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Abstract. We establish several quantitative results about singular Ricci flows,
including estimates on the curvature and volume, and the set of singular times.
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1. Introduction

In [KL17, BKb], it was shown that there exists a canonical Ricci flow through
singularities starting from an arbitrary compact Riemannian 3-manifold, and that
this flow may obtained as a limit of a sequence of Ricci flows with surgery. These
results confirmed a conjecture of Perelman [Per02, Per03], and were used in the
proof of the Generalized Smale Conjecture in [BKa].

The purpose of this paper, which is a sequel to [KL17], is to further study
Ricci flow through singularities.

We recall that the basic object introduced in [KL17] is a singular Ricci flow,
which is a Ricci flow spacetime subject to several additional conditions; see Defi-
nition 2.2 of Section 2 or [KL17, Def. 1.6].

In the following, we let M be a singular Ricci flow with parameter functions
κ and r, and we let Mt denote a time slice. The main results of the paper are the
following.

Theorem 1.1. For all p ∈ (0, 1) and all t, the scalar curvature is Lp on Mt.

Theorem 1.2. The volume function V(t) = vol(Mt) has a locally bounded upper-
right derivative and is locally α-Hölder in t for some exponent α ∈ (0, 1).

The first assertion of the theorem was shown in [KL17, Proposition 5.5 and
Corollary 7.7], so the issue here is to prove Hölder continuity in the opposite
direction.

We state the next result loosely, with a more precise formulation given later.
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Theorem 1.3. The a priori assumptions in Definition 2.2 of a singular Ricci flow
are really conditions on the spacetime near infinity, in the sense that if the condi-
tions hold outside of compact subsets then, after redefinition of κ and r, they hold
everywhere.

Finally, we estimate the size of the set of singular times in a singular Ricci
flow.

Theorem 1.4. For any T < ∞, the set of times t ∈ [0, T ] for which Mt is non-
compact has Minkowski dimension at most 1

2 .

The structure of the paper is as follows. In Section 2 we recall some notation
and terminology from [KL17]. In Section 3 we prove some needed results about
compact κ-solutions. Section 4 has the proofs of Theorems 1.1 and 1.2. In Section
5 we prove Theorem 1.3 and in Section 6 we prove Theorem 1.4.

2. Notation and terminology

We will assume some familiarity with [KL17], but in order to make this paper
as self-contained as possible, we will give precise references for all results from
[KL17] that are used here. We follow the notation and terminology of [KL17]. All
manifolds that arise will be taken to be orientable. A κ-solution is a special type
of ancient Ricci flow solution, for which we refer to [KL17, Appendix A.5]. The
function r : [0,∞) → (0,∞) is the parameter r of the canonical neighborhood
assumption [KL17, Appendix A.8].

Definition 2.1. A Ricci flow spacetime is a tuple (M, t, ∂t, g) where:

• M is a smooth manifold-with-boundary.
• t is the time function – a submersion t : M → I where I ⊂ R is a time

interval; we will usually take I = [0,∞).
• The boundary of M, if it is nonempty, corresponds to the endpoint(s) of the

time interval: ∂M = t−1(∂I).
• ∂t is the time vector field, which satisfies ∂tt ≡ 1.
• g is a smooth inner product on the spatial subbundle ker(dt) ⊂ TM, and g

defines a Ricci flow: L∂tg = −2Ric(g).

For 0 ≤ a < b, we write Ma = t−1(a), M[a,b] = t−1([a, b]) and M≤a =

t−1([0, a]). Henceforth, unless otherwise specified, when we refer to geometric quan-
tities such as curvature, we will implicitly be referring to the metric on the time
slices.

Definition 2.2. A Ricci flow spacetime (M, t, ∂t, g) is a singular Ricci flow if it is
four-dimensional, the initial time slice M0 is a compact normalized Riemannian
manifold and

a. The scalar curvature function R : M≤T → R is bounded below and proper
for all T ≥ 0.
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b. M satisfies the Hamilton–Ivey pinching condition of [KL17, (A.14)].
c. For a global parameter ε > 0 and decreasing functions κ, r : [0,∞) → (0,∞),

the spacetime M is κ-noncollapsed below scale ε in the sense of [KL17, Ap-
pendix A.4] and satisfies the r-canonical neighborhood assumption in the
sense of [KL17, Appendix A.8].

Here “normalized” means that at each point m in the initial time slice, the
eigenvalues of the curvature operator Rm(m) are bounded by one in absolute
value, and the volume of the unit ball B(m, 1) is at least half the volume of
the Euclidean unit ball. By rescaling, any compact Riemannian manifold can be
normalized. “Proper” has the usual meaning, that the preimage of a compact set
is compact. Since R is bounded below, its properness means that as one goes out
an end of M≤T , the function R goes to infinity.

Let (M, t, ∂t, g) be a Ricci flow spacetime (Definition 2.1). For brevity, we
will often write M for the quadruple.

Given s > 0, the rescaled Ricci flow spacetime is M̂(s) = (M, 1
s t, s∂t,

1
sg).

Definition 2.3. Let M be a Ricci flow spacetime. A path γ : I → M is time-
preserving if t(γ(t)) = t for all t ∈ I. The worldline of a point m ∈ M is the
maximal time-preserving integral curve γ : I → M of the time vector field ∂t,
which passes through m.

If γ : I → M is a worldline then we may have sup I < ∞. In this case, the
scalar curvature blows up along γ(t) as t → sup I, and the worldline encounters a
singularity. An example would be a shrinking round space form, or a neckpinch.
A worldline may also encounter a singularity going backward in time.

Definition 2.4. A worldline γ : I → M is bad if inf I > 0, i.e., if it is not defined
at t = 0.

Given m ∈ Mt, we write B(m, r) for the open metric ball of radius r in Mt.
We write P (m, r,Δt) for the parabolic neighborhood, i.e., the set of points m′ in
M[t,t+Δt] if Δt > 0 (or M[t+Δt,t] if Δt < 0) that lie on the worldline of some point
in B(m, r). We say that P (m, r,Δt) is unscathed if B(m, r) has compact closure in
Mt and for every m′ ∈ P (m, r,Δt), the maximal worldline γ through m′ is defined
on a time interval containing [t, t+Δt] (or [t+Δt, t]). We write P+(m, r) for the
forward parabolic ball P (m, r, r2) and P−(m, r) for the backward parabolic ball
P (m, r,−r2).

3. Compact κ-solutions

In this section we prove some structural results about compact κ-solutions. The
main result of this section, Corollary 3.3, will be used in the proof of Proposi-
tion 4.2.

We recall from [KL17, Appendix A.5] that if M is a κ-solution then Mt,ε̂

denotes the points in Mt that are not centers of ε̂-necks.
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Lemma 3.1. There is some ε > 0 so that for any 0 < ε̂ < ε, there are ε′ = ε′(ε̂) > 0
and α = α(ε̂) < ∞ with the following property. Let M be a compact κ-solution.
Suppose that Mt contains an ε′-neck. Then there are points m1,m2 ∈ Mt so that
Mt,ε̂ is covered by disjoint balls B(m1, αR(m1, t)

− 1
2 ) and B(m2, αR(m2, t)

− 1
2 ),

whose intersections with Mt −Mt,ε̂ are nonempty.

Proof. Let α = α(ε̂) be the parameter of [KL08, Corollary 48.1]. Suppose that there
is some point x ∈ Mt,ε̂ so that R(x)Diam2(Mt) < α. By the compactness of the
space of pointed κ-solutions, it follows that there is an upper bound on (supMt

R)·
Diam2(Mt), depending only on α. If ε′ is sufficiently small then we obtain a
contradiction. Hence we are in case C of [KL08, Corollary 48.1], so there are

points m1,m2 ∈ Mt such that Mt,ε̂ ⊂ B(m1, αR(m1, t)
− 1

2 )∪B(m2, αR(m2, t)
− 1

2 ).
If ε′ is sufficiently small then a cross-section of the ε′-neck separates Mt into
two connected components, each of which must have a cap region. Hence if ε′ is
sufficiently small then B(m1, αR(m1, t)

− 1
2 ) and B(m2, αR(m2, t)

− 1
2 ) are disjoint.

As Mt,ε̂ is closed, both B(m1, αR(m1, t)
− 1

2 ) and B(m2, αR(m2, t)
− 1

2 ) intersect
Mt −Mt,ε̂. �

Lemma 3.2. Given ε̂ > 0 and a compact family F of pointed κ-solutions, with
basepoints at time zero, there is some T = T (ε̂,F) < 0 such that for each M ∈ F ,

there is a point (m, t) ∈ M with t ∈ [−T, 0] so that
(
M̂(−t),m

)
is ε̂-close to a

pointed gradient shrinking soliton which is a κ-solution.

Proof. Suppose that the lemma fails. Then for each j ∈ Z+, there is some Mj ∈ F
so that for each (m, t) ∈ Mj with t ∈ [−j, 0], there is no pointed gradient

shrinker (which is a κ-solution) that is ε̂-close to
(
M̂j(−t),m

)
. After passing

to a subsequence, we can assume that limj→∞ Mj = M∞ ∈ F . From the exis-
tence of an asymptotic soliton for M∞, there is some (m∞, t∞) ∈ M∞ so that(
M̂∞(−t∞),m∞

)
is ε̂

2 -close to a gradient shrinking soliton (which is a κ-solution).

Then for large j, there is some (mj , t∞) ∈ Mj so that
(
M̂j(−t∞),mj

)
is ε̂-close

to the gradient shrinking soliton. This is a contradiction. �

Corollary 3.3. Let F be a compact family of compact κ-solutions that does not
have any constant curvature elements. Then for each ε̂ > 0, there is some T =
T (ε̂,F) < 0 such that for each M ∈ F , there is a point (m, t) ∈ M[T ,0] which is
the center of an ε̂-neck.

Proof. By assumption, there is some σ = σ(F) > 0 so that no time-zero slice of
an element of F is σ-close to a constant curvature manifold. By Lemma 3.2, for
each ε′ > 0, there is some T = T (ε′,F) < 0 such that for each M ∈ F , there

is some (m, t) ∈ M[T ,0] so that
(
M̂(−t),m

)
is ε′-close to a gradient shrinking

soliton (which is a κ-solution). If ε′ is sufficiently small, in terms of σ, then by the
local stability of Ricci flows of constant positive curvature, this soliton cannot have
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constant curvature. Hence it is either a round shrinking cylinder or a Z2-quotient
of a round shrinking cylinder. If it is a round shrinking cylinder then as long as
ε′ ≤ ε̂, we are done. If it is a Z2-quotient of a round shrinking cylinder then if ε′ is
sufficiently small, by moving the basepoint we can find a point (m′, t) ∈ M that
is the center of an ε-neck. �

4. Curvature and volume estimates

In this section we establish curvature and volume estimates for singular Ricci flows.
There are two main results. In Proposition 4.2, we show that |R|p is integrable on
each time slice, for each p ∈ (0, 1). In Proposition 4.36 we give an estimate on how
the volume V(t) can change as a function of t. When combined with part (5) of
[KL17, Proposition 5.5], it shows that V(t) is 1

η -Hölder in t, where η ≥ 1 is the

constant in the estimate

|∇R(x, t)| < ηR(x, t)
3
2 ,

∣∣∣∣∂R∂t (x, t)
∣∣∣∣ < ηR(x, t)2, (4.1)

for canonical neighborhoods from [KL17, (A.8)].

Proposition 4.2. Let M be a singular Ricci flow. Then for all p ∈ (0, 1) and T < ∞,
there is a bound ∫

Mt

|R|p dvolg(t) ≤ const.(p, T ) volg(0)(M0) (4.3)

for all t ∈ [0, T ].

Proof. Before entering into the details, we first give a sketch of the proof.
Due to the bounds on V(t) from [KL17, Proposition 5.5], it suffices to control

the contribution to the left-hand side of (4.3) from the points with large scalar
curvature. Such points fall into three types, according to the geometry of the
canonical neighborhoods: (a) neck points, (b) cap points, and (c) points p whose

connected component in Mt is compact and has diameter comparable to R(p)−
1
2 .

If (p, t) ∈ Mt is a neck point with worldline γ : [0, t] → M then thanks to
the stability of necks going backward in time, the scale-invariant time derivative
R−1 ∂R

∂t will remain very close to the cylindrical value along γ, until R falls down

to a value comparable to (r(t))−2. Combining this with previous estimates on the
Jacobian as in [KL17, Section 5], we can bound the contribution from the neck
points to the left-hand side of (4.3) in terms of the volume of the corresponding
set of points in the time zero slice. To control the contribution from points of
type (b), we show that it is dominated by that of the neck points. To control
the contribution from the points of type (c) we use a similar approach. We again
analyze the geometry going backward in time along worldlines, except that in this
case there are three stages: one where the components are nearly round, one when

they are no longer nearly round but still have diameter comparable to R− 1
2 , and

one when they have a large necklike region.
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We now start on the proof. With the notation of the proof of [KL17, Propo-
sition 5.5], let X3 ⊂ Mt be the complement of the set of points in Mt with a bad
worldline. From [KL17, Theorem 7.1], it has full measure in Mt. Given x ∈ X3,
let γx : [0, t] → M[0,t] be the restriction of its worldline to the interval [0, t]. Define
Jt(x) as in [KL17, (5.8)], with t1 = 0. That is,

Jt(x) =
i∗t dvolg(t)
dvolg(0)

(x) (4.4)

is the pointwise volume distortion of the inclusion map it that goes from (a subset
of) the time-zero slice to the time-t slice. From [KL17, (5.9)], we have

Jt(x) = e−
∫

t
0
R(γx(u)) du. (4.5)

Given T > 0, we consider times t in the range [0, T ]. Let ε̂, C1, R and R
′

be as in [KL17, Proposition 5.16]. We take R > r(T )−2. From [KL17, Proposition
5.15] we can assume that the ε̂-canonical neighborhood assumption holds on the

superlevel set M>R
[0,T ] of the scalar curvature function. We will further adjust the

parameters ε̂ and R
′
later.

For any R̂ ≥ R, write

M>R̂
t = M>R̂

t,neck ∪M>R̂
t,cap ∪M>R̂

t,closed, (4.6)

where

• M>R̂
t,neck consists of the points in M>R̂

t that are centers of ε̂-necks,

• M>R̂
t,cap consists of the points x ∈ M>R̂

t −M>R̂
t,neck so that after rescaling by

R(x), the pair (Mt, x) is ε̂-close to a pointed noncompact κ-solution, and

• M>R̂
t,closed = M>R̂

t −
(
M>R̂

t,neck ∪M>R̂
t,cap

)
.

Taking R̂ = R
′
, there is a compact set C of κ-solutions so that for x ∈

M>R
′

t,closed, after rescaling by R(x) the connected component of Mt containing x

is ε̂-close to an element of C (cf. Step 1 of the proof of [KL17, Theorem 7.1]). In
particular, before rescaling, the diameter of the component is bounded above by
CR(x)−

1
2 and the scalar curvature on the component satisfies

C−1Rav ≤ R ≤ CRav, (4.7)

for an appropriate constant C = C(ε̂) < ∞, where Rav denote the average scalar
curvature on the component.

By the pointed compactness of the space of normalized κ-solutions, and
the diameter bound on the caplike regions in normalized pointed noncompact

κ-solutions, there is a C′ = C′(ε̂, R
′
) < ∞ so that∫

M>R′
t,cap

|R|p dvolg(t) ≤ C′
∫
M>R′

t,neck

|R|p dvolg(t) . (4.8)

Hence we can restrict our attention to M>R
′

t,neck and M>R
′

t,closed.
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Consider x ∈ M>R
′

t,neck∩X3. With δneck, δ0 and δ1 being parameters of [KL17,

Theorem 6.1], we assume that ε̂ < δ0
100 and δ1 < δ0

100 . Using [KL17, Theorem 6.1]
and the ε̂-canonical neighborhood assumption, there are T ′′ < T ′ < 0 so that for

s ∈ [T ′′, T ′], the rescaled solution
(
M̂(−sR(x)−1), γx(t+ sR(x)−1)

)
is δ0

10 -close to

(Cyl, (y0,−1)). By reducing ε̂, we can make T ′′ arbitrarily negative.
The gradient bound (4.1) gives

1

R(γx(u))
≤ 1

R(x)
+ η(t− u). (4.9)

as long as γx(u) stays in a canonical neighborhood. If

R
′ ≥ (1− ηT ′′)R (4.10)

then for all u ∈ [t+ T ′′R(x)−1, t], we have R(γx(u)) ≥ R and (4.9) holds, so∫ t

t+T ′R(x)−1

R(γx(u)) du ≥
∫ t

t+T ′R(x)−1

1
1

R(x) + η(t− u)
du (4.11)

=
1

η
log(1 − ηT ′).

For a round shrinking cylinder, the sharp value for η in (4.9) is 1. For any
q > 1, if δ0 is sufficiently small then we are ensured that∫ t+T ′R(x)−1

t+T ′′R(x)−1

R(γx(u)) du ≥
∫ t+T ′R(x)−1

t+T ′′R(x)−1

1
1

R(x) + q(t− u)
du (4.12)

=
1

q
log

1− qT ′′

1− qT ′ .

In all,

e
−

∫ t
t+T ′′R(x)−1 R(γx(u)) du ≤ (1 − ηT ′)−

1
η (1− qT ′)

1
q (1− qT ′′)−

1
q . (4.13)

Because of the cylindrical approximation,

1

2
≤ (1− T ′′)R(γx(t+ T ′′R(x)−1))

R(x)
≤ 2, (4.14)

and so there is a constant C′′ = C′′(q, η, T ′) < ∞ such that for very negative T ′′,
we have

e
−

∫ t

t+T ′′R(x)−1 R(γx(u)) du ≤ C′′
(

R(x)

R(γ(t+ T ′′R(x)−1))

)− 1
q

. (4.15)

We now replace t by t + T ′′R(x)−1 and iterate the argument. Eventually,
there will be a first time tx when we can no longer continue the iteration because
the curvature has gone below R. Suppose that there are N such iterations. Then

e−
∫ t
tx

R(γx(u)) du ≤ (C′′)N
(
R(x)

R

)− 1
q

. (4.16)
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From (4.14), (
1− T ′′

2

)N−1

≤ R(x)

R
, (4.17)

so

e−
∫

t
tx

R(γx(u)) du ≤ C′′ (C′′)
N−1

(
R(x)

R

)− 1
q

≤ C′′
(
R(x)

R

) log C′′
log( 1−T ′′

2 )
− 1

q

.

(4.18)

Put p = 1
q −

logC′′

log
(

1−T ′′
2

) . By choosing q sufficiently close to 1 (from above) and

T ′′ sufficiently negative, we can make p arbitrarily close to 1 (from below). Using
the lower scalar curvature bound [KL17, Lemma 5.2], we have∫ tx

0

R(γx(u)) du ≥ −
∫ T

0

3

1 + 2u
du = −3

2
log(1 + 2T ). (4.19)

Then

e−
∫ tx
0

R(γx(u)) du ≤ (1 + 2T )
3
2 . (4.20)

As

e−
∫

t
0
R(γx(u)) du = e−

∫
tx
0

R(γx(u)) due−
∫

t
tx

R(γx(u)) du, (4.21)

by combining (4.18) and (4.20) we obtain

dvolg(t)

dvolg(0)
(x) = Jt(x) ≤ C′′(1 + 2T )

3
2

(
R(x)

R

)−p

. (4.22)

Then ∫
M>R′

t,neck

Rp dvolg(t) ≤ C′′R
p
(1 + 2T )

3
2

∫
M>R′

t,neck

dvolg(0) (4.23)

≤ C′′R
p
(1 + 2T )

3
2 volg(0)(M0).

This finishes the discussion of the neck points.

Let R
′′
> R

′
be a new parameter. Given σ > 0 small, let Mt,round be the

connected components of Mt that intersect M>R
′′

t,closed and are σ-close to a constant
curvature metric, and let Mt,nonround be the other connected components of Mt

that intersect M>R
′′

t,closed. Using [KL17, Proposition 5.17], a connected component

Nt in Mt determines a connected component Nt′ in Mt′ for all t
′ ≤ t.

Let Nt be a component in Mt,nonround. From (4.7), we have Rav ≥ C−1R
′′
.

Using the compactness of the space of approximating κ-solutions, we can apply
Lemma 3.1 and Corollary 3.3. Then for ε′ small and T = T (ε′) < ∞, there is some
t′ ∈ [t, t−10CT R−1

av ] so that Nt′ consists of centers of ε
′-necks and two caps. From

(4.9), if x ∈ Nt and

R
∣∣∣
γx([t′,t])

≥ R (4.24)
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then
1

R(γx(t′))
≤ C

Rav
+ 10CηT R−1

av , (4.25)

so

R(γx(t
′)) ≥ Rav

C(1 + 10ηT )
≥ R

′′

C2(1 + 10ηT )
. (4.26)

If R
′′
> C2(1 + 10ηT )R

′
then (4.24) holds and from (4.26), Nt′ ⊂ M>R

′

t′ . From
(4.7) and (4.26), we also have

R(x) ≤ CRav ≤ C2(1 + 10ηT )R(γx(t
′)). (4.27)

Since the volume element at γu(x) is nonincreasing as a function of u ∈ [t′, t], we
obtain ∫

Nt

R dvolg(t) ≤ C2(1 + 10ηT )

∫
Nt′

R dvolg(t′) . (4.28)

We now apply the argument starting with (4.8) to Nt′ . Taking
R

′

R
large compared

to R
′′

R
′ , in order to ensure many iterations in the earlier-neck argument, we get a

bound ∫
Nt

|R|p dvolg(t) ≤ const.(p, T ) volg(0)(Nt). (4.29)

This takes care of the components in Mt,nonround.
Let Nt be a component of Mt in Mt,round. Let τ be the infimum of the

u’s so that for all t′ ∈ [u, t], the metric on Nt′ is σ-close to a constant curvature
metric. For a Ricci flow solution with time slices of constant positive curvature, R
is strictly increasing along forward worldlines but

∫
R dvol is strictly decreasing

in t. Hence if σ is sufficiently small then we are ensured that∫
Nt

R dvolg(t) ≤
∫
Nτ

R dvolg(τ) . (4.30)

If Nτ has a point with scalar curvature at most R
′′
and σ is small then∫

Nτ

R dvol ≤ 2R
′′
volg(τ) (Nτ ) ≤ 2R

′′
(1 + 2T )

3
2 volg(0) (Nt) . (4.31)

If, on the other hand, Nτ ⊂ M>R
′′

τ then we can apply the preceding argument for
Mt,nonround, replacing t by τ . The conclusion is that∫

M>R′′
t,closed

|R|p dvolg(t) ≤ const.(p, T ) volg(0)(M>R
′′

t,closed). (4.32)

Since ∫
M>R′′

t,neck

Rp dvolg(t) ≤
∫
M>R′

t,neck

Rp dvolg(t), (4.33)∫
M>R′′

t,cap

Rp dvolg(t) ≤
∫
M>R′

t,cap

Rp dvolg(t) (4.34)
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and ∫
M≤R′′

t

|R|p dvolg(t) ≤
(
R

′′)p
(1 + 2T )

3
2 volg(0)

(
M≤R

′′

t

)
, (4.35)

the proposition follows from (4.8), (4.23), (4.32), (4.33), (4.34) and (4.35). �
Proposition 4.36. Let M be a singular Ricci flow. Let η be the constant from
(4.1). We can assume that η ≥ 1. Then whenever 0 ≤ t1 ≤ t2 < ∞ satisfies
t2 − t1 < 1

η r(t2)
2 and t1 > 1

100η , we have

V(t2)− V(t1) (4.37)

≥ −η
1
η

(
2

∫
Mt1

|R| 1η dvolg(t1) +r(t2)
− 2

ηV(t1)
)
(t2 − t1)

1
η

≥ −5η
1
η r(t2)

− 2
η (1 + 2t1)

3
2V(0) · (t2 − t1)

1
η .

Proof. Let X1 ⊂ Mt1 be the set of points x ∈ Mt1 whose worldline γx extends
forward to time t2 and let X2 ⊂ Mt1 be the points x whose worldline γx does not
extend forward to time t2. Put

X ′
1 =

{
x ∈ X1 : R(x) >

1

η(t2 − t1)

}
, (4.38)

X ′′
1 =

{
x ∈ X1 : r(t2)

−2 < R(x) ≤ 1

η(t2 − t1)

}
(4.39)

and

X ′′′
1 =

{
x ∈ X1 : R(x) ≤ r(t2)

−2
}
. (4.40)

Then

vol(Mt2)− vol(Mt1) ≥ volt2 (X
′
1)− volt1 (X

′
1) (4.41)

+ volt2 (X
′′
1 )− volt1 (X

′′
1 )

+ volt2 (X
′′′
1 )− volt1 (X

′′′
1 )− volt1 (X2)

≥ volt2 (X
′′
1 )− volt1 (X

′′
1 ) + volt2 (X

′′′
1 )

− volt1 (X
′′′
1 )− volt1 (X2)− volt1 (X

′
1) .

Suppose that x ∈ X2.

Lemma 4.42. Let [t1, tx) be the domain of the forward extension of γx, with tx < t2.
For all u ∈ [t1, tx), we have

R(γx(u)) ≥
1

η(tx − u)
. (4.43)

Proof. If the lemma is not true, put

u′ = sup

{
u ∈ [t1, tx) : R(γx(u)) <

1

η(tx − u)

}
. (4.44)

Then u′ > t1.
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From the gradient estimate (4.1) and the fact that limu→tx R(γx(u)) = ∞,
we know that u′ < tx. Whenever u ≥ u′, we have

R(γx(u)) ≥
1

η(ux − u′)
≥ 1

η(t2 − t1)
> r(t2)

−2, (4.45)

so there is some μ > 0 so that the gradient estimate (4.1) holds on the interval
(u′−μ, tx). This implies that (4.43) holds for all u ∈ (u′−μ, tx), which contradicts
the definition of u′. This proves the lemma. �

Hence

(X2 ∪X ′
1) ⊂

{
x ∈ Mt1 : R(x) ≥ 1

η(t2 − t1)

}
(4.46)

and

volt1(X2) + volt1(X
′
1) ≤ vol

{
x ∈ Mt1 : R(x) ≥ 1

η(t2 − t1)

}
(4.47)

≤ η
1
η (t2 − t1)

1
η

∫
Mt1

|R| 1η dvolg(t1),

since η
1
η (t2 − t1)

1
η |R| 1η ≥ 1 on the set

{
x ∈ Mt1 : R(x) ≥ 1

η(t2−t1)

}
.

Suppose now that x ∈ X ′′
1 .

Lemma 4.48. For all u ∈ [t1, t2], we have

R(γx(u)) ≤
1

1
R(x) − η(u− t1)

< ∞. (4.49)

Proof. If the lemma is not true, put

u′′ = inf

{
u ∈ [t1, t2] : R(γx(u)) >

1
1

R(x) − η(u− t1)

}
. (4.50)

Then u′′ < t2 and the gradient estimate (4.1) implies that u′′ > t1. Now

R(γx(u
′′)) =

1
1

R(x) − η(u′′ − t1)
> R(x) > r(t2)

−2. (4.51)

Hence there is some μ > 0 so that R(γx(u)) ≥ r(t2)
−2 for u ∈ [u′′, u′′ + μ]. If

R(γx(u)) ≥ r(t2)
−2 for all u ∈ [t1, u

′′] then (4.1) implies that (4.49) holds for
u ∈ [t1, u

′′ + μ], which contradicts the definition of u′′. On the other hand, if it is
not true that R(γx(u)) ≥ r(t2)

−2 for all u ∈ [t1, u
′′], put

v′′ = sup
{
u ∈ [t1, u

′′] : R(γx(u)) < r(t2)
−2
}
. (4.52)

Then v′′ > t1 and R(γx(v
′′)) = r(t2)

−2. Equation (4.1) implies that

R(γx(u
′′)) ≤ 1

r(t2)2 − η(u′′ − v′′)
<

1
1

R(x) − η(u′′ − t1)
, (4.53)

which contradicts (4.51). This proves the lemma. �
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Hence if x ∈ X ′′
1 then∫ t2

t1

R(γx(u)) du ≤
∫ t2

t1

1
1

R(x) − η(u − t1)
du (4.54)

= − 1

η
log (1− ηR(x) · (t2 − t1)) ,

so
dvolg(t2)

dvolg(t1)
(x) = Jt2(x) ≥ (1− ηR(x) · (t2 − t1))

1
η . (4.55)

Thus

volt2 (X
′′
1 )− volt1 (X

′′
1 ) ≥ (4.56)∫

X′′
1

(
(1− ηR · (t2 − t1))

1
η − 1

)
dvolg(t1) .

Since η ≥ 1, if z ∈ [0, 1] then
(
z

1
η

)η
+
(
1− z

1
η

)η
≤ 1, so

(1− z)
1
η − 1 ≥ −z

1
η . (4.57)

Then

volt2 (X
′′
1 )− volt1 (X

′′
1 ) ≥ −η

1
η (t2 − t1)

1
η

∫
X′′

1

R
1
η dvolg(t1) . (4.58)

Now suppose that x ∈ X ′′′
1 .

Lemma 4.59. For all u ∈ [t1, t2], we have

R(γx(u)) ≤
1

r(t2)2 − η(u− t1)
< ∞. (4.60)

Proof. If the lemma is not true, put

u′′′ = inf

{
u ∈ [t1, t2] : R(γx(u)) >

1

r(t2)2 − η(u − t1)

}
. (4.61)

Then u′′′ < t2. If R(x) < r(t2)
−2 then clearly u′′′ > t1. If R(x) = r(t2)

−2 then since
r(t1) > r(t2), there is some ν > 0 so that R(γx(u)) > r(u)−2 for u ∈ [t1, t1 + ν];
then (4.1) gives the validity of (4.60) for u ∈ [t1, t1+ν], which implies that u′′′ > t1.
In either case, t1 < u′′′ < t2. Now

R(γx(u
′′′)) =

1

r(t2)2 − η(u′′′ − t1)
> r(t2)

−2. (4.62)

Hence there is some μ > 0 so that R(γx(u)) ≥ r(t2)
−2 for u ∈ [u′′′, u′′′ + μ]. If

R(γx(u)) ≥ r(t2)
−2 for all u ∈ [t1, u

′′′] then (4.1) implies that (4.60) holds for
u ∈ [t1, u

′′′ +μ], which contradicts the definition of u′′′. On the other hand, if it is
not true that R(γx(u)) ≥ r(t2)

−2 for all u ∈ [t1, u
′′′], put

v′′′ = sup
{
u ∈ [t1, u

′′′] : R(γx(u)) < r(t2)
−2
}
. (4.63)
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Then v′′′ > t1 and R(γx(v
′′′)) = r(t2)

−2. The gradient estimate (4.1) implies that

R(γx(u
′′′) ≤ 1

r(t2)2 − η(u′′′ − v′′′)
<

1

r(t2)2 − η(u′′′ − t1)
, (4.64)

which contradicts (4.62). This proves the lemma. �

Hence if x ∈ X ′′′
1 then∫ t2

t1

R(γx(u)) du ≤
∫ t2

t1

1

r(t2)2 − η(u − t1)
du (4.65)

= − 1

η
log

(
1− ηr(t2)

−2 · (t2 − t1)
)
,

so
dvolg(t2)

dvolg(t1)
(x) = Jt2(x) ≥

(
1− ηr(t2)

−2 · (t2 − t1)
) 1

η . (4.66)

Thus

volt2 (X
′′′
1 )− volt1 (X

′′′
1 ) ≥ (4.67)∫

X′′′
1

((
1− ηr(t2)

−2 · (t2 − t1)
) 1

η − 1
)
dvolg(t1) .

Since ηr(t2)
−2 · (t2 − t1) ∈ [0, 1], we can apply (4.57) to conclude that

volt2 (X
′′′
1 )− volt1 (X

′′′
1 ) ≥− η

1
η r(t2)

− 2
η · (t2 − t1)

1
η volt1 (X

′′′
1 ) (4.68)

≥− η
1
η r(t2)

− 2
η V(t1) · (t2 − t1)

1
η .

Combining (4.41), (4.47), (4.58) and (4.68) gives (4.37). �

5. Asymptotic conditions

In this section we show that the a priori assumptions in Definition 2.2 are really
conditions on the spacetime near infinity. That is, given ε > 0 and a decreasing
function r : [0,∞) → (0,∞), there are decreasing functions κ′ = κ′(ε) : [0,∞) →
(0,∞) and r′ = r′(ε, r) : [0,∞) → (0,∞) with the following property. Let M be
a Ricci flow spacetime with normalized initial condition, on which condition (a)
of Definition 2.2 holds. Suppose that for each T ≥ 0 there is a compact subset
of M≤T so that condition (b), and the r-canonical neighborhood assumption of
condition (c), hold on the part of M≤T outside of the compact subset. Then M
satisfies Definition 2.2 globally with parameters ε, κ′ and r′.

If M is a Ricci flow spacetime and m0 ∈ M, put t0 = t(m0). We define
Perelman’s l-function using curves emanating backward from m0, as in [KL08,
Section 15]. That is, given m ∈ M with t(m) < t0, consider a time-preserving map
γ : [t(m), t0] → M from m to m0. We reparametrize [t(m), t0] by τ(t) = t0 − t.
Then

L(γ) =
∫ t0−t(m)

0

√
τ
(
R(γ(τ)) + |γ̇(τ)|2

)
dτ, (5.1)
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where γ̇ is the spatial projection of the velocity vector of γ and |γ̇(τ)| is computed
using the metric on Mt0−τ at γ(τ). Let L(m) be the infimal L-length of such
curves γ. The reduced length is

l(m) =
L(m)

2
√
t0 − t(m)

. (5.2)

Proposition 5.3. Given Δr,Δt > 0 there are Δr = Δr(m0) < Δr and Δt =
Δt(m0) < Δt with the following property. For any m ∈ M with t(m) < t0 −Δt,
let dqp(m,P (m0,Δr,−Δt)) denote the gqpM-distance from m to the set

P (m0,Δr,−Δt).

Then

L(m) ≥ min

(
(Δr)2

4
√
Δt

,

√
Δt

10
dqp(m,P (m0,Δr,−Δt))

)
− 8

3
t
3
2
0 . (5.4)

Proof. With a slight variation on Perelman’s definition [KL08, Definition 79.1], we
put

L+(γ) =

∫ t0−t(m)

0

√
τ
(
R+(γ(τ)) + |γ̇(τ)|2

)
dτ, (5.5)

where R+(m) = max(R(m), 1). We define L+(m) using L+(γ) instead of L(γ).
Applying the lower curvature bound [KL17, (5.3)] (with C = n = 3), we know
that R ≥ −3 and so

L(γ)− L+(γ) =

∫ t0−t(m)

0

√
τ (R(γ(τ)) −R+(γ(τ))) dτ (5.6)

≥−
∫ t0−t(m)

0

√
τ · 4 dτ ≥ −8

3
t
3
2
0 .

Hence it suffices to estimate L+(γ) from below.
Given numbers Δr,Δt > 0, if t(m) < t0 −Δt then

L+(γ) ≥
∫ Δt

0

√
τ |γ̇(τ)|2 dτ =

1

2

∫ √
Δt

0

∣∣∣∣dγds
∣∣∣∣2 ds. (5.7)

Suppose first that γ leaves m0 and exits P (m0,Δr,−Δt) at some time t ∈ (t0 −
Δt, t0). If the parabolic ball were Euclidean then we could say from (5.7) that

L+(γ) ≥ 1
2
(Δr)2√

Δt
. If Δr and Δt are small enough, depending on m0, then we

can still say that P (m0,Δr,−Δt) is unscathed and L+(γ) ≥ 1
4
(Δr)2√

Δt
. Given such

values of Δr and Δt, suppose now that γ does not exit P (m0,Δr,−Δt) in the
time interval (t0 −Δt, t0). Then γ(t0 −Δt) ∈ P (m0,Δr,−Δt). Now

L+(γ) ≥
√
Δt

∫ t0−t(m)

Δt

(
R+(γ(τ)) + |γ̇(τ)|2

)
dτ, (5.8)

Since R ≥ −3, it follows that along γ, we have√
1 +R2 ≤ 10R+. (5.9)
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Then √
1 +R2|γ̇|2 + 1 +R2 ≤10R+|γ̇|2 + 100R2

+ (5.10)

≤100
(
|γ̇|4 + 2R+|γ̇|2 +R2

+

)
,

so √√
1 +R2|γ̇|2 + 1 +R2 ≤ 10

(
|γ̇|2 +R+

)
. (5.11)

Thus

L+(γ) ≥
√
Δt

10

∫ t0−t(m)

Δt

∣∣∣∣dγdτ
∣∣∣∣
gqp
M

dτ (5.12)

≥
√
Δt

10
dqp(m,P (m0,Δr,−Δt)).

The proposition follows. �
Corollary 5.13. Suppose that (M≤t0 , g

qp
M) is complete away from the time-zero slice

and the time-t0 slice. Given t′ < t0, the restriction of L to M≤t′ is proper and
bounded below.

Proof. From (5.4), the function L is bounded below on M≤t′ . Suppose that it is
not proper. Then for some C < ∞, there is a sequence {mi}∞i=1 in M≤t′ going to
infinity with L(mi) < C for all i. We can choose Δr,Δt > 0 with Δt < t0 − t′ and

(Δr)2

4
√
Δt

− 8

3
t
3
2
0 ≥ C. (5.14)

By the completeness of gqpM, we have limi→∞ dqp(mi, P (m0,Δr,−Δt)) = ∞. Then
(5.4) gives a contradiction. �

It is not hard to see that L is continuous onM<t0 . From the proof of Proposi-
tion 5.3, given m ∈ M<t0 and K < ∞, the time-preserving curves γ : [t(m), t0] →
M from m to m0 with L(γ) < K lie in a compact subset of M. From standard
arguments [KL08, Section 17], it follows that there is an L-minimizer from m0 to
m.

Since L is bounded below and time-slices have finite volume from [KL17,

Corollary 7.7], the reduced volume Ṽ (τ) = τ−
3
2

∫
Mt0−τ

e−l dvol exists. The re-

sults of [KL08, Sections 17–29] go through in our setting. In particular, Ṽ (τ) is
nonincreasing in τ .

Proposition 5.15. Suppose that (M≤t0 , g
qp
M) is complete away from the time-zero

slice and the time-t0 slice. For every t ∈ [0, t0), there is some m ∈ Mt with
l(m) ≤ 3

2 .

Proof. Putting L = 2
√
t0 − t L, we have

∂t(−L+ 6(t0 − t)) ≤ %(−L+ 6(t0 − t)) (5.16)

in the barrier sense [KL08, Section 24]. From Corollary 5.13, for each t̃′ ∈ [0, t0),
the function −L+ 6(t0 − t) is proper and bounded above on M≤t̃′ . In particular,
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for each t ∈ [0, t0), the maximum of −L+6(t0− t) exists on Mt. We want to show
that the maximum is nonnegative. By way of contradiction, suppose that for some
t̃ ∈ [0, t0) and some α < 0, we have −L(m) + 6(t0 − t̃) ≤ α for all m ∈ Mt̃. Given

t̃′ ∈ (t̃, t0), we can apply [KL17, Lemma 5.1] on the interval [t̃, t̃′] to conclude that

−L(m) + 6(t0 − t̃′) ≤ α for all m ∈ Mt̃′ . However, along the worldline γ going
through m0, for small τ > 0 we have

L(γ(t0 − τ)) ≤ const. τ2. (5.17)

Then for small τ , we have −L(γ(t0 − τ)) + 6τ > 0. Taking t̃′ = t0 − τ gives a
contradiction and proves the proposition. �

In his first Ricci flow paper, Perelman showed that there is a decreasing
function κ′ : [0,∞) → (0,∞) with the property that if M is a smooth Ricci flow
solution, with normalized initial conditions, then M is κ′-noncollapsed at scales
less than ε [KL08, Theorem 26.2].

Proposition 5.18. Let M be a Ricci flow spacetime with normalized initial condi-
tion. Given t′ > 0, suppose that (M≤t′ , g

qp
M) is complete away from the time-zero

slice and the time-t′ slices. Then M≤t′ is κ′-noncollapsed at scales less than ε.

Proof. The proof is along the lines of that of [KL08, Theorem 26.2]. We can assume
that t′ > 1

100 . To prove κ′-noncollapsing near m0 ∈ M≤t′ , we consider L-curves
emanating backward in time from m0 to a fixed time slice Mt, say with t = 1

100 .

By Proposition 5.15, there is some m ∈ Mt with l(m) ≤ 3
2 . Using the bounded

geometry near m and the monotonicity of Ṽ , the κ′-noncollapsing follows as in
[KL08, Pf. of Theorem 26.2]. �

We now show that the conditions in Definition 2.2, to define a singular Ricci
flow, are actually asymptotic in nature.

Proposition 5.19. Given ε > 0, t′ < ∞ and a decreasing function r : [0, t′] →
(0,∞), there is some r′ = r′(ε, r) > 0 with the following property. Let M be a
Ricci flow spacetime such that R : M≤t′ → R is bounded below and proper, and
there is a compact set K ⊂ M≤t′ so that for each m ∈ M≤t′ −K,

(a) The Hamilton–Ivey pinching condition of [KL17, (A.14)] is satisfied at m,
with time parameter t(m), and

(b) The r-canonical neighborhood assumption of [KL17, Appendix A.8] is satisfied
at m.

Then the conditions of Definition 2.2 hold on M≤t′ , with parameters ε, κ′ and r′.

Proof. Condition (a) of Definition 2.2 holds on M≤t′ by assumption.
Also by assumption, for m ∈ M≤t′ − K, the curvature operator at m lies

in the convex cone of [KL17, (A.13)]. The proof of Hamilton–Ivey pinching in
[CLN06, Pf. of Theorem 6.44], using the vector-valued maximum principle, now
goes through since any violations in M≤t′ of [KL17, (A.14)] would have to occur
in K. This shows that condition (b) of Definition 2.2 holds on M≤t′ .



Singular Ricci Flows II 153

Since the r-canonical neighborhood assumption holds on M≤t′ −K the proof
of [KL17, Lemma 5.13] shows that gqpM is complete on M≤t′ away from the time-
zero slice and the time-t′ slice. Proposition 5.18 now implies that M≤t′ is κ′-
noncollapsed at scales less than ε.

To show that condition (c) of Definition 2.2 holds on M≤t′ , with parameters
ε and κ′, and some parameter r′ > 0, we apply the method of proof of [KL08,
Theorem 52.7] for smooth Ricci flow solutions. Suppose that there is no such r′.
Then there is a sequence {Mk}∞k=1 of Ricci flow spacetimes satisfying the assump-
tions of the proposition, and a sequence r′k → 0, so that for each k there is some
mk ∈ Mk

≤t where the r′k-canonical neighborhood assumption does not hold. The

first step in [KL08, Pf. of Theorem 52.7] is to find a point of violation so that there
are no nearby points of violation with much larger scalar curvature, in an earlier
time interval which is long in a scale-invariant sense. The proof of this first step
uses point selection. Because of our assumption that the r-canonical neighborhood
assumption holds in Mk

≤t′ −Kk, as soon as r′k < r(t′) we know that any point of

violation lies in Kk. Thus this point selection argument goes through. The second
step in [KL08, Pf. of Theorem 52.7] is a bounded-curvature-at-bounded-distance
statement that uses Hamilton–Ivey pinching and κ′-noncollapsing. Since we have
already proven that the latter two properties hold, the proof of the second step
goes through. The third and fourth steps in [KL08, Pf. of Theorem 52.7] involve
constructing an approximating κ′-solution. These last two steps go through with-
out change. �

Proposition 5.19 shows that the r′-canonical neighborhood assumption holds
with parameter r′ = r′(t′). We can assume that r′ is a decreasing function of t′.
Hence M is a singular Ricci flow with parameters ε, κ′ = κ′(ε) and r′ = r′(ε, r).

6. Dimension of the set of singular times

In this section we give an upper bound on the Minkowski dimension of the set of
singular times for a Ricci flow spacetime.

The geometric input comes from the proofs of Propositions 4.2 and 4.36.
We isolate it in the following lemma. The lemma states that any point with large
curvature determines a region in backward spacetime on which the scalar curvature
behaves nicely (i.e., R−1 grows with upper and lower linear bounds as one goes
backward in time), and which carries a controlled amount of volume.

Lemma 6.1. For every λ > 0, t < ∞ there is a constant C = C(λ, t) < ∞ with the
following property.

Let M be a singular Ricci flow and suppose x ∈ Mt is a point with ρ(x) :=

R− 1
2 (x) ≤ C−1r(t). Then there is a product domain U ⊂ M defined on the time

interval [t−, t], where t− := t− C−1r2(t), with the following properties:

1. Ut ⊂ B(x,Cρ(x)).
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2. (Scalar curvature control) For all t′ ∈ [t−, t], x
′ ∈ Ut′ , we have

C−1R−1(x) + η−(t− t′) ≤ R−1(x′) ≤ CR−1(x) + η+(t− t′) . (6.2)

Here η± are constants coming from the geometry of κ-solutions.
3. (Volume control) For t′ ∈ [t− C−1r2(t), t− 1

2C
−1r2(t)] we have

vol(Ut′) ≥ C−1r2−λ(t)ρ1+λ(x).

In particular the spacetime volume of U is at least 1
2C

−2r4−λ(t)ρ1+λ(x).

Proof. The proof of the lemma is based on arguments similar to those in the proofs
of Propositions 4.2 and 4.36. We give an outline of the proof. The details are similar
to those for Propositions 4.2 and 4.36.

Case 1. x is sufficiently neck-like that we can apply the neck stability result. Then
we let U be a product domain with Ut = B(x, ρ(x)). The scalar curvature estimate
(6.2) then follows from the fact that the worldline of every y ∈ Ut remains neck-
like until its scale becomes comparable to the canonical neighborhood scale. The
volume estimates in (3) follow using the Jacobian estimate, as in [KL17, Section
5] or in the proof of Proposition 4.2.

Case 2. The canonical neighborhood of x is neither sufficiently neck-like, nor nearly
round. Then for a constant c independent of x, we find that P (x, cρ(x))∩Mt−cρ2(x)

contains a necklike point y to which the previous argument applies. If the product
domain Uy associated with y is defined on the time interval [t0, t − cρ2(x)], then
we let U be the result of extending Uy to the interval [t0, t].

Case 3. The canonical neighborhood of x is nearly round, i.e., B := B(x, 100ρ(x))
is nearly isometric to a spherical space form, modulo rescaling. We follow this
region backward in time, and have two subcases:

3(a). The region remains nearly round until its scale becomes comparable
to r(t). Then we take U to be the product region with Ut = B, and the scalar
curvature and volume estimates follow readily from the fact that time slices of U
are nearly round.

3(b). For some t0 < t, and every t′ ∈ [t0, t], the image Bt′ of B in Mt′ under
the flow of the time vector field ∂t is δ-close to round, but Bt0 ⊂ Mt0 is not δ

2 -close
to round. Then we can apply Case 2 to Bt0 to obtain a product region U ′, and we
define U by extending U ′ forward in time over the time interval [t0, t]. �

As a corollary of this lemma, we get:

Theorem 6.3. If M is a singular Ricci flow, T < ∞, then the set of times t ∈ [0, T ]
such that Mt is noncompact has Minkowski dimension ≤ 1

2 .

Proof. Choose λ > 0, and let C = C(λ, T ) < ∞ be the constant from Lemma 6.1.
Pick A > C2

λr
−2(T ). Let TA be the set of times t ∈ [0, T ] such that the time

slice Mt contains a point with R > A.
Let {t0i }i∈I be a maximal A−1-separated subset of TA. For every i ∈ I, we

may find ti ∈ [0, T ] with
|ti − t0i | ≤ const. A−1 (6.4)
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such that Mti contains a point xi with R(xi) = A; the existence of such a point ti
follows by iterating [KL17, Lemma 3.3]. Now we apply Lemma 6.1 to xi, for every
i ∈ I, to obtain a collection {Ui}i∈I of product domains in M.

Note that if i, j ∈ I and Ui ∩ Uj �= ∅, then comparing the scalar curvature
using Lemma 6.1(2), we get that |ti − tj | < C1A

−1 for some C1 = C1(λ, T ).
Hence the collection {Ui}i∈I has intersection multiplicity < N = N(λ, T ). Now
Lemma 6.1(3) implies that the spacetime volume of each Ui is at least

1

2
C−2r4−λ(T )A− 1

2 (1+λ) .

Using the multiplicity bound and the bound on spacetime volume we get

|I| ≤ C2A
1
2 (1+λ) ,

for C2 = C2(λ, T ). Since by (6.4) we can cover TA with at most |I| intervals of
length comparable to A−1, this implies that ∩A>0TA has Minkowski dimension
≤ 1

2 + λ
2 . As λ is arbitrary, this proves the theorem. �
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