . . . . . . . . . . . . . . 303
Luigi Rarità

The Cumulative Capacitated Vehicle Routing Problem with Profits
Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
M. E. Bruni, S. Nucamendi-Guillén, S. Khodaparasti, and P. Beraldi

Dealing with the Stochastic Home Energy Management Problem . . . . . . . . . 323
Patrizia Beraldi, Antonio Violi, Maria Elena Bruni,
and Gianluca Carrozzino

Optimization Methods for the Same-Day Delivery Problem . . . . . . . . . . . . . . . . 335
Jean-François Côté, Thiago Alves de Queiroz, Francesco Gallesi,
and Manuel Iori

Intermodality and Rail Transport: Focus on Port Rail Shunting
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Daniela Ambrosino and Veronica Asta

The k-Color Shortest Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Daniele Ferone, Paola Festa, and Tommaso Pastore

The Traveling Repairman Problem App for Mobile Phones:
A Case on Perishable Product Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
M. E. Bruni, M. Forte, A. Scarlato, and P. Beraldi

Integrating Vehicle Routing and Resource Allocation
in a Pharmaceutical Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Nicolas Zufferey and Roxanne Tison

A Real Case on Making Strategic Logistics Decisions
with Production and Inventory Optimization Models . . . . . . . . . . . . . . . . . . . . . . . 399
E. Parra

A Bi-objective Mixed Integer Model for the Single Link Inventory
Routing Problem Using the ε-Constraint Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Arianne A. S. Mundim, Maristela O. Santos, and Reinaldo Morabito

Models for Disassembly Lot Sizing Problem with Decisions
on Surplus Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Meisam Pour-Massahian-Tafti, Matthieu Godichaud, and Lionel Amodeo



x Contents

Learning Inventory Control Rules for Perishable Items
by Simulation-Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Remigio Berruto, Paolo Brandimarte, and Patrizia Busato

A Genetic Algorithm for Minimum Conflict Weighted Spanning
Tree Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Carmine Cerrone, Andrea Di Placido, and Davide Donato Russo

Algorithmic Strategies for a Fast Exploration of the TSP 4-OPT
Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Giuseppe Lancia and Marcello Dalpasso

A Computational Evaluation of Online ATSP Algorithms . . . . . . . . . . . . . . . . . . 471
Michele Barbato, Alberto Ceselli, and Filippo Mosconi

Modeling of Traffic Flows in Internet of Things Using Renewal
Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Florian Wamser, Phuoc Tran-Gia, Stefan Geißler, and Tobias Hoßfeld

Flow Assignment in Multi-Core Network Processors . . . . . . . . . . . . . . . . . . . . . . . . 493
Franco Davoli, Mario Marchese, and Fabio Patrone



About the Editors

Massimo Paolucci received a PhD in electronic and computer science in 1990. He
is Associate Professor in Operations Research at the Department of Informatics,
Bioengineering, Robotics, and System Engineering (DIBRIS) of the University of
Genoa. His research activities are focused on metaheuristic and matheuristic algo-
rithms for combinatorial optimization problems, planning and scheduling, decision
support systems, and multi-criteria methods. Reference fields of application are
intermodal logistics and shipping and manufacturing.

Anna Sciomachen is Full Professor of Operations Research at the Department of
Economics and Business Studies, University of Genoa, where she is Coordinator of
the Master of Science in Management of Maritime and Port Enterprises and teaches
optimization and simulation methods for logistics. She is a past President of the
Italian Society of Operations Research. Her main research fields are optimization
models and heuristic methods in distributive logistics and multimodal transportation
networks, liner problems, stowage planning, simulation techniques for performance
analysis, and location-routing problems.

Pierpaolo Uberti received his PhD in Mathematics for Financial Markets from the
University of Milano-Bicocca in 2010 for a dissertation on “Higher Moments Asset
Allocation.” Since 2011, he has been a researcher at the University of Genoa. His
research interests cover the fields of quantitative finance, optimization, portfolio
selection, and risk measures.

xi



A Receding Horizon Approach for Berth
Allocation Based on Random Search
Optimization

Cristiano Cervellera, Mauro Gaggero, and Danilo Macciò

Abstract An approach to address the berth allocation problem is presented that
is based on the receding horizon paradigm. In more detail, berthing decisions are
computed by solving an optimization problem at each time step aimed at minimizing
the waiting times of vessels, exploiting predictions on the ship arrivals and berth
occupancy over a moving window starting from the current time instant. A discrete
time dynamic model is devised to forecast the state of the terminal in the forward
window, and a computationally-efficient approximate solution method based on
random search is proposed. The considered framework can be used either for real
time planning or scheduling in advance. Simulation results are reported to show the
effectiveness of the method in different terminal configurations, forward horizons,
and traffic intensities, in comparison with state-of-the-art approaches.

Keywords Berth allocation · Receding horizon · Random search optimization

1 Introduction

Berth allocation is a classic problem related to the optimization of container
terminals. It consists in choosing the berthing positions for ships arriving at a
terminal within a certain time horizon. A comprehensive collection of the available
works in the literature is reported in [3, 4], together with a systematic classification
of the various problem instances. In general, the most diffused approach formalizes
the problem as a mixed-integer programming one with several variables and
constraints, according to an a priori scheduling paradigm. However, the solution of
this problem is very difficult, especially for many vessels and berths [9, 10]. Thus,
researchers have devoted lots of efforts to find approximate solutions in a reduced
amount of time, also for large instances of the problem, using heuristic approaches.
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National Research Council of Italy, CNR-INM, Genoa, Italy
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2 C. Cervellera et al.

Techniques relying on evolutionary or genetic algorithms, as well as methods based
on tabu search and simulated annealing, are noticeable examples (see, among others,
[6, 8, 11, 13, 14]). The most important issue is the assumption that the information
on service times and arrivals of vessels will hold true in the future, so that static
scheduling plans can be provided in advance. Rescheduling is needed in the case of
large deviations from the forecast values or in a dynamic environment where ships
arrive continuously, which may require to solve complex optimization problems in
real time or exploit adaptation techniques not easily generalizable [15, 17].

In this work, we solve the berth allocation problem through a multistage decision
approach, which consists in splitting the scheduling of a certain amount of ships
within a given horizon into several smaller problems at various time steps, where we
have to choose the berthing positions for ships that have just arrived at the terminal
and are waiting to be served. The solution of the various problems is addressed
through an approximate method based on random search, which guarantees a
reduction of the overall computational effort and therefore the possibility of dealing
with scenarios characterized by many vessels and berths. The proposed approach
can be used either for planning in advance or real time berth allocation to face, for
instance, unexpected deviations from the planned situation.

In more detail, we present a discrete time dynamic model of the terminal with
state variables representing berth occupancy and decision variables accounting
for the choices of ships that enter the terminal in free berths, among those that
are ready to be served. Decisions are taken by solving optimization problems to
minimize the waiting times of vessels. We adopt the receding horizon paradigm
[12], which consists in optimizing over a time window starting from the current
time instant up to a certain horizon in the future, exploiting predictions on the
arrival times of ships and evolution of the terminal given by the considered dynamic
model. Such an approach has been successfully employed in various contexts,
including container terminals [1, 2, 16]. Its use for berth and quay crane allocation
has been studied in [5], where an event-based formalization with Petri nets is
adopted, a fixed horizon of ships (and not of time steps) is considered in the
future, and a quasi-exhaustive search is adopted to perform optimization, which
may limit the application to a reduced number of vessels. Instead, here we present a
dynamic system representation of the berthing environment and focus on the berth
allocation problem, even if the extension to consider also the quay crane allocation
is straightforward. An optimization based on random search is presented that avoids
using an enumerative approach, thus allowing to consider longer horizons in the
future. In this perspective, choosing the ships that enter the terminal at each time step
among those that are waiting to be served may be suboptimal, but it allows to have
smaller search spaces with respect to scheduling all the vessels arriving in a given
time window, including those not yet arrived at the terminal. This enables dealing
with scenarios characterized by large amount of ships and berths with a reduced
computational effort. In particular, sequences of feasible decisions are randomly
generated, and the optimal solution is constructed iteratively exploiting a pruning
mechanism to reduce the required burden.
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The main advantages of the proposed approach can be summarized as follows: 1)
owing to the reduced computational effort, the problem can be solved in real time.
However, the proposed framework can be still used to perform planning in advance
by computing a sequence of optimal actions for any desired horizon length in the
future; 2) uncertainties on the arrival or handling times of ships can be easily taken
into account by minimizing expected costs averaged over uncertainties; 3) decisions
are taken as a function of the current state of the terminal, hence it is possible to
react to deviations from the planned situation straightforwardly, without the need
of adaptation mechanisms; 4) any performance goal can be considered with no
conceptual difficulties, taking into account several aspects, such as service priorities,
fuel consumption, and CO2 emissions; 5) the extension to more complex scenarios,
such as the simultaneous berth and quay crane allocation, as well as the account for
tides or time-dependent limitations on berths and vessels, is straightforward.

The rest of this work is organized as follows. Section 2 reports the dynamic model
of the berthing process. Section 3 presents the proposed receding horizon approach
and the technique used to find suboptimal solutions. Preliminary simulation results
are shown in Sect. 4, while conclusions are drawn in Sect. 5.

2 Dynamic Model of the Terminal

We present a model of the berthing process in terms of a discrete time dynamic
system for t = 0, 1, . . .. More specifically, we focus on a terminal with a quay
partitioned in B discrete berthing positions. Ships to be served are contained in a
queue (potentially of infinite length) denoted by Q̄. Each vessel is indexed by a
positive identifier j , and is characterized by a known time tarr

j ∈ N when it arrives at
the terminal and handling times bij ∈ N, i = 1, . . . , B, which represent the amount
of time steps needed to complete the loading/unloading operations of ship j when
served at berth i. To avoid burdening the notation in the following, we consider also
a fictitious vessel with j = 0, tarr

j = 0, and bi0 = 0 for all i. Let A(t) be the set of

vessels arriving at the terminal at time t , i.e., A(t) := {j ∈ Q̄ : tarr
j = t}.

To keep track of the ships served at the various berths, we introduce B state
variables at each time t = 0, 1, . . ., denoted by si(t) ∈ Z, i = 1, . . . , B, which
represent the remaining service time of berth i at time t . If si(t) is positive, the berth
i is serving a ship, and loading/unloading operations are expected to be concluded
in si(t) time steps. If it is equal to zero, the operations are just finished and a new
ship can be berthed. If it is negative, the berth is idle from |si(t)| time steps, and
therefore it is ready to serve a new vessel. Besides, at each time t = 0, 1, . . ., we
define a subset of the queue Q̄, denoted by Q(t), made up by the vessels that are
arrived and are waiting to enter the terminal and start loading/unloading operations.

To decide the ships that are berthed, we consider B decision variables for t =
0, 1, . . ., denoted by ai(t) ∈ N, i = 1, . . . , B, which represent the identifier of the
vessel that is let into berth i at time t . If ai(t) = 0, no ship enters berth i. Let us
collect all the decision variables in the vector a(t) := (a1(t), . . . , aB(t)).
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The state variables si(t) and Q(t) evolve according to the following dynamic
equations depending on the decisions that are taken at each time step t = 0, 1, . . .:

si(t + 1) = (si(t)− 1) (1− χ(ai(t)))+ biai (t), i = 1, . . . , B, (1a)

Q(t + 1) = Q(t) ∪ A(t) \ {ai(t), i = 1, . . . , B} , (1b)

where the function χ(·) is such that χ(z) = 1 if z �= 0 and χ(z) = 0 otherwise. If no
ship enters berth i at time t , we have ai(t) = 0 and therefore χ(ai(t)) = 0, and the
remaining service time is reduced by one since bi0 = 0 for all i. If a new vessel is let
into berth i, we have ai(t) �= 0 and therefore χ(ai(t)) = 1, and the service time is
updated with the handling time of the corresponding vessel biai (t). As regardsQ(t),
we have a simple set dynamics: the set of vessels waiting to be served at time t + 1
is equal to the same set at time t plus the new arrivalsA(t)minus the ships that enter
the terminal at time t , which depend on the decisions a(t).

The goal is to choose, among the vessels that are ready to berth, the ones
that enter the terminal at each time step and the corresponding destination berth,
according to a suitable criterion. The chosen criterion and the technique used to
perform decisions will be detailed in the next section. Now, we define a feasibility
set where the decision variables can take their values. First, we assume to be able to
berth only ships that are contained in the set Q(t) ∪ {0}, as it includes vessels that
are arrived at the terminal and are waiting to be served together with the fictitious
ship. Therefore, we impose ai(t) ∈ Q(t)∪{0} for all i = 1, . . . , B and t = 0, 1, . . ..
The choice that no ship enters a free berth even if there are vessels ready to berth
is a feasible action. This may be helpful to keep a berth free until the arrival of
another ship, characterized, for instance, by a higher priority or a larger amount of
containers to load/unload. Moreover, to avoid that a new ship is let into a busy berth,
we impose the following for t = 0, 1, . . .:

ai(t) ≤ M (1− σ(si(t))) , i = 1, . . . , B, (2)

where σ(·) is the unit step function, i.e., σ(z) = 1 if z > 0 and σ(z) = 0 otherwise,
and M is a large positive constant. If berth i is busy, i.e., si(t) > 0, (2) is equivalent
to ai(t) ≤ 0. Together with ai(t) ∈ Q(t) ∪ {0} and the positive ship identifiers,
this means that ai(t) is constrained to be equal to 0, i.e., no ship is let into berth
i. If a berth is free, i.e., si(t) ≤ 0, constraint (2) is trivially satisfied. Further, a
ship cannot enter the terminal in more than one berth, i.e., for t = 0, 1, . . . we
consider the following constraint, ensuring that at most one of the decision variables
a1(t), . . . , aB(t) is equal to j at a certain time t :

B∑

i=1

1− χ (ai(t)− j) ≤ 1, j ∈ Q(t). (3)

Constraints (2), (3), and ai(t) ∈ Q(t) ∪ {0}, i = 1, . . . , B, define a time-varying
feasibility set denoted by At , where the decision vector a(t) can take its values.
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3 Receding Horizon Berth Allocation

In this section, we describe the receding horizon approach to select at each time
step the best ships to be berthed according to a chosen performance criterion. Such
an approach requires the solution of a sequence of optimization problems, which
can be found either for planning in advance or real time scheduling. The proposed
technique is general, and any performance index for the berthing policy can be
considered by defining a suitable cost function (4). For instance, we may choose
to minimize berth idle times, fuel consumption, total waiting and service times of
ships, and so on. Without loss of generality, here we minimize the waiting times of
vessels, i.e., the difference between the time instants when they arrive at the terminal
and the ones when they are berthed and start loading/unloading operations. Hence,
at each t = 0, 1, . . ., we define the cost

c(t) =
∑

j∈Q(t)

(
t − tarr

j

) B∏

i=1

χ (j − ai(t)) , (4)

where the first term is proportional to the waiting time of ships, while the second
one avoids to penalize ships entering the terminal at time t , i.e., such that ai(t) = j
for a certain i.

According to the receding horizon paradigm, we define at each time t = 0, 1, . . .
a window of length T > 0 starting from the current time step, in which we decide
the vessels that enter the terminal among those that are ready and the corresponding
berthing positions. To this purpose, we exploit predictions on future arrivals of ships
and evolution of the berth occupancy within this window, based on the dynamic
model (1). Thus, we have to solve the following receding horizon berth allocation
problem, referred to as RHBA-T , where T is the length of the forward horizon.

Problem RHBA-T At each time t = 0, 1, . . ., solve

min
a(t)∈At ,...,a(t+T−1)∈At+T−1

t+T−1∑

k=t
c(k), (5)

subject to the dynamic equation (1), which represents a further constraint. �
Once the optimal values a◦(t), . . . , a◦(t + T − 1) have been computed, only

the first decision a◦(t) is retained and applied. The procedure is iterated for the
other time steps, with a one-step-forward shift of the time window [t, t + T − 1].
Figure 1 sketches the considered approach, where the forward horizons at times t
and t+1 are reported. Problem RHBA-T is a nonlinear integer optimization problem
involving non-smooth functions. The number of unknowns is given by B · T , i.e.,
it is proportional to the number of berths and to the length of the decision horizon.
Since all the involved quantities are integers, the problem is purely combinatorial.
At least in principle, it is possible to find an exact solution by resorting to an
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timet t+1 t+ ––T 1 t+T

Q(t) Q(t+1)
s(t) s(t+1) arrivals departures

Fig. 1 Sketch of the receding horizon approach with the forward windows at times t and t + 1

Fig. 2 Example of enumeration tree of the solutions of Problem RHBA-T at time t

enumeration procedure. However, for large horizons T and terminals with many
berths, such an approach requires a too large computational effort. Hence, we must
resort to approximation techniques. In this work, we focus on an approximate
solution method based on random sampling (see, e.g., [7, chap. 3]).

In more detail, at each time t , we randomly extract a value for a(t) from the
corresponding feasibility set At . Then, we let the model evolve at time t + 1
according to (1) with the considered decision vector. At time t + 1, a new random
extraction from the set At+1 is done to select a value for a(t + 1). Such a procedure
is iterated up to the end of the forward window, i.e., up to the time t + T − 1.
To guarantee a “good” coverage of the set At × · · · × At+T−1, we extract a total
of G random sequences a(g)(t), . . . , a(g)(t + T − 1), g = 1, . . . ,G, where G is
a positive constant. Then, we compute the corresponding cost J (g) as in (5) for
each sequence. The sequence corresponding to the minimum cost is selected as the
best approximation of the true optimal solution of Problem RHBA-T . Clearly, the
larger is G, the better is the quality of the approximation, but the greater is the
computational effort. Thus, a tradeoff between accuracy and computational burden
is needed. To this end, notice that all the possible decisions in Problem RHBA-T at a
certain time t can be represented through an enumeration tree, as depicted in Fig. 2,
where nodes and arcs are feasible states and actions in the interval [t, t + T − 1],
respectively. The root of the tree corresponds to the state of the terminal at the
beginning of each window of length T . The tree is made up of T “levels”, where
the decisions at each level depend on the actions taken at the previous ones. The
extraction of random sequences corresponds to the exploration of paths in the tree
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Algorithm 1 Solution of Problem RHBA-T
1: Inputs: t , T , G, si (t) for all i, Q(t)
2: J ∗ ← ∞; g∗ ← 0 // initialization of the optimal solution
3: for g from 1 to G do // loop over the G random extractions
4: J (g) ← 0 // initialization of the cost of the g-th random sequence
5: s̃i (t) ← si (t) for all i; Q̃(t) ← Q(t) // initialization of state variables for receding

horizon
6: for k from t to t + T − 1 do // loop over the time horizon
7: B̃(k)← berths that are free, i.e., such that s̃i (k) ≤ 0
8: a

(g)
i (k)← 0 for all i // initialization of the g-th random sequence

9: if length(B̃(k))> 0 and length(Q̃(k))> 0 then // there are free berths and ready ships
10: (i, j)← random pair extracted from the set B̃(k)× [Q̃(k) ∪ {0}]
11: a

(g)
i (k)← j // random decision

12: end if
13: s̃i (k + 1), Q̃(k + 1)← update with the state equation (1) and decisions a(g)i (k)

14: J (g) ← J (g) + c(k) // update of the intermediate cost
15: if J (g) > J ∗ then // pruning: no good solution can be found with the g-th sequence
16: J (g) ←∞; break
17: end if
18: end for
19: if J (g) ≤ J ∗ then // update the current optimal solution
20: J ∗ ← J (g); g∗ ← g

21: end if
22: end for
23: a∗(t), . . . , a∗(t + T − 1)← a(g

∗)(t), . . . , a(g
∗)(t + T − 1) // retrieve the optimal sequence

24: Output: a∗(t) // only the first action is retained and applied

from the root node up to one of the leaves (see the dashed paths in Fig. 2). Each
node l of the k-th level, k = 1, . . . , T , can be labeled with an intermediate cost J̃l,k
given by the sum of the term c(t) in (4) from t to t + k − 1. Such costs always
increase as we approach the leaves, and the intermediate cost of a leaf equals the
overall cost in (5) associated with a certain random sequence of decisions. To reduce
the computational burden, we adopt a pruning mechanism that consists in aborting
the generation of a random sequence if the intermediate cost at a certain node is
greater than the current minimum overall cost (see the green, dashed path in Fig. 2),
which is iteratively updated starting from an initial value equal to +∞. In fact,
since the costs always increase as we approach the leaves, it is useless to proceed
generating additional random actions in that sequence, as a greater cost with respect
to the current minimum one will be obtained. The pseudo-code of the considered
approximate solution technique is reported in Algorithm 1.

4 Simulation Results

In this section, we report the results of preliminary simulations to verify the
effectiveness of the proposed approach. We focused on three scenarios characterized
by different numbers of berths, served ships, and traffic intensity. All the tests were
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done in Matlab on a PC with a 3.7 GHz Intel i7 CPU and 16 GB of RAM. In all the
cases, we compared the results with a method that consists in berthing, among all the
ships that are ready at time t , those that are waiting from the larger amount of time
in the available berth that guarantees the lowest handling time. This technique, in
contrast to the proposed RHBA, has no predictive flavor, and therefore we will refer
to it as greedy (GRD) in the following. As a further comparison, we implemented an
approach based on [5], where a fixed amount of 7 ships was scheduled at each time
step. An exhaustive search enumerating all the possible scheduling combinations of
such vessels was considered, including also those not yet arrived at the terminal, and
the combination guaranteeing the lowest cost as in (5) was selected as the optimal
one. We refer to this approach as predictive exhaustive search (PES).

Scenario A We focused on a terminal with 3 berths and a total of 20 ships to
be served in an interval of 1 week. Since the size of the problem is small, an
optimal scheduling in advance of vessels obtained by solving a classic mixed-integer
formulation can be found and used as reference solution. Specifically, we adopted
the approach of [9] and denoted it as MIF (mixed-integer formulation). Two levels
of traffic intensities were considered, i.e., ship arrivals were modeled via Poisson
distributions with rates 0.2 and 0.25 for “low” and “high” traffic, respectively. For
the sake of simplicity, only one new arrival per time step was considered.

Scenario B We focused on a terminal with 5 berths and a total of 100 ships to be
served in an interval of 3 weeks. The size of the problem makes it very difficult the
use of exact mixed-integer formulations to find an optimal solution. As in Scenario
A, two levels of traffic intensities were considered, i.e., “low” and “high”, with ship
arrivals modeled through Poisson distributions with rates 0.2 and 0.25, respectively.

Scenario C We focused on a terminal with 10 berths and a total of 100 ships to
be served in an interval of 1 week. Due to the large number of berths and vessels,
it is hard to find an optimal solution with the MIF approach. As in the previous
cases, two levels of traffic intensities were considered, with ship arrivals modeled
through Poisson distributions with rates 1.5 and 2 (increased values with respect to
the previous scenarios were used to balance the larger number of berths).

In all the scenarios, a sampling time of 1 h was considered, and the handling times
of ships and the initial remaining service time of berths were randomly generated
based on uniform distributions in the ranges [10, 45] h and [0, 45] h, respectively,
with a rounding to the nearest integer. The initial queue Q(0) of vessels waiting to
be served was fixed equal to the empty set. To have statistically-significant results,
we repeated 100 times the simulations with different realizations of the arrivals.
The RHBA was applied with three horizon lengths, i.e., T = 10 h, 30 h, 50 h, and
G = 1000 random decision extractions. The value of G was chosen via a trial and
error procedure: we started with a small value and increased it until no noticeable
improvement in the cost of (5) could be observed.

The boxplots of the mean total times of ships (defined as the sum of the waiting
and handling times) over the 100 simulations are reported in Fig. 3. Table 1 reports
the average of the waiting and total times of vessels over the 100 simulation runs,
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Fig. 3 Boxplots of the mean total time of ships over 100 simulation runs

together with the average computational effort required to find the berth allocation
for all the vessels to be served. As expected, the MIF approach provides the best
results in Scenario A, at the price of the highest computational burden. The proposed
RHBA for T = 50 guarantees satisfactory results that represent a good tradeoff
between accuracy and required effort, both in low and high traffic conditions. In
particular, the RHBA can be used also for large instances of the problem, while
the MIF is limited to the low-dimensional case of Scenario A. The decay in the
performance is about 10% on the average, but a saving of 2 orders of magnitude
in the computational time is guaranteed. As compared to the GRD approach,
much lower waiting and total times of ships are obtained by the RHBA in all the
scenarios. In particular, a reduction of about 20% of the average times of vessels
is experienced. Clearly, a higher computational effort is needed that increases with
the length of the horizon T . However, in the worst case the time needed to find a
solution is about 5 min, which enables the application of the RHBA for real time
planning. Also the comparison with the PES method based on [5] is successful,
as lower waiting and total times of ships can be obtained in all the cases. The main
advantage of the proposed approach lies in limiting the choice of the vessels entering
the terminal to those that are waiting instead of scheduling a fixed number of ships
like in PES. The result is a smaller search space, which can be efficiently explored
through random sampling rather than with exhaustive search. As a consequence,
longer horizons can be considered, with better performance and a much lower
required computational effort. In particular, the advantages of the RHBA increase if
the number of berths grows. In this case, having longer horizons is very important
to reduce waiting and total times of vessels, while the proposed random search
procedure to find a solution is very efficient as compared to exhaustive search. In
fact, in Scenario C the RHBA guarantees a 6% reduction on the average waiting
and total times of vessels and a saving of 1 order of magnitude in the required
computational effort.
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5 Conclusions and Outline of Future Works

An approach based on the receding horizon paradigm has been proposed to face
berth allocation that consists in solving a sequence of optimization problems to
choose, at each time step, the vessels that enter the terminal among those waiting
to be served together with the corresponding berthing positions, exploiting future
predictions within a forward time window of a certain length. An approximate
solution method based on random search has guaranteed satisfactory results if
compared to alternative approaches, as a tradeoff between accuracy and required
effort.

Future works include the extension to simultaneous quay crane and berth
allocation, the account for service priorities and time-dependent availability of
berths and ships, and a comparison with state-of-the-art heuristics for scheduling.
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Integrating Ship Movement Scheduling
and Tug Assignment Within a Canal
Harbor

Giacomo di Tollo, Raffaele Pesenti, and Matteo Petris

Abstract In this paper we address the in-port ship scheduling and tug assignment
problem. This problem aims to determine a schedule of ship movements, and their
escorting tugs, within a canal harbor. We formulate the problem as a Boolean
satisfiability problem. In particular, we deal with canal-harbors, as this kind of
harbors present strict constraints, e.g., on safety distance. We consider the Port of
Venice, a medium size Italian harbor, as a case study.

Keywords Ship scheduling · Tug assignment · Locomotive scheduling
problem · Boolean satisfiability

1 Introduction

This work introduces the in-Port ship Scheduling and tug Assignment Problem
(PSAP), whose aim is to determine simultaneously a schedule of ship movements,
and their escorting tugs, within a canal harbor. This work was motivated by a
collaboration with the Port Authority of the Port of Venice in Italy. The Port of
Venice is a medium Italian harbor located in the Venetian Lagoon. The lagoon
shallow waters impose that ships sail only along narrow canals that are constantly
dredged. In addition, the historical value and structural fragility of the city of Venice
make imperative that for no reason a ship strands on one of the lagoon small
islands. In this canal harbor, navigation undergoes to strict regulations, e.g., ships
are required to maintain a safety distance and are forbidden to pass or overtake each
other. Also, ships must be escorted by one or more tugs throughout the navigation
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if they exceed a certain tonnage or, for any reason, are restricted in their ability to
maneuver on their own.

The PSAP is of interest for port authorities and port operators, who have to
manage daily the ship movements in the harbor, and for ship companies, which
are interested in performing the in-port activities according the planned timing.

The PSAP falls within the rich literature on in-port or canal ship scheduling
and routing problems, such as: the berth allocation and quay crane scheduling
problems [1, 4, 6], the problem of coordinating the movements of tankers that may
require to visit different berths [13], the channel-berth coordination problems [15,
16].

Our problem generalizes the problem of scheduling ship movements within a
canal harbor (PSP) introduced in [9], there the tug assignment is not considered. In
particular, Pellegrini et al. [9] proposes a Mixed Integer Linear Programming model
that is motivated by the analogies between the PSP and the problem of scheduling
trains on a single track railway network highlighted in [3] and it is inspired by the
RECIFE-MILP [8] model for the railway scheduling problem.

The problem of assigning tugs to a set of pre-scheduled ship movements shows
similarities with another railway management problem, the Locomotive Scheduling
Problem (LSP). According to [12] the aim of the LSP is to assign locomotives
to a set of pre-scheduled trains in order to deliver the trains in the schedule at
minimum cost. The LSP has been widely studied through the years hence many
variants has been proposed: an exhaustive survey on the subject is [10]. Although the
similarities, some differences arise as well: locomotives cannot travel freely if tracks
are occupied by trains whereas tugs are allowed to sail freely in canals occupied
by ships except in some extremely narrow canals; a train pulled by a locomotive
may stop at intermediate points along its route in a station whereas a ship must be
escorted to its destination berth without intermediate stops.

The sequential approach among train scheduling and locomotives assignment
presents some drawbacks as pointed out in [2]. For this reason, in recent years,
interest has start growing for integrated scheduling and assignment problems. An
example of this type of problems is proposed in [14], where the authors’ aim is to
determine simultaneously a train timetabling and an assignment of the locomotives
to the trains.

The PSAP is also an integrated scheduling and assignment problem. In contrast
with [14], PSAP does not allow ship movements to be canceled and permit the
assignment of more than one tug per ship.

In this paper, we formulate the PSAP as a Boolean satisfiability problem
(SAT) [5] in the assumption that we can considered the time discretized. This
approach allows us to manage the real world PSAP instances of the Port of Venice.
It differs both from the RECIFE-MILP formulation for PSP in [9] and the minimum
cost multi-commodity network flow formulation with incompatible arcs and flow
restriction for the locomotive assignment problem in [14]. We solve the PSAP by
means of GASAT, a Genetic Local Search Algorithm for the Satisfiability Problem
proposed in [7], whose performances have been discussed and enhanced by the
reactive search strategies introduced in [11].
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The reminder of the paper is organized as follows. In Sect. 2, we formally
define the problem. In Sect. 3 we present a formulation of the PSAP as a Boolean
satisfiability problem. In Sect. 4, we discuss a case study. Finally, we draw some
conclusions in Sect. 5.

2 Problem Statement

In this section we provide a formal statement of the PSAP. To this end, first we need
to introduce some notation and basic assumptions.

We represent a canal harbor as network G = (V ,E) of waterways. Specifically,
each vertex i ∈ V corresponds to a navigation point, i.e., a point of interest for
the navigation of ships. Each edge e = (i, j) ∈ E corresponds to a canal segment
that joins the navigation points i and j and includes no other navigation point in
between. A navigation point can be:

• a berth or a roadstead;
• a connection point between two waterways or between a berth and a waterway;
• an other type of relevant point where a particular operation, such as a turn or

the beginning or the end of a tug service, is carried out or some harbormaster
constraint holds, e.g., it delimits an area where particular speed limits are
imposed.

We denote by M the set of ship movements which should start within a time
interval T . For all movements m ∈ M we denote by: (1) tm the starting time of
movement m, (2) rm the route of movement m, i.e. the path in G connecting the
departure berth and arrival berth of m (with abuse of terminology we consider
the roadsteads as berths); (3) im, jm the departure and the arrival berth of m,
respectively; (4) Tm = [initm, deadm] the departure time window of movement
m, where initm and deadm are respectively the earliest and latest starting time of
movement m; (5) sm the ship involved in movement m; (6) stm the time needed to
complete movement m; (7) Nm the number of tugs required to perform movement
m; (8) �m the set of tugs compatible with the ship involved in movement m.

For all movements m ∈ M such that Nm > 0 we denote by pum and dom the
service time for a tug to respectively pick up and drop off ship sm.

For all movements m ∈ M and for all k = 1, . . . , Nm we denote by f km and lkm
respectively the initial and the final navigation points in rm of service of the k-th tug
on movement m.

For all pairs of movements m,m′ ∈ M we denote by: (1) 1(m,m′) the indicator
function which takes value 1 ifm andm′ are operated by the same ship, 0 otherwise;
(2) msm,m′ , nsm,m′ the minimum, respectively maximum, separation time between
the end of a movement m and the start of the subsequent movement m′ of the same
ship, i.e., when 1(m,m′) = 1; (3) mhm,m′ the minimum headway time between m
and m′ starting times required to guarantee that sm and sm′ will maintain a minimal
safety distance during their movements. In particular, mhm,m′ is assumed equal
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to infinity, if movement m should not be scheduled before movement m′. For all
movementsm and navigation points i we denote by sti,m the sailing time of sm from
im to i.

Finally, we denote � the set of the available tugs. For all tugs ω ∈ � and for all
pairs of navigation points i, j ∈ V , we say that ω is traveling light from i to j if it is
sailing from i to j without escorting any ships; we suppose that the tugs sail at the
same constant speed in the canal harbor and denote by lti,j the sailing time of a tug
traveling light from i to j . For all tugs ω ∈ � we denote by Mω ⊆ M the subset of
M containing the movements that can be operated by ω.

We understand that the following assumptions on ship and tug movements hold.

Assumptions 1 (Ship Movements) Each movement m ∈ M:

1.1 has both its route rm and sailing time a-priori fixed. In particular, a ship cannot
stop along its route once it has started moving.

1.2 has its starting time tm to be scheduled within a given time window Tm.
1.3 has to respect a separation time nsm,m′ between its own starting time and the

starting time of other possible movements m′ performed by the same ship sm.
1.4 has its starting time tm to maintain an headwaymhm,m′ with the starting time of

any other movements m′ whose route may interfere with its own.
1.5 should be escorted by Nm compatible tugs, if Nm > 0.

We remark that Assumptions 1.2 and 1.3 are necessary to guarantee that in-port
operations, such as loading and unloading, can be performed. Assumption 1.4 is
necessary to guarantee that each ship maintains a minimal safety distance from other
ships while sailing along the canals. Indeed, given Assumption 1.1 and the results
in [9], a time headway between the starting times of the movements of two ships
guarantees that the two ships never gets too close during their movements.

Assumptions 2 (Tug Movements) Each tug ω ∈ �:

2.1 cannot serve more than one movement simultaneously.
2.2 can cross or overtake a ship sailing in the same canal.

We are now ready to formally state the PSAP.

Problem 1 (In-Port Ship Scheduling and Tug Assignment Problem) Let a set
of movements M within canal harbor G and a set of tugs � be given. Under
Assumptions 1 and 2, determine a feasible starting time tm ∈ Tm, for each movement
m ∈ M , and to m the required Nm tugs in �m.

Hereinafter, we denote a PSAP instance by π(M,�,G). In the next section, we
formulate the above problem as a Boolean satisfiability problem. In particular, we
assume the time frame T as discretized, i.e., T is a set of successive time instants.
In the practice of the Port of Venice, T covers 24 h and can be discretized with a
step equal to 5 min. The length of the routes to sail and the inevitable uncertainties
afflicting navigation make a higher time resolution meaningless, at least in the
planning phase of movements.



Integrating Ship Movement Scheduling and Tug Assignment Within a Canal Harbor 17

3 Problem Formulation

In this section, initially, we recall the main concepts concerning Boolean satisfiabil-
ity. Then, we show how to express the conditions and assumptions that define the
PSAP in terms of logical clauses.

A propositional formula φ is a formula defined over Boolean variables that take
values in the set {true, f alse}. We say that φ is satisfiable if there exists a truth
assignment to the variables occurring in φ which makes it evaluate true, otherwise
we say that φ is unsatisfiable.

A propositional formula φ is said to be in Conjunctive Normal Form (CNF) if
it is a conjunction of clauses, i.e., φ = c1 ∧ c2 ∧ · · · ∧ cm, where a clause ci is a
disjunction of literals, i.e., ci = li,1∨ li,2∨· · ·∨ li,mi , and a literal is either a variable
or its negation.

Accordingly, the Boolean satisfiability problem (SAT) [5] can be stated as: given
a CNF propositional formula φ, decide if it is satisfiable.

From now on we say that a SAT problem has a feasible solution if it exists a truth
assignment to the variables occurring in φ which makes it evaluate true.

Preliminarily, we prove the following lemma which guarantees that there is no
loss of generality in assuming that each movement requires to be escorted by at most
one tug along all its route. To this end, let us first define two PSAP instances as
equivalent if each feasible solution of one instance, in term of movement schedule
and tug assignments, allows to derive a feasible solution of the other instance in
O(|M||�|) operations.

Lemma 1 A PSAP instance π1(M1,�,G) can always be reduced to an equivalent
PSAP instance π2(M2 ∪ D,�,G), where |D| ≤ ∑

m∈M1
Nm and each movement

m ∈ M2 ∪D requires to be escorted by at most one tug along all its route.

Proof We prove the Lemma constructively by indicating how to generate the
movement set M2 ∪D of instance π2.

The set M2 includes the same movements of M1. However, each movement m ∈
M2 is stripped of all its tug services, with the only exception of the first service that
escorts the movement along all its route rm.

The set D includes dummy movements to handle the situations in which a
movement m ∈ M1 either requires more than one tug, Nm ≥ 2, or requires tugs
only for a portion of its route, f km �= im or lkm �= jm, for some k = 1, . . . , Nm.

Consider the generic k-th tug service requested by movement m ∈ M1 of π1.
Assume that either k ≥ 2 or f km �= im or lkm �= jm. In this situation, we generate a
dummy movement m̄ ∈ D that shares the same route ofm from the navigation point
f km to the navigation point lkm and such that

• Tm̄ = {initm + stf km,m, . . . , deadm + stf km,m};
• msm,m̄ = nsm,m̄ = mhm,m̄ = −mhm̄,m = stf km,m;
• serm̄ = stlkm,m − stf km,m, i.e., the service time of the required tug on m;

• im̄ = f km and jm̄ = lkm;
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• Nm̄ = 1;
• �m̄ = �m;
• pum̄ = pum and dom̄ = dom.

We observe that the first four of the above conditions impose that the movement m̄
occurs parallel tom from f km to lkm. The remaining conditions impose that movement
m̄ uses a tug compatible with m.

Let D(m) ⊆ D be the subset of dummy movement induced by a movement m ∈
M1. By construction |D(m)| ≤ Nm, hence |D| ≤ ∑

m∈M1
Nm. Finally, consider a

feasible solution for π2, the corresponding feasible solution for π1 is obtained by
scheduling each movementm ∈ M1 as a the corresponding movement inM2 and by
assigning to m also the tugs of the movements in D(m). Inverse argument allows to
derive a feasible solution for π2 given a feasible solution for π1. ��

Hereinafter we consider instances where each movement requires to be escorted
by at most one tug along all its route.

We are now ready to introduce the clauses that define the PSAP SAT formulation.
Given an instance π(M,�,G), we consider the following Boolean variables. For

all movements m ∈ M and all time instants t ∈ Tm:

xm,t =
{
true if m is scheduled to begin at time t ,

f alse otherwise;

for all movements m ∈ M such that Nm > 0 and all tugs ω ∈ �m:

zm,ω =
{
true if m is assigned with tug ω,

f alse otherwise;

finally, for all pairs of movements m,m′ ∈ M such that Nm,Nm′ > 0 and �m ∩
�m′ �= ∅:

ym,m′ =
{
true if m and m′ are escorted by the same tug,

f alse otherwise.

Then, we introduce the clauses in CNF whose satisfaction guarantees that
Assumptions 1 and 2 hold true.

C1 Movement operation clauses:

∨

t∈Tm
xm,t ∀m ∈ M (1)

¬xm,t ∨ ¬xm,t ′ ∀m ∈ M,∀t, t ′ ∈ Tm : t �= t ′ (2)
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∨

ω∈�m
zm,ω ∀m ∈ M : Nm > 0 (3)

¬zm,ω ∨ ¬zm,ω′ ∀m ∈ M : Nm > 0,∀ω,ω′ ∈ �m : ω �= ω′ (4)

Clauses (1) and (2) require that m ∈ M are scheduled at one and only one time
instant t ∈ Tm; clauses (3) and (4) require, if Nm > 0, that m is assigned with
one and only one compatible tugs belonging to �m.

C2 Separation time clauses:

¬xm,t
∨

t ′∈{t+msm,m′ ,...,t+nsm,m′ }
xm′,t ′ ∀m,m′ ∈ M : 1(m,m′) = 1,∀t ∈ Tm

(5)

These clauses require that schedules of two movements m and m′, with m <

m′, operated by the same ship have to be separated by an interval of length
between msm,m′ and nsm,m′

C3 Headway clauses:

¬xm,t
∨

t ′∈Hm,m′ (t)∩Tm′
xm′,t ′ (6)

∀m,m′ ∈ M : m < m′,1(m,m′) = 0,∀t ∈ Tm,

where Hm,m′(t) = {initm′ , . . . , t −mhm′,m} ∪ {t +mhm,m′ , . . . , deadm′ }.
These clauses require that schedules of two movements m and m′ operated

by different ships have to be separated by a minimal headway mhm,m′ if m is
scheduled before m′ or by mhm′,m otherwise.

C4 Tug usage clauses:

¬zm,ω ∨ ¬zm′,ω ∨ ym,m′ ∀ω ∈ �,∀m,m′ ∈ Mω : m < m′

(7)

¬xm,t ∨ ¬ym,m′
∨

t ′∈Um,m′ (t)∩Tm′
xm′,t ′ ∀m,m′ ∈ M : m < m′, �m ∩�m′ �= ∅,∀t ∈ Tm,

(8)

where Um,m′(t) = {initm′ , . . . , t − utm′,m} ∪ {t + utm,m′ , . . . , deadm′ } with
utm′,m = serm′+dom′+ltjm′ ,im+pum and utm,m′ = serm+dom+ltjm,im′ +pum′ .

Clauses (7) require that ym,m′ assumes value true, if m and m′ share a same
tug.

Clauses (8) require schedules of two movements m and m′ served by a
same tug have to be separated so that the tug can complete its service with
one movement before starting its service with the other movement. Indeed, the
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terms utm′,m and utm,m′ include the service and drop off time of the tug on the
first movement, the sailing time of the tug from the first to the second service,
finally, the pick up time. We observe that if movement m is scheduled at t and
there are no time instants t ′ ∈ Tm′ before t − utm′,m or after t + utm,m′ , then the
clause imposes that m and m′ are assigned with different tugs.

4 Computational Experiments

The Port of Venice is a medium-size Italian port (about 3500 calls in 2018, for
a total 81,000,000 gross tonnage, 632,000 containers—in TEU, and 1,500,000
passengers) situated in the Venetian Lagoon. The access to the port is guaranteed by
two inlets which connect the roadsteads respectively with the passenger terminals
in Marittima (old town centre) and with the commercial terminals in Marghera
(mainland).

The topological layout of the port can be described by a tree with 281 vertexes,
among which we distinguish 163 active berths, 2 roadsteads, 97 junction and 19
other navigation points.

The computational experiments reported in this section consider the movements
occurring in 10 among the most congested days in the period 2011–2016. For all
i = 1, . . . , 10, we denote by πi := πi(Mi,�,G) the i-th instance and by σi :=
σi(Mi,�,G) its solution. In all the instances the set � includes all the 13 tugs
which operate in the Port of Venice.

We use the solver GASAT, presented in [7] with the reactive search strategies
introduced in [11] to solve the instances. We run the experiments on a laptop PC Dell
XPS 15 9560, with an Intel Core i7-7700HQ at 2.80GHz and 16.0GB of installed
RAM.

For each instance, we report in Table 1 the number of movements to be scheduled,
the number of variables and clauses characterizing the SAT formulation and the
computational time needed to solve the instance with the solver GASAT. First we

Table 1 Computational results

Instance # Movements # Variables # Clauses CPU time (s)

π1 69 6303 148,305 1.52

π2 70 6450 153,092 1.62

π3 69 6315 145,070 1.55

π4 58 5027 120,176 1.17

π5 59 5120 118,441 1.03

π6 61 5309 115,565 1.02

π7 68 6608 171,672 5.59

π8 57 4910 120,362 1.11

π9 65 5780 125,387 1.09

π10 54 4523 101,921 0.94
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report that the width of the movement time windows is an important parameter to
obtain feasible solutions and to maintain the size of the instances reasonable. For
all instances πi , i �= 7, we found a feasible solution by setting the time windows
as 4 h time windows centered in the rounding to the closest second hour of the
movement expected departure times. Instance π7 is a rather complicated instance
which required an enlargement of the time windows width to 4.5 h.

All the considered instances were solved in less the 6 s, hence we decided to
investigate the problem of finding the minimum movement time windows width
which lead to a feasible solution. We do that by means of an iterative algorithm
based on the bisection method. We initialize the first interval to [0, δi], where δi
is the width of the movement time windows which leads to the feasible solution
σi and width 0 leads to an unfeasible solution of πi . We consider the midpoint of
the interval as a new width, we build the new instance and we call the solver. If
after 5 min of computation a solution is found we update the interval such that the
two extremes correspond to width of the time windows which lead respectively to a
feasible and an unfeasible solution. We stop the iteration if the length of the interval
is less or equal to 10 min or if after 5 min of computation the solver has not found
a solution. As an example, we ran the algorithm on instance π1 and we found, in
4 iterations, that the width can be reduced from 4 to 2.5 h. The algorithm running
time was 256.24 s, 254.82 s to generate the instances and 1.42 s to solve them with
the solver GASAT.

5 Conclusions

We have introduced the in-Port ship Scheduling and tug Assignment Problem and
proposed a SAT formulation for it. The PSAP presents may resemblances with
single track train scheduling problems and locomotive scheduling problems and
shares their NP-hard complexity. However, we have shown that the PSAP instances
for a medium Italian port can be solved in a reasonable time, provided that tugs can
pass or overtake ships that may encounter along their routes (Assumption 2.2).

The PSAP instances enjoy the same characteristics that make them solvable and
are connected to the specificity of maritime transportation. They are: the possibility
of considering time discretized with a step equal to 5 min. and the fact that a ship
cannot stop along its route once it has started moving (Assumption 1.1). In train
scheduling, one should consider a discretized time step no longer than 1 min. and
take into account that a train may stop along its path. The assignment of tugs to
movements presents some similarity to the assignment of locomotives to trains.
However, in the case of train scheduling an assumption equivalent to Assumption 2.2
cannot hold since locomotives and trains share the same tracks. Indeed, also in the
PASP case, if the canals in a harbor are so narrow that the Assumption 2.2 does
not hold, a more complicated formulation is required and much more computational
time is necessary to solve the problem instances, to the point that possibly heuristic
approaches have to be considered and are current object of study by the authors of
this paper.
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The Maximum Nearby Flow Problem

Gennaro Auricchio, Stefano Gualandi, and Marco Veneroni

Abstract We present a new Linear Programming model that formulates the prob-
lem of computing the Kantorovich-Wasserstein distance associated with a truncated
ground distance. The key idea of our model is to consider only the quantity of
mass that is transported to nearby points and to ignore the quantity of mass that
should be transported between faraway pairs of locations. The proposed model has
a number of variables that depends on the threshold value used in the definition of
the set of nearby points. Using a small threshold value, we can obtain a significant
speedup. We use our model to numerically evaluate the percentage gap between
the true Wasserstein distance and the truncated Wasserstein distance, using a set of
standard grey scale images.

Keywords Optimal transport · Wasserstein distance · Network simplex

1 Introduction

In Machine Learning, the computation of a measure of similarity (or dissimilarity)
between pairs of objects is a crucial subproblem. For instance, in Clustering
problems we want to find a partition of a given set of objects in different clusters, in
such a way that the objects that belong to the same cluster are pairwise similar
and those that are in different clusters are as dissimilar as possible [8, 15]. In
Classification problems, in order to classify a new data point, the popular k-
nearest-neighbour heuristics are based on the computation of the k nearest (already
classified) points: nearest with respect to a given metric. While in literature several
different metrics were proposed (e.g., see Chap. 11 in [11]), the use of Kantorovich-
Wasserstein distances has recently proved to be a valuable option in several
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application domains, as for instance, in Computer Vision [19–21], Computational
Statistic [16], Probability [5, 6], and Machine Learning [3, 10, 13, 24]. However,
since computing Kantorovich-Wasserstein distances is computationally demanding
and requires the solution of a standard Hitchcock-Koopmans transportation problem
[12, 23], a number of researchers are focusing in designing new efficient algorithms
that can well approximate the true distance in a short computational time. The work
we present in this paper is along this line of research.

The optimization problem that yields the Kantorovich-Wasserstein distance
can be solved with different numerical methods. Nowadays, the most popular
methods are based on (1) the Sinkhorn’s algorithm [1, 9, 25], which solves
(approximatively) a regularized version of the basic optimal transport problem, and
(2) Linear Programming-based algorithms [2, 4, 7, 17], which exactly solve the basic
optimal transport problem by formulating and solving an equivalent uncapacitated
minimum cost flow problem [14, 18]. One of the fastest heuristic algorithms used
in the literature is the FastEMD algorithm, introduced in [19]. In their work, the
authors studied the case when the ground distance between any pair of points is
saturated (i.e, truncated) at some parameter t . Using truncated ground distances,
it is possible to formulate the Hitchcock-Koopmans transportation problem on a
reduced network, and, as a consequence, to significantly speed up the computation
time. Indeed, since the ground distance is truncated, their approach provides only a
lower bound to the true Kantorovich-Wasserstein distance.

In this paper, we propose a new model to compute the Kantorovich-Wasserstein
distances with truncated ground distances, and we formally prove that our reformu-
lation is correct. Our reformulation gives a maximization problem defined only over
nearby points, which is different from the problem introduced in [19]. In addition,
our computational results show numerically the tradeoff between the percentage
gap and the runtime of using truncated Kantorovich-Wasserstein distances versus
the exact distances.

The outline of this paper is as follows: Sect. 2 introduces the foundations of
Optimal Transport and fixes the notation. Section 3 presents in Theorem 1 our main
result, which is based on our new Linear Programming formulation of the truncated
transportation problem. In Sect. 4, we report our computational results that show the
benefits of using truncated distances in terms of computational speed versus solution
quality.

2 Optimal Transport

Let Gd be a d-dimensional regular grid composed of nd points, and let

c : Gd ×Gd → [0,∞),

be a cost function between points in Gd . We denote ca,b = c(a, b), where a =
(a1, . . . , ad) ∈ Gd and b = (b1, . . . , bd) ∈ Gd .
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Given two probability measures μ, ν : Gd → [0, 1] such that
∑
a∈Gd μa =∑

b∈Gd νb = 1, we define the set


μ,ν :=
⎧
⎨

⎩πa,b ≥ 0 :
∑

a∈Gd
πa,b = νb;

∑

b∈Gd
πa,b = μa

⎫
⎬

⎭ .

Any π ∈ 
μ,ν is called a transportation plan. We can then define the functional
Tc : 
μ,ν → [0,∞) as

Tc(π) :=
∑

(a,b)∈Gd×Gd
ca,bπa,b.

The Wasserstein distance between μ and ν associated to the cost function c is

Wc(μ, ν) := inf{Tc(π) : π ∈ 
μ,ν}. (1)

In this paper, we consider Wasserstein distances where the cost ca,b is induced
by standard Minkowsky p norms, as for instance the squared Euclidean norm

ca,b =
d∑

i=1

(ai − bi)2. (2)

Since we are considering d-dimensional regular grids composed of a finite
number of nd points, the inf in (1) is a minimum, which can be found by solving the
following geometric Hitchcock-Koopmans transportation problem [12]:

(EMD) Wc(μ, ν) := min
∑

(a,b)∈Gd×Gd
ca,bπa,b (3)

s.t.
∑

a∈Gd
πa,b = νb, ∀b ∈ Gd, (4)

∑

b∈Gd
πa,b = μa, ∀a ∈ Gd, (5)

πa,b ≥ 0 ∀(a, b) ∈ Gd ×Gd. (6)

While this problem is polynomially solvable using uncapacitated min cost flow algo-
rithms [14, 18], the size of instances appearing in Machine Learning applications
makes the solution of this problem a very interesting computational challenge.

In the following section, we show how we can reduce the size of problem (3)–(6)
by introducing t-truncated ground distances, in place of ca,b), as defined in (2). In
addition, we show how this problem can be reformulated as a maximization linear
programming problem defined on a slightly different set of constraints.
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3 The Maximum Nearby Flow Problem

In this section, we present a new formulation to the problem of computing truncated
Wasserstein distances. The advantage with respect to [19] is that our formulation
requires fewer variables. In the following, we introduce the basic definitions used in
our model and we formally state our main result in Theorem 1.

Definition 1 Given a positive threshold t ∈ R
+ we define the t-truncated cost

function c(t) as

c
(t)
a,b := min {ca,b, t} ∀(a, b) ∈ Gd ×Gd.

Definition 2 Given a cost function c and a fixed parameter t > 0, we define the set
of near points

N(t)
c := {(a, b) ∈ Gd ×Gd : ca,b < t}.

Similarly, we define the set of points near to a and b, respectively, as

O(t)
c (a) := {b ∈ Gd : ca,b < t},
I (t)c (b) := {a ∈ Gd : ca,b < t}.

Indeed, we are implicitly considering a bipartite graph with two node partitions
V1 and V2, where each of the two vertex sets has a node for each point of the grid
Gd . The arc set corresponds to the set N(t)

c , a subset of V1×V2. The set of outgoing
arcs from a node of the first partition is O(t)

c , while the set of incoming arcs to a
node of the second partition is I (t)c (b).

Definition 3 Given two probability measures μ and ν on Gd , the collection of
positive values η := {ηa,b}(a,b)∈N(t)c is a nearby flow if

∑

a∈I (t)c (b)

ηa,b ≤ νb, ∀b ∈ Gd, (7)

∑

b∈O(t)c (a)
ηa,b ≤ μa, ∀a ∈ Gd. (8)

We denote by Nμ,ν be the set of all nearby flows between μ and ν.

Definition 4 The nearby flow transport functional B(t)c is defined as

B
(t)
c (η) :=

∑

N
(t)
c

sa,bηa,b

where sa,b := (t − ca,b).
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We are now ready to present our reformulation of the truncated Wasserstein
distance. The maximization problem that appears in the following theorem is called
the Maximum Nearby Flow Problem associated with the threshold value t .

Theorem 1 Given a threshold value t > 0, a cost function c on Gd × Gd , two
probability measures μ and ν defined over Gd , the following relation holds

Wc(t) (μ, ν) := inf

μ,ν

Tc(t) (π) = t −max
Nμ,ν

B
(t)
c (η).

Proof In order to prove the theorem, we first show how given a flow π we can get a
feasible nearby flow η, and, later, we show the contrary, that is, how to get a feasible
flow π given a nearby flow η.

Let us start with a given π ∈ 
μ,ν . Then, we can define

ηa,b := πa,b,, ∀(a, b) ∈ N(t)
c ,

for which we can easily show that

∑

a∈I (t)c (b)

ηa,b =
∑

a∈I (t)c (b)

πa,b ≤
∑

a∈Gd
πa,b = νb, ∀b ∈ Gd,

∑

b∈O(t)c (b)
ηa,b =

∑

b∈O(t)c (b)
πa,b ≤

∑

b∈Gd
πa,b = μa, ∀a ∈ Gd.

Hence, we have that η ∈ Nμ,ν .
By a simple computation, we get

∑

Gd×Gd
c
(t)
a,bπa,b =

∑

N
(t)
c

c
(t)
a,bπa,b + t

∑

Gd×Gd\N(t)c
πa,b

=
∑

N
(t)
c

c
(t)
a,bπa,b + t

⎛

⎜⎝
∑

Gd×Gd
πa,b −

∑

N
(t)
c

πa,b

⎞

⎟⎠ (9)

=
∑

N
(t)
c

c
(t)
a,bπa,b + t

⎛

⎜⎝1−
∑

N
(t)
c

πa,b

⎞

⎟⎠ = t −
∑

N
(t)
c

(
t − c(t)a,b

)
πa,b

= t − B
(t)
c (η).

In (9), since π is defined as a (joint) probability, we have
∑
Gd×Gd πa,b = 1.
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We have shown that for every π ∈ 
μ,ν we can define a nearby flow η such that

Tc(t) (π) = t − B
(t)
c (η).

However, it could exist a nearby flow η with a larger value of B(t)c (η), and, hence,
so far we have only proved

min
π∈
μ,ν

Tc(t) (π) ≥ t − max
η∈Nμ,ν

B
(t)
c (η). (10)

Now we want to show that the previous relation holds with equality. We need
to show that given a nearby flow η ∈ Nμ,ν we can get a feasible π . We start by
introducing the slack variables of constraints (7) and (8):

μ̃a := μa −
∑

b∈O(t)c (a)
ηa,b, ∀a ∈ Gd,

ν̃b := νb −
∑

a∈I (t)c (b)

ηa,b, ∀b ∈ Gd.

We have μ̃a ≥ 0 and ν̃b ≥ 0 for each a, b ∈ Gd . Since μ and ν are probabilities
(i.e.,

∑
a∈Gd μa =

∑
b∈Gd νb = 1), we have that

∑

a∈Gd
μ̃a =

∑

a∈Gd

⎛

⎜⎝μa −
∑

b∈O(t)c (a)
ηa,b

⎞

⎟⎠

= 1−
∑

a∈Gd

∑

b∈O(t)c (a)
ηa,b

=
∑

b∈Gd
νb −

∑

b∈Gd

∑

a∈I (t)c (b)

ηa,b =
∑

b∈Gd
ν̃b.

We introduce the value M =∑
b∈Gd ν̃b =

∑
a∈Gd μ̃a , which is used to define

πa,b :=

⎧
⎪⎨

⎪⎩

μ̃aν̃b

M
if (a, b) ∈ (Gd ×Gd)\N(t)

c ,

ηa,b + μ̃aν̃b
M

if (a, b) ∈ N(t)
c .

(11)
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We now show that πa,b ∈ 
μ,ν . For all b ∈ Gd it holds

∑

a∈Gd
πa,b =

∑

a∈Gd\I (t)c (b)

πa,b +
∑

a∈I (t)c (b)

πa,b

=
∑

a∈Gd\I (t)c (b)

μ̃aν̃b

M
+

∑

a∈I (t)c (b)

ηa,b +
∑

a∈I (t)c (b)

μ̃aν̃b

M

=
∑

a∈Gd

μ̃aν̃b

M
+

∑

a∈I (t)c (b)

ηa,b = ν̃b +
∑

a∈I (t)c (b)

ηa,b = νb.

Similarly, we can show that
∑
b∈Gd πa,b = μa , and, hence, the π defined in (11)

belongs to 
μ,ν . Regarding its cost, we have

∑

(a,b)∈Gd×Gd
c
(t)
a,bπa,b =

∑

(a,b)∈Gd\N(t)c
c
(t)
a,bπa,b +

∑

(a,b)∈N(t)c
c
(t)
a,bπa,b

= t
∑

(a,b)∈Gd\N(t)c

μ̃aν̃b

M
+

∑

(a,b)∈N(t)c
c
(t)
a,bηa,b +

∑

(a,b)∈N(t)c
c
(t)
a,b

μ̃aν̃b

M

≤ t
∑

(a,b)∈Gd×Gd

μ̃aν̃b

M
+

∑

(a,b)∈N(t)c
c
(t)
a,bηa,b

= tM +
∑

(a,b)∈N(t)c
c
(t)
a,bηa,b.

By definition, the constant M =∑
b∈Gd ν̃b can be rewritten as

M =
∑

b∈Gd

⎛

⎜⎝νb −
∑

a∈I (t)c (b)

ηa,b

⎞

⎟⎠ =
∑

b∈Gd
νb −

∑

(a,b)∈N(t)c
ηa,b = 1−

∑

(a,b)∈N(t)c
ηa,b.

Since sa,b = t − ca,b, we can write

∑

(a,b)∈Gd×Gd
c
(t)
a,bπa,b ≤ tM + t

∑

(a,b)∈N(t)c
ηa,b −

∑

(a,b)∈N(t)c
sa,bηa,b

= t −
∑

(a,b)∈N(t)c
sa,bηa,b.

Thus, we showed that for each nearby flow η ∈ Nμ,ν there exists a π ∈ 
μ,ν such
that

T(π)c(t) (π) ≤ t − B(η)(t)c (η),
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and, hence

min
π∈
μ,ν

Tc(t) (π) ≤ t − max
η∈Nμ,ν

B
(t)
c (η),

which together with the inequality (10) completes the proof. ��
The main consequence of Theorem 1 is that whenever we are using a truncated

ground distance c(t)a,b, the transportation problem (3)–(6) can be reformulated with
the following Maximum Nearby Flow Problem (MNF):

(MNF) Wc(t) (μ, ν) := t −max
∑

(a,b)∈N(t)c
sa,bηa,b

s.t.
∑

a∈I (t)c (b)

ηa,b ≤ νb, ∀b ∈ Gd,

∑

b∈O(t)c (b)
ηa,b ≤ μa, ∀a ∈ Gd,

ηa,b ≥ 0 ∀(a, b) ∈ N(t)
c .

Depending on the type of cost function c and on the value of the threshold parameter
t , the number of variables ηa,b can be reduced to a small fraction of the number of
variables appearing in (3)–(6). Indeed, when t = maxa,b ca,b, then the previous
problem gives the optimal value of the original problem; for smaller values of t ,
it provides a lower bound. Unfortunately, from an optimal solution η∗a,b of the
maximum nearby flow problem, we cannot obtain an optimal solution π (i.e., a
transportation plan) for the Wasserstein distance.

4 Computational Results

We run several numerical tests with the objective of assessing the impact of the
threshold value t on the gap between the value of the lower bound given by problem
(MNF) with respect to the optimal solution value of problem (EMD), that is, the

ratio
W
c(t)

Wc
. In addition, we compute the ratio between the runtime of solving the two

corresponding linear problems using the commercial solver Gurobi v8.0.
As problem instances, we use a collection of ten different gray scale images

with 32 × 32 pixels, which belong to the DOTmark benchmark [22]. We compute
the distance between every pair of images, for a total of 45 pairs. For each pair of
images, first, we solve once problem (EMD), and then, we solve problem (MNF)
with the threshold value t ranging from 1 up to �32

√
2�, increasing t by 1 each

time.
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Fig. 1 Gap to optimality (left y-scale) and time ratio between solving problem (MNF) and (EMD)
(right y-scale): in (a) as a function of the threshold t

Cmax
, where t is the distance threshold andCmax

is the maximum distance. In (b) as a function of the number of arc variables in problem (MNF)

against the number of arc variables in problem (EMD), that is, the ratio
|N(t)C ||Gd×Gd | . (a) Threshold

ratio: t/Cmax. (b) Ratio of the number of arcs variables

Figure 1a shows the results as function of the threshold value t over the maximum
distance Cmax = 32

√
2, while Fig. 1b shows the same results, but as a function of

the number of the arc variables in (MNF) over (EMD), that is, the ratio
|N(t)C ||Gd×Gd | .

Note that in (EMD) we have a complete bipartite graph, while in (MNF) we have
a subset of the complete arc set. Both figures show in the left y-axis the gap value,
and on the right y-axis the ratio of the runtime for solving the problems.
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Clearly, we can remark two main features for this type of instances. First, a small
value of the threshold t permits to obtain already a gap close to zero (see Fig. 1a).
However, as expected, the complexity of the problem does not really depend on the
value of the threshold t , but on the number of arc variables that a given value of t
implies, that is, the cardinality of the set N(t)

c (see Fig. 1b).
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Linear Models for Portfolio Selection
with Real Features

Thiago Alves de Queiroz, Leandro Resende Mundim, and André Carlos Ponce
de Leon Ferreira de Carvalho

Abstract An efficient investment portfolio would have maximum return or mini-
mum risk. Several approaches based on the “expected returns - variance of returns”
rule seek for a good balance between yield and risk. These approaches may differ
in either how to measure risk or how to estimate expected yields. In this work
we consider linear programming models found in the literature to estimate risks,
like mean absolute deviation and Gini’s mean difference. Thus, two mixed integer
programming models are investigated in a portfolio optimization problem for a
given expected return. For such, we add real features, including transaction lots,
cardinality, and investment threshold. Experiments using data from the Dow Jones
stock market demonstrate the superiority of the investigated models in the presence
of these real features when compared with a market average indicator of return.

Keywords Portfolio optimization · Mean-risk models · Mean absolute
deviation · Gini’s mean difference · Real features

1 Introduction

In [9], we can find the “expected returns - variance of returns” (E-V) rule that has
been used as the basis for many mean-risk models in portfolio optimization. In this
rule, an investor wants to place his/her budget in a set of securities (or assets) in
order to minimize risk (e.g., variance of return) or maximize yield (e.g., expected
return). These two objectives are usually conflicting, since when one increases, the
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other decreases. Usually, the higher the risk, the higher the yield, so an investor
would choose the portfolio with the smallest risk.

The Markowitz’s mean-variance model described in [9] considers n assets with
expected return values μ ∈ R

n and covariance matrix σ ∈ R
n×n. Continuous

variables x ∈ R
n indicate the relative amount invested in each asset, for a single

period of investment. Moreover, the sum of all relative amount invested must be 1.
Thus, the maximum expected return for a given risk (in this case, the variance of
returns) and the minimum risk that can be achieved for a given expected return can
be modelled.

Different formulations have been proposed to linearize the risk measure, since
in [9] it is quadratic computable. One of them is the Gini mean difference (GMD)
model, where the risk is linear programming computable, proposed in [12]. In the
GMD model, the risk is modeled by the Gini’s mean difference. Another is the Mean
Absolute Deviation (MAD) model, proposed in [5], which defines the risk measure
as the mean absolute deviation from the mean.

On the other hand, in [13], the risk was modeled based on the minimum return
instead of variance, resulting in a minimax portfolio problem. In [10], the risk
measure was tackled as a conditional value at risk (CVaR) instead of value at risk
(VaR), since the latter lacks characteristics such as subadditivity and convexity. The
above mentioned models have opened new opportunities in different application
contexts, specially in the financial field. For example, in [3], a mean-variance model
with CVaR constraints was investigated for a pension fund asset allocation. In [14],
a continuous-time sticky-price model was combined with a stochastic dynamic
portfolio model in order to evaluate different risk measures and inflation.

A survey on linear programming models in portfolio optimization was given in
[7]. Besides discussing pros and cons of some models (e.g., the ones mentioned
above) and the main algorithms (i.e., exact ones and heuristics) proposed in the
literature, these authors also commented on the need of including real features (e.g.,
transaction costs and lots, cardinality, and thresholds on investments) in models to
tackle practical financial problems.

Similarly, in [4] classical mean-risk models related to the Markowitz’s mean-
variance model were reviewed. It was also discussed extensions of such models in
order to include transaction costs, investment guidelines, and institutional features;
the usage of Bayesian techniques, stochastic optimization, or robust optimization
approaches to estimate errors in risk measures; and, multi-period approaches to
incorporate different practical constraints.

With this in mind, in this work, we compare mean-risk models (the MAD
and GMD models), which are linear programming computable, in the presence
of three real features. The mentioned features are: transaction lots [1], cardinality
constraint [11], and investment threshold constraints [6]. These models have played
an important role in portfolio optimization and only a few studies have investigated
real features associated with them. Therefore, in order to evaluate the models, real
data from the Dow Jones Industrial Average index is used [2], comprising a period
between 1990 and 2016.
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The paper is organized as follows. The next section states the problem and the
original MAD and GMD models. In Sect. 3 there is a description of the real features
and the resulting models after adding such features. The computational experiments
are described in Sect. 4, while the last section contains the concluding remarks and
directions for future research.

2 Problem and Literature Models

The portfolio problem solved here considers a single period of investment, following
[9]. There is a set of n assets, where for each asset i, j = 1, . . . , n: Ri is a random
variable representing the return; μi is the expected return, that is μi = E(Ri); rit
is the return at time t , for a discrete set of times t = 1, . . . , T ; σij is the covariance
between Ri and Rj , while σii is the variance of Ri . The investor has an available
budget C̄ to invest.

Associated to each asset i there is a continuous variable xi ≥ 0 indicating the
fixed percentage invested in i, where it holds

∑n
i=1 xi = 1. Then, for the portfolio

X, its return (i.e., yield) is RX = ∑n
i=1 Rixi , its mean expected return is μ(X) =∑n

i=1 μixi , and its risk measure is given by V. The objective is to achieve a portfolio
X of minimum risk V attaining at least a given yield E, assuming that C̄ is the
invested capital.

It is below presented the mean absolute deviation (i.e., MAD) model. Differently
from the Markowitz’s mean-variance model in which the risk is defined as the
variance of return (i.e., VV = ∑n

i=1
∑n
j=1 σij xixj ), the MAD one has the

risk defined as the mean absolute deviation from the mean, that is VMAD =
E (|μ(X)− RX|). According to [5], the latter is linear programming computable
and for that, the expected return is defined as μi = 1

T

∑T
t=1 rit , for i = 1, . . . , n.

Moreover, let ajt = μj − rjt , then we have the nonlinear MAD model (1)–(4) for
the portfolio problem under study.

Minimize
1

T

T∑

t=1

|
n∑

i=1

ajtxi | (1)

Subject to:
n∑

i=1

xi = 1, (2)

n∑

i=1

xiμi ≥ E, (3)

xi ≥ 0, ∀ i = 1, . . . , n. (4)

The objective function (1) is related to a solution of minimum risk, in which the
risk is formulated as the mean absolute deviation. Constraint (2) impose the total
percentage invested on being one, while constraint (2) assure the expected return of
being at least the given yield E.



38 T. A. de Queiroz et al.

Notice that the objective function (1) is nonlinear, however, it can be linearized by
adding continuous variables yt as representing |∑n

i=1 ajtxi |, for each t = 1, . . . , T ,
resulting in the equivalent linear MAD model (5)–(10). Because of introducing
variables yt , two new set of constraints has emerged, which are (8) and (9), in order
to express the risk measure VMAD .

Minimize
1

T

T∑

t=1

yt (5)

Subject to:
n∑

i=1

xi = 1, (6)

n∑

i=1

xiμi ≥ ρ, (7)

yt +
n∑

i=1

xiait ≥ 0, ∀ t = 1, . . . , T , (8)

yt −
n∑

i=1

xiait ≥ 0, ∀ t = 1, . . . , T , (9)

xi ≥ 0, ∀ i = 1, . . . , n. (10)

The GMD model is the another model considered in this study. In this model, the
risk is defined in accordance with the Gini’s mean difference. According to [8], this
difference can be defined as VGMD = E

(|xi − xj |
) = 1

n

∑n
j=1 |xi − xj |. As this

risk is still nonlinear, continuous variablesGij can be used for representing |xi−xj |,
resulting in the linear GMD model (11)–(16).

Minimize
1

n

n∑

i=1

n∑

j=1

Gij (11)

Subject to:
n∑

i=1

xi = 1, (12)

n∑

i=1

xiμi ≥ E, (13)

Gij + xi − xj ≥ 0, ∀ i, j = 1, . . . , n, (14)

Gij − xi + xj ≥ 0, ∀ i, j = 1, . . . , n, (15)

xi ≥ 0, ∀ i = 1, . . . , n. (16)
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3 Real Features

The inclusion of real features in portfolio optimization models is motivated by the
fact that practical problems have different real-world conditions to be respected. For
such, three real features [4, 7] are considered:

• Transaction lots: a transaction lot represents the minimum budget required to
invest in an asset. The investment in an asset occurs in multiples of transaction
lots. Thus, if this feature is disregarded an infeasible portfolio may be created. To
model this feature, let si be the value of one transaction lot associated with asset
i, while the number of selected lots of i is due to the integer non-negative variable
wi . The following constraint emerges for each asset i: C̄xi = siwi , where C̄ is
the invested capital.

• Cardinality constraint: to invest all the available budget in only one asset may
increase the risk. On the other hand, to invest in many assets may increase
monitoring and transaction costs. Thus, it is common to limit the number of
assets to invest (i.e., to impose limits on the cardinality of the set of selected
assets). To model this constraint, a binary variable zi is defined for each asset
i, indicating i is in the set of selected assets (i.e., zi = 1 stands for xi > 0).
Considering lower Kmin and upper Kmax bounds on the cardinality of this set,
the following constrains are derived: Kmin ≤ zi and zi ≤ Kmax .

• Investment threshold constraints: these constraints impose lower and upper
limits on the fraction of the budget to be invested in each selected asset.
These constraints are important to control (i.e., eliminate insignificant or avoid
exaggerated) investments in assets. Thus, for each asset i: lizi ≤ xi and xi ≤
uizi .

According to [7], there is a lack of works combining real features. Real features
allow to model complex situations that emerge in practical financial applications. To
allow this modelling, the three previous real features are added into the linear MAD
and GMD models described in Sect. 2.

The linear MAD model with the three real features (i.e., transaction lots, cardinal-
ity, and investment threshold) is given in (17)–(28). The objective function (17) and
constraints (18)–(21) are from the linear MAD model described in Sect. 2. On the
other hand, constraints (22) impose zi on being one if asset i holds an investment.
Constraints (23) are related to the transaction lots, while (24) are the cardinality
constraints. Investment threshold constraints are given in (25) and variables domains
are in (26)–(28).

Minimize
1

T

T∑

t=1

yt (17)

Subject to:
n∑

i=1

xi = 1, (18)
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n∑

i=1

xiμi ≥ E, (19)

yt +
n∑

i=1

xiait ≥ 0, ∀ t = 1, . . . , T , (20)

yt −
n∑

i=1

xiait ≥ 0, ∀ t = 1, . . . , T , (21)

zi − xi ≥ 0, ∀ i = 1, . . . , n, (22)

C̄xi − siwi = 0, ∀ i = 1, . . . , n, (23)

Kmin ≤
n∑

i=1

zi ≤ Kmax, (24)

lizi ≤ xi ≤ uizi, ∀ i = 1, . . . , n, (25)

zi ∈ {0, 1}, ∀ i = 1, . . . , n, (26)

wi ∈ Z+, ∀ i = 1, . . . , n, (27)

xi ≥ 0, ∀ i = 1, . . . , n. (28)

Similarly, the linear GMD model with these real features is described in (29)–
(40). The objective function (29) and constraints (30)–(33) are the same of the linear
GMD model in Sect. 2. Moreover, constraints (34)–(40) are equal to the respective
constraints (22)–(28).

Minimize
1

n

n∑

i=1

n∑

j=1

Gij (29)

Subject to:
n∑

i=1

xi = 1, (30)

n∑

i=1

xiμi ≥ E, (31)

Gij + xi − xj ≥ 0, ∀ i, j = 1, . . . , n, (32)

Gij − xi + xj ≥ 0, ∀ i, j = 1, . . . , n, (33)

zi − xi ≥ 0, ∀ i = 1, . . . , n, (34)

C̄xi − siwi = 0, ∀ i = 1, . . . , n, (35)
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Kmin ≤
n∑

i=1

zi ≤ Kmax, (36)

lizi ≤ xi ≤ uizi, ∀ i = 1, . . . , n, (37)

zi ∈ {0, 1}, ∀ i = 1, . . . , n, (38)

wi ∈ Z+, ∀ i = 1, . . . , n, (39)

xi ≥ 0, ∀ i = 1, . . . , n. (40)

4 Computational Experiments

This section has the results of the computational experiments over the MAD and
GMD models described in the previous section (i.e., the linear MAD and GMD
models with the three real features). The experiments were carried out in a computer
with Intel� CoreTM i7-2600 3.40 GHz CPU and 32 GB of memory RAM, running
Ubuntu 16.04 LTS. The models were coded in C++ programming language and
solved by the libraries (with default parameters) of the IBM ILOG CPLEX 12.7
Optimization Studio. A time limit of 3600 s was imposed when solving each model.

The size of the MAD and GMD models is determined by the number of assets
(i.e., n) and of time (i.e., T days, weeks, months, etc.). Table 1 has the number of
variables of each of these models in the classical versions (in Sect. 2) and with the
three real features (in Sect. 3). Each line of this table has the name of the model,
the number of real, binary (if any), and integer (if any) variables, and the number of
constraints.

Notice that the MAD and GMD models in Sect. 2 are linear, while the respective
ones in Sect. 3 (with the three real features) have integer programming variables
(i.e., they are integer programming models). Observing Table 1, the MAD model
has a linear number of variables and constraints, while in the GMD these numbers
grow quadratically.

For the computational experiments, data from the Dow Jones Industrial Average
index is used [2]. This index considers n = 28 assets and T = 1363 weeks with
linear returns computed on daily price data, and adjusted for dividends and stock
splits. The time interval ranges from February 1990 to April 2016.

Table 1 Number of variables and constraints

Model #Real #Binary #Integer #Constraints

MAD 2n 2T+n+2

MAD (with the three features) 2n n n 2T+9n+3

GMD n2+n 2n2+2

GMD (with the three features) n2+n n n 2n2+9n+4
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In the MAD and GMD models with the three real features, the expected
return μi is averaged over the τ past weeks of T . We tested in the preliminary
experiments different values of τ = {10, 20, 30, 40, 50, 100, 1000}. We noticed in
these experiments that either small (τ = {10, 20, 30, 40}) or large (τ = {1000})
values of τ may not result in reasonable values of expected returns. The results for
the values of τ = {50, 100} are very similar and have no statistical difference. Due
to the limitation of space, in this paper we chose to use the τ = 100.

With regard to the invested capital, we assume C̄ = 1 (i.e., it is normalized since
we have relative models). The value of one transaction lot is set to 100, that is si =
100 for i = 1, . . . , n. The limits on the cardinality of the set of selected assets, that
is, values for {Kmin,Kmax} are {1, 10}, {1, 5}, and {5, 10}, so three cases are taken
into consideration. For the investment threshold constraints, we assume that li = 0.1
and wi = 0.9 for all assets i. Finally, three values for the given expected return E
are considered, which are 50% (R1, indicating a low risk), 75% (R2, indicating a
moderate risk), and 95% (R3, indicating a high risk) of the maximum return Emax .
This return is obtained by solving the respective MAD (or GMD) model without the
three real features, considering the τ = 100 past weeks.

Therefore, the strategy, which is used to obtain the results of the next subsections,
consists of: (i) for each week t , starting at t = 101; (ii) considering the τ = 100 past
weeks, obtain the expected return μi (for all assets i) and solve the linear MAD (or
GMD) model without any of the three real features in order to obtain Emax ; (iii) with
the values of steps (ii) and the other ones mentioned above, solve the linear MAD
(or GMD) model with the three real features; (iv) return to step (i) if T < 1363.

The results of the MAD and GMD models with the three real features (which
are obtained by the strategy above) are compared with a market average indicator of
return, which we call benchmark. The benchmark is calculated as benchmarkt =∑n
i=1

1
n
μ∗i , where xi = 1

n
and μ∗i represents the real return of the asset i, which is

known at the end of each week t .
Table 2 has results of the linear MAD model with the three real features. In this

table, there are: the value of the parameters si ,Kmin,Kmax , li , ui ; and, type of value
for R1, R2, R3, and benchmark: minimum and maximum returns over all T weeks;
final value at the end of the last week (i.e., for T = 1363) (in the table is Final
value); the percentage per week for each model, and variance of returns over all T
weeks.

Observing Table 2, the benchmark at the end of the last week corresponds to
1861.40, with a percentage per week of 0.2186 and variance of 493.39, while the
MAD for {Kmin,Kmax} = {5, 10} has the percentage per week of 0.3826, although
its variance is quite high (of 6983.08) and so its risk (R3). In this case, the MAD
is about 9.5 superior than the benchmark. For low and moderate risks, better results
are achieved with the MAD when {Kmin,Kmax} = {1, 5} and {1, 10}, respectively.

Results of the linear GMD model with the three real features are given in Table 3.
Once again the benchmark has the worst return, although it has the lowest variance.
The GMD has the best final value (of 15,984.84) at the end of the last week for
{Kmin,Kmax} = {1, 10}, with a percentage per week from 0.3734 but for a high risk
(R3). This final value is about 8.5 times greater than the benchmark. For low and
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Table 2 Results of the linear MAD with the three features

si Kmin Kmax li ui Type R1 R2 R3 Benchmark

100 1 5 0.1 0.9 Min value 92.61 89.78 88.40 97.77

Max value 935.73 4459.21 24,724.81 1902.96

Final value 922.92 4394.70 18,121.67 1861.40

Percentage per week 0.1707 0.2796 0.3826 0.2186

Variance 217.06 1253.50 6983.08 493.39

100 5 10 0.1 0.9 Min 92.02 91.11 91.52 97.77

Max 809.40 2104.73 9303.23 1902.96

Final value 799.14 2076.08 8900.84 1861.40

Percentage per week 0.1613 0.2262 0.3307 0.2186

Variance 181.73 524.79 2685.31 493.39

100 1 10 0.1 0.9 Min value 91.92 89.26 88.40 97.77

Max value 915.37 4606.23 24,724.81 1902.96

Final value 899.43 4541.66 18,121.67 1861.40

Percentage per week 0.1690 0.2820 0.3826 0.2186

Variance 202.36 1241.76 6983.08 493.39

Table 3 Results of the linear GMD with the three features

si Kmin Kmax li ui Type R1 R2 R3 Benchmark

100 1 5 0.1 0.9 Min value 87.87 91.95 87.93 97.77

Max value 2143.88 3484.81 18,682.96 1902.96

Final value 2003.27 3281.8 14,181.16 1871.82

Percentage per week 0.2236 0.2587 0.3647 0.2190

Variance 516.59 956.09 5251.62 493.42

100 5 10 0.1 0.9 Min value 92.95 92.28 93.09 97.77

Max value 3667.6 5255.31 9095.89 1902.96

Final value 3666.45 5161.66 8230.38 1871.82

Percentage per week 0.2666 0.2912 0.3250 0.2190

Variance 958.98 1395.94 2604.67 493.42

100 1 10 0.1 0.9 Min value 90.95 91.1 95.71 97.77

Max value 2646.57 4899.95 19,652.99 1902.96

Final value 2510.14 4515.96 15,984.84 1861.4

Percentage per week 0.2396 0.2815 0.3734 0.2190

Variance 721.04 1417.61 5678.49 493.39

moderate risks, the best final value of the GMD are achieved when {Kmin,Kmax} =
{5, 10}.

Observing all the experiments, effective results can be achieved by both models
(MAD and GMD) when a high final value is desired (although this also means there
is a high risk to pay back) and more assets are considered for investment (i.e., a
diversified portfolio is generally preferable).
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5 Conclusions

A portfolio optimization problem is investigated in this work by means of linear pro-
gramming computable models. In this problem, we aim the portfolio of minimum
risk and which is able to satisfy a given expected return. Two mean-risk models
from the literature are considered, the GMD model and the MAD model. Besides,
real features, like transaction lots, cardinality, and investment threshold, are taken
into account when solving these models.

The experimental results show that both MAD and GMD models with the three
real features improve the return, with a lower risk, when compared with the market
average indicator of return (i.e., benchmark). Depending on the desired expected
return, the differences between these models and the benchmark values are relatively
large (respectively, around 9.5 and 8.5 times better than the benchmark).

Future works will focus on heuristics (e.g., non-dominated sorting genetic algo-
rithm and multi-objective variable neighborhood search) to solve the bi-objective
portfolio problem defined in [9] when different real features are considered, includ-
ing features not considered here, like transaction costs and decision dependency
requirements.

Acknowledgements The authors would like to thank CNPq (grant 308312/2016-3), CAPES,
FAPEG, FAPESP (2013/07375-0) and Intel for their support.
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Portfolio Leverage in Asset Allocation
Problems

Mario Maggi and Pierpaolo Uberti

Abstract In the classical portfolio optimization framework, the leverage of a
portfolio is not taken into account and, by assumption, the risk of a portfolio is
totally described by the volatility of its returns. As a consequence, the portfolios
on the classical mean-variance efficient frontier are not indifferent in terms of
leverage. The introduction of leverage measurement in portfolio theory permits
to consider other kinds of risk, like margin calls, forced liquidations at undesired
prices and losses beyond the total capital. The literature on this topic is very limited
while portfolio leverage is of central importance, in particular to set up operative
investment strategies. In this paper we propose a simple definition of leverage
and we try to introduce it in the classical portfolio selection scheme. We define
the concept of leverage free equivalent portfolios in order to compare different
investment alternatives for given levels of leverage. The central result of the paper
is that the leverage free equivalent of the classical mean-variance efficient portfolios
do not preserve the original mean-variance dominance structure. This permits to
discriminate if an increase in the expected return of a portfolio totally depends on
the leverage effect or is a consequence of a more efficient allocation.
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1 Introduction

Classic Portfolio Theory is derived using mean-variance optimization in order to
calculate portfolio’s optimal weights on the basis of expected returns, variances,
and covariances. The resulting portfolios are mean-variance efficient and provide
the maximum expected return for a given level of expected risk, or minimum
expected risk once fixed the expected return [6]. The popularity of this approach
testifies its acceptance over the years. However, the nature of financial markets
and investment portfolios has changed considerably since 1952: the use of futures,
options and leveraged debt instruments facilitate financial leverage. In particular,
for hedge funds and investment banks, leverage has sometimes reached extreme and
untenable levels.

The mean-variance model does not consider the leverage when comparing
different portfolios. As a consequence, the classic approach is silent on the risks
that are peculiar when using leverage such as the costs of margin calls, which can
force borrowers to liquidate securities at adverse prices due to illiquidity, losses
exceeding the capital invested and the possibility of bankruptcy [3].

Mean-variance optimization implicitly assumes that the investor has no aversion
to the particular risks related to leverage positions. This results in arbitrarily large
amounts of leverage. For an investor who does not consider leverage, mean-
variance analysis provides optimal long-short portfolios. On the other hand, if an
investor takes leverage into account, mean-variance analysis is inadequate. Actually,
investors are in general averse to leverage: if two portfolios are indifferent in terms
of expected return and variance, a rationale investor would prefer the portfolio with
the lower level of leverage.

In [1], some restriction on borrowing are introduced to analyze the market
equilibrium. The literature on the introduction of leverage in the portfolio selection
scheme is recent and very limited. Jacobs and Levy [3] suggest to include a
term for leverage aversion in the mean-variance utility function, turning it into a
mean-variance-leverage utility function; this approach introduces in addition to the
risk-aversion term, the leverage-aversion term. The mean-variance-leverage utility
function lets investors trade off expected return with volatility risk and leverage
risk. With mean-variance-leverage optimization, the efficient portfolios belong to a
three-dimensional mean-variance-leverage surface [4] and the optimal individual
portfolio depends on the individual tolerance for volatility and leverage. Each
leverage tolerance level corresponds to a two-dimensional mean-variance efficient
frontier. The introduction of leverage aversion in portfolio selection results in a
general reduction of leverage compared to conventional mean-variance analysis.
Less leveraged portfolios may be beneficial not only for leverage-averse investors,
but also for the entire economy, considering that enormous levels of leverage
exacerbated several financial catastrophes and systemic events [5, 7, 9]. In operative
asset manager problems, Clarke et al. [2] consider limited short positions; they
point out that fund managers often face borrowing and leverage constraints. Also
Sorensen et al. [8] explicitly consider the introduction of constrained short positions.
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In this paper we propose a model that reflects the actual operative management
of an investment fund. A portfolio can be indicated by a vector x ∈ R

n, where
each component describes the proportions of the individual wealth invested in asset
i, i = i, . . . , n. We interpret the portfolio weights as speculative positions such
that the signs of the weights reflect the bet on the asset price direction while the
absolute weights are the size of the bet on a certain asset class. When investing
in practice, the negative positions (i.e. the bets on a future decrease of the price)
are usually taken through the use of derivatives, resulting in a positive allocation
of capital to margin the position. This interpretation is opposite compared to the
classic one, where the negative position on one asset is interpreted as a short selling,
resulting in a cash inflow that can be invested in long position in excess to the
available wealth. In particular, using futures or options, short positions in portfolios
allocation can be assimilated to simply betting on a decrement of the price without
cashing money to overweight long positions. Therefore, in our settings it seems
natural to consider the absolute values of the weights.1 Consequently, we remove
the budget constraint (i.e. the requirement that the sum of the weights equals 1),
and we introduce a definition of portfolio leverage that partially differs from the one
proposed in [3]. We assume that the liquidity is used to manage difference between
1 and the sum of the absolute value of the portfolio weights. When two vectors of n
components differ for a multiplicative constant, i.e. the relative proportions between
the risky assets is equal, the corresponding portfolios may be considered somehow
equivalent. Roughly speaking, they differ in terms of leverage while qualitatively
their allocation in the risky assets is equivalent.

Following this idea, we propose to define the leverage of a portfolio considering
the sum of the absolute weights of the risky positions. In these settings, for each
portfolio, the portfolio with the same relative positions and with null leverage is
defined leverage-free equivalent. The central finding of the paper is the analysis of
the set of the leverage-free equivalent portfolios obtained starting from the mean-
variance efficient portfolios. In this case, the leverage-free equivalent portfolios do
not necessarily preserve the dominance structure of the original efficient portfolios,
giving the investor the possibility to trivially choose to invest in portfolios with
higher expected return and lower risk.

The paper is organized as follows: Sect. 2 contains the theoretical formalization
of the proposal, Sect. 3 provides some empirical evidence of the results and Sect. 4
concludes the paper.

1Another common technique in order to transform a short position in pseudo long position is to
take the short position buying an ETF-short, an exchange traded fund that replicates the desired
underline when its price is decreasing.
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2 The Theoretical Proposal

Let x be an column vector whose components x1, . . . , xn denote the proportion of
wealth allocated to the ith risky asset, with i = 1, 2, . . . , n; 1 is the column vector
of ones, and transposition is denoted by the superscript T . We assume that x is
composed by n risky assets and that x0 = 1 −∑n

i=1 |xi | is the residual proportion
of wealth allocated in the risk free asset, or in liquidity. The sign of x0 has to be
interpreted in the standard way: when x0 is positive, part of the initial wealth is not
invested in risky positions, while, on the opposite, when x0 is negative, some money
is borrowed to overweight risky allocations. We assume that the liquidity has a null
risk free rate of return. The asset returns are collected in the random vector R̃ with
expected return R (column) and covariance matrix V . The matrix V is symmetric,
positive definite and so non-singular. For notational convenience, we refer to the
portfolio as represented directly by the vector x of the risky components, knowing
that the effective investment portfolio is obtained considering the residual allocation
in x0.

Definition 1 (Leverage of a Portfolio) Given the portfolio x, its leverage L(x) is
defined as:

L(x) =
n∑

i=1

|xi |

Obviously L(x) ≥ 0. A portfolio with L(x) > 1 is leveraged, because the total
amount of the positions overcome the investor’s total wealth and, consequently,
x0 < 0.

Definition 2 (Leverage Free Portfolios) A portfolio x is leverage free ifL(x) = 1.

From Definition 2, a portfolio is considered leverage free if the total wealth is
invested in risky positions.

Proposition 1 Let x be a vector such that the budget constraint holds, i.e. xT 1 = 1,
then L(x) ≥ 1; L(x) = 1 if and only if xi ≥ 0 for i = 1, . . . , n.

Proof The first part of the proposition is proved observing that |xi | ≥ xi for i =
1, . . . , n, so we obtain that

L(x) =
n∑

i=1

|xi | ≥
n∑

i=1

xi = 1.

If xT 1 = 1 and xi ≥ 0 for i = 1, . . . , n, then xi = |xi | for i = 1, . . . , n and

L(x) =
n∑

i=1

|xi | =
n∑

i=1

xi = 1.
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On the other hand, if xT 1 = 1,L(x) = 1 and it would exist an index 1 ≤ j ≤ n such
that xj < 0, then

∑n
i=1,i �=j xi + xj = 1, from which we obtain

∑n
i=1,i �=j xi > 1.

The leverage L(x) for this portfolio would be

L(x) =
n∑

i=1

|xi | ≥
n∑

i=1,i �=j
xi + |xj | >

n∑

i=1,i �=j
xi > 1,

which is a contradiction. ��
Proposition 1 relates the budget constraint to the concept of leverage, underlying

that, when the budget constraint is assumed to hold, by construction L(x) ≥ 1.
It is interesting to note that:

• In general, asset allocation models that assume the budget constraint as a
restriction on assets weights do not control the leverage with the potential
consequence of comparing portfolios with huge differences in the leverage.

• A model that compares portfolios with the same leverage is the one that assume
both the budget constraint and the restrictions of non-negativity of the weights.
In this case, the portfolios have a constant leverage equal to 1.

Definition 3 (Equivalent Portfolios) Given two portfolios x and y, they are
defined to be equivalent, x ≡ y if

rx

σx
= ry

σy

where rx and σx are respectively the expected return and the standard deviation of
the returns of x.

Definition 3 provides a very intuitive condition for portfolios equivalence on the
basis of their Sharpe ratio.

Proposition 2 If ∃λ ∈ R : x = λy, the portfolios x and y are equivalent in the
sense of Definition 3.

Proof If x = λy, then rx = λry and σx = λσy and we trivially have that

rx

σy
= λry

λσy
= ry

σy
.

Proposition 2 formalizes the intuition explained in the introduction. A portfolio
describes the relative proportion of wealth invested in each asset; if the relative
proportions of the risky constituents of two portfolios are equal, they have the
same Sharpe ratio. As a consequence two equivalent portfolios differ only for their
leverage.
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Following the idea described in the introduction, we compare portfolios with a
given level of leverage, in order to consider the correct ranking between risk-return
alternatives. A convenient choice is to set L(x) = 1.

Proposition 3 Given a portfolio x, the equivalent leverage free portfolio is x =(
1

L(x)

)
x.

Proof From Proposition 2 we obtain that x ≡ x. By construction, the leverage of x
is:

L(x) =
n∑

i=1

|xi | = 1

L(x)

n∑

i=1

|xi | = L(x)

L(x)
= 1.

So the proposition is proved. ��
It is interesting to compare the efficient portfolios belonging to the standard

mean-variance frontier to their corresponding equivalent leverage free portfolios.
We can define the two sets of portfolios as follows.

Definition 4 The sets of mean variance efficient portfolios and the equivalent
leverage free portfolios, respectively Xmv and Xlf , are:

Xmv = {x : x = x(σ0),∀σ0 ≥ σv} (1)

where x(σ0) is the solution of the optimization problem

max
x
Rtx

s.t. x′V x = σ0

x′1 = 1

(2)

and σv = arg min
x′1=1

{
x′V x

}
;

Xlf =
{
x : x = 1

L(y)
y and y ∈ Xmv

}
. (3)

One first interesting result links the risk measured by the variance of returns to
the risk described by the leverage.

Proposition 4 The set Xlf is bounded in terms of standard deviation and expected
return.

Proof Let define

X∗lf =
{
x : L(x) = 1,∀x ∈ Rn} (4)
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and note that it is a closed subset of the hypersphere in Rn with center the origin
and unitary radius, H1(0). By construction we have:

Xlf ⊂ X∗lf ⊂ H1(0)

so that Xlf is limited being a subset of the limited set H1(0). Since the set Xlf is
closed and the functions σ(x) and r(x) are continuous, for the Weierstrass theorem,
both the functions admit minimum and maximum on the domain Xlf . ��

The interpretation of Proposition 4 is intuitive: once we introduce a restriction on
the leverage of the portfolio, the risk an investor can take is automatically bounded
and also the expected return is limited. The result is well known in some special
cases: for example, when in the classic optimization problem, see Eq. (2), only long-
only positions are allowed, i.e. xi ≥ 0 for i = 1, . . . , n, producing a portfolio that
is a convex linear combination of the securities.

The principal consequence of this new approach is on the structure of mean-
variance dominance of the portfolios in the set Xlf . The elements of Xmv are mean-
variance efficient: none of the portfolios in Xmv dominates any other portfolio of
the set, in mean-variance terms. On the other hand, if we consider the set Xlf , the
structure of mean variance dominance changes. In fact, it is possible to find at least
two portfolios x and y in Xlf such that σ(x) ≤ σ(y) and r(x) ≥ r(y), with at least
one strict inequality holding. In next section we provide some evidence.

The operation that replaces the classic mean-variance efficient portfolios with
the equivalent leverage free portfolios causes an unexpected consequence on the
set Xlf : if we purify the efficient portfolios from the leverage component, some
portfolios in Xlf are dominated by other portfolios in the same set. The intuition
behind the result is very interesting: starting from a certain point on, the portfolios
on the efficient frontier permit to reach the desired level of expected return (and
the associated risk), simply increasing the leverage. This answers the question if the
extra performances of certain portfolios depend only on an increase of the leverage
or there is some more useful information beside the leverage. The fact that in Xlf
some portfolios are dominated may change the role of the individual utility function
in the decision framework.

3 Empirical Evidence

In this section we show, both on real and simulated data, the results described in
the theoretical section. Figure 1 shows the Xmv set on the mean-variance plane and
the corresponding level of leverage of each single portfolio on the efficient frontier.
The efficient frontier is drawn on the base of daily returns of the ten sectors of
S&P 500 from January 1991 to August 2011. As described in the previous section,
the portfolios on the frontier can have different leverage values. In particular, from
Fig. 1 (bottom pane) it is possible to note that the leverage is not smaller than 1,
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Fig. 1 The mean variance frontier and the corresponding leverage level of the efficient portfolios,
based on the 10 sector indexes of the S&P 500 from January 1991 to August 2011

consistently with Proposition 1. Moreover, in practice, the expected return of a
portfolio can be indefinitely increased, expanding its leverage. Figure 1 displays
the efficient frontier Xmv in the variance-mean plane (top pane), together with its
leverage valueL(x) (bottom pane). The mean-variance combinations of the leverage
free equivalent portfolios belonging to the set Xlf are shown in Fig. 2.

From Fig. 2 it is possible to note that the set Xlf is limited and the frontier traces
back, following a different path. As a consequence, some portfolios dominate other
portfolios of the same set. In other words, without considering the leverage, some
portfolios show an higher return and a lower variance. We can therefore conclude
that the removal of leverage affects the mean-variance dominance of the portfolios.

To present some possible shapes of the set Xlf , we also consider some simulated
cases. We generate a sample of 1000 observations from n = 10 assets with
independent, identically and normal distributed returns. Then, we compute the
efficient frontier Xmv and the corresponding set Xlf . We note that, as proved in
the theoretical section, the frontiers are not concave and some portfolios dominate
other portfolios. In particular, these two last aspects need a more rigorous empirical
investigation. It is interesting to point out that in Fig. 3 two different qualitative
behavior are present: in subfigures (I), (II) and (III) the frontier reaches the
maximum risk level and then traces back dominating. In words, portfolios associated
to high risk and return reaches higher performances not only due to the leverage
effect. On the opposite, in subfigure (IV) the frontier traces back but the portfolios
are dominated, underlying that in this case the extra risk and return were totally
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Fig. 2 The shape of the set Xlf on the mean-variance plane, based on the 10 sector indexes of the
S&P 500 from January 1991 to August 2011
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determined by the leverage effect and the portfolios are not interesting once
deleveraged.

4 Conclusion

The mean-variance model does not take into account leverage and the associated
risks, when comparing different investment portfolios. In this paper we propose
a definition of leverage and a technique to incorporate it in the decision scheme.
The main result of the paper is the modification on the dominance structure of the
portfolio set obtained by depurating the efficient portfolios from leverage. From a
practical point of view, the paper provides a realistic and useful approach to manage
and control portfolio leverage. Moreover, we show that some classic mean-variance
portfolios are of great interest because their performances depend not only by an
increase in leverage. Further research is needed in order to rigorously test the results
from an empirical point of view and to relate the size n of the portfolio and the
correlation between its constituents to the shape of the set Xlf in the mean-variance
plane.
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Energy-Efficient Train Control

A Practical Application

Valentina Cacchiani, Antonio di Carmine, Giacomo Lanza, Michele Monaci,
Federico Naldini, Luca Prezioso, Rosalba Suffritti, and Daniele Vigo

Abstract This research presents a practical application of the Energy Efficient
Train Control (EETC) problem, which involves a collaboration between the Oper-
ations Research group of the University of Bologna and ALSTOM Ferroviaria
SpA. The work is carried out within the framework of project Swift, funded by
the Emilia-Romagna regional authority. Given a train running on a certain line, the
problem requires to determine a speed profile that minimizes the traction energy
consumption. In particular, we consider the setting of a real-time application, in
which the speed profile has to be recomputed due to changes in the schedule
caused by unpredictable events. We introduce three solution methods: a constructive
heuristic, a multi-start randomized constructive heuristic, and a Genetic Algorithm.
Numerical experiments are performed on real-life instances. The results show that
high quality solutions are produced and that the computing time is suitable for real-
time applications.

Keywords Heuristic · Railway optimization · Energy · Train control ·
Real-time

1 Introduction

One of the major costs for railway companies is given by energy consumption. For
this reason, the development into a more mature and competitive market makes an
efficient energy management imperative for reducing the operating costs. Ecological
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awareness is also a major driver for energy efficiency in railway systems in an effort
towards reducing air pollutants, e.g., carbon dioxide, whose emissions are one of
the causes of global warming [10].

The construction of energy-efficient driving profiles has attracted large attention
from researchers in the recent years, being an effective way of saving energy.
The resulting problem is known as Energy-Efficient Train Control (EETC), and is
sometimes also referred to as eco-driving or train trajectory planning problem. This
problem aims at finding the most energy-efficient driving profile for a given train
traveling on a certain line, while satisfying a number of operational constraints to
ensure a safe and punctual journey. Recent surveys on EETC have been proposed
by Yang et al. [16] and Scheepmaker et al. [13]. A complete review on the Optimal
Train Control Theory has been given in [1, 2].

Analyses based on the Pontryagin Maximum Principle (PMP) have shown that
an optimal driving strategy consists of a sequence of four driving regimes, namely,
maximum acceleration/traction (MT), cruising/speed-holding (SH), coasting (CO)
and maximum braking (MB), see, e.g., Howlett et al. [8] and Albrecht et al. [1, 2].
An example speed profile consisting of MT-SH-CO-MB is shown in Fig. 1.

Based on this result, most of the algorithms proposed in the literature [2, 13, 16]
define the driving profile as a sequence of these four driving regimes, identifying
suitable switching points between consecutive driving regimes.

In this paper we focus on the EETC in its basic version, arising when the
driving profile of a single train has to be determined. We do not consider railway
traffic management, as we assume that the schedule of the train has already been
optimized by a (possibly online) scheduling algorithm (see, e.g., Bettinelli et al. [3]
and Fischetti and Monaci [6]). In this context, safety requirements impose that the
schedule of the train is given on input and cannot be changed. In addition, we do
not consider possible interactions between trains in terms of power exchange, as it
could happen in complex networks equipped with appropriate infrastructures and
energy storage systems.
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Fig. 1 A profile consisting of MT, SH, CO and MB. The train runs on a track approximately 35
kilometers long, and starts and ends at zero speed
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This paper is organized as follows. In Sect. 2 we define the problem, and in Sect. 3
the solution approaches are outlined. The results of the computational testing on
real-world instances are given in Sect. 4. Finally, Sect. 5 draws some conclusions.

2 Problem Definition

We are given a rail track having lengthD, and a train running on the track. The train
has a fixed schedule, imposing its travel time be equal to exactly T time units, and
is characterized by some known rolling-stock properties (e.g., its weight). The track
geometry, e.g., the position-varying slope and radius of curvature, is also known.
Finally, there are given speed limits that the train must respect, and that vary along
the track. The problem requires to determine a driving profile for the train such that
(1) the travel time of the train is exactly T ; (2) speed limits are respected; and (3)
the total amount of energy required for running the train is minimized.

We represent the track as a segment [0,D] and assume that the train travels on
the track from time instant 0 to time instant T .

For the sake of simplicity, we do not consider the case of steep uphill/downhill
tracks, i.e., we assume that the train, regardless of its speed, is always capable of
negotiating uphills/downhills or speed-holding. Moreover, we assume a continuous
control and neglect any form of energy recovery, as it happens with the so-called
Regenerative Brake. For details on steep uphills/downhills and on Regenerative
Brake, the reader is referred to [1, 2, 8].

In our setting, the motion of a train is approximated using the following point-
mass model

dv

dt
= u(t)− R(v(t))+G(x(t)) (1)

dx

dt
= v(t), (2)

where time t ∈ [0, T ], is the independent variable, while speed v(t), position x(t)
are coordinates of the dynamical system and u(t) is the controlled acceleration.

Term R(v) represents the so-called Basic Resistance, taking into account several
resistive phenomena depending only on the given rolling-stock. In particular, it
includes rolling resistances, mechanical resistances that are proportional to speed
(e.g., rotation of axels and shaft, mechanical transmission, etc.), and air resistance
(see, Profillidis [11]).

Basic resistance is typically approximated using the well-known Davis Equation

R(v) = r0 + r1 v + r2 v2, (3)

where r0, r1 and r2 are positive empirical constants depending on the rolling-stock
(see, Davis Jr [4]).
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Term G(x) is the Line Resistance, which measures the position-dependent
forces acting on the train along its route. This resistance considers the horizontal
component of gravity (depending on the position-varying track slope along the
track) and the curve resistance (depending on the position-varying radius of
curvature along the track). The analytic expression of G(x) has been provided by
our industrial partner as a piece-wise function through the empirical formula:

G(x) := −g sin

[
arctan

(
0.8

ρ(x)
+ tan θ(x)

)]
, (4)

θ(x) and ρ(x) being the (position-dependent) track grade and radius of curvature
respectively, and g the gravitational acceleration (see, Fayet [5] and Sapronova
et al. [12]).

The controlled acceleration u(t) is bounded by two functions, i.e.

− uL(v) ≤ u(t) ≤ uU(v). (5)

where bounds uL(v) ≥ 0 and uU(v) ≥ 0 are the maximum deceleration and
the maximum acceleration, respectively, that the train engine can handle. In the
following, we will always assume that uL and uU are decreasing non-linear
functions of the speed.

As mentioned above, speed limits impose an upper bound on the maximum speed

0 ≤ v(t) ≤ V̄ (x(t)) (6)

where the upper bound value V̄ (x(t)) depends on the geometry of the track. In
addition, the following boundary conditions

x(0) = 0, x(T ) = D, v(0) = vinit , v(T ) = vf inal, (7)

are imposed to fix the position and speed of the train at time instants t = 0 and
t = T , with vinit and vf inal given on input.

Finally, the objective is to minimize the total energy spent by the train, given by

E =
∫ T

0

u(t)+ |u(t)|
2

v(t)dt. (8)

Equation (8) is derived from the definition of work done on a point mass. Since
we do not account for energy recovery, negative values of u must be ignored. We
therefore introduce (u+ |u|) so that energy contribution is zero whenever u < 0.
The reader is referred to Albrecht et al. [1] and Scheepmaker et al. [13] for further
details.
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Observe that Eqs. (1)–(8) constitute a well-known Optimal Control Formulation
for the EETC, see Albrecht et al. [1, 2] and Scheepmaker et al. [13].

2.1 Overview of the Solution Approach

In most practical cases, track geometry and speed-limits are described as piece-
wise constant functions of the space. Therefore, it is possible to partition the track
[0,D] into a sequence of n consecutive sections Sk = [x(k)o , x

(k)
f ], with x(0)o = 0,

x
(n)
f = D and x(k)f = x(k+1)

o , (k = 0, 1, . . . , n− 1), that have constant slope, radius
of curvature and speed limit (see [7, 14, 15]). We will refer to those sections as
segments. This results in having a fixed Line Resistance along with a fixed speed
limit. In particular ∀ k = 1 . . . n:

G(x) = g(k) V̄ (x) = V̄ (k). (9)

As mentioned in the introduction, similar to what is done in [9], our approach is
based on the Optimal Train Control theory and assumes that a concatenation of at
most four given driving regimes is used to define the speed profile in each section.
The driving regimes are characterized by the following conditions:

Maximum Traction, MT: u1 = uU(v) (10)

Speed Holding (or Cruising), SH: u2 = R(v)− g(k) (11)

Coasting, CO: u3 = 0 (12)

Maximum Braking, MB: u4 = −uL(v), (13)

where u1, u2, u3 and u4 are the accelerations in every regime. Within a segment,
each regime can be executed at most once, and regimes must appear in fixed order,
namely, MT, SH, CO, and MB. Furthermore, some regimes may not be used in a
segment.

As a consequence, Eqs. (1) and (2) can be simplified, because the term u

corresponds to one of the uj (j = 1, . . . 4) shown in Eqs. (10)–(13) andG(x) = g(k)
in each segment k.

We observe that, within our settings, energy is only consumed during the MT and
SH driving regimes. Let E(k)MT and E(k)SH , respectively, be the energy consumed in the
MT and SH regimes for segment k (k = 1 . . . n). Then Eq. (8) reduces, for MT, to

E
(k)
MT =

∫ t
(k)
2

t
(k)
1

u1(v(t)) v(t) dt, (14)
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where t (k)1 and t (k)2 are the start and end time for MT in segment k. Similarly, for
regime SH, we have that (8) simplifies to

E
(k)
SH = u2(v

(k)
2 ) v

(k)
2 (t

(k)
3 − t (k)2 ), (15)

where v(k)2 is the constant speed value, while t (k)2 and t (k)3 are respectively the start
and end times for SH regime.

We note that, Eqs. (1), (2) and (14), can be pre-computed, for each segment and
driving regime, by using numerical methods or closed-form expressions under some
assumptions on u as in [17].

3 Heuristic Solution Approaches

In our application, train control has to be determined in short computing times,
in order to take into account possible changes in the schedule of the train due to
some unpredictable events. For this reason, we propose heuristic approaches for
its solution. In this section, we first introduce a constructive heuristic (CH), then,
we present a multi-start randomized constructive heuristic (RCH) and a Genetic
Algorithm (GA).

3.1 Constructive Heuristic

The proposed constructive heuristic is an iterative procedure that starts from an
infeasible solution and, at each iteration, tries to reduce infeasibility, until a feasible
solution is produced.

At the beginning, the algorithm computes the so-called allout speed profile, i.e.
the solution obtained by running the train at its maximum allowed speed. When
computing this speed profile, train motion laws and speed limits are taken into
account.

Observe that the running time τAO associated with this solution provides a lower
bound on the running time for the train in any feasible solution. If this running time
is not equal to the required time T , the current solution is infeasible. To recover
feasibility we consider the actual maximum speed Ṽ (k) reached in every segment
k, and slow the train down by artificially reducing the speed limits. This speed
reduction is applied in one segment at a time.
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For each segment k, we reduce its maximum speed by a given amount s (which
is a parameter of the algorithm), and re-compute the associated speed profile and
running time τ . If τ > T , then the last update of the maximum speed is canceled.
If, instead τ < T , the next segment is considered. This procedure continues until
a feasible solution is obtained. The pseudo-code of the algorithm is shown in
Algorithm 1.

1 Compute the allout speed profile for the given route. Store travel time in τ = τAO .

Store in Ṽ (k) the maximum speeds that are actually reached by the allout speed profile
in each segment k;

2 Set wk := Ṽ (k), ∀k = 1 . . . n;
3 while τ < T do
4 for k = 1. . . n do
5 wk := wk − s;
6 Re-compute speed profile using the current speed limits in each segment (i.e.

w1, . . . wn). Store travel time in τ ;
7 if τ > T then
8 Undo the change, namely wk := wk + s
9 end

10 end
11 end

Algorithm 1: CH

3.2 Multi-Start Randomized Constructive Heuristic

The constructive heuristic of the previous section is used in a multi-start fashion to
determine a pool of feasible solutions. This allows to possibly find better solutions
and to determine an initial population of the genetic algorithm (see Sect. 3.3).

The multi-start randomized constructive heuristic performs a fixed number of
iterations, changing a set of parameters in a random way. At each iteration, γ1
segments are selected (where γ1 is a parameter of the algorithm), and the maximum
speed of the selected segments is reduced by a random value. If the travel time
of the allout profile associated with the current w′k values is not larger than T ,
the constructive heuristic of Sect. 3.1 is applied. Otherwise, the speed limits are
re-defined, and the process is repeated.

The algorithm produces one feasible solution per iteration and is executed for
NI (say) iterations. The best solution found among all iterations is then returned.
The pseudo-code is reported in Algorithm 2.
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1 Compute the allout speed profile for the given route. Store in Ṽ (k) the maximum
speeds that are actually reached by the allout speed profile in each segment k;

2 Set wk := Ṽ (k), ∀k = 1 . . . n ;
3 for i = 1 . . . , NI do
4 repeat
5 set w′k = wk for each segment k;
6 for c = 1 . . . γ1 do
7 Randomly select a segment k̃ according to a uniform random

distribution;
8 Define w′

k̃
as a random number within (0, γ2 wk̃] with 0 ≤ γ2 ≤ 1;

9 end
10 Re-compute speed profile using the current speed limits w′k ;
11 Store travel time in τ ;
12 until τ ≤ T ;
13 Set wk := w′k, ∀k = 1 . . . n, and apply lines 3-11 of Algorithm 1;
14 end

Algorithm 2: RCH

3.3 Genetic Algorithm (GA)

In this section, we present a Genetic Algorithm, inspired by the work of Li and
Lo [9].

In our algorithm, each chromosome is associated with a solution and is repre-
sented by a vector V containing the values of the initial speed for each driving
regime. In particular we have

V =
[
v
(k)
j

]
k=1...n
j=1...4

. (16)

The population contains M individuals. During each iteration, by means of
crossover and mutation operators, the current population might grow larger than
M . The selection operator restores the number of individuals to M by eliminating
the lowest ranking ones from the current population. A fixed number h of Elite
individuals is kept intact over the iterations.

The evaluation of each chromosome c of a current population is carried out by
means of the following fitness function

f (c) = k1E(c)+ k2H(c), (17)

where k1 and k2 are tuning parameters, E(c) represents the traction energy that is
spent driving the train according to solution c, and H(c) measures the diversity
of chromosome c with respect to the rest of the current population (thus making
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the fitness function biased towards favoring diversity, instead of considering energy
efficiency only). H(c) is computed as a mean difference between c and the other
individuals.

The main components of the GA are reported in the following list, according to
the order in which chromosomes are processed in each iteration:

1. Mutation Operator: this operator is applied, with probability Pm, to each non-
elite chromosome, producing new individuals. It consists of applying random
variations of speed to a set of randomly selected segments, according to a uniform
random distribution. The maximum variation amount is given as a percentage
m (parameter of the algorithm) of the maximum speed in a each segment.
Preliminary experiments showed that better performances are achieved when
these operators are not applied to elite chromosomes;

2. Crossover Operator: it implements a single-point crossover to produce two
children chromosomes from a couple of parents, by recombining their genome
after splitting on a randomly selected segment boundary. The crossover break
point is randomly selected among all those genes that correspond to the end of
some segment. This operator has a probability Pc of affecting each chromosome,
excluding Elites and those chromosomes produced by mutation at the current
iteration;

3. Repair Operator: it restores feasibility of solutions after mutation and
crossover, if needed. It implements a procedure similar to the constructive
algorithm introduced in Sect. 3.1

4. Selection Operator: it ranks each chromosome c of the current population by
means of the fitness function.Then, it deletes the lowest ranking individuals
exceeding the maximum population sizeM , while preserving a group of h Elites
intact.

4 Computational Experiments

The algorithms described in the previous section were implemented in C and
executed on a 2.9-Ghz Intel Core i7-7500U with 16 GB of RAM. Our benchmark
is composed by real-world instances provided by ALSTOM. All instances are
associated with two railway lines, denoted as ROUTE 1 and ROUTE 2. These lines
have lengths equal to 250 and 270 km, respectively, and are composed by 42 and
67 segments, respectively. For each line, we considered five different train models,
denoted with letters A to E in the following, and having different characteristics.
This produced a benchmark of ten different instances. To evaluate the quality of the
obtained solutions, we used the following measure of efficiency, commonly used by
ALSTOM’s practitioners:

e = 100 · EA − E
EA

, (18)
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Table 1 Results on ROUTE
1 (250 km, 42 segments)

Efficiency CPU time (seconds)

Train T (s) CH RCH GA CH RCH GA

A 4560 3.2 5.4 7.2 0.2 1.5 4.4

B 4560 8.2 10.4 11.6 0.1 1.2 2.5

C 6525 6.6 11.5 25.3 0.3 4.9 10.6

D 10,920 10.9 12.5 12.7 0.1 0.6 2.2

E 7079 18.8 20.2 21.6 0.2 0.7 2.1

Table 2 Results on ROUTE
2 (270 km, 67 segments)

Efficiency CPU time (seconds)

Train T (s) CH RCH GA CH RCH GA

A 7285 6.6 13.7 23.7 0.5 9.6 15.8

B 7142 8.7 14.8 29.0 0.6 11.4 21.7

C 7933 9.9 13.4 27.2 0.8 15.9 29.4

D 11,729 12.7 13.2 13.9 0.2 0.9 2.4

E 7595 18.2 18.9 22.2 0.3 1.7 5.2

where EA represents the energy consumption of the aforementioned allout profile,
and the term E corresponds to the energy consumption associated with the given
solution.

The RCH algorithm (see Algorithm 2), which also initializes the GA, was iterated
32 times in each experiment in a multi-start fashion. Parameter s was set to 1 (m/s),
γ1 = 20 and γ2 = 40%. The GA was configured according to the following
parameter values: Pc = 0.97, Pm = 0.95,M = 9, h = 5 andm = 5%. A maximum
number of 300 generations was imposed. Moreover the GA was set to terminate
after 11 non-improving consecutive generations.

Table 1 shows the results associated with ROUTE 1. For each train model we
report the fixed travel time T , the level of efficiency computed according to (18),
and the associated CPU time (in seconds).

The results show that, when the first line is considered, the constructive heuristic
is able to reduce the energy consumption, with respect to the allout profile, by
around 10% on average. The associated computing times are rather small, being
always below 2 s. By executing the randomized multistart constructive heuristic and
the genetic algorithm we obtain further savings, about 12% and 15%, respectively.
Although these improvements could be expected, as the algorithms are built “on-
top” of each other, the additional savings that we obtained are quite significant.
While the increase in CPU time for the randomized multistart constructive heuristic
is rather limited, the genetic algorithm requires significantly larger computing times
for some instances: in these cases, a time limit can be imposed in order to use this
algorithm in a real-time system.

The results for the second line, reported in Table 2, confirm those obtained for the
first line, although the computing times are larger than before. However, we observe
that energy reduction in Table 2 is also higher than in Table 1.
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5 Conclusions and Future Research

In this paper we studied the Energy-Efficient Train Control (EETC) problem. This
problem was solved using three approaches: a constructive heuristic, a multi-start
randomized constructive heuristic, and a genetic algorithm.

Computational results on real-life instances show that, in most cases, the
computing times of the algorithms are short enough to allow their use in a real-time
application.

Future research directions will be to consider real-time traffic management
aspects, related to the possibility of slightly changing the schedule of the train, as
well as the adoption of a system which allows energy recovery through regenerative
brake.
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Gradient Boosting with Extreme
Learning Machines for the Optimization
of Nonlinear Functionals

Cristiano Cervellera and Danilo Macciò

Abstract In this paper we investigate the use of the Extreme Learning Machine
(ELM) paradigm for the approximate minimization of a general class of functionals
which arise routinely in operations research, optimal control and statistics problems.
The ELM and, in general, neural networks with random hidden weights, have proved
to be very efficient tools for the optimization of costs typical of machine learning
problems, due to the possibility of computing the optimal outer weights in closed
form. Yet, this feature is possible only when the cost is a sum of squared terms,
as in regression, while more general cost functionals must be addressed with other
methods. Here we focus on the gradient boosting technique combined with the ELM
to address important instances of optimization problems such as optimal control
of a complex system, multistage optimization and maximum likelihood estimation.
Through the application of a simple gradient boosting descent algorithm, we show
how it is possible to take advantage of the accuracy and efficiency of the ELM for
the approximate solution of this wide family of optimization problems.

Keywords Nonlinear optimization · Gradient boosting · Extreme learning
machines

1 Introduction

In recent years, there has been a growing interest in neural networks where hidden
layer weights are extracted a priori and kept fixed during the training. In particular,
the term “extreme learning machine” (ELM) has gained popularity in the past few
years to denote a family of methods centered on this concept (see, e.g., [1–4] and the
references therein). Despite its simplicity, this paradigm has proved to be effective
in machine learning problems since it enables a very fast training procedure. In fact,
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once the inner weights are set, the outer weights can be determined analytically
through pseudoinversion.

However, this fast one-step solution is true only for cost functions that can be
expressed as a sum of squares, which limits the scope mainly to regression based on
a mean squared error criterion. Here we investigate the use of the ELM paradigm
for the solution of more general costs with respect to the mean squared error. More
specifically, we consider a differentiable nonlinear functional having a general form
L(x, f (x)), where x ∈ R

n is the input and f : Rn → R
m is the output of the ELM

model through which we want to optimize L. We address the problem of minimizing
the expected value of the functional

f ∗ = arg min
f∈F

E
x∼p[L(x, f (x))]

where F is a suitable class of functions and the expectation over x is defined through
a density p(x).1 This class of optimization problems is a very general paradigm
for many important problems in operations research, optimal control and statistics,
such as dynamic optimization, trajectory planning, maximum likelihood estimation,
dimensionality reduction, etc.

In order to apply the ELM to this kind of problem, we focus on the gradient
boosting procedure [5, 6]. According to this paradigm, especially popular for
decision trees, the solution minimizing L is built as an ensemble of “weak” models,
obtained iteratively through an optimized steepest descent procedure. In the ELM
implementation, a “small” ELM is optimized and added at each step to produce an
ensemble that yields the optimal solution.

The boosting paradigm has been investigated in the ELM context through the
Adaboost framework [7], but this method is specifically tailored for classification
in machine learning problems. A proper gradient boosting approach has been con-
sidered for ELM training in [8], again with a focus on regression and classification.
In that work the basic algorithm is modified adding a regularization term, and the
training procedure is performed in two phases, involving the computation of second-
order derivatives.

In this paper, for the investigation of the considered class of optimization
problems through the ELM, we adopt a more basic algorithm to combine the
latter with gradient boosting, relying on a one-phase first-order procedure with
optimized descent. Using this approach, that we call ELM Gradient Boosting for
Optimization (EGBO), we test the combination of gradient boosting and ELM
in three different important applications where the need to optimize a nonlinear
functional arises: optimal control of a complex system, multistage optimization and
maximum likelihood estimation. In all cases, we show how the approximate solution
obtained through this methodology compares very well with the reference/optimal

1We assume that the minimum exists. Otherwise, the problem can be redefined in terms of ε-
optimal solutions.
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solution for the considered problem, yet retaining the light computational burden
typical of the ELM.

In light of this small computational burden, the EGBO can also be seen as a
particularly efficient instance of the family of methods that address variational and
optimization problems through linear combinations of variable basis functions (see,
e.g., [9–13]).

2 The Basic ELM Paradigm

Here we recall the typical elements of the standard ELM framework, as the basis for
the EGBO approach that will be described in the next section.

Consider a training set of N input points XN = {x1, . . . , xN } where xi ∈ X ⊂
R
n, and a set of associated outputs YN = {y1, . . . , yN } where yi ∈ Y ⊂ R

m. The
basic ELM is a feedforward neural network with single hidden layer in which the
weights of the neural units are kept fixed during the training phase. Specifically,
the output of the l-th activation function hl for an input xi is obtained as hl(xi) =
h(aT

l xi + bl), where al ∈ R
n and bl ∈ R are extracted randomly according to some

probability distribution (typically, the uniform one).
Then, the m-dimensional output of the ELM can be written as f (x) = β h(x),

where β is the (m× L) matrix of outer weights and h(x) = [h1(x), . . . , hL(x)]T is
the vector of the L activation functions.

As said, the parameters al and bl of the hidden layer are not trained, thus the only
parameters that are optimized are the output weights of the linear combination β.

To this purpose, collect the outputs in the training set in the matrix Y =
[y1, . . . , yN ]T. Also define the (N × L) matrix H collecting all the outputs of the
neural units computed in the input points, i.e., H = [h(x1), . . . , h(xN)]T.

The training process consists in finding the matrix β∗ minimizing J =
α
∑N
i=1|yi − βh(xi)|2 + |β|2, where |·| denotes the Euclidean norm and α is a

regularization parameter. This problem can be solved in a single step analytically,
yielding

β∗ = (I/α +HTH)−1HTY (1)

This single-step computation of the optimal outer weights makes the training
procedure very fast when the number L of neural units and the training set size N
are small.
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3 Gradient Boosting for Optimization with the ELM

The boosting approach [5] consists first in approximating the expected value with
an average computed over a set XN = {x1, . . . , xN } of N realizations of the input
points. This leads to the substitution of the original problem stated in Sect. 1 with

f ∗ = arg min
f∈F

1

N

N∑

i=1

L(xif (xi))

where xi ∈ XN .
Then, the functional is minimized over the components of f through a steepest

descent algorithm with step optimization, building f iteratively at each step through
the addition of so-called “weak learners”.

Here the class F is the class of functions that can be represented as an ensemble
of ELMs, and the weak models are the single small ELMs of the ensemble. By
“small” we mean having a number L of hidden units much smaller than the number
that would be required if a single ELM was employed to represent the solution of
the problem. In the extreme case, L = 1.

The application of the gradient boosting approach to the aforementioned class F
leads to Algorithm 1.

At the k-th iteration of the algorithm, we denote by gijk the negative gradient of
L with respect to fj (xi) computed at f k−1(xi), i.e,

gijk = −∂L(xi, f (xi))
∂fj (xi)

∣∣∣∣
f (xi )=f k−1(xi )

(2)

Finally, we collect all the components gijk in the (N × m) matrix G(k), whose
columns are the target vectors that have to be learned by the weak model.

The EGBO algorithm returns a function represented by a weighted sum of small
ELMs, that provides an approximate minimizer for the functional Q.

At step 1 of the algorithm we initialize the solution with a constant value for all
x ∈ X.

Step 3 consists in the selection of a small batch from XN and corresponding
outputs from ZN .

At step 4 we compute the negative gradient matrix G(k) using (2), evaluated in
the outputs of the current solution f (k−1)(xi) for all the points in SB .

Steps 5 and 6 consist in the creation of the new weak ELM that approximates
the gradient, to be added to the ensemble. Specifically, first we extract a set of L
hidden units h(k)l , l = 1, . . . , L, with random weights as described in Sect. 2. Then,
we compute the optimal ELM output weights β(k) as in (1), using SB as the training
patterns and the elements of the negative gradient matrix G(k) as the targets.

Step 7 implements the optimized gradient descent step. In this step, we minimize
Q along the direction given by the approximate gradient yielded by the ELM
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Algorithm 1 EGBO
Require: XN : the sets of N input points; B: the number of batch training points; L: the number

of hidden units in the weak ELM; α: the regularization parameter; K: the number of boosting
iterations.

1: Initialization: Extract a random subset SB ⊂ XN of B input points and compute

f (0)(x) = �0 = arg min
�

1

B

B∑

i=1

L(xi , �)

2: for k = 1, . . . , K do
3: Extract a random subset SB ⊂ XN of B input points.
4: Compute G(k) in f (k−1)(xi ) for xi ∈ SB as in (2).
5: Extract a random set of L hidden units h(k).
6: Find the output weights β(k) using G(k) as targets.
7: Compute

�k = arg min
�

1

B

B∑

i=1

L(xi , f
(k−1)(xi )+ � β(k)h(k)(xi)).

8: Update f (k) = f (k−1) + �k β(k)h(k).
9: end for

10: Output: f̂ = fK .

β(k)h(k) created and trained at steps 5 and 6. In this way, we find the optimal weight
for this new ELM that is eventually added to the ensemble.

Finally, at step 8 we build the new current solution f (k) = f (k−1) + �k β(k)h(k).
Also notice that the number L of neurons at step 5 is expected to be small. Thus,

the combination of a small batch of B training points and a small number L of
neurons makes the training of the new ELM through pseudoinversion at point 6
very fast. At the same time, the optimized gradient descent step at point 7 is a one-
dimensional minimization that can be performed efficiently using any solver from
various available commercial and open packages.

4 Application to Optimization Problems

In this section we showcase the application of the EGBO approach in three different
instances of the considered class of optimization problems, namely (1) optimal
control, (2) multistage optimization, and (3) maximum likelihood estimation. For
all the examples we provide simulation experiments. All the tests have been
implemented in Python, using functions from the Numpy and Scipy libraries when
needed, and the simulations were run on a PC equipped with an Intel Core i7-8700K
3.7 GHz processor with 16 GB of RAM.
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4.1 Optimal Control

The first problem we consider is the closed-loop myopic optimal control of a
nonlinear system. In this case, we have a dynamic system characterized by a n-
dimensional state xt whose evolution is ruled by a state equation xt+1 = s(xt , ut ).

The goal of the myopic optimization problem is to find a closed-loop control ut
as a function of the current state, i.e., ut = f (xt ) such that ut minimizes at each t a
cost function c(xt+1) = c(s(xt , ut )).

The test system we consider is composed by a sliding trolley carrying a hanging
payload. Mathematically, this system is modeled as pendulum, with a mass above
that is free to move horizontally, and a smaller mass (the payload) that is attached to
the sliding one through a rigid wire. The state xt of the system is the 5-dimensional
vector [pt , vt , θt , ωt , μt ]T, where pt and vt are the trolley position and speed, θt
and ωt are the wire angle and angular velocity, and μt is the mass of the payload. A
more detailed description of the system can be found in [14].

The goal of the control is to bring the payload to a desired position (here taken as
0 for simplicity) and stop. The one-dimensional control is the force we apply to the
trolley, while the myopic cost function has the form c(xt+1) = v ·x2

t+1. For the tests
we considered initial points x0 in the range [−0.55, 0, 0, 0, 1], [0.55, 0, 0, 0, 5] and
v = [5, 0.1, 0, 0, 0]. The control ut that minimizes this cost function at each stage
t is able to stabilize the trolley at 0 smoothly, starting from any initial position and
with any payload in the above-defined range.

Here the functional to minimize is the expectation of L(xt , f (xt )) =
c(s(xt , f (xt ))). The training set was composed of XN = 1000 points randomly
extracted in the range [−0.55,−0.2,−0.1,−0.25, 1], [0.55, 0.2, 0.1, 0.25, 5]. The
EGBO algorithm was applied using L = 10 hidden units for the weak ELM
learner (with logistic activation functions and all the weights randomly extracted
in the range [−1, 1] with uniform distribution), K = 50 iterations, regularization
parameter α = 103, size of the training batch B = 200.

To test the performance of the obtained controller f̂ , 100 initial test points x0
were extracted uniformly in the range [−0.55, 0, 0, 0, 1], [0.55, 0, 0, 0, 5], i.e., with
different initial positions and payloads to move. For each x0, a reference optimal
trajectory was derived for T = 100 stages by computing at each stage the reference
myopic optimal control u∗t = f ∗(xt ) through the direct numerical minimization of
c(xt+1), using the minimize_scalar function from the Scipy package. Then, for each
of the 100 initial test points, the control action computed by the f̂ controller yielded
by the EGBO procedure was applied to drive the trajectory.

Figure 1 reports the boxplots of the sum of the cost over the 100 stages for all
the 100 initial test points, for the reference and the EGBO solution, together with
an example of resulting trajectory (only the first component, i.e., position). It can
be noticed that the EGBO solution yields the same costs as the reference optimal
control, corresponding to very similar resulting trajectories, without the need to
resort at each stage to a numerical minimization procedure. For this problem, the
time required to obtain the solution was 26.7 s.
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Fig. 1 Left: boxplots of the costs for the 100 initial test points in the optimal control example.
Right: comparison between an example trajectory (first component, i.e., position) yielded by the
reference and EGBO solutions

4.2 Multistage Stochastic Optimization

Another example of problem where EGBO can be applied is multistage stochastic
optimization. This kind of problem is characterized by a Markovian state equation
of the kind xt+1 = s(xt , ut , ξt ), where ξt is a random vector with a given probability
distribution, and the goal is to minimize the sum of the expected value over ξ of a
cost ct (xt , ut , ξt ) over a finite number T of stages, i.e., find the sequence of vectors
{u0, . . . , uT−1} that minimizes

∑T−1
t=1 Eξt [ct (xt , ut , ξt ) + cT (xT )], where cT is the

cost of the final stage.
As a test case we consider an inventory forecasting problem, that is a classic

testbed for this kind of problems (see, e.g., [15, 16]). Here we address a six-
dimensional instance characterized by a state vector xt in which the components xi,t ,
for i = 1, 2, 3 are the current levels of item i in the inventory, while components
xi+3,t are the forecast demands for item i in the next stage. The control vector
ut has dimension m = 3, representing the quantity of the 3 items to order at
stage t . The evolution of the state vector is ruled by the state equation xi,t+1 =
xi,t +ui,t − xi+3,t ξi,t for i = 1, 2, 3, and xi,t+1 = μi ξi,t for i = 4, 5, 6, where ξt is
vector of random corrections on the forecasts having a lognormal distribution, and
μi = [18, 15, 20]T.

The cost function for stage t corresponds to the goal of keeping the
inventory level close to zero, plus penalty functions to take into account
constraints on the positivity of the orders and the maximum allowed value
for their sum, equal to 20. Specifically, the cost function has the form ct =∑3
i=1[v+i max(0, xi,t ) + v−i max(0,−xi,t )] + p(ut ), where v+ = [4, 7, 2] and

v− = [2, 5, 1] are surplus and deficit coefficients, respectively, and p(u) is defined
as p(u) =∑3

i=1 max(0,−ui)2 +max(0,
∑3
i=1 ui − 20)2. The cost function cT for

the last stage is equal to ct without the term p(ut ).
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Here we consider the solution for the last stage, which is the main building
block to find the solution for horizons with an arbitrary number of stages, through
approximate dynamic programming [17, 18]. Specifically, we look for the optimal
policy u∗T−1 = f (xT−1) minimizing

L(xT−1, f (xT−1)) = 1

P

P∑

p=1

[cT−1(xT−1, uT−1, ξ
(p)

T−1)+cT (s(xT−1, uT−1, ξ
(p)

T−1))]

where ξ (p)T−1, for p = 1, . . . , P , is a realization of the random variable ξ drawn with
lognormal distribution.

The training set was composed of XN = 1000 points randomly extracted in the
range [−10,−10,−10, 15, 12, 17], [10, 10, 10, 21, 18, 23].

The EGBO algorithm was applied again using L = 10 hidden units for the weak
ELM learner (with all the weights randomly extracted in the range [−1, 1] with
uniform distribution), K = 50 iterations, regularization parameter α = 103, size of
the training batch B = 200.

To test the performance of the obtained policy f̂ , 100 test points xT−1 were
extracted uniformly in the same range as above and, for each point, a reference
optimal control vector u∗T−1 = f ∗(xT−1) was computed using the minimize
function from the SciPy package to minimize L(xT−1, uT−1) directly. For a further
comparison, a heuristic myopic policy f h was also considered, consisting in
ordering, for each item i, the forecast demand minus the available stock, i.e.,
uh = f h(xt ) = xi+3,t − xi,t . The components of the resulting control vector are
then rescaled proportionally to satisfy the constraint of having the sum bounded by
20.

Figure 2 reports the boxplots of the cost for all the 100 test points, for the
reference, the EGBO and the heuristic solution.

It can be noticed that the EGBO solution yields practically the same costs as the
reference optimal control, and much better performance with respect to the heuristic
control policy. In this case, the computational effort to get the approximate solution
was 22.3 s.

Fig. 2 Boxplots of the costs
for the 100 test points in the
multistage stochastic
optimization example
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4.3 Maximum Likelihood Estimation

The last example of optimization problem we present where the EGBO can be
applied is maximum likelihood (ML) estimation.

In this kind of problem we have a random variable r ∈ R characterized by a
probability density function that we know except for a finite set of parameters,
i.e., r ∼ p(r, γ ), where γ is the vector of unknown parameters that must be
estimated from available observations. The ML approach consists in finding the
parameter γ ∗ that maximizes the likelihood, i.e., the joint density of the sample
of n observations x = [r1, . . . rn]T. Since we assume the sample to be i.i.d.,
the joint density p(r1, . . . , rn, γ ) can be expressed as the product of the single
densities p(ri, γ ). Then, the typical approach to estimate the unknown parameters
γ consists in maximizing the log-likelihood, which is more practical than the
likelihood in product form. Eventually, γ ∗ for an observed sample x is the output
of the ML estimator f that minimizes the following functional L(x, f (x)) =
−∑n

i=1 logp(ri, f (x)).
For many commonly employed density functions we can compute the optimal

estimator f ∗ in closed form, by which we can obtain the estimated parameter γ ∗ =
f ∗(x) directly. However, for a general density there is no analytic solution, and some
numerical approximation must be employed. Here we show how the EGBO method
can be applied to derive an approximate ML estimator that yields an accurate
estimate for γ without the need to resort to a numerical solver for each new observed
sample x. For the tests we consider a random variable z distributed according to
the Rayleigh distribution, having density p(z, γ ) = z exp(−z2/(2γ 2))/γ 2. The
parameter that needs to be estimated is the scale γ . To this purpose, we applied the
EGBO algorithm using a training set composed of XN = 1000 samples of n = 20
points z having a Rayleigh distribution, with scale parameter γ randomly extracted
in the range [1, 5].

The EGBO algorithm was applied using L = 30 hidden units for the weak ELM
learner (with all the weights randomly extracted in the range [−1, 1] with uniform
distribution), K = 50 iterations, regularization parameter α = 103, and the full set
XN as the training batch SB .

The performance of the approximate ML estimator can be evaluated using the
true ML estimator that in this case can be computed in closed form, yielding γ ∗ =√∑n

i=1 z
2
i /2n. In particular, 100 20-dimensional test samples were generated with

a random scale parameter in the [1, 5] range, and for each sample the output of the
EGBO estimator was compared with the true ML estimate by means of a relative
absolute error defined as e = (γ ∗− γ̂ )/γ ∗, where γ̂ is the scale parameter estimated
by the ELM estimator.

The mean of the relative error turns out to be equal to 0.029, which indicates how
the EGBO approach can yield an accurate estimation for a wide range of values
of the unknown parameter of the distribution. Figure 3 reports the boxplot of the
errors for all the 100 test samples, together with an illustration of the variability of
the Rayleigh distribution in the considered range. The time to run the algorithm to
compute γ̂ was 29 s.
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Fig. 3 Left: boxplot of the errors for the 100 test samples in the maximum likelihood estimation
case. Right: illustration of the high variability of the Rayleigh distribution in the range considered
for the tests

5 Conclusions and Future Work

The gradient boosting technique has been investigated using the ELM model as the
base weak learner. This allows to extend the ELM paradigm to all the optimization
problems in which the cost/loss function is not based on a mean squared error
criterion, with a unified and very general approach. The resulting algorithm, that
we called EGBO, yields approximate solutions that retain the accuracy of the ELM,
since the output is an ensemble of ELMs that still has the structure of a single ELM.
Furthermore, since each step of the algorithm is based on the pseudoinversion of
small matrices, the method is very fast, and applicable also to large datasets through
batch optimization.

To showcase the versatility and accuracy of the proposed methodology, the
EGBO algorithm has been applied to three important instances of optimization
problems in which the cost/loss function is not a sum of squares: optimal control,
multistage optimization, and maximum likelihood estimation. In all these examples
the EGBO has yielded approximate solutions that compare very well with the opti-
mal/reference ones, confirming its accuracy despite the generality of the approach.

Future work will be aimed at optimizing the performance of the method, and
extensively investigating the convergence of Algorithm 1.
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A MILP Model for Biological Sample
Transportation in Healthcare

Mario Benini, Paolo Detti, and Garazi Zabalo Manrique de Lara

Abstract In this paper, a real-world transportation problem is addressed, concern-
ing the collection and the transportation of blood and biological sample tubes from
draw centers to a main hospital. Blood and other biological samples are collected
in different centers during morning hours and have to be transported to the main
hospital by a fleet of vehicles. Each sample has a given lifetime, i.e., a deadline. If
a sample can not arrive to the hospital before the deadline either is discarded or a
stabilization process must be carried out in dedicated centers. After stabilization, a
sample can be delivered to the main hospital by a new deadline. A time-indexed
Mixed Integer Linear Programming formulation of the problem is provided and
tested on different instances generated from real-life data.

Keywords Transportation in healthcare · Vehicle routing · Mathematical
programming

1 Introduction

The transportation problem addressed in this paper arises from a real-world health-
care application, concerning the reorganization of the collection, transportation
and analysis of biological sample tubes in Bologna, Italy. The reorganization
consists on the activation of a single laboratory, hereafter called HUB, that has in
charge the analysis of all the samples collected at the draw centers located in the
metropolitan area, and of a number of laboratories devoted to the preprocessing of
the samples, called Spoke Centers. The main objective of the reorganization project
is of optimizing laboratory processes, standardizing procedures and introducing a
single control system. In this new system (operating from 2016), blood and other
biological samples are drawn out in different centers, usually during morning hours
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and then transported to the HUB. Each sample has a limited lifetime, i.e., a deadline,
and has to arrive to the HUB by the lifetime. When a sample can not arrive to the
HUB by the lifetime either is discarded or can be preprocessed, i.e., stabilized,
at a Spoke Center, hereafter also called spoke, to give it an extra lifetime. The
stabilization of a sample takes some time and, after stabilization, a sample can be
delivered to the HUB by a new deadline. Vehicles devoted to the transportation
of the samples are located in geographically distributed depots. When samples are
transported to a Spoke Center by a vehicle, the vehicle does not have to wait until
the end of the stabilization process, but can depart after dropping the samples off.
Then, another vehicle will pass to pick up the samples after the stabilization process
is finished.

The problem consists in collecting all samples and in delivering them to the HUB
on time, eventually by using the spokes to gain samples’ extra lifetime.

In this work, we propose a mathematical programming model including all the
characteristics of the problem. It allows to minimize the total travel time while
delivering all samples on time to the HUB, i.e. within their deadlines.

In the literature there are different works that address blood sample collection
problems, [2–4, 7, 8]. In [2], a transportation problem originating from the blood
collection process of the Austrian Red Cross blood program is addressed. The
problem is modeled as a vehicle routing problem with multiple interdependent
time windows, and solved by a mixed-integer programming formulation and
different heuristics. Grasas et al. [3] consider the problem of sample collection
and transportation from different collection points to a core laboratory for testing
in Spain. The problem is modeled as a variant of the capacitated vehicle routing
problem with open routes and route length constraints, and a heuristic based on a
genetic algorithm is proposed. A similar problem is addressed in [7] where a mobile
blood collection system is designed and a routing problem is proposed with the
aim of transporting blood samples from blood mobile draw centers to the depot. A
mathematical model and a 2-stage IP based heuristic algorithm are proposed to solve
the problem. In [4], a vehicle routing problem is addressed for blood transportation
between hospitals or donor/client sites. A hybrid meta-heuristic algorithm including
genetic algorithms and local search is developed able to reduce the cost and the
response time for emergency. In [8], the problem of allocating units of blood from
a regional blood transfusion centre to the hospitals of its area is considered. The
problem is formulated as a multiobjective transportation problem.

A new feature of the problem addressed in this paper is the possibility of
stabilizing samples in Spoke Centers to gain extra lifetime, that can be used to
deliver a sample to the main hospital on time. From a modeling point of view, Spoke
Centers can be modeled as transfer points, where the sample may be “transferred”
from one vehicle to another, after the end of the stabilization process. Indeed, the
vehicle delivering a sample to a Spoke Center does not have to wait until the
end of the stabilization process, but may depart after dropping the samples off.
Transportation problems with transfers have been addressed in the literature [1, 5, 6].
In [6], the pickup-and-delivery problem in which transfers are allowed is addressed,
and mixed integer-programming formulations are proposed and evaluated. The
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pickup-and-delivery problem with transfers is also addressed in [5]. The authors
propose heuristics capable of efficiently inserting requests through transfer points
and embed them into an Adaptive Large Neighborhood Search (ALNS) scheme.
The approach is evaluated on real-life instances. Cortes et al. [1] address Dial-a-
Ride problems where passengers may be transferred from one vehicle to another
at specific locations. A mathematical programming formulation is presented and a
solution method based on Benders decomposition is proposed.

In this paper, a time-indexed Mixed Integer Linear Programming (MILP) model
is provided able to represent all the characteristics of the problem. Time indexing
is used to model the possibility of multiple visits of the Spoke Centers by the same
vehicle and/or the same sample (even if a sample can be stabilized at most once). A
preliminary computational campaign on different sets of instances based on real-life
data is presented. The paper is organized as follows. In Sect. 2 a detailed description
of the problem is presented. Section 3 describes the MILP model. The preliminary
computational results are reported in Sect. 4.

2 Problem Description

In the addressed problem, a set of transportation requests, i.e., biological samples,
must be carried from draw centers to the HUB. A fleet of vehicles, located
in geographically distributed depots is available to perform the transportation
requests. Given the small dimension of the samples, vehicles can be considered with
unlimited capacity. The problem consists in assigning the transportation requests to
the vehicles and in finding the routing of each vehicle in such a way that: (1) all the
samples are delivered on time to the HUB; (2) the total travel time is minimized.
Some constraints must be taken into account, regarding the arrival to the main
hospital of the samples and the fulfillment of the time windows on the pickup
locations. In fact, a sample must be delivered to the hospital before a pre-specified
time span from its withdrawal. In other words, each sample has a lifetime, defining
a deadline in which the sample has to be delivered to the main hospital.

The pickups of the samples can be performed during the opening hours of the
draw centers, and pickup and delivery operations require given times to load or
unload a request. If a request can not be delivered to the HUB by the deadline,
a stabilization process can be performed that will give an extra lifetime to the
biological sample. The stabilization process is made in geographically distributed
Spoke Centers. Observe that, in a Spoke Center, a vehicle can depart after dropping
the samples off, and another vehicle can pass to pick up the sample after the end of
the stabilization process. Figure 1 shows a scheme of the two transportation modes
of a request: either directly from the draw center to the HUB or first from the draw
center to a Spoke Center and then to the HUB.

In the remainder of this section, notation is introduced and a formal definition of
the problem is given. Let G = (V ,A) be a complete directed graph, where V =
{P ∪ S ∪ D ∪ H } is the node set and A = {(i, j) : i, j ∈ V } is the arc set.
P = {p(r) : r ∈ R} is the set of pickup nodes of the transportation requests,
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Draw Center HUB
Lifetime LT

Spoke Center

Lifetime LT
Extra

lifetime ET

Fig. 1 Transportation modes of a sample

S = {1, . . . , |S|} is the set of spoke nodes, D = {d(k) : k ∈ K} is the set of
depot nodes and H is the HUB node. Let K = {1, . . . , |K|} be the set of vehicles
and R = {1, . . . , |R|} be the set of requests. For modeling reasons, we associate one
pickup node with each request in the set of requestsR. Then, the requests that belong
to the same draw center have different pickup nodes with the same physical location.
For each request r in R, LTr is the lifetime of request r , ET is the extra lifetime
gained if r is processed in a Spoke Center, and [er , lr ] is the related pickup time
window. The lifetime LTr is the deadline of request r in R when no stabilization
process is performed. On the other hand, if request r is processed in a Spoke Center
(i.e., if it is stabilized), the new deadline within which request r must be delivered
to the HUB is ET . The time window [er , lr ] of each request r ∈ R imposes that
request r can only be picked up from its pickup location between time er and lr . A
vehicle is allowed to arrive at the location of r before the start of the time window,
but it has to wait until er to begin the loading operation. The service time related
to the loading/unloading operation is st at each node. The stabilization time is stbt
at each spoke for each request. Finally, let T T = {0, 1, . . . , T } be the time interval
considered for the time indexing of the variables. The problem is that of finding
routes onG such that: each pickup node i ∈ P is visited exactly once in the interval
[ei, li]; each request is stabilized in a Spoke Center at most once; each request must
be delivered to the HUB before its lifetime or its extra lifetime after the stabilization;
the total travel time of the routes is minimized.

3 A Time-Indexed MILP Formulation for the Problem

In this section, a MILP formulation for the addressed problem is presented, in which
both integer and real variables are used. The variables are listed below.

– Ai arrival time of a vehicle at a node i to pick up the relative request;
– Bi beginning of the loading service of the relative request at node i;
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– A
j
r arrival time of a request r at the spoke j for stabilization;

– P
j
r departure time of a request r from the spoke j where r is picked up after

stabilization;
– PT

j
r departure time of a request r from the spoke j where r is just transited;

– Ar+n arrival time of request r to the HUB;
– xktij ∈ {0, 1} be equal to 1 if vehicle k traverses arc (i, j) arriving in j at t and 0

otherwise;
– ykrtij ∈ {0, 1} is 1 if vehicle k traverses arc (i, j) carrying request r arriving in j

at t and 0 otherwise;
– zkrtj ∈ {0, 1} be equal to 1 if vehicle k arrives in spoke j at t to leave request r

and 0 otherwise;
– wkrtj ∈ {0, 1} be equal to 1 if vehicle k arrives in spoke j at t to pick up request
r and 0 otherwise.

The objective function reads as:

min
∑

t∈T T

∑

k∈K

∑

(i,j)∈A
tij x

kt
ij (1)

The constraints of the model can be divided into three classes: (i) Flow Constraints,
describing the vehicle and request flows; (ii) Spoke Constraints, describing how the
spoke nodes work; (iii) Time Constraints, imposing the timing restrictions of the
problem and the compliance of visit instants of the nodes. In what follows, the Flow
Constraints of the formulation are reported.

∑

t∈T T

∑

j∈N,j �=d(k)
xktd(k)j ≤ 1,∀k ∈ K (2)

∑

t∈T T
xktHd(k) =

∑

t∈T T

∑

i∈N,i �=H
xktiH ,∀k ∈ K (3)

∑

t∈T T
xktij +

∑

t∈T T
xktj i ≤ 1,∀i ∈ D,∀j ∈ S,∀k ∈ K (4)

∑

t∈T T

∑

j∈N,j �=d(k)
xktd(k)j =

∑

t∈T T

∑

j∈N,j �=d(k)
xktjd(k),∀k ∈ K (5)

∑

t∈T T

∑

j∈N,j �=i
xktij −

∑

t∈T T

∑

j∈N,j �=i
xktj i = 0,∀k ∈ K,∀i ∈ N (6)

xktj i = 0,∀k ∈ K,∀t ∈ T T ,∀ji ∈ A : loc(i) = loc(j), e(i) < e(j) (7)
∑

t∈T T

∑

k∈K

∑

j∈N,j �=i
xktij = 1,∀i ∈ P (8)

∑

t∈T T

∑

k∈K

∑

j∈N,j �=p(r)
ykrtp(r)j = 1,∀r ∈ R (9)
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∑

t∈T T

∑

k∈K

∑

i∈N,i �=H
ykrtiH = 1,∀r ∈ R (10)

∑

t∈T T

∑

k∈K

∑

j∈N,j �=i
ykrtij −

∑

t∈T T

∑

k∈K

∑

j∈N,j �=i
ykrtj i = 0,∀r ∈ R,∀i ∈ S (11)

∑

t∈T T

∑

j∈N,j �=i
ykrtij −

∑

t∈T T

∑

j∈N,j �=i
ykrtj i = 0,∀r ∈ R,∀k ∈ K,∀i ∈ P \ p(r) (12)

∑

t∈T T

∑

k∈K

∑

j∈N,j �=p(r)
ykrtjp(r) = 0,∀r ∈ R (13)

∑

t∈T T

∑

k∈K

∑

j∈N,j �=p(r)
ykrtp(r)j −

∑

t∈T T

∑

k∈K

∑

j∈N,j �=p(r)
ykrtjp(r) = 1,∀r ∈ R (14)

ykrtij ≤ xktij ,∀r ∈ R,∀k ∈ K,∀(i, j) ∈ A,∀t ∈ T T (15)

Constraints (2) ensure that each vehicle leaves at most once from its depot, while
Constraints (3) state that a vehicle must come back to its depot after visiting the
HUB. Constraints (4) state that each vehicle can not go directly from its depot to
a spoke and come back to its depot immediately after. Constraints (5) ensure that
each vehicle that starts from its depot must return in the same depot. Vehicle flow
conservation is imposed by equalities (6), while Constraints (7) are used to forbid
sub-cycles between pickup nodes. Constraints (8) ensure, together with (6), that
each pickup node must be visited by exactly one vehicle. Constraints (9) and (10)
ensure that each request is served exactly once. Constraints (11) maintain the request
flow conservation at the spoke nodes allowing requests to switch from one vehicle to
another. Constraints (12) and (13) ensure the request flow conservation at the pickup
nodes requiring that every vehicle bringing a request must also leave carrying the
same request. Constraints (15) link variables x and y. The Spoke Constraints are:

∑

t∈T T

∑

k∈K

∑

j∈S
zkrtj ≤ 1,∀r ∈ R (16)

zkrtj ≤
∑

i∈N,i �=j
ykrtij ,∀j ∈ S,∀k ∈ K,∀r ∈ R,∀t ∈ T T (17)

∑

t∈T T

∑

k∈K
zkrtj =

∑

t∈T T

∑

k∈K
wkrtj ,∀j ∈ S,∀r ∈ R (18)

xktij ≤
∑

r∈R
zkrtj +

∑

r∈R
wkrtj ,∀j ∈ S,∀k ∈ K,∀i ∈ N, i �= j,∀t ∈ T T (19)

wkrtj ≤
t+st+stbt+st+tij∑

t1=t+st+tij

∑

i∈N,i �=j
y
krt1
ij ,∀j ∈ S,∀k ∈ K,∀r ∈ R,∀t ∈ T T (20)
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wkrtj ≤
∑

i∈N,i �=j
xktij ,∀j ∈ S,∀k ∈ K,∀r ∈ R,∀t ∈ T T (21)

∑

h∈N
x
kt+st+tih
ih ≥ 1−M[(1− zkrti )+

∑

h∈N,h �=j
x
kt+st+tih
ih +

∑

r1∈R
w
kr1t
i (22)

∀i ∈ S,∀j ∈ N,∀k ∈ K,∀r ∈ R,∀t ∈ T T
x
kt1
ij ≤ M(1− zkrti )+M(1− wkrti ),∀i ∈ S,∀j ∈ N,∀k ∈ K,∀r ∈ R, (23)

∀t ∈ T T ,∀t1 ∈ T T : t ≤ t1 ≤ t + st + stbt + st + tij
Constraints (16) impose each request to be stabilized in a spoke at most once.

Constraints (17) link variables y and z, while Constraints (18) ensure that, if a
request is left in a spoke node for the stabilization, then it must be picked up
from that spoke node. Constraints (19)–(21) ensure the matching of time indexed
variables when a request is downloaded or picked up at a certain spoke node.
Constraints (22) impose that a vehicle can wait at a spoke node only if it has to
pick up a request. Constraints (23) state that if a vehicle arrives at a spoke node at
the same time instant both to download and to pick up the same request, then it can
not leave that spoke node within the time interval between that time instant and the
end of the stabilization of that request. Time Constraints can be modeled as:

er ≤ Bp(r) ≤ lr ,∀r ∈ R (24)

Bi ≥ Ai, ∀i ∈ P (25)

A
j
r ≤ M

∑

t∈T T

∑

k∈K
zkrtj , ∀j ∈ S,∀r ∈ R (26)

P
j
r ≤ M

∑

t∈T T

∑

k∈K
zkrtj , ∀j ∈ S,∀r ∈ R (27)

P
j
r ≥ Bjr + 2st + stbt −M(1−

∑

t∈T T

∑

k∈K
zkrtj ),∀j ∈ S,∀r ∈ R (28)

A
j
r − er + st ≤ LTr

∑

t∈T T

∑

k∈K
zkrtj , ∀j ∈ S,∀r ∈ R (29)

Ar+n + st − [Ajr + (st + stbt)
∑

t∈T T

∑

k∈K
zkrtj ] ≤

ET
∑

t∈T T

∑

k∈K
zkrtj +M(1−

∑

t∈T T

∑

k∈K
zkrtj ),∀j ∈ S,∀r ∈ R (30)

Ar+n + st − er ≤ LTr(1−
∑

t∈T T

∑

k∈K

∑

j∈S
zkrtj )+M

∑

t∈T T

∑

k∈K

∑

j∈S
zkrtj ,∀r ∈ R (31)

Time windows compliance is ensured by Constraints (24), while Constraints (25)
state that the service at a pickup node can start after the arrival of a vehicle.
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Constraints (26) and (27) set to zero the arrival and departure time variables of
a request at each spoke node if that request is never left in that spoke for the
stabilization (M is a big enough constant). Constraints (28) state that a stabilized
request can depart from the spoke after the end of the stabilization. Constraints (29)–
(31) ensure the maximum ride time compliance whether a request is stabilized
or not. The following constraints (from (32) to (60)) ensure the time compliance
between consecutively visited nodes (all possible scenarios are considered).

1. Both the starting node and the arrival node are pickup nodes. Then these
constraints are ∀i, j ∈ P,∀r ∈ R,∀k ∈ K,∀t ∈ T T :

Aj ≥ tykrtij − li (1− ykrtij ) (32)

Aj ≤ tykrtij +M(1− ykrtij ) (33)

– If tij = 0:

Aj ≥ Bi − li (1− ykrtij ) (34)

Aj ≤ Bi +M(1− ykrtij ) (35)

– If tij �= 0:

Aj ≥ Bi + st + tij − (li + st + tij )(1− ykrtij ) (36)

Aj ≤ Bi + st + tij +M(1− ykrtij ) (37)

2. The starting node is a pickup node while the arrival node is a spoke node.
Two possible sub-scenarios exist. The following constraints hold ∀i ∈ P,∀j ∈
S,∀r ∈ R,∀k ∈ K,∀t ∈ T T :

– If request r is left in j :

A
j
r ≥ Bi + st + tij − (li + st + tij )[(1− ykrtij )+ (1− zkrtj )] (38)

A
j
r ≥ tzkrtj − li[(1− ykrtij )+ (1− zkrtj )] (39)

A
j
r ≤ Bi + st + tij +M[(1− ykrtij )+ (1− zkrtj )] (40)

A
j
r ≤ tzkrtj +M[(1− ykrtij )+ (1− zkrtj )] (41)

– If request r is picked up in j :

P
j
r ≥ Bi + st + tij − (li + st + tij )[(1− xktij )+ (1− wkrtj )] (42)

txktij ≥ Bi + st + tij −M(1− xktij ) (43)
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txktij ≤ Bi + st + tij +M(1− xktij ) (44)

3. The starting node is a spoke node while the arrival node is a pickup node. Also
in this case there are two possible sub-scenarios. Then, ∀j ∈ P,∀i ∈ S,∀r ∈
R,∀k ∈ K,∀t ∈ T T , we have:

– If request r is picked up in i:

Aj ≥ P ir + tij −M[(1− ykrtij )+ (1−
t−ti j−st∑

t1=t−tij−st−stbt−st
w
krt1
i )] (45)

Aj ≥ tykrtij −M(1− ykrtij ) (46)

Aj ≤ P ir + tij +M[(1− ykrtij )+ (1−
t−ti j−st∑

t1=t−tij−st−stbt−st
w
krt1
i )] (47)

Aj ≤ tykrtij +M(1− ykrtij ) (48)

– If request r is left in i:

Aj ≥ Air + st + tij −M[(1− xktij )+ ykrtij + (1− zkrt+st+tiji )] (49)

Aj ≥ txktij −M(1− xktij ) (50)

Aj ≤ Air + st + tij +M[(1− xktij )+ ykrtij + (1− zkrt+st+tiji )] (51)

Aj ≤ txktij +M(1− xktij ) (52)

4. Both the starting node and the arrival node are spoke nodes. Then, we have
to consider four possible sub-scenarios. The following constraints hold ∀i, j ∈
S,∀r ∈ R,∀k ∈ K,∀t ∈ T T :

– If request r is picked up in i and request h is left in j :

A
j
h ≥ P ir + tij −M[(1− ykrtij )+ (1− ykhtij )+ (1− zkhtj )+ (1−

t−ti j−st∑

t1=t−tij−st−stbt−st
w
krt1
i )] (53)

A
j
h ≥ tzkhtj −M[(1− ykrtij )+ (1− ykhtij )+ (1− zkhtj )] (54)

– If request r is left in i and request h is left in j :

A
j
h ≥ Bir + st + tij −M[(1− ykhtij )+ ykrtij + (1− zkhtj )+ (1− zkrt−st−tiji )] (55)

A
j
h ≥ tzkhtj −M[(1− ykhtij )+ (1− zkhtj )] (56)
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– If request r is picked up in i and request h is picked up in j :

P
j
h ≥ P ir + tij + st −M[(1− ykrtij )+ ykhtij + (1− wkhtj )

+(1−
t−ti j−st∑

t1=t−tij−st−stbt−st
w
krt1
i )] (57)

P
j
h ≥ (t + st)wkhtj −M[(1− ykhtij )+ (1− wkhtj )] (58)

– If request r is left in i and request h is picked up in j :

P
j
h ≥ Bir + st + tij + st −M[(1− xktij )+ ykrtij + ykhtij

+(1− wkhtj )+ (1− zkrt−st−tiji )] (59)

P
j
h ≥ (t + st)wkhtj −M[(1− xktij )+ (1− wkhtj )] (60)

Constraints (32)–(37) ensure time continuity whether both the departure node
and the arrival node are pickup nodes using the Big-M technique. In particular,
Constraints (32) and (33) enable the continuous variables to match with the (time
indexed) binary variables. When two pickup nodes are related to the same physical
location, Constraints (34) and (35) ensure that the arrival time in j is equal to the
beginning of the service in i. On the other hand, if the two nodes are related to
different locations, Constraints (36) and (37) state that the arrival time in j must
be equal to the beginning of the service in i plus the service time plus the travel
time from i to j . Similarly, Constraints (38)–(44) ensure time continuity compliance
when the departure node is a pickup node and the arrival node is a spoke node. More
precisely, Constraints (38)–(41) only are active when a request is left in the spoke
node for the stabilization, while Constraints (42)–(44) only work when a request
is picked up from the spoke node. In the same way, Constraints (45)–(52) ensure
the time continuity compliance when the departure node and the arrival node are,
respectively, a spoke node and a pickup node. Constraints (53)–(60) ensure the time
continuity compliance when both the departure node and the arrival node are spoke
nodes, by covering every possible scenario.

PT
j
r1 ≥ PT jr2 −M[(1− ykr1tij )+ zkr1tj + (1− wkr2tj )]

∀k ∈ K,∀r1, r2 ∈ R : r1 �= r2,∀i ∈ N,∀j ∈ S,∀t ∈ T T (61)

PT
j
r1 ≥ (t + st)ykr1tij −M[(1− ykr1tij )+ zkr1tj + (1− wkr2tj )]

∀k ∈ K,∀r1, r2 ∈ R : r1 �= r2,∀i ∈ N,∀j ∈ S,∀t ∈ T T (62)

PT
j
r1 ≥ Bjr2 + st −M[(1− ykr1tij )+ (1− ykr2tij )+ zkr1tj + (1− zkr2tj )]
∀k ∈ K,∀r1, r2 ∈ R : r1 �= r2,∀i ∈ N,∀j ∈ S,∀t ∈ T T (63)

PT
j
r1 ≥ (t + st)ykr1tij −M[(1− ykr1tij )+ (1− ykr2tij )+ zkr1tj + (1− zkr2tj )]
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∀k ∈ K,∀r1, r2 ∈ R : r1 �= r2,∀i ∈ N,∀j ∈ S,∀t ∈ T T (64)

Ar+n ≥ PLT jr + tjH −M(1− ykrtjH ),∀k ∈ K,∀r ∈ R,∀j ∈ S,∀t ∈ T T (65)

Ar+n ≥ P jr + tjH −M(1− ykrtjH ),∀k ∈ K,∀r ∈ R,∀j ∈ S,∀t ∈ T T (66)

Ar+n ≥ tykrtjH −M(1− ykrtjH ),∀k ∈ K,∀r ∈ R,∀j ∈ S,∀t ∈ T T (67)

Ar+n ≤ tykrtjH +M(1− ykrtjH ),∀k ∈ K,∀r ∈ R,∀j ∈ S,∀t ∈ T T (68)

Ar+n ≥ Bi + st + tiH −M(1− ykrtiH ),∀k ∈ K,∀r ∈ R,∀i ∈ P,∀t ∈ T T (69)

Ar+n ≥ tykrtiH −M(1− ykrtiH ),∀k ∈ K,∀r ∈ R,∀i ∈ P,∀t ∈ T T (70)

Ar+n ≤ Bi + st + tiH −M(1− ykrtiH ),∀k ∈ K,∀r ∈ R,∀i ∈ P,∀t ∈ T T (71)

Ar+n ≤ tykrtiH −M(1− ykrtiH ),∀k ∈ K,∀r ∈ R,∀i ∈ P,∀t ∈ T T (72)

A
j
r1 ≥ Ajr2 −M[(1− zkr1tj )+ (1− zkr2tj )+ (1− ykr1tij )+ (1− ykr2tij )]

∀k ∈ K,∀r1, r2 ∈ R,∀i ∈ N,∀j ∈ S,∀t ∈ T T (73)

A
j
r1 ≤ Ajr2 +M[(1− zkr1tj )+ (1− zkr2tj )+ (1− ykr1tij )+ (1− ykr2tij )]

∀k ∈ K,∀r1, r2 ∈ R,∀i ∈ N,∀j ∈ S,∀t ∈ T T (74)

P
j
r1 ≥ P jr2 −M[(1− wkr1tj )+ (1− wkr2tj )],∀k ∈ K,∀r1, r2 ∈ R,∀j ∈ S,∀t ∈ T T (75)

P
j
r1 ≤ P jr2 +M[(1− wkr1tj )+ (1− wkr2tj )],∀k ∈ K,∀r1, r2 ∈ R,∀j ∈ S,∀t ∈ T T (76)

Ar1+n ≥ Ar2+n −M[(1− ykr1tiH )+ (1− ykr2tiH )],∀k ∈ K,∀r1, r2 ∈ R,∀i ∈ N,∀t ∈ T T (77)

Ar1+n ≤ Ar2+n +M[(1− ykr1tiH )+ (1− ykr2tiH )],∀k ∈ K,∀r1, r2 ∈ R,∀i ∈ N,∀t ∈ T T (78)
∑

t∈T T

∑

j∈N,j �=i
ykrtij −

∑

t∈T T

∑

j∈N,j �=i
ykrtj i ≤ M

∑

t∈T T
zkrti ,∀r ∈ R,∀i ∈ S,∀k ∈ K (79)

∑

t∈T T

∑

j∈N,j �=i
ykrtij −

∑

t∈T T

∑

j∈N,j �=i
ykrtj i ≥ −M

∑

t∈T T
zkrti ,∀r ∈ R,∀i ∈ S,∀k ∈ K (80)

wkrti ≤
T T∑

q=t+1

∑

j∈N,j �=i
ykrtjH ,∀r ∈ R,∀i ∈ S,∀k ∈ K (81)

t−1∑

q=1

∑

j∈N,j �=i
ykrtp(r)j ≥ zkrti ,∀r ∈ R,∀i ∈ S,∀k ∈ K (82)

T T∑

q=t+stab

∑

k∈K
w
krq
i ≥

∑

k∈K
zkrti ,∀r ∈ R,∀i ∈ S,∀t = 1, . . . , T T − stbt (83)

Aj ≥ txktij −M(1− xktij ),∀k ∈ K,∀i ∈ D,∀j ∈ P,∀t ∈ T T (84)

Aj ≤ txktij +M(1− xktij ),∀k ∈ K,∀i ∈ D,∀j ∈ P,∀t ∈ T T (85)

Aj ≥ tij −M(1− xktij ),∀k ∈ K,∀i ∈ D,∀j ∈ P,∀t ∈ T T (86)
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Constraints (61)–(64) define the departure time of a request from a spoke when it
only transits without being downloaded for stabilization. In fact, it is possible that a
vehicle visits a spoke node to download or to pick up a request without downloading
the other requests that it is carrying on. Constraints (65)–(68) (Constraints (69)–
(72)) define the arrival time of a request at the HUB when the previous visited node
is a spoke (the previous visited node is a pickup node). Constraints (73)–(78) link
the variables of departure and arrival time at spoke nodes and the arrival time at the
HUB of different requests carried by the same vehicle. Constraints (79)–(80) state
that a request can change vehicle at a spoke only if it is stabilized. Constraints (81)
impose that a request is picked up and eventually delivered to a spoke by the same
vehicle, and Constraints (82) impose that a request is eventually picked up from
a spoke and delivered to the HUB by the same vehicle. Constraints (83) state that
a request can be picked up from a spoke after the stabilization process. Finally,
Constraints (84)–(86) define the arrival time at a pickup node if the previous node
is a depot.

4 Preliminary Computational Results

A preliminary experimental campaign has been performed on different instances
generated by using real data. According to the real data, in a center, a sample
is drawn every 3 min, approximately. The lifetime of a sample is 90 min. The
stabilization process takes 20 min and gives to the stabilized sample 90 min of
(extra) lifetime (see Fig. 1). The service time required by a vehicle to load or unload
samples at a draw center or at a Spoke Center is sti = 10 min. According to the
data introduced above, 13 instances have been generated and solved. The MILP
formulations have been solved by the solver Gurobi on a PC equipped with Intel i5
processor and 8 Gb of RAM. In our experiments, we consider different lengths of
the time steps contained in time interval T T , i.e., 1 or 5 min. Obviously, the bigger
the time step is the smaller the number of variables of the MILP is. Table 1 shows
the results. In the first 5 columns, for each instance, the instance id, the time step
used, and the number of requests, vehicles and spokes are reported. Columns 6–9
respectively report the number of B&B nodes, the first and best lower bounds at
the root node, the optimal solution value and the computational time attained by the
solver Gurobi. A “*” in Column 9 indicates that a time limit has been reached, i.e.,
the optimality of the solution has not been certified. Instances 2 and 7 are the same
instance solved with different time steps: by increasing the time step from 1 to 5 min
the computational time drops from about 23 to 1.29 s. Similarly, the computational
time of instances 6 and 8 (the same instance in which only the time step varies) drops
from about 1536 to 56 s, about a 95% decrease in the computational time with an
acceptable approximation. Instance 9a (Instance 9b) has been obtained by Instance
9 by adding a new spoke (a new spoke and a new vehicle). Instance 10a has been
obtained by Instance 10 by adding a new spoke and a new vehicle, too. Observe that,
an optimal solution can be found on Instances 9 and 10 in at most 4 h. However, by
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Table 1 Computational results

Id Time step |R| |K| |S| B&B nodes First/Best LB Obj. Time (s)

1 1 2 2 1 0 120/120 120 9.98

2 1 3 1 1 696 160/160 241 22.97

3 1 4 2 1 5060 314/314 366 222.26

4 1 5 3 1 0 235/276 276 230.87

5 1 8 3 1 5132 423/423 475 1500.45

6 1 9 4 1 0 502/502 502 1535.72

7 5 3 1 1 0 55/145 145 1.29

8 5 9 4 1 0 295/330 330 56.78

9 5 12 6 1 2081 390/455 710 2945.97

9a 5 12 6 2 2928 390/623 710 28,880*

9b 5 12 7 2 2955 390/517.7 710 28,880*

10 5 15 8 1 22,002 390/485 715 14,021.33

10a 5 15 9 2 46 390/403.7 710 43,200*

increasing the number of spokes and vehicles, the optimality of the solution can
not be certified even within 8 h (Instances 9a and 9b) and 12 h (Instance 10a) of
computation. Furthermore, during the Branch&Cut procedure, no feasible solution
is found for Instances 9a and 9b (Instance 10a) within 4 h (8 h) of computation.
Finally, we note that for Instance 10a we get a feasible solution with value strictly
better than the optimal solution of Instance 10.

5 Conclusion

In this paper, a transportation problem arising from a real-world healthcare appli-
cation has been presented, in which biological samples must be transported from
draw centers to a main laboratory by their lifetimes. Dedicated centers, called
Spoke Centers, can be used to gain extra lifetimes for the samples. In the problem,
Spoke Centers can be modeled as transfer points where a request can be assigned
to a different vehicle, after the stabilization process is concluded. A MILP model
has been proposed for the problem and tested on instances generated from real
data. As shown by the results and as expected, the model can be directly used to
optimally solve small instances of the problem. However, different heuristics could
be developed to solve bigger real-world problems: the whole area of interest can
be partitioned into a certain number of sub-areas and one sample transportation
problem can be solved for each sub-area; the MILP model can be employed in a
matheuristic scheme to find feasible solutions in a reduced amount of time. Finally
we point out that, thanks to the time indexing, our model can be used to account
the time-dependency of the data, e.g., the variation of travel times depending on the
hour of the day.
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Infinite Kernel Extreme Learning
Machine

Elisa Marcelli and Renato De Leone

Abstract This paper addresses the analysis of the problem of combining Infinite
Kernel Learning (IKL) approach and Extreme Learning Machine (ELM) structure.
ELM represents a novel and promising alternative to Neural Networks, for its sim-
plicity in implementation and high efficiency, especially concerning convergence
and generalization performance. A currently underdeveloped topic concerning ELM
implementation is given by the optimization process of base kernels: choosing
different kernel combinations may lead to very dissimilar performance results.
An innovative ELM approach using a combination of multiple kernels has been
proposed in Liu et al. As a change of paradigm, we are interested in using an
infinite set of base kernels, defining in this way an original ELM based algorithm
called Infinite Kernel Extreme Learning Machine (IK-ELM). About that, a novel 3-
step algorithm combining IKL and ELM is proposed. Finally, a brief analysis about
further possible directions is discussed.

Keywords Extreme learning machine · Infinite kernel learning · Feedforward
neural network

1 Introduction

Extreme Learning Machine (ELM) is a supervised Machine Learning (ML) algo-
rithm first introduced in 2004 [7] which may be considered a cross between
feedforward neural network and Support Vector Machine (SVM). Specifically, ELM
has the structure of classical feedforward neural networks with one or multiple
hidden layers but is characterized by a fundamental feature: hidden nodes variables
(i.e., parameters and weights) need not to be tuned but are randomly assigned at
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the beginning of the algorithm and remain fixed throughout all its duration. In this
way, ELM is marked by less computational complexity, moving from an iterative
based approach to a one-step type of algorithm, maintaining however a remarkable
performance compared to classical ML methods. ELM proposes an algorithm with
two important features that characterize it from classical ML approaches: better
generalization performance and faster convergence. Specifically, it achieves the first
since it not only aims to minimize the approximation error, given by the difference
between the expected output and the computed result, but it also looks for the
smallest norm weights. The basic idea behind ELM is to implement a method
that can improve the learning speed of classical single-hidden layer feedforward
neural networks (SLFNs). Specifically, when a feedforward network is used, in
order to obtain the optimal parameters all weights and biases characterizing each
layer have to be tuned, making the learning algorithm quite slow. Moreover, among
the most used algorithms to solve the problem we find gradient method, which is
usually characterized by a slow convergence and may converge to local minima.
In the first place, ELM was introduced in the field of SLFNs with the aim of
solving these issues, developing a model which could reduce the learning speed
and at the same time reach a global optimum [7–9]. Later on, it was broaden to
the general field of SLFNs. The key idea behind ELM affects the hidden layer: the
parameters of hidden nodes need not to be learned but are randomly chosen as an
initial step of the algorithm. In particular, let us consider a SLFN with L hidden
nodes and m output nodes and let {xi, yi}Ni=1 be the training set with xi ∈ R

n

and yi = [yi1, . . . , yim]T ∈ R
m, with yij ∈ {0, 1} whether or not xi belongs

to the jth class, 1 ≤ j ≤ m. Then, given a general input xi , a classical ELM
architecture is mathematically modelled as f (xi) = ∑K

k=1 βkhk(x
i) = h(xi)Tβ,

where β = [β1, . . . , βK ]T is the output weight vector, connecting the hidden layer
with the output layer, and h : Rn −→ R

K maps data from the n-dimensional input
space to the K-dimensional hidden space. Specifically, hk(xi) = gk(ak, bk, x

i) is
the activation function (or output function) of the kth hidden node with respect to
input xi and parameters (ak, bk). Note that, the activation function is decided at the
beginning of the algorithm and fixed throughout all its length and may not be unique,
meaning that each hidden node may have assigned a different output function.

In this paper we wish to define a new approach called Infinite Kernel Extreme
Learning Machine combining ELM together with the approach of Infinite Kernel
Learning (IKL), i.e., using a possibly infinite set of base kernels. Given a generic
data set X, kernel methods are based on the idea of projecting points into a higher
dimensional space F in order to apply simple linear processes in such a space. This
projection is not done in a direct way, i.e., computing the coordinates of data in
the new space, but with the use of the so called kernel functions: specific functions
that allow to operate in high dimensions just computing the inner products of the
images of the data. Specifically, given a function φ : X −→ F, a kernel function is
a function k such that k(xi, xj ) = 〈φ(xi), φ(xj )〉 for all xi, xj ∈ X, where 〈·, ·〉 is
the scalar product in space F. Nowadays kernel methods are mainly used in shallow
structures such as SVM [16, 17] but may also be used in more complex architectures
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[4]. The most immediate and important advantage that comes from using kernel-
based algorithms is the fact that computing the inner products may actually be
computationally less expensive than calculating the new coordinates of the points.
The choice of the kernel is a crucial issue in these algorithms: different kernels
will describe different nonlinear functions and the performance of the method will
often depend on the appropriate choice of the kernel. The structure of this paper is
organized as follows. In Sect. 2 we provide an overview about ELM. In Sect. 3 we
take stock on the theory on the base of IKL. In Sect. 4 we present our approach.
Finally in Sect. 5 we draw conclusions.

2 Extreme Learning Machine

Similarly to feedforward neural networks, ELM has the goal of minimizing the
training error but at the same time it aims to reach the smallest norm of the output
weights βk as well: as underlined in [3], the number of parameters does not effect the
generalization performance of the network, on the contrary, the size of the weights
tends to have affects on the accuracy of the algorithm. In order to obtain such
expected results, the concept of minimum norm least-square solution of a general
linear system is used. Given a training set {xi, yi}Ni=1, let H ∈ R

N×K and Y ∈ R
N×m

respectively be the hidden layer output matrix and the matrix containing all the
labels yi for i = 1 . . . N , namely

H =
⎡

⎢⎣
h(x1)
...

h(xN)

⎤

⎥⎦ =
⎡

⎢⎣
h1(x

1) . . . hK(x
1)

...
...

...

h1(x
N) . . . hK(x

N)

⎤

⎥⎦ , Y =
⎡

⎢⎣
(y1)

T

...

(ym)T

⎤

⎥⎦ =
⎡

⎢⎣
y1

1 . . . y
1
m

...
...

...

yN1 . . . yNm

⎤

⎥⎦ .

ELM key idea is to solve the following problem

minimize: ||Hβ − Y||p1
q and ||β||p2

q

In this way, the method tends to have a better generalization performance with
respect to classical feedforward neural networks. In particular, its goal is not only
reducing the approximation error, meaning the gap between the given and the
computed output, but it also looks for the smallest norm weights: β is sought to be
the minimum norm least-square solution of the system ||Hβ −Y||, i.e., the smallest
norm solution among all the least-square solutions. Hence, ELM aims to solve the
following minimization problem

min
β∈RK×m

||Hβ − Y|| (1)
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The optimal solution to Problem (1) is given by β̂ = H†Y, with H† the Moore-
Penrose generalized pseudoinverse of matrix H. Note that, it was shown that this
special matrix H† is indeed the minimum norm least-square solution of Problem
(1) [7]. Moreover, the convergence speed is characterized by the fact that ELM
randomly assigns values to the hidden layer, only adjusting the output weights. In
this way, the classical minimization problem to be solved with iterative adjustments
becomes a one step algorithm computing the pseudoinverse of matrix H, reducing in
a deep way the speed of the algorithm. The Problem described above may be written
as

min
β∈RK×m

1

2
||β||2 + C

2

N∑

i=1

||ξ i ||2

s.t h(xi)β = yiT − ξ iT i = 1, . . . , N

(2)

where ξ i = [ξ i1, . . . , ξ iN ]T is the training error vector with respect to input xi and C
is the regularization parameter. Then, the Lagrangian function associated to Problem
(2) is

LELM(β, ξ, α) = 1

2
||β||2 + C

2

N∑

i=1

||ξ i ||2 −
N∑

i=1

m∑

j=1

αij (h(x
i)βj − yij + ξ ij ) (3)

where αi = [αi1, . . . , αim]T, i = 1, . . . , N , are the Lagrangian parameters
and α = [α1, . . . , αN ]T. The Karush-Kuhn-Tucker (KKT) optimality conditions
corresponding to (3) are

∂LELM

∂βj
= βj −

N∑

i=1

αijh(x
i)T = 0⇒ β = HTα (4a)

∂LELM

∂ξ i
= Cξi − αi = 0⇒ αi = Cξi, i = 1, . . . , N (4b)

∂LELM

∂αi
= h(xi)β − (yiT − ξ iT) = 0, i = 1, . . . , N (4c)

Based on the size of the data set and on the number of chosen hidden neurons,
different solutions of Problem (2) exist.

If N < L, i.e., the number of training data is not bigger than the number of
hidden neurons, matrix H has more columns than rows. In this specific scenario,

combining the equations above, we get β = HT
(

I
C
+ HHT

)−1
Y and the output
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function corresponding to the generic input value xi is

f (xi) =
K∑

k=1

βkhk(x
i) = h(xi)HT

(
I

C
+ HHT

)−1

Y (5)

Otherwise, if N > L, namely when a very big data set is considered, a different

solution is used. Specifically, β =
(

I
C
+ HTH

)
HTY and ELM classifier for a

generic input xi becomes

f (xi) =
K∑

k=1

βkhk(x
i) = h(xi)

(
I

C
+ HTH

)
HTY (6)

Note that, in Eqs. (5) and (6) respectively appear the products HHT and HTH:
these expressions are also known as ELM kernel matrix with elements of the form
h(xi) · h(xj ). In this context, it is important to underline that similar versions of
ELM exist for both regression and classification problems. Specifically, Saunders
et al. [15] proposes a ridge regression procedure with equality constraints, studying
its dual form using SVM as a reference. Regarding classification problems, least
square support vector machine (LS-SVM) [19, 20] modifies classical SVM structure
replacing the inequality constraints with equality constraints, getting a very similar
formulation to Problem (2).

In Sect. 3 we propose a brief analysis summary concerning the idea of Infinite
Kernel Learning.

3 Infinite Kernel

The choice of kernel may cause relevant differences in terms of performance.
Kernel-based algorithms effectively deal with the problem of choosing the “best”
kernel. The use of the so called Multiple Kernel Learning (MKL) [2, 12] was
proposed and implemented in the case of classical SVM [18] and LS-SVM [10].
Given a predefined finite set of kernels, MKL combines these kernels learning
the combination parameters as part of the algorithm. Specifically, this combination
is given by K(·, ·) = ∑p

i=1 βiki(·, ·), where {ki(·, ·)}pi=1 and {βi}pi=1 are respec-
tively the predefined kernels and the associated combination coefficients such that∑p

i=1 βi = 1, to be found simultaneously with the other architecture parameters.
The next step in terms of performance is not to consider the number of base

kernels fixed. Specifically, as a direct application of Theorem 4.2 in [6], it can
be shown that fixing the number of base kernels finite is an unneeded limitation
and, consequently, that the search for combination parameters may be done over
a possibly infinite set of kernels. From a mathematical point of view, combining
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an infinite number of kernels may be represented as K(·, ·) = ∫
�
k(·, ·, θ) dβ(θ),

where θ ∈ � is a kernel parameter, i.e., specifies the associated type of kernel
k(·, ·, θ), and β is a monotonically increasing function such that

∫
�

dβ(θ) = 1.
These methods have been implemented in different contexts, for example [1, 5, 14],
all of them having in common the fact of considering the set of kernels as the convex
hull of a predefined set of continuously parametrized basic kernels. In particular,
Gehler and Nowozin [5] presents an interesting approach called Infinite Kernel
Learning (IKL) where the previously analysed approach of using a combination
of selected kernels is extended to a possible uncountable infinite set through a
practical approach. Such a method broadens the classical MKL formulation in the
field of SVM, optimizing the problem over a set of kernel parameters� of arbitrary
cardinality. Again, given a training set {xi, yi}Ni=1, the problem takes the following
form

inf
�f⊂�

min
β,v,ξ,b

1

2

∑

θ∈�f

1

βθ
||vθ ||2 + C

N∑

i=1

ξ i

subject to yi

⎛

⎝
∑

θ∈�f
〈vθ , φθ (xi)〉 + b

⎞

⎠ ≥ 1− ξ i, i = 1, . . . , N

ξ i ≥ 0, i = 1, . . . , N
∑

θ∈�f
βθ = 1, βθ ≥ 0

(7)

where θ ∈ �f is a parameter specifying the associated type of kernel, � is the set
of kernel parameters and vθ is defined as vθ := βθwθ in order to study a convex
problem w.r.t. vθ and βθ . Note that wθ and b are the classical SVM parameters.

As next step, the paper takes the Lagrangian function of Problem (7) and
computes its derivatives with respect to the primal variables βθ , vθ , b, ξ i . Defined
λ as the Lagrange multiplier associated to the equality constraint and α as the

Lagrange multiplier associated to the inequality yi
(∑

θ∈�f 〈vθ , φθ (xi)〉 + b
)
≥

1−ξ i , substituting the derivatives into the Lagrangian function we get the following
dual problem

sup
�f⊂�

max
λ,α

N∑

ı=1

αi − λ

subject to α ∈ R
N, λ ∈ R

0 ≤ αi ≤ C, i = 1, . . . , N

T (θ, α) ≤ λ, ∀θ ∈ �

(8)
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where T (θ, α) = 1
2

∑N
i,j=1 αiαj k(x

i, xj , θ). Moreover, the paper proposes and
implements an algorithm based on the approach just described, showing results
comparing values obtained using SVM, MKL and IKL.

In the next section we wish to describe a new approach combining IKL and ELM
and propose a specific algorithm.

4 Infinite Kernel Extreme Learning Machine

In this work we wish to combine ELM together with the idea behind IKL, i.e.,
theoretically using an infinite combination of base kernels, introducing an algorithm
called Infinite Kernel Extreme Learning Machine (IK-ELM). In particular, our
starting point is the work by Liu et al. [13], where an approach called Multiple
Kernel Extreme Learning Machine (MK-ELM) is described. The paper base
concept is merging ELM structure with MKL: optimal kernel is a combination of
predefined based kernels and the coefficients of such combination, together with
ELM parameters, are learnt during the process. Specifically, given a generic training
set {xi, yi}Ni=1, MK-ELM problem is defined as follows:

min
β

min
w̃,ξ

1

2

l∑

p=1

||w̃p||2
βp

+ C
2

N∑

i=1

||ξ i ||2

subject to
l∑

p=1

〈w̃p, φp(xi)〉 = yi − ξ i, ∀i = 1, . . . , N

l∑

i=1

βp = 1, βp ≥ 0, ∀p = 1, . . . , l

(9)

where {φp(·)}lp=1 are the feature mapping corresponding to l predefined base

kernels {kp(·, ·)}lp=1, {βp}lp=1 are the base kernel combination parameters and

w̃p :=
√
βpwp for p = 1, . . . , l. Using the Lagrangian function corresponding

to Problem (9), the paper outlines an iterative scheme of MK-ELM algorithm for
both the sparse and non-sparse case.
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Here, we extend the formulation above using a combination of possibly infinitely
many base kernels. Note that, as in [5], �f and � are respectively a finite set and
a set of undefined cardinality of kernel parameters. Then, the problem we wish to
solve is the following

inf
�f⊂�

min
β

min
w̃γ ,ξ

1

2

∑

γ∈�f

||w̃γ ||2
βγ

+ C
2

N∑

i=1

||ξ i ||2

subject to
∑

γ∈�f
〈w̃γ , φγ (xi)〉 = yi − ξ i, ∀i = 1, . . . , N

∑

γ∈�f
βγ = 1, βγ ≥ 0, γ ∈ �f

(10)

with the set of all possible kernels, given by the convex hull of {k(·, ·, γ ), γ ∈ �},
which may theoretically contain an uncountable number of elements. In Problem
(10) we can define an inner problem and an outer problem searching for the best
finite subset of �f ⊂ �. To build the dual problem, we consider the Lagrangian
function corresponding to the inner problem

LIK-ELM(β, w̃γ , ξ, α, λ, δγ ) = 1

2

∑

γ∈�f

||w̃γ ||2
βγ

+ C
2

N∑

i=1

||ξ i ||2

−
N∑

i=1

αi

⎛

⎝
∑

γ∈�f
〈w̃γ , φγ (xi)〉 + yi − ξ i

⎞

⎠

−
∑

γ∈�f
δγ βγ + λ

⎛

⎝
∑

γ∈�f
βγ − 1

⎞

⎠ (11)

and we compute the corresponding KKT conditions

∂LIK-ELM

∂w̃γ
= 1

βγ
w̃γ −

N∑

i=1

αiφγ (x
i)T = 0 (12a)

∂LIK-ELM

∂βγ
= −1

2

1

β2
γ

||w̃γ ||2 + λ− δγ = 0 (12b)

∂LIK-ELM

∂ξ i
= Cξi − αi = 0 (12c)

∂LIK-ELM

∂αi
=

∑

γ∈�f
w̃T
γ hγ (x

i)+ ξ i − yi = 0 (12d)
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Substituting Eqs. (12a)–(12d) in Eq. (11) and taking into account the fact that the
Lagrange multiplier δγ is non-negative, we obtain the following dual form of
Problem (10)

max
α,λ

N∑

i=1

αi

(
yi − αi

2C

)
− λ

subject to T (γ, α) ≤ λ, ∀γ ∈ �
(13)

where T (γ, α) := 1
2

∑N
i,j=1 αiαj 〈φγ (xi), φγ (xj )〉 and the constraint T (γ, α) ≤ λ

is obtained using Eq. (12b). Note that, if for fixed (a∗, λ∗) the condition T (γ, α∗) ≤
λ∗ is satisfied for all γ , then (a∗, λ∗) solves Problem (10). It is important to point
out that, if there exists a solution (α∗, λ∗), with corresponding values ξ∗, w̃∗p, β∗,
satisfying the condition T (γ, α∗) ≤ λ∗, ∀γ ∈ �, then it also satisfies the condition
for all the finite sets�f ⊂ �. Moreover, as briefly mentioned in Section 2, Theorem
4.2 of [6] proves that if Problem described by Eq. (13) admits solutions, then its
optimal solution is defined by only a finite number of βγ different from zero.
Therefore, the algorithm that follows search for a finite set �f as a solution of our
problem. Based on the above calculations, we propose an iterative 3-step algorithm
for IK-ELM, schematized in Algorithm 1. With reference to the inner problem, we

again define an outer problem minβ S(β), with S(β) := minw̃,ξ
1
2

∑l
p=1

||w̃p ||2
βp
+

C
2

∑N
i=1 ||ξ i ||2. First, we solve the most internal part of Problem (10) with values

of vector β fixed, secondly we take into account the minimization with respect to
β over the unit simplex. Once these steps are completed, we look for the value of
γ ∈ � maximizing the function T (γ, α).

Note that, step 1 of Algorithm 1 consists of solving a classical minimization
problem with respect to w̃ and ξ , with value of β fixed. Therefore, any optimization
algorithm, e.g., Gradient Descent, Iterative methods, may be used to do it, finding
the optimal solution ξ∗ and, consequently, α∗ using Eq. (12c). We now focus on
step 2 of the presented algorithm. It involves the search of a vector of fixed size β,
minimizing the function S(β) over the unit simplex � := {β : eTβ = 1, β ≥ 0}.
Although optimizing over a simplex may be a difficult task [11], many simple to
implement approaches may be used to solve it, e.g., Genetic Algorithm, Accelerated
Projected Gradient Descent, Exponentiated Gradient Descent. Note that, once we
find the value β∗, we can compute λ∗ using the corresponding KKT conditions.
Finally, with respect to step 3, the value of function T (γ, α∗) plays the role of
some kind of evaluation threshold, specifying whether or not a new kernel may be
selected. On the subject of convergence of the proposed IK-ELM algorithm, since
it may be considered as an “exchange method”, Theorem 7.2 in [6] guarantees that,
if a faced problem admits solution, either Algorithm 1 ends after a finite number of
steps, leading to a solution of the problem, or it has at least one accumulation point
each one solving the algorithm. Namely, similarly to [5], there is no assurance that,
given a feasible problem, Algorithm 1 would find a finite set �f , but if IK-ELM
algorithm converges, it obtains global optimality.
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Algorithm 1: Infinite Kernel Extreme Learning Machine

1 Begin
2 Given �, select �f ⊂ � ;
3 Step 1 Solve

S(β) := min
w̃,ξ

1

2

l∑

p=1

||w̃p ||2
βp

+ C

2

N∑

i=1

||ξi ||2

subject to

l∑

p=1

〈w̃p, φp(xi )〉 = yi − ξi , ∀i = 1, . . . , N

4 To obtain ξ∗, α∗;
5 Step 2 Solve

min
β

S(β)

subject to eTβ = 1, β ≥ 0

To obtain β∗, λ∗;
6 Step 3 Compute

max
γ∈� T (γ, α∗)

if T (γ, α∗) ≤ λ∗ then
7 STOP ;
8 else
9 add γ to �f and return to Step 1;

10 end
11
12 end

5 Conclusions

In this paper we proposed a new algorithm called Infinite Kernel Extreme Learning
Machine based on the key idea of combining ELM structure together with IKL, i.e.,
using in theory an uncountable infinite set of base kernels. The automatic selection
of the best kernel has already proved beneficial for SVM and is here extended
to ELM. After delineating the marking lines of ELM algorithm, we focused on
discussing the IKL approach and possible combination of ELM and IKL, describing
an existing research work done combining IKL in SVM structure. In this regard, we
proposed our 3-step algorithm merging ELM and IKL, considering as a starting
point the research work done by Liu et al. [13].
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Least Action Principles and Well-Posed
Learning Problems

Alessandro Betti and Marco Gori

Abstract Machine Learning algorithms are typically regarded as appropriate opti-
mization schemes for minimizing risk functions that are constructed on the training
set, which conveys statistical flavor to the corresponding learning problem. When
the focus is shifted on perception, which is inherently interwound with time, recent
alternative formulations of learning have been proposed that rely on the principle of
Least Cognitive Action, which very much reminds us of the Least Action Principle
in mechanics. In this paper, we discuss different forms of the cognitive action and
show the well-posedness of learning. In particular, unlike the special case of the
action in mechanics, where the stationarity is typically gained on saddle points, we
prove the existence of the minimum of a special form of cognitive action, which
yields forth-order differential equations of learning. We also briefly discuss the
dissipative behavior of these equations that turns out to characterize the process
of learning.

Keywords Least cognitive action · Online learning · Variational methods for
learning

1 Introduction

Whenever a learning process is embedded in a temporal environment; i.e. the data
presented to the agent has a temporal structure (video and audio signals for example)
it seems natural to define the learning process directly through the definition of a
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suitable temporal dynamics. In other words one might start to think that the updating
of the model’s parameters, which is what we usually call “learning”, must be synced
with the temporal structure of data. This suggests investigating the continuous map
t !→ w(t) as a response to the input u(t), thus regarding t as time and not simply an
iteration index of popular machine learning algorithms.

In order to be able to select the correct dynamics of the weights of an agent
we believe that a functional formulation of the problem is particularly useful. For
example, the Lagrangian formulation of physical theories offers the possibility of
imposing all the symmetries of a theory simply adding to the Lagrangian terms that
satisfy such symmetry (see for example [1]). In the same way [2], this approach
makes it easier to incorporate constraints on the dynamic of the learned weights.
A variational approach based on an integral functional like the action of classical
mechanics can be conceived which specifies in one single scalar function (what
in mechanics is called the Lagrangian) both the “static” goodness criterion, the
potential, and the dynamical part of learning by a kinetic term [3].

For example, consider a classical batch problem in machine learning where the
functional risk has been approximated with a function V (w). As we will discuss in
Sect. 2 we can find appropriate functional indexes that have as stationarity condition
the following differential equation

mẅ + ηẇ +∇V (w) = 0 m, η > 0. (1)

This equation can be considered as the continuous form of a classic multistep first
order method (see [4]) known as the heavy ball method. The name of this method
derive from the fact that Eq. (1) can be interpreted as the equation of motion of an
heavy ball with friction subject to the potential V (w). Equation (1) is also closely
related to the continuous approximation of other first order methods (see [5]). More
directly in the case m → 0 and η fixed we get the continuous version of a plain
gradient descent method with learning rate 1/η:

ẇ = −1

η
∇V (w).

Notice the importance of the first order term in Eq. (1); without dissipation we
wouldn’t be able to recover the classical gradient descent method. Even worse, in
general without the presence of the η term there is no hope for the dynamic to reach
a stationary point of V . Indeed, broadly speaking, since in that case the mechanical
energy would be conserved lower values of V correspond to higher values of the
velocity so that the system do not have any chance to settle in a minimum of the
potential.

More generally, as we already stated we believe that this “dynamical” approach to
ML can be particularly fruitful when we want to consider online learning problems,
that is to say problems where the temporal evolution of the parameters of the model
at a certain stage of development depends explicitly on the data presented to the
agent at the same time. This means that it is particularly important to handle the
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case in which the potential depends on time also trough a signal u(t). Under this
assumption Eq. (1) assumes the form

mẅ(t)+ ηẇ(t)+∇U(w(t), u(t)) = 0.

This equation, in the limit m→ 0 yields

ẇ(t) = −1

η
∇U(w(t), u(t)),

that can be interpreted as the continuous counterpart of a stochastic gradient descent
method, when u(t) is interpreted as the realization of the random variable associated
with the data at the step t . It is important to realize that whereas SGD is typically
used in ML assuming that the values of u(t) are drawn from a training set according
to some probability distribution it is only when formulating the problem using a
signal u(t) which has a temporal regularity (coherence) that we can properly speak
of online learning.

The paper is organized as follows: In Sect. 2 we will show how to reformulate
least action principles in a more precise manner following what has been done in [6],
Sect. 3 then shows how to extend some of the results of [6] (namely the existence of
the minimum for approximating problems) also in the particularly interesting case
where the potential explicitly depends on time. Eventually Sect. 4 closes the paper
with some final considerations.

2 Lagrangian Mechanics

Following the approach proposed in [6], we will now discuss how it is possible
to reformulate, in a more precise manner, the least action principle in classical
mechanics. The following approach can be directly applied, in the case of dissipative
dynamics, to learning processes simply through the identification of the generalized
coordinates of mechanics with the parameters of the learning model (Table 1). In
the remainder of the paper we will replace the variable w which we used in the
introduction to stress the connection with the typical parameters (weights) used in
ML with the generic coordinates q.

Table 1 Links between learning theory and classical mechanics

Learning Mechanics Remarks

w q Weights and neuronal outputs are interpreted as generalized
coordinates

ẇ q̇ Weight variations and neuronal variations are interpreted as
generalized velocities
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Usually (see [7] and [8]) Hamilton’s principle is formulated as follows: Newton’s
laws of motion

d

dt
(mq̇i (t))+∇iV (q(t)) = 0, (2)

coincide with extremals of the functional

S(q) :=
∫ T

0
Ldt, where L = 1

2
m|q̇|2 − V (q), (3)

where | · | is the n-dimensional Euclidean norm. This statement is usually also called
least action principle even though it is well known that the trajectory q(t) is not
always a minimum for the action. Another unsatisfactory aspect of this principle is
the way in which the initial conditions are handled; in Newtonian mechanics Eq. (2)
is typically coupled with Cauchy initial conditions

q(0) = q0, q̇(0) = q1, (4)

that uniquely determine the motion of the system. On the other hand Eq. (2) cannot
be obtained from Hamilton’s principle with conditions (4); usually the derivations
make use of Dirichlet boundary conditions (see [7]).

It has been shown (in [6]) that Hamilton’s principle can be replaced by a
minimization problem together with a limiting procedure. In particular, let us
consider the functionals

Wε(q) :=
∫ T

0
e−t/ε

(
ε2m

2
|q̈(t)|2 + V (q(t))

)
dt, (5)

defined on the set dom(Wε) := {q ∈ H 2((0, T );Rn) | q(0) = q0, q̇(0) = q1},
where V ∈ C1(Rn) and bounded from below and m > 0.

The first property of this functional is that it admits a minimizer on its domain;
actually adding little bit of regularity on V and choosing ε sufficiently small
the minimizer turns out to be unique (for a precise statement of this result see
Lemma 4.1 of [6]). Moreover the Euler-Lagrange equations for the minimizers of
Wε are (see Section 4 of [6])

ε2mq(4)(t)− 2εmq(3)(t)+mq̈(t)+∇V (q(t)) = 0 t ∈ (0, T ), (6)

q(0) = q0, q̇(0) = q1, (7)

q̈(T ) = q(3)(T ) = 0. (8)

Notice that from the stationarity condition of (5) we get two extra boundary
conditions at time t = T that seems to destroy causality of the solution; one of the
strengths of this approach however is that, unlike Hamilton Principle, the boundary
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conditions (8) will disappear in the limit ε→ 0 leaving the solution dependent only
on the initial state.

In the same limit (ε → 0), we have that if qε solves (6)–(8), then (Theorem 4.2
of [6]) qε → q weakly in H 1((0, T );Rn), where q solves (2) with (4). This last
assertion makes clear that Hamilton principle can be reformulated in terms of (5) in
the following way:

1. For each fixed ε minimize Wε,
2. take the limit ε→ 0.

Like Hamilton’s principle this procedure is a variational approach to classical
mechanics, with respect to the principle of least cognitive action however, as
anticipated, it involves a true minimization of the functional (5) and it automatically
reaches causality.

It is interesting to notice that if we omit step 2. in the procedure described above,
stationarity conditions of (5) would imply a dynamic based on differential equations
of order higher than two (which has been actually considered in physics [9]
and [10]). However the presence of the right boundary conditions (8) for each ε > 0
would render the resulting laws non-causal.

To conclude this section we will discuss what can be considered yet another
advantage of this approach by showing how naturally it can handle dissipative
dynamics.

Dissipative Dynamics In the introduction we have briefly discussed how dissi-
pation is a fundamental feature for the formulation of learning ad as a dynamical
process; for this reason this point deserves a careful discussion.

First of all notice that it is not possible to modify L in Eq. (3) by choosing an
appropriate V or by adding additional derivative terms in order to reproduce the
following dissipative dynamics:

mq̈ + ηq̇ + ∇V (q) = 0, (9)

with η > 0. Nevertheless it has been shown (see [11] and [3]) that it is possible to
include this kind of dynamic by the following modification of the action:

S(q)→ S(q) :=
∫ T

0
eηt/m

(
1

2
m|q̇|2 − V (q)

)
dt.

This formulation changes the structure of the action functional making it more
similar to the Wε functional. Still this variational approach suffers of the same
problems that has been discussed previously in this section.

On the other hand in order to include dissipation in (5) it is sufficient to modify
the Wε functional in the following way:

Wε(q)→Wε(q) :=
∫ T

0
e−t/ε

(
ε2m

2
|q̈(t)|2 + εη

2
|q̇(t)|2 + V (q(t))

)
dt.
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Then through the same minimization and limiting procedure described above we
recover Eq. (9) together with the correct initial conditions (4).

The modification Wε(q) → Wε(q) feels less artificial than S(q) → S(q) and
the term added to Wε seems a natural term to add. The reason why the dissipative
behaviour is recovered so easily by the variational approach based on Wε is that this
principle is not invariant by time reversal to begin with.

3 Generalization to Time-Dependent Potential

The analysis presented in this section extends the result on the existence of a
minimizer to a family of functionals that include (5) where, in particular, we allow
an explicit dependence on time through the potential.

The following theory is relevant at least for two distinct reason; first of all it is
a first result that goes in the direction of extending the theory presented in [6]. In
second place it is interesting in its own (i.e. also if it is not coupled with a limiting
procedure) to ensure well-posedness of theories that relies on the minimization of
a functional of the form that we will consider. Recently learning theories based on
variational indexes considered in this section has been used in Vision; in particular
the proposed theory has been directly applied to the problem of feature extraction
from a video signal u(t) in an unsupervised manner with the potential U chosen to
be the mutual information between the visual data and a set of symbols (see [2]).

Let T ∈ (0,∞),U ∈ C0(Rn×Rm) be bounded from below such thatU(·, 0) ≡ 0
and � ∈ L∞(0, T ) with 0 < C1 ≤ �(t) ≤ C2 < +∞ for a.e. t ∈ (0, T ).
Let u : [0,+∞) → R

m be an external input function that for the moment can be
considered a continuous function of time. Consider the functional

�(q) =
∫ T

0
�(t)

(μ
2
|q̈(t)|2 + ν

2
|q̇(t)|2 + γ q̇(t) · q̈(t)+ κ

2
|q(t)|2 + U(q(t), u(t))

)
dt,

(10)

where μ = α+ γ 2
2 , ν = β + γ 2

1 , γ = γ1γ2, κ > 0 are real numbers so that (10) can
always be rewritten as

�(q) =
∫ T

0
�(t)

(α
2
|q̈(t)|2+β

2
|q̇(t)|2+1

2
|γ1q̇(t)+γ2q̈(t)|2+κ

2
|q(t)|2+U(q(t), u(t))

)
dt,

with α, β, real and positive and q ∈ dom(�) := { q ∈ H 2((0, T );Rn) | q(0) =
q0, q̇(0) = q1 }, where q0, q1 ∈ R

n are given.
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Suppose furthermore that we equip dom(�) with the following notion of
convergence:

qk → q strongly in H 1((0, T );Rn);
q̈k ⇀ q̈ weakly in L2((0, T );Rn).

(11)

Then the following remark holds:

Remark 1 The set dom(�) is closed under the convergence in (11), i.e., if qk ∈
dom(�), qk → q in dom(�), then q ∈ dom(�).

Indeed, since H 1(0, T ) compactly embeds in C([0, T ]) (see [12] p. 213 Eq. (6))
and a weakly convergence sequence is strongly bounded ([12] Prop. 3.5 (iii)), 〈qk〉
has a (not relabelled) subsequence such that qk → q and q̇k → q̇ uniformly in
[0, T ], therefore q(0) = q0 and q̇(0) = q1.

We are now in the position to state the main result on the existence of a minimum
of the functional in (10).

Theorem 1 The problem min{�(q) | q ∈ dom(�) }, has a solution.

Proof We simply apply the direct method in the calculus of variations, namely
we have to show that � is lower semicontinuous and coercive with respect to the
convergence in (11) and then we conclude in view of Remark 1.

Lower Semicontinuity The maps q ∈ dom(�) !→ ∫
�(t)|q(t)|2 dt and

q ∈ dom(�) !→ ∫
�(t)|q̇(t)|2 dt are continuous, while q ∈ dom(�) !→∫

�(t)|q̈(t)|2 dt is lower semicontinuous (see [12] Prop. 3.5 (iii)); moreover
q ∈ dom(�) !→ ∫

�(t)q̇(t) · q̈(t) dt is continuous because of the strong-weak
convergence of the scalar product in a Hilbert space (see [12] Prop. 3.5 (iv)). Finally
the map q ∈ dom(�) !→ ∫

�(t)U(q(t), u(t)) is lower semicontinuous because of
our assumptions on U and as a direct consequence of Fatou’s Lemma.

Coercivity Since U is bounded from below and T < +∞ and in view of our
assumptions on w, α, β, κ it immediately follows that if supk∈N �(qk) < +∞,
then there exists a constant C > 0 such that ‖qk‖H 2 ≤ C for every k ∈ N. Then
from Theorem 3.16 in [12] it follows that 〈qk〉 has a subsequence weakly converging
in H 2(0, T ). Moreover since H 2(0, T ) compactly embeds in H 1(0, T ) then there
is a subsequence that converges strongly in H 1(0, T ). This means that indeed the
sublevels of � are compact with respect to the convergence in Eq. (11).

��

4 Conclusions

In this paper we presented an extension of the minimality result discovered in [6]
that entails the well-posedness of a class of learning problems based on a Least
Action Principle defined over the class of functionals (10). We prove that the
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existence of the minimum of � (Theorem 1) holds for a general weight function
� . Moreover, we argue that since learning requires dissipation, the correspondent
dynamics can be reproduced from (10) by choosing� as an exponential function of
time, as discussed in Sect. 2. This paper provides motivations to use the variational
framework initially proposed in [3], since it shows that, unlike the action of
mechanics, the opportune selections of the cognitive action leads to well-posed
learning problems where a global minimum can be discovered.

Acknowledgements We thank Giovanni Bellettini for having brought to our attention the
extended formulation of Newtonian mechanics and for insightful discussions.
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Heuristic Data-Driven Feasibility
on Integrated Planning and Scheduling

Marco Casazza and Alberto Ceselli

Abstract We study the merging of data-driven approaches and mathematical
programming formulations to solve an integrated planning and scheduling problem
where jobs can be split in two separate tasks, one of them allowed to exceed its
deadline at a price. Our study is driven by the increasing structural complexity of
industrial scheduling problems that in some cases become too hard to be modeled as
mathematical programs even by domain experts. We experiment on how to ensure
the feasibility at a scheduling level by training a data-driven model, subsequently
encoding it with a mathematical programming formulation, to be finally embedded
in a planning model. Our experiments prove that our framework provides an
effective heuristic approach, competing to exact formulations in terms of both
accuracy and quality of the solutions, and it could be extended to those kind of
problems where it is too hard to model the schedule feasibility.

Keywords Integrated planning scheduling · Data-driven · Decision tree ·
On time in full

1 Introduction

Decision support systems play a key role in logistics. Many production com-
panies, indeed, enrich their Enterprise Resource Planning (ERP) software with
dedicated components as Material Resource Planning (MRP) systems for inventory
management and Advanced Planning and Scheduling (APS) tools for day-by-day
operational production schedules. While technologically designed to meet industrial
integration standards, these tools often lack optimization potential. For instance,
MRPs often assume infinite production capacity. Such an approximation yields
task allocations which are found to be infeasible by the operators while running
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APS to create schedules, or even during the execution of them, thereby leading
to disruptions of planning. This phenomenon is critical in settings like cosmetics
manufacturing [1, 6]. Orders are highly custom; products are very seasonal and
need to hit the market in a timely way. Deadlines are tight, lead times uncertain, and
production loads very dynamic. As a consequence, delivery dates are often violated
and the perceived quality of service is substantially lowered.

One common reason to resort to infinite capacity approximation is computa-
tional: integrated planning and scheduling models are difficult to manage. Several
times an even more involved issue arises: it is too difficult to obtain reliable models
of production capacity. That is, often not even a domain expert is able to formalize
the complexity of a scheduling process in a mathematical model. It is certainly the
case of cosmetics manufacturing, but in general of any scenario where production
times are influenced by workers skills [5], which are too difficult to track in input
data.

We therefore propose an alternative approach to the problem, consisting of the
following methodology. First, a framework based on a mathematical programming
formulation for integrated planning and scheduling is built. Second, the feasibility
of scheduling in a particular time slot is encoded by a data-driven model, which is
created by training on historical data. Third, such a model is used as white box,
drawing a mathematical programming formulation of it. Fourth, the scheduling
feasibility constraints in the starting framework are replaced by such a formulation,
and the overall mathematical program can finally be solved by general purpose tools.

Indeed, there is a hype for integrating mathematical programming and machine
learning in this kind of context. A few attempts have showed to be successful; as key
examples we mention the use of machine learning to obtain aggregate solutions of
operational problems [7], and the formulation of machine learning models through
mathematical programming [4].

In this paper we present a proof of concept, indicating our methodology to be
promising. The design of such a proof of concept is not trivial since it needs to be
realistic from an application point of view, but still computationally manageable,
to be able to compare the outcome of our experiments with that of straight
optimization.

Therefore, we first introduce an overall mathematical programming framework
for integrated planning and scheduling (Sect. 2). We restrict the planning part to
a simple assignment model, and we choose a realistic scheduling model. The
latter yields NP-Complete feasibility subproblems, which are however tractable
in practice by general purpose solvers. Then, we describe how to replace the
scheduling part by a suitable encoding of a Decision Tree classification model
(Sect. 3) and selected features of scheduling instances. Finally (Sect. 4) we provide
experimental evidence that, if a careful training of the Decision Tree is carried
out, our data-driven method is highly effective in approximating the set of feasible
solutions of the starting mathematical model, offering at the same time more
modeling flexibility.
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2 Problem Description

We consider a set of jobs J and a set of machines M to be given. We suppose that
each job j ∈ J has a release date rj , a deadline dj and a processing time pj . We also
suppose to have a setW of production time slots each of H time units. Each job in J
must be assigned to one of the slots inW (planning), and a proper sequencing of the
jobs in the same slot on the machines in M must be found (scheduling). Assigning
job j ∈ J to slot w ∈ W has a cost cjw.

An overall framework formulation for our Integrated Planning and Scheduling
problem (IPSP) is the following:

minimize
∑

w∈W

∑

j∈J
cjw · ujw (1)

s.t. (ujw) ∈ P j ∀j ∈ J (2)

(ujw) ∈ Sw ∀w ∈ W (3)

where each variable ujw ∈ B takes value 1 if job j is planned for time slot w,
0 otherwise. The objective function (1) minimizes the assignment cost. Planning
constraints are implicitly modeled by (2). Similarly, scheduling constraints are
implicitly modeled by (3).

Different choices of P j and Sw give rise to different integrated problems.
As a case study, in our proof of concept we consider the following. We allow
for split assignment options, which are designed to model those scenarios where
manufacturers cannot fully complete the production before the deadline, but after
negotiations the customer agrees to receive only part of the production before the
deadline and the rest afterwards, as soon as possible [3]. Formally, two types of
assignments are made possible: full—a job is assigned to a single machine and
scheduled in such a way that it starts after the release date and it ends before the
deadline, and split—a job is split in two tasks, potentially assigned to different
machines and different time slots. The first task is scheduled between the release
date and the deadline, while the second task is scheduled after the first, potentially
exceeding the deadline. We model such a split option by considering a set J̄
containing the original (unsplit) jobs, a set J ′ (resp. J ′′) containing the first (resp.
second) task after split. Therefore J = J̄ ∪ J ′ ∪ J ′′. For each j ∈ J̄ , we denote
as j ′ (resp. j ′′) its first (resp. second) task after split. The tasks in J ′ keep release
and deadlines of the jobs in J̄ ; the tasks in J ′′ keep the release, but have infinite
deadline. We assume the processing times of tasks in J ′ and J ′′ to be data, obtained
in the negotiation phase, such that the sum of processing times of the two tasks after
split equals the processing time of the initial job. In this case, a pertinent objective
function is to minimize the number of splits (i.e. cjw = 1 for each j ∈ J and
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w ∈ W ). The sets P j can be modeled as follows, for each j ∈ J̄

P j = set of (ujw, uj ′w, uj ′′w)

s.t.
∑

w∈W
ujw + uj ′w = 1 (4)

∑

w∈W
ujw + uj ′′w = 1 (5)

∑

w′′≤w
uj ′′w′′ ≤ 1− uj ′w ∀w ∈ W (6)

Conditions (4) and (5) guarantee that either j or both j ′ and j ′′ are selected;
conditions (6) impose j ′ to always be planned before j ′′. Such a choice meets the
first of our requirements, which is to have a simple planning structure.

For what concerns scheduling feasibility, each set Sw can be modeled as follows:

Sw = set of (ujw, uj ′w, uj ′′w)

s.t. (w − 1) ·H · ujw ≤ sj ∀j ∈ J (7)

et ≤ w ·H · ujw +M · (1− ujw) ∀j ∈ J (8)
∑

m∈M
xjm = ujw ∀j ∈ J (9)

xim + xjm ≤ yij + yji + 1 ∀i, j ∈ J,m ∈ M (10)

rj ≤ sj ∀j ∈ J (11)

ej ≤ dj ∀j ∈ J̄ ∪ J ′ (12)

sj + pj = ej ∀j ∈ J (13)

ei ≤ sj +M · (1− yij ) ∀i, j ∈ J (14)

where variable xjm ∈ B is 1 if a job j is assigned to machine m, and 0 otherwise,
while variable yij ∈ B is 1 if job i precedes job j on the same machine, 0 otherwise.
Finally, continuous variables sj ≥ 0 and ej ≥ 0 are the starting and ending time of
job j , respectively.

Constraints (7) and (8) impose that a job starts and ends in the selected time slot
w. Constraints (9) impose the assignment of each job to a machine. Constraints (10)
set variables yij when two jobs are scheduled on the same machine. Constraints (11)
ensure that each job starts after the release date, while constraints (12) impose that
both full jobs and first tasks end before the deadline. Constraints (13) impose full
processing without preemption. Constraints (14) avoid overlapping between jobs
assigned to the same machine. We remark that even by fixing the value of ujw
variables, the problem of deciding if a feasible schedule exists in Sw remains NP-
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complete. In fact, even if no release nor deadline falls inside a time slot, a Bin
Packing Problem remains to be solved to detect feasibility. Nevertheless we expect
general purpose solvers to be effective on optimizing the overall model.

3 Data-Driven Scheduling

In the following, we propose an alternative formulation where the scheduling
feasibility of the weekly plan is ensured by a Decision Tree (DT) trained through
a large dataset of (feasible and infeasible) scheduling instances, and encoded
by mathematical programming constraints. The experimental tractability of both
models allow us to perform a comparison of them as discussed in Sect. 4.

In this Section we introduce in turn a set of parameters that can be computed in
preprocessing, the set of features that involve values of ujw variables, and finally
the reformulation of set Sw.

Additional Parameters We define new sets of parameters that we compute in a
preprocessing phase. Given a single job j ∈ J and a time slot w ∈ W , we define a
release date rwj as the maximum between the release date of the job j and starting
time of the time slot w, that is

rwj = max{rj , (w − 1) ·H} (15)

and we also define a deadline dwj as the minimum between the deadline of the job
j , and the ending time of time slot w, that is

dwj = min{dj ,w ·H} (16)

We assume that ujw = 0 whenever pj > dwj − rwj , since any scheduling instance
having a job with a processing time greater than the available time would be
infeasible.

In addition, we define the processing ratio αwj as the ratio between the processing
time of a job and the time available for its processing, that is

αwj =
pj

dwj − rwj
, (17)

and also the overlapping ratio βwij , that is the fraction of time that two jobs may
share:

βwij =
min{dwi , dwj } −max{rwi , rwj }
max{dwi , dwj } −min{rwi , rwj }

. (18)
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We remark that αwj values range in [0, 1], where higher values indicate more
stringent deadlines, while βwij values range in [−1, 1], where negative values mean
jobs that never overlap, while high positive values mean that two jobs largely
overlap in time.

Selected Features During preliminary experimental analysis we highlighted that
the following features have a predictive power in detecting feasibility:

• the number nw of jobs planned in a time slot w:

nw =
∑

j∈J
ujw, with nw ≥ 0 (19)

• the number ρw of planned jobs per machine:

ρw = nw

|M| , with ρw ≥ 0 (20)

• the mean μwα of αwj values:

μwα =
∑
j∈J αwj · ujw

nw
, with 0 ≤ μwα ≤ 1 (21)

• the mean μwβ of βwij values:

μwβ =
∑
i,j∈J βwij · uiw · ujw

(nw)2
, with − 1 ≤ μwβ ≤ 1 (22)

• the number νw of jobs whose processing must overlap per machine:

νw =
∑
i,j∈J

⌊
pi+pj

max{dwi ,dwj }−min{rwi ,rwj }
⌋
· uiw · ujw

|M| , with νw ≥ 0 (23)

When nw = 0 we fix all features to value 0. Furthermore, we let the DT to include
as a feature the number mw of machines available in time slot w:

mw = |M|, with mw > 0. (24)
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In order to express the DT in mathematical programming language, each feature
must become a variable in our model. We can observe that nonlinearities arise due to
nw at the denominator, and the bilinear terms uiwujw. We therefore linearise (21):

∑

j∈J
φαjw =

∑

j∈J
αwj · ujw (25)

0 ≤ φαjw ≤ ujw ∀j ∈ J (26)

μwα − (1− ujw) ≤ φαjw ≤ μwα + (1− ujw) ∀j ∈ J (27)

0 ≤ μwα ≤ 1 (28)

We introduce variable yijw ∈ B imposing that uiw+ujw ≤ 1+yijw for all i, j ∈ J ,
and linearise equation (23) accordingly. Then we linearise equations (22) into

∑

i,j∈J
φ
β
ijw =

∑

i,j∈J
βwij · yijw (29)

− yijw ≤ φβijw ≤ yijw ∀i, j ∈ J (30)

μwβ − (1− yijw) ≤ φβijw ≤ μwβ + (1− yijw) ∀i, j ∈ J (31)

− 1 ≤ μwβ ≤ 1 (32)

We remark that μwα and μwβ , as well as the support terms φαj and φβij , become
variables in our model.

Decision Tree We consider a binary DT, T = (N,A), which is formally a binary
tree where N is the set of nodes and A the set of the arcs. We define node 0 ∈ N
as the root of T and the set L ⊆ N as the set of leaves. Each node p ∈ N \ L
has a right child rp ∈ N and left child lp ∈ N such that (p, rp), (p, lp) ∈ A.
Furthermore, each node p ∈ N \ L is labeled by a pair (fp, vp): fp is one of the
features presented above and vp is a threshold value. The same feature can appear in
different labels, possibly associated to different thresholds. Instead, each leaf p ∈ L
is labelled either as feasible of infeasible.

A DT serves as a classification tool: when a new instance appears, its feature
values f̄p are measured. Then, the DT is traversed from the root to a leaf as follows:
at each node p ∈ N \L, if f̄p ≤ vp then the branch corresponding to the left child lp
is chosen and explored recursively, otherwise the branch corresponding to the right
child rp is chosen. The recursive exploration is repeated until a leaf is reached: its
label is then used to classify the new instance as either feasible or infeasible.

The induction of an effective DT from historical data is a combinatorial
optimization problem, for which heuristics are commonly used. In our case the DT
induction phase is carried out in preprocessing, as described in Sect. 4. Therefore,
we assume the DT to be given as input to the overall optimization model.
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The feature values f̄p, instead, are unknown, as they depend on the subset of jobs
planned in each time slot during the optimization phase. Therefore, we encode a DT
for time slot w ∈ W , using mathematical programming, as follows:

∑

j∈J
ujw ≤ |J | · zw0 (33)

zwp = zwlp + zwrp ∀p ∈ N \ L (34)

f wp ≤ vp · zwlp +M · (1+ zwrp − zwp ) ∀p ∈ N \ L (35)

f wp ≥ (vp + ε) · zwrp +M · (1+ zwlp − zwp ) ∀p ∈ N \ L (36)

zwp = 0 ∀p ∈ L,p infeasible (37)

where each variable zwp ∈ B is 1 if a node is traversed, 0 otherwise, and each variable
f wp is the feature variable corresponding to the feature of node p in time slot w.

Assuming that M and M are lower and upper bounds of both feature f wp and
threshold vp, we have that constraint (33) activates the DT of a time slot w when
at least one job is planned in w. Constraints (34) impose that each traversed node
has a traversed child. Constraints (35) and (36) select one between the left and right
children to be traversed, depending on the values of the feature variables and the
thresholds. Finally, conditions (37) set all the variables corresponding to infeasible
leaves to 0, in such a way that our DT is forced to select values for feature variables
that correspond to a feasible classification.

Then, for each time slot w, we can replace set Sw in formulation (1)–(3) with:

S̄w = set of (ujw, uj ′w, uj ′′w)

s.t. (19)–(37) (38)

We remark that, besides ujw, the following are variables in our model: nw, ρw, μwα ,

μwβ , νw, φαjw, φβijw, yijw, zwp .

4 Experimental Analysis

Summarizing, we have two versions of formulation (1)–(3): the first defined by the
pair (P j , Sw), that is the original one, and the second defined by (P j , S̄w), that is
the one where the scheduling feasibility is led by a data-driven approach. We remark
that formulation (P j , S̄w) is a heuristic approach and that its solution may not be
feasible to formulation (P j , Sw). Therefore, in the following we provide empirical
evidence that the predicting accuracy of a DT holds even when such DT is integrated
as a component of a bigger mathematical programming formulation.
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Our experimental analysis is organised as follows: first we face the issue of
inducing an effective DT from data, then we compare the accuracy of formulation
(P j , S̄w) against (P j , Sw).

Decision Tree Induction and Testing Finding an effective DT is not trivial: it
needs to be produced in a preprocessing phase, before the optimization starts, and
it needs to be accurate on instances produced by settings of ujw variables during
an optimization process. Neither the single feasibility instances nor their structure
are known before the optimization process starts. Therefore, we produced a large
dataset of artificial single time slot scheduling instances. We used formulation
Sw as a feasibility model, we computed feasibility using exact optimization of a
general purpose tool, and we classified those instances as either feasible or infeasible
according to the outcome of these runs. This was computationally possible because
the subproblems refer to a single time slot, and are therefore much smaller than the
integrated model. Then we used such a dataset both to train a DT and to test its
accuracy.

In details, our first dataset consists of 4600 randomly generated scheduling
instances. Each instance has a random number of jobs |J | ∈ [25, 100], release dates
rj ∈ [0, 1000], processing times pj ∈ [10, 1000], and deadlines dj = rj+pj ·[1, k],
with k from 1 to 3 by step 0.5. The number of machines was computed as
|M| = �k · (∑pj )/(max dj )�, with k from 0.5 to 5 by step 0.1. We then solved
each scheduling instance with CPLEX 12.6.3 to classify the dataset in order to train
and test the DT. In our experiment we randomly sampled the 66% of this dataset
for training, while the remaining was used for testing. Both training and testing are
implemented entirely in Python using Scikit-learn [2, 8].

In Table 1 we report the classification results for DTs of different depth: first we
trained the DT with unbounded depth, and then we repeated the training setting a
maximum depth of the DT equal to 25, 50, and 75% of the depth reached in the
unbounded case. We can observe that even when the depth is reduced, high level of
accuracy can be reached. For example at 50% maximum depth, both precision and
recall are above 97%. The depth of the tree is of particular importance in our model,
since a deeper tree corresponds to a higher number of variables and constraints.

Solving the IPSP We then created a second dataset, made of 400 randomly
generated instances divided in two sets: a first set called D1 having a time horizon
W = 1 . . . 8, and a second, called D2, with W = 1 . . . 4 time slots. Both datasets
have H = 120 time units per time slot. The two datasets have the following features:

Table 1 DT classification results for different tree depths

DT depth (%) Accuracy (%) Precision (%) Recall (%) F1-score (%)

25 0.902174 0.916529 0.955211 0.935470

50 0.964834 0.973459 0.979328 0.976385

75 0.974425 0.986968 0.978467 0.982699

100 0.982737 0.987952 0.988803 0.988377
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Table 2 Results obtained on dataset D1

DT depth (%) Accuracy (%) Feasible schedules (%) Objective function (%) Computing time (s)

25 100.00 95.79 −0.01 13.26
50 100.00 95.21 0.00 14.18
75 100.00 94.86 0.00 13.89

100 100.00 96.03 −0.50 19.99

Table 3 Results obtained on dataset D2

DT depth (%) Accuracy (%) Feasible schedules (%) Objective function (%) Computing time (s)

25 70.35 97.75 0.00 6.22
50 87.44 96.85 −0.02 6.29
75 96.48 96.31 −0.64 72.26

100 96.48 97.62 −1.10 33.81

a set of jobs |J | ∈ [50, 100], a set of machines |M| ∈ [5, 10], release dates
rj ∈ [0, |W | · H], processing times pj ′ ∈ [1, 24] (resp. pj ∈ [1, 12] for D2),
pj ′′ = pj ′ · [0, 1], and pj = pj ′ + pj ′′ , and deadlines dj = rj + pj · [1, 3].

We used CPLEX 12.6.3 to solve each instance of the two datasets using both
model (P j , Sw) and (P j , S̄w). First, each instance was solved to optimality using
model (P j , Sw), finding 255 feasible instances out of 400. Each instance was solved
in an average computing time of 2.4 s for dataset D1 and 4.0 s for dataset D2.

Then we solved again the two datasets but using model (P j , S̄w). Results on
dataset D1 are reported in Table 2, where we observe that model (P j , S̄w) detected
the feasibility with an accuracy of 100%, with a reduction of the value of the
objective function that is on average always less than 1%. Furthermore, we checked
the feasibility of each time slot plan against Sw, observing that the number of false
positives is on average less than 5%.

In Table 3 we report results on dataset D2: in this case the accuracy decreases
especially for smaller depths of the DT, while DTs deeper than 50% obtain similar
results. We finally mention that we found (P j , S̄w) to be consistently slower to
optimize with respect to (P j , Sw). This was indeed expected, as the details of the
planning and scheduling parts were tuned not to become a computational challenge.

Conclusions and Future Works Overall, we consider our framework to be
a promising starting point to solve those problems where additional flexibility
is required that can hardly be achieved by classic mathematical programming
formulations.

In fact the experimental results indicate that a decision tree is highly effective
in approximating the scheduling feasibility stage. Computational questions remain
open, and at this regard heuristic approaches are promising. Indeed heuristics can
be incorporated in our framework at three stages. First, they may be effective
in optimizing the full integrated problem; since feasibility is already handled
heuristically, such an approach could even increase the robustness of the overall
method. Second, planning heuristics can be used to drive a decomposition approach,
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where subproblems are simple evaluations of data-driven models. Third, scheduling
heuristics can be used for creating large datasets to enrich the training phase.
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Evaluating Automated Storage
and Retrieval System Policies
with Simulation and Optimization

Michele Barbato, Alberto Ceselli, and Marco Premoli

Abstract In this paper we present a methodology to evaluate policies for automated
storage and retrieval system (AS/RS) in warehouses. It is composed by four
steps: (1) formal definition of the physical AS/RS and descriptive modeling on a
simulation framework; (2) model validation and finding of potential bottlenecks
by the statistical analysis of data logs; (3) definition of operational optimization
policies to mitigate such bottlenecks; (4) evaluation of the policies using the
simulation tool through key performance indicators (KPI). In particular, we take into
consideration a unit-load AS/RS, we present a new simulation model combining
discrete events and agent based paradigms. We consider an industrial test case,
focusing on scheduling policies that exploit mathematical optimization, and we
evaluate the effects of our approach on real world data. Experiments prove the
effectiveness of our methodology.

Keywords AS/RS policies · Simulation · Matching · Mathematical optimization

1 Introduction

Automated storage and retrieval systems (AS/RSs) are widely used in warehouses
and distributions centers all around the world since their introduction in the 1960s.
Their main advantages are high space utilization, reduced labor costs, short retrieval
times and improved inventory control. In order to get the best performance from an
AS/RS, its design and operational planning should be wisely chosen.

A vast literature has accumulated over the years, both on general warehousing
systems [3, 7, 8] and on diverse optimization problems arising in the design of
AS/RS policies [2, 10]. While all these works carry out numerical studies, very
few of them explicitly tackle the task of providing a full descriptive model of
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such a complex system: in [4] several rules of thumb to design a simulation
tool for warehouse are presented, such as key performance indicators, simulation
initialization, object-oriented design patterns to implement the simulation tool;
authors also present a case study using discrete-event paradigm; authors in [6] aim
to present a discrete event simulation model that can be easily extended to most
of the features found in AS/RS industrial settings; [9] is one of the few examples
in which the agent-based paradigm is used; authors propose a multi-agent model
for a mini-load system, claiming that autonomous vehicles control is easier in such
paradigm.

Indeed, there is a large gap in the literature. On one side, optimization algorithms
for AS/RS assume simplified models and hypothetical critical sub-systems, thereby
providing solutions whose practical implementation potential still needs to be
validated. On the other side, simulation approaches propose more realistic and
reliable descriptive models, disregarding however the algorithmic resolution of key
AS/RS optimization problems. In this paper we aim at reducing this gap.

We present a four-steps methodology to identify and evaluate optimization
policies for AS/RS: (1) formal definition of a physical AS/RS and modeling on a
simulation framework (Sect. 2.1), (2) model validation and finding of potential bot-
tlenecks by statistical analysis of data logs (Sect. 2.2), (3) definition of operational
optimization policies to mitigate such bottlenecks (Sect. 2.3), (4) policies evaluation
using the simulation tool through key performance indicators (KPI) (Sect. 2.4).

In particular, we present a new mixed multi-agent and discrete-event simulation
model for a unit-load AS/RS that, besides being very common in practice, matches
the technology used by our industrial partners [1], and we propose a scheduling
policy to tackle the found bottleneck exploiting mathematical optimization, which
in turn extends a shift-based scheduling policy found in literature.

Finally, in Sect. 3 we draw our conclusions.

2 Design and Evaluation of AS/RS Optimization Policies

In the following we detail the four steps of our methodology.

2.1 Step (1): AS/RS Descriptive Model

The AS/RS under study has one aisle with racks on both sides. Each rack has double
depth homogeneous cells with fifty-three lanes and nine levels. Stock-keeping-units
(SKU) are represented by uniform size bins, with the same size of a rack slot.
SKUs are moved with a double-shuttle aisle-captive crane, with separate drives
for horizontal and vertical movements. The AS/RS has two I/O points, one in the
front-end and one central, both with FIFO conveyor buffers to access the crane. The
central I/O is connected to working stations where operators acts on SKUs. To move



Evaluating AS/RS Policies with Simulation and Optimization 129

the SKU from (resp. to) the central-bottom I/O to (resp. from) the working stations
an automated shuttle of capacity two is used, which moves on an horizontal rail.

Working stations are used to compose customers orders. An order contains
multiple items and is collected in a dedicated SKU (order bin). After the arrival
of a SKU containing an item (item bin) in a working station, the item has to be
processed before being assigned to an order bin; hence, the item bin has to wait on
a working station before it to be stored again in the warehouse.

Daily orders have no release date and have to be completed within the working
day without priorities. Items can be inserted in an order bin in any sequence.
Multiple orders can be processed simultaneously (i.e. multiple order bins can
be present on working stations) by multiple operators. Operators do not have to
coordinate with each other. The complete list of orders to build is known at the
beginning of the working day. The quantity of items needed to build all orders is
available at the beginning of the working day.

AS/RS Descriptive Model To build a model of the AS/RS process described
previously we characterize it by means of entities, events and activities. We can
identify six types of entities:

• operators: resident entities, characterized by a cycle of activities that act on the
SKUs; an operator O requests an empty order bin and a sequence of item bins,
one at a time, to be retrieved on working stations; each time the production
process on an item bin is over, O requests its storage back to the rack; when
the order is complete, O requests the storage of the order bin and the cycle starts
over;

• the system controller, or orchestrator: it is the second resident entity, character-
ized by a cycle of activities that act on the SKUs, on the crane and on the shuttle;
the orchestrator listens to operators requests and translates them into actions to
be executed by the last two entities, which in turns moves SKUs in the AS/RS;

• three resource entities, in charge of the execution of the orders given by the
orchestrator to move SKUs: crane, shuttle and the conveyors. These resources
need to synchronize in order to pass SKUs to each other: for example if one
of the conveyor is full, the crane can not deliver an SKU on the conveyor until
another SKU exits on the other side of the conveyor, and it has to stop and wait.

• SKUs: can be identified as the transient entities, characterized by the type, either
item bin or order bin, and by activities like (1) storage and retrieval from the
front-end I/O, (2) storage and retrieval from the working stations, (3) handling
inside the warehouse and inside the working stations; each activities begin with
an event generated either by an operator or by the system controller.

In Fig. 1 we present the schema of the relationships among model entities: an
operator interacts with the orchestrator sending requests and receives notifications
by the orchestrator and by the requested SKU; the orchestrator receives operators
requests and translate them into orders for the crane and the shuttle; these latter
move SKUs with pick and drop synchronizations; the synchronization among
resources (crane, shuttle and conveyor) is done through the moved SKU, which acts
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notifications
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orders
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pick/drop
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Shuttle

orders

notifications

Fig. 1 Simulation model entities relationship

as a mediator; at last, an SKU notifies the operator when it arrives at the working
station.

We can conveniently model each entities as an agent in our model and every
relationship with a message passing interface.

At the same time, a discrete events approach can be used to model order com-
position of single operators, which generate requests of SKUs to the orchestrator:
(1) the operator starts an order composition requesting to the orchestrator an empty
order bin and the first item bin to process; (2) it awaits until both SKUs arrive; (3)
when both SKUs arrive, it starts the working process on the item bin, which can
require a non-deterministic amount of time; (4) at the end of the working process, it
requires the storage of the item bin to the orchestrator; (5) if the order is not finished,
it requires the retrieval of the next item bin to the orchestrator, otherwise (6) if a new
order is available, the process goes back to step (1), otherwise it ends.

A critical analysis of our modeling framework allows to identify both strengths
and weaknesses of our approach.

Strengths The synchronization among resource entities is simplified; resource
entities act autonomously and their coordination is modeled via a message passing
interface that might be asynchronous.

Resource agents statechart can be generalized and it abstracts from the features
of the system; it includes few general states: (1) idle state, where the resource waits
new orders from orchestrator; when new orders arrive, a loop of order execution
starts and (2) the resource moves to the order execution location; when it arrives
(3) it sends the order (either pick or drop) to the SKU and awaits for its answer,
which notifies the end of the order; if any order is left, the loop continues from (2),
otherwise the resource goes back to idle state (1).

A resource has no knowledge on the status and features of the external system;
on the contrary, the orchestrator has a centralized view of the complete system, and
it considers the current status of this latter to generate the sequence of orders for
the resources. A resource stores parameters characterizing its current internal state,
changed by the single order. For example the crane stores its current location (aisle,
lane, level) and the SKUs currently on board.
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Weaknesses The modeling complexity is shifted towards: (1) the statechart of the
SKU entity, which acts as a mediator among resource entities and has to consider all
combinations of orders from the resources and its current position, in order to enable
customization of execution time of pick and drop actions for each combination; (2)
the orchestrator agent, which listens for operators request and has to implement an
on-line scheduling algorithm to generate the sequence of SKU movements. This
algorithm has to consider the complete features and statuses of the system, which is
not visible to the single components.

However, we stress that the complexity of the orchestrator agent, that looks like
a weakness at a descriptive modeling level, turns out to offer a large degree of
flexibility as soon as optimization models and policies are implemented to define
its logic. It therefore fits perfectly in our setting.

2.2 Step (2): Model Validation and Bottleneck Analysis

Thanks to an industrial partner we had access to a dataset with the mechanical
movements of SKUs in an AS/RS with the characteristics described in Sect. 2.1.

In particular we had access to all timestamps of arrival of an entity in a position
in the warehouse, such as the arrival of the crane at a cell, and the end of pick and
drop of an SKU from a resource (crane, shuttle and conveyor), covering 188 days.

Unfortunately, we had no access neither to the time, and purpose, for which
operators sent their request to the system, nor to the orders composition.

Travel Time Model and Validation First, we make use of the available data logs
to validate the implementation of the travel time models within our simulation tool.

Let (c, l) represent the position of a rack cell, where c is the horizontal lane and
l is the vertical level. We model crane movements from location (c1, l1) to (c2, l2),
with the following deterministic function: max(|c1 − c2| · vcx, |l1 − l2| · vcy) + f c
where we sum a constant value f c, with which we model the picking/dropping
time and the time to reach a constant speed, to the traveling time modelled with
Chebyshev distance metric where vcx is the constant horizontal speed (seconds per
lane) of the rack and vcy is the constant vertical speed (seconds per level). It would
be easy to model a travel time that depends also on the load of the crane, which can
be computed by the crane agent starting from the currently loaded SKUs; however
the data log analysis showed that the speed of the considered crane is not affected
by the load.

We model shuttle movements from working station w1 to working station
w2 with the following linear function: |w1 − w2| · vsx + f s , where we sum a
constant value f s , which models the picking/dropping time and the time to reach
a constant speed, to the travelling time modeled as a uniform linear motion with a
constant horizontal travel speed vsx (seconds per working station). Finally, we model
conveyors travel time with the a constant value f r + t r where f r is the constant
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time of picking/dropping on the conveyor and t r is the constant time to travel all the
conveyor length. Values of all parameters were estimated analyzing the real world
dataset.

We implemented our simulation tool with Anylogic, a Java based simulation
software supporting discrete-event, system dynamic and agent-based modelling,
and we validated our simulation model using five complete days of our dataset,
comparing the time τr measured by our industrial partner on the real system with
the time τs arising from simulations of single actions for both the crane and the
shuttle, for a total of around 2500 actions for both.

Differences of crane movements �τ = τr − τs could be approximated by a
normal distribution with mean μ % 0.339 s and standard deviation σ % 3.688,
where the mean time for a single action is around 45 s. For shuttle movements,
differences �τ have a median value of −0.73 s, a first quartile of −1.135 s and a
third quartile of −0.36 s, having a mean time for the single action around 30 s. We
also measured the overall time spent by crane and shuttle in mechanical operations,
finding the average gap between real data and simulated one to be about 1.79%.
That is, simulated data match well data of the real world system.

Identification of Bottlenecks Intuitively, we consider KPIs and event categories,
and we evaluate if the disaggregation of events in categories makes KPI patterns to
arise. Following this approach, we found a decomposition of storage and retrieval
operations arising from the two different I/O points to be suitable for our approach.
In Fig. 2 we present the average hourly usage of each I/O points in the dataset. It
is clear that central I/O points, towards working stations, have higher frequency of
usage with respect to front-end I/O points, which in turn occur throughout the day.

Fig. 2 Average hourly usage of AS/RS I/O points
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Moreover, we know from our industrial partner that: (1) the front-end I/O
operations can be executed without overlapping with central I/O operations, at the
beginning and at the end of the working day; (2) all front-end I/O operations are
known at the beginning of the day and, within them, storage operations can be
executed independently from retrieval operations.

From the union of the insights coming from the analysis of the data and
the industrial knowledge a new scheduling policy emerges to improve SKUs
movements, that is the disaggregated optimization of front-end I/O operations and
central I/O operations. Such problem has been identified in [5] as the shift-based
sequencing problem for the AS/RS with twin-shuttle crane and single depth rack.
Given a set of SKUs to retrieve (or to store), authors: (1) model the set as a weighted
undirected graph, whose edges weights are given by a distance metric obeying the
triangle inequality and represent the time to perform an action on pairs of SKUs;
(2) the sequence of actions to perform is given by the solution of a minimum-cost
perfect matching problem over the built graph, which can be solved at optimality
with a polynomial time algorithm.

2.3 Step (3): Optimizing Bottleneck

In cases where the distance metric does not obey the triangle inequality, the
modeling proposed in [5] does not guarantee optimality; in particular it always
forms pairs of SKUs on which to perform an action, while with generic distance
metric moving a single SKU might be less expensive. We propose the following
variant: let C∗ be the set of all SKUs that have to be retrieved; let c(C) be the time
required to retrieve SKUs C, i.e. the sum of the time for the crane to go from the I/O
point to the cell containing C, to pick C on the crane and to return to the I/O point;
let c({C1, C2}) be the time required to retrieve the pair of SKUs C1 and C2, i.e. the
sum of time for the crane to go from the I/O point to the cell containing C1, to go
from C1 to C2, to return to the I/O point and to pick both C1 and C2 on the crane.

Let us considerG andH two complete graphs on |C∗| vertices. Each vertex ofG
corresponds to one SKU in C∗. We assign weight c({C1, C2}) to each edge {C1, C2}
of G. We assign weight 0 to each edge of H . We then link each vertex of G with
its counterpart vertex in H . If C ∈ V (G) and C′ ∈ V (H) are linked we assign
weight c(C) to edge {C,C′}. Let T denote the weighted graph obtained so far. By
using the edges {C,C′} with C ∈ V (G) and C′ ∈ V (H), we see that T always
has a perfect matching and that a minimum weight perfect matching of T gives an
optimal retrieval plan for C∗. An example of a weighted graph T is presented in
Fig. 3.

Retrieval and Storage In the case of SKU retrieval in a double depth rack, we need
to consider that several SKUs might be not directly accessible by the double-shuttle
crane, i.e. they lie in the back slot while the front slot is storing another SKU. The
retrieval for such SKU is possible only when both shuttles of the crane are free. To
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Fig. 3 Example of graph T with C∗ = {C1, C2, C3}

consider this scenario, let B ⊆ C∗ be the set of such not directly accessible SKUs,
and A = C∗ \ B be the set of SKUs directly accessible by a single shuttle crane.
We set to +∞ the cost c({C1, C2}) of all edges {C1, C2} ∈ T connecting a pair
of vertices C1, C2 ∈ B, while edges connecting all other pairs of vertices remain
unchanged. Operatively, to retrieve a pair of SKU C1 ∈ B and C2 ∈ A, C1 will be
retrieved first, when both shuttles of the crane are free.

As for the storage,we define this simple storage policy for the operations under
optimization: incoming SKUs are stored only in the front slot of each cell in the
rack.

Optimization Policy Our simple shift-based scheduling policy for a double-depth
rack AS/RS with twin-shuttle crane is defined as follows:

• if an SKU has to be retrieved and it is not used in a working station throughout
the day, it is retrieved at the beginning of the day, otherwise at the end of the day;

• if an SKU has to be stored and it is not used in a working station throughout the
day, it is stored at the end of the day, otherwise at the beginning of the day;

• the position where to store incoming SKUs at the beginning of the day is chosen
among front slot cells that are not used throughout all day. Among those cells,
the nearest to the central I/O point are chosen;

• the position where to store incoming SKUs at the end of the day is chosen among
all free front slot cells;

• the decomposed retrieval and storage operations, both for the morning and the
evening, are optimized with the min-cost perfect matching algorithm.

The original order of center I/O operations does not have to be changed, and we
can compare original and optimized operations.
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2.4 Step (4): Experimental Evaluation

We propose the following experimental setup to evaluate our scheduling policy
using our simulation tool: given a complete day of operations from our dataset, we
apply our shift-based scheduling policy. We compare the original and the modified
sequence of operations, feeding them to our simulation tool in a trace-driven style.
In this scenario, we do not use the orchestrator and the operators agents, but we
directly order crane and shuttle to move SKUs in a given sequence. These resources
will execute one order at a time, synchronizing independently with each other; once
they finish an order, they will ask for the next one until no more orders are available.

Key Performance Indicator As KPI, an interesting measure would be the total
waiting time of an SKU by an operator, and the total amount of time to complete
all orders. However, given that we can not recover operators information with the
available data, we consider as KPI the total amount of time spent by the crane to
move all SKUs, comparing the original actions with the modified ones.

Experimental Results In Table 1 we present the results of the execution of the
shift based scheduling on ten different days of our dataset. We compare the time t
(in seconds) spent by the crane in the original (subscript o) and modified (subscript
m) sequence of actions, for the front-end I/O actions (superscript f ), the central I/O
actions (superscript c) and all set of actions (no superscript). In particular we present
the percentage gain or loss of time given by the modified sequence ((to − tm)/to): a
positive value is a gain, a negative value a loss.

For every instance, Io is the percentage of central I/O actions that in the original
sequence are nested with front-end I/O actions. In average, Io is around 1% on all
instances, except instance 9 where its value is 3.81%. This latter also corresponds to
a gain of 7% given by our scheduling policy, which in fact always grants Im = 0%.

In all instances the modified sequence provides a substantial improvement in
execution time for the front-end I/O actions, in the range 10–30%. However, the
central I/O actions have higher execution times with a worsening in the range 1–3%,
due to the new positions of SKUs entering from the front-end I/O point, defined
by our simple storage policy. Considering the complete sequence of actions, the
modified sequence grants only a slight improvement in the range 0.5–3%, with a
single substantial gain around 7% but also one worsening of 0.22%.

Although our policy leads to a substantial time gain on the optimized operations,
the advantage on the total operations time is limited. The time loss on central
I/O operations indicates that a better storage policy is needed for the shift-based
scheduling, to make a cleverer use of the rack cells.

Finally, in last column of Table 1, we report relative gaps between the overall
time spent by crane and shuttle in mechanical operations measured on the real data
(φr ), and that obtained by the modified sequence in our simulation (φm). The overall
picture is similar to that concerning SKUs operation times.
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3 Conclusions

We proposed a generic approach to the identification of critical AS/RS sub-
components, and the design of corresponding optimization policies. It makes use
of both descriptive and optimization models.

Our framework turned out to be more flexible than those proposed in the
literature; one of its key features is to shift complexity in the logic component of
an orchestrator, that in turn can be effectively encoded by optimization models.

The building of a descriptive model turns out to be an asset of our methodology,
allowing to (indirectly, but reliably) evaluate the effect of optimization on the real
world system. In our case, the design and application of a custom optimization
policy allows to reduce operational times of certain system functions at the expense
of others. We indeed believe this to be a common issue when optimization policies
are applied in practice. The potential of combining optimization and simulation
actually unfolds at this stage: the decision maker can evaluate the impact of different
optimization strategies, choosing the one yielding a suitable balancing for his/her
system.
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Rolling-Horizon Heuristics
for Capacitated Stochastic Inventory
Problems with Forecast Updates

Emanuele Tresoldi and Alberto Ceselli

Abstract In this paper we propose a practical optimization approach based on the
rolling-horizon paradigm to address general single-product periodic-review inven-
tory control problems. Our framework supports many constraints and requirements
that are found in real inventory problems and does not rely on any assumption on the
statistical distribution of random variables. Ambiguous demand and costs, forecast
updates, constant lead time, lost sales, flexible inventory capacity and product
availability can all be taken into account. Three, increasingly sophisticated, solution
methods are proposed and implemented within our optimization framework: a
myopic policy, a linear programming model with risk penalization and a scenario-
based stochastic programming model. The effectiveness of our approach is proved
using a dataset of realistic instances.

Keywords Inventory; Stochastic programming; Finite capacity

1 Introduction

Inventory management is one of the main pillars of production planning. Indeed,
there is currently a significant push for the introduction of innovative systems and
advanced decision support tools in such a context. As an example, several European
countries are sponsoring programs in the Industry 4.0 stream [1].

Inventory control systems are studied since decades in the Operations Research
literature [17]. Several features arise in applications, the most common being the
need to handle uncertainty in data.

At their core, these methods assume the following structure of the system: a
single product need to be ordered by a company in a certain time period. The unit
cost of that product might change over time. Then, such an order is either employed
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to satisfy demand, as soon as the product is dispatched or kept in stock at a cost to
satisfy demand in subsequent time periods. Demand is changing over time as well:
neither costs nor demands can be assumed to be deterministically known in advance.

Therefore, classical approaches consist in optimization policies providing proba-
bilistic guarantees. For instance, the (s, S) policy [6] and the (r,Q) policy [5] apply
a fundamental idea of computing suitable reorder points and reorder quantities,
and then statically perform reorders whenever the stock falls below the reorder
threshold. Despite their simplicity, under assumptions about the distribution of
demands and costs they can proved to be optimal. The complexity relies in the
evaluation of these parameters, requiring complex computations, and eventually
restricting their practical implementation in industrial inventory systems.

Alternative policies have also been devised, in order to obtain tractable methods
preserving quality guarantees. For instance, balancing policies compute trade-
offs between order and stock costs, dynamically deciding reorder quantities [13].
Balancing policies are often able to yield 2-approximation guarantees. It is the case,
for instance, of additional constraints stock capacity [15], lost sales [14] and lead
time [12]. A drawback of such an approach, however, is that strong assumptions
on the structure of costs and demands need to be performed to keep both quality
guarantees and computational efficiency. For instance, the fundamental setting of
[15] assumes no speculative motivation for holding inventory or having backorders
in the system, which is instead the main motivation for inventory management
in many companies. In the same way, not all the features of real systems can
fit the framework required by the approximation analysis. The difficult practical
applicability of these techniques has motivated more recent heuristic approaches
[20], either as generic optimization algorithms [16, 18], or for computing good
thresholds in policies like (r,Q) [2] even at the cost of losing quality guarantees.

Summarizing, even if the literature gives a deep theoretical understanding about
stochastic inventory problems, methods proving their practical applicability are
still very limited. Therefore, in this paper we propose a practical optimization
framework based on the rolling-horizon paradigm to address general single-product
periodic-review inventory control problems. In our framework several real-world
features like ambiguous demand and costs, constant lead time, lost sales, hard and
flexible inventory capacity and product availability are taken into account. Our
framework gracefully exploits forecast updates [19], and a-priory knowledge about
data distribution, but do not rely on them.

In Sect. 2 we formalize our inventory model, and in Sect. 3 we introduce
the algorithmic framework. In Sect. 4 we explain our test methodology, report
experimental results on realistic instances and draw a few conclusions.

2 Modeling

In this paper, we consider a single-product periodic-review inventory system with
stochastic demand and ordering cost, forecast updates and constant lead time. We
take into account a finite planning horizon T : {0, . . . , n}, divided in n + 1 time
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periods where 0 represents the period before the beginning of the planning horizon.
In any period t decisions must be taken. Future demands and costs are stochastic
quantities. Instead, the maximum availability of product (at ), a forecast of the
demand (dt

t ′ ) and ordering cost (ct
t ′ ) for all subsequent time periods t ′ ∈ {t, . . . , n}

are given. The system is characterized by a fixed lead time L and flexible storage
capacity defined by soft upper and lower limitation (H̄ and ¯H ) that can be exceeded
paying penalties. At the beginning of each time period one ordering decision is made
base on the status of the inventory and demand and costs forecast. Considering the
lead time, products ordered in time period t are delivered in time period t + L. At
the end of each time period the demand is realized and a new inventory status is
obtained. Demand that is not satisfied due to inventory limitation is lost. Several
costs have to be taken into account in defining an ordering plan: forecast of ordering
cost ct

t ′ per unit of product in time period t ′, holding cost h to store one unit of
product for a single time period, penalties h̄ and ¯h per unit of product exceeding the
upper and lower storage limitations for a single time period and forecast cost for
lost sales pt

t ′ per unit of demand not satisfied in time period t ′, i.e. loss of potential
earning due to the lack of product to sell in the inventory. The goal of the problem is
to define an ordering plan that minimizes the total operational cost over the complete
time period.

Deterministic Linear Programming (LP) Model This formulation will serve
as both building-block for our heuristic algorithms and as benchmark for the
performance evaluation. Given Dt , Ct and Pt as the actual realization of the
stochastic parameters associated with the demand, ordering and lost sales costs
in time period t , the problem is defined using several, non-negative, continuous
variables. In details, for each time period t ∈ T , variable xt represents the amount
of product ordered, zt accounts for the demand not satisfied, variable yt identifies the
amount of product stored at the end of period t and variables ȳt and

¯
yt correspond

to the amount of stored product above H̄ and below ¯H at the end of time period t .

min
∑

i∈T
Ctxt + hyt + m̄ȳt + ¯m¯

yt + Ptzt (1)

s.t. xt−L + yt−1 = Dt − zt + yt ∀t ∈ T : t − L > 0 (2)

¯H − ¯
yt ≤ yt ≤ H̄ + ȳt ∀t ∈ T : t > 0 (3)

xt ≤ at ∀t ∈ T : t > 0 (4)

The objective function (1) aims at the minimization of the total costs given by the
sum of purchasing costs (Ctxt ), holding costs (hyt ), penalty costs to exceed storage
capacity (h̄t ȳt and ¯ht ¯

yt ) and lost sales (Ptzt ). Equations (2) represent inventory
constraints while inequalities (3) allow for a flexible storage capacity and define the
value of variables ȳt and

¯
yt . Finally, constraints (4) bound the maximum amount of

product that can be bought in each time period to at .
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3 Algorithms

We present a general framework for the solution of inventory problems based on the
rolling-horizon paradigm [4]. The main idea is to solve the problem decomposing
it in a sequence of optimize decisions one for each time period. Each decision
is taken solving a small sub-problem considering a limited look-ahead windows
composed by the W > L following time periods. In details, at the beginning of
each period t , taking into account forecast information available for time periods
in {t, . . . ,max(t + W,n)} we only decide the amount of product to order in the
current period: xt . At the end of the time period the demand is realized, the costs are
computed and the inventory status is updated considering the actual values for the
demand and the ordering costs. Then we move to time period t + 1 and we repeat
the process.

In Algorithm 1 the pseudo-code of our rolling-horizon procedure is reported.
Lines from 1 to 4 provide the initialization for the solution vector x∗, the look-
ahead window T ′, the vector q of the amount of product ordered in previous time
periods and delivered within T ′ and the status of the inventory y0 at the beginning
of T ′. In line 5 forecast information for demand (vector d), ordering cost (vector
c) and cost for lost sales (vector p) are generated using any forecasting model
(see Sect. 4 for the description of the method used in our tests). For each time
period t ∈ T we solve, using the SolveInventory function, a small inventory sub-
problem defined over time horizon T ′ taking into consideration the initial status of
the inventory y0, previous orders q, availability of product a in T ′ and all forecast
information available at time t : dt , ct and pt (line 7). Only the decision taken in
the first time period in T ′ is returned and it is used to update the past orders vector
q, the inventory status y0 and the solution vector x∗ then the look-ahead window
T ′ is moved forward in order to solve the problem defined on the next time period
t+1 (lines from 1 to 4). The procedure ends once the last sub-problem has been
solved and the complete ordering plan x∗ is defined. The function SolveInventory
is kept generic: details of three different solution policies are provided in the next
paragraphs.

Myopic Policy The first solution policy is the myopic one. In each time period t ,
considered the availability of product at , we order an amount of product (xt ) that
is as close as possible to the forecast demand for period t + L. The status of the
inventory at the end of the time period t , the exact value of xt and all other associated
quantities can be directly computed as xt = min(dtt+L, at ), yt = max(Dt − qt +
yt−1, 0) ȳt = max(yt − H̄, 0),

¯
yt = max( ¯H −yt , 0), zt = |min(Dt −qt +yt−1, 0)|.

Where qt is the amount of product delivered at time period t , i.e. qt = xt−L; if
L = 0 then qt = xt . The total actual cost for period t is then equal to Ctxt + hyt +
m̄ȳt + ¯m¯

yt +Ptzt . It is worth noting that the size of the look-ahead windowW does
not have any impact on the myopic decisions since they do not consider the effect
of the order placed in t on subsequent time periods. For this reason, in the Myopic
policy t ′ = t .
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Algorithm 1: Rolling-horizon heuristic procedure
Input: W look-ahead window size, T set of time periods, L lead time, D demand vectors,

a availability vector, C, h, h̄, ¯h, p cost vectors.
Output: x∗ an optimized ordering plan.

1 x∗t ← 0 ∀t ∈ {1 . . . |T |};
2 T ′ ← {0 . . .W };
3 qt ← 0 ∀t ∈ {1 . . . L};
4 y0 ← ¯H ;
5 d, c, p← Forecast (D,C);
6 forall the t ∈ T do
7 x1 ← SolveInventory(T ′, q, y0, a, d

t , ct , pt );
8 for i ∈ {1 . . . L− 1} do
9 qi ← qi+1;

10 qL ← x1;
11 y0 ← max(D1 − q1 + y0, 0);
12 x∗t ← x1;
13 T ′ ← {0 . . .min(W, |T | − t)};
14 return x∗

Risk Penalization Policy The second solution policy is based on a LP formulation
similar to the deterministic model presented in Sect. 2. This problem is defined on
a limited planning horizon T ′, whose size depends on W . Instead of deterministic
demand and costs (Dt,Ct and Pt ) forecasts dt

t ′ , c
t
t ′ and pt

t ′ are used. In order to
take into account the progressive degradation of the forecast quality we introduced
an additional term in the objective function: αt

′
βxt ′ (5). This term includes two

user-defined penalization parameters. The first αt
′

increases exponentially with the
distance between the first time period of T ′ and the period t ′: orders are less likely to
be placed in the last part of the look-ahead window when demand and cost forecasts
are less reliable. In Sect. 4 we evaluate the effect of this setting. The second, β, is

simply a scaling factor: after preliminary tests, we found σ(d̂t )
maxt dt

+ σ(ĉt )
maxt ct

to be a
suitable value, where σ is the sample standard deviation computed on a large set of
demand and cost forecast vectors (d̂ t and ĉt ). Moreover, inventory constraints (6)
have to be modified to include parameters q ′t representing orders placed before T ′.

min
∑

t ′∈T ′
ctt ′xt ′ + hyt ′ + m̄ȳt ′ + ¯m¯

yt ′ + ptt ′zt ′ + αt
′
βxt ′ (5)

s.t.yt ′−1 − dtt ′ + zt ′ − yt ′ =
{
qt ′ if t ′ ≤ L
xt ′−L if t ′ > L

∀t ′ ∈ T ′,∀s ∈ S : t ′ > 0

(6)

and (3)–(4). When the optimal solution has been found we return the value of x1.
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Scenario-Based Policy The last policy consists of a scenario-based stochastic
programming model, see [3] and [11] for a general introduction on stochastic
programming models. Our formulation is based on the deterministic one presented
in Sect. 2 with the addition of the set of scenarios S. Each scenario s ∈ S defines
parameters dts

t ′ , c
ts
t ′ and pts

t ′ representing a possible realization of demand and
costs generated with the procedure described in Sect. 4. In our stochastic model all
variables are scenario-dependent and in the objective function (7) we minimize the
average cost over all scenarios. As in the previous policy we modified the inventory
constraints (8) to account for past orders qt ′ . Finally, in order to force the same
amount of product to be ordered in the first period we set xts1 to be equal in all
scenarios (9).

min
∑

t ′∈T ′

∑

s∈S
ctst ′ x

s
t ′ + hyst ′ + m̄ȳst ′ + ¯m¯

yst ′ + ptst ′ zst ′ (7)

s.t. yst ′−1 − dtst ′ + zst ′ − yst ′ =
{
qt ′ if t ′ ≤ L
xs
t ′−L if t ′ > L

∀t ′ ∈ T ′,∀s ∈ S : t ′ > 0

(8)

xs−1
1 = xs1 ∀s ∈ S : s > 0

(9)

¯H − ¯
yst ′ ≤ yst ′ ≤ H̄ − ȳst ′ ∀t ′ ∈ T ′,∀s ∈ S : t ′ > 0

(10)

xst ′ ≤ at ′ ∀t ′ ∈ T ′ : t ′ > 0
(11)

Once the model is solved to optimality, we return the amount of product ordered in
the first time period, i.e. the value of any variable xts1 .

4 Experimental Evaluation

In order to analyze the effectiveness and the efficiency of our approach we set-
up a testing campaign based on realistic data coming from the Italian day-ahead
gas market [7]. In particular, we simulate the behavior of a single virtual company
that has to define ordering plans to deal with the entirety of the Italian market.
The rolling-horizon algorithm has been implemented in Python using Pyomo as
optimization modeling language [10] and Gurobi 8.1.0 as LP solver [9]. All tests
have been conducted on a Windows 10 64bit machine equipped with processor Intel
i7-4702hq and 16 GB of RAM.
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Structure of Demand and Cost Predictions We do not rely on specific statistical
properties of demand and cost forecasting; that is, the forecasting model is irrelevant
for our models. However, in practice we expect their accuracy to decrease over time.
In order to simulate this behavior, in our tests, we proceeded as follows. For each
time period t ∈ T let Edt = {edt . . . edn} and Ect = {ect . . . ecn} be two sequences of
random coefficients representing the forecast errors for each subsequent time period
for demand and ordering costs. We start computing perturbed demands and costsD′t
and C′t as:

D′t = Dt + edt Dt , and C′t = Ct + ect Ct ∀t ∈ T . (12)

Then, taking into account other sequences of random coefficientsE′dt = {e′dt . . . e′dn }
and E′ct = {e′ct . . . e′cn }, in each time period we consider as forecast error the sum
of all errors in previous periods. More formally, we generate forecast for all periods
t ′ ∈ {t, . . . , n} according to the following rules:

dtt ′ = D′t +
∑

i∈{t,...t ′}
e′di D

′
t , and ctt ′ = C′t +

∑

i∈{t,...t ′}
e′ci C

′
t . (13)

Where dt
t ′ and ct

t ′ are the demand and cost forecasts for time period t ′ based on
information available at time t . Forecast for lost sales cost are directly associated
with ordering cost and are computed as pt

t ′ = δctt ′ with δ > 1.

Instance Data Our test set is made up of 96 instances. They are generated from
real data for years 2017 and 2018 of the Italian day-ahead gas market (raw data can
be retrieved at [8]) considering different setting for the lead time, parameter L, and
for the penalization coefficients h̄ and ¯h. In details, we create one instance for each
period of 30 days (|T | = 30) considering two different lead time values 0 and 3
and two penalization settings high and low. In the high setting the penalization
cost is higher than the maximum ordering cost (h̄ = ¯h = 60) making the capacity
limitation very rigid. On the other hand, in the low setting, exceeding the storage
capacity can be profitable since the penalization is lower than the minimum ordering
cost (h̄ = ¯h = 1). In our instances forecast for demand and costs are obtained
starting from real daily market demand (in MWh) and average daily cost (in millions
of EUR). Forecast error coefficients Edt and Ect are randomly generated using a
normal distribution with mean 0 and standard deviation 0.0625 to obtain an average
forecast error of about 10%. The sets of demand and cost forecast vectors dt and
ct used for the computation of σ(d̂t ) + σ(ĉt ) and for the scenario generation are
composed by 1000 elements each. Parameter δ used to define lost sales costs forecast
pt
t ′ is always equal to 5 so that h̄ = ¯h ≤ pt

t ′ . Product availability is virtually
unlimited so we set at = ∞ ∀t ∈ T . Since, in our application, the values of the
demand and the daily average cost are known at the beginning of each day then we
set forecasts for the current day equal to the actual values that is dt1 = Dt∀t ∈ T and
ct1 = Ct∀t ∈ T . Holding cost is fixed and always equal to 1. Values ¯H and H̄ are set
to 25,000 and 80,000 MW roughly corresponding to the average daily demand and
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75% of the maximum daily demand. We assume that the inventory level is equal
to ¯H at the beginning of the first time period. Finally, we set the value of W , the
size of the look-ahead window, to 7. This allows us to properly show differences
in the solutions computed with the three policies. Moreover, it represents a realistic
look-ahead window size since, in the gas market, many companies rely on weekly
forecast information.

Risk Penalization Fine Tuning The risk penalization policy presented in Sect. 3
makes use of a user defined coefficient α to penalize orders placed on future days.
In order to find the best values for α we performed extensive testing solving all
instances in our data-set with α ranging from 1 to 5 with 0.1 step. We omit detailed
results with L = 0: when penalties are high the value of α has a very mild impact;
when penalties are low it always pays off to keep α low. Instead, an overview of
the results obtained with L = 3 on four significant cases, is reported in Fig. 1. The
results show that the best setting for α is largely influenced by the value of the lead
time. In fact, on the one hand when L = 0 the best value for α is 1 on the other
hand 2.9 is the value for α that generates the best results with L = 3. This behavior
can be explained taking into consideration the rolling-horizon context. There is not
much harm in trusting the forecasts when the order and the delivery take place in
the same day. Indeed, there is always time the next day to make up for the forecast

35
40

45

1 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

06/2018 07/2018 10/2018 12/2018

Alpha

T
ot

al
 C

os
t

35
40

45
50

55

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

06/2018 07/2018 10/2018 12/2018

Alpha

T
ot

al
 C

os
t

1.2 3

Storage Penalty: Low

 Storage Penalty: High

Fig. 1 Effect of alpha: year 2018, lead time 3



Heuristics for Capacitated Stochastic Inventory Problems with Forecast Updates 147

2 4 6 8 10 12

15
20

25
30

35
40

45

Det
Myo
RHP
RHS

Months

T
ot

al
 C

os
t

2 4 6 8 10 12

15
20

25
30

35
40

45

Det
Myo
RHP
RHS

Months

T
ot

al
 C

os
t

Storage Penalty: High

Storage Penalty: Low

Fig. 2 Results: year 2018, lead time 0

error in the previous day, particularly in our application where demand and costs for
the first day are always deterministic. This is not true when L > 0 since forecast are
less and less reliable in future days and so it is better to place orders in the first part
of the look ahead window.

Performance Analysis In evaluating the performance of all three solution policies
for our rolling-horizon algorithm we use the deterministic model (Det , Sect. 2)
as benchmark. A graphical representation of the results obtained on instances for
year 2018, with different lead time and penalization settings, is depicted in Figs. 2
and 3. The three solution policies exhibit very different behaviors. Considering all
instances, the scenario-based policy (RHS) obtains always the best results with a
total average error, with respect toDet , equal to 1.01%, the risk penalization policy
(RHP ) achieves an average error of 8.02% while the myopic policy (Myo) averages
at 17.97%. In details, when settings are very restrictive, i.e. L = 0 and the penalty
is high,Myo behaves well (average error 0.82%) outperforming RHP that obtains
an error equal to 1.10%. With all other settings, RHP is on average better than
Myo, especially when L = 3. With this setting, RHP reduces on average by half
the error of Myo (14.29% vs 30.90%). There are, however, a few instances where
the total cost achieved with Myo is lower. In these cases, the optimal deterministic
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solution shows a structure similar to the Myo solution and indeed the daily optimal
order amount is very close to the demand for day t + L.

Moreover, considering the consistency of the results, the RHS policy shows a
clear advantage. Indeed, the maximum error forRHS is equal to 4.18% whileRHP
and Myo reach 56.88% and 149.01% respectively.

As regard as the computational time, Myo runs in a fraction of a second, RHP
solves an instance in less than 1.49 s while RHS takes about 105.33 s. Execution
time is roughly the same for all instances. Therefore, there is a clear trade-off
between quality of the solution and computational time. However, considering that
a good quality solution can save millions of euro every day and that requires only
about 100 s the RHS policy is the undeniable winner of this comparison.
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Paths and Matchings in an Automated
Warehouse

Michele Barbato, Alberto Ceselli, and Giovanni Righini

Abstract We analyze a number of variations of a combinatorial optimization
problem arising from the optimization of an automated warehouse. We classify
these variations according to four relevant parameters and we analyze which
combinations are polynomially solvable, owing to dynamic programming recursions
or to reductions to known graph optimization problems such as the shortest path
problem and the minimum cost perfect matching problem.

Keywords Scheduling · Combinatorial optimization · Dynamic programming

1 The Automated Warehouse

This study arises from an applied research project on smart manufacturing, involv-
ing some companies in the cosmetic industry. In particular, we consider the
optimization of automated warehouses where components such as colors, pigments
and bulk products are stored in identical boxes. When a production order is
processed its bill of materials is sent to the weighing unit, close to the warehouse.
The boxes containing the needed components are then brought to the weighing unit
through a conveyor and an AGV system; with the same means the boxes are returned
to the warehouse afterwards.

The structure of the automated warehouse under study is illustrated in Fig. 1.
The boxes are stored on the two sides of a rail, carrying a crane. In each of the H
available positions along the rail, V vertically aligned locations are available and the
crane can reach them by moving up and down. In addition, each location can contain
two boxes: one directly facing the corridor with the crane (front layer) and the
second one just behind it (rear layer). The crane has capacity two, i.e. it can carry up
to two boxes simultaneously. To access a box in the rear layer the crane first extracts

M. Barbato · A. Ceselli · G. Righini (�)
Department of Computer Science, University of Milan, Milan, Italy
e-mail: michele.barbato@unimi.it; alberto.ceselli@unimi.it; giovanni.righini@unimi.it

© Springer Nature Switzerland AG 2019
M. Paolucci et al. (eds.), Advances in Optimization and Decision Science
for Society, Services and Enterprises, AIRO Springer Series 3,
https://doi.org/10.1007/978-3-030-34960-8_14

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34960-8_14&domain=pdf
mailto:michele.barbato@unimi.it
mailto:alberto.ceselli@unimi.it
mailto:giovanni.righini@unimi.it
https://doi.org/10.1007/978-3-030-34960-8_14


152 M. Barbato et al.

Fig. 1 The automated warehouse

the box in the front layer, then it extracts the box in the rear layer and finally it
reinserts the box in the front layer. Hence, to perform this sequence of operations the
crane must be initially empty. Two adjacent locations of the automated warehouse
are taken by the input and the output conveyors, running in opposite directions. In
the remainder the locations of the conveyors are identified as the origin, since they
are the position from which the crane starts and to which the crane returns. A trip
is the sequence of movements of the crane between two consecutive visits to the
origin. In the remainder we call site the position where a box can be stored in the
warehouse. So, the warehouse is assumed to have V × H locations on one side,
V × H − 2 locations on the other side (where the conveyors are) and 2 sites (front
and rear) for each location.

The crane must execute a set of pickup operations to send the required boxes to
the weighing unit and a set of delivery operations needed to put the used boxes back
into their locations. The same component may be stored in several boxes: therefore
the same pickup order may be satisfied by visiting any site in a given subset. On the
contrary, delivery operations are assumed to be constrained to store the boxes into
the same sites from which they had been extracted: therefore each delivery operation
is satisfied by visiting a given site. Another asymmetry between pickup and delivery
operations is their sequence. Pickup operations can be satisfied in any order, because
there is no precedence between weighing different components in a bill of materials.
On the contrary, when used boxes are returned to the warehouse, the order in which
they arrive depends on the weighing unit and it cannot be chosen in the warehouse:
the crane must process the incoming boxes in the order they arrive on the input
conveyor. Therefore the input of the optimization algorithm may include a set of
pickup orders (each corresponding to a subset of sites), a sequence of deliveries
(each corresponding to a single site) or both.

The optimization of the crane movements is a hard combinatorial problem that,
in addition, may need to be solved both off-line and on-line (i.e. re-optimized in real
time). The study originates from the collaboration with a manufacturing company
whose warehouse has H = 53, V = 8 and 4 weighing units. In average, a typical
instance to be solved may have 13 orders per day with 6 ingredients per order, while
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the speed of the crane corresponds to about 2 horizontal sites per second and 0.4
vertical sites per second.

In [2] we evaluate the applicability of state-of-the-art on-line algorithms in a
similar context. In this short paper we concentrate on the off-line version, in which
we have considered the simplest variations of the problem for three purposes: (a)
to possibly establish a starting point for a decomposition algorithm allowing for the
exact off-line optimization of the most difficult variations of the problem; (b) to
pave the way for the design of on-line optimization strategies; (c) to have a term of
comparison against which an on-line strategy can be compared.

In particular, we classified the problem variations according to the following
features:

1. Capacity q of the crane: [1], [2], [q > 2];
2. Dimensions l: [1] (a line or two lines originating from the origin, i.e. the I/O

position), [2] (a H × V matrix of locations), [3] (double layer);
3. Operations o: pickup only [P], delivery only [D], mixed pickups and deliveries

[PD];
4. Sites s: fixed [F] or variable [V] sites;

In the remainder we use a four fields notation q/l/o/s, where the letters indicate
“any case” while the values listed above in square brackets indicate specific cases.

Here we assume that the objective to be minimized is the overall traveling time
taken by the crane to perform all its duties. Other objectives may be also relevant in
an industrial context, such as the minimization of energy consumption.

2 Problem Variations

2.1 Problem Variations with Capacity 1 (1/l/o/s)

The case with capacity 1 (which implies no double layer) is trivial in almost all
variations, since the crane can visit only one of the sites for each trip. The only
non-trivial case is with mixed pickups and deliveries (1/l/PD/s). In this case the
problem can be transformed into a minimum cost bipartite matching problem. First,
dummy deliveries or dummy pickups at the origin site are generated, in order to
have the same number of both operations. Then a minimum cost matching between
pickups and deliveries is computed, where the cost of matching a pickup i with a
delivery j is mink∈Pi {djk}, where Pi is the set of sites corresponding to pickup i and
djk is the distance (or travel time) between the site of j and that of k.

Complexity: O(n3), being n the number of required operations.
In the remainder we only consider variations with crane capacity equal to 2 or

larger.
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2.2 Basic Problem Variation: (2/1/P/F)

This variation corresponds to the easiest combination of the four fields. The problem
can be solved by initially sorting the sites to be visited by non-increasing distance
from the origin (separately for each line, in the case of two lines). Then they are
paired so that each trip of the crane visits the two farthest sites (on the same side of
the origin) not yet visited. In the case of two lines if the number of sites is odd on
one of the two lines, the last trip visits a single trip, that is the closest to the origin
on the line with an odd number of sites. If the number of orders is odd on both lines,
the last trip visits the two sites closest to the origin, one on each line.

Complexity: O(n log n).

2.3 One Complicating Feature

Here we examine the problem variations in which only one of the four fields takes
a different value with respect to the basic variation.

2.3.1 Capacity q > 2 (q/1/P/F)

Sites are sorted as in the basic variation. Each trip visits the q farthest sites (on the
same line) not yet visited. If there are two lines with a number of sites that is not
a multiple of q, let r1 < q and r2 < q the remaining sites to be visited, Then,
if r1 + r2 > q two final trips, one on each line, visit the remaining sites; else,
r1 + r2 ≤ q a single final trip is enough to visit all the remaining sites.

Complexity: O(n log n).

2.3.2 Two Dimensions (2/2/P/F)

For each (unordered) pair of sites [i, j ] we define a matching cost

c[i,j ] = min{d0i + dij + dj0, d0j + dji + di0} (1)

and for each site i we define a non-matching cost

cii = d0i + di0, (2)

where d are the (possibly asymmetric) distances or traveling times to be optimized.
If the traveling times d(w) also depend on the transported weight, w, then we have

c[i,j ] = min{d0i (wi + wj)+ dij (wj )+ dj0(0), d0j (wi + wj)+ dji(wi)+ di0(0)}
(3)
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and

cii = d0i (wi)+ di0(0), (4)

Consider a graph G(N ∪N ′, E ∪ E′ ∪ E′′) where

• N is the set of orders (pickups);
• N ′ is a copy of the same set;
• E includes edges [i, j ] with weight equal to half of c[i,j ] defined as above for

each pairs of elements of N ;
• E′ includes edges [i′, j ′] with weight equal to half of c[i,j ] defined as above for

all pairs of elements of N ′;
• E′′ includes edges (i, i′) with weight cii defined as above, linking the two copies

of each vertex in N and in N ′.

A perfect matching in G is made by some edges of E′′, corresponding to trips
visiting a single site, and by edges [i, j ] and [i′, j ′] corresponding to trips visiting
two sites. In particular, it is trivial to prove that there exists a perfect matching of
minimum cost where edges in E and edges in E′ form twice the same matching.

Complexity: O(n3).

2.3.3 Three Dimensions (2/3/P/F)

The same definitions given above still apply, but now the traveling times d also take
into account the time needed to access the rear layer. Furthermore, if two sites i and
j are both in the rear layer, the pair [i, j ] is infeasible and c[i,j ] must be set to∞ in
(1) or (3)).

For each pair of sites it is necessary to select the optimal sequence of visits, with
the constraint that sites in the rear layer must be visited first. Then dij (w) is set to
∞ for all i and w in (3) if j is in the rear layer.

A polynomially solvable matching problem is generated as in the previous case.
Complexity: O(n3).

2.3.4 Deliveries (2/1/D/F)

Deliveries imply an additional constraint with respect to pickups: if box i is matched
with box j > i + 1 in a same trip, then all boxes between i and j in the input
sequence must remain unmatched: the crane takes box i from the input conveyor
without delivering it, then it delivers all boxes between i and j one by one and
finally it takes box j and delivers both i and j in a single trip.
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This problem can be reformulated as a shortest path problem on an acyclic
digraph whose nodes are numbered according to the input sequence and the weight
of each arc (i, j) with j > i is defined as follows:

ci,j+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min{d0,i (wi + wj)+ di,j (wj )+ dj,0(0), d0,j (wi + wj)+
+dj,i(wi)+ di,0(0)} if j = i + 1
d0,i (wi)+ di,0(0) if j = i
min{d0,i (wi + wj)+ di,j (wj )+ dj,0(0), d0,j (wi + wj)+
+dj,i(wi)+ di,0(0)}+
+∑j−1

k=i+1(d0,k(wi + wk)+ dk,0(wi)) if j > i + 1

where d(w) are the traveling costs on the line, possibly dependent on the transported
weight w.

Complexity: O(n2).

2.3.5 Mixed Pickups and Deliveries (2/1/PD/F)

In this case the problem cannot be transformed into a matching problem, because
the cost of a trip visiting two pickup and delivery pairs is not given by the sum of
two terms each one depending on a single pair. We could devise no straightforward
reformulation of this problem into a polynomially solvable graph optimization
problem. Therefore this remains an open question.

2.3.6 Variable Sites (2/1/P/V )

In this case we indicate with n the set of requested pickup operations and by Pi the
subset of sites from which the pickup order i can be satisfied. The problem can be
reformulated as a minimum cost perfect matching problem on a suitable graph. If n
is odd, add a dummy pickup at the origin. The graph has a vertex for each pickup
operation, it is complete and the weight of each edge [i, j ] is the cost (traveling
time) of the most convenient trip among those that visit a site in Pi and a site in Pj .

Complexity. If each pickup order can be satisfied in p sites, the weight of each
edge is the minimum among p2 trip costs. Hence, to define the weighted graph costs
O(n2p2) time. The computation of the minimum cost perfect matching costsO(n3)

time. Therefore the worst-case time complexity is O(n2p2 + n3).

Remark The same construction holds also in two and three dimensions, i.e. for
variations (2/2/P/V ) and (2/3/P/V ). In one dimension it is optimal to keep only
the site closest to the origin on each line for each pickup order. This reduces p to 2
and the time complexity to O(n3).
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2.4 Two Complicating Features

Now we consider the six variations arising from considering two complicating
features at a time.

2.4.1 Capacity and Dimensions (q/2/P/F) and (q/3/P/F)

The problem is now a Capacitated Vehicle Routing Problem with unit demands,
i.e. the capacity limits the number of vertices that can be visited in each route. The
problem is known to be NP -hard [1].

2.4.2 Capacity and Deliveries (q/1/D/F)

This variation can be efficiently solved with dynamic programming. Consider a
delivery order at a time, according to the given input sequence. For each order u
one has to decide whether to keep it on the crane or to deliver it. In the former case
the crane remains at the origin; Moving the crane without delivering the last loaded
order u is always dominated by another policy, i.e. moving the crane to do perform
the same operations before loading u; but this is already considered in the dynamic
programming states generated before considering u. In the second case the crane
goes at least up to the site of u and along its way it serves all delivery orders kept
in it up to that moment, if they are closer to the origin than u. Moreover the crane
can also go further to possibly serve more delivery orders previously accumulated.
Each of these possible decisions generates a new dynamic programming state.

Complexity: the number of iterations is n. After each iteration u the number of
possible states is bounded by u+ u2 + u3 + . . .+ uq−1, which grows as O(nq−1).
Therefore the number of states grows as O(nq). From each state at most q + 1
possible extensions must be considered. This yields a time complexityO(qnq), that
is polynomial for each q fixed.

2.4.3 Capacity and Variable Sites (q/1/P/V )

On a single line, the problem is trivial: it is always optimal to select the site closest
to the origin for each pickup order, which makes the problem equivalent to the
variation with fixed sites (q/1/P/F). On two lines, it is easy to prove that for each
line we can keep only the site closest to the origin for each pickup order. Hence each
pickup order can be satisfied in either of two sites, on opposite sides with respect to
the origin. However, in spite of this simplification we could not find any polynomial
time algorithm to solve the resulting model.

Therefore this problem remains open.



158 M. Barbato et al.

2.4.4 Dimensions and Deliveries (2/2/D/F) and (2/3/D/F)

The same construction of variation (2/1/D/F) holds. The only change is in how
arc costs are computed from traveling times. Hence, the problem can be transformed
into a shortest path problem on an acyclic weighted digraph.

Complexity: O(n2).

2.4.5 Dimensions and Variable Sites (2/2/P/V ) and (2/3/P/V )

In two dimensions we can re-use the same transformation of variation (2/2/P/F),
leading to a minimum cost perfect matching problem, after selecting:

• the most convenient site, for each single pickup order;
• the most convenient pair of sites, for each pair of pickup orders.

In three dimensions the same construction holds again, but there is no guarantee
that all trips visiting two sites are feasible: any two sites in the rear layer are
incompatible, because both require the crane be empty to execute the pickup
operation. However the pre-processing step needed to check for incompatibilities
has polynomial complexity: with n orders and p sites for each order the computation
of the arc costs takes O(n2p2). Solving the resulting minimum cost perfect
matching problem requires O(n3).

Complexity: O(n2p2 + n3).

2.4.6 Deliveries and Variable Sites (2/1/D/V )

On a single line it is always optimal to select the site closest to the origin for each
delivery order. Hence, the problem is equivalent to (2/1/D/F) and can be solved
in polynomial time as a shortest path problem.

On two lines it is always optimal to select on each line the site closest to the origin
for each delivery order. Hence, the same transformation of variation (2/1/D/F)
holds again with the only difference that the quantity min{d0i (wi+wj)+dij (wj )+
dj0(0), d0j (wi +wj)+ dji(wi)+ di0(0)} must be chosen in an optimal way among
four possibilities, corresponding to the four combinations of the two sites for each
of the two orders i and j .

Complexity: O(n2).

2.5 Three Complicating Features

There is only one triplet of features that generate polynomial problems when they
are taken two at a time.



Paths and Matchings in an Automated Warehouse 159

2.5.1 Dimensions, Deliveries and Variable Sites (2/2/D/V )

and (2/3/D/V )

By enumeration it is possible to select the most convenient sites for each order
served alone and the most convenient pairs of sites for each pair of orders served in
the same trip. After that, one can still use the transformation of variation (2/1/D/F)
leading to a shortest path problem. The pre-processing step takes polynomial time
as in the previous cases (for instance (2/2/P/V ) and (2/3/P/V )).

Complexity: O(n2p2 + n3).

3 Conclusions

We have analyzed several variations of a problem of optimizing the traveling time of
a crane in an automated warehouse. For many variations we have shown polynomial-
time transformations that allow the problem to be efficiently solved with existing
algorithms for computing shortest paths or perfect matchings or with dynamic
programming.

Establishing the complexity of two variations, namely (2/1/PD/F) and
(q/1/P/V ), remains open.

Other variations are already NP -hard even in this simplified version of the
original problem.

The knowledge about what features are complicating and how the others can
be efficiently dealt with paves the way for solving the original problem with exact
optimization algorithms based on suitable decompositions or relaxations. The model
can be further enriched by considering additional features such as deadlines and
energy consumption minimization as well as uncertainty and real-time decision
policies. This is the subject of an ongoing research program.
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Coordinating the Emergency Response
of Ambulances to Multiple Mass Casualty
Incidents using an Optimization-based
Approach

Haya Aldossary and Graham Coates

Abstract During the emergency response to multiple mass casualty incidents
(MCIs), a number of coordination (allocation) decisions need to be made in a
timely manner. This paper reports on an optimization-based approach that has been
developed to solve the ambulance-to-casualty and casualty-to-hospital allocation
problems. A number of constraints are taken into consideration such as the number
of ambulances and hospitals, along with the capacity of hospitals. Within the
approach, the road network of the geographical area under consideration is modelled
realistically. Further, the day of the week and the time of day at which multiple
MCIs occur are considered as factors influencing the speed of the ambulances.
The approach includes a Neighborhood Search Algorithm that has been developed
and used to obtain solutions to a multiple MCI case study involving a number of
scenarios.

Keywords Coordination · Multiple mass casualty incidents · Emergency
response · Ambulance-to-casualty allocation · Casualty-to-hospital allocation

1 Introduction and Problem Statement

A mass casualty incident (MCI) can be defined as that which results in a number of
casualties with varying degrees of injury and which may overwhelm the emergency
services and hospitals allocated to receive casualties. An example of a multiple MCI
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is the terrorist bombings in 2005 in London, UK [1]. In relation to the London
bombings, the UK Cabinet reported a potential lack in the coordination between
the emergency services [1]. During a MCI, coordination challenges may arise due
to the limited number of emergency service resources, demands on local hospitals,
and potential impact on the road network. Thus, the emergency service coordination
challenges that could be involved in a multiple MCI are task flow including task
allocation and task scheduling, resource allocation and re-allocation, information
flow between responders, the speed of making decisions, and the relationship
between responders [2]. In this paper, resource allocation is considered as the
efficient sharing of resources, such as ambulances and hospitals, between casualties.
Further, task allocation is considered as assigning a number of tasks to ambulances
involved in the emergency response to a multiple MCI and ensuring that there is no
conflict, overlap, or duplication between ambulance assignments.

In the context of a multiple MCI, Wilson et al. [3] designed a Neighbourhood
Search Algorithm to solve the task and resource allocation problems. The tasks
considered include pre-extricating treatment, rescuing trapped casualties, pre-
transportation treatment, and transporting casualties to hospital, all of which are
assigned to a number of responders. Similarly, Repoussis et al. [4] proposed a mixed
integer programming model for optimizing emergency resource utilization. In that
work, two tasks have been taken into consideration: casualty transportation to a
hospital and casualty treatment at hospital. Amram et al. [5] have focused on solving
the challenge of patient-to-hospital allocation by proposing a web-based simulation
model. The model is designed to provide the responders at an incident site with
real-time information regarding driving time, the location of hospitals, and the level
of the trauma service available at these hospitals. Importantly, this model requires
real-time data, which is not always available. In the field of disaster logistics, Salman
and Gul [6] proposed a multi-period mixed integer programming model to optimize
the decisions of allocating resources and transporting casualties with the aim of
minimizing the response time. In addition to the allocation challenges mentioned,
a number of researchers in the emergency field have focused on the triage process
and patient prioritization [7–9]. For example, Mills et al. [9] presented a model
of casualty triage in a MCI that incorporates resource limitations and changes in
survival probabilities with respect to time. In this model, patients are catgeorised
as immediate (requiring treatment within 1 h), urgent (needing treatment between
1 and 4 h), delayed (can wait for treatment beyond 4 h) and expectant (expected
to become deceased). The performance of the model presented is examined using
a set of scenarios where the number of ambulances has been varied to compare the
impact of the resource-scarce and resource-abundant situations on the deterioration
of casualties.

Some authors have assumed that the injury level of casualties is static during the
emergency response process [4, 10] or has no effect [11]. In this paper, the injury
state of casualties is considered to be static but it is used in prioritizing casualties
in relation to their order of transportation to hospitals. Further, in simulating the
response to emergency situations, a non-realistic representation of the road network
is commonly modelled using a simple representation such as a grid [4, 12, 13].
However, a realistic and detailed representation of the road network is required, as
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in [3], to accurately determine the distance to and from incident sites, and to and
from hospitals. Relatedly, to obtain accurate travel times of ambulances needing to
travel between two destinations, factors such as distance and speed are required.
Based on the distance, Wilson et al. [3] applied two functions proposed by [14] to
determine the travel time, although these functions are not time-dependent and the
time of the occurrence of the incident is assumed to be constant. Models such as
[9] also consider speed and distance as static values. In contrast, in [12] speed is
proposed to be a variable based on time of day and day of the week.

The aim of the research presented in this paper is to solve the coordination
problem of the emergency response of a limited number of ambulances to multiple,
simultaneously occurring MCIs, each of which has a number of casualties with
varying levels of injury. Ambulances are available to deliver casualties to one of
a fixed number of hospitals, each of which has a limited capacity.

Specifically, the coordination problem to be solved consists of a number of
MCIs located at a number of incident sites, nIS, that involve multiple casualties,
nC, each of which must initially be triaged (i. e. classified as immediate, urgent, or
delayed) by ambulance crew on arrival at the incident site. In this research, it is
assumed that all casualties have been triaged at the beginning of the emergency
response process. A limited number of ambulances, nA, initially located at a number
of ambulance stations, nAS, are used to transport each casualty from an incident
site to one of a number of hospitals, nH , each of which has a limited capacity. For
each ambulance to which a casualty is allocated, a number of tasks, nT ,need to be
completed; see Fig. 1.

Each ambulance located at an ambulance station begins its first task (i.e.
preparing to respond) once the MCI emergency call is received. The first journey
of each ambulance starts when it departs from an ambulance station to travel to an
incident site to collect a casualty and ends when the triaged casualty is dropped-off
at a hospital. Normally, each casualty is transferred individually by an ambulance
to the allocated hospital. However, in some instances, pairs of casualties with the
same triage classification may be transported to hospital in the same ambulance. A
number of allocation decisions are made as part of the response including: (a) which
ambulance from which ambulance station should be dispatched to which casualty at
which incident site; (b) which casualty located at an incident site should be allocated
to a which hospital.

The contribution of the research lies in the development of an optimization-
based approach, which includes a GIS-based representation of a multiple MCI
geographic environment in any area of the UK under consideration coupled with
a Neighborhood Search Algorithm (NSA), to solve the coordination problem

Preparing at ambulance
station

Travelling to incident
site

Next journey

Collecting casualty/ies
from incident site

Travelling to hospital
Dropping-off

casualty/ies at hospital

Fig. 1 The sequence of tasks allocated to an ambulance
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mentioned. In relation to the NSA, a number of objectives are considered, i.e. the
minimization of the: (a) maximum response time of all ambulances; (b) time of
delivering the last ‘immediate’ casualty to hospital; (c) time of delivering the last
‘urgent’ casualty to hospital; (d) total number of journeys of all ambulances; (e) total
idle time of all ambulances. The NSA developed consists of seven structures that can
be applied to solve two allocation problems: ambulance-to-casualty and casualty-to-
hospital. Further, road traffic is simulated by varying the speed of ambulances based
on the day and time of the occurrence of the multiple MCIs.

The remainder of this paper is organized as follows, Sect. 2 presents the
optimization-based approach to solve the coordination problem defined in Sect. 1
in terms of the initialization of multiple MCIs in a given geographical area,
objective functions and a Neighborhood Search Algorithm that has been developed.
A hypothetical case study is described in Sect. 3, followed by the associated results
and discussion in Sect. 4. Finally, the paper is concluded in Sect. 5.

2 Optimization-Based Approach

2.1 MCI Initialization

To simulate the affected geographical area of the multiple MCIs, the approach’s
solution method requires initialization of the associated road network. In this
research, the road network is constructed using Ordnance Survey MasterMap GIS
data [15] and modelled as an undirected graph, which has sufficient details to
determine the actual distance between any two locations and thus the travelling
time between them. Further, the MCIs must be initialized to include the number and
location of: (a) incident sites, IS; (b) casualties, C, at each incident site (including
their injury level); (c) hospitals, H; (d) ambulance stations, AS; (e) ambulances, A,
at each ambulance station. Each location in the GIS-based representation of the area
is assigned to the vertex on the graph nearest its real location (Table 1).

2.2 Objective Functions

The response time, which is the time of delivering the last casualty among all
incident sites to hospital, is minimized

f1 =
∑nt

k=1
dk,i,j (1)

where dk, i, j refers to the duration of the k-th task allocated to the i-th ambulance,
which was originally located at the j-th ambulance station.
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Table 1 Sets and parameters

Sets Definition

A Set of ambulances
AS Set of ambulance stations
C Set of casualties
H Set of hospitals
IS Set of incident sites
T Set of tasks
Parameters Definition
acap Ambulance capacity
hi, cap The capacity of hospital i

nIS Number of incident sites
nC Number of casualties
nH Number of hospitals
nAS Number of ambulance stations
nA Number of ambulances
nT Number of tasks assigned to each ambulance
nJ Number of journeys taken by each ambulance

s
(t)
d Ambulance speed based on the day of week d and time of day t

The time of delivering the (a) last immediate casualty then (b) the last urgent
casualty among all incident sites to the hospital are minimized

f2 = max
i,j

dtI,i,j (2)

f3 = max
i,j

dtU,i,j (3)

where dtI, i, j and dtU, i, j indicate the delivery time of the last immediate and last
urgent casualty who have been transferred to a hospital by the i-th ambulance, which
was originally located at the j-th ambulance station.

The number of journeys for all ambulances is minimized

f4 =
∑nJ

t=1
aj t,i,j (4)

where ajt, i, j indicates the t − th journey taken by the i − th ambulance, which was
originally located at the j − th ambulance station. Further, nJ indicates the number
of journeys taken by each ambulance.

The total idle time of all ambulances is minimized

f5 =
∑nJ

t=1
ait t,i,j (5)

where aitt, i, j denotes the total idle time of the i-th ambulance, which was originally
located at the j-th ambulance station.
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2.3 Neighborhood Search Algorithm

A NSA has been developed to solve the allocation of ambulances-to-casualties and
casualties-to-hospitals. At each iteration, the NSA generates a new response plan by
selecting and applying one of seven structures: (a) change the order of processing
the selected casualty within the same ambulance (COCSA); (b) allocate the selected
casualty to a different ambulance (MCDA); (c) swap two casualties within the same
ambulance (SCSA); (d) swap two casualties within different ambulances (SCDA);
(e) balance the workload between the ambulance that has the highest workload and
the one has the lowest (BW); (f) allocate a casualty to a different hospital (CH);
(g) swap the assigned hospital of two selected casualties (SH). The new response
plan generated each iteration is only accepted when there is an improvement when
compared with the current plan; otherwise, the new plan is discarded. In terms
of improvement, objective function f1 is considered first; however, if the value of
f1 obtained for the new plan is equal to that of the current plan then f2 will be
considered and so on; refer to Fig. 2 for details.

Dijkstra’s algorithm is first used to find the shortest distance between two
locations in the road network of the area of interest, which is then used to obtain the
travel time between those locations. Subsequently, the average speed of ambulances
used to travel the distance between those locations is taken from [12] based on the
time and day of the occurrence of the multiple MCIs modelled.

Fig. 2 Flowchart of the NSA
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3 Case Study: Hypothetical Multiple MCI

A hypothetical multiple MCI involving three incidents at separate sites is assumed
to occur simultaneously in Leeds on a Monday at 10:00 a.m. The incident sites
{is1, is2, is3} ∈ IS are located at Gotts Park (GP), Royal Armouries Museum (RAM),
and Bedford Fields Green Link (BFGL) as indicated in Fig. 3.

In Fig. 3, the top right coordinates (432593.2, 436520) and bottom left coordi-
nates (427084.1, 730701.8) represent the easting and northing respectively. Also
in Fig. 3, three ambulance stations {as1, as2, as3} ∈ AS are shown : St John
Ambulance Leeds − Harehills (SJH) which has 8 ambulances; St John Ambulance
Leeds − City Centre (SJC) which has 10 ambulances; Leeds Central Ambulance
Station (LC) which has 20 ambulances. All ambulances are assumed to be the
same and are available to respond simultaneously to the MCI’s three incident
sites {is1, is2, is3} ∈ IS. Two hospitals {h1, h2} ∈ H are able to receive a limited
number of casualties based on the capacity of each hospital hi, cap; Leeds General
Infirmary (LGI) can receive up to 50 casualties and St James’ University Hospital
(SJUH) can receive up to 40 casualties.

As summarized in Table 2, a total of 80 casualties are distributed over the three
incident sites: 20 casualties at GP (7 immediate, 10 urgent and 3 delayed); 40
casualties at RAM (11 immediate, 16 urgent and 13 delayed); 20 casualties at BFGL
(5 immediate, 7 urgent and 8 delayed).

Fig. 3 Map of Leeds with the road network denoted by grey lines



168 H. Aldossary and G. Coates

Table 2 Distribution of casualties over the three incident sites

Number of casualties
Incident site Immediate (I) Urgent (U) Delayed (D) Total

GP 7 10 3 20
RAM 11 16 13 40
BFGL 5 7 8 20

At each incident site, casualties are assumed to be triaged and waiting to be
transported to one of the hospitals. The priority of casualties being transferred to
hospitals is based on their triage category.

4 Results and Discussion

To enable the performance of the optimization-based approach to be evaluated, three
scenarios of the hypothetical multiple MCI case study described in Sect. 3 have been
considered. In scenario 1, immediate casualties must be transferred individually to
a hospital by an ambulance whereas delayed casualties are assumed to not require
transfer to a hospital. Also, up to two urgent casualties can be transferred in a single
ambulance from an incident site to a hospital. In scenario 2, the same conditions are
applied as in scenario 1 except that pairs of urgent casualties cannot be transferred
together in the same ambulance. In scenario 3, the same conditions are applied as in
scenario 1 except delayed casualties need to be transferred to hospital, which may
be done individually or in pairs when the opportunity arises. In all three scenarios,
the NSA has been applied 50 times, each time involving 4000 iterations taking
approximately 3–4 min. The algorithm is implemented in the Java language and
executed on a PC with 2.0 GHz and 1.0 GB of RAM. The three scenarios are
summarized in Table 3.

In relation to scenario 1, the horizontal axis in Fig. 4 indicates all instances
of an improvement in response time ( f1) for the best run of the NSA. That is,
each improvement indicated corresponds with a particular iteration of the NSA; 38
improvements were made over 4000 iterations. In addition, for each improvement
in f1, indications are given for the time of delivering the last immediate casualty to
hospital ( f2), the time of delivering the last urgent casualty to hospital ( f3), and the
total number of journeys for all ambulances ( f4).

Figure 5 shows the total idle time of all ambulances ( f5) corresponding with each
improvement in response time seen in Fig. 4.

Table 4 summarizes the best results, i.e. f1–f5, for all three scenarios.
In Table 4, a comparison of the results of scenarios 1 and 2 indicates that

transferring urgent casualties in pairs (permissible in scenario 1) could save 2 min
and 53 s in response time ( f1) and the time taken to deliver the last urgent casualty
( f3). It is noted that these two objectives are equivalent in these two scenarios since
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Table 3 Definitions of scenarios

Transfer of casualties to hospitals
Immediate Urgent Delayed

Scenario Individually Pairs Individually Pairs Individually Pairs

1 Yes No Yes Yes No No
2 Yes No Yes No No No
3 Yes No Yes Yes Yes Yes
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Table 4 ‘Best’ values of objectives for all three scenarios

Scenario f1 (min:s) f2 (min:s) f3 (min:s) f4 f5 (h:min:s)

1 49:32 49:00 49:32 94 09:51:30
2 52:25 48:31 52:25 112 09:10:12
3 58:14 50:01 58:14 130 06:43:42
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Table 5 Details of the
journeys of all ambulances
for all scenarios

Number of journeys
IS to H

Scenario AS to IS I U UP D DP H to IS

1 36 23 15 9 – – 11
2 38 23 33 – – – 18
3 38 23 23 5 4 10 27
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Fig. 6 Scenario 1: allocation of immediate (I) and urgent (U) casualties from incident sites to
hospitals

delayed casualties are not considered. Also, the total number of journeys of all
ambulances ( f4) could be reduced by 18. In scenario 3, in which delayed casualties
are transferred to hospitals, the response time ( f1) and the time of delivering the
last urgent casualty ( f3) both increase by 8 min and 42 s when compared with
scenario 1. In addition, the total number of journeys of all ambulances ( f4) increases
by 36, which is in part due to the additional 24 delayed casualties needing to be
transferred to hospital. For scenarios 1–3, Table 5 presents a breakdown of the
number of ambulance journeys between ambulance stations AS and incident sites IS,
incident sites and hospitals H, and hospitals and incident sites. Further, in relation
to the number of journeys between incident sites and hospitals, a further breakdown
is given in terms of journeys involving an ambulance carrying a single immediate
casualty (I), a single urgent casualty (U), a pair of urgent casualties (UP), a single
delayed casualty (D), and a pair of delayed casualties (DP).

For scenario 1, Fig. 6 shows the number of casualties allocated to each hospital
versus their classification at each incident site. In summary, 29 casualties are taken
to hospital LGI whereas 27 casualties are taken to hospital SJUH. In Fig. 6, the
results show that most of the immediate casualties located at the GP incident site are
transferred to the nearest hospital, which is LGI. However, the immediate casualties
located at the RAM and BFGL incident sites are allocated almost equally between
both hospitals LG1 and SJUH. For the immediate casualties located at the RAM,
this near-equal casualty-to-hospital allocation could be attributed to the fact that
the distance between this incident site and both hospitals is almost equidistant
(i.e. 1.8 km).
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In relation to the GP incident site, eight casualties (i.e. 2 immediate and 6 urgent)
are transferred to hospital SJUH despite the distance between these locations being
2.2 km greater than the distance between the incident site and hospital LGI. The
reason for this is that the ambulance journeys to deliver these casualties to hospital
SJUH are not critical in terms of affecting the objective values f1, f2 and f3. That is,
in scenario 1, the critical path involves the journeys from ambulance station SJH to
incident site GP to collect casualties, who are transported to hospital LGI.

5 Conclusion

MCIs require a sequence of actions to be undertaken during the emergency response
to enable casualties to be delivered to the appropriate hospital in a timely manner.
Indeed, emergency response time is critical in multiple MCIs in terms of saving
lives and reducing suffering of casualties with varying injury levels. A number
of coordination problems arise during the emergency response to multiple MCIs
including ambulance-to-casualty allocation and casualty-to-hospital allocation. This
paper has presented an optimization-based approach, incorporating a Neighborhood
Search Algorithm, to solve these coordination problems. Further, a hypothetical,
multiple MCI has been modelled in which three scenarios are considered. These
scenarios differ in terms of how casualties can be transported to hospital via
ambulances. The results show the expected improvement in response time in
allowing pairs of urgent casualties and pairs of delayed casualties to be transported
to hospital in a single ambulance. However, the degree of improvement also involves
consideration of the relative position of ambulance stations at which ambulances are
initially located, incident sites from which casualties must be collected and hospitals
to which they should be delivered.

For future work, the dynamic nature of the injury level or health state of casualties
could be taken into consideration when allocating ambulances to casualties, and
casualties to hospitals. In addition, multiple MCIs occurring at different times during
the response could be modelled, which requires re-planning the response and re-
allocating the emergency services performing the response.
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A Game Theory Model of Online Content
Competition

Georgia Fargetta and Laura Scrimali

Abstract This paper develops a game theory model consisting of online content
providers and viewers, where providers compete for the diffusion of their contents
on a user-generated content platform. Each provider seeks to maximize the profit
by determining the optimal views and quality levels of their digital products. The
viewers reflect their preferences through the feedback functions, which depend on
the amount of views and on the average quality level. The governing equilibrium
conditions of this model are formulated as a variational inequality problem.
Moreover, we analyze the Lagrange multipliers and discuss their role in the behavior
of providers. Finally, our results are applied to an example of content competition
on YouTube.

Keywords User-generated contents · Nash equilibrium · Variational inequalities

1 Introduction

On the platform of the World Wide Web, online contents have registered a
tremendous growth. Most of such contents are digital and posted by the contents’
owners on a user-generated content (UGC) platform, like Instagram, Facebook,
YouTube, Twitter and more.

In an overcrowded digital marketplace, with millions of blogs, guides, etc.,
ensuring a large audience to a content is not an easy task. YouTube, for instance,
provides tools to accelerate the dissemination of contents, using recommendation
lists and other re-ranking mechanisms. Therefore, the diffusion of a content can
be increased by paying an additional cost for advertisement. As a consequence,
the content will gain some priority in the recommendation lists and will be
accessed more frequently by users. Finally, the acceleration mechanism generates
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competition among online content providers to gain popularity, visibility, influence
and reputation.

The literature on the competition of online contents is vast and mainly focuses
on the evolution of popularity of online contents; see [3, 4]. The aim is to develop
models for early-stage prediction of contents’ popularity. In [1, 2, 7], the authors
model the behavior of contents’ owners as a dynamic game. In addition, some
acceleration mechanisms of views are incorporated in the formulation.

In this paper, we develop a game theory model consisting of online content
providers and viewers, where providers behave in a non cooperative manner for
the diffusion of their contents. Each provider seeks to maximize the profit by
determining the optimal views and quality levels of his digital product. Viewers
express their preferences through their feedback functions, that may depend upon
the entire volume of views and on the average quality level. The governing
concept is that of Nash equilibrium (see, [11, 12]), which is then formulated as a
variational inequality (see, [8, 10]). We also present an alternative formulation of
Nash equilibria using the Lagrange multipliers, that allows us to analyze better the
strategic decisions of providers and the marginal profits. Several papers are devoted
to the study of equilibrium models by means of the Lagrange multipliers; see, for
instance, [6] for the financial equilibrium problem, [9] for the pollution control
problem, [13] for the electricity market, and [5] for cybersecurity investments.

The paper is organized as follows. In Sect. 2, we present the model, and give
the variational inequality formulation. In Sect. 3, we discuss the role of Lagrange
multipliers. In Sect. 4, we illustrate a numerical example, and, finally, we draw our
conclusion in Sect. 5.

2 The Game Theory Model

In this section, we present an online content diffusion network that consists of m
content providers and n viewers, see Fig. 1.

Fig. 1 The two-layer online
content diffusion network
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Each content provider i, i = 1, . . . , m, posts a content that can be accessed by
each viewer j , j = 1, . . . , n. The contents are assumed to be homogeneous, namely,
of the same type (for instance, blogs, videos, podcasts, social media contents,
ebooks, photos, etc.), and of a similar topic (for instance, music, travels, film
reviews, recipes, etc. ). The viewers can access each of the m contents at the first
opportunity.

Let Qij denote the access selected by viewer j of content i. We group the {Qij }
elements for all j into the vector Qi ∈ R

n+ and then we group all the vectors Qi for
all i into the vector Q ∈ R

mn+ .
In addition, qi denotes the quality level of content i and takes a value in the

interval I = [1, 5], where 1 = sufficient, 2 = satisfactory, 3 = good, 4 = very good,
5 = excellent. We group the quality levels of all providers into the vector q ∈ R

m+.
All vectors here are assumed to be column vectors, except where noted. The

interest towards contents of each viewer j , denoted by dj , reflects the taste for the
digital product that is posted and must satisfy the following conservation law:

dj =
m∑

i=1

Qij , j = 1, . . . , n. (1)

Let si denote the number of views of the content posted by provider i, which

is given by si =
⎢⎢⎢⎣

n∑

j=1

Qij

⎥⎥⎥⎦ , i = 1, . . . , m. Hence, the number of views of the

content posted by each provider is equal to the sum of the accesses of all the viewers.
Usually, a content must reach a minimum threshold of accesses to gain the

interest of viewers and be in competition with the other homogeneous contents.
In addition, each content has a lifetime, namely, the amount of views is limited.
Therefore, for each Qij , we introduce the lower bound Q

ij
≥ 0 and the upper

bound Qij ≥ 0, so that Q
ij
≤ Qij ≤ Qij for all i, j . We group the {Q

ij
}, {Qij }

elements for all j into the vectors Q
i
,Qi ∈ R

n+, respectively, and then we group all

the vectors Q
i
, Qi for all i into the vectors Q,Q ∈ R

mn+ , respectively.
We associate with each content provider i a production cost

fi(Q, qi), i = 1, . . . , m, (2)

and consider the general situation where the production cost of i may depend
upon the entire amount of views and on its own quality level. We assume that the
production cost is convex and continuously differentiable.

We also assume that providers can pay a fee for the advertisement service in the
UGC platform. Such a fee allows a provider to accelerate the views. Hence, for each
provider i, we introduce the advertisement cost function

ci

n∑

j=1

Qij , i = 1, . . . , m, (3)
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with ci ≥ 0, i = 1, . . . , m. Similarly, the revenue of provider i (revenue for hosting
advertisements, benefits from firms, etc.) is given by

pi

n∑

j=1

Qij , i = 1, . . . , m, (4)

with pi ≥ 0, i = 1, . . . , m. Each viewer j reflects the preferences through the
feedback function, that represents the evaluation of the contents:

Fj (d, q̄), j = 1, . . . , n, (5)

where q̄ = 1

m

m∑

i=1

qi is the average quality level. Due to (1), with abuse of notation,

we can write Fj (d, q̄) = Fj (Q, q) for all j . Thus, we consider a general case where
the feedback function may depend upon the entire amount of views Q and the total
quality level.

Now, we can define the reputation or popularity function of provider i as the
function

n∑

j=1

Fj (Q, q)Qij , i = 1, . . . , m. (6)

We assume that the reputation function is concave and continuously differentiable.
The content diffusion competition can be represented as a game where we define

players, strategies and utilities. Players are content providers, who compete for the
diffusion of their contents. Strategic variables are content views Q and quality level
q. Profit for player i is the difference between total revenues and total costs, namely,

Ui(Q, q) =
n∑

j=1

Fj (Q, q)Qij + pi
n∑

j=1

Qij − fi(Q, qi)− ci
n∑

j=1

Qij , i = 1, . . . , m.

(7)

We observe that due the concavity of the reputation function and the convexity of
the production cost, the profit function Ui is concave. This will allow us to present
a variational inequality formulation of the game, see subsequent Theorem 1.

Let Ki denote the feasible set of content provider i, where

Ki =
{
(Qi, qi) ∈ R

n+1 : Q
ij
≤ Qij ≤ Qij ,∀j ; 1 ≤ qi ≤ 5

}
. (8)
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We also define

K =
m∏

i=1

Ki =
{
(Q, q) ∈ R

mn+m : Q
ij
≤ Qij ≤ Qij ,∀i, j ; 1 ≤ qi ≤ 5,∀i

}
.

(9)

In our model, them providers post their contents and behave in a non-cooperative
fashion, each one trying to maximize his own profit (see also, [14]). We note that
the production cost functions capture competition for contents since the production
cost of a particular provider depends not only on his views, but also on those of
the other providers. Moreover, the feedback functions show that viewers care about
the quality level associated with their favorite contents, but also on that of the other
viewers, as well as the content views. Therefore, we seek to determine the amount
of views and the quality level pattern (Q∗, q∗) for which the m providers will be in
a state of equilibrium as given in the following definition.

Definition 1 (Nash Equilibrium) A view amount and quality level pattern
(Q∗, q∗) ∈ K is said to be a Nash equilibrium if for each content provider
i; i = 1, . . . , m,

Ui(Q
∗
i , q
∗
i ,Q

∗−i , q∗−i ) ≥ Ui(Qi, qi,Q
∗−i , q∗−i ), ∀(Qi, qi) ∈ Ki , (10)

whereQ−i denotes the content posted by all the providers except for i. Analogously,
q−i expresses the quality levels of all the providers’ contents except for i.

Hence, according to the above definition, a Nash equilibrium is established if no
provider can unilaterally improve upon his profit by choosing an alternative vector
of views and quality level, given the contents posted and quality level decisions of
the other providers.

Theorem 1 (Variational Inequality Formulation) Let us assume that for each
content provider i the profit function Ui(Q, q) is concave with respect to the
variables (Qi1, . . . ,Qin), and qi , and is continuous and continuously differentiable.
A view amount and quality level pattern (Q∗, q∗) is a Nash equilibrium if and only
if (Q∗, q∗) ∈ K is a solution of the variational inequality

−
m∑

i=1

n∑

j=1

∂Ui(Q
∗, q∗)

∂Qij

×
(
Qij −Q∗ij

)
−

m∑

i=1

∂Ui(Q
∗, q∗)

∂qi
× (

qi − q∗i
) ≥ 0,

∀(Q, q) ∈ K. (11)
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namely, if it satisfies the variational inequality

m∑

i=1

n∑

j=1

[
ci + ∂fi(Q

∗, q∗i )
∂Qij

− pi − Fj (Q∗, q∗)−
n∑

k=1

∂Fk(Q
∗, q∗)

∂Qij

·Q∗ik
]
× (Qij −Q∗ij )

+
m∑

i=1

[
∂fi(Q

∗, q∗i )
∂qi

−
n∑

k=1

∂Fk(Q
∗, q∗)

∂qi
·Q∗ik

]
× (qi − q∗i ) ≥ 0,

∀(Q, q) ∈ K. (12)

Problem (11) admits a solution since the classical existence theorem, which
requires that the set K is closed, convex, and bounded and the operator is continuous,
is satisfied (see [8, 10]).

We note that the quantity ∂Ui(Q
∗,q∗)

∂Qij
represents the marginal profit with respect

to the amount of views, and ∂Ui(Q
∗,q∗)

∂qi
is the marginal profit with respect to quality

levels.

3 Lagrange Multipliers and Nash Equilibria

In this section, we apply the notion of Lagrange function to present an alternative
formulation of Nash equilibria which allows us to interpret the strategic decisions in
terms of Lagrange multipliers. The strategy set Ki of each provider i; i = 1, . . . , m,
can be written as

Ki =
{
(Qi, qi) ∈ R

n+1 : −Qij ≤ −Qij
;Qij ≤ Qij ,∀j ;−qi ≤ −1; qi ≤ 5

}
.

(13)

We assume that each provider i minimizes the value of the loss function−Ui . Thus,
we can introduce the Lagrange function for i = 1, . . . , m

Li(Q, q, λ
1
ij , λ

2
ij , μ

1
i , μ

2
i ) = −Ui(Q, q)+

n∑

j=1

λ1
ij (−Qij +Qij

)

+
n∑

j=1

λ2
ij (Qij −Qij )+ μ1

i (−qi + 1)+ μ2
i (qi − 5),

where (Q, q) ∈ R
mn+n, λ1, λ2 ∈ R

mn+n+ , μ1, μ2 ∈ R
m+. It results (see, for instance,

[15]):

Theorem 2 Let us assume that for each content provider i the profit function
Ui(Q, q) is differentiable in (Q∗, q∗) ∈ K. The strategy profile (Q∗, q∗) ∈ K is
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a Nash equilibrium if and only if there are Lagrange multipliers λ1
ij , λ

2
ij ≥ 0, for all

i, j , and μ1
i , μ

2
i ≥ 0, for all i, such that the following conditions are verified

∂Li(Q
∗, q∗, λ1

ij , λ
2
ij , μ

1
i , μ

2
i )

∂Qij

= 0, ∀i, j, (14)

∂Li(Q
∗, q∗, λ1

ij , λ
2
ij , μ

1
i , μ

2
i )

∂qi
= 0, ∀i, (15)

λ1
ij (−Q∗ij +Qij

) = 0, λ2
ij (Q

∗
ij −Qij ), ∀i, j, (16)

μ1
i (−q∗i + 1) = 0, μ2

i (q
∗
i − 5) = 0, ∀i. (17)

We now discuss the interpretation of conditions (14)–(17). Lagrange multipliers
λ1
ij , λ2

ij , μ1
i and μ2

i regulate the whole content diffusion system. In particular, λ1
ij ,

and λ2
ij represent control variables on the amount of views; whereas μ1

i and μ2
i are

control variables on quality levels.
From (14), we obtain

−∂Ui(Q
∗, q∗)

∂Qij

− λ1
ij + λ2

ij = 0, i = 1, . . . , m; j = 1, . . . , n.

Thus, if Q
ij
< Q∗ij < Qij , if follows that

−∂Ui(Q
∗, q∗)

∂Qij

= ci+ ∂fi(Q
∗, q∗i )

∂Qij

−pi−Fj (Q∗, q∗)−
n∑

k=1

∂Fk(Q
∗, q∗)

∂Qij

·Q∗ik = 0,

and marginal costs equal marginal revenues.
If Q∗ij = Qij

, then λ2
ij = 0. Thus, we have

−∂Ui(Q
∗, q∗)

∂Qij

= λ1
ij , i = 1, . . . , m; j = 1, . . . , n,

namely, λ1
ij is equal to the opposite of the marginal profit with respect to views. If

λ1
ij > 0, we conclude that the marginal utility with respect to views decreases.

If Q∗ij = Qij , then λ1
ij = 0. We find

−∂Ui(Q
∗, q∗)

∂Qij

= −λ2
ij , i = 1, . . . , m; j = 1, . . . , n,

and λ2
ij is equal to the marginal profit with respect to views. If λ2

ij > 0, then the
marginal profit with respect to views increases.
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Analogously, from (15), we obtain

−∂Ui(Q
∗, q∗)

∂qi
− μ1

i + μ2
i = 0, i = 1, . . . , m.

Thus, if 1 < q∗i < 5, if follows that

−∂Ui(Q
∗, q∗)

∂qi
= ∂fi(Q

∗, q∗i )
∂qi

−
n∑

k=1

∂Fk(Q
∗, q∗)

∂qi
·Q∗ik = 0,

and the marginal cost and marginal revenue with respect to quality levels are
balanced.

If q∗i = 1, then μ2
i = 0. We have

−∂Ui(Q
∗, q∗)

∂qi
= μ1

i , i = 1, . . . , m,

and μ1
i is equal to the opposite of the marginal profit with respect to quality levels.

If μ1
i > 0, then the marginal profit with respect to quality levels decreases.

If q∗i = 5, then μ1
i = 0. We find

−∂Ui(Q
∗, q∗)

∂qi
= −μ2

i , i = 1, . . . , m,

namely, μ2
i is equal to the marginal profit with respect to quality levels. If μ2

i > 0,
then the marginal profit with respect to quality levels increases.

Lagrange multipliers associated with model constraints are then valuable tools to
analyze the online content diffusion.

4 A Numerical Example

The video content sharing platform YouTube is the world’s second biggest search
engine for more than 1, 8 billion people registered on the site to watch more than 1
billion hours of videos daily. Launched back in 2005, YouTube offers a massive
collection of 1,300,000,000 videos, with more than 300 h of HD quality video
being uploaded every 60 s. According to third party estimates, in 2015 YouTube
was generating 8 billion dollars; in 2010 the company’s annual advertising revenue
estimate was only 1 billion dollars.
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Fig. 2 A Youtube platform
model
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The major structure unit that YouTube is built on is a channel. There are hundreds
of thousands channels; some have very few subscribers and some are very popular.
A large number of subscribers allows content providers to monetize the volume of
traffic that their videos generates.

The revenue for content’s owner is based on the cost per mille (CPM) system,
that assigns an advertisement cost per one thousand views. Therefore, the advertiser
has to pay one dollar each time the advertisement reaches a thousand views. We
note that the revenue goes to YouTube, not directly to the content creator. In fact,
YouTube takes the 45% of the CPM.

We now apply our theoretical achievements to analyze the YouTube platform.
We consider a population of users divided into social groups, each having a
different characteristic according to a certain criterion (for instance, hobbies, age,
education, etc. . . ). Therefore, viewers of the same group are aggregated together
and represented as a single viewer.

We consider two content providers and two groups of aggregated viewers; see
Fig. 2.

The production cost functions are:

f1(Q, q1) = (Q11 +Q12)
2 +Q21 +Q22 + 2q2

1 ,

f2(Q, q2) = 0.5(Q21 +Q22)
2 + 3(Q11 +Q12)+ q2

2 .

For each provider, the coefficients of the cost functions and the revenue functions
are:

p1 = 3, p2 = 5,

c1 = 1.35, c2 = 2.25
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The reputation functions for each provider are:

F1(Q, q) = −(Q11 +Q21)+ q1 + 0.2q2 + q1 + q2

2
+ 4,

F2(Q, q) = −(Q12 +Q22)+ q1 + q2 + q1 + q2

2
+ 8.

The profit function of content provider 1 is:

U1(Q, q) = F1(Q, q) ·Q11 + F2(Q, q) ·Q12 + (−c1 + p1)(Q11 +Q12)− f1(Q, q1),

whereas the profit function of content provider 2 is:

U2(Q, q) = F1(Q, q) ·Q21 + F2(Q, q) ·Q22 + (−c2 + p2)(Q21 +Q22)− f2(Q, q2).

We considerQij in the order of tens of thousand. Moreover, following the policy
of YouTube, the cost parameter ci is the 45% of the revenue parameter pi , for i =
1, 2.

We note that the profit functions are concave and continuous on a compact set;
hence the existence of solutions to the associated variational inequality is ensured.

Following Theorem 2, we should study all possible combinations of active and
non-active constraints; however, we focus only on the case in which all the Lagrange
multipliers are null. Thus, we find the exact solutions in tens of thousand:

Q∗11 = 0.594586, Q∗12 = 3.06044, Q∗21 = 2.17959, Q∗22 = 4.64544,

q∗1 = 1.37063, q∗2 = 4.24694.

The total profit amounts to 124,967$ for the first provider, and 206,198$ for the
second one.

We note that only the 15% of the views counts as a profit from advertisement
strategies, because the only views that make content provider to earn money are
those in which viewers watch an advertisement for at least 30 s (or half the ad
for a very short video). Hence, the advertisement profit every thousand views,
namely, the difference between the advertisement cost and the revenue for hosting
advertisements, is approximately 9.04618$ for the first provider, and 28.1533$ for
the second one. We notice that the second content is much more appreciated than the
first one (s1 = 36,550, s2 = 68,250), and this depends on the higher quality of the
content. In fact, the quality of the first video is almost satisfactory (q∗1 = 1.37063),
but the second one is a very good content (q∗2 = 4.24694). The quality is the
key to increase the number of monetized views. This can be realized using proper
keywords in titles and descriptions of the videos, making the content as interesting
to the viewers as possible, and eliminating every factor that could make the viewers
bored with videos.
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5 Conclusions

In this paper, we present a network game theory model consisting of online content
providers and viewers. Providers compete non-cooperatively for the diffusion of
their online contents, each one maximizing the profit until a Nash equilibrium
is achieved. Viewers express their preferences through their feedback functions,
that may depend upon the entire volume of views and on the average quality
level. We derive the variational inequality formulation of the governing equilibrium
conditions. Moreover, we present an alternative formulation of Nash equilibria
which allows us to interpret the strategic decisions in terms of Lagrange multipliers.
The results in this paper add to the growing literature on modeling and analysis of
UGC platforms using a game theory approach.

Future research may include the study of the continuous-time evolution of the
model, the presence of shared constraints, and the formulation as a Generalized
Nash equilibrium problem.
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A Variational Formulation for a Human
Migration Problem

Giorgia Cappello and Patrizia Daniele

Abstract Many social and economical factors affect the dynamics of human
populations, such as poverty, violence, war, dictatorships, persecutions, tsunamis,
floods, earthquakes, family reunification as well as economic and educational
possibilities or a job. In this paper, we consider a network based model where the
aim of each migration class is to maximize the attractiveness of the origin country
and we prove that the optimization model can be formulated in terms of a Nash
equilibrium problem and a variational inequality. Finally, some numerical results
applied to the human migration from Africa to Europe are presented and analyzed.

Keywords Human migration · Nonlinear optimization · Network models

1 Introduction

Human migration is the movement that people do from one place to another with
the intention of settling temporarily or permanently in the new location. It typically
involves movements over long distances and from one country or region to another.
Many social and economical factors affect the dynamics of human populations,
such as poverty, violence, war, dictatorships, persecutions, oppression, genocide,
ethnic cleansing, climate change, tsunamis, floods, earthquakes, famines, family
reunification as well as economic and educational possibilities or a job.

According to the International Migration Report (2017), a biennial publication
of the Department of Economic and Social Affairs, there are now an estimated 258
million people living in a country different from that of birth, with an increase
of 49% since 2000, which means that 3.4% of the world’s inhabitants today are
international migrants.
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During the 2018 Mediterranean arrivals were 141,475, with more than 2000 dead
and missing people; these data include sea arrivals at Italy, Cyprus and Malta and
both sea and land arrivals at Greece and Spain, mostly from the north of Africa.
From 2018 until January 2019, 17% of arrivals by sea were registered in Italy,
compared to 69% in 2017 (UNHCR).

The increasing role of migration in the social, economic and demographic
development of countries, regions and the whole of the world, especially in the
Mediterranean Basin which has become the theatre of a humanitarian crisis that has
challenged the collective leadership around the sea, is becoming more and more
evident, thus stimulating interest in mathematical modeling of migration. In the last
decades many papers have been devoted to this topic.

In [2] Cojocaru presents an application of the double-layer dynamics theory for
modelling dynamics of human migration problems reformulated as transportation
networks problems.

In [1] the authors provide a general framework for analyzing migration at macro
and micro levels. They also present an overview of the practical application for the
models and establish a basis for policy-analysis.

In [3] Cui and Bai describe the evolution of population density and the spread of
epidemics in population systems where the spatial movement of individuals depends
only on the departure and arrival locations through some mathematical models.

In [9] the authors analyze the interaction of human migration and wealth
distribution.

In [7] Nagurney introduces a network equilibrium model of human migration in
the presence of movement costs and proves that, in the case of linear utility functions
and fixed movement costs, the equilibrium conditions can be reformulated as the
solution to an equivalent quadratic programming problem.

In [5] Kalashnykov and Kalashnykova examine the case where the conjectural
variations coefficients may be not only constants, but also functions of the total
population at the destination and of the group’s fraction in it and establish the
equivalence of the equilibrium to a solution of an appropriate variational inequality
problem.

In this paper we consider a network based model where the aim of each migration
class is to maximize the attractivenss of the origin country, which is given by the
sum of its utility and its expected increment of utility value, with respect to the
destination one. We prove that the optimization model can be formulated in terms
of a Nash equilibrium and a variational inequality. Finally, some numerical results
applied to the human migration from Africa to Europe are presented and analyzed.

2 The Mathematical Model

We present a model that consists of n locations and J classes of population. The n
locations are the nodes from and in which the different classes of population choose
to go (Fig. 1).
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Fig. 1 Multiclass migration network

We suppose that at each location i, i = 1, . . . , n, there is an initial fixed
population of the general class k, denoted by p̄ki . The population of class k at
location i is determined by the initial population of class k at location i plus the
migration flow, f kij , into i of that population, minus the migration flow, f kji , out of i.
Indeed, the conservation of flow equations, given for each class k and each location
i, are given as follows:

pki = p̄ki −
n∑

j=1
j �=i

f kij +
n∑

j=1
j �=i

f kji ∀i = 1, . . . , n, ∀k = 1, . . . , J. (1)

We group the populations k in each location i into the vector pk and the migration
flows of population k from each origin node i to each destination node j into the
vector f k.

Each location i is characterized by

• a destination utility function, vki , that is indicative of the attractiveness of that
location intended as an idealization of the opportunities that this node can offer
as perceived by the migration class k;

• an origin utility function, uki , that is indicative of the attractiveness of that
location intended as the awareness of the opportunities that this node can offer as
perceived by the migration class k.

Both groups of functions, uki and vki , depend on the population pk .
Let us introduce wk+ij (pk, f k) ≥ 0, which denotes the influence coefficient taken

into account by an individual of the migration class k moving from node i to j .
It is the expected variation of the population at node j after a migratory flow, as
perceived by the migration class k. Similarly, we introduce wk−ij (pk, f k) ≥ 0, that
is the expected rate of change of the total population at node i, as perceived by the
migration class k.
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After the potential movement of migrants from location i to location j , each
person of class k expects a variation of the utility function value at j :

f kijw
k+
ij (p

k, f k)
∂vkj (p

k)

∂pkj

,

and a variation of the utility function value at i:

−f kijwk−ij (pk, f k)
∂uki (p

k)

∂pki

,

where the negative sign denotes the loss for the migration class k, when choosing to
abandon the origin node.

Both groups of such variations are assumed concave.
In addition, we denote by ckij the movement cost from i to j for the population

class k, where

ckij = ckij (f k), ∀i, j = 1, . . . , n, j �= i, ∀k = 1, . . . , J.

Such costs are assumed to be convex and continuously differentiable. In Table 1 we
introduce all the functions, parameters and variables used in the model.

In order to reduce the migration phenomenon and to encourage people to remain
in their own country the attractiveness in i (which is given by the sum of the utility
in i and its expected increment of utility value) must exceed the sum between the
attractiveness in j (which is given by the sum of the utility in j and its expected
increment of utility value) and the transportation costs from location i to location
j. Hence, in our model, the aim of each migration class k, k = 1, . . . , J , in each

Table 1 Functions, parameters and variables of the model

Symbol Definition

p̄ki Initial population of class k in location i

pki Population at location i of class k

f kij Migration flow from i to j of class k, with i �= j
vki (p

k) Destination utility function of any location i as perceived by the
class k

uki (p
k) Origin utility function of any location i as perceived by the class

k

ckij (f
k) Movement cost from i to j for the class k

wk+ij (pk, f k), w
k−
ij (p

k, f k) Influence coefficient
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departing node i, i = 1, . . . , n is to maximize its net utility, namely the following
difference:

max
(pk,f k)∈Kk

Uk(pk, f k) = max
(pk,f k)∈Kk

n∑

i=1

n∑

j=1
j �=i

(
uki (p

k)− f kijwk−ij (pk, f k)
∂uki (p

k)

∂pki

−ckij (f k)− vkj (pk)− f kijwk+ij (pk, f k)
∂vkj (p

k)

∂pkj

)
(2)

where

K
k =

{
(pk, f k) ∈ R

n+n(n−1) : pki = p̄ki −
n∑

j=1
j �=i

f kij −
n∑

j=1
j �=i

f kji , ∀i = 1, . . . , n;

pki ≥ 0, f kij ≥ 0, ∀i, j = 1, . . . , n, j �= i;
n∑

j=1
j �=i

f kij ≤ p̄ki , ∀i = 1, . . . , n

}
. (3)

We also assume that the migration classes compete in a noncooperative manner, so
that each maximizes its utility, given the actions of the other classes.

Under the imposed assumptions, the objective function in (2) in concave and
continuously differentiable. We also define

K =
{
(p, f ) ∈ R

Jn+Jn(n−1) : pki = p̄ki −
n∑

j=1
j �=i

f kij −
n∑

j=1
j �=i

f kji , ∀i = 1, . . . , n, ∀k = 1, . . . , J

pki ≥ 0, f kij ≥ 0, ∀i, j = 1, . . . , n, j �= i, ∀k = 1, . . . , J ;
n∑

j=1
j �=i

f kij ≤ p̄ki , ∀i = 1, . . . , n, ∀k = 1, . . . , J

}
=

J∏

k=1

K
k (4)

and the total utility as:

U(p, f ) =
J∑

k=1

Uk(pk, f k) ∀(p, f ) ∈ K.

Hence, the above game theory model, in which the migration classes compete
noncooperatively, is a Nash equilibrium problem. Therefore, we can state the
following definition.

Definition 1 A population and migration flow pattern (p∗, f ∗) ∈ K is said to be a
Nash equilibrium if for each migration class k

U(pk∗, f k∗, p̂k∗, f̂ k∗) ≥ U(pk, f k, p̂k∗, f̂ k∗) ∀(pk, f k) ∈ K
k,
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where

p̂k∗ = (p1∗, . . . , pk−1∗, pk+1∗, . . . , pJ∗) and f̂ k∗ = (f 1∗, . . . , f k−1∗, f k+1∗, . . . , f J∗).

Hence, according to the above definition, a Nash equilibrium in established if
no migration class can unilaterally improve its expected utility by choosing an
alternative vector of population and migration flow.

The optimality conditions (2) for all migration classes k, k = 1, . . . , J simulta-
neously can be expressed by means of a variational inequality as follows (see [8]).

Theorem 1 (Variational Formulation) Under the above assumptions, (p∗, f ∗) ∈
K is an equilibrium according to Definition 1 if and only if it satisfies the following
variational inequality:

Find (p∗, f ∗) ∈ K such that:

n∑

l=1

n∑

i=1

n∑

j=1
j �=i

J∑

k=1

(
∂vkj (p

k∗)
∂pkl

+ f kij
∂wk+ij (pk∗, f k∗)

∂pkl

∂vkj (p
k∗)

∂pkj

+ f kijwk+ij (pk∗, f k∗)
∂2vkj (p

k∗)
∂pkj ∂p

k
l

−∂u
k
i (p

k∗)
∂pkl

+ f kij
∂wk−ij (pk∗, f k∗)

∂pkl

∂uki (p
k∗)

∂pki

+ f kijwk−ij (pk∗, f k∗)
∂2uki

∂pki ∂p
k
l

)
(pkl − pk∗l )

+
n∑

i=1

n∑

j=1
j �=i

J∑

k=1

(
wk+ij (p

k∗, f k∗)
∂vkj (p

∗)
∂pkj

+ f k∗ij
∂wk+ij (pk∗, f k∗)

∂f kij

∂vkj (p
k∗)

∂pkj

+ ∂c
k
ij (f

k∗)
∂f kij

+wk−ij (pk∗, f k∗)
∂uki (p

∗)
∂pki

+ f kij
∂wk−ij (pk∗, f k∗)

∂f kij

∂uki (p
k∗)

∂pki

)
(f kij − f k∗ij ) ≥ 0,

∀(p, f ) ∈ K. (5)

3 Numerical Examples

In order to perform numerical experiments, we consider the flow of migrants from
Africa through the Mediterranean sea to Italy during 2018. The network, as we
can see in Fig. 2, is composed by six nodes: the first three ones are the origin
nodes (Tunisia, Eritrea and Sudan, with a percentage of 23, 8, 15.0, and 7.3% of
departures, respectively), the fourth node is Italy, which is the destination chosen
by most of the migrants (see [6]), the last two nodes are Germany and France, with
a percentage of 31 and 15%, respectively, of arrivals, and represent the countries
where most migrants have been relocated from Italy.[4].

In order to better understand the real migration flows, we collected the necessary
data, referred to 2018, about population, average movement, measures of the quality
of life, transportation costs for each node of the network. We assume that the
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Locations

→ Migration flow

k Migration classk = 1
3.Sudan

2.Eritrea

1.Tunisia

4.Italy

5.Germany

6.France

Fig. 2 Multiclass migration network for the first numerical example

migration class is only one (k = 1), and it represents the African population that
moves from its continent to Europe.

We assume also that the examined migration class is interested in evaluating
the displacement between the nodes 1–4; 2–4; 3–4; 4–5; 4–6; and this is
because, starting from real data, the other displacements never occur due to political
or economic issues, as we can see in Fig. 2.

Now we formulate an illustrative numerical example considering the following
data:

Origin utility function u1 = −0.8(p1
1)

2 + 2p1
1

u2 = −0.7(p1
2)

2 + 3p1
2

u3 = −0.85(p1
3)

2 + 2.5p1
3

u4 = −0.5p1
4

Destination utility function v4 = −0.5p1
4

v5 = 0.3(p1
5)

2 − 6p1
5

v6 = 0.35(p1
6)

2 − 7p1
6

Movement cost c14 = 3f 1
14

c24 = 4f 1
24

c34 = 5f 1
34

c45 = 0.25f 1
45

c46 = 0.25f 1
46.

Initial population p̄1 = 55

p̄1
2 = 45

p̄1
3 = 40

p̄1
4 = 35

p̄1
5 = 50

p̄1
6 = 52



192 G. Cappello and P. Daniele

Then, optimality problem (2) becomes:

max
(p1,f 1)∈K1

U1(p1, f 1)

= max
(p1,f 1)∈K1

{
u1(p

1)− f 1
14w

−
14(p

1, f 1)
∂u1(p

1)

∂p1
1

− c14(f
1)− v4(p

1)− f 1
14w

+
14(p

1, f 1)
∂v4(p

1)

∂p1
4

+

+u2(p
1)− f 1

24w
−
24(p

1, f 1)
∂u2(p

1)

∂p1
2

− c24(f
1)− v4(p

1)− f 1
24w

+
24(p

1, f 1)
∂v4(p

1)

∂p1
4

+

+u3(p
1)− f 1

34w
−
34(p

1, f 1)
∂u3(p

1)

∂p1
3

− c34(f )− v4(p
1)− f 1

34w
+
34(p

1, f 1)
∂v4(p

1)

∂p1
4

+

+u4(p
1)− f 1

45w
−
45(p

1, f 1)
∂u4(p

1)

∂p1
4

− c45(f
1)− v5(p

1)− f 1
45w

+
45(p

1, f 1)
∂v5(p

1)

∂p1
5

+

+u4(p
1)− f 1

46w
−
46(p

1, f 1)
∂v4(p

1)

∂p1
4

− c46(f
1)− u6(p

1)− f 1
46w

+
46(p

1, f 1)
∂u6(p

1)

∂p1
6

}

where

K
1 = K =

{
(p1

1, p
1
2, p

1
3, p

1
4, p

1
5, p

1
6, f

1
14, f

1
24, f

1
34, f

1
45, f

1
46) ∈ R

11;

p1
1, p

1
2, p

1
3, p

1
4, p

1
5, p

1
6, f

1
14, f

1
24, f

1
34, f

1
45, f

1
46 ≥ 0

p1
1 = 55− f 1

14; p1
2 = 45− f 1

24; p1
3 = 40− f 1

34;
p1

4 = 35+ f 1
14 + f 1

24 + f 1
34 − f 1

45 − f 1
46;

p1
5 = 50+ f 1

45; p1
6 = 52+ f 1

46 f
1
14 ≤ 55; f 1

34 ≤ 40; f 1
45 + f 1

46 ≤ 35

}
, (6)

and the associated variational inequality (5) becomes:

Find(p∗, f ∗) ∈ K such that :
(1.6p1

1 − 2− 1.6f 1
14w
−
14)× (p1

1 − p∗11 )+ (1.4p1
2 − 3− 1.4f 1

24w
−
24)× (p1

2 − p∗12 )

+(1.7p1
3 − 2.5− 1.7f 1

34w
−
34)× (p1

3 − p∗13 )− 0.5× (p4 − p∗4)
+(0.6p1

5 − 6+ 0.6f 1
45w
+
45)× (p1

5 − p∗15 )+ (0.7p1
6 − 7+ 0.7f 1

46w
+
46)× (p1

6 − p∗16 )

+(w−14(−1.6p1
1 + 2)+ 3− 0.5w+14)× (f 1

14 − f ∗114 )

+(w−24(−1.4p1
2 + 3)+ 4− 0.5w+24)× (f 1

24 − f ∗124 )

+(w−34(−1.7p1
3 + 2.5)+ 5− 0.5w+34)× (f 1

34 − f ∗134 )

+(−0.5w−45 + 0.25+ w+45(0.6p
1
5 − 6))× (f 1

45 − f ∗145 )

+(−0.5w+46 + 0.25+ w+46(0.7p
1
6 − 7))× (f 1

46 − f ∗146 ) ≥ 0

∀(p1, p2, p3, p4, p5, p6, f14, f24, f34, f45, f46) ∈ K.

(7)
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It was solved in Matlab using the projection method. The computational time to
obtain the optimal flows according to the termsw±ij was 9.01 s. The machine used for
the simulation is a 4 GB RAM Asus Intel (R) Core (TM) i5-3317U CPU@1.10 GHz.

The optimal flows as solution of (7) and for different values of w±ij i = 1, 2, 3, 4;
j = 4, 5, 6, are showed in Table 2. We observed that the optimal flows, from the
poorest countries to the richest are high comparing with the initial population, even
though the indicesw±ij let the migration class to conjecture an improvement of utility
in the countries of departure and a worsening of the utility of the richer countries
due to the migration.

Table 2 Optimal flows
obtained from (7) for
different values of w±ij

w+
ij

w−
ij

Optimal flows

w+14 = 0 w−14 = 0 f 1
14 = 5,218,706,322

w+14 = 0 w−14 = 0 f 1
24 = 1,464,240,764

w+34 = 0 w−34 = 0 f 1
34 = 358,821,929

w+45 = 0 w−45 = 0 f 1
45 = 0

w+46 = 0 w−46 = 0 f 1
46 = 0

w+14 = 1 w−14 = 1 f 1
14 = 3,541,646,178

w+14 = 1 w−14 = 1 f 1
24 = 192,855,584

w+34 = 1 w−34 = 1 f 1
34 = 2,490,181,913

w+45 = 1 w−45 = 1 f 1
45 = 0

w+46 = 1 w−46 = 1 f 1
46 = 0

w+14 = 0.5 w−14 = 1 f 1
14 = 3,536,437,875

w+14 = 0.5 w−14 = 1 f 1
24 = 1,922,603,507

w+34 = 0.5 w−34 = 1 f 1
34 = 248,527,998

w+45 = 0.2 w−45 = 0.2 f 1
45 = 0

w+46 = 0.2 w−46 = 0.2 f 1
46 = 0

w+14 = 0.1 w−14 = 0.8 f 1
14 = 5,304,662,606

w+14 = 0.1 w−14 = 0.8 f 1
24 = 1,812,476,595

w+34 = 0.1 w−34 = 0.8 f 1
34 = 2,764,697,497

w+45 = 0.2 w−45 = 0 f 1
45 = 0

w+46 = 0.2 w−46 = 0 f 1
46 = 0

w+14 = 0.2 w−14 = 1 f 1
14 = 3,533,312,893

w+14 = 0.2 w−14 = 1 f 1
24 = 1,919,032,108

w+34 = 0.2 w−34 = 1 f 1
34 = 248,233,882

w+45 = 0.1 w−45 = 0.3 f 1
45 = 0

w+46 = 0.1 w−46 = 0.3 f 1
46 = 0

w+14 = 0 w−14 = 1 f 1
14 = 3,531,234,671

(continued)
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Table 2 (continued) w+
ij

w−
ij

Optimal flows

w+14 = 0 w−14 = 1 f 1
24 = 2,053,554,511

w+34 = 0 w−34 = 1 f 1
34 = 2,480,381,573

w+45 = 0 w−45 = 1 f 1
45 = 0

w+46 = 0 w−46 = 1 f 1
46 = 0

w+14 = 0.25 w−14 = 1 f 1
14 = 3,533,833,724

w+14 = 0.25 w−14 = 1 f 1
24 = 1,919,627,341

w+34 = 0.25 w−34 = 1 f 1
34 = 2,482,829,013

w+45 = 0.5 w−45 = 1 f 1
45 = 0

w+46 = 0.5 w−46 = 1 f 1
46 = 0

w+14 = 0.5 w−14 = 1 f 1
14 = 3,536,437,875

w+14 = 0.5 w−14 = 1 f 1
24 = 1,922,603,507

w+34 = 0.5 w−34 = 1 f 1
34 = 248,527,998

w+45 = 0.25 w−45 = 1 f 1
45 = 0

w+46 = 0.25 w−46 = 1 f 1
46 = 0

w+14 = 0 w−14 = 0.5 f 1
14 = 3,953,106,448

w+14 = 0 w−14 = 0.5 f 1
24 = 1,803,548,139

w+34 = 0 w−34 = 0.5 f 1
34 = 2,757,344,578

w+45 = 0 w−45 = 0.2 f 1
45 = 0

w+46 = 0 w−46 = 0.2 f 1
46 = 0
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Flying Safely by Bilevel Programming

Martina Cerulli, Claudia D’Ambrosio, and Leo Liberti

Abstract Preventing aircraft from getting too close to each other is an essential
element of safety of the air transportation industry, which becomes ever more
important as the air traffic increases. The problem consists in enforcing a minimum
distance threshold between flying aircraft, which naturally results in a bilevel
formulation with a lower-level subproblem for each pair of aircraft. We propose
two single-level reformulations, present a cut generation algorithm which directly
solves the bilevel formulation and discuss comparative computational results.

Keywords Bilevel programming · Aircraft · Deconfliction

1 Introduction

In Air Traffic Management, the act of avoiding that two aircraft might collide is
called aircraft deconfliction. More in general, it describes the set of methodologies
for detecting and resolving aircraft conflicts. Aircraft are said to be potentially in
conflict if their relative distance is smaller than a given safety threshold. Despite
the importance of this kind of control, it is still widely performed manually on the
ground by air traffic controllers, who essentially monitor the air traffic in a given,
limited space on a radar screen, giving instructions to the pilots. With the increase
of aircraft automation, there comes a need for integrating human ground control by
algorithmic means.

The two crucial parameters of an aircraft flight that come into play in aircraft
deconfliction are the trajectory and the speed. Typically, air traffic controllers change
the trajectory, or use heading angle changes (HAC) in order to solve potential
conflicts. In this paper, we focus instead on changing the aircraft speeds (which can
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Fig. 1 Two conflicting
aircraft

A1

A2

k = 1

k = 2

be performed subliminally), while keeping the trajectories unchanged: we present a
Mathematical Programming (MP) formulation for aircraft separation based on speed
regulation. For a wider introduction to this problem, see [1].

We remark that altitude changes are not usually considered an acceptable way to
solve conflicts since they consume more fuel and feel uncomfortable to passengers.
We will therefore assume that all aircraft fly within a fixed altitude layer. This
will allow us to model travelling aircraft as moving points in R

2 (see Fig. 1 as an
example).

There is a large number and variety of approaches to the conflict detection and
resolution problem. In this paper we compare our results to those obtained in [1]
and [2]. These works propose Mixed-Integer Nonlinear Programming formulations
for the deconfliction problem. Specifically, [1] also proposes a heuristic algorithm
based on decomposing the problem into subproblems each of which only involves a
small number of aircraft. The partial solutions are then combined to form a globally
feasible but possibly sub-optimal solution of the original problem. A Feasibility
Pump heuristic is proposed in [2]: this algorithm alternately solves two relaxed
subproblems at each iteration, while minimizing the distance between the relaxed
solutions.

Another approach based on aircraft HAC is proposed in [3]. First a MINLP
formulation of the problem of minimizing heading angle changes satisfying the
separation condition is presented. Then another mixed 0-1 nonlinear program is
proposed: the number of aircraft conflicts that can be solved by speed regulation is
maximized. These two MINLPs are solved using existing global solvers and then
using a two-step methodology where the solution of the second MINLP is used as a
pre-processing step for the first one.

Several papers consider conflicts involving more than two aircraft. In [4],
for example, the planar multiple conflicts resolution problem is formulated as
a nonconvex quadratically constrained quadratic program, where the objective
function is chosen so as to minimize the speed deviations from the desired speed.
The problem is then approximated by a convex semidefinite program, the optimal
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solution of which is used to randomly generate feasible and locally optimal conflict
resolution maneuvers.

An equity-oriented conflict-resolution (ECR) model is introduced in [5]. The
ECR model combines three optimization stages, which attempt to: resolve a
maximum number of potential conflicts; promote fair conflict-resolution maneuvers
(airlines are equally affected by the trajectory adjustments); reduce the delay
induced by the trajectory changes. The goal is to identify a set of conflicts that
can be resolved altogether, reduce the deviation from total equity and eventually
minimize the total delay in the system.

Another approach is presented in [6]. This approach uses the geometric charac-
teristics of aircraft trajectories to obtain closed-form analytical solutions for optimal
combinations of heading and speed changes for horizontal-plan conflict resolution,
minimizing the magnitude of the velocity vector change. This closed forms can be
used also to compute the solution for speed change alone and for heading change
alone.

The rest of this paper is organized as follows. In Sect. 2 we introduce the
parameters and decision variables of our formulations, the bilevel formulation, and
two single-level reformulations. In Sect. 3 we present our cut generation algorithm
for solving the bilevel problem. In Sect. 4 we discuss some computational results.

2 Mathematical Formulations

An “optimal deconfliction” must involve a minimal deviation from the original
aircraft flight plan, subject to the distance between aircraft to exceed a given
safety threshold. The objective function of our formulations will therefore aim at
minimizing the sum of the speed change of each aircraft. Requiring that each aircraft
pair respects the safety distance at each time instant t of a given interval [0, T ]
involves the satisfaction of an uncountably infinite set of constraints.

We propose a MP formulation of the speed-change problem variant.

1. Sets:

• A = {1, .., n} is the set of aircraft (n aircraft move in the shared airspace)
• K = {1, 2} is the set of directions (the aircraft move in a Euclidean plane)

2. Parameters:

• T is the length of the time horizon taken into account [hours]
• d is the minimum required safety distance between a pair of aircraft [Nautical

Miles NM]
• x0

ik is the k-th component of the initial position of aircraft i
• vi is the initial speed of aircraft i [NM/h]
• uik is the k-th component of the direction of aircraft i
• qmin

i and qmax
i are the bounds on the potential speed modification for each

aircraft
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3. Variables:

• qi is the possible increase or decrease of the original speed of aircraft i: qi = 1
if the speed is unchanged, qi > 1 if it is increased, qi < 1 if it is decreased

• tij is the instant of time defined for the aircraft pair i and j for which the
distance between the two aircraft is minimized

The terminology and symbols are taken from [1], where the problem is for-
mulated by a MINLP since there are variables both continuous and integer and
nonlinear constraints arise from the separation condition modeling.

2.1 Bilevel Formulation of the Problem

In order to address the issue of uncountably many constraints for each value in
[0, T ], we propose to formulate the problem as a bilevel MP (for more details on
bilevel programming, see [7]) with multiple lower-level problems. Each of these
subproblems ensures that the minimum distance between each aircraft pair exceeds
the safety distance threshold. Thus, each lower-level subproblem involves the lower-
level variable tij and is parameterized by the upper-level variables q:

min
q,t

∑

i∈A
(qi − 1)2 (1)

∀i ∈ A qmin
i ≤ qi ≤ qmax

i (2)

∀i < j ∈ A d2 ≤ min
tij∈[0,T ]

∑

k∈{1,2}
((x0

ik − x0
jk)+ tij (qiviuik − qjvjujk))2 (3)

The upper-level (convex) objective function is the sum of squared aircraft speed
changes. This corresponds to finding the feasible solution with the minimum speed
change, as mentioned before. It must be minimized w.r.t the variables t and q, with
each qi within the given range [qmin

i , qmax
i ].

The objective of each lower-level subproblem is to minimize over tij ∈ [0, T ]
the relative Euclidean distance between the two aircraft it describes; note that this is
also a convex function. This minimum distance, reached at t∗ij , must be at least d2.
This corresponds to imposing the minimum safety distance d between aircraft i and
j within [0, T ].

2.2 KKT Reformulation

We follow standard practice and replace each convex lower-level subproblem by its
Karush-Kuhn-Tucker (KKT) conditions. Assuming some regularity condition (e.g.
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the Slater’s condition) holds, this yields a single-level MP with complementarity
constraints. Given the KKT multipliers μij and λij defined for each lower-level
problem, we have:

min
q,t,μ,λ

∑

i∈A
(qi − 1)2 (4)

s.t. ∀i ∈ A qmini ≤ qi ≤ qmaxi (5)

∀i < j ∈ A
∑

k∈{1,2}
(2tij (qiviuik − qjvjujk)2+

+ 2(x0
ik − x0

jk)(qiviuik − qjvjujk)− μij + λij ) = 0
(6)

∀i < j ∈ A μij , λij ≥ 0 (7)

∀i < j ∈ A μij tij = 0 (8)

∀i < j ∈ A λij tij − λij T = 0 (9)

∀i < j ∈ A − tij ≤ 0, tij ≤ T (10)

∀i < j ∈ A
∑

k∈{1,2}
((x0

ik − x0
jk)+ tij (qiviuik − qjvjujk))2 ≥ d2

(11)

Constraints (6)–(10) correspond to stationarity, primal and dual feasibility condi-
tions and complementary slackness. The last constraint Eq. (11) is necessary to
ensure that each KKT solution t∗ij respects the safety distance.

2.3 Dual Reformulation

We propose another closely related reformulation of the bilevel problem (1)–(3),
which arises because the lower-level subproblems are convex Quadratic Programs
(QP). Specifically, their duals are also QPs which only involve dual variables [8, 9].
In particular, an upper-level constraint such as Eq. (3) has the form

const ≤ min{1
2
x&Qx + p&x | Ax ≥ b ∧ x ≥ 0}
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with Q positive semidefinite. By strong duality it can be written as follows:

const ≤ max{−1

2
y&Qy + b&z | A&z−Qy ≤ p ∧ z ≥ 0}, (12)

where the maximization QP on right hand side is the dual of the previous
minimization one [9].

Proposition 1 Equation (12) can be replaced by

const ≤ −1

2
y&Qy + b&z ∧ A&z−Qy ≤ p ∧ z ≥ 0 (∗)

in Eq. (1)–(3).

Proof If Eq. (12) is active, then the maximum objective function value of the QP is
const. Because of the max operator, the objective function of the QP cannot attain
any larger value. This means that (∗) can only be feasible when − 1

2 y
&Qy + b&z

attains its maximum over A&z −Qy ≤ p and z ≥ 0. If Eq. (12) is inactive, it has
no effect on the optimum. Since (∗) is a relaxation of Eq. (12), the same holds. ��

Given the dual variables y and z of the lower-level subproblems, Proposition 1
yields the following reformulation of (1)–(3).

min
q,y,z

∑

i∈A
(qi − 1)2 (13)

∀i ∈ A qmini ≤ qi ≤ qmaxi (14)

∀i < j ∈ A −
2∑

k=1

(qiviuik − qj vjujk)2 y2
ij + (−T )zij ≥ d2 −

2∑

k=1

(x0
ik − x0

jk)
2

(15)

∀i < j ∈ A − zij
2
−

2∑

k=1

(qiviuik − qj vjujk)2 yij ≤
2∑

k=1

(x0
ik − x0

jk)(qiviuik − qj vjujk)

(16)

∀i < j ∈ A zij ≥ 0 (17)

3 Cut Generation Algorithm

We introduce a solution algorithm for the bilevel formulation (1)–(3), using a cutting
plane approach. We iteratively define the feasible set of the upper-level problem by
means of quadratic inequalities in the upper-level variables qi , qj .
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The algorithm is as follows:

CP Algorithm

1. Let h = 1; initialize the relaxation Rh of the bilevel program, obtained
considering only the upper-level problem; more explicitly, R1 is:

min
q

∑

i∈A
(qi − 1)2

∀i ∈ A qmin
i ≤ qi ≤ qmax

i

2. Solve Rh and get q∗.
3. For each aircraft pair (i, j), compute the instant τhij ∈ [0, T ] for which the

distance between i and j is minimum and check if this distance is greater than or
equal to the safety value d.

4. If for all the pairs the safety threshold is respected, the algorithm ends (q∗ is an
optimal solution of the bilevel formulation).

Else, for all the pairs (i, j) violating the inequality, add to Rh the cut:

∑

k∈{1,2,...,k}
((x0

ik − x0
jk)+ τhij (qiviuik − qjvjujk))2 ≥ d2 (18)

obtaining Rh+1.
5. Put h = h+ 1 and go back to 2.

Note that in step 3 of the algorithm τhij is easily computed in closed form.

4 Computational Experiments

We consider the set of instances proposed in [1], where n aircraft are placed on a
circle of given radius r , with initial speed vi and a trajectory defined by a heading
angle such that aircraft fly toward the center of the circle (or slightly deviating with
respect to such direction). See Fig. 2.

Then we also consider instances always proposed in [1] in which aircraft move
along straight trajectories intersecting in nc conflict points.
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Fig. 2 n conflicting aircraft
flying towards the center of a
circle

Conflict zone

n aircraft

We set: T = 2 h, d = 5 NM, vi = 400 NM/h for each i ∈ A. For the “circle
instances” the heading angles capi are randomly generated and parameters x0

ik and
uik are given by

ui1 = cos(capi ), ui2 = sin(capi ), x0
ik = −r uik

The bounds qmin
i and qmax

i are set to 0.94 and 1.03 respectively.
We implement the proposed formulations using the AMPL modeling language

[10] and solve the bilevel one with the Cutting Plane algorithm before presented
(CP in the Table 1) and the others with the global optimization solver Baron [11]
(B in the Table 1) or, when Baron is not successful (exceeding the time-limit set to
15,000 s), with a Multistart algorithm (MS in the Table 1).

The Multistart method for the KKT reformulation uses SNOPT [12] at each
iteration (1000 iterations in total), while the one for the Dual reformulation uses
IPOPT [13]. Also for the Cutting Plane algorithm (CP), at each iteration we solve
the relaxed formulation Rh using IPOPT, that implements an Interior-Point method,
for the NLP relaxation.

All the solvers are run with their default settings. The tests are performed on a
2.7 GHz Intel Core i7 processor with 16 GB of RAM and macOS Mojave Operating
System.

Our results are reported in Table 1, and compared with those that are the best
among the ones obtained with different methods in [1] and [2], that not always
guarantee optimal final solutions, using a matheuristic approach.

Looking at the solutions obtained on these instances, it appears that they are
comparable. The value of the objective function is always very low, given the nature
of the problem (q must be in [0.94, 1.03]). We report in bold the best solutions and
the minimum time required for each instance.
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Computational Evaluation of Data
Driven Local Search for MIP
Decompositions

Saverio Basso and Alberto Ceselli

Abstract Driven by the perspective use in decomposition based general purpose
solvers, we tackle the issue of improving Dantzig-Wolfe decomposition patterns for
generic Mixed Integer Programs (MIP). In particular, we consider the scenario in
which a MIP instance and its decomposition are given as input and we address
the task of manipulating such decomposition by observing only static algebraic
components, with the aim of producing better computational performance features
(tighter bounds and comparable computing times). We propose a local search
algorithm guided by data driven models and evaluate its performance on MIPLIB
instances while starting from decompositions given by either static or data driven
detectors.

Keywords Dantzig-Wolfe decomposition · General purpose solvers · Machine
learning

1 Introduction

The emerging field of data analytics asks for optimization tools which are not
only computationally powerful, but also easy to integrate in decision support and
information systems. General purpose solvers perfectly fit this need: they offer
full modeling flexibility, and their effectiveness has improved exponentially for
decades [1].

While branch-and-cut based solvers behave well on generic Mixed Integer Pro-
gramming (MIP) instances, a few drawbacks are known, limiting their efficacy on
selected classes of problems that unfortunately contain also key applications in sci-
ence and engineering. According to evaluations like [1], it is unlikely that fine tuning
and algorithm engineering will be enough to provide a breakthrough for them.
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At the same time, decomposition methods prove to be a valid alternative in
several cases. They often allow to exploit more structure and to unlock high potential
in terms of massive computing parallelism [2], just to mention two appealing
features.

That is why researchers have started to devise general purpose frameworks
exploiting problem decomposition [10, 11]. Among them, the state of the art is GCG
[7]: based on the framework SCIP, it allows a user to submit generic MIP instances
together with decomposition patterns, reformulates the MIP according to the given
decomposition and solves the reformulated MIP by branch-and-price.

Besides deciding if a MIP is amenable to be decomposed [8] a key issue
remains, that is how to find a suitable decomposition pattern, in case the user is
not a mathematical programming expert, or is simply unaware if a decomposition
approach might be useful or not. Formally, a decomposition pattern can always be
induced; attempts to automatically detect suitable decomposition (i.e. by means
of algorithms) are recent [6] but promising. A common difficulty of these static
detectors is finding MIP and decomposition features, that is pure (static) algebraic
properties of input data, that might guide detection algorithms.

Indeed, in previous works we proposed data-driven approaches aimed at obtain-
ing this type of insights [4] experimenting also, as proof of concept, on fully data
driven decomposition methods [3], creating useful decompositions from scratch.

In this paper, instead, we experiment on using data-driven models to guide local
search algorithms, improving existing decomposition patterns. In our view these
existing decompositions can be those produced by either static detectors or data-
driven ones, or even those directly given as input from users to solvers like GCG.
While intuitively simple, such a task is made very complex by peculiar, unexpected
behaviour of decomposition patterns, as reported for instance in [5]. In Sect. 2
we review some motivation insight from earlier works; in Sect. 3 we describe our
local search framework, and in Sect. 4 we report computational findings on generic
MIPLIB [9] instances.

2 Preliminary Investigations

In [3] we designed and developed a data driven detector based on supervised
machine learning models to predict independently bound and time scores of
decompositions (within a 0-1 range) starting from static features. Its most suc-
cessful setting includes a custom ranking function based on dominance between
decompositions in such a score space. In Fig. 1 we report a brief summary of
our findings when the following experimental setting is used. A set of MIPLIB
is chosen, and several algorithmically generated random decompositions for them
are experimented by optimization runs, obtaining score values, and creating a
training dataset for our data driven models. Then, a second dataset is created in
the same way, including new decompositions for the same MIPLIB instances; it is
used as a validation test set. Finally, a third dataset is created by considering new
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(a) Time (valid.) (b) Bound (valid.)

(c) Time (formal) (d) Bound (formal)
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Fig. 1 Time and Bound regression results for the validation set (top) and the formal test set
(bottom). Taken from [3]

MIP instances, and decompositions for them; it is also used as a formal test set.
That is both validation and formal sets test our data driven models on previously
unseen decompositions, but the formal test set has the additional complexity of
being created on previously unseen MIP instances. Figure 1 has one point for each
decomposition, having on the y-axis the predicted value and on x-axis the real score.
We observe that on the validation set both predictors performs well: when the MIP is
already known, decomposition bound and time prediction appear possible. When the
MIP is unknown, the results are still encouraging: it is still possible to predict time
with good accuracy; bound regression is instead suitable only in some scenarios:
overall it performs poorly, except on a small subset of the instances.

We therefore focused on the following research question: if a (potentially new)
MIP instance and a tentative decomposition of it are given, can we design an
algorithm that takes advantage of our data driven predictors to improve such
decomposition?
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3 Local Search Algorithms

Motivated by the results obtained during our preliminary investigation, we propose
a local search algorithm (Fig. 2) aimed to improve the quality of decomposition
patterns, that exploits our data driven models to guide the exploration of neighbour
regions of the solution space.

Our algorithm starts with a candidate solution, a decomposition that can either be
provided by detectors (both static or data driven) or by a simpler random sampling
of constraints, and then moves iteratively to neighbor solutions until a termination
condition is met.

Generation We define as neighbourhood the set of decompositions that differ, from
the candidate one, of just one constraint. In particular, we consider all the solutions
that can be generated by convexifying a single additional constraint in the candidate
decomposition, that is by moving one relaxed constraint from the border to one of
the blocks. In the event that two or more independent blocks share variables with
the newly added constraint, the blocks are merged (see Algorithm 1 pseudocode).

The selection of such a neighbourhood has two main advantages. First, it allows
to generate and explore a very wide neighbourhood: its cardinality equals the
product of the number of constraints in the border and the number of blocks.
Second, Dantzig-Wolfe decomposition theory guarantees that the bound of every

Candidate  
Dec 

Generation Score Select
Output

Dec
Check 

termination

neighborhood
scored 

neighborhood

Fig. 2 Local search algorithm

Algorithm 1: Generation pseudocode
Data: decomposition D
Result: set � of decompositions
� = ∅ ;
for i ∈ border(D), k ∈ blocks(D) do

E = D;
move(i, k) =

remove i from border(E);
add i to block(k, E);
check merging block(k, E);

� = � ∪ E
end
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decomposition generated with our move will not be worse than the bound of the
candidate decomposition. This allows us to disregard bound prediction, which as
reported in Sect. 2 proves difficult.

Evaluation and Selection The selection of a move in the neighbourhood is critical,
as convexifying a single additional constraint may have a deep impact into the
structure of the decomposition blocks. Furthermore, the evaluation of such a large
set must be computed quickly, and therefore it is completely impracticable to check
even a subset of them by optimization runs. Indeed, no move can worsen the bound:
focusing on predicted final computing time, we use our data-driven time regressor
as a fitness function. At each iteration, once the neighbourhood has been generated,
we evaluate the quality of each decomposition in it using our time regression model.
We choose that of minimum predicted time, with a best improvement strategy, as the
next candidate decomposition.

Terminating Conditions We repeat the generation of the neighbourhood, its
evaluation and the selection of the next candidate solution until termination, which
we fix either after a fixed number of iterations or after some quality threshold
has been reached, leaving these as parameters of the algorithm. Their selection is
discussed in the next section.

4 Experimental Results

For the experimental analysis, we considered three datasets. The first, Dataset T,
is taken from [4] and consists of 34,565 decompositions for 36 problems from
MIPLIB2003 and MIPLIB2010. Each decomposition is described by 117 static
features collected during pre-processing. For each decomposition in T, bound and
time at the root node have subsequently been obtained by running simulations with
GCG 2.1.1, and added as scores to the dataset in post-processing. The second,
Dataset P, consists of 12 new MIP problems, taken from [3], that were generated by
perturbing rout.mps, fiber.mps and p2756.mps of Dataset T. Perturbation
was performed either numerically (that is, entries of the MIP problem different
from 1 and -1 were multiplied by a random fraction) or structurally (a random
number of coefficients in the constraints matrix were swapped). In both scenarios,
we considered two levels of perturbation: 6% and a 20%.

The third, Dataset N, is composed of 5 entirely new MIP instances from
MIPLIB2017: bienst1, bienst2, danoint, h50x2450 and newdano. We
chose them because they are listed in MIPLIB as “similar” to rout.mps, according
to an analysis on static features. In turn, rout.mps belongs to Dataset T, and both
[4] and [3] suggest it to be suitable to a decomposition approach.

Experimental Setup We performed experiments on a PC equipped with a 16 core
AMD Threadripper 1950X 3.4 GHz CPU, 32 GB DDR4 RAM and Ubuntu 18.04
operating system. Our local search algorithm was developed in Python 3.6.7 and
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made use of XGBoost library 0.71 to train our supervised learning models on
dataset T, with default objective (regression with squared loss), default settings and
the following custom settings: maximum tree depth (max_depth) = 13, boosting
learning rate (eta) = 0.1 and number of trees to fit (n_estimators) = 100. Additional
scripts in Bash and R 3.4.4. were respectively employed to manage the generation
of the neighbourhood and to merge blocks with common variables.

We tested our local search algorithms on dataset N and P with the setup explained
in Sect. 3. Furthermore, to validate our data-driven selection policy, we also
tested a configuration with a random selection policy: at each iteration, time
prediction is not taken into account and the next candidate decomposition is chosen
randomly from the neighbourhood. We remark that such a random policy is blind
to computing time, but still guarantees to never worsen the bound with local search
moves. We repeated tests with random selection 5 times and we aggregated the
results in averages. Detection of the starting decomposition was either performed
by using GCG 3.0 static detectors or by using our Data Driven Detector [3] on
300 random decompositions for each problem. A single decomposition, obtained at
the end of the local search process, was used to optimize the corresponding MIP
instance through GCG, setting a 2 h timelimit. Final bound and computing time on
that MIP instance were measured accordingly.

Experiment 1: Selection Policies Profiling We report in Table 1 a comparison
between selection policies. The table is composed of two blocks. Each value in the
first block represents the ratio between the result obtained by the data-driven
policy and that obtained by the random policy. In the second block instead, we
report the overall percentage of decompositions produced by data driven local
search which are dominated by a random one (R → LS), that of random

Table 1 Comparison between selection policies

Iteration

Inst. Value 5 10 20 30 Overall

Bienst1
Time 49.83% 11.93% 43.58% 98.82% 51.04%

Bound 99.36% 109.25% 115.13% 120.13% 110.97%

Bienst2
Time 54.86% 13.55% 24.18% 42.86% 33.86%

Bound 98.46% 106.03% 113.26% 119.33% 109.27%

Danoint
Time 0.94% 0.33% 0.29% 104.80% 26.59%

Bound 100.02% 100.05% 100.08% 99.99% 100.03%

h50×2450
Time 56.37% 60.20% 35.15% 70.95% 55.67%

Bound 100.00% 100.00% 100.00% 100.00% 100.00%

Newdano
Time 26.98% 4.70% 2.46% 3.08% 9.30%

Bound 101.17% 118.68% 117.63% 115.87% 113.34%

Overall dominance
R→ LS 4.00% 0.00% 0.00% 8.00%

LS → R 76.00% 100.00% 100.00% 64.00%

No dominance 20.00% 0.00% 0.00% 28.00%
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decompositions dominated by a data driven one (LS → R) and that of not
dominated decompositions. We consider four iteration limit values: 5, 10, 15 and
30. Technically, the tests with iteration limit of 5, 10 and 15 are obtained as dumps
of the 30 iteration limit test. The starting decomposition is always provided by GCG
static detectors. We highlight that data-driven selection performs better when
percentages are below 100 for Time (the lower, the better) and above 100 for Bound
(the higher, the better).

Our results show that using data-driven time prediction to explore the neigh-
bourhood has potential and that, as expected, it performs better than a random
selection. In fact we observe that, on every instance, data-driven selection
provides on average better times and bounds. Indeed, the decomposition produced
with data-driven selection is always better in terms of computing time, except
when solving the decomposition for danoint.mps after 30 iterations. In this case,
both data-driven and random selection perform poorly: the former reaches timeout
whilst the latter gets very close to it. However, we report that after the 22nd iteration,
our time predictor assigns to the whole neighbourhood very low scores and using a
well tuned threshold as a stop condition should be sufficient to avoid this worst case
scenario. After 5 iterations, even if neither policy makes assumption on bounds,
data-driven selection consistently provides better results. The only exception is
instance h50x2450.mps in which no improvement of the bound can be obtained,
as the starting decomposition is already enough to fully close the duality gap. The
results about dominance are even stronger: when stopping at 10 or 20 steps, all
random decompositions are worse than the data driven ones in terms of both bound
and running time.

Experiment 2: Impact of the Starting Decomposition In a second round of
experiments we consider the effect of starting with a decomposition found by our
data driven detector [3] (300 random samples), instead of that produced by GCG
algorithmic detectors. The local search iterations limit is always set to 30. Our
results over Dataset N and P are reported in Table 2. For each instance and each
detector, we report the Time (T.) and Bound required to solve the decomposition
found, the percentage of constraints in blocks (Cvx) and the number of remaining
constraints in the border (Mc). For dataset P, we report each instance with its name
followed by the percentage of perturbation that was applied (either 6 or 20) and its
type (either n for numerical or s for structural). Being all minimization problems, in
case of Bound, higher values correspond to better bounds.

Both detectors mostly produce decompositions that can be solved in seconds.
In almost every test, decompositions detected for dataset N are mostly low quality
and provide the same bounds of the linear relaxation of the problem. As reported
before, the only exception is for h50x2450.mps: in this case, GCG is able to find a
decomposition producing no duality gap. When facing dataset P instead, GCG finds
decompositions with higher bounds for p2756.mps and its permutations whilst
our data driven detector can generate better decompositions for rout.mps.
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Table 2 Comparison between GCG static detection and Data driven detection for choosing the
starting decomposition

GCG detection Data driven detection

D Inst. T. [s] Bound Cvx Mc T. [s] Bound Cvx Mc

N

Bienst1 3.53 11.72 77.8% 128 4.02 11.72 66.5% 193

Bienst2 4.28 11.72 77.8% 128 2.17 11.72 65.4% 199

Danoint 5.25 62.64 67.9% 213 20.94 62.69 54.2% 304

h50×2450 587.79 32,906.88 98.1% 49 32.33 11,147.73 96.1% 99

Newdano 3.90 11.72 77.6% 129 2.12 11.72 76.9% 133

Overall 79.8% 129.4 71.8% 185.6

P

p2756-20n 0.73 1982.69 97.5% 19 0.20 1984.00 79.3% 156

p2756-20s 3.30 2798.09 58.3% 315 0.73 2774.70 44.5% 419

p2756-06n 2.76 2888.52 97.5% 19 1.44 2729.66 86.5% 102

p2756-06s 2.60 2794.17 82.2% 134 0.95 2703.00 70.9% 220

rout-20n 2.22 654.24 87.6% 36 2.18 686.57 88.7% 33

rout-20s 2.35 542.01 80.4% 57 405.80 680.82 92.1% 23

rout-06n 2.26 991.33 87.6% 36 40.79 1024.59 89.7% 30

rout-06s 4.51 838.01 82.5% 51 13.74 842.34 83.2% 49

Overall 84.2% 83.4 79.3% 129.0

We also observe that decompositions found for dataset P are, on average, more
convexified than the ones detected for dataset N. In this case, the number of
constraints in the border is very low and the number of meaningful iterations that
can be performed with our local search algorithm is limited. We also report that the
average value of constraints in blocks is higher for GCG detection than Data driven
detection.

Experiment 3: Local Search Improvement Potential We present a summary
of the performance of our algorithm on Dataset N and P when using GCG
decompositions as starting ones, in terms of decomposition improvement potential.
We report for 5, 10, 20 and 30 iterations limit, the average bound improvement of
the final decomposition with respect to the starting one (Fig. 3a) and the required
time to solve the final decomposition (Fig. 3b). For the sake of comparison, we
have removed timeouts (one for each Dataset). We can observe that overall the
local search algorithm presents better results on dataset N for both time and bound.
However, when the number of iterations is low, that is 5 o lower, improvements are
limited.

We recall that in instances of Dataset P the border has fewer constraints. The
impact of local search in such a setting can be expected to be smaller as the
corresponding decompositions are already strongly convexified and adding even a
single additional constraint to the blocks may yield subproblems whose complexity
do not differ significantly from that of the full MIP.
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Fig. 3 Performance of local search starting from GCG decompositions on Dataset N and Dataset
P. We present, for each dataset, the relative bound improvement and the absolute time in seconds.
(a) Bound improvement. (b) Time

Table 3 Comparison between LsGCG and LsDD

Bound improv. Time [s]

Inst. z∗ zLP LsGCG LsDD sGCG LsGCG LsDD

Bienst1 46.75 11.72 38.06% 5.20% 3.53 75.13 50.12

Bienst2 54.60 11.72 38.71% 10.08% 4.28 124.69 9.33

Danoint 65.67 62.64 0.00% 0.08% 5.25 7344.00 104.82

h50×2450 32,906.88 11,147.73 0.00% −66.12% 587.79 175.00 32.33

Newdano 65.67 11.72 53.48% 181.47% 3.90 24.66 16.74

For each instance of Dataset N, we report decomposition solving time and the improvement of the
bound with respect to static detectors of GCG

Experiment 4: Overall Effect of Local Search Finally, in Table 3 we summarize
the performance of our local search algorithm. As a benchmark we consider the
decomposition provided by the static detectors of GCG (sGCG). We fix local
search iterations limit to 30, and we consider two cases: actually starting local
search from the decomposition provided by sGCG (LsGCG) or fully employing
a data-driven approach, starting local search from a decomposition provided by
the Data Driven Detection method of [4] (LsDD). That is LsGCG evaluates the
effect of local search for further improving a decomposition which was produced
by an existing optimization algorithm, while LsDD can be seen as a fully data-
driven alternative to algorithmic detectors. For each instance (Inst.) of dataset N,
we report its optimal solution value (z∗) and the value of its linear relaxation (zLP ).
Then, we present the improvement of the bound with respect to sGCG, obtained by
solving the output decomposition of both LsGCG and LsDD . We also report Time in
seconds for LsGCG, LsDD and sGCG. We report that LsDD failed on one instance,
h50x2450.mps, because bash and R scripts could not handle the generation of a
neighbourhood of such a large size.
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We observe that on some instances (bienst1.mps and bienst2.mps) LsGCG
presents best bound improvements while keeping time under control. Even if both
detectors start with the same bound, as reported in Table 2, sGCG decompositions
are much more convexified and likely structured and LsGCG provides better bounds
after 30 iterations. The same applies for h50x2450.mps in which sGCG alone
is already able to find a decomposition yielding no duality gap. However, we
observe that LsDD always has lower times and that could potentially perform as
well or better when the same overall number of constraints as LsGCG have been
convexified. Furthermore, LsDD provides better bounds on danoint.mps and
newdano.mps. In the first case, this is due to the fact that LsGCG reaches timeout
and cannot close the root node within a time limit of 2 h. Stopping before 30
iterations, as suggested in Experiment 1 could allow to match LsDD improvements.
In the second, the local search algorithm performs well with both detectors but
LsDD presents a much better bound. This suggests that with these two MIP instances
the decomposition pattern found by sGCG does not match the instance very well
and limits the performance of our local search algorithm. Finally, we also report
that even when sGCG finds an optimal solution, our local search algorithm might
still have a positive impact: we can see that the decomposition found on instance
h50x2450.mps by sGCG requires almost 10 min to be solved whilst using our
local search algorithm can lower running time to about 3 min. The counter-intuitive
phenomenon on h50x2450.mps brings an interesting insight: decompositions
yielding lower running times do not always come at the cost of loser bounds;
sometimes, the opposite is observed.

Summarizing, given a decomposition, our local search algorithm can consistently
find a new solution with better bounds while keeping time under control. However,
as expected, the percentage of improvement depends on the detector used to find a
starting decomposition.

5 Conclusion and Perspectives

Following the results of [4] and [3], we have explored the idea of using the models
of our data driven detectors to improve a given decomposition. We have designed
a novel local search algorithm that generates a wide neighbourhood with a move
tailored to overcome the shortcomings of bound prediction and we have used our
data driven time regressor to evaluate and explore the solution space. Then, we have
tested our algorithm on new, unseen instances from MIPLIB2017 and a custom
built dataset. Such an approach proves to be effective, consistently improving even
those decompositions produced by state-of-the-art algorithmic detectors. Our results
suggest that, while the performance of the algorithm is strongly dependent on the
starting decomposition and that further testing on an expanded dataset is required
to fully explain its behaviour, data driven local search can consistently improve a
given decomposition.
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An Integer Programming Formulation
for University Course Timetabling

Gabriella Colajanni

Abstract The university timetabling problem is defined as the process of assigning
lessons of university courses to specific time periods throughout the five working
days of the week and to specific classrooms suitable for the number of students
registered and the needs of each course. A university timetabling problem is
modeled, in this paper, as an optimization problem using 0-1 decision variables
and other auxiliary variables. The model provides constraints for a large number
of different rules and regulations that exist in academic environments, ensuring the
absence of collisions between courses, teachers and classrooms. The real case of
a Department and some instances from the literature are presented along with its
solution as resulted from the presented ILP formulation.

Keywords University course timetable · Scheduling · Integer programming
problem

1 Introduction

The university course timetabling problem has traditionally and formally been
described as “the allocation, subject to constraints of given resources to objects
being placed in space time, in such a way as to satisfy as nearly as possible a set of
desirable objectives” [20].

Since timetabling problems differ from one university to another, in this paper we
propose a new Integer Linear Programming (ILP) problem based on the formulation
of a course timetabling for the Department of Mathematics and Computer Science,
University of Catania. Therefore, this paper focuses on solving this operational
decision-making problem finding the best assignment of lessons to rooms and
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timeslots, so that a set of constraints is satisfied, to create timetables of high quality
for students and teachers.

A lot of research has been done on timetabling, and, being part of optimization
problems, several well-known techniques of the computer science and operations
research fields have been utilized (see, for instance, [3, 4, 18, 21] for some literature
review).

Among the first approaches in mathematical programming, Akkoyunlu in [2]
presented linear and integer programming models for some versions of the problem
for a university timetabling problem.The same problem was studied in [7] and
[16] again with the help of linear programming models. More recently, in [5] the
teacher assignment problem is combined with a form of the timetabling problem
and solved through commercial software for goal programming. In a similar manner,
in [14] a linear programming formulation is provided for the classroom allocation
problem, a sub-problem of the university timetabling. In [8–11], authors proposed
some Integer Linear Programming models presenting binary variables and using
additional variables to describe some type of constraints. Researchers also proposed
ILP models based on the decomposition of the problem into two or more stages
(see, for instance, [12] and [15]). Also in [19] authors presented a two-stage
integer programming approach for building a university course (of the KU Leuven
Campus Brussels) timetable that aims at minimizing the resulting student flows.
Reference [1] describes the main features of the constraint solver that the authors
used to generate a timetable for the Computer Science Department of the University
of Munich. The objective of a Course Timetabling problem is to find the best
weekly assignment of university course lessons to rooms and time periods, subject
to constraints which can be divided into two types: hard constraints that must
necessarily be satisfied and soft constraints, where the violation of these should
be minimized, determining the objective function (such as room capacity, minimum
number of working days, lessons compactness and room stability).

Despite the amount of literature and research dedicated to this problem, a gap
still exists between reality and used models, or, in other words, between theory
and practice (this is discussed by McCollum and Ireland in [17]). The paper is
organized as follows. In Sect. 2 we firstly show the used notation and then we present
the mathematical formulation. Section 3 is dedicated to the application of the new
model, with appropriate adaptations, to the case study of the Master’s Degree Course
in Mathematics of the Department of Mathematics and Computer Science (DMI)
of the University of Catania. In order to test and validate the model we use some
adapted instances available from the literature. Finally, in Sect. 4, we draw some
conclusions and discuss some guidelines for future research.

2 Course Timetabling Formulation

We present the mathematical formulation of a new model of a weekly calendar of
university lessons, first stating the sets of resources and users, then declaring some
auxiliary sets, useful for specifying certain features that intertwine resources and
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users, so we describe the main types of variables and the parameters we will use;
finally we will name the weights related to the violation of soft constraints.

2.1 Notation

We use a notation that is as close as possible to the papers in the wide literature.
To create our model, we define the sets and subsets described in Table 1 and the

parameters shown in Table 2.
We indicate with c ∈ C a generic course belonging to the set of all the university

courses and we denote by r ∈ R and h ∈ H the typical room and timeslot,
respectively.

We consider D = {1, 2, 3, 4, 5} the set of the weekly working days, from
Monday to Friday. Lastly, we indicate with t ∈ T and s ∈ S the generic teacher
and student, respectively.

Table 1 Sets and subsets

C The set of courses

R The set of rooms

H The set of timeslots across the week, that are the time periods

D The set of days of the planning period

T The set of teachers

S Be the set of students

C(t) ⊂ C The set of courses taught by teacher t ∈ T
H(d) ⊂ H The set of time periods belonging to the day d ∈ D
F The set of time periods corresponding to the first timeslot of each day

L The set of time periods corresponding to the last timeslot of each day

ND ⊂ C ×H The set which is formed by pairs (c̄, h̄) indicating the time period h̄ in which

the teacher of the course c̄ is not available

HD ⊂ C × R The set which is formed by pairs (c̄, r̄) indicating that the teacher of the

course c̄ cannot teach any class other than r̄

Table 2 Parameters

lc The number of lessons for course c ∈ C
mc The minimum number of weekdays on which there must be a lesson for course c ∈ C
nc The demand for course c ∈ C, that is the number of students in that course

pr The capacity of room r ∈ R, that is the number of seats in the room

WC The weight corresponding to the penalization of lessons compactness

WM The weight corresponding to the penalization of minimum number of working days

WP The weight corresponding to the penalization of room capacity

WS The weight corresponding to the penalization of room stability

WD The weight corresponding to the penalization of distribution
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We now present the decision variables.
The first decision variable that we introduce is the binary variable xchr which

establishes the possible assignments of the courses to the classrooms and the
available time periods.

The variable xchr is formally defined as follows:

xchr =
{

1 if a lecture of course c is planned in the timeslot h and in room r,

0 otherwise,

∀c ∈ C, ∀h ∈ H, ∀r ∈ R.
We also use some other decision variables:

• vh: the binary variable which is used to count the number of unused hours
between lectures and is expressed by

vh =
{

1 if the timeslos h is a free period
0 otherwise,

∀h ∈ H ;

• distcd ∈ {0, 1}: the binary variable which controls the distribution of the lessons
of the course c ∈ C in consecutive days d, d + 1 ∈ D (it will be clarified later);

• ycd : the binary variable which is used to count the number of lessons of the course
c ∈ C in the day d ∈ D and is expressed by

ycd =
{

1 if at least a lecture of the course c is planned in h ∈ H(d)
0 otherwise,

∀c ∈ C,∀d ∈ D;
• zc: the integer variable which, for each course c ∈ C, counts the number of days

below the minimum number of working days.

2.2 The Formulation

We begin by describing our hard constraints that are of fundamental importance for
the planning of the lessons.

∑

h∈H

∑

r∈R
xchr = lc, ∀c ∈ C (1)

Constraint (1) requires that all the lessons of each course must be planned.

∑

c∈C

∑

r∈R
xchr ≤ 1, ∀h ∈ H (2)
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Constraint (2) establishes that do not take place simultaneously.

∑

c∈C
xchr ≤ 1, ∀h ∈ H, ∀r ∈ R (3)

Constraint (3), on the other hand, requires that at most one class of a course c ∈ C
can be assigned to the same period of time in the same classroom.

Two additional constraints take into account the needs of teachers.

∑

c∈C(t)

∑

r∈R
xchr ≤ 1, ∀h ∈ H, ∀t ∈ T (4)

∑

r∈R
xchr = 0, ∀(c, h) ∈ ND (5)

First, the impossibility of assigning more than one lesson to be held by the same
teacher at the same time, as formalized in constraint (4) which requires that at
most a class lesson taught by a teacher can be assigned to a classroom in a time
period. Secondly, the non-availability of the teacher of the course c̄ ∈ C is taken
into consideration, in the interval of time h̄ ∈ H , due to the performance of another
teaching in another room for the same degree course or for another one located in
the same Department or not. Consequently, constraint (5) establishes that no lesson
of a course must be assigned to a classroom in a period of time in which the teacher
of that course is not available.

∑

c∈C

∑

h∈H
xchr̄ −

∑

h∈H
xc̄hr̄ = 0, ∀(c, r) ∈ HD (6)

∑

h∈H

∑

r∈R
xc̄hr −

∑

h∈H
xc̄hr̄ = 0, ∀(c, r) ∈ HD (7)

Two new additional constraints, (6) and (7), are placed to assign a course to a specific
room by virtue of the need to use particular teaching tools, placed only in some
classrooms, or to the specific needs of the course teacher. Constraint (6) expresses
the following situation: the teacher of the course c̄ is the only one, in the set of
teachers considered, to be able to do lessons in the classroom r̄ .

Constraint (7) expresses the condition that the teacher of the course c̄ cannot
teach any class other than r̄ .

After defining the hard constraints, we focus now on the objective function which
is given by the sum of five terms, each of which contains the penalties for the
violation of soft constraints.

A first objective of the model, which is aimed at solving the problem of
programming a calendar of university lessons, is to minimize the creation of “free
period” within each programming day. It therefore requires that there are no unused
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hours between successive lessons of two courses. This is expressed by the first
addendum of the objective function:

∑

h∈H

(
WCvh

)
,

where the variable vh is determined by the following constraints:

∑

c∈C

(∑

r∈R
xc(h−1)r −

∑

r∈R
xchr +

∑

r∈R
xc(h+1)r

)
− 1 ≤ vh, (8)

∀h ∈ H − {F ∪ L},
∑

c∈C

(∑

r∈R
xchr −

∑

r∈R
xc(h+1)r

)
≤ vh, ∀h ∈ F. (9)

From the didactic point of view it would be preferable that the lessons of the
same course are not placed on two consecutive days, therefore, in this paper, we
formulate this new request in the second addendum of the objective function:

WD
∑

d∈D
d �=d5

∑

c∈C
distcd .

We underline that the relationship between variables distcd and ycd is given by the
following new constraint:

ycd + yc(d+1) − 1 ≤ distcd , ∀c ∈ C,∀d ∈ D, d �= d5 (10)

The third addend,
∑

c∈C
WMzc, aims to reduce the difference between the number of

days used for the weekly distribution of the lessons of a course and the minimum
number of working days required for that course. For this purpose the integer
variable zc is used, counting, for each course c ∈ C, the number of days below
the minimum number of working days:

∑

h∈H(d)

∑

r∈R
xchr ≥ ycd ∀c ∈ C, ∀d ∈ D, (11)

∑

d∈D
ycd + zc ≥ mc ∀c ∈ C. (12)

The fourth addendum of the objective function represents the request that the
classroom which the course is assigned to (over a period of time) should have the
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capacity to accommodate all the students enrolled in that course and to minimize
the number of seats that exceed it. Therefore we use the following soft constraint:

∑

c∈C

∑

h∈H

∑

r∈R
WP |nc − pr |xchr .

In particular, unlike what has been studied in literature, we underline the insertion
of the absolute value in the difference between the two quantities nc and pr .

Regarding the soft constraint of the room stability in the model we present, with
respect to the models examined in literature, we dealt with the daily permanence in
the same classroom, of the students, instead of the previous condition of stability
of the classroom concerning each course because in this case it could happen that
consecutive lessons are held in different and distant classrooms.

Therefore, the fifth addendum,

WS
∑

d∈D

∑

r∈R

∑

h∈H(d)
h/∈L

∣∣∣∣∣
∑

c∈C
xchr −

∑

c∈C
xc(h+1)r

∣∣∣∣∣ ,

aims to minimize the number of daily classroom shifts for students, analyzing daily
pairs of consecutive time periods (h, h + 1) for each course. To this reason it is
necessary to exclude from the periods of time examined the last period of each
afternoon, that is h /∈ L.

The problem can therefore be formulated as an optimization problem as follows:

min

{∑

h∈H

(
WCvh

)
+ WD

∑

d∈D
d �=d5

∑

c∈C
distcd +

+
∑

c∈C
WMzc +

∑

c∈C

∑

h∈H

∑

r∈R
WP |nc − pr |xchr +

+ WS
∑

d∈D

∑

r∈R

∑

h∈H(d)
h/∈L

∣∣∣∣∣
∑

c∈C
xchr −

∑

c∈C
xc(h+1)r

∣∣∣∣∣

}
(13)

∑

c∈C

(∑

r∈R
xc(h−1)r −

∑

r∈R
xchr +

∑

r∈R
xc(h+1)r

)
− 1 ≤ vh, (14)

∀h ∈ H − {F ∪ L}
∑

c∈C

(∑

r∈R
xchr −

∑

r∈R
xc(h+1)r

)
≤ vh, ∀h ∈ F (15)

ycd + yc(d+1) − 1 ≤ distcd , ∀c ∈ C, ∀d ∈ D, d �= d5 (16)
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∑

h∈H(d)

∑

r∈R
xchr ≥ ycd, ∀c ∈ C, ∀d ∈ D (17)

∑

d∈D
ycd + zc ≥ mc, ∀c ∈ C (18)

∑

h∈H

∑

r∈R
xchr = lc, ∀c ∈ C (19)

∑

c∈C

∑

r∈R
xchr ≤ 1, ∀h ∈ H (20)

∑

c∈C
xchr ≤ 1, ∀h ∈ H, ∀r ∈ R (21)

∑

c∈C(t)

∑

r∈R
xchr ≤ 1, ∀h ∈ H, ∀t ∈ T (22)

∑

r∈R
xchr = 0, ∀(c, h) ∈ ND (23)

∑

c∈C

∑

h∈H
xchr̄ −

∑

h∈H
xc̄hr̄ = 0, ∀(c, r) ∈ HD (24)

∑

h∈H

∑

r∈R
xc̄hr −

∑

h∈H
xc̄hr̄ = 0, ∀(c, r) ∈ HD (25)

xchr ∈ {0, 1}, ∀c ∈ C, ∀h ∈ H, ∀r ∈ R (26)

ycd ∈ {0, 1}, ∀c ∈ C, ∀d ∈ D (27)

vh ∈ {0, 1}, ∀h ∈ H (28)

zc ∈ N, ∀c ∈ C (29)

distcd ∈ {0, 1}, ∀c ∈ C, ∀d ∈ D, d �= d5 (30)

The latest constraints families (26)–(30) define the domain of the variables of the
problem.

We note that the model results to be an integer non-linear programming model,
but it could easily be linearized taking into account that, in this case, an absolute
value |ai − bi | could be replaced by ti , adding the following constraints:

ai − bi ≤ ti , (31)

ai − bi ≥ −ti . (32)

Therefore, we consider the integer linear programming model.
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3 Application of the Model

Now we apply the model formulated in the previous section, with appropriate
adaptations, firstly to the case study of the Master’s Degree in Mathematics of
the Department of Mathematics and Computer Science (DMI) of the University
of Catania and then we use benchmark instances from the literature.

3.1 Case Study: Master’s Degree in Mathematics

Since we want to report all the results for transparency purposes, we select the size
of problems as reported. The numerical data are real values and are constructed for
easy interpretation purposes.

The Department proposes a single 2-year Master’s Degree course in Mathe-
matics, organized in three curricula: Theoretical, Application and Didactic. It is
also possible to propose individual study plans as an alternative to the proposed
curricula. In reference to the courses of the first semester we will not consider
the difference between the various curricula chosen by the students and we will
adopt the convention to consider all the teachings as if they belonged to a single
curriculum. This position is motivated by a “qualitative choice” adopted by the
Department: in order to direct students towards an informed choice of study plan
they are given the opportunity to attend the first lessons of all courses at the
beginning of the academic year (in the first decade of October) and to deliver the
study plan 1 month after the beginning of lessons.

The DMI has 19 classrooms available, 16 of which can be used for university
courses, and three used for other activities. In the model we present we consider
only three of the ten rooms with a capacity of 140 seats in order to guarantee
the possibility of assigning a classroom of this capacity to the courses of all three
curricula and to decrease the number of model variables and, therefore, decrease
the processing time for resolving the problem. We also consider the availability of a
room with 50 seats, one of 48, one of 36, one of 32, one of 24 and two of 16 seats.

A special case is room 124, Anile hall, with a capacity of 36 seats, used
exclusively for the lessons of one of the courses, also used for seminars.

Lessons take place from Monday to Friday. The time intervals available for each
working day range from 8 to 19, considering a free hour for the lunch break and a
maximum number of daily lessons of eight (upper-bound constraint). In the model
we present we take care of the weekly scheduling of the lessons from Monday to
Friday.The time periods available weekly consist of 40 h that can be numbered, but
considering that we assign two consecutive hours to the lesson of each course, we
adopt the convention of indicating a period of time as an interval of two consecutive
hours so as to have the following situation (Table 3).

In such a way, the slots are halved, reducing the number of variables, computa-
tional complexity and execution time.
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Table 3 Time periods
available weekly

Monday Tuesday Wednesday Thursday Friday

1 5 9 13 17

2 6 10 14 18

3 7 11 15 19

4 8 12 16 20

Table 4 Resulting lesson
schedule

Monday Tuesday Wednesday Thursday Friday

5 2 8 2

7 3 1 5 3

1 6 7 6

4 8 4

The teaching staff of the Master’s Degree Course in Mathematics is composed of
24 professors. In particular, 13 of them teach the first year, of which 10 are internal
to the DMI, the others come from other departments; 8 of them teach at the first
semester, and 10 at the second semester. The periods of non-availability for some of
them are known. Considering that a professor holds courses in other departments, it
is necessary to distance his/her lessons that take place in distinct locations at least
1 h. Furthermore, the following preferences of three teachers are known: two would
like to take the lessons of their courses only during the morning hours and one from
9 am to 1 pm.

For the numerical solution of the mathematical model we use IBM ILOG CPLEX
Optimization Studio software, in its IDE version 12.8.0.

The problem related to the first semester is solved by executing the model
formulated in the previous section through the CPLEX software, on an HP 255.5
computer, compute cores 2C+3G, 2.60 GHz, RAM: 8 GB, with a processing time
of 9 s 46′, after 285 iterations. The model has 1146 variables, of which 992 binary
and 330 constraints. The non zero coefficients are 8729 and the optimal value of the
objective function is 160.4.

The resulting lesson schedule for the first semester is shown in Table 4 where at
each number corresponds a course.

We underline that all the lessons take place in room 36, except for the lessons of
course 2 which is held in room 124 (in accordance with constraints (24) and (25)).
We also note that the model always assigns course 2 to the first or last time periods
of each time, in order to reduce the number of students shifts from a classroom to
another (Room Stability).

3.2 Data from the Literature

For further analysis of the performance of the model, 22 additional problem
instances were used. We adapted these instances, except the last one “compNEW”,
from those that have been proposed as a part of the International Timetabling
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Competition (ITC-2007, see [6] and [13]). The dataset is composed by real-world
instances provided by the University of Udine. Since the objective of the proposed
model is different from the one defined for the competition (we focus on lessons
distribution and, concerning the rooms, the proposed model aims at minimizing
the number of daily classroom shifts for students, not for courses and too large
classrooms are not chosen; concerning the compactness, we avoid the free period,
not the isolated lectures), we do not intend to compare the results or validate the
solutions obtained with those available in the literature. Moreover, since our model
is not curriculum-based, we considered the maximum number of courses, among
those in the instances, in such a way that each problem admits at least a feasible
solution.

All the experiments were conducted on the same computer (HP 255.5 computer,
compute cores 2C+3G, 2.60 GHz, RAM: 8 GB).

In Table 5, for each instance we report the name, the number of teaching days in
the week, the number of timeslots per day, the number of lectures to be scheduled,
the number of available classrooms, the number of constrains, variables and binary
variables of each problem and, finally, the number of iterations and the needed time
for finding the optimal solutions.

Table 5 Description and results for optimal solutions of the instances tested

Timeslots Binary Time

Instance Days per day Lectures Classrooms Constraints Variables variables Iterations (min)

Comp01 5 6 30 6 2490 2080 1930 261,304 0.44

Comp02 5 5 24 16 4454 3625 3305 51,373 0.25

Comp03 5 5 24 16 4434 3625 3305 1,026,911 1.56

Comp04 5 5 24 18 4978 4065 3705 392,015 0.71

Comp05 5 6 28 9 3975 3335 3110 524,869 1.02

Comp06 5 5 24 18 4977 4065 3705 424,840 1.06

Comp07 5 5 24 20 5521 4505 4105 43,359 0.20

Comp08 5 5 24 18 4984 4065 3705 1,084,012 1.90

Comp09 5 5 24 18 4970 4065 3705 112,003 0.29

Comp10 5 5 24 18 4998 4065 3705 183,174 0.38

Comp11 5 9 45 5 4809 4240 4040 2,163,037 3.10

Comp12 5 6 29 11 5179 4385 4110 4,084,683 7.60

Comp13 5 5 24 19 5246 4285 3905 142,944 0.54

Comp14 5 5 24 17 4685 3845 3505 669 0.16

Comp15 5 5 24 16 4434 3625 3305 1,026,911 1.74

Comp16 5 5 24 20 5509 4505 4105 85,037 0.26

Comp17 5 5 24 17 4732 3845 3505 51,831 0.36

Comp18 6 6 36 9 5088 4269 4044 105,591 0.35

Comp19 5 5 24 16 4464 3625 3305 152,837 0.52

Comp20 5 5 24 19 5252 4285 3905 190,345 0.79

Comp21 5 5 23 18 4515 3605 3245 13,632 0.23

CompNEW 6 8 48 25 32,203 29,963 29,088 8,103,026 45.79
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We observe that only 33.3̄% of the problems require more than 1 min for
resolution. Particularly, the instance named comp12 requires more than 7 min
because it contains the largest number of unavailability constraints.

Note that we also tested the model using an additional instance (compNEW) with
the maximum number of lectures, days and timeslots per day usually established
by universities. We set a number of classrooms of 25 and we used the same
unavailability constraints as comp21 instance. Therefore, the problem that refers
to the last instance consists of 32,203 constraints and 29,963 variables of which
29,088 are binary. This additional instance requires more than 45 min. However, in
this case, too, the optimal solution is found.

4 Conclusion and Future Research

An integer programming formulation of the university timetabling problem is
presented. The model provides constraints for a great number of operational rules
and requirements found in most academic institutions. Treated as an optimization
problem, the objective is to minimize a cost function.

Therefore, we have proposed a new model for the university course timetabling
problem which allows us to determine the best allocation of university course lectur-
ers to classrooms and timeslots. Through the proposed Integer Linear Programming
Problem it is possible to find the exact optimal solution. For instance, we introduced
the study about lessons distribution and, concerning the rooms, the proposed model
aims at minimizing the number of daily classroom shifts for students, not for courses
and too large classrooms are not chosen; concerning the compactness, we avoid the
free period, not the isolated lectures as is done in most of the papers in the literature.
The model is solvable by existing software tools with IP solvers. The real case of
a Department is presented along with its solution as resulted from the presented IP
formulation. We used benchmark instances from the literature (ITC) adapting them
to our model.

Further research can be conducted to determine the optimal solution of the sec-
ond semester, with a curriculum-based formulation; a school timetabling problem
and to find new methods in the case of a large number of courses, teachers and
rooms or in more complex cases.
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On the Sizing of Security Personnel Staff
While Accounting for Overtime Pay
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Abstract At many universities today, especially those in developing countries,
budget cuts are leading to the reduction of staff for various campus services. One
such service is campus security. However, a more holistic view may in fact reveal
that, at least when it comes to security, workload reductions may actually increase
the overall cost to the University since such reductions result in increased criminal
activity which could be detrimental to the university either through direct financial
losses, harm to students and staff or through a loss of reputation. For a given
workload (i.e., the number of personnel assigned to each post for each shift) one
must determine the appropriate staff size to satisfy this workload while minimizing
overall cost. The desired workload may vary monthly (e.g., additional staff needed
during special events) and, in addition, the number of available staff may vary
monthly (e.g., because of increased vacation leave requests during the summer
break). Staff must be provided at least 40 h per week so too many staff is not
cost effective while insufficient staff requires excessive overtime in order to satisfy
the required workload which is also not cost effective. We investigate the optimal
trade-off so as to minimize the total financial cost for varying workloads and staff
availability. We also take into account the various agreements between management
and the employees’ Union. We use standard Integer Programming techniques to
solve the resulting problem. The additional constraints increase the complexity of
the problem but we use a lower bound on the optimal solution to show that the
solution obtained is close to optimal.
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1 Introduction

Universities are always under pressure to improve efficiencies and reduce budgets in
an increasingly competitive educational environment. Today many online programs
are available and these cost significantly less than traditional programs since many
physical infrastructure costs (e.g., for classrooms) are eliminated. In the case of
security, a reduction in the security budget may not be wise since it can result
in increased on-campus crime and this in turn can lead to additional costs to the
university (harm to students, financial costs for repairs, reputation due to incident
reporting in avenues such as social media, etc.). Therefore of utmost importance
is the balance between workload cost and security risk. Although an important
problem in itself, we do not address it here. We instead assume a given workload
and focus on the minimization of the budget required to satisfy this workload. In
addition, unionized employees have certain rights from bargaining agreements and
these must be included in any computed schedules.

Typically the workload requirements are given as the number of security
personnel to assign to a specific number of security posts for each shift. Given
this workload, one must then determine the number of staff required and finally
the specific assignment of staff to post and shift. Our focus is on determination
of the optimal staff size. Give this staff size one can then compute the allocations
per post/shift and finally other factors can then be used to make specific personnel
allocations.

The two major constraints that must be considered are the fact that each employee
must be assigned at least 40 h per week and for each shift the minimal allocation
must be satisfied. If insufficient staff are available for a shift then one must request
other staff members to work the shift even if such staff members already have been
allocated their minimum of 40 h for the week. The extra shifts that they work are
called overtime shifts and the rate of pay (overtime pay) is much higher than for
regular shifts. Therefore too many staff results in excessive salary payments while
too few results in excessive overtime payments. Our objective is to minimize the
total cost of basic salaries plus overtime.

The above problem can be solved for the baseline workload and a given staff
size. However, both of these change on a weekly basis. The required workload will
be less during vacation periods while available staff is reduced during periods of
high vacation leave requests. We therefore need to look at the total cost for an entire
year and determine the staff that minimizes this quantity.

Staff scheduling problems take many forms and have been solved using a variety
of approaches since the fifties. In recent times, the easy availability of historical data
means that more efficient and optimal means of solving such problems are possible.
Many organizations place a substantial amount of investment into manpower
management because a strong, skilled workforce is generally the best investment
that can be made by a company. Manpower allocation problems address issues of
employing, rostering and scheduling to meet operational demands. In practice, it is
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extremely difficult to find optimal solutions to these highly complex problems that
minimize cost and satisfy all workplace constraints. For this reason one typically
resorts to heuristics.

Constraint programming techniques for scheduling and rostering problems have
been researched since the fifties. Mathematical programming approaches for solving
manpower allocation problems can be formulated as linear or integer programming
problems and generally adopt the famous Dantzig set covering formulation [6].
Many real-world optimization problems, such as the days-off shift tour scheduling
problem [3] and crew rostering problem [8] can be solved using Dantzig’s formula-
tion.

The paper [7] addresses a similar model in that they take into account overtime
work. They found that, compared with the standard 40 h per week schedule, even
small amounts of premium-pay overtime work provide significant savings. However
their model and application and different to ours since they do not address the
combined effect. In the papers by Ingels et al. [10] and [9] the focus is on shift
allocation with a given number of overtime shifts (or unscheduled time in their
terminology). In our approach we do not fix the number of overtime shifts but
rather that number is determined through our optimization objective which is the
total cost. Another paper that investigates overtime shifts is [5]. They consider two
optimization models. In the first model, a bonus term is assigned in the objective
function for shifts that are needed to cover an increased workload while in the
second model the workload demand is flexible but its violation is included by a
penalty in the objective function. Our approach assigns no arbitrary rewards or
penalties but instead uses salary values and pay rates to find the minimal overall
cost.

Baker and Magazine [2] considered a workforce scheduling problem that exam-
ined the cyclic scheduling of days off in 7-day-a-week operations under alternative
labour policies. We also include this constraint in our formulation. In their study,
closed-form expressions for optimal workforce size were derived based on the
demand profile. Herawati et al.[13] constructed a 24-h shift scheduling model for
a hotel security department that takes workload and workers’ preference into con-
sideration. In their study, a linear integer programming formulation was used with
suitable constraints to obtain an equal distribution of allocated shifts among workers
(i.e. fairness) but overtime is not included. Ang et al.[1] proposed a university
campus security staff model in which the objective is to maximize the satisfaction
of the security personnel with respect to their assigned shifts and days off.

The major difference between our work and those described above is that our
model takes into account overtime (or unscheduled) shifts in a more practical way
by minimizing total cost. Also, in prior work, the assumption was that sufficient
personnel were available to satisfy the workload and so the objective is to find an
allocation that satisfied all additional constraints. In our model we vary the number
of personnel available. If insufficient are available for the workload then we assume
that overtime is paid to complete coverage. If too many personnel are available then
additional shifts are added in order to ensure all staff receive their 40 h per week.
Since the workload requirement as well as available personnel (because of vacation



236 P. Hosein et al.

and sick leave) varies over time then one must find the number of (permanent)
personnel that is optimal for the entire year. One can do this by looking at historical
data to determine the estimated workload and available staffing (e.g., assume that
the same percentage of staff are available for a given period as was available in the
same period in the previous year) and determining the average cost over the entire
year. In this paper we illustrate the approach for a given workload and number of
personnel.

2 Staff Size Optimization for a Fixed Workload

The first problem that must be addressed is the optimal workload to achieve a given
level of security. Too few shifts leads to high risk (and cost) while too many leads
to high salary costs with little additional risk benefit. One approach, which is not
practical, would be to vary the allocated workload over time and compute the cost
due to the risk involved as well as the cost of staff salaries. Naturally, as the workload
is increased, the cost of the associated risk drops while the salary cost increases.
Therefore this summation would be quite high for too few or too many staff but
there should be some minimal value in-between these extremes.

Unfortunately this approach is not realistic and other approaches such as those
outlined in [12] are required. Factors that affect workload estimates (taken from
[12]) include Type of Institution, Student Population, Age and Gender Profiles,
Location and Physical Security Requirements, Number of Buildings, Student Hous-
ing, Days and Times of Class Sessions, Campus Size, and Institution’s Expectations
(level of risk). For example, the ratio of officers to students in most universities lies
between 1.8 and 3 per 1000 students. In our particular case, the buildings are widely
spread and the campus is surrounded by residential homes so let us assume a ratio
of 3/1000. The student population size is 18,000 which means a required staffing
of 54.

We were provided the workload requirements for a particular university and so
assume that sufficient studies were performed by the University in determining this
workload to provide an acceptable level of security risk. Later we will find that
the required staffing for the provided workload (approximately 80) is significantly
larger than 54 which means that the simplistic approach of basing workload on staff
and/or student ratios was inadequate for this particular university.

For convenience we focus on optimization for a 1 week period so that staff have
the same schedule every week. However, the approach can be applied to any desired
period (e.g., 1 month). Let us assume that the required workload for a 1 week period
consists of M 8-h shifts. This may consist of different numbers of staff per shift
depending on the time of day and day of the week. We assume that allocation of
staff to posts within a shift is managed separately. Assume that the pay rate per
shift is rn for regular (normal) shifts and ro for overtime shifts. Each employee must
work 40 h (5 regular shifts) per week and any additional shift (over 40 h per week)
is considered as an overtime shift. Let S represent the average salary paid per week
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per employee. Finally assume that we have N employees. For now we will ignore
vacation and sick leave but account for them later. IfM = 5N then there are exactly
enough workers to handle the workload. IfM < 5N then some workers will have to
be allocated shifts for which they are not needed but this must be done to make up
their 40 h. If M > 5N then there are insufficient workers and so overtime will have
to be paid to cover the workload. The corresponding total weekly salary cost C can
therefore be written as

C = SN +max{0, (K − 5N)ro} (1)

Now note that ifM ≤ 5N then the gradient is positive. IfM > 5N then the gradient
with respect to N is S − 5ro. In most scenarios the salary of an employee for the
week will be less than the amount that would have to be paid in overtime to have
someone work that employee’s week and hence the gradient is typically negative. If
M > 5N then as N is decreased, more staff will have to work overtime. However
not everyone likes overtime and furthermore there are limits on how many overtime
hours one can work per week.

Since overtime is not compulsory, some staff would view it as an inconvenience
and avoid it whereas others are willing to work for additional financial gain. One can
take a survey of all staff to determine the average number of extra hours they are
willing to work per week. We denote by κ the average, over all staff, of the fraction
of regular time each would be willing to work overtime. Without a survey one can
look at historical data and compute the fraction of time that staff worked overtime
and use this as an estimate for κ . Given this parameter we can estimate the optimal
number of staff required to satisfy the given workload by:

N∗1 =
M

5(1+ κ) (2)

Since the above equation can lead to a non-integer value we need to find a
nearest integer value. Since we prefer to err on the side of more overtime then this
corresponds to smaller values of N , thus

N∗1 =
⌊

M

5(1+ κ)
⌋

(3)

So far we have assumed that the workload is fixed for each week. In practice the
actual workload may be more (e.g., during graduation ceremonies) while at other
times the required workload might be less (e.g., during public holidays). In general,
the total number of shifts required for a year will tend to be larger than 52M . We
therefore use the average workload over the year instead of the baseline workload. If
we denote the fraction of excess workload over the prior year by β, then the average
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workload per week is given by (1+ β)K and so we now have

N∗2 =
⌊
M(1+ β)
5(1+ κ)

⌋
(4)

Note that if the total number of overtime shifts that staff are willing to work equals
the excess shifts then κ = β but in general this is not the case. We can estimate β
from historical data but of course it will vary by year because of unforeseen events
(e.g., a student protest).

So far we have assumed that each staff member works 40 h every week but of
course they are given time for vacation, sick days, holidays, maternity leave, etc.
Let α denote the average, over all staff, of the fraction of total regular shifts that
an employee actually works. We can estimate this from historical data but it will
vary for each employee. Therefore the expected number of shifts within a week that
someone needs to work is given by 5α and hence we now have our final estimate
for the optimal N which is given by

N∗ =
⌊
M(1+ β)
5α(1+ κ)

⌋
(5)

This is the number of staff required to serve the workload based on the assumption
that the workload can be satisfied precisely and will be used to compute a lower
bound on cost since the additional constraints can only result in increased costs.

3 A 0/1 Linear Programming Model for Staff Scheduling

In this section we determine how to allocate staff to shifts. Note that in any given
week the number of available staff may be less than N∗ because of vacation and
other types of leave. Furthermore the workload may be above the baseline value of
M (e.g., because of an event) or below (e.g., because of a holiday). Therefore both
N and M may vary each week.

Assume that N staff members are available for the week and that the required
workload for the week is M shifts. We assign staff to one regular shift within a day,
and any additional shifts to be allocated (if necessary) are paid as overtime. Let us
index the day of the week by k = 1 . . . 7, the shift (on each day) by j = 1 . . . 3 and
index staff by i = 1 . . . N . We define the following binary decision variable:

xijk =
{

1 if staff i is allocated to shift j on day k

0 otherwise
(6)

Finally, we denote by Wjk the number of staff required for shift j on day k, and by
Ajk the number of additional staff allowed on shift j on day k. This is needed for



On the Sizing of Security Personnel Staff While Accounting for Overtime Pay 239

the scenario in which one must provide a shift to someone to make up their total of
5 per week. We now state the optimization problem as follows:

F(x∗) ≡ min
xijk∈{0,1}

N∑

i=1

3∑

j=1

7∑

k=1

xijk (7)

subject to:

xi1k + xi2k + xi3k ≤ 2 ∀i, k
(8)

xi2k + xi3k + xi1(k mod 7+1) ≤ 2 ∀i, k
(9)

xi3k + xi1(k mod 7+1) + xi2(k mod 7+1) ≤ 2 ∀i, k
(10)

N∑

i=1

xijk ≥ Wjk ∀j, k
(11)

N∑

i=1

xijk ≤ Wjk + Ajk ∀j, k
(12)

3∑

j=1

[
xij ((i−1) mod 7+1) + xij (i mod 7+1)

] = 0 ∀i, k

(13)

3∑

j=1

xij ((i+k) mod 7+1) ≥ 1 k = 1 . . . 5, ∀i.

(14)

In the above formulation (a mod b) is defined as the remainder obtained when a
is divided by b. Equation (7) is the objective function which represents the total
number of shift allocations. If there are no allocated overtime shifts, this objective
is minimized when all staff can be allocated exactly 40 h per week, and in this
case the total assignment is 5N . In the case where both regular and overtime
shifts are allocated, the minimum (optimal) value of the objective function would
exceed 5N . Inequalities (8)–(10) are constraints which ensure that the number of
consecutive shifts worked by each employee in a 24-h period does not exceed
two. Inequality (11) is the constraint that on any given shift, the total number of
allocated staff is sufficient to meet the workload requirement Wjk . The constraint
given in line (12) restricts the total number of staff allocated on a shift to at most
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Wjk + Ajk . Equation (13) represents the constraint that each staff member should
have 2 consecutive days off. Finally, inequality (14) is the constraint that, with the
exception of the 2 consecutive days off, each staff member must work at least one
shift per day. These are all constraints that are imposed by the agreements between
management and the Union.

Note that the constraint that employees get 2 consecutive days off is handled by
choosing which 2 days this will be for each employee (Eq. (13)) rather than allowing
these 2 days to occur anywhere in the week. This in fact places an additional
constraint on the problem but we will see that the resulting solution is still close
to optimal. In future work we will investigate the use of a more relaxed constraint.

4 Application to a Real Case Study

In this section we provide numerical results for a workload used at a particular
university. The results were obtained on a laptop with 16 GB RAM and a 2 GHz
processor. We used the Julia programming language which is a high-level general-
purpose dynamic programming language designed for high-performance numerical
analysis and computational science [4]. Julia has a package named JuMP for
modeling optimization problems. This package contains many linear programming
solvers and for this problem we used the CPLEX optimizer. The CPLEX Optimizer
was named for the Simplex Method as implemented in the C programming language.

We consider the case of the workload described in Table 1, which consists
of a total of M = 395 shifts. We assume a weekly salary of S and that 30%
of this consists of benefits [11]. Therefore the rate per shift is given by rn =
0.7S/5. We assume an overtime rate of ro = 1.75rn = 0.245S. If we ignore the
various constraints and assume perfect scheduling then a lower bound on the cost
(normalized by S) can be obtained using Eq. (1):

C

S
= N +max{0, 0.245(395− 5N)} (15)

In Fig. 1 we plot this lower bound cost and we also plot the cost obtained after
solving the associated optimization problem including the various constraints.

These results indicate that the optimal number of employees is 72. For this
value of N , when constraints were taken into account, a total of 402 shifts were

Table 1 Workload requirements used for numerical results

Shifts Saturday Sunday Monday Tuesday Wednesday Thursday Friday

Morning (M) 19 16 22 22 22 22 22

Evening (E) 19 16 22 22 22 22 22

Night (N) 14 11 16 16 16 16 16

Total 52 43 60 60 60 60 60
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Fig. 1 Variation of total salary with number of employees

Table 2 Shift allocations for N = 72 (Regular + Overtime + Excess)

Shifts Saturday Sunday Monday Tuesday Wednesday Thursday Friday

M 19 + 0 + 0 16 + 0 + 3 22 + 0 + 0 22 + 0 + 0 22 + 0 + 0 22 + 0 + 0 22 + 0 + 0

E 18 + 1 + 0 16 + 0 + 2 14 + 8 + 0 16 + 6 + 0 14 + 8 + 0 18 + 4 + 0 17 + 5 + 0

N 14 + 0 + 0 11 + 0 + 2 15 + 1 + 0 14 + 2 + 0 16 + 0 + 0 12 + 4 + 0 13 + 3 + 0

Total 51 + 1 + 0 43 + 0 + 7 51 + 9 + 0 52 + 8 + 0 52 + 8 + 0 52 + 8 + 0 52 + 8 + 0

needed with 42 of them being overtime shifts. Table 2 shows the total number of
persons allocated to each shift. These shifts were classified as regular, overtime and
excess. No overtime was allocated on Sunday since Sunday required the smallest
total number of allocated staff. Note that the workload is satisfied exactly for all
days except Sunday but in many cases overtime shifts are required. On Sunday an
additional 7 shifts had to be allocated so that all staff achieve their 40 h per week.
However this turns out to be the best alternative.

The number of employees determined, 72, is the number of available employees
required to serve the workload. As we saw previously, we need to take into account
the fact that employees have vacation, sick days and so the actual number of
employees needed can be computed using Eq. (5):

N∗ =
⌊

72(1+ β)
α(1+ κ)

⌋
(16)
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Table 3 Run time data

N No. of decision variables No. of constraints Computational time (s)

42 882 1638 0.66

70 1470 2730 0.76

84 1764 3276 0.79

120 2521 4680 0.86

180 3780 7020 0.93

where α, β and κ were previously defined. Let us assume that employees are willing
to work a sufficient number of overtime shifts to cover events that require additional
manpower and hence that β = κ . The value for α can be determined from historical
data but if we assume 3 weeks vacation, an average of 1 week of sick days and 1
week of holidays then we can use the estimate α = (52− 5)/52 ≈ 0.9. Substituting
these values above we determine that 80 full-time employees are needed for the
given workload.

We can also determine a bound on the sub-optimality of the computed solution.
The cost computed for scheduling 72 employees is 82.3. The lower bound value
for this case is 80.6. Therefore the computed solution is within 2% of the optimal
solution and hence the chosen algorithm performs quite well.

5 Tests and Computational Results

The computational time required for this problem is not of great importance since
the algorithm needs to be run once per week. However we did monitor run times as
well. Table 3 displays computational times for different model sizes, with respect
to the number of allocated staff N , number of decision variables and number of
constraints. One finds that, even for large problems, run times are less than 1 s.

6 Conclusions

We considered the problem of optimizing the scheduling of staff members for the
case of security services. However this approach can be applied to a wide range of
rostering or scheduling problems. We demonstrated the trade-off between hiring
new staff and having staff work overtime. This trade-off analysis is one of the
contributions of the paper. We also took into account various practical constraints
which affect the schedule. Some of these are due to negotiated agreements between
the Union and Management. Negotiations in these scenarios can become quite
heated and so analyses such as those presented here can serve to ease the minds
of all parties that a given settlement is fair and efficient.
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In future work we plan to use historical data to fine tune the optimization by
taking into consideration the variation of workloads and available staff over time.
We can then compute the annual cost for a given number of employees and choose
the optimal value. In addition, the information gained from this work can be used
to better allocate vacation time. We are in the process of developing a cloud-
based platform for use by those who presently perform this scheduling function.
The historical data used by this platform will be automatically updated so that the
solution will self adapt to changes.
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Dynamic Tabu Search for Enhancing
the Productivity of a Bottle Production
Line

Marie-Sklaerder Vié and Nicolas Zufferey

Abstract Many industries use linear production lines, with buffers between each
pair of machines for absorbing small breakdowns or other irregularities. These
buffers have different thresholds for triggering the possible speeds of the machines.
The goal of this study is to tune the values of these thresholds in order to enhance
the productivity of the line. A simulation-optimization approach is proposed and
applied to a case study involving a soft-drink plastic bottle company. We show that
the production can be increased by a few pallets per day. Such results are appealing
for the company, as updating these thresholds does not imply any cost.

Keywords Simulation-optimization · Tabu search · Linear production line

1 Introduction

We consider a representative linear production line of soft-drink plastic bottles for
an international company ABC (it cannot be named because of a non-disclosure
agreement). The goal is to maximize the production rate of the line over a planning
horizon of a shift (8 h). The line consists of a sequence of machines, with a buffer
(an accumulation table) between each pair of machines. As the production line
is linear, the bottles must be processed by all the machines in the same order,
as for a Permutation Flow-Shop Scheduling Problem [14]. Each machine can run
with a finite number of different speeds (including zero). The speed changes of a
machine are triggered by sensors placed on the upstream/downstream buffers, or
by physical necessities (e.g., reel change). The only technical constraints are the
machine/buffer limitations (e.g., maximum speeds or total capacity). This work aims
at tuning the set of possible positions (called the thresholds) of the sensors that
trigger the speed changes. This optimization is done while taking into account the
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possibility of unplanned stoppages for each machine (e.g., a reel needs changing, a
buffer is overloaded, a technicality needs to be corrected, a small breakdown). The
probability distributions of such random events are deduced from historical data.

A brief literature review is conducted in Sect. 2. The considered problem is
presented in Sect. 3. Relying on tabu search and on a robust production-rate
simulator, a simulation-optimization approach is proposed in Sect. 4. Next, some
results on a case study are exposed in Sect. 5, and conclusions are highlighted in
Sect. 6.

2 Related Literature

In the next paragraph, we investigate the literature connected to our problem (i.e.,
optimizing a production line, and more precisely with the use of buffers). Second,
different pointers on similar simulation-optimization approaches are given. Finally,
we present different papers that use a tabu-search method with dynamic adjustments.

Optimizing linear production lines is a well-known topic in the literature.
Different case studies have been studied (e.g., schedule a yogurt production line
[5], determine the product allocation for a bottling company [2]). There are also
numerous papers discussing production lines when buffers are added between
pairs of machines (including the situation of unplanned breakdowns), and on the
appropriate capacity to choose for each buffer [15, 20]. However, to the best of our
knowledge, there is no study on how to calibrate thresholds on these buffers when
multiple machine speeds are possible.

The use of simulation-optimization methods for optimizing production lines
is often used, in particular when facing machines prone to failure [9], variable
replenishment lead-times [16], uncertain demand [10], or uncertain supply [12].
The reader is referred to [1, 17] for an accurate review on: simulation-optimization
approaches, the involved algorithms, and the various possible applications. As
one can see in these reviews, metaheuristics (e.g., genetic algorithms, simulated
annealing, tabu search) have been widely used with simulation-optimization. And,
as presented in [13], the descent and tabu-search approaches are particularly adapted
when facing perturbations, as they are fast solution methods, and easily adjustable
in a changing environment.

In the considered simulation-optimization context, dynamic tabu search [22]
has been shown to be very efficient. This solution method can be seen as a mix
between tabu search [6] and variable neighborhood search [3, 7], as it adjusts
dynamically the neighborhood structures used within the tabu-search framework.
Different papers employ this type of dynamic adjustments, as in [11] where the
authors use a perturbation that is tuned according to the quality gap between the
two last explored solutions, or as in [19] where the authors have proposed strategic
oscillations to diversify the search process on the one hand, and adaptive tabu
tenures to intensify it on the other hand. A dynamic tabu-search methodology
has also been used in [4] for buffer allocation in production lines, but only for
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determining the capacity (as previously explained). It is favorably compared with
a more standard tabu search.

3 Presentation of the Problem

The components of the production line are first described (i.e., products, machines,
and buffers). Next, the optimization problem is formulated (i.e., decision variables,
objective function, and constraints).

The considered production line makes soft-drink plastic bottles, which come in
different Stock Keeping Units (SKU), i.e., in different models. For each SKU, the
bottles are batched in packs, then in pallets, but the number of bottles per pack
and per pallet differs from one SKU to another, and therefore the possible machine
speeds can differ. The line is composed of m different machines, as shown in Fig. 1.

It can for instance involve:

• a bottle-blowing machine that forms the bottles,
• a filler that fills the bottles with the soft drink,
• a capper that closes the bottles,
• a labeler that puts the brand sticker on the bottles,
• a packer that groups bottles in packs,
• a palletizer that groups packs in pallets.

At any time t , each machine i can have its speed Si(t) in a set of possible speeds
Δi . Typically, Δi is composed of zero, a low speed, a nominal speed, and a high
speed. For each machine, a distribution for the production-time interval without any
breakdown, and for the duration of a breakdown (both based on historical data),
are given. Thanks to that, different breakdown scenarios of 8 h (i.e., a shift) can be
computed. Between each pair of consecutive machines, there is a buffer (there are
thus m− 1 buffers).

The following data is given for each buffer j :

• the maximum capacity Cj ,
• the number nj of thresholds that j has for triggering the different speeds of the

upstream/downstream machines,
• the value currently used of each threshold.

Fig. 1 Considered production line with m = 3 machines
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For each buffer j , Qj(t) denotes the number of bottles present on the down-
stream buffer at time t . Finally, each machine i follows a specific speed-logic
function that defines its speed considering the current state of the line. A state is
based on the current speed of the involved machine and on the amount of bottles
present in its upstream/downstream buffers (e.g., when the upstream buffer has a
low number of bottles or when the downstream buffer has a high number of bottles,
the machine reduces its speeds). Formally, each machine i has a specific function

gi(t, Si(t −Δt),Qi−1(t),Qi(t))

that returns its speed Si(t) ∈ Δi . These functions are not detailed here as they are
very specific.

The goal of this study is to tune the thresholds while maximizing the average
production rate during a shift. A solution X is defined as the set of threshold values

(xj,p)j∈[1,m−1],p∈[1,nj ].

Each threshold can take values between zero and the total capacity of its associated
buffer, while satisfying the ranking constraint (i.e., the first threshold must be
always lower than the second, etc.). Therefore, a solution has to satisfy the following
constraint for each buffer j : xj,1 < xj,2 < . . . < xj,nj . Each solution X can be
evaluated by computing the average production rate μk and its standard deviation
σk over different scenarios, for all the SKUs k. The following objective function is
proposed:

f (X) =
∑

k∈[1,K]
(μk − σk).

It has been designed in order to favor robust solutions (i.e., solutions that stay
efficient for various breakdowns scenarios), which is an important feature expected
by ABC. Indeed, we want solutions that have a high average production rate (see
the first part of f )), but with a small standard deviation (see the second part of
f ), in order to better preserve the planned production rate for most of the possible
breakdown scenarios.

4 Simulation-Optimization Approach

The simulator developed to evaluate any solution X is first presented. Next, a
dynamic tabu-search approach is proposed for the optimization problem.

A solution X can be evaluated for a shift with a chosen breakdown scenario with
Algorithm 1. It stimulates the production using a time step Δt = 0.05 s (as it is the
time step used by ABC to save historical data). At each time t , the machine speeds
and the number of bottles present in each machine are updated. For each scenario s,
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Algorithm 1 Simulator

Input: breakdown scenario s, solution X.

Initialization:

• set time t = 0;
• set each buffer = ∅;
• set each speed = 0;
• set fs(t) = 0.

While time t < 28,800 s (i.e., 8 h), do:

1. set t = t +Δt ;
2. implement the breakdowns of scenario s at time t ;
3. update the numbers of bottles in each buffer j , according to the current speeds:
Qj(t) = Qj(t −Δt)+Δt · (Sj (t)− Sj+1(t));

4. update the total number of bottles produced: fs(t) = fs(t)+Δt · Sm(t);
5. update the speed of each machine i with respect to the speed constraints:
Si(t) = gi(t, Si(t −Δt),Qi−1(t),Qi(t)).

Output: simulated production rate fs(X) for scenario s with solution X.

the simulator returns the number fs(X) of bottles produced. To evaluate a solution
X accurately, the simulator is performed with q (parameter) different scenarios for
each SKU k, and the average production rate μk (with its standard deviation σk) is
returned at the end. Parameter q is chosen such that the average production rate is
guaranteed to a certain precision (typically, a precision of 0.1 pallet is obtained with
q = 100).

Using the simulator to evaluate any solution, tabu-search is proposed to find a
hopefully good solution to the problem. The principle of tabu search is to add some
diversification to a classic descent local search, by allowing some moves (a move
is a slight modification) that do not improve the current solution, and by avoiding
being trapped in local optima. The main idea is to forbid the opposite move of the
last performed move during a certain number of iterations (this move being called
tabu), and to always go to the best non-tabu neighbor solution. When a time limit is
reached, tabu search returns the best encountered solution found during its search.

DTS, the proposed dynamic tabu search, is summarized in Algorithm 2. It is
dynamic in the sense it uses various move amplitudes that are updated in a variable-
neighborhood-search fashion. Each variable xj,p is associated with a minimum
xmin
j,p and a maximum xmax

j,p , based on the ranking constraints and on the Cj ’s.
A move consists of increasing (resp. decreasing) a variable xj,p by an amplitude
δ+j,p (resp. δ−j,p), which is dynamically updated. These amplitudes are first set to
xmax
j,p −xj,p

2 and
xj,p−xmin

j,p

2 , which are the average possible amplitudes. This guarantees
that the modification of xj,p leads to a feasible solution with respect to the ranking
constraint. Also, as the amplitudes will be divided by two at each step they are used,
this mechanism will hopefully lead to their appropriate values. Following a sort of
dichotomy, the moves become more and more precise as the amplitudes are reduced.
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Algorithm 2 Dynamic tabu search (DTS)

Initialization:

• set X to the initial solution (i.e., the current threshold values of ABC);
• initialize the best encountered solution and its value: set X� = X and f � = f (X);
• for each variable xj,p , initialize its move amplitudes:

(δ−j,p, δ
+
j,p) = (

xj,p−xmin
j,p

2 ,
xmax
j,p −xj,p

2 ).

While there is no improvement of f � during T minutes, do:

1. generate the best non-tabu neighbor solution Xj,p by modifying a single decision variable xj,p
by −δ−j,p or δ+j,p (test all the options, i.e., test the augmentation and the reduction of each
variable);

2. update the current solution: set X = Xj,p;
3. update each (xmin, xmax) and (δ−, δ+) in order to satisfy the ranking constraint;
4. reduce the move amplitudes δ: if f (X) ≤ f �, set δ = ω · δ (for each δ);
5. if f (X) > f �, set: X� = X, f � = f (X), each δ to its initial value;
6. update the tabu status: xj,p cannot be modified the reverse way (i.e., it cannot be reduced if it

has just been augmented, and vice versa) during tab iterations.

From now on, we do not mention the sub/upper-script when it is not necessary to do
it. When the values of (xmin, xmax) change because of the modification of a variable,
the (δ−, δ+) are updated (see Step 3) in order to satisfy the ranking constraint. For
instance, if x1,2 is modified, then δ+1,1 associated with x1,1 needs to be adjusted,
as its maximum is now the new value of x1,2. Finally, if the current (δ−, δ+) did
not lead to any improvement, they are reduced thanks to coefficient ω ∈]0, 1[ (see
Step 4). Otherwise, they are all set back to their initial values (see Step 5). Such a
management of the move amplitudes allows to gradually strengthening the search
around promising solutions. Indeed the amplitudes are first large, and then smaller
and smaller if the solution is not improved. For the experiments, parameters w and
tab are set to 0.5 and 5, respectively.

5 Results on a Case Study

First, as computation time is not an issue for this problem (indeed, the thresholds
have to be fixed once and for all), we have used large values for the time limit
T (typically 2 h). All the algorithms were coded with C++ under Linux, and run
on 3.4 GHz Intel Quad-core i7 processor with 8 GB of DDR3 RAM. Real data
provided by ABC is used. The studied production line is made of four machines, in
the following order:

• a Combi (it blows the plastic bottles), its speed can only be in {zero, nominal};
• a Labeler (it puts labels on the bottles), its possible speeds are in {zero, low,

nominal, high};
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• a Packer (it groups the bottles in packs), its possible speeds are in {zero, low,
nominal, high};

• a Palletizer (it groups the packs in pallets), its possible speeds are in {zero,
nominal, high}.
To have an idea, the low (resp. nominal and high) speed is around 20,000 (resp.

40,000 and 50,000) bottles per hour. More accurate values cannot be provided
because of the non-disclosure agreement. The same remark holds for the other data.
For each machine i, its specific speed-logic function gi is given. For each buffer,
there is a typical capacity of 1500 bottles and five thresholds. The current values of
these thresholds (i.e., the ones used by ABC nowadays) are initially employed. The
considered production line produces six different SKUs, which can have either 8 or
12 bottles per pack, and various numbers of packs per pallet (typically between 150
and 250). Note that both the Labeler and the Packer work with reels, which have
to be changed every 30,000 bottles for the Labeler, and every 1500 packs for the
Packer (this last value being a slightly different for packs of 8 or 12 bottles).

DTS changes mainly the thresholds of the buffers around the Labeler. This
indicates that this machine was the bottleneck of the line. When compared to the
current production rates faced byABC, the following improvements were achieved.
First, for each SKU, the DTS-solution always improve the smallest production rate
over all the considered scenarios. This shows that the proposed solutions react better
to breakdowns than the ABC-solutions. For each SKU k, the percentage gains on
the average production rate μk and on its standard deviation σk are presented in
Table 1. On average (i.e., considering all the SKUs), the production rate has been
improved by 0.5%. The smallest (resp. largest) encountered improvement over all
the considered SKUs is 0.40% (resp. 0.53%). In addition, for each SKU, there exists
no scenario for which the DTS-solution is worse than the ABC-solution. Moreover,
the average standard deviation is reduced by around 4% per SKU. Last but not least,
it is important to be aware that a production-rate improvement of 0.5% represents
a production augmentation ranging between 1 and 2 pallets per shift, which is very
significant for ABC (typically, 6000 additional bottles per day). As this gain is
obtained only by changing the thresholds, there is no cost for implementing the
proposed solutions.

Table 1 Percentage gains of DTS-solutions with respect to ABC-solutions

SKU k Production-rate gain (μk) Standard-deviation gain (σk)

1 0.46% −4.78%

2 0.44% −3.93%

3 0.53% −4.52%

4 0.44% −4.55%

5 0.40% −4.29%

6 0.53% −4.35%
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6 Conclusion

In this paper, a simulation-optimization approach was proposed for increasing the
production rate of a soft-drink production line. Even if the considered decision
variables are limited (i.e., only the thresholds that trigger the speed changes of
the machines can be updated), it is showed that promising improvements can be
achieved for real instances provided by a company. This optimization is strategic,
as it can be deployed to the other production lines of the company (hundreds of
production lines in the world, with production rates up to thousands bottles per
hour). Among the possible avenues of research, one can investigate other types
of decision variables (e.g., set of possible speeds for the machines, number of
possible thresholds for the buffers) combined with the use of filtering techniques
for determining efficient domain values [8, 21], or the consideration of an order-
acceptance-and-scheduling [18] version of this problem.

References

1. Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of
algorithms and applications. Ann. Oper. Res. 240(1), 351–380 (2016)

2. Balogun, O.S., Jolayemi, E.T., Akingbade, T.J., Muazu, H.G.: Use of linear programming for
optimal production in a production line in Coca Cola bottling company, Ilorin. Int. J. Eng. Res.
Appl. 2(5), 2004–2007 (2012)

3. Bierlaire, M., Thémans, M., Zufferey, N.: A heuristic for nonlinear global optimization.
INFORMS J. Comput. 22(1), 59–70 (2010)

4. Demir, L., Tunal, S., Eliiyi, D.T.: An adaptive tabu search approach for buffer allocation
problem in unreliable non-homogenous production lines. Comput. Oper. Res. 39(7), 1477–
1486 (2012)

5. Doganis, P., Sarimveis, H.: Optimal scheduling in a yogurt production line based on mixed
integer linear programming. J. Food Eng. 80(2), 445–453 (2007)

6. Glover, F., Laguna, M.: Tabu search. In: Handbook of Combinatorial Optimization, pp. 2093–
2229. Springer, Berlin (1998)

7. Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Handbook of Metaheuristics,
pp. 145–184. Springer, Berlin (2003)

8. Hertz, A., Schindl, D., Zufferey, N.: Lower bounding and tabu search procedures for the
frequency assignment problem with polarization constraints, 4OR 3(2), 139–161 (2005)

9. Kenne, J.P., Gharbi, A.: A simulation optimization approach in production planning of failure
prone manufacturing systems. J. Int. Manag. 12(5–6), 421–431 (2001)

10. Lin, J.T., Chen, C.M.: Simulation optimization approach for hybrid flow shop scheduling
problem in semiconductor back-end manufacturing. Simul. Model. Pract. Theory 51, 100–114
(2015)

11. Lü, Z., Hao, J.-K.: Adaptive tabu search for course timetabling. Eur. J. Oper. Res. 200(1),
235–244 (2010)

12. Osorio, A.F., Brailsford, S.C., Smith, H.K., Forero-Matiz, S.P., Camacho-Rodriguez, B.A.:
Simulation-optimization model for production planning in the blood supply chain. Health Care
Manag. Sci. 20(4), 548–564 (2017)

13. Respen, J., Zufferey, N., Wieser, P.: Three-level inventory deployment for a luxury watch
company facing various perturbations. J. Oper. Res. Soc. 68(10), 1195–1210 (2017)



Dynamic Tabu Search for Enhancing the Productivity of a Bottle Production Line 253

14. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)

15. Shi, C., Gershwin, S.B.: An efficient buffer design algorithm for production line profit
maximization. Inter. J. Prod. Econ. 122(2), 725–740 (2009)

16. Silver, E., Zufferey, N.: Inventory control of an item with a probabilistic replenishment lead
time and a known supplier shutdown period. Inter. J. Prod. Res. 49(4), 923–947 (2011)

17. Tekin, E., Sabuncuoglu, I.: Simulation optimization: a comprehensive review on theory and
applications. IIE Trans. 36(11), 1067–1081 (2004)

18. Thevenin, S., Zufferey, N., Widmer, M.: Order acceptance and scheduling with earliness and
tardiness penalties. J. Heuristics 22(6), 849–890 (2016)

19. Wang, Y., Wu, Q., Punnen, A.P., Glover, F.: Adaptive tabu search with strategic oscillation for
the bipartite Boolean quadratic programming problem with partitioned variables. Inf. Sci. 450,
284–300 (2018)

20. Weiss, S., Matta, A., Stolletz, R.: Optimization of buffer allocations in flow lines with limited
supply. IISE Trans. 50(3), 191–202 (2018)

21. Zufferey, N.: Heuristiques pour les Problèmes de la Coloration des Sommets d’un Graphe
et d’Affectation de Fréquences avec Polarités. PhD Thesis, École Polytechnique Fédérale de
Lausanne (EPFL), Switzerland (2002)

22. Zufferey, N.: Dynamic tabu search with simulation for a resource allocation problem within
a production environment. In: Proceedings of 4th International Conference on Metaheuristics
and Nature Inspired Computing, META 2012, Sousse, pp. 27–31 (2012)



Swap Minimization in Nearest Neighbour
Quantum Circuits: An ILP Formulation

Maurizio Boccia, Adriano Masone, Antonio Sforza, and Claudio Sterle

Abstract Quantum computing (QC) represents a great challenge for both academia
and private companies and it is currently pursuing the development of quantum
algorithms and physical realizations of quantum computers. Quantum algorithms
exploit the concept of quantum bit (qubit). They are implemented by designing
circuits which consider an ideal quantum computer where no interaction restriction
between qubits is imposed. However, physical realizations of quantum computers
are subject to several technological constraints and adjacency between interacting
qubits is one of the most common one. To this end, additional gates, referred to as
swap, can be added to a quantum circuit to make it nearest neighbour compliant.
These additional gates have a cost in terms of reliability of the quantum system,
hence their number should be minimized. In this paper we first give some hints
about this cutting edge topic. Then we provide a review of the literature solving
approaches for the swap minimization problem in quantum circuits and propose an
integer linear programming formulation for it. We conclude with some preliminary
results on small test instances and future work perspectives.
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1 Introduction

Non-conventional computing paradigms are continuously drawing the attention
of both academia and private companies. They represent the alternative to the
classical computing paradigm based on electrical circuits phenomenon. In this
context quantum computing (QC) represents a great challenge. It replaces the bit
with the quantum bit (qubit) concept (its mathematical definition will be given
in what follows). Roughly speaking a qubit can be defined as the simplest two-
state quantum-mechanical system which can be implemented running a quantum
physics experiment exploiting the quantum-mechanical properties of particles to
perform the required computation. These properties, specifically superposition and
entanglement, are the key enabling factors of the QC performance [14].

The theoretical advantages of QC paradigm has been largely accepted in recent
years [6] and it has already been proven in several applications, such as: Shor’s
algorithm for factorization; Groover’s database search; hard optimization problems;
public-key cryptosystem; solution of a large system of linear equations, etc..
Hence, the interest of academia and private companies is rising together with the
investments to pursue the research and development in this field. Let us recall
that in 2015 D-Wave Systems installed the 2X quantum annealer (with more than
1000 qubits) at the Quantum Artificial Intelligence Lab at NASA Ames Research
Center and, recently, free access to several quantum universal processors/simulators
is spreading. Among the others we just cite here Quantum Computing Playground,
a browser-based WebGL Chrome Experiment offered by Google [9], and IBM Q, a
cloud-enabled quantum computing platform offered by IBM, which allows access
to several quantum processors [7]. In 2017 IBM launched also the IBM Q Awards,
i.e., a series of prizes for professors, lecturers and students who use the IBM Q
Experience and QISKit in order to promote teaching and research activities on this
cutting edge topic.

The available QC resources allow researchers and practitioners to develop and
test their own quantum algorithms. A quantum algorithm is described by a quantum
circuit, i.e., a sequence of quantum gates (analogues to classical logic gates)
operating on one or several qubits and transforming the initial state of the system
into its final state [5, 8, 10]. Quantum algorithms usually consider an ideal quantum
computer, thus no interaction restriction between qubits is imposed. However, a non-
ideal quantum computer has several limitations due to environmental disturbances
(noise and decoherence) which can result in computational errors and, more
importantly, in physical implementation constraints. In this context it is fundamental
the development of tools allowing to achieve quantum circuit synthesis that is
scalable, reliable and physically feasible [2, 15].

Several physical implementations of universal quantum computers are currently
available and still under investigation, e.g.: superconducting circuits, trapped ions
or electrons, optical lattices, nuclear magnetic resonance of molecules in solution,
nuclear spin, etc. Some of them present various technological limitations. The
limited distance between interacting qubits is one of the most critical and common
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one. Indeed, although arbitrary-distance interaction between qubits is possible, in
physical implementation of quantum circuits a long-distance interaction between
two qubits has to be avoided because it represents a noise source. Therefore multiple
quantum technologies require the interacting qubits to be arranged in a nearest
neighbour (NN) fashion. In other words, when implementing the gates of a quantum
circuit, the logical qubits have to be mapped to the physical qubits. Since it is not
possible to determine a mapping such that all the interacting qubits are adjacent
throughout the whole circuit, this mapping may change over time. To this end
additional gates, referred to as swap, are added to a quantum circuit to make it
nearest neighbour compliant, NNC. These additional gates have a cost in terms of
reliability of the system and they affect the execution time of the quantum algorithm.
Hence, their number should be kept as small as possible.

The problem of Minimizing the Number of Swaps to make NNC a quantum
circuit will be denoted in the following as MNS-NNC. It has been widely studied in
recent years and several exact methods, mainly based on integer linear programming
(ILP) models and heuristic optimization approaches have been proposed. These
approaches generally exploit the knowledge of the specific physical layout of a
quantum computer. Indeed, the physical qubits of a QC technology can be arranged
in 1D, 2D and 3D dimensional architectures, differing in the maximum number
of neighbours per qubit: 2, 4 and 6 with a respect to a line, two-dimensional
square and three dimensional square graph, respectively. The usage of these regular
topologies is motivated by their scalability. Regardless of the dimensions of the
physical architecture, the MNS-NNC problem is NP-hard since it may be considered
as a particular variant of the minimum linear arrangement problem (MinLA), which
consists in determining a labeling of the vertices of a graph minimizing the sum of
the absolute values of the differences between the labels of adjacent vertices [3].
The 1D case is the most investigated one. Exact approaches can be found in [19, 20]
and heuristic approaches in [1, 15, 16, 18], respectively. The 2D case is tackled in
[2, 17]. Finally, 3D and multi-dimensional case are studied in [4, 11, 13].

A discussion apart is needed for the work presented in [22]. It is related to the
winner algorithm of the IBM QISKit Developer Challenge, whose aim was writing
the best compiler code in Python or Cython that takes an input quantum circuit
and outputs an optimal circuit for a given arbitrary hardware topology. The authors
presented a very effective multi-step heuristic approach which utilizes a depth-based
partitioning and a state-space search algorithm. The approach, tested on instances
with up to 20 qubits, outperforms IBM own mapping solution either in the quality of
the solution or in the computation time [21]. Its implementation is publicly available
at http://iic.jku.at/eda/research/ibm_qx_mapping.

In this context, this paper is aimed at presenting some introductory hints about
QC and its basics, drawing the attention of the operations research community on the
MNS-NNC problem. Then, it proposes an ILP formulation which optimally solves
the problem on small arbitrary architecture topologies.

The paper is structured as follows: in Sect. 2 we provide the QC theory
background and the problem definition; Sect. 3 is devoted to the presentation of

http://iic.jku.at/eda/research/ibm_qx_mapping
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the proposed ILP formulation; in Sect. 4, preliminary computational results are
reported, together with some hints about future work perspectives.

2 Background and Problem Definition

The basic difference between classical and quantum computing paradigm is in the
computing unit, i.e., the bit and the quantum bit (qubit), respectively. A bit can exist
in one of two states 0 or 1, instead, a qubit can exist in multiple states that can be
expressed as a linear combination (superposition) of them. In other words, a qubit
is a mathematical object representing a two level quantum system described by a
two dimensional complex Hilbert space, where the two orthogonal quantum states,

|0〉 =
(

1
0

)
(ground state) and |1〉 =

(
0
1

)
(excited state), are used to represent the

Boolean values 0 and 1. Using the bra-ket notation |·〉, introduced by Dirac, any
state of a qubit may be written as |ψ〉 = α|0〉 + β|1〉, where α and β, referred to as
amplitudes, are complex numbers such that |α|2 + |β|2 = 1. The peculiarity of the
superposition is in the measurement phase, since it returns the value |0〉 and |1〉 with
probability |α|2 and |β|2, respectively. Two qubits can interact in complex ways due
to the superposition and the entanglement, i.e., the physical phenomenon occurring
when pairs or groups of particles interact in ways such that the state of each particle
cannot be described independently of the state of the others.

Quantum computing relies on manipulating qubits by performing the so called
quantum gates, mathematically expressed as unitary operations. Hence, in other
words, an n-qubit quantum gate performs a specific 2n × 2n unitary operation on
n qubits implementing the tensor product of related matrices. Details on these gates
and matrices are not relevant in the remainder of this work, but can be found in [14].

A quantum algorithm is described by a quantum circuit, i.e., a set of quantum
gates applied in sequence to transform the initial state of the quantum system into
a final state. Each gate can involve an arbitrary number of qubits. The resulting
circuit is then compiled into another equivalent quantum circuit based on a library
of primitive one- and two-qubit gates [12]. A two-qubit gate is identified by a couple
of qubits, referred to as control and target qubit, respectively. Hence, it implicitly
defines a direction of the operation from the first qubit to the second. This equivalent
quantum circuit is the input to our problem. Moreover a quantum circuit can be
decomposed in a series of layers, where each layer includes a set of quantum gates
such that any two pair of gates in the same level do not operate on any common
qubit. Hence all the gates of a layer can be executed in parallel.

Given a quantum algorithm with only primitive gates, one should map the
related quantum circuit into a quantum apparatus, i.e., a physical implementation
(architecture) of the experiment realizing the circuit. The quantum circuit can be
modelled by graph, referred to as interaction graph (IG), where nodes denote qubits
of the circuit and arcs the two-qubit gates to be implemented. The architecture of
a quantum computing system can be described by graph as well, referred to as
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connectivity graph (CG), where nodes represent qubits and arcs represent adjacent
qubit pairs where gates can be implemented on.

Current technologies for QC often require that all the two-qubit gates composing
an IG can be implemented if and only if the interacting qubits are positioned in
adjacent nodes of the CG under investigation, i.e., the quantum circuit has to be
nearest neighbour compliant (NNC). Accordingly a complete CG would be an
ideal quantum architecture with no restriction on qubit interactions. However, as
explained in Sect. 1, the available physical architectures consider 1D, 2D and 3D
arrangements. In these cases it is not possible to determine a mapping such that all
the interacting qubits are adjacent throughout the whole circuit. Hence the mapping
may change over time. To this end, swap gates, physically exchanging the locations
of the involved qubits, are added to a quantum circuit to make it NNC. These
gates represent an additional implementation cost for a quantum circuit. Hence, the
problem of Minimizing the Number of Swaps to make a quantum circuit NNC,
MNS-NNC, arises. Given an architecture CG and quantum circuit IG with related
primitive gates classified in layers, two main variants can be defined:

– MNS-NNC-1: determine the mapping of the IG to the CG and the sequence of
swap gates required to modify the location of the qubits in order to make the
circuit NNC in two successive layers.

– MNS-NNC-2: determine the mapping of the IG to the CG and the sequence of
swap gates required to modify the location of the qubits in order to make the
circuit NNC in all the layers composing it.

Obviously problem MNS-NNC-1 is included in MNS-NNC-2. Figure 1 sketches
the MNS-NNC problem presented in [20] for a 1D architecture. In particular, Fig. 1a
reports a quantum circuit composed of five two-qubit gates (CNOT) where g1,
g4, and g5 are not adjacent. The control and target qubit of the CNOT gates are
represented by • and ⊕, respectively. Figure 1b shows the insertion of seven swap
gates to make the circuit NNC. The qubits involved in the swap are represented
by ×. Finally, Fig. 1c shows an optimized solution in terms of number of swaps,
obtained by a different initial and final positioning of the qubits. It is intuitive to
understand that a multi-dimensional architecture and, more in general, arbitrary
topology with a high average connectivity degree of its nodes, allows to more easily
achieve the adjacency requirement, but, as said above, these graphs can pose several

Fig. 1 (a) General quantum circuit. (b) NNC quantum circuit (expensive solution with five swap
gates). (c) NNC quantum circuit (cheap solution with one swap gate)
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technological constraints and scalability restrictions. This motivates the interest in
simple and regular 1D, 2D and 3D architectures.

3 ILP Formulation for the MNS-NNC Problem

In this section we present the proposed integer linear programming (ILP) formu-
lation for the MNS-NNC problem. Let us consider a connectivity graph, denoted
by G = (V ,A), where V and A represent the set of physical nodes and directed
links of a quantum computer architecture. For the sake of clarity we highlight
that in the following we will denote a generic arc either by a, a ∈ A, or by its
extreme vertices (i, j), i, j ∈ V . Moreover, let G′(V ,E) be an undirected graph,
where < i, j >∈ E ⇔ (i, j) ∈ A ∨ (j, i) ∈ A. Let Q be the set of qubits
of the quantum circuit IG to be positioned (mapped) in the V nodes. Moreover
let us define C as the set of two-qubit gates composing the quantum circuit. As
explained above, each gate is represented by an ordered couple of qubit, e.g.,
c = (a, b), where a is the control qubit and b is the target qubit. Given a generic
gate c = (a, b) ∈ C, it can be implemented if and only if the qubits a and b are
positioned in adjacent nodes, i.e., being i and j the nodes where qubits a and b
are positioned, respectively, then the gate c = (a, b) can be implemented if and
only if either arc (i, j) ∈ A (direct implementation) or arc (j, i) ∈ A (reverse
implementation). In other words, by direct and reverse implementation we indicate
whether the gate is implemented on an arc of CG coherently with its direction or in
the opposite direction. More formally, direct implementation occurs when (i, j) ∈ A
whereas reverse implementation occurs when (i, j) �∈ A but < i, j >∈ E. This
distinction is required since a different computational burden (cost) is associated to
each implementation. In the following we will denote these costs as K+c and K−c
(K+c < K−c ) for direct and reverse implementation, respectively.

The set C can be partitioned in disjoint subsets Ch ⊆ C each of them associated
to a layer h ∈ H . It is possible to implement a swap gate between two consecutive
layers to exchange the position of two qubits which are adjacent in the graph
G′. We recall that each swap gate represents an additional cost (denoted as S) in
the implementation of a quantum circuit. Now let us also define the concept of
time horizon for the MNS-NNC problem. Each layer can be subdivided in time
instants. At each instant we can implement in parallel either the gates composing
the layer (whose qubits are in adjacent nodes) or the required swap moves. The
maximum number of instants of each layer is indicated by m and is defined on
trial. Hence, the time horizon of a MNS-NNC problem can be defined as: O =
{t11 , . . . , t1m, . . . , t |H |1 , . . . , t

|H |
m } where the first m instants are related to layer 1, the

secondm instants to layer 2 and so on. In the following, we will indicate the instants
associated to a generic layer h as Oh = {th1 , . . . , thm}.

Given this setting, MNS-NNC consists in determining for each time instant of a
time horizon O, the optimal mapping of the quantum circuit IG to the architecture
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CG, such that all the gates of each layer can be implemented, minimizing the overall
computation costs, given by the sum of direct/reverse implementation and swap
costs.

In order to mathematically formulate the problem, the following binary variables
have to be defined:

• ytac, c ∈ C, a ∈ A, t ∈ O: binary variable equal to 1 if the gate c is direct
implemented on the arc (i, j) at time t , 0 otherwise.

• y∗tac, c ∈ C, a ∈ A, t ∈ O: binary variable equal to 1 if the gate c is reverse
implemented on the arc (i, j) at time t , 0 otherwise.

• xtqi , q ∈ Q, i ∈ V, t ∈ O: binary variable equal to 1 if the qubit q is positioned
in node i at time t , 0 otherwise.

• ztij , (i, j) ∈ A, t ∈ O: binary variable equal to 1 if a swap is implemented
between a qubit positioned in i and a qubit positioned in j , or viceversa, at time
t , 0 otherwise.

On this basis, the following ILP model can be defined:

Min z =
∑

a∈A

∑

c∈C

∑

t∈T
K+c ytac +

∑

a∈A

∑

c∈C

∑

t∈T
K−c y∗tac +

∑

<i,j>∈E

∑

t∈T
Sztij (1)

subject to

x
th1
pi + x

th1
qj ≥ 2y

th1
ac ∀c = (p, q) ∈ Ch;h ∈ H ; a = (i, j) ∈ A (2)

x
th1
pj + x

th1
qi ≥ 2y

∗th1
ac ∀c = (p, q) ∈ Ch;h ∈ H ; a = (i, j) ∈ A (3)

∑

a∈A
(y
th1
ac + y∗t

h
1

ac ) = 1 ∀c = (p, q) ∈ Ch;h ∈ H ; (4)

∑

q∈Q
xtqi ≤ 1 ∀i ∈ V ; t ∈ O (5)

∑

i∈V
xtqi = 1 ∀q ∈ Q; t ∈ O (6)

xt+1
qj + xtqi ≤ 1+ ztij ∀t ∈ {1, .., |O| − 1}; (i, j) ∈ A; q ∈ Q (7)

xt+1
qi + xtqj ≤ 1+ ztij ∀t ∈ {1, .., |O| − 1}; (i, j) ∈ A; q ∈ Q (8)

xt+1
qi + xtqj ≤ 1 ∀t ∈ {1, .., |O| − 1}; i, j ∈ V, (i, j) ∧ (j, i) /∈ A; q ∈ Q

(9)

zt
h

ij ≤
∑

l:(l,i)∈A
zt
h−1
li +

∑

r:(j,r)∈A
zt
h−1
jr ∀t ∈ {2, .., |O|}, t �= th1 ;h ∈ H ; (i, j) ∈ A

(10)
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The objective function (1) minimizes the sum of three cost components: direct,
reverse and swap costs. Constraints (2) and (3) impose two conditions: a gate can be
implemented on an arc a = (i, j) or on its reverse arc a = (j, i) just in the first time
instant of its layer; a gate can be implemented on an arc if and only if the nodes i and
j contain the qubits composing it. Constraints (4) impose that each gate composing a
layer has to be implemented, either on an arc or on its reverse. Constraints (5) and (6)
impose that, at each time instant, each node can contain no more than one qubit and
each qubit has to be positioned in just one node. Constraints (7) and (8) impose that
at each instant t the qubit contained in a node i can move to an adjacent node j just
if the variable ztij = 1. Constraints (9) impose that at each time instant, the qubit
contained in a node i cannot move to a not adjacent node. Finally, constraints (10)
are symmetry breaking constraints. These constraints impose that given a layer h, a
generic swap between two nodes i and j can be performed in a time instant different
from the first if and only if another swap occurred already involving the nodes i and
j . Constraints about the domain of the variables are not reported for the sake of
brevity.

It is important to note that some modeling decisions are made to reduce
symmetries in the solutions provided by the formulation. Indeed, the constraints (2)
and (3) avoid the generation of solutions differing just in the time instant when
the gates c of a layer h, c ∈ Ch, are implemented. Concerning instead the
constraints (10), a small example is provided to explain them. Let us consider two
consecutive layers, e.g. the first and the second and let us suppose that, in order
to implement the gates of the second layer we have to make the following swaps:
i → j and l → m → n. This can be achieved performing in parallel the swaps
i → j and l → m in the first time instant of the first layer. Then we can move
m → n. It is easy to understand that several different solutions, equivalent in
terms of swap costs can be generated performing the three swap moves in different
time instants of the same layer. For this reason, symmetry breaking constraints are
needed. In this perspective, with respect to the third cost component, we can also
consider to slightly modify the objective function introducing a lexicographic term.

The proposed formulation allows to solve both variants of the MNS-NNC
problem. It differs from the other formulations present in literature in two main
aspects: it is more compact if compared to other formulation, such as the one
presented in [4]; it explicitly considers, not only the swap costs, but also the direct
and the reverse implementation costs of each gate. Moreover, it does not require the
knowledge of an initial positioning of the qubits within the quantum architecture.
This requirement, present in most of the exact and heuristic methods present in
literature, has a twofold effect. On one side, it reduces the complexity of the
problem. On the other side, it significantly affects the quality of the overall solution,
since a wrong initial positioning can provide much higher swap costs.
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4 Computational Results and Work Perspectives

In this section we present some preliminary results obtained on several instances
taken from the IBM Q platform [7]. We have to highlight that a comparison with
the performance of other ILP formulations and methods cannot be made since the
results are significantly affected by the usage of different objective functions and
synthesis of the quantum circuits. A standardization is required to fix this issue in the
future. The following parameter values have been used: K++c = 10, K−c = 11/12
and S = 34. These costs take into account the computational burden required to
implement the gates using only primitive one- and two-qubit gates.

The model has been experienced on different connectivity graphs of the IBM
QISKit Developer Challenge [7]: linear (regular and random); circular (regular and
random); Tenerife and Yorktown. All these graphs are composed of 5 nodes and use
5 qubits to implement the gates composing the circuit. Regular and random graphs
differ in the orientation of the links. In regular graphs, links are always directed
coherently with the topology, from the lower index node to the higher one (i.e. arc
(i, j) exists if i < j ). In random graphs, orientation follows no specific rule.

The value of m has been set equal to the length (in terms of number of links) of
the greatest shortest path among all the origin-destination pairs in the non-oriented
graph G′(V ,E). Even if this value is not an upper bound on the maximum number
of time instants to be used for the implementation of all the required swap gates
for a layer, in the performed experimentation it was large enough to allow solution
feasibility.

The experiments have been performed on an Intel(R) Core(TM) i7-8700k,
3.70 GHz, 16.00 GB of RAM, using Cplex 12.7 with default setting as MIP solver,
with a maximum computing time of 3 h.

For each instance we report in Table 1 the following information: the size in terms
of number of gates and layers; the optimal solution determined by the proposed
formulation; the computation time in seconds.

Table 1 Computational results

Name Topology Arcs Opt sol. T ime

Out-circle-rand-q5-2 Circle rand 5 353 339.23

Out-circle-reg-q5-0 Circle reg 5 354 482.95

Out-circle-reg-q5-6 Circle reg 5 354 706.39

Out-linear-rand-q5-5 Linear rand 4 420 6363.89

Out-linear-reg-q5-1 Linear reg 4 386 5614.73

Out-ibmqx2-q5-0 Yorktown 6 419 7162.21

Out-ibmqx2-q5-8 Yorktown 6 419 7446.28

Out-ibmqx2-q5-9 Yorktown 6 419 6333.5

Out-ibmqx4-q5-3 Tenerife 6 353 1527.2

Out-ibmqx4-q5-4 Tenerife 6 419 6298.61

Out-ibmqx4-q5-7 Tenerife 6 419 8643.34
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We note that the proposed formulation is able to determine the optimal solution of
all the tested instances within the prefixed computation time. Nevertheless, despite
the small dimension of the instances, the computation time is between 1.5 and 2 h
for most of them. This computational burden is coherent and slightly lower with
the one of other ILP formulations present in literature on similar instances (e.g.
[4]). However, since the number of quibts in a quantum computer architecture is
increasing (up to 50 and more in the future), the usage of the proposed ILP model, to
optimally solve the MNS-NNC problem on large instances, appears impracticable. In
this context, this work has to be considered as an introductory work for the problem.
Future research perspectives should be aimed either at strengthening/improving the
proposed formulation or proposing more effective optimal solving methods, which
can be used in the evaluation of the quality of the solutions provided by the heuristic
algorithms present in literature.
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A Traffic Equilibrium Nonlinear
Programming Model for Optimizing
Road Maintenance Investments

Mauro Passacantando and Fabio Raciti

Abstract We consider a traffic network in which some of the roads need main-
tenance jobs. Due to budget constraints not all of the roads can be maintained
and a central authority has to choose which of them are to be improved. We
propose a nonlinear programming model where this choice is made according to
its effects on the relative variation of the total cost, assuming that users behave
according to Wardrop equilibrium principle. To assess the network improvement
after maintenance we use the Bureau of Public Road link cost functions.

Keywords Traffic network · Wardrop equilibrium · Investment optimization ·
Braess paradox

1 Introduction

Let us consider a traffic network where some of the roads need maintenance, or
improvement jobs. However, the available money to be invested in the improvement
of the road network is not sufficient for all the roads and a central authority has to
decide which of them is better to maintain. In this regard, it is important to assess
the impact that the improvement of a single road, or of a group of roads, has on the
overall network efficiency. The efficiency index that we use is the relative variation
of total travel time on the network under the assumption that flows are distributed
according to Wardrop equilibrium principle. This means that travelers choose the
roads so as to minimize their journey time, and all of the paths actually used to reach
a certain destination from a given origin give rise to the same travel time. The total
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travel time is often considered as a “social cost” because it represents the sum of the
time spent by all the travelers in the network, and moreover is obviously connected
with the pollution released by all the vehicles. In our analysis we make use of the
link cost functions in the form given by the Bureau of Public Roads (BPR) [2] which
explicitly contain the flow capacity ui of each link ai . We assume that after mainte-
nance the capacity of each link varies from ui to γiui , where γi > 1 is referred to as
the enhancement ratio of link ai . The case of a uniform γ , for all links, was consid-
ered in [6], where the authors mainly focused on the case 0 < γ < 1 to describe the
degradation of the network links. Let Ii be the investment required to enhance the
capacity of link ai by the ratio γi , and let I be the amount of money available for the
network maintenance. For each set of links that can be upgraded we update the total
travel time mentioned above. It has to be noted that the improvement of a link can
result in a worsening of the network efficiency. This counterintuitive fact is related
to the well known Braess paradox [1] and will be discussed in detail by means of
a small test network for which we can compute all the relevant quantities in closed
form. Once that the efficiency of the network has been assessed for all the improve-
ments that satisfy the budget constraint, the central authority can make a decision.

The paper is structured as follows. In the following Sect. 2 we provide the
main definitions regarding traffic networks and recall the concept of a Wardrop
equilibrium and the network efficiency measure that will be used. In Sect. 3 we
present the investment optimization model, which is then illustrated in Sect. 4 by
means of a small test problem (Braess network) and a realistic traffic network.
Further research perspectives are touched upon in Sect. 5. The paper ends with an
appendix where we provide some analytical computations related to the small test
problem treated in Sect. 4.

2 Traffic Network Equilibrium and Efficiency Measure

For a comprehensive treatment of all the mathematical aspects of the traffic equilib-
rium problem, we refer the interested reader to the classical book of Patriksson [9].
Here, we focus on the basic definitions and on the variational inequality formulation
of a network equilibrium flow (see, e.g. [3, 11]). In what follows, we denote with
a&b the scalar product between vectors a and b, and with M& the transpose of
a given matrix M . A traffic network consists of a triple G = (N,A,W), where
N = {N1, . . . , Np}, p ∈ N, is the set of nodes, A = {a1, . . . , an}, n ∈ N

represents the set of direct arcs (also called links) connecting pairs of nodes and
W = {W1, . . . ,Wm} ⊂ N × N, m ∈ N is the set of the origin-destination (O-D)
pairs. The flow on the link ai is denoted by fi , and we group all the link flows in a
vector f = (f1, . . . , fn). A path (or route) is defined as a set of consecutive links
and we assume that each O-D pair Wj is connected by rj , rj ∈ N, paths whose set
is denoted by Pj , j = 1, . . . , m. All the paths in the network are grouped into a
vector (R1, . . . , Rk), k ∈ N. The link structure of the paths can be described by
using the link-path incidence matrix � = (δir ), i = 1, . . . , n, r = 1, . . . , k with
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entries δir = 1 if ai ∈ Rr and 0 otherwise. To each pathRr it is associated a flow Fr .
The path flows are grouped into a vector (F1, . . . , Fk) which is called the network
path-flow (or simply, the network flow if it is clear that we refer to paths). The flow
fi on the link ai is equal to the sum of the path flows on the paths which contain ai ,
so that f = �F . We now introduce the unit cost of traveling through ai as a real
function ci(f ) ≥ 0 of the flows on the network, so that c(f ) = (c1(f ), . . . , cn(f ))

denotes the link cost vector on the network. The meaning of the cost is usually that
of travel time and, in the simplest case, the generic component ci only depends on
fi . In our model we use the BPR form of the link cost function which explicitly take
into account the link capacities. More precisely, the travel cost for link ai is given by:

ci(fi) = t0i
[

1+ k
(
fi

ui

)β]
, (1)

where ui describes the capacity of link ai , t0i is the free flow travel time or cost on
link ai , while k and β are model parameters which take on positive values. In many
applications k = 0.15 and β = 4. Analogously, one can define a cost on the paths
as C(F) = (C1(F ), . . . , Ck(F )). Usually, Cr(F ) is just the sum of the costs on the
links which build that path:

Cr(F ) =
n∑

i=1

δirci(f ),

or in compact form C(F) = �&c(�F). For each pair Wj , there is a given traffic
demand Dj ≥ 0, so that D = (D1, . . . , Dm) is the demand vector of the network.
Feasible path flows are nonnegative and satisfy the demands, i.e., belong to the set

K = {F ∈ R
k : Fr ≥ 0, for any r = 1, . . . , k and !F = D}, (2)

where ! is the pair-path incidence matrix whose entries, for j = 1, . . . , m, r =
1, . . . , k are

ϕjr =
{

1, if the path Rr connects the pair Wj,

0, elsewhere.

The notion of a user traffic equilibrium is given by the following definition.

Definition 1 A network flowH ∈ K is a user equilibrium, if for each O-D pairWj ,
and for each pair of paths Rr,Rs which connect Wj

Cr(H) > Cs(H) *⇒ Hr = 0;
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that is, if traveling along the path Rr takes more time than traveling along Rs , then
the flow along Rr vanishes.

Remark 1 Among the various paths which connect a given O-D pair Wj some will
carry a positive flow and others zero flow. It follows from the previous definition
that, for a given O-D pair, the travel cost is the same for all nonzero flow paths,
otherwise users would choose a path with a lower cost. Hence, as an equivalent
definition of Wardrop equilibrium we can write that for each Wj ,

Cr(H)

{
= λj if Hr > 0,

≥ λj if Hr = 0.
(3)

Hence, with the notation λj we denote the equilibrium cost shared by all the used
paths connectingWj . The variational inequality formulation of the user equilibrium
is given by the following result (see, e.g., [9]).

Theorem 1 A network flow H ∈ K is a user equilibrium iff it satisfies the
variational inequality

C(H)&(F −H) ≥ 0, ∀ F ∈ K. (4)

Sometimes it is useful to decompose the scalar product in (4) according to the
various origin-destination pairs Wj :

m∑

j=1

∑

r∈Pj
Cr(H) (Fr −Hr) ≥ 0, ∀ F ∈ K.

The network efficiency measure we consider in this paper is the total travel time
when a Wardrop equilibrium is reached:

T C =
m∑

j=1

∑

r∈Pj
Cr(H)Hr =

m∑

j=1

λjDj . (5)

3 Investment Optimization Model

We consider a central authority with an amount of money I available for the network
maintenance. Only a subset of links {ai : i ∈ L}, where L ⊂ {1, . . . , n}, are
involved in the improvement process. Let Ii be the investment required to enhance
the capacity of link ai by a given ratio γi .

The central authority aims to find in which subset of links to invest in order
to improve as much as possible the total cost (5), while satisfying the budget
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constraint. This problem can be formulated within the framework of integer
nonlinear optimization.

Let xi be a binary variable which takes on the value 1 if the investment is actually
carried out on link ai , and 0 otherwise. A vector x = (xi)i∈L is feasible if the budget
constraint

∑
i∈L Iixi ≤ I is satisfied. Given a feasible vector x, the capacity of each

link ai , with i ∈ L, is equal to ui(x) := γiuixi+ (1−xi)ui , i.e., ui(x) = γiui when
xi = 1 and ui(x) = ui when xi = 0. We aim to maximize the relative variation of
the total cost defined as

f (x) = 100 · T C − T C(x)
T C

,

where T C is the total cost (5) before the maintenance job and T C(x) is the total
cost corresponding to the improved network. Therefore, the optimization model we
propose is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max f (x)

s.t.
∑
i∈L

Iixi ≤ I
xi ∈ {0, 1} i ∈ L.

(6)

Let us notice that the computation of the nonlinear function f at a given x requires
to find a Wardrop equilibrium for both the original and the improved network. Thus,
model (6) can be considered as a generalized knapsack problem.

4 Numerical Experiments

This section is devoted to the numerical solution of the proposed model for two
networks: the first is a small size network, while the second is the well known
Sioux Falls network. The numerical computation of the Wardrop equilibrium was
performed by implementing in Matlab 2018a the algorithm designed in [7].

Example 1 We consider the Braess network shown in Fig. 1. There are four nodes,
five links labeled by {a, b, c, d, e}, and one origin-destination pair, from node 1 to
node 4 with demandD = 30, which can be connected by 3 paths:R1 = (a, c), R2 =
(b, d), R3 = (a, e, d). The link cost functions are given by:

ca = 1+ fa

1/2
, cb(fb) = 50

(
1+ fb

50

)
, cc(fc) = 50

(
1+ fc

50

)
,

cd = 1+ fd

1/2
, ce(fe) = 10

(
1+ fe

10

)
.
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Fig. 1 Braess network
1

dc

a b

e
32
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Table 1 Numerical results
for Braess network

x f (x) I (x)

(1,0,1,1,0) 6.85 13

(1,1,0,1,0) 6.08 13

(1,0,0,1,0) 5.61 5

(0,1,0,0,1) −0.19 13

(0,0,0,0,1) −0.73 5

We assume that the available budget I = 15 ke, the subset of links to be maintained
is L = {a, b, c, d, e},

γa = 1.2, γb = 1.1, γc = 1.3, γd = 1.2, γe = 1.5,
Ia = 2, Ib = 8, Ic = 8, Id = 3, Ie = 5.

Table 1 shows the three best feasible solutions and the two worst ones together with
the percentage of total cost improvement and the corresponding investment I (x) =∑
i∈L Iixi . It is interesting noting that the third best solution needs a much lower

investment than the one required by the optimal solution, but the corresponding
objective function values are close. Moreover, the two worst solutions reflect the
Braess paradox since the values of the objective function are negative. In the
Appendix we analyze in more details the Braess paradox for any value of the
demand D and of the enhancement factor γe.

Example 2 The Sioux Falls network consists of 24 nodes, 76 links and 528 O-
D pairs (see Fig. 2). The complete data can be found on [8]. We assume that
the available budget I = 30 ke and the subset of links to be maintained is
L = {4, 10, 21, 22, 29, 30, 31, 49, 75, 76}. We consider two different scenarios: in
the first one the average enhancement ratio is around 1.3 (low quality maintenance),
while in the second one is 1.55 (high quality maintenance). The values of γi and Ii
of the two scenarios are shown in Table 2.

Table 3 reports the ten best feasible solutions for the two scenarios. Let us note
that the value of the ten best solutions in scenario 1 varies between around 10 and
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Fig. 2 Sioux Falls network

Table 2 Link capacities and
investments for Sioux Falls
network

Scenario 1 Scenario 2

Links γi Ii γi Ii

4 1.2 5 1.4 6

10 1.5 6 1.8 7

21 1.1 10 1.3 12

22 1.3 5 1.5 6

29 1.4 4 1.7 5

30 1.2 8 1.4 10

31 1.1 6 1.3 7

49 1.5 2 1.8 2.5

75 1.4 3 1.7 3.5

76 1.3 2 1.5 2.5
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Table 3 Numerical results for Sioux Falls network

Scenario 1 Scenario 2

x f (x) I (x) x f (x) I (x)

(0,1,0,1,1,1,0,1,1,1) 10.97 30 (0,1,1,0,1,0,0,1,1,0) 14.30 30

(0,1,0,1,1,1,0,1,1,0) 10.89 28 (0,0,1,1,1,0,0,1,1,0) 14.26 29

(1,0,0,1,1,1,0,1,1,1) 10.64 29 (0,1,0,0,1,1,0,1,1,0) 14.05 28

(1,1,0,0,1,1,0,1,1,1) 10.58 30 (1,1,0,1,1,0,0,1,1,0) 14.00 30

(1,0,0,1,1,1,0,1,1,0) 10.55 27 (0,0,0,1,1,1,0,1,1,1) 13.92 30

(1,1,0,0,1,1,0,1,1,0) 10.50 28 (0,0,0,1,1,1,0,1,1,0) 13.84 27

(0,0,0,1,1,1,1,1,1,1) 10.46 30 (1,0,1,0,1,0,0,1,1,0) 13.80 29

(0,1,1,1,1,0,0,1,1,0) 10.46 30 (0,0,1,0,1,0,1,1,1,0) 13.80 30

(0,0,0,1,1,1,1,1,1,0) 10.38 28 (1,0,0,0,1,1,0,1,1,1) 13.62 30

(0,1,0,0,1,1,1,1,1,0) 10.37 29 (1,0,0,1,1,0,1,1,1,0) 13.54 30

11%, while that in scenario 2 between around 13 and 14%. Therefore, as opposite to
Example 1, an improvement of the quality of maintenance implies an improvement
of the total cost.

5 Conclusions and Further Perspectives

In this paper we consider the problem of maintaining a road network in an optimal
manner. The decision makers are endowed with a given budget and have to decide
which roads is better to improve. They make their choice by computing, for each set
of possible investments, the corresponding relative improvement of total travel time.
The problem is modeled as an integer nonlinear optimization program and some
numerical experiments on small and medium scale networks are performed. Such
an approach can help the decision makers to select the best possible investments
and also displays the counterintuitive fact that some investments can produce a
worsening of the traffic.

In the case of large scale networks, further methods have to be developed (e.g.,
Branch and Bound techniques) to cope the combinatorial nature of the problem.
Moreover, since the optimal choice of the decision makers heavily depends on the
traffic demand, it would be interesting to consider the realistic case of a randomly
perturbed demand (see, e.g., [4, 5]).
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Appendix

We consider the Braess network shown in Fig. 1, where the traffic demand from
node 1 to node 4 is D and the link cost functions are defined as follows:

ca = 1+ fa

1/2
, cb(fb) = 50

(
1+ fb

50

)
, cc(fc) = 50

(
1+ fc

50

)
,

cd = 1+ fd

1/2
, ce(fe) = 10

(
1+ fe

10γ

)
,

where γ is the enhancement factor of arc e. We can find the exact Wardrop
equilibrium for any value of parameters D and γ (see e.g. [10]). The path cost
functions are then given by:

C1(F ) = 3F1 + 2F3 + 51,

C2(F ) = 3F2 + 2F3 + 51,

C3(F ) = 2F1 + 2F2 + (4+ γ−1)F3 + 12.

The Wardrop equilibrium is

H =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(D/2,D/2, 0) if D > 78,
(
(2+γ−1)D−39

3+2γ−1 ,
(2+γ−1)D−39

3+2γ−1 , 78−D
3+2γ−1

)
if

39

2+ γ−1
≤ D ≤ 78,

(0, 0,D) if 0 ≤ D ≤ 39

2+ γ−1
,

and the corresponding equilibrium cost is

λ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

3

2
D + 51 if D > 78,

(4+ 3γ−1)

3+ 2γ−1
D + 39

3+ 2γ−1
+ 51 if

39

2+ γ−1
≤ D ≤ 78,

(4+ γ−1)D + 12 if 0 ≤ D ≤ 39

2+ γ−1
.

We remark that when the demand D varies between 13 and 78, the total cost

T C = (4+ 3γ−1)D2 + 39D

3+ 2γ−1 + 51D

is an increasing function with respect to γ ∈ [1, 2]. As a consequence, in this
demand range investing for improving the link e capacity results in a growth of



276 M. Passacantando and F. Raciti

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
3020

3025

3030

3035

3040

3045

3050

3055

3060

3065
T

ot
al

 c
os

t

Fig. 3 Total cost vs. enhancement ratio γ for link e

the social cost and pollution. Figure 3 shows the graph of T C as a function of γ for
D = 30.
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Opinion Dynamics in Multi-Agent
Systems Under Proportional Updating
and Any-to-Any Influence

Loretta Mastroeni, Maurizio Naldi, and Pierluigi Vellucci

Abstract We study an agent-based model to describe the formation of opinions
within a group, where agents belong to classes. In the model any agent influences all
the other agents at the same time, and the influence is proportional to the difference
of opinions through interaction coefficients. We find that the interaction coefficients
must lie within a tetrahedron for the internal consistency of the model. We show that
the system of agents reaches a steady state. The long-term opinion of each agents
depends anyway on its initial opinion.

Keywords Agent-based models · Opinion dynamics · Social networks

1 Introduction

Agent-based models (ABM) allow us to study all kinds of influence phenomena, in
particular to analyze the formation of opinions within a group of people, which is
a subject of interest in many areas, e.g. sociology and psychology. Through ABMs
we can understand if and how the individuals reach a final consensus or the people
polarize around a small number of different opinions [2, 12, 15, 20], by going from
the description of the behaviour of individuals at the micro level to the prediction of
the macro behaviour of the group.
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In many cases, the individuals in the group exhibit significant differences, e.g. in
their religion, ethnicity, political convictions. It is natural to assume that individuals
with similar characteristics behave similarly, so that we can consider a partition of
the original group into classes and devise multi-class agent-based models. Examples
of such multi-class models are shown in [7, 8, 13, 14, 22, 25] for two classes, in [1,
4, 26] for the classification based on the leader\follower role, and in [17], where a
classification into three classes based on political convictions (leftist, centrist and
rightists) is considered. A generic multi-class model has recently been studied by
Monica and Bergenti [19], but the model considers agents interacting in pairs: at
each time step, a single agents influences another single agent, who in turn changes
its opinion due to that influence.

What happens when an agent influences many agents at the same time? Or when
many agents act at the same time on all other agents? This is the most frequent
situation occurring in many contexts. For example, that routinely happens in an
online social network (like Facebook or Twitter), where an agent submitting its post
influences all the followers at the same time. It also happens on more traditional
media (like TV or the radio) where agents involved in a debate may broadcast their
opinions to a large audience.

Our paper answers that question, by extending Monica and Bergenti model to the
case of any-to-any interaction, where each agent influences all the other agents at
once, by providing the following contributions:

• since the opinion is represented by a variable in the [−1, 1] range, we identify the
conditions that allow the opinion of agents to stay within the prescribed range,
i.e. the closure property (Sect. 2);

• we show that the typical state updating equation may be set in the form of a
dynamical linear system (Sect. 2);

• we show that the opinion of each agent converges in the long term, and provide
the steady-state solution of the dynamical system, i.e. the steady-state opinion of
all agents, provided their initial values (Sect. 3).

2 The Any-to-Any Interaction Model

As stated in the Introduction, we introduce a major difference with the model
proposed in [19], by assuming that at any time step each agent influences all the
other agents at once, i.e. an any-to-any interaction. This happens, e.g., in online
forums, where each agent (each individual) is exposed in real time to the opinions
of all the other agents and may change its opinion accordingly (see, e.g. [21]). In
this section, we describe the resulting model and formulate the interaction described
by the state updating equation as a linear dynamical system.

We consider a population of n agents, who belong to one of c classes. The
differences among classes may be related to a number of factors, e.g. religion,
ethnicity, political convictions and we assume that each class is homogeneous—
i.e. in them people are similar to each other or are of the same type (same religion,
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same political party etc.). The number of agents in class i is ni (n =∑c
i=1 ni). The

opinion of agent j belonging to class i is vij , with −1 ≤ vij ≤ 1, as assumed in the
literature [1, 3, 19, 22, 25].

The opinion of any agent may change over time due to its interactions with other
agents. We assume a linear effect of opinion differences: the change in the opinion
of an agent due to another agent is proportional to the difference in their opinions.
The intensity of the interaction is described by a set of c2 coefficients γkl , k, l ∈
{1, 2, . . . , c} in the range [0, 1]. The generic coefficient γkl measures the propensity
of an agent of class l to make its opinion closer to that of an agent in class k. The
interaction needs not be symmetric, so that γkl �= γlk in general, but is identical for
all the pairs of agents in the same pairs of classes. This any-to-any interaction model
with linear interaction has been adopted in [9, 10, 23, 24]. However, none of them
considered a multi-class model as we do here.

The time evolution of the opinion of an agent is then described by Eq. (1), where
the interaction terms have been grouped by considering separately the contributions
due to the agent’s own class and those due to other classes:

vij (t + 1) = vij (t)−
c∑

k=1
k �=i

γik

nk∑

l=1

[
vij (t)− vkl(t)

]+ γii
ni∑

m=1
m�=j

[
vim(t)− vij (t)

]

= vij (t)

⎡

⎢⎢⎣1− γii(ni − 1)−
c∑

k=1
k �=i

γiknk

⎤

⎥⎥⎦+ γii
ni∑

m=1
m�=j

vim(t)

+
c∑

k=1
k �=i

γik

nk∑

l=1

vkl(t) .

(1)

However, the opinion expressed by Eq. (1) may leak outside the prescribed
boundaries. In order to obtain the closure property for the transformation repre-
sented by that equation (i.e., −1 ≤ vij (t) ≤ 1 ∀t), we impose conditions on the
coefficients γkl , starting with the sufficient condition of Proposition 1. The closure
property was already achieved in [19], but just under the assumption of pair-by-pair
interaction (i.e., at each time step just two agents interact with each other).

Under an any-to-any interaction, we can state the following closure condition:

Proposition 1 If −1 ≤ vij (0) ≤ 1 and the coefficients γij satisfy the inequality

γii(ni − 1)+
c∑

k=1
k �=i

γiknk ≤ 1 , ∀i = 1, . . . , c , c ∈ N . (2)

then −1 ≤ vij (t) ≤ 1 ∀t ∈ N.
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Proof We prove first the proposition concerning the upper bound (vij (t) ≤ 1).
Let us proceed by induction on t ∈ N0. The starting step, t = 0, is ensured by

hypothesis. We can now check the claim for t + 1. Since −1 ≤ vij (t) ≤ 1 ∀i, j and
vij multiplies a positive quantity in (1) by Eq. (2) we have:

vij (t + 1) ≤

⎡

⎢⎢⎣1− γii(ni − 1)−
c∑

k=1
k �=i

γiknk

⎤

⎥⎥⎦+ γii
ni∑

m=1
m�=j

1+
c∑

k=1
k �=i

γik

nk∑

l=1

1

= 1− γii(ni − 1)−
c∑

k=1
k �=i

γiknk + γii(ni − 1)+
c∑

k=1
k �=i

γiknk = 1 .

Similarly, we prove the condition concerning the lower bound (vij (t) ≥ −1).
Since vij (0) ≥ −1 by hypothesis, we have

vij (t + 1) ≥ −

⎡

⎢⎢⎣1− γii(ni − 1)−
c∑

k=1
k �=i

γiknk

⎤

⎥⎥⎦− γii(ni − 1)−
c∑

k=1
k �=i

γiknk

= −1+ γii(ni − 1)+
c∑

k=1
k �=i

γiknk − γii(ni − 1)−
c∑

k=1
k �=i

γiknk = −1.

��
The condition for closure represented by the inequality (2) is amenable to the

following geometric interpretation.

Remark 1 Let us consider the condition (2) γii(ni − 1)+∑c
k=1
k �=i

γiknk = 1 and set

γ := (γi1, . . . , γic), x = (n1, . . . , ni−1, ni − 1, ni+1, . . . , nc). For a given x, the

solution is a set of the form
{
γ | xT · γ = 1

}
, i.e. an affine hyperplane in R

c. Since

γij ≥ 0 ∀i, j , condition (2) represents the volume of a generalized tetrahedron in
R
c bounded by the coordinate hyperplanes and the hyperplane xT · γ = 1.

We can now write the state updating equation as a linear dynamical mapping:

v(t + 1) = Av(t) (3)
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where the opinions of agents belonging to different classes have been stacked in a
single vector v = [v1, . . . , vn]T , whose components are

vij =
⎧
⎨

⎩
v
j+∑i−1

h=1 nh
if i ≥ 2 , j = 1, . . . , ni

vj if i = 1 , j = 1, . . . , n1

(4)

and A is a n× n matrix of interaction coefficients.
We use the following results (Proposition 2 and Lemma 1) to prove Theorem 1.

Proposition 2 shows that the matrix A is a stochastic matrix and it has a special
block structure. (A stochastic matrix M = (mij ) ∈ R

n×n is a square matrix whose
entries are such that mij ∈ [0, 1] and

∑n
j=1mij = 1.)

Proposition 2 The matrix A is a stochastic matrix with the block form:

A =

⎛

⎜⎜⎜⎝

A11 A12 · · · A1c

A21 A22 · · · A2c
...

...
. . .

...

Ac1 Ac2 · · · Acc

⎞

⎟⎟⎟⎠ .

where each block Aii , for i = 1, . . . , c, is a ni × ni matrix

Aii =

⎛

⎜⎜⎜⎜⎝

1− xT · γ γii γii · · · γii

γii 1− xT · γ γii · · · γii
...

...
. . .

. . .
...

γii γii · · · γii 1− xT · γ

⎞

⎟⎟⎟⎟⎠
,

and Ahk , for h, k = 1, . . . , c, is a nh × nk matrix such that

Ahk =
⎛

⎜⎝
γhk γhk · · · γhk
...

...
...

...

γhk γhk · · · γhk

⎞

⎟⎠ .

Proof Let us rewrite (1) according to (4). Then, if i = 1

vj (t + 1) = vj (t)

⎡

⎢⎢⎣1− γ11(n1 − 1)−
c∑

k=1
k �=1

γ1knk

⎤

⎥⎥⎦+

+ γ11

n1∑

m=1
m�=j

vm(t)+
c∑

k=2

γ1k

nk∑

l=1

v
l+∑k−1

h=1 nh
(t) (5)
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for each j = 1, . . . , n1; otherwise, if i ≥ 2 we have

v
j+∑i−1

h=1 nh
(t + 1) = v

j+∑i−1
h=1 nh

(t)

⎡

⎢⎢⎣1− γii (ni − 1)−
c∑

k=1
k �=i

γiknk

⎤

⎥⎥⎦+

+ γii
ni∑

m=1
m�=j

v
m+∑i−1

h=1 nh
(t)+ γi1

n1∑

l=1

vl(t)++
c∑

k=2
k �=i

γik

nk∑

l=1

v
l+∑k−1

h=1 nh
(t)

for each j = 1, . . . , ni .
Let us consider (5). We can rewrite vj (t + 1) as a dot product of two arrays:

α =
⎡

⎢⎣γ11 , . . . , γ11︸ ︷︷ ︸
j−1

, 1− γ11(n1 − 1)−
c∑

k=2

γ1knk , γ11 , . . . , γ11︸ ︷︷ ︸
n1−j

,

γ12 , . . . , γ12︸ ︷︷ ︸
n2

, . . . , γ1c , . . . , γ1c︸ ︷︷ ︸
nc

⎤

⎦
T

and v. Denoting v
j+∑i−1

h=1 nh
(t + 1) = β · v, we have

β =
⎡

⎢⎣γi1 , . . . , γi1︸ ︷︷ ︸
n1

, . . . , γi,i−1 , . . . , γi,i−1︸ ︷︷ ︸
ni−1

, γii , . . . , γii︸ ︷︷ ︸
j−1

, 1− γii(ni − 1)+

−
c∑

k=1
k �=i

γiknk , γii , . . . , γii︸ ︷︷ ︸
ni−j

, γi,i+1 , . . . , γi,i+1︸ ︷︷ ︸
ni+1

, . . . , γic , . . . , γic︸ ︷︷ ︸
nc

⎤

⎥⎥⎦

T

.

The sum of all elements of α and β is equal to 1. ��
Before introducing Lemma 1, let us recall below a well-known property of a

generic square matrix A. It is said to be diagonally dominant if, denoting the generic
element of A by aij , the following inequality holds:

|aii | ≥
∑

j �=i
|aij | for all i ∈ {1, . . . , c} .
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We recall theta a matrix A is said to be strictly diagonally dominant if

|aii | >
∑

j �=i
|aij | for all i ∈ {1, . . . , c} .

Then:

Lemma 1 Let us consider the n × n matrix A − I, where A is the matrix defined
in (3). Then the following claims hold.

(i) Matrix A− I is singular.
(ii) Matrix A−I is non-strictly diagonally dominant. More precisely, the following

equality holds

|bhh| =
∑

k �=h
|bhk| ,

where bhk = (A− I)hk .
(iii) The rank of A− I is n− 1.

Proof The first claim follows is true since the sum of the elements in each row of
A− I is zero (see Proposition 2), so that det (A− I) = 0.

As to claim (ii), in our assumptions the parameters γij , for each 1 ≤ i ≤ c and
1 ≤ j ≤ ni , are positive; the values of ni , 1 ≤ i ≤ c, represent the number of agents
of class i so that they are also positive. Consequently, the non-diagonal elements of
A − I are positive and |bhk| = bhk , ∀h, k = 1, . . . , n with k �= h. For the same
matter the diagonal elements of A− I are negative. Therefore, the equality of claim
(ii) holds.

According to the first claim, the matrix A − I is singular, i.e., not full rank
(rank (A− I) < n). In order to prove the third claim, we show that the principal
minor of order n − 1 is full rank, since a strictly diagonally dominant matrix is in
turn full rank. That property can be easily checked observing

γ11(n1 − 1)+
c∑

k=2

γ1knk > γ11(n1 − 1)+
c−1∑

k=2

γ1knk + γ1c(nc − 1)

when i = 1 and j = 1, . . . , n1, and

γii(ni − 1)+
c∑

k=1
k �=i

γiknk > γii(ni − 1)+
c−1∑

k=1
k �=i

γiknk + γic(nc − 1)

when i = 2, . . . , c − 1 and j = 1, . . . , ni , or i = c and j = 1, . . . , nc − 1. ��
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3 Steady-State Opinions

The opinions of agents fluctuate over time due to the reciprocal influences described
by the model of Sect. 2. We wish to see if such opinions keep changing at every
time step or reach a steady state. In particular we wish to see if a consensus forms
around one or more opinion values, i.e. if those opinions, though different at the
beginning, converge around a limited number of values. In this section, we provide
the conditions for such a steady state and the steady-state solution as well.

We recall that the time evolution of opinions over k time steps is

v(t + k) = Akv(t), (6)

so that knowing the power Ak allows us to get the vector of opinions at time k if we
know the vector of opinions at time 0.

We now prove the following theorem, which holds under the only requirement
that the interaction coefficients meet the closure condition of Proposition 1. It
requires the definition of positive matrix [16], i.e. A is a positive matrix whether
each aij > 0, and this is usually denoted by writing A > 0.

Theorem 1 Let γij ∈ (0, 1], for each 1 ≤ i ≤ c, 1 ≤ j ≤ ni . Let also γii(ni −
1) +∑c

k=1
k �=i

γiknk < 1 ∀i = 1, . . . , c. Then the matrix A in (3) is positive and the

following statements are true.

(i) The Perron–Frobenius eigenvalue r is equal to 1.
(ii) There exists a right-hand eigenvector u and a left-hand eigenvector wT

of A associated to the Perron–Frobenius eigenvalue 1. They are: uT =
(u1, . . . , un) = (1, . . . , 1); wT = (w1, . . . , wn) is such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = −∑c
k=2 γ1knk w1 +∑c−1

k=2 γk1nkw1+∑k−1
h=1 nh

+
+γc1

[
(nc − 1)w1+∑c−1

h=1 nh
+ w∑c

h=1 nh

]

0 = γ12n1w1 −∑c
k=1
k �=2

γ2knkwn1+1 +∑c−1
k=3 γk2nkw1+∑k−1

h=1 nh

+γc2
[
(nc − 1)w1+∑c−1

h=1 nh
+ w∑c

h=1 nh

]

...

0 = γ1cn1w1 +∑c−1
k=2 γkcnkw1+∑k−1

h=1 nh
+

−
(
γcc +∑c−1

k=1 γcknk

)
w1+∑c−1

h=1 nh
+ γccw∑c

h=1 nh

(7)



Proportional Updating and Any-to-Any Influence 287

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn1 = · · · = w2 = w1

wn1+n2 = · · · = wn1+2 = wn1+1
...

w∑c−1
h=1 nh

= · · · = w2+∑c−2
h=1 nh

= w1+∑c−2
h=1 nh

w−1+∑c
h=1 nh

= · · · = w2+∑c−1
h=1 nh

= w1+∑c−1
h=1 nh

.

(iii) Let k ∈ N. Then, fixed t ∈ N,

lim
k→∞ v(t + k) =

uwT

wT u
v(t) . (8)

Proof The first claim derives from Perron–Frobenius theorem [16], and Proposi-
tion 2. In fact,

∑
j aij = 1 ∀i. From this the expression of right-hand eigenvector u

in the second claim also follows.
Let us calculate the left-hand eigenvector wT = (w1, . . . , wn). By definition,

wTA = wT . It turns out to be a n × n homogenous system, which can be broken
down as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 = (
1− γ11(n1 − 1)−∑c

k=2 γ1knk
)
w1 + γ11

∑n1
k=2wk+

+∑c
k=2 γk1

∑nk
l=1wl+∑k−1

h=1 nh
...

wn1 = γ11
∑n1−1
k=1 wk +

(
1− γ11(n1 − 1)−∑c

k=2 γ1knk
)
wn1+

+∑c
k=2 γk1

∑nk
l=1wl+∑k−1

h=1 nh

(9)

for i = 1, and so on up to i = c, i.e.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn1+···+nc−1+1 = γ1c
∑n1
k=1wk +

∑c−1
k=2 γkc

∑nk
l=1wl+∑k−1

h=1 nh
+

+
(

1− γcc(nc − 1)−∑c−1
k=1 γcknk

)
wn1+···+nc−1+1+

+γcc∑nc
k=2wn1+···+nc−1+k

...

wn1+···+nc (= wn) = γ1c
∑n1
k=1wk +

∑c−1
k=2 γkc

∑nk
l=1wl+∑k−1

h=1 nh
+

+γcc∑nc−1
k=1 wn1+···+nc−1+k+

+
(

1− γcc(nc − 1)−∑c−1
k=1 γcknk

)
wn1+···+nc .

(10)
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The coefficient matrix of the n× n system is A− I, with has rank equal to n− 1
(see Lemma 1, point (iii)). Following the proof of Lemma 1, we can work on the
top-left principal minor of order n − 1, i.e., on the c sub-systems from i = 1 (9)
to i = c (10), but deleting the last equation of the last sub-system, so that we can
rewrite the system in a more concise form.

Let i = 1 and consider the sub-system (9). If we subtract the first equation from
the second, the first from the third and so on, all the way to subtract the first equation
from the last one, we obtain wn1 = · · · = w2 = w1.

By performing previous step up to i = c (sub-system (10)), where we have nc−1
equations, we obtainwn1+···+nc−1 = · · · = wn1+···+nc−1+2 = wn1+···+nc−1+1 (notice
that the chain of equalities does not start from wn1+···+nc ). Substituting these results
in the system composed by the first equations of the sub-systems, ranging from
i = 1 (9) to i = c (10) we obtain the system (7) of c equations in c + 1 variables.
The third claim derives by claim (ii) and Perron–Frobenius theorem [16] applied to
Eq. (6). ��

4 Conclusions and Open Problems

We have obtained two major results for a multi-agent multi-class system, concerning
respectively some constraints on the interaction coefficients and the long-term
evolution of the multi-agent system. The interaction coefficients cannot be set
freely, but must lie within a generalized tetrahedron to guarantee that the range
of the opinion variables stays bounded in [−1, 1]. If the interaction coefficient
are to be derived from the observation of a real sample of individuals, this may
cause some problem. The most important result is that the opinion of each agent
converges in the long term to a steady state. In addition, though the steady-state
solution has an apparently simple form, expressed in terms of right and left-hand
eigenvectors, its computation remains generally unknown because of the expression
of the left-hand eigenvector, whose computation is difficult due to the high number
of parameters involved. Further work is therefore envisaged to ease that computation
and to examine the behaviour of such a model in sample cases, even with the use of
numerical algorithms (such as e.g. QR algorithm and its variants [5, 6, 11, 18]).

It would also be interesting, for the future, to investigate possible connections of
the work with spectral graph theory, particularly in the case of non-symmetric matri-
ces (since A, the matrix of interaction coefficients, is in general non-symmetric).
Matrix A is related to the notion of Laplacian of a graph, whose vertices are
the agents and the edges represent the interactions between them. Estimating the
eigenvalues of Laplacian is related to the collective decision-making as discussed,
e.g., in [25].
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A New Formulation of the Single Door
Truck Scheduling Problem

M. Flavia Monaco and Marcello Sammarra

Abstract In this paper we propose a new formulation for the truck scheduling
problem at a cross-docking terminal with one inbound door and one outbound door.
Through the computational experience, we show that the new formulation is more
effective than a formulation from the literature.

Keywords Cross-docking · Mixed integer formulation · Scheduling

1 Introduction

Cross-docking terminals play an important role in manufacturing and logistic
systems. Actually, transferring goods coming from possibly different suppliers
to the retailers without the inventory phase, has the immediate consequence of
reducing the distribution costs. On the other hand, this policy requires sophisticated
management procedures to synchronize the arrival and departure times of the trucks.
As an evidence of the importance of cross-docking policies in the distribution chain,
we want to highlight here that more than 150 papers on this research stream have
been published in the last 15 years. The reader can refer to [1, 2, 7, 9] for a complete
and updated review of the literature related to cross-docking terminal management
problems in many different settings.

In this paper we consider the truck scheduling problem at a cross docking termi-
nal with one inbound and one outbound door. We assume that any product arriving
at the terminal by the inbound trucks is dedicated to specific outbound trucks, so that
the transhipment flow inside the terminal is known. As a result, the truck scheduling
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problem can be seen as a two-machine flow-shop scheduling problem with cross-
docking (precedence) constraints, the objective being to minimize the makespan. In
a very recently published paper [4], the problem has been modeled in this way. Here
we propose a new formulation for the same problem. We compare experimentally
the two formulations by comparing the linear bounds they provide on a set of
instances available from the literature [4]. Finally we report on the performances
of a standard MILP solver when used to solve the two models.

The paper is organized as follows. In Sect. 2 we first detail the formulation of
Fonseca et al. [4], then we introduce our new formulation. Section 3 reports the
computational experience. Finally, conclusions are drawn in Sect. 4.

2 Truck Scheduling Models

It is well known that scheduling problems can be formulated in different ways,
depending on the variables one chooses (see [8]). Among them, the most used
are: natural-dates variables, time-indexed variables and positional variables. We will
briefly recall their definitions, referring, for simplicity, to a non-preemptive single
machine scheduling problem.

Assuming we are given a set N = {1, . . . , j, . . . , n} of jobs to be processed
on the machine, and their processing times pj , the natural-date variables are the
n continuous variables Cj , j ∈ N , where Cj is the completion time of the job j .
Very often such variables are used in conjunction with the linear ordering variables,
defined as follows:

δij =
〈

1 if the job i precedes the job j in the schedule
0 otherwise

∀i, j ∈ N, i �= j

so that, in each permutation schedule (without idle time), it results:

Cj =
∑

i∈N,i �=j
δijpi + pj ∀j ∈ N

Otherwise, the scheduling model will necessarily include disjunctive constraints.
When time-indexed variables are used, the time horizon T is discretized into

a finite number of periods T = {1, 2, . . . , Tf }, and the variables are defined as
follows:

xjt =
〈

1 if the processing of job j starts in the period t

0 otherwise
∀j ∈ N, t ∈ T
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The completion time of each job is, then, the following linear function of the xjt
variables:

Cj =
Tf−pj∑

t=1

txjt + pj ∀j ∈ N

A schedule may be also identified by the positions occupied by the jobs in
the sequence. Introducing a set K = {1, . . . , k, . . . , n} of position indexes, the
positional variables are defined as follows:

xjk =
〈

1 if the job j is processed as the k-th one in the sequence
0 otherwise

∀j ∈ N, k ∈ K

Note that, in this framework, it is easy to identify the completion time of the k-th
job in the sequence (positional completion time):

C[k] = C[k−1] +
∑

j∈N
pjxjk ∀k ∈ K

and the makespan, which is a nonlinear function of the natural Cj ’s, is simply

Cmax = C[n]
On the contrary, the natural completion times Cj , j ∈ N , can not be expressed as
linear functions of the variables xjk .

In [6], where positional variables have been introduced, it is shown that the posi-
tional formulations of some single-machine scheduling problems can outperform
those based on time discretization, while requiring much fewer variables. Our aim
is to investigate if similar conclusions can be drawn for scheduling problems in more
complex frameworks.

Observe that if jobs have unitary processing times, the time-indexed and posi-
tional formulations coincide. The truck scheduling problem with unitary processing
times has been investigated in [3] for the single door cross docking setting, and in [5]
for the multi-door case. In [4] the authors have proposed a time-indexed formulation
for the two-machine cross-docking flow-shop scheduling problem with arbitrary
processing times. Here we propose a formulation that makes use of positional
variables, instead.

In the following Table 1 we introduce our main notation that will be shared by
the two formulations. Additional notation will be properly introduced when needed.
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Table 1 Notation

Name Definition

I Set of inbound trucks; |I | = n
J Set of outbound trucks; |J | = m
pIi Processing time of the inbound truck i ∈ I
pOj Processing time of the outbound truck j ∈ J
Ij ⊆ I Set of inbound trucks supplying the outbound truck j ∈ J (|Ij | ≥ 1)

2.1 Time-Indexed Formulation

The Time-Indexed formulation (T I ) proposed in [4] requires some additional
notation. Let T = {0, . . . , Tf } be the discretized planning horizon, where the ending
time Tf is computed as Tf =∑

i∈I pIi +
∑
j∈J pOj . Let T0 be a lower bound on the

starting service time for the outbound trucks, defined as follows

T0 = min
j∈J

⎧
⎨

⎩
∑

i∈Ij
pIi

⎫
⎬

⎭ (1)

By means of the following decision variables,

• xit = 1, if the processing of inbound truck i ∈ I starts at time t ∈ T ; 0 otherwise
• yjt = 1, if the processing of outbound truck j ∈ J starts at time t ∈ T ; 0

otherwise
• Cmax ≥ 0, the makespan

the TI formulation reads as follows

Z = min Cmax (2)

Tf−pIi∑

t=0

xit = 1 i ∈ I (3)

∑

i∈I

t∑

s=max{0;t−pIi +1}
xis ≤ 1 t ∈ T (4)

Tf−pOj∑

t=T0

yjt = 1 j ∈ J (5)

∑

j∈J

t∑

s=max{T0;t−pOj +1}
yjs ≤ 1 t ∈ T (6)
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Tf−pOj∑

t=T0

tyjt −
Tf−pIi∑

t=0

(t + pIi )xit ≥ 0 j ∈ J, i ∈ Ij (7)

Cmax ≥ pOj +
Tf−pOj∑

t=T0

tyjt j ∈ J (8)

xit ∈ {0, 1} i ∈ I, t ∈ T (9)

yjt ∈ {0, 1} j ∈ J, t ∈ T (10)

In model T I , the objective function (2) is the makespan. Constraints (3) impose that
the processing of each inbound truck starts at exactly one time-slot t such that it is
completed within the time horizon. Constraints (4) ensure that two inbound trucks
cannot be processed simultaneously. Constraints (5) and (6) are the counterpart of
constraints (3) and (4) on the outbound side. Inequalities (7) are the cross-docking
constraints, imposing the precedence relation between the processing of the inbound
truck i and the processing of the outbound truck j , if j requires items transported
by i (i ∈ Ij ). Constraints (8) define the makespan; (9) and (10) are the domain of
the variables.

2.2 Position-Indexed Formulation

Let K = {1, . . . , n} and H = {1, . . . , m} be two sets of position indexes for
the processing of the inbound and outbound trucks, respectively. We define the
following constants

MI =
∑

i∈I
pIi MO =

∑

j∈J
pOj M = MI +MO (11)

Defining the binary positional variables

• xik = 1, if the truck i ∈ I is the k-th one in the inbound sequence, 0 otherwise;
• yjh = 1, if the truck j ∈ J is the h-th one in the outbound sequence, 0 otherwise;

and the continuous variables

• CIi ≥ 0, the completion time of the inbound truck i ∈ I ;
• COj ≥ 0, the completion time of the outbound truck j ∈ J ;
• Cmax ≥ 0, the makespan



296 M. F. Monaco and M. Sammarra

the Position-Indexed (PI ) formulation of the truck scheduling problem is as follows

Z = min Cmax (12)
∑

k∈K
xik = 1 i ∈ I (13)

∑

i∈I
xik = 1 k ∈ K (14)

CIi − pIi ≥ CIl −MI(2− xik − xl k−1) i �= l ∈ I, k ∈ K \ {1} (15)

CIi − pIi ≥ 0 i ∈ I (16)
∑

h∈H
yjh = 1 j ∈ J (17)

∑

j∈J
yjh = 1 h ∈ H (18)

COj − pOj ≥ COl −M(2− yjh − yl h−1) j �= l ∈ J, h ∈ H \ {1} (19)

COj − pOj ≥ CIi j ∈ J, i ∈ Ij (20)

Cmax ≥ COj j ∈ J (21)

xik ∈ {0, 1} i ∈ I, k ∈ K (22)

yjh ∈ {0, 1} j ∈ J, h ∈ H (23)

In this model the objective function (12) is the makespan. Constraints (13)
and (14) ensure that each inbound truck is assigned to one and only one sequence
position. Constraints (15) correctly compute the completion time of the inbound
truck i if i is the successor of l in the sequence; otherwise they are dominated
by (16). Moreover, constraints (16) play the role of (15) for the inbound truck
assigned to the first position (k = 1). Constraints (17)–(19) play the same role
of constraints (13)–(15) on the outbound side. Note that the constraints COj −pOj ≥
0, j ∈ J , corresponding to (16), do not appear because they are dominated
by (20). Constraints (20) impose the precedence relationships between inbound and
outbound trucks involved in transhipment operations. Finally, constraints (21) define
the makespan, while the remaining two groups define the domain of the binary
variables. The non-negativity constraints on CIi and COj are useless because of
constraints (16) and (20).
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2.3 Strengthening of the PI Formulation

The formulation (12)–(23) can be strengthened by adding some valid inequalities,
as described below.

Constraints (16) impose an obvious and weak lower bound on the completion
times of the inbound trucks i ∈ I . To get a stronger lower bound, we can relate CIi
to the processing times of the trucks preceding i in the sequence. This results in the
following constraints

CIi − pIi ≥
∑

l∈I
l �=i

k−1∑

q=1

pIl xlq −MI(1− xik) i ∈ I, k ∈ K \ {1} (24)

By this way, when xik = 1, the corresponding constraint (24) imposes a non trivial
lower bound on the starting time of truck i; when xik = 0 the corresponding
constraints are dominated by (16).

In order to strengthen the constraints defining the completion times of the
outbound trucks, we observe that each j ∈ J has to wait for the completion of
operations on all inbound trucks i ∈ Ij , that is the following are valid inequalities:

COj − pOj ≥
∑

i∈Ij
pIi j ∈ J (25)

On the other hand, the counterpart of constraints (24) for the outbound trucks, i.e.:

COj − pOj ≥
∑

l∈J
l �=j

h−1∑

q=1

pOl ylq −MO(1− yjh) j ∈ J, h ∈ H \ {1}

are useless since they are dominated by (19). Actually, it is sufficient to note that,
when yjh = 1 and yl h−1 = 1, it is

COl ≥
∑

l∈J
l �=j

h−1∑

q=1

pOl ylq

because of possible idle times on the outbound door, due to the cross-docking
constraints.

Therefore, we come out with a stronger formulation, say PI ∗, obtained by adding
to the (P I) model (12)–(23), the constraints (24) and (25).

Note that PI ∗ is not a fully positional formulation, since it uses the natural-dates
completion times CIi and COj together with the job-to-position assignment variables
xik and yjh. This is because the cross-docking precedence constraints relate each
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outbound truck j ∈ J with a subset Ij of the inbound trucks, and their completion
times cannot be expressed as linear functions of the positional dates and assignment
variables (see [6]).

In closing this section we want to observe that the Time-Indexed formulation by
[4] is characterized by a number of variables that grows obviously with the number
of inbound and outbound trucks, but also with the size of the planning horizon,
corresponding to the sum of all the truck processing times. This is the main well-
known drawback of all time-indexed formulations of scheduling problems. On the
contrary, the formulation PI ∗ has a lower number of variables, depending only
on the total number of trucks, but a higher number of constraints, caused by the
combined use of positional and natural-date variables.

3 Computational Results

In order to assess the effectiveness of the positional formulation PI ∗, we have used
a set of 300 test instances extracted from the set of 500 benchmark instances defined
in [4]. They are partitioned in two groups: G1 and G2, sharing the same values of n,
m and |Ij |, but differing in the size of the processing times. For the instances in G1
pIi and pOj are in the range [1, 10], while in G2 they are in the range [10, 100].

On these instances we have first compared PI ∗ with PI and T I in terms of linear
programming lower bounds. In order to evaluate the performance of our model in
the most critical cases for the T I model, we have also compared the upper bounds
obtained by PI ∗ on the instances in G2 with those reported in [4]. We have used
Cplex 12.8 both as LP and MILP solver. The experiments have been run on a
machine equipped with a 3.1 GHz CPU and 16 GB of RAM. We have imposed a
time limit of 3600 s to Cplex when solving the model PI ∗.

From Tables 2 and 3 it is evident that, as expected, PI ∗ is by far stronger than
PI , and dominates T I in all cases but one. Actually, on the G1 instances the lower
bounds are uniformly higher than those corresponding to the T I model: the percent-
age increase, computed as (AvgLB(P I ∗) − AvgLB(T I))/AvgLB(T I), ranges
between 8.72% (Instances 10–14), and 82.19% (Instances 60–36). Furthermore, the
computation times are smaller in all instances, except for the largest ones. A similar
behavior can be observed in Table 3 for the G2 instances. The percentage increase
in the average lower bound attains its maximum value 82.74% on the Instances
60–36, while its minimum value is−6.44% (Instances 40–24), meaning that on this
group of 10 instances T I performs better than PI ∗. However the computation times
required by PI ∗ are uniformly lower by at least one order of magnitude.

In Table 4 we report the comparison on the upper bounds in terms of Cplex’s
optimality Gaps and CPU running times on the G2 instances. As for the PI ∗ model,
Cplex has been able to solve all the instances with n = 5 in a negligible time, and
almost all the instances with n = 10, even though with a remarkable increase in the
computation time, probably due to the use of big M in the constraints. As expected,
the T I model can not even be solved at optimality on very small size instances
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Table 2 Lower bound comparison on G1 instances

Formulation PI Formulation PI ∗ Formulation T I

LB Time (s) LB Time (s) LB Time (s)

n m Max Avg Avg Max Avg Avg Max Avg Avg

5 3 19.00 16.00 0.00 39.00 28.60 0.00 30.17 24.53 0.00

5 20.00 15.20 0.00 41.00 28.70 0.00 32.55 23.50 0.00

7 20.00 16.30 0.00 49.00 39.70 0.00 34.71 27.17 0.01

10 6 20.00 17.30 0.00 63.00 47.60 0.00 44.78 36.54 0.02

10 20.00 18.20 0.00 76.00 54.90 0.00 50.00 39.82 0.05

14 20.00 17.30 0.00 66.00 52.60 0.01 61.94 48.38 0.09

20 12 20.00 18.90 0.03 132.00 102.60 0.05 54.29 65.68 0.93

20 20.00 19.40 0.05 130.00 105.20 0.08 80.71 70.72 2.11

28 20.00 19.60 0.10 115.00 103.70 0.15 98.36 84.94 1.24

40 24 20.00 19.80 0.28 255.00 213.80 0.97 139.00 122.28 4.56

40 20.00 19.90 0.46 256.00 221.70 1.56 147.79 126.48 5.84

56 20.00 19.90 0.95 253.00 217.90 3.86 169.43 160.96 9.48

60 36 20.00 20.00 1.11 342.00 321.10 7.95 195.48 176.25 11.91

60 20.00 20.00 1.84 364.00 322.80 13.96 195.59 183.77 20.83

84 20.00 20.00 4.04 367.00 324.20 68.93 255.59 238.64 44.57

Table 3 Lower bound comparison on G2 instances

Formulation PI Formulation PI ∗ Formulation T I

LB Time (s) LB Time (s) LB Time (s)

n m Max Avg Avg Max Avg Avg Max Avg Avg

5 3 196.00 145.10 0.00 337.00 239.90 0.00 298.16 225.51 0.44

5 196.00 149.20 0.00 376.00 253.40 0.00 319.76 232.36 0.71

7 196.00 159.00 0.00 441.00 294.10 0.00 341.03 271.10 1.01

10 6 197.00 168.80 0.01 623.00 476.70 0.00 442.26 362.79 5.87

10 197.00 172.90 0.00 628.00 505.50 0.01 478.28 399.33 6.73

14 197.00 172.80 0.01 656.00 526.90 0.01 599.66 482.23 11.39

20 12 200.00 184.10 0.03 1290.00 1025.00 0.07 753.83 654.33 17.66

20 197.00 188.10 0.05 1268.00 1047.90 0.09 790.48 701.24 28.67

28 197.00 190.50 0.09 1242.00 1064.50 0.18 1010.86 872.81 51.06

40 24 198.00 190.40 0.28 1308.00 1128.00 1.16 1349.72 1205.68 80.73

40 198.00 193.40 0.49 2411.00 2174.00 1.86 1353.50 1237.32 163.07

56 200.00 194.90 1.12 2463.00 2173.50 5.83 1686.53 1609.82 267.03

60 36 199.00 195.40 1.17 3393.00 3217.10 7.90 1921.71 1760.46 281.56

60 199.00 197.50 2.00 3578.00 3231.50 14.30 1923.15 1828.36 420.14

84 199.00 197.40 4.25 3608.00 3243.00 72.82 2542.00 2384.64 776.25



300 M. F. Monaco and M. Sammarra

Table 4 Upper bound comparison on G2 instances

Formulation PI ∗ Formulation T I

Gap% Time (s) Gap% Time (s)

n m Min Avg Min Avg Min Avg Min Avg

5 3 0.00 0.00 0.01 0.00 0.00 0.00 6.70 21.00

5 0.00 0.00 0.02 0.19 0.00 0.80 32.00 1570.00

7 0.00 0.00 0.04 2.43 0.00 13.10 94.90 2882.50

10 6 0.00 0.00 1.88 4.52 28.20 28.70 2801.10 3509.90

10 0.00 0.94 831.59 2407.61 35.70 45.20 3600.00 3600.00

14 0.00 10.26 66.33 3246.89 53.20 73.60 3600.00 3600.00

20 12 8.02 14.26 3600.00 3600.00 NA NA 3600.00 3600.00

20 21.43 31.64 3600.00 3600.00 NA NA 3600.00 3600.00

28 37.31 45.79 3600.00 3600.00 NA NA 3600.00 3600.00

40 24 36.58 53.82 3600.00 3600.00 NA NA 3600.00 3600.00

40 37.02 40.17 3600.00 3600.00 NA NA 3600.00 3600.00

56 47.98 52.11 3600.00 3600.00 NA NA 3600.00 3600.00

60 36 26.23 31.63 3600.00 3600.00 NA NA 3600.00 3600.00

60 43.77 47.79 3600.00 3600.00 NA NA 3600.00 3600.00

64 52.09 57.06 3600.00 3600.00 NA NA 3600.00 3600.00

NA means that the corresponding values are not reported in [4]

(n = 5,m = 7). For n = 10 it returns uniformly larger Gaps in higher average
computation times.

On all the remaining instances PI ∗ outperforms T I , given that in [4] no Gap is
reported for these cases. This is not surprising, because the number of variables in
T I is (n + m)Tf + 1 and for the largest instances of the G2 group it is about 1.5
millions.

4 Conclusions

In this paper we have compared two formulations for a truck scheduling problem in
a single door cross-docking terminal. Despite the hybrid nature of our model for a
non-standard flow shop scheduling problem, the computational experience seems to
confirm the effectiveness of scheduling problem formulations based on positional
variables against those using time-indexed variables.
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Optimization of Car Traffic
in Emergency Conditions

Luigi Rarità

Abstract In this work, the aim is to present a possible methodology to redistribute
car traffic, modelled via a fluid dynamic approach, within a part of the Caltanissetta
city (Italy), when critical events, such as car accidents, occur. Adopting a decen-
tralized approach, a cost functional, that measures the asymptotic average velocity
of emergency vehicles, is maximized with respect to traffic parameters at nodes
with two incoming and outgoing roads. Then, the management of high traffic is
analyzed through local optimal coefficients at each node of the network. The whole
traffic dynamics is studied by simulations, which confirm the correctness of the
optimization procedure. It is also shown that optimal parameters allow a fast transit
of emergency vehicles on assigned paths on the network.

Keywords Conservation laws · Optimal paths for emergency vehicles ·
Simulation

1 Introduction

Various phenomena, such as queues formations, long travel times, pollution and
so on, often characterize road networks. Sometimes, high traffic levels lead to car
accidents, with consequent serious issues in terms of emergency management. In
such cases, suitable methodologies for road traffic in emergency conditions are often
analyzed. The aim of this work is to consider some optimization results within a
part of Caltanissetta urban network, Italy, for the redistribution of car flows so that
emergency vehicles could cross assigned roads at the maximum possible speed.

A fluid dynamic model is considered where the dynamics of car densities on
roads is modelled by conservation laws [4, 6, 8], while phenomena at n×m junctions
(namely nodes with n incoming roads and m outgoing roads) are treated via rules
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of traffic distributions and right of ways (if n > m). Considering the distribution
coefficients as control parameters, we aim to redirect traffic at 2× 2 nodes in order
to manage emergency conditions. Hence, under the assumption that emergency
vehicles could cross assigned paths [7], a cost functional V(a,b), that indicates,
for 2 × 2 nodes, the average velocities of such vehicles on the incoming road Ia ,
a ∈ {1, 2}, and the outgoing road Ib, b ∈ {3, 4}, is considered. The optimization
results provide the distribution coefficients that maximize the functional and allow
a fast transit of emergency vehicles to reach hospitals and/or the places of car
accidents.

As, for complex networks, the analysis of V(a,b) represents a hard task, a
decentralized methodology is adopted, namely: the asymptotic dynamics (for very
large times) is considered and an exact solution for V(a,b) is obtained for a node of
2 × 2 type. Then, we get a global (sub)optimal solution for the whole network by
applying simply the obtained local optimal solution at each node with two incoming
roads and two outgoing roads. Similar procedures have been also studied for other
road junctions and different functionals, see [2, 3], and [5], as well as suitable
numerical approaches are described in [9] and [10].

Simulations are useful to test the proposed approach. In particular, two different
choices of distribution coefficients are evaluated: Results achieved by the optimiza-
tion algorithm; Random parameters, namely: at the beginning of the simulation
process, values of traffic parameters are randomly chosen and then kept constant
during the simulation. For the case study of a part of the Caltanissetta urban network
in Italy, the choice of optimal distribution coefficients at 2×2 nodes allows obtaining
better performances on the network. Finally, following an algorithm described in [1]
to trace car trajectories on networks, further simulations are run to test if distribution
coefficients provide variations of the total travelling time for emergency vehicles. It
is proved that times to cover a path of a single emergency vehicle decrease if optimal
coefficients are adopted.

The paper is structured as follows. Section 2 introduces the model for car
traffic. Section 3 focuses on the cost functional for emergency vehicles and the
optimization of traffic parameters. Section 4 presents the simulations for the case
study. Conclusions end the paper in Sect. 5.

2 A Model for Traffic on Road Networks

A road network is seen as a couple (R,N ), where R and N are, respectively, the
set of roads, indicated by intervals [ηi, θi] ⊂ R, i = 1, . . . ,M , and the set of nodes.
Assuming that: D = D (t, x) ∈ [0,Dmax] is the density of cars, where Dmax is
the highest possible density; f (D) = Dv (D) is the flux where v (D) denotes the
average velocity, the traffic on each road is represented by the conservation law
(Lighthill-Whitham-Richards model, [6, 8]):

∂D

∂t
+ ∂f (D)

∂x
= 0. (1)
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We assume that: (F) f is a strictly concave C2 function such that f (0) =
f (Dmax) = 0. Fixing the decreasing velocity function:

v (D) = vmax

(
1− D

Dmax

)
,D ∈ [0,Dmax] , (2)

a flux function, that respects (F), is, for vmax = Dmax = 1:

f (D) = D (1−D) , D ∈ [0, 1] , (3)

that presents a unique maximum σ = 1
2 .

Riemann Problems (RPs), i.e. Cauchy Problems with a constant initial datum for
incoming and outgoing roads, are useful to solve the dynamics at nodes.

Focus on a node J of n × m type (n incoming roads Ia, a = 1, . . . , n, and
m outgoing roads, Ib, b = n + 1, . . . , n + m) and an initial datum indicated by
D0 =

(
D1,0, . . . , Dn,0,Dn+1,0, . . . , Dn+m,0

)
.

A Riemann Solver (RS) for J is a map RS : [0, 1]n× [0, 1]m→ [0, 1]n× [0, 1]m

that associates to D0 a vector D̂ = (
D̂1, . . . , D̂n, D̂n+1, . . . , D̂n+m

)
so that the

wave D̃a =
(
Da,0, D̂a

)
is solution for an incoming road Ia , a = 1, . . . , n, while the

wave D̃b =
(
D̂b,Db,0

)
is solution for an outgoing road Ib, b = n+ 1, . . . , n+m.

The following conditions are required: (C1) RS (RS (D0)) = RS (D0) ; (C2) for a
generic incoming (resp. outgoing) road, the wave D̃a (resp. D̃b) has negative (resp.
positive) speed.

If m ≥ n, a suitable RS at J is defined via the rules [4]:

(A) Traffic distributes at J according to some parameters, collected in a traffic
distribution matrix A = (

αb,a
)
, a = 1, . . . , n, b = n + 1, . . . , n + m,

0 < αb,a < 1,
n+m∑
b=n+1

αb,a = 1. The a−th column ofA provides the percentages

of traffic that, from the incoming road Ia , goes to the outgoing roads;
(B) Respecting (A), drivers maximize the flux through the node J .

If n > m, a further rule (yielding criterion) is necessary:

(C) Assume that S is the amount of cars that can enter the outgoing roads. Then,

paS cars come from the incoming road Ia , where pa ∈ ]0, 1[,
n∑
a=1

pa = 1,

represents the right of way parameter for road Ia, a = 1, . . . , n.

For the particular case of a node J of 2 × 2 type (incoming roads I1 and I2,
and outgoing roads I3 and I4), assume that the densities of cars for incoming and
outgoing roads are, respectively, Da (t, x) ∈ [0, 1], (t, x) ∈ R

+ × Ia , a = 1, 2,
and Db (t, x) ∈ [0, 1], (t, x) ∈ R

+ × Ib, b = 3, 4. From condition (C2),
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for the flux function (3) and initial datum of an RP at J indicated by D0 =(
D1,0,D2,0,D3,0,D4,0

)
, we get that the maximal flux values on roads are:

γmax
χ =

⎧
⎪⎪⎨

⎪⎪⎩

f
(
Dχ,0

)
,

if 0 ≤ Dχ,0 ≤ 1
2 and χ = 1, 2,

or 1
2 ≤ Dχ,0 ≤ 1 and χ = 3, 4,

f
(

1
2

)
,

if 1
2 ≤ Dχ,0 ≤ 1 and χ = 1, 2,

or 0 ≤ Dχ,0 ≤ 1
2 and χ = 3, 4.

In this case, matrixA has the coefficients α3,1, α3,2, α4,1 = 1−α3,1, α4,2 = 1−α3,2,
and the assumption α3,1 �= α3,2 guarantees the uniqueness of solutions. From
rules (A) and (B), the flux solution to the RP at J , γ̂ = (γ̂1, γ̂2, γ̂3, γ̂4), is
found as follows: the incoming fluxes γ̂a , a = 1, 2, are solutions of the problem
max (γ1 + γ2), with 0 ≤ γa ≤ γmax

a , a = 1, 2, 0 ≤ αb,1γ1 + αb,2γ2 ≤ γmax
b ,

b = 3, 4. The outgoing fluxes γ̂b are simply obtained as γ̂b = αb,1γ̂1 + αb,2γ̂2,
b = 3, 4. Once γ̂ is known, D̂ is found as:

D̂χ ∈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
Dχ,0

} ∪ ]τ (Dχ,0
)
, 1
]
,

if 0 ≤ Dχ,0 ≤ 1
2 and χ = 1, 2,

or 1
2 ≤ Dχ,0 ≤ 1 and χ = 3, 4,[

0, 1
2

]
, if 0 ≤ Dχ,0 ≤ 1

2 , χ = 3, 4,[
1
2 , 1

]
, if 1

2 ≤ Dχ,0 ≤ 1, χ = 1, 2,

where τ : [0, 1]→ [0, 1] is the map such that f (τ (D)) = f (D) ∀ D ∈ [0, 1] and

τ (D) �= D ∀ D ∈ [0, 1] \
{

1
2

}
.

3 Optimal Coefficients for Traffic Dynamics

Assume that some car accidents occur on a urban network and that emergency
vehicles need to reach a hospital and/or the places of the accidents. For the
emergency vehicles, the following velocity function is considered:

ζ (D) = 1− λ+ λv (D) , (4)

where 0 < λ < 1 and v (D) follows (2). As ζ (Dmax) = 1 − λ > 0,
then the emergency vehicles have higher velocities than cars. For a node J with
incoming roads I1 and I2 and outgoing roads I3 and I4, for a fixed initial datum(
D1,0,D2,0,D3,0,D4,0

)
, the cost functional V(a,b) (t), that indicates the average

velocity of emergency vehicles that cross the incoming road Ia , a ∈ {1, 2}, and
the outgoing road Ib, b ∈ {3, 4}, is defined as:

V(a,b) (t) :=
∫

Ia

ζ (Da (t, x)) dx +
∫

Ib

ζ (Db (t, x)) dx. (5)
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If a = 1 and b = 3, we get the following theorem, whose proof is in [7] (the
statement is similar for different combinations of a and b).

Theorem 1 Fix a node J with incoming roads I1 and I2, and outgoing roads I3
and I4. For a time t >> 0, the coefficients α3,1 and α3,2, that maximize V(1,3) (t),

are αopt3,1 = 1 − γmax
4
γmax

1
, 0 ≤ α

opt

3,2 < 1 − γmax
4
γmax

1
, with the exception of the following

cases, where the optimal values do not exist and, for ξ1 and ξ2 small, positive and
such that ξ1 �= ξ2, are approximated as: αopt3,1 = ξ1, αopt3,2 = ξ2 if γmax

1 ≤ γmax
4 ;

α
opt

3,1 = γmax
3

γmax
3 +γmax

4
− ξ1, αopt3,2 = γmax

3
γmax

3 +γmax
4
− ξ2 if γmax

1 > γmax
3 + γmax

4 .

4 Simulations

The optimization results, foreseen by Theorem 1, are studied via different control
choices, applied locally at each node, on the global behaviour of a real network.
This analysis is then completed by computing the travelling times of an emergency
vehicle on assigned routes.

We focus on a part of the urban network of Caltanissetta, Italy (see Fig. 1).
The network has: 8 roads, described by 51 segments (see Table 1). Eight of them

are incoming roads (1, 5, 23, 27, 35, 39, 46, 51), and nine of them identify outgoing
roads (2, 4, 8, 22, 25, 34, 37, 44, 49). Moreover, there are 25 nodes of different
types: 2 × 2, labelled as Ai , i = 1, . . . , 11; 2 × 1, identified by Bi , i = 1, . . . , 6;
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Fig. 1 Topology of the considered network within Caltanissetta, Italy
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Table 1 Correspondence
among numbers and roads in
Fig. 1

Road Graph segments

Via Giuseppe Mulè 1, 2

Via Luigi Monaco 3–21

Via della Regione 22, 23

Via Due Fontane 24–33

Via SD1 34, 35

Via Leone XIII 36–43

Via Luigi Russo 44, 45, 46

Via Poggio S. Elia 47–51

1× 2, indicated by Ci , i = 1, . . . , 7; 1× 1,D1. We assume that emergency vehicles
could cross the path ρ = Ω1 ∪Ω2 ∪Ω3 ∪Ω4, with:

Ω1 = {23, 47, 48, 50, 19, 45, 15} , Ω2 = {16, 3, 6, 7, 17, 24, 26} ,
Ω3 = {28, 30, 31, 38, 40, 42, 13} , Ω4 = {14, 20, 21, 43, 32, 33, 35} .

Hence, we analyze the behaviour of the cost functionalE (t) =∑
(a,b)∈Γ V(a,b) (t) ,

with V(a,b) (t) as in (5) and:

Γ :=
{
(23, 47) , (48, 50) , (50, 19) , (19, 45) , (3, 6) , (7, 17) ,
(24, 26) , (28, 30) , (31, 38) , (20, 21) , (43, 32) , (33, 25)

}
.

Traffic flows simulations are made by the Godunov method with Δx = 0.0125,
Δt = 0.5Δx in a time interval [0, T ], with T = 120 min. Initial conditions and
boundary data for densities are chosen approaching Dmax = 1, with the aim of
simulating a congestion scenario on the network, as follows: initial datum equal
to 0.85 for all roads; boundary data 0.95 for roads 1, 5, 23, 27 and 35; 0.9 for
roads 39, 46, and 51; 0.85 for roads 2, 4, 18, 22 and 25; 0.9 for roads 34, 37, 44
and 49. Considering some measures on the real network, we have, for nodes Bi ,
i = 1, . . . , 6, the right of way parameters: p12 = p26 = 0.2, p46 = 0.3, p6 = p35 =
0.4, p38 = p39 = 0.5, p5 = p30 = 0.6, p45 = 0.7, p42 = p27 = 0.8; for nodes
Ci , i = 1, . . . , 7, the distribution coefficients: α41,40 = 0.2, α49,47 = α22,13 = 0.3,
α8,15 = α33,32 = 0.4, α2,16 = α3,16 = α10,9 = α11,9 = 0.5, α16,15 = α29,32 = 0.6,
α48.47 = α14,13 = 0.7, α42,40 = 0.8. Finally, λ = 0.5 is used.

We consider two different simulation cases: locally optimal distribution param-
eters (optimal case) at each node Ai i = 1, . . . , 11, i.e. coefficients that follow
Theorem 1; random parameters (random case), namely the distribution coefficients
are chosen randomly at each node Ai i = 1, . . . , 11, when the simulation starts and
then are kept constant.

Figure 2 presents the behaviour of E (t). The optimal simulation is represented
by a continuous curve, while random cases by dashed lines. As expected, random
simulations of E (t) are lower than the optimal behaviour. Precisely, when optimal
parameters are used, nodes of 2 × 2 type have a congestions reduction due to the
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Fig. 2 Evolution of E(t) in
[0, 60] using optimal
distribution parameters
(continuous line) and random
coefficients (dashed lines)
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Fig. 3 Trajectory y(t) for an
emergency vehicle along road
17 with t0 = 45; optimal
coefficients (continuous line)
and random choices (dashed
lines)
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redistribution of flows on roads. Even if right of way parameters of nodes Bi , i =
1, . . . , 6, and distribution coefficients of nodes Ci , i = 1, . . . , 7, are considered by
the results of [2] and [3], traffic conditions are indeed almost unaffected.

Suppose that an emergency vehicle crosses a path in a network. Its position y =
y (t) is modelled by the Cauchy problem:

{ ·
y = ζ (D (t, x)) ,
y (t0) = y0,

(6)

where y0 indicates the initial position at the initial time t0. A numerical approach,
described in [1], allows estimating the travelling time of the emergency vehicle.
First, we compute the trajectory along road 17 and the time to cover it in optimal
and random conditions. Then, we consider the path ρ and focus on the exit time
versus the initial travel time t0 (the time that the emergency vehicle needs to enter
into the network).

In Fig. 3, we assume that the emergency vehicle starts its own travel at the
beginning of road 17 at the initial time t0 = 45 and compute the trajectories y(t) in
optimal (continuous line) and random cases (dashed lines).

The behaviour y(t) in the optimal case has always a higher slope than the
trajectories in random cases as traffic levels are low. When random parameters
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are considered, shocks propagating backwards increase the density values on the
network; The velocity for the emergency vehicles is reduced and exit times from
road 17 become longer. Assuming t0 = 45 we have the following time instants
tout in which the emergency vehicle goes out of road 17, either for the optimal
distribution coefficients (topt0 ) or random choices (t ri0 , ri , i = 1, .., 4): topt0 = 50.70,
t
r1
0 = 56.34, t r20 = 54.94, t r30 = 52.84 and t r40 = 51.42.

5 Conclusions

This paper deals with an optimization study whose aim is to face emergencies for
car traffic. Optimal distribution parameters at road nodes with two incoming and
outgoing roads are obtained by maximizing a cost functional, which indicates the
average velocity of emergency vehicles. Simulations on a real urban network prove
the goodness of the optimization procedure as well as, in case of high congestions,
the possibility of fast transits through the estimation of the trajectories of emergency
vehicles. Future research activities aim to extend the proposed approach by either
different types of cost functionals or other optimization procedures, based on genetic
algorithms.
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The Cumulative Capacitated Vehicle
Routing Problem with Profits Under
Uncertainty

M. E. Bruni, S. Nucamendi-Guillén, S. Khodaparasti, and P. Beraldi

Abstract In this paper, we introduce the cumulative capacitated vehicle routing
problem with profits and uncertain travel times. The aim is to visit a subset of
customers maximizing the total collected revenue expressed as a decreasing function
of the uncertain arrival times. The selective nature of the problem, the stochasticity
of travel times, and the introduction of the capacity of vehicles make the problem
quite challenging. We present a risk-averse approach leading to a non-linear mixed
integer mathematical model. To solve the model, we develop a very fast and
efficient metaheuristic designed to address the selective nature of the problem. The
performance of the metaheuristic is shown by preliminary results obtained for two
sets of benchmark instances.

Keywords Cumulative capacitated VRP · VRP with profits · Uncertainty ·
Metaheuristic

1 Introduction

The Cumulative Capacitated Vehicle Routing Problem (CCVRP, for short) is a
variant of the classical capacitated vehicle routing problem in which the objective is
to minimize the sum of arrival times at customers instead of the total route distance.
For this problem, mathematical models [22], exact algorithms [14, 22] and heuristic
and metaheuristic approaches [13, 17, 19–21] have been developed. Recently,
Nucamendi-Guillén et al. [18] presented two new mathematical models for the
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CCVRP in the deterministic context. The authors also proposed an iterated greedy
algorithm outperforming other existing methods in the literature. The CCVRP can
be also regarded as a generalization of the k-Traveling Repairmen Problem (k-TRP)
[17] addressing customer-centric problems in which the need for fast, equitable and
fair services, is crucial. A selective variant of the TRP, called TRP with Profits
(TRPP), was introduced by Dewilde et al. [10]. Differently from the non selective
case, two kinds of decisions have to be taken: which customers to serve and how
to route them. The aim is to collect a revenue, defined as a function of the profit
associated with each customer and of the customer’s waiting time, defined as the
elapsed time starting when the vehicle is at the depot, until the customer’s service is
completed.

In this paper, we present a mathematical model for the selective CCVRP with
profits. The problem arises in situations in which, on the one hand, it is not possible
to serve all the customers due to the resource and vehicle limitations, and on the
other hand, the arrival time has a crucial role on the service performance. Examples
of applications can be found in routing problems in relief efforts [7], perishable
product delivery [5] or multi-robot routing [16]. We address the problem under
uncertainty in travel times, via a mean-risk approach. This brings us with a non-
linear mixed-integer formulation which is solved using a very fast and efficient
metaheuristic approach. The uncertainty in vehicle routing problems has been
widely studied in the literature [3, 8, 11, 12] but a few contributions are present for
the single vehicle TRPP [4] and for the k-TRPP [1, 6]. To the best of our knowledge,
the selective CCVRP, especially under the uncertainty of travel times, has never been
addressed in the literature.

The paper is organized as follows. In Sect. 2, we introduce the CCVRP with
profits and uncertain travel times and formulate it as a non-linear mixed-integer
mathematical model. In Sect. 3, the metaheuristic solution approach is discussed
and the proposed algorithm is presented. Section 4 is devoted to the computational
experiments on two sets of benchmark instances. Finally, conclusions and remarks
are discussed in Sect. 5.

2 Problem Formulation

Let consider an undirected graph G = (V ,E) where V = {0, 1, 2, . . . , n}
corresponds to the node set and E denotes the edge set. Node 0 denotes the depot
and V ′ = {1, 2, . . . , n} represents the set of customers. Each edge (i, j) ∈ E has
an associated random travel time t̃ij , with a given mean μij and variance σ 2

ij . To
each customer i ∈ V ′, a demand value di and a profit πi are assigned. The profit
represents the initial reward to visit the customer at time t = 0. Obviously, the
demand and the profit of the depot are set to zero. A homogeneous fleet of k vehicles
with a limited capacity Q (

∑
i∈V ′ di ≤ k ×Q) are dispatched from the depot. The

goal is to find a set of k disjoint tours visiting a subset of customers such that the
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total collected revenue is maximized while the capacity of vehicles is not violated.
The revenue collected from customer i is defined as the difference between its profit
πi and the customer’s waiting time, defined as the elapsed time starting when the
vehicle is at the depot, until the customer’s service is completed. To account for the
uncertainty of travel times, we adopt a mean-risk framework [2, 15] expressing the
objective function as a linear combination of the expected revenue and its standard
deviation, with weighting parameter λ ∈ [0, 1]. The variations in the trade-off
parameter λ reflect the attitude of the decision maker with respect to risk. In order to
formulate the problem, we present the multi-layer network proposed for the CCVRP
in the deterministic context [18], and extend it to address the selective variant with
random travel times. The network is briefly described as follows. Let L be the set
of levels L = {1, · · · , r, · · · , N}, where N = n − k + 1, and each level includes a
copy of all the customers amended also with the depot in levels from 2 to n. Each
tour in the network is represented by a path that ends in the first level and starts in
a copy of the depot in some level. In fact, the level number represents the position
of the customer in the tour: the customer in the first level is the last in the tour, the
customer in the second level is the last but one, and so on. Two distinct tours cannot
visit the same customer, neither in the same level nor in different levels. The model
variables are defined as follows. Let xri be a binary variable that takes value 1 iff
customer i is visited at level r (i.e. there are r − 1 customers to be visited after in
the same tour); otherwise, it is set to 0. If xri = 1, we say that customer i is active
at level r . Let yrij be another binary variable that is set to 1 iff edge (i, j ) is used
to link customer i active at level r + 1 with customer j active at level r; otherwise,
it takes value 0. Finally, the variable vrij denotes the sum of the demands of all the

customers to be served after customer i in the same tour when
∑N
r=1 y

r
ij = 1 and it

is equal to 0 otherwise.
The mathematical formulation is expressed as follows.

Max : z = λ
( ∑

j∈V ′

N∑

r=1

(πj − rμ0j )y
r
0j +

∑

i∈V ′

∑

j∈V ′
j �=i

N−1∑

r=1

(πj − rμij )yrij
)
−

(1− λ)
√√√√√√

∑

j∈V ′

N∑

r=1

r2σ 2
0j y

r
0j +

∑

i∈V ′

∑

j∈V ′
j �=i

N−1∑

r=1

r2σ 2
ij y

r
ij (1)

N∑

r=1

xri ≤ 1 i ∈ V ′ (2)

∑

i∈V ′
x1
i = k (3)
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N∑

r=1

∑

j∈V ′
yr0j = k (4)

yN0i = xNi i ∈ V ′ (5)
∑

j∈V ′
j �=i

yrij = xr+1
i i ∈ V ′, r = 1, 2, . . . , N − 1 (6)

yr0j +
∑

i∈V ′
i �=j

yrij = xrj j ∈ V ′, r = 1, 2, . . . , N − 1 (7)

vij ≥ dj
N∑

r=1

yrij i, j ∈ V ′, i �= j (8)

v0j ≤ Q
N∑

r=1

yr0j j ∈ V ′ (9)

vij ≤ (Q− di)
N−1∑

r=1

yrij i, j ∈ V ′, i �= j (10)

v0i +
∑

j∈V ′
j �=i

vji −
∑

j∈V ′
j �=i

vij = di
N∑

r=1

xri i ∈ V ′ (11)

xri ∈ {0, 1} i ∈ V ′, r = 1, 2, . . . , N (12)

yr0j ∈ {0, 1} j ∈ V ′, r = 1, 2, . . . , N (13)

yrij ∈ {0, 1} i, j ∈ V ′, i �= j, r = 1, 2, . . . , N − 1 (14)

vij ≥ 0 i ∈ V ′ ∪ {0}, j ∈ V ′, i �= j (15)

The objective function (1) maximizes the total stochastic revenue. In order to
deal with this more involved objective function, the first term accounts for the
expected total revenue, expressed as the sum of the profits collected at nodes minus
the expected arrival time at those nodes, whereas the second one for the standard
deviation of the total arrival time. Both the terms can be derived by applying the
standard formula of the expected value and variance of the sum of independent
random variables. The factor λ is used to weight the importance attributed by the
decision maker to the two terms: the lower is λ, the greater is the importance
attributed to the risk. Constraints (2) ensure that customer i is served at most once.
Constraints (3) and (4) ensure that only k starting and ending edges are created,
whereas constraints (5)–(7) satisfy connectivity requirements. Constraints (8)–(10)
establish the minimum and maximum values for vkij . In particular, Eqs. (9) and (10)
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force the same variables to be 0 when yr0j and yrij are 0, respectively. These
constraints in conjunction with (11) estimate the load of each vehicle and act as
the sub-tour elimination constraints. Finally, constraints (12)–(15) show the nature
of variables.

3 Metaheuristic Procedure

In contrast to the classical CCVRP, the number of visited customers in our problem
is not known in advance and, more importantly, the objective function does not show
a monotonic behaviour with respect to the number of visited customers. Besides
the selective nature of the problem, the introduction of the non-linear term in the
objective function (1) makes it quite challenging. To deal with this computational
complexity, we propose a very fast metaheuristic approach composed of three main
procedures, including a procedure for building an initial solution, an improvement
phase and a destructive part. The pseudo code of the proposed approach is shown
in Algorithm 1. Here U denotes the set of unrouted customers. The first solution
is generated in lines (2)–(10). A Constructive procedure, adapted from the iterated
greedy approach presented in [18], is called. If not all the nodes are served, γ nodes
are randomly deleted from the current solution s and the procedure is repeated.
Since the elimination mechanism is completely random, in a finite number of
iterations, a complete solution s including all customers is built. The Constructive
procedure is described in Algorithm 2. First, a partial solution s is built assigning
the k best customers with the highest revenue to the k vehicles. Then, the solution
is extended to include other customers, respecting the capacity restrictions. Each
feasible customer insertion is evaluated using a regret criterion. Denoting with RQ
a k-dimensional vector representing the remaining capacity of vehicles, the insertion
in route r is feasible only if RQr ≥ di . For any customer i ∈ U the best feasible
position in each vehicle route r is evaluated. Among these values the best absolute
value is chosen. Then, the differences between that values and the best one are
evaluated. These differences are then summed up to obtain, for each customer, the
regret value. The customer with the highest regret is selected to be included in the
solution and inserted in its best position and tour. If the insertion is not feasible
in any route (the demand of the candidate customer is higher than the remaining
capacity of all vehicles (RQr < di, ∀r = 1, . · · · , k), the current solution is not
extended anymore and the procedure quits.

The Improvement procedure is a local search mechanism which is appropriately
customized to cope with the selective nature of the problem. The local search
mechanism includes five different neighborhood structures which are arranged into
two classes of intra- and inter-route neighborhoods.

The intra-route neighborhoods used are the swap, the reallocation, and the 2-opt
move operators. The inter-route neighborhoods are the exchange and the relocation
operators which are implemented on a pair of tours.
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Algorithm 1: The proposed metaheuristic

1 Initialization: U ← V ′, s, s′, s′′, sbest ← null, z(sbest)←−∞, iter ← 0
2 while (U �= ∅) do
3 s′ ← Constructive procedure(s, U)
4 if (U == ∅) then
5 break
6 end
7 else
8 γ ← rand(1, |V ′| − |U |)
9 Eliminate from s′ γ nodes randomly selected

10 end
11 end
12 s← Improvement procedure(s′)
13 if (z(sbest) < z(s)) then
14 sbest ← s
15 end
16 while (iter <

⌊
25%|V ′|⌋) do

17 s′ ← Destructive procedure(s, 1)
18 s′′ ← Improvement procedure∗(s′)
19 if (z(sbest) < z(s′′)) then
20 sbest ← s′′
21 end
22 s← s′′
23 iter ← iter + 1
24 end
25 return sbest

Algorithm 2: The constructive procedure

1 Continue := 1
2 while (U �= ∅ & Continue) do
3 if (there are empty routes in s) then
4 Initialize them with customers i ∈ U that have the highest values of

λ(πi − μ0i )− (1− λ)
√
σ 2

0i

5 Update U and RQ
6 end
7 foreach customer in U do
8 Determine the best feasible insertion points over all partial tours
9 Compute the regret value

10 end
11 if at least one feasible insertion is possible then
12 Insert the customer with the highest regret in its best position and route in s
13 Update U and RQ
14 else
15 Continue := 0
16 end
17 end
18 return s
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To be more precise, the swap operator exchanges the position of two
routed customers i and j ; the reallocation deletes a customer from its current
position and reinserts it into another position on the same route; in the 2-opt
move, two non-adjacent edges (i, i + 1) and (j, j + 1) in the nominal tour
0, 1, 2, · · · , i, i + 1, · · · , j, j + 1, · · · are deleted and replaced by (i, j) and
(i + 1, j + 1), resulting in the new tour 1, 2, · · · , i, j, · · · , i + 1, j + 1, · · ·.

The exchange operator exchanges two customers belonging to different tours,
if possible with respect to the remaining vehicle capacities, and the relocation
deletes one customer from its current position and its tour and inserts it into another
position on a different tour with enough remaining capacity. The exchange and
relocation moves are followed by the update of RQ vector. Each intra- or inter-
route neighborhood is explored based on a first improvement strategy until there
is an improvement. The intra- and inter-route procedures are executed separately
one after the other until the input solution is improved. The improvement procedure
(marked by an ∗ in line 18) performs the same local search as described above
augmented with an extra move operator (replace) that substitutes a routed customer
by an unrouted one. After each replace move, U and RQ are appropriately updated.
As before, the first improvement strategy is taken into account and the neighborhood
is explored until there is any improving solution.

The Destructive procedure implements a simple but effective idea to find the
right number of visited customers. In fact, whenever the destructive procedure is
executed, the number of visited customers is decreased by one randomly deleting
one node. After each customer deletion, the solution is repaired linking the
disconnected endpoints and the set of unrouted customers as well as the remaining
capacities are updated. We quit the iterative process when the cardinality of the
unrouted customers is below a given threshold, let say ,25%× n-.

4 Computational Results

In this section, we report the computational experiments carried out with the
aim of assessing the efficiency of the proposed approach. The metaheuristic was
coded in C++ and the mathematical model was solved using the open source
SCIP library, release 3.2.0. All the experiments have been performed on an Intel®

CoreTM i7 2.90 GHz, with 8.0 GB of RAM memory. The performance of our
algorithm is evaluated with respect to the best feasible solution reported by SCIP
within a time limit of 3600 s, if any; otherwise, it was compared with the Final
Dual Bound reported by SCIP. To be precise, the heuristic Gap is calculated as
Gap = OFSCIP−OFHeu

OFSCIP
× 100 where OFSCIP is the best objective value reported

by SCIP or its Final dual Bound if no feasible solution was found within the time
limit (marked in bold). All theGap values are reported in percentage and the CPU
values are measured in seconds. To account for the randomness of the algorithm,
we ran each instance 10 times with different seed values and the average over all
iterations is reported. As a test bed, we used the set of P - and E-instances [9].
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The instance name shows the number of nodes n and the number of vehicle k. For
example, the P -instance Pn40k5 has n = 40 and k = 5. The expected travel time
μij of the edge (i, j) is set as the rounded Euclidean distance between customers i
and j and the travel time variance σ 2

ij is set as
⌈
μij × ω

⌉
where ω ∼ U [0.1, 0.32).

The profit values are proportional to the expected distance and its variance. πi ∼
U

(
mini∈V ′

(
μ0i − β

√
σ 2

0i

)
, n2 maxi∈V ′

(
μ0i + β

√
σ 2

0i

)]
, β ∼ U (0, 1]

Tables 1 and 2 show the results for the set of the P - and the E-instances,
respectively for different values of λ ∈ {0.1, 0.5, 0.9}. Column 1 shows the instance
name. The results for λ = 0.1 are summarized in columns 2–6; the columns 2–3
report the average relative gap (Gap) and the computational time (CPU) over 10
different runs. Column 4 reports the best gap over all the runs. Columns 5–6 report
the computational time and the SCIP optimality gap. In a similar way, the results for
λ = 0.5 and λ = 0.9 are arranged.

As the results show, the proposed metaheuristic provides quite promising
performance in terms of computational time, with an average solution time of 0.25 s.
In addition, the average Gap reported in Columns 2, 7 and 12 varies from 2.73 to
−42.92 and −61.18. It is important to note that in 9 out of 16 instances for the case
with λ = 0.1 (4 and 3 instances for λ = 0.5 and λ = 0.9, respectively) SCIP was
not able to find any feasible solution (in this case the SCIP optimality gaps is set
to ∞). The average (maximum) Gap for the instances in which a SCIP feasible
solution is available, is limited to −0.53 (1.06), −57.94 (2.19) and −75.65 (2.05).
These negative values confirm that, on average, the proposed heuristic outperforms
SCIP in terms of the solution quality.

Similar conclusions can be drawn for the set of the E-instances in Table 2. The
average CPU time for all the instances and λ values is below 0.28 s; the average
Gap in Columns 2, 7 and 12 varies from 1.83 to−27.37 and−27.26. If we consider
only the cases for which SCIP is able to provide a feasible solution, the averageGap
decreases to 0.34, −39.81 and −39.56, respectively for different λ values.
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5 Conclusions

In this paper, we have introduced the CCVRP with profits and uncertain travel times.
We presented a risk-averse mathematical formulation for the problem and proposed
an efficient and fast metaheuristic that takes the selective nature of the problem into
account. The good performance of the proposed solution algorithm is shown by the
computational experiments carried out on the set of the P - and the E-instances.
Future work can be focused on the development of a multi-objective approach for
the considered problem and on the design of a tailored matheuristic approach.
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Dealing with the Stochastic Home Energy
Management Problem

Patrizia Beraldi, Antonio Violi, Maria Elena Bruni, and Gianluca Carrozzino

Abstract This paper focuses on the home energy management problem faced by
a smart prosumer equipped with photovoltaic panels and a storage system. Some
of the home appliances (the shiftable ones) can be controlled in that the consumer
may specify an operating time window within the load should be turned on. The
inherent uncertainty affecting the main model parameters (i.e. loads and production
from renewable) is explicitly accounted for by adopting the two-stage stochastic
programming modeling paradigm. The solution provides the prosumer with the
optimal scheduling of the shiftable loads and the using profile of the storage
system that guarantee the minimum expected energy procurement cost, taking into
account the prosumer’s comfort. Preliminary results, collected on three different
categories of residential prosumers, have shown the effectiveness of the proposed
approach in terms of cost saving and the advantage related to the use of a stochastic
programming approach over a deterministic formulation.
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1 Introduction

In the last decades, energy industries all around the world have been experiencing
rapid and deep changes. One of the main driver is represented by the fast devel-
opment and uptake of the renewable technologies facilitated by the ICT evolution,
as well as the growing government initiatives to promote the deployment of clean
energy sources. Renewable production systems, such as photovoltaic panels (PV)
and wind turbines, are typically distributed in the territory and their integration into
the current energy system increases the complexity level and requires the joint effort
by all the stakeholders of the energy supply chain. The decentralized configuration
also brings new players into the electricity industry leading to a reconfiguration of
the role and functions of the main participants and, in particular, of the end-users.
They are no longer passive consumers of electricity services, but are increasingly
involved as producers. They are now termed as “prosumers” to emphasize their
new nature, as consumers who generate renewable energy. If aggregated, prosumers
may have even a large potential by increasing the reliability of electrical supply.
Different forms of aggregation are emerging in recent years, from virtual power
plants to micro grids and integrated community energy systems.

The optimal management and operation of these emerging forms of aggregation
poses new challenging optimization problems. Among the others, we mention the
management of the shared resources [4], the definition of the optimal tariffs for
the coalition members [12], the interaction between the aggregation and the power
grid [9]. In all the mentioned problems, the prosumers play a crucial role and the
optimal management of their resources represents a critical issue also for the energy
coalition they might belong to. This paper focuses on the home energy management
problem faced by a prosumer that we assume to be able to exchange the energy
locally produced with the distribution grid. We assume that the prosumer owns
smart devices able to control electrical appliances whose use can be shifted within
predefined time windows. The problem consists in defining the optimal management
of the resources and load scheduling that minimizes the total electricity procurement
cost, taking into account the prosumer’s comfort and the load priority.

Because of its practical relevance, the home energy management problem has
been widely studied by the scientific community. However, as highlighted by Benetti
et al. in [2] much more effort is needed in the definition of optimization models
including real features in order to enhance the accuracy of the provided solutions.
The vast majority of the literature proposes deterministic formulations that differ for
the real features that are mathematically represented. Most of the papers consider
two type of loads: non-controllable and controllable. While the former must be
activated at fixed hours of the day (e.g. the refrigerator), the latter (e.g. washing
machines, dryers) may operate at any time within a time interval specified by the
end-user. Thus, depending on the hourly tariffs, it may result convenient to shift the
use of some appliances. Among the different scientific contributions, we cite the
paper by Martinez-Pabon et al. who propose in [10] a model for determining the
optimal scheduling of the appliances so to minimize the total energy cost. Yahia and
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Pradhan extend in [13] the model by incorporating the consumer’s preference by
a bi-objective function where the first term accounts for the energy cost, whereas
the second one for the “inconvenience” measured in terms of disparity between the
preferred and the optimal schedule. Some other authors consider the inconvenience
issue by introducing in the formulation a constraint on the consumer’s preferences
[7]. While in the referred papers no local energy sources are assumed to be available
in the prosumer’s home, some other papers integrate the scheduling with the optimal
management of the local resources. Among the contributions dealing with this more
involved configuration, we mention the recent paper [1] where the authors propose
a mixed integer problem that also accounts for the management of the thermal
equipment.

Few papers acknowledge the importance of explicitly accounting for the inherent
uncertainty affecting the main problem parameters. We cite the contribution by Chen
et al. who propose in [6] a stochastic scheduling technique which involves an energy
adaptation variable β to model the stochastic consumption patterns of the various
household appliances. Correa-Florez et al. propose in [8] a stochastic programming
model for the optimal management of the prosumer’s resources without accounting
for the scheduling of the controllable loads. Our paper contributes to the literature on
the application of stochastic optimization approaches for the home energy manage-
ment problem by proposing a two-stage stochastic programming formulation that
integrates the optimal management of the prosumer’s resources with the scheduling
of the controllable loads. A preliminary formulation of the problem based on the
same modeling framework has been proposed in [5]. It, however, does not consider
the decisions related to the management of the storage system as second-stage
variables. Moreover, it does not include the regret constraint aimed at limiting to
a given threshold the inconvenience related to the shifting of the flexible loads from
the preferred starting time. The approach proposed in this paper has been tested on
several test cases that represent different prosumer configurations.

The rest of the paper is organized as follows. Section 2 introduces the problem
and the stochastic formulation. Section 3 is devoted to the presentation of the
numerical results carried out considering a real case study. Concluding remarks and
future research developments are discussed in Sect. 4.

2 Problem Definition and Mathematical Formulation

We consider a prosumer’s home connected with the power grid and equipped with
a smart controller able to manage the electrical appliances eventually postponing
their use in more convenient time slots. We assume that the smart home hosts
PV panels and storage devices allowing the prosumer to satisfy the demand
(at least partially) by the local production and eventually selling the amount of
electricity in excess. Figure 1 shows an overview of the prosumer’s system we
are dealing with. The problem under investigation consists in defining the optimal
management of the available resources and the scheduling of the loads so to
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Fig. 1 Overview of the prosumer’s home resources

minimize the total electricity procurement cost. The intermittent renewable power
generation and the variable loads makes the problem more challenging and calls
for the adoption of mathematical frameworks able to explicitly address the inherent
uncertainty affecting the model parameters. In this paper, we adopt the stochastic
programming framework and, in particular, the recourse paradigm. We assume
that uncertain parameters are represented by random variables defined on a given
discrete probability space (Ω , F, P). We denote by S the number of realization,
indexed by s, each occurring with a probability πs .

We consider a time horizon defined by T hourly time steps (t = 1, . . . , T ) and
we assume that the hours of the day are divided in three time-of-use blocks: peak,
intermediate and off-peak (according to the Italian configuration). The electricity
price varies according to the block the specific hour belongs to. We denote by
Pt the unitary purchasing price and by Wt the selling price, that we assume to
be known in advance. The prosumer loads are classified in controllable and non
controllable. The controllable ones (e.g. washing machine, dryers), referred by the
set K = {1, . . . , N}, can be shifted, provided that they are run within a given time
window [lk, uk]. For each load k ∈ K , let dk denote the hourly energy consumption
and nk the number of working hours once activated. We also consider a given unit
regret rate rk associated with each hour shifting from the preferred starting time
stk and a maximum cumulative dissatisfaction value V . Some appliance operations
are related by precedence relations. For example, the operation of a clothes dryer
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follows the operation of a washing machine. To mathematically represent these
relations, we introduce a binary parameter fkj taking the value 1 if load k cannot
start before load j , and 0 otherwise. Moreover, we denote with gkj the minimum
number of hours of delay (if any) between k and j . Differently from the controllable
loads, the non controllable ones can not be postponed (e.g. refrigerator, lights) and
might be uncertain. For each hour t , we denote byDst the cumulative demand related
to uncontrollable loads under scenario s.

The overall hourly demand can be satisfied by purchasing electricity from the
market and/or by using the available local resources. We denote by Rst the amount
of energy produced by the PV panels at time t under scenario s. To bridge the
timing gap between power generation from renewable sources and consumption,
the prosumer may use the storage system that could also accumulate energy bought
from market during off-peak hours. We denote by CMax the storage capacity and by
ηin and ηout the efficiency rate for energy injection and withdrawal from the storage
system. Moreover, we indicate by ϕLB and ϕUB the operative range in terms of
minimum and maximum percentage of nominal capacity, and by χLB and χUB the
minimum ramp-up and ramp-down rate for the energy level from one hour to the
next one.

The main decisions that the prosumer is called to take are related to the optimal
scheduling of the controllable loads by managing the available resources and
eventually purchasing energy from the market. While some decisions should be
taken in advance without knowing the realization of the random parameters, other
decisions can be postponed and used as corrective actions, if necessary. In the
proposed formulation, first-stage decisions refer to the scheduling operation. In
particular, we denote by δkt , the binary variable taking value 1 if the controllable
load k starts at time t and 0 otherwise. Once uncertainty realizes, corrective actions
referred to the management of the storage system and market operations are taken,
in order to guarantee the satisfaction of the stochastic loads. In particular, for each
scenario s and time t , we indicate by SLst energy level of the storage system and
by SINs

t and SOUT st the amount to supply into and supplied from the system.
Moreover, xst and yst represent the amount of energy to buy and sell in hour t under
scenario s, respectively. The proposed mathematical formulation is the following:

min
S∑

s=1

πs
T∑

t=1

(Ptx
s
t −Wty

s
t ) (1)

s.t.

xst + SOUT st − SINs
t − yst = Dst +

N∑

k=1

dk

t∑

h=t−nk
δkh − Rst ∀t,∀s (2)

uk∑

t=lk
δkt = 1 ∀k (3)
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δkt ≤
t−gkj∑

h=lk
δjh ∀t ∈ {lk, uk},∀(k, j) ∈ K|fkj = 1 (4)

N∑

k=1

rk|stk −
T∑

t=1

tδkt | ≤ V (5)

SLst = SLst−1 + ηinSINs
t −

SOUT st

ηout
∀t,∀s (6)

ϕLBCMax ≤ SLst ≤ ϕUBCMax ∀t,∀s (7)

χLBCMax ≤ SLst − SLst−1 ≤ χUBCMax ∀t,∀s (8)

xst ≤ EMax ∀t,∀s (9)

xst , y
s
t ≥ 0 ∀t,∀s (10)

SLst , SIN
s
t , SOUT

s
t ≥ 0 ∀t,∀s (11)

δkt ∈ {0, 1} ∀k,∀t (12)

The objective function (1) aims at minimizing the expected value of the difference
between total cost of energy purchased and the revenue for energy selling. Con-
straints (2) represents the energy balance for each hour t of the time horizon and
every scenario s, while condition (3) imposes that each controllable load k must be
activated within its time window. Constraints (4) model the precedence relation and
the eventual delay between two shiftable loads. Condition (5) limits to the value
V the overall regret due to the shifting from the preferred starting time of the
controllable loads shifts. Constraints (6)–(8) model the technological constraints
of the storage system. In particular, (6) states the energy level balance from one
hour to the next one, constraints (7) bound the energy level within the expected
operative range and conditions (8) limit the change in the energy level in each hour.
The energy amount that can be absorbed from the grid is limited to EMax by (9).
Finally, (10)–(12) define the nature of the decision variables.

We note that regret constraint (5) is non linear. A linearized formulation can
be easily derived by including additional nonnegative variables ε+k and ε−k and the
following conditions:

N∑

k=1

rk(ε
+
k + ε−k ) ≤ V (13)

ε+k ≥ stk −
T∑

t=1

tδkt ∀k (14)

ε−k ≥
T∑

t=1

tδkt − stk ∀k (15)
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The overall problem belongs to class of mixed integer linear problems and
depending on the number of considered scenarios the solution process can be
computationally demanding. However, the test cases considered hereafter, the use
of off-of-the-shelf software is still possible.

3 Computational Experiments

In this section, we describe the computational experience carried out in order to
validate the effectiveness of the proposed approach. The numerical code integrates
MATLAB R20151 for the scenario generation and parameters set-up phases and
GAMS 24.52 as algebraic modeling system, with CPLEX 12.6.13 as solver for
mixed integer problems. All the test cases have been solved on a PC Intel Core
I7 (2.5 GHz) with 8 GB of RAM.

We have considered three different prosumer configurations, representing a
family with one, three or five components, that we refer to as small, medium and
large prosumer. The expected values of the overall daily demand are 6.43 kWh,
8.67 kWh and 10.91 kWh, respectively. We assume that each type of prosumer is
equipped with building integrated PV panels with a nominal power of 3 kWh, whose
average daily production level depends on the season: 5 kWh for Winter, 9.86 kWh
for Spring/Autumn and 13.7 kWh for Summer. We also assume that the energy that
can be absorbed from the grid in 1 h (EMax) cannot exceed 4.5 kWh. As regards
the controllable loads we have considered four devices, whose characteristics are
reported in Table 1.

We also assume the presence of one precedence constraint related to the tumble
dryer start-up, which cannot start less than 2 h after the washing machine. The stor-
age system we have considered, the same for all the three prosumer configurations,
is a Li-Po battery, the standard for a household usage, with a nominal capacity
of 3.8 kWh and a starting level equal to 0.8 kWh. Other technical parameters are
reported in Table 2.

Scenario generation has been carried out by adopting the Monte Carlo technique
(see [3]). The overall demand and production from renewable systems have been
determined starting from the hourly expected values and considering random
variations. For all the test cases, the numbers of scenarios is 500. We have
considered different test cases by combining different prosumers configurations and
seasonal variations. For example, Fig. 2 reports the expected values of production
and overall demand for each hour for the medium prosumer case in a summer
day. As already stated, the purchasing and selling electricity prices are known in
advance. While the former is related to the time-of-use block the hour belongs

1www.mathworks.com.
2www.gams.com.
3https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

www.mathworks.com
www.gams.com
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/


330 P. Beraldi et al.

Table 1 Controllable loads parameters

Time Default starting Regret Working Hourly energy

Device window hour rate hours consumption [kWh]

Washing machine 9–13 9 1 1 1

Tumble dryer 9–15 11 2 2 1.5

Dish washer 14–17 15 0.5 2 1.2

Vacuum cleaner 10–16 15 1 1 0.5

Table 2 Storage system
parameters

ηin ηout ϕLB ϕUB χLB χUB

0.98 0.99 0.2 0.9 0.5 0.99

Fig. 2 Production, demand levels and purchasing price for the medium prosumer in a summer day

to (see Fig. 2), the latter is constant and equal to 0.1e/kWh. The figure clearly
shows the misalignment between hourly production and demand, which leads to
an economic disadvantage for the prosumer: when the demand is higher than the
production some energy must be purchased at a higher price w.r.t. the selling tariff.
However, the possibility to effectively use the storage system and to schedule some
loads can improve the overall economic efficiency.

Figure 3 reports the solution of the proposed model, in terms of storage system
level and market operations, for the same test case under a single scenario. As
evident, the controllable loads are planned to start when the PV production is high
and the storage system is full, without buying energy from the grid. Moreover, the
storage system is charged in the morning, when the purchasing price is lower (off-
peak hours) and when the production is greater than the demand, while its energy is
used later in the evening.
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Fig. 3 Energy procurement and management for the medium prosumer in a summer day

In order to further quantify the benefit provided by the proposed approach in
terms of monetary savings, we have compared the solutions obtained with different
resource configurations. In the following we denote with “HEM Full” the model
we have introduced in Sect. 2, assuming the availability of both storage system and
controllable loads, with “HEM FS” a formulation with the decision variables related
to the storage system assumed to be of first-stage, that is to be defined in advance
with respect to the observation of uncertain parameters, with “HEM no SS” the case
in which no storage system is available, with “HEM no SL” the situation with loads
that cannot be controllable and with “HEM no SS and SL” the case without both of
these two features. Figure 4 reports percentage increase of the annual cost of energy,

Fig. 4 Annual energy cost increase w.r.t. to HEM Full
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obtained by multiplying the daily cost by the number of days falling into the three
day types, of the different configurations w.r.t. “HEM Full”. It is evident that the
possibility to effectively manage some of the loads and the storage system can lead
to significant savings. In the test cases we have considered the greater benefit has
been registered for the small prosumer, which has the greater flexibility due to the
storage system management. For a larger prosumer a system with higher capacity
could have the same effect. It is also important to note that the possibility to use the
storage system as a “reactive” resource in a quasi real-time fashion allows to have a
more effective energy management.

Moreover, in order to evaluate the benefit obtained from explicitly accounting
for uncertainty within the optimization process, we have computed the value of
the stochastic solution (VSS) (see, for example, [11]), a measure traditionally used
to compare deterministic and stochastic solutions. This value is defined as the
difference between the objective function value obtained by solving the stochastic
model and the one obtained by solving the same stochastic problem with the first-
stage variables fixed to the values of the optimal solution of the deterministic (with
the expected values) problem (also known as EEV). Table 3 reports the relative VSS
expressed in percentage (with the respected to EEV) for the different prosumers on
a daily basis. The results show that the medium prosumer is the one who can have
the higher benefits from an effective management of uncertainty. Moreover, we note
that in the summer, when the production is higher, the VSS values are more relevant.

A final set of experiments has been carried out in order to evaluate the impact of
the maximum regret value on the solutions. Table 4 reports the objective function
values obtained for different values of V .

Note that for V = 0 all the loads can not be controlled. As we increase the value
of V , a more flexible scheduling can be obtained achieving higher savings in terms
of total electricity procurement cost.

Table 3 Value of stochastic
solution (%)

Prosumer Winter Spring/Autumn Summer

Small 5.1 5.65 6.8

Medium 7.73 8.33 10.59

Large 5 5.7 6.2

Table 4 Energy costs for different values of V

Small Medium Large

Spring/ Spring/ Spring/
V Winter Autumn Summer Winter Autumn Summer Winter Autumn Summer

0 2.42 1.22 0.63 2.91 1.67 0.77 3.54 2.53 1.28

3 2.35 1.11 0.34 2.84 1.65 0.76 3.47 2.21 1.26

5 2.35 1.10 0.31 2.84 1.65 0.76 3.46 2.20 1.26

7 2.35 1.10 0.27 2.84 1.65 0.75 3.46 2.20 1.26
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4 Conclusions

The paper addressed the home energy management problem faced by a prosumer
hosting PV panels and storage devices. The smart home is also equipped with
a smart controller able to manage the electrical appliances eventually postponing
their use in more convenient time slots. The inherent uncertainty affecting the
main parameters involved in the decision process is explicitly accounted for by
adopting the two-stage stochastic programming modeling paradigm. The solution
provides the prosumer with the optimal scheduling of the controllable loads and the
using profile of the storage system that guarantee the minimum expected energy
procurement cost, taking into account the prosumer’s comfort. The computational
experiments have been carried out by considering three types of residential pro-
sumers. The results have shown that significant savings can be achieved by the
optimal use of the storage device and scheduling of the loads. The advantage
deriving from the use of a stochastic programming approach over a deterministic
formulation, measured in terms of VSS, is also significant.
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Optimization Methods for the Same-Day
Delivery Problem

Jean-François Côté, Thiago Alves de Queiroz, Francesco Gallesi,
and Manuel Iori

Abstract In the same-day delivery problem, requests with restricted time windows
arrive during a given time horizon, and it is necessary to decide which requests to
serve and how to plan routes accordingly. We solve the problem with a dynamic
stochastic method that invokes a generalized route generation function combined
with an adaptive large neighborhood search heuristic. The heuristic is composed of
destroying and repairing operators. The generalized route generation function takes
advantage of sampled-scenarios, which are solved with the heuristic, to determine
which decisions should be taken at any instant. Results obtained on different
benchmark instances prove the effectiveness of the proposed method in comparison
with a consensus function from the literature, with an average decrease of 10.7%, in
terms of solution cost, and 24.5%, in terms of runtime.

Keywords Same-day delivery problem · Pickup and delivery problem · Dynamic
stochastic algorithm · Adaptive large neighborhood search · Route generation
function

1 Introduction

Same-day delivery is a problem that has several real-world applications in online
retail. Other similar, related applications of this problem emerge in the delivery of
groceries and transportation of patients between their homes and a hospital. This
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problem is related to the classical NP-hard vehicle routing problem and claims
research attention, especially due to the complicated, expensive logistic decisions
that it requires to take. Assuming a time horizon over which a fleet of identical
vehicles should operate, it is necessary to determine routes for these vehicles. The
objective is to maximize the number of requests that can be delivered on time
and, as a secondary objective, minimizing the traveled distance. Requests arrive
dynamically during the time horizon, each one associated with a time window
that needs to be respected. Consequently, vehicles may return to the depot after
performing delivery to pickup products and continue serving the following requests
that will arrive later on.

The Same-Day Delivery Problem (SDDP) is a dynamic problem introduced
in [10]. The authors assumed that vehicles could return to the depot to pickup
freight only after finishing their current routes. Based on sampled-scenarios, the
authors used a consensus function as a way to make dynamic decisions and
consequently generate the vehicle routes. To create the routes, they solved a team
orienteering problem with time windows and multi-trips [5]. They also considered
that a vehicle could wait at the depot while new requests arrive (i.e., they studied a
waiting strategy). The idea is to anticipate decisions based on the already known
requests and potential future ones that were sampled from known probability
distributions. From the experimental results, the authors concluded that considering
the uncertainty of future requests had an essential impact on the solution quality.

The SDDP can be viewed as the dynamic version of a one-to-one Pickup and
Delivery Problem (PDP) with time windows (TW), with a single pickup location,
which is the depot, where vehicles need to return for new pickups during the time
horizon. Comprehensive surveys on the PDPTW can be found in [2], for to the
transportation of goods, and in [6], for the transportation of people. Some further
interesting related works are: [3], in the delivery of groceries, where time windows
must be strictly respected, and requests are generally known 1-day in advance; [1],
that aims at maximizing the total expected profit, where vehicles can depart from
the depot as soon as requests are available (i.e., there is no waiting strategy); [4],
in which release dates are associated with requests and a genetic algorithm with
local searches is used to solve the problem; [8], that solves a PDPTW in which the
pickup and delivery nodes are known in advance but not the time at which requests
are available (i.e., requests are arriving dynamically during the time horizon); [9],
that solves a multi-period problem in which requests are dynamically integrated into
existing decisions, and some requests can be served on the next day.

In this work, we tackle the SDDP with the aim of minimizing the number of
rejected requests, and, as a secondary objective, the total routing cost that is incurred
from performing all deliveries. Moreover, when a vehicle starts performing its route,
we allow it to return to the depot after serving a customer, and before completing
its route to pickup more requests. The latter assumption generalizes the proposal
in [10], which allows vehicles to return to the depot only after finishing their
routes, and enlarges the space of decisions substantially. This is expected to come
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at the expense of a greater computational effort. Considering these assumptions, we
propose a generalized route generation function to improve how routes are built in
[10]. We develop an Adaptive Large Neighborhood Search (ALNS) [7] to iteratively
solve sub-instances on the sampled-scenarios.

In the following, we present results for three versions of the SDDP: static, in
which the problem is solved with the ALNS for all the time horizon, assuming
that all requests are known in advance; dynamic, in which the ALNS is applied
several times during the time horizon in order to update the current solution; and
dynamic-stochastic, in which the generalized route generation function with the
ALNS, considering sampled-scenarios of future information, is used to update the
current solution. Results are compared with those of the consensus function in [10],
especially in the dynamic-stochastic version, considering 120 instances that such
authors have proposed.

This work is organized as follows: Sect. 2 has a formal description of the
problem, with its objectives and constraints; Sect. 3 describes the ALNS and the
generalized route generation function, highlighting the differences over the methods
proposed in [10]; Sect. 4 contains the experimental results of the three versions of
the problem; finally, Sect. 5 brings concluding remarks and directions for future
works.

2 Problem Definition

The SDDP that we study considers a fleet M of identical vehicles and a set L of
customers locations over a geographical area. A central depot, denoted as node 0, is
associated with start and end times between which vehicles can depart and arrive.
These times are the depot working hours or the time horizon over which the depot
and vehicles are in operation. With each pair i, j ∈ L, it is associated a deterministic
travel time tij and a cost cij (e.g., distance) that are known in advance. During the
depot working hours, requests arrive at a rate λi ≥ 0 from each location i ∈ L. Let
R be the set of requests that will occur during the time horizon. Set R is composed
of requests that are known in advance and some others that are unknown at the
beginning of the time horizon, but will become known as time unfolds. Each request
k ∈ R has a service time μk , a demand dk , and a delivery time window [sk, ek].
Request k is revealed at release time rk and can only be served later on. Requests
that are found impossible to deliver on time can be assigned to a third-party logistics
operator at the expenses of an additional cost. The delivery costs incurred by the fleet
are always lower than the cost of the third-party logistic operator.

Vehicles start and end at the depot according to their working hours and may
serve one or more available requests, without violating their capacityQ. The design
of the route associated with each vehicle may involve waiting at the depot for
new requests or picking up some requests to perform the deliveries. Besides, no
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diversion is allowed when a vehicle is on the way to a customer. As soon as a
delivery is done, the vehicle can return to the depot to pickup new requests. This
means the vehicle is not required to finish serving all its onboard requests before
going back to the depot. The objective of the SDDP is to plan routes for vehicles,
aiming at first maximizing the number of requests served by the fleet, and secondly
minimizing the total cost of performing the routes.

The description above corresponds to the dynamic version of the problem. For
this variant, we developed an ALNS to solve partial instances at given times of the
time horizon. The ALNS is also used to solve the static version of the problem,
in which all requests are known at the start time of the day. The solution of this
version serves as an estimation for the other dynamic versions. Aiming at improving
solutions of the dynamic version, we consider the dynamic-stochastic version, in
which sampled-scenarios are used to help with decisions regarding possible future
requests.

3 Solution Methods

This section first describes how the SDDP is modeled, then presents the different
events that can occur in real-time. Therefore, it describes the ALNS and the two
different approaches for tackling the problem: dynamic and the dynamic-stochastic.

3.1 Modeling

The problem is modeled as a classical PDPTW with the inclusion of release dates for
the arrival of new requests. At any instant, the set of known requests is built. Each
request is composed of a pickup node at the depot and a drop node at the customer
location, besides a restricted time window. Modification of any element that was
performed is forbidden, so only choices concerning new requests or nodes that were
not visited can be changed. Scenarios containing future requests are generated to
help on minimizing costs. Futures requests are dealt like regular requests, with the
exception that a vehicle cannot take any action before the release date. This means
the vehicle has to stay idle until the release of the request.

It is important to note that our method allows all possible sequences of potential
future and known requests. This is not the case in [10], where future requests are
also generated, but a vehicle must return to the depot to do the pickup every time a
future request is encountered in its route. The drawback of this approach is that only
a subset of possible routes can be produced. For example, it cannot create routes
where a vehicle picks up a real request but waits at the depot for future requests.
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In our approach, this type of routes is allowed, and the vehicle can return to the
depot even if it is loaded with known requests still to be delivered.

3.2 Event Management

In [10] two types of events are defined: (1) arrival of a new request when there
is at least one vehicle that is waiting at the depot; and, (2) arrival of a vehicle at
the depot or completion of the waiting period of a vehicle. Every time a new event
happens, instances of the PDPTW are generated and are solved using the ALNS.
When allowing vehicles not to complete their routes, we also consider a delivery
completion as a new event. Namely, when a vehicle completed a delivery, it can be
diverted to the depot to pickup requests and perform the deliveries later. Finally, it
is worth noting that this additional event will possibly increase computational time.

3.3 Adaptive Large Neighborhood Search

The proposed ALNS is based on [7], and uses a simulated annealing acceptance
probability function to accept worse solutions. It works as follows: (1) it obtains a
feasible solution x by a constructive heuristic; (2) it applies a destroy operator on
x to obtain x′; (3) it applies a repair operator on x′ to obtain x′′; (4) it replaces x
with x′′ if x′′ has lower cost or else by applying the acceptance probability function;
(5) it goes back to step (2) if the maximum number of iterations is not reached, or
otherwise it returns x.

At step (1), the initial solution is constructed by a regret insertion heuristic. At
step (2), we consider the related and random destroy operators. In the first operator,
requests that are closely related (i.e., in terms of cost, time, and capacity) are
removed. In the second one, requests to be removed are randomly selected. Then, the
removed requests are reinserted at step (3) by one of two repair operators. The first
one is a greedy operator that reinserts iteratively each of the removed requests into
its best position. The other one is a standard regret reinsertion operator. At steps (2)
and (3), an operator is chosen according to the roulette wheel selection principle,
in which a given weight is associated with each operator. These weights are
dynamically updated by using statistics of previous iterations as well as a reaction
factor that controls the influence of the weights. Moreover, at the end of step (3),
a local search is applied in x′′, consisting of determining the best moment to serve
each request that has not been served yet. Regarding the acceptance probability
function, a given initial temperature is decreased over the ALNS iterations, and thus
the probability of accepting worse solutions in comparison with the current one is
decreased as well.
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3.4 Dynamic Problem

In this SDDP version, a PDPTW instance and its solution are maintained over
time. On each new event, the instance is updated with further information (e.g.,
delivery completion, new requests, etc.) and elements performed in the past are
fixed inside their routes. The ALNS is run to obtain a new solution, and it updates
the maintained solution. New pickup and departure commands to the vehicles are
generated. Requests that remained outside the solution are given to the third-party
logistics operator when they become impossible to serve.

3.5 Dynamic-Stochastic Problem

To improve routes that are planned in the dynamic version for any event, sample-
scenarios of future requests are used. These scenarios are generated from a
probability function, taking into consideration the known requests until the current
time. Each sampled-scenario is solved with the ALNS, similarly to what is
performed in the dynamic problem, however, now also considering future requests
that contemplate a time horizon.

After solving all scenarios, a generalized route generation function is used to
identify the best solution among all of them. Then, such a best solution is used
to update the current solution. This function works on the following way: (1) for
each solution of each scenario, remove the sampled requests and every real requests
that lie after at least one sampled request from all routes, since they indicate that a
vehicle must wait or return to the depot to pickup some future requests; (2) assign a
score to each solution based on the number of times each of its routes are in other
solutions, where the solution with the highest score is chosen and implemented.
As commented before, requests outside the solution are assigned to the third-party
logistics operator when they become impossible to serve.

4 Experimental Results

All the methods were coded in the C++ programming language and run on an Intel
2.667 GHz Westmere EP X5650 processor. The experiments were carried out over
a subset of instances from [10]. The instances under consideration are of two types
that differ in the way customer locations have been generated, namely, clustered (C)
and randomly dispersed (R). For each type, we consider data sets that contain 100
(C_1 and R_1) and 200 (C_2, C_6, R_2, and R_6) customers, as well as five types
of time windows that are TW.d1, TW.f, TW.h, and TW.r, with 1-h deadlines, and
TW.d2, with a 2-h deadline. Moreover, there are four different request arrival rates,
namely, 1, 2, 3, and 4. Therefore, we have a total of 120 instances, where the first
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instance is called TW.d1_C_1_hom_1 (and so on). The number of vehicles is fixed
to 10 for each instance.

Regarding the parameters of the methods, we carried out preliminary experi-
ments in which the sampling horizon was defined over the entire horizon, and the
ALNS had 50 and 250 iterations, assuming 30 scenario samples. These experiments
indicated, in terms of solution quality and runtime, that performing 250 iterations
for the ALNS is preferable. Thus, such values were adopted when solving all the
120 instances. The results that we obtained are presented in Tables 1 and 2. Each
line of these tables has the name of the instance, the solution values of the static,
dynamic, and dynamic-stochastic versions as explained in Sect. 3, as well as the
solution value of the dynamic-stochastic version obtained by using within the ALNS
the route generation method by Voccia et al. [10] with the ALNS. For each problem,
it is presented the total solution cost, the number of unserved requests (#Not), and
total computational time in seconds.

Observing Table 1, the average solution cost and runtime (in seconds) are,
respectively: 2203.5 and 25.4, for the static problem; 3319.6 and 26.0, for the
dynamic problem; and, 2592.7 and 14,806.1, for the dynamic-stochastic problem
that was solved with the generalized route generation function. We notice that the
dynamic-stochastic that was solved with the consensus function in [10], where
these values are 2913.2 and 19,430.6, respectively, is outperformed by the proposed
method. Indeed, we can observe a decrease of 11.0% and 23.8%, respectively. In
terms of the number of unserved requests, the proposed method performed the best
with 0.3 more requests on average over [10].

The results of Table 2 are very similar to those of Table 1. In summary, from
Table 2, the average solution cost, number of not served requests, and runtime (in
seconds) are: 2321.4, 4.8, and 27.1, for the static problem; 3253.0, 14.4, and 27.3,
for the dynamic problem; 2633.1, 8.7, and 14,622.6, for the dynamic-stochastic
problem that was solved with the generalized route generation function; and, 2937.2,
8.9, and 19,552.5, the dynamic-stochastic that was solved with the consensus
function in [10]. Once again, the proposed method can overcome the dynamic. In
terms of solution cost and the number of not served requests, there is a decrease of
19.1% and 35.7%, respectively. In comparison with the dynamic-stochastic of the
literature, in terms of solution cost and runtime, there are a decrease of 10.3% and
25.2%, respectively. On the other hand, it better approximates the results of the static
problem, because, in terms of solution cost and the number of not served requests,
they have the smallest percentage deviation.

Finally, with relation to the instances characteristics, comparing the dynamic-
stochastic problem with the respective version that was solved with the consensus
function in [10], from Tables 1 and 2, we can highlight that the latter performed
worse for all types (R and C), time windows (TW.d1, TW.d2, TW.f, Tw.h, and
TW.h), and requests arrival rates (1, 2, 3, and 4) in terms of average solution cost
and runtime. Thus, we can conclude that the generalized route generation function,
which allows vehicles to stop their current routes and return to the depot to pickup
requests, performs well in practice.
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5 Concluding Remarks and Future Research Directions

In this paper, we studied a same-day delivery problem in which requests can
be rejected (i.e., reassigned to a third-party logistics operator by paying a cost).
We developed a generalized route generation function and combined it with an
ALNS. We also adopted sampled-scenarios to anticipate potential future requests
and improve decisions. Aiming at improving results of a recent algorithm in [10],
our function allows vehicles to return to the depot to pickup requests even if they
have not completed their routes.

The computational results of the static, dynamic, and dynamic-stochastic ver-
sions over different types of instances, arrival rates, and time windows have
indicated that the proposed method is quite effective to solve the problem when
sampled-scenarios are taken into consideration. In general, there is an overall
average increase in the solution cost, considering the static problem, of 42.3%,
compared with the dynamic, 15.5%, compared with the dynamic-stochastic that uses
the generalized route generation function, and 29.3%, compared with the dynamic-
stochastic that uses the consensus function in [10]. In terms of runtime, this increase
is of 1.5%, 56,061.8%, and 74,295.4%, respectively.

Future works will focus on reducing the total runtime of the proposed method,
including a careful study on the number of scenario samples, sampling horizon,
iterations of the ALNS, and events. We will also attempt policies to improve
insertion algorithms. We are also interested in presenting a formal mathematical
formulation of the problem, as well as building a parallel version of the proposed
dynamic-stochastic method.
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Intermodality and Rail Transport: Focus
on Port Rail Shunting Operations

Daniela Ambrosino and Veronica Asta

Abstract The presence of many actors interacting in the intermodal transport
where rail modality is involved, causes some inefficiencies and some bottlenecks.
These bottlenecks make the intermodal transport rigid and less fluid than the road
transport. Operation research approaches can be useful as support for the decision
makers in order to improve the process and to favour the development of rail
transport. Thus, this work aims at describing the entire rail transport process within
the intermodal transport in order to highlight the critical points that can be improved;
in particular, both port rail shunting activities, and port rail terminal operations are
discussed. A focus on a novel critical aspect never investigated before (at least for
the author knowledge) is reported: the port rail shunting re-scheduling problem. A
discussion on possible approaches for solving this problem is presented, together
with a first approach based on a space-time network.

Keywords Port rail shunting activities · Port rail shunting scheduling problem ·
Space-time network

1 Introduction

Goods are transferred every day from origins to final destinations and, generally,
shipments involve more than a single mode of transport. In particular, deep-sea
ports play an important role of gateways for both import and export cargoes and
the hinterland transportation system too [11].
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The hinterland haulage (i.e. the freight transport between the origin/destination
ports and the origin/destination of cargoes in the hinterland) is facing the problem to
quickly manage increasing cargo volumes (due to mega vessel employment), traffic
congestion and traffic emission problems. The most of freight transportation is done
by road because of time saving and flexibility, even though rail freight transportation
is considered environmentally friendly. The intermodal freight transport seems to
be the best answer in order to obtain efficient hinterland transportation systems. The
development of intermodalism requires to pay attention to three elements: transport
links, transport nodes, and the provision of efficient services [7]. A review of
operations research opportunities in intermodal freight transport research is reported
in [12].

In order to provide door-to-door service, railways must be integrated with
existing logistical networks. Interfaces between railways and other transport modes
are essential in order to encourage a modal shift. An example of global freight
transport is depicted in Fig. 1, in which it is possible to note the hinterland haulage
and the shunting yards that are present for each node of the network where goods
have to change transport mode. Shunting yards represent important nodes for
improvement, since for example the average dwell time of freight cars in terminals
is more than 23 h in the U.S. Therefore, improvements in the operational processes
at shunting yards can lead to a better competitiveness of rail transport [8].

In the literature the term shunting process is generally used for the operations in
the shunting yards of decoupling the freight cars of inbound trains and form new
outbound trains heading to some other shunting yard or to the final destination, see
for example [3, 8, 19].

Effective planning and operation of shunting yards is therefore a decisive factor
for reliable and punctual freight transportation, and the effectiveness of the shunting
yard also affects the overall rail system fluidity. Unfortunately, scheduling the
operations of a yard is hard as there are different shunting tasks with complex
dependencies.

In this work the shunting operations of freight trains either within the port area
or the intermodal inland terminal are considered. In particular, we refer to Italian
transportation systems in which there is a shunting company that has the duty of
taking the train from the railway station outside the port/inland area and bring it to
the dedicated area within the freight terminal. Therefore, the main shunting activities
to manage are those concerning the whole train’s transfer within the port/inland
areas.

The shunting procedure is complex and rail yards constitute bottlenecks in the
rail freight network, often causing delays to individual shipments. Thus, thinking
that an improvement in shunting yard activities, related to the connection of the
rail transport to road and sea ones, can have a great impact on the reliability of
rail services, the present work tries to describe the container handling process from
the ship discharge, passing through the yard’s stop, until the container load on the
train and the train departure on the railway network towards the inland terminal
of destination, focusing the attention on shunting depots that are present at different
points of the network, as depicted in Fig. 1. Moreover, in the present work the critical



Intermodality and Rail Transport: Focus on Port Rail Shunting Operations 353

F
ig

.1
A

m
ar

iti
m

e
ba

se
d

in
te

rm
od

al
fr

ei
gh

tt
ra

ns
po

rt
sy

st
em



354 D. Ambrosino and V. Asta

points of the analyzed process will be highlighted. The entire process is complex
both in terms of passages to execute, subjects involved, flows of information and
documents to manage.

The paper is organized as follows: Sect. 2 describes optimizing activities to make
intermodal transport competitive; Sect. 3 is dedicated to the analysis of the port
rail shunting scheduling and re-scheduling problem. It includes the description of
a space-time network model for scheduling shunting operations and some very
preliminary results. Finally, in Sect. 4 some conclusions are outlined.

2 Optimizing Activities to Make Intermodal Transport
Competitive

The presence of many actors interacting in the intermodal transport where rail
modality is involved, causes some inefficiencies and some bottlenecks. Let us start
describing the import and export cycle.

The shipping company transports goods in import until the port’s terminal by
ship. The ship docks at the terminal’s quay and let the discharge operations starting.
The port’s terminal has to manage, other than the discharge operations, all the
activities related to both the goods stocking at the terminal’s yard and the trains
loading. All these activities can be guided by a decision support system based on
optimization models and methods [17].

When the train is loaded, the shunting manager (in the following SM) intervenes
in the process. This actor has the duty to execute all the operations related to the
trains transfer from the ports terminal to the tracks outside the port. SM carries
out also other accessory operations, e.g. the wagons discarding, transfer of single
carriages, introduction/extraction of empty carriages. The goods to be loaded on the
train must be subjected to customs controls. The whole train must be controlled by
the financial police and it must be subjected to the technical verification by the rail-
way undertaking. This latter is the actor that will manage the train during the transfer
on the national network. The first delivery passage of the train is from the terminal
manager to SM and it happens when the train is on the terminals tracks. The second
delivery passage of the train is from the SM to the railway undertaking and usually
happens when the train is positioned on the tracks of the railway station outside
the port area. Since this moment, the train will travel on the rail national network,
controlled by the infrastructure manager, toward the inland terminal of destination.
When the train will arrive at the inland terminal will be taken over by the SM of the
inland terminal, which will transfer it inside for the next discharging operations.

The flow of the export cycle is exactly the viceversa. When the train arrives at
the last railway station outside the port area, the delivery passage of the train, from
the railway undertaking to SM of the port, happens. The SM has the duty to transfer
the train within the port area until the delivery on the terminals tracks. It has also to
execute the required accessory operations.
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By analyzing port rail shunting activities (Sect. 2.1) and port rail terminal
operations (Sect. 2.2), the critical points where it is possible to optimize the process
can be underlined.

2.1 Port Rail Shunting Activities

In this section the role of the SM in the Italian transportation network is described
and the identification of the problems arisen in the port shunting areas will follow.

The port rail SM receives an annual plan of the operations to execute on the
arrival and departing trains to and from the port. This specific plan is updated on
weekly base keeping into consideration hours variations, and suppression. The main
problem arises on daily level when events such as delays, suppression and inserting
of new extraordinary trains occur. At this point, SM has to quickly manage and re-
plan the operations in order to execute all the requested activities, respecting both
the fixed time slot with the terminal and the time tracks of the trains departing on
the national rail network. All the activities need specific resources both in terms of
types and numbers, in order to be completed, such as shunting teams, locomotives
and tracks.

Thanks to optimization approaches for supporting SM during the real time re-
scheduling of daily operations the whole rail transport process will gain in terms
of reduction of delays and major reliability [4]. Also at tactical and strategic levels
optimization methods can support SM for defining the best policy to improve the
service quality in favour of intermodal transport. At strategic level SM decides about
the infrastructure investments and the resources sizing necessary to execute in the
following years forecasted activities.

At tactical level the decisions are related to the assignment of the resources
belonging to the port shunting company to the different activities that have to be
carried out. Note that, generally, all the operations that the shunting manager must
execute are planned 1 year before.

2.2 Rail Activities in a Maritime Terminal

In this section the role of the maritime terminal is described and the identification
of the problems arisen in the rail activities in the terminal will follow. Regarding
the export flows, the terminal receives the trains with containers that will leave the
terminal by ship. Generally, these containers are transferred either from the train to
the ship or from the train to the yard. It is important to be able to receive the train in
the correct planned time window and to unload it quickly.

As far as the import flow is considered, the terminal activities to manage in such
a way to be efficient and to be able to respect the time windows for trains departures
are related to the optimal planning and management of train loading and the optimal
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use of terminal resources (rail tracks, reach stacker, etc.). Containers unloaded from
the vessels and leaving the terminal by rail are stored in a rail yard near tracks.
The optimal management of the storage areas dedicated to the terminal rail cycle is
really important. In fact, in accordance with the available information the storage in
the yard can be more or less well organized and can require or not housekeeping
operations before starting the loading operations [10]. Moreover, depending on
the terminal layout and operational procedures, it is possible to maximize the
performance of the whole rail cycle in terms of re-handles and travel distances by
fulfilling timing constraints and safety requirements [6].

The train loading operations must be managed in such a way to optimize
the usage of all the handling equipment/resources available in the terminal and
to respect the train load plans. The definition of the train load plans has the
objective of optimally assigning containers to slots of the train wagons in order
to satisfy structural and stability constraints of trains and while maximizing key
performance indicators specifically characterizing the terminal operations (i.e.,
related to the operativity of handling resources or to commercial requirements) [1].
The optimization of loading/unloading operations specifically refers to the optimal
definition of all the activities of handling resources necessary for performing the
movements of goods on/from the train wagons. The activities must be scheduled
in order to respect timing constraints, the features of handling procedures and to
obtain the best exploitation of terminal resources that can be shared among several
terminal activities [9].

3 Port Rail Shunting Scheduling and Re-scheduling Problem

As far as shunting activities are considered, one of the most impacting task on
reliability that SM has to realize is the re-scheduling of the activities, due to delays,
suppression and inserted new extraordinary trains. These activities, daily managed
by SM, are here below better explained.

The primary shunting (see Fig. 2) consists on both the delivery passage of the
train between the railway undertaking and the shunting manager and the transfer of
the train for bring it outside (import cycle) or inside (export cycle) the port area. The
primary shunting usually needs one shunting team, one locomotive and two tracks,
the one for transferring the train inside/outside the port and the one to position the
train within the port area.

The secondary shunting (see Fig. 2) consists on both the transfer of the train
for bring it outside (import cycle) or inside (export cycle) the terminal area and
the delivery passage of the train between the shunting manager and the terminal
manager. The resources needed for performing secondary shunting are the same
used for the primary shunting, and the two tracks are used to keep the train within
the port area and to transfer the train inside/outside the terminal.

Finally, the accessory shunting consists on operations, which may be requested
from the actors on wagons, such as wagons’ discarding and extraction or intro-
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Port’s Terminal Station’s tracks Railway Network Inland Terminal

Port’s area

Port rail shunting activities

Primary shuntingSecondary shunting

Fig. 2 Primary and secondary shunting operations

duction of empty/full wagons on a track. Each accessory shunting operation has a
physical point of origin and a physical point of destination (i.e. terminal, stations
and yard tracks). The resources needed vary operation from operation. Generally,
the processing time for executing these operations depends on the train on which
the activities have to be made.

3.1 Port Rail Shunting Re-scheduling Problem

Given a time horizon (i.e. 1 day), given a set of jobs, i.e. the trains passing through
the port area on which some shunting activities, also called operations, have to
be performed on, given a set of different types of resources R needed to execute
the operations, the problem consists on defining the best sequence of activities to
perform on jobs while satisfying some capacity, sequencing, time windows and
priority constraints. In the re-scheduling problem the best sequence is the one
minimizing the sum of the delays of the completion of the jobs with respect to
their due time (derived by the scheduling).

Let be M the set of operations, composed by the primary, the secondary and the
unique shunting operations, and the accessory shunting operations.

The operations that have to be performed on job j are known, together with their
execution time (i.e. tj,m is the processing time of operation m for job j ). Moreover,
they have to be performed with a specific order. Let rj,m be the sequence number of
operation m on job j .

Set R of the needed resources to execute the shunting activities is the union of
three subsets: SQ the shunting teams, L the locomotives and B the tracks. Note
that, some operations require specialized resources, i.e. an electrical locomotive
instead of a diesel one, and so on; as a consequence, it is necessary to distinguish
the different types of resources. Thus, SQ is the union of the set of general shunting
teams SQG and shunting teams for a specific activity SQS ; L is the union of diesel
locomotives and electrical ones (LD U LE), while in B there are track(s) for the
entrance in the port area BE , shunting park tracks BP and the tracks from the
shunting park to the port terminal areas BT .
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For each operation it is necessary to know, not only the amount of needed
resources, but also the compatibility with different types of resources. For example,
a secondary shunting operation requires and is compatible with a general a shunting
team sq ∈ SQG, either an electric locomotive l ∈ LE or a diesel one l ∈ LD and
two specific tracks: one b ∈ BP and one b ∈ BT .

Suppose to have to manage a job ja1 requiring the primary and secondary
operations. The order of the operations is given, together with their duration.

SM decides the schedule of these operations (here named oP and oS1 ) on the
job ja1 , taking into account also the others jobs to manage. For job ja1 he has to
define the starting time of the first operation to execute on the job, (sja1 ,MP

), while
eja1 ,MP

the ending time is a consequence. Ending the first operation, the second can
start. The starting time of the second operation is sja1 ,Ms1

while eja1 ,MS1
indicates

the ending time.
Figure 3 shows the scheduling of the operations together with the used resources.

Suppose to have the following available resources: three shunting teams (two
general sq ∈ SQG and one specific sq ∈ SQS), four locomotives (two electric
l ∈ LE and two diesel l ∈ LD) and nine tracks (three tracks of entrance b ∈ BE ,
two tracks of the shunting park b ∈ BP and four terminal tracks b ∈ BT ). Looking at
Fig. 3, operationMP will be performed with the generic shunting team sq1 ∈ SQG,
the electric locomotive l1 ∈ LE , using the entrance track b2 ∈ BE from the station
outside the port area to the track b4 ∈ BP of the shunting park area while operation
oS1 with the general shunting team sq2 ∈ SQG, the same electric locomotive

Fig. 3 Resources scheduling for two operations on job ja1
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l1 ∈ LE and the tracks b4 ∈ BP , of the shunting park, and b7 ∈ BT , of the port
terminal area.

Every day SM needs to (re-) schedule on average a lot of operations for a
certain number of trains (jobs) passing through the shunting area. A decision support
system can be helpful. We need a good formulation for facing and solving quickly
this difficult problem. In the next section different formulations proposed in the
literature are discussed. Even if, probably its more natural formulation is as job
shop, due to the presence of many limited resources to use we propose a network
flow formulation based on a space-time network.

3.2 (Re-)scheduling Problems Literature Overview

In general, the railway system is based on a timetable which consists on a set of
train’s trips. At the beginning, when the activities’ scheduling is built, the timetable
and the resources duties are without conflicts, but in the real time operations
problems are unavoidable. Conflicts can occur for delays due to disturbances
or disruptions, thus the railway system’s timetable has to be re-scheduled. This
problem in literature is called Train Timetable Rescheduling (TTR). The aim of
TTR is to quickly re-obtain a feasible timetable of sufficient quality [4]. TTR
has been approached with a no-wait job shop scheduling model. In [13] the job-
shop scheduling problem with blocking and/or no-wait constraints is addressed; the
problem was formulated by means of an alternative graph, a suitable model for this
job shop problem, also able to include several real-world constraints. The authors
of [13] consider a set of operations which have to be performed on fixed machines
while in the problem under inspection we have flexible machines linked to different
resources. Also Pacciarelli et al. [15] show how the alternative graph formulation
is able to represent in details the train scheduling problem. Differently from our
problem, tracks are the only resources taken into account and the speed is an element
used to avoid conflicts.

Sometimes TTR is split into a re-timing and a re-routing problem, as in [5]
that describes a number of algorithmic improvements implemented in the real-
time traffic management system ROMA (Railway traffic Optimization by Means of
Alternative graphs), achieved by incorporating effective re-scheduling algorithms
and local re-routing strategies in a tabu search scheme.

Then, in [2] is proposed a hybrid approach for solving the resource-constrained
project scheduling problem which is an extremely hard combinatorial optimization
problem of practical relevance. Jobs have to be scheduled on resources subject to
precedence constraints such that the resource capacities are never exceeded and the
latest completion time of all jobs is minimized. The specific relations of precedence
between the activities used in [2] are not so strictly in our problem.

Meng and Zhou [14] develop an innovative integer programming model based
on a time-space network for the problem of train dispatching on N-track network by
means of simultaneously re-routing and re-scheduling trains. An integer program-
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ming formulation for the train dispatching problem based on a space-time network
is also proposed in [16]. These works consider only tracks as resources capacity
constraints.

The problem addressed in the present work is focused on the re-scheduling of the
shunting operations. In general, this is different from the previous problems since
the main decisions are related to the starting time of the operations on the jobs, and
the feasibility is strongly linked to the resources that must be used for executing
activities. It is closer to the problem of re-scheduling activities either in a station or
in a depot.

For station shunting scheduling problems, Tomii and Zhou [18] propose an
algorithm combining probabilistic local search and PERT (Program Evaluation and
Review Technique).

Depot shunting scheduling problems, however, are again more complicated
compared with the station shunting scheduling problems with regard to a larger
number of task types, workforce types and more complicated criteria. Tomii and
Zhou [18] consider to adopt the genetic algorithms (GA) but the search space
becomes too large because in solving the depot shunting scheduling problem,
exact timings for the start and end of each task have to be decided. To solve
the problem, the authors propose to combine the genetic algorithm with PERT.
They introduce a two-stage algorithm, in which a rough shunting schedule without
explicitly considering the timings of each task is produced by GA, and the timings
of tasks and shunting are decided by using the PERT technique.

3.3 A Time-Space Network Model for Scheduling Shunting
Operations

Inspired by Meng and Zhou [14], a time-space network for a simple case of
the problem described in Sect. 3.1 is investigated. In particular, a shunting area
connected to a terminal, and a set A of trains approaching the shunting area for
executing some operations (primary shunt, secondary shunt or unique shunt) are
considered.

Given a planning horizon T split into s time periods (T = {1, 2, s}) and the
operations to execute on the trains, the problem consists in determining the starting
and ending time of each operation to execute in the shunting area, for transferring the
trains approaching the area in aoj , and having to be inside the terminal respecting
their time of arrival adj .

The set A of trains include a set of jobs (trains) requiring the unique shunting
(AU ) and trains requiring the other operations (A = AU∪ANU ). The set of shunting
operations M is here limited to the primary, the secondary and the unique shunting.

It is known the required time for executing each shunting operation m on each
job j (tj,m) m ∈ M , j ∈ A. We denote ij,m and fj,m the starting and the ending
time of each operation m for each job j .
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The shunting manager has a limited number of teams (sq) for realizing all the
activities and there is also a capacity for the number of operations that can be
realized in each period t : let MPmax , MSmax and MUmax be the maximum number
of primary, secondary and unique shunting operations that can be realized in t ,
respectively. Also the number of trucks in the station and in the park is limited,
so Smax and Pmax are the maximum number of trains that can wait in the rail station
and in the park, respectively.

For solving the above described problem we define a spatial-time network G =
(V ,E) as follows.

The set of nodes is given by the union of different subsets:
The origin/destination nodes (O, D) that represent the arrival of each job to the

shunting area and its exit (that correspond to its entrance in the terminal)

O = {Oj |j ∈ A}
D = {Dj |j ∈ A}

The operational nodes used for representing both the different zones in the
shunting area (i.e. the station S, the park P ), and the shunting operations (i.e. MP ,
MS,MU ). These nodes are replicated for each period of time in T , thus are defined
as follows:

S = {St |t ∈ T }
MP = {MPt |t ∈ T }
P = {Pt |t ∈ T }
MU = {MUt |t ∈ T }
MS = {MSt |t ∈ T }

The set of arcs is the union of the subsets of arcs used for representing the arrival
and the departure of each train in the shunting area, the starting and ending of each
operation, the time spent by a job either to execute a shunting operation or to wait
to start it, in the station or in the park. They are defined as follows:

AE1 = {Oj, St )|j ∈ A, t ∈ T , t ≥ aoj }
AE2 = {(St ,MPt )|t ∈ T }
AE3 = {(St ,MUt)|t ∈ T }
AE4 = {(MPt , Pt )|t ∈ T s.t. t > 1}
AE5 = {(Pt ,MSt )|t ∈ T }
AE6 = {(MSt ,Dj )|t = adj , j ∈ ANU }
AE7 = {(MUt ,Dj )|t = adj , j ∈ AU }
AT 1 = {(St , St+1)|1 ≤ t ≤ s − 1}
AT 2 = {(MPt ,MPt+1)|1 ≤ t ≤ s − 1}
AT 4 = {(Pt , Pt+1)|1 ≤ t ≤ s − 1}
AT 6 = {(MUt ,MUt+1)|1 ≤ t ≤ s − 1}
AT 7 = {(MSt ,MSt+1)|1 ≤ t ≤ s − 1}

The network flow model uses the following decision variables:

AR
j
ik , j ∈ A, (ik) ∈ AE1 s.t. i = Oj , indicating the arrival of job j to the station;
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SOS
j
ik , j ∈ A, (ik) ∈ AT 1 s.t. i = St |t ≥ aoj , indicating the jobs waiting at the

station;
IMP

j
ik , j ∈ ANU, (ik) ∈ AE2 s.t. i = St |t ≥ aoj , indicating that job j starts the

primary shunting;
MAP

j
ik , j ∈ ANU, (ik) ∈ AT 2 s.t. i = MPt |t ≥ aoj , indicating that job j is

executing the primary shunting;
FMP

j
ik , j ∈ ANU, (ik) ∈ AE4 s.t. i = MPt |t ≥ adj , indicating that job j ends the

primary shunting;
PAR

j
ik , j ∈ ANU, (ik) ∈ AT 4 s.t. i = Pt |t ≥ aoj + tj,m=MP , t ≤ adj , indicating

the jobs waiting in the park;
IMS

j
ik , j ∈ ANU, (ik) ∈ AE5 s.t. i = Pt |t ≥ aoj + tj,m=MP , t ≤ adj , indicating

that job j starts the secondary shunting;
MAS

j
ik , j ∈ ANU, (ik) ∈ AT 7 s.t. i = MSt |t ≥ aoj+tj,m=MP , t ≤ adj , indicating

that job j is executing the secondary shunting;
FMS

j
ik , j ∈ ANU, (ik) ∈ AE6 s.t. i = MSt |t ≥ adj , indicating that job j ends the

secondary shunting;
IMU

j
ik , j ∈ AU, (ik) ∈ AE3 s.t. i = St |aoj ≤ t ≤ adj , indicating that job j starts

the unique shunting;
MAU

j
ik , j ∈ AU, (ik) ∈ AT 6 s.t. i = MUt |aoj ≤ t ≤ adj , indicating that job j is

executing the unique shunting;
FMU

j
ik , j ∈ AU, (ik) ∈ AE7 s.t. i = MUt |t ≥ adj , indicating that job j ends the

unique shunting;
MP t ≥ 0, number of jobs executing the primary operation in t ;
MSt ≥ 0, number of jobs executing the secondary operation in t ;
MUt ≥ 0, number of jobs executing the unique operation in t ;
fMSj,m, j ∈ ANU,m ∈ Ms.t. m = MS;
fMUj,m, j ∈ AU,m ∈ Ms.t. m = MU ;
dfMSj,m, j ∈ ANU,m ∈ Ms.t. m = MS;
dfMUj,m, j ∈ AU,m ∈ Ms.t. m = MU .

Having to minimize the difference between the expected time of entrance of the
jobs and their real time of entrance, the objective function is the following:

MIN dfM =∑
j∈ANU dfMSj,m=MS +

∑
j∈AU dfMUj,m=MU

In this network model the constraints are the following:
O-D constraints

AR
j
Oj ,St=aoj

= 1 ∀j ∈ A (1)

s∑

t≥adj
FMS

j
MSt ,Dj

= 1 ∀j ∈ ANU (2)
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s∑

t≥adj
FMU

j
MUt ,Dj

= 1 ∀j ∈ AU (3)

flow conservation constraints

AR
j
Oj ,St

+ SOSjSt−1,St
= IMP jSt ,MPt + IMU

j
St ,MUt

+ SOSjSt ,St+1
∀t ∈ T ,∀j ∈ A (4)

IMP
j
St ,MPt

+MAPjMPt−1,MPt
= MAPjMPt ,MPt+1

+ FMPjMPt ,Pt ∀t ∈ T ,∀j ∈ ANU (5)

PAR
j
Pt−1,Pt

+ FMPjMPt ,Pt = IMS
j
Pt ,MSt

+ PARjPt ,Pt+1
∀t ∈ T ,∀j ∈ ANU (6)

IMU
j
St ,MUt

+MAUjMUt−1,MUt
= MAUjMUt ,MUt+1

+ FMUjMUt ,DTj ∀t ∈ T ,∀j ∈ AU (7)

IMS
j
Pt ,MSt

+MASjMSt−1,MSt
= MASjMSt ,MSt+1

+ FMSjMSt ,DTj ∀t ∈ T ,∀j ∈ ANU (8)

capacity constraints

∑

j∈ANU
IMP

j
St ,MPt

+
∑

j∈AU
IMU

j
St ,MUt

+
∑

j∈ANU
SOS

j
Pt ,MSt

<= Smax ∀t ∈ T (9)

∑

j∈ANU
IMS

j
Pt ,MSt

+
∑

j∈ANU
PAR

j
Pt ,Pt+1

<= Pmax ∀t ∈ T (10)

∑

j∈ANU
MAP

j
MPt ,MPt+1

+
∑

j∈ANU
FMP

j
MPt ,Pt

<= MPmax ∀t ∈ T (11)

∑

j∈ANU
MAS

j
MSt ,MSt+1

+
∑

j∈ADT NU
FMS

j
MSt ,Dj

<= MSmax ∀t ∈ T (12)

∑

j∈AU
MAU

j
MUt ,MUt+1

+
∑

j∈AU
FMU

j
MUt ,Dj

<= MUmax ∀t ∈ T (13)

∑

j∈ANU
MAP

j
MPt ,MPt+1

+
∑

j∈ANU
FMP

j
MPt ,Pt

= MP t ∀t ∈ T (14)

∑

j∈ANU
MAS

j
MSt ,MSt+1

+
∑

j∈ANU
FMS

j
MSt ,Dj

= MSt ∀t ∈ T (15)

∑

j∈AU
MAU

j
MUt ,MUt+1

+
∑

j∈AU
FMU

j
MUt ,Dj

= MUt ∀t ∈ T (16)

MP t +MSt +MUt <= sq ∀t ∈ T (17)
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constraints defining the duration of each operation:

∑

t∈T
MAP

j
MPt ,MPt+1

= tj,m ∀j ∈ ANU, m = MP (18)

∑

t∈T
MAS

j
MSt ,MSt+1

= tj,m ∀j ∈ RNU, m = MS (19)

∑

t∈T
MAU

j
MUt ,MUt+1

= tj,m ∀j ∈ AU, m = MU (20)

constraints defining the end of the unique and the secondary shunt and the deviation
with respect to the expected time of entrance in the terminal:

fMSj,m =
∑

t∈T
FMS

j
MSt ,Dj

∗ t ∀j ∈ ANU,m = MS (21)

fMUj,m =
∑

t∈T
FMU

j
MUt ,Dt

∗ t ∀j ∈ AU,m = MU (22)

dfMSj,m = fMSj,m − adj ∀j ∈ ANU,m = MS (23)

dfMUj,m = fMUj,m − adj ∀j ∈ AU,m = MU (24)

3.4 Preliminary Results

Just to test the previous network flow model and its capability to solve the problem
under investigation, three different instances have been considered, with 15, 20 and
25 jobs to execute in 1 day split into time periods of 10 min. The model size ranges
from 6832 to 13,578 variables and from 5713 to 10,446 constraints. The CPU time
for the larger instance is 37.82 s.

In Fig. 4 an example of a solution obtained by solving the flow model with Gurobi
7.5.1 for MPL [nn] is reported: in black the reader can note the path of a job from its
entrance to its arrival to the considered terminal. The horizontal sections in the figure
represent the different areas in which the job has to pass through. The analyzed train
enters the shunting area and immediately starts the primary shunt; then, the train
waits many time periods before starting the secondary shunting for, finally, entering
in the terminal in the exact due time.

Figure 5 represents the flow related to the same train in the space-time network.
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Fig. 5 The train’s path on the space-time network

4 Conclusions

Trying to help the rail freight transport mode to became more competitive and more
used in the intermodal transport, the rail transport process and the port rail shunting
(re)-scheduling problem have been addressed. A first approach for solving the rail
shunting scheduling problem has been presented. Due to the complex relations
among jobs, operations and resources (different kind of resources must be linked
to the operations to schedule) we have decided to propose a formulation based on
a time-space network (able to manage both the schedule of the activities and the
limited resources).
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The k-Color Shortest Path Problem

Daniele Ferone, Paola Festa, and Tommaso Pastore

Abstract This paper proposes a mathematical model and an exact algorithm for
a novel problem, the k-Color Shortest Path Problem. This problem is defined on a
edge-colored weighted graph, and its aim is to find a shortest path that uses at most
k different edge-colors. The main support and motivation for this problem arise
in the field of transmission networks design, where two crucial matters, reliability
and cost, can be addressed using both colors and arc distances in the solution of a
constrained shortest path problem. In this work, we describe a first mathematical
formulation of the problem of interest and present an exact solution approach based
on a branch and bound technique.

Keywords Constrained path problem · Edge-colored graph · Branch and bound

1 Introduction

Shortest Path Problems (SPPs) represent one of the most significant and investi-
gated family of problems in Operations Research. The formulations that describe
members of this class are often intuitive and easily relatable to real-world scenarios,
while their broad applicability implies that often SPPs need to be solved as sub-tasks
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in many other combinatorial problems, such as Maximum-Flow Minimum-Cost
Problems or Vehicle Routing Problems.

While notably the classical SPPs can be optimally solved using polynomial
algorithms, a more recent stream of research focused on the solution of either
dynamic [12, 13] or constrained-SPPs [11, 14, 20], studying both exact and heuristic
techniques. In this work, we define and formally state a novel problem: the k-
Color Shortest Path Problem (k-CSPP), whose objective is to find a shortest path
in a weighted edge-colored network, with a constraint on the maximum number of
different colors that can be used. In the following we will use interchangeably the
terms “colors” and “labels”.

Edge-colored networks received a fair share of attention in the scientific litera-
ture, given their aptness for the depiction of complex and diverse relations among
nodes. This feature proved to be beneficial in a wide variety of application fields,
such as: computational biology [9], telecommunications [23], as well as in the
analysis of transportation networks [1], and conflicts resolution [21].

In [4], it is proven that to find a path from a source node s to a destination node
t with maximum k colors is a NP-complete problem, by reduction from the 3-SAT
problem. We observe how any instance of the decisional problem of finding an s− t
path with at most k colors can be represented as an instance of k-CSPP, where
each edge has null cost. Therefore, a polynomial algorithm for the k-CSPP would
efficiently solve the decisional problem described in [4]. Consequently, k-CSPP is
NP-hard.

In the study of edge-colored graphs, many works—of both theoretical and
experimental interest—are concerned with the investigation of specific properly-
colored edge structures, where a coloring is said to be proper whenever any
two adjacent edges differ in color. These structures include for example: paths,
trails, trees and cycles; see for example [17]. On the other hand, some classical
optimization problems—such as the Minimum Spanning Tree (MST), the Traveling
Salesman Problem (TSP), and the Longest Path Problem (LPP)—have all been
extended to the case of edge-colored graphs, taking labels into account either in
the objective function or in their constraints.

For example, the Minimum Label Spanning Tree is defined in [8] as a variant of
the classical MST in which the cost of the spanning tree is given by the number of
different edge-labels used. The authors of [8] describe a heuristic technique and an
exact method based on the A* algorithm. The problem is further investigated in [6]
which present a logarithmic approximation algorithm and a comparative study of
several metaheuristic techniques, respectively. A strictly related generalization, the
k-labeled Spanning Forest Problem, is studied in [7].

In [19], Jozefowiez et al. present an in-depth analysis of the Minimum Label
Hamiltonian Cycle Problem (MLHCP). The MLHCP consists in the determination
of an Hamiltonian cycle that presents the minimum total number of different
edge-labels used. Moreover, in [19] two variations are introduced: the MLHP
with length constraints and the Traveling Salesman Problem with label constraints
(LCTSP). Aim of the LCTSP is to minimize the length of the tour—as in the
classical TSP—while constraining the maximum number of different colors that
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can be used. The authors propose mathematical models and prove valid inequalities
that are then included in branch-and-cut algorithms for the MLHCP and its two
variants.

As an additional example, a special case of longest path on edge-colored graphs,
the Orderly Colored Longest Path Problem, was recently studied in [5] by Carrabs et
al. Suitably adapting existing formulations, the authors obtain several mathematical
descriptions for the problem, that are then compared over a broad set of instances.

The main ground of interest for the k-CSPP arises in the field of telecommunica-
tions. While designing transmission networks, reliability is a crucial matter to ensure
good performances and prevent data loss. As deeply discussed in [22] and [23], the
robustness of a path-routed communication network can be achieved by means of
path protection schemes, which make use of backup paths to ensure reachability in
the case of single link failures. The backup path and the primary path are link-
disjoint, and share the same source and destination. To prevent traffic loss, the
backup path is activated whenever the primary path fails. On the other hand, often a
single happening can cause the simultaneous failure of several links in the network.
For instance, in WDM networks it is customary to bundle multiple fiber links in the
same conduit. Consequently, even if these links are disjoint in the network layer,
a damage to the conduit will cause the failure of all the links there bundled. The
fibers sharing a common risk factor are said to be in the same Shared Risk Link
Group, and are modeled with arcs of the same color. In [23], Yuan et al. address
the failure minimization problem as a minimum-color path problem, in which each
path is associated with one or more colors and each color is related to a given failure
event. The authors support their approach arguing that by minimizing the number
of colors involved in the path, the failure probability of the path can consequently
be minimized. At the same time, while this argument handles different edge-labels,
it does not include lengths in the comparison of different paths. Accordingly, a path
with at most k different colors is connected if and only if failures do not occur in any
of the k colors traversed in the path. If we make the assumption that color failures
are mutually independent, and equiprobable—with probability p ∈ [0, 1]—, then
the reliability of the path can be computed as (1 − p)k . Consequently, an upper
bound on the number of different colors allows to have a probabilistic estimate on
the reliability of the network. A similar argument can be repeated in the case of
independent failure events with different probabilities.

With in mind a similar network reliability scenario, the k-CSPP handles risk
adversity as a strict requirement, while optimizing path length. Hence, the mathe-
matical models introduced in the present paper include distances in the objective
function, while encompassing the use of few colors in a problem constraint.

The main contributions of this work are: (1) a first formal description of the k-
CSPP and (2) the design of a branch and bound algorithm. The work is organized
as follows: in Sect. 2 some related works on Constrained Shortest Path Problems
are presented. The problem is formally introduced in Sect. 3, where a mathematical
model is proposed. Section 4 describes the Branch and Bound implementation used
to optimally solve the problem. Computational results and a comparative analysis
of the performances of our Branch and Bound with respect to the CPLEX solver are
presented in Sect. 5. Concluding remarks are given in Sect. 6.
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2 A Brief Taxonomy of Shortest Path Problems with Edge
Constraints

The goal of this section is to provide a brief classification of some Shortest Path
Problem variants that include edge constraints, with the aim of pointing out their
differences with the k-CSPP.

One of the most broad and notable classes of edge-constrained SPPs is given by
Resource Constrained Shortest Path Problems (RCSPPs) [3, 20].

In RCSPPs, in addition to the customary directed graph G = (V ,E) and edge-
distance function dij : E → R

+
0 , a L-dimensional vector of resources R is defined.

Essentially, each resource is related to relevant link attributes that needs to be
accounted in the planning of the path. Indeed, for each l = 1, . . . , L, to each
(i, j) ∈ E is associated a resource attribute rlij . Accordingly, a path P ∗ is optimal
whenever it is minimal w.r.t. the distance function d, and satisfies the restrictions
enforced on the resources rlij .

As argued in [2], the resources and the subsequent constraints can be of multifold
nature. In fact, resources can model both numerical (either cumulative or non-
cumulative) and categorical (or index) attributes. Straightforward examples of
cumulative numerical attributes are travel time or fuel consumption, whose total
use in a path P is obtained adding up all the travel times or consumption along the
edges belonging to P , as in [10].

On the other hand, road width is an example of numerical non-cumulative
parameter; in cases like this the feasibility of a path P can be subject to average or
bottleneck restrictions, in which either the average of the resource or its minimum
(respectively maximum) has to respect some bounds. Finally, RCSPPs can include
categorical attributes, that can be used to specify the type of connection among
two nodes. Whenever the problem considers arcs with categorical attributes, the
formulation can feature constraints such as: a feasible path cannot contain links
whose attribute is equal to a specific value (or a set of specific values). For a more
detailed discussion see [2, 18].

The fundamental difference between the k-CSPP and RCSPPs lies in the fact that
the k-CSPP does not restricts color-sets a priori and there is a strong interdependence
among arcs. In our scenario, indeed, the cost of a color as a resource is not constant
during the exploration of the solution space: once that an arc with a certain color is
traversed, all other arcs sharing the same colors turn free and thus can be inserted in
the solution without placing additional burden on the color constraint.

Another related idea studied in path problems on edge colored graphs consists
in the use of reload costs. For each couples of colors (b, c) a reload cost ρb,c is the
amount to be paid if in the path P an arc of color c is traversed after an arc of color b.
Gourvès et al. [16] studied the problem of minimizing reload costs for walks, trails
and paths, deriving the resulting computational complexities. On the other hand,
[1] consider a general form of objective function that includes both distances and
reload cost. Aside from their presence in the objective function rather than in the
constraints, the main difference between reload costs and the modeling paradigm
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of the k-CSPP is that reload costs are fixed, and have to be taken into account any
given time there is a change from a color to another. On the contrary, bounding the
maximum number of different colors, as required in the k-CSPP, means to count
just once a transition to a specific color, whatever the preceding color (if any) may
be.

3 Mathematical Model

LetG = (V ,E) be an undirected graph, with n nodes andm edges. Let the functions
C : E −→ N and d : E −→ R

+
0 be an edge-coloring and a non-negative distance

function defined on E, respectively. The positive integer C(e), ∀e ∈ E, is said to be
the color of edge e.

Let c(G) be the number of colors used to label the edges of G, for each color
h ∈ {1, . . . c(G)} all edges labeled with h are collected in color class Ch, in a way
that E =⋃c(G)

h=1 Ch.
The k-CSPP consists in finding a shortest path P ∗ = (v1, v2, . . . , vh) from a

source node v1 = s to a destination node vh = t , with s, t ∈ V , such that the
number of different colors traversed in the path does not exceed k.

Introducing a Boolean decision variable xij , for each edge [i, j ] ∈ E, such that:

xij =
{

1, if [i, j ] belongs to P ∗,
0, otherwise,

and for each possible color h, a Boolean decision variable yh such that: yh = 1, if
color h is traversed in P ∗, yh = 0 otherwise. Then, the problem can be formulated
as follows:

z = min
∑

[i,j ]∈E
dij xij (1a)

subject to:
∑

j∈V \{i}
xji −

∑

j∈V \{i}
xij = bi, ∀i ∈ V

(1b)

xij ≤ yh, ∀[i, j ] ∈ Ch, h = 1, . . . , c(G)
(1c)

c(G)∑

h=1

yh ≤ k (1d)
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xij ∈ {0, 1}, [i, j ] ∈ E
(1e)

yh ∈ {0, 1}, ∀h = 1, . . . , c(G)
(1f)

with bi = −1 for i = s, bi = 1 for i = t , and bi = 0 otherwise.
The objective function (1a) minimizes the total cost d(p∗) of the solution

path p∗. The constraints (1b) represent the flow balance constraint at each node.
Constraints (1c) correlate arc traversal to color selection, and constraints (1d)
impose the maximum number of colors that can be used in the path. Finally, the
binary constraints are given in Eqs. (1e) and (1f).

4 Branch and Bound

The basic idea of the branch and bound here proposed consists in the observation
that relaxing the color constraints (1d), the problem can be solved very efficiently
by a classical shortest path algorithm. Consequently, at each node of the branching
tree, a shortest path problem is solved on a given edge-colored graph G′ = (V ,A′).
Then, if p∗

G′ is the optimal solution obtained, and c(p∗
G′) is the number of different

colors used in p∗
G′ , four cases can occur:

• d(p∗
G′) = +∞: there is no path from s to d, the feasible region is empty, and the

branching node becomes a leaf;
• d(p∗

G′) ≥ d(p̂): where p̂ is the incumbent solution. In this case, the branching
node is fathomed due to the bounding criterion;

• c(p∗
G′) ≤ k: the solution is feasible for the original problem, and the incumbent

is updated if necessary;
• c(p∗

G′) = l > k: the solution is not feasible for the original problem.

In the last case, a branching operation is performed. Let C∗ = {c1, . . . , cl} be the
colors used by the path p∗

G′ , for each i = 1, . . . , l a new branching node is generated
on the graph G′′ = (V ,E′′), where E′′ = E′ \ {evw ∈ E′ : C(evw) = ci}.

Moreover, the strategy guiding the exploration of the branching tree is a depth-
first mechanism, and the nodes of the tree are generated excluding colors according
to their absolute frequencies in p∗

G′ . The lesser used the color, the earlier it is
excluded from G′. The main target of this strategy is to obtain a feasible solution
in the quickest way possible, in order exploit the bounding operation as much as
possible. This aim is reflected by both the choice of the depth first strategy, and in
the exclusion criterion considered for colors. The latter, indeed, tries to define a sub-
problem favoring the constriction of colors that are less used in the computed path
p∗
G′ .
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5 Experimental Results

This section presents some computational experiments designed to compare the
performances of the two exact solution strategies, the Branch and Bound technique
described in Sect. 4, and the model presented in Sect. 3 and solved with ILOG
CPLEX 12.9. Both the algorithms were coded in C++ using the flags -std=c++17
-O3 and compiled with g++ 8.2. The experiments were run on a INTEL
i5-6400@2.70 GHz processor with 8GB of RAM. A time limit of 10 min has
been used for both the algorithms.

The instances used in the experiments can be divided in two separate classes,
both obtained with the a generator adapted from [15] to suitably introduce edge-
colors. More specifically, the networks considered are either grid graphs or fully
random networks. The total number of colors introduced in each graph amounts to
either the 15% or 20% of the total number of edges.

Table 1 reports a summary of the instances included in the experimental phase.
For each type, ten instances have been generated with different seeds.

The computational results obtained by our Branch and Bound (B&B), and
CPLEX—executed either with depth first (df) or breadth first (bf) strategy—are
reported in Tables 2 and 3 for fully random and grid graphs, respectively. More
specifically, for each instance type we report: the average time spent by the
algorithms solving instances of that type (avg. time), and the number of instances

Table 1 Instance parameters

Fully random graphs Grid graphs

Problem Nodes Arcs Colors Problem Size Colors

R1 75,000 750,000 112,500 G1 100× 100 5940

R2 75,000 750,000 150,000 G2 100× 100 7920

R3 75,000 112,500 168,750 G3 100× 200 11,910

R4 75,000 112,500 225,000 G4 100× 200 15,880

R5 75,000 150,000 225,000 G5 250× 250 37,350

R6 75,000 150,000 300,000 G6 250× 250 49,800

R7 100,000 1,000,000 150,000 G7 250× 500 74,775

R8 100,000 1,000,000 200,000 G8 250× 500 99,700

R9 100,000 1,500,000 225,000 G9 500× 500 149,700

R10 100,000 1,500,000 300,000 G10 500× 500 199,600

R11 100,000 2,000,000 300,000 G11 500× 1000 299,550

R12 100,000 2,000,000 400,000 G12 500× 1000 399,400

R13 125,000 1,250,000 187,500

R14 125,000 1,250,000 250,000

R15 125,000 1,875,000 281,250

R16 125,000 1,875,000 375,000

R17 125,000 2,500,000 375,000

R18 125,000 2,500,000 375,000
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Table 2 Results on random graphs

B&B CPLEX (df) CPLEX (bf)

Instance type Avg. time O + F Avg. time O + F Avg. time O + F

R1 306.72 5 + 4 126.18 10+ 0 92.43 10+ 0

R2 308.49 5 + 4 118.66 9+ 0 89.12 9+ 0

R3 197.47 7 + 2 159.84 9+ 0 158.54 9+ 0

R4 199.00 7 + 2 210.22 8+ 0 163.05 9+ 0

R5 322.67 5 + 5 600.00 0+ 0 521.92 2+ 0

R6 324.29 5 + 5 600.00 0+ 0 513.47 2+ 0

R7 300.54 5 + 4 214.57 8+ 0 123.57 10+ 0

R8 300.62 5 + 2 289.92 6+ 0 218.52 8+ 0

R9 360.75 4 + 6 600.00 0+ 0 600.00 0+ 0

R10 361.01 4 + 6 600.00 0+ 0 600.00 0+ 0

R11 121.40 8 + 2 600.00 0+ 0 600.00 0+ 0

R12 121.75 8 + 2 600.00 0+ 0 600.00 0+ 0

R13 383.90 4 + 5 564.25 1+ 0 600.00 0+ 0

R14 384.42 4 + 5 557.50 1+ 0 512.84 2+ 0

R15 420.33 3 + 6 600.00 0+ 0 600.00 0+ 0

R16 420.31 3 + 6 600.00 0+ 0 600.00 0+ 0

R17 305.85 5 + 5 600.00 0+ 0 600.00 0+ 0

R18 305.84 5 + 5 600.00 0+ 0 600.00 0+ 0

Average 302.52 457.84 432.97

Bold values indicate the algorithm with the shortest computational time average

of that type for which either an optimal (O) or feasible (F) solution has been found.
This last information is collected in the column (O + F). Note that since each class
is made up by 10 different instances, we haveO+F ≤ 10; whenever the preceding
inequality its strict, then for some of the instances not even a feasible solution could
be found within the time limit.

The results show how CPLEX is performing well on the smaller instances of the
dataset, while the Branch and Bound approach is able to tackle larger instances,
where the model becomes too large to be managed by CPLEX. For example,
referring to graph types R15–R18, it is worthy to note that CPLEX can obtain just
two feasible solutions—that happen to be optimal as well—within the required time
limit. On the other hand, the branch and bound approach is able to obtain at least a
feasible solution in 56 out of 60 total cases, guaranteeing optimality in 24.

Similarly, we can observe in Table 3 that even in the case of grid graphs
our Branch and Bound outperforms CPLEX as the size of the network grows.
Additionally, the results evidence higher computational times and a lower number
of optimal solution found with respect to those reported in Table 2. For example,
comparing the results obtained on instance classes G8 and R13—that have the same
number of nodes—we can observe how the time spent by our Branch and Bound
increased by 40%, and the number of optimal solution found within the time limit
dropped by 50%. This behaviour is probably due to the greater sparsity of grid
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Table 3 Results on grid graphs

B&B CPLEX (df) CPLEX (bf)

Instance type Avg. time O + F Avg. time O + F Avg. time O + F

G1 404.78 4 + 6 41.69 10 + 0 41.05 10 + 0

G2 403.93 4 + 6 57.15 10 + 0 42.16 10 + 0

G3 485.14 2 + 6 230.77 10 + 0 200.71 10 + 0

G4 543.64 1 + 7 230.45 10 + 0 225.43 9 + 0

G5 578.72 1 + 9 597.25 1 + 8 596.76 1 + 7

G6 583.95 1 + 9 587.59 2 + 7 587.55 2 + 7

G7 532.55 3 + 7 601.45 0 + 10 602.28 0 + 10

G8 540.59 2 + 8 601.28 0 + 10 602.36 0 + 10

G9 540.24 1 + 9 601.26 0 + 5 607.63 0 + 9

G10 510.76 2 + 7 600.00 0 + 0 607.07 0 + 10

G11 540.36 1 + 9 600.00 0 + 0 600.00 0 + 0

G12 540.46 1 + 9 600.00 0 + 0 600.00 0 + 0

Average 517.09 445.74 442.75

Bold values indicate the algorithm with the shortest computational time average

graphs, that implies increased difficulties in the construction of a feasible k-color
path.

6 Conclusions and Future Work

This paper presented a new variant of constrained shortest path problem, the k-
Color Shortest Path (k-CSPP). The problem is formally described and a Branch
and Bound is proposed for its solution. The performances of the exact method here
described are then compared to those achieved by CPLEX in the solution of the
integer programming model. The results evidence how our Branch and Bound can
manage larger instances with respect to CPLEX, achieving good performances in
terms of both optimal and feasible solutions found.

As future research perspectives—inspired by classical constrained shortest path
literature—we plan to investigate the use of an exact dynamic programming
algorithm. Additionally, given the complexity of the problem, future investigation
will exploit metaheuristic techniques to quickly obtain good sub-optimal solutions.
Moreover, a larger set of instances will be generated to properly assess a comparison
between the methods, and to establish a shareable benchmark for future works.
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The Traveling Repairman Problem App
for Mobile Phones: A Case on Perishable
Product Delivery

M. E. Bruni, M. Forte, A. Scarlato, and P. Beraldi

Abstract Delivering perishable food as soon as possible has been always a
challenge for producers, amplified in recent years, by a more and more competitive
global market. The problem can be tackled as a routing problem with consideration
of the arrival time at the customers’ location, taking into account the perishability of
the products planned to be delivered. Since in real-world applications customers’
requests dynamically arrive during the execution of the transportation process,
building vehicle routes in an on-going fashion is a challenge to be addressed. This
paper describes a mobile solution that heavily relies on the use of mobile phones
and integrates a well known heuristic method for the problem at hand. A case
concerning the delivery of perishable food to a set of restaurants will serve as a
base for illustrating the potential benefits of such a system.

Keywords Traveling repairman problem · Mobile app · Perishable product

1 Introduction

Delivering perishable food as soon as possible has been always a concern for pro-
ducers and carriers. For many products that have short life span the element of time
is the biggest challenge faced by these companies. In order to gain a competitive
advantage over the competitors, the food delivery companies should deliver food
within short lead times, accurately and with acceptable quality. Notwithstanding this
has been always a challenge for producers, it has been amplified, over recent years,
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by a more and more competitive global market. The term perishable is applied for
the products that start deteriorating as soon as they are produced. In general there
are two kinds of deterioration. The first one makes the product outdated after a
specified time (like blood). The second type, makes the product quality unpleasant
as time passes, as in the case of flowers, vegetables and foods which are labelled
as highly perishable because they deteriorate significantly fast and, as a by-product,
the customers are sensitive about their freshness. For instance, a grocery shop which
sells vegetables definitely wants them to be as fresh as if they have been brought
from the farm. It is noteworthy that the revenues of food suppliers are dependent
on the condition and freshness of the products. As a matter of fact, delivering low-
quality products may impose a penalty on the supplier, decreasing the collected
revenue. The above-mentioned factors highlight the importance for the suppliers to
organize an efficient and effective delivery in order to maximize the freshness of
the products delivered to the customers and to maximize the collected profit at the
same time. This entails solving a vehicle routing problem with consideration of the
arrival time at the customer’s location, taking into account the perishability of the
products planned to be delivered. This calls for models which aim at maximizing
the revenue (profit minus perishability costs). These two objectives are in conflict
with each other and an appropriate trade-off is needed.

The Traveling Repairman Problem with profits (TRPP) is an extension of the
Traveling Repairman Problem (TRP), where a time-dependent profit is associated
with each customer and the objective is to maximize the total collected revenue,
which is a decreasing function of the arrival time at the nodes. Hence, it is an
appropriate modeling framework for the problem at hand.

In real-world applications, customers’ requests dynamically arrive during the
execution of the transportation process. Building vehicle routes in an on-going
fashion, in such a way that customer requests arriving dynamically are efficiently
and effectively served, is a challenge addressed in on-line routing approaches.
Although dynamic routing problems and quantitative methods for on-line routing
have been discussed in the scientific literature since a seminal paper of Psaraftis
[19, 20], the technology required for implementing on-line routing methods is
more recent. In particular, we refer to the mobile technology, which emerges as
a new business process characterised by mobility, reachability, localisation and
personalisation. The user of a mobile device can access networks, products and
services while on the move. This is important in context like ours, where the driver
must be timely informed about the next stop to approach and the dispatching centre
must be informed about the driver’s location and the status of the delivery. The
availability of a mobile communication system alone is, however, not sufficient. It
is important that the communication system is properly and friendly interfaced with
the firm system and data bases. If well designed, the mobile system will help the
driver in routing decisions, taking also into account real-time traffic information
(up-to-date information on weather and road conditions and detours) improving the
convenience,the safety and the efficiency of travel.

This paper describes a mobile business solution that heavily relies on the use of
mobile phones. An advantage of such a system is its low cost and its ease of use.
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Furthermore, the integration of algorithms for the solution of routing problems is
relatively straightforward. A case concerning the delivery of perishable food to a
set of restaurants will serve as a base for illustrating the potential benefits of such a
system.

The next section gives a short overview of the related literature, Sect. 3 describes
the problem and discusses in some detail the above mentioned mobile system
and the implementation issues. Section 4 presents the application on perishable
products delivery and screen snapshots are presented. Finally, conclusions are given
in Sect. 5.

2 Related Work

Customer-centric routing problems, where the customer’s satisfaction is taken into
account mostly through the arrival time at the customer’s location, are broadly
referred to as the minimum latency problems or traveling repairman problems
(TRPs). The aim is to find a tour, starting from a depot node, which minimizes the
sum of the elapsed times (or latencies) to reach a given set of nodes. The problem
has been extensively studied by a large number of researchers who proposed
several exact and non-exact approaches. Lucena [11] and Bianco et al. [3] proposed
early exact enumerative algorithms, in which lower bounds are derived using a
Lagrangian relaxation. Fischetti et al. [9] proposed an enumerative algorithm that
makes use of lower bounds obtained from a linear integer programming formulation.
Different mixed integer programming formulations with various families of valid
inequalities have been proposed in the last years [4, 8, 12, 18]. Salehipour et al. [16]
first proposed a simple composite algorithm based on a Greedy Randomized Adap-
tive Search Procedure (GRASP) [7, 10], improved with a variable neighborhood
search procedure. In [13], Mladenović et al. presented a general variable neighbor-
hood search metaheuristic enhanced with a move evaluation procedure facilitating
the update of the incumbent solution. Silva et al. [17] presented a composite multi-
start metaheuristic approach consisting of a GRASP for the construction procedure,
and a randomized variable neighborhood descent algorithm for the improvement
phase. In [1], Avci et al. presented a new mixed-integer linear model capable of
solving small size instances and a simple and effective metaheuristic algorithm
which combines a GRASP for initial solution construction and Iterated Local
Search (ILS) with an adaptive perturbation mechanism for solution improvement.
In particular, the developed GRASP-ILS obtained the best known results for the
benchmark instances. For this reason, in this paper, this heuristic has been used as
solution method to solve the problem at hand.

Recently, some interesting variants of the TRP have been proposed. Nucamendi-
Guillén et al. [15] proposed two new models for the capacitated version and an
efficient iterated greedy procedure. For the variant with profits, namely for the
TRPP, a stochastic programming model with chance constraints has been proposed
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in [2]. The aim is to find the travel plan that maximizes the random revenue that can
be collected with a given reliability level.

Although many researchers have studied the TRP, the literature on the multi-
vehicle TRP (referred to as k-TRP) is surprisingly limited. Recently, Nucamendi-
Guillén et al. [14, 15] presented an efficient new formulation, defined on a
multi-level network, for the deterministic k-TRP enhanced by an iterative greedy
metaheuristic. The k-TRPP under uncertainty has been recently addressed in [5, 6],
where a reactive GRASP has been proposed to solve the problem.

3 Problem Description and System Implementation

The perishable product delivery is usually performed by third-party carriers. The
carriers receive the orders characterized by a position, a profit (price paid by the
customer) and a service time. We assume that the capacity of the vehicle is enough
to carry all the orders. The objective of the driver is to find a tour that maximizes
the total profit, minimizing at the same time the so called latency, that is the waiting
time of the customers, which is a proxy of the product freshness. The two conflicting
criteria are then considered into the same objective function in the spirit of the TRPP.
Moreover, the driver has a time limit on the route duration, that should not exceed a
given time-lapse, normally 4 or 5 h (a delivery tour starts in the morning and ends at
midday). The driver collects the data and feeds them into a software system, which
reoptimizes heuristically and in real time the route. The route is calculated and
defined upstream by the server. On the basis of the objective function trade-off and
for the presence of the route duration constraint, some of the customers may not be
visited. The driver will then apologise for the inconvenience and assure subsequent
delivery. If the customer is selected to be visited, a corresponding delivery order is
triggered to the driver performing the delivery. Drivers who already started their
delivery tours may then receive additional orders. After the service, the driver
notifies the system about the completed delivery and eventually adds new orders.
Then, the route is re-optimized by the system, possibly servicing new customers.

The app requires a series of data to work, some of them are present in the server
and therefore supplied when necessary, others are supplied through the driver (also
called here operator). Potential customers are represented by nodes, characterized
by an Id (used only for technical purposes), a defined geographical position through
latitude and longitude, a profit and an expected service time.

Figure 1 shows the system’s general architecture. During the design process the
system requirements were examined and three main components were identified:

• a practical interface which allows the operator to communicate with the server
• a system able to receive requests and process them in real-time
• an external service that provides information on the routes.

An Android device was chosen as the mobile technology to be used by the
operator. This means that http requests can be sent to the central system and it also
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Fig. 1 System architecture

Fig. 2 Use case diagram

provides a series of services and integrations with other systems that facilitate the
operator during the execution of his tasks. For the Android devices we used the
latest version: 28.0.3 of the “build tool”, as the “minimum sdk” we used version
15 and as “target sdk” version 26. This allows the application to be run on devices
with an Android operating system greater or equal to the “Ice Cream Sandwich”
version (4.0.4). There are two actors involved in the process the operator/driver and
the service manager/the product supplier. The service manager is the one who uses
the system to plan the work of the operator. His main interaction with the system is
to add various points to an existing route. Figure 2 shows the use case diagram.

The core of the system is clearly the central server, which performs various
tasks:

• it processes all (http) requests submitted to the system
• it executes the heuristic algorithm
• it queries the external services to find the data necessary for the execution of the

algorithm.

A fundamental requirement for the performance of the previous tasks is the abil-
ity to access data regarding the possible route from a starting point to a destination,
the distance, and above all, the time needed for the tour. This information can be
obtained from different providers such as “Google Routes” or “TOM TOM Routing
API”. TOM TOM was chosen because it is the only one that offers a free version
of the service. The only version currently usable and available of the TOM TOM
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API is 1.0. All the communication take place via Web Rest in https with http basic
authentication method. Server side Java 1.8 was chosen as it was one of the most
mature and advanced technologies. Considering the tasks performed by the server,
the Spring Boot framework was the best solution to adopt as it is excellent for
the management of back-end systems with API. The framework handles all the
technical aspects, allowing developers to focus on the application core instead of
the technicalities. The version of Spring Boot used is 2.0.4.

The server is composed of three layers: the communication layer, the logic layer
and the model layer. The functional division of the components into different levels
makes each independent of each other. There is a physical dependence of the Java
classes belonging to the higher levels compared to the lower level classes. The
divisions of the components due to functionality and class dependence make the
system highly modular and consequently improve. Some Java classes do not belong
to any of the previous levels, as they do not have a functional collocation but rather
only deal with technical functions of system configuration.

The communication layer, as the name suggests, deals with the external commu-
nication of the system. It has the primary task of receiving incoming requests and,
once they are verified, it forwards these requests to the logical level. The classes
in this level use Spring Boot annotations, turning a simple class into a restless
service controller. Through the injection function, provided by the framework, each
controller has a reference to the instance of the logical component to which forward
requests.

The logic layer, also called “business layer” or “core layer”, is the main
component of the system. All the logic of the processes is contained in this section
which in turn is divided into different packages: services, algorithm and external.
The services component is the entry point for requests sent from the upper level
(layer communication), each request is processed in full in this section. During the
processing of requests, the services component often uses the other components
to deal with specific tasks, such as the generation of a new solution through the
algorithm package and/or the acquisition of new data from external services through
the external classes package.

The model layer is a simple container of the “objects” used by the system, this
component does not contain any logical role or process.

As far a the heuristic called by the server is concerned, as already mentioned,
we have implemented from scratch in Java the GRASP-ILS the heuristic proposed
in [1]. The algorithm has been tailored to address the route duration constraint by
adding into the objective function evaluation a term penalizing the infeasibility of
the route duration constraint. We have observed that the algorithm is very fast and
the solution time is almost neglectable, in agreement with the real time information
that it should provide. Each time the heuristic is called the information is updated:
travel times are updated with real-time traffic data of road segments and incoming
requests are eventually added to the set of nodes. Using the two kinds of information
previously mentioned, the GRASP-ILS algorithm is proposed to either calculate an
initial route or to re-optimize the route and the server updates the visual guidance
information for the driver in real-time.
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The Android application has a single main screen which contains a Fragment
which in turn contains a GoogleMap. From this interface the operator can perform
different tasks: he can consult the solution (a series of points visited or to visit)
and communicate a node already visited. The communication takes place via
the http protocol and the APIs exposed by the server are RESTful type. The
application contains a specific package that deals with communication, where all the
remote requests are asynchronous and are managed by a special class that extends
AsyncTask. During the execution of requests, the user is shown a ProgressDialog
that indicates the status of the request. The interface shows the points of interest
with markers and the route to follow via polylines. The operator can choose whether
to display only the nodes belonging to the solution or also the nodes that have been
discarded. This option can be activated through a Toggle Button. The interface also
includes another button that shows, through a window, the values of the current
solution: the profit collected and the total time in seconds (“HH: mm: ss” format).

4 Results

The system was tested considering 78 restaurants in Milan and a deposit (close to
the Cathedral of Milan) with profit 0 and service time 0. As a server was used a
Windows 10, CPU i7 quad-core, 16 GB RAM ddr4. For each node the service time
was generated between 500 and 900 s. The profit of a node was calculated according
to the restaurant rating (the final values of the profits lie between 10,500 and 13,500).

Clicking on the “Report” button the window with the details of the solution will
be opened. In Fig. 3 the report of the initial solution is reported. Analyzing the
proposed solution in more detail, the chosen nodes are 15 and the order is as follows:

Fig. 3 Initial solution report
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Fig. 4 Updated solution

0, 35, 74, 41, 29, 60, 26, 4, 70, 63, 33, 9, 20, 15, 54, 46. The operator starts the route.
After servicing the first seven nodes, a new request arrives with a profit of 16,000,
slightly higher than the average (12,000). Then the driver confirms the visit of the
already visited nodes and communicates to the system the presence of this new
customer. The system updates the route as shown in Fig. 4. Here, the restaurants
to be visited are highlighted in red. The blue marker indicates the deposit, while
the markers in light blue indicate discarded restaurants. The red line shows the
route to follow. The markers and the lines that connect the nodes already visited
are represented in green. In the new solution, the profit increases from 170,362 to
184,485.

5 Conclusions

This paper introduces a mobile communication system that enables route re-
optimization. The paper exemplifies that today’s communication and information
technology allows to quickly build mobile communication systems based on easy-
to-handle system components. Such systems can be used to implement mobile
business processes for supporting logistic processes by means of optimisation
and quantitative methods. The development, investigation and implementation of
efficient and fast heuristic methods is then a complementary research area, which
can be a promising future research area.
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Integrating Vehicle Routing and Resource
Allocation in a Pharmaceutical Network

Nicolas Zufferey and Roxanne Tison

Abstract A problem integrating resource allocation and transportation is con-
sidered here as an extension of the well-known vehicle routing problem. It was
proposed by a pharmaceutical company, for which items (blood samples) have
to be typically transported from doctor offices to laboratories (where the items
are analyzed by machines) by a fleet of identical vehicles. The following specific
features are considered: multiple pickups, multiple depots, multiple products,
transfers, due dates, service level, and dropout level. The goal consists in minimizing
the employed resource (i.e., machines, vehicles) and the traveling times of the
vehicles. We propose an iterative solution method based on the following sequence
of steps: build sectors, build routes, assign vehicles to routes, try to find a solution
with fewer machines. Numerical experiments are reported and discussed from a
managerial standpoint.

Keywords Vehicle routing · Heuristics · Resource allocation · Integrated
logistics · Pharmaceutical network

1 Introduction

The project is motivated by a pharmaceutical company denoted here as COMP .
It cannot be named because of a non-disclosure agreement. The planning horizon
is a working day. During the day, items (blood samples in this study) are released
at the client locations (i.e., doctor offices, clinics, hospitals) and they have then to
be delivered at the destination locations (i.e., medical labs), where the items have
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to be analyzed by machines. Identical and uncapacitated vehicles (i.e., cars) are
considered, and there is no parking limitation in the network. In contrast with the
broad existing literature on the vehicle routing problem (VRP) [9, 17], and with the
scarce literature on related pharmaceutical networks [2, 10], the combination of the
below-listed features makes the considered problem new and very challenging. It is
denoted as PVRP (for pharmaceutical VRP). In line with the increasing literature
on integrated logistics [5], two fields are integrated in a common problem (here,
vehicle routing and resource allocation in a transportation-production context). The
considered problem is characterized by the following features.

• Multiple demands: for each client location, many items are released during the
whole day.

• Multiple pickups: when an item is released at a client location, a vehicle can pick
it up anytime.

• Multiple depots: there are various labs that can be delivered as often as desired.
• Service level: an item is available when it is released at its client location, then

it must be possibly pre-analyzed (in a client location or in a lab), and finally, it
must be analyzed (in a lab) before its due date. An item can be late, but a daily
service level (i.e., the percentage of on-time items) has to be respected.

• Dropout level: the proportion of items that are not collected in a day should not
exceed a predefined threshold. Such items are frozen for the next day.

• Multiple products: there are various item types (called products). In addition to
its inherent chemical properties, a product is characterized by the need to be pre-
analyzed or not. Each product must be analyzed by a single machine in any lab.
There is a dedicated machine type for each product.

• Positioning of the vehicles: the initial position of each vehicle is known, and
at the end of the day, some vehicles have to come to their initially assigned
locations, which could be either a client or a lab.

• Transfers: the items can be delivered to a lab thanks to the use of different
vehicles [4, 6]. The transfer of items from a vehicle to another can be performed
in each location. A location for which transfers occur is called a hub in this paper.

• Resource optimization: use as few machines and as few vehicles as possible.

Many algorithms have been developed for the VRP and the best performance is
achieved by metaheuristics [8, 12]. The considered real application for the PVRP is
characterized by the following order of magnitude: 4 products, 50 clients, less than
5 labs, and 60 vehicles. There are roughly 11,000 items per day, and the time step is
1 min. As a consequence, exact methods are not appropriate for real instances, and
heuristics/metaheuristics have to be employed.

The paper is organized as follows. The problem is presented accurately in Sect. 2.
A solution method is proposed in Sect. 3. Experiments are discussed in Sect. 4.
Conclusions and avenues of research are provided in Sect. 5.
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2 Presentation of the Problem

Consider a transportation network made of clients (origins) and labs (destinations).
Each client location is considered as a hub in the sense that any vehicle can transfer
its load (i.e., boxes) to another vehicle. The planning horizon is a working day.

For each location of the network (i.e., a lab or a client), its assigned set of
vehicles is known. All the vehicles can be considered as identical (from a technical
standpoint), but there are various vehicle types. First, a constrained vehicle must
start and end its day in the same location, but the return time can exceed the closing
time of the involved location. A constrained vehicle belongs to the vehicle fleet of
COMP . Second, an external vehicle is used by COMP as a taxi service. It does
not belong to the COMP fleet and thus, it is not necessary to come back to its initial
location at the end of the day.

The daily demand consists of thousands of items coming from the client
locations. The same client can be visited (by any vehicle) several times during the
day, and the item release times are known in advance (i.e., before the planning
horizon). Any vehicle can be used to pickup items and deliver them to a lab, and
capacity constraints can be ignored (indeed, small boxes of items are involved). For
each lab, the following information is given: its specific opening hours, its assigned
set of machine types, and the number of machines available for each machine type.

Anytime a driver arrives at a client location, it takes the box of all the released
items up to this arrival time. A box can thus contain all the product types. Each
box must then be delivered on-time to a lab (i.e., satisfying the due date of all the
involved items, which is determined by the first released item of the box). Some
items can be late, but an overall service level SL = 90% has to be satisfied.
Similarly, it is allowed that some items are not collected at all, but such a dropout
level cannot exceed DL = 3%. The SL and DL values are imposed by COMP .
There is a constant service time t s (set to 10 min) at the client location (for the
pickup), at the hub location (if any, for the transfer), and at the destination (for the
delivery). There are four item types (i.e., products) denoted here as A, B, C and D.
Each item has to be analyzed in a lab by a dedicated machine, and a machine can
only process one dedicated product (i.e., there are four machine types).

For each item i, we know its release time ri (i.e., the time at which it is available
at the involved client location) and its type ki . It is not allowed to interrupt the
processing of an item (i.e., preemptions are forbidden). Anytime an item is released,
it should be analyzed (in a lab) within a due time of D = 6 h (i.e., the due date
di = ri +D), otherwise the item chemical properties have a risk to be deteriorated.
Each machine can handle only one item at a time, and uses a FIFO rule (first-in-first-
out: the items are processed according to the delivery sequence). For each machine
of type k ∈ {A,B,C,D}, we know its speed defined as the number ak of items that
it can analyze per hour. Each machine can also have independent items to analyze,
coming from a few clients that are out of our control. Such independent items reduce
slightly the machine availabilities for some periods. The proportion of independent
items is approximately 7% of the daily demand (observed input data).
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Each regular item (i.e., of type B, C or D in this work) has to satisfy the pre-
processing and the pre-analysis constraints. More precisely, each regular item i

cannot be processed by any machine during a waiting time s(w)i of 30 min after
its release time ri (pre-processing constraint). Next, it has to be pre-analyzed by
a pre-analysis machine during s(c)i = 15 min. For products B and D, the pre-
analysis can occur in any location of the network (i.e., a client, a hub or a lab); in
contrast, for product C, it must occur in a lab (pre-analysis constraint). Formally,
each regular item i has a setup time of s(w)i + s(c)i = 45 min before it can be
processed in a lab. From a practical standpoint, we can assume that there is always
an available pre-analysis machine, and that if pre-analysis occurs in a lab, the pre-
analysis operation is triggered as soon as possible (i.e., the above-mentioned FIFO
rule is overruled).

Let Di (resp. Ri) be the time at which item i is delivered (resp. released, i.e.,
available for the analysis) to its associated lab. Ri can be computed as follows.

• Ri = Di : if i is non-regular, or if i is of type B or D and the pre-processing
(s(w)i ) and the pre-analysis (s(c)i ) have already occurred before Di .

• Ri = max{Di+ s(c)i , ri+ s(w)i + s(c)i }: if i is regular and the pre-analysis machine
is employed in the lab.

Consider the following elements:

• mLk : number of machines of type k in lab L.
• hLk (t): number of items of type k waiting, at time t , to be processed in lab L.
• wLk (t): waiting time, at time t , of an item of type k in lab L (as other items have

to be processed first).
• Si : starting time of item i (time at which item i starts to be analyzed in its lab).
• Ci : completion time of item i (time at which the associated analysis is finished).
• ak: speed of machine k (number of items that it can analyze per hour).

As a consequence, we have: wLk (t) = hLk (t)

ak ·mLk
; Si = Ri + wLki (Ri); Ci = Si +

wLki
(Ri)+ 1

aki
; Ci < ri +D (due date constraint).

The optimization problem (i.e., decision variables, constraints, objective func-
tions) can be formulated as follows.

Decision Variables
• number mLk of machines for each type k that is present in each lab L;
• number vl of vehicles (constrained and external) assigned to each location l;
• route sv of each vehicle v (constrained and external);
• pre-analysis location of each item i ∈ {B,D}.
Constraints
• each item i has to be delivered to a lab;
• for each lab L, there is a set ML of machines that cannot be removed (typically,

for each lab, each machine type must be always represented);
• each machine can handle only one item at a time;
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• pre-processing and pre-analysis constraints (for the regular items);
• service level: the percentage LI of late items (i.e., exceeding the due date) cannot

exceed the service level SL imposed by COMP ;
• dropout level: the percentage NCI of non-collected items cannot exceed the

dropout level DL imposed by COMP ;
• respect the opening hours of the lab;
• each vehicle v must start in its initial location lv , and each constrained vehicle v

must return to lv at the end of the day (even out of the opening hours of lv);
• there is a constant service time t s when picking up, when transferring, and when

delivering boxes;

Objective Functions to Minimize
(f1) number of employed machines; (f2) number of external vehicles; (f3) number
of constrained vehicles; (f4) total time spent by the vehicles on the road. (f4) is
computed for each vehicle v as the difference between (1) the time of its last delivery
(or its return time to lv if v is constrained), and (2) its first departure time from lv .
As for many other situations in practice (e.g., [15]), company COMP has imposed
a lexicographic consideration of these objectives (i.e., no improvement on a lower-
level objective fo+1 can compensate a degradation of a higher-level objective fo).
This prioritization is straightforward as these objectives are ranked according to
the impact on the overall costs that COMP has to face. Without lexicographic
optimization, the consideration of nonlinear costs might be investigated with the
use of a variable neighborhood search [1].

3 Solution Method

First of all, it is important to be aware that company COMP aims at having a
quick solution method for tackling the PVRP. Indeed, in a real context, random
events (e.g., unexpected items appear during the day, a vehicle has a breakdown)
can occur, and the involved decision maker should be able to generate an updated
solution quickly. For this reason, we do not investigate cumbersome metaheuristics,
but we rather focus on streamlined heuristics. The overall approach is made of the
four below steps, where steps (S1) to (S3) focus on all objectives f2 to f4, whereas
step (S4) is specifically designed for reducing f1.

• (S1) build sectors (i.e., decompose the network into smaller parts);
• (S2) build routes (i.e., construct the collecting routes in each sector and the

delivery routes from sectors to labs);
• (S3) assign vehicles to routes;
• (S4) try to find a solution with fewer machines (i.e., restart with step (S1)).
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3.1 Build Sectors

Let G = (X,Z,U) be the considered oriented network, with client set X, lab set
Z, and arc set U (containing the path between each pair of locations). As a pre-
processing phase, we propose to split the networkG into sectors (G1,G2, . . . ,Gq).
The following elements are associated with each sectorGj : a set Xj ⊂ X of clients
(where (X1, X2, X3, . . .) is a partition of X, thus Xj ∩ Xj ′ = ∅, ∀j, j ′), a single
hub yj ∈ X (the same hub can be used for different sectors), and a single lab zj (the
same lab can be used for different sectors).

There is obviously no perfect procedure for building sectors. Each Gj is built
based on the following ideas: (1) group clients that are close to each other; (2) group
clients with significant demand peaks at similar times; (3) determine the hub yj in
X that has the smallest average distance with the clients of Xj (break ties with the
proximity of the closest lab); (4) determine the lab zj ∈ Z that is the closest to yj ;
(5) the working load of a lab should depend on its capacity (i.e., number of machines
of each type); (6) a big client (i.e., triggering many items) should be favored to be a
hub. Note that if a lab zj is already located close enough to a sector Gj , we can set
yj = zj and thus we avoid managing transfers for sector Gj .

3.2 Build Routes

Two types of trips are designed for each sector: collection routes and delivery routes.
A collection route consists in picking up boxes of items in the client locations and in
bringing them to the associated hub. A delivery route only involves a hub and a lab.
As a consequence, each box is first picked up by a collection route (by the involved
vehicle), and it is next delivered to a lab by a delivery route (with a different vehicle).
As a consequence, two functions are possible for a vehicle: collect boxes through a
collection route or deliver boxes through a delivery route.

An important feature of the problem is that the picking time in each location is
a decision variable. As items can be released anytime during the day in any client
location, we propose that each location (either a client, a hub or a lab) should be
visited with a rather stable frequency during the day. Consider a sector Gj . Let Aj
be an analysis parameter (tuned to 30 min) corresponding to the allocated time for
performing the analysis at lab zj . It means that any item i should be delivered to
its associated lab Aj − t s minutes before its due date di = ri + D. Let t̂ (yj , zj )
be the standard travel time (in minutes) between hub yj and lab zj . Therefore, if
item i is released at time ri , it must be picked up from its associated hub yj within
Hj = D−Aj − t̂ (yj , zj )−2 · t s minutes (note that 2 · t s captures the service time at
the hub and at the lab). As a consequence, a delivery route can be planned from yj
to zj every Hj minutes. In addition, as the demand is not a uniform function during
the day, the last cycle (i.e., collection routes followed by the subsequent delivery
routes) is delayed in order to meet the SL and DL constraints. For instance, if a
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cycle is planned every 3 h but the working day is 10 h, then the durations of the two
first cycles are 3 h, but the last cycle has a duration of 4 h (i.e., the last collecting
routes are delayed by 1 h).

Let Tj be a transportation parameter (tuned to 30 min) that allocates a safety time
period for performing any collection route in Gj . Therefore, each collection route
of Gj cannot exceed a planning window of Wj = Hj − Tj minutes. Based on this
information, we can determine the number of collection routes that are theoretically
necessary for Gj , and thus, the theoretical number Vj of required vehicles can be
deduced. The computation of Vj is obtained as follows. For each sector Gj , we
consider the classic VRP with depot yj and client set Xj . The simple and famous
Clarke and White algorithm [3] can be performed, with the constraint that each route
cannot exceed Wj minutes.

At the end of the route building process, each route is adjusted (i.e., some
departures are delayed in some client locations) if pre-analysis machines can be
used (for item types B and D) without exceeding the planning window Wj . All
the remaining pre-analysis operations occur in the hubs (but without delaying the
subsequent delivery routes) or in the labs.

3.3 Assign Vehicles to Delivery/Collection Routes

We have to be aware that the fleet of COMP is expected to be oversized. Ideally,
we propose to first assign the constrained vehicles to collection routes, and next the
external vehicles to delivery routes.

There are two types of sectors. Gj is overloaded if it contains Vj or more
constrained vehicles initially located on it. The overloaded sectors are first con-
sidered. For each overloaded sector (considered in a random order), only assign to it
the vehicles that are the closest to yj . The unassigned vehicles are thus available
for other sectors if necessary. Next, for each non-overloaded sector Gj , do the
following. On the one hand, assign toGj all the constrained vehicles that are already
there. On the other hand, iteratively assign a missing vehicle in a greedy fashion,
by favoring the closest unassigned vehicle from the neighboring sectors. If some
vehicles are still missing at the end of this process, use external vehicles in a greedy
fashion as well (i.e., based on proximity).

After the above assignment phase, the set of unassigned vehicles can contain both
external and constrained vehicles. What is important in a delivery route is the trip
from yj to zj (because items are transported), but not the trip right after the delivery
(indeed, the vehicle becomes empty afterwards). For each sector Gj , we have to
determine the number of vehicles that are needed to perform all the scheduled
trips yj → zj . This computation is straightforward: one vehicle is enough if the
return trip from zj back to yj can be completed before the next departure from yj .
Otherwise, a second vehicle has to be employed, and the same argument can be used
to determine if additional vehicles are needed.
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Given a sector Gj , for each vehicle involved in the collection of items, there are
two types of route: (1) yj → clients → yj ; (2) initial location (if different from
yj ) → clients → yj . Type (1) represents the regular situation that is likely to be
repeated during the day anytime there is a departure of a delivery route from yj .
This situation can again be solved with the Clarke and White algorithm. Type (2)
occurs as the first morning route of each vehicle that is initially not located in yj .
In this case, each vehicle moves in a greedy fashion: at each step, it moves to the
closest unserved client. If no more client is unserved, all the vehicles move to yj ,
resulting in the start of the regular situation (i.e., type (1)).

3.4 Reduce the Resource Levels

The previous subsections aim at minimizing f2 to f4 if the overall machine capacity
is fixed to machine set M (also called as a resource level). Let s(M) be the solution
returned by the above routing procedures, denoted from now as ROUTE(M). In
order to reduce f1 as well, it is proposed to work level by level (i.e., focusing on one
level at a time).

Solution methods based on levels were successfully adapted to various combina-
torial optimization problems (e.g. [11, 14]). We have f (s) < f (s′) if s is better than
s′ with respect to the imposed lexicographic approach (f1) > (f2) > (f3) > (f4)

(i.e., no improvement on a lower-level objective fo+1 can compensate a degradation
of a higher-level objective fo). Let s� be the best solution encountered during
the search process, and let f � = (f1(s

�), f2(s
�), f3(s

�), f4(s
�)) be its associated

objective-function values. The f1-reduction procedure is depicted in Algorithm 1.
A m-drop move consists of removing machine m from machine set M . It is

important to be aware that anytime a m-drop move is investigated for a lab Lj ,
it has the following consequences. First, its analysis parameters Aj are slightly
augmented. Indeed, if the capacity of Lj is reduced, more time should be allocated
to it in order to perform its assigned tasks. Second, if a lab has a smaller capacity,
it might be assigned with fewer sectors (see point (4) of Sect. 3.1). Third, more
vehicles might be used (see Sects. 3.2 and 3.3).

4 Experiments

The experiments were performed on real data (slightly perturbed to preserve
the confidentiality agreement). All the algorithms were coded with C++ under
Linux, and run on 2.8 GHz Intel Quad-core i7-7700HQ processor with 16 GB of
DDR4 RAM. As the proposed algorithms are quick because of their very natures,
computing times are very small (i.e., always less than a minute for planning a whole
day) and thus not reported here. The network has a structure like the RC benchmark
instances [16]. That is, there are clustered clients on the one hand, and zones
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Algorithm 1 Reduction of f1

Initialization

1. set M to the resource level employed by COMP (or to any straightforward upper bound);

2. generate an initial feasible solution s with ROUTE(M);

3. set f � = (f1(s), f2(s), f3(s), f4(s)) and s� = s;

While f � can be reduced, do:

1. perform the bestm-drop move: generate a solution with ROUTE(M−{m}) for each possiblem-
drop move (respecting ML for each lab L), and keep the best solution s(M − {m�}) associated
with the removal of machine m� from level M;

2. if s is feasible and if f (s) < f �, set: s� = s, f � = (f1(s), f2(s), f3(s), f4(s)),M = M−{m�};

Return s� with value f �; best encountered level M .

for which the clients are randomly distributed on the other hand. The following
approach is proposed to benchmark our solution. We simulate the solution provided
by COMP (such solutions are built by hand based on the COMP decision-maker
experience), and then we measure how our own solutions (generated by the above-
proposed algorithms) can improve the existing solutions (percentage gaps with
respect to each fo).

The considered application is characterized by the following data: the planning
horizon is a working day (roughly 12 h), 11,000 items, 50 client locations, less than
5 lab locations, 40 constrained vehicles, 20 external vehicles, 3500 (resp. 4500,
500, 2500) items of type A (resp. B, C, D). The ak values (in items/hour) are
approximately the following: (aA, aB, aC, aD) = (100, 800, 200, 200).

The COMP solution is characterized by a service level of 90.4% and a dropout
level of 2.9%. The average waiting time of an item in a lab (i.e., before being
processed) is 28.8 min. Considering the same set of machines (i.e., the same f1-
value), our method is able to achieve the following improvements: a f2-reduction
of 16 external vehicles, a f3-reduction of 5 constrained vehicles, a f4-reduction
of 22 h (of time spent on the road by the vehicles, corresponding to a 22%-
gap). Moreover, the service level and the dropout level are 94.9% and 2.7%,
respectively. The average waiting time of an item in a lab is 20.3 min. Obviously, the
improvements are very significant, while preserving (and even augmenting!) service
level indicators. If f1 is also optimized (using Algorithm 1), it can be reduced by
seven machines without augmenting f2, f3 and f4. Moreover, the service level and
the dropout level are 92.7% and 2.7%, respectively. The average waiting time of an
item in a lab is 29.8 min.
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5 Conclusion and Future Works

In this paper, we have proposed a solution method for an integrated-logistic
problem (PVRP) combining vehicle routing and resource allocation. The resource
is made of two types: vehicles for performing pickups and deliveries of items,
and machines for processing the delivered items. The problem was motivated by
a real company, and its originality relies on the specific features and dimensions
that are added to the well-known vehicle routing problem (VRP) (e.g., multiple
demands/pickups/depots/products, due dates, service level, dropout level, possibil-
ity of transfers, resource optimization). The experiments conducted on real data
show the significant benefits of the integrated approach with respect to the solutions
provided by the company. Various avenues of research can be envisioned.

• Non-identical vehicles might be employed. For instance, use scooters in addition
to cars, as scooters are faster/cheaper than cars, but they might be limited by
capacity constraints.

• Allow some items to be rejected. In such a case, pay an external taxi service
to deliver such items, and penalize these rejections with a dedicated objective
function that is appropriately ranked in the lexicographic optimization. The idea
is to avoid having an additional vehicle only for a few items occurring in some
peak demand periods.

• As proposed in [13] for the VRP, an on-line version of the PVRP could be
investigated (e.g., variable traffic conditions, items are revealed progressively
during the day, routes are updated anytime a new event/item occurs).

• Decisions can also be made on the network design (e.g., where to locate the labs,
[7]) and on the vehicle allocation (i.e., where to initially locate the vehicles [18]).
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A Real Case on Making Strategic
Logistics Decisions with Production
and Inventory Optimization Models

E. Parra

Abstract A real case is described of the use of industrial optimization models
(linear/integer programming) for logistics decisions in the medium term (annual
planning) and strategic decisions. The application of these models to optimize
annual operations and make strategic decisions on the sizing of storage capacity
is studied. The optimization models are built with the author’s software, which
is capable of proposing and solving problems of the required size: thousands of
equations, tens of thousands of variables and hundreds of thousands of non-zero
coefficients. The models demonstrate the enormous power of this methodology and
its potential savings in production/transport costs, which were as much as 20% in
the case in this work.

Keywords Logistics · Strategic decisions · Optimization

1 Introduction

This work describes the use of industrial optimization models (linear/integer
programming) for both medium term (annual planning) and strategic logistics
decisions [1] in a real case.

Specifically, we study the use of models for optimizing the planning of annual
operations and adopting strategic decisions for the sizing of storage capacity.
The optimization models in the case study were built with the author’s software
and resolved with a commercial software capable of proposing and resolving
problems of the required size: 8000 equations, 80,000 variables and 300,000 non-
null coefficients.

Logistic problems has been studied widely: in well known books on industrial
modeling like Winston [2], Williams [3], Baker [4] or Kallrath [5] and in papers with
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applications to specific industries:: Martin et al. [6] presented a linear programming
model for planning production, distribution and inventory operations in the glass
sector industry. Chen and Wang [7] proposed a model to solve integrated supply,
production and distribution planning for the steel sector. Ryu et al. [8] suggested
a bi-level modeling approach comprising two linear programming models, one
for production planning and one for distribution planning. Kallrath [9] presented
a model applied to the process industry. Jung et al. [10] compared models for
centralized and decentralized production and transport planning. Aghezzaf [11]
explores capacity planning and warehouse location. Mula et al. [12] is a good
survey on mathematical programming models for supply chain production and
transport planning. Kallrath [13] explains the important role of Modeling Languages
in Mathematical Optimization: compulsory tool for model building. These models
and tools, usually need a mathematical modeling expert.

In this work, a very versatile original approach is used since the planner (tactical
or strategic) is the person who can change the model and apply it to different
uses modifying the model that is constructed by the data provided not writing
mathematical equations.

This methodology shows the great benefit of its use through the application to a
real case of medium-term planning and strategic planning.

2 The Problem

The case study concerns an industry that manufactures an intermediate product from
a raw material that can either be stored or transformed into a final product, which in
turn can be shipped exactly as it is obtained -bulk-, or in different packaging formats.
The most important costs are those involved in transforming the raw material and
especially in transporting the product to the customers, who receive the product on
a CIF (cost, insurance and freight) basis.

The company had 11 factories that received raw material, transformed it in the
intermediate product and obtained final product from the intermediate one. Final
product can be packaged in different formats. It is possible to store intermediate and
final product in some of the factories. Figure 1 is a factory scheme.

The firm could use other seven warehouses (without production capacity) to
receive product, store it and dispatch to other warehouses or to customers. The
transformation rate of the raw material into intermediate product is faster than the
process of obtaining the final product from the intermediate product, and when the
raw material is being received, more intermediate product may be obtained than is
processed to achieve the final product, meaning the inter-mediate product needs to
be stored. Intermediate and final product in any of the packaging options can be
transported between factories and warehouses.

Final product is stored in eight factories and can be dispatched as it is obtained or
in the different packaging formats. Table 1 shows the installed capacity in thousands
of tons (kt) to store bulk—the most important- before the optimization and the
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Raw
material

Intermediate
product

Final 
product
bulk

Direct production Final product
Packaging 1

Final product
Packaging 2

Final product
Packaging 3

Transport in/out

Input / Output 
Transportation 

to other 
factories, 
deposits 

and 
to customers

Production

Transformation-packaging

Fig. 1 Factory scheme

Table 1 Installed storage
capacity

Factory Installed cap. (kt)

Fac01 25
Fac02 20
Fac03 35
Fac04 20
Fac05 40
Fac06 20
Fac10 70
Fac11 45
Total 275

strategic study. Some of the warehouses can also be used to store either bulk or
packaged product. Packaging operations may take place in any of the factories
(although not all types in all factories) and within certain limits. There are shipping
constraints in each factory. There are also constraints on the production rate (raw
material-intermediate product and intermediate-bulk product) in addition to the
aforementioned packaging constraints.

The customers are distributed over a broad geographic area, so it was considered
enough to use an approach that groups them by proximity (postcode, municipalities,
provinces), except for the most important customers and/or those that for some
reason represent another type of constraint in terms of the source of the supply.

The product is manufactured and stored in the factories and sent to the deposits;
it is then sent from the deposits and/or factories to the customers on a CIF basis.
As the cost of transport is supported by the company, its optimization is of crucial
importance.

The procurement of the raw material is subject to strong seasonality, which varies
from one geographic region to another. There is also significant seasonality in the
demand and production, which makes the choice of storage capacity critical for
minimising the cost of transporting the products to the customers.

In addition to resolving medium-term operations, a strategic discussion is
afforded: could be said to be whether increased investment in storage capacity could
reduce transport costs, which requires an analysis of the investment in warehouse
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space from the standpoint of potential reductions in transport costs. Later it is
explained how this strategic decision is addressed in this case.

Using optimization models, proposed and resolved with the author’s software
described below, a study is made of where and by how much the factories’ storage
capacity must be increased. The software shows the optimal transport solution
available to the company in each scenario and provides savings of up to 20%, as
will be seen.

The following is an explanation of the initial situation of the company, the
mathematical model, the software and the methodology used in the strategic analysis
of new investments, and concludes with the results obtained. Specific data related
with the real case are used to make the methodology easier to follow, although with
re-scaled data to guarantee confidentiality.

3 Optimization of the Operations

3.1 Introduction

The company opted to use linear programming models for planning all its transport
operations and to study the expected savings from possible warehouse expansions.

Given the seasonality of the demand and production, it is essential that the model
should have good seasonal detail. It therefore needed to be multi-period; specifically,
each case study covers a whole year as a planning horizon with monthly periods.

The models were built and resolved using the author’s software (TPOS), whose
latest version is described in Parra [14]. TPOS is a set of programs for personal
computers that allow the combined resolution of production and distribution
optimization. TPOS places greater emphasis on the modelling of the multilevel
transport network.

The problem resolved by TPOS (details in Parra [14, 15]) can be summarised in
Sect. 3.2.

3.2 Mathematical Model (TPOS)

Given N nodes (that model suppliers, factories, deposits, customers) connected
by transport arcs (A) in a network, P products produced and transported over the
network during T planning horizon periods of variable length. Let i, i´ ∈ N (Nodes,
set), j, j´ ∈ P (Products, set), k ∈ T (Periods, set).

The generated mathematical optimization model purpose is to find the optimal
value of the following variables:

1. PX (i, j, k). Quantity produced of product “j” at node “i” during period “k”.
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2. TX (i, j, j’, k). Quantity transformed from product “j” into product “j´” at node
“i” during period “k”.

3. X (i, l, j, k). Quantity (if it is generated as a continuous variable) transported from
origin node “i” to destination node “l” of product “i” during period “k”, or (see
below). Transportation arcs are explicitly declared buy the modeller.

4. CS (i, j, k). Quantity consumed (sales = demand satisfaction) of product “j” at
node “i” during period “k”

5. OF (i, j, k). Quantity of product “j” leaving node “i” during period “k”.
6. StoF (i, j, k). Quantity stored at the end of period “k”, of product “j” at node “i”.

Main data:

1. Price (i, j, k). Price paid by costumer for a unit of product “j” at node “i” during
period “k”.

2. CostProd (i, j, k). Unit cost to produce product “j” at node “i” during period “k”.
3. CostSto (i, j, k). Unit cost to stock product “j” at node “i” during period “k”.
4. CostTra (i, i’, j, k). Unit cost to transport product “j” from node “i” to node “i’”

during period “k”.
5. Cost TR (i, j, j’,k). Unit cost to transform product “j” into product “j’ “at node

“i” during period “k”.
6. Yield (i, j, j’, k). Quantity of product “j’ “obtained when a unit of product “j” is

transformed into product “j’ “at node “i” during period “k”.

Other data used are introduced in the constraint where is used.
The objective function is to “Maximize the variable margin: Revenues from

product sales minus Variable Costs (sum of supply, manufacturing, stock and
transportation costs)”:

∑
i

∑
j

∑
k

Pr ice (i, j, k) .CS (i, j, k)−∑
i

∑
j

∑
k

CostProd (i, j, k) .PX (i, j, k)

− CostSto.
∑
i

∑
j

T−1∑
k=1

StoF (i, j, k)−∑
i

∑
i′ �=i

∑
j

∑
k

CostTra
(
i, i′, j

)
.X

(
i, i′, j, k

)

−∑
i

∑
j

∑
j ′

∑
k

CostT R
(
i, j, j ′, j

)
.T X

(
i, j, j ′, k

)

Constraints:

1. Balance for Initial stock, productions, transformations, consumption, shipments
and final stock for each node (i), product (j) and period (k).

These are the core equations of the model. Each product: can be produced
(variables PX) in a node each period, can be transformed (variables TX) in
other product in the same node each period, can be transported to other node
(X variables to other nodes), received from other node (X variables from other
nodes), can be stored in the node where is produced (StoF variables) or can be
consumed in the node (CS variables).
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Selecting which of these operations are allowed in each node/period it
is a very versatile method to represent a factory with or without storage, a
warehouse, a transhipment center, or a customer.

StoF (i, j, k) –PX (i, j, k)+ CS (i, j, k)−
∑

i′
X

(
i
′
, i, j, k

)
+
∑

i′
X

(
i, i′, j, k

)

+∑
j ′ TX

(
i, j´, j, k

)
−∑

j ′ Yield
(

i, j, j
′
, k
)
.TX

(
i, j′, j, k

)

= StoIni (i, j) ∀ (i, j, k = 1) (1)

StoF (i, j, k) = StoF (i, j, k− 1) PX (i, j, k)+ CS (i, j, k)−∑
i′ X

(
i
′
, i, j, k

)

+∑
i′ X

(
i, i
′
, j, k

)
+∑

j ′ TX
(

i, j´, j, k
)

−∑
j ′ Yield

(
i, j, j

′
, k
)
.TX

(
i, j´, j, k

)
= 0 ∀ (i, j, k > 1) (1′)

2. Quantities Pr (i, j, k) are produced in node i. Limits can be set: a lower limit,
ProdMin (i, j, k), and an upper limit, ProdMax (i, j, k), for each product “j” and
during each period “k” with unitary cost CostProd (i, j, k). These quantities can
be seen like supplies at the node. This is the only way to generate material in
the model.

ProdMin (i, j, k) ≤ PX (i, j, k) ≤ ProdMax (i, j, k) ∀ (i, j, k) (2)

3. Lower limit (ProdCMin) and upper limit (ProdCMax) can be set for joint
production (sum for all products) for each period y node.

ProdCMin (i, k) ≤
∑

j

PX (i, j, k) ≤ ProdCMax (i, k) ∀ (i, k) (3)

4. Lower limit (ProdPMin) and upper limit (ProdPMax) can be set for a product
production in the whole horizon and at each node.

ProdPMin (i, j) ≤
∑

k

PX (i, j, k) ≤ ProdPMax (i, j) ∀ (i, j) (4)

5. Any product can be transformed into another with a yield, a unitary cost
(CostTR values, included in the objective function) and different limits can be
set:
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a. TRMin/TRMax (minimum/maximum for each transformation from product
“j” to product “j’” in node i and period “k”)

TRMin
(

i, j, j
′
, k
)
≤ TR

(
i, j, j´, k

)
≤ TRMax

(
i, j, j´, k

)
∀
(

i, j, j
′
, k
)

(5)

b. TR1Min/TR1Max (minimum/maximum for total transformation of product
“j” to other products in node “i” and period “k”)

TR1 Min (i, j, k) ≤
∑

j ′
TR

(
i, j, j´, k

)
≤ TR1 Max (i, j, k) ∀ (i, j, k)

(6)

c. TR2Min/TR2Max (minimum/maximum for total transformation of product
“j” to other products in node “i” in the sum of periods),

TR2 Min (i, j) ≤
∑

j ′

∑

k

TR
(

i, j, j´, k
)
≤ TR2 Max (i, j) ∀ (i, j) (7)

d. TR3Min/TR3Max (minimum/maximum for total transformation of all the
products in each node “i” and in each period “k”),

TR3 Min (i, k) ≤
∑

j

∑

j ′
TR

(
i, j, j´, k

)
≤ TR3 Max (i, k) ∀ (i, k)

(8)

e. TR4Min/TR4Max (minimum/maximum for total transformation of all prod-
ucts for all periods in node “i”),

TR4 Min (i) ≤
∑

j

∑

j ′

∑

k

TR
(

i, j, j´, k
)
≤ TR4 Max (i) ∀ (i) (9)

6. Any product can be stored from a period to the next one. Lower and upper
stock limits can be set (StoMin y StoMax) for each pair product/node. At the
beginning of the planning horizon, the nodes have an initial stock of each of the
products (StoIni). There is a unitary stock cost (CostSto)

StoMin (i, j) ≤ StoF (i, j, k) ≤ StoMax (i, j) ∀ (i, j, k) (10)

7. Lower and upper limits can be set for the sum of all product stocks at node “i”
in each of the periods (StoCMin and StoCMax)

StoCMin (i) ≤
∑

j

StoF (i, j, k) ≤ StoCMax (i) ∀ (i, k) (11)
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8. Lower and upper demand limits can be set for each period, product and node
(DemMin and DemMax); the revenues are the product of the price (“Price”
values included in objective function) and the demand. This is the way to
represent the sales. They are the income in the model.

DemMin (i, j, k) ≤ CS (i, j, k) ≤ DemMax (i, j, k) ∀ (i, j, k) (12)

9. Lower and upper transportation limits can be set for each arc (from node “i”
to node “ i’ ”), product “j” and period “k” (XMin and XMax). This is the way
to model the transportation between nodes. There is a unitary transport cost
(CostTra)

XMin
(

i, i
′
, j, k

)
≤ X

(
i, i
′
, j, k

)
≤ XMax

(
i, i
′
, j, k

)
∀ (i, j, k) (13)

10. Lower and upper limits for the inflow to a node can be set (InfMin and InfMax).
To avoid very low sendings it is posible to impose a threshold level defining the
outflow variable as a semi continuous variable (MIP version).

InfMin (i, j, k) ≤
∑

i′
X

(
i
′
, i, j, k

)
≤ InfMax (i, j, k) ∀ (i, j, k) (14)

11. Lower and upper limits for the outflow from a node (variables OF) can be set
(OutMin and OutMax).

OF (i, j, k) =
∑

i′
X

(
i, i
′
, j, k

)
∀ (i, j, k) (15)

OutMin (i, j, k) ≤ OF (i, j, k) ≤ OutMax (i, j, k) ∀ (i, j, k) (16)

12. Also, it is possible to include special constraints using the variables already
generated in the model (productions, shipments, . . . )

R_Specials : Those included explicitly by the user using generated variables
(17)

TPOS builds the model from data supplied by the user in the form of alphabetic
codes that guide the construction of the model’s equations by the software. The user
do not write any equation, only fill codes: production, transformation, shipment with
keywords: PROD, TR, NET, . . . (details in Parra [14, 15]).

The data can be stored, for example, on a spreadsheet or linked to databases.
The software optimizes the model and creates a report of the results that can be
processed using any database or spreadsheet software.

Models built by TPOS are multi-node, multi-product and multi-period. In
general, on any node a product can be produced, transformed into another, stored,
received from other nodes, or sent to other nodes and consumed. It can represent
a factory (everything except consumption), a deposit (which receives, stores and
ships) or a customer (only receives and consumes). All the operations described
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can be modelled with no limits or with minimum and maximum limits. More detail
about the possibilities of TPOS are shown in the references.

3.3 Case Study

In the case study, 76 nodes were considered for the basic model (named ALM0): the
factories, the deposits, the client groupings (“provinces”) and some special clients.
The model uses 12 periods (months) and five products: intermediate product, and
final bulk product which is shipped either as is or in three packaging formats.
The practical considerations in this case meant that the ALM0 model consisted of
approximately 8000 constraints, 80,000 variables (with 5000 individual limits) and
around 250,000 non-null coefficients. The model was built using the TPOS codes,
resolved with an optimizer—for example FICO [16]—integrated in TPOS, and a
written report was then created with all the details of the model and the solution,
with an output file in CSV format. This can be done in very little time in current
personal computers under Windows. Another options for optimiser selection can be
IBM [17], LINGO [18] or others listed in Fourer [19].

Once the base model (ALM0) had been resolved, the optimal solution could be
observed and compared with the real transport expenses. The use of optimization
pointed to a new annual planning solution: the optimal solution reduced real
transport costs by around 20%. This first stage allowed the company to reorder its
production and transport structure. Since its introduction, this method of planning
operations has become standard in the company. This first phase also identified
possible additional improvements if investments were made in storage looking at
the dual values of the solution, so a second phase in the use of the optimization
was begun in order to identify the most profitable investments in storage capacity.
In a third phase, the company even embarked on a wholesale restructuring of the
business, including factory expansions and closures as it will be explained in Sect. 4.

Essentially the same optimization model was used in each scenario, with
variations in the data as explained below.

4 Strategic Study of Warehouse Expansion

4.1 Scenarios

Various scenarios were contemplated, with variations in customer demand and
factory output limits (due to expansions planned). Specifically, two versions were
used for demand, the first corresponding to the data for the last real year available
(“Historic”) and the second to the estimated demand for the following year
(“Future”). There were two production options: we will refer to them as “Current”,
which was the historic situation; and “Future” which considered the finalisation
of the investments currently underway to increase manufacturing capacity. Four
scenarios are obtained from the combination of demand and production.
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Table 2 Savings compared to the historic plan

Case Demand Production Cost Cost reduction over base cost (%)

Historic Current Historic 17,588
Base (optimal) Current Historic 14,672 17
Historic Future Historic 18,770
Base (optimal) Future Historic 15,658 17
Historic Future New 17,588
Base (optimal) Future New 14,672 12

In order to have a point of comparison, the base model which has constraints in
the storage and production capacity, among others, was optimized to the historic
figures and the real data for the last year was used as demand.

The result obtained (re-scaled figures because confidentiality) was a transport
cost of 14.670 K$, representing a 17% improvement over the real costs (almost 3 M$
with the data used). Thus, as expected, the first significant result is that the use of
an optimization model leads to a highly significant improvement in the company’s
economic results.

These same calculations made with the following year’s demand reveal a similar
saving of 17% when continuing with the historic plan vs. adopting the solutions
proposed by the optimization model.

If, in addition to changing the demand, a new production scheme is added to
approximate the most probable future scenario, the cost saving is still 12%. These
results can be seen in Table 2.

The optimal solution also suggests incentives (via dual values) to increase bulk
storage capacity. Specifically, the most important incentives are: Fac01: −45 $/t,
Fac07, −35 $/t, Fac04, −28 $/t.

Based on this result, we continue to the second strategic phase, in which we study
whether this result can be further improved by expanding storage.

4.2 Resolution of the “Unlimited” Case

To find a “floor cost” for transport costs and observe the optimal levels of storage,
another model was created (ALM0I) containing the same elements as ALM0 except
that any amount of stock is permitted in factories with warehouses. In other words,
the real storage capacities are eliminated. This reveals the best possible situation.

It was observed that this release from the real limits led to the completion of
the entire plan with a cost that was 3.5 M$ lower than under the historic demand
scenario, representing a saving of 20% compared to the starting situation, or 4%
of the optimized solution with TPOS. When the optimization was done with the
new production and future demand scenario, a very similar potential improvement
of 18% was found compared to the historic case, or 8% (1.3 M$) compared to the
optimal solution in TPOS. We will call the savings in this “unlimited” case the
“maximum theoretical savings” (MTS) (Table 3).
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Table 3 Maximum theoretical savings, MTS

Case Demand Production MTS/base MTS/optimum

Unlimited Current Historic 3.5 M$ (20%) 0.6 M$ (4%)
Unlimited Future New 3.5 M$ (18%) 1.3 M$ (8%)

4.3 Expansion Options

The results of the ALM0 model (as it was mentioned in Sect. 4.1) revealed that
Factories 1, 7 and 4, in that order, had the greatest incentive to expand. The method-
ology followed was therefore to study the cases in the order suggested by the duals.

Based on this new demand and production scenario, the storage limit is only
released in Factory 1 (Fac01). The resolution of this case implies an optimum with
16% lower costs compared to the base case, or 4% lower compared to the optimized
case, but with a capacity limit.

In other words, 62% of the maximum theoretical savings (MTS) is achieved
by only expanding the storage capacity in Factory 1 in the future demand and
production case. This saving is achieved by expanding the storage in Factory 1,
which would need to store up to 72 kt, and would therefore require an expansion of
47 kt, almost three times the installed capacity.

To improve this result, the storage capacities of the factories were released in
the order suggested by the duals mentioned above. Starting from the previous case
(Fac01) in which unlimited storage was allowed in Factory 01, the storage is also
released in Factory 4 (next highest dual). This case (Fac01 + 04) provides an
additional 270 k$ in savings compared to the Fac01 case, achieving 83% of the
MTS. In this case Factory 1 requires less expansion of its capacity, which would be
limited to an increase of 34 kt instead of 47 kt, but it implies adding 27 kt of storage
to Factory 4. This means expanding the capacity by 61 kt, 22% of the total.

Finally, 99% of the MTS was achieved by releasing the storage capacity of
Factory 10. This last case suggested allocating the capacities as follows (Table 4):

The same procedure was used to study more cases in the different demand and
production scenarios, although due to their importance in the final decision only the
above cases are included. All these data are shown in Table 5.

Table 4 Expansions with
three expansions

Factory Expansion (kt)

Fac01 32
Fac04 27
Fac10 40
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4.4 Investment Analysis

These data were enough to apply the corresponding process of analysis of the
investment. The cost of expansion was the amount that needed to be invested, and
the annual cost saving was assumed to be the cash flows enabled by the investment.

The high return on investment in terms of IRR (internal rate of return) and
NPV (net present value), and some non-quantitative considerations, pointed to the
advisability of first expanding only in Factory 1, although this was postponed until
after the expansion of Factory 4.

This method proved to be so versatile that the company almost immediately
embarked on a third phase of strategic rethinking of all its production capacities
in all its factories, leading to a wholesale reorganisation of the business. But . . . that
is another case.

5 Conclusions

This work describes a successful real case of the use of industrial optimization
models (linear/integer programming) for both medium term (annual planning) and
strategic logistics decisions. The models were built with the author’s software and
enabled a significant saving in transport costs, after which their use became standard
for the company’s planning operations.

However, the study also examined the profitability of strategic investments for
the expansion of the company’s storage capacity.

The use of models has demonstrated the vast power of this methodology and the
cost saving it represents, as much as 20% in the case described in this work.

Acknowledgment I would like to thank to two anonymous referees for their wise advices that
have improved the paper.
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A Bi-objective Mixed Integer Model
for the Single Link Inventory Routing
Problem Using the ε-Constraint Method

Arianne A. S. Mundim, Maristela O. Santos, and Reinaldo Morabito

Abstract In this paper, we study an Inventory Routing Problem for the Single
Link case. In this problem, products must be transported from an origin point to
a destination in order to meet the demand. The products can be delivered in a finite
number of periods and the destination has a constant rate in each period. There are
two costs associated with the problem: transportation cost and inventory cost. In the
literature, the approaches usually are developed to the mono-objective problem, i.e.,
minimize both the inventory and transportation costs in a single function. However,
for real companies, an analysis of these different costs is extremely important to
define new policies. In order to deal with this literature gap, we develop a bi-
objective method that considered the ε-constraint approach to deal with these two
objectives. In numerical experiments, new instances based on the literature are
presented and solved to optimality using an optimization solver. The experiments
show that the model returns an efficient set of non-dominated solutions. Finally,
the results indicate that using the proposed method, decision makers will have a
powerful tool to construct the Pareto front.
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1 Introduction

The problem studied considers a set of n products available at an origin point and
demanded at a destination point at a constant rate (or demand for the products)
in each period. The products can be transported from the origin to the destination
regularly in a set of specific frequencies (defined by the inverse of the period) using
a limited number of trucks with given capacity. The periods are integers from 1
to the number of frequencies, i.e., the maximum number of periods is the size of
the planning horizon T . The problem aims to decide how much of each product to
ship at each frequency in order to minimize transportation and inventory cost. This
problem is referred to here as the bi-objective Single Link Problem. For example,
the origin may represent a consolidation center and the destination a depot. Some
origins regularly send products to the consolidation center, and then, the products
are shipped to the depot [7]. This problem with discrete frequencies is shown to be
NP-hard in [19]. The practical situations for the case in which the set of possible
shipping frequencies is given can be found in [12–14] and [16].

Hall [12] proposed a new method to determine the optimal frequency for the
single link problem. This optimal dispatch schedule is very flexible and allows for
the combined inventory and transportation costs of the collection to be reduced. The
method has been developed analytically and illustrated with a toy problem. In [14]
is presented a model that can be used to find consistent and realistic reorder intervals
for each item in large-scale production-distribution systems. They presented an
algorithm to solve it. The model that results from these assumptions is an integer
nonlinear programming problem. Two models are provided in [13]. The first one
with a single constrained work center and the other one with multiple constrained
work centers, and both have limited capacity. They provided necessary and sufficient
conditions that characterize the solution and showed that the optimal partition of
nodes in the production-distribution network is invariant to an arbitrary parameters.
The chapter [16] reviews optimization-based methods for solving small IRPs. It
proposes algorithms to solve these models. The chapter examines several different
multi-stage generalizations of the model. A system having a serial structure is
studied. A system with an assembly system structure is examined, and a model and
an algorithm for a distribution system were discussed.

The Single Link Problem (SLP)—mono and bi-objective—is a variant of the
Inventory and Routing Problem (IRP), introduced by Bell et al. [4]. The IRP
involves both the origin’s and the destination’s inventory, in additional the routing
to ship the products from origin to destination. Review to IRP is presented in [6]
with an overview of the SLP, with examples, characteristics and different models
and policies for the class of problems where the crucial decision is when to serve
destinations. The IRP consist of a set of origins which must distribute a set of
products to several destinations and origins have vehicles with a delivery capability
and destinations, a demand.
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In the IRP there are different techniques to control the origin’s and destination’s
inventories. Thus, to meet the market’s need for activities, initiatives have emerged
in order to facilitate decisions made by the manager. Bertazzi and Speranza [6]
present some existing techniques, the Retailer Managed Inventory (RMI) and the
Vendor Managed Inventory (VMI), of which VMI stands out for providing good
practical results in companies by providing a quick response to the destination [2].
In this paper, we studied the technique VMI.

The technique VMI consists of the control of the origin on the supply of
the destination’s stock, aiming the monitoring of the stock of the consumers by
means of previously obtained data analyses. This strategy reduces uncertainty
about inventory, increases efficiency through automation of activities and decreases
expenses with transportation and storage of products. However, in order to obtain
good confidence between the two parties involved, especially during the data
collection stage. Some studies using VMI can be found in [3, 20, 21].

In [18] is introduced a mono-objective Single Link Problem version for this
problem, where is summed the inventory and transportation cost; a version of this
problem was introduced together with other models for shipping products from an
origin to a destination. Speranza and Ukovich[18] and Bertazzi et al. [7] providing
exact solutions for real instances of the SLP. Speranza and Ukovich [19] solve
the problem using a greedy algorithm and a Branch-and-Bound algorithm, whose
computational results from the last algorithm show the possibility of solving realistic
sized problems.

The mono-objective Single Link Problem is deal in [5]. They present a general
framework of analysis from which they derive the known approaches with a
continuous frequency and with a set of given frequencies. They propose a new model
for the case with discrete shipping times in which a shipment can take place at each
discrete time instant.

To the SLP, the authors usually consider the mono-objective problem. However,
in practice, the managers want more information about the relations between these
objectives, how much the cost of inventory increases, when the cost of transport
is minimal or exactly contrary. For this, in this paper, we proposed a bi-objective
approach to deal as the SLP, where we can obtain a front of Pareto. A approach
bi-objective to the SLP can be found in [9, 17] and [1].

A multi-objective algorithm embedded with column generation to solve a green
bi-objective IRP is presented in [9]. They minimize the total cost overall supply
chain network and CO2 emission. They proposed the use of Noninferior Set
Estimation algorithm combined with column generation to reduce the number
of variables in the problem. Sadok et al. [17] determine the multi-tours of a
homogeneous fleet of vehicles covering a set of sales-points and minimizing the
distribution and inventory cost per hour. They analyze this problem as a bi-objective
IRP in which the transportation cost and the delivery cost are considered separately.
Two approaches are proposed to approximate the Pareto front of this bi-objective
problem. Both methods are an adaptation of the hybrid grouping genetic algorithm.
In [1] is modeled the problem with the aim of minimizing bi-objectives, namely
the total system cost and risk-based transportation. This problem belongs to a
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class of NP-hard ones. Then, a multi-objective imperialist competitive algorithm.
Furthermore, the computational results are compared to show the performance of
the algorithm.

Therefore, in this paper, we model the bi-objective Simple Link Problem using
the technique VMI and the ε-constraint method to deal with the bi-criteria problem.

Thus, this paper is structured as follows. Section 2 presents the description of
the problem and the mathematical model of the problem. In Sect. 3, the ε-constraint
method is presented. Section 4 describes the tests carried out of the bi-objective
approach described in Sect. 3 and their results. This paper is concluded with Sect. 5,
where a conclusion and some remarks are made with respect to the work presented.

2 Description of the Problem and Mathematical Model

A set of products I is made available at an origin A and demanded at a destination
B at a constant rate of qi . A set of frequency, indexed by J , is considered and each
frequency Fj corresponds to the delivery time tj = 1/Fj , then, deliveries are made
in discrete times. Trucks, with given capacity rj , are available for shipping products,
and each product can be partly shipped by trucks traveling at different frequencies
Fj . Each product i ∈ I with a unit of volume vi can be continuously divided. It
is assumed that, for each product, the production rate is equal to the demand rate.
Two cost factors are considered, namely the transportation, cj , and the inventory
cost, hi , (which is charged in the same way both at the origin and at the destination).
All shipments having the same frequency are supposed to be simultaneous, i.e.,
performed at the same time. For each frequency, an unlimited number of trucks is
available. The inventory level of any product i ∈ I in the origin and the destination
must be non-negative. The objective of this model is to decide the fraction of each
product which has to be shipped at each frequency in such a way that the sum
of the transportation and the inventory costs are minimized, i.e., find the delivery
policy, which, in this case, its solution are the frequencies, the quantity with which
the products are delivered in frequency Fj and, additionally, the number of routes
required in frequency Fj .

The model presented in this subsection is based on [6] and [7]. A description
of the problem is given, and the model considering the objective function to be
minimizing the sum of the costs is presented as follows:

Parameters:

I → set of products that have to be shipped from an origin point A to a destination
point B;

J → set of given frequencies;
qi → constant rate at which product i is made available at the origin and absorbed

at the destination;
vi → volume of product i;
hi → cost of inventory of product i;
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Fj → j -th frequency, with j ∈ J ;
tj = 1/Fj → period, discrete time in frequency Fj ;
rj → capacity of each truck traveling at frequency Fj ;
cj → cost of a single trip of a truck traveling at frequency Fj .

Decision variables:

yj → number of vehicles to use at frequency j ;
xij → percentage of product i to ship at frequency j .

Minimize

∑

i∈I

∑

j∈J
hi qi tj xij +

∑

j∈J

(
cj

tj

)
yj (1)

Subject to:

∑

j∈J
xij = 1, i ∈ I (2)

tj
∑

i∈I
vi qi xij ≤ rj yj , j ∈ J (3)

0 ≤ xij ≤ 1, i ∈ I, j ∈ J (4)

yj ≥ 0, yj ∈ Z, j ∈ J (5)

In objective function (1) we have f = hi qi tj xij related to minimize the average
transportation cost and g = (cj /tj ) yj related to minimize the inventory cost,
both per unit time. The set of constraints (2) ensures that the products are fully
delivered from the origin to the destination using one or more frequencies. The
set of constraints (3) states that the number of vehicles used at each frequency is
sufficient. And the constraints (4) and (5) define non-negative decision variables,
the last being integer.

3 Bi-objective Approach

A bi-objective optimization problem involves two objective functions. In this paper,
the SLP was formulated as follows:

Minimize

{∑

i∈I

∑

j∈J
f ,

∑

j∈J
g

}
(6)
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The objective function in (6), where f = hi qi tj xij is related to minimize the
average transportation cost and g = (cj /tj ) yj is related to minimize the inventory
cost, both per unit time, aims at Pareto-optimal solutions that are both at minimum
costs of inventory and transportation. In Sect. 3.1 we present the ε-constraint method
that will be used to solve the bi-objective problem.

3.1 The ε-Constraint Method

The ε-constraint method was first proposed by Haimes et al. [11] and widely
discussed in [8, 15]. In this method, one of the objective functions is selected to
be optimized while the other(s) are converted into additional constraints, leading to
the Pareto optimal solution. Systematic modification of the values of the objective
functions forming the additional constraints leads to the generation of an evenly
distributed Pareto frontier.

In this paper, we select the transportation cost as the objective and the inventory
cost is converted into a constraint with the upper bound ε. Thus, the complete
Mixed-Integer Programming (MIP) model with ε is given as follow:

min
∑

i∈I

∑

j∈J
f (7)

Subject to:

∑

j∈J
g ≤ ε (8)

Constraints (2)–(5)

For finding the ε value, the first step in solving the problem as mono-objective for
the transportation cost without additional constraint, from the second step onwards
is considered the constraints (8) with ε value the equal number of vehicles available,
until it reaches a sufficiently small number of vehicles. With this, the number
of vehicles decreases together with the transportation cost and the inventory cost
increase. The results of this analysis will be shown in Sect. 4.

4 Computational Experiments

The algorithm was implemented in the C++ programming language and the
computational experiments were performed on a machine with Intel� Core™
i7− 4790 CPU @ 3.60 GHz×8, 16 GB RAM and Ubuntu 18.04.1 as the operating
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Fig. 1 Non-dominated points solution for the Pareto front

system. The MIP model was solved with the IBM ILOG CPLEX 12.7 considering
its default settings. We impose a time limit of 3600 s to solve each instance as the
stopping criterion.

The instances are strongly inspired by [7]. To wit:

• Number of products (set I ): 10.
• Number of frequencies (set J ): 5, 10 and 15.
• qi : two sets randomly generated in two different intervals (0.1–5) and (5–100);
• vi : randomly generated between 0.001 and 0.01;
• hi : randomly generated between 0.001 and 1;
• Rj : randomly generated between 0.05 and 1.
• cj : randomly generated between 275 and 325.

Figure 1 shows the Pareto front for an instance with 10 products and 5
frequencies. As expected, all computational experiments demonstrate that reducing
the total transportation cost increases the total inventory cost, as can be seen in the
Pareto front. It is worth mentioning that the inventory values are much lower than the
routing values because we generate the instances randomly based on the values of
[7]. Other works such as that of [10] have inventory values well above transportation
costs. Therefore, we reinforce that dealing with a bi-objective problem in practice
brings many advantages to managers.
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Table 1 Points from the Pareto front for 30 instances

MinF Median MinG

J qi Ins. f g f g f g

5 0.1–5 1 9.65 25,738.50 10.06 24,234.00 28.90 2234.42

2 13.38 12,160.00 13.49 11,769.54 26.75 3553.50

3 8.47 111,228.00 8.48 111,007.25 42.35 5999.60

4 10.90 3920.00 11.34 3621.00 21.79 3090.00

5 14.07 24,447.00 14.08 24,320.50 28.15 5562.00

5 5–10 6 41.39 30,056.00 42.50 29,846.40 206.93 14,235.20

7 40.06 26,560.00 40.10 26,339.66 121.39 10,862.94

8 37.92 28,910.00 38.18 28,848.00 38.18 28,848.00

9 39.45 186,113.00 39.45 186,113.00 193.43 9960.65

10 57.23 222,780.50 57.23 222,780.50 112.98 13,047.50

10 0.1–5 11 9.00 46,455.00 9.02 45,747.50 27.27 4130.28

12 9.74 16,006.00 9.91 15,240.50 19.88 4672.82

13 15.94 99,738.92 15.94 99,738.92 79.56 5167.10

14 11.42 4768.00 14.21 4256.04 65.08 3609.48

15 10.45 17,580.00 10.50 17,146.50 84.26 2776.96

10 5–10 16 30.50 9060.00 30.92 9053.00 30.92 9053.00

17 33.18 31,284.00 33.18 31,122.00 165.88 9817.20

18 43.06 14,280.00 60.02 13,318.83 130.50 12,340.35

19 33.90 19,564.00 34.46 18,798.50 282.52 14,573.28

20 41.92 12,810.00 58.61 11,711.68 299.47 10,038.88

15 0.1–5 21 13.88 2880.00 13.94 2688.03 13.94 2688.03

22 16.49 55,476.00 16.65 54,562.74 50.56 5620.63

23 8.55 4284.00 14.20 3950.96 94.99 3019.50

24 14.29 7670.00 17.88 7149.63 84.44 4259.36

25 19.54 31,000.00 19.57 30,749.00 39.78 2968.56

15 5–10 26 38.97 18,005.00 39.35 17,342.50 78.18 9292.71

27 35.87 10,944.00 36.11 10,863.50 144.52 9509.12

28 38.49 25,696.00 38.65 25,168.00 154.06 6673.66

29 27.63 15,750.00 27.73 15,620.70 83.76 11,046.28

30 36.92 25,160.00 36.97 25,015.00 112.15 7361.89

We generate a set of 30 instances following the parameters described above.
For ease of comparison, we provide these instances in website.1 In Table 1 the
results of the 30 instances solved to optimality are presented, divided into six groups
according to the frequency number.

Each line of the Table 1 has the results of one instance, showing points from the
Pareto front. In the first column, we have the frequency number (J ). In the second
column the interval of the (qi) the constant rate that product i is made available at the

1Website with instances: https://github.com/ariannesilvamundim/instanceods2019.

https://github.com/ariannesilvamundim/instanceods2019
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origin and absorbed at the destination. In the sequence we present three solutions, to
know: (1) minimal value to f solution (MinF) and maximal value to g; (2) median
solution between f and g from 100 points solution from the Pareto front (Median);
and (3) minimal value to g solution (MinG) and maximal value to f . All instances
were solved in less than 60 s.

The results of Table 1 show that for all instances the function f increases
291.62% in average with 203.46% in median, 55.94 in absolute value median.
While the function g decreases 63.86% in average and 54.92% in median with
absolute value median equal 13,068.11. This analysis shows the trade-off of the
two functions, while one cost grows the other decreases. In addition, we can see
the mean and median values are close. This indicates a symmetry of the distribution
of the solutions of the instances, especially in the first five instances that have a
standard deviation on the percentage variation of 6.80 to f and 0.35 to g.

5 Conclusion

In this paper, we presented a bi-objective mixed integer model for the SLP.
We used the ε-constraint method to solve the bi-objective mixed integer model.
The computational experiments show that applying the ε-constraint is efficient to
construct the Pareto front. The computational experiments show that the proposed
method is efficient to solve the bi-objective Single Link Problem and is suitable for
small companies and managers.

This article presents preliminary results of the bi-objective study of SLP. Future
studies will consider the bi-criteria problem with additional constraints in order
to compare with the literature. In addition, we propose math-heuristics using the
proposed method here to solve instances with a large number of items.

We make the instances based on the literature available in our website for
comparison for others authors and future works.
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Models for Disassembly Lot Sizing
Problem with Decisions on Surplus
Inventory

Meisam Pour-Massahian-Tafti, Matthieu Godichaud, and Lionel Amodeo

Abstract We consider a single-product Disassembly Lot Sizing Problem with Dis-
posal (DLSPD) which is a problem arising in the context of disassembly systems.
This is the problem of determining the quantity and time of the returned products
to be disassembled while satisfying the demand of their parts or components
over a planning horizon. Disassembly operation generates several components
simultaneously. And, the demands are independent and not balanced which can
generate unnecessary surplus inventory during planning horizon. Aggregate formu-
lation (AGG) can be used to model this problem by considering disposal decision.
Linear-Programming (LP) relaxation of this model doesn’t give very good lower
bound, especially for the large size instances. We aim to improve lower bound of
the problem. Facility Location-based formulation (FAL) and additional constraints
(Valid Inequalities (VIs)) for the LP relaxation of AGG model are proposed.
Computational results on generated test instances show that LP relaxation of FAL
and AGG with additional constraints can obtain very strong lower bound within a
very short computational time which is useful for the varied DLSPD (multi-level,
multi-product, . . . ).

Keywords Reverse logistics · Disassembly lot sizing problem · Inventory ·
Disposal option · Linear Programming (LP) relaxation · Inequalities

1 Introduction

Over the last decade, many companies who did not devote much time to consider
and implement reverse logistics, have begun to pay considerable attention to it.
This is because of increasing concerns over the environmental impacts of End-
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Of-Life (EOL) products and the residual value of their components. An efficient
management of reverse logistics activities to obtain economic benefits have also
been gaining significant attention in recent years [11, 20]. Among the various
activities of reverse logistics, disassembly has become increasingly important as
a central activity which connects the collection of EOL products at customer’s
location to the recycling centers of components in order to obtain residual value (for
re-use, remanufacturing, recycling or even proper disposing of) [5]. Despite the pos-
itive impact of disassembly activities on the environment, economic gain between
revenues and disassembly costs can be low. This prompted some researchers to
formulate more effective and appropriate models to increase opportunities for cost
savings and make disassembly operations more profitable.

In the present paper, we focus on the planning problem called disassembly
scheduling in the literature [10]. Disassembly systems have special characteristics
that make them challenging for planning decisions: (1) The product diverges
into multiple demand sources of parts or components, (2) Independent demands
between components that are not necessary well balanced, can generate unnecessary
surplus inventory of parts or components, (3) In addition, disassembly operation
generates all the components, simultaneously [2]. These features make disassembly
scheduling problem different than other lot sizing problems [7]. The surplus
inventory can be held to satisfy future demands or be disposed of in a conscious
environmental way in real industrial cases. Disassembly lot sizing models with lost
sales, purchasing (of components) or disposal options are interested to take into
account the management of surplus inventory [6, 10, 11].

Since Gupta et Taleb research [7], few articles studied disassembly lot sizing
problem, compared with the huge number of studies on the ordinary lot sizing prob-
lems. In general, disassembly scheduling can be classified by parts commonality/no
parts commonality, single-product/multi-product, and capacitated/uncapacitated.
For the basic case, i.e. single-product type without parts commonality, a reverse
version of MRP is proposed in [7], further they extend to include parts commonality
for disassembly of multiple product types [19]. In [13], a heuristic algorithm is
studied in which an initial solution is obtained by the algorithm of Gupta and Taleb
for the objective of minimizing various costs related with disassembly operations.
Disassembly scheduling problem can be modeled with an Integer Programming
(IP) model as in [14] for the case of single product with capacity constraints
with considering various cost factors in the objective function. Some researches
consider setup costs and inventory costs together in the objective function so that
lot sizing decision have to be made. In this case, a lot sizing heuristic study is
addressed to improve the solutions of reverse MRP algorithm [2]. A Mixed-Integer
Programming (MIP) model for the problem with parts commonality is proposed in
[10] and a multi-product problem in which LP relaxation based heuristic gives the
good solutions in reasonable times is considered in [9]. Then a branch and bound
algorithm is suggested in [12] that incorporates a Lagrangian heuristic to address
a single product type without parts commonality. Recently, a capacitated single-
item multi-period disassembly scheduling problem with random parameters which
is formulated as a mixed-integer nonlinear program, is studied in [15].
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In ordinary lot sizing problem, there are many studies that address different
formulations for the problem to compare their advantages [3]. There are not a lot
of works who consider different formulations for the problem of disassembly lot
sizing with disposal. A single-product disassembly lot sizing problem with disposal
decision is proposed in [18]. They propose a new model to consider disposal
decision into disassembly lot sizing problem and two heuristics are presented for
the DLSPD. They also extend this work by proposing new models to consider
disposal decision [17]. They show that the proposed models can improve lower
bound (LB) of the problem. LP relaxation of the model AGG gives a very weak
LB for the DLSPD. By adding valid inequalities to AGG-LP relaxation model
of lot sizing problem, it is possible to obtain very strong LB for the lot sizing
problem [4]. Some authors introduced (l, S) inequalities and show that combining
(l, S) inequalities with LP relaxation of the AGG formulation provides a complete
polyhedral description of the convex hull of the uncapacitated single-item lot sizing
problem [1, 4].

As far as we know, in disassembly lot sizing problem, there are not a lot of
works taking into account disposal decision in order to handle the problem of
surplus inventory accumulation. Motivated by above discussion, we are interesting
to disassembly planning problem with the decisions taken for surplus inventory of
parts or components. The motivation of this research is twofold. (1) We propose
different models for the DLSPD to handle the issue of surplus inventory. We
compare the lower bound of LP relaxation of each proposed models. (2) Moreover,
we adapt the proposed valid inequalities for ordinary lot sizing problem into
disassembly lot sizing problem. This is because the LB obtained by LP relaxation
of AGG model is not very good. The reminder of the paper is organized as follows:
After presenting the problem, we present two mathematical models as well as valid
inequalities cuts as a way to drive strong lower bound for the DLSPD. We will then
present computational results of new generated benchmark in Sect. 3.

2 Problem Statement

A new single-product disassembly lot sizing problem considering disposal decision
with two-level disassembly structure is modeled in this section. An example of this
structure is given in Fig. 1. The number in parenthesis is the yield of component
when one unit of root item (A) is disassembled. The first level represents leaf items,
while the second level represents root item (EOL Product). The DLSPD can be
defined as follow: For a given disassembly structure, the problem is to determine
the quantity and timing of disassembling each EOL product in order to satisfy the
demand of leaf items over a planning horizon, while unnecessary surplus inventory
of leaf items can be disposed of.
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Fig. 1 An example of a
two-level disassembly
structure

The assumptions made in this paper are summarized as follows: (a) EOL product
can be obtained whenever it is ordered and there is no holding cost for it; (b)
backlogging and lost sales are not allowed, and hence demands should be satisfied
on time; (c) demand of components are given and deterministic; (d) disassembled
leaf items are considered of equal quality; (e) we assume, without loss of generality,
the stock of the root and leaf items at the beginning of the planning horizon are
zero. (f) we suppose that there is no disposal cost for the unnecessary leaf items.
The following notations are used in this paper:

Indices
i Index for leaf items (1 . . . N )
t Index for periods (T is the planning horizon)

Parameters
Mt Arbitrary big number considered in period t
st Setup cost of root item in period t
pt Disassembly operation cost of root item in period t
ai Number of unit of item i obtained from disassembling one unit of root item
hit Inventory holding cost of leaf item i in period t
Hijt Cumulative holding cost of leaf item i from period j to t (j ≤ t)
dit Demand of leaf item i in period t
Dijt Cumulative demand of leaf item i from period j to t

Decision Variables
Yt 1 if there is a setup in period t , and 0 otherwise
Xt Disassembly quantity of root item in period t
Eit Disposed quantity of leaf item i in period t
Iit Inventory level of leaf item i at the end of period t
Zikt Quantity of leaf item i disassembled in period k to satisfy demand of period t

The disposal decision is considered into the ordinary disassembly lot sizing
problem using a new variable of disposed quantity of leaf items (Eit ). The single-
product disassembly lot sizing problem with disposal (DLSPD) can be formulated
as a MIP model. Two formulations are proposed with considering disposal decision
into the disassembly lot sizing problem. A natural formulation of the problem which
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is called Aggregate formulation (AGG) is as follow:

[P1] Min {
T∑

t=1

st · Yt +
T∑

t=1

pt ·Xt +
N∑

i=1

T∑

t=1

hit · Iit } (1)

Iit = Iit−1 + ai .Xt − Eit − dit ∀i = 1 . . . N & t = 1 . . . T (2)

Xt ≤ Mt · Yt ∀t = 1 . . . T (3)

Xt ≥ 0 & integer ∀t = 1 . . . T (4)

Eit ≥ 0 ∀i = 1 . . . N & t = 1 . . . T (5)

Iit ≥ 0 ∀i = 1 . . . N & t = 1 . . . T (6)

Yt = 0 or1 ∀t = 1 . . . T (7)

Objective function (1) is to minimize the sum of setup, disassembly operation, and
inventory holding costs over the whole T -period horizon. Constraints (2) are the
inventory balance equations for the leaf items. Constraints (3) guarantee that a setup
cost is performed in period t if any disassembly operation is done in that period.
Constraints (4–7) impose the non-negativity and binary restrictions on the variables.

Disaggregate or Facility Location-based formulation (FAL) is commonly used in
lot sizing problem because its LP relaxation provides for the uncapacitated problem
an optimal solution in which setup variables are integer and it has stronger LBs
for the capacitated lot sizing problem. An additional disassembly variable Zikt is
considered, which corresponds to the quantity of leaf items i disassembled in period
k to fulfill the demand of period t . The disaggregate formulation for the DLSPD is
presented in [P2]:

[P2] Min {
T∑

t=1

st · Yt +
T∑

t=1

pt ·Xt +
N∑

i=1

T∑

t=1

t∑

k=1

Hikt−1 · Zikt } (8)

t∑

k=1

Zikt = dit ∀i = 1 . . . N & t = 1 . . . T (9)

Zikt ≤ dit · Yk ∀i = 1 . . . N & t = 1 . . . T & k ≤ t (10)
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ai ·Xt ≥
T∑

j=t
Zitj ∀i = 1 . . . N & t = 1 . . . T (11)

Xt ≥ 0 & integer ∀t = 1 . . . T (12)

Zikt ≥ 0 ∀i = 1 . . . N & t = 1 . . . T&k ≤ t (13)

Yt = 0 or1 ∀t = 1 . . . T (14)

Objective function (8) is to minimize the sum of setup, disassembly operation,
and inventory holding costs over the whole T -period horizon. Constraints (9)
represent that the demand of leaf items should be satisfied. Constraints (10) relate
the disassembled quantity of leaf items (variable Zikt ) to the binary setup variable
Yt . Constraints (11) express that the total quantity of leaf item i obtained in
period t , after disassembly of product, will be delivered to satisfy the demand
or will be disposed of. Constraints (12–14) define the domains of decision vari-
ables.

Much research has been devoted to obtain the tight LP relaxations and improve
corresponding LBs. In particular, Valid inequalities (VIs) which reduce the volume
of the linear relaxation solution space by cutting off irrelevant parts. We adapt
the expression of the inequalities proposed by Pochet and Wolsey [16] for the
DLSPD. The following constraints define the more general class of so-called (l,S)
inequalities: For any 1 ≤ l ≤ T ,L = {1 · · · l}, and S ⊆ L, the following inequalities
are valid inequalities for the LP relaxation of the DLSPD:

∑

s∈S
ai ·Xs −

∑

s∈S
Eis ≤

∑

s∈S
Disl · Ys + Iil ∀i = 1 . . . N & 1 ≤ l ≤ T , S ⊆ L

(15)

By adding these constraints to the LP relaxation formulation of AGG, we can
obtain a tight linear description of the DLSPD. The idea underlying constraints (15)
is to compute a lower bound on the inventory level of a leaf item i at the end
of a period l. In the computation experiments, we use a cutting-plane generation
algorithm using separation algorithm to add most violated inequalities of family of
Eq. (15). Since in practice the number of such inequalities is limited, the separation
algorithm in this case is effectively performed by enumeration. Note that VIs cuts
can not be used for the FAL formulation because of requiring inventory balance
equation.
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3 Computational Experiments

In this section, we discuss the results of computational tests to evaluate the
effectiveness of the proposed models and methods. We randomly generate various
instances of the problem. The Benchmark of [8] is adapted to obtain a more
interesting average of cycle Time Between Order (TBO≥2). We use the proposed
formula of optimal TBO for a disassembly system by Godichaud and Amodeo [5]
to modify the parameters (i.e. inventory holding). Note that the new data generator
gives an average of TBO equal to 2.

For the tests, we generate 150 instances with different sizes, i.e. 10 instances
for each combination of three levels of the number of children (C⇒ low (L= 10),
medium (M = 100), large (H = 1000)), and five levels of the number of periods
(T = 10, 20, 30, 40, 50). The yield, demand of each children, disassembly operation
cost and setup cost are generated form DU (1, 4), DU (50, 250), DU (38, 62)
and DU (2500, 3500), respectively. Also, inventory holding cost for each level of
children (Low, Medium, High) are generated form DU (0.3, 0.5), DU (0.03, 0.05)
andDU (0.003, 0.005). Here,DU (a, b) means the discrete uniform distribution with
a rage of [a, b]. The proposed models P1 and P2 are MIPs, so we can use CPLEX
solver to obtain optimal solution. Then, we propose LP relaxation approach to
obtain a strong lower bound for the DLSPD. The LP relaxation of the MIP problem
(P1&P2) is the problem that arises by removing the integrality constraint of each
variable. After solving LP relaxation problem of P1 and P2 by using CPLEX solver,
its solution quality and computational time will be compared with those obtained
from other proposed methods. Afterwards, we apply cutting plane algorithm by
using a separation algorithm to add the VIs cuts to the LP relaxation of model P1,
in order to improve corresponding LBs.

All tests are run on a system with an Intel Core i7-7700T, 2.9 GHz, and 16
Go RAM on windows 10. We use CPLEX solver 12.8 to solve the problems. The
test results are summarized in Tables 1 and 2, which show the performance of the
AGG-MIP, AGG-LP relaxation, AGG-Valid Inequalities, FAL-MIP, and FAL-LP
relaxation for the DLSPD. These results show that LP relaxation of FAL has a
very strong LBs for the problem within very short computational time so that it
can find the optimal solution for 84% of the problems. The proposed inequalities
(AGG-Valid Inequalities) are very efficient at strengthening formulation P1 so
that It can find the optimal solution for 80% of the problems. Comparison of the
results obtained by LP relaxation of FAl and the proposed inequalities (AGG-
Valid Inequalities) show that the proposed AGG-Valid Inequalities is faster than LP
relaxation of FAL with overall average computational time of 42.47 (s) but both can
obtain optimal or near optimal solution with the same overall average Gap of 0.01%.
LP relaxation of AGG can solve the problems in a very short computational time
(overall average of 0.42 (s)) but the overall average Gap is considerable (11.98%).
In this case, the proposed inequalities work very well. For instance, for the problems
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Table 1 Gap (%) of the proposed methods and models

AGG model FAL model

LP relaxation Valid inequalities LP relaxation

C-T M M̂ M M M̂ M M M̂ M

L-10 5.91 8.73 11.67 0.00 0.00 0.00 0.00 0.00 0.00

L-20 9.50 12.10 14.34 0.00 0.00 0.00 0.00 0.02 0.10

L-30 10.31 13.17 15.88 0.00 0.02 0.04 0.00 0.01 0.04

L-40 12.60 16.35 27.45 0.00 0.02 0.06 0.00 0.01 0.05

L-50 12.90 13.96 15.74 0.00 0.00 0.00 0.00 0.00 0.00

M-10 7.59 9.09 11.41 0.00 0.03 0.16 0.00 0.03 0.16

M-20 9.01 11.27 13.67 0.00 0.00 0.01 0.00 0.00 0.01

M-30 10.88 11.91 13.47 0.00 0.01 0.05 0.00 0.01 0.05

M-40 11.85 13.05 14.92 0.00 0.02 0.10 0.00 0.01 0.05

M-50 11.69 13.10 14.89 0.00 0.00 0.01 0.00 0.00 0.01

H-10 6.87 9.05 12.00 0.00 0.00 0.00 0.00 0.00 0.00

H-20 9.43 10.92 12.16 0.00 0.01 0.05 0.00 0.01 0.04

H-30 11.08 11.93 12.84 0.00 0.00 0.00 0.00 0.00 0.00

H-40 9.69 12.42 15.50 0.00 0.00 0.02 0.00 0.00 0.02

H-50 12.08 12.69 13.99 0.00 0.00 0.02 0.00 0.00 0.02

Avg. 10.09 11.98 14.66 0.00 0.01 0.03 0.00 0.01 0.04

with medium number of children and 40 periods, average Gap is reduced from
13.05% (for LP relaxation of AGG) to 0.02% (for AGG-Valid Inequalities). We
note that Gap is the percentage deviation from the optimal solution obtained by
MIP model (P1&P2).

4 Conclusion

The single-product disassembly lot sizing problem with considering disposal
decision to the management of surplus inventory is investigated. Two new MIP
models are proposed to consider disposal decision. The results showed that both LP
relaxation and proposed inequalities are efficient at obtaining tight linear description
of model and they obtained the strong LBs for the DLSPD with reducing overall
computational time. As future study, it might be interesting to consider more
complex product structure such as multi-product with part commonality and to use
other methods to handle the issue of surplus inventory such as demand balancing by
pricing methods.
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Learning Inventory Control Rules
for Perishable Items by Simulation-Based
Optimization

Remigio Berruto, Paolo Brandimarte, and Patrizia Busato

Abstract We consider an inventory control problem for quickly perishable items,
such as fresh produce, at the retail store level, assuming a fixed shelf life. Demand is
affected by both uncertainty and seasonality within the week, as sales feature a peak
close to weekends. Another complicating factor is customer behavior and inventory
issuing: In the case of a first-in-first-out (FIFO) pattern, older items are sold first,
whereas a last-in-first-out (LIFO) pattern is more critical as newer items are sold
first, which may increase scrapping. These and possibly other complicating factors
make elegant mathematical modeling not quite feasible. Hence, we experiment with
simulation-based optimization approaches integrating a discrete-time simulation
model with direct search methods like simplex and pattern search. The approach
is rather flexible, and learning simple rules has a definite advantage in terms of
management acceptance. One aim is to compare simple order-up-to rules, based
on overall available inventory, against more complex rules that take inventory age
into account. Since more complex rules require more effort in implementation, it
is important to understand under which circumstances their use is justified. We
also want to study the effect of economic parameters, demand uncertainty and
skewness, as well as FIFO/LIFO behavior. Preliminary computational experiments
are reported, including a comparison with simple newsvendor-based heuristics.
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1 Introduction

Supply chain management (SCM) involves difficult inventory control decisions,
subject to demand uncertainty. Complicating factors may be seasonality and obso-
lescence or perishability risk (see the reviews [6, 11]). Obsolescence risk is more and
more significant because of the increasing pace in product innovation. Perishability
is relevant, e.g., for fresh produce and blood. Here, we consider items with fast
perishability, like certain varieties of fruit and vegetables. The concrete setting is a
retail store of a large distribution chain, ordering items from a logistic platform in a
hub-and-spoke network structure (see, e.g., [13] for a related problem). The supply
efficiency is such that the delivery lead time is virtually zero (if we assume that
items are ordered in the evening and reach the store by the next morning).

There are two possible objectives when dealing with inventory control: (1)
Minimizing expected cost, subject to service level constraints; (2) Maximizing
expected profit. The first objective is more relevant, e.g., in blood banks, or when
item availability is needed to support sales of other items [10]. Here, we consider
expected profit maximization. We do not consider risk measures, as the inventory
management problem is repetitive in nature. Nevertheless, tight control is needed in
order to avoid missing profit opportunities when stockout occurs, as well as losses
due to scrapping perished items.

If the shelf-life and the ordering period are the same, the problem essentially boils
down to the well-known newsvendor problem (see [3]), where the optimal ordered
amount q∗ satisfies the equation

FD(q
∗) = m

m+ cu =
γ

γ + 1
, (1)

where: FD(x) is the cumulative distribution function of demand, which we assume
continuous for simplicity, over the sales time window; m is the profit margin m =
p− c, where p is the selling price and c is the purchase cost per item; cu is the cost
of unsold items, cu = c − pu, where pu is the salvage value of a scrapped item (or
a markdown price). The above equation links the problem economics to the service
level, i.e., the probability P{D ≤ q∗} ≡ FD(q

∗) of not having a stockout. What
really matters, in defining the service level, is the ratio γ = m/cu, i.e., the profit
margin relative to the cost of unsold items. For instance, if demand distribution is
symmetric and γ = 1, then q∗ is just the expected value of demand, but the optimal
order quantity might be significantly different in other cases.

In the newsvendor model, there is one ordering opportunity for an item with
a limited time window for sales. This is one extreme of the spectrum of classical
inventory control models; inventory control policies, such as continuous-review
(Q,R) or periodic-review (s, S), are the opposite extreme, where infinite ordering
opportunities for items with unlimited life are considered. In this paper, we consider
a case where items are delivered each day and the shelf-life is 3 days. This is
an interesting setting, as it is an intermediate but challenging point between the
two extremes above. Further complicating issues that we address here are demand
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seasonality within a week (sales on Saturdays are much larger than sales on
Mondays) and customer behavior. When items with different residual shelf-life
(RSL) are available, customers may choose one according to different patterns,
such as first-in/first-out (FIFO, an item with minimal RSL is selected, i.e., the most
mature item) or last-in/first-out (LIFO, an item with maximal RSL is selected).
This may also be the result of an inventory issuing policy, rather than customers’
preferences. We do not consider random behavior in this paper, which is of course
of interest (as we discuss in the last section) as we want to analyze the impact of
this factor by considering the two extreme cases. The newsvendor rule does not
apply here, even though it might be used as a heuristic, and we have to look for
different rules. A simple base-stock policy relies on a set of order-up-to levels, one
per day. Alternative policies may use information about the age of available stock,
and they may perform better than simple-minded rules. However, their comparative
advantage should be assessed, given the increased implementation effort at retail
store level.

Within this general framework, the (limited) aims of the paper are: (1) To develop
insights about the factors that may affect the choice of an inventory management
policy and the resulting profit. (2) To compare different inventory control rules in
terms of effectiveness, ease of learning, and informational requirements. Emphasis
is on managerial insight; hence, we do not investigate in depth different optimization
strategies that could be used.

2 Problem Statement and System Dynamics

Here we list the basic assumptions behind our study:

• We deal with a single retail store, where orders for fresh produce are issued each
day, with the exception of Sundays, when the store is closed.

• Since a huge mix of different products (perishable and not) are delivered through
the transit point, transportation charges are shared among many items. Hence, we
do not consider this cost component.

• The product we consider has a quite short shelf-life of L = 3 days. Due to the
limited shelf-life, we do not consider inventory holding cost.

• We assume that the objective is to maximize long-run average profit.
• Replenishment orders are issued at the end of each business day, and the new

items are on the shelves, with remaining shelf-life L, just before the store opens
the next day.

• We consider two extreme patterns of consumer behavior: first-in/first-out (FIFO)
and last-in/first-out (LIFO).

• Demand is uncertain and subject to daily seasonality. We assume a multiplicative
seasonality model, where βk is the seasonal factor of weekday k = 1, . . . , 6;
k = 1 corresponds to Mondays and k = 6 to Saturdays. A typical weekly pattern
is shown in Table 1.



436 R. Berruto, et al.

Table 1 Weekly demand pattern

Weekday (k = 1, . . . , 6) Mon Tue Wed Thr Fri Sat

Seasonality factor (βk) 0.7500 0.8333 0.8333 0.8333 1.0833 1.6667

To describe (and simulate) the evolution of the system under control, we need a
state variable representing the inventory in terms of amount available for each value
of remaining shelf-life. The time bucket in our case corresponds to a single day. For
instance, let Imt be a vector corresponding to inventory state at the beginning of day
t (the superscript m stands for morning), after receiving the quantity ordered and
before opening the retail store. This vector consists of L components,

Imt =
[
Imt,1, I

m
t,2, · · · , Imt,L

]
,

where Imt,l is the inventory level of items with remaining shelf-life l, l = 1, . . . , L.
The system state variable evolves as follows:

Imt
sell*⇒ Ie

−
t

scrap*⇒ Ie
+
t

order*⇒ Imt+1, (2)

where all vectors consist of L components and:

• Ie
−
t is the inventory at the end of day t (the superscript e stands for evening), after

sales and before scrapping items.
• Ie

+
t is the inventory after scrapping I e

−
t,1 items. The RSL of remaining items is

updated by the following up-shift:

Ie
+
t =

[
I e
+
t,1 , I

e+
t,2 , I

e+
t,3 , · · · , I e

+
t,L−1, I

e+
t,L

]
=

[
I e
−
t,2 , I

e−
t,3 , I

e−
t,4 , · · · , I e

−
t,L, 0

]
.

• Ordering decisions are based on Ie
+
t . LetQt be the amount ordered in the evening

of time bucket t ; in the morning of time bucket t + 1 the inventory state is

Imt+1 =
[
Imt+1,1, I

m
t+1,2, · · · , Imt+1,L−1, I

m
t+1,L

] =
[
I e
+
t,1 , I

e+
t,2 , · · · , I e

+
t,L−1, Qt

]

The received items fill the bottom-level position in the state vector. On Saturday
evenings, the up-shift from Ie

−
t to Ie

+
t takes place as well, but no item is ordered.

An important issue is whether such a detailed information about the inventory
state is available when making ordering decisions. Inventory deterioration due
to manipulation can be difficult and costly, if not impossible, to assess during a
business day, especially for items that are not packaged and labeled. Even if items
are properly packaged and labeled, we may only have information on the total
number of items in stock. Nevertheless, it is quite useful to assess the value of
this information by comparing control policies that use detailed and exact state
information against simpler policies that just use aggregate information.
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3 Learning Ordering Rules by Simulation-Based
Optimization

It is well-known [1] that the optimal policy for a discrete-time inventory model
where demands are identically and independently distributed is a periodic-review,
order-up-to (base-stock) policy with target level S. In our problem, this need not
be the case, but we may consider variations of order-up-to policies because of their
simplicity and intuitive appeal. Hence, we may consider ordering an amount

Qt = max

{
Sk −

L−1∑

l=1

I e
+
t l , 0

}
. (3)

We are going to refer to this rule as SixS, since we assume a retail store operating
6 days per week and we use a different Sk for each one. The SixS rule uses
information about scrapped items, but not about the RSL of items on-hand. If we
assume that detailed information about the RSL of each individual item is available,
we could devise rules exploiting such an additional knowledge (see, e.g., [12]). One
possibility is a linear rule that, for L = 3, looks like

Qt = max
{
Sk − ak1I

e+
t,1 − ak2I

e+
t,2 , 0

}
.

Now we have to learn 6 × 3 = 18 coefficients; hence, we refer to this rule as
Linear18. Clearly SixS is obtained if all the coefficients are set as ak,l = 1.
Hence, if we are able to find the optimal setting of coefficients, Linear18 cannot
perform worse than SixS. In related settings, age-based policies have been shown
to perform better than pure inventory-based policies [4, 10]. Needless to say, the
more coefficients we use, the more difficult is setting them optimally. A more
relevant point, arguably, is the increased effort in implementing the rule. In order to
compare SixS and Linear18 against some sensible benchmark, we also consider
alternative newsvendor-based policies. These policies are obtained by setting levels
Sk in SixS on the basis of quantiles of the demand distribution over some reference
period, using the logic of Eq. (1). If the inventory level is set by considering only
the next day, we obtain policy News1. In policy News3, we consider the demand
distribution over the next 3 days, with some adjustments to account for Sundays.

To set the coefficients of SixS and Linear18 policies, we resort to simulation-
based optimization (see, e.g., [5] for an overview). We use a simulator as a black box
estimating the expected average profit over some reference period (day or week,
it is really inconsequential); a search engine aims at setting coefficients so as to
maximize expected profit. We have experimented with derivative-free algorithms
such as simplex search, pattern search, simulated annealing, and genetic algorithms.
These are not the only possibilities, as we could use particle swarm optimization or
more refined alternatives based on metamodels. However, our aim is to understand
the comparative advantage of rule structures and the impact of problem features,
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rather than comparing solution algorithms. Dynamic programming is proposed in
[7], and [10] uses an analytical modeling approach. However, these strategies are
limited to problems with a simple structure. On the contrary, simulation-based
optimization is less elegant but more flexible; see, e.g., [4, 8] for applications to
perishable items, and [9] for a more general survey for inventory control problems.

4 Computational Experiments

We have addressed the following questions: How do the SixS, Linear18,
News1, and News3 rules perform in both absolute and relative terms? Can we learn
good settings of rule coefficients efficiently and effectively? What is the impact of
problem features? We consider: LIFO vs. FIFO customer behavior; symmetric vs.
skewed demand, for a given level of variability; high vs. low profit margins.

Let π be the average profit of a policy over a long out-of-sample, test scenario.
Rather than just comparing rules in relative terms, we use the ideal profit π∗ that
would be obtained on the same test scenario, when assuming perfect demand infor-
mation. Thus, we evaluate a policy by considering the (percentage) performance
ratio ρ defined as

ρ ≡ π

π∗
. (4)

In an easy problem setting the performance ratio should be close to 100%,
whereas in a difficult setting, we might fail short of obtaining such a satisfactory
performance.

In order to check the difficulty of learning a rule, we also compare the
performance predicted in-sample, on a relatively short learning sample (scenario),
against the actual one on the test sample. Let πL and πT denote the average profits
in the learning and test samples, respectively. The reliability of the learning horizon
is evaluated by the following performance error measure:

εl ≡ |πL − πT ||πT | . (5)

After some experimentation, we have used a learning horizon of 30 weeks. As to
the test horizon, we have used a single test horizon of 200 × 30 = 6000 weeks.
Furthermore, when learning and testing different rules, we reset the state of the
random number generators in such a way that the same scenarios are always used,
which amounts to use variance reduction by common random numbers [2].
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4.1 Problem Instance Features

The first problem feature is related to FIFO/LIFO behavior. We should expect that
FIFO behavior is much easier to deal with in terms of profit performance. The
second feature is the distribution of daily demand, which we assume continuous
for the sake of simplicity. As we pointed out before, we consider a multiplicative
demand model, with factors given in Table 1. We generate demand Dt for time
bucket t on the basis of some probability distribution and multiply it by the
seasonality factor βk , where k = 1, . . . , 6 is the weekday corresponding to time
bucket t . We do not consider either autocorrelation or any other form of dependency
in demand over time. Our base case is a normal distribution, with expected value 200
and standard deviation 60, i.e., N(200, 602). In order to induce some left- and right-
skewness, we could resort to a beta or a gamma distribution. However, a gamma
distribution is associated with right-skewness only, and a beta distribution has only
two parameters, which means that we cannot play with both variability and skewness
at will. Hence, we resorted to simple mixtures of normal distributions:

• To generate right-skewed demand, we sample a N(300, 602) variable with
probability 0.9 or a N(600, 1002) variable with probability 0.1; the coefficient of
variation for this distribution is 0.34, similar to that of N(200, 602), and skewness
is 1.79.

• To generate right-skewed demand, we sample a N(650, 1202) variable with
probability 0.85 or a N(300, 1002) variable with probability 0.15; the coefficient
of variation for this distribution is 0.29, and skewness is −0.65.

Note that skewness is not affected by a multiplicative seasonality factor. When
applying News1 and News3 policies, we need quantiles of a skewed distribution,
which we estimate by straightforward Monte Carlo sampling. The third feature
refers the economic parameters, which influence the γ ratio in Eq. (1). We have
experimented with two quite different (and somewhat extreme) settings:

• The high profit margin problem setting is characterized by a purchase cost of 4
per unit, a sales price of 12, and a markdown price of 2.

• The low profit margin problem setting is characterized by a purchase cost of 8
per unit, a sales price of 10, and a markdown price of 0 (no salvage value).

4.2 Experiment 1: Comparison of Alternative Search Strategies

In the first experiment, we want to compare the results of the four optimization
algorithms in order to check their viability (simplex search—Splx; pattern search—
Pat; simulated annealing—SA; genetic algorithms—GA). Since our main interest
is in the impact of problem features, rather than solution algorithms, we always
used default settings from MATLAB’s Global Optimization Toolbox. Clearly,
performance would be affected by changing the termination conditions. We have
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Table 2 Experiment 1: Performance ratio and CPU time (seconds) for different problem settings
and search algorithms

Performance ratio CPU time

Splx Pat SA GA Splx Pat SA GA

High FIFO 98.61% 98.63% 98.63% 98.67% 23.53 32.04 320.45 48.20

Low FIFO 93.67% 94.66% 94.03% 94.60% 16.30 33.97 289.11 47.96

High LIFO 95.50% 95.43% 95.57% 95.66% 55.01 23.16 189.36 47.55

Low LIFO 81.21% 80.51% 81.05% 79.07% 35.90 54.00 269.68 54.91

Table 3 Experiment 1:
Performance evaluation error
for different problem settings
and search algorithms

Splx Pat SA GA

High FIFO 1.9% 1.9% 1.9% 2.1%

Low FIFO 0.34% 1.3% 0.72% 1.4%

High LIFO 1.2% 1.6% 1.5% 1.5%

Low LIFO 1.2% 2.0% 1.5% 3.6%

used these algorithms to learn a SixS rule in the normal demand case, in the four
combinations of high/low profit margin and FIFO/LIFO behavior. To initialize the
algorithms, we set Sk to the expected demand on weekday k; the initial population
of genetic search is created by randomly generating values of Sk between 50% and
200% of expected demand. In Table 2, we report the performance ratio and the CPU
time for each problem setting. The table suggests that, indeed, problem features
have a significant impact on the performance ratio. In the nice setting, we get close
to the ideal profit, but, on the other end of the spectrum, low profit margin and LIFO
behavior make a much more difficult problem setting. In terms of solution quality,
there seems to be no clear winner, but there is a difference in terms of CPU time.
The point, actually, is not the time in itself, but the relative performance, showing
that simulated annealing looks definitely less efficient. We also observe that, in the
case of the SixS rule, the global search abilities of stochastic search do not look
very helpful. Finally, in Table 3 we list the performance evaluation error as defined
in Eq. (5). The errors are fairly limited, with the possible exception of the 3.6% error
incurred by genetic search in the low profit/LIFO case. This suggests that selecting
a suitable learning scenario is important.

4.3 Experiment 2: Comparing Decision Rules

In the second experiment, we aim at comparing SixS against News1 and News3
policies. In Table 4 we report the performance ratio for the case of a normal
distribution. For the sake of brevity, we do not report the results for right- and left-
skewed mixtures, which are quite similar (arguably, due to rather limited amount of
skew). The results have been obtained by learning the SixS policy with simplex
search. Once again, high profit/FIFO is a rather easy problem setting, whereas low
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Table 4 Experiment 2:
Performance ratio for
different rules in the case of
normal demand

Six6 News1 News3

High FIFO 98.61% 96.29% 95.00%

Low FIFO 93.67% 71.10% 85.44%

High LIFO 95.50% 94.93% 85.29%

Low LIFO 81.21% 70.56% −26.77%

profit/LIFO is tough to deal with. What is certainly striking, even though not quite
surprising, is that in the most difficult setting News3 results in a negative profit. In
fact, the News3 policy maintains a much larger inventory than the other rules. In
fact, we have observed that News1 orders the smallest amounts, whereas News3
orders most, which is quite dangerous in this problem setting. This supports the
view that a bit of sophistication helps, and that the problem is not trivial for certain
feature settings.

4.4 Experiment 3: Is a More Complicated Policy Warranted?

As a final experiment, we have checked whether there is any advantage in learning
a more complicated policy, like Linear18. After some experimentation we found
that the following learning strategy is the most efficient:

• Learn the coefficients of a SixS policy with simplex (or pattern) search.
• Use the Sk coefficients to initialize an equivalent Linear18 policy, where ak1 =
ak2 = 1.

• Try improving the Linear18 policy by genetic search.

The results are given in Table 5. We only illustrate the easiest and the most
difficult problem settings (FIFO.High and LIFO.Low) for normal, left-skewed, and
right-skewed demand.

• The columns err.Sixs and err.Lin18 give the performance evaluation errors of the
SixS and Linear18 policy, respectively.

• The columns impr.opt and impr.test give the percentage improvement of the
performance of the Linear18 over the SixS policy, respectively, as predicted

Table 5 Experiment 3: Checking the improvement of Linear18 with respect to SixS

err.Sixs err.Lin18 impr.opt impr.test ratio.SixS ratio.Lin18

Norm.FIFO.High 1.9% 1.1% −0.016% −0.80% 98.61% 97.82%

Norm.LIFO.Low 1.2% 7.0% 3.8% −1.9% 81.21% 79.65%

Left.FIFO.High 0.49% 0.62% 0.037% −0.097% 97.05% 96.95%

Left.LIFO.Low 4.1% 5.1% 0.12% −0.89% 83.95% 83.20%

Right.FIFO.High 0.76% 0.44% −0.17% −0.49% 98.96% 98.47%

Right.LIFO.Low 4.0% 5.0% −1.4% −2.4% 84.06% 82.09%
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in terms of objective function value from the optimization problem and evaluated
over the test horizon.

• The columns ratio.SixS and ratio.Lin18 give the performance ratio of the two
policies on the test sample.

The bottom line is clear from the last two columns, suggesting that there is
no apparent gain from using the more complicated rule. The data in the previous
columns help to understand why. The second line shows a possibly disturbing
pattern. In the low profit/LIFO case with normal demand, we do improve the
objective function on the learning sample (by 3.8%), but in the test sample we
obtain a worse performance from the more sophisticated rule. This is due to a large
evaluation error (7.0%) between learning and test sample, whereas this error is only
1.2% with SixS. This weird pattern can be explained in terms of overfitting the
policy coefficients to the learning scenario.

5 Critical Remarks and Directions for Further Research

Clearly, no definitive conclusion can be drawn on the basis of such a limited set
of experiments. The basic messages are that simulation-based optimization is an
effective and flexible way to tackle the class of problems we consider, and that we
should not take for granted that an increased sophistication in decision rules, using
age information, is worth the price of a more difficult implementation. However,
as shown in [10], this could be the case when dealing with non-zero lead times.
Further issues are related with the plausibility of the learned rules. It often happens
that different settings have a similar performance, but they may not be equivalent in
terms of user acceptance (using quite different target levels, especially for similar
days). To avoid this issue, we may use regularization terms shaped after ridge and
lasso regression. A further issue is related with robustness, i.e., uncertainty about the
model itself. Consider random customer behavior, i.e., a random mix of LIFO and
FIFO patterns according to some probability model: What about the uncertainty
of the involved parameters (e.g., the fraction of LIFO vs. FIFO customers)? And
what about uncertainty about seasonal factors? We are investigating the use of a
worst-case robust framework, which may need more sophistication in the learning
procedures, possibly based on metamodeling approaches.
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A Genetic Algorithm for Minimum
Conflict Weighted Spanning Tree
Problem

Carmine Cerrone, Andrea Di Placido, and Davide Donato Russo

Abstract The Minimum Conflict Weighted Spanning Tree Problem is a variant of
the Minimum Spanning Tree Problem in which, given a list of conflicting edges
modelled as a conflict graph, we want to find a weighted spanning tree with the
minimum number of conflicts as main objective function and minimize the total
weight of spanning trees as secondary objective function. The problem is proved to
be NP-Hard in its general form and finds applications in several real-case scenarios
such as the modelling of road networks in which some movements are prohibited.
We propose a genetic algorithm designed to minimize the number of conflict edge
pairs and the total weight of the spanning tree. We tested our approach on benchmark
instances, the results of our GA showed that we outperform the other approaches
proposed in the literature.

Keywords Minimum Conflict Weighted Spanning Tree · Genetic algorithm ·
Conflict graph

1 Introduction

The classical minimum spanning tree (MST) problem and its generalizations, can
be applied to many real-world application scenarios. The minimum spanning tree
problem with conflicts on edge pairs (MSTC) is an NP-hard variant of the classical
MST problem in which are considered incompatibility between pairs of edges.
There are several real-world applications for this problem: model the connection
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layout of wind turbines, where we want to minimize the number of connections
among them avoiding overlapped cables [9]; solve a quadratic bottleneck spanning
problem [17]; model a road network in which some movements are prohibited [8],
and install an oil pipeline system connecting several countries [5].

Incompatibility between pairs of edges means that, given the set of conflicting
pairs, at most one takes place in the spanning tree. Darmann et al. [5] exposes that
the conflict relations can be represented in an undirected conflict graph, where each
vertex uniquely identifies an edge of the original graph and each edge in the conflict
graph implies the incompatibility between two edges. Thus we want to identify the
conflict-free MST of minimum cost, given a connected, undirected and weighted
graph and a set of conflicting edges pairs.

The problem was introduced by Darmann et al. [5, 6], describing the MST variant
as NP-hard. Other authors studied the variant in several optimization problems
such as minimum cost perfect matching problem with conflict pair constraints
[11], knapsack problem with conflict graphs [13], maximum flow problem with
disjunctive constraints [14], and bin packing with conflicts [13, 15].

Regarding the MSTC resolution, Zhang et al. [17] presented several meta-
heuristic approaches to solve the problem. They were able to produce, if possible,
the MST conflict free or the MST with conflict of minimum cost. Samer and
Urrutia [16] proposed a branch-and-cut algorithm for the exact solution of the
problem. The authors exploited an equivalent definition of the conflicting edge pairs
using an auxiliary conflict graph and provided two sets of inequalities for both of
the spanning tree and the stable set polytopes. Recently another branch-and-cut
algorithm for MSTC was introduced by Carrabs et al. [4]. Thanks to a new set
of three classes of valid inequalities, based on combined properties belonging to
any feasible solution, the last algorithm outperforms the ones proposed by Samer
and Urrutia [16]. Finally Carrabs et al. [1] exposed a multi-ethnic genetic algorithm
(MEGA) with three local search procedures. The results obtained by MEGA on
benchmark instances outperforms the other heuristic approaches proposed in the
literature, for this problem.

In this work, we face a variant of the MSTC, proposed by Zhang et al. [17],
named Minimum Conflict Weighted Spanning Tree problem (MCWST). Given an
undirected graph G = G(V,E) and a set C ⊆ E × E of conflicting edge pairs, the
primary goal consists in finding a spanning tree T ofG having the minimum number
of conflicts edge pairs and, in case of conflict-free solution, the secondary goal
consists in finding spanning tree of G with minimum weight. We propose a genetic
algorithm approach for the MCWST and test its effectiveness and performance on
the benchmark instances proposed by Samer and Urrutia [16]. Our results have been
compared to the ones obtained by the multiethnic genetic approach of Carrabs et
al. [1].
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2 Problem Description and Definitions

Let G = G(V,E,C) be an undirected weighted graph, where V is the set of
vertices, E is the set of edges with weight w(e),∀e ∈ E and C ⊆ E × E is the
set of conflicting edge pairs.

A spanning tree T of a connected graph G is a set of edges ET ⊆ E such that
|ET | = |V | − 1, and the subgraph induced from G by ET is connected. The weight
of T is denoted by W(T ) and it is the sum of all w(e),∀e ∈ ET . The conflict edges
set is formally defined as follows:

C = {(ei, ej ) : ei ∈ E, ej ∈ E, ei and ej are in conflict}

This means that ∀(ei, ej ) ∈ C only one belongs to ET . Since the couples in C are
not ordered, {ei, ej } = {ej , ei}. Furthermore, ∀ek ∈ E we define C(ek) the set of
conflicts induced by ek and C(ET ) the set of conflicting edge pairs contained in T .
When |C(ET )| = 0, we say that T is conflict-free.

An equivalent definition which we exploit here uses the concept of conflict
graph GC(E,C): by denoting each edge in the original graph as a node in GC , we
represent each conflict constraint by an edge connecting the corresponding nodes in
GC [16].

The minimum spanning tree problem with conflict constraints (MSTC) consists
in finding a minimum weighted spanning tree T of G which is conflict-free. The
MSTC problem is infeasible if no conflict-free solution T exists for it.

In this work we face a variant of the MSTC, proposed by Zhang et al. [17], named
Minimum Conflict Weighted Spanning Tree problem (MCWST), in which the main
goal is to find an MST of G where C(ET ) is minimum and if |C(ET )| = 0, the
secondary goal is to minimize the total weight of T .

3 Genetic Algorithm

In this section, we expose our genetic algorithm (GA) designed to solve the
MCWST problem. Genetic algorithms, introduced by Holland [7], are a family
of metaheuristics based on the natural selection theory of Darwin. Starting from
an initial population formed by a group of individuals, known as chromosomes, it
evolves over the generations through crossover and mutation operators. In literature,
there is already MEGA, proposed by Carrabs et al., that provides excellent results
for the selected problem [1]. Despite this, there are several dissimilarities between
our approach and the one recently proposed. The main difference concerns the
population: while MEGA works on a set of parallel populations to provide the
multi-ethnicity concept, our GA operates on a single set of individuals. Moreover,
MEGA uses three local searches to improve the solution of the last population only,
while our GA has two different operators to refine the individuals at each generation.
Further details are provided in the following sections.
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Fig. 1 Example of chromosome. Given the graph G on the left, we define a spanning tree of G,
marked red in the center, and the related chromosome on the right

3.1 Chromosome Encoding and Fitness Function

In our implementation, a chromosome describes a feasible solution for the MCWST,
a spanning tree ofG. Each chromosome is represented as a set of genes, where each
gene is an edge that forms the spanning tree, as shown in Fig. 1. Furthermore, the
goodness of each individual is evaluated by the fitness function. Since we want to
minimize the number of conflicts and the weight of the produced spanning tree, the
fitness function is based on the total weight and the number of conflicting edge pairs
of the spanning tree: Let T be the spanning tree described by the chromosome and
M be a sufficient big number, the fitness function f (x) is defined as follow:

f (x) = (
∑

e∈T
w(e))+ |C(ET )| ×M

The main objective is to reduce the number of conflicts. The fitness function
guarantees this condition. In fact, if a solution has conflicts, the penalty introduced
will be higher. In our computational experiments, we set the parameter M equals
to the cost of the minimum spanning tree of G. On the contrary, if a solution is
conflict-free, the fitness function will give more importance to reduce the weight of
the spanning tree.

3.2 Initial Population

The initial population is composed of popsize randomly generated individuals. In
our experimental tests, popsize is equal to 100. Each chromosome is produced as
the following: starting from an empty set of edges T , a random edge ei that connects
two disconnected components is added to it, until we obtain a spanning tree. This
procedure assures that the obtained tree is certainly an admissible spanning tree. In
case that, the produced chromosome is already present in the population, the other
is discarded.
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3.3 Generation of New Individuals

A set of individuals is kept to the next generation through the selection strategy.
The procedure aims to preserve individuals with the best fitness value. A ranked
list system is used as a selection strategy to carry out the best chromosomes: the
population is sorted in increasing order by fitness value and the first t elements are
chosen for the next generation. In our implementation, t corresponds to popsize

2 .

3.4 Crossover Operator

The remaining popsize
2 individuals of the population are generated by the crossover

operator. Starting from two individuals defined as parents, an offspring is produced
by recombining the genetic heritage of the two parents. The idea behind our
crossover is to produce a spanning tree that does not necessarily reduce the conflicts
edge pairs, of the parents, but the aim of exploring as much research space as
possible. To this end, the chromosome c1 is chosen from those preserved, while
c2 is selected from the previously discarded part of the population. The Crossover
Operator uses four random indexes i1, i2 and k1, k2. Starting from i1, k1 genes are
selected from c1, and added into the offspring cchild . Starting from i2, k2 genes
are taken from c2. From the subset of edges, we take only the ones that reduce the
number of disconnected components of cchild . If the cchild size is lower than |V |−1,
the tree is completed by random edges that connect the component.

A variant of this crossover is called when |C(c1)| = 0 instead. Given c1 and c2,
the operator tries to define a third chromosome cchild which is conflict-free. The
logic behind this variant is the same but the selected genes from c2 still make cchild
conflict-free. If the cchild size is lower than |V | − 1, the operator tries to complete
the chromosome adding edges one by one which doesn’t introduce conflicts into
cchild , until the solution is feasible. If it’s not possible, the tree is completed adding
random edges that connect the component.

3.5 Mutation

Once the population is filled, the mutation operator is performed on all the
individuals. We distinguish two cases: either the chromosome c has conflicts and
or it is devoid of them. If |C(c)| > 0, the ConflictReduction operator is applied
on c with a certain probability mutprob. Otherwise the LenghtReduction operator is
performed on c.
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3.6 ConflictReduction Operator

The operator is designed to reduce the number of conflicts of a feasible solution T .
For each e ∈ T , the number of conflicts |C(e)| in which this edge is involved in
T is computed. If |C(e)| > 0, e is removed from T , makes the tree disconnected.
Then, an edge ek ∈ E − {ET } that reconnects T is added to it s.t. |C(ek)| < |C(e)|.
If it’s not possible, e is added again. At this point, since it has not been possible to
remove e, the operator tries to reduce the conflicts by removing the edges which are
in conflict with e. Therefore, we repeat the previous step ∀ei ∈ C(e) and when it’s
not possible to complete the tree, the selected edge is added again to grant a feasible
solution.

3.7 LengthReduction Operator

Given a feasible conflict solution T , where |C(ET )| = 0, the operator tries to
minimize the weight of the tree while keeping the conflict-free condition. The
procedure starts sorting the set of edges T by weight in nonincreasing order and
∀e ∈ T , e is removed from T . Every time an edge is removed, T defines two
disconnected components. Hence, a second edge ei ∈ E\T that connects them is
added to T s.t. |C(T + {ei})| = 0 ∧ w(ei) < w(e). If ei is not found, we add again
e instead.

3.8 Stopping Criteria

The genetic algorithm ends when a fixed number of iterations (gensize) is reached
or when there are no further improvements in the best fitness value after a certain
number of generations gapgens . The best individual of the current population is
provided as the output of the algorithm. Figure 2 reports the flow chart of the GA.

4 Computational Experiments

Several computational experiments were performed to verify the effectiveness of
the proposed approach. The benchmarks were provided by Samer and Urrutia
[16] and include type1 and type2 instances. The first set is the harder one since
several instances have neither feasibility nor optimality certified. The presence of
a conflict-free solution is also not verified. Differently, all type2 instances have
at least one conflict-free solution by construction. The algorithm is written in
Java with JDK ver.11 and all experimental tests have been performed on a PC
with 2.30 GHz Intel Core i5-6200U processor and 8.0 GB memory running Ubuntu
18.04.2 LTS operating system. We compared the results of GA to the multiethnic
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Table 1 Computational comparison between GA, MEGA and TS on type1 instances

GA MEGA TS GAP

Instance |C(ET )| w(T) |C(ET )| w(T) |C(ET )| w(T) |C(ET )| w(T)

50_200_199 0 708 0 708 0 711 0.00% 0.00%

50_200_398 0 770 0 770 0 785 0.00% 0.00%

50_200_597 0 917 0 917 0 1086 0.00% 0.00%

50_200_995 0 1324 0 1336 0 1629 0.00% 0.90%

100_300_448 0 4042 0 4088 0 4207 0.00% 1.13%

100_300_897 0 5687 0 6095 – – 0.00% 6.70%

100_300_1344 8 – 10 – 13 – 20.00% –

100_500_1247 0 4282 0 4275 0 4593 0.00% −0.16%

100_500_2495 0 6053 0 6199 0 6812 0.00% 2.35%

100_500_3741 0 8397 0 7665 0 8787 0.00% −9.55%

100_500_6237 7 – 8 – 11 – 12.50% –

100_500_12474 34 – 35 – 41 – 2.86% –

200_600_1797 0 16,162 0 – 2 – 0.00% –

200_600_3594 55 – 57 – 67 – 3.50% –

200_600_5391 136 – 142 – 149 – 4.23% –

200_800_6392 18 – 23 – 39 – 21.73% –

200_800_9588 83 – 87 – 95 – 4.59% –

200_800_15980 171 – 172 – 178 – 0.58% –

300_800_3196 47 – 52 – 63 – 9.62% –

300_1000_4995 18 – 21 – 38 – 14.28% –

300_1000_9990 166 – 176 – 207 – 5.68% –

300_1000_14985 321 – 329 – 351 – 2.43% –

The last column reports the GAP between MEGA and GA. For 200_600_1797 instance, there is
no reference for w(T) of MEGA by the authors [1]
The proposed values on the table are the best values obtained after five runs of the algorithms for
each instance. In bold are reported the best values overall the approaches

genetic approach proposed by Carrabs et al. [1] and to the tabu search proposed by
Zhang et al. [17]. It is important to point out that the computational experiments for
the MEGA algorithm are performed on an OSX platform (Imac mid 2011), running
on an Intel Core i7-2600 3.4 GHz processor with 8 GB of RAM. Computational
results on type1 instances are reported in Table 1 with relative execution times shown
in Table 2. Regarding type2 instances, GA obtains the same results of the other
approaches, so they are not reported below. Table 1 is structured on five columns.
The column Instance contains the name of the input files in the format: |V |_|E|_|C|.
The remaining columns report the results obtained by the different approaches,
genetic algorithm (GA), multiethnic genetic approach (MEGA) and tabu search (TS)
respectively, in terms of the number of conflicts present in the obtained solution,
reported as |C(ET )|, and in terms of weight of the spanning tree, reported as |w(T )|.
For no conflict-free result, only |C(ET )| is reported. Finally, the last column shows
the gap. The gap is calculated between GA and MEGA since MEGA outperforms
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Table 2 CPU times of GA,
MEGA and TS on type1
instances

Instance GA MEGA TS

50_200_199 3.10 0.71 1.17

50_200_398 3.37 0.68 1.13

50_200_597 2.78 0.63 0.98

50_200_995 3.10 0.66 1.16

100_300_448 15.91 2.39 6.33

100_300_897 13.34 1.81 5.99

100_300_1344 3.64 2.69 6.77

100_500_1247 13.86 5.18 17.71

100_500_2495 12.41 5.12 17.09

100_500_3741 21.46 3.72 14.94

100_500_6237 3.79 4.98 15.17

100_500_12474 8.74 6.68 14.64

200_600_1797 63.50 12.23 72.48

200_600_3594 19.12 21.71 70.24

200_600_5391 28.18 29.43 80.21

200_800_6392 20.60 28.2 98.01

200_800_9588 30.41 35.32 97.1

200_800_15980 40.31 44.48 104.93

300_800_3196 41.22 62.68 239.63

300_1000_4995 20.93 83.68 303.04

300_1000_9990 100.79 117.58 345.25

300_1000_14985 90.51 134.42 381.28

Times are reported in seconds

TS overall [1]. It is estimated with the formula MEGA(|C(ET )|)−GA(|C(ET )|)
MEGA(|C(ET )|) × 100

for |C(ET )|, and MEGA(w(T ))−GA(w(T ))
MEGA(w(T ))

× 100 for w(T ). Table 2 follows the same
structure with the time in the last columns instead. Computational times are reported
in seconds.

The GA parameters for all the tests are: 100 individuals as popsize, 5000 as
gensize,

gensize
10 as gapgens and 40% as mutprob.

5 Considerations and Conclusions

The computational results show that our genetic algorithm outperforms all the other
approaches present in literature, as far as providing a spanning tree with the least
number of conflicting edge pairs. When it comes to define the minimum spanning
tree, GA usually provides better solutions with respect to the other algorithm. The
running time of our algorithm is comparable to MEGA, in particular, although GA is
slightly slower on small instances, it becomes competitive on larger ones, compared
to the other approach, despite the difference in terms of programming languages
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and hardware. To understand further the differences in computational times, we
compared the computing systems used for the experimentations, in particular, the
CPUs. According to PassMark Software benchmark results [12], Intel Core i5-
6200U processor, which was used for GA tests is 23% less powerful than Intel Core
i7-2600 in single-thread computing. Moreover, in multi-thread computing the power
gap increases to 51%. To improve the performances of our genetic algorithm, an idea
for future work involves the partitioning of the input graph into subgraphs [10], since
we have supposed if it is possible to execute a partition transforming the problem
into the rainbow spanning forest problem [2, 3]. Considering our preliminary results,
we think that this transformation will be the core of our future work concerning this
problem.
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Algorithmic Strategies for a Fast
Exploration of the TSP 4-OPT
Neighborhood

Giuseppe Lancia and Marcello Dalpasso

Abstract The 4-OPT neighborhood for the TSP contains �(n4) moves so that
finding the best move effectively requires some ingenuity. Recently, de Berg et al.
have given a �(n3) dynamic program, but the cubic complexity is still too large for
using 4-OPT in practice. We describe a new procedure which behaves, on average,
slightly worse than a quadratic algorithm. This is much faster than the DP procedure,
achieving speedups of two to three orders of magnitude on all instances we tested.

Keywords Traveling Salesman Problem · Local search · K-opt neighborhood

1 Introduction

In this work we consider the symmetric Traveling Salesman Problem (TSP), which
consists in finding a Hamiltonian cycle (or tour) of minimum length in a complete
graph G = (V ,E) of n nodes, weighted on the edges. Let us denote by c(i, j) =
c(j, i) the distance between any two nodes i and j . A tour is identified by a
permutation of vertices (v1, . . . , vn). We call {vi, vi+1}, for i = 1, . . . , n − 1, and
{vn, v1} the edges of the tour. The length of a tour T , denoted by c(T ) is the sum
of the lengths of the edges of the tour. More generally, for any set F of edges, we
denote by c(F ) the value

∑
e∈F c(e).
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A large number of applications over the years have shown that local search is
often a very effective way to tackle hard combinatorial optimization problems [1, 8].
The local search paradigm for a general problem min{f (x) : x ∈ X} starts by
defining a neighborhood function which associates to any solution x a setN(x) ⊂ X
of solutions reachable from x with a move. A popular neighborhood for the TSP is
the K-OPT, where K ∈ N is a constant. Given a tour T , a tour T ′ belongs to N(T )
if T ′ and T differ by at most K edges. Hence, a K-OPT move on T consists in
removing a set R ofK edges and then inserting a set I ofK edges so as (T \R)∪ I
is still a tour. A K-OPT move is improving if c(R) > c(I), i.e., if for the new tour
it is c((T \ R) ∪ I ) < c(T ). A move is best improving (or, simply, a best move) if
c(R)− c(I ) is maximum over all possible choices of R, I with |R| = |I | = K .

The local search starts at any feasible tour and then performs a series of
improving moves, each time replacing T with a better T ′ ∈ N(T ) until T is the best
tour in its neighborhood (i.e., it is a local optimum). If at each iteration we perform a
best move, the strategy is called best-improvement or steepest-descent convergence.
The alternative, called first-improvement is to perform the first improving move that
we can find. In this paper we focus on the more challenging problem of finding
the best move at each time. The changes to make our procedure work also for first
improvement are minimal and left to the reader.

The first use of K-OPT dates back to 1958 with the introduction of 2-OPT in
[2]. In 1965 Lin [6] described the 3-OPT neighborhood, and experimented with the
complete enumeration algorithm, of complexity �(n3), which finds the best 3-OPT
move by trying all possibilities. The instances which could be tackled at the time
were fairly small (n ≤ 150). Later in 1968, Steiglitz and Weiner [9] described an
improvement over Lin’s method which made it two or three times faster (although
still cubic).

The exploration of theK-OPT neighborhood, for a fixedK , might be considered
“fast” from a theoretical point of view, since the most obvious algorithm (complete
enumeration) has complexity �(nK) and is therefore polynomial. However, despite
being polynomial, this algorithm cannot be used in practice already for K = 3 (if
n is large enough, like 3000 or more). In our previous work [5] we have described
some algorithmic ideas to speed-up the exploration of the 3-OPT neighborhood in
order to lower its complexity and make it practical. The result is a procedure which
takes on average a subcubic time (estimated experimentally around O(n2.5)) to find
the best 3-OPT move. This paper is a follow-up to [5] in which we try to apply
similar ideas to the 4-OPT neighborhood in order to make it practical on graphs on
which it could have never been applied before.

An important result in [3] proves that, under a widely believed hypothesis similar
to the P �= NP conjecture, it is impossible to find the best 3-OPT move with a
worst-case algorithm of time O(n3−ε) for any ε > 0 so that complete enumeration
is, in a sense, optimal for 3-OPT. The work [3], however, does not rule out the
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possibility of algorithms with an average-case complexity lower than O(n3) and
indeed our procedure [5] takes less than O(n3) time on average on several classes
of random instances. Furthermore, in [3] it is proved that it is possible to find the best
4-OPT move in worst-case time�(n3) by a dynamic programming procedure. This
is already a huge improvement over the�(n4) complete enumeration procedure, but
still the cubic complexity is not practical for large values of n. The goal of our paper
is to describe a procedure which behaves, on average, better than the cubic dynamic
programming procedure. The computational results section will show how this goal
has indeed been achieved.

Assessing the effectiveness of 3-OPT and 4-OPT, and possible adjustments to
make them even better (such as warm restarts and perturbations) with respect to the
quality of the local optima they find is beyond the scope of this paper, and will be
the matter of future research in which these neighborhoods will be compared with
some more involved heuristics (such as, e.g., Lin and Kernighan’s procedure [7]).
For a very good chapter comparing various heuristics for the TSP, see Johnson and
Mc Geich [4].

1.1 The Main Contribution

The contribution of this paper is the description of a procedure to find the best 4-
OPT move which outperforms the �(n3) dynamic programming (and, obviously, is
incredibly faster than the �(n4) enumeration) on all instances that we tried (both
random and from the TSPLIB repository).

Let us give a flavor of the type of results that we can achieve (a discussion of
the computational results can be found in Sect. 5). On an average PC, finding the
best 4-OPT move for a given tour of 2000 nodes by listing all possible moves takes
more than 1 day. The dynamic programming procedure finds the best move in about
400 s. Our procedure finds it in 4 s. With larger n the improvements are even more
dramatic, e.g., it is about 500 times faster than DP when n = 10,000.

2 The 4-OPT Neighborhood

Let G = (V ,E) be a complete graph on n nodes, and c : E !→ R
+ be a cost

function for the edges. We assume V = {0, 1, . . . , n̄}, where n̄ = n − 1. In this
paper we will describe an effective strategy for finding the best move for a given
current tour T which, without loss of generality, will always be T = (0, 1, . . . , n̄).
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Since we will be using modular arithmetic frequently, for each x ∈ V and t ∈ N

we define

x ⊕ t := (x + t) mod n, x . t := (x − t) mod n.

A 4-OPT move is fully specified by two sets, i.e., the set of removed and of
inserted edges. We call a removal set any set of four tour edges, i.e., four edges of
type {k, k ⊕ 1}. A removal set is identified by a quadruple S = (i1, i2, i3, i4) with
0 ≤ i1 < i2 < i3 < i4 ≤ n̄, where the edges removed are R(S) := {{ij , ij ⊕ 1} :
j = 1, . . . , 4}. We call any such quadruple S a selection. A selection is complete if
is �= it ⊕ 1 for each s, t , otherwise we say that S is a partial selection. We denote
the set of all complete selections by S. Furthermore, for each 1 ≤ a < b ≤ 4, we
denote by

Sab = {(x, y) : ∃(i1, i2, i3, i4) ∈ S with ia = x, ib = y}

S24, for instance, contains all pairs of values (x, y) such that we can replace the
“*” with numbers in (∗, x, ∗, y) so as to make it a valid selection. We call any such
pair a pivot. Pivots will be important in our enumeration procedure described later.
Clearly |Sab| = �(n2) for all a, b.

Let S be a selection and I ⊂ E with |I | = 4. If (T \ R(S)) ∪ I is still a tour
then I is called a reinsertion set. Given a selection S, a reinsertion set I is pure if
I ∩ R(S) = ∅, and degenerate otherwise. The 4-OPT moves when the reinsertions
are degenerate and/or the selections are partial are, in fact, either 2-OPT or 3-OPT
moves. Therefore, the most computationally expensive task is to determine the best
move when the selection is complete and the reinsertion set is pure. In the remainder
of the paper, by 4-OPT moves we will implicitly mean only moves for which the
selection is complete and the reinsertion set is pure. Similarly, by “selection” we
will in fact mean a complete selection.

2.1 Reinsertion Schemes, Orbits and Moves

Let S = (i1, . . . , i4) be a selection. When the edges R(S) are removed from a
tour, the tour gets broken into four consecutive segments which we can label by
{1, . . . , 4}. The segment labeled l has il as its last vertex. A reinsertion set reconnects
back these segments into a new tour. If we adopt the convention that a tour starts
always with segment 1 traversed clockwise, the reinsertion set: (1) determines a
new ordering in which the segments are visited along the tour and (2) may cause
some segments to be traversed counterclockwise. In order to represent this fact we
can use a notation called a reinsertion scheme. A reinsertion scheme is a signed
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Fig. 1 The reinsertion
schemes < +4,−2,−3 >
(left) and < −3,−4,+2 >
(right)

i1

i2

i3

i4

i1

i2

i3

i4

permutation of {2, 3, 4}. The permutation specifies the order in which the segments
2, 3, and 4 are visited after the move. The signing−s tells that segment s is traversed
counterclockwise, while +s tells that it is traversed clockwise. For example, the
reinsertion set depicted in Fig. 1 (left) is also represented by the reinsertion scheme
< +4,−2,−3 >.

There are potentially 23(3)! = 48 reinsertion schemes, but for many of these the
corresponding reinsertion sets are degenerate. A scheme for a pure reinsertion must
not start with +2, nor end with “+4”, nor contain consecutive elements “+t,+(t +
1)” or “−t,−(t − 1)” for any t in 1, . . . , 4. It turns out that the pure reinsertion
schemes are exactly 25:

Proposition 1 There are 25 pure reinsertion schemes for 4-OPT.

Proof We prove the claim by listing the schemes r1, . . . , r25, since we will be
needing them when we discuss how to find the best 4-OPT move. The schemes
are enumerated by first looking at the permutation of the segments and then the
signings:

(2, 3, 4) : r1 =< −2,−3,−4 > r2 =< −2,+3,−4 >
(2, 4, 3) : r3 =< −2,−4,+3 > r4 =< −2,+4,−3 > r5 =< −2,+4,+3 >
(3, 2, 4) : r6 =< −3,+2,−4 > r7 =< +3,−2,−4 > r8 =< +3,+2,−4 >
(3, 4, 2) : r9 =< −3,−4,−2 > r10 =< −3,−4,+2 > r11 =< −3,+4,−2 >

r12 =< −3,+4,+2 > r13 =< +3,−4,−2 > r14 =< +3,−4,+2 >
(4, 2, 3) : r15 =< −4,−2,−3 > r16 =< +4,−2,−3 > r17 =< −4,−2,+3 >

r18 =< +4,−2,+3 > r19 =< −4,+2,−3 > r20 =< +4,+2,−3 >
(4, 3, 2) : r21 =< −4,+3,−2 > r22 =< −4,+3,+2 > r23 =< +4,−3,+2 >

r24 =< +4,+3,−2 > r25 =< +4,+3,+2 >

��
Although the reinsertion schemes are 25, we can see how some of them are

equivalent in the sense that we can obtain the (unlabeled) drawing of one from
another by either a rotation or a flip around an axis of symmetry in the plane. For
instance in Fig. 1 we see the schemes r16 (left) and r10 (right) and it is clear how
r10 can be obtained from r16 by a rotation of 90◦. If we consider the classes of
this equivalence, the 25 reinsertion schemes get partitioned into 7 classes (called
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Fig. 2 Orbits of 4-OPT

orbits) denoted by O1, . . . ,O7. For each orbit Ok it is then enough to consider one
particular scheme r (the orbit representative). We will then say that Ok = O(r).
The grouping into orbits simplifies our analysis, since it is enough to specify how to
deal with the orbit representative instead of considering all the reinsertions schemes
of the orbit.

Proposition 2 The pure reinsertion schemes are partitioned into the following
seven orbits O1, . . . ,O7:

O1 = O(r1) = {r1, r24, r23, r22}, O2 = O(r2) = {r2, r21}
O3 = O(r3) = {r3, r7, r13, r17}, O4 = O(r4) = {r4, r19, r11, r6}
O5 = O(r5) = {r5, r20, r14, r15, r12, r18, r9, r8}, O6 = O(r10) = {r10, r16}
O7 = O(r25) = {r25}

In Fig. 2 we illustrate the representatives of the seven orbits of 4-OPT.

3 Previous Approaches and Our Strategy

Each 4-OPT move is identified by a pair μ = (r, S) where r is a reinsertion scheme
and S is a selection. Let M be the set of all 4-OPT moves. We have the following
theorem (proof omitted for space reasons).

Theorem 1 The number of 4-OPT moves for a tour of n nodes is

|M| = 25×
(
n− 3

4

)
−
(
n− 5

2

)
= 25× n

4 − 18n3 + 107n2 − 210n

24
(1)

To get an idea of how fast this number grows, we remark that it is roughly 86
million for n = 100, 1 billion for n = 1000 and 10 million billions for n = 10,000.

To find the best move overall, it is sufficient to describe how to find the best
selection for a given reinsertion scheme r , and then iterate the same process over
all the reinsertion schemes. Moreover, we can limit ourselves to consider the seven
schemes r that are representatives of the seven orbits. Let us assume then that r is
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fixed and we want to find the best move (i.e., best selection for r . From now on,
“move” and “selection” mean, basically, the same thing).

The obvious polynomial algorithm (brute force) is a 4-level, nested-for loop
which iterates over all selections i1, i2, i3, i4 and takes�(n4) time (both on average
and in the worst case).

3.1 A �(n3) Dynamic Programming Procedure

A big improvement over the brute force algorithm is the dynamic programming
procedure introduced in [3]. For a given reinsertion scheme r , and selection
(i1, i2, i3, i4), let F = {f1, . . . , f4} be the set of edges inserted by r . We say that two
nodes is and it are independent if no edge of F is incident on both {is , is ⊕ 1} and
{it , it ⊕ 1}. For instance, in Fig. 1 (left), the nodes i1 and i2 are independent, while
i1 and i3 are not, etc. It can be shown that the selection nodes can be partitioned into
two groups say A = {a1, a2} and B = {b1, b2} of independent nodes, so that the
cost of the move is

c(a1, a1 ⊕ 1)+ c(a2, a2 ⊕ 1)+ c̃1(b1|a1, a2)+ c̃2(b2|a1, a2)

with c̃1(b1|a1, a2) := c(b1, b1⊕1)−c(f ′)−c(f ′′) and c̃2(b2|a1, a2) := c(b2, b2⊕
1) − c(f ′′′) − c(f ′′′′) for a suitable partitioning of F into {f ′, f ′′} and {f ′′′, f ′′′′}.
To find the best move, we consider all possibilities for the choice of a1 and a2 (there
are �(n2) choices). For each such choice, we find the completion of the selection
by optimally placing the remaining two nodes b1 and b2. In [3] it is shown how this
can be done via a dynamic programming procedure in time�(n) rather than�(n2),
by exploiting the fact that the costs c̃ for b1 and b2 do not depend on each other but
only on a1 and a2.

3.2 Our “Smart Force” Approach

Our idea for an effective search is based on the following considerations, similar to
those utilized successfully for 3-OPT in [5] and which were called smart force in
opposition to the brute force enumerative approach.

Suppose there is a magic box which contains all the best moves, but these moves
have been masked by deleting 2 indices out of 4. So each entry in the box (a masked
move) is something like (∗, 6, 9, ∗), which says that there is a best move for which
i2 = 6, i3 = 9 but we don’t know i1 and i4. We can inquire the box by specifying
two indices a, b ∈ {1, 2, 3, 4} and the box, in time O(1) returns us a masked move
(x1, x2, x3, x4) such that xi �= ∗ iff i = a, b. How can we use such a box to find the
best move?
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One way would be to ask, e.g., for a masked move revealing the first two nodes
of a best move. Say we get back (5, 17, ∗, ∗). At this point we could enumerate the
values for the two missing nodes i3 and i4 in the range [19, . . . , n̄] and determine
the best completion possible. This way, finding a best improving 4-OPT move would
take �(n2). Indeed, we could do even better than �(n2) by calling the magic box
more than once. Let’s say that we make a call for the first two indices and obtain the
masked move (v1, v2, ∗, ∗). Now we would keep calling the box asking for all the
masked moves of type (∗, , ∗, w3, w4) in the box. We would then determine the best
solution among all the quadruples which do in fact represent feasible selections (i.e.,
(v1, v2, w3, w4) ∈ S). If the number of best moves is considerably smaller than n2,
this procedure would take less than O(n2) time. As a matter of fact, the number of
best moves is in general much smaller than n2 (many times the best move is unique,
in which case we would determine it in time O(1) with two calls). Let us say that
there are B best moves overall. Then the above approach would take time O(B). It
is safe to say that B is in general a very small number (it can almost be considered
a constant), as we noticed in our computational experiments.

The bulk of our work has then been to simulate a similar magic box, i.e., a data
structure that can be queried and should return two out of four nodes of a best
move much in a similar way as described above. Being heuristic, our box, rather
than returning a pair of nodes that are certainly in a best move, returns a pair of
nodes that are likely to be in a best move. In order to assess the likelihood of
two specific indices to be in a best solution, we will use suitable two-arguments
functions. Loosely speaking, these functions will be used to determine, for each
pair of indices of a selection, the contribution of that pair to the value of a move.
The rationale is that, the higher the contribution, the higher the probability that a
particular pair is in a best selection.

The two functions are called τ+() and τ−(). For each a, b ∈ {0, . . . , n̄}, we
define τ+(a, b) to be the difference between the cost from a to its successor and the
cost from a to the successor of b, i.e.,

τ+(a, b) = c(a, a ⊕ 1)− c(a, b ⊕ 1)

while τ−(a, b) is be the difference between the cost from a to its predecessor and
the cost from a to the predecessor of b, i.e.,

τ−(a, b) = c(a, a . 1)− c(a, b . 1)

Clearly, each of these quantities can be computed in time O(1), and computing
their values for a subset of possible pairs can never exceed time O(n2).
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4 Finding the Best 4OPT Move

Let then r be a given reinsertion scheme (representative of an orbit). For each
selection S = (i1, i2, i3, i4), the evaluation of a move requires to compute the
difference �r(i1, i2, i3, i4) of costs between the removed edges and the inserted
edges. We start by showing how to break up the function �r(), that has �(n4)

possible arguments, into a sum of functions of two parameters each. In particular,
we have

�r(i1, i2, i3, i4) = f 1
r (iπ(1), iπ(2))+ f 2

r (iπ(3), iπ(4))+ f 3
r (iσ (1), iσ (2))+ f 4

r (iσ (3), iσ (4))

(2)

for suitable functions f 1
r (), f

2
r (), f

3
r (), f

4
r (), each representing the contribution of

two specific indices to the value of the move, and permutations π, σ of the set
{1, 2, 3, 4}.
Theorem 2 For every 4-OPT reinsertion scheme there exist functions f 1(), f 2(),

f 3(), f 4() : Z× Z !→ R, and permutations π and σ of the set {1, 2, 3, 4} such that
for each selection (i1, i2, i3, i4) it is

�r(i1, i2, i3, i4) = f 1(iπ(1), iπ(2))+f 2(iπ(3), iπ(4))+f 3(iσ (1), iσ (2))+f 4(iσ (3), iσ (4))

Proof (Sketch) Let us consider a bipartite graph B with four vertices on top and
four on bottom. The top vertices are the tour edges R = {e1, e2, e3, e4} removed
by the selection. The bottom vertices are the edges I = {e′1, e′2, e′3, e′4} inserted by
the scheme. In B there is an edge ee′ between every e ∈ R and e′ ∈ I such that
e ∩ e′ �= ∅. It is immediate to see that B is in fact a length-8 cycle. As an example,
in the figure below we depict B for the reinsertion scheme r11 =< −3,+4,−2 >.

{i1, i3} {i2, i4} {i1 ⊕ 1, i4 ⊕ 1} {i2 ⊕ 1, i3 ⊕ 1}

{i1, i1 ⊕ 1} {i2, i2 ⊕ 1} {i3, i3 ⊕ 1} {i4, i4 ⊕ 1}

The cycle is the disjoint union of two perfect matchings. From either one of
them we can obtain the functions f 1(), f 2(), f 3(), f 4(). For example, consider the
matching

{i1, i1 ⊕ 1} ↔ {i1, i3}, {i2, i2 ⊕ 1} ↔ {i2, i4}, {i3, i3 ⊕ 1} ↔ {i2 ⊕ 1, i3 ⊕ 1},
{i4, i4 ⊕ 1} ↔ {i1 ⊕ 1, i4 ⊕ 1}
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From each edge of the matching we derive either a τ+ or a τ− expression as follows.
Assume the edge is exe′, with x ∈ {1, 2, 3, 4}. If e′ = {ix, iy} then

c(ex)−c(e′) = c(ix, ix⊕1)−c(ix, iy) = c(ix, ix⊕1)−c(ix, (iy.1)⊕1) = τ+(ix, iy.1)

Otherwise, it is e′ = {ix ⊕ 1, iy} and

c(ex)−c(e′) = c(ix, ix⊕1)−c(ix⊕1, iy) = c(ix⊕1, ix)−c(ix⊕1, (iy⊕1).1) = τ−(ix⊕1, iy⊕1)

The sum of these values, for x = 1, 2, 3, 4, is then the cost of the move. In the move
of the above example it is

�r(i1, i2, i3, i4) = τ+(i1, i3.1)+τ+(i2, i4.1)+τ−(i3⊕1, i2⊕2)+τ−(i4⊕1, i1⊕2).

By reading the order in which the various types of indices appear in the first two
addends of the above sum we get the permutation π of the theorem statement.
Similarly, we get σ from the last two addends. ��

In the above example, the permutations are π = (1, 3, 2, 4) and σ = (3, 2, 4, 1).
Furthermore,

– f 1(x, y) := τ+(x, y . 1), with domain S13 f 2(x, y) := τ+(x, y . 1),
with domain S24

– f 3(x, y) := τ−(x ⊕ 1, y ⊕ 2), with domain S32 f 4(x, y) := τ−(x ⊕
1, y ⊕ 2), with domain S41

Notice how the theorem implies that each function f i(x, y) is either a τ+ or a τ−.
By using Theorem 2, we can give the functions f 1, . . . , f 4 and the permutations π
and σ for the representatives of all orbits, as reported in Table 1.

Table 1 Expressing �r(i, j, k, h) as a sum f 1()+ f 2()+ f 3()+ f 4()

r π σ f 1() f 2() f 3() f 4()

r1 (1, 2, 4, 3) (3, 1, 2, 4) τ+(i, j . 1) τ−(h⊕ 1, k ⊕ 2) τ+(k, i) τ−(j ⊕ 1, h⊕ 1)

r2 (1, 2, 3, 4) (2, 1, 4, 3) τ+(i, j . 1) τ+(k, h. 1) τ−(j ⊕ 1, i ⊕ 2) τ−(h⊕ 1, k ⊕ 2)

r3 (1, 2, 3, 4) (4, 1, 2, 3) τ+(i, j . 1) τ+(k, h) τ+(h, i) τ−(j ⊕ 1, k ⊕ 2)

r4 (1, 2, 4, 3) (3, 1, 2, 4) τ+(i, j . 1) τ+(h, k . 1) τ−(k ⊕ 1, i ⊕ 2) τ−(j ⊕ 1, h⊕ 2)

r5 (1, 2, 4, 3) (3, 1, 2, 4) τ+(i, j . 1) τ−(h⊕ 1, k ⊕ 1) τ−(k ⊕ 1, i ⊕ 2) τ−(j ⊕ 1, h⊕ 1)

r10 (1, 3, 2, 4) (3, 1, 4, 2) τ+(i, k . 1) τ+(j, h) τ−(k ⊕ 1, i ⊕ 2) τ+(h, j)
r25 (1, 3, 2, 4) (3, 1, 4, 2) τ+(i, k) τ+(j, h) τ+(k, i) τ+(h, j)
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4.1 How to Find the Best Selection

Suppose we want to find a selection S = (i1, i2, i3, i4) better than a selection
S∗ = (v̄1, v̄2, v̄3, v̄4) of value V (the current “champion”). Then S must satisfy

(
f 1(iπ(1), iπ(2))+ f 2(iπ(3), iπ(4)) >

V

2

)
∨
(
f 3(iσ (1), iσ (2))+ f 4(iσ (3), iσ (4)) >

V

2

)

(3)

For the sake of example, assume π = (1, 3, 2, 4) and σ = (1, 4, 2, 3). We then
run a two-phase algorithm. In the first phase we look for all selections (i, j, k, h)
such that f 1(i, k) + f 2(j, h) > V

2 and then check if indeed �r(i, j, k, h) > V . In
the second phase we look for all selections such that f 3(i, h) + f 4(j, k) > V

2 and
then check if indeed �r(i, j, k, h) > V . Whenever we improve the champion, we
immediately update V so that the two conditions become harder to satisfy.

The procedure for each phase has in input two max-heaps H ′ and H ′′ and a
permutation φ of {1, 2, 3, 4}. The heap H ′ contains pivots in the domain Sφ(1)φ(2)
while H ′′ contains pivots in the domain Sφ(3)φ(2). Each heap corresponds to one
of the addends of (2) and is sorted according to the value fH (x, y) of its pivots
(x, y) (where fH () is one of f 1, . . . , f 4, depending on the heap). The goal of the
phase is to form all quadruples with value> V/2 by picking one element from each
heap. We then run a loop to identify all pairs (x, y), (z, w) of pivots, taken from H ′
and H ′′ respectively, such that fH ′(x, y)+ fH ′′(z, w) > V/2. The loop terminates
as soon as the sum of the maxima of the heaps is ≤ V/2. To perform this search
effectively, given that the maximum of H ′ is (x1, y1) of value fH ′(x1, y1), we first
extract from H ′′ all elements (zc, wc) such that fH ′(x1, y1)+ fH ′′(zc, wc) > V/2.
Note that this way we have in fact created a sorted array of those elements fromH ′′,
i.e., H ′′ now can be replaced by an array A′′ = [(z1, w1), . . . , (zQ,wQ)] such that

fH ′′(z1, w1) ≥ · · · ≥ fH ′′(zQ,wQ) > V

2
− fH ′(x1, y1)

Creating this array has cost O(Q log n). In a similar way, in time O(P log n) we
create a sorted array A′ = [(x1, y1), . . . , (xP , yP )] containing all the elements of
H ′ such that

fH ′(x1, y1) ≥ · · · ≥ fH ′(xP , yP ) > V

2
− fH ′′(z1, w1)

Now we combine elements from the first array and the second array to form all
quadruples of value> V/2. For doing so we keep two indexes a and b, one per array.
Initially a = b = 1. If fH ′(xa, ya) ≥ fH ′′(zb, wb) we say that a is the master and b
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is the slave, otherwise b is the master and a the slave. We run a double loop which
ends as soon as fH ′(xa, ya)+fH ′′(zb, wb) ≤ V/2. At each iteration, one index runs
through all the elements from the slave down, as long as the sum of their values and
the master’s value is still > V/2. For example, if the master is a, then we would
consider all elements c = b, b+1, b+2, . . . such that fH ′(xa, ya)+fH ′′(zc, wc) >
V/2. For each quadruple (xa, ya, zc, wc) thus obtained we would, in timeO(1) sort
the indices so as to obtain values i, j, k, h with i ≤ j ≤ k ≤ h and check if indeed
(i, j, k, h) is a valid selection and �(i, j, k, h) > V . In that case, we would update
the current champion and its value V (note that this might in turn cause an earlier
termination of the loop).

Notice that once a quadruple is formed there is nothing more to do than
compute its value, in time O(1). If the total number of quadruples evaluated is
L, the complexity of the loop is O(L) so that, overall, the procedure takes time
O((P + Q) log n + L) where P = size(A′) and Q = size(A′′). In our
computational experiments, by the least square fitting of the running times we
noticed that this procedure behaves, in practice, like O(nα log n) with α % 2.1.

5 Computational Results and Conclusions

For this extended abstract we have run a preliminary set of tests, but large enough
to show the effectiveness of the method. In particular, we have first considered
random instances of n nodes, in which the edge costs are drawn UAR in [0, 1],
for n = 1000, 2000, . . . , 10,000. For each n we generated ten instances. For each
of them, starting from a random tour we found the best move by DP and by smart
force. We also computed (an estimate of) the time needed by the�(n4) enumeration
algorithm. The results (averaged over the ten instances for each n and rounded up)
are reported in Table 2. We can see that the speedups of smart force w.r.t. dynamic
programming range from about 30 times to about 500 times faster.

We have then selected from the TSPLIB repository all geometric instances of
size 1500 ≤ n ≤ 6000 and performed the same experiment, this time starting from
ten random tours per instance. The results are reported in the bottom half of Table 2.
It can be seen that the speedups are comparable to before, with improvements from
about 100 times faster to more than 300 times faster.

There is a lot of work left such as running extensive tests on different families of
random costs, as well as trying to prove in a formal way that the expected running
time is lower than cubic, at least for graphs with costs drawn UAR. All this work
will be the matter of future research.
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A Computational Evaluation of Online
ATSP Algorithms

Michele Barbato, Alberto Ceselli, and Filippo Mosconi

Abstract We prove that state-of-the-art online asymmetric traveling salesman
problem algorithms can successfully be used in real time practical systems, in terms
of both solutions quality and computational efficiency. At the same time, we show
that such a good behaviour can only be obtained by a careful fine tuning of the
algorithms, often clashing with their theoretical analysis.

Keywords Asymmetric traveling salesman · Online algorithms · Experimental
analysis

1 Introduction

Server routing problems involve a set of requests to be served by a server in the
minimum amount of time. Usually, every request is identified with a point in a
space. A request is then served if the server visits the corresponding point. In the
online asymmetric traveling salesman problem (OL-ATSP), requests are generated
in sequence along time and each request must be served after it has been generated.
In general, the generation time of the next request is unknown to the server. The
goal in the OL-ATSP is to minimize the time at which all requests have been served.

The OL-ATSP and its variations arise in a number of real-world applications.
Our interest in the OL-ATSP actually stems from its application to the management
of automated warehouses [3], which is critical in highly custom production contexts
like cosmetics manufacturing [1].

A warehouse consists of racks. They are typically identical, growing in vertical
shelves of the same height, with an aisle between them which is traversed both
horizontally and vertically by a stacker crane. The stacker crane moves containers
to and from the racks: we refer to any such a movement as a task. One may assume
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that the complete set of possible tasks is known in advance, and so are both the cost
to perform each task and the time needed to start a task immediately after another
one has been executed. Given a reasonable time horizon, only a small subset of all
possible tasks appear: the goal is to find a sequence of them that can be performed
by the stacker crane minimizing the total completion time.

Often in practical circumstances there is no knowledge on the temporal distribu-
tion of the tasks. That is, the order in which tasks will be revealed, as the time at
which this will happen, is unknown. Algorithms operating the stacker crane in the
above situation must therefore act in an online fashion: decisions at a given instant
are taken by looking only at the sequence of requests generated until that instant.
Under this assumption, the problem of optimally sequencing the completion of the
tasks is exactly an OL-ATSP where the requests are the tasks to be performed and
the server is the stacker crane.

The quality of OL-ATSP solutions, as in general with online algorithm, is
assessed by comparing its cost to that potentially achievable by an exact offline
algorithm, that is one where decisions are taken with complete knowledge on the
sequence of requests. The worst-case ratio between the former and the latter is called
competitive ratio. The lower the competitive ratio, the better the corresponding
online algorithm. In this regard, the OL-ATSP is well understood, since algorithms
providing optimal competitive ratio are known for several variants [5].

However these proven competitive algorithms do not necessarily exhibit good
performance in practice, and a corresponding suitable experimental validation is
often missing. The OL-ATSP is a relevant case: despite its high potential in
applications, no experimental evaluation is carried out in the literature. Additionally,
the complexity of the sub-problems that need to be solved undermines their
practical applicability, finally imposing to resort to heuristics, thereby losing quality
guarantees.

In this paper we fill in such a gap by performing an extensive experimental eval-
uation of OL-ATSP algorithms. We prove that state-of-the-art OL-ATSP algorithms
can successfully be used in real time practical systems, in terms of both solutions
quality and computational efficiency. At the same time, we show that such a good
behaviour can only be obtained by a careful fine tuning of the algorithms, often
clashing with the theoretical analysis.

More precisely, we experimentally study SMARTSTART, a family of algorithms
for the OL-ATSP presented in [5] (Sect. 2). The theoretical analysis performed
in [5] shows that, for several variations of the OL-ATSP, SMARTSTART yields algo-
rithms with the best possible competitive ratio. We extensively test SMARTSTART

algorithms, designing instances with specific spatial and temporal distribution
of the requests (Sect. 3). We analyze the discrepancy between an experimental
fine tuning of SMARTSTART and the theoretically predicted guarantees as the
choice of these distributions changes (Sect. 3.1). We also consider lower bounding
procedures, and use them to evaluate the actual gap obtained by SMARTSTART

under various settings, thereby checking the tightness of the theoretical analysis
in practical instances (Sect. 3.2). Finally, we evaluate the potential performance of
SMARTSTART algorithms when employed in real-time applications (Sect. 3.3).
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2 Definitions and SmartStart Algorithms

Throughout let V be a set of points in a space with a distance d : V × V → R>0
satisfying the triangular inequality d(u, v)+d(v,w) ≥ d(u,w) for every u, v,w ∈
V . In general, d(u, v) �= d(v, u), hence we model such a space as a complete
digraph D = (V ,A), having weight d(u, v) on arc (u, v) ∈ A. According to [5],
asymmetry makes the problem harder. We select an origin vertex O ∈ V , where
a server is located at time 0. To reach v ∈ V from u ∈ V the server employs
a time tuv = d(u, v). A request is a pair r = (v, t) with v ∈ V \ {O} and
t ∈ R+. Given request r = (v, t), we define ν(r) = v and τ(r) = t . We say
that request r is served if the server visits ν(r) at any time t ≥ τ(r), unserved
otherwise. Let R = {r1, r2, . . . , rk} be a sequence of requests such that k ≤ |V |
and τ(ri) ≤ τ(rj ) whenever 1 ≤ i < j ≤ k. In the homing OL-ATSP, the
server must minimize the total completion time, that is, the time required to serve all
requests in R and subsequently return at O. Note that the homing OL-ATSP where
k = |V | and τ(r) = 0 for every r ∈ R is the classical offline asymmetric traveling
salesman problem (ATSP), thoroughly described e.g., in [7]. Online algorithms
operate the server by taking decisions on the fly, considering at time t ≥ 0 only
the requests r such that τ(r) ≤ t . Let cA(R) be the completion time of a server
operated by algorithm A, defined as the time to serve all requests in R and return
to O afterwards. Let cBEST(R) be the best possible completion time for the request
sequence R. Given K ≥ 0, algorithm A is K-competitive if cA(R)/K ≤ cBEST(R)
for every request sequence R. The real value K is the competitive ratio of A.

SmartStart Algorithms SMARTSTART is a family of algorithms first introduced
in [4] in the context of online dial-a-ride problems. It has been used for the OL-
ATSP in [5]. Let us assume that requests are generated over time at some vertices
of the digraph D described above. The behavior of SMARTSTART is parametric on
a real value: for a fixed α > 0 the corresponding algorithm A(α) works as follows.
At every t ≥ 0 let Rt ⊆ R be the subset of unserved requests r with τ(r) ≤ t .
The server computes d(Rt ), the value of the tour S needed to visit all requests of Rt
starting from and returning toO. At the minimum t ′ such that t ′ ≥ αd(Rt ) the server
executes S serving all requests in Rt and ignoring all requests generated meanwhile.
When the server is back at O the above process is repeated.

If the weights on the arcs of D obey the triangular inequality, the competitive
ratio of A(α) only depends on whether the last request arrives while the server is
idle at O. Exploiting this fact the authors of [5] prove the following:

Theorem 1 ([5]) For every α > 0, A(α) is max{1 + α, 2 + 1/α}-competitive for

the homing OL-ATSP. The best SMARTSTART algorithm is A(φ) where φ = 1+√5
2

is the golden ratio.

The value φ minimizes max{1+ α, 2+ 1/α}. Since 1+ φ = 2+ 1/φ, algorithm
A(φ) is (1 + φ)-competitive. The study in [5] also shows that (1 + φ) is a lower
bound on the competitive ratio of any possible OL-ATSP algorithm. Thus, A(φ)
yields the best competitive ratio among online algorithms for the homing OL-ATSP.



474 M. Barbato et al.

3 Experimental Analysis

In this section we address two experimental questions. The first concerns solutions
quality, that is low completion time objective values, as defined in Sect. 2. In
particular we investigate whether the theoretical best setting of α is effective also
in experiments (Sects. 3.1 and 3.2). We stress that, by definition, SMARTSTART

algorithms need an exact solver for the ATSP as a subroutine to serve partial sets
of requests every time the server leaves the origin. Therefore, the second question
concerns computing times, that is if the need of an exact ATSP solver turns out to
be a bottleneck for the applicability of SMARTSTART or not (Sect. 3.3).

Dataset Design Our investigation started from preliminary experiments on TSPLib
instances [9]. We found that the behavior of SMARTSTART on these instances was
affected by requests appearing in clusters. In fact, assuming constant inter-arrival
times, if requests are generated spatially very close to each other and far from the
origin O, a good heuristic for the OL-ATSP would be to never return to O before
having served all of them, as this would imply unnecessary round-trips between
the origin and their locations. The same applies to the temporal distribution of the
requests: if all data was known in advance a good heuristic would merge requests
generated in short time intervals, exploiting large time gaps for returning back toO.

Therefore, we decided to build a more reliable experimental setting, by con-
trolling both spatial and temporal distributions of the requests. Indeed, spatial and
temporal distributions are intertwined in determining the complexity of an instance.

Concerning the spatial distribution, SMARTSTART algorithms are designed to
start a tour serving subsets of requests based on the trade-off between distance to be
traveled and elapsed time. As sketched above, we argue space cluster tendency to be
predictive of easy instances. Oppositely, when requests are uniformly scattered, no
particular rationale is obviously yielding good policies; in particular, SMARTSTART

algorithms has no design elements to perform a wise choice of the subsets of
requests to serve.

Motivated by the above arguments, digraphs D = (V ,A) in our dataset are
constructed as follows. In the bi-dimensional Euclidean space, we initially consider
a point O and six points m1, . . . , m6 uniformly disposed on a large circumference
with centre in O and radius 500. Next, we generate clusters C1, . . . , C6 each
including 20 points drawn at random from a bi-variate Gaussian distribution centred
at mi , with covariance matrix [[502, 0], [0, 502]], for every i = 1, . . . , 6. The origin
of D is located at O, and all other vertices are located at the points of the clusters
(note that the mi’s may not be vertices of D).

In order to have asymmetric distances between vertices, we define d : A→ R≥0
as:

d(v,w) =
⌈(
||p(v)− p(w)||2 +G ·max{0, y(w)− y(v)}

)1/2
⌉
∀v,w ∈ V

(1)
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where for every v ∈ V , p(v) (resp. y(v)) is the Euclidean point (resp. its y-
coordinate) where vertex v is located, ||p − q|| is the Euclidean distance between
points p and q andG > 0 is an asymmetry parameter. It is not difficult to show that
the arc weight function d defined in (1) satisfies the triangular inequality. Moreover,
by varying the asymmetry parameter, we can easily control the total amount of
asymmetry degree of D defined in [5] as supv,w∈V

d(x,y)
d(y,x)

, which is relevant in the
competitive analysis of online algorithms for the OL-ATSP. We remark that, given
this setting, O is not guaranteed to be the center of the smallest circle containing
all the points. On the whole, we created 50 weighted digraphs (D, d) with d having
asymmetry parameter G = 1 and 50 additional digraphs with G = 10.

In the following we assume that the clusters C1, . . . , C6 are disposed in clock-
wise order aroundO with Ci being the predecessor of Ci+1, for every i = 1, . . . , 5.
We consider three types of order in which the requests are generated: (1) CLUSTER

order: 20 requests are generated consecutively in the same cluster, one at each vertex
of that cluster. Then the operation repeats on successive clusters by following the
cluster order C1, C2, C3, C4, C5, C6; (2) JUMPING order: 20 requests are generated
consecutively in the same cluster, one at each vertex of that cluster. The operation
is iterated following the cluster order C1, C4, C6, C2, C5, C3; (3) RANDOM order:
one request is generated in one vertex of a cluster, among the vertices where no
request has been generated yet. The operation is iterated cyclically following the
cluster order C1, C4, C6, C2, C5, C3.

Concerning the temporal distribution we designed three scenarios: (a) Uniform:
requests appear at constant time intervals; (b) Dense-first: let T be the time at which
the last request appears. The first 75% requests are generated uniformly between 0
and time T/2; the remaining 25% requests are generated uniformly between time
T/2 and T . (c) Sparse-first: as in Dense-first case but generating the first 25%
requests before time T/2 and the last 75% between T/2 and T . In all three temporal
distributions above, we let the time of the last generated request be equal to the
length of the optimal ATSP solution on the corresponding instance, computed in
preprocessing, in such a way that the inter-arrival times are of the same order of
magnitude of the traveling time between requests.

For each of the 100 digraphs created as above we combine each spatial order from
types (1)–(3) with each temporal distributions from types (a)–(c). Hence, overall,
our dataset consists of 900 instances.

3.1 Effect of α

We first analyze how the behavior of SMARTSTART algorithm A(α) varies accord-
ing to the choice of the parameter α. According to Theorem 1, the value of α yielding
the best competitive ratio on generic instances is α = φ % 1.6. We performed tests
with α ∈ {0.2, 0.4, 0.8, 1.0, 1.4, 1.6} on our dataset.

In Table 1 we provide the average completion times corresponding to several
values of α in our set. In this table the first column corresponds to the three
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Table 1 Average completion times for varying values of α

Spatial Temporal α

distribution distribution 0.2 0.4 0.8 1 1.4 1.6

C Uniform 11,063.22 11,027.58 11,154.02 13,883.85 16,699.46 18,091.09

Dense-first 10,476.31 10,895.53 12,760.20 14,903.36 16,699.46 18,091.09

Sparse-first 11,783.40 11,923.03 11,854.01 11,831.93 12,696.33 17,664.01

J Uniform 12,143.51 12,303.67 12,186.78 13,999.04 16,699.46 18,091.09

Dense-first 11,507.02 11,654.39 12,862.41 14,877.36 16,699.46 18,091.09

Sparse-first 13,102.64 13,214.90 13,096.30 13,176.66 14,018.01 17,782.99

R Uniform 15,175.50 15,503.38 15,728.75 14,215.77 16,699.46 18,091.09

Dense-first 15,122.27 13,193.61 15,847.49 14,990.32 16,699.46 18,091.09

Sparse-first 14,680.25 15,928.97 14,809.05 14,336.07 16,699.46 18,091.09

orders of request generation (C is for the CLUSTER order, J for JUMPING, R
for RANDOM); similarly, the second column of Table 1 specifies the temporal
distribution followed to generate the instances. The best average completion times
of Table 1 are reported in boldface for every combination of spatial and temporal
distributions. Table 1 highlights that on seven out of the nine types of instances the
best average completion times correspond to α ∈ {0.2, 0.4}. The other two types
of instances are instead optimized in average by the value α = 1 and belong to the
random spatial distribution. We report that the theoretically optimal algorithm A(φ)
yielded the best completion time only on 1 instance out of the 900 tested instances.1

Oppositely, for about 77% of instances the best α belongs to {0.2, 0.4, 0.8}. This
suggests that our instances are better solved by SMARTSTART algorithms serving
small sets of unserved requests, almost immediately after their generation. From
these results we conclude that when considering structured OL-ATSP instances,
the theoretical analysis of [5] can be imprecise in predicting the value of α giving
the best SMARTSTART algorithm in practice. We mention that a similar result
was reported in [2] on the online symmetric traveling salesman problem. On the
other hand, for less structured instances, our experiments seem to indicate that the
theoretically best α is closer to the best experimental α.

1The instance has G = 1, following a CLUSTER ordering of the requests and a sparse-first
distribution.
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Table 2 Comparison of SMARTSTART with a theoretical lower bound

Spatial Temporal

distribution distribution L A Gap%

C Uniform 7423.65 11,027.58 48.55

Dense-first 7500.01 10,476.31 39.68

Sparse-first 7422.70 11,783.40 58.75

J Uniform 7392.34 12,143.51 64.27

Dense-first 7468.70 11,507.02 54.07

Sparse-first 7391.39 13,102.64 77.27

R Uniform 7392.34 14,215.77 92.30

Dense-first 7468.70 13,193.61 76.65

Sparse-first 7391.39 14,336.07 93.96

3.2 Lower Bound Comparison

We now compare the results described in Sect. 3.1 with a theoretical lower bound for
the OL-ATSP. Given an instance of the OL-ATSP, let r̄ be its last generated request.
Then a valid lower bound on the optimal completion time is τ(r̄) + d(ν(r̄),O).
Indeed, a server at least waits until time τ(r̄) for the last request to arrive and uses at
least d(ν(r̄),O) time units to go from ν(r̄) toO (visiting ν(r̄) is required to serve r̄).

In Table 2, we compare SMARTSTART and the theoretical lower bound. Every
row of the table represents a fixed instance type, obtained combining a spatial
and a temporal distribution, as indicated by the first two columns while column
L reports the average lower bounds on instances belonging to a given type. For each
instance type, column A reports the average completion time of the SMARTSTART

algorithms yielding the best average completion times on that instance type. Note
that the values in column A correspond to the boldface values of Table 1. The last
column of the table reports the relative gap between the values of column A and
column L, computed as 100 · A−LL .

On instances with sparse-first temporal distribution or random ordering genera-
tion of requests, the best SMARTSTART algorithm in average yields large relative
increasing with respect to the average lower bound. However, on all other instances
the best SMARTSTART algorithm in average yields completion times which are less
than 60% greater than the corresponding average lower bound.
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Fig. 1 Comparison of several SMARTSTART algorithms and the lower bounds computed on our
dataset

We recall that, by results in [5], the worst-case competitive ratio of A(α) is 1+φ
for every α > 0. Since φ % 1.6 this results in a worst-case relative increasing with
respect to an optimal offline algorithm of roughly 160%, for every SMARTSTART

algorithm. Table 2 indicates that, in practice, SMARTSTART algorithms never attain
this worst-case competitive ratio. In fact, this ratio is not reached even by comparing
with the average lower bound in place of the optimum.

In Fig. 1 we provide a more detailed view of the same experiment. There, the y-
axis represents values of completion times; one boxplot summarizes the distribution
of solution values for each choice of α ∈ {0.2, 0.4, 0.8, 1.0, 1.4, 1.6}, as indicated
on the x-axis. The leftmost (resp. rightmost) boxplot refers to LB values (resp. (1+
φ) ·LB values, that is, the best competitive ratio of SMARTSTART). Average values
are marked with filled squares. First, we observe that the trend of each quartile
reflects that of average values (see Table 1). Second, we notice that A(1.6) solution
values are in general lower than (1 + φ) · LB; in turn, we know the theoretical
analysis to be tight, so we expect at least random instances to exist in our dataset
on which A(1.6) approaches the theoretical worst case (1 + φ) · OPT : in those
instances LB is approaching OPT ; at the same time, the dispersion of LB values
is low. This makes us conjecture that the LB is of good quality in our instances.
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3.3 Realtime Applicability

As discussed, SMARTSTART involves the iterative resolution of ATSPs. While being
an NP-hard problem, the size of ATSP instances manageable by current state-of-the-
art solvers is matching the size of instances arising from real-world applications.
Hence, it is of interest to evaluate the actual applicability of SMARTSTART in real-
world OL-ATSPs.

We proceed as follows. For all t ≥ 0, let Rt be the set of unserved requests, the
last of which appearing at instant t and let S(Rt ) be the time A(α) employs to solve
the ATSP on Rt ∪{O}. It never pays off to postpone the resolution of such an ATSP.
Then A(α) has a timeout whenever there exists a new request r appearing between t
and t+S(Rt ). That is, in a real system, a new request appears while the algorithm is
still evaluating the previous ones. We use the probability of occurrence of a timeout
as a measure of applicability of SMARTSTART in a real-time context.

In fact, the occurrence of a timeout is a random variable Y = 1 if T < S, Y = 0
otherwise where in turn T is a random variable modeling the time interval between
two consecutive requests, and S is a random variable modeling the ATSP resolution
time using the ATSP solver. In our experiments we decided to map ATSP instances
to instances of the symmetric traveling salesman problem by means of a standard
Karp reduction [8], subsequently solved with Concorde [6], a state-of-the-art solver
for the symmetric traveling salesman problem. We approximate the cumulative
distribution function of S by its empirical counterpart through numerical simulation,
considering all ATSP runs in our experiments (that is 401.925 heterogeneous
Concorde single thread calls on a 4.00 GHz Intel(R) Core(TM) i7-6700K and 32 GB
RAM). In Fig. 2 (top) we report such an empirical cumulative distribution function
F(x), that is estimating the probability that a Concorde run employs at most x
seconds. For what concerns T , instead, we assumed an exponential distribution
for the time intervals between two consecutive requests, whose density function
is q(x) = λe−λx , that is a standard modeling of independent inter-arrival times. We
finally estimated

E[Y ] = P [Y = 1] = P [S > T ] =

=
∫ +∞

x=0
P [S > T |T = x]P [T = x]dx =

∫ +∞

x=0
P [S > x|T = x]P [T = x]dx

by numerically computing
∫ +∞
x=0 (1− F(x)) · q(x) · dx.

That is, we statistically determine the probability of a SMARTSTART timeout
in our setting, for varying values 1/λ of the average time intervals between
consecutive requests. Results are plotted in Fig. 2 (bottom). We deduce that the
timeout probability approaches 10% already for average time intervals not smaller
than 7 s. As a conclusion, SMARTSTART can be considered a viable solution to solve
OL-ATSPs whose requests are generated at a high frequency (of the order of %5 s)
and hence successfully embeddable in modern systems handling real-time order
satisfaction like automated warehouses.
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Fig. 2 Distribution of Concorde run times (top) and prob. of SMARTSTART timeouts (bottom)

4 Conclusions

In this paper we have performed an experimental analysis of SMARTSTART, a
family of algorithms for the OL-ATSP. First, we have shown that the parameter
α determining the SMARTSTART behavior requires careful fine-tuning to take
advantage of a prior knowledge on instance structure. In particular, often on
structured instances the best theoretical α resulted in SMARTSTART algorithms
behaving poorly in practice. Even if more aggressive settings of α always pay off in
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our experiments, the theoretical analysis of [5] becomes closer to our results when
requests are spatially more randomly distributed. We have additionally observed
that well-tuned SMARTSTART algorithms may produce solutions whose value is
nearly optimal. This result was shown by comparing the quality of SMARTSTART

solutions with a theoretical lower bound. Finally, we have evaluated the usability
of SMARTSTART in real-time applications by means of a statistical framework,
concluding that, also thanks to the performance level reached by exact ATSP
solvers and modern hardware, SMARTSTART can currently be embedded in realtime
systems dealing with OL-ATSP applications.
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Modeling of Traffic Flows in Internet
of Things Using Renewal Approximation

Florian Wamser, Phuoc Tran-Gia, Stefan Geißler, and Tobias Hoßfeld

Abstract This paper proposes a versatile approach to model aggregated traffic
flows in the Internet of Things (IoT) using renewal approximation. The modeled
traffic originates from a large number of sources or devices consisting of a set
of sensors mixed with classical elastic random traffic modeled as Poisson arrival
process. The work shows the exact derivation in the simple case for periodic sensors.
It shows further results in the mixed case with periodic sensors and a background
process. The renewal approximation allows to derive the required number of sensors
such that the aggregated traffic can be approximated as Poisson process.

Keywords Internet of Things · Traffic modeling · Renewal approximation

1 Introduction

Internet of Things (IoT) is a growing area in mobile communication applications [1,
2]. It is expected that millions of devices will be found on the networks in the near
future, each sending independently or via gateways over the mobile network. In
such a scenario, IoT devices encompass all types of physical nodes or objects that
are connected to the Internet to receive and respond to requests, or to store data. IoT
devices can be subdivided into (1) stand-alone devices with independent Internet
connectivity, (2) device groups that communicate in an aggregated manner with
servers through Internet gateways on the Internet, or (3) devices that communicate
with one another based on direct peer-to-peer connections.

A typical situation is the aggregation of traffic streams from many independent
sensors to an Internet gateway as described in [3, 4]. This class of sensors send
data at periodically time-fixed intervals to store measurements or to request input
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data and updates. The time-fixed intervals result from mechanisms to conserve
power or from continuous measurements at specific time intervals such as in Smart
Grids [4, 5]. As in the classic Internet, this traffic overlaps with background traffic
from various other sources, which can be considered independent due to the large
number of sources.

In previous work, aggregated IoT traffic was modeled for periodic traffic with a
fixed sending period of the individual sensor node intervals [3, 4, 6]. We extend this
idea with an additional component, a random and heterogeneous background traffic,
as described in [4]. To this end, a closed-form expression for the approximation of
the inter-arrival time distribution of the superposition of different arrival processes
of IoT devices is derived in this work using renewal approximation. We consider
a class of sensors that send data at consecutive, time-fixed intervals combined
with a continuous-time Markov arrival stream in form of a background Poisson
random process. We provide a detailed derivation for the approximation of the inter-
arrival time distribution based on the renewal approximation including an exact
determination of the coefficient of variation, which can be well approximated by
a Poisson process such that the statistical differences are below a threshold ε.

The rest of the paper is structured as follows. After this introduction, in Sect. 2
related work is discussed. In Sect. 3, the aggregated IoT traffic is modeled for an
Internet gateway. We introduce the used notation and definitions and provide a
detailed description of the approach. Further on, two cases are described in detail in
Sects. 3.1 and 3.2. After showing numerical results in Sect. 4, we conclude the work
in Sect. 5.

2 Related Work

The superposition of a number of deterministic flows is a subject of various papers
in the last decades, especially during the development of Asynchronous Transfer
Mode (ATM) technology [6, 7]. The resulting process of n deterministic flows,
each of rate 1/T , is a periodic non-renewal process of the same period T [8, 9].
Assuming now that the traffic sources are independent, e.g. due to a very large
number of sources, one can model the superposition of deterministic point processes
as a Poisson process as limiting case [8]. There are papers [10, 11] that discuss
the renewal assumption that holds true in the Poisson case and does not hold
for deterministic processes when the number is small. In this paper we apply the
renewal approximation and check whether and when it is valid. Further work on
traffic modeling can be found in e.g. [3, 4, 12]. Directly linked to our work are
the works of Metzger et al. [4] and Hoßfeld et al. [3]. They both refer to the same
modeling context as the present work. These papers are pioneer in this area, facing
the same problem, and providing basic ideas for IoT traffic flows modeling. Our
work is based on these approaches and complements them with further definitions.
Our approach is different in that we apply the renewal approximation to derive a
closed form. In [4] a comprehensive list of IoT traffic models is given, showing how
important periodic traffic characteristics are in the IoT environment.
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3 Modeling Aggregated Traffic Flows

The modeling of aggregated traffic flows in the IoT environment relies on a
fundamental consideration and definition of the arrival processes of the individual
sources. As described in [4], the predominant consideration of these traffic flows
in the literature is the Poisson arrival process. This is in contrast to the work from
ATM times [6], which specifies the need for more detailed consideration of periodic
traffic. In the following, periodic traffic flows are defined and modeled in detail. We
use a description consistent with [4], from which we derive the distribution function
and its moments. The latter serves to answer the question of how many devices
aggregated traffic flows can be approximated as Poisson process.

Variables and Notation As the resulting processes of flows in IoT environments
are generally point processes, we employ a renewal approximation technique to
derive the inter-arrival distribution function of the resulting flow, assuming it follows
renewal input process properties [13]. The main steps of the renewal approximation
used in the analysis are:

1. Consider an independent outside observer looking at the process at an indepen-
dent point in time.

2. Derive the residual time distribution of the resulting process, i.e. the interval from
observation instance until the next arrival to occur.

3. With the assumption that the resulting process is a renewal process we then derive
the inter-arrival distribution function out of the forward residual time.

In the following, we consider the scenario described in Fig. 1. There is a group of
different sensors. Each device sends periodically messages with period T1. There are
n1 devices in this class. A node k starts randomly at time t1,k ∈ [0; T1] and thus, the
sending times are t1,k+z ·T1 with z ∈ N. We denote the distribution function for this
process from the sensor nodes as A1(t), respectively a1(t) as density distribution
function. The traffic pattern for this group is repeated after period T which is the
least common multiple of the sending periods for this class. The resulting stream

Fig. 1 General model with n1 deterministic sensor sources plus Poisson source
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Table 1 Notation

T1 � Sending period of a sensor; without loss of generality, we assume T1 ∈ N

n1 � Number of devices within the group of sensors

A1 � Inter-arrival time of one input process A1(t), a1(t)

RA1 (t) � Distribution function of residual time

RA1 (t) = P(RA1 ≤ t)
rA1 (t) � Density function of residual time

RCA1
� Complementary distribution function of residual time

RCA1
= P(RA1 > t)

� � Inter-arrival time of the resulting process

R� � Residual time of the resulting process

originating from the group of sensors is described with �1 as inter-arrival time of
the resulting process. We model a background random Poisson process as �0 and
rate λ0. The final aggregated process of the sensors and the background process is
denoted as � with a total rate of λ� = n1/T1 + λ0 (Table 1).

Residual Time Distribution The residual time or the forward recurrence time is
the time between any random observation time until the next arrival. We consider a
random observer looking at the process, the interval to the next observed arrival is
denoted by the random variable R� . The residual time until the next message arrival
is the minimum of the residual time of participating processes:

R� = min(RA1 , RA1 , . . . , RA1︸ ︷︷ ︸
n1 times

, RA0). (1)

This leads to the complementary cumulative distribution function (CCDF) of the
resulting process

P(R� > t) = 1− R�(t) = P(RA1 > t) · P(RA1 > t) · . . . · P(RA1 > t)︸ ︷︷ ︸
n1 times

·P(RA0 > t).

(2)

We obtain subsequently the distribution function of the residual time of the
resulting process. In assuming the resulting process to be a renewal process, we
can use the basic result of renewal theory r(t) = 1

E[�] (1− �(t)) to derive the inter-
arrival time distribution with Eq. (2)

�(t) = 1− E[�] · r(t) = 1− E[�] · d
dt
R�(t). (3)

It is obvious that the aggregated stream of deterministic traffic processes is non-
renewal. However, with the superposition of a very large number of processes,
like in IoT environments with huge sets of sensors, the inter-arrival time occurs



Modeling of Traffic Flows in Internet of Things Using Renewal Approximation 487

in microscopic scale compared to the periodicity of a single participating process.
We expect that the resulting process is “more renewal” with a growing number of
superimposed processes. In this paper, we investigate under which conditions the
results using renewal approximation is accurate enough for practical use in IoT
systems and try to quantify accuracy of the renewal approximation. In the following
we consider two consecutive cases and model their properties.

3.1 nD: Deterministic Case for a Group of Periodic Sensors

This case outlines the aggregation of n1 deterministic flows solely to an aggregated
stream of IoT traffic, in our case �1 see Fig. 1. In the IoT context this model is
employed to describe a (large) number of measurement data flows from a set of
sensors. This process was also often used to model ATM traffic flows on aggregated
cell patterns [6], where it is often denoted as nD.

This basic model is depicted in Fig. 2 with an arbitrary observer at t∗. Each
of the input processes, e.g. to represent traffic emitting from a sensor, is a
deterministic process with inter-arrival time A1 with distance T1 and flow rate 1

T1
.

The corresponding CDF RA1(t) and the probability density (PDF) of the recurrence
time of A1 are:

RA1(t) = P(RA1 ≤ t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for t < 0

t/T1 for 0 ≤ t ≤ T1

1 for t > T1

, (4)

d

dt
RA1(t) = rA1(t) =

{
1/T1 for 0 ≤ t ≤ T1

0 otherwise
. (5)

Fig. 2 Model Case 1 with arrival processes according to A1, fixed T1, and n1 streams
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With �1 denoting the random variable of the inter-arrival time of the resulting
process with corresponding residual time R�1 , we obtain the residual time distribu-
tion function (of the superposition �1 of n1 deterministic flows) with density as

P(R�1 ≤ t) = R�1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 t < 0

1− (1− 1
T1
t)n1 0 ≤ t < T1

1 t ≥ T1

, (6)

d

dt
R�1(t) = r�1(t) =

{
n1
T1
(1− 1

T1
t)n1−1 0 ≤ t < T1

0 otherwise
. (7)

Assuming the renewal property for the resulting process, we arrive at

�1(t) = 1− T1

n1
r�1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 t < 0

1− (1− 1
T1
t)n1−1 0 ≤ t < T1

1 t ≥ T1

. (8)

As discussed above, in general, the resulting process is non-renewal. During an
interval of length T1, there are exactly n1 arrivals, which form a periodic pattern
depending on the starting constellation of the flows. Thus, microscopically, the
process is periodic, with infinite number of possible patterns. If n1 is sufficiently
large, from microscopic views, during a time interval sufficiently smaller than T1,
the inter-arrival process appears more random and a renewal process approximation
appears more sensible. In the IoT context this model is employed to describe a
(sufficiently large) number of measurement data flows from a set of sensors. We
expect that if n1 becomes large enough, the resulting process will quickly approach
Poisson. We try here to compute this limit analytically.

From Eq. (8), we can assess the accuracy of the renewal approximation in more
detail. The variance and the coefficient of variation of the resulting process are:

V ar[�1] = T 2
1 (n1 − 1)

n2
1 (n1 + 1)

, c �1 =
√
V ar[�1]
E[�1] =

√
n1 − 1

n1 + 1
. (9)

It can be seen from this expression that the coefficient of variation of the resulting
flow just depends on the number n1 of aggregated flows, not from the inter-arrival
distance T1. Furthermore for the case of one flow, c�1 = 0 as expected for a
deterministic process. For the limiting case n1 → ∞, we obtain c�1 → 1, which
corresponds to the Markovian property. The resulting process approaches a Poisson
process.
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If we set a threshold c �95% = 0.95 to answer the question, how many flows we
need to deliver for a process with 95% of the randomness of a Poisson stream, we
arrive at n1 = 19.51, i.e. with just n1 = 20 flows, the superposition on average can
already approximated with a Poisson process with more than 95% accuracy.

3.2 nD + M: Mixed Case with Periodic Sensors
and a Background Process

The derivation of the case with an additional Poisson background traffic is analogous
to the basic case above. This case is shown in Fig. 1. There are n1 sensors
periodically sending data. The sending period is T1. The nodes start randomly within
[0, T1]. There is also background traffic with rate λ0 with inter-arrival times A0
following a negative-exponential distribution function: A0(t) = 1 − e−λ0t . The
residual time R0 has the same expression as for A0.

The residual time of a sensor is RA1 ∼ U(0, T1) with CDF RA1(t) =
t/T1 for 0 ≤ t ≤ T1. The residual time for the aggregated traffic is R� =
min(RA1 , RA1 , . . . , RA1 , RA0). With R0 = A0, the CDF is given with

R�1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 t < 0

1− (1− 1
T1
t)n1 · e−λ0t 0 ≤ t < T1 .

1 t ≥ T1

(10)

The interarrival time distribution �(t) can be derived using Eq. (3) with E[�] =
T1

n1+λ0T1
. The CDF for �(t) for 0 ≤ t < T1 derives to

�(t) = 1−
T1e
−λ0t

(
1− t

T1

)n1
(n1 + λ0(T1 − t))

(T1 − t)(n1 + λ0T1)
. (11)

The coefficient of variation c� can be derived in this case with standard
mathematical tools analogous to the result of the basic case described above. The
coefficient of variation is shown and explained below in the result section.

4 Numerical Results

In order to substantiate and validate our results, we compare the results obtained
by renewal approximation with (1) an event-by-event simulation of an exact point
process and (2) results from previous works [4]. The simulation randomly generates
a sufficiently long point process according to the given properties, over which
the same statistical measures can be derived after many iterations as obtained
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Fig. 3 Comparison of coefficients of variation: simulation, results from [4] and renewal approxi-
mation for different number of sensor nodes

analytically. For smart city use cases, typical sensor periods are 1 h and 12 h as
e.g. proposed by 3GPP, see [4] for an overview on IoT traffic models. Hence, we
assume T1 = 1 h and T2 = 12 h.

In Fig. 3, the coefficient of variation (CoV) is depicted for the deterministic case,
where the CoV is shown as function of the number of sensor nodes. It can be seen
when the coefficient of variation reaches certain values to justify the approximation
by a Poisson process, e.g. c �1 = 0.95 or c�1 = 1. Here, only the aggregated periodic
traffic of n1 nodes is considered with period T1. Since the simulation generates
a point process with a specific deterministic pattern for each run, it is possible
to plot the CoV as a distribution over all appearing instances. With this, and in
addition to the analytic result, Fig. 3 shows (1) the coefficient of variation according
to the renewal approximation, (2) the mean of the coefficient of variation from the
simulation of 1000 random superpositions, (3) the quantiles of this simulation, and
(4) the fitted result as specified by paper [4] with C̄ = 1− 1

n
.

Both the empirically fitted formula from [4] and the value of the renewal
approximation are close to the values of the simulation of many instances of the
exact process. Furthermore, all curves run together with a large number of sensor
nodes n1. Nevertheless, the quantiles show that the mean values conceal the extreme
cases. With a small number of devices, e.g. n1 = 20, the mean increases to 1, but the
5% and 95% quantiles are still more than 20% away from the mean value. Overall,
the renewal approximation can be used as a simple closed-form expression if one
considers a high number of nodes and also takes into account the quantiles, which
show that there are some highly variable occurrence of arrivals in individual cases.

For the numerical results of the mixed case with deterministic arrivals and a
Poisson background arrival process, we consider a scenario with β = 10% of
background traffic. The aggregated periodic traffic leads to an arrival rate n1/T1.
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Fig. 4 Mixed case nD +M , periodic traffic of sensor nodes and background Poisson traffic. (a)
Comparison of nD +M with different number of devices n1 in the deterministic case for Poisson
process, renewal approximation, and a single simulation run. (b) Coefficients of variation for the
aggregated case with background traffic from simulation and renewal approximation on the number
of sensor nodes

Hence, the arrival rate of the background traffic is λ0 = βλ� = β(n1/T1 + λ0)

which leads to λ0 = β
1−β

n1
T1

.
Figure 4a shows a comparison between a single simulation run of nD + M ,

Poisson process, and renewal approximation. All results are plotted for n =
3, 10, 50 nodes and T1 = 1 h with a ratio of β = 0.1 of Poisson background traffic.
It shows the convergence of both the simulation runs to the renewal approach and the
convergence of all approaches with a large number of nodes. With a larger number of
devices, the single simulation run curve loses its steps, i.e., visually the convergence
to the curve of the renewal approximation can be viewed in this figure.

On the basis of this, the coefficient of variation over the number of sensors is
shown in Fig. 4b to discuss the approximation using renewal assumption in the
mixed case nD +M . The black dashed line is the analytic solution using renewal
approximation. The numerical results are derived using numerical integration. The
solid lines are from simulation runs. We use T1 = 1 h and vary n1. We keep a
constant ratio of background traffic which is again β = 0.1.

The simulation and analytic solution from the renewal approximation coincide;
in fact, they converge for a large number of sensor nodes. Hence, the renewal
approximation can also be used here for a large number of nodes. The results in
this case, however, again show large distances to the 5% and 95% quantiles of
the simulation runs, which is also due to the low ratio of background traffic with
β = 0.1. If β increases, the curve from the analytic solution approaches 1 more
quickly, which means the process becomes more random and converges faster to a
random process where the renewal approximation can be employed.
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5 Conclusion

This paper had the objective to describe an aggregated traffic mix of IoT devices
with (1) periodic traffic patterns and (2) background traffic using renewal approx-
imation. It is based on the papers [3, 4]. In contrast to them, in this paper a
closed-form expression of the approximation of the distribution function for the
aggregated traffic mix is derived using renewal approximation. Both the simple case
with periodic-sending sensors and the mixed case with Poisson background traffic
were calculated. The numerical results demonstrate the consistency of this approach
with simulated instances of an exact point processes for a large number of devices.
In the analytical form, it is shown in this paper that the coefficient of variation for
n ≥ 20 goes sufficiently against 1 and allows to quantify the required nodes, such
that the aggregated traffic can be approximated by a Poisson process.
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Flow Assignment in Multi-Core Network
Processors

Franco Davoli, Mario Marchese, and Fabio Patrone

Abstract In modern telecommunication networks, the trend toward “softwariza-
tion” is shifting the execution of switching and protocol functionalities from
specialized devices to general purpose hardware located in datacenters or at the
network edge. Incoming flows generated by User Equipment are processed by
different functional modules executed in Virtual Machines (VMs) or containers.
The paper considers a modeling and control architecture in this environment, for
the assignment of flows to the first functional blocks in a chain of Virtual Network
Functions (VNFs) and the balancing of the load among the VMs where they are
executed.

Keywords Virtual network functions · Network flow optimization · Load
balancing

1 Introduction

Telecommunication networks are undergoing a profound evolution, which is bring-
ing part of their infrastructure ever closer to that of computing systems. With the
advent of Software Defined Networking (SDN) [1] and Network Functions Virtual-
ization (NFV) [2], Network Service Providers (NSPs) have started considering an
increasing level of “softwarization” of the functionalities to be performed, especially
as regards the access segment [3]. This trend has been further strengthened by
Mobile Edge Computing (MEC) [4, 5], and by the consolidation of the fifth
generation of mobile networks (5G) [6], providing a much stronger integration
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between the wireless mobile access and the fixed transport network and enhancing
configuration flexibility through the concept of network slicing [7].

In this scenario, more and more often resource allocation and network control
problems are encountered that present analogies with similar settings in computing
systems and datacenters. Typically, given a set of general-purpose computing
machinery, deployed by an Infrastructure Provider (InP) – or by the NSP itself over
the networking infrastructure of the InP – they will host multiple tenants that act as
NSPs for their (fixed or mobile) customers; the latter run applications on their User
Equipment (UE) that may need computing resources that are partly local (on the
very same UE) and partly residing in a datacentre or at the mobile edge (with the
latter subject to possible latency constraints that may require resource reallocations
to follow users on the move).

What we address in this paper is the modelling and control architecture of a fairly
general problem in this framework, where multiple incoming flows with Quality of
Service (QoS) constraints (typically, on latency) share the computing resources of
multi-core network processors, which perform some specific functionality in the
form of Virtual Network Functions (VNFs) in the NFV environment. By modelling
the incoming traffic generated by each flow in the form of bursts of packets, we
adopt a simple but general model for the queueing systems that represent packet-
level processing. On top of this, we construct an optimization scheme to implement
the assignment and load balancing of incoming flows, characterized by statistical
models with much longer time scales than the packet traffic they generate, to the
processing queues, over time periods within which they are served with constant
rates. Finally, in a hierarchical organization, where an SDN controller may decide
upon a reallocation of processing speeds, the possible reallocation of the latter over
the next time period could be considered.

The paper is organized as follows. We formalize our general problem in the
next Section, along with the description of the control architecture in the case
of homogeneous traffic. The third Section contains a formulation suitable for
heterogeneous flows with different requirements. We report some preliminary
numerical results based on the model in the fourth Section and the conclusions in
the fifth one.

2 Problem Statement and Homogeneous Flows Case

We consider a queueing system as depicted in Fig. 1. The queues represent the
operations performed by Virtual Machines (VMs)1 hosting VNFs that imple-
ment some specific functionality on packets generated by the flows (representing
audio/video/data streams stemming from applications running on UEs). We do not

1We refer to VMs in the following, but the control architecture could be implemented with
reference to containers, as well.



Flow Assignment in Multi-Core Network Processors 495

Fig. 1 Flow assignment problem

enter into any specific detail on the types of applications and network functions; our
purpose here is to provide a fairly general model that could be applied to different
situations by tuning the model’s parameters, e.g., on the basis of available traffic
traces. The service rates R(1)(t), . . . , R(M)(t), satisfying

∑M
i=1 R

(i)(t) = R(t),
represent the amount of processing capacity dedicated to the specific VM by
assigning one or multiple cores on a multi-core network processor provided or
hosted by the InP, with total processing capacity R(t). Each VM realizes a specific
VNF instance and, to fix ideas, we suppose them to be associated with a specific
slice of a single tenant.

It is worth noting that the VMs may reside in the same physical processor, in
different processors inside the same datacenter, or in different datacenters. For this
reason, the assigned processing capacities may be different, and may correspond to
different pricing schemes. The task of steering the traffic is performed by an SDN
controller, to which the first packets of a flow are directed for classification when
the flow is activated.

Assuming the processing capacities R(1)(t), . . . , R(M)(t) to have been fixed,
we consider each queue with its own independent buffer in stationary conditions
(and we drop the dependence on t in the following). Incoming flows are dis-
tributed among the processors on the basis of coefficients ζ (1) > 0, . . . , ζ (M) >
0,
∑M
i=1 ζ

(i) = 1 (to be determined through an optimization procedure that will be
described later; for the time being, they are considered fixed), in the sense that each
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incoming flow is assigned randomly to a processor upon its birth, according to the
probability distribution determined by the coefficients.

We suppose the generation of flows to be such that each flow corresponds to
a source, following a birth-death model. Packet bursts within each active flow are
generated according to a Poisson model with Long-Range-Dependent (LRD) burst
length. In order to take into account the traffic generation at the flow level (i.e.,
that the LRD traffic entering the queue is the aggregate of LRD traffic streams
produced by individual flows), for each queue i we consider the average waiting time
W(i)(a(i)), a(i) = ζ (i)mλβ calculated by means of an Mx/G/1 [8] queueing model,
when the aggregate burst rate is determined by the presence of m total active flows,
each with burst generation rate equal to λ and average burst length β. Namely, from
[8], we have

W(i)
(
a(i)

)
= ρ(i)

2

2ζ (i)mλβ

(
1+ σ 2

S(i)
/S(i)

2
) (

1− ρ(i))
+

ρ(i)
(
X2/β − 1

)

2ζ (i)mλβ
(
1− ρ(i))

(1)

where S(i) is the service time (depending on the distribution of the amount of
operations to be performed per packet and on the processing speed R(i)), with

E{S(i)} = 1/μ(i) and mean square value and variance S(i)2 and σ 2
S(i)

, respectively,

ρ(i) = ζ (i)mλβ/μ(i) is the utilization, and X2 is the mean square value of the burst
length. We note, in passing, that more general models could be also considered;
for instance, if energy consumption is to be included as another Key Performance
Indicator (KPI) to be traded off with latency, the Mx/G/1/SET could be adopted to
account for set up times for processor wakeup (as done in [9, 10] in the case of
deterministic service times).

Note that, for the time being, we suppose the cluster of VMs under consideration
to be dedicated to serve a single class of traffic, characterized by equal generation
parameters. We will extend the model to multiple classes in the next section.

As the time scales at the burst- and flow-level are widely different, it makes sense
to consider that variations in the number of flows occur on a much longer time
scale with respect to that of events in the Markov chain describing the dynamics
of packets in the queue. Based on this consideration, we can ignore non-stationary
behaviours, and assume that a stationary state in the queue probabilities is reached
almost instantaneously between birth and death events at the flow level (a precise
treatment of a somehow related problem can be found in [11]).

Under the above flow distribution strategy and the assumption of homogeneous
flows, the same burst generation model holds for the flows being assigned to each
processor. Therefore, we can examine each queue in isolation, conditioned to the
presence of m total flows in the system, as an Mx/G/1 queue with input rate ζ (i)mλβ
[pkts/s], i= 1, . . . , M. As mentioned above, the situation of flows with unequal burst
generation rates (or diverse QoS requirements) will be outlined further on; however,
we can already note that the more general case can be handled in a similar way if
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service separation with static partitions [12] is applied, i.e., services giving rise to
flows with similar service rates and QoS requirements are grouped into classes and
assigned to a subset of processors for each class.

In order to avoid instability, the following condition must be satisfied for each
queue:

ρ(i) = ζ (i)mλβ/μ(i) < 1, i.e. m(i) ≡ mζ(i) < μ(i)

λβ
(2)

so that the maximum number of flows m(i)max acceptable by queue i is equal to
,μ(i)/λβ-.

This also imposes the presence of a Call Admission Control (CAC) on the
system, such that the maximum number of flows totally acceptable be limited to

mmax =
M∑

i=1

⌊
μ(i)

λβ

⌋
(3)

At this point, we can average out the delay over the distribution of the flows.
To this aim, we suppose that both interarrival times and durations of flows can
be described by independent exponential distributions, with parameters λf and μf ,
respectively. Let Af = λf /μf [Erlangs] denote the traffic intensity of the flows. Then,

the probability p(i)k that k flows are active (producing bursts) on the i-th processor’s
queue is given by

p
(i)
k = Pr

{
m(i) = k

}
= p(i)0

k−1∏

j=0

(
ζ (i)Af

)j

j ! =
(
ζ (i)Af

)k
/k!

∑m
(i)
max

j=0
(ζ (i)Af )

j

j !
(4)

k = 0, 1, . . . , m(i)max

Thus, we can write

W
(i) = 1(

1− p(i)0

)
m
(i)
max∑

k=1

p
(i)
k W

(i)
(
ζ (i)kλβ

)
(5)

for the average (with respect to the total number of flows) delay per queue
(considering the presence of at least one active flow at the i-th VM) and

W =
M∑

i=1

W
(i)
ζ (i) (6)
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for the total average delay over all flows. The upper limit of the sum in (5) is
necessary as a consequence of condition (2).

At this point, an optimization problem can be posed for the selection of the traffic
spreading coefficients as

min
ζ (1) ≥ 0, . . . , ζ (M) ≥ 0∑M

i=1 ζ
(i) = 1

W (7)

3 Heterogeneous Flows with Different Requirements

Averaging with respect to the incoming flows might be useful also in the presence
of traffic with different statistical characteristics. The flow model would then
correspond, in general, to a stochastic knapsack [12]. As noted, in this case the
most advisable and manageable model is that of service separation, whereby only
flows with the same statistical characteristics are multiplexed together and feed the
same buffer with their bursts.

To fix ideas, let us suppose to have K such classes. Then, the overall processing
capacity resource pool of R units can be partitioned into K groups, with Rk units
assigned to the k-th group, k = 1, . . . , K, according to some criterion. In particular,
let θ (k)(m(k)) be a function that represents the minimum processing capacity that
is required to satisfy packet-level QoS requirements for m(k) permanent class-k
flows multiplexed in a buffer. In principle, there are two possible ways to do the
assignment, which we report from [12].

• Service Separation with Static Partitions (SSSP): Let R1, . . . , RK , with
R1 + . . . + RK = R, be a partition of the capacity. Under SSSP, an arriving
class-k flow is admitted iff

θ(k)
(
m(k) + 1

)
≤ Rk (8)

with θ (k)(·) corresponding, for instance, to the criteria defined by (2) or to the
constraint of not exceeding a maximum average delay for the class.

• Dynamic Partitions (DP). The processing capacity fractions assigned to classes
are now given by θ (1)(m(1)), . . . , θ (K)(m(K)), so that they are changing, but on a
much longer time scale with respect to the packet-level dynamics. A new class-k
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flow would be admitted iff

θ(k)
(
m(k) + 1

)
+

K∑

j = 1
j �= k

θ(j)
(
m(j)

)
≤ R (9)

In any case, it is interesting to note that the availability of analytical packet-level
models makes relatively easy here to define a packet level criterion, and naturally
lends a notion of capacity of the underlying statistical multiplexer (namely, the
stability preserving bound on the utilization, or the delay bound), which allows a
clear definition of the flow state space.

Given the presence of a CAC, there is actually another performance index that
might become of interest; namely, the blocking probability of flows (Grade of
Service, GoS). The blocking probabilities at individual queues are easily calculated
in the SSSP case, as done in the preceding section: the queuing model outlined above
for the flow level would indeed be of type M/M/ m(k)max (Rk) /m

(k)
max (Rk), m

(k)
max (Rk)

being the maximum number of acceptable flows as a function of Rk, so that the
blocking probabilities just correspond to the Erlang B formula, i.e.,

P
(k)
B = EB

[
ρ
(k)
f ,m(k)max (Rk)

]
=

(
ρ
(k)
f

)m(k)max(Rk)

/m
(k)
max (Rk)!

∑m
(k)
max(Rk)

j=0

(
ρ
(k)
f

)j

j !

(10)

On the other hand, in the DP case the blocking probabilities should be derived
by the general stationary distribution of a stochastic knapsack.

In both situations, a general criterion could be minimizing an overall index of
the type PB = ∑K

k=1 P
(k)
B , or Pmax

B = max
k=1,...,K

P
(k)
B , with respect to the number

of active processors and their allocation among classes, under given low-level
constraints on delay (and, possibly, on power consumption, if we want to add this
KPI to the optimization, by suitably changing the queueing models).

4 Numerical Results

We consider an example with respect to the case of a single traffic class (homo-
geneous flows). To get an idea of the objective function, we plot it in the case
M = 2, as a function of ζ (1), ζ (2), with the following numerical values of the
parameters: Af = 10, λ = 20 [burst/s], β = 1.5 [pkts/burst], X2 = 3 (we have
assumed a continuous approximation of the burst length, with a Pareto distribution
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Fig. 2 Plot of the unconstrained objective function in the case M = 2

with location parameter δ = 1 and shape parameter α = 3), R(1) = 2,100,000,
R(2) = 1,600,000 [operations/s], average number of operations per packet 1000

(whence 1/μ(1) ∼= 476 µs, 1/μ(2) = 625 µs), S(1)2 ∼= 229, 408 · 10−12, S(2)2 ∼=
395, 507 · 10−12 (also here we have assumed a Pareto distribution of the ser-
vice time, with shape parameter α = 10 in both cases and location parameters

δ(1) ∼= 428 µs and δ(2)∼=562 µs, respectively), σ 2
S(i)
= S(i)

2 − 1/μ(i)
2
, i = 1, 2.

The plots of the objective function are shown in Figs. 2 and 3, for the unconstrained
case and over the plane ζ (1) + ζ (2) = 1, respectively. Figure 4 reports the result of the
optimization procedure in this simple case, with the minimum value at ζ (1) = 0.836
corresponding to 271.5 µs. We have used a standard optimization tool available in
the Python library (www.scipy.org), with optimization method SLSQP (Sequential
Least SQuares Programming). However, it is worth noting that the form of the
objective function, which is separable in the optimization variables, may suggest
the use of Dynamic Programming. The possible advantages in its application will
the subject of further investigation.

Considering now the case M = 3, we perform the optimization for a set of
different values of the load generated per flow, by varying the burst arrival rate
λ in the range [10, 200] with discrete steps of 10 bursts/s. In this case, we have
kept all the previous values, and set R(3) = 1,200,000 [operations/s] (1/μ(3) ∼=
833 μs, δ(3) ∼= 750 µs, S(3)2 ∼= 703, 125 · 10−12). The results are reported in Fig.
5, showing the tendency to a relatively stable distribution of the flows according to
the processing capacities for increasing load.

http://www.scipy.org
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Fig. 3 Plot of the constrained objective function in the case M = 2

Fig. 4 Constrained cost function against ζ (1) in the case M = 2
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Fig. 5 Plot of the optimal allocations against the average load per flow λ [bursts/s]

5 Conclusions

We have considered an optimization problem in the context of multi-core network
processors that provide a set of VNFs performing network operations (which may
be related to network switching or MEC functionalities) on the packets generated by
multiple incoming flows. The latter may be homogeneous or heterogeneous in the
traffic parameters or in their requirements in terms of delay or loss. We have defined
two possible optimization schemes in the two cases. Numerical results have been
reported in the case of homogeneous flows. Further work will consider the numerical
implementation in both cases and comparison with other assignment methods.
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