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Preface

This volume of articles is dedicated to Gang Tian on the occasion of his sixtieth
birthday.

Born in Nanjing, China, in 1958, Gang Tian received his B.S. from Nanjing
University (1982), his MSc from Peking University under the supervision of Kung-
Ching Chang (1984), and his Ph.D. from Harvard University under the supervision
of Shing-Tung Yau (1988). After holding positions at the State University of New
York at Stony Brook, New York University, Massachusetts Institute of Technol-
ogy (Simons Professor of Mathematics) and Princeton University (Eugene Higgins
Professor of Mathematics), Tian retired from Princeton University in 2017 and
returned to Peking University as a full-time chair professor. More than 50 people
received their Ph.D. under his supervision and a large number of postdocs bene-
fit from his mentoring. Tian has been a major contributor to the development of
modern mathematics in China. He has held a professorship at Peking University
since 1991, and currently is a vice president of the university. Tian has been the
director of the Beijing International Center for Mathematical Research (BICMR),
since its founding in 2005. He is also a member of the Scientific Council of the
Abdus Salam International Centre for Theoretical Physics in Italy.

Among many honors, Tian was awarded a research fellowship from the Alfred
P. Sloan Foundation (1991–1993), the Alan T. Waterman Award from the National
Science Foundation in 1994, and the Veblen Prize from the American Mathematical
Society in 1996. He was an invited speaker at the ICM in Kyoto (1990) and a
plenary speaker at the ICM in Beijing (2002). He was elected into the Chinese
Academy of Sciences in 2001 and into the American Academy of Arts and Sciences
in 2004.

As a world leader in geometric analysis, complex geometry and symplectic
geometry, Tian made fundamental contributions to these fields.

In complex geometry, Tian proved the convergence of the Bergman metrics
in his thesis. He settled the existence question for Kähler–Einstein metrics on com-
pact complex surfaces with positive first Chern class. In what is now known as the
Bogomolov–Tian–Todorov theorem, he proved the smoothness of the moduli space
of compact Calabi–Yau manifolds and gave a new formulation of its Weil–Petersson
metric. Jointly with Shing-Tung Yau, Tian proved the important existence result
of Kähler–Einstein metrics on complete open Kähler manifolds with first Chern
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class equal to zero (Calabi’s conjecture for the noncompact case). He introduced
the notion of K-stability, which has become a very important and active topic in
algebraic geometry. He gave a complete proof of the Yau–Tian–Donaldson conjec-
ture on Fano manifolds, which relates the K-stability to the existence of Kähler–
Einstein metrics. In Kähler geometry, the Cheeger–Colding–Tian theory plays a
very important role. He initiated the Analytic Minimal Model program in the
study of the Kähler–Ricci flow, now known as Tian–Song program in (birational)
complex geometry.

In symplectic geometry, together with Yongbin Ruan, Tian established a
mathematical theory for quantum cohomology and gave the first proof of the asso-
ciativity of the quantum cohomology ring on semi-positive symplectic manifolds.
Together with Jun Li, Tian obtained deep results on Gromov–Witten invariants via
the construction of virtual fundamental cycles for algebraic varieties and symplec-
tic manifolds. Jointly with Jeff Streets, Tian introduced and studied the symplectic
curvature flow, among other geometric flows.

Tian developed a compactness theory of Yang–Mills fields in high dimension
related to calibrated geometry.

Tian and John Morgan, among others, gave a detailed proof for Perelman’s
solution of the Poincaré Conjecture and the Thurston Geometrization Conjecture.

Many authors of this volume lectured on topics closely related to their articles
at conferences held in Fukuoka (March 2017), Beijing (May 2017), Sydney (Jan-
uary 2018), and Vancouver (July 2017). These wonderful events attracted a large
number of researchers from all over the world, including many of Tian’s mentees,
colleagues, collaborators and friends. We would like to thank the Pacific Institute
for Mathematical Sciences and The University of Sydney for their warm hospitality
and generous supports. Our thanks go also to the National Science Foundation.

Finally we would like to thank the authors for their invaluable contributions
and to the referees for their dedicated work. Also we would like to give special
thanks to Responsible Editor Thomas Hempfling, Associate Editor Sarah Goob,
Editorial Assistant Sabrina Hoecklin, and the editor board of Progress in Mathe-
matics series at Birkhäuser for their help and support.

June 19, 2019 Jingyi Chen, Peng Lu, Zhiqin Lu, and Zhou Zhang



A Brief Description of the Volume

The present volume covers a vast range of topics and results of a continuously ex-
panding field belonging to differential geometry and partial differential equations,
called geometric analysis, with demonstrated capability of uncovering deep and
important relations between geometry and topology.

As evidenced by the names of the authors of the twenty four articles, this
volume consists of both original and survey papers1 penned by leading experts in
their corresponding fields. In particular, the several long survey articles provide
both a way for beginners to ease into the corresponding sub-fields and the up-
to-date status in the sub-fields, e.g., [LiLiu], [Rubin], [Riviè]2, while the original
articles give the readers a glimpse of the current research in geometric analysis
and related PDEs.

To facilitate the readers’ quick access to the articles related to the research
themes which they are interested in, we spell out the subject theme(s) for each
article. Here we just list a few field names and assign each article roughly to one
or more fields in the next four paragraphs.

Complex differential geometry has deep connections with complex analysis,
algebraic geometry, and mathematical physics. Over the last 50 years or so, Kähler
geometry has made spectacular advances. The existence of Kähler–Einstein metrics
has been a central problem and is one of the driving force of the progresses. The re-
search topics have also been extended to extremal Kähler metrics, Kähler–Einstein
metrics on manifolds with certain singularities, and other “canonical” metrics aris-
ing from Kähler geometry. The papers in this thematic field include [Arezz], [Fu-
tak], [HanVi], [LiLiu], [PaulS], [Rubin], and [Zhu]. In the foreseeable future complex
differential geometry will continue to be one of the most dynamic research fields.

The 2002 breakthrough by G. Perelman brought new vigor into the flow
method employed in searching for “canonical” geometric-topological objects. New
flows, such as the Chern flow, Hermitian curvature flow, pluriclosed flow, and
Sasaki–Ricci Flow, were introduced, and related interesting questions are raised.
The parabolic flow approach to studying the classical and fundamental minimal

1All the papers were refereed.
2Here we use the first author’s last name to identify each article in the volume; in the case of
the same last name, we append the first few letters from the second author’s last name.
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model program in algebraic geometry, is proposed; it significantly extends the
earlier treatement of the Kähler–Ricci flow for the Fano case. The papers in the
thematic field of geometric flow include [Klein], [Sesum], [Song], and [Stree].

Historically, many interesting differential equations and key results have a
geometric origin. A famous example is provided by the minimal surface equation
and Bernstein’s theorem for hypersurfaces in Euclidean spaces. Another classic
example is the Monge–Ampère equation and the optimal transport. In this vol-
ume, we include papers on conformal geometry, gauge theory, degenerate ellip-
tic equations, the fully nonlinear elliptic equation from calibrated geometry, and
generalized complex Monge–Ampère type equations. The papers in the thematic
field of geometric elliptic pdes with applications include [Chang], [Coldi], [Ko�lod],
[LiNgu], [MaQin], [Riviè], [Trudi], and [Yuan].

A common feature of the remaining articles in the volume is their strong topo-
logical flavor, while each approaches its subject from innovative angles. They are
about index theorem, K-theory, Gromov–Witten theory in symplectic topology,
and the classical theme of curvature and topology related to the eigenvalues of the
Laplace operator. The papers addressing the above topics are: [Ballm], [Dimak],
[Ma], [Zhang], and [Zinge].

Many authors of this volume lectured on the subjects of their articles at vari-
ous conferences held in the honor of Tian’s sixtieth birthday. Ii is to be hoped first
that many people have already benefited from these articles, since the conferences
had a large audience.

Finally, we hope that the readers will enjoy the volume as much as we did.
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Big and Nef Classes, Futaki Invariant and
Resolutions of Cubic Threefolds

Claudio Arezzo and Alberto Della Vedova

To Gang Tian for his 60th Birthday!

Abstract. In this note we revisit and extend few classical and recent results on
the definition and use of the Futaki invariant in connection with the existence
problem for Kähler constant scalar curvature metrics on polarized algebraic
manifolds, especially in the case of resolution of singularities. The general
inspiration behind this work is no doubt the beautiful paper by Ding and Tian
[16] which contains the germs of a huge amount of the successive developments
in this fundamental problem, and it is a great pleasure to dedicate this to
Professor G. Tian on the occasion of his birthday.

Mathematics Subject Classification (2010). Primary 53C55; Secondary 32Q15.

Keywords. Constant scalar curvature, Kähler metrics, Futaki invariant.

1. Introduction

Let X be a normal projective variety of dimension n, let L be an ample line bundle
on X , and let be fixed a C∗ action on X together with a linearization to L, that
is a lifting of the given action on X to an action on L which is linear among
the fibers. Up to replace L by some sufficiently large positive power Lm (always
possible for our purposes), one can suppose with no loss that X is a subvariety

of some complex projective space CPd, the line bundle L is the restriction to X
of the hyperplane bundle, and the C∗-action is induced by some one-parameter
subgroup of SL(d+ 1,C) acting linearly on CPd and leaving X invariant.

Associated with these data there is a numerical invariant F (X,L), named af-
ter Futaki, who introduced it as an obstruction to the existence of Kähler–Einstein
metrics on Fano manifolds [20, 21]. Since then it has been widely generalized
[13, 16, 32, 18, 10]. A crucial step towards a definition of stability for Fano man-
ifolds was the extension of Futaki invariant to singular varieties. This was done

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34953-0_1&domain=pdf
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by Ding–Tian, who defined a Futaki invariant for Q-Fano varieties [16, 32]. Later,
Donaldson defined a Futaki invariant for polarized varieties in purely algebraic
terms [18]. As noticed in [33], the equivalence of all these extensions follows by
results of Paul–Tian [26].

Furthermore, the concept of Futaki invariant has been conveniently extended
to the case when instead of a polarization – that is an ample line bundle – on X ,
one is given a line bundle that is just big and nef [4, 5].

This last extension is of particular relevance when looking at the problem
of degenerating the Kähler classes of canonical metrics towards the boundary of
the Kähler cone, hence looking at possible convergence of such metrics towards
singular ones.

In fact the above idea can be reversed in the hope that the existence of a
singular cscK metric in a big and nef class would provide a good starting point for
some deformation argument to get also smooth ones in the interior of the Kähler
cone nearby the singular one. This turned out to be a successful strategy in a
number of important situations, such as blow-ups of smooth points [7, 8, 29, 30],
blow-ups of smooth submanifolds [31], smoothings of isolated singularities [12, 27]
and resolutions of isolated quotient singularities [6, 3, 2].

Besides some general observations of possible intrinsic interest, the situation
studied in this note is the following:

• the singular set S of X is finite (so that each point of S is fixed by the
C∗-action);

• π : M → X is an equivariant (log) resolution of singularities, i.e., π restricts
to a biholomorphism from M \ π−1(S) to X \ S, and for all p ∈ S the
exceptional divisor Ep = π−1(p) is simple normal crossing;

• given p ∈ S and a collection of numbers bp > 0, we look at the line bundle
Lr = π∗Lr ⊗O(−

∑
p∈SbpEp), assuming it is ample for r sufficiently large.

Our main results, Theorem 3.3 and Corollary 3.4, provide general formulae
relating the Futaki invariant of (X,L), Futaki of (M,Lr), bp, the behaviour of a
potential for the C∗-action at the singular points and intersection numbers of M .

This results extends all known instances where a similar problem has been
attacked (blow-ups at smooth points and resolutions of isolated quotient singular-
ities in the above-mentioned works), and provides many families of examples of
new K-unstable polarized manifolds, even as resolutions of K-polystable normal
varieties.

Two comments are in order:

1. The assumption on the normality of X is not always necessary for our anal-
ysis. Yet, being the final motivation the (non-)existence of cscK metrics, we
might as well assume it right away, thanks to [24];

2. we just recall the reader that K-instability is indeed an obstruction to the
existence of cscK metrics thanks to [19, Theorem 1].

We end this note with the discussion of few explicit examples. Of course we
need to go in dimension at least three to find non-quotient isolated singularities. In
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particular the case of cubic threefolds is discussed in Section 4. Thanks to Allcock
[1] and Liu–Xu [25], as recalled in Theorem 4.2, K-polystable cubic threefolds are
now classified, and for example among them it appears the zero locus X of

FΔ = x0x1x2 + x3
3 + x3

4

which has three D4 singularities, and continuous families of automorphisms.
Now consider a resolution π : M → X , and let Ej , j = 0, 1, 2, be the excep-

tional divisors. Chosen integers bj > 0, consider the line bundle

Lr = π∗Lr ⊗O(−
2∑

j=0

bjEj),

and assume it is ample for all r sufficiently large.
By applying our general computation of the Futaki invariant, we will show

(see Proposition 4.3) that any polarized resolution (M,Lr) of the cubic threefold
FΔ = 0 is K-unstable for r sufficiently large as soon as the intersection numbers
KM · (b0E0)

2,KM · (b1E1)
2,KM · (b2E2)

2 are not all the same.
The same strategy can be applied for other examples as discussed in Section 4.

2. Futaki invariant

In this section we give an account of the extension of the Futaki invariant to big
and nef classes developed in [5, 4].

Recall that a line bundle B on a projective varietyX of dimension n is said to
be big when it has positive volume, the latter being the limit of dimH0(X,Bk)/kn

as k → +∞. On the other hand, B is said to be nef if, for any irreducible curve
Σ ⊂ X , the restriction of B to Σ has non-negative degree. By Kleiman’s theorem,
nefness is the closure of ampleness condition, meaning that B turns out to be nef
if and only if for any ample line bundle A there is k > 0 such that Bk ⊗ A is
ample. On a smooth projective manifold, a line bundle is big and nef if and only
if its first Chern class lies at the boundary of the Kähler cone and has positive
self-intersection.

Definition 2.1. Let X be a normal projective variety endowed with a C∗-action
and let B a big and nef line bundle on M . Choose a linearization on B and for
all k ≥ 0 consider the virtual C∗-representation Hk =

∑
q≥0(−1)qHq(X,Bk). Let

χ(X,Bk) = dim(Hk) be the Euler characteristic of Bk and let w(X,Bk) be the
trace of the infinitesimal generator of the representation Hk. For k →∞ we have
an asymptotic expansion

w(X,Bk)

χ(X,Bk)
= F0k + F1 +O(k−1), (2.1)

and the Futaki invariant F (X,B) of the given C∗-action on X is defined to be the
constant term F1 of expansion above.
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A few comments on this definition are in order.

Firstly, note that given X acted on by C∗ and B as in the definition, one
can always find a linearization of the action to B [17, Theorem 7.2]. Actually, in
order to do this, perhaps one should replace B with a C∗-invariant line bundle B′

isomorphic to B. Since this replacement has no effect for our purposes, from now
on we implicitly assume that any line bundle on X is endowed with a linearization
of the given C∗-action on X . On the other hand, F (X,B) does not depend on
the chosen linearization, whereas the representation Hk and the weight w(X,Bk)
do depend on it. In fact, one can check that altering the linearization has the
effect of adding λkχ(X,Bk) to the weight w(X,Bk) for some λ �= 0, so that F1 in
expansion (2.1) stay unchanged.

Secondly, note that whenever B is ample, Bk has no higher cohomology
for k positive and sufficiently large. Therefore Hk is a genuine representation of
C∗, and finally one recovers the Donaldson’s definition of Futaki invariant [18,
Subsection 2.1].

Thirdly, in the general case one has limk→∞ k−n dimH0(X,Bk) > 0 by def-
inition of bigness, and dimHq(X,Bk) = O(kn−q) as a consequence of nefness
[23, Theorem 1.4.40]. Hence, even in the more general case, in order to compute
F (X,B), one has to consider cohomology groups of B up to order q = 1.

Finally, note that for any fixed m > 0 replacing k with mk in (2.1) yields the
identity

F (X,Bm) = F (X,B). (2.2)

One advantage of definition above is that it extends the classical Futaki
invariant continuously up to points of the boundary of the ample cone having
non-zero volume. More specifically, it holds the following

Proposition 2.2. Let X be a normal projective variety endowed with a C∗-action.
For all line bundles B big and nef, and F invariantly effective, as r →∞ one has

F (X,Br ⊗ F ) = F (X,B) +O(1/r). (2.3)

Remark 2.3. By invariantly effective line bundle, we mean a line bundle F such
that some positive power Fm posses a C∗-invariant non-zero section. For example,
any ample line bundle on X is invariantly effective. Another example is the line
bundle O(−D) associated with a C∗-invariant hypersurface D ⊂ X . In particular,
the line bundle associated with an exceptional divisor of a blow-up is invariantly
effective.

Proof of Proposition 2.2. For ease of notation let Br = Br ⊗ F . Note that by
(2.2) one can replace Br with an arbitrary large power without altering F (X,Br).
Therefore we can assume that there is an invariant section of F , and let D ⊂ X be
its null locus. Multiplication by kth power of the chosen section gives an equivariant
sequence of sheaves on X

0 → Brk → Bk
r → Bk

r

∣∣
kD

→ 0 (2.4)
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which induces a sequence of (virtual) representation of C∗, whence one has

χ(X,Bk
r ) = χ(X,Brk) + kχ(D, Bk

r

∣∣
D
). (2.5)

and
w(X,Bk

r ) = w(X,Brk) + kw(D, Bk
r

∣∣
D
). (2.6)

Note that by bigness and nefness of B and by asymptotic Riemann–Roch theorem
there is a polynomial q(t) = q0t

n + · · · + qn with q0 > 0 such that χ(X,Brk) =
q(rk) [23, Theorems 1.1.24 and 2.2.16]. Similarly, w(X,Brk) = p(rk) for some
polynomial p(t) = p0t

n+1+· · ·+pn+1. For the same reasons, sinceD has dimension
n − 1, the Euler characteristic χ(D, Bk

r

∣∣
D
) = q̃(r, k) is a polynomial of the form

q̃0(r)k
n−1 + · · · + q̃n−1 with q̃i(r) which are polynomials of degree at most n −

1 − i and q̃0(r) > 0 for r > 0. A similar situation stands for the total weight
w(D, Bk

r

∣∣
D
) = p̃(r, k) with all degrees raised by one. The upshot is that

w(X,Bk
r )

χ(X,Bk
r )

=
p(rk) + kp̃(r, k)

q(rk) + kq̃(r, k)
. (2.7)

Expanding the polynomials, by definition of Futaki invariant one finds

F (X,Br) =
p1 + p̃1(r)r

−n

q0 + q̃0(r)r−n
−
(
p0 + p̃0(r)/r

n+1
) (

q1 + q̃1(r)/r
n−1

)
(q0 + q̃0(r)r−n)2

. (2.8)

At this point, note that F (X,B) = p1/q0 − p0q1/q
2
0 . On the other hand, by dis-

cussion above we know that p̃i(r)/r
n+1−i and q̃i(r)/r

n−i are O(1/r) for large r.
Therefore F (X,Br) = F (X,B) +O(1/r) as r →∞, which is the thesis. �

Thanks to Definition 2.1, one can equally work on a singular projective variety
endowed with an ample line bundle, or on a smooth variety endowed with a big
and nef line bundle, as shown by the following

Proposition 2.4. Let X be a normal variety endowed with a C∗-action and an
ample line bundle L. Let π : M → X be an equivariant resolution of singularities.
One has

F (M,π∗L) = F (X,L).

Proof. Note that π∗L is big and nef on M , so that the l.h.s of the identity in
the statement makes sense. Now observe that there is an equivariant sequence of
sheaves on X

0 → OX → π∗OM → η → 0 (2.9)

where the support of η has co-dimension at least two. Indeed, the support of η
is contained in the singular locus of X , and the latter has co-dimension at least
two by normality assumption. After twisting by Lk, by the projection formula one
then sees that

w(M,π∗Lk) = w(X,Lk) +O(kn−1), χ(M,π∗Lk) = χ(M,Lk) +O(kn−2),

whence the thesis follows by the definition of the Futaki invariant. �

Combining Propositions 2.2 and 2.4 one readily gets the following



6 C. Arezzo and A. Della Vedova

Corollary 2.5. In the situation of Proposition 2.4, let F be an invariantly effective
line bundle on M (cf. Remark 2.3). For r →∞ one has

F (M,π∗Lr ⊗ F ) = F (X,L) +O(1/r).

In the next section, we shall make more explicit the error term O(1/r), at
least when the singularities of X are not too bad.

3. Resolutions of isolated singularities

In this section we consider the Futaki invariant of adiabatic polarizations (i.e.,
making small the volume of exceptional divisors) on resolution of isolated singu-
larities.

As above, consider a normal projective variety X of dimension n endowed
with a C∗-action, and let L be an ample line bundle on X . In this section we
make the additional assumptions that X is Q-Gorenstein with at most isolated
singularities [22]. This means that the singular set S ⊂ X is finite and each p ∈ S
is a fixed point for the C∗-action. Moreover, some tensor power of the canonical
bundle of the smooth locus X \ S extends to a line bundle on X . Note that this
makes the canonical bundle KX of X a Q-line bundle, meaning that Km

X is a
genuine line bundle for some integer m > 0.

Now consider an equivariant (log) resolution of singularities π : M → X . By
definition, π restricts to a biholomorphism from M \ π−1(S) to X \ S, and for all
p ∈ S the exceptional divisor Ep = π−1(p) is simple normal crossing.

Given a positive constant bp for each p ∈ S, assume there is r sufficiently
large such that the line bundle

Lr = π∗Lr ⊗O(−
∑

p∈SbpEp) (3.1)

is ample on M . Moreover, π∗L is big and nef, and each line bundle O(−Ep) is
invariantly effective (cf. Remark 2.3) for Ep is invariant. Note that Corollary 2.5
applies, so that for large r it holds

F (M,Lr) = F (X,L) +O(1/r). (3.2)

In order to make somehow more explicit the error term, consider the vir-
tual representation Hk =

∑
q≥0(−1)qHq(M,Lk

r ). Since M is smooth, at least for

t ∈ R sufficiently small, the character χHk
of such representation satisfies [11,

Theorem 8.2]

χHk
(eit) =

∫
M

ec1(L
k
r )Td(M), (3.3)

where c1(L
k
r) and Td(M) are equivariant characteristic classes. To be more specific,

consider the unit circle inside C∗ and let V ∈ Γ(TM) be the infinitesimal generator
of the induced circle action on M . Moreover, let ωr be a circle-invariant Kähler
form representing the first Chern class of Lr, and let ur ∈ C∞(M) be a potential
for the circle action on M , so that

iV ωr = dur. (3.4)
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Denoting by Δr the Laplace operator of the Kähler metric ωr, then (3.3) reduces to

χHk
(eit) =

∫
M

ek(ωr+tur)

(
1 +

1

2
(Ric(ωr)− tΔrur) + · · ·

)
, (3.5)

where dots stand for higher-order terms that are irrelevant for our purposes, and
the integral of any differential form of degree different form 2n is defined to be
zero.

In order to determine the Futaki invariant F (M,Lr), we need to consider the
asymptotic behavior for large k of the Euler characteristic χ(M,Lk

r) and the trace
w(M,Lk

r ) of the infinitesimal generator of the virtual representation Hk. Note that

by definition of χHk
one has χ(M,Lk

r ) = χHk
(1) and w(M,Lk

r ) =
dχHk

(eit)

dt

∣∣∣
t=0

.

Therefore formula (3.5) gives w(M,Lk
r ) = a(r)kn+1 + b(r)kn + O(kn−1), and

χ(M,Lk
r) = c(r)kn + d(r)kn−1 +O(kn−2) where

a(r) =

∫
M

(ωr + ur)
n+1

(n+ 1)!
b(r) =

∫
M

(ωr + ur)
n ∧ (Ric(ωr)−Δrur)

2n!

c(r) =

∫
M

(ωr + ur)
n

n!
d(r) =

∫
M

(ωr + ur)
n−1 ∧ (Ric(ωr)−Δrur)

2(n− 1)!
(3.6)

are polynomial functions of r. Note that b(r) could be simplified a bit by showing
that the summand involving Δrur vanishes. On the other hand, ur and Δrur do
not affect the value of c(r) and d(r). However it will be apparent in a moment
that is convenient to keep the integrands expressed as polynomials in ωr + ur and
Ric(ωr)−Δrur. Indeed both of these differential forms turn out to be equivariantly
closed, meaning that they are circle-invariant and belong to the kernel of the
differential operator

dV = d− iV . (3.7)

Note that one has d2V = 0 on the space of circle-invariant differential forms. As a
consequence dV defines a cohomology, which is sometimes called (the Cartan model
of) the equivariant cohomology of M with respect to the given circle action. The
equivariant characteristic classes appearing in (3.3) belong to this cohomology.

Apart the deep result represented by (3.3), we need just some basic features
of equivariant cohomology. In particular, below we repeatedly make use of the
following integration by part formula, whose proof is a quite direct application of
Stokes’ theorem.

Lemma 3.1. For all circle invariant inhomogeneous differential forms α, β on M
one has ∫

M

dV α ∧ β =

∫
M

(αodd − αeven) ∧ dV β,

where α = αeven + αodd with obvious meaning.

At this point we come back to our problem of finding an asymptotic expansion
for F (M,Lr). By Definition 2.1 of Futaki invariant one readily sees that

F (M,Lr) = b(r)/c(r) − a(r)d(r)/c(r)2 . (3.8)
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Therefore we are lead to express most of coefficients of polynomials in (3.6) in
terms of geometric data on X and M . In order to do this we need to introduce
more notation.

For any exceptional divisor Ep let ξp ∈ Ω1,1(M) be a closed form which
represents the Poincaré dual and it is positive along Ep. If Ep is smooth, the latter
requirement simply means that ξp restricts to a Kähler metric on Ep. In general,
it means that

∫
Σ γ∗ξp > 0 for any non-constant holomorphic curve γ : Σ → M

whose image is contained in Ep.
We can assume that the supports of ξp and ξq are disjoint whenever p, q ∈ S

are distinct. Even more, we can assume that ξp has support contained in a circle-
invariant open set Wp and that Wp and Wq are disjoint whenever p, q ∈ S are
distinct. Therefore, perhaps after averaging over the circle, we can also assume
that ξp is circle-invariant. Moreover, let up be a potential for the vector field V
with respect to ξp, meaning that iV ξp = dup. Note that up is defined up to an
additive constant, and that it is constant in the complement of the support of
ξp. Therefore, by fixing the additive constant, we can assume that the support of
up is contained Wp. Summarizing, for any p ∈ S there is an equivariantly closed
differential form ξp+up supported inside Wp such that [ξp] ∈ H1,1(M) is Poincaré
dual to Ep.

We already observed in the previous section that for our purposes we can
assume with no loss that X is an invariant subvariety of some complex projective
space CPd acted on linearly by some one-parameter subgroup of SL(d + 1,C),
and L is the restriction of the hyperplane bundle to X . Therefore, if

ι : X → CPd

denotes the inclusion, then the composition ι◦π is a smooth equivariant map form
M to CPd which pulls back the hyperplane bundle to π∗L.

Thanks to the inclusion ι we can equip X (or more correctly its smooth
locus X \ S) with a Kähler metric ω and a Hamiltonian potential u for the circle

action induced by the unit circle of C∗. To see this, let VFS ∈ Γ(TCPd) be its
infinitesimal generator of such circle action. Moreover, let ωFS be a circle-invariant
Fubini–Study metric on CPd. Now a potential uFS for VFS is a smooth function
on CPd satisfying iVFSωFS = duFS . Finally we define the Kähler form ω and the
potential u as the restriction to X of ωFS and uFS respectively. We can think of
ω+u as an equivariantly closed differential form on X . Whereas ω+u is a genuine
equivariantly closed differential form on the smooth locus of X , it is delicate to
specify what is ω at singular points of X . On the other hand, it is clear that u is
a continuous function on X . However, the pull-back π∗(ω + u) is smooth on M
since it is nothing but the pull-back of ωFS + uFS via the composition of π with
the inclusion ι of X into CPd.

At this point, note that we are free to shrinking the set Wp in order to assume

that it is contained in (ι◦π)−1(Bp) for some small ball Bp ⊂ CPd centered at p. As
a consequence π∗(ω+u) turns out to be equivariantly exact inWp since ωFS+uFS is
equivariantly exact in Bp (in fact one can check that ωFS+uFS = dV d

c log(1+|z|2)



Big and Nef Classes, Futaki Invariant, Resolutions of Cubic Threefolds 9

in affine coordinates making diagonal the circle action). More specifically, there is
a circle-invariant function φp on M such that

π∗(ω + u) = dV d
cφp in Wp (3.9)

Given all of this, we can assume that the Kähler metric ωr and the potential
function ur satisfy

ωr + ur = rπ∗(ω + u) +
∑
p∈S

bp(ξp + up). (3.10)

Finally we recall a result that will be useful in the following [3, p. 6].

Lemma 3.2. Any equivariantly closed differential form α on M which is exact on
Wp and restricts to the zero form on the exceptional divisor Ep satisfies

∫
M

α ∧
(ξp + up) = 0.

Now we are ready to make explicit coefficients of polynomials appearing in
(3.8). Starting with a(r), note that our assumption that ξp+up is supported inside
Wp yields

a(r) = rn+1

∫
M\

⋃
p Wp

π∗(ω + u)n+1

(n+ 1)!
+
∑
p∈S

∫
Wp

(rπ∗(ω + u) + bp(ξp + up))
n+1

(n+ 1)!
.

Moreover, observing that π∗(ω + u) − u(p) restricts to zero on Ep, by (3.9) and
Lemmata 3.1, 3.2 equation above reduces to

a(r) = a0r
n+1 + r

∑
p∈S

bnpu(p)

∫
M

ξnp
n!

+
∑
p∈S

bn+1
p

∫
M

up

ξnp
n!

, (3.11)

where a0 =
∫
X
uωn/n! coincides with the integral on M of the pull-back via ι ◦ π

of the smooth differential form uFSω
n
FS/n!. Similarly, for c(r) one finds

c(r) = c0r
n +

∑
p∈S

bnp

∫
M

ξnp
n!

, (3.12)

where c0 =
∫
X
ωn/n! is the volume of the line bundle L on X , or equivalently the

volume of π∗L on M .

Now pass to consider b(r). Arguing precisely as above we can write

b(r) = rn
∫
M\

⋃
p Wp

π∗(ω + u)n ∧ π∗(Ric(ω)−Δu)

2n!

+
∑
p∈S

∫
Wp

(rπ∗(ω + u) + bp(ξp + up))
n ∧ (Ric(ωr)−Δrur)

2n!
, (3.13)
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whence, again by summing and subtracting u(p) to π∗(ω+ u) and using (3.9) and
Lemmata 3.1, 3.2 as before, it follows

b(r) = b0r
n + r

∑
p∈S

u(p)bn−1
p

∫
M

(ξp + up)
n−1 ∧ (Ric(ωr)−Δrur)

2(n− 1)!

+
∑
p∈S

bnp

∫
M

(ξp + up)
n ∧ (Ric(ωr)−Δrur)

2n!
, (3.14)

where b0 =
∫
M

π∗(ω + u)n ∧ (Ric(ωr) −Δrur)/(2n!) does not depend on r. This
follows by integration by parts (Lemma 3.1) and the fact that for all r, s > 0 it
holds

Ric(ωr)−Δrur = Ric(ωs)−Δsus − dV d
c log(ωn

r /ω
n
s ). (3.15)

For the same reason, both integrals of formula (3.14) do not depend on r. In fact,
the one of the first line reduces to∫

M

(ξp + up)
n−1 ∧ (Ric(ωr)−Δrur)

2(n− 1)!
=

∫
M

ξn−1
p ∧ Ric(ωr)

2(n− 1)!
.

Moreover, focusing on the second line of (3.14), let I =
∫
M
(ξp + up)

n ∧ (Ric(ωr)−
Δrur)/(2n!). In order to find a simpler expression for it, let Bε ⊂ M be the pull-

back via ι ◦ π of a small ball in CPd of radius ε and centered at p. Since π∗ω is a
Kähler metric on Wp \Bε, there one can write

Ric(ωr)−Δrur = π∗(Ric(ω)−Δu)− dV d
c log(ωn

r /π
∗ωn).

Therefore, being ξp + up supported in Wp, by Stokes’ theorem it follows

I =

∫
M\Bε

(ξp + up)
n ∧ π∗(Ric(ω)−Δu)

2n!
+

∫
∂Bε

(ξp + up)
n ∧ dc log(ωn

r /π
∗ωn)

2n!

+

∫
Bε

(ξp + up)
n ∧ (Ric(ωr)−Δrur)

2n!
.

As we already observed after equation (3.15), I does not depend on r. On the
other hand, note that dc log(ωn

r /π
∗ωn) is smooth on ∂Bε for all r and is O(1/r)

for large r. Similarly, Ric(ωr) −Δrur is smooth on Bε. Therefore, passing to the
limit r →∞ in the equation above yields

I =

∫
M

(ξp + up)
n ∧ π∗(Ric(ω)−Δu)

2n!
. (3.16)

Note that Δu is a continuous function on X . This can be checked after noting that
Δu equals the ratio of the restrictions to X of nLJVFSωFS∧ωn−1

FS and ωn
FS . On the

other hand, note that π∗(Ric(ω)−Δu) represents the first Chern class of the line
bundle π∗K−1

X . At this point consider the shifted form α = π∗(Ric(ω)−Δu)+Δu(p)
so that one can rewrite

I = −Δu(p)

∫
M

ξnp
2n!

+

∫
M

(ξp + up)
n ∧ α

2n!
. (3.17)
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Since α vanishes on Ep, by Lemma 3.2 it follows that I reduces to the first sum-
mand of the equation above. As a consequence, (3.14) reduces to

b(r) = b0r
n + r

∑
p∈S

u(p)bn−1
p

∫
M

ξn−1
p ∧ Ric(ωr)

2(n− 1)!
− 1

2

∑
p∈S

Δu(p)bnp

∫
M

ξnp
n!

, (3.18)

Finally, a similar and easier argument for d(r) gives the expansion

d(r) = d0r
n−1 +

∑
p∈S

bn−1
p

∫
M

ξn−1
p ∧ Ric(ωr)

2(n− 1)!
, (3.19)

where d0 =
∫
M π∗ωn−1 ∧ Ric(ωr)/(2(n − 1)!) does not depend on r, and by the

asymptotic Riemann–Roch theorem it is equal to KX · Ln−1(2(n− 1)!)

At this point, note that we found a geometric meaning for all coefficients
appearing in polynomials

a(r) = a0r
n+1 + anr + an+1 b(r) = b0r

n + bn−1r + bn

c(r) = c0r
n + cn d(r) = d0r

n−1 + dn−1.

By direct calculation starting from (3.8) one finds

F (M,Lr) =
b0
c0

− a0d0
c20

+

(
bn−1

c0
− a0dn−1

c20

)
r1−n (3.20)

+

(
bn
c0

+
d0
c0

a0cn − c0an
c20

− cn
c0

(
b0
c0

− a0d0
c20

))
r−n +O(r−n−1),

as r → ∞. By Proposition 2.2 we can recognize F (X,L) in the leading term.
Therefore, substituting coefficients calculated above yields the following

Theorem 3.3. Let π : M → X be an equivariant log resolution of a Q-Gorenstein
polarized variety (X,L) acted on by C∗. Assume that the singular locus S ⊂ X is
finite and choose a rational constant bp > 0 for all p ∈ S. Assume moreover that
Lr = π∗Lr ⊗O(−

∑
p∈SbpEp) is ample for r sufficiently large. With the notation

introduced above, the Futaki invariant of Lr for r →∞ is given by

F (M,Lr) = F (X,L) + r1−n n

2

∑
p∈S

(u(p)− u)bn−1
p

∫
M

ξn−1
p ∧ Ric(ωr)∫

X
ωn

(3.21)

− 1

2
r−n

∑
p∈S

(s(u(p)− u) + Δu(p) + 2F (X,L)) bnp

∫
M

ξnp∫
X
ωn

+O(r−n−1),

where s = n
2

∫
M

π∗ωn−1 ∧ Ric(ωr)/
∫
X
ωn does not depend on r.

This result should be considered as an extension of a similar result for iso-
lated quotient singularities [3, Theorem 2.3]. Some differences with the formula
appearing there are due to a different normalization in the definition of the Futaki
invariant.
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On the other hand, note that at least the first error term in (3.21) can be
expressed almost entirely in terms of intersection numbers on M . Therefore we
have the following

Corollary 3.4. In the situation above, as r →∞ one has

F (M,Lr) = F (X,L)− r1−n n

2Ln

∑
p∈S

(u(p)− u)KM · (bpEp)
n−1 +O(r−n).

This result will be useful in order to produce several examples of K-unstable
resolutions in the next section.

4. Resolutions of semi-stable cubic threefolds

In this section we show that most resolutions of semi-stable but not stable cubic
threefolds are K-unstable. Here we do not need to recall the full definition of
K-stability. Instead it is enough to recall that it is a GIT stability notion for
polarized varieties (when no polarization is specified, it is assumed to be the anti-
canonical bundle), and that the Hilbert–Mumford criterion for K-stability implies
the following elementary

Fact 4.1. A polarized variety is K-unstable as soon as it carries a C∗-action with
non-zero Futaki invariant.

To begin with observe that by results of Allcock [1] and Liu–Xu [25] we have
the following clear picture of K-stability of cubic threefolds.

Theorem 4.2. Let X ⊂ CP4 be a cubic threefold.

• X is K-stable if and only if it is smooth or it has isolated singularities of type
Ak with k ≤ 4.

• X is K-polystable with non-discrete automorphism group if and only if it is
projectively equivalent to the zero locus of one of the following cubic polyno-
mials:

FΔ = x0x1x2 + x3
3 + x3

4, FA,B = Ax3
2 + x0x

2
3 + x2

1x4 − x0x2x4 +Bx1x2x3,

with A and B which are not both zero.

Resolutions of K-stable cubic threefolds have no non-trivial holomorphic vec-
tor fields. Therefore, in order to study K-instability of their resolutions one should
consider test configuration along the lines of [28, 14, 15]. On the other hand, study-
ing K-instability of resolutions of (strictly) K-polystable cubic threefolds is more
direct thanks to Corollary 3.4. In view of this application, observe that any K-
polystable cubic threefold X ⊂ CP4 is Q-Gorenstein, in that the anti-canonical
bundle of the smooth locus extends to K−1

X . Moreover, the latter is (very) ample

and the restriction L of hyperplane bundle to X satisfies L2 = K−1
X . We consider

separately the cases FΔ and FA,B.
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4.1. FΔ

Let X ⊂ CP4 be the zero locus of FΔ = x0x1x2 + x3
3 + x3

4. As one can readily
check, the singular locus of X is constituted by three coordinate points

S = {p0 = (1 : 0 : 0 : 0 : 0), p1 = (0 : 1 : 0 : 0 : 0), p2 = (0 : 0 : 1 : 0 : 0)} . (4.1)

Each of them is a D4 singularity, since X is locally equivalent to z21 + z22 + z33 + z34
around any p ∈ S. Now pick α0, α1, α2 ∈ Z such that α0+α1+α2 = 0 and consider
the diagonal action ofC∗ on CP4 induced by diag(tα1 , tα2 , tα3 , 1, 1), where t ∈ C∗.
Clearly X is invariant with respect to this action. A potential with respect to the
Fubini–Study metric ωFS for the generator of the induced circle action is given by

uFS =
α0|x0|2 + α1|x1|2 + α2|x2|2

|x|2 .

By direct calculation, one can check that the average u =
∫
X uFSω

3
FS/

∫
X ω3

FS is
zero. Now consider a resolution π : M → X and let, as in the general case discussed
above, Ej be the exceptional divisor over pj ∈ S. Chosen an integer bj > 0 for
each pj ∈ S, consider the line bundle

Lr = π∗Lr ⊗O(−
2∑

j=0

bjEj),

and assume it is ample for all r sufficiently large. By Corollary 3.4 we get

F (M,Lr) = − 1

2r2

2∑
j=0

αjKM · (bjEj)
2 +O(1/r3),

where we used that F (X,L) = 0 thanks to K-polystability of X , that u = 0 as
discussed above, and that L3 = 3. As a consequence, as soon as bj are chosen
so that KM · (b0E0)

2,KM · (b1E1)
2,KM · (b2E2)

2 are not all the same, one can
choose the αj ’s so that F (M,Lr) is non-zero for large r. Therefore we proved the
following

Proposition 4.3. With the notation above, any polarized log resolution (M,Lr)
of the cubic threefold FΔ = 0 is K-unstable for r sufficiently large as soon as the
intersection numbers KM ·(b0E0)

2,KM ·(b1E1)
2,KM ·(b2E2)

2 are not all the same.

4.2. FA,B

Let X ⊂ CP4 be the zero locus of FA,B = Ax3
2+x0x

2
3+x2

1x4−x0x2x4+Bx1x2x3

where at least one of A and B is non-zero. As described by Allcock [1], different
choices of the pair A, B give projectively equivalent threefolds if and only if they
give the same β = 4A/B2 ∈ C ∪ {∞}. In other words, β is a moduli parameter.
The singularities of X depend on β. If β �= 0, 1 then X has precisely two singular
points of type A5. If β = 0 then an additional singular point of type A1 appears.
If β = 1 then the singular locus of X is a rational curve. We drop the latter case
since singularities are non-isolated. On the other hand, remaining cases are quite
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similar each other. Therefore we consider in some detail the case β = 0 and we
leave the other ones as an exercise for the reader.

Thus, from now on, X ⊂ CP4 will be the zero locus of F0,1 = x0x
2
3 + x2

1x4 −
x0x2x4+x1x2x3. One can directly check that the singular locus of X is constituted
by three coordinate points

S = {p0 = (1 : 0 : 0 : 0 : 0), p2 = (0 : 0 : 1 : 0 : 0), p4 = (0 : 0 : 0 : 0 : 1)} . (4.2)

The points p0, p4 turn out to be singularities of type A5, whereas p2 is an A1

singularity. Looking for C∗-actions on CP4 which preserve X , one find that all
of them are coverings of the one induced by diag(t−2, t−1, 1, t, t2), where t ∈ C∗.
A potential with respect to the Fubini–Study metric ωFS for the generator of the
induced circle action is given by

uFS =
−2|x0|2 − |x1|2 + |x3|2 + 2|x4|2

|x|2 .

Note that the transformation which maps (x0 : · · · : x4) to (x4 : · · · : x0) is a
holomorphic isometry of CP4 that preservesX and transforms uFS into −uFS. As
a consequence, the average u =

∫
X
uFSω

3
FS/

∫
X
ω3
FS is zero. Now let π : M → X

be a (log) resolution and let Ej be the exceptional divisor over pj ∈ S. Choose an
integer bj > 0 for each pj ∈ S, consider the line bundle

Lr = π∗Lr ⊗O
(
−

2∑
j=0

b2jE2j

)
,

and assume it is ample for all r sufficiently large. By Corollary 3.4 we get

F (M,Lr) =
1

r2

2∑
j=0

(1− j)KM · (b2jE2j)
2 +O(1/r3), (4.3)

where we used that F (X,L) = 0 thanks to K-polystability of X , that u = 0
as discussed above, and that L3 = 3. Note that the local resolution chosen for
the A1 singularity p2 does not affect the stability of (M,Lr). On the other hand,
F (M,Lr) is non-zero for all r sufficiently large whenever b0, b4 are chosen so that
KM · (b0E0)

2 +KM · (b4E4)
2 �= 0.

A minor adjustment of argument above extends the result above for resolu-
tions of the zero locus of FA,B with B2 �= 4A. Summarizing we have the following

Proposition 4.4. With the above notation, any polarized (log) resolution (M,Lr)
of the cubic threefold FA,B = 0 with 4A �= B2 is K-unstable for r sufficiently large
as soon as KM · (b0E0)

2 +KM · (b4E4)
2 �= 0.
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[29] G. Székelyhidi. On blowing up extremal Kähler manifolds. Duke Math. J. 161 (2012),
no. 8, 1411–1453.
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Abstract. For a Riemannian covering π : M1 → M0, the bottoms of the spec-
tra of M0 and M1 coincide if the covering is amenable. The converse impli-
cation does not always hold. Assuming completeness and a lower bound on
the Ricci curvature, we obtain a converse under a natural condition on the
spectrum of M0.
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1. Introduction

We are interested in the behaviour of the bottom of the spectrum of Laplace
and Schrödinger operators under coverings. To set the stage, let M be a simply
connected and complete Riemannian manifold and π0 : M → M0 and π1 : M →
M1 be Riemannian subcovers of M . Let Γ0 and Γ1 be the groups of covering
transformations of π0 and π1, respectively, and assume that Γ1 ⊆ Γ0. Then the
resulting Riemannian covering π : M1 → M0 satisfies π ◦ π1 = π0. Under these
circumstances, we always have

λ0(M1) ≥ λ0(M0), (1.1)

see, e.g., [1, Theorem 1.1] (and Section 2 for notions and notations). Recall also
that any local isometry between complete and connected Riemannian manifolds is
a Riemannian covering and, therefore, fits into our schema.

A mean on a countable set X is a linear functional μ : L∞(X) → R with
μ(f) ≥ 0 if f ≥ 0 and μ(1) = 1, where the 1 on the left stands for the constant
function with value 1. An action of a countable group Γ on X is called amenable
if X admits a Γ-invariant mean. The group Γ is called amenable if the right action
of Γ on itself is amenable. Finite groups and actions of finite groups are amenable.

c© Springer Nature Switzerland AG 2020
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Amenability is a way of expressing a kind of smallness in the context of infinite
groups. There are numerous characterizations of amenability. The most useful one
for our purposes seems to be Følner’s criterion (see 4.2).

We say that the covering π is amenable if the right action of Γ0 on Γ1\Γ0 is
amenable. If π is normal, that is, if Γ1 is a normal subgroup of Γ0, then this holds
if and only if Γ1\Γ0 is an amenable group. If π is amenable, then

λ0(M1) = λ0(M0), (1.2)

see [1, Theorem 1.2]. The problem whether, conversely, equality implies amenabil-
ity of the covering is quite sophisticated, as Theorems 1.6 and 1.10, Example 1.12,
and the examples on pages 104–105 in [3] show. In the case where M0 is compact
and π is the universal covering (that is, π = π0), amenability has been estab-
lished by Brooks [2, Theorem 1]. (A proof avoiding geometric measure theory is
contained in [11].) Theorem 2 of Brooks in [3] and Théorème 4.3 of Roblin and
Tapie in [13] include normal Riemannian coverings of non-compact manifolds, but
impose spectral conditions on M0 and π, which it might be difficult to verify, and
restrictions on the topology of M0. At the expense of requiring a lower bound on
the Ricci curvature, we eliminate topological assumptions altogether and replace
the spectral assumptions in [3] and [13] by a weaker and natural condition on the
bottom λess(M0) of the essential spectrum of M0.

Theorem 1.3. Suppose that the Ricci curvature of M is bounded from below and
that λess(M0) > λ0(M0). Then

λ0(M1) = λ0(M0)

if and only if the covering π : M1 → M0 is amenable.

Theorem 1.3 gives a positive answer to the speculations of Brooks on page
102 of [3]. Theorems 1.6 and 1.10 and Example 1.12 show that the assumption
λess(M0) > λ0(M0) is sensible.

Examples 1.4. 1) If M0 is compact, then the Ricci curvature of M0 is bounded
and λess(M0) = ∞ > 0 = λ0(M0).

2) If M0 is non-compact, of finite volume, and with sectional curvature −b2 ≤
KM ≤ −a2, where b > a > 0, then λ0(M0) = 0 and RicM ≥ (1 −m)b2, where m
denotes the dimension of M . Moreover,

λess(M0) ≥ a2(m− 1)2/4, (1.5)

and hence λess(M0) > λ0(M0). For the convenience of the reader, we will present
a short proof of (1.5) at the end of the article.

A hyperbolic manifold M of dimension m is called geometrically finite if the
action of its covering group Γ on the hyperbolic space Hm admits a fundamental
domain F ⊆ Hm which is bounded by finitely many totally geodesic hyperplanes.
By the work of Lax and Phillips ([9, p. 281]), λess(M) = (m − 1)2/4 if M is
geometrically finite of infinite volume.
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Theorem 1.6. Let π : M1 → M0 be a Riemannian covering of hyperbolic manifolds
of dimension m with corresponding covering groups Γ1 ⊆ Γ0 of isometries of Hm.
Assume that M0 is geometrically finite of infinite volume. Then we have:

1. If λ0(M0) < (m−1)2/4, then λ0(M1) = λ0(M0) if and only if π is amenable.
2. If λ0(M0) = (m− 1)2/4, then λ0(M1) = λ0(M0).

The first assertion of Theorem 1.6 follows immediately from Theorem 1.3 and
the identification λess(M0) = (m − 1)2/4 by Lax and Phillips quoted above, the
second is an incarnation of the general observation stated in Proposition 1.13.2
below, using that λ0(H

m) = (m− 1)2/4.

Remarks 1.7. 1) We say that a geometrically finite hyperbolic manifold M =
Γ\Hm is convex cocompact if it does not have cusps or, equivalently, if Γ does not
contain parabolic isometries. Theorem 1.6.1 is due to Brooks in the case where the
covering is normal and M0 is convex cocompact. See [3, Theorem 3] and also [13,
Théorème 0.2].

2) The critical exponent δ(Γ) of a discrete group Γ of isometries of Hm is the
infimum of the set of s ∈ R such that the Poincaré series

g(x, y, s) =
∑
γ∈Γ

e−sd(x,γ(y))

converges for all x, y ∈ Hm. Using Sullivan’s [14, Theorem 2.17], the assumptions
on λ0(M0) in Theorem 1.6 may be reformulated in terms of the critical exponent
of Γ0. Namely

λ0(M0) = δ(Γ0)(m− 1− δ(Γ0)) < (m− 1)2/4 = λess(M0)

if δ(Γ0) > (m− 1)/2 and λ0(M0) = (m− 1)2/4 if δ(Γ0) ≤ (m− 1)/2.
3) Let M0 be a geometrically finite hyperbolic manifold of infinite volume

and M ′
0 be a connected Riemannian manifold such that M0 \ K is isometric to

M ′
0 \ K ′ for some compact domains K ⊆ M0 and K ′ ⊆ M ′

0. Since the essential
spectrum is determined by the geometry at infinity, we then still have λess(M

′
0) =

(m − 1)2/4, and therefore Theorem 1.3 applies to Riemannian coverings of M ′
0 if

λ0(M
′
0) < (m − 1)2/4. This latter condition is easy to achieve by choosing the

metric on K ′ appropriately.

Let M be the interior of a compact and connected manifold N with non-
empty boundary and h be a Riemannian metric on N . Let ρ ≥ 0 be a smooth
non-negative function on N defining ∂N , that is,

∂N = {ρ = 0} and ∂νρ > 0 (1.8)

along ∂N , where ν denotes the inner normal of N along ∂N with respect to h.
Consider the conformally equivalent metric

g = ρ−2h (1.9)

on M . The metric g is complete since the factor ρ−2 causes ∂N to have infinite
distance to any point in M . Metrics of this kind were introduced by Mazzeo,
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who named them conformally compact. In [10, Theorem 1.3], he obtains that the
essential spectrum of g is [a2(m − 1)2/4,∞), where a = min ∂νρ > 0 and m =
dimM . In particular, λess(g) = a2(m− 1)2/4.

Theorem 1.10. Let π : M1 → M0 be a Riemannian covering of manifolds of dimen-
sion m with corresponding covering groups Γ1 ⊆ Γ0 of isometries of their universal
covering space M . Assume that M0 is conformally compact with a = min ∂νρ as
above. Then we have:

1. If λ0(M0) < a2(m − 1)2/4, then λ0(M1) = λ0(M0) if and only if π is
amenable.

2. If λ0(M0) = a2(m− 1)2/4, then λ0(M1) = λ0(M0).

The first assertion of Theorem 1.10 follows immediately from Theorem 1.3
together with Mazzeo’s λess(M0) = a2(m − 1)2/4 quoted above, where we note
that the sectional curvature of M0 is bounded from above and below. The second
assertion of Theorem 1.10 is proved in Section 4.

Remark 1.11. By changing the metric on a compact part of M0 appropriately, it
is easy to obtain examples which satisfy the first assertion of Theorem 1.10.

Example 1.12 (concerning Theorem 1.3). Let P be a compact and connected
manifold of dimension m with connected boundary ∂P =: N0. Assume that the
fundamental group of N0 is amenable; e.g., N0 = Sm−1. Let U ∼= [0,∞)×N0 be a
collared neighborhood of N0

∼= {0} ×N0 in P . Let g0 be a Riemannian metric on
M0 = P \N0, which is equal to dx2 + h0 along V0 = U \N0

∼= (0,∞)×N0, where
we write elements of V0 as pairs (x, y) with x ∈ (0,∞) and y ∈ N0 and where h0

is a Riemannian metric on N0. Since N0 is compact, we have λ0(V0) = 0. Since
λ0(M0) ≤ λ0(V0), we conclude that λ0(M0) = 0.

The volume of g0 is infinite, and the sectional curvature of g0 is bounded.

Let π : M1 → M0 be a Riemannian covering and V1 be a connected component
of π−1(V0). Then π1 : V1 → V0 is a Riemannian covering, and it is amenable
since the fundamental group of V0 is amenable. Therefore λ0(V1) = λ0(V0), by
[1, Theorem 1.2]. Since λ0(M1) ≤ λ0(V1) = 0, we conclude that λ0(M1) = 0. It
follows that λ0(M1) = λ0(M0) = 0, regardless of whether π is amenable or not.

The example is very much in the spirit of the surface Sα (for 0 < α < 1),
discussed on page 104 of [3]. Note that Sα is complete with finite area and bounded
curvature.

We see in Theorem 1.6.2 and Theorem 1.10.2 that the essential spectrum can
be in the way of the bottom of the spectrum to grow. One aspect of this is revealed
in the first of the following two observations.

Proposition 1.13. In our setup of Riemannian coverings,

1. if π is infinite and λ0(M1) = λ0(M0), then λ0(M1) = λess(M1).
2. if λ0(M0) = λ0(M), then λ0(M1) = λ0(M0).
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The case in Proposition 1.13.1, where the deck transformation group of π is
infinite, is also a consequence of [11, Corollary 1.3]. The proof of Proposition 1.13.2
is trivial: By applying (1.1) to π and π1, we see that λ0(M1) is pinched between
λ0(M0) and λ0(M).

The lower bound on the Ricci curvature, required in Theorem 1.3, is used in
two instances. First, we need that positive eigenfunctions of the Laplacian satisfy a
Harnack inequality. To that end, we employ the Harnack inequality of Cheng and
Yau (see (2.23)). Second, in the proof of Lemma 3.1, we use Buser’s Lemma 2.16
below. Both, the Harnack inequality of Cheng and Yau and Buser’s lemma, require
a lower bound on the Ricci curvature.

Remark 1.14. In the first submitted version of this article, we asked the question
whether the assumption on the lower Ricci curvature bound in Theorem 1.3 is
necessary. Very recently, the third named author used Theorem 1.3 to show that
the analog of Theorem 1.3 holds for compact M0 with boundary with respect to
the Neumann boundary condition and concluded from there that Theorem 1.3
actually also holds without assuming the lower Ricci curvature bound [12].

Structure of the article

In Section 2, we collect some preliminaries about Schrödinger operators and the
geometry of Riemannian manifolds. The volume estimate in Section 3 is the basis
of our discussion of the amenability of coverings. Much of the argumentation in
this section follows Buser’s [4, Section 4]. In Section 4, we prove a generalized
version of Theorem 1.3 for Schrödinger operators, where the potential V and its
derivative dV are assumed to be bounded. Furthermore, Section 4 contains the
outstanding proofs of (1.5), Theorem 1.10.2, and Proposition 1.13.1.

2. Preliminaries

Let M be a Riemannian manifold of dimension m and V : M → R be a smooth
potential. We denote by Δ the Laplace operator of M and by S = Δ + V the
Schrödinger operator associated to V . We say that a smooth function ϕ on M
(not necessarily square integrable) is a λ-eigenfunction if it solves Sϕ = λϕ.

For a point x ∈ M , subset A ⊆ M , and radius r > 0, we denote by B(p, r)
the open geodesic ball of radius r around x and by

Ar = {p ∈ M | d(p,A) < r} (2.1)

the open neighborhood of radius r around A, respectively.
For a Lipschitz function f �= 0 on M with compact support, we call

R(f) =

∫
M
‖ gradf‖2 + V f2∫

M f2
(2.2)

the Rayleigh quotient of f and

λ0(M,V ) = inf R(f) (2.3)
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the bottom of the spectrum of (M,V ). Here the infimum is taken over all Lipschitz
functions f �= 0 on M with compact support. In the case of the Laplacian, that
is, V = 0, we write λ0(M) instead of λ0(M, 0) and call λ0(M) the bottom of the
spectrum of M . If M is complete and V is bounded from below, then λ0(M,V ) is
the minimum of the spectrum of S, more precisely, of the closure of S on C∞

c (M)
in L2(M). We call

λess(M,V ) = sup
K

λ0(M \K,V ), (2.4)

where the supremum is taken over all compact subsets K of M , the bottom of
the essential spectrum of (M,V ). In the case of the Laplacian, that is, V = 0, we
write λess(M) instead of λess(M, 0) and call λess(M) the bottom of the essential
spectrum of M . If M is complete and V is bounded from below, then λess(M,V )
is the minimum of the essential spectrum of S.

For a Borel subset A ⊆ M , we denote by |A| the volume of A. Similarly,
for a submanifold N of M of dimension n < m, we let |N | be the n-dimensional
Riemannian volume of N . We call

h(M) = inf
|∂A|
|A| and hess(M) = sup

K
h(M \K) (2.5)

the Cheeger constant and asymptotic Cheeger constant of M , respectively. Here
the infimum is taken over all compact domains A ⊆ M with smooth boundary
∂A and the supremum over all compact subsets K of M . The respective Cheeger
inequality asserts that

λ0(M) ≥ 1

4
h2(M) and λess(M) ≥ 1

4
h2
ess(M). (2.6)

The Buser inequality is a converse to Cheeger’s inequality. In the case where M
is non-compact, complete, and connected with RicM ≥ (1−m)b2, where b ≥ 0, it
asserts that

λ0(M) ≤ C1,mbh(M). (2.7)

See [4, Theorem 7.1]. Here and below, indices attached to constants indicate the
dependence of the constants on parameters. Thus C1,m indicates that the constant
depends on m and that a constant C2,m is to be expected.

For a bounded domain D ⊆ M with smooth boundary, we call

hN (D) = inf
A

|∂A ∩ intD|
|A| (2.8)

the Cheeger constant of D with respect to the Neumann boundary condition. Here
intD denotes the interior of D, and the infimum is taken over all domains A ⊆ D
with smooth intersection ∂A ∩ intD such that |A| ≤ |D|/2.

2.1. Renormalizing the Schrödinger operator

The idea of renormalizing the Laplacian occurs in [14, Section 8] and [3, Section
2]. The idea also works for Schrödinger operators, as explained in [11, Section 7].
More details about what we discuss here can be found in the latter article.
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Let M be a Riemannian manifold and V : R → M be a smooth potential. Let
ϕ be a positive λ-eigenfunction of S = Δ+ V on M . For a Borel subset A ⊆ M ,
we denote by |A|ϕ the ϕ-volume of A,

|A|ϕ =

∫
A

ϕ2. (2.9)

Similarly, for a submanifold N of M of dimension n < m, we let |N |ϕ be the
n-dimensional ϕ-volume of N .

We renormalize the Schrödinger operator S = Δ+ V of M and consider

Sϕ = m1/ϕ(S − λ)mϕ (2.10)

instead, where mϕ and m1/ϕ denote multiplication by ϕ and 1/ϕ respectively.

Now S with domain C∞
c (M) is formally and essentially self-adjoint in L2(M,dx),

where dx denotes the Riemannian volume element of M , and Sϕ is obtained from
S − λ by conjugation with m1/ϕ. Hence Sϕ with domain C∞

c (M) is formally and

essentially self-adjoint in L2(M,ϕ2dx). By [11, Proposition 7.3], we have

λ0(M,V )− λ = inf

∫
M ‖ gradf‖2ϕ2∫

M
f2ϕ2

, (2.11)

where the infimum is taken over all non-vanishing smooth functions f on M with
compact support. By approximation, it follows easily that we obtain the same
infimum by considering non-vanishing Lipschitz functions on M with compact
support.

For a bounded domain A ⊆ M with smooth boundary ∂A, we set

hϕ(M,A) =
|∂A|ϕ
|A|ϕ

. (2.12)

and call

hϕ(M) = inf
A

hϕ(M,A), and hϕ,ess(M) = sup
K

hϕ(M \K) (2.13)

the modified Cheeger constant and modified asymptotic Cheeger constant of M ,
respectively. Here the infimum is taken over all compact domains A ⊆ M with
smooth boundary ∂A and the supremum over all compact subsets of M . The
Cheeger constants in (2.5) correspond to the case ϕ = 1. By [11, Corollaries 7.4
and 7.5], we have the modified Cheeger inequalities

λ0(M,V )− λ ≥ hϕ(M)2/4 and λess(M,V )− λ ≥ hϕ,ess(M)2/4. (2.14)

In particular, if λ = λ0(M,V ), then hϕ(M) = 0.

2.2. Volume comparison

Let Hm be the hyperbolic space of dimension m and sectional curvature −1, and
denote by βm(r) the volume of geodesic balls of radius r in Hm.
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Theorem 2.15 (Bishop–Gromov inequality). Let M be a complete Riemannian
manifold of dimension m and RicM ≥ 1−m, and let x be a point in M . Then

|B(x,R)|
|B(x, r)| ≤ βm(R)

βm(r)

for all 0 < r < R. In particular, |B(x, r)| ≤ βm(r) for all r > 0.

We say that a subset D ⊆ M is star-shaped with respect to x ∈ D if, for any
z ∈ D and minimal geodesic γ : [0, 1] → M from x to z, we have γ(t) ∈ D for
all 0 ≤ t ≤ 1. Observing that Buser’s proof of Lemma 5.1 in [4] does not use the
compactness of the ambient manifold M , but only the lower bound for its Ricci
curvature, his arguments yield the following estimate.

Lemma 2.16 (Buser). Let M be a complete Riemannian manifold of dimension m
and RicM ≥ 1 −m. Let D ⊆ M be a domain which is star-shaped with respect to
x ∈ D. Suppose that B(x, r) ⊆ D ⊆ B(x, 2r) for some r > 0. Then

hN (D) ≥ Cm,r =
1

r
C1+r

2,m ,

where 0 < C2,m < 1.

2.3. Separated sets

Given r > 0, we say that a subset X ⊆ M is r-separated if d(x, y) ≥ r for all
points x �= y in X . An r-separated subset X ⊆ M is said to be complete if
∪x∈XB(x, r) = M . Any r-separated subset X ⊆ M is contained in a complete
one.

We assume now again that M is complete of dimensionm with RicM ≥ 1−m.
For r > 0 given, we let X ⊆ M be a complete 2r-separated subset. For x ∈ X , we
call

Dx = {z ∈ M | d(z, x) ≤ d(z, y) for all y ∈ X} (2.17)

the Dirichlet domain about x. Since X is complete as a 2r-separated subset of M ,

B(x, r) ⊆ Dx ⊆ B(x, 2r) (2.18)

for all x ∈ X . We therefore get from Theorem 2.15 that

|Dx| ≤ |B(x, 2r)| ≤ βm(2r)

βm(r)
|B(x, r)|. (2.19)

Furthermore, for any x ∈ X , z ∈ Dx, and minimal geodesic γ : [0, 1] → M from
x to z, we have the strict inequality d(γ(t), x) < d(γ(t), y) for all 0 ≤ t < 1 and
y ∈ X different from x. In particular, Dx is star-shaped. Using Lemma 2.16, we
conclude that

hN (Dx) ≥ Cm,r for all x ∈ X . (2.20)
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2.4. Distance functions

Suppose that M is complete and connected. Let K ⊆ M be a closed subset and
r > 0. Define a function f = fK,r on M by

f(x) =

{
d(x,K) if d(x,K) ≤ r,

r if d(x,K) ≥ r.

Then f is a Lipschitz function with Lipschitz constant 1. A theorem of Rademacher
says that the set R of points x ∈ M , such that f is differentiable at x, has full
measure in M . Clearly, ‖ gradf(x)‖ ≤ 1 for all x ∈ R.

Lemma 2.21. If x is a point in R such that grad f(x) �= 0, then x belongs to Kr\K,
gradf(x) has norm one, and there is a unique minimizing geodesic from x to K.
Moreover, ∂Kr is disjoint from R.

Proof. Let c be a smooth curve through x such that c′(0) = gradf(x). Then
(f ◦ c)(t) < f(x) for all t < 0 sufficiently close to 0 and (f ◦ c)(t) > f(x) for all
t > 0 sufficiently close to 0. Hence x /∈ K since f ≥ 0 and x /∈ M \Kr since f ≤ r.
Therefore x ∈ Kr \K, that is, 0 < f(x) = d(x,K) < r. Let γ : [0, f(x)] → M be
a minimizing unit speed geodesic from x to K. Then (f ◦ γ)(t) = f(x) − t for all
0 ≤ t ≤ f(x), hence

〈gradf(x), γ′(0)〉 = (f ◦ γ)′(0) = −1.

Since ‖ gradf(x)‖ ≤ 1 and ‖γ′(0)‖ = 1, we get that gradf(x) = −γ′(0) and hence
that γ is unique and that ‖ gradf(x)‖ = 1.

For x ∈ ∂Kr ∩ R and γ : [0, f(x)] → M a minimizing unit speed geodesic
from x to K, we would have −1 = (f ◦ γ)′(0) = 〈grad f(x), γ′(0)〉, hence that
gradf(x) �= 0, contradicting the first part of the lemma. �

By the same reason as in the last part of the above proof, we get that a point
on the boundary of K, which is the endpoint of a minimizing geodesic from some
point x ∈ M \K to K, does not belong to R.

2.5. Harnack inequalities

We say that a positive function ϕ on M satisfies a Harnack estimate if there is a
constant Cϕ ≥ 1 such that

sup
B(x,r)

ϕ2 ≤ Cr+1
ϕ inf

B(x,r)
ϕ2 (2.22)

for all x ∈ M and r > 0.
Suppose now that M is complete with RicM ≥ (1−m)b2, that |V | and ‖∇V ‖

are bounded, and that ϕ is a positive λ-eigenfunction of S = Δ+V on M . By the
estimate of Cheng and Yau [6, Theorem 6], we then have

‖∇ϕ(x)‖
ϕ(x)

≤ C3,m max{‖V − λ‖∞/b, ‖∇V ‖1/3∞ , b} (2.23)
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for all x ∈ M (with m1 = m4 = c = 0, m2 = m5 = ‖V − λ‖∞, m3 = ‖∇V ‖∞,
and a = ∞ in loc. cit.). In particular, ϕ satisfies a Harnack estimate (2.22). Notice
that Δ and λ rescale by 1/s if the Riemannian metric of M is scaled by s > 0. To
keep ϕ as an eigenfunction, V must therefore also be rescaled by 1/s.

3. Modified Buser inequality

Following Buser’s arguments in [4, Section 4], we prove the following estimate.

Lemma 3.1. Let M be a complete and connected Riemannian manifold with Ricci
curvature bounded from below and ϕ > 0 be a smooth function on M which satisfies
a Harnack inequality. Suppose that hϕ(M) = 0, and let ε, r > 0 be given. Then
there exists a bounded open subset A ⊆ M such that

|Ar \A|ϕ < ε|A|ϕ.

Proof. Renormalizing the metric of M if necessary, we assume throughout the
proof that RicM ≥ 1−m and let β = βm (see Section 2.2), where m = dimM .

Let ε, r > 0 be given. Recall the constants Cm,r and Cϕ from Lemma 2.16
and (2.22). Let A ⊆ M be a (non-empty) bounded domain with smooth boundary
such that

2β(4r)C6r+3
ϕ

β(r)Cm,r
hϕ(M,A) < ε, (3.2)

where hϕ(M,A) is the isoperimetric ratio of A as in (2.12). We partition M into
the sets

A+ =

{
x ∈ M | |A ∩B(x, r)|ϕ >

1

2Cr+1
ϕ

|B(x, r)|ϕ
}
, (3.3)

M0 =

{
x ∈ M | |A ∩B(x, r)|ϕ =

1

2Cr+1
ϕ

|B(x, r)|ϕ
}
, (3.4)

M− =

{
x ∈ M | |A ∩B(x, r)|ϕ <

1

2Cr+1
ϕ

|B(x, r)|ϕ
}
. (3.5)

Clearly, |A ∩ Dx| �= 0 for all x ∈ A+ ∪ M0. Since |B(x, r)|ϕ and |A ∩ B(x, r)|ϕ
depend continuously on x, a path from M− to A+ will pass through M0. Since A is
bounded, A+ and M0 are bounded. Moreover, ∂A+ ⊆ M0, A+ and M− are open,
and M0 is closed, hence compact. We will show that A+ satisfies an inequality as
required in Lemma 3.1. By passing from A to A+, we get rid of a possibly “hairy
structure” along the “outer part” of A. We pay by possibly losing regularity of the
boundary.

We now choose a 2r-separated subset X of M as follows. We start with a
2r-separated subset X0 ⊆ M0 such that M0 is contained in the union of the balls
B(x, 2r) with x ∈ X0. (If M0 = ∅, then X0 = ∅.) We extend X0 to a 2r-separated
subset X0 ∪X+ of M0 ∪ A+ such that M0 ∪ A+ is contained in the union of the
balls B(x, 2r) with x ∈ X0 ∪ X+. (If A+ = ∅, then X+ = ∅.) We finally extend
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X0∪X+ to a complete 2r-separated subset X = X0∪X+∪X− of M . (If M− = ∅,
then X− = ∅.) By definition, X+ ⊆ A+ and X− ⊆ M−. Since A is bounded and
|A∩B(x, r)|ϕ �= 0 for all x ∈ X0∪X+, the sets X0 and X+ are finite. By the same
reason, the set Y of x ∈ X− with |A ∩B(x, r)|ϕ �= 0 is finite.

The neighborhood M2r
0 is covered by the balls B(x, 4r) with x ∈ X0. Using

Theorem 2.15, (2.22), and (3.4), we therefore get

|M2r
0 |ϕ ≤

∑
x∈X0

|B(x, 4r)|ϕ

≤
β(4r)C4r+1

ϕ

β(r)

∑
x∈X0

|B(x, r)|ϕ

=
2β(4r)C5r+2

ϕ

β(r)

∑
x∈X0

|A ∩B(x, r)|ϕ.

For x ∈ X0 ⊆ M0, we have |A ∩B(x, r)| ≤ |B(x, r)|/2 and hence

|∂A ∩B(x, r)|
|A ∩B(x, r)| ≥ hN(B(x, r))

with hN (B(x, r)) according to (2.8). Applying Lemma 2.16 to D = B(x, r), we
therefore obtain

|∂A ∩B(x, r)|ϕ
|A ∩B(x, r)|ϕ

≥ 1

Cr+1
ϕ

|∂A ∩B(x, r)|
|A ∩B(x, r)| ≥ Cm,r

Cr+1
ϕ

.

Hence

|M2r
0 |ϕ ≤

2β(4r)C6r+3
ϕ

β(r)Cm,r

∑
x∈X0

|∂A ∩B(x, r)|ϕ

≤
2β(4r)C6r+3

ϕ

β(r)Cm,r
|∂A|ϕ

=
2β(4r)C6r+3

ϕ

β(r)Cm,r
hϕ(M,A)|A|ϕ ≤ ε|A|ϕ,

(3.6)

where we use that hϕ(M,A) satisfies (3.2).

Since any curve from A+ to M− passes through M0, A+ has distance at least
2r to M− \M2r

0 . Hence M− \M2r
0 is covered by the Dirichlet domains Dx with

x ∈ X−.

With Y as above, we let Z = X0 ∪ Y . Using (3.4) and (3.5), we have

|A ∩B(x, r)|
|B(x, r)| ≤ Cr+1

ϕ

|A ∩B(x, r)|ϕ
|B(x, r)|ϕ

≤ 1

2
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for any x ∈ Z. Letting Ac = M \A, we obtain

|Ac ∩Dx| ≥ |Ac ∩B(x, r)| ≥ 1

2
|B(x, r)|

≥ β(r)

2β(2r)
|Dx| ≥

β(r)

2β(2r)
|A ∩Dx| > 0

for any x ∈ Z, where we use in the third inequality that Dx ⊆ B(x, 2r). With the
constant Cm,r as in Lemma 2.16, we therefore get

Cm,r ≤ hN(Dx) ≤
|∂A ∩ intDx|

min{|A ∩Dx|, |Ac ∩Dx|}

≤ 2β(2r)

β(r)

|∂A ∩ intDx|
|A ∩Dx|

≤
2β(2r)C2r+1

ϕ

β(r)

|∂A ∩ intDx|ϕ
|A ∩Dx|ϕ

(3.7)

for any x ∈ Z, where we use again, now in the last inequality, that Dx ⊆ B(x, 2r).
Using (3.7) and (3.2), we conclude that

|A ∩ (M− \M2r
0 )|ϕ ≤

∑
x∈Z

|A ∩Dx|ϕ ≤
2β(2r)C2r+1

ϕ

β(r)Cm,r

∑
x∈Z

|∂A ∩ intDx|ϕ

≤
2β(2r)C2r+1

ϕ

β(r)Cm,r
|∂A|ϕ

=
2β(2r)C2r+1

ϕ

β(r)Cm,r
hϕ(M,A)|A|ϕ ≤ ε|A|ϕ,

(3.8)

where we use (3.2) in the last step, recalling that Cϕ ≥ 1.
Since A ⊆ A+ ∪M2r

0 ∪ (A ∩ (M− \M2r
0 )), we obtain

|A+|ϕ ≥ |A|ϕ − |M2r
0 |ϕ − |A ∩ (M− \M2r

0 )|ϕ
≥ (1 − 2ε)|A|ϕ.

In particular, A+ is not empty. Since A2r
+ \A+ ⊆ M2r

0 , we conclude that

|A2r
+ \A+|ϕ ≤ |M2r

0 |ϕ ≤ ε|A|ϕ ≤ ε

1− 2ε
|A+|ϕ.

In conclusion, A+ is a bounded open subset of M that satisfies an inequality
as asserted in Lemma 3.1, albeit with 2r and 2ε in place of r and ε (assuming
w.l.o.g. that ε < 1/4). �

Whereas ε > 0 should be viewed as small, the number r is large in our
application of Lemma 3.1 (see (4.9)). The difference to Buser’s discussion lies in
the fact that in Lemma 3.1, for ε and r are given, the domain A is chosen according
to (3.2).

Remark 3.9. Let M be a non-compact, complete, and connected Riemannian man-
ifold of dimension m with RicM ≥ (1−m)b2. Let V : M → R be a smooth potential
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onM , and assume that V and∇V are bounded. Let ϕ be a positive λ-eigenfunction
of the associated Schrödinger operator S on M . Following the above line of proof
and Buser’s arguments at the end of his short proof of Theorem 1.2 in [4], one
obtains inequalities of the form

λ0(M,V )− λ ≤ C ′
m,‖V −λ‖∞,‖∇V ‖∞ max{bhϕ(M), hϕ(M)2},

λess(M,V )− λ ≤ C ′
m,‖V −λ‖∞,‖∇V ‖∞ max{bhϕ,ess(M), hϕ,ess(M)2}.

(3.10)

To get rid of the squares hϕ(M)2 and hϕ,ess(M)2, respectively, we change Buser’s
argument at the end of his proof of [4, Theorem 7.1] and estimate

hϕ(M), hϕ,ess(M) ≤ sup
x∈M

hϕ(B(x, 1)) ≤ C2
ϕ sup

x∈M
h(B(x, 1))

≤ 2C2
ϕ sup

x∈M
λ0(B(x, 1))1/2 ≤ 2C2

ϕλ0(B)1/2

≤ bC′′
m,‖V−λ‖∞,‖∇V ‖∞ ,

where we use the definition of hϕ and hϕ,ess as in (2.13), the Harnack constant of
ϕ as in (2.22), the Cheeger inequality (2.6), and Cheng’s [5, Theorem 1.1], where
B denotes a ball of radius 1 in the m-dimensional hyperbolic space of sectional
curvature −b2. We finally arrive at the inequalities

λ0(M,V )− λ ≤ Cm,‖V −λ‖∞,‖∇V ‖∞bhϕ(M),

λess(M,V )− λ ≤ Cm,‖V −λ‖∞,‖∇V ‖∞bhϕ,ess(M),
(3.11)

which extend Buser’s [4, Theorem 7.1]. The dependence of Cm,‖V −λ‖∞,‖∇V ‖∞ on
C3,m (as in (2.23)), ‖V − λ‖∞, and ‖∇V ‖∞ is exponential in our approach and,
in particular, exponential in λ. Therefore the use of the estimates seems to be
restricted. However, together with (2.14), they have at least the consequence that
λ0(M,V ) = λ if and only if hϕ(M) = 0 and that λess(M,V ) = λ if and only if
hϕ,ess(M) = 0.

4. Back to Riemannian coverings

We return to the situation of a Riemannian covering as in the introduction. Sup-
pose that the Ricci curvature of M0 is bounded from below. Let V0 be a smooth
potential onM0 with ‖V0‖∞, ‖∇V0‖∞ < ∞ and set V1 = V0◦π. Let λ = λ0(M0, V0)
and ϕ0 be a positive λ-eigenfunction of S0 = Δ+ V0 on M0. Then ϕ = ϕ0 ◦ π is a
positive λ-eigenfunction of S1 = Δ+ V1 on M1.

Theorem 4.1. If λess(M0, V0) > λ0(M0, V0), then λ0(M1, V1) = λ0(M0, V0) if and
only if the covering π : M1 → M0 is amenable.

Consider the following three implications:

1. If π : M1 → M0 is amenable, then λ0(M1, V1) = λ0(M0, V0).
2. If λ0(M1, V1) = λ0(M0, V0), then hϕ(M1) = 0.
3. If hϕ(M1) = 0, then π : M1 → M0 is amenable.
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The first one is [1, Theorem 1.2] and the second is an immediate consequence of
(2.14). These two assertions hold without any assumptions on the curvature of M
and the potential V . The third one does not hold without any further assumptions.
We require that the Ricci curvature of M0 is bounded from below, that the poten-
tial V0 and its derivative dV0 are bounded, and that λess(M0, V0) > λ0(M0, V0).
To prove Theorem 4.1, and therewith also Theorem 1.3, it remains to establish
the third implication under these additional assumptions. We need to prove that
the right action of Γ0 on Γ1\Γ0 is amenable. To that end, we will show that the
Følner criterion for amenability is satisfied.

Følner criterion 4.2. The right action of a countable group Γ on a countable set X
is amenable if and only if, for any finite subset G ⊆ Γ and ε > 0, there is a finite
subset F ⊆ X such that

#(F \ Fg) < ε#(F ) for all g ∈ G.

Proof of Theorem 4.1. Since λess(M0, V0) > λ0(M0, V0), there is a compact do-
main K ⊆ M0 such that

λ0(M0 \K,V0) > λ0(M0, V0). (4.3)

Since π : M1 \ π−1(K) → M0 \K is a Riemannian covering, we have

λ0(M1 \ π−1(K), V1) ≥ λ0(M0 \K,V0). (4.4)

Note that the manifolds M0 \ K and M1 \ π−1(K) might not be connected, but
the assertion still holds since the inequality applies to each component of M0 \K
and connected component of M1 \ π−1(K) over it.

Let χ0 be a smooth cut-off function on M0 which is equal to 0 on a neigh-
borhood of K in M0 and equal to 1 outside a compact domain K0 ⊆ M0 and set
χ = χ0 ◦ π.

Lemma 4.5. For all r, ε > 0, there is a bounded open subset A ⊆ M1 and a point
x ∈ K0 such that π−1(x) ∩ A �= ∅ and

#
(
π−1(x) ∩ (Ar \A)

)
#
(
π−1(x) ∩A

) < ε.

Proof. Since M1 is complete with Ricci curvature bounded from below and
hϕ(M1) = 0, Lemma 3.1 implies that there exist bounded open subsets An ⊆ M1

such that

|Ar
n \An|ϕ
|An|ϕ

<
1

n
. (4.6)

Let fn be the Lipschitz function on M1 with compact support defined by

fn(x) =

{
1− d(x,An)/r for x ∈ Ar

n,

0 for x ∈ M1 \Ar
n.

(4.7)
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For the ϕ-Rayleigh quotient of fn, we have

Rϕ(fn) =

∫
M1

‖ gradfn‖2ϕ2∫
M1

f2
nϕ

2
≤
∫
Ar

n\An
‖ gradfn‖2ϕ2∫
An

f2
nϕ

2

=
1

r2
|Ar

n \An|ϕ
|An|ϕ

≤ 1

nr2
.

(4.8)

Normalize fn to gn = fn/‖fn‖, where ‖fn‖ denotes the modified L2-norm of fn,
that is, ‖fn‖2 =

∫
M1

f2
nϕ

2. Then

Rϕ(gn) = Rϕ(fn) ≤ 1/nr2 → 0.

Let R ⊆ M0 be the subset of full measure such that all gn are differentiable at all
y ∈ π−1(R). Suppose now that∑

y∈π−1(x)

‖ grad gn(y)‖2 ≥ ε
∑

y∈π−1(x)

gn(y)
2

for all n ∈ N and x ∈ K0 ∩R. Since π is a Riemannian covering and ϕ is constant
along the fibers of π, we then have∫

π−1(K0)

‖ grad gn‖2ϕ2 ≥ ε

∫
π−1(K0)

g2nϕ
2.

Since ‖gn‖ = 1 and Rϕ(gn) ≤ 1/nr2 → 0, we get that∫
π−1(K0)

g2nϕ
2 → 0 and, as a consequence,

∫
M1\π−1(K0)

g2nϕ
2 → 1.

Consider now hn = χgn with χ as further up. Then hn has compact support in
M1 \ π−1(K). Furthermore,∫

M1

h2
nϕ

2 =

∫
π−1(K0)

h2
nϕ

2 +

∫
M1\π−1(K0)

g2nϕ
2 → 0 + 1

and ∫
M1

‖ gradhn‖2ϕ2 ≤ 2

∫
π−1(K0)

(
g2n‖ gradχ‖2 + χ2‖ grad gn‖2

)
ϕ2

+

∫
M\π−1(K0)

‖ grad gn‖2ϕ2 → 0,

where we use that 0 ≤ χ ≤ 1, that gradχ is uniformly bounded, and that∫
M1

‖ grad gn‖2ϕ2 → 0. Hence the modified Rayleigh quotients Rϕ(hn) → 0. This

is in contradiction to (4.4) since the hn are Lipschitz functions on M1 with com-
pact support in M1 \ π−1(K0). It follows that there are an n and an x ∈ K0 ∩R
such that ∑

y∈π−1(x)

‖ grad gn(y)‖2 < ε
∑

y∈π−1(x)

gn(y)
2.



32 W. Ballmann, H. Matthiesen and P. Polymerakis

Since gn = 0 on M1 \ Ar
n, we must have π−1(x) ∩ Ar

n �= ∅. Furthermore, since
0 ≤ gn ≤ 1/‖fn‖ and || grad gn|| = 1/r‖fn‖ on π−1(R) ∩ (Ar

n \ An), we conclude
that

1

r2‖fn‖2
#(π−1(x) ∩ (Ar

n \An)) ≤
ε

‖fn‖2
#(π−1(x) ∩ Ar

n).

This yields that

#(π−1(x) ∩ (Ar
n \An)) < εr2#(π−1(x) ∩Ar

n).

Since Ar
n is the disjoint union of An with Ar

n \An, we conclude that

#(π−1(x) ∩ (Ar
n \An)) <

εr2

1− εr2
#(π−1(x) ∩An)

as long as ε < 1/r2. In particular, π−1(x) ∩ An �= ∅ if ε < 1/r2. �

We return to the proof of the amenability of the right action of Γ0 on Γ1\Γ0.
We will use Følner’s criterion 4.2 and let G ⊆ Γ0 be a finite subset and ε > 0. We
need to show that there is a non-empty finite subset F ⊆ Γ1\Γ0 such that

#(F \ Fg) < ε#(F ) for all g ∈ G.

Write K0 as the union of finitely many compact and connected domains Di ⊆ M0

which are evenly covered with respect to the universal covering π0 : M → M0 of
M0. For each i, let Bi be a lift of Di to a leaf of π0 over Di. Then each Bi is a
compact subset of M with π0(Bi) = Di. Since there are only finitely many Bi and
all of them are compact, there is a number r > 0 such that

d(u, g−1u) < r for all g ∈ G and u ∈ ∪iBi. (4.9)

Let R ⊆ Γ0 be a set of representatives of the right cosets of Γ1 in Γ0, that is,
of the elements of Γ1\Γ0. Corresponding to ε and r, choose x ∈ K0 and A as
in Lemma 4.5. Fix preimages u ∈ M and y = π1(u) ∈ M1 of x under π0 and
π, respectively, and write π−1

0 (x) = Γ0u as the union of Γ1-orbits Γ1gu. Then
π−1(x) = {π(gu) | g ∈ R}. Set

F = {Γ1h | h ∈ R and π1(hu) ∈ π−1(x) ∩A}.

Then #(F ) = #(π−1(x) ∩A) �= 0.
Let now g ∈ G and h ∈ R with Γ1h ∈ F \ Fg. Then

π1(hu) ∈ π−1(x) ∩ A and π1(hg
−1u) ∈ π−1(x) \A.

Since

d(π1(hu), π1(hg
−1u)) ≤ d(hu, hg−1u) = d(u, g−1u) < r

for all g ∈ G, we get that π1(hg
−1u) ∈ Ar. Hence π1(hg

−1u) belongs to Ar \ A
and therefore

#(F \ Fg) ≤ #
(
π−1(x) ∩Ar \A)

)
< ε#

(
π−1(x) ∩ A

)
= ε#(F ).
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Since G and ε were arbitrary, we conclude from the Følner criterion 4.2 that the
right action of Γ0 on Γ1\Γ0 is amenable. �

Proof of Theorem 1.10.2. Let M0 be the interior of a compact manifold N0 as in
the definition of conformally compact (in the introduction), and denote by g0, h0,
and ρ0 the corresponding Riemannian metrics and defining function ρ0 of ∂N0. Let
X = gradρ0/‖ gradρ0‖2, where the gradient of ρ0 is taken with respect to h0. Since
∂N0 is compact, the flow of X leads to a diffeomorphism of a neighborhood of ∂N0

in N0 with ∂N0× [0, y0) with respect to which ρ(x, y) = y for (x, y) ∈ ∂N0× [0, y0).
Then

g0(x, y) =
1

y2
h0(x, y)

on ∂N0 × (0, y0) = ∂N0 × [0, y0)∩M0. This is reminiscent of the upper half-space
model of the hyperbolic space Hm.

From standard formulas for conformal metrics it is now easy to see that, for
all x0 ∈ ∂N0 and ε > 0, there exists a neighborhood U of (x0, 0) ∈ ∂N0 × [0, y0)
such that the sectional curvature of each tangent plane at each (x, y) in U ∩M0

is in

(−(∂νρ(x, 0))
2 − ε,−(∂νρ(x, 0))

2 + ε),

where ν denotes the inner normal ofN0 along ∂N0 with respect to h0. Note that, for
any r > 0, the g0-ball B((x0, y), r)) is contained in U ∩M0 for all sufficiently small
y > 0. From Cheng’s [5, Theorem 1.1], we conclude that λ0(M0) ≤ a2(m− 1)2/4.

Since M0 is homotopy equivalent to N0, there is a covering π1 : N1 → N0

which restricts to the covering M1 → M0 and such that M1 is the interior of the
manifold N1, but where the boundary ∂N1 of N1 need not be compact anymore.
Nevertheless, lifting g0, h0, and ρ0 to Riemannian metrics g1 on M1, h1 on N1,
and defining function ρ1 = ρ0 ◦ π1 of ∂N1, the above statement about sectional
curvature remains valid for

∂N1 × [0, y0) = π−1(∂N0 × [0, y0)).

In particular, we have λ0(M1) ≤ a2(m− 1)2/4.
Now we are ready for the final step of the proof. By assumption and (1.1),

a2(m− 1)2/4 = λ0(M0) ≤ λ0(M1) ≤ a2(m− 1)2/4.

Hence λ0(M0) = λ0(M1) as asserted. �

Proof of Proposition 1.13.1. By definition, λess(M1) > λ0(M1) =: λ would imply
that λ does not belong to the essential spectrum of M1. Hence λ would be an
eigenvalue of M1 with a square integrable positive eigenfunction ϕ. On the other
hand, the lift ψ of a positive λ-eigenfunction from M0 to M1 is also a positive
λ-eigenfunction, but definitely not square integrable since π is an infinite cover-
ing. Now by Sullivan’s [14, Theorems 2.7 and 2.8], the space of positive, but not
necessarily square integrable, λ-eigenfunctions on M1 is of dimension one. Hence
ψ would be a multiple of ϕ, a contradiction. �
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Proof of (1.5). By [7, Theorem 3.1], each end of M0 has a neighborhood of the
form U = Γ∞\B, where B is a horoball in the universal covering space M of M0

and Γ∞ ⊆ Γ0 is the stabilizer of the center ξ of B in the sphere of M at infinity.
Furthermore, Γξ leaves the Busemann functions associated to ξ invariant. We let b
be the one such that {b = 0} is the horosphere ∂B. Then the level sets {b = −y},
y > 0, are horospheres foliating B. They are perpendicular to the unit speed
geodesics γz starting in z ∈ {b = 0} and ending in ξ. Moreover, b(γz(y)) = −y
and grad b(γz(y)) = −γ̇z(y). Since Busemann functions are C2 (see [8, Proposition
3.1]), we obtain a C2-diffeomorphism

{b = 0} × (0,∞) → B, (z, y) �→ γz(y).

Since Γξ leaves b invariant, we arrive at a C2-diffeomorphism U ∼= N × (0,∞),
where N = Γξ\{b = 0} and where the curves γx = γx(y) = (x, y) are unit speed
geodesics perpendicular to the cross sections {y = const}. The latter lift to the
horospheres {b = const} in B and, therefore, have second fundamental form ≤ −a
with respect to the unit normal field Y = ∂/∂y. In particular, their mean curvature
is ≤ (1−m)a with respect to Y . For the divergence of Y , we have

div Y =
∑

〈∇EiY,Ei〉 = −
∑

〈Y,∇EiEi〉,

where (Ei) is a local orthonormal frame. We choose it such that E1 = Y . Then
∇E1E1 = 0, and we see that div Y is the mean curvature of the corresponding
cross section with respect to the unit normal field Y , hence is ≤ (1−m)a. All this
is well known, but we recall it for convenience.

For a compact domain A in U with smooth boundary ∂A and outer unit
normal field ν, we obtain from the above that

|∂A| ≥ −
∫
∂A

〈Y, ν〉 = −
∫
A

div Y ≥ a(m− 1)|A|.

Hence the Cheeger constant of U is at least a(m − 1). The claim about λess(M0)
now follows from the Cheeger inequality (2.6). �
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Abstract. We prove that conformal metrics on domains of the round sphere,
with non-negative constant Q-curvature, and non-negative scalar curvature,
has positive mean curvature on the boundary of embedded balls (in the round
metric). As a result, such metrics have certain reflection symmetries if the
complement of the domain is contained in a lower-dimensional round sphere.
We also prove that the development map of a locally conformally flat metric
with non-positive Schouten tensor is an embedding.
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1. Introduction

An important question in conformal geometry is to understand under what condi-
tions the development map of a locally conformally flat manifold into the standard
sphere is an embedding. Another related question is to understand conditions on
a domain Ω ⊂ Sn under which a complete conformal metric exists on Ω with con-
stant scalar curvature; also relevant is the uniqueness of such a metric, or possibly
cataloging such metrics when uniqueness fails and Ω is some canonical domain in
Sn such as Sn \ Sl for some 0 ≤ l < n.

In [SY88] Schoen and Yau found some sufficient conditions for the develop-
ment map of a locally conformally flat manifold to be an embedding. In particular
they proved that the answer is positive if the Yamabe constant of (M, g) is non-
negative. No positive result is known, as far as we are aware, in the case when
the Yamabe constant of (M, g) is negative. In general the development map may
not be an embedding, as shown by the elementary examples S1r × Hn−1 where r

c© Springer Nature Switzerland AG 2020
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is the radius of the circle; moreover, these examples also show that the holonomy
representation of the fundamental group of M under the development map may
not be discrete. However, Kulkarni and Pinkall showed in [KP86] that for a closed
conformally flat n-manifold M with infinite fundamental group, its development
map d : M �→ Sn is a covering map, iff d is not surjective.

In [SY88], Schoen–Yau also proved that if a complete metric g = v−2(x)|dx|2
exists on a domain Ω ⊂ Rn with its scalar curvature having a positive lower bound,
then the Hausdorff dimension of ∂Ω has to be ≤ n−2

2 . In another direction, Schoen
constructed in [S88] complete conformal metrics with scalar curvature 1 on Sn \Λ
when Λ is a certain subset of Sn, including the case when it is any finite set with at
least two points. Later Mazzeo and Parcard [MP96] [MP99] proved that if Ω ⊂ Sn

is a domain such that Sn \ Ω consists a finite number of smooth submanifold of
dimension < n−2

2 , then one can find a complete metric g = v−2(x)|dx|2 on Ω with
its scalar curvature identical to +1.

For the negative scalar curvature case, the works of Löwner–Nirenberg [LN75],
Aviles [A82], and Veron [V81] imply that if Ω ⊂ Sn admits a complete, conformal
metric with negative constant scalar curvature, then the Hausdorff dimension of
∂Ω > n−2

2 . Löwner–Nirenberg [LN75] also proved that if Ω ⊂ Sn is a domain with

smooth boundary ∂Ω of dimension > n−2
2 , then there exists a complete metric

g = v−2(x)|dx|2 on Ω with its scalar curvature = −1; such a metric is unique
when ∂Ω consists of hypersurfaces. This result was later generalized by D. Finn
[F95] to the case of ∂Ω consisting of smooth submanifolds of dimension > n−2

2
and with boundary.

It is natural to ask whether some kind of additional curvature condition in
the negative Yamabe constant case would force the development map to be an
embedding as well, and whether further curvature conditions would improve the
estimate on the Hausdorff dimension of ∂Ω?

The additional curvature conditions are often imposed in terms of the σk or
Q-curvature of a representative metric g. The σk-curvature, denoted as σk(Ag),
refers to the kth elementary symmetric functions of the eigenvalues of the 1-1
tensor derived from the Weyl–Schouten tensor Ag of the conformal metric g,

Ag =
1

n− 2

{
Ric− R

2(n− 1)
g

}
.

Note that the σ1(Ag) curvature is simply the scalar curvature of g, up to a dimen-
sional constant.

The condition involving the σk-curvature often assumes that the Weyl–Schou-
ten tensor Ag is in the Γ+

k class for some k > 1, i.e., the eigenvalues, λ1 ≤
· · · ≤ λn, of Ag at each x satisfy σj(λ1, . . . , λn) > 0 for all j, 1 ≤ j ≤ k. It is
also natural to consider metrics whose Weyl–Schouten tensor Ag is in Γ−

k class,
namely, (−1)jσj(λ1, . . . , λn) > 0 for all j, 1 ≤ j ≤ k. It is known that the operator
w �→ σk(Ae2wg0) is elliptic when the Weyl–Schouten tensor of g = e2wg0 is in either

Γ+
k or Γ−

k class.



Geometry of a Class of Locally Conformally Flat Metrics 39

The Q-curvature of a metric g is defined through

Qg = cn|Rcg|2 + dn|Rg|2 −
ΔgRg

2(n− 1)
,

with cn and dn being some dimensional constants: cn = − 2
(n−2)2 and dn =

n3−4n3+16n−16
8(n−1)2(n−2)2 . Note that Qg involves 4th-order derivatives of the metric. The

Q-curvatures of two conformally related metrics g and gu = u
n+4
n−4 g (for n �= 4)

have the following relation through a 4th-order differential operator Pg, called the
Panietz-type operator:

Pg(u) =
n− 4

2
Qguu

n+4
n−4 for n �= 4,

where Pg(u) = (−Δg)
2u+div[(anRgg+bnRicg)du]+

n−4
2 Qgu for some dimensional

constants an and bn. For n = 4, Pg(u) = (−Δg)
2u + div[(23Rg − 2Ricg)du], and

the relation between the Q-curvatures takes the following form:

Pg(w) + 2Qg = 2Qe2wge
4w.

Pg enjoys certain conformal covariance properties much like those of the conformal
Laplace operator; see [CY97] for more details.

In [CHgY04], Chang, Hang, and Yang proved that if Ω ⊂ Sn (n ≥ 5) admits
a complete, conformal metric g with

σ1(Ag) ≥ c1 > 0, σ2(Ag) ≥ 0, and

|Rg|+ |∇gR|g ≤ c0, (1.1)

then dim(Sn \ Ω) < n−4
2 . This has been generalized by M. Gonzáles [G04] to the

case of 2 < k < n/2: if Ω ⊂ Sn admits a complete, conformal metric g with

σ1(Ag) ≥ c1 > 0, σ2(Ag), . . . , σk(Ag) ≥ 0, and (1.1),

then dim(Sn \ Ω) < n−2k
2 . See also the work of Guan, Lin and Wang [GLW04].

[CHgY04] also contains a result involving conditions on the Q-curvature:
if Ω ⊂ Sn (n ≥ 3) admits a complete, conformal metric g with Rg ≥ c1 > 0
and Qg ≥ c2 > 0, then dim(Sn \ Ω) < n−4

2 . In particular, this means Ω = Sn

when n ≤ 4. If we replace Qg ≥ c2 > 0 by Qg ≥ 0, then when n ≥ 5, we have
dim(Sn \ Ω) ≤ n−4

2 .
There are earlier results involving the Q-curvature that are relevant to the

discussion here: they concern the radial symmetry and classification of solutions

to constant Q-curvature equations on Rn. When g = u
4

n−4 |dx|2 on a domain in
Rn, u > 0, n �= 4, the Q-curvature Qg of g is computed through

(−Δ)
2
u =

n− 4

2
Qgu

n+4
n−4 ;

while on a domain in R4, if g = e2w|dx|2, then

(−Δ)
2
w = 2Qge

4w.
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In [CY97] Chang and Yang proved that any entire smooth solution u(x) to

(−Δ)
n
2 u(x) = (n− 1)!enu(x) on Rn (1.2)

with the asymptotic behavior as x →∞:

u(x) = log
2

1 + |x|2 + w

(
x

1 + |x|2

)
for some

smooth function w defined near 0,

(1.3)

must be rotationally symmetric with respect to some point in Rn, and of the form

log
2λ

1 + λ2|x− x0|2
for some x0 ∈ Rn and constant λ > 0. (1.4)

In [L98] C.S. Lin obtained related results. For (1.2) in the case n = 4, Lin
obtained the same result as in [CY97] under an integral assumption∫

R4

e4u(y)dy =
8π2

3
. (1.5)

Lin’s result actually implies that any solution u to (1.2) for the n = 4 case with∫
R4 e

4u(y)dy < ∞ must satisfy
∫
R4 e

4u(y)dy ≤ 8π2

3 , with equality iff u is of the form
(1.4).

Lin also obtained a related result for the positive constant Q-curvature equa-
tion on Rn, n > 4, {

Δ2u(x) = u
n+4
n−4 (x), x ∈ Rn;

u(x) > 0, x ∈ Rn.
(1.6)

His result implies that any solution to (1.6) must be rotationally symmetric with
respect to some point x0 ∈ Rn, and of the form

u(x) = cn

(
λ

1 + λ2|x− x0|2

)n−4
2

, (1.7)

for some λ > 0 and a dimensional constant cn.
The proofs in both [CY97] and [L98] involve the method of moving planes.

In [X00] X. Xu provided a proof for the rotational symmetry of solutions to (1.6)
using the method of moving spheres.

Considering also that the canonical locally conformally flat metric on Sn \
Sn−k ∼= Sk−1 ×Hn−k+1, given via stereographic coordinates of Sn \ Sn−k as

dx2
1 + · · ·+ dx2

n

x2
1 + · · ·+ x2

k

=
dρ2 + ρ2dω2

Sk−1 + dx2
k+1 + · · ·+ dx2

n

ρ2

= dω2
Sk−1 +

dρ2 + dx2
k+1 + · · ·+ dx2

n

ρ2

with ρ2 = x2
1 + · · · + x2

k, has its scalar curvature equal to (n − 1)(2k − n − 2)
and its Q-curvature equal to 8(2k− n)(2k− n− 4)/n, the sign of the Q-curvature
alone is a poor indicator of how the metric behaves. Our first result, stated below,
stems from this observation that it is natural to impose some additional condition
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involving the scalar curvature when considering global properties of solutions to
the Q-curvature equation.

Theorem 1.1. Let g be a conformal metric on Ω ⊂ Sn such that

Qg ≡ 1 or 0 in Ω, (1.8)

and

Rg ≥ 0 in Ω. (1.9)

(i) If Sn \Ω contains more than one point and g is complete on Ω, then for any
ball B ⊂⊂ Ω in the canonical metric gSn , the mean curvature of its boundary
∂B in metric g with respect to its inner normal is positive;

(ii) If Sn \Ω is empty or consists of one point, then g is the round metric on Sn

in the case Qg ≡ 1; and the flat metric on Sn \ {∞} ∼ Rn in the case Qg ≡ 0
and Sn \ Ω = {∞}.

A corollary of Theorem 1.1 is the following

Corollary 1.2. Suppose that Γ ⊂ Sl for l ≤ n−2
2 and contains more than one point.

Then any complete, conformal metric g on Sn \Γ satisfying (1.8) and (1.9) has to
be symmetric with respect to rotations of Sn which leave Sl invariant.

A second corollary of Theorem 1.1 is the following

Corollary 1.3. Suppose that g = u(x)4/(n−4)gSn is a conformal metric on Ω � Sn

such that (1.8) and (1.9) hold, and that g is a complete metric on Ω or u(x) →
∞ as x → ∂Ω, then there exists a constant C > 0 such that u(x)2/(n−4) ≤
Cδ(x, ∂Ω)−1, where δ(x, ∂Ω) is the distance from x to ∂Ω in the metric gSn.

Remark 1.4. Corollary 1.2 can be considered as extending the consideration in
[CY97, L98, X00] to cases where the solutions are not defined on Sn or Rn, but
on some more general Ω � Sn. Note that the corresponding (classification) results
on Sn or Rn in [CY97, L98, X00] hold without assuming (1.9), but assuming (1.5)
only when n = 4. We will see below – Remark 1.7 and the last 2 paragraphs for
the n = 4 case in the proof of Theorem1.1 in the next section – that, in the n = 4
context, (1.5) is equivalent to (1.9).

In [Sc88] Schoen proved a version of Theorem 1.1 and Corollary 1.2 for a
conformal, complete metric on Ω � Sn with non-negative constant scalar curva-
ture using a moving spheres argument, and proved a version of Corollary 1.3 in
the same setting using a blow up argument. There have been many similar sym-
metry results on entire solutions or entire solutions with one point deleted to the
constant σk curvature equation in the positive Γk class, which are generalizations
of the Yamabe equation; a partial list of work in this direction includes those of
Viaclovsky [V00a][V00b], Chang, Gursky and Yang [CGY02b][CGY03], Li and Li
[LL03][LL05], Guan, Lin and Wang [GLW04], Li[L06].

Remark 1.5. In Theorem 1.1 we use the sign convention for the mean curvature
as in [Sc88], namely, the mean curvature of the boundary of round Euclidean balls
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with respect to their inner normals is positive, as is the mean curvature of the
boundary of round balls in Sn when they are confined to a hemisphere – note that
as soon as a round ball in Sn contains a hemisphere, the mean curvature of its
boundary with respect to its inner normal becomes negative in our convention.

Since umbilicity is invariant under a conformal change of metric, and round
balls are umbilic in the canonical metric, our theorem implies that all principal
curvatures of ∂B in metric g are positive.

Remark 1.6. The canonical locally conformally flat metric on Sn \ Sn−k ∼= Sk−1 ×
Hn−k+1, for appropriate range of k, provides examples of metrics satisfying the
assumptions in Theorem 1 with Γ = Sn−k. The existence of conformal metrics sat-
isfying the assumptions in Theorem 1 for more general Γ is an interesting question,
but will not be addressed here.

In a local conformal representation for g(x) = u(x)
4

n−4 |dx|2 when n �= 4, we
have

(n− 4)Rg(x) = −4(n− 1)u(x)−
n

n−4

(
Δu(x) +

2

n− 4

|∇u(x)|2
u(x)

)
. (1.10)

We see that the condition (1.9) for n > 4 implies that

Δu(x) ≤ 0. (1.11)

The analog of (1.10) when n = 4 and g = e2w|dx|2 is

Rg(x) = −6e−2w(x)
(
Δw(x) + |∇w(x)|2

)
. (1.12)

We remark that in Y. Li’s joint work [LL05] with A. Li on the study of
entire solutions to a class of conformally invariant PDEs, and later on in his study
of local behavior near isolated singularities of such solutions in [L06], condition
(1.11) was used. One important ingredient in [LL05, L06] is that they work with
the equations of u as well as of its classical Kelvin transforms with respect to the
spheres ∂B(x0, R):

ux0,R(x) :=
Rn−2

|x− x0|n−2
u

(
x0 +

R2(x− x0)

|x− x0|2

)
,

and that Δu(x) ≤ 0 for |x − x0| < (≥)R is equivalent to Δux0,R(x) ≤ 0 for
|x− x0| > (≤)R. This comes from computing the scalar curvature of a conformal

metric g in the set up: g(x) = u(x)
4

n−2 |dx|2

Rg(x) = −4
n− 1

n− 2
u(x)−

n+2
n−2Δu(x). (1.13)

This is different from (1.10). Note that under the inversion in ∂B(x0, R) : x �→
x0 +

R2(x−x0)
|x−x0|2 , the same metric g is represented as

g(x0 +
R2(x− x0)

|x− x0|2
) = u(x0 +

R2(x− x0)

|x− x0|2
)

4
n−2

(
R

|x− x0|

)4

|dx|2

= ux0,R(x)
4

n−2 |dx|2,
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so

Rg

(
x0 +

R2(x− x0)

|x− x0|2

)
= −4

n− 1

n− 2
ux0,R(x)

− n+2
n−2Δux0,R(x).

In dealing with the Q-curvature equations, the metric g is often represented

as g(x) = u(x)
4

n−4 |dx|2 (when n �= 4), so the corresponding transformation under
the inversion in ∂B(x0, R) is

uQ;x0,R(x) =
Rn−4

|x− x0|n−4
u

(
x0 +

R2(x− x0)

|x− x0|2

)
,

which gives

u(y)
4

n−4 |dy|2
∣∣∣
y=x0+

R2(x−x0)

|x−x0|2
= uQ;x0,R(x)

4
n−4 |dx|2.

In this set up, uQ;x0,R(x) would satisfy (1.6) if u(x) does, although Δu(x0 +
R2(x−x0)
|x−x0|2 ) ≤ 0 is not equivalent to ΔuQ;x0,R(x) ≤ 0. However, condition (1.9) is

a geometric condition and would imply (1.11) (when n > 4) for any of its local

representation in the form above, namely, (1.9) would imply Δu(x0+
R2(x−x0)
|x−x0|2 ) ≤ 0

as well as ΔuQ;x0,R(x) ≤ 0 – this is essential for our argument; (1.11) itself is not
a geometrically invariant condition.

These discussions have their analogs in the n = 4 case, where we write g(x) =
e2w(x)|dx|2, and under the inversion in ∂B(x0, R), the metric g is represented as

g(x0 +
R2(x−x0)
|x−x0|2 ) = e2wQ;x0,R(x)|dx|2, where

wQ;x0,R(x) = w

(
x0 +

R2(x− x0)

|x− x0|2

)
+ ln

(
R2

|x− x0|2

)
.

Remark 1.7. Theorem 1 implies that Sn \ Ω cannot be a single point for the case
of Qg = 1 and g complete on Ω. For, if that were the case, we could place that
single point at ∞ so as to obtain an entire solution on Rn, and the conclusion in
(i) of Theorem 1 would imply that, at any x ∈ Rn, for any unit vector e in Rn,
and for any r > 0, ∇eu(x) +

n−4
2r u(x) ≥ 0 for the n > 4 case – see the set up in

the next section, and this would imply ∇eu(x) = 0, which would imply that u is
a constant in Rn, but constants are not solutions to (1.2) or (1.6).

In [CY97, L98, X00] cited above, one technical step is to establish that entire
solutions u to (1.2) under their respective assumptions and to (1.6) are superhar-
monic on Rn. In the n > 4 case these authors proved that all entire solutions to
(1.6) are of the standard form (1.7). But in the n = 4 case the superharmonicity
of u is not enough to lead to the same classification; condition (1.5) is needed. In
fact, Theorem 1.2 in [L98] Lin gives some properties of entire solutions to (1.2) for

n = 4 satisfying
∫
R4 e

4u(y)dy < 8π2

3 ; and in [CC01] Chang and Chen constructed
such solutions. These solutions are not of the form (1.7), and from the perspec-
tive of Theorem 1, the conclusions of Theorem 1 does not hold on all Euclidean
spheres for these solutions. This means that condition (1.9) is related to, but differ-
ent from, the superharmonicity of a particular representation of the metric, that it
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is needed for the conclusions of Theorem 1, and that these solutions do not satisfy
(1.9). These properties can be verified directly on large Euclidean spheres using
the expansion (1.10) and (1.11) of [L98].

Remark 1.8. Corollary 1.3 follows from Theorem 1.1 as Schoen did in [Sc88] in the
case of constant positive scalar curvature equation. The outline of the argument
goes as follows. If the upper bound does not hold, then a sequence of rescaled
solutions centered along a sequence of points approaching ∂Ω would converge to
an entire solution on Rn to the same equation. The solutions of the latter equation
are completely classified; they correspond to the round metric on Sn, therefore
their mean curvatures (and principal curvatures) along large Euclidean spheres
become negative. But in the closure of any such a large Euclidean ball, this metric
is the uniform limit of a sequence of metrics whose principal curvatures along its
boundary sphere is positive by the version of Theorem 1.1. This would cause a
contradiction; therefore Corollary 1.3 must hold. We will not supply a detailed
proof of Corollary 1.3 here.

Remark 1.9. Although Schoen’s result in [Sc88] corresponding to Theorem 1.1
was stated and proved for a constant positive scalar curvature metric on a domain
Ω � Sn, an examination of the proof indicates that, as long as the three main
ingredients for the moving plane/sphere arguments are valid, the same conclusion
can be drawn, namely, the same conclusion as given in Theorem 1 continues to hold
if the following three steps are still valid: (i). the initiation of the inequality between
a solution in a half-space/ball enclosing its singular set and its reflected solution;
(ii). the above inequality is a strict point wise inequality unless it becomes a
point wise equality in the entire comparison domain; and (iii). the strict inequality
continues to hold if the half-space/ball is moved in a small open neighborhood.

Both (i) and (iii) involve proving that the solution in a neighborhood of its
singular set stays above its reflected solution (which is a smooth solution to the
equation near the singular set) by a positive amount – we did this here by using
the maximum principle for superharmonic functions in a domain with a boundary
component having zero Newtonian capacity, without imposing an explicit growth
condition of the solution toward its singular set.

Both (ii) and (iii) involve using the strong maximum principle and the Hopf
boundary lemma for the difference between the solution and its reflected solution,
when this difference is assumed to be non-negative. But this part works for solu-
tions to the constant scalar curvature equation, even if the constant is non-positive;
in fact, it works even for the constant σk curvature equation, as long as the equa-
tion is elliptic. (i) and (iii) can be established if we assume that the conformal
factor tends to ∞ uniformly upon approaching the boundary of its domain. We
thus have

Theorem 1.10. Let g be a conformal metric on Ω � Sn such that (a) σk(Ag) =

a constant in Ω, (b) Ag ∈ Γ+
k (or Γ−

k respectively) pointwise in Ω, and (c) if we
write g = e2wgSn , then w → ∞ uniformly upon approaching ∂Ω. Then for any ball
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B ⊂⊂ Ω in the canonical metric gSn , the mean curvature of its boundary ∂B in
metric g with respect to its inner normal is positive.

Theorem 1.10 essentially appeared in earlier work, maybe not in such ex-
plicit formulation, see, for example, estimate (27) in [LL05]. Some computational
sketches will be provided in the next section to illustrate the implementation of
the argument outlined in the previous remark.

Remark 1.11. Our background discussion mentioned results which construct con-
formal metrics satisfying the assumptions in Theorem 1.10 for the k = 1 case.
The construction of such conformal metrics for k > 1 and more general Ω (sub-
ject to the constraints on the dimension of Sn \ Ω) is an interesting question. In
a recent work [GLN18] González, Li, and Nguyen construct viscosity solutions to
a class of conformally invariant equations, which include the equations in (a) of
Theorem 1.10, such that these solutions are in Γ−

k when they solve the equations
in (a), and these solutions satisfy (c) – under appropriate dimensional constraints
on ∂Ω. Maximum principle, the key tool in proving Theorems 1.1 and 1.10, is
valid for viscosity solutions, see [LNW18]; so Theorems 1.10 applies to solutions
in [GLN18].

Our next result provides a criterion for the development map of a locally
conformally flat manifold to be an embedding in the negative Yamabe constant
case.

Theorem 1.12. Let (M, g) be a complete, locally conformally flat manifold, and
F : (M, g) �→ (Sn, gSn) be a conformal immersion. If the Schouten tensor Ag of
some metric in the conformal class of g is non-positive point wise on M , then F
is an imbedding.

Based on the following algebraic property that σ1(Ag) ≤ 0 and

σ2(Ag) ≥
(n− 2)

2(n− 1)
(σ1(Ag))

2 (1.14)

imply Ag ≤ 0, we have

Corollary 1.13. If (M, g) is a complete, locally conformally flat manifold, and satis-
fies σ1(Ag) ≤ 0 and (1.14), and F : (M, g) �→ (Sn, gSn) is a conformal immersion,
then F is an imbedding.

Remark 1.14. Based on the following relation between the Schouten tensor Ag and
the Einstein tensor Eg

Ag =
Eg

n− 2
+

Rg

2n(n− 1)
g =

Eg

n− 2
+

σ1(Ag)

n
g, (1.15)

we have

2σ2(Ag) =
n− 1

n
(σ1(Ag))

2 − ||Eg||2
(n− 2)2

, (1.16)

where ||Eg|| is the metric norm of E with respect to g.
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It then follows that condition (1.14) is a kind of pinching condition, as it is
equivalent to

||Eg||2
(n− 2)2

≤ (σ1(Ag))
2

(n− 1)n
, (1.17)

using (1.16). (1.14) is also equivalent to

(n− 1)||Ag||2 ≤ (σ1(Ag))
2 (1.18)

Remark 1.15. Theorem 1.12 and its corollary were obtained in the early 2000’s,
and were lectured by the second author in several seminar talks, including the fall
2003 CUNY Graduate Center Differential Geometry and Analysis Seminar.

When the condition Ag ≤ 0 is not satisfied, F may not be an embedding,
as shown by the canonical locally conformally flat metric on S1r × Hn−1, whose
Schouten tensor is diag(12 ,−

1
2 , . . . ,−

1
2 ).

We will provide a proof of Theorem 1.1 and Corollary 1.2 in Section 2. The
proof of Theorem 1.1 will follow the outlines as was done in [CY97], [L98], and
[X00]. We will only sketch the main steps of the proof, in particular, indicate how
to handle the behavior of the solution near ∂Ω. Some computational sketches will
also be provided for a proof of Theorem 1.10.

We will provide a proof of Theorem 1.12 in Section 3.

2. Proof of Theorems 1.1 and 1.10

Proof of Theorem 1.1. We first set up a stereographic coordinate for proving The-
orem 1.1. Let B ⊂⊂ Ω be as given in Theorem 1.1. We can choose a stereo-
graphic coordinate such that B is mapped onto {x ∈ Rn : x1 < λ0} – this
amounts to choosing coordinate such that the north pole lies on ∂B, and is equiv-
alent to working with an appropriately transformed uQ;x0,R in place of u. Define
Σλ = {x ∈ Rn : x1 > λ}, and Tλ = ∂ (Σλ) = {x ∈ Rn : x1 = λ}. Let Γ be the
image of Sn \Ω under this stereographic map. Then Γ is a compact subset in Σλ0 .

Define Σ
′
λ = Σλ \ Γ. In this stereographic coordinate we can write

g(x) = u(x)
4

n−4 |dx|2 for x ∈ Rn \ Γ. (2.1)

Here, we first provide the details for the n > 4 case; the modifications needed for
the n = 3, 4 cases will be sketched at the end.

The statement that the mean curvature of ∂B in metric g with respect to its
inner normal is positive in the n > 4 case is equivalent to

ux1(x) > 0 for all x ∈ Tλ0 . (2.2)

Remark 2.1. If one represents B by a Euclidean ball B(x0, r) with x0 as center and
r > 0 as radius, then the statement that the mean curvature of ∂B at x ∈ ∂B in
metric g with respect to its inner normal is positive (when n > 4) is equivalent to

∇θu(x) +
n− 4

2r
u(x) :=

∂u(x0 + rθ)

∂r
+

n− 4

2r
u(x) > 0 for x = x0 + rθ, θ ∈ Sn−1,

(2.3)
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as the mean curvature in metric g = u(x)4/(n−4)|dx|2 at a point x on ∂B is given by

2u(x)
2−n
n−4

n− 4

[
∇θu(x) +

n− 4

2r
u(x)

]
.

It follows from this set up that (2.3) implies gradient estimate for u, for, if∇u(x) =

|∇u(x)|e for some e ∈ Sn−1, then, with x0 = x+ δ(x,Γ)
2 e, B δ(x,Γ)

2
(x0) ⊂ Ω, and x ∈

∂B δ(x,Γ)
2

(x0), thus (2.3) at x implies that |∇u(x)| = −∇−eu(x) < n−4
δ(x,Γ)u(x). Y.

Li and his collaborators also used estimates like (2.3) (see, for example [LL05] and
[LN14]), or rather an inequality of the form u(y) ≥ ux0,r(y) (or u(y) ≥ uQ;x0,r(y)
in our setting, which is used in deriving (2.3)), to obtain gradient estimates.

Remark 2.2. It follows from Theorem 2.7 in [SY88] that, in the situation of our
Theorem 1.1, the Newtonian capacity cap(Sn\Ω) = 0, which implies that cap(Γ) =
0. We will use this to deal with the behavior of u(x) and that of Δu(x) near Γ.

Let v(x) = −Δu(x). Then based on our set up, we have{
Δv(x) = −u

n+4
n−4 (x) ≤ 0 in Rn \ Γ,

v(x) ≥ 0 in Rn \ Γ,
(2.4)

(the Q ≡ 0 case can be handled by a straightforward modification) and that u(x)
has an expansion at x = ∞:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x) = c1|x|4−n +

n∑
j=1

bjxj

|x|n−2
+O

(
1

|x|n−2

)

uxi = −(n− 2)c1xi|x|2−n +O

(
1

|x|n−2

)
uxixj (x) = O

(
1

|x|n−2

) (2.5)

for some constants c1 > 0 and bj’s. It follows from this expansion that v(x) =
−Δu(x) has the following expansion at x = ∞:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) = c0|x|2−n +

n∑
j=1

ajxj

|x|n +O

(
1

|x|n

)

vxi = −(n− 2)c0xi|x|−n +O

(
1

|x|n

)
vxixj (x) = O

(
1

|x|n

) (2.6)

for some constants c0 > 0 and aj ’s.

Set xλ = (2λ−x1, x2, . . . , xn), which is the reflection of x with respect to Tλ,
and

wλ(x) = u(x)− u(xλ) for x ∈ Σ
′
λ.
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We will prove using the moving planes method that, when g cannot be extended
as a smooth metric across Γ,

u(x)− u(xλ) > 0 and v(x)− v(xλ) > 0, for all x ∈ Σ
′
λ and λ ≤ λ0. (2.7)

It would then follow from (2.7) that

ux1(x) ≥ 0 and ∂x1(Δu(x)) ≤ 0, for any x with x1 ≤ λ0, (2.8)

which, together with the strong maximum principle applied to u(x) − u(xλ) and
v(x) − v(xλ), would conclude our proof.

In our setting it is impossible for v(x) ≡ 0 on Rn \ Γ due to (2.6). Then it
follows from (2.4) and the strong maximum principle that v(x) > 0 in Rn \ Γ.

We may suppose that Γ ⊂ B(0, R0) for some R0 > 0. Now for any R ≥ R0,

since v > 0 in B(0, R) \ Γ, there exists δ > 0 depending on R such that v(x) ≥ δ
for all x ∈ ∂B(0, R). It now follows, using cap(Γ) = 0 and (2.4), that

v(x) ≥ δ for all x ∈ B(0, R) \ Γ. (2.9)

A reference for this kind of extended maximum principle is [L72, Chap. III, Thm.
3.4]. A formulation of this kind extended maximum principle in our setting is

Lemma 2.3. Suppose that (i) Ω is a bounded domain in Rn and that Γ ⊂ Ω has
capacity 0, (ii) v is superharmonic in Ω \ Γ, and (iii) v is bounded below in Ω \ Γ,
and there exists M such that for any z ∈ ∂Ω, lim infx∈Ω,x→z v(x) ≥ M . Then
v(x) ≥ M in Ω \ Γ.

The expansion (2.6) of v(x) at ∞ and Lemma 2.3 in [CGS89] implies that{
there exists λ1 ≤ λ0 and R1 ≥ R0 such that

v(x) > v(xλ) for all x ∈ Σ
′
λ with |x| ≥ R1, and λ ≤ λ1.

(2.10)

Then using (2.9) and the expansion (2.6) of v(x) at ∞, we conclude that there
exists λ2 ≤ λ1 such that

v(x) > v(xλ) for all x ∈ Σ
′
λ, λ ≤ λ2. (2.11)

Next, wλ(x) satisfies

Δwλ(x) = v(xλ)− v(x) ≤ 0 for all x ∈ Σ
′
λ, (2.12)

and λ ≤ λ2. The expansion (2.5) of u(x) at ∞ implies that

wλ(x) → 0 as x →∞. (2.13)

Using (2.12), (2.13), wλ(x) = 0 for all x ∈ Tλ, and the observation that wλ(x) =
u(x) − u(xλ) ≥ −u(xλ) is bounded below in a neighborhood of Γ and the infor-

mation that cap(Γ) = 0, we conclude that wλ(x) ≥ 0 for all x ∈ Σ
′
λ, λ ≤ λ2.

In the situation of (i), the completeness assumption on g and Ω �= Sn imply
that wλ(x) cannot be ≡ 0, so with the strong maximum principle, we conclude
that

wλ(x) > 0 for all x ∈ Σ
′
λ, (2.14)

and λ ≤ λ2.
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We now define

λ∗ = sup{λ ≤ λ0 : v(xμ) < v(x) for all x ∈ Σ
′
μ, and all μ ≤ λ,}

and proceed to prove that λ∗ = λ0.
By continuity (together with strong maximum principle and completeness of

g), (2.12) and (2.14) continue to hold for λ∗ replacing λ. We now have, using (2.14)
for λ∗ replacing λ, that

Δ
[
v(xλ∗)− v(x)

]
= u

n+4
n−4 (x) − u

n+4
n−4 (xλ∗) ≥ 0 for all x ∈ Σ

′
λ∗ . (2.15)

v(xλ∗) − v(x) ≤ 0 for all x ∈ Σ
′
λ∗ . Now strong maximum principle, (2.14) and

(2.15) imply that v(xλ∗)− v(x) < 0 for all x ∈ Σ
′
λ∗ – the Q ≡ 0 case would need

a modified argument to rule out v(xλ∗)− v(x) ≡ 0 using the Liouville theorem on
the harmonic function v(x) and (2.6). Furthermore, using cap(Γ) = 0, there exists
some δ∗ > 0 such that

v(xλ∗)− v(x) ≤ −δ∗ for x in a neighborhood of Γ.

This, together with (2.15) and Lemma 2.4 in [CGS89], implies that λ∗ = λ0,
and concludes the case for (i).

In the Ω = Sn subclass of (ii), the set up in the proof of (i) is used to
prove, in a more standard fashion as in [CY97], that u(x) is rotationally symmetric
about some point; then in the Q ≡ 1 case the argument in [L98] proves that u(x)
is of the standard form; while in the Q ≡ 0 case standard properties on entire
positive harmonic functions implies that u(x) must be a positive constant, but the
associated metric would not be a smooth metric over Ω = Sn, so this latter case
cannot occur.

In the remaining case of (ii): Ω = Sn \ {a point}, the set up in the proof of
(i) works identically, and proves that the solution is rotationally symmetric about
the image point of ∞ under the inversion used in the set up. But the sphere with
respect to which the inversion is done can be chosen arbitrarily, so the solution
is shown to be rotationally symmetric about any point, therefore is a positive
constant. This cannot happen in the Q ≡ 1 case, and in the Q ≡ 0 case leads to
the conclusion that the metric is the flat one on Ω = Sn \ {a point}.

We now indicate the modifications needed for the n = 3 case. (2.2) turns into

ux1 < 0 for all x ∈ Tλ0 ; (2.16)

(2.3) turns into

∇θu(x)−
u(x)

2r
< 0; (2.17)

The condition Rg ≥ 0 turns into

Δu(x)− 2|∇u(x)|2
u(x)

≥ 0; (2.18)

and the three-dimensional version of (1.6) for Q = 2 is

(−Δ)2u = −u−7, x ∈ Ω ⊂ R3. (2.19)
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Setting ṽ(x) = Δu(x), we find that under (2.18), ṽ(x) ≥ 0; and η(x) := ṽ(x)−ṽ(xλ)
satisfies η(x) ≥ −Δu(xλ), as well as Δη(x) ≤ 0 whenever u(x) ≤ u(xλ). The
version of (2.7) that we need to establish in 3 dimension is

u(x)−u(xλ) < 0 and η(x) = ṽ(x)− ṽ(xλ) > 0 for all x ∈ Σ
′
λ and λ ≤ λ0. (2.20)

Given (2.19) and the information on η above, (2.20) is established in almost iden-
tical way as in the n > 4 case.

For the n = 4 case, we use g(x) = e2w(x)|dx|2; (2.18) is replaced by Δw(x) +
|∇w(x)|2 ≤ 0; (2.3) is replaced by ∂w

∂r + 1
r ≥ 0; in place of (2.5), we have a similar

expansion for ew(x) at ∞ (in an appropriately chosen stereographic coordinate)
whose leading order term is 2|x|−2, or equivalently, an expansion for w(x) whose
leading order term is −2 ln |x| – the expansions for wxj (x) and Δw(x) come as
consequences of the expansion for w(x). Our objective in this set up is still to
establish (2.7) with w(x) replacing u(x) there. (2.9) is established in the same way
for v(x) = −Δw(x), as we still have Δw(x) ≤ 0 (< 0 in fact) based on Rg ≥ 0,
and Δv(x) ≤ 0 in R4 \ Γ. The analog of (2.14) we need is w(x) − w(xλ) > 0 for
x ∈ Σ′

λ and all λ ≤ λ0, and one key ingredient in proving this is a lower bound for
w(x) in a neighborhood of Γ. This is done using

Δew(x) = ew(x)
[
Δw(x) + |∇w(x)|2

]
≤ 0 for x ∈ R4 \ Γ,

from which it follows from the extended maximum principle applied to ew(x) over
BR \Γ for a fixed, sufficiently large R > 0 that ew(x) has a positive lower bound in
BR \Γ, which then implies a lower bound for w(x) in BR \Γ. These modifications
suffice to complete a proof for the n = 4 case.

For the n = 4 and Γ = {one point} case, we can arrange coordinates such
that Γ = {0}. The argument in the above paragraph applies, except that it is
possible that w(x)−w(xλ) ≡ 0 for some λ – in fact, this will always happen. Then
it’s easy to see that g must be the round metric, and as a consequence, (1.5) holds.
If (1.5) is assumed in place of (1.9), then it follows from [L98] that g must be the
round metric, and as a consequence, (1.9) holds. Thus in this context, (1.9) and
(1.5) are equivalent. �

Remark 2.4. An examination of the proof shows three crucial ingredients for com-
pleting the proof for Theorem 1:

(i) (2.9) for initiating of the relation that v(x)− v(xλ) = −Δu(x) +Δu(xλ) ≥ 0
for x ∈ Σ′

λ and λ ≤ λ1 for |λ1| large (for the n > 4 cases; the n = 3, 4 cases
can be formulated appropriately);

(ii) u(x)− u(xλ) ≡ 0 cannot happen in Σ′
λ; and

(iii) once u(x)− u(xλ) ≥ 0 in Σ′
λ is established, there exists δ > 0 such that

u(x)− u(xλ) > δ and −Δu(x) + Δu(xλ) ≥ δ in a neighborhood of Γ.

(2.9) is proved using the equation for v(x) = −Δu(x), the property v(x) ≥ 0,
which follows from Rg ≥ 0, and cap(Γ) = 0; (iii) also relies on Rg ≥ 0 and
cap(Γ) = 0 crucially; while (ii) relies on the assumption that g is a complete metric
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on Ω = Sn \ Γ – this assumption, together with Rg ≥ 0 (and locally conformal
flatness of g), implies cap(Γ) = 0, based on [SY88]. Based on this examination, the
assumption in Theorem 1 that g is a complete metric on Sn \ Γ can be replaced
by the assumption that g cannot be extended as a smooth metric over Γ and that
cap(Γ) = 0.

Remark 2.5. Here is another illustration why the assumption that Rg ≥ 0 cannot
be dropped: in the case of Q ≡ 0 on Sn \ {a point}, which we identify as Rn,
we would be studying positive solutions u(x) on Rn to Δ2u(x) = 0. A simple
argument using the Green’s formula to Δu(x):

Δu(x) =
1

|Br(x)|

∫
Br(x)

Δu(y)dy

=
1

|Br(x)|

∫
∂Br(x)

∂u(y)

∂ν(y)
dσ(y) =

n

r
∂r

(∫
Sn−1

u(x+ rω)dω

)
,

and u > 0 on Rn shows that Δu(x) ≥ 0. This then makes Δu(x) a non-negative
entire harmonic function, so Δu(x) = c for some non-negative constant c. u(x) =
u0 +

∑n
j=1 ajx

2
j , for u0 > 0 and appropriately chosen aj ≥ 0, are positive so-

lutions. These solutions have reflection symmetries, but do not have rotational
symmetry unless aj ’s are all equal; and, in any case, do not satisfy the conclusions
of Theorem 1.1 unless aj ’s are all 0.

Unless c = 0, these solutions do not correspond to metrics with Rg ≥ 0. If we
were to follow the set up in the proof of (i) of Theorem 1.1, we would work with

uQ;0,1(x) = |x|4−nu(
x

|x|2 ) = u0|x|4−n + |x|−n
n∑

j=1

ajx
2
j .

But ΔuQ;0,1(x) may become unbounded near x = 0 when aj �= ak for some j �= k.
This would prevent an estimate like (2.9) for v(x) := −ΔuQ;0,1(x), which is needed
for the initiation of step (i) alluded to in the previous remark.

Proof of Corollary 1.2. It suffices to prove that, when Sl \ {∞} is represented via
a stereographic projection as Rl = {x ∈ Rn : xl+1 = · · · = xn = 0}, and for any
x ∈ Rn \ Rl, and for any (unit) vector e = (0, . . . , 0, el+1, . . . , en) ⊥ x, we have
∇eu(x) = 0 – this set up would require n−l ≥ 2, which we have from l ≤ (n−2)/2.
This would imply that, in this set up, u = u(x1, . . . , xn) depends on xl+1, . . . , xn

only through
√
x2
l+1 + · · ·+ x2

n.

For any r > 0, we see that B(x − re, r) ⊂⊂ Rn \ Rl, so the conclusion of
Theorem 1 is valid on ∂B(x − re, r). In particular, for the n > 4 case and at
x ∈ ∂B(x− re, r), we have, by (2.3)

∇eu(x) +
n− 4

2r
u(x) > 0. (2.21)
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Since we can take r > 0 arbitrarily large, we conclude that ∇eu(x) ≥ 0. Repeating
this argument with −e replacing e, we obtain ∇−eu(x) ≥ 0, and therefore conclude
that ∇eu(x) = 0. The n = 3, 4 cases need only minor modifications. �

Sketch of proof of Theorem 1.10. Here we will express the metric g in the form of
e2w(x)|dx|2, and express the equation in the form of f(λ(A[w])) = 1, where A[w] =

−∇2w+∇w⊗∇w− |∇w|2
2 I denotes the matrix representing the Schouten tensor,

and λ(A[w]) refers to the eigenvalues of A[w]. Again we have set up coordinates
such that Γ ⊂ Rn, and that w(x) has an expansion at ∞ in the spirit of (2.5), but
with −2 ln |x| as the leading order term. w(xλ) satisfies the same equation.

To initiate the moving plane method, we need a positive lower bound for
ew(x) near Γ. This is provided for by assumption (c). Then traditional method is
used to establish w(x) − w(xλ) ≥ 0 for x ∈ Σ′

λ for λ ≤ λ1 for some large |λ1|. To
carry through the moving plane method, namely, to establish the above inequality
for all expected range of λ, we use the equations for w(x) and w(xλ) to obtain
a linear, second-order, elliptic equation for w(x) − w(xλ): L[w(x) − w(xλ)] = 0
in Σ′

λ, thanks to assumption (b). Using assumption (c), w(x) − w(xλ) ≥ 0, and
the strong maximum principle, we obtain w(x) − w(xλ) > 0 – the version used
here is for non-negative solutions, which can be derived from Lemma 3.4 in [GT],
and does not require a condition on the sign of the coefficient of the zeroth-order
term in L; an explicitly formulated version for such a setting appears, e.g., as
Lemma 3.5 in [CY97]; it is for this reason that the argument for Theorem 1.10
does not distinguish between the solutions in Γ+

k class from those in the Γ−
k class.

Assumption (c) further implies that there exists δ > 0 such that w(x)−w(xλ) > δ
in a neighborhood of Γ. This, the Hopf Lemma and Lemma 2.4 in [CGS89], imply
that w(x) − w(xλ) > 0 holds for all expected range of λ. �

3. Proof of Theorem 1.12

Proof of Theorem 1.12 . We may assume that g itself satisfies that its Schouten
tensor Ag is non-positive point wise on M . For any point z0 ∈ F (M) ⊂ Sn, using
stereographic coordinates, there is a smooth function u on Sn such that u > 0

on Sn \ {z0}, u(z0) = 0, and u−2g0 is flat. Writing F ∗(u−2g0) = v−2g
def
= ĝ on

M \ F−1(z0), then ĝ is flat. Hence, on M \ F−1(z0), Ê = 0, R̂ = 0.

Under a (pointwise) conformal change of the metric g, ĝ = v−2g, the Einstein
tensor and scalar curvature transform as follows.

Ê = E +
n− 2

v

{
∇2v − Δv

n
g

}
, (3.1)

R̂ = v2
{
R+ 2(n− 1)

Δv

v
− n(n− 1)

|∇v|2
v2

}
. (3.2)
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Thus in the situation here, we have, by (3.1) and (3.2),

E = −n− 2

v

{
∇2v − Δv

n
g

}
, (3.3)

R = −(n− 1)

{
2
Δv

v
− n

|∇v|2
v2

}
. (3.4)

It now follows that

A = −∇2v

v
+

|∇v|2
2v2

g. (3.5)

Under our assumption that A ≤ 0, we therefore have

∇2v ≥ |∇v|2
2v

g, (3.6)

on M \F−1(z0). By a limiting argument, v(γ(s)) is a non-negative convex function
along any geodesic (in metric g) γ(s) on M .

If P0 �= P1 ∈ M are such that F (P0) = F (P1), we set z0 = F (P0) = F (P1)
and carry out the computations in the paragraph above. Since (M, g) is assumed to
be complete, we may joint P0 and P1 by a geodesic (in metric g) γ(s) parametrized
over s ∈ [0, 1] with γ(0) = P0 and γ(1) = P1, then v(γ(0)) = v(γ(1)) = 0. Since
v > 0 on M \ F−1(z0), this would imply that γ(s) ∈ F−1(z0) for all s ∈ [0, 1],
using the convexity of v. But this is not possible, and this contradiction implies
that F must be an imbedding. �

Proof of Corollary 1.13. We just need to establish the algebraic property that
σ1(Ag) ≤ 0 and (1.14) imply Ag ≤ 0. Since E is trace free, we have the sharp
inequality

−
√

n− 1

n
||Eg||g ≤ E ≤

√
n− 1

n
||Eg||g. (3.7)

Thus, when (1.14) holds, we have (1.17), as remarked earlier, which then implies
that

||Eg||
(n− 2)

≤ |σ1(Ag)|√
n(n− 1)

. (3.8)

It now follows from (3.8), (1.15) and (3.7) that Ag ≤ 0. �

Note added to galley proof

After our submission was accepted in 2018 for publication in this volume, we
became aware of the paper “Asymptotic symmetry and local behavior of solu-
tions of higher order conformally invariant equations with isolated singularities”
by Tianling Jin and Jingang Xiong (https://arxiv.org/abs/1901.01678), which,
among other results, proves sharp blow up rates of solutions of higher order con-
formally invariant equations in a bounded domain with an isolated singularity,
and the asymptotic radial symmetry of the solutions near the singularity. It also
contains some recent relevant references.

https://arxiv.org/abs/1901.01678
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Analytical Properties for Degenerate Equations
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Abstract. By a classical result, solutions of analytic elliptic PDEs, like the
Laplace equation, are analytic. In many instances, the properties that come
from being analytic are more important than analyticity itself. Many impor-
tant equations are degenerate elliptic and solutions have much lower regular-
ity. Still, one may hope that solutions share properties of analytic functions.
These properties are closely connected to important open problems. In this
survey, we will explain why solutions of an important degenerate elliptic equa-
tion have analytic properties even though the solutions are not even C3.
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Keywords. Mean curvature flow, arrival time, degenerate elliptic equations,
Thom’s gradient conjecture.

0. Introduction

By a classical result, solutions of analytic elliptic PDEs, like the Laplace equation,
are analytic. In many instances, the properties that come from being analytic are
more important than analyticity itself. Many important equations are degenerate
elliptic and solutions have much lower regularity. Still, one may hope that solutions
share properties of analytic functions. These properties are closely connected to
important open problems.

In this survey, we will explain why solutions of an important degenerate
elliptic equation have analytic properties even though the solutions are not even
C3. This equation, known as the arrival time equation, is

−1 = |∇u| div
(

∇u

|∇u|

)
. (0.1)

Here u is defined on a compact connected subset ofRn+1 with smooth mean convex
boundary and u is constant on the boundary. Equation (0.1) is the prototype
for a family of equations, see, e.g., [OsSe], used for tracking moving interfaces
in complex situations. These equations have been instrumental in applications,
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including semiconductor processing, fluid mechanics, medical imaging, computer
graphics, and material sciences.

Even though solutions of (0.1) are a priori only in the viscosity sense, they
are always twice differentiable by [CM5], though not necessarily C2; see [CM6],
[H2], [I], [KS]. Even when a solution is C2, it still might not be C3, Sesum, [S],
let alone analytic. However, solutions have the following property conjectured for
analytic functions:

Theorem 0.2 ([CM9]). The Arnold–Thom conjecture holds for C2 solutions of
(0.1). Namely, if x(t) is a gradient flow line for u, then x(t) has finite length and
x′(t)
|x′(t)| has a limit.

The theorem applies, for instance, to solutions of (0.1) on closed convex
domains since these are C2 by a 1990 result of Huisken, [H1] (though not necessarily
C3, [S]).

As we will see in Section 1, the Arnold–Thom conjecture states that x′(t)
|x′(t)|

has a limit whenever u is analytic and the gradient flow line itself has a limit. Thus,
Theorem 0.2 shows that, in this way, C2 solutions of (0.1) behave like analytic
functions are expected to.

0.1. The arrival time

The geometric meaning of (0.1) is that the level sets u−1(t) are mean convex and
evolve by mean curvature flow. One says that u is the arrival time since u(x)
is the time the hypersurfaces u−1(t) arrive at x under the mean curvature flow;
see Chen–Giga–Goto, [ChGG], Evans–Spruck, [ES], Osher–Sethian, [OsSe], and
[CM3].

Conjecturally, the Arnold–Thom conjecture holds even for solutions that are
not C2, but merely twice differentiable:

Conjecture 0.3 ([CM9]). Lojasiewicz’s inequalities and the Arnold–Thom conjec-
ture hold for all solutions of (0.1).

If so, this would explain various conjectured phenomena. For example, this
would imply that the associated mean curvature flow is singular at only finitely
many times as has been conjectured, [W3], [AAG], [Wa], [M].

We believe that the principle that solutions of degenerate equations behave
as though they are analytic, even when they are not, should be quite general. For
instance, there should be versions for other flows, including Ricci flow.

0.2. Ideas in the proof

To explain the ideas in the proof of Theorem 0.2, suppose that the unit speed
curve γ(s) traces out a gradient flow line for u that limits to a critical point x0.
The simplest way to prove that the unit tangent γs has a limit would be to prove
that ∫

|γss| ds < ∞ . (0.4)
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However, this is not necessarily true. It turns out that γss is better behaved in
some directions than in others, depending on the geometry of the level sets of u.

By [CM5], the level sets of u near x0 are, in a scale-invariant way, converging
to either spheres or cylinders. This comes from a blow up analysis for the singu-
larities of an associated mean curvature flow. The spherical case is easy to handle
and one can show that |γss| is integrable in this case. However, the cylindrical case
is more subtle and γss behaves quite differently. In particular, the estimates in the
direction of the axis of the cylinder are not strong enough to give (0.4).

There is a good reason that the estimates are not strong enough here: the pres-
ence of a “non-integrable” kernel for a linearized operator. Here “non-integrable”
means that there are infinitesimal variations that do not arise as the derivative of
an actual one-parameter family of solutions. As is well known, this corresponds
to a slow rate of convergence to the limiting blow up. Overcoming this requires a
careful analysis of this kernel using the rate of growth (the frequency function) for
the drift Laplacian.

1. Gradient flows in finite dimensions

Given a function f , a gradient flow line x(t) is a solution of the ODE

x′(t) = ∇f ◦ x(t) (1.1)

with the initial condition x(0) = x̄. The chain rule gives that

(f ◦ x(t))′ = |∇f |2 ◦ x(t) , (1.2)

so we see that f ◦ x(t) is increasing unless x(t) ≡ x̄ is a critical point of f .
It is possible that x(t) runs off to infinity (e.g., if f(x, y) = x on R2), but

we are interested in the case where there is a limit point x∞. That is, where there
exist ti → ∞ so that x(ti) → x∞. It follows easily that limt→∞ f ◦ x(t) = f(x∞),
x∞ is a critical point, and |x′|2 is integrable. This raises the obvious question:

Question 1.3. Does x(t) converge to x∞?

Perhaps surprisingly, there are examples where x(t) does not converge; see,
e.g., Fig. 3.5 in [Si] or Fig. 1 in [CM8]. However, if f is real analytic, Lojasiewicz,
[L1], proved that x(t) has finite length and, thus, converges. This is known as
Lojasiewicz’s theorem. The proof relied on two Lojasiewicz inequalities for analytic
functions.

1.1. Lojasiewicz inequalities

In real algebraic geometry, the Lojasiewicz inequality, [L3], bounds the distance
from a point to the nearest zero of a given real analytic function. Namely, if Z �= ∅
is the zero set of f and K is a compact set, then there exist α ≥ 2 and a positive
constant C such that for x ∈ K

inf
z∈Z

|x− z|α ≤ C |f(x)| . (1.4)

The exponent α can be arbitrarily large, depending on the function f .
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Equation (1.4) was the main ingredient in Lojasiewicz’ proof of Laurent
Schwarz’ division conjecture1 in analysis. Around the same time, Hörmander, [Hö],
independently proved Schwarz’ division conjecture in the special case of polyno-
mials and a key step in his proof was also (1.4) when f is a polynomial.

Lojasiewicz solved a conjecture of Whitney2 in [L4] using a second inequality
– known as the gradient inequality: Given a critical point z, there is neighborhood
W of z and constants p > 1 and C > 0 such that for all x ∈ W

|f(x)− f(z)| ≤ C |∇xf |p . (1.5)

An immediate consequence of (1.5) is that f takes the same value at every critical
point in W . It is easy to construct smooth functions where this is not the case.

This gradient inequality (1.5) was the key ingredient in the proof of the
Lojasiewicz theorem. The idea is that (1.5) and (1.2) give a differential inequality
for f along the gradient flow line that leads to a rate of convergence; see, e.g., [L1],
[CM2], [CM8] and [Si].

1.2. Arnold–Thom conjectures

Around 1972, Thom, [T], [L2], [Ku], [A], [G], conjectured a strengthening of Lo-
jasiewicz’ theorem, asserting that each gradient flow line x(t) of an analytic func-
tion f approaches its limit from a unique limiting direction:

Conjecture 1.6. If x(t) has a limit point, then the limit of secants limt→∞
x(t)−x∞
|x(t)−x∞|

exists.

The figure illustrates in R3 a situation conjectured to be impossible.
The Arnold–Thom conjecture asserts that a blue integral curve does
not spiral as it approaches the critical set (illustrated in red, orthogonal
to the plane where the curve spirals).

1L. Schwartz conjectured that if f is a non-trivial real analytic function and T is a distribution,
then there exists a distribution S satisfying f S = T .
2Whitney conjectured that if f is analytic in an open set U of Rn, then the zero set Z is a
deformation retract of an open neighborhood of Z in U .
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This conjecture arose in Thom’s work on catastrophe theory and singularity
theory and became known as Thom’s gradient conjecture. The conjecture was
finally proven in 2000 by Kurdyka, Mostowski, and Parusinski in [KMP], but the
following stronger conjecture remains open (see page 282 in Arnold’s problem
list, [A]):

Conjecture 1.7. If x(t) has a limit point, then the limit of the unit tangents x′(t)
|x′(t)|

exists.

It is easy to see that the Arnold–Thom conjecture 1.7 implies Thom’s conjec-
ture 1.6.

2. Lojasiewicz theorem for the arrival time

The arrival time u is a solution of the degenerate elliptic equation (0.1) and, in
particular, it is not smooth in general, let alone real analytic. However, if u is C2,
then it satisfies the following gradient Lojasiewicz inequality:

Theorem 2.1 ([CM9]). If u is a C2 solution of (0.1) and supu = 0, then 0 is the
only critical value and

|∇u|2
−u

→ 2

n− k
as u → 0 . (2.2)

In particular, there exists C > 0 so that C−1 |∇u|2 ≤ −u ≤ C |∇u|2.

In particular, (1.5) holds with p = 2 for a C2 solution u of (0.1). Given any
p > 1, there are solutions of (0.1) where (1.5) fails for p; obviously, these are
not C2. Namely, for any odd m ≥ 3, Angenent and Velázquez, [AV], construct
rotationally symmetric examples with

|u− u(y)| ≈ |∇u| m
m−1 (2.3)

for a sequence of points tending to y. The examples in [AV] were constructed to
analyze so-called type II singularities that were previously observed by Hamilton
and proven rigorously to exist by Altschuler–Angenent–Giga, [AAG]; cf. also [GK].

2.1. The flow lines approach the critical set orthogonally

Let u be a C2 solution to (0.1) with supu = 0 and S its critical set

S = {x | ∇u(x) = 0} . (2.4)

The mean curvature flow given by the level sets of u is smooth away from S and
each point in S has a cylindrical singularity; see, [W1], [W2], [H1], [HS1], [HS2],
[HaK], [An]; cf. [B], [CM1]. Moreover, [CM5] and [CM6] give:

(S1) S is a closed embedded connected k-dimensional C1 submanifold whose tan-
gent space is the kernel of Hessu. Moreover, S lies in the interior of the region
where u is defined.



62 T.H. Colding and W.P. Minicozzi II

(S2) If q ∈ S, then Hessu(q) = − 1
n−k Π and Δu(q) = −n+1−k

n−k , where Π is the
orthogonal projection onto the orthogonal complement of the kernel.

The next theorem shows that the gradient flow lines of u have finite length
(this is the Lojasiewicz theorem for u), converge to points in S, and approach S
orthogonally. The first claims follow immediately from the gradient Lojasiewicz
inequality of Theorem 2.1. Let Πaxis denote the orthogonal projection onto the
kernel of Hessu.

Theorem 2.5 ([CM9]). Each flow line γ for ∇u has finite length and limits to a
point in S. Moreover, if we parametrize γ by s ≥ 0 with |γs| = 1 and γ(0) ∈ S,
then

u(γ(s)) ≈ −s2

2(n− k)
, (2.6)

|∇u(γ(s))|2 ≈ s2

(n− k)2
, (2.7)

Πaxis(γs) → 0 . (2.8)

In particular, for s small, we have that γ(s) ⊂ B
2n
√

−u(γ(s))
(γ(0)).

3. Theorem 0.2 and an estimate for rescaled MCF

The Arnold–Thom conjecture for the arrival time is phrased as an analytic question
about solutions to a degenerate elliptic partial differential equation. Yet, we will
see that the key is understanding the geometry of an associated mean curvature
flow.

3.1. Rescaled mean curvature flow

A one-parameter family of hypersurfaces Mτ evolves by mean curvature flow (or
MCF ) if each point x(τ) evolves by ∂τx = −H n. Here H is the mean curvature
and n a unit normal. The arrival time gives a mean curvature flow

Στ = {x |u(x) = τ} . (3.1)

As τ goes to the extinction time (the supremum of u), the level sets contract and
eventually disappear. To capture the structure near the extinction, we consider
the rescaled level sets

Σt =
1√
−u

{x |u(x) = −e−t} . (3.2)

This is equivalent to simultaneously running MCF and rescaling space and repa-
rameterizing time. The one-parameter family Σt satisfies the rescaled MCF

∂tx = −
(
H − 1

2
〈x,n〉

)
n . (3.3)
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The rescaled MCF is the negative gradient flow for the Gaussian area

F (Σ) ≡
∫
Σ

e−
|x|2
4 . (3.4)

In particular, F (Σt) is non-increasing.
It will be convenient to set φ = H − 1

2 〈x,n〉. The fixed points for rescaled
MCF are shrinkers where φ = 0; the most important shrinkers are cylinders C =
Sn−k√

2(n−k)
×Rk where k = 0, . . . , n− 1.

3.2. Rate of convergence of the rescaled MCF

The F functional is nonincreasing along the rescaled MCF Σt and it is constant
only when Σt is also constant. Furthermore, the distance between Σj and Σj+1 is
bounded by

δj ≡
√
F (Σj−1)− F (Σj+2) . (3.5)

We refer to [CM9] (cf. [CM2]) for the precise statement, but the idea is simple.
To see this, consider the analogous question for a finite-dimensional gradient flow
x(t). In this case, the fundamental theorem of calculus and the Cauchy–Schwarz
inequality give

|x(j + 1)− x(j)| ≤
∫ j+1

j

|x′(t)| dt ≤
(∫ j+1

j

|x′(t)|2 dt
) 1

2

= (f(j + 1)− f(j))
1
2 .

(3.6)

Existence of limt→∞ Σt is proven in [CM2] by showing that
∑

δj < ∞. In
[CM9], we prove that δj is summable even after being raised to some power less
than one:

Proposition 3.7 ([CM9]). There exists β̄ < 1 so that
∑∞

j=1 δβ̄j < ∞.

3.3. A strong cylindrical approximation

Since Σt converges to a limit C, Σj is close to C for j large. However, we will
construct cylinders Cj, varying with j, that are even closer. We need some notation:
Πj is projection orthogonal to axis of Cj , L is the drift Laplacian on Cj, and

‖g‖pLp(Σj)
≡
∫
Σj

|g|p e−
|x|2
4 . (3.8)

The precise statement of the approximation is technical (see [CM9]), but it roughly
says:

Proposition 3.9 ([CM9]). Given β < 1, there exist C, radii Rj, and cylinders Cj
with:

1. For t ∈ [j, j + 1], Σt is a graph over BRj ∩ Cj+1 of a function w with

‖w‖2W 3,2 + ‖φ‖W 3,2(BRj
) + e−

R2
j
4 ≤ C δβj .

2. w is almost an eigenfunction; i.e., |φ− (L+ 1)w| is quadratic in w.



64 T.H. Colding and W.P. Minicozzi II

3. |Πj −Πj+1| ≤ C δβj .
4. The higher derivatives of w and φ are bounded.

3.4. Reduction

The next theorem reduces Theorem 0.2 to an estimate for rescaled MCF.

Theorem 3.10 ([CM9]). Theorem 0.2 holds if
∞∑
j=1

∫ j+1

j

(
sup

B2n∩Σt

|Πj+1(∇H)|
)

dt < ∞ . (3.11)

To explain Theorem 3.10, let γ(s) be a unit speed parameterization of a
gradient flow line with γ(0) ∈ S. We will show that γs has a limit as s → 0. The
derivative of γs = − ∇u

|∇u| is

γss = − 1

|∇u| (Hessu(γs)− γs 〈Hessu(γs), γs〉) = − (Hessu(γs))
T

|∇u| = ∇T log |∇u| ,
(3.12)

where (·)T is the tangential projection onto the level set of u.

The simplest way to prove that lim γs exists would be to show that
∫
|γss| <

∞, which is related to the rate of convergence for an associated rescaled MCF.
While this rate fails to give integrability of |γss|, it does give the following:

Lemma 3.13. Given any Λ > 1, we have lims→0

∫ Λ s

s
|γss| ds = 0.

Proof. Using Theorem 2.5 and the fact that Hessu → − 1
n−k Π, (3.12) implies that

s |γss| → 0. The lemma follows immediately from this. �
To get around the lack of integrability, we will decompose γs into two pieces –

the parts tangent and orthogonal to the axis – and deal with these separately. The
tangent part goes to zero by (2.8) in Theorem 2.5. We will use (3.11) to control
the orthogonal part.

Translate so that γ(0) = 0 and let H̄ = 1
|∇u| be the mean curvature of the

level set of u. The mean curvature H of Σt at time t = − log(−u) is given by

∇̄ log H̄ =
∇ logH√

−u
≈
√
2(n− k)

s
∇ logH . (3.14)

Note that u(γ(s)) is decreasing and Theorem 2.5 gives

t(s) ≈ −2 log s+ log(2(n− k)) , (3.15)

t′(s) = −∂s (log(−u(γ(s))) =
−∂su(γ(s))

u(γ(s))
≈ −2

s
. (3.16)

Given a positive integer j, define sj so that t(sj) = j. Note that
∣∣∣log sj+1

sj

∣∣∣ is

uniformly bounded. Therefore, by Lemma 3.13, it suffices to show that γsj has a
limit.
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We can write γsj = Πaxis,j(γsj ) + Πj(γsj ). We have Πaxis,j(γsj ) → 0 since
Πaxis,j → Πaxis and Πaxis(γs) → 0. Thus, we need that limj→∞ Πj(γsj ) exists; this
will follow from ∑

j

∣∣Πj(γsj )−Πj+1(γsj+1 )
∣∣ < ∞ . (3.17)

Theorem 2.5 gives (for s small) that γ(s) ⊂ B
2n
√

−u(γ(s))
and, thus, (3.12)

gives∣∣Πj+1(γsj )−Πj+1(γsj+1)
∣∣ ≤ ∫ sj

sj+1

|Πj+1(γss)| ds

=

∫ sj

sj+1

∣∣Πj+1

(
∇̄ log H̄(γ(s))

)∣∣ ds (3.18)

≤ C

∫ sj

sj+1

sup
B

2n
√

−u(γ(s))

∣∣Πj+1(∇ log H̄)
∣∣ (·,−u) ds .

Using (3.14) and (3.16) in (3.18) and then applying Theorem 3.10 gives∑
j

∣∣Πj+1(γsj )−Πj+1(γsj+1)
∣∣ ≤ C

∑
j

∫ j+1

j

sup
B2n∩Σt

|Πj+1(∇H)| dt < ∞ .

(3.19)

On the other hand,
∑

j

∣∣Πj(γsj )− Πj+1(γsj )
∣∣ < ∞ by (3) in Proposition 3.9 and

Proposition 3.7. The triangle inequality gives (3.17), so we conclude that γs has a
limit.

3.5. The summability condition (3.11)

We have seen that the key is to prove (3.11). This summability is plausible since
Σt is converging to a cylinder where H is constant and, thus, ∇H is going to zero.
The rate of convergence then becomes critical. If the convergence was fast enough,
then |∇H | would be summable even without the projection Πj+1.

The mean curvature H of the graph of w is given at each point explicitly as
a function of w, ∇w and Hessw; see corollary A.30 in [CM2]. We can write this as
the first-order part (in w,∇w,Hessw) plus a quadratic remainder

H = HC +

(
Δθ +Δx +

1

2

)
w +O(w2) . (3.20)

Here O(w2) is a term that depends at least quadratically on w,∇w,Hessw and the

constant HC =
√
n−k√
2

is the mean curvature of C.
The bound for w2 in (1) from Proposition 3.9 is summable by Proposition

3.7, but the bound for w is not. In particular, (1) gives a bound for ∇H that is
not summable.



66 T.H. Colding and W.P. Minicozzi II

4. Approximate eigenfunctions on cylinders

Proposition 3.9 shows the graph function w is an approximate eigenfunction on
the cylinder C. Namely, (2) gives that

|(L+ 1)w − φ| = O(w2) , (4.1)

where O(w2) is a term that is quadratically bounded in w and its derivatives. Note
that φ itself is bounded by (1) and, moreover, φ is of the same order as w2.

Even though the bound for w is not summable, we will see that there is a
function w̃ in the kernel of L + 1 so that |w − w̃| is summable. Moreover, the
contribution of w̃ to ∇H goes away once we project orthogonally to the axis.
Putting this together gives (3.11) and, thus, completes the proof of Arnold–Thom.
The arguments needed for this decomposition of w are technically complicated
because of higher-order “error” terms; see [CM9]. However, the idea is clear. We
will explain this in a model case next.

4.1. Eigenfunctions on cylinders

The eigenfunctions on the cylinder are built out of spherical eigenfunctions on
the cross-section and eigenfunctions for the Euclidean drift Laplacian on the axis.
Namely, by lemma 3.26 in [CM2], the kernel of L + 1 on the weighted Gaussian
space on C consists of quadratic polynomials and “infinitesimal rotations”

w̃ =
∑
i

ai(x
2
i − 2) +

∑
i<j

aijxixj +
∑
k

xkhk(θ) , (4.2)

where ai, aij are constants and each hk is a Δθ-eigenfunction with eigenvalue 1
2 .

To illustrate the ideas involved, it is helpful to recall the Euclidean case:

Lemma 4.3. If Lv = −λv on Rn and
∫
Rn v2 e−

|x|2
4 < ∞, then 2λ is a nonnegative

integer and v is a polynomial of degree 2λ.

When n = 1, these are the Hermite polynomials (up to a scaling normaliza-
tion).

Sketch of the proof of Lemma 4.3. There are two ingredients:

• Each partial derivative vi =
∂v
∂xi

satisfies L vi =
(
1
2 − λ

)
vi.

•
∫
Rn |∇v|2 e−

|x|2
4 ≤ 2λ

∫
Rn v2 e−

|x|2
4 < ∞.

The second property implies that λ ≥ 0 and v is constant if λ = 0. The lemma
follows by applying this to 2λ derivatives of v. �

The next theorem approximates w in |x| ≤ 3n by w̃ as in (4.2) (we state the
theorem in the model case where w is an eigenfunction; see [CM9] for approximate
eigenfunctions).



Analytical Properties for Degenerate Equations 67

Theorem 4.4 ([CM9]). Given ν < 1, there exists C so that if (L+1)w = 0 on BR

with e−
R2

4 + ‖w‖2W 3,2 ≤ δ and w2 ≤ δ ef , then there is a function w̃ as in (4.2)
with

sup
|x|≤3n

|w − w̃| ≤ C δν . (4.5)

This gives the improved estimate that we need. Namely, (1) in Proposition

3.9 gives |w| ≤ C δ
1
2

j , while (4.5) gives |w− w̃| ≤ C δνj with ν ≈ 1. The first bound
is not summable, but the second bound is by Proposition 3.7.

The L2 methods for Lemma 4.3 yield sharp global results, but are not sharp
enough for (4.5). We will need a different approach – the frequency – that is
explained next.

4.2. The frequency

The key to understanding the growth of eigenfunctions for L is a frequency function
inspired by Almgren’s frequency for harmonic functions, [Al], cf. [GL], [HaS], [Ln],
[CM10], [D]. The frequency was used by Bernstein, [Be], to study the ends of
shrinkers and in [CM7] to study the growth of approximate eigenfunctions.

To explain the frequency, set f = |x|2
4 on Rn and define quantities I(r)

and D(r)

I(r) = r1−n

∫
∂Br

u2 , (4.6)

D(r) = r2−n

∫
∂Br

uur = r2−n ef(r)
∫
Br

(
|∇u|2 − V u2

)
e−f , (4.7)

and the frequency U(r) = D
I . Thus, (log I)

′ = 2U
r , so U measures the polynomial

rate of growth of
√
I. For example, if u(x) = |x|d, then U = d.

There is a dichotomy where eigenfunctions of L are polynomial or grow ex-
ponentially:

Theorem 4.8. [CM7] Given ε > 0 and δ > 0, there exist r1 > 0 such that if
Lu = −λu and U(r̄1) ≥ δ + 2 sup {0, λ} for some r̄1 ≥ r1, then for all r ≥ R(r̄1)

U(r) >
r2

2
− n− 2λ− ε . (4.9)

This theorem explains why we expect a good approximation when the eigen-
function is defined (and bounded) on a large ball. This is easiest to explain in the
case λ = 0 (we can reduce to this after taking 2λ partial derivatives). Namely,
subtracting a constant to make the average zero on a ball, we can use the Poincaré
inequality to get a positive lower bound for the frequency on a fixed inner ball.
Theorem 4.8 then implies extremely rapid growth out to the boundary of the ball.
Since the function is bounded, we conclude that it must be small on the inner ball
as claimed. See Theorem 4.1 in [CM7] for details (compare [CM9]).



68 T.H. Colding and W.P. Minicozzi II

Acknowledgment

The authors were partially supported by NSF Grants DMS 1404540 and DMS
1707270.

References

[AAG] S. Altschuler, S. Angenent, and Y. Giga, Mean curvature flow through singular-
ities for surfaces of rotation. J. Geom. Anal. 5(3), 293–358 (1995).

[An] B. Andrews, Noncollapsing in mean-convex mean curvature flow . G&T 16
(2012), no. 3, 1413–1418.

[AV] S. Angenent and J.J.L. Velázquez, Degenerate neckpinches in mean curvature
flow . J. Reine Angew. Math. 482 (1997), 15–66.

[Al] F. Almgren, Jr., Q-valued functions minimizing Dirichlet’s integral and the reg-
ularity of area minimizing recti able currents up to codimension two, preprint.

[A] V.I. Arnold, Arnold’s problems. Translated and revised edition of the 2000 Rus-
sian original. Springer-Verlag, Berlin; PHASIS, Moscow, 2004.

[Be] J. Bernstein, Asymptotic structure of almost eigenfunctions of drift Laplacians
on conical ends, preprint, https://arxiv.org/pdf/1708.07085.pdf.

[B] S. Brendle, Embedded self-similar shrinkers of genus 0, Annals of Math. 183,
715–728 (2016).

[ChGG] Y.G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions
of generalized mean curvature flow equations. J. Differential Geom. 33 (1991),
no. 3, 749–786.

[CM1] T.H. Colding and W.P. Minicozzi II, Generic mean curvature flow I; generic
singularities, Annals of Math., 175 (2012), 755–833.

[CM2] , Uniqueness of blowups and �Lojasiewicz inequalities, Annals of Math.,
182 (2015), 221–285.

[CM3] , Level set method for motion by mean curvature, Notices of the AMS,
(2016) Vol. 63, No. 10, 1148–1153.

[CM4] , The singular set of mean curvature flow with generic singularities, In-
ventiones Math., 204 (2) (2016), 443–471.

[CM5] , Differentiability of the arrival time, CPAM, Vol. LXIX, (2016) 2349–
2363.

[CM6] , Regularity of the level set flow, CPAM, Vol. LXXIV, (2018) 814–824.

[CM7] , Sharp frequency bounds for eigenfunctions of the Ornstein–Uhlenbeck
operator, Calc. Var. Partial Differential Equations 57 (2018), no. 5, Art. 138,
16 pp.

[CM8] , �Lojasiewicz inequalities and applications. Surveys in differential geom-
etry 2014. Regularity and evolution of nonlinear equations, 63–82, Surv. Differ.
Geom., 19, Int. Press, Somerville, MA, 2015.

[CM9] , Arnold–Thom gradient conjecture for the arrival time, Comm. Pure
Appl. Math. 72 (2019), no. 7, 1548–1577.

[CM10] , Harmonic functions of polynomial growth, JDG 46 (1997), 1–77.

https://arxiv.org/pdf/1708.07085.pdf


Analytical Properties for Degenerate Equations 69

[D] C. De Lellis, The size of the singular set of area-minimizing currents, Surveys
in differential geometry 2016. Advances in geometry and mathematical physics,
1–83, Surv. Differ. Geom., 21, Int. Press, Somerville, MA, 2016.

[ES] L.C. Evans and J. Spruck, Motion of level sets by mean curvature I, JDG 33
(1991) 635–681.

[GK] Z. Gang and D. Knopf, Universality in mean curvature flow neckpinches. Duke
Math. J. 164 (2015), no. 12, 2341–2406.

[GL] N. Garofalo and F.H. Lin, Monotonicity properties of variational integrals, Ap

weights and unique continuation, Indiana Univ. Math. J. 35 (1986), no. 2, 245–
268.

[G] P. Goldstein, Gradient flow of a harmonic function in R3. J. Diff. Eq. 247 (2009),
no. 9, 2517–2557.

[HaS] R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, JDG 30
(1989), 505–522.

[HaK] R. Haslhofer and B. Kleiner, Mean curvature flow of mean convex hypersurfaces,
CPAM, (2017), 511–546.
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Equivariant K-theory and Resolution
I: Abelian Actions

Panagiotis Dimakis and Richard Melrose

Abstract. The smooth action of a compact Lie group on a compact manifold
can be resolved to an iterated space, as made explicit by Pierre Albin and
the second author. On the resolution the lifted action has fixed isotropy type,
in an iterated sense, with connecting fibrations and this structure descends
to a resolution of the quotient. For an Abelian group action the equivari-
ant K-theory can then be described in terms of bundles over the base with
morphisms covering the connecting maps. A similar model is given, in terms
of appropriately twisted deRham forms over the base as an iterated space,
for delocalized equivariant cohomology in the sense of Baum, Brylinski and
MacPherson. This approach allows a direct proof of their equivariant version
of the Atiyah–Hirzebruch isomorphism.
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Introduction

One intention of this note is to demonstrate that real blow-up can be an effec-
tive tool in the analysis of smooth group actions, particularly in the compact
case. To do so, we describe equivariant K-theory in terms of resolved spaces and
in consequence introduce (here only in the Abelian case) a geometric model for
the delocalized equivariant cohomology of Baum, Brylinski and MacPherson [2],
designed to realize an equivariant form of the Atiyah–Hirzebruch isomorphism

Ch : K∗
G(M)⊗ C −→ H∗

dl,G(M). (1)

The more general case of the action by a non-Abelian compact Lie group will
be treated subsequently. That the non-Abelian case is more intricate can be seen
from the computation of the equivariant K-theory in case of an action with single
isotropy type by Wassermann [7]. See also the paper of Rosu [5].
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Resolution of a group action, as described by Pierre Albin and the second au-
thor in [1], replaces it by a tree of actions each with unique isotropy type and with
connecting equivariant fibrations. This results in a similar resolution of the quo-
tient, which we call an ‘iterated space’ corresponding to its smooth stratification.
The description given here of the various cohomology theories is directly in terms
of smooth ‘iterated’ objects, bundles or forms, over these iterated spaces with aug-
mented ‘pull-back’ morphisms covering the connecting fibrations. Resolution may
be thought of as replacing the ‘analytic complexity’ of strata by the ‘combinatorial
complexity’ of iterated fibrations. The perceived advantage of this is that many
standard arguments can be transferred directly to this iterated setting, since the
spaces are smooth. The objects which appear here have local product structures.

The case of a compact Abelian group, G, acting, with single isotropy group,
on a compact manifold (with corners), M, is relatively simple and forms the core
of our iterative approach.

If the action is free then each equivariant bundle is equivariantly isomorphic
to the pull-back of a bundle over the base; thus equivariant bundles descend to
bundles. Equivariant K-theory is then identified, as a ring, with the ordinary
K-theory of the base. However the structure of KG(M) as a module over the

representation ring of G is lost in this identification. With Ĝ the dual group,
tensor product and descent defines an action of irreducible representations of G
on smooth bundles over the base

σ : Ĝ×Bun(Y ) −→ Bun(Y ) (2)

which projects to give the action of Ĝ on KG(M). In realizing equivariant K-
theory and delocalized equivariant cohomology over the resolved space we need to
retain aspects of σ.

For an Abelian action with fixed, but non-trivial, isotropy group B ⊂ G
there is a similar reduction to objects on the base. Equivariant bundles may be

decomposed over the dual group, B̂, giving a finite number of coefficient bundles.

Lifting an element of B̂ into Ĝ and taking the tensor product with the inverse

gives the coefficient bundle an action of Ĝ/B. The case of a principal action then
applies and results in a collection of bundles Wĝ over the base, Y, indexed by

ĝ ∈ Ĝ. We assemble these into a bundle over Ĝ × Y – allowed to have different
dimensions over different components – with two additional properties. First its

support projects to a finite subset of B̂ and more significantly it is ‘twisted’ under

the action of Ĝ/B on Ĝ in the sense that

σ(ĥ)⊗Wĥĝ = Wĝ. (3)

In this setting of a single isotropy group, the delocalized equivariant coho-
mology is given in terms of a twisted deRham complex. The forms are finite sums
of formal products ∑

i

ĝi ⊗ ui, ui ∈ C∞(Y ; Λ∗)
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where the twisting law (3) is replaced by its cohomological image

(ĥĝ)⊗ Ch(ĥ) ∧ v � ĝ ⊗ v, ĥ ∈ Ĝ/B, v ∈ C∞(Y ; Λ∗). (4)

Here Ch(ĥ) is the Chern character of the bundle, with connection, given by descent

from the representation ĥ interpreted as a trivial bundle with equivariant action
and with product connection. The reduced bundles may be given connections,

consistent with the connection on ĥ and (3) for which the Chern character is
a delocalized form in the sense of (4). For discussions of the equivariant Chern
character see the book [3] of Berline, Getzler and Vergne and the paper of Getz-
ler [4].

These definitions of reduced bundles and delocalized deRham forms are
extended to iterated objects over the resolution of the quotient, Y∗, by adding
morphisms covering the connecting fibrations. This leads directly to the Atiyah–
Hirzebruch–Baum–Brylinski–MacPherson isomorphism (1), proved here using the
six-term exact sequences which result from successive pruning of the isotropy tree.

In outline the paper proceeds as follows. In §1 we recall from [1] the resolution
X∗ of any compact Lie group action on a compact manifold, with the quotient
an iterated space Y∗. The lifting of equivariant bundles to iterated equivariant
bundles on X∗ is described in §2 and the reduction to twisted iterated bundles
over Y∗ is discussed, for Abelian actions, in §3 – the non-Abelian case is much
more intricate because of the appearance of ‘Mackey twisting’. The realization
of equivariant K-theory in terms of reduced bundles is contained in §4 and this
leads to the geometric model for delocalized (Abelian) equivariant cohomology in
§5. The relative sequences obtained by successive pruning of the isotropy tree are
introduced in §6 and used to establish (1) in §7. Examples of circle actions are
considered in §8.

The authors are happy to thank Pierre Albin, Victor Guillemin, Eckhard
Meinrenken, Michèle Vergne and David Vogan for helpful conversations.

1. Resolution

In [1], the resolution of the smooth action of a compact Lie group on a compact
manifold, M, was described. The action stratifies M, into smooth submanifolds,
with the isotropy group lying in a fixed conjugacy class of closed subgroups of G
on each stratum. For convenience we shall assume, without loss of generality, that
the quotient, M/G, is connected. If M is not connected then G acts on the set of
components and we may consider each orbit separately and so assume that G acts
transitively on the set of components. Similarly, we declare the strata, Mα ⊂ M,
to consist of the images under the action of G of the individual components of the
manifolds where the isotropy class is fixed. Thus the labeling index, α ∈ A, records
a little more than the isotropy type since different (collective) components may
have the same isotropy type. The strata are partially ordered, by the condition
that the closure of one is contained in the other. This partial order is consistent
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with the codimension of the strata and the strata containing a point of M in
their closures form a chain in both senses, under inclusion and under the order
corresponding to codimension.

We recall both the resolution of such a group action and the consequent
resolution of the quotient in terms of ‘iterated spaces’. This is essentially the
notion of a ‘resolved stratified space’.

For present purposes the category Man has as objects the compact manifolds
with corners, not necessarily connected. Each such manifold has a finite collection,
M1(M), of boundary hypersurfaces H ⊂ M. By definition of a ‘manifold with
corners’ we require that these boundary hypersurfaces are embedded – they are
themselves manifolds with corners having no boundary faces identified in M. As a
result each boundary hypersurface has a global defining function 0 ≤ ρ ∈ C∞(M),
vanishing simply and precisely on H. As morphisms we will take ‘smooth interior
b-maps’ which is to say smooth maps in the usual sense M1 −→ M2 such that
the pull-back of a boundary defining function for a boundary hypersurface of M2

is the product of powers of boundary defining functions for hypersurfaces of M1

(including the case that the pull-back is strictly positive). Certainly all smooth
diffeomorphisms are interior b-maps. A smooth G action on X is required to be
boundary free in the sense that

g ∈ G, H ∈M1(M) =⇒ either gH = H or gH ∩H = ∅. (1.1)

In fact the morphisms we are most concerned with here are fibre bundles,
which we call ‘fibrations’. In this compact context, these are simply the surjective
interior b-maps with surjective differentials. The implicit function theorem applies
to show that for such a map each point in the base has an open neighbourhood
U with inverse image diffeomorphic to the product U × Z with Z a fixed (over
components of the base) compact manifold with corners with the map reducing to
projection. Note that the b-map condition is used here; without such an assumption
the fibres can be cut off by boundaries.

Definition 1. The category, IMan, has as objects, X∗, iterated spaces in the follow-
ing sense. There is a ‘principal’ manifold with corners X = X0 which is the root of
a tree Xα of manifolds corresponding to a partial order (‘depth’) α ≤ β ∈ A. The
boundary hypersurfaces of X0 are partitioned into subsets, with elements which
do not intersect, forming ‘collective boundary hypersurfaces’ Hα(X0) ⊂M1(X0).
These carry fibrations

ψα : Hα(X0) −→ Xα. (1.2)

Under the partial order on the Hα two (always collective) hypersurfaces are related
if and only if they intersect, and any collection with non-trivial total intersection
forms a chain. For each α the set of boundary hypersurfaces of Xα is also parti-
tioned into collective boundary hypersurfaces

Hβ(Xα) = ψα(Hβ), β > α (1.3)
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and ψβ restricted to Hα factors through a fibration

ψβ,α : Hβ(Xα) −→ Xβ, β > α; (1.4)

with the base index denoted 0, ψα = ψα,0.
A smooth G-action on an iterated space is a boundary free G action on each

Xα with respect to which all the fibrations ψα,β are G-equivariant.

It follows that in an iterated space, for any chain

α1 < α2 < · · · < αk (1.5)

there is a sequence of fibrations⋂
1≤j≤k

Hαj (X0)
ψα1 ��

⋂
2≤k≤k

Hαj (Xα1)
ψα2,α1 �� · · · �� Hαk

(Xαk−1
)
ψαk,α,k−1�� Xαk

(1.6)

with composite the restriction of ψαk
. It is also follows that the fibres of the

restricted fibrations have strictly increasing codimension as submanifolds of the
fibres in the hypersurfaces.

Resolution is accomplished in [1] by radial blow up (which corresponds to
a sequence of interior b-maps) of successive smooth centres corresponding to the
tree of isotropy types, in (any) order of decreasing codimension. This results in a
well-defined iterated space, X∗, with G-action in the sense described above with
principal space X = X0 and iterated blow-down map

β : X −→ M (1.7)

giving the resolution of M. The Xα are the resolutions of the isotropy types Mα

in the same sense. The important property of the resolution is that the G-action
on each (smooth, compact) Xα now has fixed isotropy type and the ‘change of
isotropy type’ occurs within the fibrations ψα,β .

Since the action on each Xα has fixed isotropy type the quotients

Yα = Xα/G (1.8)

are all smooth manifolds with corners having boundary hypersurfaces Hβ(Yα),
β > α, labeled by the index set

Aα = {β ∈ A;β > α} (1.9)

and forming a tree with the corresponding intersection relations and base α. The
G-equivariant fibrations (1.4) descend to give Y∗ the structure of an iterated space

Hβ(Xα)
/G ��

ψβ,α

��

Hβ(Yα)

φβ,α

��
Xβ

/G
�� Yβ

, β > α, φα = φα,0. (1.10)
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2. Lifting

Let Bun(M) denote the category of finite-dimensional, smooth, complex, vector
bundles over a compact manifold M, with bundle maps as morphisms. Similarly
if M is a smooth G-space let BunG(M) denote the category of bundles with
equivariant G-action covering the action on M and with morphisms the bundle
maps intertwining the actions. Thus the equivariantK-theory ofM can be realized
(see Segal [6]) as the Grothendieck group

KG(M) = BunG(M)�BunG(M)/ � (2.1)

with the relation of stable G-equivariant bundle isomorphism.
In general if F : M −→ N is a smooth G-equivariant map of G-spaces then

pull-back defines a functor

F ∗ : BunG(N) −→ BunG(M). (2.2)

In particular this applies to the blow-down map in the resolution of the action.

Definition 2. If X∗ is an iterated space we denote by Bun(X∗) the category with
objects ‘iterated bundles’ consisting of a bundle Bα ∈ Bun(Xα) for each α ∈ A
and with pull-back isomorphisms specified over each Hα(X0),

μα : φ∗
αBα � B0

∣∣
Hα(X0)

(2.3)

which factor through intermediate bundle isomorphisms μα,β, α < β, covering
the sequence (1.6) over each boundary face of X0. The morphisms are bundle
maps between the corresponding bundles which commute with the connecting
morphisms (2.3).

If X∗ is an iterated space with G-action, BunG(X∗) denotes the category
in which the bundles carry G-actions covering the actions on the Xα and the
connecting isomorphisms, (2.3), are G-equivariant; morphisms are then required
to be G-equivariant.

Lemma 1. If the iterated G-space X∗ is the resolution of M, with compact G action,
then pull-back under the iterated blow-down map defines a functor

β∗ : BunG(M) −→ BunG(X∗) (2.4)

and every iterated bundle in BunG(X∗) is isomorphic to the image of a bundle in
BunG(M).

Proof. The lifting of the objects, G-equivariant bundles, and corresponding mor-
phisms under β is simply iterated pull-back. It only remains to show that every
G-equivariant iterated bundle in BunG(X∗) is isomorphic to such a pull-back. As
shown in [1] the resolution X∗ can be ‘rigidified’ by choosing product decomposi-
tions near all boundary hypersurfaces with G-invariant smooth defining functions
consistent near all corners, i.e., so that the various retractions commute.

In the simple setting of a compact manifold with boundary, M, suppose V
is a smooth vector bundle over M, U is a vector bundle over the boundary H
and T : V

∣∣
H

−→ U is a bundle isomorphism. Then V can be modified near H
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to an isomorphic bundle Ṽ which has fibres over H identified with those of U
and outside a small collar neighbourhood of H has fibres identified with V. This
can be accomplished by a rotation in the isomorphism bundle of V ⊕ U and in
particular carries over to the equivariant case. Indeed the standard construction
has the virtue of leaving the original bundle unchanged over any set in the collar
over an open set on which T is already an identification. This allows the bundle
isomorphisms to be ‘removed’ inductively over the isotropy tree.

Once the isomorphisms are reduced to the identity, the bundles themselves
can be similarly modified in equivariant collars around the boundary hypersurfaces
of X0 to be constant along the normal fibrations and hence to be the pull-backs
of smooth bundles on the base. Alternatively the topological bundles obtained by
direct projection can be smoothed over M. �

Pulling back a G-connection from a bundle on M we find:

Corollary 2. For a G-bundle W∗ ∈ BunG(X∗) there are a G-equivariant connec-
tions on each Wα which are intertwined by the μα,β.

Now, we can therefore identify

KG(M) = BunG(X∗)�BunG(X∗)/ � (2.5)

as the Grothendieck group of iterated G-bundles on the resolution up to stable
isomorphism.

Finite-dimensional representations of a compact Lie group, G, can be de-

composed into direct sums of tensor products with respect to a fixed set Ĝ of
irreducibles, which can be identified with the set of characters. This allows the

representation category to be identified with the category Bunc(Ĝ), with objects

the ‘bundles’ over Ĝ with finite support and morphisms being bundle maps. Here,
for a non-connected space, the objects in Bunc are permitted to have different di-
mensions over different components but in this case, where there may be infinitely
many components, the bundles must have dimension zero in the complement of a
compact set. So the objects consist of a finite number of characters, each associ-

ated to a (complex) vector space. Each object in Bunc(Ĝ) defines an equivariant
bundle over any G-space and tensor product with these bundles induces an action

of the representation ring, R(G) = Ĝ(Z) on KG(M). Aspects of this action are
particularly important in the sequel.

Proposition 3. For the action of a compact Lie group on an iterated space X∗,
taking the tensor product with a (finite-dimensional) representation gives a functor

σ : Bun(Ĝ)×BunG(X∗) −→ BunG(X∗). (2.6)

Proof. Given an element (V,E) ∈ Bun(Ĝ)×BunG(X∗), the corresponding object
in BunG(X∗) is the tensor product of E and V , with V thought as the trivial

iterated bundle overX∗ with the implied G-action. Given an element V ofBun(Ĝ)
and an equivariant iterated bundle map E → F , we obtain an equivariant bundle
map V ⊗ E → V ⊗ F . Similarly for a morphism of representations V1 → V2 and
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an equivariant iterated bundle E, we obtain an induced equivariant bundle map
V1 ⊗ E → V2 ⊗ E. �

3. Reduction

The Abelian case is considerably simpler than the general one and has been more
widely studied. From this point on, in this paper, we shall assume that G is com-
pact and Abelian. One fundamental simplification is that all (complex) irreducible
representations in the Abelian case are one-dimensional (and of course all one-

dimensional representations are irreducible). In this case Ĝ is a discrete Abelian
group.

As recalled in the Introduction, if a compact Lie group acts freely on a com-
pact manifold, X, then the quotient, Y, is a compact manifold and X is a principal
bundle over it. For an equivariant bundle over X , the action over each orbit gives
descent data for the bundle, defining a vector bundle over the base. This gives an
equivalence of categories

BunG(X) ∼= Bun(Y ) if G acts freely. (3.1)

For such a free action, tensor product with representations gives a ‘quantization’
of the dual group

σ : Ĝ −→ Bun(Y ) (3.2)

corresponding to (2.6).
We need to understand this operation in the more general case of an action

with a fixed isotropy group B ⊂ G, necessarily a closed subgroup. There is then a
short exact sequence

B −→ G −→ G/B (3.3)

that is split since the groups are Abelian. The dual sequence

Ĝ/B �� Ĝ �� B̂
τ

�� (3.4)

is also exact and split so there exists a group homomorphism τ as indicated, giving
a right inverse. Two such maps τ , τ ′ are related by a group homomorphism

μ : B̂ −→ Ĝ/B. (3.5)

with τ ′ = m(μ, τ), where m : Ĝ/B × Ĝ −→ Ĝ is the multiplication map.
For an action with isotropy group B, the quotient G/B acts freely on X and

the discussion above gives the equivalence of categories and shift functor

BunG/B(X) ∼= Bun(Y ), σ : Ĝ/B −→ Bun(Y ),

Y = X/G = X/(G/B). (3.6)

It is still the case that G-equivariant bundles descend to the quotient but

only after decomposition under the action of B. Consider the space Ĝ× Y, which

has a natural action by Ĝ/B, with ĝ × Y mapped to (ĥ⊗ ĝ)× Y.
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Definition 3. For a compact Abelian G-action on a compact manifold X with fixed

isotropy group B ⊂ G and base Y = X/G, let BunBc (Ĝ× Y ) denote the category

of bundles over Ĝ×Y with support which is finite when projected to B̂ and which
satisfy the transformation law

σ(ĥ)⊗Wĥ⊗ĝ = Wĝ ∀ ĥ ∈ Ĝ/B, ĝ ∈ Ĝ. (3.7)

Morphisms are bundle maps over each ĝ×Y which are natural with respect to (3.7).

Note that we could eliminate the action (3.7) at the expense of choosing

a splitting group homomorphism τ : B̂ −→ Ĝ as in (3.4), reducing elements of

BunB
c (Ĝ× Y ) to arbitrary elements of Bunc(B̂ × Y ).

Proposition 4. For an action of a compact Abelian group with fixed isotropy group
B ⊂ G there is an equivalence of categories

R : BunG(X) ∼= BunB
c (Ĝ× Y ), Y = X/G (3.8)

where W ∈ BunBc (Ĝ× Y ) corresponds to the G-equivariant bundle⊕
b̂∈B̂

τ (̂b)⊗ π∗(Wτ (̂b)) (3.9)

for a splitting homomorphism τ as in (3.4).

Elements of BunBc (Ĝ× Y ) are our ‘reduced bundles’ in this simple case.

In order to define (3.9) we pass to the restriction of an element of BunB
c (Ĝ×

Y ) to the image τ(B̂)×U given by a splitting homomorphism τ. As a consequence
of (3.7) the final result is independent of the choice of τ.

Proof. The isotropy group at each point acts on the fibres of an equivariant bundle
U ∈ BunG(X) which therefore decomposes into a direct sum of B-equivariant
bundles

U =
⊕

b̂∈B̂,finite

Ub̂ (3.10)

where the action of B on each term factors through the irreducible representation

b̂. If ĝ ∈ Ĝ is a representation which restricts to b̂ then the action of B on ĝ−1⊗Ub̂
is trivial. This bundle therefore has an equivariant G/B-action and so descends

to a bundle Wĝ over Y. Doing this for every ĝ, we define a bundle over Ĝ × Y ,

supported over a finite subset of B̂. Clearly these bundles satisfy (3.7). Conversely

each element of BunB
c (Ĝ× Y ) defines an element of BunG(X). �

Note that the category BunBc (Ĝ × Y ) is not determined by the groups and
base Y alone since it depends on the ‘shift’ isomorphism σ which retains some
information about the principal bundle, namely the images under descent to Y of

the trivial G-bundles given by elements of Ĝ/B.
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4. Reduced K-theory

Consider next a principal G-bundle, for G compact Abelian, and a G-equivariant
fibration giving a commutative diagram

X
π ��

/G

��

X1

/G

��
Y π1

�� Y1

(4.1)

where the G-action on X1 has fixed isotropy group B; thus π1 is a fibration of
smooth compact manifolds. In view of the identification of equivariant bundles in
Proposition 4, the pull-back map descends to an ‘augmented pull-back map’

BunG(X)� �

��

BunG(X1)
π∗

��
� �

��
Bun(Y ) BunBc (Ĝ× Y1)

π#
1��

(4.2)

given by pull-back followed by summation over a splitting τ : B̂ −→ Ĝ :

π#
1 : BunB

c (Ĝ× Y1)
π∗
1−→ BunB

c (Ĝ× Y )
σ#

−→ Bun(Y ) = Bun{e}
c (Ĝ× Y ),

σ#(V ) =
⊕
b̂∈B̂

σ(τ (̂b))Vτ (̂b).

As implicitly indicated by the notation, σ#(V ) is independent of the section τ.

We need this in the more general case of an equivariant fibration between
two actions with fixed isotropy groups. For nested closed subgroups, K ⊂ B ⊂ G,
we choose iterated splittings

τ ′ : K̂ −→ B̂, τ1 : B̂ −→ Ĝ =⇒ τ = τ1τ
′ : K̂ −→ Ĝ. (4.3)

Then

b̂′, b̂ ∈ B̂, b̂′
∣∣
K

= b̂ ⇐⇒ ∃ ! ĥ ∈ Ĝ/K s.t. τ1(̂b
′) = ĥτ (̂b). (4.4)

Proposition 5. If (4.1) is an equivariant fibration between actions of a compact
Abelian Lie group G with fixed isotropy groups B ⊃ K then pull back of equivariant
bundles descends to the augmented pull-back map

π#
1 : BunB

c (Ĝ× Y1) −→ BunK
c (Ĝ× Y ) (4.5)

given by pull back on the fibres

π∗
1 : BunB

c (Ĝ× Y1) −→ BunBc (Ĝ× Y ) (4.6)
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followed by summation to give the value at the image τ(k̂) using (4.4)(
σ#(V )

)
τ(k̂)

=
⊕

{b̂∈B̂ ;̂b
∣∣
K
=k̂}

σ(ĥ)Vĥτ ′(k̂),

∀ V ∈ BunB
c (Ĝ× Y ), k̂ ∈ K̂.

(4.7)

Proof. An equivariant fibration can be factored through the fibre product

X̃1 = X1 ×Y1 Y −→ Y, X −→ X̃1 −→ X1

where the G-action on X̃1 has isotropy group B. Thus it suffices to consider the two
cases of the pull-back of an action under a fibration and the quotient of an action
with isotropy group K by a larger subgroup B. In the first case the augmented
pull-back is simply the pull-back as in (4.6) with (4.7) being the identity. In the
second case the base is unchanged, so (4.6) is the identity and the summation is

over those elements of B̂ with fixed restriction to K. �

Now we pass to the general case of the action of a compact Abelian Lie
group G on a compact manifold M with resolution X∗ and resolved quotient Y∗
as discussed above. The isotropy groups Bα ⊂ G form a tree with root B0 the
principal isotropy group. Generalizing the choice (4.3) we can choose iterative
splittings by proceeding step-wise along chains

τβ,α : B̂α −→ B̂β ∀ β > α, τγ,β ◦ τβ,α = τγ,α, γ > β > α. (4.8)

Using notation as for the fibration maps we set τα = τα,0. Then the formulæ (4.5)
and (4.7) are valid for any pair and are consistent along chains.

Definition 4. Reduced bundles W∗ in the case of an Abelian action, consist of the
following data

1. A bundle Wα ∈ BunBα
c (Ĝ× Y∗) for each element of the tree.

2. For each non-principal isotropy type α > 0 (so Bα ⊃ B0) a bundle isomor-
phism

Tα : π#
α Wα � W0

∣∣
Hα(Y0)

. (4.9)

3. The consistency conditions that for any chain α∗, αk > · · · > α1 > 0 the
isomorphisms (4.9) restricted to the boundary face, of codimension k,

Hα∗(Y0) =
⋂
j

Hαj (Y0)

form a chain, corresponding to isomorphisms for each α < β

Tα,β : π#
αβWβ � Wα

∣∣
Hβ(Yα)

. (4.10)

Morphisms between such data consist of bundle maps at each level of the
tree intertwining the isomorphisms Tα in (4.9).
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We denote by BunB∗
c (Ĝ × Y∗) the category of such reduced bundles and

the corresponding Grothendieck group of pairs of reduced bundles up to stable
isomorphism by

Kred(Y∗) = BunB∗
c (Ĝ× Y∗)�BunB∗

c (Ĝ× Y∗)/ � . (4.11)

Theorem 6. The equivariant K-theory for the action of a compact Abelian group
on a compact manifold M is naturally identified with the reduced K-theory (4.11)
of the resolved quotient.

Proof. This follows from the equivalence of the categories of G-equivariant iter-
ated bundles over X∗ and reduced bundles over Y∗ which in turn follows from
Propositions 4 and 5. �

Definition 5. An iterated connection∇∗ on a reduced bundle W∗ ∈ BunB∗
c (Ĝ×Y∗)

is a connection ∇ĝ,α on each bundle Wĝ,α ∈ Bun(Yα) satisfying

∇ĥ ⊗∇ĥĝ,α = ∇ĝ,α, ĥ ∈ Ĝ/Bα ∀ α ∈ A, ĝ ∈ Ĝ (4.12)

under the transformation law (3.7) and compatible under augmented pull-back
isomorphisms.

Lemma 7. Any reduced bundle can be equipped with an iterated connection in the
sense of Definition 5.

Proof. Such a connection can be obtained following the reduction procedure from
a G-connection on the corresponding iterated G-bundle overX∗. It is also straight-
forward to construct such a connection directly. �

The odd version of reduced bundles may be defined by ‘suspension’ – simply
taking the product with an interval and demanding that all bundles be trivialized
over the end points leading to a category

BunB∗
c (Ĝ× ([0, 1]× Y∗; ({0} ∪ {1})× Y∗). (4.13)

This leads to the odd version of equivariant K-theory

K1
G(M) = K1

red(Y∗) =

BunB∗
c (Ĝ× Y∗; ({0} ∪ {1})× Y∗)�BunB∗

c (Ĝ× Y∗; ({0} ∪ {1})× Y∗)/ � .
(4.14)

The isotropy tree can also be ‘pruned’ by considering any subtree P ⊂ A, so

α, β ∈ P, α ≤ β =⇒ β ∈ P. (4.15)

Then reduced bundles which are trivialized on the elements of P form a subcate-
gory

BunB∗
c (Ĝ× Y∗;P ). (4.16)

These correspond to G bundles over M which are trivialized in a neighborhood of
isotropy types indexed by P. We denote by K∗

red(Y∗;P ) the Grothendieck groups
of these relative spaces of bundles and their suspended versions.
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5. Delocalized equivariant cohomology

If ρ ∈ Ĝ is an irreducible representation of a compact Abelian group on a com-
plex line, E, then, the corresponding trivial line bundle over a G-space, X, is
G-equivariant,

E ∈ BunG(X). (5.1)

The deRham differential defines a G-equivariant connection on E. If the action of

G is free, so X −→ Y is a principal G-bundle, then E descends to a bundle, Ẽ,
with connection. The Chern character therefore defines a multiplicative map

Ch : Ĝ −→ C∞(Y ; Λ2∗). (5.2)

Let R(G) be the representation algebra with complex coefficients, so the

vector space of formal finite linear combinations of elements of Ĝ. Then the map
(5.2) extends to a map of algebras

Ch : R(G) −→ C∞(Y ; Λ2∗). (5.3)

For a closed subgroup, B ⊂ G, R(G/B) −→ R(G) gives a multiplicative action

R(G/B)×R(G) −→ R(G). (5.4)

This and (5.2), for G/B lead to:

Definition 6. For a compact Abelian group G acting with fixed isotropy group B
on a compact manifold X the space of twisted forms over the base Y is defined as

C∞(Y ; Λ∗
dl) = C∞(Y ; Λ∗)⊗Ch R(G). (5.5)

Thus an element of this space is a finite linear combination of formal products

ui ⊗ ĝi, ui ∈ C∞(Y ; Λ∗), ĝi ∈ Ĝ

under the equivalence relation

u⊗ ĝ � (Ch(ĥ) ∧ u)⊗ ĥĝ, ∀ ĥ ∈ Ĝ/B, u ∈ C∞(Y ; Λ∗). (5.6)

Since the Chern character is closed, the deRham differential descends

d : C∞(Y ; Λ∗
dl) −→ C∞(Y ; Λ∗

dl), d2 = 0. (5.7)

Lemma 8. Suppose that π1 : X −→ X1 is a G-equivariant fibration for actions
with fixed isotropy groups K ⊂ B and π̃1 : Y −→ Y1 is the induced fibration, then
there is a natural augmented pull-back

π#
1 : C∞(Y1; Λ

∗
dl) −→ C∞(Y ; Λ∗

dl) (5.8)

which intertwines the action of d.

Proof. To define (5.8) it suffices to consider three elementary cases.
First suppose that π is simply an isomorphism of principle bundles covering

the identity map π̃1. The only appearance of the bundle in (5.5), (5.6) is through
the Chern character and this is invariant under such a transformation.

Secondly suppose that K = B but that π1 is a G-equivariant fibration. Then,
after a bundle isomorphism, this corresponds to X1 being the pull-back of the
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principal G/B bundle over Y1 under a fibration π̃1. The bundles E corresponding
to representations of G/B and their connections pull back naturally and in this
case (5.8) corresponds to the pull-back of the coefficient forms.

Finally then consider the case that X is a principal G/K bundle and that
K ⊂ B ⊂ G is a second closed subgroup with

π1 : X −→ X1 = X/B, (5.9)

so Y = Y1. The equivalence relation (5.6), now for î ∈ Ĝ/B means that any
element of C∞(X1; Λ

∗
dl) can be represented by a finite sum

ui ⊗ ĝi (5.10)

where the ĝi ∈ Ĝ exhaust B̂ under restriction. These can be chosen, and relabeled,

to be f̂kj ĝj where the ĝj ∈ Ĝ restrict to exhaust K̂ and f̂kj ∈ Ĝ/B. Then

π#
1 :

∑
finite

ujk ⊗ f̂kj ĝj =
∑
finite

(∑
k
Ch(fkj)

−1 ∧ ujk

)
⊗ ĝj. (5.11)

For elements of Ĝ/B the construction of the Chern character factors through the
projection to X1.

The general case corresponds to a composite of these three cases. �

Our model for the delocalized equivariant cohomology of Baum, Brylinski
and MacPherson in the case of a smooth action of a compact Abelian Lie group
G on a compact manifold M is the following data on the resolved quotient.

Definition 7. An element of the delocalized deRham complex C∞(Y∗; Λ
∗
dl) con-

sists of

1. For each α ∈ A a twisted smooth form uα ∈ C∞(Yα; Λ
∗
dl).

2. Compatibility conditions at all boundary faces

uα

∣∣
Hβ(Yα)

= π#
αβuβ , β > α. (5.12)

including the boundary hypersurfaces of the principal quotient corresponding
to α = 0.

Again the relative versions corresponding to a subtree P ⊂ A, are similarly
defined by demanding that the forms vanish over the spaces indexed by P.

If ∇∗ is an iterated connection on an iterated bundle W∗ ∈ BunB∗
c (Ĝ× Y∗),

as in Definition 5 and Lemma 7 then the Chern character of each bundle Wα is a
form on Ĝ× Yα :

Ch(Wα,∇α)ĝ = Ch((Wα)ĝ,∇α) on {ĝ} × Yα. (5.13)

Proposition 9. The Chern character of a reduced bundle with compatible connection
is an element of C∞(Y∗; Λ

∗
dl).
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Proof. The forms (5.13) shift correctly under the action of Ĝ/B in view of the
corresponding property for the connections and the iterative relations over the
boundary fibrations similarly follow from the standard properties of the Chern
character under pull-back. �
Definition 8. The delocalized equivariant cohomology H∗

dl,G(M) of a compact man-

ifold with smooth action by a compact Abelian group is identified with H∗
dl(Y∗),

the deRham cohomology of the complex C∞(Y∗; Λ
∗
dl) of the reduced space; the

relative cohomology H∗
dl(Y∗;P ) with respect to a subtree is defined similarly.

That this cohomology theory is identified with that given by Baum, Brylinski and
MacPherson can be proved directly but in any case follows from the isomorphism
with KG(M)⊗ C discussed below.

The verification of this ‘Atiyah–Hirzebruch–Baum–Brylinski–MacPherson’
isomorphism (7.1) is given in §7 below. The iterative proof uses the six-term exact
sequences arising from pruning the isotropy tree at successive points of a sequence
which is increasing with respect to the partial order. As with the whole approach
here, this is based on reduction to the case of a fixed isotropy group where the
result reduces in essence to the Atiyah–Hirzebruch isomorphism.

Proposition 10. If G is a compact Abelian group acting on a compact manifold
with fixed isotropy group B then the Chern character gives an isomorphism

KG(M)⊗ C −→ Heven
dl,G (M) = Heven

dl (Y∗). (5.14)

Proof. The Atiyah–Hirzebruch isomorphism is valid rationally. This amounts to
the two statements that for a compact manifold (with corners) the range of the
Chern character

Ch : K(Y ) −→ Heven(Y ) (5.15)

spans the cohomology (with complex coefficients) and that the null space consists
of torsion elements. At the bundle level this means that if the Chern character
for a pair of bundles V+ � V− is exact then for some integers p and N there is an
isomorphism

I : V p
+ ⊕ CN −→ V p

− ⊕ CN . (5.16)

A given connection on the V± lifts to a connection which can then be deformed to
commute with I and so have zero Chern character.

Now, in the equivariant case we can consider a splitting homomorphism τ :

B̂ −→ Ĝ and then pull a pairs of bundles V± ∈ BunB
c (G̃ × Y ) back to B̂ × Y

where the Chern character is given by∑
b̂∈B̂

τ(ĝ)⊗ (Ch(V+,τ (̂b))− Ch(V−,τ (̂b))). (5.17)

The vanishing of the class Heven(Y ; Λdl) is equivalent to the exactness of each of
the deRham classes Ch(V+,τ (̂b)) − Ch(V−,τ (̂b)). Thus the vanishing of the Chern

character in delocalized cohomology implies that each of the pairs V±,τ (̂b) is stably

trivial in the sense of (5.16).
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Since B̂ is finite and we may always further stabilize (5.16) by taking powers
and adding trivial bundles, we may take p to be the product of the integers for

each b̂ and similarly increase N. This however amounts to a stable trivialization of

the whole bundle V p
+ �V p

− as an element BunBc (Ĝ× Y ) and proves the injectivity
of (5.14) in this case.

The surjectivity of (5.14) is a direct consequence of the Atiyah–Hirzebruch
isomorphism and the definition of delocalized forms. �

The proof extends readily to give a relative version of this when we consider a
particular element Yα in the tree as the base and only consider bundles and forms
which are trivial over ‘deeper’ faces Yβ , β ≥ α.

Proposition 11. If α ∈ A for the action of a compact Abelian Lie group on a smooth
compact manifold M then the augmented Chern character induces an isomorphism

Kred(Yα;A
′
α)⊗ C −→ Heven

dl (Yα;A
′
α). (5.18)

6. The relative sequences

The proof of Theorem 14 is based on induction over pruning and the six-term
exact sequences which results from adding a minimal element α ∈ P in a subtree.
Thus

P = {α} "Q, Q = {β ∈ P ;β > α}, γ ∈ P, γ ≤ α =⇒ γ = α. (6.1)

The relative K-groups are introduced above.

Proposition 12. For a minimal element in a subtree α ∈ P ⊂ A as in (6.1) there
is a six term exact sequence

K0
red(Y∗;P ) �� K0

red(Y∗;Q) �� K0
red(Yα;Q)

��
K1

red(Yα;Q)

��

K1
red(Y∗;Q)�� K1

red(Y∗;P ).��

(6.2)

Proof. The upper left arrow is given by inclusion and the upper right arrow by
restriction of the reduced bundle data to be non-trivial only on Yα. The arrows in
the bottom row are defined accordingly. Exactness in the middle of the top and
the bottom row are immediate from the definitions.

To define the connecting homomorphisms on the left, consider an element in
K1

red(Yα;P ). Choosing splittings as in (4.8) this can be represented by a pair of

bundles over B̂α×Yα×[0, 1] trivial at all boundary hypersurfaces of Yα, since these
correspond to strata labeled by Q, and also trivial at the ends of the interval. Under

the augmented pull-back map, this lifts to a pair of bundles over B̂ ×Hα × [0, 1].

Now, we can identify B̂ × Hα × [0, 1] with a collar neighborhood of B̂ × Hα in

B̂ × Y . Since the bundles are trivial over the ends of the interval, this defines an
element ofK0

red(Y ;P ) which is independent of choices so defines a homomorphism.
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For the connecting homomorphism on the right the construction is the same after
tensoring with the Bott bundle on [0, 1]2 and using one variable as the normal to
the boundary and the other as the suspension variable.

To check exactness at the top left corner, suppose an element of K0
red(Y∗;P )

maps to the trivial element of K0
red(Y∗;Q) under inclusion of reduced bundle data.

Then, for a stabilized representative V±, inside Yα there is a homotopy of the trivial
bundle to itself (respecting triviality of the bundle over deeper strata) that lifts
to a homotopy from V± to the reduced bundle data corresponding to the trivial

element. Such a homotopy induces a pair of bundles over B̂α × Yα × [0, 1] trivial
at the endpoints and trivial at all strata deeper than Yα and hence an element
of K1

red(Yα;Q). A similar argument shows that any element in the kernel of the
upper left arrow is of the form discussed in the construction of the connecting
homomorphism.

Finally we prove exactness at the bottom left corner. Suppose that an element

in K1
red(Yα;Q) inserted into the neck near B̂ × Hα is homotopic to the trivial

element, the homotopy preserving the appropriate trivializations corresponding to

greater depth. This is equivalent to the existence of a bundle V[0,1] over B̂×Y ×[0, 1]

trivial at B̂ × Y × {1} and equal to the given element at B̂ × Y × {0}. Denote by

Vt the bundle above B̂× Y ×{t}; we need to show is that this data allows the lift

of the given bundle to be extended from B̂×Hα × [0, 1] to B̂× Y × [0, 1] with the

extended bundle trivial everywhere (after a homotopy) except at B̂α × Yα × [0, 1].

Fixing a collar neighborhood B̂×Hα× [0, 1]× [0, 1]⊂ B̂×Y × [0, 1] and extending

the lifted bundle over B̂× Y ×{t} by embedding it into the bundle V0

∣∣
B̂×Hα×[t,1]

.

This can be seen to be a bundle over B̂ × Y × [0, 1] extending the lift and to be
homotopically trivial due to the existence of the initial homotopy. The only issue

is that the bundle is not trivial over B̂ × Y × {0}. To ensure this, we use the

homotopy to deform the bundle over B̂×Y ×{t} to V1−t

∣∣
B̂×Hα×[t,1]

. This satisfies

the appropriate triviality conditions and it is still a lift because the homotopy does

not affect B̂ ×Hα. �

Proposition 13. For any subtrees A′ = A\P and A′ \{α} there is a six term exact
sequence

H0
dl(Y∗;P ) �� H0

dl(Y∗;Q) �� H0
dl(Yα;Q)

��
H1

dl(Yα;Q)

��

H1
dl(Y∗;Q)�� H1

dl(Y∗;P ).��

(6.3)

Proof. This can be proved by combining standard arguments for the long exact
sequence for the cohomology of a manifold relative to its boundary with the argu-
ments as in the case of K-theory above. �
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7. The isomorphism

Theorem 14 (See [2]). For the action of a compact Abelian Lie group on a compact
manifold the Chern character defines an isomorphism

K∗
G(X)⊗ C −→ H∗

dl,G(X). (7.1)

Proof. For a minimal element in a subtree as in (6.1) the exact sequences (6.2)
and (6.3) combine to form a commutative diagram

K0
red(Y∗;P ) ��

Ch

���
��

��
��

��
��

��
�

K0
red(Y∗;Q) ��

Ch

��

K0
red(Yα;Q)

Ch

����
��
��
��
��
��
��

��

H0
dl(Y∗;P ) �� H0

dl(Y∗;Q) �� H0
dl(Yα;Q)

��
H1

dl(Yα;Q)

��

H1
dl(Y∗;Q)�� H1

dl(Y∗;P ).��

K1
red(Yα;Q)

��

Ch

����������������
K1

red(Y∗;Q)��

Ch

��

K1
red(Y∗;P ).

Ch

		��������������
��

(7.2)

Tensoring the K-theory part with C therefore also gives a commutative diagram
with both six-term sequences exact.

Now we may proceed by induction, starting with Proposition 11 applied to
the open isotropy type M0 Then we consider an increasing sequence of subtrees,
starting with P0 = {0}, the base index and successively adding minimal element
in the remainder of the tree

P0 = {0} ⊂ P1 · · · ⊂ PN = A. (7.3)

Thus at each step the commutative diagram (7.2) applies with P = Pi and Q =
Pi+1. The inductive hypothesis is that, after tensoring the K-groups with C, the
left upper and right lower Chern characters are isomorphisms. Proposition 11
shows that the vertical maps are isomorphisms so an application of the Fives
Lemma shows that the top right and lower left maps are isomorphisms and hence
(7.1) follows. �
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8. Examples

The examples considered here are covered by Proposition 3.19 in Segal’s paper [6].
The aim of this section is to illustrate how the same conclusions can be reached
directly by resolution. For the first example we also compute the delocalized co-
homology to demonstrate the equality of Theorem 14.

Consider first the standard circle action on the 2-sphere given by rotation

around an axis. For G = U(1), Ĝ ∼= Z with the representation at k being the
k-fold rotation action, so with eiθ ∈ U(1) acting as eikθ on C for k ∈ Z. This
representation will be denoted Lk.

The two poles on the sphere are fixed points of the action and on the comple-
ment the action is free. Radial blow up of the two poles replaces the 2-sphere by a
compact cylinder I×S with free circle action and quotient an interval, I = [−1, 1].
Thus the reduced, iterated manifold consists of a tree with two branches, the base
being I with trivial isotropy group and with the other nodes corresponding to the
end-points where the isotropy group is U(1). A reduced bundle on this iterated
space consists of a bundle, W, over the interval I, a pair of bundles over the two
end-points with decompositions

W± =
∑
finite

Lj ⊗W±,j . (8.1)

and pull-back (compatibility) isomorphisms to W ; in this case these are the forget-
ful maps sending Lj to the trivial representation, the circle action on the cylinder
being free. Since bundles over the interval are trivial, the reduced bundle data
amounts to the W± constrained to have equal dimensions. Thus the equivariant
K-theory is

K0
U(1)(S

2) = R(U(1))⊕R(U(1))/ � (8.2)

where the relation corresponds to the equality of the dimensions. The action of

Û(1) is the diagonal action on the representation rings

The odd equivariantK-theory is given by the even equivariantK-theory with
compact supports of S2 × (−1, 1). Radial blow up of the two poles crossed with
the interval replaces S2 × (−1, 1) with S1 × I × (−1, 1). As above, the reduced
manifold consists of a tree with two branches, the base being I × (−1, 1) and
the other nodes being (−1, 1) corresponding to the endpoints with isotropy group
U(1). Since K0(R) = K0

U(1)(R) = 0, the reduced bundle data must be trivial. Thus

K1
U(1)(S

2) = 0 (8.3)

Following Definition 7 the reduced forms are differential forms over I, dif-
ferential forms tensored with representations over the two nodes related the pull-
back, forgetful, maps from the forms over the nodes to the forms over I. Thus
H0

dl,U(1)(S
2) is given by the closed reduced even forms modulo the image of the

reduced odd forms. In particular, since in this case there are only 0 and 1-forms,
it suffices to describe the closed 0-forms. A reduced 0-form is given by a smooth
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function f(x) on I and elements

ω± =
∑
finite

c±,jL
j ∈ R(U(1)), c±,j ∈ R (8.4)

over the two nodes with the pull-back condition being f(±1) =
∑

c±,j . Such a
reduced form is closed if and only if f(x) is constant. Thus the even cohomology
group is

H0
dl,U(1)(S

2) = C⊗Z (R(U(1))⊕R(U(1))/ �). (8.5)

A reduced odd form is fdx for a smooth function f(x) on I which vanishes
at the endpoints. Clearly the integral of any such function is a reduced 0-form.
Thus

H1
dl,U(1)(S

2) = 0. (8.6)

Lemma 15. For a group action by a compact Abelian group G with subgroup A ⊂ G
acting trivially, the equivariant K-theory is equal to

KG(X) = R(A)⊗KG/A(X). (8.7)

Proof. This follows immediately from the decomposition of bundles under the
action of A and the naturality of the lift of representations for a product. �

This lemma in combination with the calculation above shows that for the
n-fold rotation action on the sphere the even equivariant K-theory is

R(Zn)⊗
(
R(U(1))⊕R(U(1))/ �

)
(8.8)

and the odd equivariant K-theory vanishes.
As a final example, consider the two-dimensional complex projective space

with the following circle action

U(1) # eiθ : P2 # [z1 : z2 : z3] �−→ [eiθz1 : z2 : e−iθz3] ∈ P2. (8.9)

In general Pn = (Cn+1 \ {0})/C∗, each of the coordinate planes {zj = 0}
in Cn+1 projects to Pn−1

j ⊂ Pn and Pn \ Pn−1
j = Cn is covered by the projective

coordinate system z′/zj, z
′ = (zk)k �=j . Real blow-up of Pn−1

j replaces Pn by the

radial compactification Cn with the bounding sphere forming the Hopf fibration

∂Cn = S2n−1 # Z

|Z| −→ Pn−1
j , Z = z′/zj . (8.10)

The action (8.9) has three fixed points at [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0]
and the isotropy group on the sphere P2 = {[z1 : 0 : z3]}, outside the first and third
of these points, is Z2 = {1,−1} ⊂ U(1). Otherwise the action is free. Since these
are smooth submanifolds the resolution of the action, which in principal starts
with the fixed submanifolds, can be equivalently produced by first blowing up P2

and then blowing up the lifts of the preimages of the fixed points.

As noted above the real blow-up [P2;P2]R = C2 is, a manifold with boundary,
diffeomorphic to the closed real four-ball and the induced action is

C2 # (Z1, Z3) �−→ (eiθZ1, e
−iθZ3). (8.11)
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Blow up of the fixed point, [0 : 1 : 0], at the center of this ball, replaces it by a
spherical shell [0, 1]× S3 with the radial variable compactified to an interval. The
action on S3 projects under the Hopf fibration to the action P2 # [Z1, Z3] −→
[eiθZ1, e

−iθZ3].
The lifts of the first and third fixed points are non-intersecting circles, Z1 = 0

and Z3 = 0 in the ‘outer’ sphere and blowing these up gives the full resolution
which is a manifold with corners up to codimension two. The outer spherical
boundary is replaced by three boundary hypersurfaces. The first is the 3-sphere
with two circles blown up, so this is the product of a closed interval and a 2-torus; it
fibres (via the lift of the Hopf fibration) over the 2-cylinder, the blow-up of P = S2

at two poles. The action on the boundary hypersurface factors through that on
the 2-torus by opposite rotations on the two circles and so fibres over the double
rotation action on the circle in the base. The other two boundary hypersurfaces
are solid 3-tori given as the product a circle and a disk, with (opposite) rotation
actions on the circle and the 2-disk. At the outer boundary this fibres via the lift
of the Hopf fibration over the circle with double rotation action, and overall fibres
over a point with trivial action.

The action on the resolved manifold is free with quotient a spherical shell,
the product of an interval and a 2-sphere, with the ‘outer’ boundary blown up
at antipodal points on the sphere. Thus it is a 3-manifold with corners of codi-
mension two having boundary hypersurfaces an ‘inner’ 2-sphere, fibering over a
point, an outer 2-cylinder, fibering over an interval, and two outer 2-disks, fibering
over points. Each of the 2-disks meets the 2-cylinder in circles with the fibrations
consistent, mapping these codimension two bounding circles to the end-points of
the interval. This then is the reduced iterated manifold which as a tree has base
node, M, the three manifold connected to two nodes, one, P0, corresponding to
the second fixed point, the other, C, the 2-cylinder which in turn is connected to
the other two fixed point nodes, P±.

Reduced bundles consist of bundles over Z× Y∗ for all five nodes. Over the base,
corresponding to the free action, the bundles are of the form L−k ⊗ W for a
fixed bundle W over the 3-manifold. Over the inner boundary the restriction of
W is identified as the augmented pull back of representations of U(1); this is no
restriction since every bundle over the 2-sphere is of this form.

From the discussion above we already know that the K-theory of P = [z1 :
0 : z3], since it is the sphere with double rotation, and the K-theory of [0 : 1 : 0] is
just R(U(1)). The lifts of a bundle from [0 : 1 : 0] and a bundle from P extend to
a bundle on all of [0, 1]×S3 if and only if they are S-equivariantly isomorphic over
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S3 for the action of S on S3 given above. Since the action is free, this is equivalent
to two bundles being isomorphic over S2. Since the K-theory of S2 is just Z, this
is the case if and only if the two bundles have the same dimension. Therefore,

K0
U(1)(P

2) = (R(U(1))⊕ (R(Z2)⊗ (R(U(1))⊕R(U(1))/ �) / � . (8.12)

Unsurprisingly, since P2 only has cells in even dimensions, the odd equivariant
K-theory is zero. This can be seen directly from the analysis of the previous
examples since the odd K-theory at the two endpoints is zero, as is the even
K-theory of S2 × I × (0, 1). Thus

K1
U(1)(P

2) = 0. (8.13)
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Abstract. In this expository paper we review on the existence problem of
Einstein–Maxwell Kähler metrics, and make several remarks. Firstly, we con-
sider a slightly more general set-up than Einstein–Maxwell Kähler metrics,
and give extensions of volume minimization principle, the notion of toric K-
stability and other related results to the general set-up. Secondly, we consider
the toric case when the manifold is the one point blow-up of the complex
project plane and the Kähler class Ω is chosen so that the area of the ex-
ceptional curve is sufficiently close to the area of the rational curve of self-
intersection number 1. We observe by numerical analysis that there should be
a Killing vector field K which gives a toric K-stable pair (Ω, K) in the sense
of Apostolov–Maschler.
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1. Introduction

Let (M,J) be a compact Kähler manifold of complex dimension m. A Hermitian
metric g̃ of constant scalar curvature on (M,J) is said to be a conformally Kähler,
Einstein–Maxwell (cKEM for short) metric if there exists a positive smooth func-
tion f on M such that g = f2g̃ is Kähler and that the Hamiltonian vector field
K = Jgradgf of f with respect to the Kähler form ωg of g is a Killing vector
field for both g and g̃. In this case we call the Kähler metric g an Einstein–
Maxwell Kähler (EMK for short) metric. Let ω0 be a Kähler form, and consider
Ω = [ω0] ∈ H2

DR(M,R) as a fixed Kähler class. We look for an Einstein–Maxwell
Kähler metric g such that the Kähler form ωg belongs to Ω.

c© Springer Nature Switzerland AG 2020
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Let G be a maximal torus of the reduced automorphism group, and pick
K ∈ g := Lie(G). Then the problem is to find a G-invariant Kähler metric g with
its Kähler form ωg ∈ Ω such that

(i) g̃ = f−2g is a cKEM metric,
(ii) Jgradgf = K.

The scalar curvature sg̃ of g̃ = f−2g is given by

sg̃ = f2sg − 2(2m− 1)fΔgf − 2m(2m− 1)|df |2g (1)

where sg is the scalar curvature of g and Δg is the Hodge Laplacian with respect
to g.

Now, starting with a Kähler metric g and a Killing potential f , for any real
number n ∈ R with n �= 0, 1, 2 and k ∈ R with k �= 0 we define the (g, f, k, n)-
scalar curvature sg,f,k,n by

sg,f,k,n = f−k

{
sg + k(n− 1)

1

f
Δgf +

k

4
(n− 1)(4 + 2k − kn)

1

f2
|df |2g

}
. (2)

The case n = 2m is the scalar curvature sg̃ of the conformal metric g̃ = fkg,
and for other values of n such a meaning is lost. However, the cases of general
values of n appear in natural contexts such as in [2] and [13]. Moreover, Lahdili
proves in [10] and [11] results for cKEM metrics can be generalized to constant
(g, f,−2, n)-scalar curvature.

In this expository paper we give extensions of the volume minimization prin-
ciple [8], [9], the notion of toric K-stability [3] for k = −2 and other related results
for cKEMmetrics to the general set-up of constant (g, f, k, n)-scalar curvature. We
consider the toric case where the manifold is the one point blow-up of the complex
project plane and the Kähler class Ω is chosen so that the area of the exceptional
curve is sufficiently close to the area of the rational curve of self-intersection num-
ber 1. We observe by numerical analysis that there should be a Killing vector field
K which gives a toricK-stable pair (Ω,K) in the sense of Apostolov–Maschler. For
this purpose we show in Theorem 5.3 that we have only to consider the simple test
configurations to test toric K-stability, extending the earlier works of Donaldson
[4], Wang and Zhou [14], [15].

The rest of this paper is organized as follows. In section 2 we extend the
volume minimization for Einstein–Maxwell Kähler metrics, see Theorem 2.1. In
Section 3 we review the normalized Einstein–Hilbert functional, and study its
relation to the volume functional and the Futaki invariant. In Section 4 we consider
the normalized Einstein–Hilbert functional on toric Kähler manifolds. In Section
5 we review toric K-stability, and prove Theorem 5.3. We then review the result
of our paper [8] on the one-point blow-up of CP2 and show the graphics of the
results of the numerical analysis which indicate that this case should be K-stable
and there should be a conformally Kähler, Einstein–Maxwell metric.
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2. Volume minimization for Einstein–Maxwell Kähler metrics

In this section we review the results in [8] and extend them to constant (g, f, k, n)-
scalar curvature. Let M be a compact smooth manifold. We denote by Riem(M)
the set of all Riemannian metrics on M , by sg the scalar curvature of g, and by dvg
the volume form of g. For any given positive smooth function f and real numbers
n ∈ R with n �= 0, 1, 2 and k ∈ R with k �= 0, we define sg,f,k,n by the same
formula as (2). We put

S(g, f, k, n) :=

∫
M

sg,f,k,n f
nk
2 dvg (3)

and call it the total (g, f, k, n)-scalar curvature, and put

Vol(g, f, k, n) :=

∫
M

f
nk
2 dvg (4)

and call it the (g, f, k, n)-volume.
Let ft be a smooth family of positive functions such that f0 = f, d/dt|t=0ft =

φ. Then by straightforward computations we have

d

dt

∣∣∣∣
t=0

S(g, ft, k, n) =
k

2
(n− 2)

∫
M

sg,f,k,n φ f
nk
2 −1 dvg (5)

and
d

dt

∣∣∣∣
t=0

Vol(g, ft, k, n) =
nk

2

∫
M

φ f
nk
2 −1 dvg . (6)

Now we consider a compact Kähler manifold (M,J) of complex dimension m.
As in section 1, let G be a maximal torus of the reduced automorphism group, and
takeK ∈ g := Lie(G). Consider a fixed Kähler class Ω on (M,J), and denote byKG

Ω

the space of G-invariant Kähler metrics ω in Ω. For any (K, a, g) ∈ g×R × KG
Ω ,

there exists a unique function fK,a,g ∈ C∞(M,R) satisfying the following two
conditions:

ιKω = −dfK,a,g,

∫
M

fK,a,g
ωm

m!
= a. (7)

By (7), it is easy to see that fK,a,g has the following properties:

fK+H,a+b,g = fK,a,g + fH,b,g (8)

f0,a,g =
a

Vol(M,ω)
(9)

fCK,Ca,g = CfK,a,g (10)

Hereafter the Kähler metric g and its Kähler form ωg are often identified,
and ωg is often denoted by ω. Noting that min{fK,a,g |x ∈ M} is independent of
g ∈ KG

Ω (this follows from the convexity of moment map images and the fact that
the vertices do not move even if we change the Kähler metric in the fixed Kähler
class Ω), we put

PG
Ω := {(K, a) ∈ g×R | fK,a,g > 0}. (11)
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Note that the right-hand side of (11) is independent of g ∈ KG
Ω again since the

moment polytope is independent of g ∈ KG
Ω . Fixing (K, a) ∈ PG

Ω , n ∈ R and
k ∈ R, put

cΩ,K,a,k,n :=

∫
M

sg,fK,a,g ,k,n f
kn
2 −1

K,a,g

ωm

m!∫
M

f
kn
2 −1

K,a,g

ωm

m!

(12)

and

dΩ,K,a,k,n :=
S(g, fK,a,g, k, n)

Vol(g, fK,a,g, k, n)
=

∫
M

sg,fK,a,g ,k,n f
kn
2

K,a,g

ωm

m!∫
M

f
kn
2

K,a,g

ωm

m!

(13)

Then cΩ,K,a,k,n and dΩ,K,a,k,n are constants independent of the choice of g ∈ KG
Ω

since the integrands of (12) and (13) are part of equivariant cohomology, see, e.g.,
[6], [5], [7]. Since PG

Ω is a cone in g ×R by (10), with n and k fixed we consider
its slice

P̃G
Ω :=

{
(K, a) ∈ PG

Ω

∣∣∣ dΩ,K,a,k,n = γ
}

(14)

where γ is chosen to be −1, 0 or 1 depending on the sign of dΩ,K,a,k,n. Let

(K(t), a(t)), t ∈ (−ε, ε) be a smooth curve in P̃G
Ω such that (K(0), a(0)) =

(K, a), (K ′(0), a′(0)) = (H, b). Then

S(g, fK(t),a(t),g, k, n) = γVol(g, fK(t),a(t),g, k, n)

holds for any t ∈ (−ε, ε). By differentiating this equation at t = 0 and noting
k �= 0, we have

(n− 2)

∫
M

sg,fK,a,g ,k,nfH,b,g f
nk
2 −1

K,a,g

ωm

m!
= nγ

∫
M

fH,b,g f
nk
2 −1

K,a,g

ωm

m!
. (15)

The linear function FutGΩ,K,a,k,n : g → R defined by

FutGΩ,K,a,k,n(H) :=

∫
M

(sg,K,a,k,n − cΩ,K,a,k,n) fH,b,g f
nk
2 −1

K,a,g

ωm
g

m!
(16)

is independent of the choice of Kähler metric g ∈ KG
Ω and b ∈ R ([3]). If there

exists a Kähler metric g ∈ KG
Ω such that g̃ = fk

K,a,gg is a constant (g, f, k, n)-scalar

curvature metric, then FutGΩ,K,a,k,n vanishes identically.

For the path (K(t), a(t)), t ∈ (−ε, ε) in P̃G
Ω with (K(0), a(0)) = (K, a),

(K ′(0), a′(0)) = (H, b) we have from (15)

FutGΩ,K,a,k,n(H) =

(
nγ

n− 2
− cΩ,K,a,k,n

)∫
M

fH,b,g f
nk
2 −1

K,a,g

ωm

m!

=

(
nγ

n− 2
− cΩ,K,a,k,n

)
2

nk

d

dt

∣∣∣∣
t=0

Vol(g, fK(t),a(t),g, k, n).

(17)
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If there exists a constant (g, f, k, n)-scalar curvature metric g̃ = fk
K,a,gg with g ∈

KG
Ω , then

cΩ,K,a,k,n = dΩ,K,a,k,n = γ

and
FutGΩ,K,a,k,n(H) = 0.

Therefore for γ = ±1 we have

d

dt

∣∣∣∣
t=0

Vol(g, fK(t),a(t),g, k, n) = 0. (18)

The case of γ = 0 can be treated separately, see [8].
We summarize the result as follows.

Theorem 2.1. Let Ω be a fixed Kähler class, and n �= 0, 1, 2 and k �= 0 be fixed real
numbers. Suppose that the pair (K, a) of Killing vector field K and normalization

constant a belongs to P̃G
Ω . If there exists a G-invariant Kähler metric g in the

Kähler class Ω, i.e., g ∈ KG
Ω , such that the (g, f, k, n)-scalar curvature is constant

for the Killing Hamiltonian function f = fK,a,g then (K, a) is a critical point of

Voln,k : P̃G
Ω → R given by

Voln,k(K, a) := Vol(g, fK,a,g, k, n)

=

∫
M

f
nk
2

K,a,gdvg

for (K, a) ∈ P̃G
Ω . Further, (K, a) is a critical point of Voln,k : P̃G

Ω → R if and only

if FutGΩ,K,a,k,n ≡ 0.

Corollary 2.2. Let Ω be a fixed Kähler class. Take n = 2m and k = −2, and
let (K, a) ∈ P̃G

Ω . If there exists a conformally Kähler, Einstein–Maxwell metric

g̃ = f−2
K,a,gg with g ∈ KG

Ω , then (K, a) is a critical point of Vol : P̃G
Ω → R given by

Vol(K, a) := Vol(g, fK,a,g,−2, 2m) for (K, a) ∈ P̃G
Ω . Further, (K, a) is a critical

point of Vol : P̃G
Ω → R if and only if FutGΩ,K,a,−2,2m ≡ 0.

For a given Kähler class Ω the critical points of Vol : P̃G
Ω → R are not unique

in general as can be seen from LeBrun’s construction [12].

3. The normalized Einstein–Hilbert functional

In the previous section we confined ourselves to the view point from the vol-
ume functional. In the present section we see that, when restricted to P̃G

Ω , con-
sidering the volume functional is essentially the same as considering the nor-
malized Einstein–Hilbert functional. The normalized Einstein–Hilbert functional
EH : Riem (M) → R on an n-dimensional compact Riemannian manifold is the
functional on Riem(M) defined by

EH(g) :=
S(g)

(Vol(g))
n−2
n
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where S(g) and Vol(g) are respectively the total scalar curvature and the volume
of g. It is a standard fact that the critical points of EH are Einstein metrics,
and that, when restricted to a conformal class, the critical points are metrics of
constant scalar curvature.

Let us see this in a slightly different setting. In the equation (2), let us replace
sg by a smooth function ϕ, and put

sg,f,k,n,ϕ = f−k

{
ϕ+ k(n− 1)

1

f
Δgf +

k

4
(n− 1)(4 + 2k − kn)

1

f2
|df |2g

}
. (19)

Accordingly, we may replace (3) by

S(g, f, k, n, ϕ) :=

∫
M

sg,f,k,n,ϕ f
nk
2 dvg, (20)

and replace the normalized Einstein–Hilbert functional by

EH(g, f, k, n, ϕ) :=
S(g, f, k, n, ϕ)

(Vol(g, f, k, n, ϕ))
n−2
n

.

As before, let ft be a smooth family of positive functions such that

f0 = f, d/dt|t=0ft = φ.

Then one can show

d

dt

∣∣∣∣
t=0

EH(g, ft, k, n, ϕ) (21)

=
(n− 2)k

2
Vol(g, f, k, n, ϕ)

2−n
n

·
{∫

M

(
sg,f,k,n,ϕ − S(g, f, k, n, ϕ)

Vol(g, f, k, n)

)
φ f

nk
2 −1dvg

}
.

Thus we have shown

Proposition 3.1. The function sg,f,k,n,ϕ satisfies

sg,f,k,n,ϕ = constant

if and only if f is a critical point of the functional f �→ EH(g, f, k, n, ϕ).

Let us return to the situation of the previous section where we consid-
ered a compact Kähler manifold with a maximal torus G of the reduced auto-
morphisms group, with a fixed Kähler class Ω. Taking ϕ to be the (g, f, k, n)-
scalar curvature, we consider the Einstein–Hilbert functional EH(g, f, k, n) :=
EH(g, f, k, n, sg,f,k,n). By the same reasoning from equivariant cohomology again,
for a fixed (K, a), EH(g, fK,a,g, k, n) is independent of the choice of g ∈ KG

Ω . Set
EHk,n(K, a) := EH(g, fK,a,g, k, n). Then using (8), (9) and (10), we see

d

dt

∣∣∣∣
t=0

EHk,n(K + tH, a) (22)

=
(n− 2)k

2Voln(K, a)
n−2
n

∫
M

(
sg,fK,a,g ,k,n − dΩ,K,a,k,n

)
f

nk
2 −1

K,a,g fH,0,g

ωm
g

m!
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and

d

dt

∣∣∣∣
t=0

EHk,n(K, a+ tb) (23)

=
(n− 2)kb

2Voln(K, a)
n−2
n +1

(cΩ,K,a,n − dΩ,K,a,n)

∫
M

f
nk
2 −1

K,a,g

ωm
g

m!
.

If there exist g ∈ KG
Ω , K and a such that sg,fK,a,g ,k,n is constant, then

sg,fK,a,g ,k,n = cΩ,K,a,k,n = dΩ,K,a,k,n, (24)

and thus the pair (K, a) is a critical point of the function EHk,n : PG
Ω → R

given by
(K, a) �→ EHk,n(K, a) := EH(g, fK,a,g, k, n). (25)

Conversely, suppose that (K, a) is a critical point of EHk,n : PG
Ω → R. Then one

can see (K, a) satisfies cΩ,K,a,k,n = dΩ,K,a,k,n. Hence, by (16) and (22), FutGΩ,K,a,k,n

vanishes. More direct relation between the volume functional and the Einstein–
Hilbert functional can be seen as follows.

Remark 3.2. Since EHk,n is homogeneous of degree 0 on PG
Ω we may restrict

EHk,n to the slice

P̃G
Ω,n := {(K, a) ∈ PG

Ω,n | dΩ,k,a,k,n = γ} (26)

Then
EHk,n(K, a) = γ Volk,n(K, a)

2
n (27)

on P̃G
Ω,n. This shows that the volume minimization Theorem 2.1 is equivalent to

finding a critical point of the Einstein–Hilbert functional.

4. The normalized Einstein–Hilbert functional for toric
Kähler manifolds

In this section, we give the explicit formula for the Futaki invariant and the normal-
ized Einstein–Hilbert functional when (M,J, ω) is a compact toric Kähler manifold
and k = −2.

Let (M,ω) be a 2m-dimensional compact toric manifold and μ : M → Rm

the moment map. It is well known that the image of μ, Δ := Imageμ, is an
m-dimensional Delzant polytope in Rm. A Tm-invariant, ω-compatible complex
structure J on M gives a convex function u, called a symplectic potential, on Δ as
follows. For the action-angle coordinates (μ1, . . . , μm, θ1, . . . , θm) ∈ Δ×Tm, there
exists a smooth convex function u on Δ which satisfies

J
∂

∂μi
=

m∑
j=1

u,ij
∂

∂θj
, J

∂

∂θi
=

m∑
j=1

Hu
ij

∂

∂μj
,

where, for a smooth function ϕ of μ = (μ1, . . . , μm), we denote by ϕ,i the partial
derivative ∂ϕ/∂μi and by Hu = (Hu

ij) the inverse matrix of the Hessian (u,ij) of u.
Conversely, if we give a smooth convex function u on Δ satisfying some boundary
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conditions, by the formula above, we can recover a Tm-invariant ω-compatible
complex structure on M , see [1] for more details.

Let u be a symplectic potential on Δ. Then the toric Kähler metric gJ =
ω(·, J ·) is represented as

gJ =

m∑
i,j=1

u,ijdμidμj +

m∑
i,j=1

Hu
ijdθidθj . (28)

According to Abreu [1], the scalar curvature sJ of gJ is

sJ = −
m∑

i,j=1

Hu
ij,ij . (29)

In this case, a Killing potential is an affine linear function positive on Δ. Fix
a Killing potential f . Then (gJ , f, k, n)-scalar curvature sJ,f,k,n is given by

sJ,f,k,n = f−ksJ +
4(n− 1)

n− 2
f− k(n+2)

4 ΔJf
k(n−2)

4 , (30)

where ΔJ = ΔgJ . For a smooth function ϕ of μ1, . . . , μm,

ΔJϕ = −
m∑

i,j=1

{ϕ,ijH
u
ij + ϕ,iH

u
ij,j}

holds (see the equation (20) in [3]). Since f is affine linear, we have

ΔJf
k(n−2)

4

= −k(n− 2)

4
f

k(n−2)
4

m∑
i,j=1

{(
k(n− 2)

4
− 1

)
f,if,j
f2

Hu
ij +

f,i
f
Hu

ij,j

}
.

(31)

By (29), (30) and (31), the (gJ , f, k, n)-scalar curvature is

sJ,f,k,n

= −f−k
m∑

i,j=1

{
Hu

ij,ij +
k(n− 1)

f
f,iH

u
ij,j +

k(n− 1)

f2

(
k(n− 2)

4
− 1

)
f,if,jH

u
ij

}
.

(32)

On the other hand, for any α ∈ R,

m∑
i,j=1

(
fαHu

ij

)
,ij

= fα
m∑

i,j=1

{
Hu

ij,ij +
2α

f
f,iH

u
ij,j +

α(α− 1)

f2
f,if,jH

u
ij

}
(33)

holds. We easily see that 2α = k(n− 1) and α(α − 1) = k(n− 1)(k(n− 2)/4− 1)
hold if and only if k = −2 and α = 1− n. In this case, we have

sJ,f,−2,nf
−1−n = −

m∑
i,j=1

(
f1−nHu

ij

)
,ij

. (34)
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By Lemma 2 in [3], for any smooth function φ on Rm,∫
Δ

φ

m∑
i,j=1

(
f1−nHu

ij

)
,ij

dμ =

∫
Δ

f1−n
m∑

i,j=1

Hu
ijφ,ij dμ− 2

∫
∂Δ

f1−nφdσ. (35)

In particular, when φ is an affine function∫
Δ

φ

m∑
i,j=1

(
f1−nHu

ij

)
,ij

dμ = −2

∫
∂Δ

f1−nφdσ (36)

holds. Hence, if we define the constant cΔ,f,−2,n as

cΔ,f,−2,n = 2

∫
∂Δ

f1−n dσ∫
Δ

f−1−n dμ

,

the Futaki invariant (16) is given by

FutΔ,f,−2,n(φ) = 2

∫
∂Δ

f1−nφdσ − cΔ,f,−2,n

∫
Δ

f−1−nφdμ (37)

for any linear function φ on Rm.

By (34) and (36), EH(gJ , f,−2, n) is given by

EH−2,n(f) := EH(gJ , f,−2, n) = Const.

∫
∂Δ

f2−n dσ(∫
Δ

f−n dμ

)n−2
n

. (38)

If there exists a symplectic potential u such that the (gJ , f,−2, n)-scalar
curvature is constant, then FutΔ,f,−2,n vanishes identically and f is a critical point
of EH−2,n.

5. Toric K-stability

Let (M,ω) be a 2m-dimensional compact toric manifold with the moment im-
age Δ ⊂ Rm. Following the argument by Donaldson in [4], we may define the
Donaldson–Futaki invariant with respect to a positive affine function f on Δ as

DFΔ,f,n(φ) = 2

∫
∂Δ

f1−nφdσ − cΔ,f,−2,n

∫
Δ

f−1−nφdμ (39)

for a convex function φ on Δ, see also [3]. For any affine function φ,

FutΔ,f,−2,n(φ) = DFΔ,f,n(φ).

We can prove the following straightforward analogue of the results in [4]:
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Theorem 5.1. Suppose that there exists a symplectic potential u on Δ such that
the (gJ , f,−2, n)-scalar curvature is a constant c. Then

c = cΔ,f,−2,n and DFΔ,f,n(φ) ≥ 0

for any smooth convex function φ on Δ. Equality holds if and only if φ is affine.

Proof. Suppose that sJ,f,−2,n = c. Then

c

∫
Δ

f−1−n dμ = −
∫
Δ

m∑
i,j=1

(f1−nHu
ij),ij dμ = 2

∫
∂Δ

f1−n dσ

by (34) and (36). Hence c = cΔ,f,−2,n. By (35),

DFΔ,f,n(φ) = −
∫
Δ

⎛⎝cΔ,f,−2,nf
−1−n +

m∑
i,j=1

(
f1−nHu

ij

)
,ij

⎞⎠φdμ

+

∫
Δ

f1−n
m∑

i,j=1

Hu
ijφ,ij dμ (40)

=

∫
Δ

f1−n
m∑

i,j=1

Hu
ijφ,ij dμ ≥ 0. �

Definition 5.2. Let Δ ⊂ Rm be a Delzant polytope, n �= 0, 1, 2 and f a positive
affine function on Δ. (Δ, f, n) is K-semistable if DFΔ,f,n(φ) ≥ 0 for any piecewise
linear convex function φ on Δ. (Δ, f, n) is K-polystable if it is K-semistable and
the equality DFΔ,f,n(φ) = 0 is only possible for φ affine linear.

Since any piecewise linear convex function on Δ can be approximated by
smooth convex functions on Δ, the existence of a constant (gJ , f,−2, n)-scalar
curvature metric implies the K-semistability of (Δ, f, n).

We next consider compact toric surfaces and prove that the positivity of
Donaldson–Futaki invariant for simple piecewise linear functions implies K-poly-
stability. This is a generalization of the result by Donaldson [4] and Wang–Zhou
[14, 15]. The proof is similar to the one given in [15], but to make this paper as
self-contained as possible, we give a proof here.

Let P ⊂ Rm be an m-dimensional open convex polytope, P ∗ a union of P
and the facets of P . Denote

C1 :=

{
u : P ∗ → R, convex |

∫
∂P

u dσ < ∞
}
.

For positive bounded functions α, β on P̄ and an affine function A on Rm, we
define the linear functional L on C1 as

L(u) :=
∫
∂P

αu dσ −
∫
P

Aβu dμ. (41)

Theorem 5.3. Suppose that L(f) = 0 for any affine function f on Rm. When
m = 2, the following two conditions are equivalent.
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(1) L(u) ≥ 0 for any u ∈ C1 and the equality holds if and only if u is affine.
(2) L(u) > 0 for any simple piecewise linear convex function u with nonempty

crease.

Here a convex function u is simple piecewise linear, sPL for short, if u =
max{L, 0} for a non-zero affine function L. The crease of sPL convex function u
is the intersection of P and {L = 0}.

Proof. It is sufficient to prove that (2) implies (1). Suppose that L is positive for
any sPL convex function with nonempty crease. Moreover we assume the case (1)
does not occur, that is, one of the following holds:

◦ There exists v ∈ C1 such that L(v) < 0.

◦ For any u ∈ C1, L(u) ≥ 0 and there exists v ∈ C1 \ {affine function}
such that L(v) = 0.

We fix p0 ∈ P and denote

C̃1 :=

{
u ∈ C1 |

∫
∂P

αu dσ = 1, inf
P

u = u(p0) = 0

}
.

Since L vanishes on the set of affine functions and L(cu) = cL(u) for any c > 0

and u ∈ C1, we may assume v in the condition above is an element of C̃1.

Lemma 5.4. The functional L : C̃1 → R is bounded from below.

Proof. By Lemma 5.1.3 in [4], there exists a constant C > 0 such that∫
P

u dμ ≤ C

∫
∂P

u dσ

for all u ∈ C̃1. Since α, β are positive and bounded on P̄∫
P

βu dμ ≤ sup
P̄

β

∫
P

u dμ ≤ C supP̄ β

inf P̄ α
=: C′

for u ∈ C̃1. Hence, on C̃1,

L(u) = 1−
∫
P

Aβu dμ ≥ 1−max
P̄

|A|
∫
P

βu dμ ≥ 1−max
P̄

|A|C ′. �

By assumption, infC̃1
L ≤ 0. Moreover we see that there exists u0 ∈ C̃1 which

attains the infimum of L on C̃1 by the same argument with the proof of Lemma 4.2
in [15] as follows. Let {uk} be a sequence in C̃1 with limk→∞ L(uk) = infC̃1

L. By
Lemma 5.4 above and Corollary 5.2.5 in [4], there is the limit function u0 convex
on P ∗. More precisely,

u0(p) =

⎧⎨⎩ lim
k→∞

uk(p) if p ∈ P

lim
t↗1

u0((1− t)p0 + tp) if p is in a facet of P.
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The limit function u0 satisfies∫
P

Aβu0 dμ = lim
k→∞

∫
P

Aβuk dμ and inf
P

u0 = u0(p0) = 0.

By convexity,

∫
∂P

αu0 dσ ≤ 1. Suppose that

∫
∂P

αu0 dσ < 1. Then

L(u0) =

∫
∂P

αu0 dσ −
∫
P

Aβu0 dμ < 1−
∫
P

Aβu0 dμ

= lim
k→∞

L(uk) = inf
C̃1

L ≤ 0.

On the other hand, since ũ0 :=

(∫
∂P

αu0 dσ

)−1

u0 ∈ C̃1,(∫
∂P

αu0 dσ

)−1

L(u0) = L(ũ0) ≥ inf
C̃1

L.

Hence L(u0) <

(∫
∂P

αu0 dσ

)−1

L(u0). Since L(u0) < 0,

∫
∂P

αu0 dσ > 1. It is a

contradiction. Therefore u0 ∈ C̃1 and it attains the infimum of L on C̃1.
By the same argument with the proof of Lemma 4.3 in [15], we see that u0

is a generalized solution to the degenerate Monge–Ampère equation

detD2u = 0.

By convexity, T = {x ∈ P |u0(x) = 0} is convex. Moreover any extreme point of
T is a boundary point of P by Lemma 4.1 in [14]. Since P is two-dimensional, T is
either a line segment through p0 with both endpoints on ∂P or a convex polygon
with vertices on ∂P . Note here that if the dimension of P is greater than two the
convex set T may be more complicated. We set an affine function L on R2 as
follows. When T is a line segment,

L(x) := 〈n, x− p0〉,

where n is a unit normal vector of T . When T is a polygon,

L(x) := 〈n, x− p1〉,

where p1 ∈ ∂T \ ∂P and n is the outer unit normal vector of ∂T at p1. In either
case, ψ = max{0, L} is a sPL convex function with nonempty crease.

We next define a function a as

a(p) = lim
t↘0

u0(p+ tn)− u0(p)

t
.

Here p ∈ T when T is a line segment or p is in the edge of T containing p1 when
T is a polygon. By convexity of u0, the limit exists and is nonnegative for any p.

Lemma 5.5. a0 := inf a = 0.
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Proof. We give a proof only when T is a line segment since the case when T is a

polygon is similar. Suppose a0 > 0. Denote u′ := u0 − a0ψ. Then

∫
∂P

αu′ dσ < 1.

By the definition of a0, u
′ is convex on P ∗ and

inf
P

u′ = u′(p0) = u0(p0)− a0ψ(p0) = 0.

Since L(ψ) > 0 by assumption,

L(u0) = L(u′) + a0L(ψ) > L(u′).

Hence, since ũ′ :=

(∫
∂P

αu′ dσ

)−1

u′ ∈ C̃1,

0 ≥ L(u0) > L(u′) > L(ũ′).

This is a contradiction. �

By the definition of T and L, u0 is positive on P ∩ {L > 0}. For any ε > 0,
Gε := {x ∈ P |u0(x) < εψ(x)} is nonempty because a0 = 0. Since T ⊂ {L ≤ 0},
there exists δ(ε) > 0 such that Gε ⊂ {0 ≤ L < δ(ε)} and limε↘0 δ(ε) = 0. Denote

u1 := u0χ−, u2 := (u0 − εψ)χ+, ũ2 := max{0, u2},

where

χ−(x) =

{
1 when L(x) < 0

0 otherwise
, χ+ = 1− χ−.

It is easy to see that u1 + ũ2 ≥ 0 is convex and (u1 + ũ2)(p0) = 0. Denote
ũ := u1 + ũ2 + εψ. Then we have

ũ− u0 = ũ2 − u2 =

{
−u2 = εL− u0 ≤ εδ(ε) on Gε,

0 on Gc
ε.

Hence there exists a positive constant C such that

L(ũ − u0) =

∫
∂P

α(ũ− u0) dσ −
∫
P

Aβ(ũ − u0) dμ < Cεδ(ε).

Therefore we have

L(u1 + ũ2) = L(ũ)− εL(ψ) < L(u0) + ε(Cδ(ε) − L(ψ)) < L(u0).

for any sufficiently small ε > 0. Denote u3 :=

(∫
∂P

α(u1 + ũ2) dσ

)−1

(u1 + ũ2) ∈

C̃1. Since u1+ũ2 ≤ u0,

∫
∂P

α(u1 + ũ2) dσ ≤ 1. Therefore we obtain L(u3) ≤ L(u1+

ũ2) < L(u0). This is a contradiction. This completes the proof of Theorem 5.3. �
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Finally we observe by numerical analysis that there exists a Killing vector
field which gives a toric K-stable pair in the sense of Apostolov–Maschler.

Let Δp be the convex hull of (0, 0), (p, 0), (p, 1− p) and (0, 1) for 0 < p < 1.
By Delzant construction, the Kähler class of a toric Kähler metric on the one point
blow up of CP 2 corresponds to Δp up to multiplication of a positive constant.

Denote

P := {(a, b, c) ∈ R3 | c > 0, ap+ c > 0, ap+ b(1− p) + c > 0, b + c > 0}.

An affine function aμ1 + bμ2 + c is positive on Δp if and only if (a, b, c) ∈ P .
By the argument in Sections 3 and 4, FutΔp,aμ1+bμ2+c,−2,n vanishes if and only if
(a, b, c) ∈ P is a critical point of

EHn(a, b, c) :=

∫
∂Δp

(aμ1 + bμ2 + c)2−n dσ(∫
Δp

(aμ1 + bμ2 + c)−n dμ

)n−2
n

.

For n = 4, the authors identified in [8] such critical points as follows:

(a) C

(
1, 0,

p(1−
√
1− p)

2
√
1− p+ p− 2

)
, C > 0, 0 < p < 1,

(b) C

(
−1, 0,

p(3p±
√

9p2 − 8p)

2(p±
√
9p2 − 8p)

)
, C > 0,

8

9
< p < 1,

(c) C
(
−p2 + 4p− 2±

√
F (p),±2

√
F (p),−p2 − 2p+ 2∓

√
F (p)

)
,

C > 0, 0 < p < α,

where α ≈ 0.386 is a real root of

F (x) := x4 − 4x3 + 16x2 − 16x+ 4 = 0.

For the affine functions corresponding to (a) and (b), LeBrun gave concrete ex-
amples of cKEM metrics in [12]. Hence (Δp, aμ1 + bμ2 + c, 4) is K-polystable by
Corollary 3 in [3]. On the other hand, in case (c), we do not know whether there
exists cKEM metrics. Denote

f±
p = (−p2 + 4p− 2±

√
F (p))μ1 ± 2

√
F (p)μ2 − p2 − 2p+ 2∓

√
F (p)

=: a±p μ1 + b±p μ2 + c±p .

By Theorem 5.3, if DFΔp,f
±
p ,4(φ) is positive for any sPL convex function φ,

(Δp, f
±
p , 4) is K-polystable. According to the position of the boundary points u,v

of creases, we divide into the following six cases.
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1. u = (0, e), v = (p, f) (0 ≤ e ≤ 1, 0 ≤ f ≤ 1 − p): In this case, the corre-
sponding sPL convex function is φ = max{(f − e)μ1 − pμ2 + pe, 0}. Then∫
∂Δp

φ

(f±
p )3

dσ =

∫ p

0

(f − e)μ1 + pe

(a±p μ1 + c±p )3
dμ1 +

∫ f

0

p(f − μ2)

(a±p p+ b±p μ2 + c±p )3
dμ2

+

∫ e

0

p(e− μ2)

(b±p μ2 + c±p )3
dμ2

and ∫
Δp

φ

(f±
p )5

dμ =

∫ p

0

dμ1

∫ f−e
p μ1+e

0

(f − e)μ1 − pμ2 + pe

(f±
p )5

dμ2

It is too long and complicated to give the full description of DFΔp,f
±
p ,4(φ).

We put the graph of DFΔ0.1,f
−
0.1,4

, as a function of (e, f), instead (Fig. 1). All

graphics in this article are drawn by Mathematica.

Figure 1.

2. u = (e, 0), v = (f, 1 − f) (0 ≤ e ≤ p, 0 ≤ f ≤ p): In this case, the corre-
sponding sPL convex function is φ = max{(f−1)μ1+(f−e)μ2+(1−f)e, 0}.
Then∫
∂Δp

φ

(f±
p )3

dσ =

∫ e

0

(1− f)(e − μ1)

(a±p μ1 + c±p )3
dμ1 +

∫ 1

0

(f − e)μ2 + (1− f)e

(b±p μ2 + c±p )3
dμ2

+

∫ f

0

(f − 1)μ1 + (f − e)(1− μ1) + (1− f)e

(a±p μ1 + b±p (1− μ1) + c±p )3
dμ1

and∫
Δp

φ

(f±
p )5

dμ =

∫ 1−f

0

dμ2

∫ f−e
1−f μ2+e

0

(f − 1)μ1 + (f − e)μ2 + (1 − f)e

(f±
p )5

dμ1

+

∫ 1

1−f

dμ2

∫ 1−μ2

0

(f − 1)μ1 + (f − e)μ2 + (1− f)e

(f±
p )5

dμ1 .

The graph of DFΔ0.1,f
−
0.1,4

is as shown in Figure 2.
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Figure 2.

3. u = (0, e), v = (f, 1 − f) (0 ≤ e ≤ 1, 0 ≤ f ≤ p): In this case, the cor-
responding sPL convex function is φ = max{(f + e − 1)μ1 + fμ2 − fe, 0}.
Then ∫

∂Δp

φ

(f±
p )3

dσ =

∫ 1

e

f(μ2 − e)

(b±p μ2 + c±p )3
dμ2

+

∫ f

0

(f + e− 1)μ1 + f(1− μ1)− fe

(a±p μ1 + b±p (1− μ1) + c±p )3
dμ2

and∫
Δp

φ

(f±
p )5

dμ =

∫ f

0

dμ1

∫ 1−μ1

1−f−e
f μ1+e

(f + e− 1)μ1 + fμ2 − fe

(f±
p )5

dμ2 .

The graph of DFΔ0.1,f
−
0.1,4

is as shown in Figure 3.

Figure 3.



On the Existence Problem of Einstein–Maxwell Kähler Metrics 109

4. u = (0, e), v = (f, 0) (0 ≤ e ≤ 1, 0 ≤ f ≤ p): In this case, the corresponding
sPL convex function is φ = max{−eμ1 − fμ2 + fe, 0}. Then∫

∂Δp

φ

(f±
p )3

dσ =

∫ f

0

e(f − μ1)

(a±p μ1 + c±p )3
dμ1 +

∫ e

0

f(e− μ2)

(b±p μ2 + c±p )3
dμ2

and ∫
Δp

φ

(f±
p )5

dμ =

∫ f

0

dμ1

∫ − e
f μ1+e

0

−eμ1 − fμ2 + fe

(f±
p )5

dμ2 .

The graph of DFΔ0.1,f
−
0.1,4

is as shown in Figure 4.

Figure 4.

5. u = (p, e), v = (f, 0) (0 ≤ e ≤ 1 − p, 0 ≤ f ≤ p): In this case, the corre-
sponding sPL convex function is φ = max{eμ1 + (f − p)μ2 − fe, 0}. Then∫

∂Δp

φ

(f±
p )3

dσ =

∫ p

f

e(μ1 − f)

(a±p μ1 + c±p )3
dμ1 +

∫ e

0

(p− f)(e− μ2)

(a±p p+ b±p μ2 + c±p )3
dμ2

and∫
Δp

φ

(f±
p )5

dμ =

∫ p

f

dμ1

∫ e
p−f (μ1−p)+e

0

eμ1 + (f − p)μ2 − fe

(f±
p )5

dμ2 .

The graph of DFΔ0.1,f
−
0.1,4

is as shown in Figure 5.

6. u = (p, e), v = (f, 1 − f) (0 ≤ e ≤ 1 − p, 0 ≤ f ≤ p): In this case, the
corresponding sPL convex function is φ = max{(1 − e − f)(μ1 − p) + (p −
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Figure 5.

f)μ2 + (f − p)e, 0}. Then∫
∂Δp

φ

(f±
p )3

dσ =

∫ p

f

(1 − e− f)(μ1 − p) + (p− f)(1− μ1) + (f − p)e

(a±p μ1 + b±p (1− μ1) + c±p )3
dμ1

+

∫ 1−p

e

(p− f)(μ2 − e)

(a±p p+ b±p μ2 + c±p )3
dμ2

and∫
Δp

φ

(f±
p )5

dμ

=

∫ p

f

dμ1

∫ 1−μ1

e+f−1
p−f (μ1−p)+e

(1− e− f)(μ1 − p) + (p− f)μ2 + (f − p)e

(f±
p )5

dμ2 .

The graph of DFΔ0.1,f
−
0.1,4

is as shown in Figure 6.

Figure 6.

Looking at the graphs, (Δp, f
±
p , 4) must be K-polystable. By Theorem 5 in

[3], cKEM metrics with Killing potential f±
p ought to exist. We leave this problem

to the interested readers.



On the Existence Problem of Einstein–Maxwell Kähler Metrics 111

References

[1] M. Abreu: Kähler geometry of toric varieties and extremal metrics. Int. J. Math.,
9(1998), 641–651.

[2] V. Apostolov, D.M.J. Calderbank, P. Gauduchon and E. Legendre: Levi–Kähler re-
duction of CR structures, products of spheres, and toric geometry, arXiv:1708.05253.

[3] V. Apostolov and G. Maschler: Conformally Kähler, Einstein–Maxwell geometry,
arXiv preprint arXiv:1512.06391.

[4] S.K. Donaldson: Scalar curvature and stability of toric varieties, J. Differential Ge-
ometry, 62(2002), 289–349.

[5] A. Futaki: Kähler–Einstein metrics and integral invariants, Lecture Notes in Math.,
vol. 1314, Springer-Verlag, Berlin-Heidelberg-New York,(1988).

[6] A. Futaki and S. Morita: Invariant polynomials of the automorphism group of a
compact complex manifold, J. Diff. Geom., 21(1985), 135–142.

[7] A. Futaki and T. Mabuchi: Moment maps and symmetric multilinear forms associ-
ated with symplectic classes, Asian J. Math., 6(2002), 349–372.

[8] A. Futaki and H. Ono: Volume minimization and Conformally Kähler, Einstein–
Maxwell geometry. To appear in J. Math. Soc. Japan. preprint, arXiv:1706.07953.

[9] A. Futaki and H. Ono: Volume minimization and obstructions to solving some prob-
lems in Kähler geometry, preprint.

[10] A. Lahdili: Automorphisms and deformations of conformally Kähler, Einstein–
Maxwell metrics. arXiv:1708.01507.

[11] A. Lahdili: Conformally Kähler, Einstein–Maxwell metrics and boundedness of the
modified Mabuchi-functional. arXiv:1710.00235

[12] C. LeBrun: The Einstein–Maxwell equations and conformally Kähler geometry, Com-
mun. Math. Phys., 344, 621–653 (2016).

[13] M. Lejmi and M. Upmeier: Integrability theorems and conformally constant Chern
scalar curvature metrics in almost Hermitian geometry, arXiv:1703.01323.

[14] X.-J. Wang and B. Zhou: On the existence and nonexistence of extremal metrics on
toric Kähler surfaces. Adv. Math. 226 (2011), no. 5, 4429–4455.

[15] X.-J. Wang and B. Zhou: K-stability and canonical metrics on toric manifolds. Bull.
Inst. Math. Acad. Sin. (N.S.) 9(2014), no. 1, 85–110.

Akito Futaki
Graduate School of Mathematical Sciences
The University of Tokyo
3-8-1 Komaba Meguro-ku
Tokyo 153-8914, Japan
e-mail: afutaki@ms.u-tokyo.ac.jp

Current address:
Yau Mathematical Sciences Center
Tsinghua University
Hai Dian District
Beijing 100084, P.R. China
e-mail: futaki@tsinghua.edu.cn

Hajime Ono
Department of Mathematics
Saitama University
255 Shimo-Okubo, Sakura-Ku
Saitama 380-8570, Japan
e-mail: hono@rimath.saitama-u.ac.jp



Progress in Mathematics, Vol. 333, 113–135

Local Moduli of
Scalar-flat Kähler ALE Surfaces

Jiyuan Han and Jeff A. Viaclovsky

Abstract. In this article, we give a survey of our construction of a local moduli
space of scalar-flat Kähler ALE metrics in complex dimension 2. We also prove
an explicit formula for the dimension of this moduli space on a scalar-flat
Kähler ALE surface which deforms to the minimal resolution of C2/Γ, where
Γ is a finite subgroup of U(2) without complex reflections, in terms of the
embedding dimension of the singularity.

Mathematics Subject Classification (2010). 53C55, 53C25.

Keywords. Scalar-flat Kähler, asymptotically locally Euclidean.

1. Introduction

In this article, the main objects of interest will be a certain class of complete non-
compact Kähler metrics. In the following, Γ will always be a finite subgroup of
U(2) containing no complex reflections.

Definition 1.1. Let (X, g, J) be a Kähler surface (X, g, J) of complex dimension
2, with metric g and complex structure J . We say that (X, g, J) is asymptotically
locally Euclidean (ALE) if there exists a compact subset K ⊂ X , a real number
μ > 0, and a diffeomorphism ψ : X \K → (R4 \ B)/Γ, such that for each multi-
index I of order |I|

∂I(ψ∗(g)− gEuc) = O(r−μ−|I|), (1.1)

as r →∞. In the above, B denotes a ball centered at the origin, and gEuc denotes
the Euclidean metric.

The number μ is referred to as the order of g. It was shown in [HL16] that
for any ALE Kähler metric of order μ, there exist ALE coordinates for which

∂I(J − JEuc) = O(r−μ−|I|), (1.2)

The authors were partially supported by NSF Grant DMS-1811096.

c© Springer Nature Switzerland AG 2020
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for any multi-index I as r → ∞, where JEuc is the standard complex structure
on Euclidean space. This follows because the Kähler assumption implies that J is
parallel.

In this definition, we only assumed that the metric is Kähler. A natural
condition is that the metric be in addition scalar-flat. Such metrics are then
extremal in the sense of Calabi [Cal85]. These spaces arise naturally as “bub-
bles” in orbifold compactness theorems for sequences of extremal Kähler metrics
[And89, BKN89, CW11, CLW08, Nak94, Tia90, TV05a, TV05b, TV08]. Further-
more, they arise in a number of natural gluing constructions for extremal Kähler
metrics [ALM15, ALM16, AP06, APS11, BR15, Szé12, RS05, RS09].

We note that in the case of scalar-flat Kähler ALE metrics, it is known that
there exists an ALE coordinate system for which the order of such a metric is at
least 2 [LM08].

There are many known examples of scalar-flat Kähler ALE metrics:

• SU(2) case: when Γ ⊂ SU(2), Kronheimer has constructed families of hy-
perkähler ALE metrics [Kro89a] on manifolds diffeomorphic to the minimal
resolution of C2/Γ. In [Kro89b], Kronheimer also proved a Torelli-type theo-
rem classifying hyperkähler ALE surfaces. In the Ak case, these metrics were
previously discovered by Eguchi–Hanson for k = 1 [EH79], and by Gibbons–
Hawking for all k ≥ 1 [GH78].

• Cyclic case: For the 1
p (1, q)-action, Calderbank–Singer constructed a family

of scalar-flat Kähler ALE metrics on the minimal resolution of any cyclic
quotient singularity [CS04]. These metrics are toric and come in families of
dimension k− 1, where k is the length of the corresponding Hirzebruch–Jung
algorithm. For q = 1 and q = p − 1, these metrics are the LeBrun nega-
tive mass metrics and the toric multi-Eguchi–Hanson metrics, respectively
[LeB88, GH78].

• Non-cyclic non-SU(2) case: The existence of scalar-flat Kähler metrics on the
minimal resolution of C2/Γ, was shown by Lock–Viaclovsky [LV14].

A natural question is whether the scalar-flat Kähler property is preserved
under small deformations of complex structure. In [HV16], we showed that for any
scalar-flat Kähler ALE surface, all small deformations of complex structure admit
scalar-flat Kähler ALE metrics, and so do all small deformations of the Kähler
class. An informal statement is the following.

Theorem 1.2. Let (X, g, J) be a scalar-flat Kähler ALE surface. Then there is a
finite-dimensional family F of scalar-flat Kähler ALE metrics near g, parametrized
by a small ball in Rd, for some integer d. This family F is “versal” in the following
sense: it contains all possible scalar-flat Kähler ALE metrics “near” to the given
scalar-flat Kähler ALE metric, up to diffeomorphisms which are sufficiently close
to the identity.

A more precise statement of this theorem can be found in Section 2 below.
The family F is not “universal” since it is possible that 2 metrics in F could be
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isometric. However, the orbit space of the group of biholomorphic isometries does
give a universal moduli space, an informal statement of which is the following.

Theorem 1.3. The group G of holomorphic isometries of (X, g, J) acts on F, and
each orbit represents a unique isometry class of metric up to the action of diffeo-
morphisms which are sufficiently close the identity.

Again, a more precise statement can be found in Section 2 below. As a con-
sequence, the quotient space M = F/G is the “local moduli space of scalar-flat
Kähler ALE metrics near g.” The local moduli space M is not a manifold in
general, but its dimension is in fact well defined, and we define m = dim(M).

1.1. Deformations of the minimal resolution

As mentioned above, there are families of examples of scalar-flat Kähler ALE
metrics on minimal resolutions of isolated quotient singularities. We next recall
the definition of a minimal resolution.

Definition 1.4. Let Γ ⊂ U(2) be as above. A smooth complex surface X is called
a minimal resolution of C2/Γ if there is a holomorphic mapping π : X → C2/Γ
such that the restriction π : X \ π−1(0) → C2/Γ \ {0} is a biholomorphism, and
the set π−1(0) is a divisor in X containing no −1 curves.

The divisor π−1(0) is called the exceptional divisor of the resolution. In the
cyclic case, the exceptional divisor is a string of rational curves with normal cross-
ing singularities, and these are known are Hirzebruch–Jung strings. In the case
that Γ is non-cyclic, the exceptional divisor is a tree of rational curves with normal
crossing singularities [Bri68]. There are three Hirzebruch–Jung strings attached to
a single curve, called the central rational curve. The self-intersection number of
this curve will be denoted −bΓ, and the total number of rational curves will be
denoted by kΓ.

In the special case of a minimal resolution, our main result can be stated as
follows.

Theorem 1.5. Let (X, g, J) be any scalar-flat Kähler ALE metric on the minimal
resolution of C2/Γ, where Γ ⊂ U(2) is as above. Define

jΓ = 2

kΓ∑
i=1

(ei − 1), (1.3)

where −ei is the self-intersection number of the ith rational curve, and kΓ is the
number of rational curves in the exceptional divisor, and let

dΓ = jΓ + kΓ. (1.4)

Then there is a family, F, parametrized by a ball in RdΓ, of scalar-flat Kähler met-
rics near g which is “versal”. The group G of holomorphic isometries of (X, g, J)
acts on F, and the dimension mΓ of the local moduli space M = F/G is given in
Table 1.1, where eΓ is the embedding dimension of C2/Γ.
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Table 1.1. Dimension of local moduli space of scalar-flat Kähler metrics

Γ ⊂ U(2) dΓ mΓ

1
3 (1, 1) 5 2
1
p (1, 1), p ≥ 4 2p− 1 2p− 5
1
p (1, q), q �= 1, p− 1 jΓ + kΓ 2eΓ + 3k − 8

non-cyclic, not in SU(2) jΓ + kΓ 2eΓ + 3k − 7

A description of the possible groups Γ and other explicit formulas for mΓ can
be found in Section 4 below.

Remark 1.6. We did not include the SU(2) case in the above since the dimension
of the moduli space of hyperkähler metrics is known to be 3k − 3 in the Ak, Dk

and Ek cases for k ≥ 2, and equal to 1 in the A1 case [Kro86]. Our method of
parametrizing by complex structures and Kähler classes overcounts in this case,
since a hyperkähler metric is Kähler with respect to a 2-sphere of complex struc-
tures, see Section 4 for some further remarks. For other related results in the
Ricci-flat case, see [CH15, Şuv12].

It turns out that the moduli count in Theorem 1.5 is correct not just for the
minimal resolution, but for any generic scalar-flat Kähler ALE surface which can
be continuously deformed to the minimal resolution.

Theorem 1.7 ([HV16]). Let (X, g, J) be any scalar-flat Kähler ALE surface which
deforms to the minimal resolution of C2/Γ through a path (X, gt, Jt) (0 ≤ t ≤ 1),
where g1 = g, g0 is the minimal resolution, and ‖gt − gs‖Ck,α

δ (g0)
≤ C · |s − t|

with C > 0 a uniform constant for any 0 ≤ s, t ≤ 1, k ≥ 4, −2 < δ < −1. If
G(g) = {e} then the local moduli space F is smooth near g and is a manifold of
dimension m = mΓ.

The proof of this theorem is more or less a direct application of Theorem 1.5
together with the basic fact that the index of a strongly continuous family of
Fredholm operators is constant.

Remark 1.8. It was recently shown that Kähler ALE surface with group Γ ⊂ U(2)
is birational to a deformation of C2/Γ [HRŞ16]. There are several possible compo-
nents of the deformation of such a cone, so the above result gives the dimension
of the moduli space for the “Artin component” of deformations of C2/Γ, which is
the component with maximal dimension.

2. Construction of the local moduli space

In this section, we will give a survey of the main results in [HV16]. We first re-
call some basic facts regarding deformations of complex structures. For a complex
manifold (X, J), let Λp,q denote the bundle of (p, q)-forms, and let Θ denote the
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holomorphic tangent bundle. The deformation complex corresponds to a real com-
plex as shown in the commutative diagram

Γ(Θ) Γ(Λ0,1 ⊗Θ) Γ(Λ0,2 ⊗Θ)

Γ(TX) Γ(Enda(TX)) Γ
(
{Λ0,2 ⊗Θ⊕ Λ2,0 ⊗Θ}R

)
,

∂

Re

∂

Re Re

Z �→− 1
2J◦LZJ I �→ 1

4J◦N
′
J (I)

(2.1)
where LZJ is the Lie derivative of J ,

Enda(TX) = {I ∈ End(TX) : IJ = −JI}, (2.2)

and N ′
J is the linearization of Nijenhuis tensor

N(X,Y ) = 2{[JX, JY ]− [X,Y ]− J [X, JY ]− J [JX, Y ]} (2.3)

at J . Each isomorphism Re is simply taking the real part of a section. If g is a
Hermitian metric compatible with J , then let � denote the ∂̄-Laplacian

� ≡ ∂̄∗∂̄ + ∂̄∂̄∗, (2.4)

where ∂̄∗ denotes the formal L2-adjoint. Each complex bundle in the diagram (2.1)
admits a �-Laplacian, and these correspond to real Laplacians on each real bundle
in (2.1). We will use the same �-notation for these real Laplacians.

We next define the spaces of harmonic sections which will appear in the
statement of the main result.

Definition 2.1. Let (X, g, J) be a Kähler ALE surface. For any bundle E in the
diagram (2.1), and τ ∈ R, define

Hτ (X,E) = {θ ∈ Γ(X,E) : �θ = 0, θ = O(rτ ) as r →∞}. (2.5)

Define

W = {Z ∈ H1(X,TX) | LZg = O(r−1), LZJ = O(r−3), as r →∞}. (2.6)

Finally, define the real subspace

Hess(X,Enda(TX)) ⊂ H−3(X,Enda(X)) (2.7)

to be the L2-orthogonal complement in H−3(X,Enda(X)) of the subspace

V = {θ ∈ H−3(X,Enda(TX)) | θ = J ◦ LZJ, Z ∈ W}. (2.8)

The subscript ess in (2.7) is short for essential, and is necessary because there
is a gauge freedom of Euclidean motions in the definition of ALE coordinates, so
that element of V are not really essential deformations, i.e., they can be gauged
away.

To state the main result precisely, we need to define weighted Hölder spaces.
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Definition 2.2. Let E be a tensor bundle on X , with Hermitian metric ‖ · ‖h. Let
ϕ be a smooth section of E. We fix a point p0 ∈ X , and define r(p) to be the
distance between p0 and p. Then define

‖ϕ‖C0
δ
:= sup

p∈X

{
‖ϕ(p)‖h · (1 + r(p))−δ

}
(2.9)

‖ϕ‖Ck
δ
:=

∑
|I|≤k

sup
p∈X

{
‖∇Iϕ(p)‖h · (1 + r(p))−δ+|I|

}
, (2.10)

where I = (i1, . . . , in), |I| =
∑n

j=1 ij . Next, define

[ϕ]Cα
δ−α

:= sup
0<d(x,y)<ρinj

{
min{r(x), r(y)}−δ+α ‖ϕ(x)− ϕ(y)‖h

d(x, y)α

}
, (2.11)

where 0 < α < 1, ρinj is the injectivity radius, and d(x, y) is the distance between
x and y. The meaning of the tensor norm is to use parallel transport along the
unique minimal geodesic from y to x, and then take the norm of the difference at
x. The weighted Hölder norm is defined by

‖ϕ‖Ck,α
δ

:= ‖ϕ‖Ck
δ
+
∑
|I|=k

[∇Iϕ]Cα
δ−k−α

, (2.12)

and the space Ck,α
δ (X,E) is the closure of {ϕ ∈ C∞(X,E) : ‖ϕ‖Ck,α

δ
< ∞}.

The main result of [HV16] is the following.

Theorem 2.3 ([HV16]). Let (X, g, J) be a scalar-flat Kähler ALE surface. Let −2 <
δ < −1, 0 < α < 1, and k an integer with k ≥ 4 be fixed constants. Let B1

ε1

denote an ε1-ball in Hess(X,Enda(TX)), B2
ε2 denote an ε2-ball in H−3(X,Λ1,1)

(both using the L2-norm). Then there exists ε1 > 0 and ε2 > 0 and a family F of
scalar-flat Kähler metrics near g, parametrized by B1

ε1 × B2
ε2 , that is, there is a

differentiable mapping

F : B1
ε1 ×B2

ε2 → Met(X), (2.13)

into the space of smooth Riemannian metrics on X, with F = F (B1
ε1×B2

ε2) satisfy-
ing the following “versal” property: there exists a constant ε3 > 0 such that for any
scalar-flat Kähler metric g̃ ∈ Bε3(g), there exists a diffeomorphism Φ : X → X,

Φ ∈ Ck+1,α
loc , such that Φ∗g̃ ∈ F, where

Bε3(g) = {g′ ∈ Ck,α
loc (S

2(T ∗X)) | ‖g − g′‖Ck,α
δ (S2(T∗X)) < ε3}. (2.14)

2.1. Outline of Proof of Theorem 2.3

The main steps in the proof of Theorem 2.3 are the following.

Step I: One first analyzes deformations of complex structures using an adaptation
of Kuranishi’s theory [Kur65], to ALE spaces. To first order, the almost complex
structures near a given ALE Kähler metric are in correspondence with sections in
Γ(Λ0,1⊗Θ). The integrable complex structures solve a nonlinear elliptic equation,
modulo diffeomorphisms. By imposing a divergence-free gauging condition, we
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obtain a finite-dimensional Kuranishi family which is parametrized by decaying
harmonic sections in H−3(X,Λ0,1⊗Θ). Unobstructedness follows from a vanishing
theorem, which relies on some analysis of the complex analytic compactifications of
Kähler ALE spaces, due to Hein–LeBrun–Maskit [HL16, LM08]. In the appendix
of this paper, we provide some details of a decay estimate needed in the proof
of [HV16, Proposition 3.3]. Another important point is that since the manifold is
non-compact, the sheaf cohomology group H1(X,Θ), which vanishes in the Stein
case, should be replaced by an appropriate space of decaying harmonic forms.

Step II: Several key results about gauging and diffeomorphisms are needed to prove
“versality” of the family constructed. Our main infinitesimal slicing result is the
following.

Lemma 2.4. Let (X, J0, g0) be a Kähler ALE surface with J0, g0 ∈ C∞. There
exists an ε′1 > 0 such that for any complex structure ‖J1 − J0‖Ck,α

δ
< ε′1, where

k ≥ 3, α ∈ (0, 1), δ ∈ (−2,−1), there exists a unique diffeomorphism Φ, of the form

ΦY (see (2.17) below) for Y ∈ Ck+1,α
δ+1 (TX) such that Φ∗

Y (J1) is in the divergence-
free gauged Kuranishi family.

Essentially, this shows that the divergence-free gauge gives a local slice trans-
verse to the “small” diffeomorphism group action. However, a more refined gauging
procedure is needed in order to construct the Kuranishi family of “essential” defor-
mations. As stated above, this refined gauging is necessary because of the freedom
of Euclidean motions in the definition of an ALE metric, which means that there
are decaying elements in the kernel of the linearized operator which can be written
as Lie derivatives of linearly growing vector fields. These directions are not true
moduli directions, and we show that they can be ignored modulo diffeomorphisms.
Thus we can restrict attention to the subspace of essential deformations defined
in (2.7) above.

Step III: Next, one needs to generalize Kodaira–Spencer’s stability theorem for
Kähler structures [KS60] to the ALE setting, to prove that the above deformations
retain the ALE Kähler property. This was proved using some arguments similar
to that of Biquard–Rollin [BR15].

Step IV: To study the deformations of the scalar-flat Kähler structure, we then
adapted the LeBrun–Singer–Simanca theory of deformations of extremal Kähler
metrics to the ALE setting [LS93, LS94]. Denote S(ω0 +

√
−1∂∂̄f) as the scalar

curvature of X with metric ω0 +
√
−1∂∂̄f . We consider S as mapping between

weighted Hölder spaces,

S : Ck,α
ε (X) → Ck−4,α

ε−4 (X)

f �→ S(ω0 +
√
−1∂∂̄f).

(2.15)

If ω0 is scalar-flat, the linearized operator is L(f) = −(∂̄∂̄#)∗(∂̄∂̄#)(f), where

the operator ∂̄#f = gi,j̄0 ∂̄jf . We showed that the linearized map is surjective for
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0 < ε < 1, and then an application of the implicit function theorem completes the
proof.

2.2. Universality

As mentioned above, the family F is not necessarily “universal”, because some
elements in F might be isometric. To construct a universal moduli space, we need
to describe a neighborhood of the identity in the space of diffeomorphisms. If
(X, g) is an ALE metric, and Y is a vector field on X , the Riemannian exponential
mapping expp : TpX → X induces a mapping

ΦY : X → X (2.16)

by

ΦY (p) = expp(Y ). (2.17)

If Y ∈ Ck,α
s (TX) has sufficiently small norm, (s < 0 and k will be determined

in specific cases) then ΦY is a diffeomorphism. We will use the correspondence
Y �→ ΦY to parametrize a neighborhood of the identity, analogous to [Biq06].

Definition 2.5. We say that Φ : X → X is a small diffeomorphism if Φ is of the
form Φ = ΦY for some vector field Y satisfying

‖Y ‖Ck+1,α
δ+1

< ε4 (2.18)

for some ε4 > 0 sufficiently small which depends on ε3.

The following result shows that after taking a quotient by an action of the
holomorphic isometries of the central fiber (X, g, J), the family F is in fact universal
(up to small diffeomorphisms).

Theorem 2.6 ([HV16]). Let (X, g, J) be as in Theorem 2.3, and let G denote the
group of holomorphic isometries of (X, g, J). Then there is an action of G on F
with the following properties.

• Two metrics in F are isometric if they are in the same orbit of G.
• If two metrics in F are isometric by a small diffeomorphism then they must

be the same.

This theorem was proved in [HV16] more or less by keeping track of the
action of G in every step of the proof of Theorem 2.3. Since each orbit represents a
unique isometry class of metric (up to small diffeomorphism), we will refer to the
quotient M = F/G as the “local moduli space of scalar-flat Kähler ALE metrics
near g.” The local moduli space M is not a manifold in general, but since F is
of finite dimension, and G is a compact group action on F, the dimension m of
M = F/G is well defined. In the non-hyperkähler case,

m = d− (the dimension of a maximal orbit of G), (2.19)

where

d = dimR

(
Hess(X,Enda(TX))

)
+ b2(X), (2.20)
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where b2(X) is the second Betti number of X . (For the hyperkähler case, recall
Remark 1.6.)

Remark 2.7. We note that the local moduli space of metrics contains small rescal-
ings, i.e., g �→ 1

c2 g(c·, c·) for c close to 1. If one considers scaled metrics as equivalent
(which we do not), then the dimension would decrease by 1.

3. The case of the minimal resolution

Let X denote the minimal resolution of C2/Γ, where Γ is a finite subgroup of
U(2) without complex reflections. The divisor E = ∪iEi is a union of irreducible
components which are rational curves, with only normal crossing singularities. Let
DerE(X) denote the sheaf dual to logarithmic 1-forms along E (see [Kaw78]). We
note that DerE(X) is a locally free sheaf of rank 2, see [Wah75]. Away from E,
this is clear. If p ∈ Ei, we can choose a holomorphic coordinate chart {z1, z2} such
that near p, Ei = {z1 = 0}. Then local sections of DerE(X) are generated by
{z1 ∂

∂z1
, ∂
∂z2

}.
Since E is composed of rational curves whose self-intersection numbers are

negative, we have H0(E,OE(E)) = 0. The short exact sequence

0 → DerE(X) → ΘX → OE(E) → 0, (3.1)

then induces an exact sequence of cohomologies

0 → H1(X,DerE(X)) → H1(X,Θ) → H1(E,OE(E)) → H2(X,DerE(X)). (3.2)

By Siu’s vanishing theorem ([Siu69]), sinceX is a non-compact σ-compact complex
manifold, for any coherent analytic sheaf F onX , the top degree sheaf cohomology
H2(X,F ) is trivial. Consequently, H2(X,DerE(X)) = 0,

In [HV16] we cited several papers from algebraic geometry [BKR88, Bri68,
Lau73, Wah75], to conclude that H1(X,DerE(X)) = 0. In this section, we will give
a different proof of the following result, using some tools from geometric analysis.

Theorem 3.1. For X the minimal resolution of C2/Γ, we have

dimC(H
1(X,Θ)) =

kΓ∑
j=1

(ej − 1). (3.3)

In relation to the construction of the moduli space of scalar-flat Kähler ALE
metrics, we need to construct a weighted version of Hodge theory, that links the
sheaf cohomology with the decaying harmonic forms. Recall that in Theorem 2.3,
the deformations of complex structure are parametrized by decaying harmonic
sections inH−3(X,Λ0,1⊗Θ) which are “essential”, that is, they are in the subspace
V. But, in the case of the minimal resolution, it turns out the dimension of this
space is equal to the dimension of H1(X,Θ).
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Theorem 3.2 ([HV16]). Let (X, g, J) denote the minimal resolution of C2/Γ with
any ALE Kähler metric g of order τ > 1. Then

H1(X,Θ) ∼= H−3(X,Λ0,1 ⊗Θ) ∼= Hess(X,Λ0,1 ⊗Θ) (3.4)

As a consequence, the dimension of the space of essential deformations is
given by (3.3). This is very special to the case of the minimal resolution. In the
Stein case, Theorem 3.2 is not true in general because the sheaf cohomology group
necessarily vanishes.

3.1. Cyclic quotient singularity

We will first prove Theorem 3.1 in the case of a cyclic group, using a direct ar-
guments involving only sheaf theory. Consider a cyclic quotient singularity of the
form Γ = 1

p (1, q) (p ≥ q). We will first give some additional detail regarding the

Hirzebruch–Jung resolutions. Details can be found in [Rei, Kol07].
The continued fraction described below in formula (4.2), can also be repre-

sented by lattice points

c0 = (1, 0), c1 =
1

p
(1, q), . . . , cm+1 = (0, 1), (3.5)

with iterative relation (
ci

ci+1

)
=

(
0 1
−1 ei

)
·
(
ci−1

ci

)
. (3.6)

Meanwhile, the dual continued fraction p
p−q = [a1, . . . , ak] can be used to give

the invariant polynomials:

u0 = xp, u1 = xp−qy, u2, . . . , uk, uk+1 = yp, (3.7)

which satisfy the relation ui−1ui+1 = uai

i .

The polynomials {u0, . . . , uk+1} give an embedding of the cone in Ck+2. Let

c0 = (s0, t0), . . . , cm+1 = (sm+1, tm+1) (3.8)

be lattice points, where s0 = 0, t0 = 1, sm = 1, tm = 0, si+1 > si, ti+1 < ti. Let
{ηi, ξi} (0 ≤ i ≤ m+ 1) be monomials forming the dual basis to {ci, ci+1}, i.e.,

ci(ηi) = 1, ci(ξi) = 0, ci+1(ηi) = 0, ci+1(ξi) = 1. (3.9)

Proposition 3.3. The numbers si, ti satisfy the relation

tisi+1 − ti+1si =
1

p
. (3.10)

Proof. We prove it by induction. First, note that c0 = (0, 1), c1 = 1
p (1, q). Then

t0s1 − t1s0 = 1
p . Next, assume that ti−1si − tisi−1 = 1

p . By the recursive formula

ci+1 + ci−1 = aici, it follows that

(si+1, ti+1) + (si−1, ti−1) = ai(si, ti). (3.11)
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Then we have

si+1 = aisi − si−1, ti+1 = aiti − ti−1. (3.12)

So finally,

tisi+1 − ti+1si = ti(aisi − si−1)− (aiti − ti−1)si = ti−1si − tisi−1 =
1

p
. (3.13)

�

By the formula (3.10), we have that ηi = p · (−ti+1, si+1), ξi = p · (ti,−si).
Then

ξi =
xpti

ypsi
, ηi =

ypsi+1

xpti+1
, ξi+1 =

xpti+1

ypsi+1
, ηi+1 =

ypsi+2

xpti+2
. (3.14)

It follows that the coordinate transition from {ηi, ξi} to {ηi+1, ξi+1} for ξi+1 �= 0,
is given by

ηi = ξ−1
i+1, ηi+1 = η

ei+1

i ξi, (0 ≤ i ≤ m− 1) (3.15)

which defines an acyclic cover Y = Y0 ∪ Y1 · · · ∪ Ym of X satisfying

Yi ∩ Yi+1 � C× C∗, Yi ∩ Yi+k = Yi ∩ Yi+1 · · · ∩ Yi+k, (3.16)

see [Rei, Theorem 3.2]. For use below, we record the following formulae:

∂

∂ηi
=

1

ηi

(
six

∂

∂x
+ tiy

∂

∂y

)
∂

∂ξi
=

1

ξi

(
si+1x

∂

∂x
+ ti+1y

∂

∂y

)
∂

∂x
=

p

x

(
tiξi

∂

∂ξi
− ti+1ηi

∂

∂ηi

)
∂

∂y
=

p

y

(
−siξi

∂

∂ξi
+ si+1ηi

∂

∂ηi

)
.

(3.17)

With these preliminaries, we can now prove the following result.

Lemma 3.4. When Γ is cyclic, H1(X,DerE(X)) = 0 for the minimal resolution X
of C2/Γ.

Proof. From (3.15) above,

∂

∂ξi+1
= −η2i

∂

∂ηi
+ ei+1ηiξi

∂

∂ξi
, (3.18)

∂

∂ηi+1
= η

−ei+1

i

∂

∂ξi
. (3.19)

The sections of DerE(X) are generated by{ ∂

∂ηi
, ξi

∂

∂ξi

}
,
{ ∂

∂ξi+1
, ηi+1

∂

∂ηi+1

}
(3.20)
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on Yi, Yi+1 respectively. For θi ∈ Γ(Yi,DerE(X)), θi can be expanded as a Laurent
series:

θi =
∑

k≥0,l≥0

aik,lη
k
i ξ

l
i

∂

∂ηi
+ bik,lη

k
i ξ

l+1
i

∂

∂ξi
. (3.21)

For θi+1 ∈ Γ(Yi+1,DerE(X)),

θi+1 =
∑

k≥0,l≥0

ai+1
k,l ξ

k
i+1η

l
i+1

∂

∂ξi+1
+ bi+1

k,l ξ
k
i+1η

l+1
i+1

∂

∂ηi+1
. (3.22)

For θi,i+1 ∈ Γ(Yi ∩ Yi+1,DerE(X)) on the intersection Yi ∩ Yi+1 where ηi �= 0,

θi,i+1 =
∑

k∈Z,l≥0

ai,i+1
k,l ηki ξ

l
i

∂

∂ηi
+ bi,i+1

k,l ηki ξ
l+1
i

∂

∂ξi
. (3.23)

By the transition formula (3.15),

θi+1 =
∑

k≥0,l≥0

{
− ai+1

k,l η
−k+lei+1+2
i ξli

∂

∂ηi

+ (ai+1
k,l ei+1η

−k+lei+1+1
i ξl+1

i + bi+1
k,l η

−k+lei+1

i ξl+1
i )

∂

∂ξi

}
,

(3.24)

which shows that the exponents of ηi in θi+1 can be any negative integers. Then it is
clear that for any θi,i+1, there exist θi, θi+1 such that on Yi∩Yi+1, θi,i+1 = θi+1−θi.
Furthermore, if {θk,l} (k < l) is closed, then θk,l = θk,l+1+ · · ·+θl−1,l. Then {θk,l}
is determined if and only if the set of consecutive elements {θi,i+1} is determined.
These arguments imply that any closed {θk,l} is exact, so H1(X,DerE(X)) = 0.

�

3.2. Non-cyclic quotient singularities

In Lemma 3.4, we have shown that when Γ is cyclic, H1(X,DerE(X)) = 0, which
implies that H1(X,Θ) � H1(E,OE(E)). In the following, we will use a relative
index theorem to show this also holds for the general case.

Proposition 3.5. Let X �→ C2/Γ be a minimal resolution, where Γ ⊂ U(2) with no
complex reflections. Then H1(X,Θ) � H1(E,OE(E)) and H1(X,DerE(X)) = 0.

Proof. Assume Γ is non-cyclic. We will first construct a Kähler form on the minimal
resolution X of C2/Γ by gluing Calderbank–Singer ALE surfaces Yj (j = 1, 2, 3)
to a quotient of a LeBrun orbifold X0, which has three cyclic quotient singularities
on the central rational curve. The following is a sketch of the gluing procedure,
details of a similar construction can be found in [LV14]. Note that in that paper,
this gluing was used to proceed scalar-flat Kähler metrics, while in the following
argument we will be considering a different operator P , see (3.31) below.

Let xi, i = 1, 2, 3 be the cyclic quotient singularities of X0 with group Γi.
Let (z1i , z

2
i ) be local holomorphic coordinates on Ui \ {xi}. Let ωX0 be the Kähler
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form of the LeBrun metric. Then ωX0 admits an expansion

ωX0 =

√
−1

2
(∂∂̄|zi|2 + ∂∂̄ξi) (3.25)

on Ui\{xi}, where ξi is a potential function satisfying ξi = O(|zi|4). For the LeBrun
orbifold X0, outside of a compact subset, it admits a holomorphic coordinate
(v1, v2). Let Yi denote the minimal resolution of C2/Γi. Outside of a compact
subset of Yi, there exist holomorphic coordinates (u1

i , u
2
i ). Let ωYi be a Kähler

form on Yi corresponding to any Calderbank–Singer metric on Yi. From [RS09],
the Kähler form admits an expansion

ωYi =

√
−1

2
(∂∂̄|ui|2 + ∂∂̄ηi), (3.26)

where ηi−c log(|u|2) = O(|ui|−1), for some constant c. In fact, a similar expansion
holds for any scalar-flat Kähler ALE surface on a resolution [ALM16].

Next, we construct a Kähler form on X . Choose two small positive numbers
a, b, we glue the regions 1

a ≤ |ui| ≤ 4
a and b ≤ |zi| ≤ 4b, by letting zi = ab ·ui. This

mapping is biholomorphic in the intersection. Let ρ be a smooth cutoff function
satisfying ρ(t) = 1 when t ≤ 1, ρ = 0 when t ≥ 2. Let

ωb =

{√
−1
2 (∂∂̄|zi|2 + ∂∂̄((1 − ρ( |zi|2b ))ξi(zi))) if |zi| ≤ b

ωX0 if |zi| ≥ 4b

ωa =

{√
−1
2 (∂∂̄|ui|2 + ∂∂̄(ρ(a|ui|)ηi(ui))) if |ui| ≥ 4a−1

ωYi if |ui| ≤ a−1
.

(3.27)

Then we define

ωa,b =

{
a−2b−2ωb if |zi| ≥ 2b

ωa if |ui| ≤ 2a−1
. (3.28)

For a, b sufficiently small, ωa,b is a Kähler form on X . Since ωX0 was ALE of order
2, the Kähler metric ωa,b is also ALE of order 2.

Next, choose R1, R2, R3, such that 0 < 2R1 < R2, R3 > 0, and define smooth
functions r1, r2, r3 as:

r1(x) =

{
|zi| if |zi| ≤ R1

1 if |zi| ≥ 2R1

r2(x) =

{
1 if |v| ≤ R2

|v| if |v| ≥ 2R2

r3(x) =

{
1 if |ui| ≤ R3

|u| if |ui| ≥ 2R3

(3.29)

For δ ∈ R, and weight function γ > 0, define the weighted Hölder space Ck,α
δ,γ (M,T )

of sections of any vector bundle T overM as the closure of the space of C∞-sections
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in the norm

‖σ‖Ck,α
δ,γ (M,T ) =

∑
|I|≤k

|γ−δ+|I|∇Iσ|

+
∑
|I|=k

sup
0<d(x,y)<ρinj

(
min{γ(x), γ(y)}−δ+k+α |∇Iσ(x) −∇Iσ(y)|

d(x, y)α

)
.

(3.30)

Lemma 3.6. Let X0 be the LeBrun orbifold with quotient singularities x1, x2, x3.
The elliptic operator

P : Ck,α
δ,r1r2

(X0,Λ
0,1 ⊗Θ)

(∂̄∗,∂̄)−−−−→ Ck−1,α
δ−1,r1r2

(X0,Θ)⊕ Ck−1,α
δ−1,r1r2

(X0,Λ
0,2 ⊗Θ)

(3.31)

is Fredholm and surjective, where δ ∈ (−2,−1), k ≥ 3.

Proof. First, note that any element of the kernel and cokernel is �-harmonic. By
the standard theory of harmonic functions, any�-harmonic element which is O(rδ1)
as r1 → 0 has a removable singularity. The remainder of the proof is almost the
same as the proof of [HV16, Lemma 4.2], and is omitted. �

We will now consider the weight function γ : X → R+ by the following:

γ =

{
a−1b−1r1r2 if |zi| ≥ 2b

r3 if |ui| ≤ 2a−1
. (3.32)

Define the elliptic operator P as (∂̄∗, ∂̄) with respect to the glued metric ωa,b, on

the weighted space Ck,α
δ,γ (X,Λ0,1 ⊗ Θ). Because ωa,b is a Kähler ALE metric, by

[HV16, Lemma 4.2], P is Fredholm and surjective. Since each PYi has a bounded
right inverse for i = 1, 2, 3, and PX0 has a bounded right inverse, a standard
argument (see for example [RS05]) shows that there is a uniformly bounded right
inverse of P , for a, b sufficiently small.

In [LV14, Prop. 6.1], it was shown that dim(ker(PX0 )) = bΓ − 1, where −bΓ
is the self-intersection number of the central divisor in X . For each Calderbank–
Singer ALE space Yj , by Lemma 3.4, we have dim(ker(PYj )) =

∑kj

i=1(e
j
i−1), where

−eji is the self-intersection number of each irreducible exceptional divisor in Yj .
In the proof of [HV16, Theorem 10.2], it was shown that the natural mapping

H−3(X,Λ0,1 ⊗Θ) → H1(X,Θ) (3.33)

is surjective, which implies that dim(H1(X,Θ)) ≤ dim(H−3(X,Λ0,1 ⊗ Θ)). Also,
from (3.2) above, we have dim(H1(E,OE(E))) ≤ dim(H1(X,Θ)). Combining
these, we have that

dim(H1(X,Θ)) ≤ dim(H−3(X,Λ0,1 ⊗Θ))

= dim(ker(PX)) = bΓ − 1 +

3∑
j=1

kj∑
i=1

(eji − 1)

= dim(H1(E,OE(E))) ≤ dim(H1(X,Θ)).

(3.34)
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This implies the isomorphism H1(X,Θ) � H1(E,OE(E)). Then by the exact
sequence (3.2), H1(X,DerE(X)) = 0. �

4. Dimension of the moduli space

We will next discuss the dimension of the generic orbit in the cases in Table 1.1.

4.1. Discussion of Table 1.1

Cases 1 and 2: Γ = 1
p (1, 1). This case has been studied in [Hon13]. The group

of biholomorphic automorphisms is GL(2,C), and the identity component of the
holomorphic isometry group is U(2). When p = 3, the action of U(2) coincides
with the action of SU(2), and the dimension of generic orbits is 3. Then dim(M) =
5− 3 = 2. When p > 3, the dimension of each orbit is 4, and dim(M) = 2p− 5.

Case 3: Γ = 1
p (1, q), where q �= 1, p − 1. In this case, by direct calculation, the

subgroup in U(2) that commutes with Γ is isomorphic to S1 × S1. By [ALM16,
Proposition 3.3] the identity component of the holomorphic isometry group must
be S1 × S1. Using the fact that the cyclic quotient singularity is characterized by
the invariant polynomials in (3.7) above, it is easy to show that the dimension of
the generic orbit of G is 2, and therefore dim(M) = jΓ + kΓ − 2.

Case 4: Γ is non-cyclic and not in SU(2). In this case, the subgroup in U(2) that
commutes with Γ is isomorphic to S1, so by [ALM16, Proposition 3.3] the identity
component of the holomorphic isometry group must be S1. Since the Hopf action
is always nontrivial on the normal bundle of the central divisor E, the dimension
of the generic orbit of the Hopf action on H1(E,OE(E)) ∼= H0(E,O(bΓ − 2)) is 1,
and therefore dim(M) = jΓ + kΓ − 1.

4.2. Cyclic case

Any cyclic action without complex reflections is conjugate to the action generated
by

(z1, z2) �→ (ξpz1, ξ
q
pz2), (4.1)

where ξp is a pth root of unity, and q is relatively prime to p, which we will call a
1
p (1, q) action. Define the integers ei ≥ 2, and k by the continued fraction expansion

p

q
= e1 −

1

e2 − · · ·
1

ek

≡ [e1, . . . , ek]. (4.2)

The singularity of C2/Γ is known as a Hirzebruch–Jung singularity, and the ex-
ceptional divisor is a string of rational curves with normal crossing singularities.

If 1 ≤ q < p, then let q′ = p− q. Let e′i ≥ 2, and k′ denote integers arising in
the Hirzebruch–Jung algorithm for the 1

p (1, q
′)-action. In [Rie74], Riemenschneider
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proved the formulas

k∑
i=1

(ei − 1) =

k′∑
i=1

(e′i − 1), (4.3)

k′ = e− 2, (4.4)

e = 3 +

k∑
i=1

(ei − 2), (4.5)

where e is the embedding dimension. In particular, these formulas give that

k∑
i=1

(ei − 1) = e+ k − 3. (4.6)

From Subsection 4.1 above, for q �= 1, p− 1, it follows that

mΓ = 2eΓ + 3kΓ − 8. (4.7)

4.3. Non-cyclic cases

The non-cyclic finite subgroups of U(2) without complex reflections are given in
Table 4.1, where the binary polyhedral groups (dihedral, tetrahedral, octahedral,
icosahedral) are respectively denoted by D∗

4n, T
∗, O∗, I∗, and the map φ : SU(2)×

SU(2) → SO(4) denotes the usual double cover, see [Bri68, BKR88, LV14] for more
details.

Table 4.1. Non-cyclic finite subgroups of U(2) containing no complex reflections

Γ ⊂ U(2) Conditions Order

φ(L(1, 2l)×D∗
4n) (l, 2n) = 1 4ln

φ(L(1, 2l)× T ∗) (l, 6) = 1 24l
φ(L(1, 2l)×O∗) (l, 6) = 1 48l
φ(L(1, 2l)× I∗) (l, 30) = 1 120l
Index-2 diagonal ⊂ φ(L(1, 4l)×D∗

4n) (l, 2) = 2, (l, n) = 1 4ln
Index-3 diagonal ⊂ φ(L(1, 6l)× T ∗) (l, 6) = 3 24l.

First, consider the case of φ(L(1, 2l)×D∗
4n), where (l, 2n) = 1. In [BR77], it

is shown that

eΓ =

k∑
i=1

(ei − 2) + 3, (4.8)

which implies that

2eΓ + 3kΓ − 7 = 2
k∑

i=1

(ei − 1) + k − 1, (4.9)
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which, from above, is equal to mΓ. For the index 2 subgroup which is contained
in φ(L(1, 4l)×D∗

4n), where (l, 2) = 2, (l, n) = 1, a similar computation shows that
the same formula (4.9) holds in this case as well.

Table 4.2. Cases with T ∗, O∗, I∗ for l > 1

Γ ⊂ U(2) mΓ

φ(L(1, 2l)× T ∗)
l ≡ 1 mod 6 1

3 (l − 1) + 17
l ≡ 5 mod 6 1

3 (l − 5) + 15
Index–3 diagonal ⊂ φ(L(1, 6l)× T ∗)

(l, 6) = 3 1
3 (l − 3) + 16

φ(L(1, 2l)×O∗)
l ≡ 1 mod 12 1

6 (l − 1) + 20
l ≡ 5 mod 12 1

6 (l − 5) + 19
l ≡ 7 mod 12 1

6 (l − 7) + 18
l ≡ 11 mod 12 1

6 (l − 11) + 17
φ(L(1, 2l)× I∗)

l ≡ 1 mod 30 1
15 (l − 1) + 23

l ≡ 7 mod 30 1
15 (l − 7) + 19

l ≡ 11 mod 30 1
15 (l − 11) + 22

l ≡ 13 mod 30 1
15 (l − 13) + 19

l ≡ 17 mod 30 1
15 (l − 17) + 18

l ≡ 19 mod 30 1
15 (l − 19) + 20

l ≡ 23 mod 30 1
15 (l − 23) + 18

l ≡ 29 mod 30 1
15 (l − 29) + 19

Table 4.2 lists the dimension of the moduli space for subgroups of U(2) for
finite subgroups involving T ∗, O∗, I∗. The papers of [Bri68, BKR88, LV14] give a
complete description of the exceptional divisors and self-intersection numbers, and
it is a straightforward computation to obtain the right column in the table, which,
from Subsection 4.1 is equal jΓ + kΓ − 1. Furthermore, using the formulas for the
embedding dimension given in [BKR88], it can be easily checked that

mΓ = jΓ + kΓ − 1 = 2eΓ + 3kΓ − 7 (4.10)

in all of these cases (the computations are omitted). We point out that there is a
typo in case I7 in [BKR88]: in our notation, this case should have l = 30(b− 2)+7
and e = b+ 2.

4.4. Hyperkähler case

Recall that a hyperkähler metric is Kähler with respect to a 2-sphere of complex
structures S2 = {aI + bJ + cK : a2 + b2 + c2 = 1}.
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A1-type: the Eguchi–Hanson metric is an ALE Ricci-flat Kähler metric on X =
T ∗S2. Since k = 1, B1 ⊂ R2, B2 ⊂ R, dΓ = 2+1 = 3. With respect to the complex
structure I (the complex structure arising as the total space of a holomorphic
line bundle), the biholomorphic isometry group is U(2). The quotient F/G has
two orbit-types. The orbit of (0, ρ) is one-dimensional. The orbit of (t, ρ) where
t is non-zero, is also one-dimensional. Consequently, M is isomorphic to the two-
dimensional upper half-space. The remaining parameter of complex structures just
corresponds to a hyperkähler rotation, so the metrics obtained are all just scalings
of the Eguchi–Hanson metric.

Instead, consider the complex structure J . The biholomorphic isometry group
is SU(2). The subspace V is now of dimension 1, so our parameter space is now
R×R. The group G now acts trivially, so our parameter space is a ball in R2. The
remaining parameter of complex structures again just corresponds to a hyperkähler
rotation, so the metrics obtained are all just scalings of the Eguchi–Hanson metric.

ADE-type: For the general Ak, Dk, Ek (k ≥ 2) type ALE minimal resolution, the
dimension of local moduli space of Ricci-flat Kähler metrics is 3k − 3.

For Ak (k ≥ 2), this is the case of Gibbons–Hawking ALE hyperkähler sur-
face. Aut(X) = C∗ × S1 ⊂ R+ ×U(2). Recall that U(2) = U(1)×Z2 SU(2), which
acts on �v ∈ C2 as gL ·�v ·gR, where gL ∈ U(1) is the left action and gR ∈ SU(2) is the
right action. The C∗-action is generated by (v1, v2) → (λv1, λv2) where λ ∈ C∗; the
S1-action is generated by (v1, v2) → (λv1, λ

−1v2)) where |λ| = 1. The C∗ action
induces a two-dimensional action on the hyperkähler sphere, while the S1 action
preserves the hyperkähler structure. Then mΓ = dΓ − 3 = 3k − 3.

For the case of Dk, Ek, Aut(X) = C∗. The C∗ action can be interpreted as
follows: let gC∗ denote the set of real vector fields which correspond to the Lie
algebra of C∗. For any Y ∈ gC∗ , Φ∗

Y acts on the complex structures which gives an
action on B1. Since Y is a real vector field, Φ∗

Y is transverse to the action on the
hyperkähler sphere (it is not transverse only in the Ak case). Then the dimension
of the maximal orbit generated by the C∗ action and the action on hyperkähler
sphere is 3, so mΓ = dΓ − 3.

5. Appendix

In this appendix, we provide some details of a decay estimate needed in the proof
of [HV16, Proposition 3.3]. Let h = h1dz̄1 + h2dz̄2 be a ∂̄-closed (0, 1)-form on C2

with h ∈ C1(C2), and

|h| < C(1 + |z|)−μ (5.1)

|∇h| < C(1 + |z|)−μ−1. (5.2)

for some μ > 1. Define

q =
1

2π
√
−1

∫
C

h2(z1, ζ2)
dζ2 ∧ dζ̄2
ζ2 − z2

. (5.3)
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Proposition 5.1. The function q ∈ C1
loc(C

2), satisfies

∂̄q = h, (5.4)

and obeys the estimate

|q|(z) < C · (1 + |z|)−μ+1. (5.5)

Proof. Since μ > 1, the integrand in (5.3) is in L1(C) (in the ζ2 variable), so q is
well defined. A standard argument shows that q ∈ C1

loc(C
2). We claim that

∂

∂z̄2
q = h2. (5.6)

To see this, make the change of variables w2 = ζ2 − z2, and write

q =
1

2π
√
−1

∫
C

h2(z1, w2 + z2)

w2
dw2 ∧ dw̄2. (5.7)

Notice that

∂

∂z̄2

h2(z1, w2 + z2)

w2
=

1

w2

∂

∂z̄2
h2(z1, w2 + z2), (5.8)

and using (5.2), this is uniformly in L1 in the w2 variable, so we can differentiate
under the integral sign to obtain

∂

∂z̄2
q =

1

2π
√
−1

∫
C

1

w2

∂

∂z̄2
h2(z1, w2 + z2)dw2 ∧ dw̄2

=
1

2π
√
−1

∫
C

1

w2

∂

∂w̄2
h2(z1, w2 + z2)dw2 ∧ dw̄2

=
1

2π
√
−1

∫
C

1

ζ2 − z2

∂

∂ζ̄2
h2(z1, ζ2)dζ2 ∧ dζ̄2 = h2,

(5.9)

by Cauchy’s integral formula.
Next, by a similar argument, we can differentiate under the integral sign in

the z1-variable to obtain

∂

∂z̄1
q =

1

2π
√
−1

∫
C

∂

∂z̄1
h2(z1, ζ2)

dζ2 ∧ dζ̄2
ζ2 − z2

=
1

2π
√
−1

∫
C

∂

∂z̄2
h1(z1, ζ2)

dζ2 ∧ dζ̄2
ζ2 − z2

= h1,

(5.10)

with the middle equality holding since ∂̄h = 0 by assumption.
We next claim that estimate (5.5) is satisfied for any z ∈ E1, where E1 is

defined by

E1 =

{
(z1, z2) | |z1| >

1

4
|z2|

}
. (5.11)

To see this, observe that if z ∈ E1, then

|z1| >
1√
17

|z|. (5.12)
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So if |ζ2 − z2| < 10|z2|, then

(1 + |z|)μ−1

∣∣∣∣∣ 1

2π
√
−1

∫
B(z2,10|z2|)

h2(z1, ζ2)
dζ2 ∧ dζ̄2
ζ2 − z2

∣∣∣∣∣
≤ C(1 + |z|)μ−1

∫
B(z2,10|z2|)

(1 + |z1|+ |ζ2|)−μ 1

|ζ2 − z2|
|dζ2 ∧ dζ̄2|

≤ C(1 + |z|)μ−1(1 + |z1|)−μ

∫
B(z2,10|z2|)

1

|ζ2 − z2|
|dζ2 ∧ dζ̄2|

≤ C(1 + |z|)μ−1

(
1 +

|z|√
17

)−μ

10|z2| ≤ C
|z2|

1 + |z| ≤ C.

(5.13)

Next, if |ζ2 − z2| ≥ 10|z2|, first note that

B(z2, 10|z2|)c ⊂ B(0, 2|z2|)c. (5.14)

So if ζ2 ∈ B(z2, 10|z2|)c then |ζ2 − z2| > |ζ2| − |z2| > 0, and we estimate

I ≡ (1 + |z|)μ−1
∣∣∣ 1

2π
√
−1

∫
B(z2,10|z2|)c

h2(z1, ζ2)
dζ2 ∧ dζ̄2
ζ2 − z2

∣∣∣
≤ C(1 + |z|)μ−1

∫
B(0,2|z2|)c

(1 + |z1|+ |ζ2|)−μ 1

|ζ2 − z2|
|dζ2 ∧ dζ̄2|

≤ C(1 + |z|)μ−1

∫
B(0,2|z2|)c

(1 + |z1|+ |ζ2|)−μ 1

|ζ2| − |z2|
|dζ2 ∧ dζ̄2|

≤ C(1 + |z|)μ−1

∫ ∞

2|z2|
(1 + |z1|+ r)−μ r

r − |z2|
dr.

(5.15)

Note that the function r
r−|z2| is decreasing for r > |z2| and its maximum value on

the domain of integration is at the lower endpoint, which is equal to 2, so we have

I ≤ C(1 + |z|)μ−1

∫ ∞

2|z2|
(1 + |z1|+ r)−μdr

= C(1 + |z|)μ−1 1

1− μ
(1 + |z1|+ r)1−μ

∣∣∣∞
2|z2|

≤ C(1 + |z|)μ−1(1 + |z1|+ 2|z2|)1−μ ≤ C,

(5.16)

and therefore estimate (5.5) is satisfied for any z ∈ E1.
Next, define q̃ by

q̃ =
1

2π
√
−1

∫
C

h1(ζ1, z2)
dζ1 ∧ dζ̄1
ζ1 − z1

. (5.17)

An identical argument to the above shows that q̃ ∈ C1
loc(C

2), satisfies

∂̄q̃ = h (5.18)

on C2, and

|q̃|(z) < C · (1 + |z|)−μ+1 (5.19)
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for any z ∈ E2, where E2 is defined by

E2 =
{
(z1, z2) | |z2| > 1

4 |z1|
}
. (5.20)

Since ∂̄(q − q̃) = 0, q − q̃ is a holomorphic function on C2. Note that

E1 ∩ E2 =
{
(z1, z2) | 1

4 |z2| < |z1| < 4|z2|
}

(5.21)

together with the origin contains any complex line of the form z1 = cz2 with 1/4 <
|c| < 4. The function q − q̃ restricted to any such line is a decaying holomorphic
function on C and must therefore vanish by Liouville’s Theorem. Consequently,
q = q̃ on E1 ∩ E2. By unique continuation, it follows that q = q̃ on C2. Since
C2 = E1 ∪E2, by the decay estimates for q and q̃ above, we conclude that (5.5) is
satisfied on C2. �
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[Szé12] Gábor Székelyhidi, On blowing up extremal Kähler manifolds, Duke Math. J.
161 (2012), no. 8, 1411–1453.

[Tia90] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern
class, Invent. Math. 101 (1990), no. 1, 101–172.

[TV05a] Gang Tian and Jeff Viaclovsky, Bach-flat asymptotically locally Euclidean met-
rics, Invent. Math. 160 (2005), no. 2, 357–415.

[TV05b] , Moduli spaces of critical Riemannian metrics in dimension four, Adv.
Math. 196 (2005), no. 2, 346–372.

[TV08] , Volume growth, curvature decay, and critical metrics, Comment. Math.
Helv. 83 (2008), no. 4, 889–911.

[Wah75] Jonathan M. Wahl, Vanishing theorems for resolutions of surface singularities,
Invent. Math. 31 (1975), no. 1, 17–41.

Jiyuan Han
Department of Mathematics
Purdue University
West Lafayette, IN 47907, USA

e-mail: han556@purdue.edu

Jeff A. Viaclovsky
Department of Mathematics
University of California
Irvine, CA 92697, USA

e-mail: jviaclov@uci.edu



Progress in Mathematics, Vol. 333, 137–155

Singular Ricci Flows II

Bruce Kleiner and John Lott

Abstract. We establish several quantitative results about singular Ricci flows,
including estimates on the curvature and volume, and the set of singular times.

Mathematics Subject Classification (2010). 53C44.

Keywords. Ricci flow, geometric flow, weak solution, singular.

1. Introduction

In [KL17, BKb], it was shown that there exists a canonical Ricci flow through
singularities starting from an arbitrary compact Riemannian 3-manifold, and that
this flow may obtained as a limit of a sequence of Ricci flows with surgery. These
results confirmed a conjecture of Perelman [Per02, Per03], and were used in the
proof of the Generalized Smale Conjecture in [BKa].

The purpose of this paper, which is a sequel to [KL17], is to further study
Ricci flow through singularities.

We recall that the basic object introduced in [KL17] is a singular Ricci flow,
which is a Ricci flow spacetime subject to several additional conditions; see Defi-
nition 2.2 of Section 2 or [KL17, Def. 1.6].

In the following, we let M be a singular Ricci flow with parameter functions
κ and r, and we let Mt denote a time slice. The main results of the paper are the
following.

Theorem 1.1. For all p ∈ (0, 1) and all t, the scalar curvature is Lp on Mt.

Theorem 1.2. The volume function V(t) = vol(Mt) has a locally bounded upper-
right derivative and is locally α-Hölder in t for some exponent α ∈ (0, 1).

The first assertion of the theorem was shown in [KL17, Proposition 5.5 and
Corollary 7.7], so the issue here is to prove Hölder continuity in the opposite
direction.

We state the next result loosely, with a more precise formulation given later.

c© Springer Nature Switzerland AG 2020
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Theorem 1.3. The a priori assumptions in Definition 2.2 of a singular Ricci flow
are really conditions on the spacetime near infinity, in the sense that if the condi-
tions hold outside of compact subsets then, after redefinition of κ and r, they hold
everywhere.

Finally, we estimate the size of the set of singular times in a singular Ricci
flow.

Theorem 1.4. For any T < ∞, the set of times t ∈ [0, T ] for which Mt is non-
compact has Minkowski dimension at most 1

2 .

The structure of the paper is as follows. In Section 2 we recall some notation
and terminology from [KL17]. In Section 3 we prove some needed results about
compact κ-solutions. Section 4 has the proofs of Theorems 1.1 and 1.2. In Section
5 we prove Theorem 1.3 and in Section 6 we prove Theorem 1.4.

2. Notation and terminology

We will assume some familiarity with [KL17], but in order to make this paper
as self-contained as possible, we will give precise references for all results from
[KL17] that are used here. We follow the notation and terminology of [KL17]. All
manifolds that arise will be taken to be orientable. A κ-solution is a special type
of ancient Ricci flow solution, for which we refer to [KL17, Appendix A.5]. The
function r : [0,∞) → (0,∞) is the parameter r of the canonical neighborhood
assumption [KL17, Appendix A.8].

Definition 2.1. A Ricci flow spacetime is a tuple (M, t, ∂t, g) where:

• M is a smooth manifold-with-boundary.
• t is the time function – a submersion t : M → I where I ⊂ R is a time

interval; we will usually take I = [0,∞).
• The boundary of M, if it is nonempty, corresponds to the endpoint(s) of the

time interval: ∂M = t−1(∂I).
• ∂t is the time vector field, which satisfies ∂tt ≡ 1.
• g is a smooth inner product on the spatial subbundle ker(dt) ⊂ TM, and g

defines a Ricci flow: L∂tg = −2Ric(g).

For 0 ≤ a < b, we write Ma = t−1(a), M[a,b] = t−1([a, b]) and M≤a =

t−1([0, a]). Henceforth, unless otherwise specified, when we refer to geometric quan-
tities such as curvature, we will implicitly be referring to the metric on the time
slices.

Definition 2.2. A Ricci flow spacetime (M, t, ∂t, g) is a singular Ricci flow if it is
four-dimensional, the initial time slice M0 is a compact normalized Riemannian
manifold and

a. The scalar curvature function R : M≤T → R is bounded below and proper
for all T ≥ 0.
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b. M satisfies the Hamilton–Ivey pinching condition of [KL17, (A.14)].
c. For a global parameter ε > 0 and decreasing functions κ, r : [0,∞) → (0,∞),

the spacetime M is κ-noncollapsed below scale ε in the sense of [KL17, Ap-
pendix A.4] and satisfies the r-canonical neighborhood assumption in the
sense of [KL17, Appendix A.8].

Here “normalized” means that at each point m in the initial time slice, the
eigenvalues of the curvature operator Rm(m) are bounded by one in absolute
value, and the volume of the unit ball B(m, 1) is at least half the volume of
the Euclidean unit ball. By rescaling, any compact Riemannian manifold can be
normalized. “Proper” has the usual meaning, that the preimage of a compact set
is compact. Since R is bounded below, its properness means that as one goes out
an end of M≤T , the function R goes to infinity.

Let (M, t, ∂t, g) be a Ricci flow spacetime (Definition 2.1). For brevity, we
will often write M for the quadruple.

Given s > 0, the rescaled Ricci flow spacetime is M̂(s) = (M, 1
s t, s∂t,

1
sg).

Definition 2.3. Let M be a Ricci flow spacetime. A path γ : I → M is time-
preserving if t(γ(t)) = t for all t ∈ I. The worldline of a point m ∈ M is the
maximal time-preserving integral curve γ : I → M of the time vector field ∂t,
which passes through m.

If γ : I → M is a worldline then we may have sup I < ∞. In this case, the
scalar curvature blows up along γ(t) as t → sup I, and the worldline encounters a
singularity. An example would be a shrinking round space form, or a neckpinch.
A worldline may also encounter a singularity going backward in time.

Definition 2.4. A worldline γ : I → M is bad if inf I > 0, i.e., if it is not defined
at t = 0.

Given m ∈ Mt, we write B(m, r) for the open metric ball of radius r in Mt.
We write P (m, r,Δt) for the parabolic neighborhood, i.e., the set of points m′ in
M[t,t+Δt] if Δt > 0 (or M[t+Δt,t] if Δt < 0) that lie on the worldline of some point
in B(m, r). We say that P (m, r,Δt) is unscathed if B(m, r) has compact closure in
Mt and for every m′ ∈ P (m, r,Δt), the maximal worldline γ through m′ is defined
on a time interval containing [t, t+Δt] (or [t+Δt, t]). We write P+(m, r) for the
forward parabolic ball P (m, r, r2) and P−(m, r) for the backward parabolic ball
P (m, r,−r2).

3. Compact κ-solutions

In this section we prove some structural results about compact κ-solutions. The
main result of this section, Corollary 3.3, will be used in the proof of Proposi-
tion 4.2.

We recall from [KL17, Appendix A.5] that if M is a κ-solution then Mt,ε̂

denotes the points in Mt that are not centers of ε̂-necks.



140 B. Kleiner and J. Lott

Lemma 3.1. There is some ε > 0 so that for any 0 < ε̂ < ε, there are ε′ = ε′(ε̂) > 0
and α = α(ε̂) < ∞ with the following property. Let M be a compact κ-solution.
Suppose that Mt contains an ε′-neck. Then there are points m1,m2 ∈ Mt so that
Mt,ε̂ is covered by disjoint balls B(m1, αR(m1, t)

− 1
2 ) and B(m2, αR(m2, t)

− 1
2 ),

whose intersections with Mt −Mt,ε̂ are nonempty.

Proof. Let α = α(ε̂) be the parameter of [KL08, Corollary 48.1]. Suppose that there
is some point x ∈ Mt,ε̂ so that R(x)Diam2(Mt) < α. By the compactness of the
space of pointed κ-solutions, it follows that there is an upper bound on (supMt

R)·
Diam2(Mt), depending only on α. If ε′ is sufficiently small then we obtain a
contradiction. Hence we are in case C of [KL08, Corollary 48.1], so there are

points m1,m2 ∈Mt such that Mt,ε̂ ⊂ B(m1, αR(m1, t)
− 1

2 )∪B(m2, αR(m2, t)
− 1

2 ).
If ε′ is sufficiently small then a cross-section of the ε′-neck separates Mt into
two connected components, each of which must have a cap region. Hence if ε′ is
sufficiently small then B(m1, αR(m1, t)

− 1
2 ) and B(m2, αR(m2, t)

− 1
2 ) are disjoint.

As Mt,ε̂ is closed, both B(m1, αR(m1, t)
− 1

2 ) and B(m2, αR(m2, t)
− 1

2 ) intersect
Mt −Mt,ε̂. �

Lemma 3.2. Given ε̂ > 0 and a compact family F of pointed κ-solutions, with
basepoints at time zero, there is some T = T (ε̂,F) < 0 such that for each M ∈ F ,

there is a point (m, t) ∈ M with t ∈ [−T, 0] so that
(
M̂(−t),m

)
is ε̂-close to a

pointed gradient shrinking soliton which is a κ-solution.

Proof. Suppose that the lemma fails. Then for each j ∈ Z+, there is some Mj ∈ F
so that for each (m, t) ∈ Mj with t ∈ [−j, 0], there is no pointed gradient

shrinker (which is a κ-solution) that is ε̂-close to
(
M̂j(−t),m

)
. After passing

to a subsequence, we can assume that limj→∞ Mj = M∞ ∈ F . From the exis-
tence of an asymptotic soliton for M∞, there is some (m∞, t∞) ∈ M∞ so that(
M̂∞(−t∞),m∞

)
is ε̂

2 -close to a gradient shrinking soliton (which is a κ-solution).

Then for large j, there is some (mj , t∞) ∈ Mj so that
(
M̂j(−t∞),mj

)
is ε̂-close

to the gradient shrinking soliton. This is a contradiction. �

Corollary 3.3. Let F be a compact family of compact κ-solutions that does not
have any constant curvature elements. Then for each ε̂ > 0, there is some T =
T (ε̂,F) < 0 such that for each M ∈ F , there is a point (m, t) ∈ M[T ,0] which is
the center of an ε̂-neck.

Proof. By assumption, there is some σ = σ(F) > 0 so that no time-zero slice of
an element of F is σ-close to a constant curvature manifold. By Lemma 3.2, for
each ε′ > 0, there is some T = T (ε′,F) < 0 such that for each M ∈ F , there

is some (m, t) ∈ M[T ,0] so that
(
M̂(−t),m

)
is ε′-close to a gradient shrinking

soliton (which is a κ-solution). If ε′ is sufficiently small, in terms of σ, then by the
local stability of Ricci flows of constant positive curvature, this soliton cannot have
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constant curvature. Hence it is either a round shrinking cylinder or a Z2-quotient
of a round shrinking cylinder. If it is a round shrinking cylinder then as long as
ε′ ≤ ε̂, we are done. If it is a Z2-quotient of a round shrinking cylinder then if ε′ is
sufficiently small, by moving the basepoint we can find a point (m′, t) ∈ M that
is the center of an ε-neck. �

4. Curvature and volume estimates

In this section we establish curvature and volume estimates for singular Ricci flows.
There are two main results. In Proposition 4.2, we show that |R|p is integrable on
each time slice, for each p ∈ (0, 1). In Proposition 4.36 we give an estimate on how
the volume V(t) can change as a function of t. When combined with part (5) of
[KL17, Proposition 5.5], it shows that V(t) is 1

η -Hölder in t, where η ≥ 1 is the

constant in the estimate

|∇R(x, t)| < ηR(x, t)
3
2 ,

∣∣∣∣∂R∂t (x, t)
∣∣∣∣ < ηR(x, t)2, (4.1)

for canonical neighborhoods from [KL17, (A.8)].

Proposition 4.2. LetM be a singular Ricci flow. Then for all p ∈ (0, 1) and T < ∞,
there is a bound ∫

Mt

|R|p dvolg(t) ≤ const.(p, T ) volg(0)(M0) (4.3)

for all t ∈ [0, T ].

Proof. Before entering into the details, we first give a sketch of the proof.
Due to the bounds on V(t) from [KL17, Proposition 5.5], it suffices to control

the contribution to the left-hand side of (4.3) from the points with large scalar
curvature. Such points fall into three types, according to the geometry of the
canonical neighborhoods: (a) neck points, (b) cap points, and (c) points p whose

connected component in Mt is compact and has diameter comparable to R(p)−
1
2 .

If (p, t) ∈ Mt is a neck point with worldline γ : [0, t] → M then thanks to
the stability of necks going backward in time, the scale-invariant time derivative
R−1 ∂R

∂t will remain very close to the cylindrical value along γ, until R falls down

to a value comparable to (r(t))−2. Combining this with previous estimates on the
Jacobian as in [KL17, Section 5], we can bound the contribution from the neck
points to the left-hand side of (4.3) in terms of the volume of the corresponding
set of points in the time zero slice. To control the contribution from points of
type (b), we show that it is dominated by that of the neck points. To control
the contribution from the points of type (c) we use a similar approach. We again
analyze the geometry going backward in time along worldlines, except that in this
case there are three stages: one where the components are nearly round, one when

they are no longer nearly round but still have diameter comparable to R− 1
2 , and

one when they have a large necklike region.
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We now start on the proof. With the notation of the proof of [KL17, Propo-
sition 5.5], let X3 ⊂ Mt be the complement of the set of points in Mt with a bad
worldline. From [KL17, Theorem 7.1], it has full measure in Mt. Given x ∈ X3,
let γx : [0, t] →M[0,t] be the restriction of its worldline to the interval [0, t]. Define
Jt(x) as in [KL17, (5.8)], with t1 = 0. That is,

Jt(x) =
i∗t dvolg(t)
dvolg(0)

(x) (4.4)

is the pointwise volume distortion of the inclusion map it that goes from (a subset
of) the time-zero slice to the time-t slice. From [KL17, (5.9)], we have

Jt(x) = e−
∫

t
0
R(γx(u)) du. (4.5)

Given T > 0, we consider times t in the range [0, T ]. Let ε̂, C1, R and R
′

be as in [KL17, Proposition 5.16]. We take R > r(T )−2. From [KL17, Proposition
5.15] we can assume that the ε̂-canonical neighborhood assumption holds on the

superlevel set M>R
[0,T ] of the scalar curvature function. We will further adjust the

parameters ε̂ and R
′
later.

For any R̂ ≥ R, write

M>R̂
t = M>R̂

t,neck ∪M>R̂
t,cap ∪M>R̂

t,closed, (4.6)

where

• M>R̂
t,neck consists of the points in M>R̂

t that are centers of ε̂-necks,

• M>R̂
t,cap consists of the points x ∈ M>R̂

t −M>R̂
t,neck so that after rescaling by

R(x), the pair (Mt, x) is ε̂-close to a pointed noncompact κ-solution, and

• M>R̂
t,closed = M>R̂

t −
(
M>R̂

t,neck ∪M>R̂
t,cap

)
.

Taking R̂ = R
′
, there is a compact set C of κ-solutions so that for x ∈

M>R
′

t,closed, after rescaling by R(x) the connected component of Mt containing x

is ε̂-close to an element of C (cf. Step 1 of the proof of [KL17, Theorem 7.1]). In
particular, before rescaling, the diameter of the component is bounded above by
CR(x)−

1
2 and the scalar curvature on the component satisfies

C−1Rav ≤ R ≤ CRav, (4.7)

for an appropriate constant C = C(ε̂) < ∞, where Rav denote the average scalar
curvature on the component.

By the pointed compactness of the space of normalized κ-solutions, and
the diameter bound on the caplike regions in normalized pointed noncompact

κ-solutions, there is a C′ = C′(ε̂, R
′
) < ∞ so that∫

M>R′
t,cap

|R|p dvolg(t) ≤ C′
∫
M>R′

t,neck

|R|p dvolg(t) . (4.8)

Hence we can restrict our attention to M>R
′

t,neck and M>R
′

t,closed.
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Consider x ∈ M>R
′

t,neck∩X3. With δneck, δ0 and δ1 being parameters of [KL17,

Theorem 6.1], we assume that ε̂ < δ0
100 and δ1 < δ0

100 . Using [KL17, Theorem 6.1]
and the ε̂-canonical neighborhood assumption, there are T ′′ < T ′ < 0 so that for

s ∈ [T ′′, T ′], the rescaled solution
(
M̂(−sR(x)−1), γx(t+ sR(x)−1)

)
is δ0

10 -close to

(Cyl, (y0,−1)). By reducing ε̂, we can make T ′′ arbitrarily negative.
The gradient bound (4.1) gives

1

R(γx(u))
≤ 1

R(x)
+ η(t− u). (4.9)

as long as γx(u) stays in a canonical neighborhood. If

R
′ ≥ (1− ηT ′′)R (4.10)

then for all u ∈ [t+ T ′′R(x)−1, t], we have R(γx(u)) ≥ R and (4.9) holds, so∫ t

t+T ′R(x)−1

R(γx(u)) du ≥
∫ t

t+T ′R(x)−1

1
1

R(x) + η(t− u)
du (4.11)

=
1

η
log(1 − ηT ′).

For a round shrinking cylinder, the sharp value for η in (4.9) is 1. For any
q > 1, if δ0 is sufficiently small then we are ensured that∫ t+T ′R(x)−1

t+T ′′R(x)−1

R(γx(u)) du ≥
∫ t+T ′R(x)−1

t+T ′′R(x)−1

1
1

R(x) + q(t− u)
du (4.12)

=
1

q
log

1− qT ′′

1− qT ′ .

In all,

e
−

∫ t
t+T ′′R(x)−1 R(γx(u)) du ≤ (1 − ηT ′)−

1
η (1− qT ′)

1
q (1− qT ′′)−

1
q . (4.13)

Because of the cylindrical approximation,

1

2
≤ (1− T ′′)R(γx(t+ T ′′R(x)−1))

R(x)
≤ 2, (4.14)

and so there is a constant C′′ = C′′(q, η, T ′) < ∞ such that for very negative T ′′,
we have

e
−

∫ t

t+T ′′R(x)−1 R(γx(u)) du ≤ C′′
(

R(x)

R(γ(t+ T ′′R(x)−1))

)− 1
q

. (4.15)

We now replace t by t + T ′′R(x)−1 and iterate the argument. Eventually,
there will be a first time tx when we can no longer continue the iteration because
the curvature has gone below R. Suppose that there are N such iterations. Then

e−
∫ t
tx

R(γx(u)) du ≤ (C′′)N
(
R(x)

R

)− 1
q

. (4.16)
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From (4.14), (
1− T ′′

2

)N−1

≤ R(x)

R
, (4.17)

so

e−
∫

t
tx

R(γx(u)) du ≤ C′′ (C′′)
N−1

(
R(x)

R

)− 1
q

≤ C′′
(
R(x)

R

) log C′′
log( 1−T ′′

2 )
− 1

q

.

(4.18)

Put p = 1
q −

logC′′

log
(

1−T ′′
2

) . By choosing q sufficiently close to 1 (from above) and

T ′′ sufficiently negative, we can make p arbitrarily close to 1 (from below). Using
the lower scalar curvature bound [KL17, Lemma 5.2], we have∫ tx

0

R(γx(u)) du ≥ −
∫ T

0

3

1 + 2u
du = −3

2
log(1 + 2T ). (4.19)

Then

e−
∫ tx
0

R(γx(u)) du ≤ (1 + 2T )
3
2 . (4.20)

As

e−
∫

t
0
R(γx(u)) du = e−

∫
tx
0

R(γx(u)) due−
∫

t
tx

R(γx(u)) du, (4.21)

by combining (4.18) and (4.20) we obtain

dvolg(t)

dvolg(0)
(x) = Jt(x) ≤ C′′(1 + 2T )

3
2

(
R(x)

R

)−p

. (4.22)

Then ∫
M>R′

t,neck

Rp dvolg(t) ≤ C′′R
p
(1 + 2T )

3
2

∫
M>R′

t,neck

dvolg(0) (4.23)

≤ C′′R
p
(1 + 2T )

3
2 volg(0)(M0).

This finishes the discussion of the neck points.

Let R
′′
> R

′
be a new parameter. Given σ > 0 small, let Mt,round be the

connected components ofMt that intersectM>R
′′

t,closed and are σ-close to a constant
curvature metric, and let Mt,nonround be the other connected components of Mt

that intersect M>R
′′

t,closed. Using [KL17, Proposition 5.17], a connected component

Nt in Mt determines a connected component Nt′ in Mt′ for all t
′ ≤ t.

Let Nt be a component in Mt,nonround. From (4.7), we have Rav ≥ C−1R
′′
.

Using the compactness of the space of approximating κ-solutions, we can apply
Lemma 3.1 and Corollary 3.3. Then for ε′ small and T = T (ε′) < ∞, there is some
t′ ∈ [t, t−10CT R−1

av ] so that Nt′ consists of centers of ε
′-necks and two caps. From

(4.9), if x ∈ Nt and

R
∣∣∣
γx([t′,t])

≥ R (4.24)
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then
1

R(γx(t′))
≤ C

Rav
+ 10CηT R−1

av , (4.25)

so

R(γx(t
′)) ≥ Rav

C(1 + 10ηT )
≥ R

′′

C2(1 + 10ηT )
. (4.26)

If R
′′
> C2(1 + 10ηT )R

′
then (4.24) holds and from (4.26), Nt′ ⊂ M>R

′

t′ . From
(4.7) and (4.26), we also have

R(x) ≤ CRav ≤ C2(1 + 10ηT )R(γx(t
′)). (4.27)

Since the volume element at γu(x) is nonincreasing as a function of u ∈ [t′, t], we
obtain ∫

Nt

R dvolg(t) ≤ C2(1 + 10ηT )

∫
Nt′

R dvolg(t′) . (4.28)

We now apply the argument starting with (4.8) to Nt′ . Taking
R

′

R
large compared

to R
′′

R
′ , in order to ensure many iterations in the earlier-neck argument, we get a

bound ∫
Nt

|R|p dvolg(t) ≤ const.(p, T ) volg(0)(Nt). (4.29)

This takes care of the components in Mt,nonround.
Let Nt be a component of Mt in Mt,round. Let τ be the infimum of the

u’s so that for all t′ ∈ [u, t], the metric on Nt′ is σ-close to a constant curvature
metric. For a Ricci flow solution with time slices of constant positive curvature, R
is strictly increasing along forward worldlines but

∫
R dvol is strictly decreasing

in t. Hence if σ is sufficiently small then we are ensured that∫
Nt

R dvolg(t) ≤
∫
Nτ

R dvolg(τ) . (4.30)

If Nτ has a point with scalar curvature at most R
′′
and σ is small then∫

Nτ

R dvol ≤ 2R
′′
volg(τ) (Nτ ) ≤ 2R

′′
(1 + 2T )

3
2 volg(0) (Nt) . (4.31)

If, on the other hand, Nτ ⊂ M>R
′′

τ then we can apply the preceding argument for
Mt,nonround, replacing t by τ . The conclusion is that∫

M>R′′
t,closed

|R|p dvolg(t) ≤ const.(p, T ) volg(0)(M>R
′′

t,closed). (4.32)

Since ∫
M>R′′

t,neck

Rp dvolg(t) ≤
∫
M>R′

t,neck

Rp dvolg(t), (4.33)∫
M>R′′

t,cap

Rp dvolg(t) ≤
∫
M>R′

t,cap

Rp dvolg(t) (4.34)
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and ∫
M≤R′′

t

|R|p dvolg(t) ≤
(
R

′′)p
(1 + 2T )

3
2 volg(0)

(
M≤R

′′

t

)
, (4.35)

the proposition follows from (4.8), (4.23), (4.32), (4.33), (4.34) and (4.35). �
Proposition 4.36. Let M be a singular Ricci flow. Let η be the constant from
(4.1). We can assume that η ≥ 1. Then whenever 0 ≤ t1 ≤ t2 < ∞ satisfies
t2 − t1 < 1

η r(t2)
2 and t1 > 1

100η , we have

V(t2)− V(t1) (4.37)

≥ −η
1
η

(
2

∫
Mt1

|R| 1η dvolg(t1) +r(t2)
− 2

ηV(t1)
)
(t2 − t1)

1
η

≥ −5η
1
η r(t2)

− 2
η (1 + 2t1)

3
2V(0) · (t2 − t1)

1
η .

Proof. Let X1 ⊂ Mt1 be the set of points x ∈ Mt1 whose worldline γx extends
forward to time t2 and let X2 ⊂Mt1 be the points x whose worldline γx does not
extend forward to time t2. Put

X ′
1 =

{
x ∈ X1 : R(x) >

1

η(t2 − t1)

}
, (4.38)

X ′′
1 =

{
x ∈ X1 : r(t2)

−2 < R(x) ≤ 1

η(t2 − t1)

}
(4.39)

and

X ′′′
1 =

{
x ∈ X1 : R(x) ≤ r(t2)

−2
}
. (4.40)

Then

vol(Mt2)− vol(Mt1) ≥ volt2 (X
′
1)− volt1 (X

′
1) (4.41)

+ volt2 (X
′′
1 )− volt1 (X

′′
1 )

+ volt2 (X
′′′
1 )− volt1 (X

′′′
1 )− volt1 (X2)

≥ volt2 (X
′′
1 )− volt1 (X

′′
1 ) + volt2 (X

′′′
1 )

− volt1 (X
′′′
1 )− volt1 (X2)− volt1 (X

′
1) .

Suppose that x ∈ X2.

Lemma 4.42. Let [t1, tx) be the domain of the forward extension of γx, with tx < t2.
For all u ∈ [t1, tx), we have

R(γx(u)) ≥
1

η(tx − u)
. (4.43)

Proof. If the lemma is not true, put

u′ = sup

{
u ∈ [t1, tx) : R(γx(u)) <

1

η(tx − u)

}
. (4.44)

Then u′ > t1.
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From the gradient estimate (4.1) and the fact that limu→tx R(γx(u)) = ∞,
we know that u′ < tx. Whenever u ≥ u′, we have

R(γx(u)) ≥
1

η(ux − u′)
≥ 1

η(t2 − t1)
> r(t2)

−2, (4.45)

so there is some μ > 0 so that the gradient estimate (4.1) holds on the interval
(u′−μ, tx). This implies that (4.43) holds for all u ∈ (u′−μ, tx), which contradicts
the definition of u′. This proves the lemma. �

Hence

(X2 ∪X ′
1) ⊂

{
x ∈Mt1 : R(x) ≥ 1

η(t2 − t1)

}
(4.46)

and

volt1(X2) + volt1(X
′
1) ≤ vol

{
x ∈ Mt1 : R(x) ≥ 1

η(t2 − t1)

}
(4.47)

≤ η
1
η (t2 − t1)

1
η

∫
Mt1

|R| 1η dvolg(t1),

since η
1
η (t2 − t1)

1
η |R| 1η ≥ 1 on the set

{
x ∈Mt1 : R(x) ≥ 1

η(t2−t1)

}
.

Suppose now that x ∈ X ′′
1 .

Lemma 4.48. For all u ∈ [t1, t2], we have

R(γx(u)) ≤
1

1
R(x) − η(u− t1)

< ∞. (4.49)

Proof. If the lemma is not true, put

u′′ = inf

{
u ∈ [t1, t2] : R(γx(u)) >

1
1

R(x) − η(u− t1)

}
. (4.50)

Then u′′ < t2 and the gradient estimate (4.1) implies that u′′ > t1. Now

R(γx(u
′′)) =

1
1

R(x) − η(u′′ − t1)
> R(x) > r(t2)

−2. (4.51)

Hence there is some μ > 0 so that R(γx(u)) ≥ r(t2)
−2 for u ∈ [u′′, u′′ + μ]. If

R(γx(u)) ≥ r(t2)
−2 for all u ∈ [t1, u

′′] then (4.1) implies that (4.49) holds for
u ∈ [t1, u

′′ + μ], which contradicts the definition of u′′. On the other hand, if it is
not true that R(γx(u)) ≥ r(t2)

−2 for all u ∈ [t1, u
′′], put

v′′ = sup
{
u ∈ [t1, u

′′] : R(γx(u)) < r(t2)
−2
}
. (4.52)

Then v′′ > t1 and R(γx(v
′′)) = r(t2)

−2. Equation (4.1) implies that

R(γx(u
′′)) ≤ 1

r(t2)2 − η(u′′ − v′′)
<

1
1

R(x) − η(u′′ − t1)
, (4.53)

which contradicts (4.51). This proves the lemma. �
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Hence if x ∈ X ′′
1 then∫ t2

t1

R(γx(u)) du ≤
∫ t2

t1

1
1

R(x) − η(u − t1)
du (4.54)

= − 1

η
log (1− ηR(x) · (t2 − t1)) ,

so
dvolg(t2)

dvolg(t1)
(x) = Jt2(x) ≥ (1− ηR(x) · (t2 − t1))

1
η . (4.55)

Thus

volt2 (X
′′
1 )− volt1 (X

′′
1 ) ≥ (4.56)∫

X′′
1

(
(1− ηR · (t2 − t1))

1
η − 1

)
dvolg(t1) .

Since η ≥ 1, if z ∈ [0, 1] then
(
z

1
η

)η
+
(
1− z

1
η

)η
≤ 1, so

(1− z)
1
η − 1 ≥ −z

1
η . (4.57)

Then

volt2 (X
′′
1 )− volt1 (X

′′
1 ) ≥ −η

1
η (t2 − t1)

1
η

∫
X′′

1

R
1
η dvolg(t1) . (4.58)

Now suppose that x ∈ X ′′′
1 .

Lemma 4.59. For all u ∈ [t1, t2], we have

R(γx(u)) ≤
1

r(t2)2 − η(u− t1)
< ∞. (4.60)

Proof. If the lemma is not true, put

u′′′ = inf

{
u ∈ [t1, t2] : R(γx(u)) >

1

r(t2)2 − η(u − t1)

}
. (4.61)

Then u′′′ < t2. If R(x) < r(t2)
−2 then clearly u′′′ > t1. If R(x) = r(t2)

−2 then since
r(t1) > r(t2), there is some ν > 0 so that R(γx(u)) > r(u)−2 for u ∈ [t1, t1 + ν];
then (4.1) gives the validity of (4.60) for u ∈ [t1, t1+ν], which implies that u′′′ > t1.
In either case, t1 < u′′′ < t2. Now

R(γx(u
′′′)) =

1

r(t2)2 − η(u′′′ − t1)
> r(t2)

−2. (4.62)

Hence there is some μ > 0 so that R(γx(u)) ≥ r(t2)
−2 for u ∈ [u′′′, u′′′ + μ]. If

R(γx(u)) ≥ r(t2)
−2 for all u ∈ [t1, u

′′′] then (4.1) implies that (4.60) holds for
u ∈ [t1, u

′′′ +μ], which contradicts the definition of u′′′. On the other hand, if it is
not true that R(γx(u)) ≥ r(t2)

−2 for all u ∈ [t1, u
′′′], put

v′′′ = sup
{
u ∈ [t1, u

′′′] : R(γx(u)) < r(t2)
−2
}
. (4.63)
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Then v′′′ > t1 and R(γx(v
′′′)) = r(t2)

−2. The gradient estimate (4.1) implies that

R(γx(u
′′′) ≤ 1

r(t2)2 − η(u′′′ − v′′′)
<

1

r(t2)2 − η(u′′′ − t1)
, (4.64)

which contradicts (4.62). This proves the lemma. �

Hence if x ∈ X ′′′
1 then∫ t2

t1

R(γx(u)) du ≤
∫ t2

t1

1

r(t2)2 − η(u − t1)
du (4.65)

= − 1

η
log

(
1− ηr(t2)

−2 · (t2 − t1)
)
,

so
dvolg(t2)

dvolg(t1)
(x) = Jt2(x) ≥

(
1− ηr(t2)

−2 · (t2 − t1)
) 1

η . (4.66)

Thus

volt2 (X
′′′
1 )− volt1 (X

′′′
1 ) ≥ (4.67)∫

X′′′
1

((
1− ηr(t2)

−2 · (t2 − t1)
) 1

η − 1
)
dvolg(t1) .

Since ηr(t2)
−2 · (t2 − t1) ∈ [0, 1], we can apply (4.57) to conclude that

volt2 (X
′′′
1 )− volt1 (X

′′′
1 ) ≥− η

1
η r(t2)

− 2
η · (t2 − t1)

1
η volt1 (X

′′′
1 ) (4.68)

≥− η
1
η r(t2)

− 2
η V(t1) · (t2 − t1)

1
η .

Combining (4.41), (4.47), (4.58) and (4.68) gives (4.37). �

5. Asymptotic conditions

In this section we show that the a priori assumptions in Definition 2.2 are really
conditions on the spacetime near infinity. That is, given ε > 0 and a decreasing
function r : [0,∞) → (0,∞), there are decreasing functions κ′ = κ′(ε) : [0,∞) →
(0,∞) and r′ = r′(ε, r) : [0,∞) → (0,∞) with the following property. Let M be
a Ricci flow spacetime with normalized initial condition, on which condition (a)
of Definition 2.2 holds. Suppose that for each T ≥ 0 there is a compact subset
of M≤T so that condition (b), and the r-canonical neighborhood assumption of
condition (c), hold on the part of M≤T outside of the compact subset. Then M
satisfies Definition 2.2 globally with parameters ε, κ′ and r′.

If M is a Ricci flow spacetime and m0 ∈ M, put t0 = t(m0). We define
Perelman’s l-function using curves emanating backward from m0, as in [KL08,
Section 15]. That is, given m ∈ M with t(m) < t0, consider a time-preserving map
γ : [t(m), t0] → M from m to m0. We reparametrize [t(m), t0] by τ(t) = t0 − t.
Then

L(γ) =
∫ t0−t(m)

0

√
τ
(
R(γ(τ)) + |γ̇(τ)|2

)
dτ, (5.1)
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where γ̇ is the spatial projection of the velocity vector of γ and |γ̇(τ)| is computed
using the metric on Mt0−τ at γ(τ). Let L(m) be the infimal L-length of such
curves γ. The reduced length is

l(m) =
L(m)

2
√
t0 − t(m)

. (5.2)

Proposition 5.3. Given Δr,Δt > 0 there are Δr = Δr(m0) < Δr and Δt =
Δt(m0) < Δt with the following property. For any m ∈ M with t(m) < t0 −Δt,
let dqp(m,P (m0,Δr,−Δt)) denote the gqpM-distance from m to the set

P (m0,Δr,−Δt).

Then

L(m) ≥ min

(
(Δr)2

4
√
Δt

,

√
Δt

10
dqp(m,P (m0,Δr,−Δt))

)
− 8

3
t
3
2
0 . (5.4)

Proof. With a slight variation on Perelman’s definition [KL08, Definition 79.1], we
put

L+(γ) =

∫ t0−t(m)

0

√
τ
(
R+(γ(τ)) + |γ̇(τ)|2

)
dτ, (5.5)

where R+(m) = max(R(m), 1). We define L+(m) using L+(γ) instead of L(γ).
Applying the lower curvature bound [KL17, (5.3)] (with C = n = 3), we know
that R ≥ −3 and so

L(γ)− L+(γ) =

∫ t0−t(m)

0

√
τ (R(γ(τ)) −R+(γ(τ))) dτ (5.6)

≥−
∫ t0−t(m)

0

√
τ · 4 dτ ≥ −8

3
t
3
2
0 .

Hence it suffices to estimate L+(γ) from below.
Given numbers Δr,Δt > 0, if t(m) < t0 −Δt then

L+(γ) ≥
∫ Δt

0

√
τ |γ̇(τ)|2 dτ =

1

2

∫ √
Δt

0

∣∣∣∣dγds
∣∣∣∣2 ds. (5.7)

Suppose first that γ leaves m0 and exits P (m0,Δr,−Δt) at some time t ∈ (t0 −
Δt, t0). If the parabolic ball were Euclidean then we could say from (5.7) that

L+(γ) ≥ 1
2
(Δr)2√

Δt
. If Δr and Δt are small enough, depending on m0, then we

can still say that P (m0,Δr,−Δt) is unscathed and L+(γ) ≥ 1
4
(Δr)2√

Δt
. Given such

values of Δr and Δt, suppose now that γ does not exit P (m0,Δr,−Δt) in the
time interval (t0 −Δt, t0). Then γ(t0 −Δt) ∈ P (m0,Δr,−Δt). Now

L+(γ) ≥
√
Δt

∫ t0−t(m)

Δt

(
R+(γ(τ)) + |γ̇(τ)|2

)
dτ, (5.8)

Since R ≥ −3, it follows that along γ, we have√
1 +R2 ≤ 10R+. (5.9)
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Then √
1 +R2|γ̇|2 + 1 +R2 ≤10R+|γ̇|2 + 100R2

+ (5.10)

≤100
(
|γ̇|4 + 2R+|γ̇|2 +R2

+

)
,

so √√
1 +R2|γ̇|2 + 1 +R2 ≤ 10

(
|γ̇|2 +R+

)
. (5.11)

Thus

L+(γ) ≥
√
Δt

10

∫ t0−t(m)

Δt

∣∣∣∣dγdτ
∣∣∣∣
gqp
M

dτ (5.12)

≥
√
Δt

10
dqp(m,P (m0,Δr,−Δt)).

The proposition follows. �
Corollary 5.13. Suppose that (M≤t0 , g

qp
M) is complete away from the time-zero slice

and the time-t0 slice. Given t′ < t0, the restriction of L to M≤t′ is proper and
bounded below.

Proof. From (5.4), the function L is bounded below on M≤t′ . Suppose that it is
not proper. Then for some C < ∞, there is a sequence {mi}∞i=1 in M≤t′ going to
infinity with L(mi) < C for all i. We can choose Δr,Δt > 0 with Δt < t0 − t′ and

(Δr)2

4
√
Δt

− 8

3
t
3
2
0 ≥ C. (5.14)

By the completeness of gqpM, we have limi→∞ dqp(mi, P (m0,Δr,−Δt)) = ∞. Then
(5.4) gives a contradiction. �

It is not hard to see that L is continuous onM<t0 . From the proof of Proposi-
tion 5.3, given m ∈M<t0 and K < ∞, the time-preserving curves γ : [t(m), t0] →
M from m to m0 with L(γ) < K lie in a compact subset of M. From standard
arguments [KL08, Section 17], it follows that there is an L-minimizer from m0 to
m.

Since L is bounded below and time-slices have finite volume from [KL17,

Corollary 7.7], the reduced volume Ṽ (τ) = τ−
3
2

∫
Mt0−τ

e−l dvol exists. The re-

sults of [KL08, Sections 17–29] go through in our setting. In particular, Ṽ (τ) is
nonincreasing in τ .

Proposition 5.15. Suppose that (M≤t0 , g
qp
M) is complete away from the time-zero

slice and the time-t0 slice. For every t ∈ [0, t0), there is some m ∈ Mt with
l(m) ≤ 3

2 .

Proof. Putting L = 2
√
t0 − t L, we have

∂t(−L+ 6(t0 − t)) ≤ %(−L+ 6(t0 − t)) (5.16)

in the barrier sense [KL08, Section 24]. From Corollary 5.13, for each t̃′ ∈ [0, t0),
the function −L+ 6(t0 − t) is proper and bounded above on M≤t̃′ . In particular,
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for each t ∈ [0, t0), the maximum of −L+6(t0− t) exists on Mt. We want to show
that the maximum is nonnegative. By way of contradiction, suppose that for some
t̃ ∈ [0, t0) and some α < 0, we have −L(m) + 6(t0 − t̃) ≤ α for all m ∈Mt̃. Given

t̃′ ∈ (t̃, t0), we can apply [KL17, Lemma 5.1] on the interval [t̃, t̃′] to conclude that

−L(m) + 6(t0 − t̃′) ≤ α for all m ∈ Mt̃′ . However, along the worldline γ going
through m0, for small τ > 0 we have

L(γ(t0 − τ)) ≤ const. τ2. (5.17)

Then for small τ , we have −L(γ(t0 − τ)) + 6τ > 0. Taking t̃′ = t0 − τ gives a
contradiction and proves the proposition. �

In his first Ricci flow paper, Perelman showed that there is a decreasing
function κ′ : [0,∞) → (0,∞) with the property that if M is a smooth Ricci flow
solution, with normalized initial conditions, then M is κ′-noncollapsed at scales
less than ε [KL08, Theorem 26.2].

Proposition 5.18. Let M be a Ricci flow spacetime with normalized initial condi-
tion. Given t′ > 0, suppose that (M≤t′ , g

qp
M) is complete away from the time-zero

slice and the time-t′ slices. Then M≤t′ is κ′-noncollapsed at scales less than ε.

Proof. The proof is along the lines of that of [KL08, Theorem 26.2]. We can assume
that t′ > 1

100 . To prove κ′-noncollapsing near m0 ∈ M≤t′ , we consider L-curves
emanating backward in time from m0 to a fixed time slice Mt, say with t = 1

100 .

By Proposition 5.15, there is some m ∈ Mt with l(m) ≤ 3
2 . Using the bounded

geometry near m and the monotonicity of Ṽ , the κ′-noncollapsing follows as in
[KL08, Pf. of Theorem 26.2]. �

We now show that the conditions in Definition 2.2, to define a singular Ricci
flow, are actually asymptotic in nature.

Proposition 5.19. Given ε > 0, t′ < ∞ and a decreasing function r : [0, t′] →
(0,∞), there is some r′ = r′(ε, r) > 0 with the following property. Let M be a
Ricci flow spacetime such that R : M≤t′ → R is bounded below and proper, and
there is a compact set K ⊂ M≤t′ so that for each m ∈ M≤t′ −K,

(a) The Hamilton–Ivey pinching condition of [KL17, (A.14)] is satisfied at m,
with time parameter t(m), and

(b) The r-canonical neighborhood assumption of [KL17, Appendix A.8] is satisfied
at m.

Then the conditions of Definition 2.2 hold on M≤t′ , with parameters ε, κ′ and r′.

Proof. Condition (a) of Definition 2.2 holds on M≤t′ by assumption.
Also by assumption, for m ∈ M≤t′ − K, the curvature operator at m lies

in the convex cone of [KL17, (A.13)]. The proof of Hamilton–Ivey pinching in
[CLN06, Pf. of Theorem 6.44], using the vector-valued maximum principle, now
goes through since any violations in M≤t′ of [KL17, (A.14)] would have to occur
in K. This shows that condition (b) of Definition 2.2 holds on M≤t′ .
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Since the r-canonical neighborhood assumption holds onM≤t′ −K the proof
of [KL17, Lemma 5.13] shows that gqpM is complete on M≤t′ away from the time-
zero slice and the time-t′ slice. Proposition 5.18 now implies that M≤t′ is κ′-
noncollapsed at scales less than ε.

To show that condition (c) of Definition 2.2 holds on M≤t′ , with parameters
ε and κ′, and some parameter r′ > 0, we apply the method of proof of [KL08,
Theorem 52.7] for smooth Ricci flow solutions. Suppose that there is no such r′.
Then there is a sequence {Mk}∞k=1 of Ricci flow spacetimes satisfying the assump-
tions of the proposition, and a sequence r′k → 0, so that for each k there is some
mk ∈ Mk

≤t where the r′k-canonical neighborhood assumption does not hold. The

first step in [KL08, Pf. of Theorem 52.7] is to find a point of violation so that there
are no nearby points of violation with much larger scalar curvature, in an earlier
time interval which is long in a scale-invariant sense. The proof of this first step
uses point selection. Because of our assumption that the r-canonical neighborhood
assumption holds in Mk

≤t′ −Kk, as soon as r′k < r(t′) we know that any point of

violation lies in Kk. Thus this point selection argument goes through. The second
step in [KL08, Pf. of Theorem 52.7] is a bounded-curvature-at-bounded-distance
statement that uses Hamilton–Ivey pinching and κ′-noncollapsing. Since we have
already proven that the latter two properties hold, the proof of the second step
goes through. The third and fourth steps in [KL08, Pf. of Theorem 52.7] involve
constructing an approximating κ′-solution. These last two steps go through with-
out change. �

Proposition 5.19 shows that the r′-canonical neighborhood assumption holds
with parameter r′ = r′(t′). We can assume that r′ is a decreasing function of t′.
Hence M is a singular Ricci flow with parameters ε, κ′ = κ′(ε) and r′ = r′(ε, r).

6. Dimension of the set of singular times

In this section we give an upper bound on the Minkowski dimension of the set of
singular times for a Ricci flow spacetime.

The geometric input comes from the proofs of Propositions 4.2 and 4.36.
We isolate it in the following lemma. The lemma states that any point with large
curvature determines a region in backward spacetime on which the scalar curvature
behaves nicely (i.e., R−1 grows with upper and lower linear bounds as one goes
backward in time), and which carries a controlled amount of volume.

Lemma 6.1. For every λ > 0, t < ∞ there is a constant C = C(λ, t) < ∞ with the
following property.

Let M be a singular Ricci flow and suppose x ∈ Mt is a point with ρ(x) :=

R− 1
2 (x) ≤ C−1r(t). Then there is a product domain U ⊂ M defined on the time

interval [t−, t], where t− := t− C−1r2(t), with the following properties:

1. Ut ⊂ B(x,Cρ(x)).
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2. (Scalar curvature control) For all t′ ∈ [t−, t], x
′ ∈ Ut′ , we have

C−1R−1(x) + η−(t− t′) ≤ R−1(x′) ≤ CR−1(x) + η+(t− t′) . (6.2)

Here η± are constants coming from the geometry of κ-solutions.
3. (Volume control) For t′ ∈ [t− C−1r2(t), t− 1

2C
−1r2(t)] we have

vol(Ut′) ≥ C−1r2−λ(t)ρ1+λ(x).

In particular the spacetime volume of U is at least 1
2C

−2r4−λ(t)ρ1+λ(x).

Proof. The proof of the lemma is based on arguments similar to those in the proofs
of Propositions 4.2 and 4.36. We give an outline of the proof. The details are similar
to those for Propositions 4.2 and 4.36.

Case 1. x is sufficiently neck-like that we can apply the neck stability result. Then
we let U be a product domain with Ut = B(x, ρ(x)). The scalar curvature estimate
(6.2) then follows from the fact that the worldline of every y ∈ Ut remains neck-
like until its scale becomes comparable to the canonical neighborhood scale. The
volume estimates in (3) follow using the Jacobian estimate, as in [KL17, Section
5] or in the proof of Proposition 4.2.

Case 2. The canonical neighborhood of x is neither sufficiently neck-like, nor nearly
round. Then for a constant c independent of x, we find that P (x, cρ(x))∩Mt−cρ2(x)

contains a necklike point y to which the previous argument applies. If the product
domain Uy associated with y is defined on the time interval [t0, t − cρ2(x)], then
we let U be the result of extending Uy to the interval [t0, t].

Case 3. The canonical neighborhood of x is nearly round, i.e., B := B(x, 100ρ(x))
is nearly isometric to a spherical space form, modulo rescaling. We follow this
region backward in time, and have two subcases:

3(a). The region remains nearly round until its scale becomes comparable
to r(t). Then we take U to be the product region with Ut = B, and the scalar
curvature and volume estimates follow readily from the fact that time slices of U
are nearly round.

3(b). For some t0 < t, and every t′ ∈ [t0, t], the image Bt′ of B in Mt′ under
the flow of the time vector field ∂t is δ-close to round, but Bt0 ⊂Mt0 is not δ

2 -close
to round. Then we can apply Case 2 to Bt0 to obtain a product region U ′, and we
define U by extending U ′ forward in time over the time interval [t0, t]. �

As a corollary of this lemma, we get:

Theorem 6.3. If M is a singular Ricci flow, T < ∞, then the set of times t ∈ [0, T ]
such that Mt is noncompact has Minkowski dimension ≤ 1

2 .

Proof. Choose λ > 0, and let C = C(λ, T ) < ∞ be the constant from Lemma 6.1.
Pick A > C2

λr
−2(T ). Let TA be the set of times t ∈ [0, T ] such that the time

slice Mt contains a point with R > A.
Let {t0i }i∈I be a maximal A−1-separated subset of TA. For every i ∈ I, we

may find ti ∈ [0, T ] with
|ti − t0i | ≤ const. A−1 (6.4)
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such that Mti contains a point xi with R(xi) = A; the existence of such a point ti
follows by iterating [KL17, Lemma 3.3]. Now we apply Lemma 6.1 to xi, for every
i ∈ I, to obtain a collection {Ui}i∈I of product domains in M.

Note that if i, j ∈ I and Ui ∩ Uj �= ∅, then comparing the scalar curvature
using Lemma 6.1(2), we get that |ti − tj | < C1A

−1 for some C1 = C1(λ, T ).
Hence the collection {Ui}i∈I has intersection multiplicity < N = N(λ, T ). Now
Lemma 6.1(3) implies that the spacetime volume of each Ui is at least

1

2
C−2r4−λ(T )A− 1

2 (1+λ) .

Using the multiplicity bound and the bound on spacetime volume we get

|I| ≤ C2A
1
2 (1+λ) ,

for C2 = C2(λ, T ). Since by (6.4) we can cover TA with at most |I| intervals of
length comparable to A−1, this implies that ∩A>0TA has Minkowski dimension
≤ 1

2 + λ
2 . As λ is arbitrary, this proves the theorem. �
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Abstract. We show that the complex m-Hessian operator of a Hölder continu-
ous m-subharmonic function is well dominated by the corresponding capacity.
As a consequence we obtain the Hölder continuous subsolution theorem for
the complex m-Hessian equation.
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1. Introduction

Consider Ω an open subset of Cn and a real-valued function u ∈ C2(Ω). Let
λ = (λ1, λ2, . . . , λn) be the set of eigenvalues of the complex Hessian of u at a
given point z ∈ Ω. By Sm(u(z)) we denote the mth elementary symmetric function
of λ:

Sm(u(z)) =
∑

0<j1<···<jm≤n

λj1 λj2 , . . . , λjm .

The m-Hessian equation for unknown function u is

Sm(u(z)) = f(z),

where f is a given function. The equation can be rewritten in terms of differential
forms. For d = ∂ + ∂̄, dc = i(∂̄ − ∂) and β = ddc‖z‖2 we have

(ddcu)m ∧ βn−m =
m!(n−m)!

n!
Sm(u(z))βn.

c© Springer Nature Switzerland AG 2020
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We shall study the m-Hessian equation in the form

(ddcu)m ∧ βn−m = fβn.

This allows to consider weak solutions of the equation when the equation is un-
derstood in the sense of currents.

We call a C2 function u : Ω → R∪{−∞} m-subharmonic (m-sh) if the forms

(ddcu)k ∧ βn−k

are positive for k = 1, . . . ,m (in particular u is subharmonic). If u is subharmonic
but not smooth then one can define m-sh function by (ddcu)k ∧ βn−k ≥ 0 in the
sense of currents (see [3]). SHm(Ω) stands for the set of m-subharmonic functions
in Ω. Throughout the paper we assume m < n, since for m = n (the Monge–
Ampère equation) the results are known and some of them sharper.

Unlike the real Hessian equations the complex m-Hessian equation has not
been studied until recently. In 2005, S.Y. Li [11] proved that if Ω is smoothly
bounded and strictly m-pseudoconvex (as defined in the next section) then, given
a smooth boundary data and a smooth, positive function f there exists a unique
smooth m-sh solution of the Dirichlet problem for the m-Hessian equation. The
proof is inspired by the one in [4]. In the same year Z. B�locki published [3], where
he considered weak solutions of the equation, for possibly vanishing right-hand
side. He proved that the m-sh function u is maximal in this class if and only if

(ddcu)m ∧ βn−m = 0.

He also described the maximal domain of definition of the m-Hessian operator.
This pluripotential approach was also taken by S. Dinew and the first author in
[7], where the Dirichlet problem in smoothly bounded m-pseudoconvex domains
was solved for a continuous boundary data and f ∈ Lp(Ω) for p > n/m. The
bound for the exponent p is sharp and related to the volume-capacity estimate [7]
saying that for any 0 < α < n

n−m there exists Cα > 0 such that for all compact
K ⊂ Ω

V2n(K) ≤ Cα[capm(K)]α, (1.1)

where V2n denotes the Euclidean volume and the m-capacity is defined by

capm(K) = sup

{∫
K

(ddcw)m ∧ βn−m : w ∈ SHm(Ω), 0 ≤ w ≤ 1

}
.

The weak solution theory in the Cegrell classes (unbounded functions) for a
more general right-hand side has been developed by H.-C. Lu [13, 15] (see [12] [9],
[20] for recent results). On the other hand the second author [16] proved that the
Dirichlet problem described above has a bounded solution if a bounded subsolution
exists. In the present paper we provide an analogue of this result in the category
of Hölder continuous solutions.

Our first result says that if μ is compactly supported in Ω and upper bounded
by (ddcu)m ∧ βn−m, where u ∈ SHm(Ω) is Hölder continuous then the inequality
(1.1) remains true for some α > 1 if we replace the Euclidean volume V2n by μ.
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Having this we can adopt the method of [18] and [19], which deal with the Monge–
Ampère equation, and show the existence of continuous solutions of the Dirichlet
problem for such measures. Furthermore, for Hölder continuous boundary data the
solutions are actually also Hölder continuous. Let us give the precise statements.

Theorem 1.1. Suppose that μ is a positive Borel, compactly supported, measure in
Ω such that

μ ≤ (ddcϕ)m ∧ βn−m (1.2)

for some ϕ ∈ SHm(Ω)∩Cα(Ω̄) with 0 < α ≤ 1. Then, there exist uniform constants
C,α0 > 0 depending only on ϕ, Ω, such that for every compact set K ⊂ Ω,

μ(K) ≤ C[capm(K)]1+α0 . (1.3)

Let us fix the function ϕ in Theorem 1.1 throughout the paper. Denote by
S the set of all positive Borel measures with compact support in Ω which satisfy
the inequality (1.3). For μ ∈ S we consider the Dirichlet problem for the complex
m-Hessian equation. Let ψ be a continuous function on the boundary of Ω. We
seek for the solution to the equation.

u ∈ SHm(Ω) ∩ C0(Ω̄),

(ddcu)m ∧ βn−m = μ,

u = ψ on ∂Ω.

(1.4)

We obtain the following subsolution theorem for this problem.

Theorem 1.2. Let Ω be a bounded strictly m-pseudoconvex domain. Then for μ ∈ S,
we have the following:

(a) There exists a unique solution to the Dirichlet problem (1.4).
(b) If ψ is Hölder continuous on ∂Ω, then the solution is also Hölder continuous

on Ω̄.

The modulus of continuity and Hölder continuity of solutions to the complex
m-Hessian equation with the right-hand side μ = fdV2n has been investigated
by Charabati [6] (see also [14], [17]) for a continuous density and a Lp density in
Ω, respectively. The following Lp-property result can be considered as a general-
ization. The proof follows from a simple application of the Hölder inequality and
Theorem 1.2.

Corollary 1.3. Let μ ∈ S and α0 be the constant in Theorem 1.1. Assume that
f ∈ Lp(Ω, dμ) with p > 1

α0
. Then, fdμ is the complex m-Hessian operator of a

Hölder continuous m-subharmonic function in Ω.

2. Preliminaries

In this section we collect several results needed in our proofs. They are mostly
directly adapted from the case of m = n. Where the proofs follow precisely the
ones for the Monge–Ampère equation we just give reference to the latter.
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Let Ω be a strictly m-pseudoconvex domain. Then, by definition, there exists
ρ ∈ C2(Ω̄) a defining function for Ω, strictly m-subharmonic and such that

Ω = {ρ < 0}, ∇ρ �= 0 on ∂Ω. (2.1)

Since it is strictly m-subharmonic, we can assume (after multiplying by a big
constant) that for any integer 1 ≤ k ≤ m

(ddcρ)k ∧ βn−k ≥ βn. (2.2)

Let us first make a reduction which will be used in what follows. Since Ω is
strictly m-pseudoconvex and μ is compactly supported in Ω we can modify ϕ near
the boundary so that ϕ = 0 on the boundary and the total mass of its complex
m-Hessian operator is finite (see, e.g., [18, Corollary 2.13]). Therefore, from now
on we have

ϕ|∂Ω
= 0 and

∫
Ω

(ddcϕ)m ∧ βn−m < +∞. (2.3)

We use the notation

‖ · ‖∞ := sup
Ω

| · |, (2.4)

and the convention that the constants C > 0 which appear below are uniform
constants. They may differ from place to place.

Lemma 2.1 (B�locki [2]). Let v1, . . . , vm, v, h ∈ SHm ∩ L∞(Ω) be such that vi ≤ 0
for i = 1, . . . ,m, and v ≤ h. Assume that limz→∂Ω[h(z)− v(z)] = 0. Then, for any
integer 1 ≤ k ≤ m,∫

Ω

(h− v)kddcv1 ∧ · · · ∧ ddcvm ∧ βn−m

≤ k!‖v1‖∞ · · · ‖vk‖∞
∫
Ω

(ddcv)k ∧ ddcvk+1 ∧ · · · ∧ ddcvm ∧ βn−m.

(2.5)

As a consequence one obtains a bound for the Laplacian of a bounded m-
subharmonic function. This kind of estimate was first given in [1].

Corollary 2.2. Let v ∈ SHm ∩ L∞(Ω). Then, for every small δ > 0,∫
Ωδ

ddcv ∧ βn−1 ≤ C‖v‖∞
δ

, (2.6)

where Ωδ = {z ∈ Ω : dist(z, ∂Ω > δ)}.

Proof. Since ‖v‖∞ ≤ supΩ v − infΩ v ≤ 2‖v‖∞, we may assume that v ≤ 0 in Ω.
Observe that for a defining function there exists a uniform constant c0 > 0 such
that

|ρ(z)| ≥ c0 dist(z, ∂Ω). (2.7)
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Therefore, Ωδ ⊂ {ρ(z) < −c0δ}. It follows that∫
Ωδ

ddcv ∧ βn−1 ≤ 2

c0δ

∫
Ω

(
max{ρ,−c0δ

2
} − ρ

)
ddcv ∧ βn−1

≤ C‖v‖∞
δ

∫
Ω

ddcρ ∧ βn−1,

(2.8)

where we used Lemma 2.1 for the second inequality. The last integral is bounded
as ρ ∈ C2(Ω̄). �

Let us recall the definition of the Cegrell classes for complex m-Hessian op-
erators:

E0(m) :=

⎧⎪⎨⎪⎩v ∈ SHm ∩ L∞(Ω) :

lim
z→∂Ω

v(z) = 0,∫
Ω

(ddcv)m ∧ βn−m < +∞

⎫⎪⎬⎪⎭ . (2.9)

We refer the reader to [13] for more information on this class and its generalization.
The Cegrell inequality in this class reads:

Lemma 2.3 (Cegrell [5]). Let v1, . . . , vn ∈ E0(m). Then,∫
Ω

ddcv1 ∧ · · · ∧ ddcvm ∧ βn−m

≤
(∫

Ω

(ddcv1)
m ∧ βn−m

) 1
m

· · ·
(∫

Ω

(ddcvn)
m ∧ βn−m

) 1
m

.

(2.10)

We also consider a subclass

E ′
0(m) :=

{
v ∈ E0(m) :

∫
Ω

(ddcv)m ∧ βn−m ≤ 1

}
. (2.11)

Lemma 2.4. Let v, w ∈ E ′
0(m) be such that v = w near ∂Ω. Then, there exists a

uniform constant 0 < α1 ≤ 1 such that∫
Ω

|v − w|(ddcϕ)m ∧ βn−m ≤ C

(∫
Ω

|v − w|dV2n

)α1

. (2.12)

In particular, for μ ∈ S,

μ(|v − w|) :=
∫
Ω

|v − w|dμ ≤ C‖v − w‖α1

L1 . (2.13)

Here, the constants C and α1 are independent of v, w.

Proof. See Lemma 2.7 in [18]. Notice that the additional assumption v = w near
the boundary ∂Ω allows to avoid the use the notion of the boundary measure for
complex m-Hessian operators. The Cegrell inequality (Lemma 2.3) is sufficient for
our need here. �

We can follow the proofs in [8] to derive the stability estimate for the measures
which are dominated by capacity.
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Proposition 2.5. Suppose that μ = (ddcu)m ∧ βn−m for u ∈ SHm ∩ L∞(Ω) and μ
satisfies the inequality (1.3). Let v ∈ SHm ∩ L∞(Ω) be such that lim infz→∂Ω(u−
v) ≥ 0. Then, there exist constants C > 0 and 0 < α2 < 1 independent of v such
that

sup
Ω

(v − u) ≤ C

(∫
Ω

max{v − u, 0}dμ
)α2

. (2.14)

Proof. It readily follows from the one of [8, Theorem 1.1] with obvious adjustments.
�

3. The Dirichlet problem

In this section we prove Theorem 1.1 and then we study the Dirichlet problem.
The existence of a continuous solution is proved by applying the stability estimate
(see [7]). Next, we prove that this solution is Hölder continuous via the strategy
from [8].

We will prove a slightly stronger statement than the one in Theorem 1.1. Since
ϕ is uniformly continuous on Ω̄, it admits a modulus of continuity � : [0,∞] →
[0,∞] – an increasing function defined by

�(t) := sup
{
|ϕ(z)− ϕ(w)| : z, w ∈ Ω̄, |z − w| ≤ t

}
. (3.1)

Lemma 3.1. Fix 1 < p < n/(n − m) and 0 < τ < (p − 1)/2m. There exists a
uniform constant C such that for every compact set K ⊂ Ω,

μ(K) ≤ C
{
� ([cap(K)]τ ) + [capm(K)]p−1−2mτ

}
· capm(K), (3.2)

where capm(K) := capm(K,Ω).

Proof. Fix a compact subset K ⊂⊂ Ω. Without loss of generality we may assume
thatK is regular (in the sense that the relative extremal function uK is continuous)
as μ is a Radon measure. Denote by ϕε the standard regularization of ϕ defined
via the convolution with smooth, symmetric mollifier. We choose ε > 0 so small
that

supp μ ⊂ Ω′′ ⊂⊂ Ω′ ⊂ Ωε ⊂ Ω, (3.3)

where Ωε = {z ∈ Ω : dist(z, ∂Ω) > ε}. Since for every K ⊂ Ω′′ we have

capm(K,Ω′) ∼ capm(K,Ω) (3.4)

in what follows we will write capm(K) for either one of these capacities. We have

0 ≤ ϕε − ϕ ≤ �(ε) := δ on Ω′. (3.5)

Let uK be the relative extremal function for K with respect to Ω′. Consider the
set K ′ = {3δuK + ϕε < ϕ− 2δ}. Then,

K ⊂ K ′ ⊂
{
uK < −1

2

}
⊂ Ω′. (3.6)



An Inequality Between Capacity and Hessian Measure 163

Then, it follows from [7, Proposition 2.2] and [13, Théorème 1.4.12] (see also [21])
that

capm(K ′) ≤ capm ({uK < −1/2})

≤ 2m
∫
{uK<0}

(ddcuK)m ∧ βn−m

= 2m capm(K).

(3.7)

Note that

ddcϕε ≤
Cβ

ε2
, ‖ϕε + uK‖∞ =: M ≤ ‖ϕ‖∞ + 1 (3.8)

(where the first inequality follows by differentiating twice the mollifier in the con-
volution defining ϕε). Let us also use the short notation Hm(·) for the complex
m-Hessian operators. The comparison principle [7, Theorem 1.4] and above esti-
mates give us that∫

K′
Hm(ϕ) ≤

∫
K′

Hm(3δuK + ϕε)

≤
∫
K′

3δHm(uK + ϕε) +

∫
K′

Hm(ϕε)

≤ 3δMm capm(K ′) + Cε−2m [capm(K ′)]
p
,

(3.9)

where in the last inequality we used the volume-capacity inequality (1.1).
We may assume that ε is so small that (3.6) is satisfied, otherwise the inequal-

ity (3.2) holds true by increasing the constant. Then, choose ε := [capm(K ′)]
τ
and

use the definition of δ to get

μ(K) ≤
∫
K′

Hm(ϕ)

≤ 3Mm� ([capm(K ′)]τ ) capm(K ′)

+ C [capm(K ′)]
p−2mτ

.

(3.10)

This combined with (3.7) proves the desired inequality. �
Now we are going to conclude the proof of the first theorem. It says that

under the assumption ϕ ∈ C0,α(Ω̄), 0 < α ≤ 1, there exist uniform constants
C,α0 > 0 such that

μ(K) ≤ C [capm(K)]
1+α0 . (3.11)

Proof of Theorem 1.1. We choose τ > 0 in Lemma 3.1 such that

τα = p− 1− 2mτ ⇔ τ =
p− 1

2m+ α
. (3.12)

Thus, the theorem follows with α0 = α(p−1)
2m+α as �(t) ≤ Ctα for t ≥ 0. �

Thanks to the subsolution theorem in [16], which was inspired by [10], if
μ ∈ S, then there exists a unique u ∈ SHm ∩ L∞(Ω) solving

(ddcu)m ∧ βn−m = μ, lim
ζ→z

u(ζ) = ψ(z) ∀z ∈ ∂Ω. (3.13)
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Thus to prove the second statement we need to show the continuity and Hölder
continuity of this solution.

Proof of Theorem 1.2. Extend ψ onto Ω so that ψ ∈ SHm(Ω) ∩ C0(Ω̄). By the
comparison principle

ϕ+ ψ ≤ u ≤ ψ̃, (3.14)

where ψ̃ is the harmonic extension of ψ onto Ω. This implies that u is continuous on
the boundary ∂Ω. It remains to show that u is continuous in Ω. Take uj := u∗χj(z),
where χj(z) := χ(|z|/j)/j2n and χ(z) is the standard smoothing kernel. Then, uj

is defined on

Ωj :=

{
z ∈ Ω : dist(z, ∂Ω) >

1

j

}
. (3.15)

Since u is continuous on ∂Ω, it follows that

sup
∂Ωj

|uj − u| = εj → 0 as j → +∞. (3.16)

Applying Proposition 2.5 on Ωj we get that

sup
Ωj

(uj − u) ≤ εj + C

(∫
Ωj

max{uj − u− εj , 0}dμ
)α2

. (3.17)

The Lebesgue dominated convergence theorem implies that uj converges uniformly
to u on every compact subset of Ω. Thus, u ∈ C0(Ω). Combining this with the
fact that u ∈ C0(∂Ω) we get the first part.

To prove the second part we follow the steps of [8]. Define for δ > 0 small

Ωδ := {z ∈ Ω : dist(z, ∂Ω) > δ} ; (3.18)

and for z ∈ Ωδ we define

uδ(z) := sup
|ζ|≤δ

u(z + ζ), (3.19)

ûδ(z) :=
1

σ2nδ2n

∫
|ζ|≤δ

u(z + ζ)dV2n(ζ), (3.20)

where σ2n is the volume of the unit ball.
Using the Hölder continuity of ψ on the boundary we get that u is Hölder

continuous on the boundary. Next, with the aid of Proposition 2.5, Lemma 2.4 and
the Laplacian bound (Corollary 2.2) as in the proof of [18, Theorem 2.5] we have

sup
Ωδ

(ûδ − u) ≤ Cδα3 . (3.21)

This is the desired inequality. Thus, the Hölder continuity of u follows. �
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the complex Monge–Ampère equation with Lp density, Calc. Var. Partial Differential
Equations 55 (2016) no. 4. art 74, 8pp.

[2] Z. B�locki, Estimates for the complex Monge–Ampère operator. Bull. Polish Acad.
Sci. Math. 41 (1993), no. 2, 151–157.

[3] Z. B�locki, Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Greno-
ble) 55 (2005), 1735–1756.

[4] L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second
order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math.
155 (1985), 261–301.

[5] U. Cegrell,The general definition of the complex Monge–Ampère operator, Ann. Inst.
Fourier (Grenoble), 54 (2004), 159–179.

[6] M. Charabati, Modulus of continuity of solutions to complex Hessian equations, In-
ternat. J. Math. 27 (2016), no. 1.

[7] S. Dinew, S. Ko�lodziej, A priori estimates for complex Hessian equations, Anal. PDE
7 (2014), no. 1, 227–244.

[8] V. Guedj, S. Ko�lodziej, A. Zeriahi, Hölder continuous solutions to Monge–Ampère
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1. Introduction

The development of algebraic geometry and complex geometry has interwoven in
the history. One recent example is the interaction between the theory of higher-
dimensional geometry centered around the minimal model program (MMP), and
the existence of ‘good’ metrics on algebraic varieties. Both subjects have major
steps forward, whose influences are beyond the subjects themselves, spurring out
new progress in topics once people could not imagine. In this note, we will discuss
a ‘local stability theory’ of singularities, which in our opinion provides an excellent
example on the philosophy that there are many unexpected connections underlying
these two different topics.

Ever since the starting of the theory of MMP in higher dimensions (that is,
the dimension is at least three), people understand that a feature of such a the-
ory is that we need to deal with singular varieties. Then it becomes very nature
to investigate this class of singularities for people working on the MMP. To deal
with singular varieties in complex geometry is a more recent trend, and it signif-
icantly improves people’s knowledge on the existence of interesting metrics, even
in situations which people originally only want to study smooth varieties.

It becomes clear now, Kawamata log terminal (klt) singularities form an
exceptionally important class of singularities for many reasons: it is the natural
class of singular varieties for people to inductively prove deep results in the MMP;
it is the class of singularities appearing on degenerations in many natural settings
and it carries properties which globally Fano varieties have.

c© Springer Nature Switzerland AG 2020
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What we want to survey here is a rather new theory on klt singularities.
The picture consists of two closely related parts: firstly, we want to establish a
structure which provides a canonically determined degeneration to a stable log
Fano cone from each klt singularity; secondly, to construct the degeneration, we
need a valuation which minimizes the normalized volume function on the ‘non-
archimedean link’, and since such minimum is a deep invariant defined for all
klt singularities, we want to explore more properties of this invariant, including
calculating it in many cases.

1.1. History

The first prototype of the local stability theory underlies in [MSY06, MSY08].
They find that the existence of Ricci-flat cone metric on an affine variety with
a good action by a torus group T is closely related to the normalized volume
minimizing problem. In our language, they concentrate on the valuations induced
by the vectors in the Reeb cone provided by the torus action. Later a systematic
study of K-stability in the setting of Sasaki geometry is further explored in [CS18,
CS15].

Consider klt singularities which appear on the Gromov–Hausdorff (GH) limit
of Kähler–Einstein Fano manifolds. At the first sight, we do not know more alge-
braic structure for these singularities. Nevertheless, by looking at the metric tan-
gent cone, it is shown in [DS17], built on the earlier works in [CCT02,DS14,Tia13],
that the metric tangent cone of such singularities is an affine T -variety with a Ricci-
flat cone metric. Furthermore, [DS17] gives a two-step degeneration description of
the metric tangent cone. They further conjecture that this two-step degeneration
should only depend on the algebraic structure of the singularity, but not the metric.

Then in [Li18a], the normalized volume function on the ‘non-archimedean
link’ of a given klt singularity is defined, and a series of conjectures on normalized
volume function are proposed. This attempt is not only to algebrize the work in
[DS17] without invoking the metric, but it is also of a completely local nature. Since
then, the investigation on this local stability theory points to different directions.

In [Blu18], the existence of a minimum (opposed to only infimum) which was
conjectured in [Li18a] is affirmatively answered. The proof uses the properness
estimates in [Li18a] and the observation in [Liu18] that the minimizer can be
computed by the minimal normalized multiplicities, and then skillfully uses the
techniques from the study of asymptotic invariants (see [Laz04]). Later in [BL18],
lower semicontinuity of the volume of singularities are also established using this
circle of ideas.

In [Li17,LL19], the case of a cone singularity over a Fano variety is intensively
studied, and it was found if we translate the minimizing question for the canonical
valuation into a question on the base Fano varieties, what appears is the sign of
the β-invariant developed in [Fuj18,Fuj16,Li17].

Built on the previous study of cone singularities, implementing the ideas cir-
cled around the MMP in birational geometry, an effective process of degenerating a
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general singularity to a cone singularity is established in [LX16], provided the min-
imizer is a divisorial valuation. In [LX17a], a couple of conjectural properties are
added to complete the picture proposed in [Li18a], and now the package is called
‘stable degeneration conjecture’, see Conjecture 4.1. The investigation in [LX16] is
also extended in [LX17a] to the case when the minimizer is a quasi-monomial valu-
ation with a possibly higher rational rank, where the study involves a considerable
amount of new techniques. As a corollary, the first part of Donaldson–Sun’s con-
jecture in [DS17] is answered affirmatively in [LX17a]. Later the work is extended
in [LWX18] and a complete solution of Donaldson–Sun’s conjecture is found.

Applications to global questions, especially the existence of KE metrics on
Fano varieties, are also explored. In [Liu18], built on the work of [Fuj18], an
inequality to connect the local volume and the global one is proved. Then in
[SS17, LX17b], via the approach of the ‘comparison of moduli’, complete moduli
spaces parametrizing explicit Fano varieties with a KE metric are established by
studying the local constraint posted by the lower bound of the local volumes.

1.2. Outline

In the note, we will survey a large part of the results mentioned above. From
the perspective of techniques, there are three closely related ways to think about
the volume of a singularity: the infima of the normalized volume of valuations,
of the normalized multiplicity of primary ideals or of the volume of models. The
viewpoint using valuations gives the most canonical picture, e.g., the stable de-
generation conjecture, but there are less techniques available to directly study the
space. The viewpoint using ideals is flexible for many purposes, e.g., taking de-
generations. Moreover, though usually working on a single ideal does not give too
much advantage over others, working on a graded sequence of ideals really enables
one to use the powerful theory on asymptotical invariants for such setting. The
third viewpoint of using models allows us to apply the machinery from the MMP
theory, and it is the key to degenerate the underlying singularities into cone sin-
gularities. The interplay among these three circle of techniques is fruitful, and we
expect further insight can be made in the future.

In Section 2, we give the definition of the function of the normalized vol-
umes and sketch the basic properties of its minimizer, including the existence. In
Section 3, we discuss the theory on searching for Sasaki–Einstein metrics on a
Fano cone singularities. The algebraic side, namely the K-stability notions on a
Fano cone plays an important role as we try to degenerate any klt singularity to
a K-semistable Fano cone. Such an attempt is formulated in the stable degener-
ation conjecture, which is the focus of Section 4. In Section 5, we present some
applications, including the torus equivariantK-stability (Section 5.1), a solution of
Donaldson–Sun’s conjecture (Section 5.2) and the K-stability of cubic threefolds
(Section 5.3). In the last Section 6, we discuss many unsolved questions, which
we hope will lead to some future research. Some of them give new approaches to
attack existing problems.
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2. Definitions and first properties

2.1. Definitions

In this section, we give the definition of the normalized volume v̂ol(X,D),x(v) (or

abbreviated as v̂ol(v) if there is no confusion) for a valuation v centered on a klt
singularity x ∈ (X,D) as in [Li18a]. It consists of two parts: the volume vol(v)
(see Definition 2.1) and the log discrepancy AX,D(v) (see Definition 2.2).

Let X be a reduced, irreducible variety defined over C. A real valuation of
its function field K(X) is a non-constant map v : K(X)× → R, satisfying:

• v(fg) = v(f) + v(g);
• v(f + g) ≥ min{v(f), v(g)};
• v(C∗) = 0.

We set v(0) = +∞. A valuation v gives rise to a valuation ring Ov := {f ∈
K(X) | v(f) ≥ 0}. We say a real valuation v is centered at a scheme-theoretic
point ξ = cX(v) ∈ X if we have a local inclusion Oξ,X ↪→ Ov of local rings. Notice
that the center of a valuation, if exists, is unique since X is separated. Denote by
ValX the set of real valuations of K(X) that admits a center on X . For a closed
point x ∈ X , we denote by ValX,x the set of real valuations of K(X) centered at
x ∈ X . It is well known that v ∈ ValX is centered at x ∈ X if v(f) for any f ∈ mx.

For each valuation v ∈ ValX,x and any integerm, we define the valuation ideal
am(v) := {f ∈ Ox,X | v(f) ≥ m}. Then it is clear that am(v) is an mx-primary
ideal for each m > 0.

Given a valuation v ∈ ValX and a nonzero ideal a ⊂ OX , we may evaluate a
along v by setting v(a) := min{v(f) | f ∈ a · OcX(v),X}. It follows from the above
definition that if a ⊂ b ⊂ OX are nonzero ideals, then v(a) ≥ v(b). Additionally,
v(a) > 0 if and only if cX(v) ∈ Cosupp(a). We endow ValX with the weakest
topology such that, for every ideal a on X , the map ValX → R∪{+∞} defined by
v �→ v(a) is continuous. The subset ValX,x ⊂ ValX is endowed with the subspace
topology. In some literatures, the space ValX,x is called the non-Archimedean link
of x ∈ X . When X = C2, the geometry of ValX,x is understood well (see [FJ04]).
For higher dimension, its structure is much more complicated but can be described
as an inverse limit of dual complexes (see [JM12,BdFFU15]).

Let Y
μ−→ X be a proper birational morphism with Y a normal variety. For a

prime divisor E on Y , we define a valuation ordE ∈ ValX that sends each rational
function in K(X)× = K(Y )× to its order of vanishing along E. Note that the
center cX(ordE) is the generic point of μ(E). We say that v ∈ ValX is a divisorial
valuation if there exists E as above and λ ∈ R>0 such that v = λ · ordE .

Let μ : Y → X be a proper birational morphism and η ∈ Y a point such
that Y is regular at η. Given a system of parameters y1, . . . , yr ∈ OY,η at η and
α = (α1, . . . , αr) ∈ Rr

≥0 \ {0}, we define a valuation vα as follows. For f ∈ OY,η
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we can write it as f =
∑

β∈Zr
≥0

cβy
β, with cβ ∈ ÔY,η either zero or unit. We set

vα(f) = min{〈α, β〉 | cβ �= 0}.
A quasi-monomial valuation is a valuation that can be written in the above form.

Let (Y,E =
∑N

k=1 Ek) be a log smooth model of X , i.e., μ : Y → X is an
isomorphism outside of the support of E. We denote by QMη(Y,E) the set of all
quasi-monomial valuations v that can be described at the point η ∈ Y with respect
to coordinates (y1, . . . , yr) such that each yi defines at η an irreducible component
of E (hence η is the generic point of a connected component of the intersection
of some of the divisors Ei). We put QM(Y,E) :=

⋃
η QMη(Y,E) where η runs

over generic points of all irreducible components of intersections of some of the
divisors Ei.

Given a valuation v ∈ ValX,x, its rational rank rat.rank v is the rank of its
value group. The transcendental degree trans.deg v of v is the transcendental degree
of the field extension C ↪→ Ov/mv. The Zariski–Abhyankar Inequality says that

trans.deg v + rat.rank v ≤ dimX.

A valuation satisfying the equality is called an Abhyankar valuation. By [ELS03],
we know that a valuation v ∈ ValX is Abhyankar if and only if it is quasi-monomial.

Definition 2.1. Let X be an n-dimensional normal variety. Let x ∈ X be a closed
point. We define the volume of a valuation v ∈ ValX,x following [ELS03] as

volX,x(v) = lim sup
m→∞

�(Ox,X/am(v))

mn/n!
.

where � denotes the length of the Artinian module.

Thanks to the works of [ELS03,LM09,Cut13] the above limsup is actually a
limit.

Definition 2.2. Let (X,D) be a klt log pair. We define the log discrepancy function
of valuations A(X,D) : ValX → (0,+∞] in successive generality.

(a) Let μ : Y → X be a proper birational morphism from a normal variety Y .
Let E be a prime divisor on Y . Then we define A(X,D)(ordE) as

A(X,D)(ordE) := 1 + ordE(KY − μ∗(KX +D)).

(b) Let (Y,E =
∑N

k=1 Ek) be a log smooth model of X . Let η be the generic
point of a connected component of Ei1 ∩Ei2 ∩· · ·∩Eir of codimension r. Let
(y1, . . . , yr) be a system of parameters of OY,η at η such that Eij = (yj = 0).
Then for any α = (α1, . . . , αr) ∈ Rr

≥0 \ {0}, we define A(X,D)(vα) as

A(X,D)(vα) :=

r∑
j=1

αjA(X,D)(ordEij
).
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(c) In [JM12], it was showed that there exists a retraction map rY,E : ValX →
QM(Y,E) for any log smooth model (Y,E) over X , such that it induces
a homeomorphism ValX → lim←−(Y,E)

QM(Y,E). For any real valuation v ∈
ValX , we define

A(X,D)(v) := sup
(Y,E)

A(X,D)(r(Y,E)(v)).

where (Y,D) ranges over all log smooth models overX . For details, see [JM12]
and [BdFFU15, Theorem 3.1]. It is possible that A(X,D)(v) = +∞ for some
v ∈ ValX , see, e.g., [JM12, Remark 5.12].

Then we can define the main invariant in this paper. As we mentioned in
Section 3, it is partially inspired the definition in [MSY08] for a valuation coming
from the Reeb vector field.

Definition 2.3 ([Li18a]). Let (X,D) be an n-dimensional klt log pair. Let x ∈ X

be a closed point. Then the normalized volume function of valuations v̂ol(X,D),x :
ValX,x → (0,+∞) is defined as

v̂ol(X,D),x(v) =

{
A(X,D)(v)

n · volX,x(v), if A(X,D)(v) < +∞;

+∞, if A(X,D)(v) = +∞.

The volume of the singularity (x ∈ (X,D)) is defined as

v̂ol(x,X,D) := inf
v∈ValX,x

v̂ol(X,D),x(v).

Since v̂ol(v) = v̂ol(λ · v) for any λ ∈ R>0, for any valuation v ∈ ValX,D with

a finite log discrepancy, we can rescale such that λ · v ∈ Val=1
X,D where Val=1

X,D

consists of all valuations v ∈ ValX,x with A(X,D)(v) = 1.

Remark 2.4. A definition of volume of singularities is also given in [BdFF12]. Their
definition is the local analogue of the volume KX whereas our definition is the one
of the volume of −KX . In particular, a singularity has volume 0 in the definition
of [BdFF12] if it is log canonical.

2.2. Properties

In this section, we discuss some properties of v̂ol on ValX,x. We start from the

properness and Izumi estimates. As a corollary, we conclude that v̂ol(x,X,D) is
always positive for any klt singularity x ∈ (X,D).

Theorem 2.5 ([Li18a]). Let (x ∈ (X,D)) be a klt singularity. Then there exists
positive constants C1, C2 which only depend on x ∈ (X,D) (but not the valuation
v) such that the following holds.

1. (Izumi-type inequality) For any valuation v ∈ ValX,x, we have

v(mx)ordx ≤ v ≤ C2 ·A(X,D)(v)ordx.
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2. (Properness) For any valuation v ∈ ValX,x with A(X,D)(v) < +∞, we have

C1

A(X,D)(v)

v(mx)
≤ v̂ol(v).

Note that since x ∈ X is singular, ordx in the above inequality might not be
a valuation. In other words, for f, g ∈ OX,x, ordx(fg) ≥ ordx(f)+ordx(g) may be
a strict inequality.

The above Izumi type inequality is well known when x ∈ X is a smooth point.
In the case of a general klt singularity, it can be reduced to the smooth case after
a log resolution and decreasing the constant. Then for the properness, it follows
from a more subtle estimate that there exists a positive constant c2 that

vol(v) ≥ c2

(
sup
mx

v

ordx

)1−n

· 1

v(m)
.

Let a• = {am}m∈Z be a graded sequence of mx-primary ideals. By the works
in [LM09,Cut13], the following identities hold true:

mult(a•) := lim
m→+∞

�(OX,x/am)

mn/n!
= lim

m→+∞

mult(am)

mn
.

In particular, the two limits exist. Note that, by definition, for any v ∈ ValX,x and
a•(v) = {am(v)}, we have vol(v) = mult(a•(v)).

The following observation on characterizing the normalized volumes by nor-
malized multiplicities provides lots of flexibility in the study as we will see.

Theorem 2.6 ([Liu18]). Let (x ∈ (X,D)) be an n-dimensional klt singularity. Then
we have

v̂ol(x,X,D) = inf
a : mx-primary

lct(X,D; a)nmult(a)

= inf
a• : mx-primary

lct(X,D; a•)
nmult(a•).

We also set lct(X,D; a•)
nmult(a•) = +∞ if lct(X,D; a•) = +∞.

Proof. Firstly, for any mx-primary ideal a, we can take a divisorial valuation v ∈
ValX,x computing lct(a). In other words, lct(a) = AX(v)/v(a). We may rescale v
such that v(a) = 1. Then clearly am ⊂ am(v) for any m ∈ N, hence mult(a) ≥
vol(v). Therefore, lct(a)nmult(a) ≥ AX(v)nvol(v) which implies

v̂ol(x,X,D) ≤ inf
a : mx-primary

lct(a)nmult(a). (1)

Secondly, for any graded sequence of mx-primary ideals a•, we have

lct(a•) = lim
m→∞

m · lct(am)

by [JM12,BdFFU15]. Hence

lct(a•)
nmult(a•) = lim

m→∞
(m · lct(am))n

mult(am)

mn
= lim

m→∞
lct(am)nmult(am).
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As a result,

inf
a : mx-primary

lct(a)nmult(a) ≤ inf
a• : mx-primary

lct(a•)
nmult(a•). (2)

Lastly, for any valuation v ∈ ValX,x, we consider the graded sequence of
its valuation ideals a•(v). Since v(a•(v)) = 1, we have lct(a•) ≤ AX(v). We also
have mult(a•(v)) = vol(v). Hence lct(a•(v))

nmult(a•(v)) ≤ AX(v)nvol(v), which
implies

inf
a• : mx-primary

lct(a•)
nmult(a•) ≤ v̂ol(x,X,D). (3)

The proof is finished by combining (1), (2), and (3). �

In general we have the following relation between a sequence of graded ideals
and the one from a valuation: Let Φg be an ordered subgroup of the real numbers R.
Let (R,m) be the local ring at a normal singularity o ∈ X . A Φg-graded filtration
of R, denoted by F := {am}m∈Φg , is a decreasing family of m-primary ideals of R
satisfying the following conditions:

(i) am �= 0 for every m ∈ Φg, am = R for m ≤ 0 and ∩m≥0a
m = (0);

(ii) am1 · am2 ⊆ am1+m2 for every m1,m2 ∈ Φg.

Given such an F , we get an associated order function

v = vF : R → R≥0 v(f) = max{m; f ∈ am} for any f ∈ R.

Using the above (i)–(ii), it is easy to verify that v satisfies

v(f + g) ≥ min{v(f), v(g)} and v(fg) ≥ v(f) + v(g).

We also have the associated graded ring:

grFR =
∑

m∈Φg

am/a>m, where a>m =
⋃

m′>m

am
′
.

For any real valuation v with valuative group Φg, {Fm} := {am(v)} is a Φg-graded
filtration of R. We will need the following facts.

Lemma 2.7 (see [Tei03,Tei14]). With the above notations, the following statements
hold true:

(1) ([Tei14, Page 8]) If grFR is an integral domain, then v = vF is a valuation
centered at o ∈ X. In particular, v(fg) = v(f) + v(g) for any f, g ∈ R.

(2) (Piltant) A valuation v is quasi-monomial if and only if the Krull dimension
of grvR is the same as the Krull dimension of R.

The existence of a minimizer for v̂ol(X,D),x was conjectured in the first version
of [Li18a] and then proved in [Blu18].

Theorem 2.8 ([Blu18]). For any klt singularity x ∈ (X,D), there exists a valuation

vmin ∈ ValX,x that minimizes the function v̂ol(X,D),x.
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Let us sketch the idea of proving the existence of v̂ol-minimizer. We first take
a sequence of valuations (vi)i∈N such that

lim
i→∞

v̂ol(vi) = v̂ol(x,X,D).

Then we would like to find a valuation v∗ that is a limit point of the sequence

(vi)i∈N and then show that v∗ is a minimizer of v̂ol.
Instead of seeking a limit point v∗ of (vi)i∈N in the space of valuations, we

consider graded sequences of ideals. More precisely, each valuation vi induces a
graded sequence a•(vi) of mx-primary ideals. By Theorem 2.6, we have

v̂ol(vi) ≥ lct(a•(vi))
nmult(a•(vi)) ≥ v̂ol(x,X,D).

Therefore, once we find a graded sequence of mx-primary ideals ã• that is a ‘limit
point’ of the sequence (a•(vi))i∈N, a valuation v∗ computing lct(ã•) will minimizes

v̂ol. The existence of such ‘limits’ relies on two ingredients: the first is an asymp-
totic estimate to control the growth for ak(vi) for a fixed k; once the growth is
controlled, we can apply the generic limit construction.

Proof. For simplicity, we will assume D = 0. More details about log pairs can be
found in [Blu18, Section 7].

Let us choose a sequence of valuations vi ∈ ValX,x such that

lim
i→∞

v̂ol(vi) = v̂ol(x,X).

Since the normalized volume function is invariant after rescaling, we may assume
that vi(m) = 1 for all i ∈ N where m := mx. Our goal is to show that the family of
graded sequences of m-primary ideals (a•(vi))i∈N satisfies the following conditions:

(a) For every ε > 0, there exists positive constants M,N so that

lct(am(vi))
nmult(am(vi)) ≤ v̂ol(x,X) + ε for all m ≥ M and i ≥ N.

(b) For each m, i ∈ N, we have mm ⊂ am(vi).
(c) There exists δ > 0 such that am(vi) ⊂ m�mδ� for all m, i ∈ N.

Part (b) follows easily from vi(m) = 1. Hence vol(vi) ≤ mult(m) =: B. For
part (c), we need to use Theorem 2.5. By Part (2), there exists a positive constant
C1 such that

AX(v) ≤ C−1
1 · v(m)v̂ol(v) for all v ∈ ValX,x.

Let A := C−1
1 supi∈N v̂ol(vi), then AX(vi) ≤ A for any i ∈ N. By Theorem 2.5(1),

then there exists a positive constant C2 such that

v(f) ≤ C2 ·AX(v)ordx(f) for all v ∈ ValX,x and f ∈ OX,x.

In particular, vi(f) ≤ C2A · ordx(f) for all i ∈ N and f ∈ OX,x. Thus by letting

δ := (C2A)
−1 we have am(vi) ⊂ m�mδ� which proves part (c).

The proof of part (a) relies on the following result on uniform convergence of
multiplicities of valuation ideals.
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Proposition 2.9 ([Blu18]). Let (x ∈ X) be an n-dimensional klt singularity. Then
for ε, A,B, r ∈ R>0, there exists M = M(ε, A,B, r) such that for every valuation
v ∈ ValX,x with AX(v) ≤ A, vol(v) ≤ B, and v(m) ≥ 1/r, we have

vol(v) ≤ mult(am(v))

mn
< vol(v) + ε for all m ≥ M.

Proof. The first inequality is straightforward. When the point is smooth, the sec-
ond inequality uses the inequality that for the graded sequence of ideals {a•}, there
exists a k such that for any m and l

aml ⊆ alm−k.

The proof of such result uses the multiplier ideal, see [ELS03]. For isolated klt
singularity, then an estimate of a similar form in [Tak06] says

J l−1
X · aml ⊂ alm−k (4)

suffices, where JX is the Jacobian ideal of X . Finally, in the general case, an
argument using (4) and interpolating JX and a power of m gives the proof. See
[Blu18, Section 3] for more details. �

To continue the proof, let us fix an arbitrary ε ∈ R>0. Since AX(vi) ≤ A,
vol(vi) ≤ B, and vi(m) = 1 for all i ∈ N, Proposition 2.9 implies that there exists
M ∈ N such that

mult(am(vi))

mn
≤ vol(vi) + ε/(2An) for all i ∈ N.

We also have lct(am(vi)) ≤ AX(vi)/vi(am(vi)) ≤ m · AX(vi). Let us take N ∈ N
such that v̂ol(vi) ≤ v̂ol(x,X) + ε/2 for any i ≥ N . Therefore,

lct(am(vi))
nmult(am(vi)) ≤ AX(vi)

n(vol(vi) + ε/(2An))

= v̂ol(vi) + ε · AX(vi)
n/(2An)

= v̂ol(vi) + ε/2

≤ v̂ol(x,X) + ε.

So part (a) is proved.

Finally, (b) and (c) guarantee that we can apply a generic limit type con-
struction (cf. [Blu18, Section 5]). Then (a) implies that a ‘limit point’ ã• of the

sequence (a•(vi))i∈N satisfies that lct(ã•)
nmult(ã•) ≤ v̂ol(x,X). Thus a valution v∗

computing the log canonical threshold of ã•, whose existence follows from [JM12],
necessarily minimizes the normalized volume. �

Theorem 2.10 ([LX17b]). Let x ∈ (X,D) be an n-dimensional klt singularity. Then

v̂ol(x,X,D) ≤ nn and the equality holds if and only if x ∈ X\Supp(D) is a smooth
point.
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Using the fact that we can specialize a graded sequence of ideals preserving
the colength, and the lower semi-continuous of the log canonical thresholds, we
easily get the inequality part of Theorem 2.10. Then the equality part gives us a
characterization of the smooth point using the normalized volume. The following
Theorem 2.11 on the semicontinuity needs a more delicate analysis. We conjecture
that the normalized volume function is indeed constructible (see Conjecture 6.6).

Theorem 2.11 ([BL18]). Let π : (X , D) → T together with a section t ∈ T �→
xt ∈ Xt be a Q-Gorenstein flat family of klt singularities. Then the function t �→
v̂ol(xt,Xt, Dt) is lower semicontinuous with respect to the Zariski topology.

Now we introduce a key tool that the minimal model program provides to
us to understand minimizing the normalized volume. For more discussions, see
Section 4.3.

Definition 2.12 (Kollár component, [Xu14]). Let x ∈ (X,D) be a klt singularity.
We call a proper birational morphism μ : Y → X provides a Kollár component S,
if μ is isomorphic over X \ {x}, and μ−1(x) is an irreducible divisor S, such that
(Y, S+μ−1

∗ D) is purely log terminal (plt) and −S is Q-Cartier and ample over X .

Theorem 2.13 ([LX16]). We have the identity:

v̂ol(x,X,D) = inf
S
{v̂ol(ordS) | for all Kollár components S over x}. (5)

For the explanation of proof, see the discussions for (27) in Section 4.3.

3. Stability in Sasaki–Einstein geometry

To proceed the study of normalized volumes, we will introduce the concept of K-
stability. This is now a central notion in complex geometry, which serves as an
algebraic characterization of the existence of some ‘canonical metrics’.

In the local setting, such problem on an affine T -variety X with a unique
fixed point x was first considered in [MSY08]. We can then vary the Reeb vector
field ξ ∈ t+R , and call such a structure (X, ξ) is a Fano cone if X only has klt

log terminal singularities. The name is justified since if ξ ∈ t+Q , let 〈ξ〉 be the C∗

generated by ξ, then X \ {x}/〈ξ〉 is a log Fano variety.
In [MSY08], the relation between the existence of Sasaki–Einstein metric

along (X, ξ) and the K-stability of (X, ξ), a mimic of the absolute case, was ex-
plored. A key observation in [MSY08] is that we can define a normalized volume

function v̂olX(ξ) for ξ ∈ t+R , and among all choices of ξ the one minimizing v̂olX(·)
gives ‘the most stable’ direction.

Then an important step to advance such a picture is made in [CS18,CS15] by
extending the definition of K-stability notions on (X, ξ) allowing degenerations,
and showing that there is a Sasaki–Einstein metric along an isolated Fano cone
singularity (X, ξ) if and only of (X, ξ) isK-polystable, extending the solution of the
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Yau–Tian–Donaldson’s conjecture in the Fano manifold case (see [CDS15,Tia15])
to the cone case.

In this section, we will briefly introduce these settings.

3.1. T-varieties

We first introduce the basic setting using T -varieties. For general results of T -
varieties, see [AIP+12].

AssumeX = SpecC(R) is an affine variety withQ-Gorenstein klt singularities.
Denote by T the complex torus (C∗)r. Assume X admits a good T -action in the
following sense.

Definition 3.1 (see [LS13, Section 4]). Let X be a normal affine variety. We say
that a T -action on X is good if it is effective and there is a unique closed point
x ∈ X that is in the orbit closure of any T -orbit. We shall call x (sometimes also
denoted by oX) the vertex point of the T -variety X .

Let N = Hom(C∗, T ) be the co-weight lattice andM = N∗ the weight lattice.
We have a weight space decomposition of the coordinate ring of X :

R =
⊕
α∈Γ

Rα where Γ = {α ∈ M | Rα �= 0}.

The action being good implies R0 = C, which will always be assumed in the below.
An ideal a is called homogeneous if a =

⊕
α∈Γ a ∩ Rα. Denote by σ∨ ⊂ MQ the

cone generated by Γ over Q, which will be called the weight cone or the moment
cone. The cone σ ⊂ NR, dual to σ∨, is the same as the following conical set

t+R := { ξ ∈ NR | 〈α, ξ〉 > 0 for any α ∈ Γ \ {0}}.

Motivated by notations from Sasaki geometry, we will introduce:

Definition 3.2. With the above notations, t+R will be called the Reeb cone of the

T -action of X . A vector ξ ∈ t+R will be called a Reeb vector on the T -variety X .

To adapt this definition into our setting in Section 2.1, for any ξ ∈ t+R , we
can define a valuation

wtξ(f) = min
α∈Γ

{〈α, ξ〉 | fα �= 0}.

It is easy to verify that wtξ ∈ ValX,oX . The rank of ξ, denoted by rk(ξ), is the
dimension of the subtorus Tξ (as a subgroup of T ) generated by ξ ∈ t. The following
lemma can be easily seen.

Lemma 3.3. For any ξ ∈ t+R , wtξ is a quasi-monomial valuation of rational rank
equal to the rank of ξ. Moreover, the center of wtξ is oX .

We recall the following structure results for any T -varieties.
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Theorem 3.4 (see [AIP+12, Theorem 4]). Let X = Spec(R) be a normal affine
variety and suppose T = Spec (C[M ]) has a good action on X with the weight cone
σ∨ ⊂ MQ. Then there exist a normal projective variety Y and a polyhedral divisor
D such that there is an isomorphism of graded algebras:

R ∼= H0(X,OX) ∼=
⊕

u∈σ∨∩M

H0
(
Y,O(D(u))

)
=: R(Y,D).

In other words, X is equal to SpecC
(⊕

u∈σ∨∩M H0(Y,O(D(u)))
)
.

In the above definition, a polyhedral divisor D : u → D(u) is a map from σ∨

to the set of Q-Cartier divisors that satisfies:

1. D(u) +D(u′) ≤ D(u+ u′) for any u, u′ ∈ σ∨;
2. u �→ D(u) is piecewisely linear;
3. D(u) is semiample for any u ∈ σ∨, and D(u) is big if u is in the relative

interior of σ∨.

Here Y is projective since from our assumption

H0(Y,OY ) = RT = R0 = C

(see [LS13]). We collect some basic results about valuations on T -varieties.

Theorem 3.5 (see [AIP+12]). Assume a T -variety X is determined by the data
(Y, σ,D) such that Y is a projective variety, where σ = t+R ⊂ NR and D is a
polyhedral divisor.

1. For any T -invariant quasi-monomial valuation v, there exist a quasi-mono-
mial valuation v(0) over Y and ξ ∈ MR such that for any f · χu ∈ Ru, we
have:

v(f · χu) = v(0)(f) + 〈u, ξ〉.
We will use (ξ, v(0)) to denote such a valuation.

2. T -invariant prime divisors on X are either vertical or horizontal. Any vertical
divisor is determined by a divisor Z on Y and a vertex v of DZ , and will be
denoted by D(Z,v). Any horizontal divisor is determined by a ray ρ of σ and
will be denoted by Eρ.

3, Let D be a T -invariant vertical effective Q-divisor. If KX +D is Q-Cartier,
then the log canonical divisor has a representation KX+D = π∗H+div(χ−u0)
where H =

∑
Z aZ ·Z is a principal Q-divisor on Y and u0 ∈ MQ. Moreover,

the log discrepancy of the horizontal divisor Eρ is given by:

A(X,D)(Eρ) = 〈u0, nρ〉, (6)

where nρ is the primitive vector along the ray ρ.

Sketch of the proof. For the first statement, the case of divisorial valuations fol-
lows from [AIP+12, Section 11]. It can be extended to the case of quasi-monomial
valuations by the same proof. Note also that any T -invariant quasimonomial valu-
ation can be approximated by a sequence of T -invariant divisorial valuations. The
second statement is in [PS11, Proposition 3.13]. The absolute case (e.g., without
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boundary divisor D) for the third statement is from [LS13, Section 4] whose proof
also works for the case of log pairs. �

We will specialize the study of general affine T -varieties to case that the log
pair is klt. Assume X is a normal affine variety with Q-Gorenstein klt singularities
and a good T -action. Let D be a T -invariant vertical divisor. Then there is a
nowhere-vanishing T -equivariant section s of m(KX +D) where m is sufficiently
divisible. The following lemma says that the log discrepancy of wtξ can indeed
be calculated in a similar way as in the toric case (the toric case is well known).
Moreover, it can be calculated by using the weight of T -equivariant pluri-log-
canonical sections. The latter observation was first made in [Li18a].

Lemma 3.6. Using the same notion as in the Theorem 3.5, the log discrepancy of
wtξ is given by: A(X,D)(wtξ) = 〈u0, ξ〉. Moreover, let s be a T -equivariant nowhere-
vanishing holomorphic section of |−m(KX+D)|, and denote Lξ the Lie derivative
with respect to the holomorphic vector field associated to ξ. Then A(X,D)(ξ) = λ if
and only if

Lξ(s) = mλs for λ > 0.

As a consequence of the above lemma, we can formally extend A(X,D)(ξ) to
a linear function on tR:

A(X,D)(η) = 〈u0, η〉. (7)

for any η ∈ tR. By Lemma 3.6, A(X,D)(η) = 1
mLηs/s where s is a T -equivariant

nowhere-vanishing holomorphic section of | −m(KX +D)|.

Definition 3.7 (Log Fano cone singularity). Let (X,D) be an affine pair with a
good T action. Assume (X,D) is a normal pair with klt singularities. Then for
any ξ ∈ t+R , we call the triple (X,D, ξ) a log Fano cone structure that is polarized
by ξ. We will denote by 〈ξ〉 the sub-torus of T generated by ξ. If 〈ξ〉 ∼= C∗, then
we call (X,D, ξ) to be quasi-regular. Otherwise, we call it irregular.

In the quasi-regular case, we can take the quotient (X \ {x}, D \ {x}) by the
C∗-group generated by ξ in the sense of Seifert C∗-bundles (see [Kol04]), and we
will denote by (X,D)/〈ξ〉, which is a log Fano variety, because of the assumption
that (X,D) is klt at x (see [Kol13, Lemma 3.1]).

3.2. K-stability

In this section, we will discuss the K-stability notion of log Fano cones, which
generalizes the K-stability of log Fano varieties originally defined by Tian and
Donaldson. For irregular Fano cones, such a notion was first defined in [CS18].

Definition 3.8 (Test configurations). Let (X,D, ξ0) be a log Fano cone singularity
and T a torus containing 〈ξ0〉.

A T -equivariant test configuration (or simply called a test configuration) of
(X,D, ξ0) is a quadruple (X ,D, ξ0; η) with a map π : (X ,D) → C satisfying the
following conditions:
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(1) π : X → C is a flat family and D is an effective Q-divisor such that D does
not contain any component X0, the fibres away from 0 are isomorphic to
(X,D) and X = Spec(R) is affine, where R is a finitely generate flat C[t]
algebra. The torus T acts on X , and we write R =

⊕
α Rα as decomposition

into weight spaces.
(2) η is a holomorphic vector field on X generating a C∗(= 〈η〉)-action on (X ,D)

such that π is C∗-equivariant where C∗ acts on the base C by the multipli-
cation (so that π∗η = t∂t if t is the affine coordinate on C) and there is a
C∗-equivariant isomorphism φ : (X ,D) ×C C∗ ∼= (X,D)× C∗.

(3) The torus T -action commutes with η. The holomorphic vector field ξ0 on
X ×C C∗ (via the isomorphism φ) extends to a holomorphic vector field on
X which we still denote to be ξ0.

In most of our study, we only need to treat the case that test configuration
(X ,D, ξ0; η) of (X,D, ξ0) satisfies that

(4) KX +D is Q-Cartier and the central fibre (X0, D0) is klt.

In other words, we will mostly consider special test configurations (see [LX14,
CS15]).

Condition (1) implies that each weight piece Rα is a flat C[t]-module. So X
and X0 have the same weight cone and Reeb cone with respect to the fiberwise
T -action.

A test configuration (X ,D, ξ0; η) is called a product one if there is a T -
equivariant isomorphism (X ,D) ∼= (X,D) × C and η = η0 + t∂t where η0 is a
holomorphic vector field on X that preserves D and commutes with ξ0. In this
case, we will denote (X ,D, ξ0; η) by

(X × C, D × C, ξ0; η) =: (XC, DC, ξ0; η).

In [MSY08], only such test configurations are considered.

Definition 3.9 (K-stability). For any special test configuration (X ,D, ξ0; η) of
(X,D, ξ0) with central fibre (X0, D0, ξ0), its generalized Futaki invariant is de-
fined as

Fut(X ,D, ξ0; η) :=
D−Tξ0

(η)volX0(ξ0)

volX0(ξ0)

where we denote

Tξ0(η) =
A(ξ0)η −A(η)ξ0

n
. (8)

Since the generalized Futaki invariant defined above only depends on the data on
the central fibre, we will also denote it by Fut(X0, D0, ξ0; η).

We say that (X,D, ξ0) is K-semistable, if for any special test configuration,
Fut(X ,D, ξ0; η) is nonnegative.

We say that (X,D, ξ0) is K-polystable, if it is K-semistable, and any special
test configuration (X ,D, ξ0; η) with Fut(X ,D, ξ0; η) = 0 is a product test configu-
ration.



182 C. Li, Y. Liu and C. Xu

In the above definition, we used the notation (8) and the directional deriva-
tive:

D−Tξ0(η)
volX0(ξ0) :=

d

dε

∣∣∣∣
ε=0

volX0(ξ0 − εTξ0(η)).

Recall that the π∗η = t∂t. Then the negative sign in front of Tξ0(η) in the above
formula is to be compatible with our later computation. Using the rescaling in-
variance of the normalized volume, it is easy to verify that the following identity
holds:

D−Tξ0
ηvolX0(ξ0) =

d

dε

∣∣∣∣
ε=0

v̂olX0(wtξ0−εη) ·
1

nA(ξ0)n−1
, (9)

where A(ξ0) = A(X0,D0)(wtξ0). As a consequence, we can rewrite the Futaki in-
variant of a special test configuration as:

Fut(X ,D, ξ0; η) := D−ηv̂olX0(wtξ0) ·
1

nA(ξ0)n−1 · volX0(ξ0)
. (10)

One can show that, up to a constant, the above definition of Fut(X ,D, ξ0; η)
coincides with the one in [CS18,CS15] defined using index characters. For conve-
nience of the reader, we recall their definition. It is enough to define the Futaki
invariant for the central fibre which we just denote by X . For any ξ ∈ t+R , the
index character F (ξ, t) is defined by:

F (ξ, t) :=
∑
α∈Γ

e−t〈α,ξ〉 dimC Rα. (11)

Then there is a meromorphic expansion for F (ξ, t) as follows:

F (ξ, t) =
a0(ξ)(n− 1)!

tn
+

a1(ξ)(n − 2)!

tn−1
+O(t2−n). (12)

One always has the identity a0(ξ) = vol(ξ)/(n− 1)!.

Definition 3.10 (see [CS18]). For any η ∈ tR, define:

Futξ0(X, η) =
1

n− 1
D−η(a1(ξ0)) −

1

n

a1(ξ0)

a0(ξ0)
D−ηa0(ξ0)

=
a0(ξ0)

n− 1
D−η

(
a1
a0

)
(ξ0) +

a1(ξ0)D−ηa0(ξ0)

n(n− 1)a0(ξ0)
.

This is a complicated expression. But in [CS15, Proposition 6.4], it was shown
that, when X is Q-Gorenstein log terminal, there is an identity a1(ξ)/a0(ξ) =
A(ξ)(n − 1)/2 for any ξ ∈ t+R (by using our notation involving log discrepancies).

Note that the rescaling properties a0(λξ) = λ−na0(ξ) and a1(λξ) = λ−(n−1)a1(ξ)

which imply Futξ0(X, ξ0) = 0. If we denote η′ = η − A(η)
A(ξ0)

ξ0, then we get:

Futξ0(X, η) = Futξ0 (X, η′) =
A(ξ0)

2n
D−η′a0(ξ0) =

1

2(n− 1)!
D−Tξ0

(η)vol(ξ0).

(13)
So the definition in [CS18, CS15] differs from our notation by a constant 2(n −
1)!/volX(ξ0).
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Remark 3.11. More precisely, our notation differs from that in [CS18] by a sign.
Our choice of minus sign for −η, besides being compatible with the sign choice in
Tian’s original definition of K-stability in [Tia97], is made for least two reasons.
The first is that the careful calculation in [LX17a, Section 5.2] shows that the
limiting slope of the Ding energy along the geodesic ray associated to any special
test configuration is indeed the directional derivative of vol(ξ) along −η instead
of η. For the second reason, as we stressed in [LX17a, Remark 3.4], for the special
test configuration coming from a Kollár component S, the −η vector corresponds

to ordS . Since our goal is to compare v̂ol(wtξ0) and v̂ol(ordS), −η is the correct
choice of sign (see [LX17a, Proof of Theorem 3.5]).

Remark 3.12. In fact, in a calculation, instead of the generalized Futaki invariant,
it is the Berman–Ding invariant, denoted by DNA(X ,D, ξ0; η), where

DNA(X ,D, ξ0; η) :=
D−Tξ0

(η)volX0(ξ0)

vol(ξ0)
− (1− lct(X , D;X0)).

appears more naturally, whenever we know

(D) there exists a nowhere vanishing section s ∈ |m(KX + D)| such that we can
use it to define A(·) as in the formula in Lemma 3.6.

Then we can similarly define Ding semi(poly)-stable, replacing Fut(X ,D, ξ0; η) by
DNA(X ,D, ξ0; η). For a special test configuration, since

Fut(X ,D, ξ0; η) = DNA(X ,D, ξ0; η)

the two notions coincide.

If we specialize the above definitions to the case of quasi-regular log Fano
cone (X,D, ξ0), then we get the corresponding more familiar notions for the log
Fano projective pair (S,B) = (X,D)/〈ξ0〉.

3.3. Sasaki–Einstein geometry

The introduction of normalized volumes in [Li18a] was motivated by the min-
imization phenomenon in the study of Sasaki–Einstein metrics. The latter was
discovered in [MSY06,MSY08] and was motivated by the so-called AdS/CFT cor-
respondence from mathematical physics. Here we give a short account on this. For
the reader who are mostly interested in the algebraic part of the theory, one can
skip this section. The results will only be used in Section 5.2.

Classically, a Sasaki manifold is defined as an odd-dimensional Riemannian
manifold (M2n−1, gM ) such that metric cone over it, defined as:

(X, gX) := ((M × R>0) ∪ {oX}, dr2 + r2gM )

is Kähler. It’s convenient to work directly onX = X◦∪oX which is an affine variety
with the Kähler metric

√
−1∂∂̄r2. The Reeb vector field of (X◦, gX) is usually

defined as J(r∂r) where J is the complex structure on X◦. The corresponding
holomorphic vector field ξ = r∂r − iJ(r∂r), which we also call Reeb vector field,
generates a Tξ

∼= (C∗)rk(ξ)-action on X where r(ξ) ≥ 1. For simplicity, we will
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denote such a torus by 〈ξ〉. Moreover the corresponding element in (tξ)R, also

denoted by ξ is in the Reeb cone: ξ ∈ (tξ)
+
R . The volume of ξ is defined to be the

volume density of gX :

vol(ξ) := vol(r2) =
1

(2π)nn!

∫
X

e−r2(
√
−1∂∂̄r2)n

=
1

(2π)n

∫
M

(−Jdr) ∧ (−dJdr)n−1

=
(n− 1)!

2πn
vol(M, gM ) =

vol(M, gM )

vol(S2n−1)

=
vol(B1(X), gX)

vol(B1(0), gCn)
. (14)

Here gX = 1
2

√
−1∂∂̄r2(·, J ·) and gM = gX |M are the Riemannian metric on X and

M respectively, S2n−1 is the standard unit sphere in Cn with volume vol(S2n−1) =
2πn/(n− 1)!.

This is well defined because if two Sasaki metrics have the same Reeb vector
field, then their volumes are the same. Indeed, ω1 =

√
−1∂∂̄r1 and ω2 =

√
−1∂∂̄r2

have the same Reeb vector field if r2 = r1e
ϕ for a function ϕ satisfying Lr∂rϕ =

Lξϕ = 0 (i.e., ϕ is a horizontal function on M with respect to the foliation defined
by Im(ξ0)). Letting r2t = r2etϕ and differentiating the volume we get:

C · d

dt
vol(r2t ) =

∫
X

e−r2t (−r2tϕ)
√
−1∂∂̄r2t )

n + e−r2tn
√
−1∂∂̄(r2tϕ) ∧ (

√
−1∂∂̄r2t )

n−1

=

∫
X

−e−r2t r2tϕ(
√
−1∂∂̄r2t )

n + e−r2tn
√
−1∂r2t ∧ (ϕ∂̄r2t ) ∧ (

√
−1∂∂̄r2t )

n−1

+

∫
X

e−r2tn
√
−1∂r2t ∧ (r2t ∂̄ϕ) ∧ (

√
−1∂∂̄r2t )

n−1

= 0.

The second equality follows from integration by parts. The last equality follows
by substituting f = r2t and f = ϕ into the following identities and using the fact
that ϕ is horizontal (so that ξt(ϕ) = 0):

n
√
−1∂r2t ∧ ∂̄f ∧ (

√
−1∂∂̄r2t )

n−1 = ξt(f)(
√
−1∂∂̄r2t )

n.

One should compare this to the fact that two Kähler metrics in the same
Kähler class have the same volume.

The Reeb vector field associated to a Ricci-flat Kähler cone metric satisfies
the minimization principle in [MSY08]. To state it in general, we assume X is a T -
variety with the Reeb cone t+R with respect to T and recall the variation formulas

of volumes of Reeb vector fields from [MSY08]. For any ξ ∈ t+R , we can find a
radius function r : X → R+ such that vol(ξ) is given by the formula (14).
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Lemma 3.13. The first-order derivative of volX(ξ) is given by:

Dvol(ξ) · η1 =
1

(2π)n(n− 1)!

∫
X

θ1e
−r2(

√
−1∂∂̄r2)n, (15)

where θi = ηi(log r
2). The second-order variation of volX(ξ) is given by:

D2vol(ξ)(η1, η2) =
n+ 1

(2π)n(n− 1)!

∫
X

θ1θ2e
−r2(

√
−1∂∂̄r2)n.

Now we fix a ξ0 ∈ t+R and a radius function r : X → R+ (by using equivariant
embedding of X into CN for example), we define:

Definition 3.14. PSH(X, ξ0) is the set of bounded real functions ϕ on X◦ that
satisfies:

(1) ϕ ◦ τ = ϕ for any τ ∈ 〈ξ0〉, the torus generated by ξ0;
(2) r2ϕ := r2eϕ is a proper plurisubharmonic function on X .

To write down the equation of Ricci-flat Kähler-cone equation, we fix a T -
equivariant nowhere vanishing section s ∈ H0(X,mKX) as in the last section and
define an associated volume form on X :

dVX :=
(
(
√
−1)mn2

s ∧ s̄
)1/m

. (16)

Definition 3.15. We say that r2ϕ := r2eϕ where ϕ ∈ PSH(X, ξ0) is the radius
function of a Ricci-flat Kähler cone metric on (X, ξ0) if ϕ is smooth on Xreg and
there exists a positive constant C > 0 such that

(
√
−1∂∂̄r2ϕ)

n = C · dV, (17)

where the constant C is equal to:

C =

∫
X e−r2ϕ(

√
−1∂∂̄r2ϕ)

n∫
X e−r2ϕdVX

=
(2π)nn!vol(ξ0)∫

X e−r2ϕdVX

.

Motivated by standard Kähler geometry, one defines the Monge–Ampère
energy E(ϕ) using either its variations or the explicit expression on the link
M := X ∩ {r = 1}:

δE(ϕ) · δϕ = − 1

(n− 1)!(2π)nvol(ξ0)

∫
X

δϕe−r2ϕ(
√
−1∂∂̄r2ϕ)

n.

Then the equation (16) is the Euler–Lagrange equation of the following Ding–
Tian-typed functional:

D(ϕ) = E(ϕ)− log

(∫
X

e−r2ϕdVX

)
.
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This follows from the identity:

δD(ϕ) · δϕ =
1

(2π)n(n− 1)!vol(ξ0)

∫
X

δϕe−r2ϕ(
√
−1∂∂̄r2ϕ)

n −
∫
X
r2ϕδϕe

−r2ϕdVX∫
X
e−r2ϕdVX

= n

∫
X

e−r2ϕδϕ

(
(
√
−1∂∂̄r2ϕ)

n

(2π)nn!vol(ξ0)
− dVX∫

X
e−r2ϕdVX

)
.

Compared with the weak Kähler–Einstein case, it is expected that the regu-
larity condition in the above definition is automatically satisfied. With this regu-
larity assumption, on the regular part Xreg, both sides of (17) are smooth volume
forms and we have rϕ∂rϕ = 2Re(ξ0) or, equivalently, ξ0 = rϕ∂rϕ − iJ(rϕ∂rϕ).
Moreover, taking Lrϕ∂rϕ

on both sides gives us the identity Lrϕ∂rϕ
dV = 2n dV .

Equivalently we have:

Lξ0s = mn · s,
where s ∈ |−mKX | is the chosen T -equivariant non-vanishing holomorphic section.
By Lemma 3.6, this implies AX(wtξ0) = n (see [HS17, LL19] for this identity in
the quasi-regular case). The main result of [MSY08] can be stated as follows.

Theorem 3.16. If (X, ξ0) admits a Ricci-flat Kähler cone metric, then AX(ξ0) = n
and wtξ0 obtains the minimum of vol on t+R .

The following result partially generalizes Berman’s result on K-polystability
of Kähler–Einstein Fano varieties to the more general case of Ricci-flat Fano cones.
Together with Theorem 4.6, it is used to show a generalization the minimization

result [MSY08]: the valuation wtξ0 minimizes v̂ol where ξ0 is the Reeb vector field
of the Ricci-flat Fano cone.

Theorem 3.17 (see [CS15, LX16, LX17a]). Assume (X, ξ0) admits a Ricci-flat
Kähler cone metric. Then AX(wtξ0) = n and (X, ξ0) is K-polystable among all
special test configurations.

Proof. Fix any smooth Kähler cone metric
√
−1∂∂̄r2 onX . Any special test config-

uration determines a geodesic ray {r2t = r2eϕt}t>0 of Kähler cone metrics. Denote
D(t) = D(ϕt). Then we have the following formula:

lim
t→0

D(t)

− log |t|2 =
D−ηvol(ξ0)

vol(ξ0)
− (1 − lct(X ,X0)) = DNA(χ, ξ0; η), (18)

which is a combination of two ingredients:

1. The Fano cone version of an identity from Kähler geometry which combined
with (15) gives the formula:

lim
t→0

E(ϕt)

− log |t|2 =
D−ηvol(ξ0)

vol(ξ0)
. (19)

2. G(ϕt) is subharmonic in t (cone version of Berndtsson’s result) and its Lelong
number at t = 0 is given by 1− lct(X ,X0) (cone version of Beman’s result).
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The other key result is the cone version of Berndtsson’s subharmonicity and
uniqueness result, which was used to characterize the case of vanishing Futaki
invariant. �
Remark 3.18. The argument in [LX17a] gives a slightly more general result: As-
sume (X, ξ0) admits a Ricci-flat Käler cone metric, then AX(wtξ0) = n and (X, ξ0)
is Ding-polystable among Q-Gorenstein test configurations (see Remark 3.12).

4. Stable degeneration conjecture

In this section, we give a conjectural description of minimizers for general klt
singularities, and explain various parts of the picture that we can establish.

4.1. Statement

For a klt singularity x ∈ (X,D), one main motivation to study the minimizer v of

v̂ol(X,D),x is to establish a ‘local K-stability’ theory, guided by the local-to-global
philosophy mentioned in the introduction. In particular, we propose the following
conjecture for all klt singularities.

Conjecture 4.1 (Stable Degeneration Conjecture, [Li18a,LX17a]). Given any ar-
bitrary klt singularity x ∈ (X = Spec(R), D), there is a unique minimizer v up to
rescaling. Furthermore, v is quasi-monomial, with a finitely generated associated
graded ring R0 =defn grv(R), and the induced degeneration

(X0 = Spec(R0), D0, ξv)

is a K-semistable Fano cone singularity. (See below for the definitions.)

Let us explain the terminology in more details: First by the grading of R0,
there is a T ∼= Cr-action on X0 where r is the rational rank of v, i.e., the valuative
semigroup Φ of v generates a group M ∼= Zr . Moreover, since the valuation v
identifies M to a subgroup of R and sends Φ into R≥0, it induces an element in
the Reeb cone ξv. If R0 is finitely generated, then [LX17a] shows that we can
embed (x ∈ X) ⊂ (0 ∈ CN ) and find an rational vector ξ ∈ t+R ∩ NQ sufficiently
close to ξv such that the C∗-action generated by ξ degenerates X to X0 with a
good action. We denote by o (or oX0) the unique fixed point on X0. Furthermore,
the extended Rees algebra yielding the degeneration does not depend on the choice
of ξ. So we can define D0 as the degeneration of D.

Conjecture 4.1, if true, would characterize deep properties of a klt singularity.
Various parts are known, see Theorem 4.14. However, the entire picture remains
open in general.

4.2. Cone case

The study of the case of cone is not merely verifying a special case. In fact, since
the stable degeneration conjecture predicts the degeneration of any klt singularities
to a cone, understanding the cone case is a necessary step to attack the conjec-
ture. Here we divide our presentations into two case: the rank one case and the
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general higher rank case. Although our argument in the higher rank case covers
the rank one case with various simplifications, we believe it is easier for reader
to first understand the rank one case, as it is equivalent to the more standard
K-semistability theory of the base which is a log Fano pair. This connection is
made via the theory of β-invariant, which is first introduced in [Fuj18] in terms of
ideal sheaves and further developed in [Li17,Fuj16] via valuations.

4.2.1. Rank one case. The rank one Fano cone is just a cone over a log Fano pair.
More precisely, let (S,B) be an (n−1)-dimensional log Fano pair, and r a positive
integer such that r(KS + B) is Cartier. Then we can consider the minimizing
problem of the normalized volume at the vertex of the cone

x ∈ (X,D) = C(S,B;−r(KS +B)).

Such a question was first extensively studied in [Li17]. More precisely, there is
a canonical divisorial valuation obtained by blowing up x to get a divisor S0

isomorphic to S, which yields the degeneration of x ∈ (X,D) to itself with ξ being
the natural rescaling vector field from the cone structure. Therefore, the stable

degeneration conjecture predicts vS0 = ordS0 is a minimizer of v̂ol(X,D),x if and
only if (S,B) is K-semistable, and this is confirmed in [Li17,LL19,LX16].

Theorem 4.2. The valuation vS0 is a stabilizer of v̂ol(X,D),x if and only if (S,B)

is K-semistable. Moreover, v̂ol(S0) < v̂ol(E) for any other divisor E over x.

In the below, we will sketch the ideas of two slightly different proofs of The-
orem 4.2.

In the first approach, we carry out a straightforward calculation as follows:
Given a compactified nontrivial special test configuration (S,B) of (S,B), then
we obtain a valuation v∗ by restricting the divisorial valuation of the special fiber
S0 to K(S) ⊂ K(S × A1), which is a multiple of some divisorial valuation (cf.
[BHJ17]). Such a valuation v∗ pull backs a valuation v∗X on K(X). Then we define
a C∗-valuation on K(X) by v∞(fm) = v∗X(fm) −mraS(v

∗) over X for any fm ∈
H0(S,−mr(KS +B)). In other words, v∞ = v∗X − raS(v

∗)vS0 , and we know that
the induced filtration on R yields the Duistermaat–Heckman (DH) measure of
(S,B) (see [BHJ17, Definition 3.5]). We define the ray in{

vt = vS0 + t · v∞ ∈ ValX,x | t ∈
[
0,

1

raS(v∗)

)}
.

Then the key computation in [Li17] is that

d

dt
v̂ol(vt)|t=0 =

n

rn
(−KS −B)n−1 · Fut(S,B). (20)

In fact, if for any valuation v over S, we denote by Rm = H0(S,−mr(−KS −B))
and define

Fx
vRm := {f ∈ Rm| f ∈ H0(S,−mr(−KS −B)⊗ ax)},
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then we easily see

ak(vt) ∩Rm = F
k−m

t
v∞ H0(S,−mr(−KS −B)).

So

vol(vt) = lim
k

lC(R/ak(vt))

kn/n!

= lim
k→∞

n!

kn

∑
m=0

(
dimF0

v∞Rm − dimF
k−m

t
v∞ H0(S,−mr(−KS −B))

)
= −

∫ ∞

−∞

dvol(Fv∞R(x))

(1 + tx)n
, (21)

where Fv∞R(x) :=
⊕

m Fmx
v∞ Rm and the last equality is obtained by a change of

variables (see Lemma [Li17, Lemma 4.5]).

Since A(S0) =
1
r and A(v∞) = 0, Avt =

1
r , so

v̂ol(vt) = −
(
1

r

)n ∫ ∞

−∞

dvol(Fv∞R(x))

(1 + tx)n
,

and this implies that

d

dt
v̂ol(vt)|t=0 =

n

rn

∫ ∞

−∞
x · dvol(Fv∞R(x))

=
n

rn
lim
k→∞

wk

kNk

= − 1

rn
(−KS − B)n,

=
n

rn
(−KS −B)n−1 · Fut(S,B).

where for the second equality we use that v∞ is the DH measure for (S,B).
It is not straightforward to reverse the argument to show that (S,B) is K-

semistable implies that ordS0 is a minimizer of v̂ol(X,D),x, since a priori there
could be more complicated valuations than those induced by central fibres of test
configurations. In particular, originally in [Li17], the techniques of ‘taking the limit
of a sequence of filtered linear systems’ developed in [Fuj18] were used in the case
when the associated bigraded ring⊕

m,k

H0(S,−rm(KS +B)⊗ ak)

is not finitely generated, and this is enough to treat all C∗-equivariant valuations.

In [LX16], after the MMP method was systematically applied, it was shown
that

inf
v∈ValX,x

v̂ol(v) = {inf v̂ol(ordS) | C∗-equivariant Kollár components S} (22)
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(see (27) and the discussion below it). Since Kollár components yield special degen-
erations, therefore, the above arguments can be essentially reversed. See Section
4.2.2.

Remark 4.3. In fact, we establish a one-to-one correspondence between special
test configurations of (S,B) (up to a base change) and rays in ValX,x emanating
from vS0 containing a Kollár component (different with vS0).

An interesting consequence is that the above argument indeed gives an al-
ternative way to show that K-semistability implies the valuative criterion of K-
semistability with β-invariant as in [Fuj16,Li17], but without using the arguments
of ‘taking a limit of filtered linear systems’.

The second approach to treat the cone singularity is developed in [LL19] (see
also [LX16]). It is shown that K-semistablity of (S,B) is equivalent to that of
(X̄, D̄ + (1 − 1

rn)S∞), where (X̄, D̄) is the projective cone of (X,D) with respect
to −r(KX + D) and S∞(= S) is the divisor at the infinity place. This follows
from a straightforward Futaki invariant calculation as in [LX16, Proposition 5.3].
Applying the inequality 5.12 to x ∈ (X̄, D̄+(1− 1

rn )S∞), we immediately conclude
that

v̂ol(x, X̄, D̄) ≥ (−KS −B)n−1

rn
= v̂ol(X,D),x(ordS0). (23)

To understand better the relation between the K-semistability of (X̄, D̄ +
(1− 1

rn )S∞) and of (S,B), we want to present a direct calculation which connects

the calculation on β-invariant on (X̄, D̄ + 1
rnS∞) and the one on (S,B).

Lemma 4.4. Assume β-invariant is nonnegative for any divisorial valuation over
S. Denote by L̂ = O(1) = O(S∞) and δ = n+1

rn . For any C∗-invariant divisorial
valuation E. We have the following

β(E) := A(X̄,D̄+(1− 1
rn )S∞)(E)− δ

L̂n

∫ +∞

0

vol(FordE
R̂(x))dx ≥ 0, (24)

where R̂ =
⊕+∞

m=0 H
0(X̄,mL̂).

The key of the proof is to relate the β-invariant for a C∗-invariant valuation
v over X̄ to the β-invariant of the restriction of v over the base S.

Proof. We have KX̄ + D̄ + (1− 1
rn )S∞ = −n+1

rn L̂ = −δL̂, and define

Fx
v R̂m := {f ∈ R̂m| f ∈ R̂m = ⊕0≤k≤mH0(S, kr(−KS −B)) and v(f) ≥ x},
For any C∗-invariant divisorial valuation v = ordE on X̄, there exists c1 ∈ Z,

a ≥ 0 and a divisorial valuation ordF over S such that for any f ∈ H0(S,mr(−KS−
B)), we have

v(t) = c1; and v(f) = a · ordF (f) =: v̄(f).

We estimate β(E) in three cases depending on the signs of a and c1:

(a = 0) : The valuation v is associated to the canonical C∗-action along the ruling
of the cone, up to rescaling, then we easily get β(E) = 0
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(a > 0 and c1 ≥ 0) : Then the center of v is contained in S∞. In this case we can
easily calculate:

vol(FR̂(x)) = lim
m→+∞

dimC FxmR̂m

mn/n!
= lim

m→+∞

1

mn/n!

m∑
k=0

dimC Fxm−c1(m−k)
v̄ Rk

= n

∫ 1

0

vol(Fv̄R
(c1+

x−c1
τ ))τn−1dτ,

where the last identity can be proved in the same way as in (21). So we have:∫ +∞

0

vol(FR̂(x))dx = n

∫ +∞

0

dx

∫ 1

0

vol(Fv̄R
(c1+

x−c1
τ ))τn−1dτ

= n

∫ 1

0

τn−1dτ

∫ +∞

0

vol(Fv̄R
(c1+

x−c1
τ ))dx

= n

∫ 1

0

τn−1dτ

[
Hn−1c1(1 − τ) + τ

∫ +∞

c1

vol
(
Fv̄R

(y)
)
dy

]
=

c1
n+ 1

+ n

∫ +∞

0

vol(Fv̄R
(x))dx

∫ 1

0

τndτ

=
c1

n+ 1
+

n

n+ 1

∫ +∞

0

vol(Fv̄R
(x))dx.

On the other hand, we have Hn−1 = L̂n and:

A(X̄,D̄+(1−β)S∞)(ordE) = A(S,B)(v̄) + c1 − (1 − β)c1 = A(S,B)(v̄) +
c1
rn

.

So we get:

β(E) = A(S,B)(v̄) +
c1
rn

−
n+1
rn

Hn−1

n

n+ 1

(
c1

n+ 1
+

∫ +∞

0

vol(Fv̄R
(x))dx

)
= A(S,B)(v̄)−

1

rHn−1

∫ +∞

0

vol(Fv̄R
(x))dx = β(v̄),

which is nonnegative by our assumption.

(a > 0 and c1 < 0): In this case, the center of v is at the vertex. As a consequence
we have:

A(X̄,D̄+(1−β)S∞)(v) = A(S,B)(v̄) + (−c1) +

(
1

r
− 1

)
(−c1)

= A(S,B)(v̄) +
−c1
r

≥ A(S,B)(v̄).

The similar calculation as in the second case shows that β(E) ≥ β(v̄). �

Finally, to show v̂ol(S0) < v̂ol(E) for E �= S0, in [LX16], it was first proved
that if E is a minimizer then it has to be a C∗-equivariant Kollár component. Then
a careful study of the geometry of E using the equality condition in (23) implies
E = S. This is similar to the analysis for the equality case in [Fuj18,Liu18] where
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they showed that the K-stable Q-Fano variety with the maximal volume (n+ 1)n

can only be CPn. We will leave the discussion on this uniqueness type result to the
general case of cones of higher rational ranks, where we take a somewhat different
approach, using more convex geometry.

Remark 4.5. It is worthy pointing out that there is another global invariant for
an n-dimensional log Fano pair (S,B), defined as

δ(S,B) = inf
v∈ValS

A(S,B)(v) · (−KS −B)n∫∞
0

vol(−KS −B − tv)dt

(see [FO16,BJ17]). δ-invariant shares lots of common properties with the normal-
ized volume. For example, the existence of minimizers were proved using similar

strategy. They both have differential geometric meanings. The minimizer of v̂ol is
related to the metric tangent cone (see Section 5.2); while the valuation on K(S)
yielding δ(S,B) is related to the existence of twisted Kähler–Einstein metrics (see
[BJ18]).

For a log Fano pair (S,B) and a cone x ∈ (X,D) = C(S,B;−r(KS +B)), if
(S,B) is not K-semistable, or equivalently δ = δ(S,B) < 1, then we have

v̂ol(x,X,D) ≥ δn · (−KS −B)n−1

rn
.

This follows from our second proof by looking at (X̄, D̄+(1−β)S∞) and applying
the inequality [BJ17, Theorem D] which can be written as

(KX̄ + D̄ + (1− β)S∞)n ≤ (n+ 1)n

nn
· v̂ol(x,X,D) · δ̄n,

where δ̄ := δ(X̄, D̄+(1−β)S∞). We claim min{δ̄, 1} = δ. In fact, by the argument
in [BJ17, Section 7], we know that δ̄ is computed by a C∗-invariant valuation and
the claim follows from the calculation in the proof of Lemma 4.4.

4.2.2. Log Fano cone in general. We proceed to investigate a log Fano cone o ∈
(X,D, ξ) where the torus T could have dimension larger than one. However, we
consider not only the valuations in t+R (X) coming from the torus as in [MSY08]
(see Section 3.1) but all valuations in ValX,o. Compared to the proof of Theorem
4.2, for the higher rational rank case, we rely more on the construction of Kollár
components coming from the birational geometry. More explicitly, we use the re-
lation between special test configurations and Kollár components (see [LX16, 2.3]
and [LX17a, 3.1]).

By the results from the MMP (see (27) and the explanation below), to show
a valuation is a minimizer in ValX,x, we only need to show its normalized volume
is not greater than that of any T -invariant Kollár component. On the other hand,
any T-equivariant Kollár component E in ValX,o yields a special test configuration

of (X ,D, ξ; η) of (X,D) such that −η ∈ t+R (X0) and the valuation associated to −η
coincides with ordE . We denote by (X0, D0) the fiber with a cone vertex o. Then

we can compare the volumes as v̂olX(ξ) = v̂olX0(ξ) and v̂olX(E) = v̂ol(−η). Since
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ξ,−η ∈ t+R (X0) we reduce the question to the set up of [MSY08] on X0. Then we
only need to each time treat one degeneration X0 and try to understand how to
pass properties between X0 and X .

With this strategy, we can show the following generalization of Theorem 4.2.

Theorem 4.6 ([LX17a]). Let x ∈ (X,D, ξ) be a log Fano cone singularity. Then vξ

is a minimizer of v̂ol(X,D),x if and only if (X,D, ξ) is K-semistable. In such case,

v̂ol(vξ) < v̂ol(v) for any quasi-monomial valuation v if v is not a rescaling of vξ.

If (X,D,ξ) isK-semistable, then for each special test configuration (X ,D,ξ;η),
on X0, we can consider the ray ξt = ξ − tη for t ∈ [0,∞). We know

d

dt
v̂ol(X0,D0),o(vξt)|t=0 = c · Fut(X ,D, ξ; η) ≥ 0.

Moreover, when (X0, D0, o) = (X0, ∅, o) is an isolated singularity, it was shown in

[MSY08] that v̂ol(vξt) is a convex function. We obtain a stronger result for any log

Fano cone (X0, D0, ξ0) (see Section 4.2.3). In particular, we conclude that v̂ol(vξt)

is an increasing function of t, and its limit is v̂ol(−η), thus the inequality in the
following relation holds true:

v̂ol(X,D),x(ξ) = v̂ol(X0,D0),o(ξ) ≤ v̂ol(X0,D0),o(−η) = v̂ol(X,D),x(E).

The first identity consists of two identities: A(X,D)(vξ) = A(X0,D0)(vξ) and
volX(vξ) = volX0(vξ), which essentially follow from the flatness of T -equivariant
test configuration (see [LX17a, Lemma 3.2]). The last identity is because v−η =
ordE .

This argument is reversible since we can indeed attach to any special test
configuration such a set of valuations (see Remark 4.3): if we consider the valuation
wt obtained by considering the vector field ξt as a valuation on K(X ) and then
take its restriction on K(X). The corresponding degeneration induces the test
configuration. See [LX16, 6] and [LX17a, 4.2] for more details.

4.2.3. Uniqueness. We have seen the convexity of the normalized volume function
in the Reeb cone plays a key role. In [MSY08], the strict convexity on the nor-
malized function is established for the valuation varying inside the Reeb cone for
an isolated singularity. This is the kind of property we need for the uniqueness of
the minimizer of a K-semistable Fano cone singularity (X,D, ξ). However, as we
do not know the associated graded ring of other minimizer is finitely generated,
we cannot degenerate two minimizers into the Reeb cone. Thus we need develop
a technique to deal with valuations outside the Reeb cone.

The idea of the argument in [LX17a, Section 3.2] is to use the theory of
Newton–Okounkov bodies which was first developed in [LM09,KK12]) and in the
local setting in [Cut13, KK14]. This is a theory which realizes the volumes in
algebraic geometry with an asymptotic nature to the Euclidean volumes of some
convex bodies in Rn. So our aim is to apply the Newton–Okounkov body construc-
tion to translate the normalized volume of valuations into the volume of convex
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bodies, and then invoke a convexity property of the volumes functions known in
the latter setting.

To start, we first need to set a valuation V with Zn-valued valuation, which
sends the elements in R to the lattice points inside a convex region σ̃, so that later
we can realize the normalized volumes of valuations as the volume of subsets in σ̃.

For any fixed T ∼= (C∗)r-equivariant quasi-monomial valuation μ, we know
it is of the form (ξμ, v

(0)) where ξμ ∈ MR and v(0) is a quasi-monomial valuation
over K(Y ), such that for any function f ∈ Ru,

μ(f) = 〈ξμ, u〉+ v(0)(f)

(see Theorem 3.5(1)). We fix a lexicographic order on Zr and define for any f ∈ R,

V1(f) = min{u; f =
∑
u

fu with fu �= 0} = V1(f),

i.e., the first factor V1 comes from the toric part of μ.
We extend this Zr-valuation V1 to become a Zn-valued valuation in the fol-

lowing way: Denote uf = V1(f) ∈ σ∨ and fuf
the corresponding nonzero compo-

nent. Define V2(f) = v(0)(fuf
). Because {βi} are Q-linearly independent, we can

write V2(f) =
∑s

i=1 m
∗
i βi for a uniquely determined m∗ := m∗(fuf

) = {m∗
i :=

m∗
i (fuf

)}. Moreover, the Laurent expansion of f has the form:

fuf
= z

m∗
1

1 · · · zm
∗
s

s χm∗(z′′) +
∑

m �=m∗
zm1
1 · · · zms

s χm(z′′). (25)

Then χm∗(z′′) in the expansion of (25) is contained in C(Z), where on some model
of Y , we have Z = {z1 = 0} ∩ · · · {zs = 0} = D1 ∩ · · · ∩Ds is the center of v(0).

Extend the set {β1, . . . , βs} to d = n− r Q-linearly independent positive real
numbers {β1, . . . , βs; γ1, . . . , γd−s}. Define V3(f) = wγ(χm∗(z′′)) where wγ is the
quasi-monomial valuation with respect to the coordinates z′′ and the (d− s) tuple
{β1, . . . , βs; γ1, . . . , γd−s}.

Now we assign the lexicographic order on

G := Zr ×G2 ×G3
∼= Zr × Zs × Zn−r−s

and define G-valued valuation:

V(f) = (V1(f),V2(fuf
),V3(χm∗)). (26)

Let S be the valuative semigroup of V. Then S generates a cone σ̃ which
is the one we are looking for. We also let P1 : Rn → Rr, P2 : Rn → Rs and
P = (P1, P2) : Rn → Rr+s be the natural projections. Then P1(σ̃) = σ ⊂ Rr.

To continue, we consider how to construct some subsets ΔΞ̃t
⊂ σ̃ whose

Euclidean volume is the same as the normalized volumes of the valuations. For
any ξ ∈ int(σ), denote by wtξ the valuation associated to ξ. We can connect wtξ
and μ by a family of quasi-monomial valuations: μt = ((1− t)ξ+ tξμ, tv

(0)) defined
as

μt(f) = tv(0)(f) + 〈u, (1− t)ξ + tξμ〉 for any f ∈ Ru.
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So the vertical part of μt corresponds to the vector Ξt := ((1−t)ξ+tξμ, tβ) ∈ Rr+s.

Extend Ξt to Ξ̃t := (Ξt, 0) ∈ Rn and define the following set:

ΔΞ̃t
=
{
y ∈ σ̃; 〈y, Ξ̃t〉 ≤ 1

}
= {y ∈ σ̃; 〈P (y),Ξt〉 ≤ 1} .

Because v̂ol is rescaling invariant, we can assume A(X,D)(v) = A(X,D)(ξ) = 1.
Then by the T -invariance of vt, we easily get:

A(vt) = tA(v(0)) +A(X,D)((1− t)ξ + tζ) = tA(X,D)(v) + (1− t)A(X,D)(ξ) ≡ 1.

The Newton–Okounkov body theory implies that we have

v̂ol(vt) = vol(vt) = vol(ΔΞ̃t
).

To finish the uniqueness argument, now we only need to look at the convex
geometry of ΔΞ̃t

. We note that Ξ̃t is linear with respect to t, and each region ΔΞ̃t
is

cut out by a hyperplane Ht on the convex cone σ̃. Moreover, all Ht passes through
a fixed point. A key result from convex geometry then shows that φ(t) := vol(ΔΞ̃t

)

is strictly convex as a function of t ∈ [0, 1] (see [MSY06,Gig78]). By the assumption

φ(0) = vol(v0) = v̂ol(wtξ) is a minimum. So the strict convexity implies

φ(1) = vol(ΔΞ̃1
) = v̂ol(v) > v̂ol(wtξ) = φ(0).

4.3. Results on the general case

To treat the general case, the key idea, suggested by the degeneration conjecture,
is to understand how an arbitrary klt singularity can be degenerated to a K-
semistable Fano cone singularity. In [LX16], by localizing the setting of [LX14],
the following approach of using Kollár components is developed.

From each ideal a, we can take a dlt modification of

f : (Y,DY ) → (X,D + lct(X,D; a) · a),
where DY = f−1

∗ D + Ex(f) and for any component Ei ⊂ Ex(f) we have

AX,D(E) = lct(X,D; a) ·multEf
∗a.

There is a natural inclusion D(DY ) ⊂ Val=1
X,x, and using a similar argument as in

[LX14], we can show that there exists a Kollár component S whose rescaling in

Val=1
X,x contained in D(DY ) satisfies that

v̂ol(ordS) = volloc(−AX,D(S) · S) ≤ volloc(−KY −DY ) ≤ mult(a) · lctn(X,D; a).

Here volvol(·) is the local volume of divisors over X as defined in [Ful13]. Then
Theorem 2.6 immediately implies that

v̂ol(x,X,D) = inf{v̂ol(ordS)| S is a Kollár component over x}. (27)

Moreover, if x ∈ (X,D) admits a torus group T -action, then by degenerating to
the initial ideals, as the colengths are preserved and the log canonical thresholds
may only decrease, the infimum of the normalized multiplicities in Theorem 2.6
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can be only run over all T -equivariant ideals. Then the equivariant MMP allows
us to make all the above data Y and S be T -equivariant.

In case a minimizer is divisorial, then the above discussion shows that

Lemma 4.7 ([LX16,Blu18]). A divisorial minimizer of v̂olX,D yields a Kollár com-
ponent.

In general, we know that the minimizer is a limit of a rescaling of Kollár
components (see [LX16]). So understanding the limiting process is crucial. When
the minimizer is quasi-monomial v of rational rank r, i.e., the valuation v is étale
locally a monomial valuation with respect to a log resolution (Y,E) → X , then a
natural candidates will be the valuations given by taking rational approximations
of the monomial coordinates α ∈ Rr

>0.

Our first observation in [LX17a] is using MMP results including the ACC
of log canonical thresholds, we could construct a weak log canonical model which
extracts divisors whose coordinates are good linear Diophantine approximations
of the coordinates of v.

Proposition 4.8. For any quasi-monomial valuation v computing a log canoni-
cal threshold of a graded sequence of ideals, we can find a sequence of divisors
S1, . . . , Sr, such that

1. there is a model Y → X which precisely extracts S1, . . . , Sr over x,

2. there exists a component Z of ∩r
i=1Si such that (Y,E :=

∑r
i=1 Si) is toroidal

around the generic point η(Z),

3. v is étale locally a monomial valuation over η(Z) with respect to (Y,E) (see
Section 2.1),

4. (Y,E) is log canonical, and −KY − E is nef.

Fix the first model Y0 = Y , then one can construct a sequence of models
(Yj , Ej) satisfying Proposition 4.8 such that a suitable rescaling of the components
of Ej become closer and closer to v. To make the notation easier, we rescale v into

Val=1
X,x. Similarly, we can embed the dual complex of a dlt modification of (Yj , Ej)

into Val=1
X,x (see [dFKX17]). Our construction moreover satisfies that

DR(Y0, E0) ⊃ DR(Y1, E1) ⊃ · · ·

Then the above discussion indeed implies that

Lemma 4.9. A quasi-monomial minimizer v ∈ Val=1
X,x can be written as a limit of

cj · ordSj ∈ DR(Yj , Ej) where Si are Kollár components.

It would be natural to expect that cj ·ordSj is indeed contained in the simplex

ση(Z) ⊂ Val=1
X,x which corresponds to all the monomial valuations in Val=1

X,x over
η(Z) with respect to (Y,E). However, for now we cannot show it.

If we further assume R0 = grv(R) is finitely generated, then we have the
following
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Proposition 4.10. If R0 = grv(R) is finitely generated, then grv(R) ∼= grvi(R) for
any vi ∈ ση(Z) sufficiently close to v.

This immediately implies that (X0 := Spec(R0), D0) is semi-log-canonical
(slc). The final ingredient we need is the following

Proposition 4.11. Under the above assumptions on (X,D) and its quasi-monomial
minimizer v, then ξv is a minimizer of (X0, D0). In particular,

v̂ol(x,X,D) = v̂ol(o,X0, D0).

Proof. We claim that ξv is indeed a minimizer of v̂olX0,D0 . If not, we can find
a degeneration (Y,DY , ξY ) induced by an irreducible anti-ample divisor E over
o′ ∈ X0 with

v̂olY (ξE) = v̂olX0(ordE) < v̂olX0(ξv) = v̂olY (ξY ).

This is clear by our discussion when (X0, D0) is klt. The same thing still holds
when the model extracting Sj is only log canonical but not plt, which implies that
(X0, D0) is semi-log-canonical but not klt. In fact, denote by (Xn

0 , D
n
0 ) → (X0, D0)

the normalization, then Lemma 4.13 implies that

v̂ol(o′, X0, D0) :=
∑

oi→o′
v̂ol(oi, X

n
0 , D

n
0 ) = 0

in this case. The argument in [LX17a, Lemma 4.13] then says in this case, we
can still extract an equivariant anti-ample irreducible divisor E over o′ ∈ X0 with

v̂ol(ordE) arbitrarily small.
Then Lemma 4.12 shows that we can construct a degeneration from (X,D) to

(Y,DY ) and a family of valuations vt ∈ ValX,x for t ∈ [0, ε] (for some 0 < ε ) 1),
with the property that

v̂olX(vt) = v̂olY (ξY − tη) < v̂olY (ξY ) = v̂olX0(ξv) = v̂olX(v),

where for the second inequality, we use again the fact that v̂olY (ξY − t · η) is a
convex function in this setting as well. But this is a contradiction. �

Lemma 4.12. Let (x ∈ X) ⊂ (0 ∈ CN ) be a closed affine variety. If λ1 ∈ NN is
a coweight of (C∗)N which gives an action degenerating X to X0 when t → 0,
and λ2 ∈ NN degenerates X0 to Y when t → 0, then for k ∈ N sufficiently large,
kλ1 + λ2 degenerates X to Y0.

The proof was essentially given in [LX16, Section 6] (see also [LWX18, Lemma
3.1]) and uses some argument in the study of toric degenerations (see, e.g., [And13,
Section 5]).

Lemma 4.13. If o ∈ (X,D) is an lc but not klt point, then

v̂ol(o,X,D) := inf
v∈ValX,o

v̂ol(v) = 0.
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Proof. Let πdlt : (Xdlt, Ddlt) → (X,D) be a dlt modification and pick o′′ a preim-

age of o under πdlt, then v̂ol(o′′, Xdlt, Ddlt) ≥ v̂ol(o,X,D), thus we can assume
(Xdlt, Ddlt) is dlt Q-factorial.

By specializing a sequence of points, and applying Theorem 2.11, we can
assume o ∈ (X,D) is a point on a smooth variety with a smooth reduced divisor
D. Now we can take a weighted blow up of (1, ε, . . . , ε) where the first coordinate
yields D. Then the exceptional divisor E has its normalized volume

v̂ol(E) =
(n− 1)nεn

εn−1
= (n− 1)nε → 0 as ε → 0. �

This implies that (X0, D0) is klt and (X0, D0, ξv) is aK-semistable Fano cone.
To summarize, we have shown Part (a) in the following theorem which characterize
what we know about the Stable Degeneration Conjecture 4.1 for a general klt
singularity.

Theorem 4.14 ([LX17a, Theorem 1.1]). Let x ∈ (X,D) be a klt singularity. Let v

be a quasi-monomial valuation in ValX,x that minimizes v̂ol(X,D) and has a finitely
generated associated graded ring grv(R) (which is always true if the rational rank
of v is one by Lemma 4.7). Then the following properties hold:

(a) The degeneration
(
X0 =defn Spec

(
grv(R)

)
, D0, ξv

)
is a K-semistable Fano

cone, i.e., v is a K-semistable valuation;

(b) Let v′ be another quasi-monomial valuation in ValX,x that minimizes v̂ol(X,D).
Then v′ is a rescaling of v.

Conversely, any quasi-monomial valuation that satisfies (a) above is a minimizer.

Proof. We first show the uniqueness in general, under the assumption that it ad-
mits a degeneration (X0, D0, ξv) given by a K-semistable minimizer v. For another
quasi-monomial minimizer v′ of rank r′, by a combination of the Diophantine ap-
proximation and an MMP construction including the application of ACC of log
canonical thresholds (see Proposition 4.8), we can obtain a model f : Z → X
which extracts r′ divisors Ei (i = 1, . . . , r′) such that (Z,DZ =defn

∑
Ei + f−1

∗ D)
is log canonical. Moreover, the quasi-monomial valuation v′ can be computed at
the generic point of a component of the intersection of Ei, along which (Z,DZ) is
toroidal. Then with the help of the MMP, one can show Z → X degenerates to a
birational morphism Z0 → X0. Moreover, there exists a quasi-monomial valuation
w computed on Y0 which can be considered as a degeneration of v′ with

v̂olX0(w) = v̂olX(v′) = v̂olX(v) = v̂olX0(ξv).

Thus w = ξv by Section 4.2.3 after a rescaling. Since w(in(f)) ≥ v′(f) and
vol(w) = vol(v′), we may argue this implies

ξv(in(f)) = v′(f)

(see [LX17a, Section 4.3]). Therefore, v′ is uniquely determined by ξv.



A Guided Tour to Normalized Volume 199

To show the last statement, we already know it for a cone singularity. For
a valuation v on a general singularity X such that the degeneration (X0, D0, ξv)
is K-semistable, since the degeneration to the initial ideal argument implies that

v̂ol(x,X,D) ≥ v̂ol(o,X0, D0), then

v̂olX(v) = v̂olX0(ξv) = v̂ol(o,X0, D0)

is equal to v̂ol(x,X,D). �
So in other words, the stable degeneration conjecture precisely predicts the

following two sets coincide:{
Minimizers of v̂ol

}
←→

{
K-semistable valuations

}
.

Theorem 2.8 and Theorem 4.14 together imply the existence of the left-hand side
and the uniqueness of the right-hand side, as well as the direction that any K-
semistable valuation is a minimizer.

Finally, let us conclude this section with the two-dimensional case.

Theorem 4.15. Let (X,D, x) be a two-dimensional log terminal singularity. The
Stable Degeneration Conjecture 4.1 holds for (X,D). Moreover, if D is a Q-divisor,

then the minimizer of v̂ol(X,D) is always divisorial.

Proof. We first consider the case when X = C2. Let v∗ be a minimizer and denote
a• = {am(v∗)}m∈N. Then it was known that v∗ computes the log canonical thresh-
old of (X,D+ a•). By a similar argument as in [JM12], we know that v∗ must be
quasi-monomial.

If v∗ is divisorial, then we know that the associated divisor is a Kollár com-
ponent. Otherwise, v∗ satisfies rat.rk.(v∗) = 2 and tr.deg.(v∗) = 0. From the
description of valuations on C2 using sequences of key polynomials (SKP), it was
showed that the valuative semigroup Γ of v∗ is finitely generated (see [FJ04, The-
orem 2.28]). Since the residual field of v∗ is C, we know that grv∗R

∼= C[Γ], which
is finitely generated. By [LX17a], we know that v∗ is indeed the unique minimizer

of v̂ol (up to scaling) which is a K-semistable valuation.
If D is a Q-divisor and v∗ is not divisorial, then the pair (X0, D0) is a Q-

Gorenstein toric pair with Q-boundary toric divisor and the associated Reeb vector
field ξv∗ solves the convex geometric problem. But in dimension two case (i.e., on
the plane), it is easy to see that the corresponding convex geometric problem as
discussed in section 4.2.3 for toric valuations always has a rational solution. This
is a contradiction to v∗ being non-divisorial.

More generally, we know that X = C2/G where G is a finite group acting

on C2 without pseudo-reflections. Consider the covering (C2, D̃, 0) → (X,D, x).

Then by the above discussion, there exists a unique minimizer v∗ of v̂ol(C2,D̃,0).

In particular, v∗ is invariant under the G-action. So it descends to a minimizer of

v̂ol(X,D,x) which is quasi-monomial and has a finitely generated associated graded
ring. �
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5. Applications

In this section, we give some applications of the normalized volume. We have seen
that the normalized volume question of a cone singularity is closely related the K-
semistability of the base. Another situation where singularities naturally appear
is on the limit of smooth Fano manifolds.

5.1. Equivariant K-semistability of Fano

An interesting application of the minimizing theory is to treat the equivariant
K-semistability.

Definition 5.1. A log Fano pair (S,B) with a G-action is called G-equivariant
K-semistable, if for anyG-equivariant test configuration (S,B), the generalized Fu-
taki invariant Fut(S,B) ≥ 0. We can similarly defineG-equivariantK-polystability.

The notion of usual K-(semi,poly)stability trivially implies the equivariant
one. It is a natural question to ask whether they are equivalent, and if it is con-
firmed it will reduce the problem of verifying K-stability into a much simpler ones
if the log Fano pair carries a large symmetry. When S is smooth and B = 0, this
is proved in [DS16], using an analytic argument. Here we want to explain how our
approach can give a proof of such an equivalence when G = T is a torus group.

The key is the fact we obtain in (22) and (27) : let x ∈ (X,D) be a klt
singularity which admits a T action for a torus group T , then

inf
v∈ValX,x

v̂ol(v) = {inf(v̂ol(ordS))| T -equivariant Kollár components S}. (28)

So if (S,B) is not K-semistable, by Theorem 4.2, we know that over the
cone x ∈ (X,D), the valuation ordS∞ obtained by the canonical blow up does
not give a minimizer. By (28), there exists a T -equivariant valuation v such that

v̂ol(v) < v̂ol(ordS∞). So we can find a T -equivariant Kollár component S such that

v̂ol(ordS) < v̂ol(ordS∞). Then arguing as before, we can find a T -equivariant test
configuration (S,B) with Fut(S,B) < 0.

To prove a similar statement for K-polystability is more delicate. Assume a
K-semistable log pair (S,B) admits a test configuration (S,B) with Fut(S,B) = 0.
We still take the cone construction of a K-semistable log Fano pair as before. The
special test configuration determines a ray vt of valuations in ValX,x, emanating
from the canonical component v0 = ordS∞ . Using the fact that the Futaki invariant
is 0, a minimal model program argument shows that this implies for t ) 1, vt is
automatically C∗-equivariant, which immediately implies the test configuration
is C∗-equivariant. Therefore we show the following result (also see [CS16] for an
earlier attempt).

Theorem 5.2 ([LX16,LWX18]). The K-semistability (resp. K-polystability) of a log
Fano pair (S,B) is equivalent to the T -equivariant K-semistablity (T -equivariant
K-polystablity) for any torus group T acting on (S,B).
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For other groups G, e.g., finite groups or general reductive groups, we have
not proved the corresponding result as (28). It is a consequence of the uniqueness
part of the stable degeneration conjecture. We also note that in [LX17a], it is
proved that quasi-monomial minimizers over a T -equivariant klt singularity are
automatically T -invariant.

5.2. Donaldson–Sun’s Conjecture

One major application of what we know about the stable degeneration conjec-
ture, formulated in Theorem 4.14, is the solution of [DS17, Conjecture 3.22] (see
Conjecture 5.3), which predicts that for a singularity appearing on a Gromov–
Hausdorff limit of Kähler–Einstein metrics, its metric tangent cone only depends
on the algebraic structure of the singularity. In this section, we briefly explain the
idea.

5.2.1. K-semistable degeneration. Let (Mk, gk) be a sequence of Kähler–Einstein
manifolds with positive curvature. Then possibly taking a subsequence, (Mk, gk)
converges in the Gromov–Hausdorff topology to a limit metric space (X, d∞). By
the work of Donaldson–Sun and Tian, X is homeomorphic to a Q-Fano variety.
For any point x ∈ X , a metric tangent cone CxX is defined as a pointed Gromov–
Hausdorff limit:

CxX = lim
rk→0

(
X, x,

d∞
rk

)
. (29)

By Cheeger–Colding’s theory, CxX is always a metric cone. By [CCT02], the real
codimension of singularity set of CxX is at least 4 and the regular part admits
a Ricci-flat Kähler cone structure. In [DS17], it is further proved that CxX is an
affine variety with an effective torus action. They proved that CxX is uniquely
determined by the metric structure d∞ and can be obtained in the following steps.
In the first step, they defined a filtration {Fλ}λ∈S of the local ring R = OX,o

using the limiting metric structure d∞. Here S is a set of positive numbers that
they called the holomorphic spectrum which depends on the torus action on the
metric tangent cone C. In the second step, they proved that the associated graded
ring of {Fλ} is finitely generated and hence defines an affine variety, denoted by
W . In the last step, they showed that W equivariantly degenerates to C. Notice
that this process depends crucially on the limiting metric d∞ on X . They then
made the following conjecture.

Conjecture 5.3 (Donaldson–Sun). Both W and C depend only on the algebraic
germ structure of X near x.

We made the following observations:

1. {Fλ} comes from a valuation v0. This is due to the fact thatW is a normal va-
riety. More explicitly, since the question is local, we can assume X = Spec(R)
with the germ of x ∈ X , by the work in [DS17], one can embed both X and C
into a common ambient space CN , and v0 on X is induced by the monomial
valuation wtξ0 where ξ0 is the linear holomorphic vector field with 2Im(ξ0)
being the Reeb vector field of the Ricci flat Kähler cone metric on C. By this
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construction, it is clear that the induced valuation by v0 on W is nothing
but wtξ0 .

2. v0 is a quasi-monomial valuation. This follows from Lemma 2.7.

More importantly we conjectured in [Li18a] that v0 can be characterized as

the unique minimizer of v̂olX,x. As a corollary of the theory developed so far, we
can already confirm [DS17, Conjecture 3.22] for W .

Theorem 5.4 ([LX17a]). The semistable cone W in Donaldson–Sun’s construction
depends on the algebraic structure of (X, x).

The proof consists of the following steps consisting of analytic and algebraic
arguments:

1. By Theorem 3.17, (C, ξ0) is K-polystable and in particular K-semistable. By

Theorem 4.6, wtξ0 is a minimizer of v̂olC .
2. By Proposition 5.5, (W, ξ0) is K-semistable. By Theorem 4.6 again, wtξ0 is

a minimizer of v̂olW . Moreover, by Theorem 4.14, v0 is a minimizer of v̂olX .

3. v0 is a quasi-monomial minimizer of v̂olX with a finitely generated associated
graded ring. By Theorem 4.14, such a v0 is indeed the unique minimizer of

v̂ol among all quasi-monomial valuations.

The following is an immediate consequence of Theorem 4.6.

Proposition 5.5. Assume there is a special degeneration of a log-Fano cone (X,D,ξ0)
to (X0, D0, ξ0). Assume that (X0, D0, ξ0) is K-semistable, then (X,D, ξ0) is also

K-semistable, or equivalently, wtξ0 is the minimizer of v̂ol(X,D,x).

Asssume (X, x) lives on a Gromov–Hausdorff limit of Kähler–Einstein Fano
manifold. Then we can define the volume density in the sense of Geometric Measure
Theory as the following quantity:

Θ(x,X) = lim
r→0

Vol(Br(x))

r2nVol(B1(0)
. (30)

Note that nn = v̂ol(0,Cn). The normalized volumes of klt singularities on Gromov–
Hausdorff limits have the following differential geometric meaning:

Theorem 5.6 ([LX17a]). With the same notation as above, we have the identity:

v̂ol(x,X) /nn = Θ(x,X). (31)

Proof. From the standard metric geometry, we have Θ(x,X) = Θ(oC , C). Because
C admits a Ricci-flat Kähler cone metric, by Theorem 3.17, (C, ξ0) isK-semistable.

v̂ol(x,X) = v̂ol(oC , C).
On the other hand, since C is a metric cone, from the definition of the volume

of ξ0 = 1
2 (r∂r − iJ(r∂r)) is equal to:

Θ(oC , C) =
Vol(C ∩ {r = 1})

Vol(S2n−1)
= vol(ξ0).

By Theorem 3.16, A(wtξ0) = n and v̂ol(oC , C) = nnvol(ξ0) = nnΘ(oC , C). �
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5.2.2. Uniqueness of polystable degeneration. To confirm Donaldson–Sun’s con-
jecture, we also need to prove the uniqueness of polystable degenerations for K-
semistable Fano cones.

Since a Fano cone singularity (C, ξ) with a Ricci-flat Kähler cone metric
is always K-polystable (see [CS15, Theorem 7.1] and also Theorem 3.17), once
knowing that W only depends on the algebraic structure of o ∈ M∞, an affirmative
answer to Conjecture 5.3 follows from the following more general result by letting
(X,D, ξ0) = (W, ∅, ξ0):

Theorem 5.7 ([LWX18]). Given aK-semistable log Fano cone singularity (X,D,ξ0),
there always exists a special test configuration (X ,D, ξ0; η) which degenerates
(X,D, ξ0) to a K-polystable log Fano cone singularity (X0, D0, ξ0). Furthermore,
such (X0, D0, ξ0) is uniquely determined by (X,D, ξ0) up to isomorphism.

For the special case of smooth (or Q-Gorenstein smoothable) Fano varieties,
this was proved in [LWX14, 7.1] based on analytic results which also show the
uniqueness of Gromov–Hausdorff limit for a flat family of Fano Kähler–Einstein
manifolds. Our proof of Theorem 5.7 is however a completely new algebraic argu-
ment.

We briefly discuss the idea to prove Theorem 5.7 in [LWX18], which heavily
depends on the study of normalized volumes as discussed in Section 4.2.

Let (X (i), D(i), ξ0, η
(i)), (i = 1, 2), be two special test configurations of the log

Fano cone (X,D, ξ0) with the central fibre (X
(i)
0 , D

(i)
0 , ξ0). To show Theorem 5.7,

the main step is to show that if Fut(X (i),D(i), ξ0; η
(i)) = 0, (i = 1, 2), then there

exist special test configurations (X ′(i),D′(i)) of (X
(i)
0 , D

(i)
0 ) such that (X ′(i),D′(i))

have isomorphic central fibres, which we will describe below.
We consider the normalized volume functional defined on the valuation space

ValX,x over the vertex x of the cone X . Then (X (1),D(1), ξ0; η
(1)) determines a

“ray” of valuations emanating from the toric valuation wtξ0 and the generalized

Futaki invariant Fut(X (1),D(1), ξ0; η
(1)) is the derivative of the normalized volume

at wtξ0 along this ray.

(X
(2)
0 , D

(2)
0 )

(X ′(2),D′(2))

��
��
��
��
��

(X,D)
(X (2),D(2))←−Y(2)

k ←−E(2)
k�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

(X (1),D(1))←Yk←Ek=Ek×C
1

�� ��
��
��
��

Yk ← Ek
��

(X ′
0, D

′
0) (X

(1)
0 , D

(1)
0 )

(X ′(1),D′(1))�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� Yk,0 ← Ek
��

(32)

We can approximate ξ0 by a sequence of integral vectors ξ̃k such that |ξ̃k −
kξ0| ≤ C. For k * 1, the vector ξ̃k−η corresponds to a Kollár component Ek over
X . Our key argument is to show that Ek can be degenerated along (X (2),D(2)) to

get a model Y(2)
k → X (2) with an exceptional divisor E(2)

k such that (Y(2)
k , E(2)

k )×C

C∗ ∼= (Yk, Ek) × C∗ where the isomorphism is compatible with the equivariant
isomorphism of the second special test configuration. Note that Ek×C∗ determines
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a divisorial valuation over X × C∗ and hence over (X (2),D(2)). So the goal is to
show that this divisorial valuation can be extracted as the only exceptional divisor
over X (2). By the work in the minimal model program (MMP) (see [BCHM10]),
this would be true if there is a graded sequence of ideals A• and a positive real
number c′k such that two conditions are satisfied:

(X (2),D(2) + c′kA•) is klt and A(Ek × C;X (2),D(2) + c′kA•) < 1,

where A(Ek ×C;X (2),D(2) + c′kA•) is the log discrepancy of (the birational trans-

form of) Ek × C with respect to the triple (X (2),D(2) + c′kA•).
To find such an A•, we look at the graded sequence of valuative ideals {a•}

of ordEk
and its equivariant degeneration along the second special test config-

uration (X (2),D(2)). The resulting graded sequence of ideals over X (2) will be
denoted by A•. Using the study in Section 4.2 one can show the assumptions that
(X (1),D(1); ξ0) is K-semistable and Fut(X (1),D(1), ξ0; η) = 0 implies

f(k) := v̂ol(Ek) is of the order f(0) +O(k−2).

This in turn guarantees that we can find c′k satisfying the above two conditions.

Applying the relative Rees algebra construction to E(2)
k ⊂ Y(2)

k /C, we get

a family over C2, which over C × {t} is the same as (X (1),D(1)) for t �= 0 and

gives a degeneration of (X
(1)
0 , D

(1)
0 ) for t = 0. On the other hand, over {0} × C,

we get a degeneration of (X
(2)
0 , D

(2)
0 ). Therefore, we indeed show that the two

special fibers of two special test configurations (X (i),D(i), ξ0; η
(i)) (i = 1, 2) with

Fut(X (i),D(i), ξ0; η
(i)) = 0 will have a common degeneration.

5.3. Estimates in dimension three and K-stability of threefolds

In general, it is not so easy to find the minimizer of v̂ol(·) for a given singularity.
A number of cases have been computed in [Li18a, LL19, LX16, LX17a, LX17b]
including quotient singularities, ADE singularities in all dimensions (except four-
dimensional D4) etc.

Here we study normalized volumes of threefold klt singularities, and then give
a global application where we show that all GIT semi-stable (resp. polystable) cu-
bic threefolds are also K-semi-stable (resp. K-polystable). Our main estimate is
in Theorem 5.8, which heavily depends on classifications of canonical threefold
singularities.

Theorem 5.8 ([LX17b]). Let x ∈ X be a three-dimensional non-smooth klt sin-

gularity. Then v̂ol(x,X) ≤ 16 and the equality holds if and only if it is an A1

singularity;

The proof of Theorem 5.8 heavily relies on the classification theory of three-
dimensional canonical and terminal singularities, developed in the investigation of
explicit three-dimensional MMP.

The idea goes as follows. Firstly, we reduce to the case of Gorenstein canonical

singularity. If x ∈ X is not Gorenstein, let us take the index one cover x̃ ∈ X̃ of
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x ∈ X . Hence x̃ ∈ X̃ is a Gorenstein canonical singularity. If x̃ ∈ X̃ is smooth, then

v̂ol(x,X) = 27/ind(x,KX) ≤ 13.5 < 16. If x̃ ∈ X̃ is not smooth, the a weak version

of finite degree formula (Proposition 5.10) implies that v̂ol(x,X) < v̂ol(x̃, X̃).
Next, let us assume that x ∈ X is Gorenstein canonical. By [KM98, Propo-

sition 2.36], there exist only finitely many crepant exceptional divisors over X .
By [BCHM10], we can extract these divisors simultaneously on a birational model
Y1 → X . If none of these exceptional divisors are centered at x, then [KM98, The-
orem 5.34] implies that x ∈ X is a cDV singularity, hence lct(mx) ≤ 4−mult(mx)
which implies

v̂ol(x,X) ≤ lct(mx)
3mult(mx) ≤ (4−mult(mx))

3mult(mx) ≤ 16.

The equality case can be characterized using the volume of birational models
approach in [LX16]. If some crepant exceptional divisor E1 ⊂ Y1 is centered at x,
then let us run (Y1, εE1)-MMP over X for 0 ) ε < 1. By [Kol13, 1.35], this MMP

will terminate as Y1 ��� Y
g−→ Y ′, where Y1 ��� Y is the composition of a sequence

of flips, and g : Y → Y ′ contracts the birational transform E of E1. If g(E) is
a curve, then Y ′ has cDV singularities along g(E) by [KM98, Theorem 5.34]. By
choosing a point y′ ∈ g(E), we have

v̂ol(x,X) < v̂ol(y′, Y ′) ≤ 16.

If g(E) = y′ is a point, then we still have v̂ol(x,X) < v̂ol(y′, Y ′). Thus it suffices

to show v̂ol(y′, Y ′) < 16.
If Y has a singular point y ∈ E, then we know that y ∈ Y is a cDV singularity.

Hence
v̂ol(y′, Y ′) < v̂ol(y, Y ) ≤ 16.

So we may assume that Y is smooth along E. In particular, E is a (possibly non-
normal) reduced Gorenstein del Pezzo surface. If E is normal, then classification
of such surfaces show that (−KE)

2 ≤ 9. Thus

v̂ol(y′, Y ′) ≤ AY ′(ordE)
3vol(ordE) = (−KE)

2 ≤ 9 < 16.

If E is non-normal, then from Reid’s classification [Rei94] either (−KE)
2 ≤ 4

or the normalization of E is a Hirzebruch surface. In the former case, we have

v̂ol(y′, Y ′) ≤ 4. In the latter case, we need to take a general fiber l of E and argue

that v̂olY ′,y′(ordl) ≤ 16.
Here are some intermediate results in proving Theorem 5.8.

Proposition 5.9. Let φ : (Y, y) → (X, x) be a birational morphism of klt singulari-

ties such that y ∈ Ex(φ). If KY ≤ φ∗KX, then v̂ol(x,X) < v̂ol(y, Y ).

See Conjecture 6.4 for more discussions about the following proposition.

Proposition 5.10. Let π : (X̃, x̃) → (X, x) be a finite quasi-étale morphism of klt
singularities of degree at least 2. Then we have

v̂ol(x,X) < v̂ol(x̃, X̃) ≤ deg(π) · v̂ol(x,X).
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As mentioned [SS17], one main application of the local volume estimate The-
orem 5.8 is to the K-stability question of cubic threefolds.

Theorem 5.11 ([LX17b]). A cubic threefold is K-(poly/semi)stable if and only if it
is GIT (poly/semi)stable. In particular, any smooth cubic threefold is K-stable.

The general strategy to prove Theorem 5.11 is via the comparison of moduli
spaces which has first appeared in [MM93] built on the work of [Tia90]. Later it
was also applied in [OSS16,SS17].

First, one can construct a proper algebraic space which is a good quotient
moduli space with closed points parametrizing all smoothable K-polystable Q-
Fano varieties (see, e.g., [LWX14,Oda15]). Let M be the closed subspace whose
closed points parametrize KE cubic threefolds and their K-polystable limits. By
[Tia87], we know that at least one cubic threefold, namely the Fermat cubic three-
fold, admits a KE metric. Hence M is non-empty. By the Zariski openness of K-
(semi)stability of smoothable Fano varieties (cf. [Oda15,LWX14]), the K-moduli
space M is birational to the GIT moduli space MGIT of cubic threefolds.

Next, we will show that any K-semistable limit X of a family of cubic three-
folds {Xt} over a punctured curve is necessarily a cubic threefold. The idea is to
control the singularity of X use an inequality from [Liu18] (see Theorem 5.12) be-
tween the global volume of a K-semistable Fano variety and the local normalized
volume. Since the volume of X is the same as the volume of a cubic 3-fold which
is 24, Theorem 5.12 immediately implies that v̂ol(x,X) ≥ 81

8 for any closed point
x ∈ X . The limit X carries a Q-Cartier Weil divisor L which is the flat limit of
hyperplane sections in the cubic threefolds Xt. It is clear that −KX ∼Q 2L and
(L3) = 3, thus once we show that L is Cartier, we can claim that X is a cubic
threefold using a result of T. Fujita.

Assume to the contrary that L is not Cartier at some point x ∈ X , then

we may take the index 1 cover (x̃ ∈ X̃) → (x ∈ X) of L. From the finite degree
formula Theorem 6.5,

v̂ol(x̃, X̃) = ind(L) · v̂ol(x,X) ≥ 81/4.

Hence x̃ ∈ X̃ is a smooth point and ind(L) = 2 by Theorem 5.8. Thus x ∈ X is a
quotient singularity of type 1

2 (1, 1, 0) from the smoothable condition. Then using
the local Grothendieck–Lefschetz theorem, we can show that L is indeed Cartier
at x ∈ X which is a contradiction.

So far we have shown that any K-polystable point X in M is a cubic
threefold. By an argument of Paul and Tian in [Tia94], we know that any K-
(poly/semi)stable hypersurface is GIT (poly/semi)stable. Thus we obtain an in-
jective birational morphism M → MGIT between proper algebraic spaces. This
implies that M is isomorphic to MGIT which finishes the proof.
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Theorem 5.12 ([Liu18]). Let X be an n-dimensional K-semistable Fano variety.
Then for any closed point x ∈ X, we have

(−KX)n ≤
(
1 +

1

n

)n

v̂ol(x,X).

When X is smooth, the above result was first proved in [Fuj18].

6. Questions and future research

6.1. Revisit stable degeneration conjecture

The following two parts of stable degeneration conjecture, proposed in [Li18a], are
still missing.

Conjecture 6.1 (Quasi-monomial). Let x ∈ (X,D) be a klt singularity. Any mini-

mizer of v̂ol(X,D),x is quasi-monomial.

Conjecture 6.2 (Finite generation). Let x ∈ (X = Spec(R), D) be a klt singularity.

Any minimizer of v̂ol(X,D),x has its associated graded ring grv(R) to be finitely
generated.

Due to the fundamental role of the stable degeneration conjecture, it im-
plies many other interesting properties. We discuss a number of special cases or
consequences, with the hope that some of them might be solved first.

One interesting consequence of the uniqueness of the minimizer is the follow-
ing

Conjecture 6.3 (Group action). If there is a group G acting on the klt singularity
x ∈ (X,D) such that x is a fixed point, then there exists a G-invariant minimizer.

Applying this conjecture to a cone singularity, it implies that to test the
K-semistability of a log Fano (S,B) with a G-action, we only need to test on
G-equivariant test configurations, a fact known for a Fano manifold X and G-
reductive.

There are two special cases naturally appearing in contexts. The first one
is that when G is a torus group T . It follows the argument in [Blu18] and the
techniques of degenerating ideals to their initials, that there is a T -equivariant
minimizer. This is the philosophy behind Section 5.1. It also follows from [LX17a]
that any quasi-monomial minimizer is T -equivariant.

A more challenging case is when G is a finite group. Indeed, Conjecture 6.3
for finite group G implies the following finite degree formula.

Conjecture 6.4 (Finite degree formula). If π : (y ∈ Y,D′) → (x ∈ X,D) is a
dominant finite morphism between klt singularities, such that KY +D′ = π∗(KX+
D), then

deg(π) · v̂ol(x,X,D) = v̂ol(y, Y,D′).
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This is useful when we want to bound the klt singularities x ∈ (X,D) with a
large volume.

Theorem 6.5 ([LX17a]). Conjecture 6.4 is true when (X, x) is on a Gromov–
Hausdorff limit of Kähler–Einstein Fano manifolds.

Proof. Let π = πX : (Y, y) → (X, x) be a quasi-étale morphism, i.e., πX is étale
in codimension one. Then πX induces a quasi-étale morphism along the 2-step
degeneration of X .

Y ����
πX��

WY
����

πW��

CY

πC��
X ������ W ������ C

(33)

We can use the above diagram to prove the degree multiplication formula. Roughly
speaking, because C admits a Ricci-flat Kähler cone metric ωC with radius function
r2 and πC is quasi-étale, we can pull back it to get π∗

Cr
2 which is also a potential

for a weak Ricci-flat Kähler cone metric ωCY . By Theorem 3.17, Theorem 4.6 and
Theorem 4.14, we know that the Reeb vector field associated to ωC (resp. ωCY )

induces minimizing valuations of v̂olX (resp. v̂olY ). So we get

v̂ol(y, Y ) = v̂ol(oCY , CY ) = deg(πC) · v̂ol(oC , C) = deg(πC) · v̂ol(x,X). �

Another consequence of the stable degeneration conjecture is the following
strengthening of Theorem 2.11.

Conjecture 6.6. Let π : (X ,D) → T together with a section t ∈ T �→ xt ∈ Xt be a

Q-Gorenstein flat family of klt singularities. Then the function t �→ v̂ol(xt,Xt,Dt)
is constructible with respect to the Zariski topology.

Besides the stable degeneration conjecture, to prove Conjecture 6.6, we also
need to know the well-expected speculation that K-semistability is an open con-
dition. It is also natural to consider the volume of non-closed point. However,
the following conjecture says after the right scaling, it does not contribute more
information.

Conjecture 6.7. If a klt pair (X,D) has a non-closed point η, and let Z = {η} has
dimension d. Pick a general closed point x ∈ Z, then

v̂ol(x,X,D) = v̂ol(η,X,D) · nn

(n− d)n−d
.

In fact, combining the argument in [LZ18], for any valuation v ∈ ValX such
that its center Z = CenterX(v) on X is of dimension d and x ∈ Z, denoted by η
is the generic point of Z, one can show that

v̂ol(X,D),η(v) · nn

(n− d)n−d
≥ v̂ol(x,X,D),
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i.e.,

v̂ol(x,X,D) = inf
v

{
nn · v̂ol(X,D),η(v)

(n− d)n−d
| x ∈ Z = {η} = CenterX(v), dim(Z) = d

}
.

6.2. Birational geometry study

A different invariant attached to a klt singularities, called the minimal log discrep-
ancy has been intensively studied in the minimal model program, though there are
still many deep questions unanswered. We can formulate many similar questions

for v̂ol.

6.2.1. Inversion of adjunction. One could look for a theory of the change of the
volumes when the klt pair is ‘close’ to a log canonical singularities, using the
inversion of adjunction. We have some results along this line.

Proposition 6.8. Let x ∈ (X,Δ) be an n-dimensional klt singularity. Let D be a
normal Q-Cartier divisor containing x such that (X,D+Δ) is plt. Denote by ΔD

the different of Δ on D. Then

lim
ε→0+

v̂ol(x,X, (1− ε)D +Δ)

nnε
=

v̂ol(x,D,ΔD)

(n− 1)n−1
.

Proof. Using the degeneration argument in [LZ18], we know that

ε−1v̂ol(x,X, (1 − ε)D +Δ) ≥ nn

(n− 1)n−1
v̂ol(x,D,ΔD).

Hence it suffices to show the reverse inequality is true after taking limits. Let us
pick an arbitrary Kollár component S over x ∈ (D,ΔD) with valuation ideals
am := am(ordS). Choose m sufficiently divisible so that aim = aim for any i ∈ N.
Then we know that lct(D,ΔD; am) = AX(ordS)/m =: c. Let bm be the pull-
back ideal of am on X . By inversion of adjunction, we have lct(X,D +Δ; bm) =
lct(D,ΔD; am) = c.

Let E be an exceptional divisor over X computing lct(X,D +Δ; bm). Then
E is centered at x ∈ X since (X,D + Δ) is plt. For ε1 > 0 sufficiently small, we
have that (X,Δ + (1 − ε1)(D + c · bm)) is a klt pair over which the discrepancy
of E is negative. Thus [BCHM10] implies that there exists a proper birational
model μ : Y → X which only extracts E. Moreover, μ : Y → X is a log canonical

modification of (X,Δ+D + c · bm). Let D̃ be the normalization of μ−1
∗ D. Then

by adjunction, the lifting morphism μ̃ : D̃ → D is a log canonical (in fact plt)
modification of (D,ΔD+c ·am). Since BlamD → D provides a model of the Kollár
component S, this is the only log canonical modification of (D,ΔD+c ·am). Hence

E|D̃ = S and (D̃, μ̃−1
∗ ΔD+E|D̃) is plt. Then by inversion of adjunction, (Y, μ−1

∗ Δ+

μ−1
∗ D + E) is qdlt and μ−1

∗ D = D̃ is normal. Note that all the constructions so
far are independent of the choice of ε.

Over the qdlt model (Y, μ−1
∗ Δ+ μ−1

∗ D + E), we consider a quasi-monomial

valuation vλ of weights 1 and λ along divisors D̃ and E respectively. By adjunction,
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we know that A(X,Δ)(ordE) = A(D,ΔD)(ordS) + ordE(D). Hence computation
shows that

A(X,Δ+(1−ε)D)(vλ) = λA(D,ΔD)(ordS) + λε · ordE(D) + ε.

Then using the Okounkov body description of the volume (see [LM09,KK12]), we
easily see that vol(vλ) ≤ λ1−nvol(ordS). Hence

v̂ol(X,Δ+(1−ε)D)(vλ) ≤ λ1−n((A(D,ΔD)(ordS) + ε · ordE(D))λ + ε)nvol(ordS)

=: φ(λ).

It is easy to see that φ(λ) reaches its minimum at

λ0 =
(n− 1)ε

AD,ΔD(ordS) + ε · ordE(D)
.

Hence computation shows

ε−1v̂ol(X,Δ+(1−ε)D)(vλ0 ) ≤
nn

(n− 1)n−1
(A(D,ΔD)(ordS)+ ε ·ordE(D))n−1vol(ordS).

Thus

lim sup
ε→0

ε−1v̂ol(x,X,Δ+ (1− ε)D) ≤ nn

(n− 1)n−1
v̂ol(D,ΔD)(ordS).

Since this inequality holds for any Kollár component S over x ∈ (D,ΔD), the
proof is finished. �

When the center is zero-dimensional, we also have

Proposition 6.9. Let x ∈ (X,Δ) be a klt singularity. Let D ≥ 0 be a Q-Cartier
divisor such that (X,Δ+D) is log canonical with {x} being the minimal non-klt
center. Then there exists ε0 > 0 (depending only on the coefficient of Δ, D and n)
and a quasi-monomial valuation v ∈ ValX,x such that v computes both lct(X,Δ;D)

and v̂ol(x,X,Δ+ (1− ε)D) for any 0 < ε < ε0. In particular,

v̂ol(x,X,Δ+ (1 − ε)D) = v̂olx,(X,Δ)(v) · εn for any 0 < ε < ε0.

Proof. Let Y dlt → X be a dlt modification of (X,Δ+D). Let KY dlt +Δdlt be the
log pull back ofKX+Δ+D. Then by [dFKX17], the dual complexDR(Δdlt) form a

natural subspace of Val=1
X,x. Any divisorial valuation ordE computing lct(X,Δ;D)

corresponds to a rescaling of a valuation in DR(Δdlt). Consider the function volX :
DR(Δdlt) → R>0 ∪ {+∞}. Denote by DR◦(Δdlt) the open subset of DR(Δdlt)
consisting of valuations centered at x. Since {x} is the minimal non-klt center
of (X,Δ + D), we know that DR◦(Δdlt) is non-empty. By [BFJ14] the function
vol is continuous on DR(Δdlt), so we can take a vol-minimizing valuation v ∈
DR◦(Δdlt). Hence v is a minimizer of v̂ol restricted to DR◦(Δdlt).

Assume S is an arbitrary Kollár component over (X,Δ+(1− ε)D). Then we
have a birational morphism μ : Y → X such that KY + μ−1

∗ (Δ + (1 − ε)D) + S
is plt, and μ is an isomorphism away from x with S = μ−1(x). Then by ACC of
lct [HMX14], we know that there exists ε0 such that KY + μ−1

∗ (Δ + D) + S is
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log canonical whenever 0 < ε < ε0. Let v′ be an arbitrary divisorial valuation in
DR◦(Δdlt). Since KY +μ−1

∗ (Δ+D)+S ∼Q μ∗(KX +Δ+D)+A(X,Δ+D)(ordS)S,
we have

0 ≤ A(Y,μ−1
∗ (Δ+D)+S)(v

′) = A(X,Δ+D)(v
′)−A(X,Δ+D)(ordS) · v′(S).

Since A(X,Δ+D)(v
′) = 0 and v′(S) > 0 since {x} is the only lc center, we know

that A(X,Δ+D)(ordS) = 0. Thus a rescaling of ordS belongs to DR(Δdlt). Then by
[LX16] we see that

v̂ol(x,X,Δ+ (1− ε)D) = min
v′∈DR(Δdlt)

v̂ol(X,Δ+(1−ε)D)(v
′)

= εn min
v′∈DR(Δdlt)

volX(v′) = v̂olx,(X,Δ)(v) · εn. �

One should be able to solve the following question using the above techniques.

Question 6.10. Let x ∈ (X,Δ) be an n-dimensional klt singularity. Let D be an
effective Q-Cartier Q-Weil divisor through x. Let c = lct(X,Δ;D), and let W
be the minimal log canonical center of (X,Δ+ cD) containing x. By Kawamata’s
subadjunction, we have (KX+Δ+cD)|W = KW +ΔW+JW , where (W,ΔW +JW )
is a generalized klt pair. Denote by k := codimXW , then is it true that

lim
ε→0+

ε−k v̂ol(x,X,Δ+ (1− ε)cD)

nn
≥ v̂ol(w,X,Δ)

kk
· v̂ol(x,W,ΔW + JW )

(n− k)n−k

where w is the generic point ofW in X and v̂ol(x,W,ΔW +JW ) is similarly defined
as for the usual klt pair case in Definition 2.3?

6.2.2. Uniform bound. The following is conjectured in [SS17] (see also [LX17b]).

Conjecture 6.11. Let x ∈ X be an n-dimensional singular point, then v̂ol(x,X) ≤
2(n− 1)n.

The constant 2(n−1)n is the volume of a rational double point. When n = 3,
it is proved in Theorem 5.8. The implication to the K-stability question of cubic
hypersurfaces as in the argument of Theorem 5.11 holds in any dimension.

We also ask whether the following strong property of the set of local volumes
holds.

Question 6.12. Fix the dimension n, and a finite set I ⊂ [0, 1]. Is it true that the

set Vollocn,I consisting of all possible local volumes of n-dimensional klt singularities
x ∈ (X,D) with (coefficients of D) ⊂ I has the only accumulation point 0?

Next we give a comparison between local volumes and minimal log discrep-
ancies.

Theorem 6.13. Let x ∈ (X,Δ) be an n-dimensional complex klt singularity. Then

there exists a neighborhood U of x ∈ X such that (U,Δ|U ) is (v̂ol(x,X,Δ)/nn)-lc.

Moreover, mld(x,X,Δ) > v̂ol(x,X,Δ)/nn.
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Proof. If x ∈ X is not Q-factorial then we may replace X by its Q-factorial
modification under which the local volume will increase by [LX17b, Corollary
2.11]. Let Δi be any component of Δ containing x. Then [BL18, Theorem 33]

implies that A(X,Δ)(Δi) ≥ v̂ol(x,X,Δ)/nn. Let E be any exceptional divisor over
X such that x is contained in the Zariski closure of cX(E) and a(E;X,Δ) <
0. Then by [Kol13, Corollary 1.39], there exists a proper birational morphism
μ : Y → X such that Y is normal, Q-factorial and E = Ex(μ) ⊃ μ−1(x). Since
KY +μ−1

∗ Δ−a(E;X,Δ)E = μ∗(KX+Δ), we know that (Y, μ−1
∗ Δ−a(E;X,Δ)E)

is klt. Let y ∈ μ−1(x) be a point, then y lies on E. Hence by [LX17b, Corollary
2.11] and [BL18, Theorem 33] we have

v̂ol(x,X,Δ) < v̂ol(y, Y, μ−1
∗ Δ− a(E;X,Δ)E) ≤ A(X,Δ)(E)nn.

Thus A(X,Δ)(E) > v̂ol(x,X,Δ)/nn which finishes the proof. �
Next we will discuss application to boundedness generalizing a result by C.

Jiang [Jia17, Theorem 1.6].

Corollary 6.14. Let n be a natural number and c a positive real number. Then the
projective varieties X satisfying the following properties:

• (X,Δ) is a klt pair of dimension n for some effective Q-divisor Δ,
• −(KX +Δ) is nef and big,
• α(X,Δ)n(−(KX +Δ))n ≥ c,

form a bounded family.

Proof. By [BJ17, Theorem A and D] (generalizing [Liu18]), for any closed point
x ∈ X we have

c ≤ α(X,Δ)n(−(KX +Δ))n ≤ δ(X,Δ)n(−(KX +Δ))n ≤
(
1 +

1

n

)n

v̂ol(x,X,Δ).

Hence Theorem 6.13 implies (X,Δ) is (c/(n+1)n)-lc. Therefore, the BAB Conjec-
ture proved by Birkar in [Bir16, Theorem 1.1] implies the boundedness of X . �
Remark 6.15. In the conditions of Corollary 6.14 if we also assume that the co-
efficients of Δ are at least ε for any fixed ε ∈ (0, 1), then such pairs (X,Δ) are
log bounded. This partially generalizes [Che18, Theorem 1.4]. Besides, all results
should hold for R-pairs.

Question 6.16. Is it true that for any n-dimensional klt singularity x ∈ X , we have

mld(x,X) ≥ v̂ol(x,X)/nn−1?

6.3. Miscellaneous questions

6.3.1. Positive characteristics. In this section, we consider a variety X over an
algebraically closed field � of characteristic p > 0. From [Har98,HW02], we know
that klt singularities are closely related to strongly F -regular singularities in pos-
itive characteristic. Moreover, log canonical thresholds (lct) correspond to F -pure
thresholds (fpt) in positive characteristic (see [HW02]). In spirit of Theorem 2.6,
we define the F -volume of singularities in characteristic p as follows.
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Definition 6.17 ([Liu19]). Let X be an n-dimensional strongly F -regular variety
over an algebraically closed field � of positive characteristic. Let x ∈ X be a closed
point. We define the F -volume of (x ∈ X) as

Fvol(x,X) := inf
a : mx-primary

fpt(X ; a)nmult(a).

Similar to [dFEM03], Takagi and Watanabe [TW04] showed that if x ∈ X is
a smooth point, then Fvol(x,X) = nn.

Another interesting invariant of a strongly F -regular singularity x ∈ X is
its F -signature s(x,X), see [SVdB97, HL02, Tuc12]. In [Liu19], we establish the
following comparison result between the F -volume and the F -signature.

Theorem 6.18 ([Liu19]). Let x ∈ X be an n-dimensional strongly F -regular singu-
larity. Then

n! · s(x,X) ≤ Fvol(x,X) ≤ nn min{1, n! · s(x,X)}.
It would be interesting to study the limiting behavior of F -volumes of mod-p

reductions of a klt singularity over characteristic zero when p goes to infinity.

Conjecture 6.19. Let x ∈ (X,Δ) be a klt singularity over characteristic 0. Let
xp ∈ (Xp,Δp) be its reduction mod p * 0, then

v̂ol(x,X,Δ) = lim
p→∞

Fvol(xp, Xp,Δp).

Remark 6.20. Together with Theorem 6.18, this will imply that for the reductions
(Xp,Δp), the F-signature s(xp, Xp,Δp) has a uniform lower bound as p → ∞, as
asked in [CRST18, Question 5.9].

6.3.2. Relation to local orbifold Euler numbers. In [Lan03], Langer introduced
local orbifold Euler numbers for general log canonical surface singularities and
used it to prove a Miyaoka–Yau inequality for any log canonical surface. In an
attempt to understand Langer’s inequality using the Kähler–Einstein metric on
a log canonical surface, Borbon–Spotti conjectured recently in [BS17] that the
volume densities of the singular Kähler–Einstein metrics should match Langer’s
local Euler numbers (at least for log terminal surface singularities). They verified
this in special examples by comparing the known values of both sides. On the
other hand, from Theorem 5.6, we know that the normalized volume is equal to
the volume density up to a factor (dimX)dimX for any point (X, x) that lives on
a Gromov–Hausdorff limit of smooth Kähler–Einstein manifolds ([HS17,LX17a]).
In view of this connection, one can formulate a purely algebraic problem about
two algebraic invariants of the singularities. This problem was already posed by
in [BS17] at least in the log terminal case. We formulate the following form by
including one of Langer’s expectations (see [Lan03, p.381]):

Conjecture 6.21 (see [BS17, p.37]). Let (X,D, x) be a germ of log canonical surface
singularity with Q-boundary. Then we have

eorb(x,X,D) =

{
1
4 v̂ol(x,X,D), if (X,D) is log terminal ;
0, if (X,D) is not log terminal.

(34)
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In [Li18b], it was proved that the above conjecture is true when (X,D, x)
is a 2-dimensional log-Fano cone or a log-CY cone. In particular, combined with
Langer’s calculation, one gets the local orbifold Euler numbers of line arrange-
ments.

Proposition 6.22 ([Lan03,Li18b]). Let L1, . . . , Ln be m distinct lines in C2 passing
through 0. Let D =

∑m
i=1 δiLi, where 0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δm ≤ 1. Denote

δ =
∑m

i=1 δi. Then we have:

eorb(0,C2, D) =

⎧⎨⎩
0 if (C2, D, 0) is not klt ;
(1− δ + δm)(1− δm) if δ < 2δm;
(2−δ)2

4 if 2δm ≤ δ ≤ 2.

(35)

Here we point out a possible application of Theorem 4.15 (i.e., two-dimension-
al case conjecture 4.1) for studying Conjecture 6.21 for any log terminal singularity
(x,X,D). First, by Theorem 4.15 there exists a unique Kollár component S ∼= P1

which minimizes the normalized volume. Let μ : Y → X be the extraction of
S and Δ = DiffS(D). By Theorem 4.14 we know that (S,Δ) ∼= (P1,

∑
i δipi) is

indeed K-semistable (see [LX16, Section 6]). Then F := Ω1(log(S +D)) (defined
using ramified coverings as in [Lan03]) restricted to S fits into an exact sequence
of orbifold sheaves:

0 −→ Ω1
S(log(Δ)) → F |S → OS → 0. (36)

By [Li18b, Theorem 1.3], we know that E := F |S is slope semistable. Then the
generalization of [Wah93, Proposition 3.16] to the logarithmic/orbifold setting

combined together with Langer’s work should imply that eorb(x,X,D) = c1(E )2

4(−S·S)Y

which is indeed equal to v̂ol(ordS)
4 .

6.3.3. Normalized volume function. We have mainly concentrated on the mini-
mizer of the normalized volume function. We can also ask questions on the general
behavior of the normalized volume function. For example:

Question 6.23 (Convexity). Let σ ⊂ ValX,x be a simplex of quasi-monomial valua-

tions. Is it true that v̂ol(·) is always convex on σ? Is there a more general convexity

property for v̂ol on ValX,x?

Question 6.24. Is the normalized volume a lower semicontinuous function on
ValX,x? If this is true, then it would directly imply the existence of minimizer

of v̂ol using the properness estimate in Theorem 2.5.
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Abstract. We study entire continuous viscosity solutions to fully nonlinear
elliptic equations involving the conformal Hessian. We prove the strong com-
parison principle and Hopf Lemma for (non-uniformly) elliptic equations when
one of the competitors is C1,1. We obtain as a consequence a Liouville theo-
rem for entire solutions which are approximable by C1,1 solutions on larger
and larger compact domains, and, in particular, for entire C1,1

loc solutions: they
are either constants or standard bubbles.
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1. Introduction

It is of interest to prove Liouville theorems for entire continuous viscosity solutions
of a fully nonlinear elliptic equation of the form

f(λ(Au)) = 1, λ(Au) ∈ Γ, u > 0 on Rn, (1.1)

where the conformal Hessian Au of u is defined for n ≥ 3 by

Au = − 2

n− 2
u−n+2

n−2∇2u+
2n

(n− 2)2
u− 2n

n−2∇u⊗∇u − 2

(n− 2)2
u− 2n

n−2 |∇u|2I,

I is the n× n identity matrix, λ(Au) denotes the eigenvalues of Au, Γ is an open
subset of Rn and f ∈ C0(Γ̄). (See [30], or Definition 2.2 below with ψ = − lnu, for
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the definition of viscosity solutions as well as sub- and super-solutions.) Typically,
(f,Γ) is assumed to satisfy the following structural conditions.

(i) (f,Γ) is symmetric, i.e.,

if λ ∈ Γ and λ′ is a permutation of λ, then λ′ ∈ Γ and f(λ′) = f(λ). (1.2)

(ii) (f,Γ) is elliptic, i.e.,

if λ ∈ Γ and μ ∈ Γ̄n, then λ+ μ ∈ Γ and f(λ+ μ) ≥ f(λ), (1.3)

where Γn := {μ ∈ Rn : μi > 0} is the positive cone.
(iii) (f,Γ) is locally strictly elliptic, i.e., for any compact subset K of Γ, there is

some constant δ(K) > 0 such that

f(λ+ μ)− f(λ) ≥ δ(K)|μ| for all λ ∈ K,μ ∈ Γ̄n. (1.4)

(iv) f is locally Lipschitz, i.e., for any compact subset K of Γ, there is some
constant C(K) > 0 such that

|f(λ′)− f(λ)| ≤ C(K)|λ′ − λ| for all λ, λ′ ∈ K. (1.5)

(v) The 1-superlevel set of f stays in Γ, namely

f−1([1,∞)) ⊂ Γ. (1.6)

(vi) Γ satisfies

Γ ⊂ Γ1 := {μ ∈ Rn : μ1 + · · ·+ μn > 0}. (1.7)

It should be noted that equation (1.1) is not necessarily uniformly elliptic and that
we do not assume that Γ be convex nor f be concave.

Standard examples of (f,Γ) satisfying (1.2)–(1.7) are given by (f,Γ) =

(σ
1/k
k ,Γk), 1 ≤ k ≤ n, where σk is the kth elementary symmetric function and

Γk is the connected component of {λ ∈ Rn : σk(λ) > 0} containing the positive
cone Γn.

Liouville theorems for (1.1) have been studied extensively. We mention here
earlier results of Gidas, Ni and Nirenberg [15], Caffarelli, Gidas and Spruck [10] in
the semi-linear case, of Viaclovsky [39, 40] for the σk-equations for C2 solutions
which are regular at infinity, of Chang, Gursky and Yang [11] for the σ2-equation
in four dimensions, of Li and Li [26, 27] for C2 solutions, and of Li and Nguyen
[32] for continuous viscosity solutions which are approximable by C2 solutions on
larger and larger compact domains.

The key use of the C2 regularity in the proof of the Liouville theorem in
[32] is the strong comparison principle and the Hopf Lemma for (1.1). In fact, if
the strong comparison principle and the Hopf Lemma can be established for C1,α

solutions (0 ≤ α ≤ 1), a Liouville theorem is then proved in C1,α regularity by the
same arguments.

The present note is an exploration in the above direction. We establish the
strong comparison principle and the Hopf Lemma when one competitor is C1,1,
and obtain as a consequence a Liouville theorem in this regularity.
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Theorem 1.1 (Strong comparison principle). Let Ω be an open, connected subset of
Rn, n ≥ 3, Γ be a non-empty open subset of Rn and f ∈ C0(Γ̄) satisfy (1.2)–(1.6).
Assume that

(i) u1 ∈ USC(Ω; [0,∞)) and u2 ∈ LSC(Ω; (0,∞]) are a sub-solution and a
super-solution to f(λ(Au)) = 1 in Ω in the viscosity sense, respectively,

(ii) and that u1 ≤ u2 in Ω.

If one of lnu1 and lnu2 belongs to C1,1
loc (Ω), then either u1 ≡ u2 in Ω or u1 < u2

in Ω.

Theorem 1.2 (Hopf Lemma). Let Ω be an open subset of Rn, n ≥ 3, such that ∂Ω
is C2 near some point x̂ ∈ ∂Ω, Γ be a non-empty open subset of Rn and f ∈ C0(Γ̄)
satisfying (1.2)–(1.6). Assume that

(i) u1 ∈ USC(Ω∪{x̂}; [0,∞)) and u2 ∈ LSC(Ω∪{x̂}; (0,∞]) are a sub-solution
and a super-solution to f(λ(Au)) = 1 in Ω in the viscosity sense, respectively,

(ii) and that u1 < u2 in Ω, and u1(x̂) = u2(x̂).

If one of lnu1 and lnu2 belongs to C1,1(Ω ∪ {x̂}), then

lim inf
s→0+

(u2 − u1)(x̂− sν(x̂))

s
> 0,

where ν(x̂) is the outward unit normal to ∂Ω at x̂.

Our proof of the strong comparison principle and the Hopf Lemma uses ideas
in Caffarelli, Li and Nirenberg [9] and an earlier work of the authors [33]. In fact
we establish them for more general equations of the form

F (x, ψ,∇ψ,∇2ψ) = 1.

See Section 2, Theorem 2.3 and Theorem 2.4.
There has been a lot of studies on the (strong) comparison principle and Hopf

Lemma for elliptic equations in related contexts. See for instance [1–9, 12–14, 16–
25, 29–31, 33–36, 38, 41] and the references therein.

As mentioned earlier, a combination of the above strong comparison principle
and Hopf Lemma and the proof of [32, Theorem 1.1] give the following Liouville
theorem.

Theorem 1.3 (Liouville theorem). Assume that n ≥ 3 and (f,Γ) satisfies (1.2)–
(1.7). Suppose that there exist vk ∈ C1,1(BRk

(0)), Rk →∞, such that f(λ(Avk )) =
1, λ(Avk ) ∈ Γ in the ball BRk

(0) of radius Rk in the viscosity sense, vk converges
uniformly on compact subsets of Rn to some function v > 0. Then

either (i) v is identically constant, 0 ∈ Γ and f(0) = 1,

or (ii) v has the form

v(x) =
( a

1 + b2|x− x0|2
)n−2

2

(1.8)

for some x0 ∈ Rn and some a, b > 0 satisfying f(2b2a−2, . . . , 2b2a−2) = 1.
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It is a fact that if u is C1,1 in some open set Ω, u satisfies f(λ(Au)) = 1 in
the viscosity sense in Ω if and only if it satisfies f(λ(Au)) = 1 almost everywhere
in Ω. See, e.g., Lemma 2.5.

It should be clear that if 0 ∈ Γ and f(0) = 1, then, by (1.3) and (1.4),
(t, . . . , t) ∈ Γ and f(t, . . . , t) > 1 for all t > 0. Hence if some constant is a solution
of (1.1), then all entire solutions of (1.1) are constant, and likewise if some function
of the form (1.8) is a solution of (1.1), then all entire solutions of (1.1) are of the
form (1.8).

An immediate consequence is:

Corollary 1.4. Assume that n ≥ 3 and (f,Γ) satisfies (1.2)–(1.7). If v ∈ C1,1
loc (R

n)
is a viscosity solution of (1.1), then v is either a constant or of the form (1.8).

The rest of the paper contains two sections. In Section 2, we state and prove
our strong comparison principle and the Hopf Lemma for a class of elliptic equa-
tions which is more generalized than f(λ(Au)) = 1. In Section 3, we prove the
Liouville theorem (Theorem 1.3).

2. The strong comparison principle and the Hopf Lemma

In this section we prove the strong comparison principle and the Hopf Lemma for
elliptic equations of the form

F (x, ψ,∇ψ,∇2ψ) = 1 in Ω (2.1)

where Ω is an open subset of Rn, n ≥ 1, F ∈ C(Ū ), U is a non-empty open subset
of Ω̄× R× Rn × Symn, and (F,U ) satisfies the following conditions.

(i) (F,U ) is elliptic, i.e., for all (x, s, p,M) ∈ U , N ∈ Symn, N ≥ 0,

(x, s, p,M +N) ∈ U and F (x, s, p,M +N) ≥ F (x, s, p,M). (2.2)

Here and below we write N ≥ 0 for a non-negative definite matrix N .
(ii) For x ∈ Ω̄, let Ux := {(s, p,M) ∈ R× Rn × Symn : (x, s, p,M) ∈ U }. Then,

for x ∈ Ω̄, the 1-superlevel set of F (x, ·) stays in Ux, i.e.,

F (x, s, p,M) < 1 for all x ∈ Ω̄ and (s, p,M) ∈ ∂Ux, (2.3)

or, equivalently,

{(s, p,M) ∈ Ūx : F (x, s, p,M) ≥ 1} ⊂ Ux.

(iii) (F,U ) is locally strictly elliptic, i.e., for any compact subset K of U , there
is some constant δ = δ(K ) > 0 such that, for all (x, s, p,M) ∈ K , N ∈
Symn, N ≥ 0,

F (x, s, p,M +N)− F (x, s, p,M) ≥ δ(K )|N |. (2.4)
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(iv) F satisfies a local Lipschitz condition with respect to (s, p,M), namely for
every compact subset K of U , there there exists C(K ) > 0 such that, for
all (x, s, p,M), (x, s′, p′,M ′) ∈ K ,

|F (x, s, p,M)− F (x, s′, p′,M ′)| ≤ C(K )(|s− s′|+ |p− p′|+ |M −M ′|). (2.5)

To keep the notation compact, we abbreviate

J2[ψ] = (ψ,∇ψ,∇2ψ) ∈ R× Rn × Symn.

We note that equation (1.1) can be put in the form (2.1) by writing ψ =
− lnu, F (J2[ψ]) = f(λ(Au)).

To dispel confusion, we remark that U is defined as a subset of Ω̄×R×Rn×
Symn rather than that of Ω×R×Rn×Symn. In particular, the ‘local’ properties in
(iii)–(iv) are local with respect to the (s, p,M)-variables and not the x-variables.

Let us start with the definition of classical and viscosity (sub-/super-)so-
lutions. For this we only need the ellipticity condition (2.2) and the following
condition which is weaker than (2.3):

(ii′) There holds

F (x, s, p,M) ≤ 1 for all x ∈ Ω̄ and (s, p,M) ∈ ∂Ux. (2.6)

or, equivalently,

{(s, p,M) ∈ Ūx : F (x, s, p,M) > 1} ⊂ Ux.

Definition 2.1 (Classical (sub-/super-)solutions). Let Ω ⊂ Rn, n ≥ 1, be an open
set, and U be a non-empty open subset of Ω̄ × R × Rn × Symn and F ∈ C0(Ū )
satisfying (2.2) and (2.6). For a function ψ ∈ C2(Ω), we say that

F (x, J2[ψ]) ≤ 1 (F (x, J2[ψ]) ≥ 1 resp.) classically in Ω

if there holds

either (x, J2[ψ](x)) /∈ Ū or F (x, J2[ψ](x)) ≤ 1 for all x ∈ Ω(
(x, J2[ψ](x)) ∈ Ū and F (x, J2[ψ](x)) ≥ 1 for all x ∈ Ω resp.

)
.

We say that a function ψ ∈ C2(Ω) is a classical solution of (2.1) in Ω if we
have that (x, J2[ψ](x)) ∈ Ū and F (x, J2[ψ](x)) = 1 for every x ∈ Ω.

When F (x, J2[ψ]) ≤ 1 (F (x, J2[ψ]) ≥ 1, resp.) in Ω, we also say interchange-
ably that u is a super-solution (sub-solution) to (2.1) in Ω.

In the above definition, the role of condition (2.6) is manifested in the prop-
erty that if ψk is a sequence of super-solutions which converges in C2 to some
ψ, then ψ is also a super-solution. When discussing only sub-solutions, condition
(2.6) can be dropped.

Definition 2.2 (Viscosity (sub-/super-)solutions). Let Ω ⊂ Rn, n ≥ 1, be an open
set, and U be a non-empty open subset of Ω̄ × R × Rn × Symn and F ∈ C0(Ū )
satisfying (2.2) and (2.6). For a function ψ ∈ LSC(Ω;R∪ {∞}) (ψ ∈ USC(Ω;R∪
{−∞}) resp.), we say that

F (x, J2[ψ]) ≤ 1 (F (x, J2[ψ]) ≥ 1 resp.) in Ω
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in the viscosity sense if for any x0 ∈ Ω, ϕ ∈ C2(Ω), (ψ − ϕ)(x0) = 0 and

ψ − ϕ ≥ 0 (ψ − ϕ ≤ 0 resp.) near x0,

there holds

either (x0, J2[ϕ](x0)) /∈ Ū or F (x0, J2[ϕ](x0)) ≤ 1(
(x0, J2[ϕ](x0)) ∈ Ū and F (x0, J2[ϕ](x0)) ≥ 1 resp.

)
.

We say that a function ψ ∈ C0(Ω) satisfies (2.1) in the viscosity sense in Ω if
we have both that F (x, J2[ψ]) ≥ 1 and F (x, J2[ψ]) ≤ 1 in Ω in the viscosity sense.

When F (x, J2[ψ]) ≤ 1 (F (x, J2[ψ]) ≥ 1, resp.) in Ω in the viscosity sense, we
also say interchangeably that u is a viscosity super-solution (sub-solution) to (2.1)
in Ω.

The main results in this section are the following.

Theorem 2.3 (Strong comparison principle). Let Ω be an open, connected subset of
Rn, n ≥ 1, U be a non-empty open subset of Ω̄×R×Rn× Symn and F ∈ C0(Ū )
satisfy (2.2)–(2.5). Assume that

(i) ψ1 ∈ USC(Ω;R∪{−∞}) and ψ2 ∈ LSC(Ω;R∪{∞}) are a sub-solution and
a super-solution to (2.1) in Ω in the viscosity sense, respectively,

(ii) and that ψ1 ≤ ψ2 in Ω.

If one of ψ1 and ψ2 belongs to C1,1
loc (Ω), then either ψ1 ≡ ψ2 in Ω or ψ1 < ψ2 in Ω.

Theorem 2.4 (Hopf Lemma). Let Ω be an open subset of Rn, n ≥ 1, such that ∂Ω
is C2 near some point x̂ ∈ ∂Ω, U be a non-empty open subset of Ω̄×R×Rn×Symn

and F ∈ C0(Ū ) satisfy (2.2)–(2.5). Assume that

(i) ψ1 ∈ USC(Ω∪ {x̂};R∪ {−∞}) and ψ2 ∈ LSC(Ω∪ {x̂};R∪ {∞}) are a sub-
solution and a super-solution to (2.1) in Ω in the viscosity sense, respectively,

(ii) and that ψ1 < ψ2 in Ω, and ψ1(x̂) = ψ2(x̂).

If one of ψ1 and ψ2 belongs to C1,1(Ω ∪ {x̂}), then

lim inf
s→0+

(ψ2 − ψ1)(x̂ − sν(x̂))

s
> 0,

where ν(x̂) is the outward unit normal to ∂Ω at x̂.

If ψ1 and ψ2 are continuous and one of them is C2, the above theorems were
proved in Caffarelli, Li, Nirenberg [9].

Before turning to the proof of the above theorems, we give some simple
statements about viscosity solutions.

Lemma 2.5. Let Ω ⊂ Rn, n ≥ 1, be an open set, and U be a non-empty open
subset of Ω̄ × R × Rn × Symn and F ∈ C0(Ū ) satisfy (2.2) and (2.6). Suppose
that ψ is semi-concave (semi-convex resp.) in Ω, then

F (x, J2[ψ]) ≤ 1 (F (x, J2[ψ]) ≥ 1 resp.) in Ω in the viscosity sense
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if and only if

either (x, J2[ψ](x)) /∈ Ū or F (x, J2[ψ](x)) ≤ 1 a.e. in Ω(
(x, J2[ψ](x)) ∈ Ū and F (x, J2[ψ](x)) ≥ 1 a.e. in Ω resp.

)
.

Recall that ψ is semi-concave (semi-convex resp.) in Ω if there is some K > 0
such that ψ − K

2 |x|2 (ψ + K
2 |x|2 resp.) is locally concave (convex resp.) in Ω. By

a theorem of Alexandrov, Buselman and Feller (see, e.g., [8, Theorem 1.5]), semi-
concave (or semi-convex) functions are almost everywhere punctually second-order
differentiable.

Proof. (a) Consider the inequality F (x, J2[ψ]) ≤ 1.
Since ψ is semi-concave, it is almost everywhere punctually second-order

differentiable. Suppose that F (x, J2[ψ]) ≤ 1 in Ω in the viscosity sense and x0 is a
point where ψ is punctually second-order differentiable. Then we can use

ϕ(x) = ψ(x0) +∇ψ(x0) · (x− x0) + (x − x0)
T∇2ψ(x0)(x − x0)− δ|x− x0|2

for any δ > 0 as test functions at x0 to see that

either (x0, J2[ψ](x0)− (0, 0, 2δI)) /∈ Ū or F (x0, J2[ψ](x0)− (0, 0, 2δI)) ≤ 1.

Sending δ → 0 and using (2.6), we obtain

either (x0, J2[ψ](x0)) /∈ Ū or F (x0, J2[ψ](x0)) ≤ 1.

Conversely, assume that either (x, J2[ψ](x)) /∈ Ū or F (x, J2[ψ](x)) ≤ 1 for
almost all x ∈ Ω, and suppose, for some x0 ∈ Ω and ϕ ∈ C2(Ω), that (ψ−ϕ)(x0) =
0 and ψ − ϕ ≥ 0 near x0. We need to show that

either (x0, J2[ϕ](x0)) /∈ Ū or F (x0, J2[ϕ](x0)) ≤ 1.

If (x0, J2[ϕ](x0)) /∈ U , we are done by (2.6). We assume henceforth that

(x0, J2[ϕ](x0)) ∈ U .

Replacing ϕ by ϕ − δ|x − x0|2 for some small δ > 0 and letting δ → 0
eventually, we may assume without loss of generality that

ψ > ϕ in B2r0(x0) \ {x0} ⊂ Ω for some r0 > 0.

For small η > 0, let ξ = ξη = (ψ−ϕ− η)− and let Γξ be the concave envelop
of ξ in B2r0(x0). We have by [8, Lemma 3.5] that∫

{ξ=Γξ}
det(−∇2Γξ) ≥

1

C
( sup
B2r0 (x0)

ξ)n > 0.

In particular, the set {ξ = Γξ} has positive measure. Thus, we can find yη ∈
{ξ = Γξ} such that ψ is punctually second-order differentiable at yη, either
(yη, J2[ψ](yη)) /∈ Ū or F (yη, J2[ψ](yη)) ≤ 1 and

0 > ξ(yη) = ψ(yη)− ϕ(yη)− η ≥ −η, (2.7)

|∇ξ(yη)| = |∇ψ(yη)−∇ϕ(yη)| ≤ Cη, (2.8)

∇2ξ(yη) = ∇2ψ(yη)−∇2ϕ(yη) ≥ 0. (2.9)
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Recalling that (x0, J2[ϕ](x0)) ∈ U and noting that yη → x0 as η → 0, we deduce
from (2.2) and (2.7)–(2.9) that, for all small η, (yη, J2[ϕ](yη)), (yη, J2[ψ](yη)) and
(yη, ψ(yη),∇ψ(yη),∇2ϕ(yη)) belong to U . We then have

1 ≥ F (yη, J2[ψ](yη))

(2.2),(2.9)

≥ F (yη, ψ(yη),∇ψ(yη),∇2ϕ(yη))

(2.7),(2.8)

≥ F (yη, ϕ(yη),∇ϕ(yη),∇2ϕ(yη)) + oη(1),

where oη(1) → 0 as η → 0 and where we have used the uniform continuity of F
on compact subsets of Ū . Letting η → 0, we obtain the assertion.

(b) Consider now the inequality F (x, J2[ψ]) ≥ 1. This case is treated similarly,
but is slightly easier as we do not have a dichotomy in the almost everywhere sense.

Since ψ is semi-convex, it is almost everywhere punctually second-order dif-
ferentiable. If F (x, J2[ψ]) ≥ 1 is satisfied in the viscosity sense, then, as in the
previous case, if x0 is a point where ψ is punctually second-order differentiable,
then

(x0, J2[ψ](x0)+ (0, 0, 2δ)) ∈ Ū and F (x0, J2[ψ](x0)+ (0, 0, 2δ)) ≥ 1 for any δ > 0,

and so, upon sending δ → 0, we obtain

(x0, J2[ψ](x0)) ∈ Ū and F (x0, J2[ψ](x0)) ≥ 1.

Suppose that F (x, J2[ψ](x)) ≥ 1 holds almost everywhere in Ω and suppose,
for some x0 ∈ Ω and ϕ ∈ C2(Ω), that (ψ−ϕ)(x0) = 0 and ψ−ϕ ≤ 0 near x0. We
need to show that

F (x0, J2[ϕ](x0)) ≥ 1.

Replacing ϕ by ϕ + δ|x − x0|2 for some small δ > 0 and letting δ → 0
eventually, we may assume without loss of generality that

ψ < ϕ in B2r0(x0) \ {x0} ⊂ Ω for some r0 > 0.

For small η > 0, let ξ = ξη = (ψ−ϕ+ η)+ and let Γξ be the concave envelop
of ξ in B2r0(x0). We have by [8, Lemma 3.5] that∫

{ξ=Γξ}
det(−∇2Γξ) ≥

1

C
( sup
B2r0 (x0)

ξ)n > 0.

In particular, the set {ξ = Γξ} has positive measure. Thus, we can find yη ∈ {ξ =
Γξ} such that ψ is punctually second-order differentiable at yη, F (yη, J2[ψ](yη)) ≥
1 and

0 < ξ(yη) = ψ(yη)− ϕ(yη) + η ≤ η, (2.10)

|∇ξ(yη)| = |∇ψ(yη)−∇ϕ(yη)| ≤ Cη, (2.11)

∇2ξ(yη) = ∇2ψ(yη)−∇2ϕ(yη) ≤ 0. (2.12)
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It follows that

1 ≤ F (yη, J2[ψ](yη))

(2.2),(2.12)

≤ F (yη, ψ(yη),∇ψ(yη),∇2ϕ(yη))

(2.10),(2.11)

≤ F (yη, ϕ(yη),∇ϕ(yη),∇2ϕ(yη)) + oη(1),

where oη(1) → 0 as η → 0 and where we have used the uniform continuity of F
on compact subsets of Ū . Letting η → 0 and noting that yη → x0, we conclude
the proof. �

2.1. Proof of the strong comparison principle

We first prove the strong comparison principle for subsolutions and C1,1 strict
super-solutions.

Proposition 2.6. Let Ω be an open, connected subset of Rn, n ≥ 1, U be a non-
empty open subset of Ω̄ × R × Rn × Symn and F ∈ C0(Ū ) satisfy (2.2)–(2.3).
Assume that

(i) ψ1 ∈ USC(Ω;R ∪ {−∞}) satisfies

F (x, J2[ψ1]) ≥ 1 in Ω in the viscosity sense,

(ii) ψ2 ∈ C1,1
loc (Ω) satisfies for some constant a < 1,

either (x, J2[ψ2](x)) /∈ Ū or F (x, J2[ψ2](x)) ≤ a a.e. in Ω,

(iii) ψ1 ≤ ψ2 in Ω and ψ1 < ψ2 near ∂Ω.

Then ψ1 < ψ2 in Ω.

Proof. We follow [33]. Assume by contradiction that there exists some x̂ ∈ Ω such
that ψ1(x̂) = ψ2(x̂).

Step 1: We regularize ψ1 using sup-convolution.

This step is well known, see, e.g., [8, Chapter 5].

Take some bounded domain A containing x̂ such that Ā ⊂ Ω and ψ1 < ψ2

on ∂A.

We define, for small ε > 0 and x ∈ A,

ψ̂ε(x) = sup
y∈Ω

(
ψ1(y)−

1

ε
|x− y|2

)
.

It is well known that ψ̂ε ≥ ψ1, ψ̂ε is semi-convex, ∇2ψ̂ε ≥ − 2
εI a.e. in A, and

ψ̂ε converges monotonically to ψ1 as ε → 0. Furthermore, for every x ∈ A, there
exists x∗ = x∗(ε, x) such that

ψ̂ε(x) = ψ1(x
∗)− 1

ε
|x− x∗|2. (2.13)
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We note that if x is a point where ψ̂ε is punctually second-order differentiable,
then ψ1 ‘can be touched from above’ at x∗ by a quadratic polynomial:

ψ1(x
∗+ z) ≤ ψ̂ε(x)+

1

ε
|x∗−x|2+∇ψ̂ε(x) · z+

1

2
zT∇2ψ̂ε(x)z+ o(|z|2) as z → 0,

(2.14)
which is a consequence of the inequalities

ψ̂ε(x+ z) ≤ ψ̂ε(x) +∇ψ̂ε(x) · z +
1

2
zT∇2ψ̂ε(x)z + o(|z|2), as z → 0,

ψ̂ε(x+ z) ≥ ψ1(x
∗ + z)− 1

ε
|x∗ − x|2.

(Here we have used the definition of ψ̂ε in the last inequality.)
An immediate consequence of (2.13)–(2.14) and the fact that ψ1 is a sub-

solution of (2.1) is that

F (x∗, ψ̂ε(x) +
1

ε
|x∗ − x|2,∇ψ̂ε(x),∇2ψ̂ε(x)) ≥ 1. (2.15)

Step 2: We proceed to derive a contradiction as in [33].

For small η > 0, let τ = τ(ε, η) be such that

η = supA(ψ̂ε − ψ2 + τ).

Then

τ = ψ1(x̂)− ψ2(x̂) + τ ≤ ψ̂ε(x̂)− ψ2(x̂) + τ ≤ η, (2.16)

τ = η − sup
A

(ψ̂ε − ψ2) ≥ η − sup
A

(ψ̂ε − ψ1). (2.17)

Suppose that ε and η are sufficiently small so that ξ := ψ̂ε − ψ2 + τ is
negative on ∂A. Let Γξ+ denote the concave envelop of ξ+ = max(ξ, 0). Since ξ is
semi-convex and ξ ≤ 0 on ∂A, we have by [8, Lemma 3.5] that∫

{ξ=Γξ+}
det(−∇2Γξ+) ≥

1

C(Ω)
(sup

Ω
ξ)n > 0.

In particular, the set {ξ = Γξ+} has positive measure. Recall that ψ̂ε and ψ2 is
almost everywhere punctually second-order differentiable, we can find y = yε,η ∈
{ξ = Γξ+} such that ψ̂ε and ψ2 are punctually second-order differentiable at y,

|J2[ψ2](y)| ≤ C‖ψ‖C1,1(Ā), either (y, J2[ψ2](y)) /∈ Ū or F (y, J2[ψ2](y)) ≤ a, and

0 < ξ(y) = ψ̂ε(y)− ψ2(y) + τ ≤ η, (2.18)

|∇ξ(y)| = |∇ψ̂ε(y)−∇ψ2(y)| ≤ Cη, (2.19)

∇2ξ(y) = ∇2ψ̂ε(y)−∇2ψ2(y) ≤ 0. (2.20)

We claim that

lim inf
ε→0

1

ε
|y∗ − y|2 ≤ η, (2.21)

where y∗ = x∗(ε, y) and x∗ is defined in (2.13).
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Let us assume (2.21) for now and go on with the proof. From, (2.2), (2.15),

(2.20), we have (y∗, ψ̂ε(y) +
1
ε |y∗ − y|2,∇ψ̂ε(y),∇2ψ2(y)) ∈ Ū and

1
(2.15)

≤ F (y∗, ψ̂ε(y) +
1

ε
|y∗ − y|2,∇ψ̂ε(y),∇2ψ̂ε(y))

(2.2),(2.20)

≤ F (y∗, ψ̂ε(y) +
1

ε
|y∗ − y|2,∇ψ̂ε(y),∇2ψ2(y)). (2.22)

By the boundedness of J2[ψ2](y), we may assume that

(y, J2[ψ2](y)) = (yε,η, J2[ψ2](yε,η)) → (y0, p0) along a sequence ε, η → 0. (2.23)

By (2.16), (2.17), (2.18) and (2.19), we then have

(y∗, ψ̂ε(y) +
1

ε
|y∗ − y|2,∇ψ̂ε(y),∇2ψ2(y)) → (y0, p0).

Thus by (2.3) and (2.22), (y0, p0) ∈ U and F (y0, p0) ≥ 1. But this implies, in view
of (2.23), that (y, J2[ψ2](y)) ∈ U along a sequence ε, η → 0 and so

1 ≤ F (y0, p0) = lim
ε,η→0

F (y, J2[ψ2](y)) ≤ a,

which is a contradiction.
To conclude the proof, it remains to establish (2.21).

Proof of (2.21): Suppose for some η and some sequence εm → 0 that 1
εm

|y∗m −
ym|2 → d where ym := yεm,η and y∗m := y∗εm,η. (Note that 1

ε |x∗ − x|2 ≤ C, so this
assumption makes sense.) We need to show that d ≤ η.

Let τm = τ(εm, η). Without loss of generality, we assume further that ym →
y0 and τm → τ0. By the convergence of ym and of 1

εm
|y∗m − ym|2, we have that

y∗m → y0. Thus, by the upper semi-continuity of ψ1, we have

lim sup
m→∞

ψ1(y
∗
m) ≤ ψ1(y0).

Hence, by (2.13), (2.16) and the left half of (2.18), we have

0 ≤ lim sup
m→∞

1

εm
|y∗m − ym|2

(2.13)
= lim sup

m→∞
(ψ1(y

∗
m)− ψ̂εm(ym))

(2.18)

≤ lim sup
m→∞

(ψ1(y
∗
m)− ψ2(ym) + τm)

(2.16)

≤ ψ1(y0)− ψ2(y0) + η = lim
m→∞

(ψ̂εm(y0)− ψ2(y0)) + η

≤ lim
m→∞

sup
A

(ψ̂εm − ψ2) + η ≤ sup
A

(ψ1 − ψ2) + η = η.

This proves (2.21) and concludes the proof. �
By analogous arguments, we have:

Proposition 2.7. Let Ω be an open, connected subset of Rn, n ≥ 1, U be a non-
empty open subset of Ω̄×R×Rn× Symn and F ∈ C0(Ū ) satisfy (2.2) and (2.6).
Assume that



232 Y. Li, L. Nguyen and B. Wang

(i) ψ1 ∈ C1,1
loc (Ω;R) and ψ2 ∈ LSC(Ω ∪ {∞}) satisfy for some constant a′ > 1,

F (x, J2[ψ1]) ≥ a′ and F (x, J2[ψ2]) ≤ 1 in Ω in the viscosity sense,

(ii) ψ1 ≤ ψ2 in Ω and ψ1 < ψ2 near ∂Ω.

Then ψ1 < ψ2 in Ω.

Proof. We argue as in the proof of Proposition 2.6, exchanging the roles of ψ1 and
ψ2 and sup-convolution and inf-convolution.

Assume by contradiction that there exists some x̂ ∈ Ω such that ψ1(x̂) =
ψ2(x̂).

Step 1: We regularize ψ2 by using inf-convolution.

Take some bounded domain A containing x̂ such that Ā ⊂ Ω and ψ1 < ψ2

on ∂A.
We define, for small ε > 0 and x ∈ A,

ψ̂ε(x) = inf
y∈Ω

(
ψ2(y) +

1

ε
|x− y|2

)
.

It is well known that ψ̂ε ≤ ψ2, ψ̂
ε is semi-concave, ∇2ψ̂ε ≤ 2

εI a.e. in A, and

ψ̂ε converges monotonically to ψ2 as ε → 0. Furthermore, for every x ∈ A, there
exists x∗ = x∗(ε, x) such that

ψ̂ε(x) = ψ2(x∗) +
1

ε
|x− x∗|2. (2.24)

We note that if x is a point where ψ̂ε is punctually second-order differentiable,
then ψ2 ‘can be touched from below’ at x∗ by a quadratic polynomial:

ψ2(x∗+z) ≥ ψ̂ε(x)− 1

ε
|x∗−x|2+∇ψ̂ε(x) ·z+ 1

2
zT∇2ψ̂ε(x)z+o(|z|2), as z → 0,

(2.25)
which is a consequence of the inequalities

ψ̂ε(x+ z) ≥ ψ̂ε(x) +∇ψ̂ε(x) · z + 1

2
zT∇2ψ̂ε(x)z + o(|z|2), as z → 0,

ψ̂ε(x+ z) ≤ ψ2(x∗ + z) +
1

ε
|x∗ − x|2.

(Here we have used the definition of ψ̂ε in the last inequality.)
An immediate consequence of (2.24)–(2.25) and the fact that ψ2 is a super-

solution of (9) is that either

(x∗, ψ̂
ε(x) − 1

ε
|x∗ − x|2,∇ψ̂ε(x),∇2ψ̂ε(x)) /∈ Ū , (2.26)

or

F (x∗, ψ̂
ε(x) − 1

ε
|x∗ − x|2,∇ψ̂ε(x),∇2ψ̂ε(x)) ≤ 1. (2.27)

Step 2: We proceed to derive a contradiction as in [33].
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For small η > 0, let τ = τ(ε, η) be such that

η = sup
A

(ψ1 − ψ̂ε + τ).

Then

τ = ψ1(x̂)− ψ2(x̂) + τ ≤ ψ1(x̂)− ψ̂ε(x̂) + τ ≤ η, (2.28)

τ = η − sup
A

(ψ1 − ψ̂ε) ≥ η − sup
A

(ψ2 − ψ̂ε). (2.29)

Suppose that ε and η are sufficiently small so that ξ := ψ1 − ψ̂ε + τ is
negative on ∂A. Let Γξ+ denote the concave envelop of ξ+ = max{ξ, 0}. Since ξ is
semi-convex and ξ ≤ 0 on ∂A, we have by [8, Lemma 3.5] that∫

{ξ=Γξ+}
det(−∇2Γξ+) ≥

1

C(Ω)
(sup

Ω
ξ)n > 0.

In particular, the set {ξ = Γξ+} has positive measure. Recall that ψ̂ε and ψ1 are
almost everywhere punctually second-order differentiable, we can find y = yε,η ∈
{ξ = Γξ+} such that ψ̂ε and ψ1 are punctually second-order differentiable at y,
|J2[ψ1](y)| ≤ C‖ψ1‖C1,1(Ā),

0 < ξ(y) = ψ1(y)− ψ̂ε(y) + τ ≤ η, (2.30)

|∇ξ(y)| = |∇ψ1(y)−∇ψ̂ε(y)| ≤ Cη, (2.31)

∇2ξ(y) = ∇2ψ1(y)−∇2ψ̂ε(y) ≤ 0, (2.32)

and

(y, J2[ψ1](y)) ∈ Ū , F (y, J2[ψ1](y)) ≥ a′. (2.33)

We claim that

lim inf
ε→0

1

ε
|y∗ − y|2 ≤ η, (2.34)

where y∗ = x∗(ε, y) and x∗ is defined in (2.24).

Let us assume (2.34) for now and go on with the proof. As in Case 1, we may
assume that (y, J2[ψ1](y)) → (y0, p0) as ε, η → 0. By (2.33), F (y0, p0) ≥ a′ and so
by (2.6), (y0, p0) ∈ U . Also, by (2.28), (2.29), (2.30) and (2.31),(

y∗, ψ̂
ε(y)− 1

ε
|y∗ − y|2,∇ψ̂ε(y),∇2ψ1(y)

)
→ (y0, p0) as ε, η → 0,

and so(
y∗, ψ̂

ε(y)− 1

ε
|y∗ − y|2,∇ψ̂ε(y),∇2ψ1(y)

)
∈ U along a sequence ε, η → 0,
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Now, we have by (2.2) and (2.32) that (2.27) holds at x = y and so

1
(2.27)

≥ F (y∗, ψ̂
ε(y)− 1

ε
|y∗ − y|2,∇ψ̂ε(y),∇2ψ̂ε(y))

(2.32)

≥ F (y∗, ψ̂
ε(y)− 1

ε
|y∗ − y|2,∇ψ̂ε(y),∇2ψ1(y))

= F (y, J2[ψ1](y)) + oε,η(1)

(2.33)

≥ a′ + oε,η(1),

where lim
ε,η→0

oε,η(1) = 0 and where we have used the (local uniform) continuity of

F in the second-to-last equality. This gives a contradiction as a′ > 1.
To conclude the proof, it remains to establish (2.34).

Proof of (2.34): Suppose for some η > 0 and some sequence εm → 0 that

1

εm
|(ym)∗ − ym|2 → d

where ym := yεm,η and (ym)∗ := (yεm,η)∗. (Note that 1
ε |x∗ − x|2 ≤ C, so this

assumption makes sense.) We need to show that d ≤ η.
Let τm = τ(εm, η). Without loss of generality, we assume further that ym →

y0 and τm → τ0. By the convergence of ym and of 1
εm

|(ym)∗ − ym|2, we have that

(ym)∗ → y0. Thus, by the lower semi-continuity of ψ2, we have

lim inf
m→∞

ψ2((ym)∗) ≥ ψ2(y0).

Hence, by (2.24), (2.28) and the left half of (2.30), we have

0 ≤ lim inf
m→∞

1

εm
|(ym)∗ − ym|2

(2.24)
= lim inf

m→∞

(
ψ̂εm(ym)− ψ2((ym)∗)

)
(2.30)

≤ lim inf
m→∞

(ψ1(ym)− ψ2((ym)∗) + τm)

(2.28)

≤ ψ1(y0)− ψ2(y0) + η = lim
m→∞

(ψ1(y0)− ψ̂εm(y0)) + η

≤ lim
m→∞

sup
A

(ψ1 − ψ̂εm) + η ≤ sup
A

(ψ1 − ψ2) + η = η.

This proves (2.34) and concludes the proof. �

We now give the

Proof of Theorem 2.3. Arguing by contradiction, suppose the conclusion is wrong,
then we can find a closed ball B̄ ⊂ Ω of radius R > 0 and a point x̂ ∈ ∂B such
that

ψ1 < ψ2 in B̄ \ {x̂} and ψ1(x̂) = ψ2(x̂).

Without loss of generality, we assume the center of B is the origin.

Case 1: Consider first the case ψ2 is C1,1.
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In the proof, C denotes some generic constant which may vary from lines to
lines but depends only on an upper bound for ‖ψ2‖C1,1(Ω̄), Ω and (F,U ).

In view of Proposition 2.6, it suffices to deform ψ2 to a strict super-solution
ψ̃2 in some open ball A around x̂ such that ψ̃2 > ψ1 on ∂A and infA(ψ̃2−ψ1) = 0.
We adapt the argument in [9], which assumes that ψ2 is C2.

Using that ψ2 is C1,1, a theorem of Alexandrov, Buselman and Feller (see,
e.g., [8, Theorem 1.5]) and Lemma 2.5, we can find some Λ > 0 and a set Z of
zero measure such that ψ2 is punctually second-order differentiable in Ω \ Z,

|J2[ψ2]| ≤ Λ in Ω \ Z. (2.35)

and
either (x, J2[ψ2](x)) /∈ Ū or F (x, J2[ψ2](x)) ≤ 1 in Ω \ Z. (2.36)

By (2.3), there is some small constant θ0 > 0

F (x, s, p,M) ≤ 1− 2θ0 for all x ∈ Ω̄, (s, p,M) ∈ ∂Ux, |s|+ |p|+ |M | ≤ Λ + 2.

Hence

K :=
{
(x, s, p,M) ∈ U : F (x, s, p,M) ≥ 1− θ0, x ∈ Ω̄, |s|+ |p|+ |M | ≤ Λ + 1

}
and

K ′ :=
{
(x, s, p,M) ∈ U : F (x, s, p,M) ≥ 1− θ0/2, x ∈ Ω̄,

|s|+ |p|+ |M | ≤ Λ + 1/2
}
⊂ K

are compact.
For α > 1, μ > 0 and τ > 0 which will be fixed later, let

E(x) = Eα(x) = e−α|x|2,

h(x) = hα(x) = e−α|x|2 − e−αR2

,

ζ(x) = ζα(x) = cos(α1/2(x1 − x̂1)),

ψ̃μ,τ = ψ2 − μ (h− τ)ζ. (2.37)

Let A be a ball centered at x̂ such that ζ > 1
2 in A and τ0 = supA h > 0.

It is clear that, for 0 ≤ τ ≤ τ0 and all sufficiently small μ,

ψ̃μ,τ > ψ1 on ∂A.

We compute

∇ψ̃μ,τ (x) = ∇ψ2(x) + 2μαE ζ x+ μα1/2(h− τ) sin(α1/2(x1 − x̂1))e1,

∇2ψ̃μ,τ (x) = ∇2ψ2(x)− 2μαE ζ(2αx⊗ x− I)

− 2μα3/2 E sin(α1/2(x1 − x̂1)(e1 ⊗ x+ x⊗ e1)

+ μα(h− τ)ζe1 ⊗ e1.

We thus have

J2[ψ̃μ,τ ](x) = J2[ψ2](x)−
(
0, 0, 4μα2Eζ x⊗x+μταζe1⊗e1

)
+O(μ(α3/2E+α1/2τ)).
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Now if x ∈ A \ Z is such that

(x, J2[ψ̃μ,τ ](x)), (x, J2[ψ2](x))

and

(x, J2[ψ̃μ,τ ] + (0, 0, 4μα2Eζ x⊗ x+ μταζe1 ⊗ e1)

lie in K , then

F (x, J2[ψ2]) + Cμα3/2E + Cμτα1/2

(2.5)

≥ F
(
x, J2[ψ̃μ,τ ] + (0, 0, 4μα2Eζ x⊗ x+ μταζe1 ⊗ e1)

)
(2.4)

≥ F
(
x, J2[ψ̃μ,τ ]) +

1

C
μα2 E +

1

C
μτα,

and so, by selecting a sufficiently large α, we thus obtain for some β > 0 and all
sufficiently small μ,

F
(
x, J2[ψ̃μ,τ ]) ≤ F

(
x, J2[ψ2])− βμ

(2.36)

≤ 1− βμ. (2.38)

Now for every x ∈ A \ Z satisfying

J2[ψ̃μ,τ ](x) ∈ Ux and F (x, J2[ψ̃μ,τ ](x)) ≥ 1− θ0/2,

we have, in view of (2.35), that |J2[ψ̃μ,τ ](x)| ≤ Λ+1/2 and so (x, J2[ψ̃μ,τ ](x)) lies
in K ′ for all small μ. By squeezing μ further, we then have that (x, J2[ψ2](x)) and

(x, J2[ψ̃μ,τ ] + (0, 0, 4μα2Eζ x ⊗ x + μταζe1 ⊗ e1) lie in K . In particular, (2.38)
holds.

Taking β̃ = min(β, θ0
2μ ), we thus obtain that

either J2[ψ̃μ,τ ](x) /∈ Ūx or F (x, J2[ψ̃μ,τ ](x)) ≤ 1− β̃μ in A \ Z.
Noting that

inf
A
(ψ̃μ,0 − ψ1) ≤ 0 ≤ inf

A
(ψ̃μ,τ0 − ψ1),

we can select τ1 ∈ [0, τ0] such that

inf
A
(ψ̃μ,τ1 − ψ1) = 0.

The desired ψ̃2 is taken to be ψ̃μ,τ1 . The conclusion follows from Proposition 2.6.

Case 2: Consider now the case ψ1 is C1,1.

The proof is similar. C will now denote some generic constant which depends
only on an upper bound for ‖ψ1‖C1,1(Ω̄), Ω and (F,U ).

In view of Proposition 2.7, it suffices to deform ψ1 to a strict sub-solution ψ̃1

in some open ball A around x̂ such that ψ2 > ψ̃1 on ∂A and inf
A
(ψ2 − ψ̃1) = 0.

Using that ψ1 is C1,1, a theorem of Alexandrov, Buselman and Feller and
Lemma 2.5, we can find some Λ > 0 and a set Z of zero measure such that ψ1 is
punctually second-order differentiable in Ω \ Z,

|J2[ψ1]| ≤ Λ in Ω \ Z,
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and, by (2.3),

(x, J2[ψ1](x)) ∈ U and F (x, J2[ψ1](x)) ≥ 1 in Ω \ Z. (2.39)

For α > 1, μ > 0 and τ > 0 which will be fixed later, let E, h, ζ, A, τ0 be as
in Case 1, and amend the definition of ψ̃μ,τ to

ψ̃μ,τ = ψ1 + μ(h− τ)ζ. (2.40)

It is clear that, for 0 ≤ τ ≤ τ0 and all sufficiently small μ,

ψ̃μ,τ < ψ2 on ∂A.

As before, we have

J2[ψ̃μ,τ ](x) = J2[ψ1](x)+(0, 0, 4μα2Eζx⊗x+μταζe1⊗e1)+O(μ(α3/2E+α1/2τ)).

It is clear from (2.39) that (x, J2[ψ1](x)) belongs to K ′ for all x ∈ A \Z. We
thus have for all sufficiently small μ and x ∈ A \ Z that

(x, J2[ψ̃μ,τ ]), (x, J2[ψ1])

and (x, J2[ψ̃μ,τ ]− (0, 0, 4μα2Eζx⊗ x+ μταζe1 ⊗ e1)) lie in K .

Therefore,

F (x, J2[ψ1])− Cμα3/2E − Cμτα1/2

(2.5)

≤ F
(
x, J2[ψ̃μ,τ ]− (0, 0, 4μα2Eζx⊗ x+ μταζe1 ⊗ e1)

)
(2.4)

≤ F (x, J2[ψ̃μ,τ ])−
1

C
μα2E − 1

C
μτα,

and so, by selecting a sufficiently large α, we thus obtain for some β > 0 and all
sufficiently small μ,

F (x, J2[ψ̃μ,τ ]) ≥ F (x, J2[ψ1]) + βμ
(2.39)

≥ 1 + βμ.

Noting that

inf
A
(ψ2 − ψ̃μ,0) ≤ 0 ≤ inf

A
(ψ2 − ψ̃μ,τ0),

we can select τ1 ∈ [0, τ0] such that

inf
A
(ψ2 − ψ̃μ,τ1) = 0.

The desired ψ̃1 is taken to be ψ̃μ,τ1 . The conclusion follows from Proposition 2.7
(and Lemma 2.5). �
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2.2. Proof of the Hopf Lemma

Proof of Theorem 2.4. We will only consider the case that ψ2 is C1,1, since the
case when ψ1 is C1,1 can be treated similarly.

Since ∂Ω is C2 near x̂, we can find a ball B such that B̄ ⊂ Ω ∪ {x̂} and
x̂ ∈ ∂B. Thus we may assume without loss of generality that Ω = B is a ball
centered at the origin, u1 and u2 are defined on B̄ and u1 < u2 in B̄ \ {x̂}.

The function ψ̃μ,τ = ψ2−μ(h−τ)ζ defined by (2.37) in the proof of Theorem
2.3 satisfies for some open ball A centered at x̂, some constant β > 0, and all
0 ≤ τ ≤ τ0 := supA∩B h that

either J2[ψ̃μ,τ ](x) /∈ Ūx or F (x, J2[ψ̃μ,τ ](x)) ≤ 1− βμ a.e. in A ∩B. (2.41)

If ψ̃μ,0 ≥ ψ1 in A ∩ B for some μ > 0, we are done by the explicit form of h.
Suppose otherwise that

inf
A∩B

(ψ̃μ,0 − ψ1) < 0.

Noting that

0 ≤ inf
A∩B

(ψ̃μ,τ0 − ψ1),

we can find τ1 ∈ (0, τ0] such that

inf
A∩B

(ψ̃μ,τ1 − ψ1) = 0.

Recall the definition of h, we have also that

inf
∂(A∩B)

(ψ̃μ,τ1 − ψ1) > 0.

Recalling (2.41), we obtain a contradiction to Proposition 2.6. �

3. Proof of the Liouville theorem

In this section, we prove our Liouville theorem. Let us start with some preliminary.
Define

U = {M ∈ Symn : λ(U) ∈ Γ}
and

F (M) = f(λ(M)).

By (1.2)–(1.7), we have

(i) (F,U) is elliptic, i.e.,

if M ∈ U and N ≥ 0, then M +N ∈ U and F (M +N) ≥ F (M). (3.1)

(ii) (F,U) is locally strictly elliptic, i.e., for any compact subset K of U , there is
some constant δ(K) > 0 such that

F (M +N)− F (M) ≥ δ(K)|N | for all M ∈ K,N ≥ 0. (3.2)
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(iii) F is locally Lipschitz, i.e., for any compact subset K of U , there is some
constant C(K) > 0 such that

|F (M ′)− F (M)| ≤ C(K)|M ′ −M | for all M,M ′ ∈ K. (3.3)

(iv) The 1-superlevel set of F stays in U , namely

F−1([1,∞)) ⊂ U. (3.4)

(v) (F,U) is invariant under the orthogonal group O(n), i.e.,

if M ∈ U and R ∈ O(n), then RtMR ∈ U and F (RtMR) = F (M). (3.5)

(vi) U satisfies

tr(M) ≥ 0 for all M ∈ U. (3.6)

From (3.1)–(3.4), we see that the strong comparison principle (Theorem 2.3)
and the Hopf Lemma (Theorem 2.4) are applicable to the equation F (Au) = 1 by
setting ψ = − lnu.

An essential ingredient for our proof is a conformal property of the confor-
mal Hessian Aw, inherited from the conformal structure of Rn. Recall that a map
ϕ : Rn ∪ {∞} → Rn ∪ {∞} is called a Möbius transformation if it is the composi-
tion of finitely many translations, dilations and inversions. Now if ϕ is a Möbius

transformation and if we set wϕ = |Jϕ|
n−2
2n w ◦ ϕ where Jϕ is the Jacobian of ϕ,

then

Awϕ(x) = Oϕ(x)
tAw(ϕ(x))Oϕ(x)

for some orthogonal n× n matrix Oϕ(x). In particular, by (3.5),

F (Awϕ(x)) = F (Aw(ϕ(x))). (3.7)

Proof of Theorem 1.3. Having established the Hopf Lemma and the strong com-
parison principle, we can follow the proof of [32, Theorem 1.1], which draws on
ideas from [27], to reach the conclusion. We give a sketch here for readers’ conve-
nience. For details, see [32, Section 2].

We use the method of moving spheres. For a function w defined on a subset
of Rn, we define

wx,λ(y) =
λn−2

|y − x|n−2
w
(
x+

λ2(y − x)

|y − x|2
)

wherever the expression makes sense.

Step 1: We set up the moving sphere method.

Since vk is locally uniformly bounded, local gradient estimates (see, e.g., [32,
Theorem 2.1], [30, Theorem 1.10]), imply that |∇vk| is locally uniformly bounded

and so vk converges to v in C0,α
loc (R

n) and v ∈ C0,1
loc (R

n).
We note that, by (3.6), v is super-harmonic. Thus, by the positivity of v and

the maximum principle, we have

v(y) ≥ 1

C
(1 + |y|)2−n for all y ∈ Rn, (3.8)
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and so we may also assume without loss of generality that

‖vk − v‖C0(BRk
(0)) ≤ R−n

k and vk(y) ≥
1

C
(1 + |y|)2−n for all y ∈ BRk

(0). (3.9)

Using (3.9) and the local uniform boundedness of |∇vk|, one can show that
there is a function λ(0) : Rn → (0,∞) such that for all k,

(vk)x,λ ≤ vk in BRk
(0) \Bλ(x), ∀ 0 < λ < λ(0)(x), |x| < Rk/5. (3.10)

See [32, Lemma 2.2].
Define, for |x| < Rk/5,

λ̄k(x) = sup
{
0 < μ < Rk/5 : ux,λ ≤ u in BRk

(0) \Bλ(x), ∀0 < λ < μ
}
.

By (3.10), λ̄k(x) ∈ [λ(0)(x), Rk/5]. Set

λ̄(x) = lim inf
k→∞

λ̄k(x) ∈ [λ(0)(x),∞].

λ̄(x) is sometimes referred to as the moving sphere radius of v at x,

Step 2: We show that if λ̄(x) < ∞ for some x ∈ Rn, then

α := lim inf
|y|→∞

|y|n−2u(y) = lim
|y|→∞

|y|n−2vx,λ̄(x)(y) = λ̄(x)n−2v(x) < ∞. (3.11)

(Note that α > 0 by (3.8).)
We have

(vk)x,λ̄k(x) ≤ vk in Rn \Bλ̄k(x)(x),

By the conformal invariance of the conformal Hessian (3.7), (vk)x,λ̄k(x) satisfies

F (A(vk)x,λ̄k(x)) = 1 in Rn \Bλ̄k(x)(x).

We can now apply the strong comparison principle (Theorem 2.3) and the Hopf
Lemma (Theorem 2.4) to conclude that there exists yk ∈ ∂BRk

(0) such that
(vk)x,λ̄k(x) = vk(yk). (See the proof of [27, Lemma 4.5].)

It follows that

α ≤ lim inf
k→∞

|yk|n−2v(yk) = lim inf
k→∞

|yk|n−2vk(yk)

= lim inf
k→∞

|yk|n−2(vk)x,λ̄k(x)(yk) = (λ̄(x))n−2v(x) < ∞.

The opposite inequality that α ≥ (λ̄(x))n−2v(x) is an easy consequence of the
inequality vx,λ̄(x) ≤ v in Rn \Bλ̄(x)(x). This proves (3.11).

Step 3: We show that either v is constant or λ̄(x) < ∞ for all x ∈ Rn.

Suppose that λ̄(x0) = ∞ for some x0. Then we have

vx0,λ ≤ v in Rn \Bλ(x0) for all λ > 0.

It follows that, for every unit vector e, the function r �→ r
n−2
2 v(x0 + re) is non-

decreasing. It follows that

rn−2 inf
∂Br(x0)

v ≥ r
n−2

2 inf
∂B1(x0)

v
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and so

α = lim inf
|y|→∞

|y|n−2v(y) = ∞.

Thus, by Step 2 above, we have λ̄(x) = ∞ for all x ∈ Rn. This implies that v is
constant; see, e.g., [28], [32, Lemma C.1]. This implies that 0 ∈ Γ and f(0) = 1.

Step 4: By Steps 2 and 3, it remains to consider the case where, for every x ∈ Rn,

there exists 0 < λ̄(x) < ∞ such that

(i) vx,λ̄(x) ≤ v in Rn \Bλ̄(x)(x),

(ii) and

α = lim
|y|→∞

|y|n−2v(y) = lim
|y|→∞

|y|n−2vx,λ̄(x)(y).

In some sense, we have a strong comparison principle situation where touching
occurs at infinity. If v was C1,1, this would imply that vx,λ̄(x) ≡ v and so a calculus

argument would then show that v has the desired form (see [37, Lemma 11.1]).
Since we have not established the strong comparison principle in C0,1 regu-

larity, we resort to a different argument, which was first observed in [27] for C2

solution and [29] for C0,1 solutions. It turns out that, (i) and (ii) together with
the super-harmonicity of v imply directly that there exist a, b > 0 and x0 ∈ Rn

such that

u(x) =
( a

1 + b2|x− x0|2
)n−2

2

.

See [29, 32]. This concludes the proof. �
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Abstract. In this note we briefly present the progress in the research project
to extend Huber’s theory of surfaces to general dimensions. The full paper [42]
is in progress. We discuss n-Laplace equations and n-subharmonic functions
using nonlinear potential theory. Particularly we build the Brezis–Merle type
sharp inequality for Wolff potential and establish Taliaferro’s estimates in
higher dimensions. We then apply the theory of n-subharmonic functions
developed here to study hypersurfaces in hyperbolic space with nonnegative
Ricci curvature as well as locally conformal flat manifolds with nonnegative
Ricci.
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1. Introduction: the story in two dimensions

Thanks to the seminal paper [35] of Huber in 1957 (see also [9, 20, 26, 33]),
to explore the connection between geometric properties of surfaces and potential
theory based on Gauss curvature equations has been the major part of the theory
of surfaces. The Gauss curvature equation in isothermal coordinates on a surface is

−Δu = Ke2u,

where K is the Gauss curvature of the surface metric e2u|dx|2. Let us focus on one
thread of developments on this subject: local behavior of superharmonic functions
near an isolated singular point or asymptotic behavior at infinity of superharmonic
functions on the entire plane.

c© Springer Nature Switzerland AG 2020
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A function that is subharmonic on the entire plane is representable as a
function of potential type

v(z) =

∫
C

log |1− z

ξ
|dμ(ξ)

for z, ξ ∈ C the complex plane, where μ is a positive mass distribution and vanishes
in a neighborhood of the origin for our purposes. To describe the asymptotic
behavior of the function v at infinity one aims to understand the limit

lim
z→∞

v(z)

log |z| .

The first major breakthrough is achieved in [5] in 1973 based on previous works
in [4, 29, 32, 34] (cf. [30]). In [5], it was shown that, there is a set E that is thin
at infinity and

lim
z /∈E and z→∞

v(z)

log |z| = lim sup
z→∞

v(z)

log |z| . (1.1)

Consequently, this asymptotic result [5, 30] enables Alexander and Currier to study
the asymptotic behavior at infinity of complete convex embedded hypersurfaces in
hyperbolic space in [2, 3] around 1990. The notion of being thin at infinity is first
defined by Brelot in 1940 in [12]. In [5, (1.8)], a subset E ⊂ C is said to be thin
at infinity if either it is bounded or there exists a function that is subharmonic on
the entire plane such that

lim sup
z∈E and z→∞

v(z)

log |z| < lim sup
z→∞

v(z)

log |z| .

Most importantly, in [5], the Wiener type criterion for a set to be thin at infinity
was established.

Theorem ([5, Theorem 1.3]). Let E be a Borel subset set in the plane and γn be the
logarithmic capacity of the part of E lying in the annulus {z ∈ C : rn < |z| ≤ rn+1}
for a fixed number r > 1 and n = 1, 2, 3, . . . . Then E is thin at infinity if and only
if γn → 0 as n →∞ and

∞∑
n=1

n

log 1
γn

< ∞. (1.2)

Naturally, one asks what is the condition for a function of potential type to have
no such set E thin at infinity in (1.1)? It is until very recent this question was
solved analytically in [51, Theorem 2.1] in 2006 and geometrically in [10, Lemma
4.2] in 2016. Namely,

Theorem ([10, Lemma 4.2]). Suppose that (C, e2u|dz|2) is complete with nonnega-
tive and bounded Gauss curvature. Then

u(z) = m log
1

|z| + o(log |z|) as |z| → ∞ (1.3)

for m ∈ [0, 1].
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It is known that m = 1
2π

∫
C
Ke2udz and m ∈ [0, 1] due to [20, 35], where m = 0

implies u is a constant. The proof of the above result in [10] relies on two important
ingredients that are deep in geometric analysis and partial differential equation.
One is the non-collapsing result of Croke–Karcher [21, Theorem A] in 1988 for
complete surfaces with nonnegative Gauss curvature; the other is asymptotic es-
timates for nonnegative solutions to Gauss curvature type equations of Taliaferro
in [51, Theorem 2.1] in 2006 (see also his previous work [49, 50]). One of the key
analytic ingredients in [49–51] is based on the Brezis–Merle inequality of Moser–
Trudinger type ∫

Ω

e
(4π−δ)|u(x)|
‖Δu‖

L1(Ω) dx ≤ (diam(Ω))2
4π2

δ
(1.4)

for u|∂Ω = 0 and δ ∈ (0, 4π), established in [13, Theorem 1] in 1991.

Taliaferro’s estimates in [49–51] are the major work in the theory of local
behavior of a class of subharmonic functions near an isolated singular point in two
dimensions. And, in the spirit of Huber that was reflected in [35], on geometric side,
it was a very successful story that the above theorem of sharp local behavior (cf.
[10, Lemma 4.2]) turns out to be essential to the proof of [10, Main Theorem] in two
dimensions that a complete, nonnegatively curved, immersed surface in hyperbolic
3-space is necessarily properly embedded, except coverings of equidistant surfaces,
which was conjectured by Epstein and Alexander–Currier in [2, 3, 23–25] around
1990.

2. n-Laplace equations as higher-dimensional analogues

What can we do in higher dimensions following the approach in [35] by Huber? We
have seen successful efforts in [14, 15, 18, 48, 54] to explored higher-dimensional
counterparts of Gauss curvature equations such as the scalar curvature equations

−4(n− 1)

n− 2
Δu+Ru = R̄u

n+2
n−2 ,

where R and R̄ are scalar curvature of the metrics g and ḡ = u
4

n−2 g respectively
in dimensions n ≥ 3, and the higher-order analogue: Q-curvature equations,

Pnw +Qn = Q̄ne
2nw,

where Pn = (−Δ)n+ lower order is the so-called Paneitz type operator and Qn, Q̄n

are so-called Q-curvature of the metrics g and ḡ = e2wg respectively in dimensions
2n ≥ 2. We have also seen remarkable successes in using fully nonlinear equations of
Weyl–Schouten curvature, as replacements of Gauss curvature equations, in [16, 17,
27, 28]. The above-mentioned seem to represent major developments in conformal
geometry and conformally invariant partial differential equations following the
approach in [35] by Huber.
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2.1. Introduction of n-Laplace equations in conformal geometry

Recall the change of Ricci curvature under conformal change of metrics is

R̄ij = Rij −Δφgij + (2 − n)φi,j + (n− 2)φiφj + (2 − n)|∇φ|2gij ,

where Rij , R̄ij are Ricci curvature tensors for the metrics g and ḡ = e2φg respec-
tively in n dimensions. Contracting with φi and φj on both sides of the above
equation, one gets that

φiφjR̄ij = φiφjRij − |∇φ|4−ndiv(|∇φ|n−2∇φ).

Therefore one arrives at another generalization of Gauss curvature equations in
higher dimensions,

−|∇φ|2−ndiv(|dφ|n−2∇φ) + Ric

(
∇φ

|∇φ| ,
∇φ

|∇φ|

)
= R̄ic

(
∇̄φ

|∇̄φ| ,
∇̄φ

|∇̄φ|

)
e2φ. (2.1)

Particularly, when g is Ricci-flat, we have

−Δnφ = R̄ic

(
∇̄φ

|∇̄φ| ,
∇̄φ

|∇̄φ|

)
e2φ|∇φ|n−2, (2.2)

where Δnφ = div(|∇φ|n−2∇φ) is the so-called n-Laplace operator. In this paper
we want to explore properties of n-superharmonic functions and the geometric
consequences. Following the approach in [35] by Huber we want to extend the
success in two dimensions to higher dimensions and complement contemporary
developments in conformal geometry and conformally invariant partial differential
equations.

2.2. Non-linear potential theory for n-Laplace equations

To study n-Poisson equations

−Δnw = μ, (2.3)

following the roadmap in two dimensions, our first goal is to understand local
behavior of n-superharmonic functions near an isolated singular point analogous
to (1.1). The theory of n-Laplace equations is as fundamental as that of classic
Laplace equations since it is also in the center of the interplay of several important
fields of mathematics including calculus of variations, partial differential equations,
(nonlinear) potential theory, and mathematical physics, except the principle of
superposition is no longer available. We would like to develop the geometric aspects
similar to what have been developed for the theory of subharmonic functions in
[5, 10, 51] regarding local or asymptotic behavior. The geometric problems that
we will use the theory of n-superharmonic functions to study in this paper will
be asymptotic behaviors at end of complete embedded convex hypersurfaces in
hyperbolic space as well as complete locally conformally flat Ricci nonnegative
manifolds.

There is the nonlinear potential theory developed to deal with the lack of
the principle of superposition for some general quasilinear and fully nonlinear
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equations, particularly n-Laplace equations (cf. [31, 43]). The fundamental tool is
the Wolff potential

Wμ
1,n(x0, r) =

∫ r

0

μ(B(x0, t))
1

n−1
dt

t
, (2.4)

where μ is a Radon measure representing the mass distribution. And the founda-
tional estimates in nonlinear potential for the equation (2.3) is as follows:

Theorem ([38, Theorem 1.6]). Suppose that w is a nonnegative n-superharmonic
function satisfying (2.3) for a Radon measure μ in B(x0, 3r). Then

C1W
μ
1,n(x0, r) ≤ w(x0) ≤ C2 inf

B(x0,r)
w + C3W

μ
1,n(x0, 2r) (2.5)

for some constants C1, C2, C3 > 0 which depend only on dimension n.

2.3. Isolated singularity for nonnegative n-superharmonic functions

On the other hand, there are significant developments of the study on local and
global behaviors for solutions to (degenerate) quasilinear elliptic equations that
include the study of n-Laplace equations, for example, [8, 39, 53] and references
therein. The following result on the isolated singularities of nonnegative n-super-
harmonic functions is particularly useful to us.

Theorem ([8, Proposition 1.1]). Suppose that w is a nonnegative n-superharmonic
function on the punctured ball B(0, r)\ {0} for some r > 0. Assume that w is con-
tinuous and |∇w|n is locally integrable in the punctured ball. Furthermore, assume
that −Δnw is also locally integrable in the punctured ball. Then, if limx→0w(x) =
∞, then there are a function g ∈ L1(B(0, r)) and a number β ≥ 0 such that

−Δnw = g + βδ0 (2.6)

in the distributional sense, where δ0 is the Dirac function at the origin.

Our approach combines that in [39] and the use of the nonlinear potential
theory [31, 38] with relevant ideas from [5, 13, 49–51]. In [39, 40], based on [46,
47, 52], it was established that

Theorem ([39, Theorem 1.1]). Suppose that u is a nonnegative n-harmonic func-
tion on the punctured ball B(0, r0) \ {0}. Then, there is a number γ such that

u(x)− γ log
1

|x| ∈ L∞
loc(B(0, r0)). (2.7)

2.4. Higher-dimensional analogue of Arsove–Huber estimates

To study the local behavior for a nonnegative n-superharmonic function w on the
punctured ball, we follow the idea from [39] to consider the blow-down

wr(ξ) =
w(rξ)

log 1
r

for ξ ∈ B(0,
r0
r
) \ {0} as r → 0. (2.8)



250 S. Ma and J. Qing

The first is to observe that, the quotient w(x)

log 1
|x|

is mostly uniformly bounded (cf.

Lemma 2.1). To be precise we need to use the n-capacity. We refer to [38, Section
3] for the definition. For x0 ∈ Rn, we let

ω(x0, i) = {x ∈ Rn : 2−i−1 ≤ |x− x0| ≤ 2−i} and

Ω(x0, i) = {x ∈ Rn : 2−i−2 < |x− x0| < 2−i+1}.

and let

ω(∞, i) = {x ∈ Rn : 2i ≤ |x| ≤ 2i+1} and

Ω(∞, i) = {x ∈ Rn : 2i−1 < |x| < 2i+2}.

Definition 2.1. Let E ⊂ Rn and x0 ∈ Rn. We say E is measure theoretically n-thin
at x0, if

∞∑
i=1

in−1 capn(E ∩ ω(x0, i),Ω(x0, i)) < +∞.

We say E is measure theoretically n-thin at ∞, if

∞∑
i=1

in−1 capn(E ∩ ω(∞, i),Ω(∞, i)) < +∞.

We remark here that our definition of measure theoretical n-thinness is differ-
ent from the definition of n-thinness in [1], where it defines that a subset E ⊂ Rn

is n-thin at x0 ∈ Ē \ E if

Wn(E, x0) =

∫ 1

0

Capn(B(x0, t) ∩ E,B(x0, 2t))
1

n−1
dt

t
< ∞.

Later, in [38, Theorem 1.3], it shows that the above definition from [1] is equivalent
to the existence of an A-superharmonic function u in the neighborhood of x0 such
that

lim inf
x→x0 and x∈E

u(x) > u(x0).

We refer these definitions as function theoretic ones. We like to mention that,
in [5, Theorem 1.3], Arsove and Huber indeed were able to show that a similar
definition of measure theoretical thinness in two dimensions is equivalent to the
function theoretic definitions in [12, 38]. We are content to work with measure
theoretic thinness from geometric perspective in this paper.

The first major step is the following higher-dimensional analogue of [5, The-
orem 1.3] for subharmonic functions in two dimensions.

Theorem 2.1. Let 1 ≤ w ∈ C2(B(0, 1)\{0}) satisfy

−Δnw ≥ 0 and lim
|x|→0

w(x) = +∞.
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Then there is a set E ⊂ Rn, which is measure theoretically n-thin at the origin
such that

lim
|x|→0,x/∈E

w(y)

log 1
|x|

= lim inf
|x|→0

w(x)

log 1
|x|

= m ≥ 0

and

w(x) ≥ m log
1

|x| for x ∈ B(0, 1) \ {0}.

Moreover, if (B(0, 1) \ {0}, e2w|dx|2) is complete at the origin, then m ≥ 1.

The first key ingredient to prove Theorem 2.1, based on the nonlinear poten-
tial theory in [31, 38, 41, 43] and the earlier work of Arsove and Huber [5], is as
follows:

Lemma 2.1. Assume the same assumptions as in Theorem 2.1. Then, there is a
set Ê, which is measure theoretically n-thin at the origin, and a constant Ĉ such
that the quotient

0 ≤ w(x)

log 1
|x|

≤ Ĉ (2.9)

for x ∈ (B(0, 1) \ {0}) \ Ê.

The proof of the above lemma starts with the following simple fact observed
in [38, Lemma 3.9].

Lemma ([38, Lemma 3.9]). Suppose that u ∈ W 1,n
0 (Ω) is an n-superharmonic

function satisfying
−Δnu = μ

for a Radon measure μ. Then, for λ > 0,

λn−1 Capn({x ∈ Ω : u(x) > λ},Ω) ≤ μ(Ω). (2.10)

The proof is to use min{u,λ}
λ as a test function and immediately gets∫
Ω

|∇min{u, λ}|n ≤ μ(Ω)

λn−1

which is easily seen to imply the above n-capacity estimate (2.10). For the purpose
of working with all scales, we consider

ωi = ω(0, i) = {x ∈ Rn : 2−1−i ≤ |x| ≤ 2−i} = 2−iω(0, 0)

Ωi = Ω(0, i) = {x ∈ Rn : 2−2−i ≤ |x| ≤ 2−i+1} = 2−iΩ(0, 0).

Hence
i

2
log 2 ≤ (i− 1) log 2 ≤ log

1

|x| ≤ (i + 2) log 2 ≤ 2i log 2 for all x ∈ Ωi.

In order to use the above-mentioned [38, Lemma 3.9] to prove Lemma 2.1, we
will rely on the fundamental estimates in non-linear potential theory (2.5) of [38,
Theorem 1.6], Lemma 2.3 in the next subsection, and the following basic existence
result (cf. [37, Theorem 2.4])
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Lemma 2.2. For a bounded domain Ω ⊂ Rn and a Radon measure

μf (E) =

∫
E∩Ω

f(x)dx

of a function f ∈ C(Ω̄), there always exists a solution u(x) > 0 to the equation{−Δnu = μf in Ω

u = 0 on ∂Ω.

We also need the following estimates.

Lemma 2.3. Suppose that w is nonnegative and satisfies

−Δnw = g + βδ0 in B(0, 2)

for some g ∈ L1(B(0, 2)) and β ≥ 0. Then there is a constant C such that

inf
B(x0,

|x0|
2 )

w(x) ≤ C log
1

|x0|
for all B(x0,

|x0|
2

) ⊂ B(0, 2). (2.11)

Lemma 2.3 is derived from [22, Lemma 14 and Lemma 15] and [36, Lemma 1].

The second key ingredient in the proof of Theorem 2.1, for the sake of the

blow-down argument as the one used in [39], is to modify the function w(rξ)

log 1
r

to

accommodate the lack of boundedness. We use the trick from [22] and consider
the cut-off function

aα(s) =

⎧⎨⎩
s when 0 ≤ s ≤ α

α+

∫ s

α

(
α

t
)

n
n−1 dt when s > α,

where α is to be fixed as Ĉ+1 throughout this paper, where Ĉ is the one in (2.9).
One may calculate that

aα(s) ≤ nα

min{1, (α
s
)

n
n−1 } ≤ a′α(s) ≤

aα(s)

s
≤ 1

− 4nα

n− 1
(1 + s)−2 ≤ a′′α(s) ≤ 0

−Δnaα(w) = −(a′α)
n−1Δnw − (n− 1)(a′α)

n−2a′′α|∇w|n.

(2.12)

Now we are to carry out the blow-down argument as in [39]. For each r > 0
and small, we consider the modified blow-down

ŵr(ξ) = aα(wr(ξ)) = aα(
w(rξ)

log 1
r

). (2.13)

Clearly, we have

0 ≤ ŵr(ξ) ≤ nα = n(Ĉ + 1) (2.14)
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for ξ ∈ A0, 1r
= {ξ ∈ Rn : |ξ| ∈ (0, 1

r )} and

−Δξ
nŵr(ξ) =

rn

(log 1
r )

n−1
(a′α)

n−1μ(rξ)− (n− 1)(
r

log 1
r

)n(a′α)
n−2a′′α|∇w|n(rξ)

(2.15)
for ξ ∈ A0, 1r

.

Lemma 2.4. Assume the same assumptions as in Theorem 2.1. Then the modified
blow-down ŵr(ξ) is a nonnegative n-superharmonic function satisfying

−Δξ
nŵr = ĝr ≥ 0 in A0, 1r

for a function ĝr ∈ L1(B(0, 1
r )) and ŵr(ξ) ≤ nĈ + n for all x ∈ A0, 1r

. More

importantly, for any fixed R > 0,∫
B(0,R)

ĝrdξ ≤
∫
A0,rR

(−Δx
nw)dx + C

∫
B(0,rR)

|∇w|n
(1 + w)2

dx → 0 as r → 0. (2.16)

Lemma 2.4 implies that there is no concentration other than that possibly
at the origin. Therefore, at least, for sequences rk → 0, one can manage to show
that ŵrk(ξ) converges to a bounded n-harmonic function on the entire space Rn

except possibly the origin, which can only be a constant due to [44] because the
origin and the infinity are removable singularities by [46].

The third key ingredient in the proof of Theorem 2.1 is to show the uniqueness
of all possible limits of blow-down. In the other words, the issue now is what are
the possible limit constants? We continue to use the approach used as in [39]. One
of the key tool is the following weak comparison principle as a consequence of
[52, Lemma 3.1] (please also see [39, Corollary 1.1] and the comment in [40]).

Lemma 2.5. Assume Ω is a connected open subset of Rn \ {0} and u is n-super-
harmonic in Ω. Then

inf
∂Ω

u(x)

log 1
|x|

≤ inf
Ω

u(x)

log 1
|x|

. (2.17)

For any blow-down sequence ŵrk(ξ) with rk → 0, there is ξk with |ξk| = 1
and

ŵrk(ξk) = wrk(ξk) =
w(rkξk)

log 1
rk

= min
|x|=rk

w(x)

log 1
|x|

→ lim inf
x→0

w(x)

log 1
|x|

< Ĉ.

Because, in the light of the weak comparison principle Lemma 2.5, the quotient

min|x|=r
w(x)

log 1
|x|

is non-increasing as r → 0.

2.5. Higher-dimensional analogue of Taliaferro’s estimates

Let us start with Taliaferro’s estimates in two dimensions.
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Theorem ([51, Theorem 2.1]). Suppose that u is C2 positive solution to

0 ≤ −Δu ≤ f(u)

in a punctured neighborhood of the origin in R2, where f : (0,∞) → (0,∞) is a
continuous function such that

log f = O(t) as t → ∞.

Then, either u has a C1 extension to the origin or

lim
x→0

u(x)

log 1
|x|

= m (2.18)

for some finite positive number m.

This can be viewed as the improvement of [5, Theorem 1.3], having eliminated
the possible subset that is thin at the origin and where the local behavior may
differ from (2.18). Our next goal is to establish the higher-dimensional analogue
of [51, Theorem 2.1] as follows:

Theorem 2.2. Let 1 ≤ w ∈ C2(B(0, 1) \ {0}) satisfies

0 ≤ −Δnw ≤ g(x,w,∇w) (2.19)

on a punctured neighborhood of the origin in Rn and that

lim
x→0

w(x) = +∞,

where g is a nonnegative function satisfying

g(x,w,∇w) ≤ C|∇w|n−2e2w (2.20)

for some fixed constant C. Then

lim
|x|→0

w(x)

log 1
|x|

= m ≥ 0

and

w(x) ≥ m log
1

|x| for x ∈ B(0, 1) \ {0}.

Moreover, if (B(0, 1) \ {0}, e2w|dx|2) is complete at the origin, then m ≥ 1.

The key analytic tool to remove the possibility of concentrating for solutions
to n-Laplace equations like (2.2) and (2.19) with growth condition (2.20) is the
higher-dimensional analogue of the borderline Sobolev inequality established by
Brezis and Merle in two dimensions in [13, Theorem 1] in 1991. We extend that
to higher dimensions.

Proposition 2.1. Let Ω ⊂ Rn be a bounded domain with the diameter D. And let
f ∈ L1(Ω) be nonnegative. Then
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1.

∫
Ω

e

(n−δ)W
μf
1,n

(x,D)

‖f‖
L1(Ω) dx ≤ C(δ,D), (2.21)

where δ ∈ (0, n), the measure is defined as

μ(U) = μf (U) =

∫
U∩Ω

fdx

and

Wμ
1,n(x,D) =

∫ D

0

μ(B(x, t))
1

n−1
dt

t

is the associated Wolff potential.
2. If p > n and ‖f‖L1(Ω) ≤ (np )

p, then for δ ∈ (0, p)∫
Ω

exp((p− δ)Wμ
1,n(x,R))dx ≤ p · 2q

δ
(Rn‖f‖L1(Ω) + |Ω|). (2.22)

The proof is a nice use of the Hardy–Littlewood maximal function and its
weak L1 estimates with the assistance of Jensen’s inequality. In contrast to the
proof of Theorem 2.1 in the previous subsection, we will be able to show, based on

the growth condition (2.20) and Proposition 2.1, the quotient w(x)

log 1
|x|

is bounded:

the analogue of [51, Theorem 2.3].

Lemma 2.6. Assume the same assumptions as in Theorem 2.2. Then the quotient

w(x)

log 1
|x|

is uniformly bounded in the punctured ball B(0, 1) \ {0}.

We prove Lemma 2.6 by contradiction. Assume otherwise, there is a sequence
{xk} inside the punctured ball such that

w(xk)

log 1
|xk|

→∞ as |xk| → 0.

One may consider the blow-up sequence

vk(ξ) = w(xk +
|xk|
4

ξ) for ξ ∈ B(0, 2)

and calculate

−Δξ
nvk = −

(
|xk|
4

)n

Δx
nw

(
xk +

|xk|
4

ξ

)
= gk(ξ) ≤ C|xk|2|∇ξvk|n−2e2vk for ξ ∈ B(0, 2)∫

B(0,2)

gk(ξ)dξ =

∫
B(xk,

|xk|
2 )

g(x)dx → 0 as k →∞
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where −Δnw = g + βδ0 and g ∈ L1
loc(B(0, 2)) according to [8, Proposition 1.1].

We will argue in the similar way to that in [51]. For convenience, let us denote

λk = log
1

|xk|
→ ∞ as k →∞.

Then it is implied from [38, Theorem 1.6] and Lemma 2.3 that

1

λk
W

μgk
1,n (0, 2)→∞ (2.23)

gk(ξ) ≤ C|xk|2|∇ξvk|n−2eC1λk+C2W
μgk
1,n (ξ,2) for ξ ∈ B(0, 1). (2.24)

A very important observation is that, when dealing with competing terms like λk

and W
μgk
1,n (0, 2), for

Ωk = {ξ ∈ B(0, 1) : W
μgk
1,n (ξ, 2) ≥ λk}

we have∫
Ωk

|gk|
n−1
n−2 dξ ≤ C|xk|

2(n−1)
n−2

∫
Ωk

|∇ξvk|n−1e
2(n−1)
n−2 vkdξ

≤ C|xk|
2(n−1)
n−2

∫
Ωk

|∇ξvk|n−1e
2(n−1)
n−2 (C1 infB(0,1) vk+C2W

μgk
1,n (ξ,2))dξ

≤ C|xk|
2(n−1)
n−2

∫
B(0,1)

|∇ξvk|n−1eC3W
μgk
1,n (ξ,2))dξ

≤ C. (2.25)

Make a note that n−1
n−2 > 1. The last step in the above inequalities relies on Propo-

sition 2.1 and the simple Lp-gradient estimates for n-superharmonic functions for
any p < n. This implies that

μgk(B(0, t) ∩ Ωk) ≤ Ct
1

n−1

for some positive constant C > 0. Observe that

μgk(B(0, t))
1

n−1 ≤ μgk(B(0, t) ∩ Ωk)
1

n−1 + μgk(B(0, t) \ Ωk)
1

n−1

which implies

W
μgk
1,n (0, 2) ≤ C + C

∫ 2

0

μgk(B(0, t) \ Ωk)
1

n−1
dt

t
. (2.26)

To estimate the second term on the right side the above equation, one notices that,
for ξ ∈ B(0, 1) \ Ωk,

gk(ξ) ≤ C|xk|2|∇ξvk|n−2eC2λk+C3W
μgk
1,n (ξ,2) ≤ C|xk|2|∇ξvk|n−2eC4λk
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from (2.24). Therefore∫
B(0,t)\Ωk

gk(ξ)dξ ≤ C

∫
B(0,t)\Ωk

|xk|2|∇ξvk|n−2eC4λkdξ

≤ C|xk|2−
n−2
n−1 eC4λk

∫
B(0,t)\Ωk

|xk|
n−2
n−1 |∇ξvk|n−2dξ

≤ C|xk|2−
n−2
n−1 eC4λk t

n
n−1

(∫
B(0,t)\Ωk

(
|xk|

n−2
n−1 |∇ξvk|n−2

)n−1
n−2

dξ

)n−2
n−1

≤ C|xk|2−
n−2
n−1 eC4λk t

n
n−1

(∫
Bx(0,1)

|∇w|n−1dx

) n−2
n−1

,

where the last inequality follows because |∇ξvk| = |xk||∇xw| and dξ = |xk|−ndx.
We now calculate separately, for ρk to be fixed next,∫ 2

0

μgk(B(0, t) \Ωk)
1

n−1
dt

t
=

∫ ρk

0

μgk(B(0, t) \Ωk)
1

n−1
dt

t

+

∫ 2

ρk

μgk(B(0, t) \ Ωk)
1

n−1
dt

t

≤ (n− 1)2C|xk|2eC4λkρ
n

(n−1)2

k + C log
1

ρk
+ C.

Let us fix

ρk = e−
(n−1)2

n C4λk ∈ (0, 2).

We thus get ∫ 2

0

μgk(B(0, t) \ Ωk)
1

n−1
dt

t
≤ C + Cλk,

which contradicts with (2.23) in the light of (2.26). So Lemma 2.6 is proved.

Next we proceed with the blow-down argument as used in the proof Theorem
2.1 in the previous subsection. But this time it is easier because of Lemma 2.6. We
consider the blow-down

wr(ξ) =
w(rξ)

log 1
r

and calculate that, from Lemma 2.6,

|wr(ξ)| ≤ C
log 1

r + | log 1
|ξ| |

log 1
r

≤ 2C for all ξ ∈ Ar, 1r
= {ξ ∈ Rn : |ξ| ∈ (r,

1

r
)}.

From here, similarly as in the proof of Theorem 2.1 in the previous subsection,
one may complete the proof of Theorem 2.2.
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3. n-Laplace equations in conformal geometry

In this section we are going to use the local property of n-superharmonic functions
to study the asymptotical behavior at the end of a complete locally conformally
flat manifold (Mn, g). Based on the injectivity of the development maps of [48,
Theorem 4.5], in [54, Theorem 1], and later in [15] with the appendix where the
version of positive mass theorem that was used in the proof of [48, Theorem 4.5] was
proved under nonnegative Ricci assumption, concluded the following classification
result.

Theorem ([54, Theorem 1], [15]). Let (Mn, g) be a complete conformally flat man-
ifold of dimension n ≥ 3 with nonnegative Ricci curvature. Then, exactly one of
the following holds:

• The universal cover of (Mn, g) is globally conformally equivalent to the flat
Euclidean space;

• (Mn, g) is globally conformally equivalent to the Euclidean space (Rn, |dx|2)
with a non-flat conformal metric g = e2φ|dx|2 with nonnegative Ricci curva-
ture for a smooth function on Rn;

• The universal cover of (Mn, g) is globally conformally equivalent to a round
sphere (Sn, gSn);

• (Mn, g) is locally isometric to the standard cylinder R× Sn−1.

Recall that, on (Rn, e2φ|dx|2), in the light of (2.2),

−Δnφ = Ricg(∇gφ)|∇φ|n−2e2φ,

where Ricg(∇gφ) is the Ricci curvature of the conformal metric g = e2φ|dx|2
in the ∇gφ direction. As a consequence of Theorem 2.1 and Theorem 2.2, for a
globally conformally flat manifold (Rn, e2φ|dx|2), we therefore are able to deduce
the following:

Theorem 3.1. Suppose that (Rn, e2φ|dx|2) is complete with nonnegative Ricci
(n ≥ 3). Then there is a subset E ⊂ Rn, which is measure theoretically n-thin
at infinity, such that

lim
x/∈E→∞

φ(x)

log 1
|x|

= lim inf
x→∞

φ(x)

log 1
|x|

= m (3.1)

and

φ(x) ≥ m log
1

|x| − C

for |x| ≥ R0, where C and R0 are some constants and

mn−1vol(Sn−1) =

∫
Rn

Ricg(∇gφ)|∇φ|n−2e2φdx.

Moreover,

• m ∈ [0, 1) and m = 0 if and only if g is flat, i.e., φ(x) is a constant function.
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• if Ricg is bounded in addition, then

lim
x→∞

φ(x)

log 1
|x|

= lim inf
x→∞

φ(x)

log 1
|x|

= m; (3.2)

We remark that Theorem 3.1 should be compared with [6, 19]. In [6] it was
proved that, a complete noncompact manifold (Mn, g) satisfying

Ric ≥ 0

vol(B(0, r)) ≥ γrn for some γ >
1

2

|Rm| ≤ Cr−2

and in addition,

either |Rm| = o(r−2) or

∫
M

|Rm|n2 dvol < ∞,

is actually isometric to the Euclidean space. The assumption of γ > 1
2 is essen-

tial, in the light of Eguchi–Hanson metrics. In [19], on the other hand, it was
proved, a complete noncompact conformally flat manifold with nonnegative Ricci
and satisfying

1

vol(B(x0, r))

∫
B(x0,r)

R dvol = o(r−2)

where the scalar curvature R is bounded, is actually isometric to the Euclidean
space. The comparison of Theorem 3.1 to the main theorem in [19] would be more
direct if one is able to compare the intrinsic distance function r on the conformally
flat manifold with the one |x| in Euclidean space as the background metric, which
seems require something stronger than (3.2).

4. Hypersurfaces in hyperbolic space

In this section we discuss applications of Theorem 2.1 and Theorem 2.2 to study
the asymptotic end structure of embedded hypersurfaces with nonnegative Ricci
in hyperbolic space Hn+1, n ≥ 3. The understanding of end structure in [2, 3] are
significantly improved.

We recall that the main observation in [11] is that

Lemma ([11, Theorem 3.1]). For a complete vertical graph in hyperbolic space
with nonnegative Ricci, the height function f in Busemann coordinates is n-sub-
harmonic.

Consequently, as the main theorem in [11], one gets

Theorem ([11, Main Theorem]). A properly embedded complete hypersurface with
nonnegative Ricci has at most two single-point ends. Having two ends is a rigidity
condition that forces the hypersurface to be an equidistant hypersurface.
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Therefore one may focus on the study of end structure for such hypersurfaces
that are graphs of the height function over a convex domain in Rn in Busemann
coordinates, using the theory of n-subharmonic functions developed in Section 2.

Before doing so, for a vertical graph in Busemann coordinates of hyperbolic
space, one considers the inscribed radially symmetric graph (which is called inner
rotation hypersurface in [2, 3]). More precisely, let

f̂(r) = sup
|x|=r

f(x)

for a vertical graph y = f(x) in Busemann coordinates, where the hyperbolic
metric is given by

gH = dy2 + e−2y|dx|2

for (x, y) ∈ Rn×R. It is worth to mention that, in such coordinates, any equidistant
hypersurface is represented by

y = log |x|+ C

for some constant C. We observe that, from the work in [2, 3],

Lemma 4.1. Suppose that the graph y = f(x) over a convex domain Ω in Rn in
Busemann coordinates in hyperbolic space is complete and with nonnegative Ricci.
Then, there is an equidistant hypersurface y = log |x|+ C such that

f(x) ≤ f̂(|x|) ≤ log |x|+ C

for all |x| ≥ r0 for some r0 > 0. Therefore such graph is always a global graph,
i.e., Ω = Rn.

Thus, based on Theorem 2.1 and its proof in Section 2, we obtain

Theorem 4.1. Suppose that Σ is a properly embedded, complete hypersurface with
nonnegative Ricci and one end. Then it is a global graph of y = f(x) in Busemann
coordinates and it is asymptotically rotationally symmetric in the sense that there
is a number m ∈ [0, 1] such that

m log |x|+ o(log |x|) ≤ f(x) ≤ m log |x|+ C.

Moreover, m = 0 implies that the hypersurface is a horosphere. Therefore such
hypersurface at end supports equidistant hypersurfaces and is supported by horo-
spheres when m > 0.

One may simply apply Theorem 2.1 and realize that deeper geometric argu-
ment allows us to reach the conclusion of Theorem 2.1 with no exception thin set
E. Theorem 4.1 extends [2, Theorem 1.2] completely.
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0. Introduction

In this note, we explain how to give a uniform approach of three different top-
ics: Atiyah–Singer index theorem, holomorphic Morse inequalities and asymptotic
expansion of Bergman kernel, by using heat kernels.

Roughly the Atiyah–Singer index theorem announced in 1963, as one of the
most important theorems in mathematics of 20 century, computes the index of an
elliptic operator by using the characteristic classes, i.e., the topological way. Its
heat kernel approach (as a solution of the McKean–Singer conjecture or as the
local index theorem) was developed by Gilkey in his thesis in 1973 and also by
Atiyah–Bott–Patodi, which needs to use Weyl’s invariant theory and computes
infinite examples to detect the final formula. In the 1980s, influenced by the su-
persymmetry in physics, Bismut and Getzler independently developed direct heat
kernel proofs of the Atiyah–Singer index theorem. In modern index theory, the lo-
cal index techniques plays a central role which allows us to study the more refined
spectral invariants such as the analytic torsion and the eta invariant.

In complex geometry, the Atiyah–Singer index theorem reduces to the clas-
sical Riemann–Roch–Hirzebruch theorem, which computes the alternating sum of
dimensions of the Dolbeault cohomology groups of a holomorphic vector bundle.

The holomorphic Morse inequalities give an asymptotic estimate of the di-
mension of each Dolbeault cohomology group of a pth tensor power of a line bundle
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when p goes to infinity. This was first established by Demailly in 1985 [7] answering
a question of Siu after Siu’s solution of Grauert–Riemenschneider conjecture, and
Bismut [2] gave a heat kernel approach. If the line bundle is positive, then by the
Kodaira vanishing theorem, for large p the associated Dolbeault cohomology group
of positive degree is zero and the dimension of its zero degree part, i.e., the space
of holomorphic sections of its pth tensor power, is given by the Riemann–Roch–
Hirzebruch theorem. Its analytic refinement is the smooth kernel of the orthogonal
projection from the space of smooth sections onto the space of holomorphic sec-
tions: the Bergman kernel. In his thesis [16] in 1990, Tian initiated the study of the
asymptotic of Bergman kernels. Since then, it is a very active research direction.

In this note, we explain a uniform approach of the above three topics by using
heat kernels, which is inspired a lot from the analytic localization techniques of
Bismut–Lebeau in local index theory. The basic references of this note are [1, Chap.
4] on the local index theorem, and [6], [11, §1.6, §4.1], [10], where the readers can
also find a complete list of references. In particular, based on our contributions
with Dai, Liu and Marinescu, [11] gives a comprehensive study on holomorphic
Morse inequalities and Bergman kernels and their applications. To keep this note
in a reasonable size, we omit many technical details, and hope that this note can
be served as an introduction of the subject and motivation to read the book [11]
and recent developments.

This note is organized as follows: In Section 1, we explain the Atiyah–Singer
index theorem and the basic ideas on its local version: the local index theorem. In
Sections 2, 3, we show how to apply the ideas from the local index theory to give a
heat kernel approach of the holomorphic Morse inequalities and Berman kernels.

This note is based on the three lectures I gave in January 2018 in the work-
shop ‘International workshop on differential geometry’ at Sydney in celebration of
Professor Gang Tian’s 60th birthday.

Notations: we denote by dim or dimC the complex dimension of a complex
vector space. Denote also dimR the real dimension of a space. supp(f) means the
support of a function f .

1. Local index theorem

In this section, we review briefly the Chern–Weil theory, the Atiyah–Singer index
theorem for Dirac operators and the heat kernel proof of the local index theorem.

1.1. Chern–Weil Theory

Let X be a smooth manifold of dimension n. Let TX be its tangent bundle and
T ∗X its cotangent bundle. Let Ωk(X) = C∞(X,Λk(T ∗X)) be the space of smooth
k-forms on X and Ω•(X) = ⊕kΩ

k(X), and d : Ωk(X) → Ωk+1(X) be the exterior
differential operator.

Definition 1.1. Let E be a smooth manifold, and let π : E → X be a smooth map.
Then E is called a complex vector bundle overX if there exist a covering {Ui}li=1 of
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X and a family of diffeomorphisms φi : π
−1(Ui) → Ui × Cm, φi(v) = (π(v), ψi(v))

such that if Ui ∩ Uj �= ∅, then for x ∈ Ui ∩ Uj , ψji(x, ·) ∈ GL(m,C), i.e., an
invertible C-linear map on Cm, and is smooth on x, where ψji(x, ·) is given by

φj ◦ φ−1
i : (Ui ∩ Uj)× Cm → (Ui ∩ Uj)× Cm,

φj ◦ φ−1
i (x,w) = (x, ψji(x,w)). (1.1)

That is, if we write ψji(x,w) = ψji(x)w, then ψji(x) ∈ GL(m,C). For x ∈ X ,
Ex := π−1(x) is called the fiber of E at x. The integer m is called the rank of E
and is denoted by rk(E). If rk(E) = 1, then E is called a line bundle.

Denote by C∞(X,E) the space of smooth sections of E on X , i.e., the space
of smooth maps from X to E such that its composition with π is the identity map
on X . Denote by Ω•(X,E) := C∞(X,Λ(T ∗X) ⊗ E) the space of smooth forms
on X with values in E. We denote by C ∞(X,C) the space of smooth C-valued
functions on X .

Definition 1.2. Amap∇E : C ∞(X,E) → C∞(X,T ∗X⊗E) is called a connection if

1) ∇E is C-linear,
2) For any s ∈ C∞(X,E) and ϕ ∈ C∞(X,C),

∇E(ϕs) = dϕ⊗ s+ ϕ∇Es. (1.2)

A Hermitian metric hE on E is a family of Hermitian products hEx on Ex

which is smooth on x ∈ X . In this case, we call (E, hE) a Hermitian vector
bundle and as usual, we also denote hE by 〈 〉. A connection ∇E is a Hermitian
connection on (E, hE) if for any s1, s2 ∈ C ∞(X,E),〈

∇Es1, s2
〉
+
〈
s1,∇Es2

〉
= d 〈s1, s2〉 . (1.3)

Let ∇E : C ∞(X,E) → C ∞(X,T ∗X ⊗ E) be a connection on E.

Definition 1.3. Let ∇E : Ωk(X,E) → Ωk+1(X,E) be the operator induced by ∇E

such that for any α ∈ Ωk(X) and s ∈ C∞(X,E),

∇E(α ∧ s) = dα ∧ s+ (−1)kα ∧ ∇Es. (1.4)

The operator (∇E)2 defines a homomorphism RE := (∇E)2 : E → Λ2(T ∗X)⊗ E.
The RE ∈ Ω2(X,End(E)) is called the curvature operator of ∇E .

Example. For E = C, the exterior differential d : Ωk(X,C) → Ωk+1(X,C) is a
connection on the trivial line bundle C and d2 = 0. The de Rham cohomology of
X is defined by

Hk(X,C) :=
Ker

(
d|Ωk(X,C)

)
Im

(
d|Ωk−1(X,C)

) , H•(X,C) =
n⊕

k=0

Hk(X,C). (1.5)

Theorem 1.4 (Chern–Weil). For f ∈ R[z], i.e., f is a real polynomial on z, set

F (RE) = Tr

[
f

(
i

2π
RE

)]
∈ Ω2•(X,C). (1.6)
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Then F (RE) is closed. Moreover, its cohomology class [F (RE)] ∈ H2•(X,R) and
it does not depend on the choice of the connection ∇E.

Proof. By the definition of RE , we have the Bianchi identity:[
∇E , RE

]
=
[
∇E , (∇E)2

]
= 0. (1.7)

Then

dF (RE) = dTr

[
f

(
i

2π
RE

)]
= Tr

[[
∇E , f

(
i

2π
RE

)]]
= 0. (1.8)

That is, F (RE) is closed.
Denote by π : X × R → X the natural projection. Let ∇E

0 ,∇E
1 be two

connections on E. Then

∇π∗E = (1− t)∇E
0 + t∇E

1 + dt ∧ ∂

∂t
(1.9)

is a connection on π∗E, the pullback of E over X×R. Set ∇E
t = (1− t)∇E

0 + t∇E
1 .

Its curvature RE
t = (∇E

t )
2 ∈ Ω2

(
X,End(E)

)
and Rπ∗E = (∇π∗E)2 = RE

t + dt ∧ ·,
thus there exists Qt ∈ Ω•(X) such that

F (Rπ∗E) = F (RE
t ) + dt ∧Qt. (1.10)

Applying (1.8) for π∗E, we get dX×RF (Rπ∗E) = 0. By (1.10) and comparing the
coefficient of dt in dX×RF (Rπ∗E) = 0, we obtain

∂

∂t
F (RE

t ) = dQt. (1.11)

Thus

F (RE
1 )− F (RE

0 ) = d

∫ 1

0

Qtdt, (1.12)

which implies [
F (RE

1 )
]
=
[
F (RE

0 )
]
∈ H2•(X,C). (1.13)

Finally, we can choose a Hermitian metric hE on E and a Hermitian connection

∇E on (E, hE), then i
2πR

E is self-adjoint with respect to hE , thus Tr
[
f
(

i
2πR

E
)]

is a real differential form, which implies that [F (RE)] ∈ H2•(X,R). The proof of
Theorem 1.4 is completed. �
Example. 1). For f(z) = ez, the Chern character form of (E,∇E) is

ch(E,∇E) = Tr

[
exp

(
i

2π
RE

)]
. (1.14)

The Chern character of E is

ch(E) :=
[
ch(E,∇E)

]
∈ H2•(X,R). (1.15)

The first Chern form of (E,∇E) is c1(E,∇E) = Tr
[

i
2πR

E
]
. Its cohomology class

is the first Chern class c1(E).
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2). For f(z) = log( z
1−e−z ), the Todd form of (E,∇E) is

Td(E,∇E) = det

[
i
2πR

E

1− e−
i

2πRE

]
= exp

{
Tr

[
log

(
i
2πR

E

1− e−
i

2πRE

)]}
. (1.16)

The Todd class of E is

Td(E) =
[
Td(E,∇E)

]
∈ H2•(X,R). (1.17)

3). Let gTX be a Riemannian metric on TX and ∇TX be the Levi-Civita connec-

tion on (X, gTX). The Â-form of (TX,∇TX) is

Â(TX,∇TX) = det1/2

[
i
4πR

TX

sinh
(

i
4πR

TX
)] . (1.18)

The Â-genus of TX is

Â(TX) =
[
Â(TX,∇TX)

]
∈ H4•(X,R). (1.19)

1.2. Atiyah–Singer index theorem

Let X be an n-dimensional compact spin manifold with n even (in particular, X
is orientable) and gTX be a Riemannian metric on X . Let S(TX) be the spinor
bundle of (TX, gTX). Then S(TX) is a Z2-graded vector bundle on X :

S(TX) = S+(TX)⊕ S−(TX). (1.20)

For U ∈ TX , let c(U) ∈ End(S(TX)) be the Clifford action of U on S(TX). We
will not explain in detail the Clifford action, but only recall that c(U) exchange
S+(TX) and S−(TX) and c(U)2 = −|U |2gTX .

The Levi-Civita connection∇TX on (X, gTX) induces canonically the Clifford

connection∇S(TX) = ∇S+(TX)⊕∇S−(TX) on S(TX), i.e., the connection preserves
the splitting (1.20) and compatible with the Clifford action:[

∇S(TX)
V , c(U)

]
= c

(
∇TX

V U
)

for U, V ∈ C∞(X,TX). (1.21)

Let (E, hE) be a Hermitian vector bundle on X . Let ∇E be a Hermitian
connection on (E, hE). Denote by∇S(TX)⊗E the connection on S(TX)⊗E induced
by ∇S(TX) and ∇E .

Definition 1.5. The Dirac operator is defined by

D =

n∑
j=1

c(ej)∇S(TX)⊗E
ej : C∞(X,S±(TX)⊗ E) → C∞(X,S∓(TX)⊗ E),

(1.22)

where {ej} is an orthonormal frame of (TX, gTX).
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Let dvX be the Riemannian volume form on (X, gTX). For

s1, s2 ∈ C∞(X,S(TX)⊗ E),

their Hermitian product is defined as

〈s1, s2〉 =
∫
X

〈s1, s2〉 (x)dvX (x).

The Dirac operator D is a first-order self-adjoint elliptic differential operator. As
X is compact, D is a Fredholm operator, in particular, its kernel Ker(D) is a
finite-dimensional complex vector space.

Set

D± = D|C∞(X,S±(TX)⊗E).

Then under the decomposition (1.20),

D =

(
0 D−
D+ 0

)
, (1.23)

and D2 preserves C ∞(X,S±(TX) ⊗ E). As D is self-adjoint, CoKer(D+), the
cokernel of D+, is Ker(D−). Thus the index of D+ is defined by

Ind(D+) = dimKer(D+)− dimKer(D−) ∈ Z. (1.24)

Theorem 1.6 (Atiyah–Singer index theorem (1963)).

Ind(D+) =

∫
X

Â(TX)ch(E). (1.25)

1.3. Heat kernel and McKean–Singer formula

The heat kernel e−tD2

(x, y) is the smooth kernel of the heat operator e−tD2

with
respect to the Riemannian volume form dvX(y). The following result is well known.

Theorem 1.7. For any t > 0 and x, y ∈ X,

e−tD2

(x, y) =
∞∑
j=1

e−tλjψj(x)⊗ ψj(y)
∗, (1.26)

where ψj is a unit eigenfunction of D2 corresponding to the eigenvalue λj with 0 �
λ1 � λ2 � · · · , λj → +∞ such that {ψj}j form a complete orthonormal basis of
the space of L2-integrable sections, L2(X,S(TX)⊗E), and ψj(y)

∗ ∈ (S(TX)⊗E)∗y
is the metric dual of ψj(y), i.e.,

ψj(y)
∗(v) =

〈
v, ψj(y)

〉
for v ∈ (S(TX)⊗ E)y. (1.27)

Theorem 1.8 (McKean–Singer (1967)). For any t > 0, we have

Ind(D+) = Trs
[
e−tD2]

=

∫
X

Trs
[
e−tD2

(x, x)
]
dvX(x), (1.28)

where the supertrace Trs is given by

Trs = Tr
∣∣
C∞(X,S+(TX)⊗E)

− Tr
∣∣
C∞(X,S−(TX)⊗E)

. (1.29)
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Proof. By (1.26),

lim
t→+∞

e−tD2

(x, x) =
∑
λj=0

ψj(x)⊗ ψj(x)
∗,

which implies

lim
t→+∞

Trs
[
e−tD2]

= Ind(D+). (1.30)

Then it suffices to prove that Trs
[
e−tD2]

is independent of t > 0. In fact,

∂

∂t
Trs

[
e−tD2]

=− Trs
[
D2e−tD2]

=− 1

2
Trs

[[
De−tD2/2, De−tD2/2

]]
= 0.

(1.31)

Here for a Z2-graded vector space E = E+ ⊕ E−, the Z2-grading on End(E) is
given by

End(E)+ = Hom(E+, E+)⊕Hom(E−, E−),

End(E)− = Hom(E+, E−)⊕Hom(E−, E+),
(1.32)

and [·, ·] is the supercommutator of End(E), i.e.,

[A,B] =

{
AB −BA if A or B ∈ End(E)+,
AB +BA if A,B ∈ End(E)−.

(1.33)

Then we verify easily as for matrices that Trs
[
[A,B]

]
= 0. This completes the

proof of Theorem 1.8. �

When t → 0, classically the following asymptotic expansion of the heat kernel
holds for any k ∈ N:

e−tD2

(x, x) =

k∑
j=−l

aj(x)t
j + O(tk+1) uniformly on X, (1.34)

where l = n/2 and the coefficients aj(x) depend only on the restriction of D2

on BX(x, ε), the ball in X of center x and radius ε for any ε > 0. Then the
McKean–Singer formula implies that∫

X

Trs
[
aj(x)

]
dvX(x) =

{
0 for j < 0,

Ind(D+) for j = 0.
(1.35)

McKean–Singer conjectured that in fact a pointwise version of (1.35) holds,
which they called the “miraculous cancellation”. The solution of this conjecture is
called the local index theorem stated as follows. For α ∈ Ω(X), we denote αmax

the degree n component of the differential form α.
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Theorem 1.9 (Local index theorem).

Trs
[
aj(x)

]
dvX(x) =

⎧⎨⎩0 for j < 0,{
Â(TX,∇TX) ch(E,∇E)

}max

x
for j = 0.

(1.36)

Equivalently,

lim
t→0

Trs
[
e−tD2

(x, x)
]
dvX(x) =

{
Â(TX,∇TX) ch(E,∇E)

}max

x
. (1.37)

By Theorems 1.8 and 1.9, we get the Atiyah–Singer index theorem, Theo-
rem 1.6.

Remark 1.10. Using the Bott periodicity theorem in K-theory, we obtain the index
theorem for any elliptic operator P on X :

Ind(P ) =

∫
T∗X

Â(TX)2 ch
(
σ(P )

)
. (1.38)

Here σ(P ) is the principal symbol of P , which can be understood as an element
in K(T ∗X), the K-group of T ∗X .

1.4. Proof of the local index theorem

The proof presented here consists of Bismut–Lebeau’s analytic localization tech-
niques [3, §11] and Getzler rescaling trick. We need to compute the limit as t → 0,

lim
t→0

Trs
[
e−tD2

(x, x)
]
dvX(x).

Step 1. The asymptotic of e−tD2

(x, x) is local, i.e., only depends on the restriction
of D2 on any neighborhood of x.

Recall

e−a2/2 =

∫ +∞

−∞
cos(va)e−v2/2 dv√

2π
, for any a ∈ R. (1.39)

Thus for the heat operator e−tD2

, we have

e−tD2

=

∫ +∞

−∞
cos

(
v
√
2tD

)
e−v2/2 dv√

2π
. (1.40)

We can formally verify (1.40) from (1.39) as D2 is an infinite-dimensional diagonal

matrix. Rigorously, the wave operator cos
(
v
√
2tD

)
is given by

cos
(
vD

)
(x, y) =

∑
j
cos(v

√
λj)ψj(x) ⊗ ψj(y)

∗. (1.41)

In fact, wt(x) = cos
(
tD
)
(x, ·) is the fundamental solution of the equation(

∂2

∂t2
+D2

)
wt(x) = 0 (1.42)

with the initial conditions

lim
t→0

wtφ = φ, for any φ ∈ L2(X,S(TX)⊗ E). (1.43)
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Using the energy estimates, we obtain the property of the finite propagation speed
for the wave operator cos

(
tD
)
:

supp cos
(
tD
)
(x, ·) ⊂ BX(x, t) (1.44)

and cos
(
tD
)
(x, ·) depends only on D2|BX (x,t).

Let f : R → [0, 1] be a smooth even function such that f(v) = 1 for |v| � ε/2
and that f(v) = 0 for |v| � ε. For u > 0, set Fu(a), Gu(a) even functions on R
defined by

Fu(a) =

∫ +∞

−∞
cos(va)e−v2/2f(

√
uv)dv

/√
2π,

Gu(a) =

∫ +∞

−∞
cos(va)e−v2/2

(
1− f(

√
uv)

)
dv
/√

2π.

(1.45)

Clearly, from (1.39) and (1.45),

Fu(a) +Gu(a) = e−a2/2. (1.46)

From (1.44),

suppFu

(√
uD

)
(x, ·) ⊂ BX(x, ε). (1.47)

Clearly, from (1.45),

Gu

(√
ua
)
=

∫
|v|�ε/2

eiva exp

(
− v2

2u

)(
1− f(v)

) dv√
2πu

. (1.48)

Then

amGu

(√
ua
)
= im

∫
|v|�ε/2

eiva
∂m

∂vm

[
exp

(
− v2

2u

)(
1− f(v)

)] dv√
2πu

=

∫
|v|�ε/2

eiva exp

(
− v2

2u

) m∑
j=0

∂j

∂vj
(
1− f(v)

)
Pj

(
1

u
, v

)
dv√
2πu

, (1.49)

where Pj(
1
u , v) are polynomials on 1

u and v. Thus, there exists C > 0 such that
for u ∈ (0, 1], ∣∣∣amGu

(√
ua
)∣∣∣ � C e−

ε2

16u , for any a ∈ R. (1.50)

Again from (1.50) in view of D2 as a diagonal matrix, we get the estimate of
operator norm ‖ · ‖0,0 from L2 to L2 as∥∥∥DmGu

(√
uD

)∥∥∥0,0 � C e−
ε2

16u . (1.51)

Using Sobolev inequalities and (1.51), we obtain uniformly on x, y ∈ X ,∣∣∣Gu

(√
uD

)
(x, y)

∣∣∣ � c1e
−c2/u. (1.52)
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This concludes that the asymptotic expansion of e−tD2

(x, x) is local! Note

that the heat operator e−tD2

is defined globally by means of eigenvalues and eigen-
functions of D2.

Step 2. Replace X by Rn, we work on Rn. Fix x0 ∈ X . We identify BTx0X(0, 4ε) to
BX(x0, 4ε) by the exponential map: v → expx0

(v). For Z ∈ BTx0X(0, 4ε) ⊂ Tx0X ,
we identify S(TX)Z, EZ to S(TX)x0, Ex0 by parallel transport with respect
to ∇S(TX), ∇E along the path γ : [0, 1] → X, γ(s) = sZ. Then we extend
D2|BTx0X (0,2ε) to an operator on Rn which is the canonical (positive) Laplacian

outside BTx0X(0, 4ε).

Step 3. Rescaling. Set Ex0 = (S(TX)⊗ E)x0 . For s ∈ C∞
0 (Rn,Ex0), Z ∈ Rn, set(

Sts
)
(Z) = s

(
Z√
t

)
, Lt

2 = S−1
t tD2St. (1.53)

Let {ej}nj=1 be an oriented orthonormal basis of Tx0X . For 1 � j � n, t ∈ (0, 1],
set

ct(ej) =
1√
t
ej ∧ −

√
t iej ∈ End

(
Λ(T ∗

x0
X)
)
. (1.54)

Let Lt
3 be the operator obtained from Lt

2 by replacing c(ej) by ct(ej) in the explicit
formula of the operator Lt

2. Then Lt
3 acts on C∞(Rn, (Λ(T ∗X)⊗E)x0). We claim

that as t → 0,

Trs

[
e−tD2

(x0, x0)
]
= (−2i)n/2 Tr

∣∣∣
E

[
e−Lt

3(0, 0)
]max

+O(e−c/t), (1.55)

which follows from the simple linear algebra identity: for 1 � i1 < · · · < ij � n,

Trs

∣∣∣
S(TX)

[
c(ei1) · · · c(eij )

]
=

{
0 if j < n = 2l,

(−2i)n/2 if j = n,
(1.56)

and thus

Trs

[
e−Lt

2(0, 0)
]
= (−2i)n/2tn/2 Tr

∣∣∣
E

[
e−Lt

3(0, 0)
]max

. (1.57)

Theorem 1.11. As t → 0,

Lt
3 → L0

3 = −
n∑

j=1

[
∂

∂Zj
+

1

4

〈
RTX

x0
Z,

∂

∂Zj

〉]2
+RE

x0
. (1.58)

The following Lichnerowicz formula allows us to obtain (1.58):

D2 = Δ+
1

4
rX + cRE , (1.59)

where Δ is the (positive) Bochner Laplacian on S(TX) ⊗ E associated with the
connection ∇S(TX)⊗E , and rX is the scale curvature of (X, gTX) and for {ej}nj=1



From Local Index Theory to Bergman Kernel 275

an orthonormal frame of (X, gTX),

cRE =
1

2

n∑
i,j=1

RE(ei, ej)c(ei)c(ej). (1.60)

By using weighted Sobolev norm adapted from the structure of the operator
Lt
3, we can obtain as t → 0,

e−Lt
3(0, 0)→ e−L0

3(0, 0). (1.61)

By Mehler’s formula, we get

e−tL0
3(Z,Z ′) = (4π)−n/2 exp(−tRE

x0
)det1/2

[
RTX

x0

etR
TX
x0

/2 − e−tRTX
x0

/2

]
(1.62)

× exp

{〈
−

RTX
x0

/4

2 tanh(tRTX
x0

/2)
Z,Z

〉
−
〈

RTX
x0

/4

2 tanh(tRTX
x0

/2)
Z ′, Z ′

〉

+

〈
etR

TX
x0

/4RTX
x0

/4

2 sinh(tRTX
x0

/2)
Z,Z ′

〉}
.

In particular,

e−L0
3(0, 0) = (4π)−n/2det1/2

[
RTX

x0

eR
TX
x0

/2 − e−RTX
x0

/2

]
exp(−RE

x0
). (1.63)

Combining (1.55), (1.61) and (1.63), we obtain

lim
t→0

Trs
[
e−tD2

(x0, x0)
]
dvX(x0)

= (−2i)n/2Tr
∣∣∣
E

[
e−L0

3(0, 0)
]max

= (−2i)n/2(4π)−n/2

{
det1/2

[
RTX

x0

eR
TX
x0

/2 − e−RTX
x0

/2

]
Tr
[
e−RE

x0

]}max

=

{
det1/2

[
RTX

x0

/
(2πi)

eR
TX
x0

/(4πi) − e−RTX
x0

/(4πi)

]
Tr

[
exp

(
−
RE

x0

2πi

)]}max

=
{
Â(TX,∇TX) ch(E,∇E)

}max

.

(1.64)

This completes the proof of (1.37). Then we finish the proof of the Atiyah–Singer
index theorem. �

2. Holomorphic Morse inequalities

Let (X, J) be a compact complex manifold with complex structure J and dimC X =
n. Then we can identify the holomorphic tangent bundle T (1,0)X (resp. anti-
holomorphic tangent bundle T (0,1)X) as the eigenspace of J with eigenvalue i
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(resp. −i) on TX ⊗R C. Let T ∗(0,1)X be the anti-holomorphic cotangent bundle
of X . Then formally,

Λ(T ∗(0,1)X) = S(TX)⊗ (detT (1,0)X)1/2, (2.1)

here detF = Λrk(F )F as the determinant line bundle of a vector bundle F .

If E is a holomorphic vector bundle on X . Let

Ω0,•(X,E) = C∞(X,Λ•(T ∗(0,1)X)⊗ E)

be the space of anti-holomorphic differential forms on X with values in E. Then
as in (1.4), we can define the Dolbeault operator

∂
E
: Ω0,k(X,E) → Ω0,k+1(X,E)

by using ∂
E
on C ∞(X,E) induced by the holomorphic structure on E. Moreover,(

∂
E)2

= 0. Denote by H•(X,E) the Dolbeault cohomology of X with values in
E, i.e.,

Hq(X,E) =
Ker(∂

E |Ω0,q(X,E))

Im(∂
E |Ω0,q−1(X,E))

. (2.2)

Let gTX be a J-invariant metric on TX and hE be a Hermitian metric on E.
Then they induce naturally an L2-Hermitian product on Ω0,•(X,E) via

〈s1, s2〉 =
∫
X

〈s1, s2〉(x)dvX (x). (2.3)

Let ∂
E,∗

be the formal adjoint of ∂
E
, and

D =
√
2
(
∂
E
+ ∂

E,∗)
. (2.4)

Then

D2 = 2
(
∂
E
∂
E,∗

+ ∂
E,∗

∂
E)

. (2.5)

Thus D2 preserves the Z-grading on Ω0,•(X,E). By Hodge theory, we have

Ker
(
D2|Ω0,q(X,E)

)
� Hq(X,E) for any q. (2.6)

Remark 2.1. If (X, gTX) is Kähler and (E, hE) is a holomorphic Hermitian vec-

tor bundle on X with Chern connection ∇E , i.e., the (0, 1)-part of ∇E is ∂
E

and ∇E is Hermitian, then D in (2.4) is the Dirac operator in (1.22) acting on
Λ•(T ∗(0,1)X)⊗ E.

Theorem 2.2 (Riemann–Roch–Hirzebruch Theorem).

n∑
j=0

(−1)j dimHj(X,E) =

∫
X

Td(T (1,0)X) ch(E). (2.7)
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If X is projective, then Theorem 2.2 is the original Riemann–Roch–Hirze-
bruch theorem. If X is only a compact complex manifold, then (2.7) is a con-
sequence of the Atiyah–Singer index theorem for the Spinc Dirac operator and
(2.6).

Question: How to estimate dimHq(X,E) in geometric way? If it is not possible,
then at least asymptotically?

The following Theorem 2.3 gives a positive answer to the above question. It
is an analogue of the classical Morse inequalities: For a Morse function f on a
compact manifold M , let Cj(f) be the number of critical points of f with index
j, then

q∑
j=0

(−1)q−j dimHj(M,C) �
q∑

j=0

(−1)q−jCj(f) for any 0 ≤ q ≤ dimR M. (2.8)

Let L be a holomorphic Hermitian line bundle on X . Set Lp = L⊗p, the pth
tensor power of L. For 0 � j � n, set

Bp
j = dimHj(X,Lp ⊗ E). (2.9)

Let hL be a Hermitian metric on L and ∇L be the Chern connection on (L, hL)

with curvature RL = (∇L)2. We define ṘL
x ∈ End(T

(1,0)
x X) by

〈ṘLu, v〉 = RL(u, v). (2.10)

Set

X(q) =
{
x ∈ X : iRL

x non-degenerate, ṘL
x has exactly q negative eigenvalues

}
,

X(� q) = ∪k�qX(k). (2.11)

Theorem 2.3 (Demailly). As p → +∞, the following strong Morse inequalities
hold for every q = 0, 1, . . . , n:

q∑
j=0

(−1)q−jBp
j � rk(E)

pn

n!

∫
X(�q)

(−1)q
(

i

2π
RL

)n

+ o(pn) , (2.12)

with equality for q = n. In particular, we get the weak Morse inequalities

Bp
j � rk(E)

pn

n!

∫
X(q)

(−1)q
(

i

2π
RL

)n

+ o(pn). (2.13)

In 1987, Bismut gave a heat kernel proof of Demailly’s holomorphic Morse
inequalities by using probability theory. Here we gave a heat kernel proof by using
Bismut–Lebeau’s analytic localization techniques in local index theory [3, §11].
The starting point is the following analogue of the McKean–Singer formula in
current context obtained first by Bismut [2]. As in (2.4), set

Dp =
√
2
(
∂
Lp⊗E

+ ∂
Lp⊗E,∗)

. (2.14)
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Theorem 2.4. For any u > 0, 0 � q � n, we have
q∑

j=0

(−1)q−jBp
j �

q∑
j=0

(−1)q−j Trj

[
e−

u
pD2

p

]
, (2.15)

with equality for q = n. Again Trj

[
e−

u
pD2

p

]
is the trace of e−

u
pD2

p on Ωj(X,Lp⊗E)

which is given by

Trj [e
−u

pD2
p ] =

∫
X

Tr |Λj(T∗(0,1)X)⊗Lp⊗E

[
e−

u
pD2

p(x, x)
]
dvX(x). (2.16)

Note that

e−
u
p D2

p(x, y) ∈
n⊕

j=0

Ej
p,x ⊗ Ej,∗

p,y, with Ej
p = Λj(T ∗(0,1)X)⊗ Lp ⊗ E. (2.17)

As End(L) = C, thus

e−
u
pD2

p(x, x) ∈
n⊕

j=0

End
(
Λj(T ∗(0,1)X)⊗ E

)
x
.

Theorem 2.5 (Bismut). For u > 0 fixed, as p → +∞, we have

exp

(
−u

p
D2

p

)
(x, x) = (2π)−n det(ṘL) exp(2uωd)

det(1− exp(−2uṘL))
⊗ IdE pn + o(pn)

=

n∏
j=1

aj(x)
(
1 + (e−2uaj(x) − 1)wj ∧ iwj

)
2π(1− e−2uaj(x))

⊗ IdE pn + o(pn) ,

(2.18)

where we choose an orthonormal basis wj of T (1,0)X such that

ṘL(x) = diag(a1(x), . . . , an(x)) ∈ End(T (1,0)
x X), (2.19)

and

ωd = −
n∑

j=1

aj(x)w
j ∧ iwj . (2.20)

If ω(·, J ·) = gTX(·, ·), then aj(x) = 2π.

Proof. Bismut used probability theory to prove the result. Our proof is based on
the analytic localization techniques of Bismut–Lebeau.

Step 1. The problem is local! Recall that from (1.50) there exists C > 0 such that∣∣∣akGu(
√
ua)

∣∣∣ � Ce−
ε2

16u , for any u ∈ (0, 1], a ∈ R. (2.21)

Thus for u > 0 fixed, there exists Ck > 0 such that for p ∈ N,∥∥∥∥Dk
pGu

p

(√
u

p
Dp

)∥∥∥∥0,0 � Cke
− ε2p

32u . (2.22)
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Once we study carefully the Sobolev embedding theorem with parameter p, from
(2.22) we know that there exist c1 > 0, c2 > 0 such that for any x, y ∈ X ,∣∣∣∣Gu

p

(√
u

p
Dp

)
(x, y)

∣∣∣∣ � c1e
−c2p. (2.23)

But supp Fu
p

(√
u
pDp

)
(x, ·) ⊂ B(x, ε) and Fu

p

(√
u
pDp

)
(x, ·) only depends on the

restriction of Dp to B(x, ε).

Step 2. Replace X by R2n � Cn, we work on Cn.

Fix x0 ∈ X . We identify BTx0X(0, 4ε) to BX(x0, 4ε) by the exponential map:

v → expx0
(v). For Z ∈ BTx0X(0, 4ε) ⊂ Tx0X , we identify Λ•(T

∗(0,1)
Z X), LZ and

EZ to Λ•(T
∗(0,1)
x0 X), Lx0 and Ex0 by parallel transport with respect to ∇B,Λ0,∗

, ∇L

and ∇E along the path γ : [0, 1] → X, γ(s) = sZ, where ∇B,Λ0,∗
is the connection

on Λ•(T ∗(0,1)X) induced by the Bismut connection ∇B on T (1,0)X , in particular,
it preserves the Z-grading on Λ•(T ∗(0,1)X).

Step 3. Rescaling. Once we trivialized L we can consider that D2
p acts on

C∞(R2n,Ex0) with Ex0 = (Λ•(T ∗(0,1)X)⊗E)x0 . For s ∈ C∞(R2n,Ex0), Z ∈ R2n

and t = 1√
p , set (

Sts
)
(Z) = s

(
Z

t

)
, Lt

2 = S−1
t

1

p
D2

pSt. (2.24)

Then as t → 0, with τx0 =
∑n

j=1 aj(x0),

Lt
2 → L0

2 = −
2n∑
j=1

[
∂

∂Zj
+

1

2
RL

x0

(
Z,

∂

∂Zj

)]2
− 2ωd,x0 − τx0 . (2.25)

Again (2.25) is obtained from the Lichnerowicz formula forD2
p obtained by Bismut:

D2
p = ΔB,Λ0,∗

+ p cRL + 0-order term independent of p, (2.26)

and ΔB,Λ0,∗
is the Bochner Laplacian acting on C∞(X,Ep) associated with∇B,Λ0,∗

,
∇L and ∇E .

From the finite propagation speed for the wave operator, for u > 0 fixed, we
obtain as p → +∞,

e−
u
pD2

p(x0, x0) = pne−uLt
2(0, 0) + O(e−cp). (2.27)

By using weighted Sobolev norms adapted from the structure of the operator Lt
2,

we get

Theorem 2.6. As t → 0,

e−uLt
2(0, 0)→ e−uL0

2(0, 0). (2.28)
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Finally, from (1.62) and (2.25), we get

e−uL0
2(0, 0) = (2π)−n det(ṘL

x0
)e2uωd,x0

det(1− e−2uṘL
x0 )

. (2.29)

From Theorem 2.4, (2.27)–(2.29), as p → +∞,

q∑
j=0

(−1)q−jBp
j

�
q∑

j=0

(−1)q−j

∫
X

Tr |Λj(T∗(0,1)X)⊗E

[
(2π)−n det(ṘL

x0
)e2uωd,x0

det(1 − e−2uṘL
x0 )

⊗ IdE

]
dvX(x) · pn

+ o(pn). (2.30)

One can verify directly that

lim
u→+∞

∫
X

Tr |Λj(T∗(0,1)X)

[
(2π)−n det(ṘL

x0
)e2uωd,x0

det(1− e−2uṘL
x0 )

]
dvX(x)

=

∫
X(j)

(−1)j
1

n!

(
iRL

2π

)n

.

(2.31)

Combining (2.30) and (2.31) yields (2.12). �

3. Bergman kernels

3.1. Asymptotic expansion of Bergman kernels

Let (X, J) be a compact complex manifold with complex structure J and dimC X =
n. Let (L, hL), (E, hE) be holomorphic Hermitian vector bundles onX and rk(L) =
1. Let ∇L be the Chern connection on (L, hL) with curvature

RL = (∇L)2 ∈ Ω1,1(X,End(L)) = Ω1,1(X,C). (3.1)

Assumption: ω = i
2πR

L is positive (equivalently, w(·, J ·) defines a metric on TX).

By the Kodaira vanishing theorem, we have for any q > 0,

Hq(X,Lp ⊗ E) = 0 for p * 1. (3.2)

Let gTX be any J-invariant Riemannian metric on TX . Let Pp be the or-
thogonal projection from C∞(X,Lp⊗E) onto H0(X,Lp⊗E). Its smooth kernel is

Pp(x, y) =

dp∑
i=1

Sp
i (x)⊗ (Sp

i (y))
∗ ∈ (Lp ⊗ E)x ⊗ (Lp ⊗ E)∗y, (3.3)

where {Sp
i }

dp

i=1 (dp := dimH0(X,Lp ⊗E)) is an orthonormal basis of H0(X,Lp ⊗
E). In particular,

Pp(x, x) ∈ End(Lp ⊗ E)x = End(E)x. (3.4)
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If E = C, then

Pp(x, x) =

dp∑
i=1

|Sp
i (x)|2 : X → [0,+∞). (3.5)

By the Riemann–Roch–Hirzebruch theorem and (3.2), we have for p large enough,∫
X

Tr |E [Pp(x, x)]dvX (x) = dimH0(X,Lp ⊗ E) =

∫
X

Td(T (1,0)X) ch(Lp ⊗ E)

=

∫
X

Td(T (1,0)X) ch(E)epω = rk(E)

∫
X

c1(L)
n

n!
pn (3.6)

+

∫
X

(
c1(E) +

rk(E)

2
c1(T

(1,0)X)

)
c1(L)

n−1

(n− 1)!
pn−1 + O(pn−2).

Question: Whether as p → +∞,

Tr |E [Pp(x, x)]dvX (x) = Td(T (1,0)X,∇T (1,0)X) ch(E,∇E)xe
pωx + O(p−∞), (3.7)

where ∇T (1,0)X is the Chern connection on (T (1,0)X, gTX).
The following is a local version of the expansion.

Theorem 3.1 (Tian, Ruan, Catlin, Zelditch, Boutet de Monvel–Sjöstrand, Dai–
Liu–Ma, Ma–Marinescu, . . . ). There exist bj ∈ C∞(X,End(E)) such that for any
k, as p → +∞, we have uniformly on X,

p−nPp(x, x) =

k∑
j=0

bj(x)p
−j + O(p−k−1), (3.8)

with

b0 = det(ṘL/(2π)) IdE . (3.9)

The Kodaira embedding theorem shows that for p * 1, Lp give rise to holo-
morphic embeddings Φp : X → P(H0(X,Lp)∗). Moreover, Lp = Φ∗

pO(1) and

hLp

(x) = Pp(x, x)h
Φ∗

pO(1)(x) (cf. [11, Theorem 5.1.3]). Here O(1) is the hyper-

plane line bundle on P(H0(X,Lp)∗) with the metric hO(1) induced naturally from
the Hermitian product on H0(X,Lp). Thus

1

p
Φ∗

pωFS − ω = − i

2πp
∂∂ logPp(x, x). (3.10)

Where ωFS is the Fubini–Study form on the projective space P(H0(X,Lp)∗).
From (3.8) and (3.10), we know that the induced Fubini–Study forms via

Kodaira embedding maps Φp is dense in the space of Kähler form in the Kähler
class c1(L). More precisely,

Corollary 3.2 (Tian, Ruan). For k > 0, there exists C > 0 such that∣∣∣1
p
Φ∗

p(ωFS
)− ω

∣∣∣
Ck

� C

p
· (3.11)
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Ruan improved Tian’s asserting convergence in C 2 topology with speed rate p−1/2.
The optimal convergence speed of the induced Fubini–Study forms in the symplec-
tic case was obtained in [9].

3.2. Proof of the asymptotic expansion of Bergman kernels

In this subsection, we obtain the asymptotic behavior of Pp(x, y) as p → +∞ via
the analytic localization techniques of Bismut–Lebeau [3, §11]. The method also
works in the symplectic case by Dai–Liu–Ma [6], also Ma–Marinescu [12]. The
starting point of the approach is the following spectral gap result.

Theorem 3.3 (Bismut–Vasserot (1989); Ma–Marinescu, symplectic version (2002)).
There exists C > 0 such that for any p ∈ N∗,

Spec(D2
p) ⊂ {0} ∪ [2pμ0 − C,+∞), (3.12)

where

μ0 = inf
x∈X,

0�=u∈T (1,0)
x X

RL(u, u)

|u|2 . (3.13)

If w(·, J ·) = gTX , then μ0 = 2π.

Proof of Theorem 3.1. We divide the proof into three steps.

Step 1. The problem is local, i.e., module O(p−∞), Pp(x0, ·) depends only on
Dp|BX (x0,ε). Let f : R → [0, 1] be a smooth even function such that f(v) = 1 for
|v| � ε/2 and that f(v) = 0 for |v| � ε. Take

F (a) =

(∫ +∞

−∞
f(v)dv

)−1 ∫ +∞

−∞
eivaf(v)dv. (3.14)

Then F (0) = 1 and for p > C/μ0,

Pp = F (Dp)− 1[√pμ0,+∞)(|Dp|)F (Dp). (3.15)

On one hand, by the finite propagation speed of solutions of wave equations, we
have suppF (Dp)(x0, ·) ⊂ BX(x0, ε) and F (Dp)(x0, ·) depends only on Dp|BX (x0,ε).
On the other hand, as

sup
a∈R

|a|m|F (a)| � Cm, (3.16)

which implies that the smooth kernel of the operator 1[√pμ0,+∞)(|Dp|)F (Dp) has
the following property: as p → +∞,

1[√pμ0,+∞)(|Dp|)F (Dp)(x, y) = O(p−∞). (3.17)

As F (Dp)(x, y) = 0 if d(x, y) > ε, where d( , ) is the Riemannian distance on
(X, gTX). Thus we know that if d(x, y) > ε, then

Pp(x, y) = O(p−∞). (3.18)

Step 2. We replace X by R2n =: X0. We identify BTx0X(0, 4ε) in Tx0X to
BX(x0, 4ε) by the exponential map: v → expx0

(v). For Z ∈ BTx0X(0, 4ε) ⊂ Tx0X ,
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we identify Λ(T
∗(0,1)
Z X), LZ and EZ to Λ(T

∗(0,1)
x0 X), Lx0 and Ex0 by parallel trans-

port with respect to ∇B,Λ0,∗
, ∇L and ∇E along the path γ : [0, 1] → X, γ(s) = sZ.

Step 3. Rescaling. Let ρ : R → [0, 1] be a smooth even function such that

ρ(v) = 1 if |v| < 2; ρ(v) = 0 if |v| > 4. (3.19)

Set ϕε(Z) = ρ(|Z|/ε)Z. For the trivial vector bundle L0 := (Lx0 , h
Lx0 ), we defined

a Hermitian connection on X0 := Tx0X by

∇L0 |Z = ϕ∗
ε∇L +

1

2
(1− ρ2(|Z|/ε))RL

x0
(Z, ·). (3.20)

The important observation is that the curvature (∇L0)2 of ∇L0 is uniformly pos-
itive on R2n and its small eigenvalues in the sense of (3.13) is bigger than 4

5μ0 for
ε small enough. We obtain a modified Dirac operator D0,p on X0 with

Spec(D2
0,p) ⊂ {0} ∪

[
8

5
pμ0 − C,+∞

)
. (3.21)

Denote by P0,p the orthogonal projection from L2(X0, E0,p) onto Ker(D2
0,p). Then

Pp = P0,p + O(p−∞). (3.22)

For large p, we have

P0,p = e−
u
pD2

0,p − e−
u
pD2

0,p1(pμ0,+∞)(D
2
0,p)

= e−
u
pD2

0,p −
∫ ∞

u

1

p
D2

0,pe
− v

pD2
0,pdv.

(3.23)

Then for u fixed we have the asymptotic expansion of e−
u
pD2

0,p and

1

p
D2

0,pe
−u

pD2
0,p = O(e−cu).

This indicates that we can approximate the Bergman kernel by using heat kernels.
The detail of this approach was first realized by Dai–Liu–Ma in [6] by using the
analytic localization techniques of Bismut–Lebeau. In fact they obtain the full
asymptotics of Pp(x, y) as p → +∞. This approach works for the symplectic case,
also the singular case with orbifold singularities. Ma–Marinescu [8, 11, 13, 14] use
this kind of expansion to establish the Berezin–Toeplitz geometric quantization
theory in symplectic case. The Berezin–Toeplitz theory has played an important
role in the recent works on the asymptotics of analytic torsions [4], [15]. �

3.3. Coefficients of the asymptotic expansion of Bergman kernels

In the last part, we explain how to compute the coefficient in the expansion.
For t = 1√

p , set(
Sts

)
(Z) = s

(
Z

t

)
, Lt = S−1

t

1

p
D2

0,pSt. (3.24)
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Then the Taylor expansion of Lt gives

Lt = L0 +
k∑

r=1

trOr + O(tk+1), (3.25)

where under the notation of (2.20),

L0 =
∑
j

(
−2 ∂

∂zj
+

1

2
ajzj

)(
2 ∂
∂zj

+
1

2
ajzj

)
+ 2ajw

j ∧ iwj . (3.26)

Set

bj = −2 ∂
∂zj

+
1

2
ajzj , b+j = 2 ∂

∂zj
+

1

2
ajzj , L =

∑
j

bjb
+
j . (3.27)

Then

L0 = L − 2ωd,x0 = L + 2
∑
j

ajw
j ∧ iwj . (3.28)

One verifies directly that for the spectrum of L ,

Spec(L |L2(R2n)) =
{
2
∑n

j=1
αjaj : α = (α1, . . . , αn) ∈ Nn

}
, (3.29)

and that an orthogonal basis of the eigenspace of 2
∑n

j=1 αjaj is given by

bα
(
zβ exp

(
−1

4

∑
j
aj |zj |2

))
, with β ∈ Nn . (3.30)

Thus

Ker(L ) =

{
zβ exp

(
−1

4

∑
j
aj|zj |2

)
, with β ∈ Nn

}
. (3.31)

The orthogonal projection from L2(R2n,C) onto Ker(L ) is the classical Bergman
kernel on Cn associated with the trivial line bundle with metric

|1|hL(Z) = exp

(
−1

4

∑
j
aj |zj|2

)
. (3.32)

The classical Bergman kernel is given by

P(Z,Z ′) =
n∏

j=1

aj
2π

exp

(
−1

4

∑
j
aj
(
|zj|2 + |z′j |2 − 2zjz

′
j

))
. (3.33)

As all our operators preserve Z-grading of Ex0 and the degree � 1 part
is zero. We can restrict all the following computation on 0-degree part, i.e., on
C∞(X0, Ex0).

Let P0,t be the spectral projection

P0,t : L
2(X0, Ex0) → Ker(Lt)
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and P0,t(Z,Z) the smooth kernel of P0,t. From (3.25), by the formal expansion of
the resolvent for |λ| = μ0/4

(λ − Lt)
−1 =

∞∑
r=0

trfr(λ), (3.34)

we obtain as t → 0,

P0,t =
1

2πi

∫
|λ|=μ0/4

(λ− Lt)
−1dλ = PN +

1

2πi

k∑
r=1

tr
∫
|λ|=μ0/4

fr(λ)dλ + O(tk+1),

(3.35)

with PN = P IdE . Then from (3.24)

P0,p(Z,Z
′) = t−2nP0,t

(
Z

t
,
Z ′

t

)
. (3.36)

From (3.22) and (3.36), the kernel of the coefficient of tr in (3.35) gives the co-
efficient of p−r/2 in the off-diagonal expansion of p−nPp(Z,Z

′) by Dai–Liu–Ma,
Ma–Marinescu. In particular, bj in (3.8) is given by the evaluation of the kernel
of the coefficient of t2j in (3.35) at (0, 0).

Remark 3.4. In the Kähler case, i.e., ω(·, J ·) = gTX(·, ·), then all aj = 2π,

O1 = 0,

and

b1(x) =
(
− L −1O2P

N − PNO2L
−1
)
(0, 0) =

1

8π

[
rX + 4RE(wj , wj)

]
, (3.37)

here {wj} is an orthonormal basis of T
(1,0)
x0 X and rX is the scalar curvature of

(X, gTX). Note that in the Kähler case, b1 was obtained first by Lu and Wang by
using the pick section trick in complex analysis as in [16].
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Case 7012
F-75205 Paris Cedex 13, France
e-mail: xiaonan.ma@imj-prg.fr



Progress in Mathematics, Vol. 333, 287–303

Fourier–Mukai Transforms, Euler–Green
Currents, and K-Stability

Sean Timothy Paul and Kyriakos Sergiou

Abstract. Inspired by Gang Tian’s work in [4, 10, 11], and [12] we exhibit a
wide range of energy functionals in Kähler geometry as Fourier–Mukai trans-
forms. Consequently these energies are completely determined by dual type
varieties and therefore have logarithmic singularities when restricted to the
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1. Introduction and statement of results

Let X π−→ B be a flat (relative dimension n) family of smooth polarized, linearly
normal, complex subvarieties of some fixed PN parametrized by a reduced and
irreducible (quasi) projective base B. We do not assume that B is smooth. Let Q
be a locally free sheaf of rank n+ 1 over X. We assume that

There is a finite-dimensional subspace

W ⊂ Γ(X Q) generating each fiber.
(∗∗)

This is equivalent to an exact sequence of vector bundles over X

0 −→ S −→ X×W −→ Q −→ 0

where the sub bundle S is the kernel of the evaluation map X×W −→ Q.

This defines

• E := Q⊗OP(W )(1).

• Ψ ∈ Γ(X× P(W ), Q⊗OP(W )(1)) (the evaluation section).

• I := P(S) = (Ψ = 0) ⊂ X× P(W ).

• Z := π(I).

c© Springer Nature Switzerland AG 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34953-0_14&domain=pdf
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By abuse of notation we also denote by π the projection

π : X× P(W ) −→ B × P(W ).

The situation may be visualized as follows

E

��

I �
� ι ��

��

X× P(W )

Ψ

��

π

��

Z
� � ��

��

B × P(W )

��

B �� B .

(1.1)

Observe that the codimension of I in X× P(W ) is equal to n+ 1.

The basic assumption in this paper is that I −→π Z is a simultaneous reso-
lution of singularities. This means:

i) I
π−→ Z is birational.

ii) For each b ∈ B, Ib := P(S|Xb
)

π−→ Zb := Z∩ ({b}×P(W )) is also birational.

Our basic assumption implies that the codimension of Zb in P(W ) is one. All of
this data will be called a basic set up for the family X −→ B.

Next we observe that the degrees of the divisors Zb are constant in b ∈ B.
This follows at once from the identity

deg(Zb) =

∫
Xb

cn(Q|Xb
) > 0 .

We will denote this common degree by d̂

deg(Zb) = d̂ for all b ∈ B .

Therefore, for each b ∈ B there is a unique (up to scale) irreducible polyno-
mial fb ∈ Cd̂ [W ] \ {0} such that

(fb = 0) = Zb .

We may therefore define a map

Δ : B −→ |O(d̂)| := P(Cd̂ [W ]) Δ(b) := [fb] .

The main result of this paper is the following

Theorem 1.1. Δ is a morphism of quasi-projective varieties. In particular, Δ is
holomorphic.



K-Stability 289

1.1. Hermitean metrics and base change

Now we introduce Hermitean metrics on everything via “base change”. Let S be
a smooth complex algebraic variety together with a morphism to the base of our

family X π−→ B

S −→ B .

The basic set up over B may be pulled back to a basic set up over S. The
corresponding morphism will still be denoted by Δ. Our first assumption on S is
that

Δ∗O(1) ∼= OS O(1) := the hyperplane over |O(d̂)| .

Equivalently we may “lift” the map Δ the cone over |O(d̂)|

Cd̂ [W ] \ {0}

��

S

������������� Δ �� |O(d̂)|

By abuse of notation the lifted map will also be denoted by Δ. Next we fix a
positive definite Hermitean form 〈· , ·〉 on W . We let H+(W, 〈· , ·〉) denote self
adjoint positive linear maps on W . This parametrizes all positive Hermitian forms
on W . Let h be a smooth map

h : S −→ H+(W, 〈· , ·〉) .

Using this map we define a “dynamic” metric HS on the trivial bundle XS ×W

HS(p) 〈w1, w2〉 := 〈h(π(p))w1, w2〉 .

Similarly we have the “static” metric

H0(p) 〈w1, w2〉 := 〈w1, w2〉 .

These metrics descend to metrics HQ
S and HQ

0 on Q. The Hermitean inner product
on W induces a Fubini Study metric hm

FS on OP(W )(m) for any m ∈ Z as well as
a Kähler form ωFS on P(W ). This will be fixed throughout the paper. Tensoring

HQ
S and HQ

0 with hFS gives two metrics HE
S and HE

0 on E .
We need the following result from [1].

Theorem 1.2 (Bismut, Gillet, Soulé)). Let E π−→ M be a rank r holomorphic vector
bundle over a complex manifold M . Given any Hermitean metric HE on E there
exists a current ê(HE) ∈ D′

(E) whose wave front set is included in E∗
R and which

satisfies the following equation of currents on E
√
−1

2π
∂∂ê(HE) = δM − π∗e(HE) .
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The current ê(HE) can be pulled back to M by any section s and satisfies
√
−1

2π
∂∂s∗ê(HE) = δZ(s) − e(HE)

where e(HE) ∈ C∞(Λr,r
M ) is the Euler form of E in Chern–Weil theory. More-

over, given two Hermitean metrics HE
0 and HE

1 the difference of the corresponding
currents is smooth and up to ∂ and ∂ terms is given by

s∗ê(HE
0 )− s∗ê(HE

1 ) = −e(HE
1 , H

E
0 )

where e(HE
1 , H

E
0 ) denotes the Bott–Chern double transgression of the Euler form

with respect the given metrics.

We apply this result to our situation. M = X× P(W ), E = Q⊗O(1), s = Ψ
so that Z(s) = I.

We assume that our two metricsHE
0 andHE

S satisfy the following conditions1:

A1.

√
−1

2π
∂∂Ψ∗ê(HE

0 ) ∧ ωl
FS = δI ∧ ωl

FS l + 1 := dim(W )

A2. The function S # s �→
∫
Xs×P(W )

Ψ∗ê(HE
S ) ∧ ωl

FS is pluriharmonic.

We need one more ingredient to state our next result. Let d ∈ Z>0. Recall that
the Mahler measure is defined by

Θ : |O(d)| −→ R Θ([f ]) :=

∫
P(W )

log
|f |2

hd
FS

(·)
||f ||22

ωl
FS .

Tian has shown [11] that

Proposition 1.1. Θ is Hölder continuous, in particular it is bounded.

Finally define θ(s) := Θ(Δ(s)), and let o be a basepoint in S such that
HE

S |Xo = HE
0 |Xo

2.

The following corollary of Theorem 1.1 extends several ideas of Gang Tian
(especially [10], [12], and [11] ) as well as the first author [9].

Corollary 1.1. The function

S # s �→ log

(
eθ(s)

||Δ(s)||22
||Δ(o)||22

)
−
∫
Xs×P(W )

e(HE
0 , H

E
S ) ∧ ωl

FS (1.2)

is pluriharmonic.

1Condition A2 comes from Lemma 4.1 on p. 278 of [9].
2In our case this comes from assuming that h(o) = IdW ∈ H+(W, 〈· , ·〉).
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In all applications this pluriharmonic function is identically θ(o) (a constant).

To summarize, Δ(s) is for each s ∈ S a polynomial on W and e(HE
0 , H

E
S )

is essentially a generalization of the Mabuchi K-energy map. For special choices
of Q it is the Mabuchi energy up to lower-order terms. Our work suggests that
most “action functionals” of interest on a polarized manifold are obtained through
the basic set up and in particular have logarithmic singularities in the parameter
s ∈ S. In applications one changes base to S = G a reductive algebraic group
(usually SL(N + 1,C)). Then the right-hand side of 1.2 is exhibited as an action
restricted to the usual space of Bergman potentials. Therefore, along algebraic
one parameter subgroups λ(t) of G the asymptotic expansion of the integral of
the Bott–Chern form as t −→ 0 is determined by the limiting behavior of the
coefficients of Δ(λ(t)) as t −→ 0 3.

Organization. Δ is a (homogeneous) polynomial with zero set Z ⊂ P(W ) say. In
the second section we discuss the classical setting of how such Z’s arise. They are
objects of elimination theory. In the third section we recall in detail an essential
and rather ingenious idea of Cayley that allows us to construct Δ from Z. Usually
one can easily detect whether or not Z has codimension one but it is very hard to
find an explicit defining polynomial. This is the main problem of classical elimina-
tion theory. In the fourth section we use a vast generalization of Cayley’s idea due
to Grothendieck, Knudsen, and Mumford [8] which extends Cayley’s construction
from a fixed variety to the more natural setting of a family of varieties over some
base S, this is where the Fourier–Mukai Transform makes an appearance. In the
final section we prove Corollary 1.1 by introducing metrics on everything and in-
voking the currents of Bismut, Gillet, and Soulé on the one hand, and the Poincaré
Lelong formula on the other.

2. Classical elimination theory

Let Xn ↪→ PN be a linearly normal subvariety. We consider a parameter space F
of “linear sub-objects” f of PN . That is, F may parametrize points, lines, planes,
flags, etc. of PN . Consider the admittedly vague statement

“The general member f of F has a certain order of contact along X” (∗∗)
Let Z be the (proper) subvariety of those f ∈ S violating (∗∗).
Example 1 (Cayley–Chow Forms).We take S to be the Grassmannian of N−n−1-
dimensional linear subspaces of PN

F = G(N − n− 1,PN) := {L ⊂ CN+1 | dim(L) = N − n− 1} .
In this case the general member f = L of S fails to meet X . Therefore we take

Z = {L ∈ G(N − n− 1,PN) |L ∩X �= ∅} .

3For a concrete example of this see Theorem B of [9].
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Example 2. (Dual Varieties) Let F = P̌N the dual projective space parametrizing
hyperplanesH inside PN . Bertini’s theorem provides us with our “order of contact”
condition. Namely, for generic H ∈ P̌N H ∩X is smooth. Therefore we define

Z = {H ∈ P̌N | H ∩X is singular }.
Observe that

Z = {H ∈ P̌N | there exists p ∈ X such that Tp(X) ⊂ H}.
The next example includes both 1 and 2 as extreme cases.

Example 3. (Higher associated hypersurfaces, see [5] p. 104). Fix L ⊂ CN+1,
dim(L) = n+ 1 < N + 1. Consider the subset U of the Grassmannian defined by

U := {E ∈ G(r; CN+1)| H•
(
0 −→ E ∩ L −→ E

πL−→ CN+1/L −→ 0
)
= 0} .

In order that U be open and dense in G(r; CN+1) it is enough to have

r = dim(E) ≥ N + 1− (n+ 1) = N − n.

Therefore we set r = N − l where 0 ≤ l ≤ n. By the rank plus nullity theorem of
linear algebra we have

dim(E ∩ L) + dim(πL(E) = dim(E) = N − l .

Therefore E ∈ Z := G(r; CN+1) \ U if and only if

dim(E ∩ L) ≥ n− l + 1 .

This motivates the following. Let Xn −→ PN . Fix 0 ≤ l ≤ n. We define

Z := {E ∈ G(N − (l + 1),PN ) | ∃ p ∈ X

such that

p ∈ E and dim(E ∩ Tp(X)) ≥ n− l} .
In this situation we denote Z by Zl+1(X). The reader should observe that

Zn+1(X) = {RX = 0} and Z1(X) = {ΔX = 0} .

Zn(X) plays a fundamental role in our study of the K-energy (see [9]). In
fact, we have that

Zn(X) = {ΔX×Pn−1 = 0} ,

the dual variety of the Segre image of X × Pn−1.
In the situations of interest to us we may assume that F ∼= W for an ap-

propriate finite-dimensional vector space W . For example in 1 we may replace
G(N − n− 1,PN ) with W = M(n+1)×(N+1)(C).

In our applications Z has codimension one. Then Z ⊂ W is an irreducible
algebraic hypersurface defined by a single polynomial RZ

Z = {f ∈ W | RZ(f) = 0} .
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Z is naturally dominated by the variety of zeros of a larger system {sj(p, f) = 0}
in more variables p ∈ X . We define the incidence variety IX by

IX := {(p, f) ∈ X ×W | sj(p , f) = 0} ⊂ X ×W.

In geometric terms (p, f) ∈ IX if and only if f fails to meet X generically at p (and
possibly at some other point q). Therefore, Z is the resultant system obtained by
eliminating the variable p

RZ(f) = 0 iff f ∈ Z iff {sj(· , f) = 0} has a solution p in X for the fixed f ∈ W .

3. Linear algebra of complexes and the torsion of a exact complex

To begin let (E•, ∂•) be a bounded complex of finite-dimensional C vector spaces.

0 −−−−→ E0 ∂0−−−−→ · · · −−−−→ Ei ∂i−−−−→ Ei+1 ∂i+1−−−−→

· · · ∂n−−−−→ En+1 −−−−→ 0 .

Recall that the determinant of the complex (E•, ∂•) is defined to be the one-
dimensional vector space

Det(E•)(−1)n :=
n+1⊗
i=0

(∧ri
Ei
)(−1)i+1

ri := dim(Ei) .

Remark 1. Det(E•) does not depend the boundary operators.

As usual, for any vector space V we set V −1 := HomC(V,C), the dual space to
V . Let Hi(E•, ∂•) denote the ith cohomology group of this complex. When V = 0,
the zero vector space, we set det(V ) := C. The determinant of the cohomology is
defined in exactly the same way

Det(H•(E•, ∂•))(−1)n :=

n+1⊗
i=0

(∧bi
Hi (E•, ∂•)

)(−1)i+1

bi := dim(Hi(E•, ∂•)) .

We have the following well-known facts ([8], [2]).

D1 Assume that the complex (E•, ∂•) is acyclic, then Det(E•) is canonically
trivial

τ(∂•) : Det(E•) ∼= C .

As a corollary of this we have,

D2 There is a canonical isomorphism4 between the determinant of the complex and
the determinant of its cohomology:

τ(∂•) : Det(E•) ∼= Det(H•(E•, ∂•)) .

4A “canonical isomorphism” is one that only depends on the boundary operators, not on any
choice of basis.
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It is D1 which is relevant for our purpose. It says is that there is a canonically
given nonzero element of Det(E•), called the torsion of the complex, provided
this complex is exact. The torsion is the essential ingredient in the construction
of X-resultants (Cayley–Chow forms) and X-discriminants (dual varieties). We
recall the construction for more information see [2].

Define κi := dim(∂iE
i), now choose Si ∈ ∧κi(Ei) with ∂iSi �= 0, then ∂iSi ∧

Si+1 spans
∧ri+1 Ei+1 (since the complex is exact), that is

ri+1∧
Ei+1 = C∂iSi ∧ Si+1.

With this said we define5

Tor (E•, ∂•)(−1)n := (S0)
−1 ⊗ (∂0S0 ∧ S1)⊗ (∂1S1 ∧ S2)

−1 ⊗ · · · ⊗ (∂nSn)
(−1)n .

Then we have the following reformulation of D1.

D3 Tor (E•, ∂•) (3.1)

is independent of the choices Si.
By fixing a basis {ei1, ei2, . . . , eiri} in each of the terms Ei we may associate

to this based exact complex a scalar.

Tor
(
E•, ∂•; {ei1, ei2, . . . , eiri}

)
∈ C∗.

Which is defined through the identity:

Tor (E•, ∂•) = Tor
(
E•, ∂•; {ei1, ei2, . . . , eiri}

)
det(. . . ei1, e

i
2, . . . , e

i
ri, . . . ).

Where we have set

det(. . . ei1, e
i
2, . . . , e

i
ri . . . )

(−1)n

:= (e01 ∧ · · · ∧ e0r0)
−1 ⊗ · · · ⊗ (en+1

1 ∧ · · · ∧ en+1
rn+1

)(−1)n .

When we have fixed a basis of our exact complex (that is, a basis of each term
in the complex) we will call Tor

(
E•, ∂•; {ei1, ei2, . . . , eiri}

)
the Torsion of the based

exact complex. It is, as we have said, a scalar quantity.

Remark 2. In the following sections we often base the complex without mentioning
it explicitly and in such cases we write (incorrectly) Tor (E•, ∂•) instead of

Tor
(
E•, ∂•; {ei1, ei2, . . . , eiri}

)
.

We have the following well-known scaling behavior of the Torsion, which we
state in the next proposition. Since it is so important for us, we provide the proof,
which is yet another application of the rank plus nullity theorem.

Proposition 3.1 (The degree of the Torsion as a polynomial in the boundary maps).

degTor (E•, ∂•) = (−1)n+1
n+1∑
i=0

(−1)iidim(Ei) . (3.2)

5The purpose of the exponent (−1)n will be revealed in the next section.
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Proof. Let μ ∈ C∗ be a parameter. Then

Tor (E•, μ∂•)
(−1)n

= (S0)
−1 ⊗ (μ∂0S0 ∧ S1)⊗ (μ∂1S1 ∧ S2)

−1 ⊗ · · ·
· · · ⊗ (μ∂nSn)

(−1)n

= μκ0−κ1+κ2−···+(−1)nκnTor (E•, ∂•)
(−1)n

.

It is clear that

κ0 − κ1 + κ2 − · · ·+ (−1)nκn =

n+1∑
i=0

(−1)i+1i(κi + κi−1) (κn+1 = κ−1 := 0) .

Exactness of the complex implies that we have the short exact sequence

0 −−−−→ ∂i−1E
i−1 ι−−−−→ Ei ∂i−−−−→ ∂iE

i −−−−→ 0 .

Therefore κi + κi−1 = dim(Ei). �

4. Fourier–Mukai transforms and the geometric technique

In this section we prove Theorem 1.1. The method of proof is follows the Geo-
metric Technique. The author’s understanding is that the method is due to many
mathematicians (see [3, 5–8]). The author has also learned a great deal about the
method from the monograph of J. Weyman [13], especially the “basic set-up” of
Chapter 5.

Let X a complex variety. Let (E• ; δ•) be an exact (bounded) complex of
locally free sheaves over X . The discussion in the previous section implies the
following

Proposition 4.1. The determinant line bundle of the complex admits a canonical
nowhere vanishing section Δ

Det(E• ; δ•)
Δ∼= C .

We return to the situation described in the introduction. The object of study
is a smooth, linearly normal, family X −→ B of relative dimension n together
with a rank n + 1 locally free sheaf Q satisfying the requirements of a basic set
up. Recall the visualization in (1.1), p. 288.

The basic set up exchanges a high codimension family X −→ B for a family
of divisors Zb ⊂ P(W ) parametrized by the same base

Zb := Z ∩ ({b} × P(W )) , b ∈ B .

Recall that each Zb is irreducible and moreover that the degree of Zb in P(W ) is
given by

deg(Zb) =

∫
Xb

cn(Q) ,

and therefore constant in b ∈ B.
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To facilitate the study of Z we pass to the birationally equivalent I which is
much easier to deal with. More precisely we study the direct image of the structure
sheaf of I viewed as a coherent sheaf on X× P(W ).

Recall that the Koszul complex (K•E ; ∂• :=� s) associated to (E , s)
� s−→ Λj+1(E∨)

� s−→ Λj(E∨)
� s−→ · · · � s−→ OX×P(W )

resolves ι∗(OI). The main player in this paper is the following Fourier–Mukai
transform between the bounded derived categories6

ΦK•E
X �→B×P(W ) (·) : Db(X) −→ Db(B × P(W ))

associated to the projections

X× P(W )

p

�����
���

���
�� q

����
���

���
���

�

X B × P(W ) .

Recall that this transform is defined by the formula

ΦK•E
X �→B×P(W ) (F

•) := R•q∗ (L
•p∗(F •)⊗K•E)

where R•q∗ and L•p∗ denote the usual derived functors.
We remind the reader that by Grauert’s Theorem of coherence of higher

direct images that the complex

ΦK•E
X �→B×P(W ) (F

•)

is represented by a bounded complex of (quasi) coherent OB×P(W )-modules with
coherent cohomology sheaves.

We are interested in the value of this transform at a particular point of Db(X)

ΦK•E
X �→B×P(W ) (OX(m)) ∈ Db (B × P(W )) m >> 0 .

Since the (twisted) Koszul complex resolves ι∗OI⊗p∗OX(m) we have the following

Proposition 4.2. The cohomology sheaves of the complex ΦK•E
X �→B×P(W ) (OX(m)) are

all supported on Z.

We assume that m is large enough to force term wise vanishing of all higher
direct image sheaves

Riq∗
(
Λj(E∨)⊗ p∗OX(m)

)
= 0 i > 0 all j .

This has the crucial implication that the natural map

q∗ (Λ
•E∨ ⊗ p∗OX(m) ; δ•) −→ ΦK•E

X �→B×P(W ) (OX(m))

6In this paper Db(X) is just notation for the set of bounded complexes of coherent sheaves on X.
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is the identity in Db (B × P(W )), in other words, the two complexes are quasi-
isomorphic. This is an application of the “Cartan–Eilenberg spectral sequence”

Eij
2 := Riq∗

(
ΛjE∨(m)

)
=⇒ Ri+jq∗ (Λ

•E∨(m)) .

Therefore we may replace the a priori quite complicated object

ΦK•E
X �→B×P(W ) (OX(m))

with the much simpler (termwise) direct image complex.
The purpose of the foregoing discussion was to put us in the following situa-

tion

Proposition 4.3. The complex of locally free sheaves over B × P(W )

q∗ (Λ
•E∨ ⊗ p∗OX(m) ; ∂•)

is exact away from Z.

Therefore away from Z the determinant of the direct image complex has a
nowhere vanishing section Δ

Det q∗ (Λ
•E∨ ⊗ p∗OX(m) ; ∂•)

��

B × P(W ) \ Z

Δ

��

Δ := Tor q∗ (Λ
•E∨ ⊗ p∗OX(m) ; ∂•) .

Proposition 4.4. There is an invertible sheaf A over B such that

Det q∗ (Λ
•E∨ ⊗ p∗OX(m) ; ∂•) ∼= p∗1A⊗ p∗2OW (d̂) .

Proof. The proof is quite easy. Observe that by the projection formula, the stalk
of the direct image of our Koszul complex at b ∈ B is given by

q∗
(
ΛjE∨ ⊗ p∗OX(m)

)
|b ∼= H0

(
Xb , ΛjQ∨(m)

)
⊗OW (−j) .

We define

rj(m) := dimH0
(
Xb , ΛjQ∨(m)

)
.

Then we define A as follows

A|b :=
⊗

0≤j≤n+1

Λrj(m)H0
(
Xb , ΛjQ∨(m)

)(−1)j+1

.

Therefore the determinant is given by

Det q∗ (Λ
•E∨ ⊗ p∗OX(m) ; ∂•) ∼= p∗1A⊗OW (χ) ,

where we have defined χ ∈ Z by

χ :=
∑

0≤j≤n+1

(−1)j+1jrj(m) ∈ Z .

So the argument comes down to showing that χ = d̂ which a straightforward but
tedious calculation with the Hirzebruch–Riemann–Roch Theorem will verify. �
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Fix b ∈ B. Let fb denote a defining polynomial of Zb. Since Δ|{b}×P(W ) is
without zeros or poles away from Zb there is an integer

ordZb
(Δ|{b}×P(W ))

satisfying

Δ|{b}×P(W ) = f
ordZb

(Δ|{b}×P(W ))

b .

Our computation of the degree of the torsion shows that

deg(Δ|{b}×P(W )) = χ .

Therefore ordZb
(Δ|{b}×P(W )) = 1, and we have shown

C∗Δ|{b}×P(W ) = C∗fb .

Therefore we have the following

Proposition 4.5. Δ vanishes on Z and in particular extends to a global section of
the determinant line.

Therefore, to any basic set up for the family X −→ B we may associate the
following

• An invertible sheaf A ∈ Pic(B).

• An algebraic section

Δ ∈ H0
(
B × P(W ) , p∗1A⊗ p∗2OW (d̂)

)
.

• A relative Cartier divisor Z over B

Z := Div(Δ) ⊂ B × P(W ) .

• Moreover, the direct image T of Δ

A⊗H0(P(W ) ,OW (d̂))

��

B

T :=p1∗(Δ)

		

never vanishes on B.

This package induces a morphism (also denoted by Δ) fromB to the complete
linear system on P(W )

Δ : B −→ |OW (d̂)|
as follows. Since T �= 0, T gives an injection

0 −→ OB
×T−−→ A⊗H0(P(W ),O(d̂)) .

Dualizing and tensoring with A gives a surjection

H0(P(W ),O(d̂))∨ ×B −→ A −→ 0 ,

hence A is globally generated.
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Therefore we obtain a morphism as required. This completes the proof of
Theorem 1.1. Moreover we see that

Δ∗O|O(d̂)|(1)
∼= A ,

and the natural map

H0(P(W ),O(d̂))∨ −→ H0(B,A)

is an injection. The map exhibits a large (generating) finite-dimensional subspace
of the space of sections of A over B. Conversely, given such a map Δ, we define

A := Δ∗O|O(d̂)|(1)

Δ(b, [w]) := Δ(b)([w]) ∈ Ab ⊗OW (d̂) .

Next we give several examples of basic set ups for a given family X −→ B.

4.1. The basic set up for resultants

Let X → B be a flat family of polarized subvarieties of PN . We can arrange a basic
set up

E

��

�� p∗1OPN (1)⊗ p∗2Q

��

I �
� ι ��

��

X×G

Ψ

��

π2×1
��

π

��

PN ×G

Π

		

Z
� � �� B ×G

p1

��

B

for this family if we define

• Π|([v],L) : Cv −→ CN+1/L , Π(zv) = πL(zv)

πL : CN+1 −→ CN+1/L denotes the projection.
Ψ := (π2 × 1)∗Π .

• G := G(N − n− 1, N) .

• E := (π2 × 1)∗ (p∗1OPN (1)⊗ p∗2Q)
I = (Ψ = 0) .

• π : X×G −→ B ×G is defined by7Abuse of notation. π(x, L) := (π(x), L)
Z := π(I) .

• Zb is the Cayley form of Xb and Δb is the Xb-resultant.

7Abuse of notation.
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4.2. The basic set up for discriminants

In this section we consider a flat family X π−→ B of polarized manifolds. The basic
set up that we consider in this case has the form

E

��

�� p∗1U
∨ ⊗ p∗2OP̌N (1)

��

ΓX
� � ι ��

��

X× P̌N

s

��

ρ×1
��

p

��

G(n,N)× P̌N

Λ

		

Z � � �� B × P̌N

p1

��

B

In the diagram above we have defined

• Λ|(L,[f ]) : L −→ CN+1/ ker(f) , Λ(u) = πker(f)(u)

πker(f) : CN+1 −→ CN+1/ker(f) denotes the projection.
Observe that Λ|(L,[f ]) = 0 if and only if L ⊂ ker(f).

• ρ = ρX : X −→ G(n,N) is the fiber wise Gauss map.
U is the tautological bundle.

• E := (ρ× 1)∗ (p∗1U
∨ ⊗ p∗2OP̌N (1))

ΓX := (s = 0) ; Z := q(ΓX).

• Zb is the dual variety of Xb and Δb is the Xb-discriminant.

Remark 3. An interesting generalization of these two examples is constructed as
follows. Given a family X −→ B let Ek denote the rank n − k + 1 trivial bundle
over X. Then we obtain a new family

P(Ek) −→ B .

The fiberwise Segre embedding exhibits this family as a family of subvarieties of
the projective space of matrices of size (N +1)× (n− k+1). If the original family
is smooth one may apply the set up for discriminants to this new family. When
k = 1 the corresponding polynomial Δb is the Xb-hyperdiscriminant.

5. Comparing the currents δZ and δI over S

Let S −→ B be a morphism from a smooth8 variety S. As stated in the introduction
we assume

A ∼= OS

8Smoothness is required to apply the Poincaré Lelong formula.
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and there exists a smooth map

h : S −→ H+(W, 〈· , ·〉)

satisfying conditions A1 and A2. There is an induced Hermitean metric on h on
the determinant line bundle

p∗1A⊗ p∗2OW (d̂)

and it is not hard to see that the square of the length of our section Δ is given by

|Δ(s)([w])|2
hd̂

||Δ(s)||22
The denominator being the usual L2 norm

||Δ(s)||22 :=

∫
P(W )

|Δ(s)(·)|2
hd̂ ωl

FS ; l + 1 = dim(W ) .

The Poincaré Lelong formula gives
√
−1

2π
∂∂ log

|Δ(b)([w])|2
hd̂

||Δ(b)||22
= δZ − c1

(
A⊗OW (d̂) ; h

)
.

Recall that the triviality of A over S is equivalent to having a lift of9 the map Δ
to the affine cone

Δ : S −→ H0(P(W ),O(d̂)) \ {0} .

Next fix some base point o ∈ S. Then

c1

(
A⊗OW (d̂) ; h

)
|S×P(W ) = d̂ωFS +

√
−1

2π
∂∂ log

||Δ(s)||22
||Δ(o)||22

.

With this said we have the following proposition concerning the direct image of
this current under π.

Proposition 5.1. Let η be a smooth compactly supported form on S

η ∈ C∞Λ
dim(S)−1,dim(S)−1
0 (S).

Then ∫
Z

π∗(η) ∧ ωl
FS =

∫
S

η ∧
√
−1

2π
∂∂ log

(
eθ(s)

||Δ(s)||22
||Δ(o)||22

)
where θ is defined by

θ(s) :=

∫
P(W )

log
|Δ(s)([w])|2

hd̂

||Δ(s)||22
ωl
FS .

9We will also denote the lifted map by Δ as well.
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The birationality of I and Z imply that we have the identity∫
Z

π∗(η) ∧ ωl
FS =

∫
I

π∗(η) ∧ ωl
FS .

for all compactly supported forms η on S. Therefore, Proposition 5.1 and property
A1 of the current ê(HE

0 ) imply that∫
Z

π∗(η) ∧ ωl
FS =

∫
X×P(W )

√
−1

2π
∂∂Ψ∗ê(HE

0 ) ∧ ωl ∧ π∗(η) .

Property A2 and the variation formula show that∫
Xs×P(W )

Ψ∗ê(HE
0 ) ∧ ωl =

∫
Xs×P(W )

e(HE
0 ;H

E
S ) ∧ ωl

+ a pluriharmonic function of s .

Therefore we see that for all compactly supported forms η we have∫
S

η ∧
√
−1

2π
∂∂

∫
Xs×P(W )

ê(HE
0 ;H

E
S ) ∧ ωl =

∫
S

η ∧
√
−1

2π
∂∂ log

(
eθ(s)

||Δ(s)||22
||Δ(o)||22

)
.

Therefore we have proved Corollary 1.1.

Corollary 1.1 (see the “main lemma” from [9]). The function

S # s �→ log

(
eθ(s)

||Δ(s)||22
||Δ(o)||22

)
−
∫
Xs×P(W )

e(HE
0 ;H

E
S ) ∧ ωl

is pluriharmonic.

Given a fixed projective variety X ⊂ PN with a non-degenerate dual va-
riety X̌ we construct, following [11], a “tautological family” X −→ G where
G = SL(N+1,C) with fiber σX . Then, for each 0 ≤ k ≤ dim(X), we consider the
new family P(Ek) −→ G. Let Q denote the vector bundle associated to the set up
for discriminants for this family. Then for the obvious choice of Hermitean inner
product on W , there is a natural map

h : G −→ H+(W, 〈·, ·〉)
satisfying A1 and A2 with basepoint o = e. Therefore the previous theorem applies.
In these cases we can show10 that the function is actually constant.
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The Variations of Yang–Mills Lagrangian
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Dedicated to Gang Tian on his sixtieth birthday

Abstract. We are giving a survey on some of the analysis methods from gauge
theory developed in the last decades. We first cover Uhlenbeck’s compensated
compactness theory in critical 4 dimension for the Yang–Mills functional. As
an application we present the resolution of minimization processes of Yang–
Mills in this critical dimension. In the second part of the survey we present
the resolution of similar variational questions in super-critical dimensions and
we end up the survey by stating some open problems raised by Tian relative
to the regularity of Ω-anti-self-dual instantons in high dimensions.
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I. Introduction

Yang–Mills theory is growing at the interface between high energy physics and
mathematics It is well known that Yang–Mills theory and gauge theory in gen-
eral had a profound impact on the development of modern differential and alge-
braic geometry. One could quote Donaldson invariants in four-dimensional differ-
ential topology, Hitchin Kobayashi conjecture relating the existence of Hermitian–
Einstein metric on holomorphic bundles over Kähler manifolds and Mumford sta-
bility in complex geometry or also Gromov–Witten invariants in symplectic geom-
etry. . . etc. While the influence of gauge theory in geometry is quite notorious, one
tends sometimes to forget that Yang–Mills theory has been also at the heart of
fundamental progresses in the non-linear analysis of Partial Differential Equations
in the last decades. The purpose of this survey is to present the variations of this

c© Springer Nature Switzerland AG 2020
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important Lagrangian. We shall raise analysis question such as existence and reg-
ularity of Yang–Mills minimizers or such as the compactification of the “moduli
space” of critical points to Yang–Mills Lagrangian in general.

II. The Plateau problem

Before to move to the Yang–Mills minimization problem we will first recall some
fundamental facts regarding the minimization of the area in the parametric ap-
proach and some elements of the resolution of the so-called Plateau problem.

Let Γ be a simple closed Jordan Curve in R3: there exists γ ∈ C0(S1,R3)
such that Γ = γ(S1).

Plateau problem: Find a C1 immersion u of the two-dimensional disc D2 which
is continuous up to the boundary, whose restriction to ∂D2 is a homeomorphism
and which minimizes the area

Area(u) =

∫
D2

|∂x1u× ∂x2u| dx1 dx2 .

The area is a fairly degenerated functional:

i) It has a huge invariance group: Diff(D2), the group of diffeomorphism of the
disc. Let un be a minimizing sequence of the Plateau problem above, then the
composition of un with any sequence of diffeomorphism Ψn of D2 is still a
minimizing sequence. The sequence Ψn can for instance degenerate so that
un ◦Ψn converges to a point!

ii) The area of u does not control the image u(D2) which could be uniformly
bounded while u(D2) becomes dense in R3 !

In order to solve the Plateau problem J. Douglas and independently Radó
minimize instead the Dirichlet energy

Area(u) ≤ E(u) =
1

2

∫
D2

[|∂x1u|2 + |∂x2u|2] dx1 dx2 ,

the inequality comes from the pointwise inequality

2 |∂x1u× ∂x2u| ≤ |∂x1u|2 + |∂x2u|2 ,
and equality holds if and only if

H(u) := |∂x1u|2 − |∂x2u|2 − 2 i ∂x1u · ∂x2u = 0 .

This condition is satisfied if and only if the differential du preserves angle that is
to say u is conformal.

The Dirichlet energy E has much better properties than the area: it is

i) it is coercive:

∀un s.t. lim supn→+∞E(un) < +∞ ∃un′ ⇀ u∞ in W 1,2 ,

ii) lower semi-continuous

E(u∞) ≤ lim infn→+∞E(un) ,
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iii) it is invariance group in the domain is reduced to the three-dimensional Mö-
bius group M(D2)

M(D2) :=

{
Ψ(z) = eiθ

z − a

1− az
s.t. θ ∈ R |a| < 1

}
.

Why minimizing E instead of the area has any chance to give a solution to the
Plateau problem?

Let u be an immersion of the disc D2 and denote gu the pull back of the
standard flat metric gR3 in R3: gu := u∗gR3 . The uniformization theorem on D2

gives the existence of a diffeomorphism Ψ of the disc such that

Ψ∗gu = e2λ [dx2
1 + dx2

2] (i.e., u ◦Ψ is conformal)

for some function λ from D2 into R. So if u minimizes E in the desired class we
can replace it by v := u ◦Ψ which is conformal and for which

E(v) = Area(v) = Area(u) ≤ E(u) .

Hence u is conformal. Assuming now it is not a minimizer of the area, we would
then find w in the desired class such that

A(w) < A(u) = E(u) ,

and taking again Ψ′ s.t. E(w ◦Ψ′) = A(w) we would contradict that u minimizes
E.

Hence the difficulty is to find a minimizer of E in the class of C1 immersions
sending continuously and monotonically ∂D2 into Γ.

One introduces

F :=

{
u ∈ W 1,2(D2) ; u ∈ C0(∂D2,Γ)

and u is monotone from ∂D2 � S1 into Γ

}
.

Fixing the images of three distinct points in ∂D2 in order to kill the action
of the remaining gauge group M(D2) one proves the existence of a minimizer of E
in F which happens to be a solution to the Plateau problem (a thorough analysis
is required to prove that the minimizer is indeed a C1 immersion).

II.1. The conformal parametrization choice as a Coulomb gauge

As we have seen the conformal parametrizations of immersed discs play a central
role in the resolution of the Plateau problem. In the present subsection we establish
a one to one correspondence between this choice of conformal parametrization and
a Coulomb gauge choice.

Let u be a conformal immersion of the disc D2 (i.e., H(u) ≡ 0 on D2). Let
λ ∈ R such that

eλ := |∂x1u| = |∂x2u| .
Introduce the moving frame associated to this parametrization

�ej := e−λ ∂xju for j = 1, 2 .
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The family (�e1, �e2) realizes an orthonormal basis of the tangent space of u(D2) at
u(x1, x2). This can be also interpreted as a section of the frame bundle of u(D2)
equipped with the induced metric gR3 .

A simple computation gives

div (�e1,∇�e2) = ∂x1

[
e−2λ ∂x1u · ∂2

x1x2
u
]
+ ∂x2

[
e−2λ ∂x1u · ∂2

x2
2
u
]

= 2−1∂x1

[
e−2λ ∂x2 |∂x1u|2

]
− 2−1∂x2

[
e−2λ ∂x1 |∂x2u|2

]
= ∂2

x1x2
λ− ∂2

x2x1
λ = 0 .

(II.1)

In other words, introducing the 1-form on D2 given by A := �e1 · d�e2, which is
nothing but the connection form associated to the Levi-Civita connection induced
by gu = u∗gR3 on the corresponding frame bundle for the trivialization given by
(�e1, �e2), equation (II.1) becomes

d∗gA = d∗g (�e1 · d�e2) = 0 , (II.2)

where ∗g is the Hodge operator associated to the induced metric gu. The equation
(II.2) is known as being the Coulomb condition. We will see again this condition
in the following sections and it is playing a central role in the survey.

Vice versa one proves, see for instance [He] or [40], that for any immersion
u, non necessarily conformal, any frame (�e1, �e2) satisfying the Coulomb condition
(II.2) corresponds to a conformal parametrization (i.e., ∃Ψ ∈Diff(D2) s.t. v :=
u ◦ Ψ is conformal and �ej = |∂xjv|−1 ∂xjv. This observation is the basis of the
Hélein method for constructing isothermal coordinates.

III. A Plateau type problem on the lack of integrability

In the rest of the classG denotes an arbitrary compact Lie group. We will sometime
restrict to the case where G is a special unitary group SU(n) and we will mention
it explicitly. The corresponding Lie algebra will be denoted by G and the neutral
element of G is denoted e.

III.1. Horizontal equivariant plane distributions

III.1.1. The definition. Consider the simplest principal fiber structure P := Bm×
G where Bm is the unit m-dimensional ball of Rm. Denote by π the projection
map which to ξ = (x, h) ∈ P assigns the base point x. Denote by Grm(TP ) to be
the Grassmanian of m-dimensional subspaces of the tangent bundle to P .

We define the notion of equivariant horizontal distribution of plane to be a
map

H : P = Bm ×G −→ Grm(TP )

ξ = (x, h) −→ Hξ

satisfying the following 3 conditions

i) the bundle condition:

∀ ξ ∈ P Hξ ∈ TξP ,
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ii) the horizontality condition

∀ ξ ∈ P π∗Hξ = Tπ(ξ)B
m ,

iii) the equivariance condition

∀ ξ ∈ P ∀ g ∈ G (Rg)∗Hξ = HRg(ξ)

where Rg is the right multiplication map by g on P which to any ξ = (x, h)
assigns Rg(ξ) := (x, h g).

III.1.2. Characterizations of equivariant horizontal distribution of plane by
1-forms on Bm taking values into G. Let H be an equivariant horizontal dis-
tribution of plane in P = Bm ×G. Clearly the following holds

∀ ξ = (x, h) ∈ P ∀X ∈ TxB
m ∃ !XH(ξ) ∈ TξP s.t. π∗X

H = X .

The vector XH(ξ) is called the horizontal lifting of X at ξ.
At the point (x, e) (recall that e denotes the neutral element of G) we identify

T(x,e)P � TxM ⊕ G. Using this identification we deduce the existence of Ax · X
such that

XH(x, e) = (X,−Ax ·X) .

The 1-form A is called connection 1-form associated to H . The linearity of Ax

with respect to X is a straightforward consequence of the definition of XH and
therefore A defines a 1-form on Bm taking values into G.

For any element B ∈ G � TeG we denote by B∗ the unique vector field on G
satisfying

B∗(e) = B and ∀g ∈ G B∗(g) := (Rg)∗B ,

and by an abuse of notation B∗(g) is simply denoted B g. Using this notation we
have

∀ ξ = (x, h) ∈ P ∀X ∈ TxB
m

XH(ξ) = (X,−(Ax ·X)∗(h)) = (Rh)∗X
H(x, e) .

At any point ξ ∈ P Any vector Z ∈ TξP admits a decomposition according to
H : we denote by ZV the projection parallel to Hξ onto the tangent plane to the
vertical fiber given by the kernel of π∗:

ZV := Z − (π∗Z)H .

III.2. The lack of integrability of equivariant horizontal distribution of planes

A m-dimensional plane distribution H is said to be integrable if it identifies at
every point with the tangent space to a m-dimensional foliation.

We aim to “measure” the lack of integrability of an equivariant horizontal
distribution of planes. To that aim we recall the following classical result

Theorem III.1 (Frobenius). An m-dimensional plane distribution H is integrable
if and only if for any pair of vector fields Y and Z contained in H at every point
the bracket [Y, Z] is still included in H at every point. �
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In the particular case of equivariant horizontal distribution of planes in P =
Bm ×G we have that H is integrable if and only if

∀X,Y vector fields on Bm [XH , Y H ]V ≡ 0 .

We shall now compute [XH , Y H ]V in terms of the 1-form A.
We write

(x,e) = [(X,−(A ·X)∗), (Y,−(A · Y )∗)](x,e)

= [(X, 0), (Y, 0)](x,e) + [(X, 0), (0,−(A · Y )∗)](x,e)

+ [(0,−(A ·X)∗), (Y, 0)](x,e) + [(0, (A ·X)∗), (0, (A · Y )∗)](x,e) .

(III.1)

The definition of the Bracket operation on the Lie algebra G together with the
commutation of the vector field bracket operation with the push-forward operation
of the right multiplication map gives that

[(A ·X)∗), (A · Y )∗] = ([A ·X,A · Y ])∗ , (III.2)

where the brackets in the r.h.s. of the identity is the Lie algebra bracket operation.
The definition of the Lie bracket of vector fields gives

[(X, 0), (0,−(A · Y )∗)](x,e) = (0,− d(A · Y ) ·X) . (III.3)

Finally we write

[(X, 0), (Y, 0)] = ([X,Y ], 0) = ([X,Y ],−A · [X,Y ]) + (0, A · [X,Y ]) . (III.4)

Combining (III.1), (III.2), (III.3) and (III.4) gives

[XH , Y H ]V = d(A ·X) · Y − d(A · Y ) ·X +A([X,Y ]) + [A ·X,A · Y ] ,

and using the Cartan formula on the expression of the exterior derivative of a
1-form we obtain

[XH , Y H ]V = dA(X,Y ) + [A ·X,A · Y ] . (III.5)

The 2-form we obtained

FA(X,Y ) := dA(X,Y ) + [A ·X,A · Y ] (III.6)

is the so-called curvature of the plane distribution H and “measures” the lack of
integrability of H . It will be conventionally denoted

FA = dA+ 1
2 [A ∧ A] or simply FA = dA+A ∧ A .

The Lie algebra, and hence the compact Lie group, is equipped with the Killing
form associated to a finite-dimensional representation, hence unitary, for which the
form defines a scalar product invariant under adjoint action. For instance G = o(n)
or G = u(n)

〈B,C〉 = − Tr(BC) .

If the Lie algebra G is semi-simple: it is a direct sum of Lie algebras with no non
trivial ideal, the Lie algebra is equipped with the Killing scalar product:

〈B,C〉 := −Tr(ad(B) ad(C)) ,

where ad(B) is the following endomorphism of G : ad(B)(D) := [B,D].
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The Lagrangian we are considering for measuring the lack of integrability of
the plane distribution H is just the L2 norm of the curvature∫

Bm

∑
i<j

∣∣∣|[∂H
xi
, ∂H

xj
]V
∣∣∣2 dxm =

∫
Bm

|FA|2 dxm ,

where dxm is the canonical volume form on Bm. The L2 norm of the curvature
is also known as being the Yang–Mills energy of the connection form A and is
denoted YM(A). We can now state one of the main problems these notes are
addressing.

Yang–Mills Plateau Problem: Let η be a 1-form on ∂Bm taking values into a Lie
algebra G of a compact Lie group G does there exists a 1-form A into G realizing

inf

{
YM(A) =

∫
Bm

|dA+A ∧A|2 dxm ; ι∗∂BmA = η

}
,

where ι∂Bm is the canonical inclusion of the boundary ∂Bm into Rm.

In other words we are asking the following question:

Given an equivariant horizontal plane distribution over the boundary of
the unit ball in Rm, can one extend it inside the ball in an optimal way
with respect to the L2 norm of the integrability defect?

In order to study this variational problem we first have to identify its invari-
ance group.

III.3. The gauge invariance

In this subsection we identify the group of the Yang–Mill Plateau problem cor-
responding to the diffeomorphism group of the disc for the area in the classical
Plateau problem.

Let g be a map from Bm into G. We denote by Lg−1 the left multiplication
by g−1 defined as follows

Lg−1 ; P = Bm ×G −→ P

ξ = (x, h) −→ (x, g−1 h) .

Let H be an equivariant horizontal distribution of planes on P we observe that
the push-forward by Lg−1 of H , (Lg−1)∗H , is still an equivariant horizontal distri-
bution of planes. We now compute the connection 1-form associated to this new
distribution.

Let X be a vector of TxB
m and x(t) a path in Bm such that ẋ(0) = X . Let

h(t) ∈ G such that ξ(t) := (x(t), h(t)) is the horizontal lifting of x(t) starting at

the neutral element e of G (i.e., ξ̇ = (ẋ)H(ξ(t)) and ξ(0) = (x, e)). Since ẋi
V
= 0

we have in particular
dh

dt
(0) = −A ·X .
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The push-forward by Lg−1 of the horizontal vectorXH(x, e) is the horizontal lifting

of X at (x, g−1) for the distribution (Lg−1)∗H : X(Lg−1)∗H(x, g−1). Hence we have

X(Lg−1)∗H(x, g−1) = (Lg−1)∗X
H(x, e) = (Lg−1)∗(X,−A ·X)

=
d

dt

(
x(t), g−1h(t)

)
= (X, dg−1 ·X − g−1A ·X)

=
(
X,−

(
g−1dg ·X + g−1A ·X g

)
g−1

)
=
(
X,−

(
g−1dg ·X + g−1A ·X g

)∗
(g−1)

)
.

Hence we have proved that the horizontal lift at (x, e) for the new plane distribution
(Lg−1)∗H is

(
X,−

(
g−1dg ·X + g−1 A ·X g

))
and the associated connection 1-

form associated to the distribution (Lg−1)∗H is

Ag = g−1dg ·X + g−1 A ·X g .

The curvature associated to this new distribution is given by

FAg (X,Y ) = dAg(X,Y ) + [Ag(X), Ag(Y )] .

We have on one hand

dAg(X,Y ) = dg−1 ∧ dg(X,Y ) + [dg−1 g ∧ g−1Ag](X,Y ) ,

and on the other hand

[Ag(X), Ag(Y )] = [g−1dg ∧ g−1Ag](X,Y ) + g−1[A(X), A(Y )]g .

Summing the two last identities and using the fact that g−1dg + dg−1g = 0 gives
finally

FAg = g−1 FA g .

Since the Killing scalar product on G is invariant under the adjoint action of G we
have

YM(Ag) = YM(A) .

The action of Lg−1 on the plane distribution H leaves invariant its Yang–Mills
energy and realizes therefore a “huge” invariance group of the Yang–Mills Plateau
Problem which is called the gauge group of the problem.

Exactly as for the classical Plateau problem we discussed in the first part of
the survey the task for solving the Yang–Mills Plateau problem will be to “kill”
this gauge invariance and, here again, the Coulomb gauge choices will be of great
help.

III.4. The Coulomb gauges

We first start with the simplest group, the Abelian group G = S1. The Yang–Mills
Plateau problem in this case becomes:

Find a minimizer of

inf

{
YM(A) =

∫
Bm

|dA|2 dxm ; ι∗∂BmA = η

}
,

where η is some given 1-form on the boundary ∂Bm.
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In a reminiscent way to the classical Plateau problem our starting functional
is degenerate and we shall replace it by a more coercive one

YM(A) ≤ E(A) =

∫
Bm

|dA|2 + |d∗A|2 dxm ,

with equality if and only if d∗A = 0 (i.e., A satisfies the Coulomb condition).

The following coercivity inequality holds

∀A ∈ W 1,2(Bm,G) s.t. ι∗∂BmA = η∫
Bm

|A|2 +
m∑

i,j=1

|∂xiAj |2 dxm ≤ C
[
E(A) + ‖η‖2H1/2(∂Bm)

]
,

(III.7)

for some fixed constant independent of η and A, whereH1/2(∂Bm) is the fractional
trace space of W 1,2(Bm). The convexity of E in W 1,2

η (∧1Bm,G) together with the
previous coercivity inequality implies that the following problem admits a unique
minimizer A0 of

min
A∈W 1,2

η (∧1Bm,G)
E(A) .

The Euler Lagrange equation reads

∀ φ ∈ W 1,2
0 (∧1Bm,G)

∫
Bm

dφ ∧ ∗dA+ (−1)m d∗A ∧ d ∗ φ = 0 . (III.8)

This gives in particular that each of the components of A are harmonic. We choose
f to be an arbitrary function in L2(Bm,G) and we solve{

−Δu = f in Bm

u = 0 on ∂Bm .

Classical elliptic theory gives that the 1-form φ := du is in W 1,2
0 (∧1Bm,G). By

substituting φ = du in (III.8) we obtain

∀ f ∈ L2(Bm,G)
∫
Bm

d∗A · f dxm = 0 .

Hence we deduce d∗A = 0 in Bm and there exists a unique solution to (III.8)
which is also the unique solution of the following system⎧⎪⎨⎪⎩

d∗dA0 = 0 in D′(Bm)

d∗A0 = 0 in D′(Bm)

ι∗∂BmA0 = η .

The components of A are harmonic in Bm and are therefore smooth moreover we
have

YM(A0) = E(A0) .
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Let now B in W 1,2
η (∧Bm,G) we claim that there exists a gauge change g such that

YM(B) = YM(Bg) = E(Bg). This can be seen as follows. Let ϕ be the solution of{
−Δϕ = d∗B in D′(Bm)

ϕ = 0 on ∂Bm .

Hence we have ⎧⎪⎨⎪⎩
d(B + dϕ) = dB in D′(Bm)

d∗(B + dϕ) = 0 in D′(Bm)

ι∂Bm(B + dϕ) = η .

Taking g := exp(iϕ) we have YM(B) = YM(Bg) = E(Bg).
Hence A0 realizes

min
A∈W 1,2

η (∧1Bm,G)
YM(A) .

Indeed if there would be B ∈ W 1,2
η (∧1Bm,G) such that YM(B) < YM(A0) we

choose g such that YM(Bg) = E(Bg) and we would contradict the fact that A0

minimizes E.

Taking now a general compact Lie group G we would also like to propose to
minimize E instead of YM but we need first ensure that a Coulomb gauge always
exists. We have the following lemma which answers positively to this last question

Lemma III.1. Let A ∈ L2(∧1Bm,G). The following variational problem

inf
g∈W 1,2

e (Bm,G)

∫
Bm

|g−1dg + g−1Ag|2 dxm

is achieved and each minimizer satisfies the Coulomb condition

d∗(g−1dg + g−1Ag) = 0 . �
Proof of Lemma III.1. Let gk be a minimizing sequence. Since the group is compact
we have that

lim sup
k→+∞

∫
Bm

|dgk|2 dxm < +∞ .

Hence, using the Rellich–Kondrachov theorem there exists a subsequence gk′ con-
verging weakly in W 1,2(Bm, G) to g∞ and strongly in every Lp(Bm, G) space for
any p < +∞ hence g∞ ∈ W 1,2

e (Bm, G). The same holds for g−1
k and its weak limit

in W 1,2(Bm, G) is the inverse of g∞. Hence we have

g−1
k dgk + g−1

k Agk ⇀ g−1
∞ dg∞ + g−1

∞ Ag∞ in D′(Bm) .

The lower semi continuity of the L2 norm implies that g∞ is a minimizer of (III.6).
For any U ∈ C∞

0 (Bm,G) we introduce

g∞(t) := g∞ exp(t U) .

We have

g−1
∞ (t)dg−1

∞ (t) + g−1
∞ (t)Ag∞(t)

= exp(−t U) d exp(t U) + exp(−t U)
[
g−1
∞ dg∞ + g−1

∞ Ag∞
]
exp(t U) .
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Hence
d

dt

[
g−1
∞ (t)dg−1

∞ (t) + g−1
∞ (t)Ag∞(t)

]
= dU − [U,Ag∞ ] .

Since g∞ is a minimizer we have

0 =
d

dt

∫
Bm

|Ag∞(t)|2 dxm = 2

∫
Bm

〈(dU − [U,Ag∞ ]) · Ag∞〉 dxm .

We use the identity 〈[U, V ],W 〉 = 〈U, [V,W ]〉 to deduce that

[U,Ag∞ ] ·Ag∞ = 0

and then we have proved that for any U ∈ C∞
0 (Bm,G) we have

0 =

∫
Bm

dU · Ag∞ dxm =

∫
Bm

〈U, d∗Ag∞〉 dxm .

This finishes the proof of the lemma. �
Since every connection form possesses a Coulomb gauge representative it is

then tempting to minimize E instead of YM following the main lines of the Abelian
case. However due to the non-linearity A ∧ A in FA it is not clear whether the E
energy controls the W 1,2 norm of A in a similar way of (III.7) in the general case.

In fact the answer to that question is “no” as we can see in the following ex-
ample. We take G = SU(2) and we identify su(2) with the imaginary quaternions.
On R4 we identify canonically the point of coordinates (x0, x1, x2, x3) with the
quaternion x := x0 + x1 i+ x2 j+ x3 k. For a quaternion y = y0 + y1 i+ y2 j+ y3 k
we denote by +(y) the element in su(2) given by y1 σ1+ y2 σ2+ y3 σ3 where σi are
the Pauli matrices to which we identify i, j and k

i ↔ σ1 =

(
i 0
0 −i

)
j ↔ σ2 =

(
0 1
−1 0

)
k ↔ σ3 =

(
0 i
i 0

)
forming an orthogonal basis of su(2) with norms

√
2 for each vector of the basis.

On B4, for λ ∈ R∗
+, we consider the family of 1-forms into su(2) given by

Aλ := λ2 + (x dx)

1 + λ2 |x|2 .

The corresponding curvature is given by

FAλ
= λ2 dx ∧ dx

(1 + λ2 |x|2)2 .

One easily verifies that1

lim
λ→+∞

∫
B4

|FAλ
|2 dx4 =

∫
R4

|FA1 |2 dx4 =

∫
R4

48
dx4

(1 + |x|2)4 = 8π2 < +∞

1The somehow surprising factor 48 comes from the fact that there are 6 curvature coordinates
and each curvature coordinate has the form

|(FA1
)ij |2 =

8

(1 + |x|2)2
where we have used that the square of the norm of each Pauli matrix is 2.
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but one verifies also that

lim
λ→+∞

∫
B4

∑
i,j=14

|∂xi(Aλ)j |2 dx4 = +∞

we might then think that by changing the gauge we can avoid this blow up of the
W 1,2 norm of the connection form but, as we see now, this cannot be the case.
Consider the second Chern form Tr(FAλ

∧ FAλ
), it satisfies

lim
λ→+∞

Tr(FAλ
∧ FAλ

) = 8π2 δ0 dx4 . (III.9)

The second Chern form is invariant under gauge transformation and for any choice
of gauge g this 4-form, which has to be closed, is on B4 the exterior derivative of
the transgression form known as the Chern–Simon 3-form:

∀ g : B4 → SU(2)

Tr(FAλ
∧ FAλ

) = d

[
Tr

(
Ag

λ ∧ dAg
λ +

1

3
Ag

λ ∧ [Ag
λ, A

g
λ]

)]
.

Assume now there would have been a gauge gλ s.t.

lim inf
λ→+∞

‖Agλ
λ ‖W 1,2(B4) < +∞ .

Then for some sequence λk → +∞, using the Rellich–Kondrachov theorem Ak :=
Agk

λk
would weakly converge to some limit A∞ in W 1,2(∧1B4, su(2)) and strongly

in Lp(∧1B4, su(2)) for any p < 4. Hence

Tr

(
Ak ∧ dAk +

1

3
Ak ∧ [Ak, Ak]

)
⇀ Tr

(
A∞ ∧ dA∞ +

1

3
A∞ ∧ [A∞, A∞]

)
in D′(B4). Taking now the exterior derivative and using again the gauge invariance
of the second Chern form we obtain

Tr(FAλk
∧ FAλk

) ⇀ Tr(FA∞ ∧ FA∞) in D′(B4) .

Since A∞ is in W 1,2 the 4-form Tr(FA∞ ∧ FA∞) is an L1 function, however, from
(III.9) it is equal to the Dirac mass. This gives a contradiction and we have proved
the following proposition

Proposition III.1. There exists Ak ∈ W 1,2(B4, su(2)) such that

lim sup
k→+∞

∫
B4

|FAk |2 dx4 < +∞ ,

but

lim inf
k→+∞

inf

⎧⎨⎩
∫
B4

4∑
i,j=1

|∂xi(A
k)gj |2 dx4 ; g ∈ W 2,2(B4, SU(2))

⎫⎬⎭ = +∞ . �

Hence by minimizing E instead of YM we don’t get enough control on the
minimizing sequence Ak in order to extract a converging subsequence to a solution
to the Yang–Mills Plateau problem.
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The situation would have been much better in dimension less than four where
a W 1,2 control of A in terms of E(A) do exist. In dimension equal to four, despite
Proposition III.1, there is still a positive result in that line which says roughly
that such a control does exist for some gauge provided the Yang–Mills energy
stays below some positive threshold. The following section is devoted to the proof
of this result by K. Uhlenbeck.

IV. Uhlenbeck’s Coulomb gauge extraction method

IV.1. Uhlenbeck’s construction

We have seen that in dimension four – and higher of course – there is no hope
to control the W 1,2 norm of sequences of connection forms from the E energy.
The fact that the dimension four is critical for this phenomenon comes form the
optimal Sobolev embedding

W 1,2(B4) ↪→ L4(B4) ,

which does not hold in higher dimension.

Theorem IV.1. Let m ≤ 4 and G be a compact Lie group. There exists εG > 0 and
CG > 0 such that for any A ∈ W 1,2(Bm,G) satisfying∫

Bm

|dA+A ∧ A|2 dxm < εG ,

there exists g ∈ W 2,2(Bm, G) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Bm

|Ag|2 +
4∑

i,j=1

|∂xiA
g
j |2 dxm ≤ CG

∫
Bm

|dA+A ∧A|2 dxm

d∗Ag = 0 in Bm

ι∗∂Bm(∗Ag) = 0 ,

(IV.1)

where Ag = g−1dg+g−1Ag and ι∂Bm is the canonical inclusion map of the bound-
ary of the unit ball into Rm. �
Remark IV.1. The same result holds in arbitrary dimension replacing the L2-norm
for the curvature by the Lm/2 norm and the W 1,2 norm of the connection by the
W 1,m/2-norm (see [59]). The proof we are giving below can be transposed word
by word in this more general setting. The adaptation requires just a shift of the
exponents 4 → m, 2 → m/2. �

For m < 4 the non-linearity A ∧ A is a compact perturbation of dA and the
problem is a perturbation to a simple linear one that we solved in the Abelian
case. We will then restrict the presentation to the case m = 4. We assume that
the compact Lie group is represented by a subgroup of invertible matrices in Rn

for some n ∈ N∗ which gives an isometric embedding of G in an Euclidian space.
We aim to solve the Coulomb equation d∗Ag = 0 keeping this time a control

of Ag in W 1,2 (lemma III.1 was only giving an L2 control). Since we have little
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energy the hope is to use a fixed point argument close to the zero connection and
for g close to the identity. The linearization of the Coulomb non-linear elliptic
PDE {

d∗
[
g−1 dg

]
= − d∗

[
g−1Ag

]
in B4

∂rg g
−1 = −〈A, ∂r〉 on ∂B4 ,

for At = t ω and gt = exp(t U) gives{
ΔU = −d∗dU = d∗ω in B4

∂rU = −〈ω, ∂r〉 on ∂B4 .

This linearized problem is solvable for any map ω ∈ W 1,2(B4,G) and we get a
unique U ∈ W 2,2(B4,G) solving the previous linear equation.

However, in order to be able to apply the implicit function theorem we need
the following non-linear mapping to be smooth

N 0 : W 1,2(B4,G)×W 2,2(B4,G) −→ W 1,2(B4,G)×H1/2(∂B4,G)
(ω,U) −→

(
d∗
[
g−1
U dgU + g−1

U ω gU
]
, ∂rgU g−1

U − 〈ω, ∂r〉
)
,

where gU := exp(U). This is however not the case in dimension four. This is due
to the fact that W 2,2 does not embed in C0 in four dimensions but only in the
Vanishing Mean Oscillation space VMO(B4) hence simple algebraic operations
such as the multiplication of two G valued W 2,2 maps is not continuous in four
dimensions.

If one replaces howeverW 1,2×W 2,2 by a “slightly smaller space”W 1,p×W 2,p

for any p > 2 (p being as close as we want from 2) then the space W 2,p embeds
continuously (and compactly) in C0 and the map N 0 becomes suddenly smooth!
and a fixed point argument is conceivable in this smaller space.

Uhlenbeck’s strategy consists in combining a fixed point argument in smaller
spaces – in which the problem is invertible – together with a continuity argument.

This method is rather generic in the sense that it can be applied to critical
extensions or lifting problems of maps in the Sobolev space W 1,m(Mm) which
misses to embed in C0 but for which however the notion of homotopy class is well
defined (see [47] and [61]) and prevents to find global extensions or liftings when
the norm of the map is too high. As an illustration we shall give two results.

Theorem IV.2. For any m ≥ 1, and any compact Lie group G there exist εm,G > 0
and Cm,G > 0 such that for any map g ∈ W 1,m(Sm, G) satisfying∫

Sm

|dg|m dvolSm < εm ,

there exists an extension g̃ ∈ W 1,m+1(Bm+1, G) equal to g on ∂Bm+1 such that∫
Bm+1

|dg̃|m+1 dxm+1 ≤ Cm

∫
Sm

|dg|m dvolSm . �
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Remark IV.2. The existence of such an extension g̃ ∈ W 1,m+1(Bm+1, G) is clearly
not true for general g ∈ W 1,m(Sm, Sm). Indeed, consider for instance m = 3 and
G = SU(2) � S3, if such an extension would exists one would have to use the
Stokes theorem.

0 =

∫
B4

g̃∗dx4 =
1

4

∫
S3

g∗ dvolSU(2) =
|S3|
4

deg(g) ,

where deg(g) is the topological degree of the map g which is not necessarily
zero. However there always exists an extension in the “slightly” larger space
W 1,(m+1,∞)(Bm+1, G) of maps from Bm into G with one derivative in the Marcin-
kiewicz weak Lm+1(Bm+1) space (see Subsection IV.3 below). �

Theorem IV.2 is proved in [33] using Uhlenbeck’s method. The second exam-
ple is the following one

Theorem IV.3. Let P be a G principal bundle over Sm where G is a compact Lie
group and where π is the projection associated to this bundle. There exist εm,G > 0
and Cm,G > 0 such that for any g ∈ W 1,m(Sm, Sm) satisfying∫

Sm

|dg|m dvolSm < εm,G ,

there exists v ∈ W 1,m(Sm, P ) such that∫
Sm

|dv|m dvolSm ≤ Cm,G

∫
Sm

|dg|m dvolSm , and π ◦ v = g . �

Proof of Theorem IV.1. Fix some 2 < p < 4. For any ε > 0 we introduce

Uε :=

{
A ∈ W 1,p(B4,G) s.t.

∫
B4

|FA|2 dx4 < ε

}
,

and for any ε > 0 and C > 0 and we consider

Vε
C :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A ∈ Uε s.t. ∃ g ∈ W 2,p(B4, G)∫
B4

|dAg |pgS4
dx4 ≤ C

∫
B4

|FA|p dx4∫
B4

|dAg |2gS4
dx4 ≤ C

∫
B4

|FA|2 dx4

d∗Ag = 0 and ι∂B4 ∗ Ag = 0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
The first goal is to show the following

Claim 1 ∃ ε > 0 C > 0 s.t. Vε
C = Uε .

In order to prove the claim we shall establish successively

1) The set Uε is path connected.
2) The set Vε

C is closed in Uε for the W 1,p-topology
3) For ε > 0 chosen small enough and C > 0 large enough the set Vε

C is open
for the W 1,p-topology
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Since Vε
C is non-empty, this will imply the claim 1 for this choice of ε and C.

Proof of the path connectedness of Uε. For A in Uε and t ∈ [0, 1] we define
the connection form At to be the image of A by the dilation of rate t−1: At =
t
∑

j=1 Aj(t x) dxj . We have in particular

FAt = t2
4∑

i,j=1

(FA)ij(x) dxi dxj ,

hence ∫
B4

|FAt |2 dx4 =

∫
B4

t

|FA|2 dx4 < ε ,

and
4∑

i,j=1

∫
B4

|∂xi(At)xj |p dx4 = O(t2p−4) . (IV.2)

This shows that on one hand At ∈ Uε for any t ∈ [0, 1] and that on the other
hand At → 0 strongly in W 1,p(B4). Hence At is a continuous path contained in
Uε connecting A and 0 which prove the path connectedness of Uε.

Proof of the closeness of Vε
C in Uε. Let Ak ∈ Vε

C and assume Ak converges strongly
in W 1,p to some limit A∞ ∈ Uε. We claim that A∞ ∈ Vε

C .

Since Ak → A∞ strongly in W 1,p, dAk → dA∞ strongly in Lp and, using the
Sobolev embedding, Ak → A∞ in L4p/4−p. Hence, due to the later,

Ak ∧Ak −→ A∞ ∧ A∞ strongly in L2p/4−p(B4) .

We have chosen 2 < p < 4 in such a way that p < 2p/4− p. Hence we deduce that

FAk −→ FA∞ strongly in Lp(B4) . (IV.3)

Let gk be a sequence such that∫
B4

|d(Ak)g
k |qgB4

dvolS4 ≤ C

∫
B4

|FAk |q dvolS4 , (IV.4)

for q = 2, p and

d∗(Ak)g
k

= 0 and ι∗∂B4 ∗ (Ak)g
k

= 0 . (IV.5)

Since both d(Ak)g
k

and d∗(Ak)g
k

are uniformly bounded in Lp and since there is
no harmonic 3-form2 on B4 whose restriction on the boundary is zero, classical

Lp-Hodge theory (see for instance [21]) infers that (Ak)g
k

is uniformly bounded
in W 1,p. So, using the Sobolev embedding, it is in particular bounded in L4p/4−p

and since (Ak)g
k

= (gk)−1dgk + (gk)−1Ak gk, using that Ak is bounded in W 1,p

2Assume B is a 3 form satisfying dB = 0 and d∗B = 0 on B4 and ι∗
∂B4B = 0 then ∗B = dϕ,

B = dβ and ι∗
∂B4β = dC. With these notations we have∫

B4
|B|2 =

∫
B4

dβ ∧ dϕ =

∫
∂B4

dC ∧ dϕ = 0

hence B = 0.
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and hence in L4p/4−p, we deduce that dgk is bounded also in L4p/4−p. Since 4 <
4p/4− p, there exists a subsequence gk

′
converging strongly to some limit g∞ in

C0. Going back to the weak convergence of (Ak)g
k

in W 1,p, the strong convergence
of Ak in W 1,p and the weak convergence of gk in W 1,4p/4−p we deduce that

dgk = gk (Ak)g
k −Ak gk

is uniformly bounded in W 1,p and therefore gk
′
⇀ g∞ weakly in W 2,p(B4, G).

Thus we deduce that the following weak convergence in W 1,p(B4) holds

(gk
′
)−1dgk

′
+ (gk

′
)−1Ak′

gk
′
⇀ (g∞)−1dg∞ + (g∞)−1A∞ g∞ .

Combining (IV.3) and the latest weak convergence we deduce that∫
B4

|d(A∞)g
∞ |q dx4 ≤ C

∫
B4

|FA∞ |q dx4 , (IV.6)

for q = 2, p and, using the following continuous embedding of

W 1,p(B4) ↪→ W 1−1/p,p(∂B4)

we have
d∗(A∞)g

∞
= 0 and ι∗∂B4(A∞)g

∞
. (IV.7)

So we have proved that A∞ fulfill all the conditions for being in Vε
C .

Proof of the openness of Vε
C. Let A be an element of Vε

C . It is clear that if we find
in Vε

C an open neighborhood for the W 1,p-topology of the W 1,p Coulomb gauge
Ag, then A possesses also such a neighborhood. So we can assume right away that
d∗A = 0 and ι∂B4 ∗A = 0.

We are looking for the existence of δ sufficiently small – possibly depending
on A – such that for any ω satisfying ‖ω‖W 1,p < δ there exists g close to the
identity in W 2,p-norm such that

d∗
[
g−1dg + g−1(A+ ω) g

]
= 0 and ι∂B4 ∗ (A+ ω)g = 0 .

To that purpose we introduce the map

NA : W 1,p(B4,G)×W 2,p(B4,G) −→ Lp(B4,G)×W 1−1/p,p(∂B4,G)
(ω,U) −→

(
d∗
[
g−1
U dgU + g−1

U (A+ ω) gU
]
, ι∂B4 ∗ (A+ ω)gU

)
,

(IV.8)

where gU := exp(U). We have seen that this map is smooth.
The derivative of NA along the U direction at (0, 0) gives

∂UNA(0, 0) · V = (−ΔV + [A, dV ], ∂rV ) ,

where Δ =
∑4

k=1 ∂
2
x2
k
.

Using Calderòn–Zygmund Lp theory (see for instance [52] or [16]) we have
the following a priori estimate for any V satisfying

∫
B4 V dx4 = 0

‖V ‖W 2,p(B4) ≤ c
[
‖ΔV ‖Lp(B4) + ‖∂rV ‖W 1−1/p,p(∂B4)

]
≤ c

[
‖∂UNA(0, 0) · V ‖F + ‖[A, dV ]‖Lp(B4)

]
≤ c

[
‖∂UNA(0, 0) · V ‖F + c ‖A‖L4(B4) ‖dV ‖L4p/4−p(B4)

]
,
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where F is the hyperplane of Lp(B4,G)×W 1−1/p,p(∂B4,G) made of couples (f, g)
such that ∫

B4

f(x) dx4 = −
∫
∂B4

g(y) dvol∂B4 .

From the fact that A ∈ Vε
C we deduce that ‖A‖L4 ≤ C4

√
C ε where C4 is the

Sobolev constant coming from the embedding into L4(B4) of closed 3-forms on B4

with adjoint exterior derivative in L2 and whose restriction to ∂B4 is zero. Hence
for any V with average zero on B4 we have

‖V ‖W 2,p(B4) ≤ c [‖∂UNA(0, 0) · V ‖F + cC4

√
C ε ‖dV ‖L4p/4−p .

Using again the embedding of W 1,p(∧1B4,G) into L4p/4−p(∧1B4,G) and denoting
Cp the corresponding constant, we have then

[1− cC4

√
C ε Cp] ‖V ‖W 2,p(B4) ≤ c ‖∂UNA(0, 0) · V ‖F .

Having chosen ε such that cC4

√
C ε Cp < 1/2 we have that ∂UNA(0, 0) has zero

kernel. A classical result from Calderòn–Zymund theory (see [16]) asserts that

L : W 2,p(B4,G) −→ F
V −→ (−ΔV, ∂rV )

is invertible and hence has zero index. By continuity of the index the maps

Lt : W 2,p(B4,G) −→ F
V −→ (−ΔV + t[A, dV ], ∂rV )

have also zero index and since L1 = ∂UNA(0, 0) has trivial kernel it is invertible.
So we can apply the implicit function theorem and there exists δ > 0 together
with an open neighborhood O of 0 in the subspace of W 2,p(B4,G) with average 0
on B4 such that

∀ω ∈ W 1,p(B4,G) satisfying ‖ω‖W 1,p(S4,G) < δ

∃ ! Vω ∈ O s.t. NA(Vω , ω) = 0 and

∫
B4

Vω = 0 ,

and O can be taken smaller and smaller as δ tends to zero. We denote gω :=
exp(Vω).

It remains to establish the control of the Lp norm (resp. L2 norm) of d(A+
ω)gω in terms of the Lp norm (resp. L2 norm) of FA+ω .

The Coulomb gauge (A+ ω)gω satisfies for q = 2 and q = p

‖d(A+ ω)gω‖Lq ≤ ‖FA+ω‖Lp + ‖(A+ ω)gω ∧ (A+ ω)gω‖Lp .

We have
‖(A+ ω)gω‖L4 ≤ C4 ‖dA‖L2 + ‖ω‖L4 + ‖dgω‖L4 .

Using the fact that A is the Coulomb gauge whose W 1,2 norm is controlled by
the L2 norm of FA – which is assumed itself to be less than ε – by taking ε small
enough – independently of A – by taking δ small enough – depending possibly on
A – which ensures in particular that ‖dgω‖L4 is sufficiently small, and by using the
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embedding of closed forms with Lq exterior co-derivative and whose restriction to
∂B4 is zero into L4q/4−q since d∗(A + ω)gω = 0 and ι∗∂B4(A + ω)g = 0 we have
established that

‖d(A+ ω)gω‖Lq ≤ ‖FA+ω‖Lq + 2−1‖d(A+ ω)gω‖Lq .

This implies that A + ω fulfills the conditions for being in Vε
C for and ω satisfy-

ing ‖ω‖W 1,p < δ where δ has also been taken small enough in such a way that
‖FA+ω‖ < ε. This concludes the proof of the openness of Vε

C with respect to the
W 1,p-topology for well-chosen constants ε > 0 and C > 0 and this concludes the
proof of the claim 1.

End of the proof of Theorem IV.1. With the claim 1 at hand now, we are going to
conclude the proof of Theorem IV.1

Let A ∈ W 1,2(∧1B4,G) such that
∫
B4 |FA|2 dvolB4 < ε. Since C∞ is dense in

W 1,2 there exists At a family of smooth 1-form on B4 into G converging strongly
to A in W 1,2 as t goes to zero. Using again the embedding of W 1,2 into L4 we
have the existence of t0 > 0 such that

∀ t < t0

∫
B4

|FAt |2 dvolB4 < ε .

Thus At is in Uε and, due to the claim 1, it is also in Vε
C . Let gt such that

d∗(At)g
t

= 0 with ∫
B4

∣∣∣d((At)g
t
)∣∣∣2 dx4 ≤ C

∫
B4

|FAt |2 dx4 .

Again, since there is no non-trivial closed and co-closed 3-form on B4 the previous

identity implies that (At)g
t

is bounded in W 1,2 and then in L4 too. The approx-
imating connection 1-forms At are converging strongly to A in W 1,2 and hence
in L4 thus d(gt) is bounded in L4. We then deduce the existence of a sequence
tk → 0 such that gtk converges weakly in W 1,4(B4, G) to some limit g0. Using the
Rellich–Kondrachov compactness theorem gtk converges strongly to g0 in Lp(B4)
for any p < +∞ and hence g0 is also taking values in G since we have almost ev-
erywhere convergence of the sequence. Using the previous convergences we deduce
first that

(gtk)−1 dgtk + (gtk)−1 Agtk ⇀ (g0)−1 dg0 + (g0)−1 Ag0 in D′(B4) .

This implies that d∗((A)g
0

) = 0. Since both At and (At)g
t

are bounded in W 1,2

and since gt is bounded in L4, using

dgt = gt (At)g
t

−At gt ,

we deduce that gt is bounded in W 2,2 and hence the trace of gtk weakly converges
to the trace of g0 in H3/2(∂B4, G). So we can pass to the limit in the equation

ι∗∂B4 ∗ (Atk)g
tk = 0 and we obtain

ι∗∂B4 ∗ (A0)g
0

= 0 .
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Finally since FAt is strongly converging to FA in L2, using also the lower semi-
continuity of the L2 norm together with the weak convergence of (Atk)gtk towards

Ag0

we have ∫
B4

|d(Ag0

)| dx4 ≤ C

∫
B4

|FA|2 dx4 .

This concludes the proof of theorem IV.1. �

IV.2. A refinement of Uhlenbeck’s Coulomb gauge extraction theorem

We have seen that Uhlenbeck’s result is optimal in the sense that without assuming
anything about the smallness of the Yang–Mills energy there is no hope to obtain
a gauge of W 1,2 controlled energy. One might wonder however if the smallness of
the L2 norm of the curvature is the ultimate criterium for ensuring the existence
of controlled Coulomb gauges. The answer is “no” and one can very slightly re-
duce this requirement. Recall the notion of weak L2 quasi-norm. We say that a
measurable function f on Bm is in the weak L2 space if

|f |2,∞ :=

[
sup
α>0

α2 |{x ∈ Bm ; |f(x)| > α}|
]1/2

< +∞ ,

where | · | denotes the Lebesgue measure on Bm. This quantity defines a quasi-
norm which is equivalent to a norm (see for instance [17]) that we denote ‖ · ‖2,∞.
The weak L2 space equipped with ‖ · ‖2,∞ is complete and define then a Banach
space denoted L2,∞ called also Marcinkiewicz weak L2 space or also Lorentz weak
L2 space. It is larger than L2. Indeed, for any function f ∈ L2 we have

‖f‖2,∞ ≤ sup
α>0

∫
x ;|f |(x)>α

|f |2(x)dx ≤
∫

|f |2(x) dx = ‖f‖22 .

It is strictly larger than L2: the function f(x) := |x|−m/2 is in L2,∞(Bm) but
not in L2(Bm). It is also not difficult to see that L2,∞(Bm) ↪→ Lp(Bm) for any
1 ≤ p < 2. More generally we define the Lq,∞ space of measurable functions f
satisfying

|f |q,∞ :=

[
sup
α>0

αq |{x ∈ Bm ; |f(x)| > α}|
]1/q

< +∞ .

This defines again a quasi-norm equivalent to a norm3 if q > 1. So it is a space
which “sits” between Lq(Bm) and all the Lp(Bm) spaces for any p < q. This
is a space which has the same scaling properties as Lq but has however the big
advantage of containing the Riesz functions |x|−m/q which play a central role in
the theory of elliptic PDE. As we will see later the space Lq,∞(Bm) has also the

3This is not true for q = 1, the space L1-weak cannot be made equivalent to a normed space –

unfortunately, otherwise the analysis could make the economy of Calderòn–Zygmund theory and
a major part of harmonic analysis that would suddenly become trivial. . . !
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advantage of being the dual of a Banach space, the Lorentz space Lq′,1(Bm) of
measurable functions f satisfying∫ +∞

0

|{x ; |f |(x) > α}|1/q
′
dα < +∞ , (IV.9)

where 1/q′ = 1− 1/q (see [17]). This later space has very interesting “geometric”
properties that will be useful for the analysis of the Yang–Mills Lagrangian as we
will see below.

We have the following theorem

Theorem IV.4. Let m ≤ 4 and G be a compact Lie group. There exists εG > 0 and
CG > 0 such that for any A ∈ W 1,2(Bm,G) satisfying

sup
α>0

α2 |{x ∈ Bm ; |FA(x)| > α}| < εG , (IV.10)

there exists g ∈ W 2,2(Bm, G) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Bm

|Ag|2 +
4∑

i,j=1

|∂xiA
g
j |2 dxm ≤ CG

∫
Bm

|dA+A ∧ A|2 dxm

d∗Ag = 0 in Bm

ι∗∂Bm(∗Ag) = 0 ,

(IV.11)

where Ag = g−1dg+g−1Ag and ι∂Bm is the canonical inclusion map of the bound-
ary of the unit ball into Rm. Moreover we have also

4∑
i,j=1

‖∂xiA
g
j‖22,∞ ≤ CG ‖FA‖22,∞ . �

The weakening of the smallness criterium by replacing small L2 by the less
restrictive small L2,∞ condition for the existence of a controlled Coulomb gauge
has been first observed in [5]. This was a very precious observation for the control
of the loss of energies in so-called neck annular regions in the study of conformally
invariant problems such as Willmore surfaces or also Yang–Mills Fields as we will
see below. The estimate (IV.10) comes naturally from the ε-regularity property
which holds in neck regions.

Proof of Theorem IV.4. It follows exactly the same scheme as the proof of Theo-
rem IV.4 but we will need to use interpolation spaces between Lq,∞ and Lq,1, the
Lorentz spaces Lq,s and some of their properties.

Let 2 < p < 4 and

Ûε :=
{
A ∈ W 1,p(B4,G) s.t. |FA|2L2,∞(B4) < ε

}
,
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and for any ε > 0 and C > 0 and we consider

V̂ε
C :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A ∈ Ûε s.t. ∃ g ∈ W 2,p(B4, G)∫
B4

|dAg |p dx4 ≤ C

∫
B4

|FA|p dx4∫
B4

|dAg |2 dx4 ≤ C

∫
B4

|FA|2 dx4

‖dAg‖2L2,∞(B4) ≤ C ‖FA‖2L2,∞(B4)

d∗Ag = 0 and ι∂B4 ∗ Ag = 0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The first goal is to show the following

Claim ∃ ε > 0 C > 0 s.t. V̂ε
C = Ûε .

The proof of the claim is again divided in 3 steps.

Proof of the path connectedness of Ûε. For A in Uε and t ∈ [0, 1] we define
the connection form At to be the image of A by the dilation of rate t−1: At =
t
∑

j=1 Aj(t x) dxj . We have in particular

FAt = t2
4∑

i,j=1

(FA)ij(x) dxi dxj ,

hence |FAt |(x) = t2 |FA|(t x) and
|FAt |L2,∞(B4) = |FA|L2,∞(B4

t )
≤ |FA|L2,∞(B4) < ε

and4 this path connects A to 0 in the W 1,p topology due to (IV.2). Hence this

concludes the proof of the path connectedness of Ûε.

The proof of the closeness of V̂ε
C in Ûε is identical to the proof of the closeness of

Vε
C in Uε.

Proof of the openness of V̂ε
C in Ûε. We consider the map NA defined by (IV.8). We

recall5 the definition of the space Lq,s(Bm) where 1 < q < ∞ and 1 ≤ s < +∞. A
measurable function f on Bm belongs to Lq,s(Bm) if

|f |q,s :=
[∫ ∞

0

t
s
q f∗(t)

dt

t

]1/s
< +∞ , (IV.12)

where f∗(t) is the decreasing rearrangement function associated to f , defined on
R+, and satisfying

∀α > 0 |{t > 0 ; f∗(t) > α}| = |{x ∈ Bm ; |f |(x) > α}| .

4This last inequality illustrates what we meant at the beginning of this subsection by L2,∞ has
the same scaling properties as L2.
5For a more thorough presentation of the Lorentz spaces and its interaction with Calderòn–

Zygmund theory in particular the reader is invited to consult the first chapter of [17] as well as
[53] or [55].
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This defines again a quasi-norm equivalent to a norm for which the space is com-
plete (see [17]). One verifies that the space Lq,1(Bm) defined by (IV.9) coincides
with the space given by (IV.12) for s = 1. One verifies also that Lq,q(Bm) =
Lq(Bm) and that for any q ∈ (1,+∞) and any 1 ≤ s < σ ≤ +∞ we have
Lq,s(Bm) ↪→ Lq,σ(Bm). We have also that ∀q < r and ∀t, s ∈ [1,∞] the following
continuous embedding holds Lp,s(Bm) ↪→ Lq,t(Bm). The following multiplication
rules holds and are continuous bilinear mappings in the corresponding spaces with
the corresponding estimates

Lp,s · Lq,t ↪→ Lr,σ , (IV.13)

where r−1 = p−1 + q−1 and s−1 + t−1 = σ−1 and where 1 < p, q < +∞ such that
r ≥ 1 and 1 ≤ s, t ≤ ∞ such that 1 ≤ σ ≤ +∞. In particular we have for any
2 ≤ p < 4

L4,∞ · L
4p

4−p ,p ↪→ Lp . (IV.14)

Before to move on with the proof of Theorem IV.4 we shall need a last tool from
function theory: the improved Sobolev embeddings (see [55]). For 1 ≤ p < m the
following embedding is continuous

W 1,p(Bm) ↪→ L
mp
m−p ,p(Bm) , (IV.15)

and more generally for any t ∈ [1,+∞]

W 1,(p,t)(Bm) ↪→ L
mp
m−p ,t(Bm) , (IV.16)

where W 1,(p,t)(Bm) denotes the space of measurable functions on Bm with distri-
butional derivative in the Lorentz space Lp,t(Bm).

Proof of openness of V̂ε
C continued. Using Calderòn–Zygmund Lq,t theory we have

the following bound

‖V ‖W 2,p(B4) ≤ c
[
‖ΔV ‖Lp(B4) + ‖∂rV ‖W 1−1/p,p(∂B4)

]
≤ c

[
‖∂UNA(0, 0) · V ‖F + ‖[A, dV ]‖Lp(B4)

]
≤ c

[
‖∂UNA(0, 0) · V ‖F + c ‖A‖L4,∞(B4) ‖dV ‖L4p/4−p,p(B4)

]
,

where F := W 1,p(B4,G) × W 1−1/p,p(∂B4,G). From the fact that A ∈ Vε
C we

deduce that ‖A‖L4,∞ ≤ C4

√
C ε where C4 is the Sobolev constant coming from

the embedding into L4(B4) of closed 3 forms on B4 with adjoint exterior derivative
in L2 and whose restriction to ∂B4 is zero. Hence for any V with average zero on
B4 we have

‖V ‖W 2,p(B4) ≤ c [‖∂UNA(0, 0) · V ‖F + cC4

√
C ε ‖dV ‖L4p/4−p,p .

Using again the embedding (IV.15) and denoting Cp the corresponding constant,
we have then

[1− cC4

√
C ε Cp] ‖V ‖W 2,p(B4) ≤ c ‖∂UNA(0, 0) · V ‖F .

Having chosen ε such that cC4

√
C ε Cp < 1/2 we have that ∂UNA(0, 0), which is

again a Fredholm operator of index zero, has a trivial kernel and is hence invertible.
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The rest of the proof is completed by easily transposing to our present setting
each argument of the case of small L2 Yang–Mills energy which was detailed in
the previous subsection.

IV.3. Controlled gauges without small energy assumption

One might wonder why a W 1,2 control is wished and why one could not give up a
bit our requirements and look for some control of a “weaker norm”. This is indeed
possible, together with Mircea Petrache [33], the author proved the existence of
global gauges Ag whose L4,∞ norm is controlled by the Yang–Mills energy which
is not necessarily small. Precisely we have.

Theorem IV.5. Let (M4, g) be a Riemannian 4-manifold. There exists a function
f : R+ → R+ with the following properties.
Let ∇ be a W 1,2 connection over an SU(2)-bundle over M . Then there exists
a global W 1,(4,∞) section of the bundle (possibly allowing singularities) over the
whole M4 such that in the corresponding trivialization ∇ is given by d + A with
the following bound.

‖A‖L(4,∞)(M4) ≤ f
(
‖F∇‖L2(M4)

)
, (IV.17)

where F∇ is the curvature form of ∇. �

The following question is still unsolved.

Open Problem: Under the same assumptions as the ones of Theorem IV.5, find
A ∈ L4,∞(M4) such that (IV.17) holds and

d∗A ≡ 0 . �
Observe that FA ∈ L2(M4), A ∈ L4,∞(M4) together with d∗A = 0 imply

A ∈ W 1,(2∞)(M4).

Having the existence a global representative with controlled W 1,(2,∞)-norm
and satisfying the Coulomb condition could be useful for studying the Yang–Mills
flow in four dimensions. A partial positive answer to the above open problem is
given by Yu Wang in [60].

The proof of Theorem IV.5 is deduced from the following existence result
which is a global counterpart of Theorem IV.2.

Theorem IV.6 ([33]). Let G be a compact lie group and u be a map in W 1,n(Sn, G)
then there exists an extension ũ of u in W 1,(n+1,∞)(Bn+1, G) and satisfying

sup
α>0

αn+1
∣∣{x ∈ Bn+1 ; |∇ũ| > α

}∣∣ ≤ γn

(∫
Sn

|∇u|n dvolSn

)
,

where γn is a universal function. �

Here again, there are counterexample to the existence of an extension in the
“slightly” smaller space W 1,n+1(Bn+1, G). In fact it is proved in [36] that the
previous result does not require a Lie group structure in the target to be true: it
extends to general closed target Riemannian manifold in general.
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V. The resolution of the Yang–Mills Plateau problem in
the critical dimension

V.1. The small energy case

We first present the resolution of the Yang–Mills Plateau problem in the case where
the given connection at the boundary has a small trace norm. Precisely we shall
prove the following result.

Theorem V.1. Let G be a compact Lie group and m ≤ 4. There exists δG > 0 such
that for any 1-form η ∈ H1/2(∧1∂Bm,G) satisfying

‖η‖H1/2(∂Bm) < δG , (V.1)

then the minimization problem

inf

{
YM(A) =

∫
Bm

|dA+A ∧A|2 dxm ; ι∗∂BmA = η

}
.

is achieved by a 1-form A0 ∈ W 1,2(∧1Bm,G) �

The previous theorem is a corollary of the following weak closure theorem

Theorem V.2. Let G be a compact Lie group and m ≤ 4. There exists δG > 0 such
that for any 1-form η ∈ H1/2(∧1∂Bm,G) satisfying

‖η‖H1/2(∂Bm) < δG , (V.2)

then for any Ak ∈ W 1,2(∧1Bm,G) satisfying

lim sup
k→+∞

YM(Ak) =

∫
Bm

|dAk +Ak ∧ Ak|2 dxm < +∞ and ι∗∂BmAk = η ,

there exists a subsequence Ak′
and a Sobolev connection A∞ ∈ W 1,2(∧1Bm,G)

such that

D(Ak′
, A∞) := inf

g∈W 2,2(B4,G)

∫
Bm

|Ak′
− (A∞)g)|2 dxm −→ 0 ,

moreover

YM(A∞) ≤ lim inf
k′→0

YM(Ak′
) and ι∗∂BmA∞ = η . �

Proof of Theorem V.2. We present the proof in the critical case m = 4. The case
m < 4 being almost like the Abelian linear case treated. Let B be the minimizer of
E in W 1,2

η (∧1B4,G) and using (III.7) and the Sobolev embedding W 1,2(B4) into

L4(B4) we have[∫
B4

|B|4 dx4

] 1
2

+

m∑
i,j=1

∫
B4

|∂xiBj |2 dx4 ≤ C
[
E(B) + ‖η‖2H1/2

]
. (V.3)

The 1-form B is the harmonic extension of η and classical elliptic estimate gives

E(B) ≤ C ‖η‖2H1/2(∂B4) . (V.4)
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Combining (V.3) and (V.4) we obtain the existence of a constant C independent
of η such that ∫

B4

|FB|2 dx4 ≤ C
[
‖η‖2H1/2(∂B4) + ‖η‖4H1/2(∂B4)

]
.

We choose first δG > 0 such that C [δ2G + δ4G] < εG in such a way that we can
apply Theorem IV.1 and we have the existence of a minimizing sequence Ak of

YM in W 1,2
η (∧1B4,G) with a Coulomb gauge (Ak)g

k

controlled in W 1,2:

‖(Ak)g
k

‖W 1,2(B4) ≤ C ‖FAk‖L2(B4) ≤ C [δG + δ2G] . (V.5)

Without loss of generality we can assume that

(Ak)g
k

⇀ Â∞ weakly in W 1,2(∧1B4,G) ,

for some 1-form Â∞ which satisfies the Coulomb condition d∗Â∞ = 0 and for
which∫

B4

|FÂ∞ |2 dx4 ≤ lim inf
k→+∞

∫
B4

|F(Ak)gk |
2 dx4 = lim inf

k→+∞

∫
B4

|FAk |2 dx4 . (V.6)

We claim that the restriction of Â∞ to ∂B4 is gauge equivalent to η. Because of

the weak convergence of (Ak)g
k

to Â∞ weakly in W 1,2, by continuity of the trace
operation from W 1,2 into H1/2 we have

ι∗∂B4(Ak)g
k

= (gk)−1 ι∗∂B4dgk + (gk)−1 η gk ⇀ ι∗∂B4Â∞ (V.7)

weakly in H1/2(∧1∂B4,G). Using the continuous embedding

H1/2(∂B4) ↪→ L3(∂B4) ,

we have that the restriction of gk to ∂B4 converges weakly to some limit g∞ in
W 1,3(∂B4) and we have, using (V.5),

‖dg∞‖L3(∂B4) ≤ lim inf
k→+∞

‖dgk‖L3(∂B4)

≤ C

[
‖η‖H1/2(∂B4) + lim inf

k→+∞
‖(Ak)g

k‖H1/2(∂B4)

]
≤ C [δG + δ2G] .

(V.8)

Using now the Rellich–Kondrachov theorem (see, for instance, [7]), this conver-
gence is strong in Lq for any q < +∞ which implies that g∞ takes values almost
everywhere in G and g∞ ∈ W 1,3(∂B4, G). We have moreover

(g∞)−1 dg∞ + (g∞)−1 η g∞ = ι∗∂B4Â∞ .

Using the continuous embedding

L∞ ∩W 1,3(∂B4) ·H1/2(∂B4) ↪→ H1/2(∂B4)
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(the proof of this continuous embedding is also similar to the one of Lemma B1 in
[33]), we have that

‖dg∞‖H1/2(∂B4)

≤ C
[
‖g∞‖∞ + ‖g∞‖W 1,3(∂B4)

]
[‖η‖H1/2(∂B4) + ‖ι∗∂B4Â∞‖H1/2(∂B4)]

≤ C [δG + δ2G] .

(V.9)

We shall now make use of the following theorem which, as for Theorem IV.2 can
be proved following Uhlenbeck’s Coulomb gauge extraction method.

Theorem V.3. Let G be a compact Lie group. There exists εG > 0 such that for
any g ∈ H3/2(∂B3, G) satisfying

‖g‖H3/2(∂B4,G) < εG ,

there exists an extension g̃ ∈ W 2,2(B4, G) of g satisfying

‖g̃‖W 2,2(B4,G) ≤ C ‖g‖H3/2(∂B4,G) . �

End of the proof of Theorem V.2. We choose δG small enough such that the r.h.s.
of (V.9) C [δG + δ2G] is smaller than εG given by the previous theorem. Let g̃∞ ∈
W 2,2(B4, G) be an extension of g∞ given by Theorem V.3. Then

A∞ := (Â∞)(g̃
∞)−1

∈ W 1,2
η (∧1B4,G)

and we have using (V.6)∫
B4

|FA∞ |2 dx4 ≤ lim inf
k→+∞

∫
B4

|FAk |2 dx4 .

Since Ak is a minimizing sequence of the Yang–Mills Plateau problem in
W 1,2

η (∧1B4,G), the connection form A∞ is a solution to this problem and Theo-
rem V.2 is proved. �

V.2. The general case and the point removability result for
W 1,2 Sobolev connections

Theorem V.2 as it is stated does not hold without the small norm assumption
(V.1) this is due to the fact that Theorem V.3 and similar results such as The-
orem IV.2 do not hold for general data without smallness assumption (see again
Remark IV.2). We shall instead prove the following result where the boundary
condition is relaxed to a constrained trace modulo gauge action.

Theorem V.4. Let G be a compact Lie group and m ≤ 4. For any 1-form η ∈
H1/2(∧1∂Bm,G) the following minimization problem

inf

{∫
Bm

|FA|2 dxm ; ι∗∂BmA = ηg for some g ∈ H3/2(∂B4, G)

}
(V.10)

is achieved by a 1-form A0 ∈ W 1,2(∧1Bm,G). �

In fact Theorem V.4 is a corollary of a general closure result.
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Theorem V.5. For any compact Lie group G and any dimension m ≤ 4, the space
of Sobolev connections

Aη(B
m) :=

{
A ∈ W 1,2(B4,G) ; ι∗∂BmA = ηg for some g ∈ H3/2(∂B4, G)

}
is weakly sequentially closed for sequences of controlled Yang–Mills energy. Pre-
cisely, for any Ak ∈ Aη(B

m) satisfying

lim sup
k→+∞

YM(Ak) =

∫
Bm

|dAk +Ak ∧ Ak|2 dxm < +∞ ,

there exists a subsequence Ak′
and a Sobolev connection A∞ ∈ Aη(B

m) such that

d(Ak′
, A∞) := inf

g∈W 1,2(B4,G)

∫
Bm

|Ak′ − (A∞)g|2 dxm −→ 0 ,

moreover
YM(A∞) ≤ lim inf

k′→0
YM(Ak′

) . �

Proof of Theorem V.5. Here again we restrict to the most delicate case: m = 4.
Let Ak be a sequence of G-valued 1-forms and denote by εG the positive con-

stant in Uhlenbeck’s theorem IV.16. A straightforward covering argument com-
bined by some induction procedure gives the existence of a subsequence that we
still denote Ak and N points p1 · · · pN in B4 such that

∀ δ > 0 ∃ ρδ > 0

sup
k∈N

sup

{∫
Bρδ

(y)∩B4

|FAk |2 dx4 ; y ∈ B4 \ ∪N
l=1Bδ(pl)

}
< εG .

The case without concentration: {p1 · · · pN} = ∅.
Let ρ > 0 such that

sup
k∈N

sup
y∈B4

{∫
Bρ(y)

|FAk |2 dx4

}
< εG .

We fix a finite good covering7 of B4 by balls of radius ρ/2. Denote {Bρ/2(xi)}i∈I

this covering. On each of the rice larger ball Bρ(xi) for any k ∈ N we take a

controlled Coulomb gauge (Ak)g
k
i such that[∫

B4
ρ(xi)

|(Ak)g
k
i |4 dx4

] 1
2

+

m∑
l,j=1

∫
B4

ρ(xi)

|∂xl
((A)g

k
i )j |2 dx4 ≤ C

∫
Bρ(xi)

|FAk |2 dx4 ,

(V.11)
and

d∗(Ak)g
k
i = 0 . (V.12)

6We choose in fact εG small enough for the controlled gauge Uhlenbeck theorem to be valid

for this constant when the domain is any intersection of B4 with a ball Bρ(y) for y ∈ B4 and

0 < ρ < 1
7The word “good” means that any intersections of elements of the covering is either empty or
diffeomorphic to B4 (see [6]).
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For any pair i �= j in I such that Bρ(xi) ∩Bρ(xi) �= ∅ we denote

gkij := gki (g
k
j )

−1 ∈ W 2,2(Bρ(xi) ∩Bρ(xi), G) ,

and we have in particular

(Ak)g
k
j = (gkij)

−1dgkij + (gkij)
−1 (Ak)g

k
i gkij . (V.13)

Observe that for any triplet i �= j, j �= l and i �= l such that Bρ(xi) ∩ Bρ(xi) ∩
Bρ(xl) �= ∅ we have the co-cycle condition

∀ k ∈ N gkij gkjl = gkil . (V.14)

Combining (V.11) and (V.13) together with the improved Sobolev embedding
W 1,2(B4) ↪→ L4,2(B4) where L4,2 is the Lorentz interpolation space given by
(IV.12) we obtain that for any pair i �= j such that Bρ(xi) ∩Bρ(xj) �= ∅

‖dgkij‖2L4,2(Bρ(xi)∩Bρ(xj))
≤ C

∫
Bρ(xi)∪Bρ(xj)

|FAk |2 dx4 . (V.15)

From (V.13) we have

−Δgkij = (Ak)g
k
i · dgkij − dgkij · (Ak)g

k
j . (V.16)

Using again the improved Sobolev embedding W 1,2(B4) ↪→ L4,2(B4), inequalities
(V.11) and (V.15) together with the continuous embedding

L4,2 · L4,2 ↪→ L2,1 ,

we obtain

‖Δgkij‖L2,1(Bρ(xi)∩Bρ(xi)) ≤ C

∫
Bρ(xi)∪Bρ(xj)

|FAk |2 dx4 . (V.17)

Using Calderòn–Zygmund theory in Lorentz interpolation spaces (see [53]) we

obtain that gkij ∈ W
2,(2,1)
loc (Bρ(xi) ∩ Bρ(xi)) where W 2,(2,1) denotes the space of

functions with two derivatives in L2,1 and using (V.15) together with (V.17) we
obtain the following estimate

‖∇2gkij‖L2,1(B3ρ/4(xi)∩B3ρ/4(xi)) ≤ C

[∫
Bρ(xi)∪Bρ(xj)

|FAk |2 dx4

]1/2
. (V.18)

We can then extract a subsequence such that{
∀i ∈ I (Ak)g

k
i ⇀ Ai,∞ weakly in W 1,2(Bρ(xi))

∀i �= j gkij ⇀ g∞ij weakly in W 2,(2,1)(B3ρ/4(xi) ∩B3ρ/4(xi))) ,

moreover Ai,∞ and g∞ij satisfy the following identities{
∀i �= j Aj,∞ = (g∞ij )

−1dg∞ij + (g∞ij )
−1 Ai,∞ g∞ij

∀i, j, l g∞ij g∞jl = g∞il ,
(V.19)
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and we have the following estimate

‖∇2g∞ij ‖2L2,1(B3ρ/4(xi)∩B3ρ/4(xj))
≤ C lim inf

k→+∞

∫
Bρ(xi)∪Bρ(xj)

|FAk |2 dx4 . (V.20)

It is proved8 in [39] that

W 2,(2,1)(B4) ↪→ C0(B4) ,

hence we deduce that g∞ij ∈ C0 ∩W 2,(2,1)(B3ρ/4(xi)∩B3ρ/4(xi)) and for any i �= j

there exists g∞ij ∈ G such that

‖g∞ij − g∞ij ‖2L∞(B3ρ/4(xi)∩B3ρ/4(xj))
≤ C lim inf

k→+∞

∫
Bρ(xi)∪Bρ(xj)

|FAk |2 dx4

< 2 C εG .

(V.21)

Taking εG small enough there exists a unique lifting

U∞
ij ∈ W 2,(2,1)(B3ρ/4(xi) ∩B3ρ/4(xj))

such that
∀i �= j g∞ij = g∞ij exp(U∞

ij ) ,

and
‖U∞

ij ‖∞ ≤ C εG ,

for some constant C depending only on G. Following an induction argument9 such
as the one followed in [28] for the proof of Theorem II.11, we can smooth the U∞

ij

in order to produce a sequence

g∞ij (t) ∈ C∞(B3ρ/4(xi) ∩B3ρ/4(xj), G)

satisfying

g∞ij (t) −→ g∞ij strongly in W 2,(2,1)(B3ρ/4(xi) ∩B3ρ/4(xj)) as t → 0 ,

and
∀ t ∀i, j, l g∞ij (t) g

∞
jl (t) = g∞il (t) .

Since the ball B4 is topologically trivial, the previous cocycle condition defines a
trivial Čech smooth co-chain for the presheaf of G-valued smooth functions (see

8This embedding can be proved on R4 as follows. Let u be a Schwartz function in S(R4). Then
the following representation formula holds

u(x) = C |x|−2 �Δu ,

where C |x|−2 is the Green Kernel of the Laplace operator. From this identity one deduce the
following inequality

‖u‖L∞ ≤ C ‖|x|−2‖L2,∞ ‖Δu‖L2,1 ,

and the embedding W 2,(2,1)(R4) ↪→ C0(R4) follows from a density argument.
9A co-cycle smoothing argument by induction argument is also proposed in [19] under the weaker
hypothesis that the co-cycles g∞ij are W 1,4 in four dimension. This is made possible due to the

fact that C∞(B4, G) is dense in W 1,4(B4, G) (see [47]). The works of Takeshi Isobe [19], [20] are

proposing a framework for studying the analysis of gauge theory in conformal and super-critical
dimension.
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for instance [6] Section 10 Chapter II) and for any i ∈ I and any t > 0 there exists
ρi(t) ∈ C∞(B3ρ/4(xi), G) such that

g∞ij (t) = ρi(t) ρj(t)
−1 . (V.22)

We shall now make use of the following technical lemma which is proved in [59].

Lemma V.1. Let G be a compact Lie group and {Ui}i∈I be a good covering of B4.
There exists δ > 0 such that for any pair of co-chains

∀i �= j hij , gij ∈ W 2,2 ∩ C0(Ui ∩ Uj , G) ,

satisfying

∀i, j, l gij gjl = gil and hij hjl = hil in Ui ∩ Uj ∩ Ul .

Assume
∀i �= j ‖g−1

ij hij − e‖L∞(Ui∩Uj) < δ ,

where e is the constant map equal to the neutral element of G, then, for any strictly
smaller good covering of B4 {Vi}i∈I satisfying Vi ⊂ Ui, there exists a family of
maps σi ∈ W 2,2 ∩ C0(Ui ∩ Uj, G) such that

∀i �= j hij = (σi)
−1gij σj in Vi ∩ Vj . �

We apply the previous lemma to hij := g∞ij (t) and gij := g∞ij for t small
enough and we deduce the existence of

σi(t) ∈ W 2,2 ∩ C0(Bρ/2(xi) ∩Bρ/2(xj)) ,

such that

∀i �= j g∞ij (t) = σi(t)
−1 g∞ij σj(t) in Bρ/2(xi) ∩Bρ/2(xj) . (V.23)

Combining (V.22) and (V.23) we have

∀i �= j g∞ij = σiρi (σjρj)
−1 in Bρ/2(xi) ∩Bρ/2(xj) .

Combining this identity with (V.19) we set

A0 := (σiρi)
−1 d(σiρi) + (σiρi)

−1 Ai,∞ (σiρi) in Bρ/2(xi) .

Clearly A0 extends to a W 1,2 G-valued 1-form in B4, moreover, following the
arguments in the proof of Theorem V.2, the restriction of A0 to ∂B4 is gauge
equivalent to η. This concludes the proof of Theorem V.5 in the absence of con-
centration points.

The general case with possible concentration: {p1 · · · pN} �= ∅. Following the argu-

ments in the previous case, for any δ > 0 we exhibit a subsequence Ak′
, a covering

by balls Bρδ
(xi) of B

4 \ ∪N
l=1B

4
δ (pl) and a family of gauge changes gki such that{

∀i ∈ I (Ak)g
k
i ⇀ Ai,∞ weakly in W 1,2(Bρ(xi))

∀i �= j gkij ⇀ g∞ij weakly in W 2,(2,1)(B3ρ/4(xi) ∩B3ρ/4(xi))) .

The family g∞ij defines again a W 2,(2,1)-co-chain that we can approximate in

C0 ∩ W 2,2 by a smooth one g∞ij (t). Using the fact that the second homotopy
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group of the compact Lie group is trivial π2(G) = 0 (see, for instance, [8], Chap-
ter V, Proposition 7.5) we deduce that the co-chain g∞ij (t), defined on a covering

of B4 \∪N
l=1B

4
δ (pl). is trivial for the Čech cohomology for the co-chains on the pre-

sheaf of smooth G-valued functions. Following each step of the above argument we
construct a W 1,2 G-valued 1-form A0 in B4 \∪N

l=1B
4
δ (pl) which is gauge equivalent

to Ai,∞ in B4
ρ/2(xi) for each i ∈ I and whose restriction on ∂B4 \ ∪N

l=1B
4
δ (pl) is

also gauge equivalent to η. Moreover we have∫
B4\∪N

l=1B
4
δ (pl)

|FA0 |2 dx4 ≤ lim inf
k→+∞

∫
B4

|FAk |2 dx4 .

Using a diagonal argument with δ → 0 we can extend A0 as a G-valued 1-form in
W 1,2

loc (B
4 \ {p1 · · · pN}) and still satisfying∫

B4

|FA0 |2 dx4 ≤ lim inf
k→+∞

∫
B4

|FAk |2 dx4 . (V.24)

We conclude the proof of Theorem V.5 by changing the gauge of A0 in the neigh-
borhood of each blow up point pl making use of the following Theorem V.7, known
as point removability theorem, which gives the existence of a change of gauge g in
order to extend our connection 1-form (A0)g as a W 1,2 G-valued 1-form in the
neighborhood of each pl. We then paste together these W 1,2-gauges by using the
same technique as the one we used in the case without blow up points in order to
get a global W 1,2 representative of A0 on B4 gauge equivalent to η on ∂B4 and
satisfying (V.24). This concludes the proof of Theorem V.5. �

Theorem V.6 (Point removability). Let A ∈ W 1,2
loc (∧1B4 \ {0},G) and G be a

compact Lie group such that∫
B4

|dA+A ∧ A|2 dx4 < +∞ ,

then there exists a gauge change g ∈ W 2,2
loc (B

4 \ {0}, G) such that

Ag ∈ W 1,2(∧1B4,G) . �

Remark V.1. Point removability results play an important rôle in the analysis of
conformally invariant variational problems. This is a natural consequence of due to
the existence of point concentration which is inherent to the conformal invariance.
These results are often formulated for the critical points of conformally invariant
Lagrangians and in the present case it has been first proved by K. Uhlenbeck
for Yang–Mills fields (see [58]). Observe that here we are not assuming that A is
satisfying a particular equation. �

Remark V.2. Beyond geometric analysis, point removability results play also an
important rôle in complex geometry. One could for instance quote the work of
Bando [3] about the possibility to extend a Hermitian holomorphic structure

F 0,2
A = 0 with L2 bounded curvature on a the punctured ball B4 \{0} as a smooth

holomorphic bundle throughout the origin. Beside the holomorphicity condition
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F 0,2
A = 0 no further “equation” is assumed and in particular the Einstein equa-

tion ω · F 1,1
A = c I is not assumed and the connection form is not necessarily a

Yang–Mills field. �

Remark V.3. A similar point removability result can be established at the bound-
ary. It suffices to extend carefully the gauge about the “singular point” at the
boundary in order to reduce to the interior case. Details are left to the reader. �

Proof of Theorem V.6. Without loss of generality we can assume that∫
B4

|FA|2 dx4 < δ ,

where δ > 0 will be fixed later on in the proof. Denote for i ≥ 2

Ti := B4
2−i+2(0) \B4

2−i−2(0) .

From Theorem IV.1 there exists δ > 0 such that, on each annulus Ti there exists
a change of gauge gi such that there exists gi ∈ W 2,2(Ti, G) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ti

22 i|Agi |2 +
4∑

k,l=1

|∂xk
Agi

l |2 dxm ≤ CG

∫
Ti

|dA+A ∧ A|2 dx4

d∗Agi = 0 in Ti

ι∗∂Ti
(∗Agi) = 0 .

(V.25)

On Ti ∩ Ti+1 = B4
2−i+1 \B4

2−i−2 the transition function gi i+1 = gi(gi+1)
−1 satisfy

Agi+1 = (gi i+1)
−1 dgi i+1 + (gi i+1)

−1 Agi gi i+1 . (V.26)

Hence (V.25) imply

22 i
∫
B4

2−i+1\B4
2−i−2

|dgi i+1|2 dx4 ≤ C

∫
B2−i+2\B2−i−3

|dA+A ∧ A|2 dx4 . (V.27)

Taking the adjoint of the covariant derivative of equation (V.26)

−Δgi i+1 = Agi · dgi i+1 − dgi i+1 · Agi+1 ,

and, arguing as in the first part of the proof of Theorem V.5, we deduce the
existence of gi i+1 ∈ G such that

‖gi i+1 − gi i+1‖L∞(Ti∩Ti+1)

≤ C 2i‖dgi i+1‖L2(Ti∩Ti+1) + C

4∑
k,l=1

‖∂2
xkxl

gi i+1‖L2,1(Ti∩Ti+1)

≤ C

[∫
Ti∪Ti+1

|dA+A ∧ A|2 dx4

]1/2
≤ C

√
δ .

(V.28)

We now modify the gauge change gi as follows. Precisely, for any i ∈ N, we denote

σi := g1 2 g2 3 · · · gi−1 i ∈ G .
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Observe that

Agi σi
−1

= σiA
gi σi

−1 . (V.29)

Hence Agi σi
−1

is still a Coulomb gauge satisfying⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
Ti

22 i|Agi σi
−1 |2 +

4∑
k,l=1

|∂xk
Agi σi

−1

l |2 dxm ≤ CG

∫
Ti

|dA+A ∧ A|2 dx4

d∗Agi σi
−1

= 0 in Ti

ι∗∂Bm(∗Agi σi
−1

) = 0 .

(V.30)
Denote hi := gi σi

−1 the transition functions on Ti∩Ti+1 for these new gauges are
given by

hi i+1 := gi σi
−1 σi+1 (gi+1)

−1 = gi gi i+1 (gi+1)
−1 .

Using (V.28) we have

‖hi i+1 − e‖L∞(Ti∩Ti+1) ≤ C

[∫
Ti∪Ti+1

|dA+A ∧A|2 dx4

]1/2
≤ C

√
δ . (V.31)

Exactly as for gi, using the identity

Ahi+1 = (hi i+1)
−1 dhi i+1 + (hi i+1)

−1 Ahi hi i+1 , (V.32)

together with (V.29) and (V.30) we obtain

2i‖dhi i+1‖L2(Ti∩Ti+1) +
4∑

k,l=1

‖∂2
xkxl

hi i+1‖L2,1(Ti∩Ti+1)

≤ C

[∫
Ti∪Ti+1

|dA+A ∧ A|2 dx4

]1/2
≤ C

√
δ ,

(V.33)

where e is the content function on Ti ∩ Ti+1 equal to the neutral element of G.
Having chosen δ small enough we ensure that the transition functions of this new
set of trivialization are contained in a neighborhood of the neutral element into
which the exponential map defines a diffeomorphism and there exist Ui i+1 such
that hi i+1 = exp(Ui i+1) and

‖Ui i+1‖L∞(Ti∩Ti+1) + 2i‖dUi i+1‖L2(Ti∩Ti+1) +

4∑
k,l=1

‖∂2
xkxl

Ui i+1‖L2,1(Ti∩Ti+1)

≤ C

[∫
Ti∪Ti+1

|dA+A ∧ A|2 dx4

]1/2
≤ C

√
δ . (V.34)

Let ρ be a smooth function on R+ identically equal to 1 between 0 and
√
2 and

compactly supported in [0, 2]. On B4 we define

ρi(x) := ρ(|x| 2i) Vi := B2−i+3/2 \B2−i and τi := exp(ρi Ui i+1) .
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With these notations we have

on Vi+1 ∩ Vi = B2−i+1/2 \B2−i we have τi = hi i+1 and τi+1 = e .

Hence on Vi+1 ∩ Vi we have

Ahi τi = τ−1
i dτi + τ−1

i Ahi

τi

= (hi i+1)
−1 dhi i+1 + (hi i+1)

−1 Ahi hi i+1 = Ahi+1 = Ahi+1 τi+1 ,
(V.35)

and the 1-form Â equal to Ahi τi on each annulus Vi defines a global W 1,2
loc connec-

tion 1-form on B4 \ {0} gauge equivalent to A. Clearly, for k = 1, 2, we have the
pointwise estimate

|dkτi| ≤ C

k∑
l=0

2i l |dk−lUi i+1| on Vi .

Combining this fact together with (V.30), (V.34) and (V.35) we obtain∫
Vi

22 i|Ahi τi |2 +
4∑

k,l=1

|∂xk
Ahi τi

l |2 dx4 ≤ CG

∫
Ti∪Ti+1

|dA+A ∧ A|2 dx4 .

Summing over i gives∫
B4

|x|−2 |Â|2 +
4∑

k,l=1

|∂xk
Âl|2 dx4 ≤ CG

∫
B4

|dA+A ∧A|2 dx4 ,

Â is then in W 1,2(∧1B4,G) and this concludes the proof of theorem V.6. �

VI. The Yang–Mills equation in sub-critical and critical dimensions

VI.1. Yang–Mills fields

Until now we have produced solutions to the Yang–Mills Plateau problem in di-
mensions less or equal to four but we have not addressed issues related to the
special properties that should be satisfied by these solutions. Maybe one of the
first question that should be looked at is whether these minima define smooth
equivariant horizontal plane distributions or not.

In order to study the regularity of solutions to the Yang–Mills Plateau prob-
lem we have first to produce the Euler Lagrange equation attached to this varia-
tional problem. This is the so-called Yang–Mills equation.

Definition VI.1. Let G be a compact Lie group and A be an L2 connection 1-form
on Bm into the Lie Algebra G of G. Assume that∫

Bm

|dA+A ∧ A|2 dxm < +∞ ,
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we say that A is a Yang–Mills field if

∀ ξ ∈ C∞
0 (∧1Bm,G)

d

dt

∫
Bm

|d(A+ tξ) + (A+ tξ) ∧ (A+ tξ)|2 dxm |t=0 = 0 . �

Observe that this definition makes sense for any A ∈ L2 such that FA ∈ L2,
indeed we have for any ξ in C∞

0 (∧1Bm,G)
FA+tξ = FA + t (dξ +A ∧ ξ + ξ ∧A) + t2 ξ ∧ ∧ξ ∈ L2(∧2Bm,G) .

For such a A ∈ L2 and for any ξ in C∞
0 (∧1Bm,G) we denote by dAξ the following

2-form
dAξ(X,Y ) := dξ(X,Y ) + [A(X), ξ(Y )] + [ξ(X), A(Y )] .

So we have for instance

dAξ(∂xi , ∂xj ) = ∂xiξj − ∂xjξi + [Ai, ξj ] + [ξi, Aj ] .

We have then the following proposition.

Proposition VI.1 (Yang–Mills Equation). Let A ∈ L2(∧1Bm,G) such that FA ∈
L2(∧2Bm,G). The connection 1-form A is a Yang–Mills field if

∀ ξ ∈ C∞
0 (∧1Bm,G)∫

B4

dAξ · FA = 0 ,
(VI.36)

which is equivalent to
d∗AFA = 0 in D′(Bm) . (VI.37)

In coordinates this reads

∀ i = 1 · · ·m
m∑
j=1

∂xj (FA)ij + [Aj , (FA)ij ] = 0 . (VI.38)

�

The Yang–Mills equation (VI.36) is also written symbolically as follows

d∗FA + [A, FA] = 0 ,

where is referring to the contraction operation between tensors with respect to
the flat metric on Bm. The proof of the last statement of the proposition goes as
follows (VI.36) in coordinates is equivalent to

m∑
i,j=1

∫
Bm

〈
∂xiξj − ∂xjξi + [Ai, ξj ] + [ξi, Aj ], (FA)ij

〉
dxm = 0 ,

using integration by parts and the fact that the Killing metric, invariant under
adjoint action, satisfies 〈U, [V,W ]〉 = 〈W, [U, V ]〉 we obtain

m∑
i,j=1

∫
Bm

〈−∂xi(FA)ij + [(FA)ij , Ai], ξj〉+
〈
∂xj (FA)ij + [Aj , (FA)ij ], ξi

〉
dxm = 0 ,

which implies (VI.38).
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The gauge invariance of the integrant of Yang–Mills Lagrangian implies that
(VI.38) is solved for A if and only if it is solved for any gauge transformation Ag

of A. More generally we have the following{
∀A ∈ W 1,2(∧1Bm,G) ∀ g ∈ W 2,2(Bm, G)

d∗(Ag)FAg = g−1 d∗AFA g ,
(VI.39)

where we recall that Ag := g−1dg + g−1Ag.

The Yang–Mills equation (VI.37) has to be compared with the Bianchi iden-
tity to which it is a kind of “dual equation”. This is a structure equation which
holds for any connection 1-form.

Proposition VI.2. [Bianchi identity] For any A ∈ L2(∧1Bm,G) such that FA ∈
L2(∧2Bm,G) the following identity holds

dAFA = 0 ,

where dAFA is the 3-form given by

dAFA(X,Y, Z) := dFA(X,Y, Z) + [A(X), FA(Y, Z)] + [A(Y ), FA(Z,X)]

+ [A(Z), FA(X,Y )] . �

The proof of the Bianchi identity goes as follows. We have

dFA(X,Y, Z) = d(A ∧ A)(X,Y, Z)

= [dA(X,Y ), A(Z)] + [dA(Y, Z), A(X)] + [dA(Z,X), A(Y )]

= [FA(X,Y ), A(Z)] + [FA(Y, Z), A(X)] + [FA(Z,X), A(Y )] ,

where we have used the Jacobi identity

[[A(X), A(Y )], A(Z)] + [[A(Y ), A(Z)], A(X)] + [[A(Z), A(X)], A(Y )] = 0 .

This concludes the proof of the Bianchi identity.

In the particular case where G is Abelian, the Yang–Mills equation together
with the Bianchi identity is equivalent to the harmonic map form system{

d∗FA = 0 Yang–Mills

dFA = 0 Bianchi ,

whose solutions are known to be analytic in every dimension. We are now asking
about the same regularity issue in the non-Abelian case.

VI.2. The regularity of W 1,2 Yang–Mills fields in sub-critical
and critical dimensions

Due to the huge gauge invariance, the “intrinsic” Yang–Mills equation (VI.38) as
such cannot generate any kind of improved regularity for an arbitrary solution10.
Nevertheless the “breaking this invariance” by taking the Coulomb gauge will make

10Assuming one solution A would be smooth and taking any arbitrary other “non-smooth” gauge
g the new expression of the connection Ag is not smooth though it still solves Yang–Mills.
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Yang–Mills PDE elliptic and will generate regularity under the ad hoc assumptions.
Precisely we have the following result.

Theorem VI.7. Let G be a compact Lie group and m≥3. Let A∈W 1,m/2(∧1Bm,G)
be a solution of the Yang–Mills equation (VI.37) satisfying the Coulomb condition
d∗A = 0 then A is C∞ in Bm. �

Proof of Theorem VI.7. We assume that A is Coulomb and satisfy the Yang–Mills
equation (VI.37). Hence we have

d∗dA+ d∗(A ∧ A) + [A, dA] + [A, A ∧ A] = 0 .

Using the fact that d∗A = 0 the Yang–Mills equation in this Coulomb gauge reads
then

ΔA = d∗(A ∧ A) + [A, dA] + [A, (A ∧ A)] , (VI.40)

and Theorem VI.7 is now the direct consequence of the following result. �

Theorem VI.8. Let m > 2 and N ∈ N∗. Let f ∈ C∞(RN × (Rm ⊗ RN ),RN ) and
let g ∈ C∞(RN ,RN) such that there exists C > 0 satisfying

|f(ξ,Ξ)| ≤ C |ξ| |Ξ| and |g(ξ)| ≤ C |ξ|3 . (VI.41)

Let u ∈ W 1,m/2(Bm,RN ) satisfying

Δu = f(u,∇u) + g(u) , (VI.42)

then u is C∞. �

Proof of Theorem VI.8. We start with the following embedding

W 1,m/2(Bm) ↪→ Lm(Bm) .

We claim that there exists α > 0 such that

sup
x0∈B4

1/2
(0) ; 0<ρ<1/4

ρ−4α

∫
Bρ(x0)

|u|m(x) dxm < +∞ . (VI.43)

Let ε > 0 to be fixed later. There exists ρ0 > 0 such that

sup
x0∈Bm

1/2
(0) ; 0<ρ<ρ0

∫
Bm

ρ (x0)

[|u|m(x) + |∇u|m/2(x)]dxm < ε . (VI.44)

Let now x0 ∈ Bm
1/2(0) and ρ < ρ0 arbitrary. On Bρ(x0) we consider ϕ to be the

solution of {
Δϕ = f(u,∇u) + g(u) in Bm

ρ (x0)

ϕ = 0 on ∂Bm
ρ (x0) .

(VI.45)

Classical elliptic estimates (see [16]) give the existence of a constant independent
of ρ such that

‖ϕ‖Lm(Bm
ρ (x0)) ≤ C ‖f(u,∇u) + g(u)‖Lm/3(Bm

ρ (x0)) (VI.46)

≤ C ‖u‖Lm(Bm
ρ (x0)) ‖∇u‖Lm/2(Bm

ρ (x0)) + C ‖u‖3Lm(Bm
ρ (x0))

.
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The difference v := u− ϕ is harmonic on Bm
ρ (x0). Hence |v|m is subharmonic

Δ|v|m = m |v|m−2|∇v|2 + m

2

(m
2
− 1

)
|v|m−4 |∇|v|2|2 ≥ 0 .

This gives that

∀ r < ρ

∫
∂Br(x0)

∂|v|m
∂r

≥ 0 ,

which implies that

d

dr

[
1

rm

∫
B4

r(x0)

|v|m(x) dxm

]
≥ 0 .

So we have in particular∫
Bρ/4(x0)

|v|m(x) dxm ≤ 4−m

∫
Bρ(x0)

|v|m(x) dxm . (VI.47)

From this inequality we deduce∫
Bρ/4(x0)

|u|m(x) dxm ≤ 2m−1

∫
Bρ/4(x0)

[|v|m + |ϕ|m] dxm (VI.48)

≤ 2−m−1

∫
Bρ(x0)

|v|m(x) dxm + 2m−1

∫
Bρ(x0)

|ϕ|m dxm

≤ 2−2

∫
Bρ(x0)

|u|m(x) dxm + 2m
∫
Bρ(x0)

|ϕ|m dxm .

Combining (VI.46) and (VI.48) we then have∫
Bρ/4(x0)

|u|m(x) dxm

≤
[
2−2 + C0 [‖∇u‖mLm/2(Bρ)

+ ‖u‖2mLm(Bρ)
]
] ∫

Bρ(x0)

|u|m(x) dxm .

(VI.49)

We choose ε > 0 such that C0ε
2 ≤ 2−1 and we have then established that for any

ρ < ρ0 ∫
Bρ/4(x0)

|u|m(x) dxm ≤ 1

2

∫
Bρ(x0)

|u|m(x) dxm . (VI.50)

Iterating this inequality gives (VI.43). Inserting the Morrey bound (VI.43) into the
equation (VI.42) gives

sup
x0∈Bm

1/2
(0) ; 0<ρ<1/4

ρ−mα/3

∫
Bρ(x0)

|Δu|m/3(x) dxm < +∞ . (VI.51)

The Adams–Sobolev embeddings (see [1]) give then the existence of p > m/2 such
that ∇u ∈ Lp

loc(B
m
1/2(0)). It is easy then to see that the PDE (VI.42) becomes

sub-critical for W 1,p (with p > m/2) in m dimensions and we can apply a similar
bootstrap arguments to obtain the desired regularity for u. This concludes the
proof of Theorem VI.8. �
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Remark VI.4. The proof of the regularity of Yang–Mills fields in the critical four
dimensions is “soft” in comparison with the proof of the regularity of the “cousin
problem”: the harmonic maps between a surface and a manifold. Both equations
are critical respectively in four and two dimensions but the analysis of the harmonic
map equation is made more delicate by the fact that the non-linearity in the
harmonic map equation is in L1 which is a space which does not behave “nicely”
with respect to Calderòn–Zygmund operations. There is no such a difficulty for
Yang–Mills. What is delicate however is to construct a “good gauge” in which
Yang–Mills equation becomes elliptic. In a somewhat parallel way the difficulty
posed by the harmonic maps equation was overcome by the author by solving a
gauge problem (see [41]).

One consequence of the previous regularity result and the point removability
result V.6 is the following point removability theorem for Yang–Mills fields in four
dimension

Theorem VI.9 (Point removability for Yang–Mills in conformal dimension). Let

A be a weak solution in W 1,2
loc (∧1B4,G) to Yang–Mills equation

d∗AFA = d∗FA + [A, FA] = 0 in D′(B4 \ {0}) .
Assume ∫

B4

|dA+A ∧ A|2 dx4 < +∞ ,

then there exists g ∈ W 2,2
loc (B

4 \ {0}) such that

Ag ∈ C∞(B4) ,

and Ag solves the Yang–Mills equation strongly in the whole ball B4. �

Proof of Theorem VI.9. The point removability result V.4 gives the existence
of a W 2,2

loc -gauge such that Ag ∈ W 1,2(∧1B4,G). Using Uhlenbeck’s Coulomb
gauge IV.1 extraction theorem we can assume that Ag satisfies the Coulomb con-
dition d∗Ag = 0 in D′(B4). So Ag is a W 1,2-solution of a system of the form

Δu = f(u,∇u) + g(u) in D′(B4 \ {0}) ,
where f and g are smooth maps satisfying (VI.41).

The distribution Δu− f(u,∇u)− g(u) is supported in {0}. Hence by a clas-
sical result in distribution theory this distribution is a finite linear combination of
derivatives of Dirac masses:

−Δu+ f(u,∇u) + g(u) =
∑
|α≤N

Cα ∂αδ0 , (VI.52)

where N ∈ N, α = (α1 · · ·α4) ∈ N4, |α| := |α1| + · · · + |α4|, Cα ∈ R4 and ∂α
denotes the partial derivative

∂α :=
∂α1

∂xα1
1

∂α2

∂xα2
2

∂α3

∂xα3
3

∂α4

∂xα4
4

.
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Let χ be an arbitrary smooth compactly supported function in B4
1(0). Denote

χε(x) := χ(x/ε), multiply equation (VI.52) by this function and integrate over B4

gives ∑
|α|≤N

Cα
∂αχ(0)

ε|α|
=

1

ε

∫
B4

ε

∇χ(x/ε) · ∇u+

∫
B4

ε

χε [f(u,∇u) + g(u)] .

Hence, using ∇u ∈ L2 and u ∈ L4 we have∣∣∣∣∣∣
∑

|α|≤N

Cα
∂αχ(0)

ε|α|

∣∣∣∣∣∣ = o(ε) .

Since ∂αχ(0) are arbitrary, this implies that Cα = 0 for any α. So the equation
−Δu+f(u,∇u)+g(u) = 0 holds on the whole ball and we can apply Theorem VI.8
to u = Ag and obtain that it is C∞ which concludes the proof of Theorem VI.9. �

It is clear that the solutions to the Yang–Mills Plateau problems satisfy the
Yang–Mills equation and hence we have the following corollary.

Corollary VI.1. Let G be a compact Lie group and m ≤ 4. For any 1-form η ∈
H1/2(∧1∂Bm,G) the following minimization problem

inf

{∫
Bm

|FA|2 dxm ; ι∗∂BmA = ηg for some g ∈ H3/2(∂Bm, G)

}
(VI.53)

is achieved by a 1-form A0 ∈ W 1,2(∧1Bm,G) which is C∞ in any local W 1,2-
Coulomb gauge inside the ball Bm. �

VII. Concentration compactness and energy quantization for
Yang–Mills fields in critical dimension

The goal of this section is to study establish the behavior of sequences of Yang–
Mills fields of uniformly bounded energy in critical dimension four. There are three
main problematics attached to this study

• Modulo extraction of subsequence, do we have strong converge to a limiting
Yang–Mills?

• If the strong convergence does not hold where is located the lack of strong
convergence in the base?

• How much Yang–Mills energy is lost at the limit?

We have already several tools and results at hand that we established in
the previous sections in order to provide a relatively precise answer to these three
questions. The proof or our main result in this section is based in particular on the
following “quantitative reformulation” of the regularity theorem (Theorem VI.7)
which belongs to the family of the so-called ε-regularity results for conformally
invariant problems.
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Theorem VII.1 (ε-regularity for Sobolev solutions to Yang–Mills in conformal
dimension). Let G be a compact Lie group, there exists εG,4 > 0 such that for any
G-valued 1-forms A in W 1,2(∧1B4

1(0),G) satisfying the Yang–Mills equation

d∗AFA = d∗FA + [A, FA] = 0 in D′(B4
1(0)) .

and the small energy condition∫
B4

1(0)

|FA|2 dx4 < εG,4 ,

then there exists a gauge g in which the following estimates holds: for any l ∈ N
there exists Cl > 0 such that

‖∇l(A)g‖2L∞(B1/2(0))
≤ Cl

∫
Bm

1 (0)

|FA|2 dx4 . (VII.1)

�

Proof of Theorem VII.1. We choose εG,4 > 0 that will be definitively fixed a bit
later in the proof to be at least smaller than the εG > 0 of the Coulomb gauge
extraction result theorem (Theorem IV.1). We now work in this Coulomb gauge
and we omit to mention the superscript g. So, from now on until the end of the
proof, we are then assuming that we have∫

B4
1

|A|2 dx4 +

4∑
i,j=1

|∂xiAj |2 dx4 ≤ CG

∫
B4

1

|FA|2 dx4 < εG,4 , (VII.2)

from which we deduce in particular

∫
B4

1

|A|4 dx4 ≤ C0

[∫
B4

1

|FA|2 dx4

]2
, (VII.3)

for some constant C0 > 0. Recall that in the Coulomb gauge we are choosing, the
connection form A satisfies the elliptic system (VI.40) to which we can apply the
arguments of the proof of Theorem VI.8 that we are going to follow closely keeping
track this time of each estimate. In particular, having chosen εG,4 small enough
we have inequality (VI.50) which holds for u = A and for any Bρ(x0) ⊂ B1(0) and
we deduce

∀x0 ∈ B3/4(0) ∀ ρ < 1/4∫
Bρ(x0)

|A|4 dx4 ≤ 2 ρα
∫
B4

1(0)

|A|4 dx4

≤ 2 C0 ρα

[∫
B4

1(0)

|FA|2 dx4

]2
,

(VII.4)
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where α = log 2/ log 4. Inserting this inequality in the Yang–Mills PDE in Coulomb
gauge (VI.40) we obtain the existence of a constant C1 > 0 such that

∀x0 ∈ B3/4(0) ∀ ρ < 1/4∫
Bρ(x0)

|ΔA|4/3 dx4 ≤ C1 ρα/3

[∫
B4

1(0)

|FA|2 dx4

]4/3
.

(VII.5)

Combining (VII.4) and (VII.5) we deduce from Adams–Morrey inequalities (see [1])

‖∇A‖Lp(B3/5(0)) ≤ C sup
x0∈B3/4(0) ; ρ<1/4

[
ρ−α/3

∫
Bρ(x0)

|ΔA|4/3 dx4

]3/4
+ C ‖A‖L2(B1(0)) ,

(VII.6)

where

p =
16− 4α/3

8− α
> 2 .

Hence we have for this p > 2

‖∇A‖Lp(B3/5(0)) ≤ C

[∫
B4

1(0)

|FA|2 dx4

]1/2
.

Since p > 2 the non-linear elliptic system (VI.40) becomes sub-critical in four
dimensions and a standard bootstrap argument gives (VII.1). This concludes the
proof of Theorem VII.1. �

The previous ε-regularity result is the main step for proving the following
concentration compactness theorem for sequences of Yang–Mills fields.

Theorem VII.2 (Concentration compactness for Yang–Mills Fields in conformal
dimension). Let (M4, h) be a closed four-dimensional Riemannian manifold and
P a principal smooth G bundle over M4. Let ∇k be a sequence of Yang–Mills
connections satisfying

lim sup
k→+∞

∫
M4

|F∇k |2h dvolh < +∞ .

Then there exists a subsequence ∇k′
, a smooth G-bundle P∞ over (M4, h), a

smooth Yang–Mills connection ∇∞ of P∞ and finitely many points {p1 · · · pN} in
M4 such that for any contractible open set D4 ⊂ M4 \ {p1 · · · pN} with compact
closure, there exists a sequence of trivialization of P over D4 for which

Ak′
→ A∞ strongly in Cl(D4) ∀ l ∈ N ,

where Ak′
(resp. A∞) is the connection 1-form associated to ∇k′

(resp. ∇∞) in
this sequence of local trivializations of P (resp. P∞) over D4. Moreover we have
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the following weak convergence in Radon measure

μk′
:= |F∇k′ |2h dvolh ⇀ μ∞ := |F∇∞ |2h dvolh+ν , (VII.7)

where ν is a non-negative atomic measure supported by the points pj

ν :=

N∑
j=1

fj δpj . (VII.8)

�

Proof of Theorem VII.2. We follow step by step the proof of theorem V.5 replacing
for the choice of the covering the Uhlenbeck Coulomb gauge threshold εG(M

4, h)
by the smaller positive constant εG,4(M

4, h) given by the ε-regularity result VII.1
on the manifold (M4, h). Observe that, because of the epsilon regularity result,

the Coulomb gauges (Ak)g
k
i are pre-compact for any Cl-topology on each ball

Bρ(xi). This gives also the pre-compactness of the transition functions gkij in any

of the Cl topologies. Hence, the co-cycles gkij converge in any of these topology
to the limiting (now smooth) co-cycle g∞ij which defines a smooth G-bundle P∞

over M4 \ {p1 · · · pN}. Moreover the limiting collection of 1-forms Aj,∞ defines
a connection ∇∞ on P∞ satisfying also the Yang–Mills equation which passes
obviously to the limit under C∞ convergence. The gauge invariant quantities such
as |F∇k |2 converge also to the corresponding limiting quantities and we have then,
modulo extraction of a further subsequence, the existence of a limiting radon
measure ν supported on the points pj exclusively such that (VII.9) holds. Finally
applying the point removability theorem and once again the ε-regularity we extend
∇∞ globally on M4 as a Yang–Mills smooth connection of the bundle P∞ which
also obviously extends throughout the pj as a smooth bundle. This concludes the
proof of Theorem VII.2. �

Finally, we identify the concentration atomic measure by proving that the
weights fj in front of the Dirac masses δpj are the sums of Yang–Mills energies

of Yang–Mills fields over S4, the so-called “bubbles”. Precisely we have the fol-
lowing energy identity result which was first established for instantons in [56] and
for Yang–Mills fields in general in [42]. The proof we present below is using the
interpolation Lorentz spaces following a technic introduced in [24] and [25].

Theorem VII.3 (Energy quantization for Yang–Mills Fields in conformal dimen-
sion.). Let (M4, h) be a closed four-dimensional Riemannian manifold and P a
principal smooth G bundle over M4. Let ∇k be a sequence of Yang–Mills con-
nections of uniformly bounded Yang–Mills energy converging strongly away from
finitely many points {p1 · · · ∂N} to a limiting Yang–Mills connection ∇∞ as de-
scribed in Theorem VII.2. Let ν be the atomic concentration measure

ν :=

N∑
j=1

fj δpj ,
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satisfying

μk′
:= |F∇k′ |2h dvolh ⇀ μ∞ := |F∇∞ |2h dvolh+ν .

Then for each j = 1 · · ·N there exists finitely many G-Yang–Mills connections
(Di

j)i=1···Nj over S4 such that

∀ j = 1 · · ·N fj =

Nj∑
i=1

∫
S4

|FDi
j
|2 dvolS4 . (VII.9)

�

Remark VII.1. The energy quantization result can be established by direct geo-
metric arguments in the special case of instantons in four dimensions (see [15]).

Proof of Theorem VII.3. Since the result is local, the metric in the domain does not
play much role and we will present the proof for M4 = B4

1(0) equipped with the
flat metric and assuming moreover that there is exactly one limiting blow-up point,
N = 1, which coincide with the origin, p1 = 0. We also express the connection ∇k

in s.

Recall that we denote by εG,4 the positive constant given by the ε-regularity
theorem (Theorem VII.1). We detect the “most concentrated bubble” precisely let

ρk := inf

{
ρ ; ∃x ∈ B4

1(0) s. t.

∫
Bρ(x)

|FAk |2 dx4 =
εG,4

2

}
.

Since we are assuming that blow-up is happening exactly at the origin we have
that ⎧⎪⎨⎪⎩

ρk → 0 and

∃xk → 0 s.t.

∫
B

ρk
(xk)

|FAk |2 dx4 =
εG,4

2
.

We choose a sequence xk that we call center of the first bubble and ρk is called the
critical radius of the first bubble. Let

Âk(y) := ρk
4∑

i=1

Ak
i (ρ

k y + xk) dyi .

Due to the scaling invariance of the Yang–Mills Lagrangian in four dimensions,
Âk, which is the pull-back of Ak by the dilation map Dk(y) := ρk y + xk, is a
Yang–Mills fields moreover

max
y∈B

1/(2ρk)
(0)

∫
B4

1(y)

|FÂk |2 dy4 =

∫
B4

1(0)

|FÂk |2 dy4 =
εG,4

2
. (VII.10)

Applying the ε-regularity theorem (Theorem VII.1) we deduce that on Uhlenbeck’s
Coulomb gauges g which exists on each unit ball B1(y) since the εG,4 has been taken
smaller than εG from Theorem IV.1

∀ l ∈ N sup
y∈B

1/(2ρk)
(0)

‖∇l(Â)g‖L∞(B1/2) ≤ Cl ,
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where Cl is independent of k. Hence, locally in Coulomb gauge, modulo extraction

of a subsequence, the sequence Âk converges strongly in any Cl
loc topology on R4

to a limiting Yang–Mills connection Â∞ satisfying∫
B4

1(0)

|FÂk |2 dy4 =
εG,4

2

and which is therefore non-trivial. Let now π be the stereographic projection with
respect to the north pole, due to the conformal invariance of Yang–Mills energy
Ã := π∗Â∞ is a non trivial Yang–Mills Field on S4 \ {south pôle}. Since Ã is a
smooth G-valued 1-form with finite Yang–Mills energy and satisfying the Yang–
Mills equation we can apply the point removability result for Yang–Mills fields,
theorem VI.9 and conclude that Ã extends to a global smooth Yang–Mills G-
connection D1

1 over the whole S4 which is our first bubble and using again the
conformal invariance of Yang–Mills energy we have

εG,4

2
≤
∫
S4

|FD1
1
|2 dvolS4 = lim

R→+∞
lim

k→+∞

∫
B

Rρk
(xk)

|FAk |2 dx4 . (VII.11)

We have now to study the loss of Yang–Mills energy in the so-called neck region
between the first bubble and the macroscopic solution A∞ to which Ak converges
away from zero. Precisely we are studying

lim
k→+∞

∫
B4

|FAk |2dx4 −
∫
B4

|FA∞ |2dx4 −
∫
S4

|FD1
1
|2 dvolS4

= lim
R→+∞

lim
k→+∞

∫
BR−1(xk)\B

Rρk
(xk)

|FAk |2 dx4 .
(VII.12)

For any G there is a minimal Yang–Mills energy among all non-trivial Yang–Mills
Fields. This can be proved easily observing that if the energy is less than the
εG,4 threshold, the connections can be represented by a global smooth Yang–Mills
1-form on S4 to which the Cl estimates of Theorem VII.1 apply. Hence since A
satisfies globally on S4 the PDE (VI.40) and for small enough Yang–Mills energy
this implies that A is a harmonic 1-form on S4 which gives that it is a trivial
Yang–Mills fields. Denote

YM(G,S4) = min

{∫
S4

|FD|2 dvolS4 ; D is a non zero G Yang–Mills Field

}
.

To simplify the presentation we assume that

lim
k→+∞

∫
B4

|FAk |2dx4 −
∫
B4

|FA∞ |2dx4 −
∫
S4

|FD1
1
|2 dvolS4 < YM(G,S4) ,

(VII.13)
or in other words

lim
R→+∞

lim
k→+∞

∫
BR−1(xk)\B

Rρk
(xk)

|FAk |2 dx4 < YM(G,S4) . (VII.14)
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Alternatively we would have to go through some standard and fastidious induction
procedure to remove all the bubbles one by one – each of them taking at least an
amount of YM(G,S4) Yang–Mills energy – and we would be anyway reduced at
the end to study the loss of energy in annuli region where (VII.14) holds (such a
procedure is described, for instance in, [5, Proposition III.1] in the framework of
Willmore surfaces). Under the assumption (VII.14) the goal is ultimately to prove

lim
R→+∞

lim
k→+∞

∫
BR−1 (xk)\B

Rρk
(xk)

|FAk |2 dx4 = 0 ,

that will finish the proof of the theorem. We are now going to prove the following
claim.

Claim 1:

∀ δ > 0 ∃Rδ > 1 s. t. ∀ r ∈ [Rδ ρ
k, R−1

δ ]

lim sup
k→+∞

∫
B2 r(xk)\Br(xk)

|FAk |2 dx4 < δ .

Proof of claim 1. We argue by contradiction. Assume there exists δ0 > 0 such that
for all R > 1 there exists rk ∈ [Rρk, R−1]

lim sup
k→+∞

∫
B

2 rk
(xk)\B

rk
(xk)

|FAk |2 dx4 > δ0 .

Since we can find a sequence rk for any R > 1, using a diagonal argument and the
extraction of a subsequence we can assume that

rk

ρk
→ +∞ and rk → 0 .

Now we introduce

sk := inf

⎧⎪⎨⎪⎩
s ; ∃x ∈ B2 rk(x

k) \Brk(x
k) s.t.∫

Bs(x)

|FAk |2 dx4 = min

{
εG,4

2
,
δ0
16

}
.

⎫⎪⎬⎪⎭
Let x̃k be a point in the dyadic annulus B2 rk(x

k) \Brk(x
k) where this infimum is

achieved. We clearly have

Bsk(x̃
k) ⊂ BR−1(xk) \BRρk(xk)

for any R > 1 and k large enough. Dilating the Yang–Mills connection Ak about x̃k

at a rate (sk)−1 we again obtain a limiting non-trivial Yang–Mills field, a second

bubble, Ã∞ either on R4 or on R4 \ {0} depending whether sk/rk tends to zero or
not. In any case we have

lim
R→+∞

lim
k→+∞

∫
BR−1 (xk)\B

Rρk
(xk)

|FAk |2 dx4 ≥
∫
R4

|FÃ∞ |2 dx4 ≥ min

{
εG,4

2
,
δ0
16

}
,
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and the point removability theorem (Theorem VI.9) for Yang–Mills fields implies

that Ã∞ extends to a non-trivial Yang–Mills Field on S4∫
R4

|FÃ∞ |2 dx4 ≥ YM(G,S4) ,

which contradicts the fact that we are working under the assumption that there
is only one bubble (i.e., assumption (VII.14)). So we have proved claim 1.

Combining claim 1 and the ε-regularity theorem (Theorem VII.1) we obtain

∀ δ > 0 ∃Rδ > 1 s.t.

∀ x ∈ BR−1
δ

\BRδ ρk(xk) |x|2 |FAk |2(x) < δ .

Consider an Uhlenbeck Coulomb gauge (Ak)g
k

in the annulus

B2Rδ ρk(xk) \BRδ ρk(xk).

Introduce χ to be a cut-off function such that{
χ(x) ≡ 1 in R4 \B4

2(0)

χ(x) ≡ 0 in B4
1(0) ,

and let χk(x) := χ(Rδ ρ
k (x− xk)). Extend (Ak)g

k

in B2Rδ ρk(xk) by taking

Ãk := χk(Ak)g
k

.

Using again the Cl estimates (VII.1) of ε-regularity theorem (Theorem VII.1) for
the Uhlenbeck Coulomb gauge (Ak)g in the annulus B2Rδ ρk(xk) \ BRδ ρk(xk) we

obtain for any x ∈ B2Rδ ρk(xk) \BRδ ρk(xk)

|x| |Ãk|(x) + |x|2 |∇Ãk|(x)

≤ C

[∫
B

4Rδ ρk
(xk)\B

Rδ ρk/2
(xk)

|FAk |2 dx4

]1/2
.

(VII.15)

We have then produced an extension Ãk of Ak inside the ball B2Rδ ρk(xk) equal

to Ak in BR−1
δ

\BRδ ρk(xk) and satisfying

‖|x|2 |FÃk |‖L∞(B
R

−1
δ

(xk)) <
√
δ .

This implies in particular

‖FÃk‖L2,∞(B
R

−1
δ

(xk)) ≤ C
√
δ , (VII.16)

where C > 0 is a constant independent of δ and k. Taking δ small enough we

can apply Theorem IV.4 and find a gauge that we denote simply A
k
and which
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satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
B

R
−1
δ

(xk)

|Ak|2 +
4∑

i,j=1

|∂xiA
k

j |2 dxm ≤ CG

∫
B

R
−1
δ

(xk)

|F
A

k |2 dx4

d∗A
k
= 0 in BR−1

δ
(xk)

ι∗∂B
R

−1
δ

(xk)(∗A
k
) = 0 .

(VII.17)

Using the gauge invariance of Yang–Mills integrant (VI.39) together with the Cl

estimates (VII.1) of ε-regularity theorem (Theorem VII.1) applied to the Uhlen-
beck Coulomb gauge (Ak)g in the annulus B2Rδ ρk(xk) \BRδ ρk(xk) we obtain on

BR−1
δ
(xk)

|d∗
A

kFA
k | ≤ C |∇χk| |(Ak)g

k |2 + C |χk| |(Ak)g
k |3

≤ C (Rδ ρ
k)−3 1k,δ δ

(VII.18)

where 1k,δ is the characteristic function of B2Rδ ρk(xk) \BRδ ρk(xk). This implies
the following estimate

‖d∗
A

kFA
k‖L(4/3,1)(B

R
−1
δ

(xk)) ≤ C

∫
B

2 Rδ ρk
(xk)\B

Rδ ρk
(xk)

|F
A

k |2 dx4 . (VII.19)

where we recall that L(4/3,1) is the Lorentz space whose dual is the Marcinkiewicz
weak L4 space: L4,∞. Using the embedding (IV.15) for p = 2 and m = 4

W 1,2(B4) ↪→ L4,2(B4) ,

we obtain from (VII.17) the estimate

‖Ak‖2L4,2(B
R

−1
δ

(xk)) ≤ CG

∫
B

R
−1
δ

(xk)

|F
A

k |2 dx4 . (VII.20)

Using now one of the embeddings (IV.13):

L2(B4) · L4,2(B4) ↪→ L4/3,1(B4) ,

we obtain

‖d∗dAk‖L4/3,1(B
R

−1
δ

(xk)) ≤ CG

∫
B

R
−1
δ

(xk)

|F
A

k |2 dx4 . (VII.21)

Combining this fact with the three lines of (VII.17) together with classical elliptic
estimates in Lorentz spaces (see [53]) gives

‖F
A

k‖2L2,1(B
R

−1
δ

(xk)) ≤ CG

∫
B

R
−1
δ

(xk)

|F
A

k |2 dx4 .
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Combining this inequality with the estimate (VII.16) of the curvature in the dual
space L2,∞ in the neck region we obtain

∀ δ > 0 ∃Rδ > 1 s. t.

lim sup
k→+∞

∫
B

R
−1
δ

(xk)\B
2 Rδ ρk

(xk)

|FAk |2 dx4 ≤ C
√
δ

from which we deduce

lim
R→+∞

lim
k→+∞

∫
BR−1 (xk)\B

Rρk
(xk)

|FAk |2 dx4 = 0 .

This implies

|FAk |2 dx4 ⇀ μ∞ := |FA∞ |2 dx4 +

∫
S4

|FD1
1
|2 dvolS4 δ0 .

This completes the proof of Theorem VII.3. �

VIII. The resolution of the Yang–Mills Plateau problem
in super-critical dimensions

VIII.1. The absence of W 1,2 local gauges

We can reformulate the sequential weak closure of W 1,2 connections we proved in
the previous sections for the dimensions up to 4 in the following way. Let G be a
compact Lie group and (Mm, h) a compact Riemannian manifold. Introduce the
space of so-called Sobolev connections defined by

AG(M
m) :=

⎧⎨⎩A ∈ L2(∧1Mm,G) ;
∫
Mm

|dA+A ∧ A|2h dvolh < +∞

locally ∃ g ∈ W 1,2 s.t. Ag ∈ W 1,2 .

⎫⎬⎭
It is clear that any Sobolev W 1,2-connection of a smooth G-bundle in the classical
sense of [15] defines an element in AG(M

m) for m ≤ 4. This follows from the
existence of a global representative in Lp (p < 4) given by Theorem IV.5.

We now prove the converse: that any element A ∈ AG(M
m) for m ≤ 4 define

a smooth bundle and a W 1,2-Sobolev connection in this bundle in the classical
sense given in [15]. Precisely we have the following result.

Proposition VIII.1. Let G be a compact Lie group and (Mm, h) be a Riemannian
manifold of dimension m ≤ 4. Let A ∈ AG(M

m) then there exists a smooth bundle
E over Mm and there exists a W 1,2-connection ∇ of E such that A is locally gauge
equivalent to ∇. �

Proof of Proposition VIII.1. We cover Mm by a locally finite family of open balls
Bρi(xi) realizing a good covering (in the sense of [6]) such that on each of these sets
A has aW 1,2 representative and

∫
Bρi

(xi)
|FA|2h dvolh < ε where ε is positive number

small enough in order to ensure the existence of a Coulomb W 1,2-representative.
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We denote by gi the gauge change such that Agi = g−1
i dgi + g−1

i Agi is such

a Coulomb W 1,2-representative. On Bρi(xi) ∩ Bρj (xi) we denote gij := g−1
i gj .

Following word by word the arguments of the proof of Theorem V.5 we have that
gij ∈ C0 ∩W 1,2(Bρi(xi) ∩ Bρj (xi), G) and the family satisfy moreover obviously
the co-cycle condition gij = gik gkj .

Having taken ε > 0 small enough we can ensure that the C0 norms of the
gij – possibly on the intersection of slightly smaller balls – are small and there
exists an equivalent smooth cocycle (hij) (i.e., hij = (σi)

−1gijσj where σi ∈ C0 ∩
W 1,2(Bρi(xi), G) and hij ∈ C∞.) The cocycle (hij) associated to the good covering
Bρi(xi) defines a smooth bundle E over Mm. We have

Agiσi ∈ W 1,2(∧1Bρi(xi),G) and Agjσj = h−1
ij dhij + h−1

ij Agiσihij .

Hence by definition (Agiσi) defines a W 1,2-connection on E. It is obviously locally
gauge equivalent to A. This concludes the proof of the proposition. �
Using the same ingredients11 as the one used to prove theorem V.2 one establishes
the following result which is the boundary-free counterpart of theorem V.2.

Theorem VIII.1. For m ≤ 4 the space AG(M
m) is weakly sequentially closed below

any given Yang–Mills energy level: precisely For any Ak ∈ AG(M
m) satisfying

lim sup
k→+∞

YM(Ak) =

∫
Mm

|dAk +Ak ∧ Ak|2h dvolh < +∞ ,

there exists a subsequence Ak′
and a Sobolev connection A∞ ∈ AG(M

m) such that

d(Ak′
, A∞) := inf

g∈W 1,2(Mm,G)

∫
Mm

|Ak′ − (A∞)g|2h dvolh −→ 0 ,

moreover
YM(A∞) ≤ lim inf

k′→0
YM(Ak′

) . �

Remark VIII.1. Observe that the space AG(M
m) contains for instance global L2

1-forms taking values into the Lie algebra G that correspond to smooth connections
of some principal G-bundle over Mm. If the Yang–Mills energy of a sequence of
such smooth connections is uniformly bounded, we can extract a subsequence
converging weakly to a Sobolev connection and corresponding possibly to another
G-bundle. This possibility of “jumping” from one bundle to another, as predicted
for instance in the concentration compactness result Theorem VII.2, is encoded in
the definition of AG(M

m). �
Because of this weak closure property the space AG(M

m) is the ad hoc space
for minimizing Yang–Mills energy in dimension less or equal than four. This is
however not the case in higher dimension. We have the following proposition.

11Observe that the topology of the underlying bundles defined by each Ak and given by Propo-
sition VIII.1 plays no role in the proof and that the arguments of Theorem V.2 carry over in

a straightforward way. Again our approach is to work with analytical objects, i.e., global L2-1-
forms, ignoring the geometric structures that each of this 1-form is inducing.
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Proposition VIII.2. For m > 4 the space ASU(2)(M
m) is not weakly sequen-

tially closed below a given Yang–Mills energy level: precisely there exists Ak ∈
ASU(2)(M

m) satisfying

lim sup
k→+∞

YM(Ak) =

∫
Mm

|dAk +Ak ∧Ak|2 dxm < +∞ ,

and a su(2)-valued form A∞ ∈ L2 such that

d(Ak′
, A∞) := inf

g∈W 1,2(Mm,SU(2))

∫
Mm

|Ak′
− (A∞)g|2h dvolh −→ 0 ,

but in every neighborhood U of every point of Mm there is no g such that (A∞)g ∈
W 1,2(U) (i.e., A∞ /∈ ASU(2)(M

m)) . �

The proposition is not difficult to prove but we prefer to illustrate this fact by
a small cartoon. We consider a sequence Ak of smooth 1-forms on B5, the unit five-
dimensional ball, into su(2) such that lim supk→+∞ YM(Ak) < +∞. The drawing
is representing the flow lines of the divergence free vector field associated to the
closed Chern 4-form: Tr(FAk ∧ FAk). In this cartoon Ak is weakly converging in
L2 to some limit su(2)-valued 1-form A∞ such that FA∞ ∈ L2 but this 1-form
satisfies

d (Tr(FA∞ ∧ FA∞)) = 8π2 [δP − δN ] �= 0 ,

where P and N are two distinct points of B5 – the red dots in the Figure 3 cartoon.
Hence for almost every small radii r > 0 we have for instance∫

∂B5
r(P )

Tr(FA∞ ∧ FA∞) = 8 π2 .

Assume there would exist g ∈ W 1,2 such that (A∞)g ∈ W 1,2 in the neighborhood
of P . The gauge invariance of the Chern form gives that∫

∂B5
r (P )

Tr(F(A∞)g ∧ F(A∞)g ) = 8π2 .

However we have seen in Section III that the fact that ι∗∂B5
r
(A∞)g is in

W 1,2(∧1∂B5
r , su(2))

for almost every r – due to the Fubini theorem – imposes∫
∂B5

r (P )

Tr(F(A∞)g ∧ F(A∞)g) = 0 ,

which is a contradiction.
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Fig. 1: Sequence of smooth connections time 1

^

Flow lines of   tr(F_D ^ F_D)

^
^
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Fig. 2: Sequence of smooth connections time 2

Energy concentration set

^

Flow lines of   tr(F_D ^ F_D)

^ ^ ^ ^

Fig. 3: Sequence of smooth connections – the limit.

In the above cartoon12 the limiting 1-form A∞ is a 1-form of a smooth con-
nection but on a SU(2)-bundle which is only defined over B5 \ {P} ∪ {N}.

12A reader interested in having a rigorous implementation of this cartoon could take for instance
a sequence of axially symmetric smooth maps uk from B5 into S4 with uniformly bounded
W 1,4-energy and weakly converging to a map u∞, smooth away from P and N and such that

d(u∗ωS4) = |S4| [δP − δN ]

where ωS4 is the volume form on S4. If ∇0 is a smooth connection of a non trivial SU(2)-bundle

E0 over S4, the cartoon is realized by Ak a 1-form representing the pull back of the connection
by uk over the trivial bundle (uk)−1E0
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The conclusions we can draw at this point are the following. In dimension
m ≤ 3, the Yang–Mills energy is controlling the bundle in the sense that from a
sequence of connections of a given bundle with uniformly bounded L2-curvature
one can extract a weakly converging sequence to a limiting Sobolev connection
of the same bundle. In dimension four, under the same assumptions one can ex-
tract a weakly converging sequence to a limiting Sobolev connection but possibly
from another bundle. The last example is illustrating the fact that, starting in
five dimension, the Yang–Mills energy is not coercive enough to control the bun-
dle structure: The Yang–Mills energy control does not prevent the corresponding
bundle to degenerate and to have local twists at the limit. In fact, instructed from
what happens with the Dirichlet energy of maps from B3 into S2 one could even
construct a sequence of smooth connections whose weak limit is given by a form
satisfying

supp [d (Tr(FA∞ ∧ FA∞))] = B5 !

This means that the limiting bundle has become everywhere singular on B5.

In order to find an ad hoc weakly sequentially closed space of connections be-
low any Yang–Mills energy level, we have then to weaken the notion of Sobolev con-
nections. Sobolev connections are singular but the underlying bundle was smooth.
We see that the L2 control of the curvature does mot preserve the smoothness of
the bundle at the limit in dimension m > 4. Since we do not impose anything more
that having bounded Yang–Mills energy, we have to relax the notion of bundle,
the carrier of the connection, and allow the bundle to have singularities. Con-
trary to classical differential geometry where the bundle precede the connection,
inspired by the “philosophy” of Proposition VIII.1, we shall work with one-forms
and “generate” singular bundles from these 1-forms.

The new variational objects will be called Weak connections. The quest for
finding the right space is similar to the one at the origin of Geometric Measure
Theory when the class of integer rectifiable currents – i.e., submanifolds with sin-
gularities in a way – have been produced in order to solve the Classical Plateau
Problem in super critical dimensionm > 2. We are looking for a geometric measure
theoretic version of bundles and connections.

VIII.2. Tian’s results on the compactification of the space of smooth Yang–Mills
fields in high dimensions

The need of developing a Geometric measure theoretic version of bundle and con-
nections beyond the too small class of Sobolev connections on smooth bundles has
been already encountered in the study of the compactification of the moduli space
of smooth Yang–Mills fields by G. Tian in [57].

Theorem VIII.2. Let G be a compact Lie group and Ak be a sequence of G-valued
1-forms in Bm. Assume Ak are all smooth solutions to the Yang–Mills equation

d∗AkFAk = 0 .
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Assume

lim sup
k→+∞

∫
Bm

|dAk +Ak ∧ Ak|2 dxm < +∞ .

Then there exists13 a subsequence Ak′
and a limiting G-valued 1-forms A∞

d(Ak′
, A∞) := inf

g∈W 1,2(Mm,G)

∫
Mm

|Ak′ − (A∞)g|2h dvolh −→ 0 . (VIII.1)

Moreover there exists a m − 4 rectifiable closed subset of Bm, K, of finite m − 4
Hausdorff measure, Hm−4(K) < +∞ such that in

∀ Br(x0) ⊂ Bm \K ∃ g ∈ W 1,2(Br(x0), G) s. t.

(A∞)g is a smooth solution of Yang–Mills equation in Br(x0) .

and the following weak convergence as Radon measure holds

|FAk′ |2 dxm ⇀ |FA∞ |2 dxm + f Hm−4 K , (VIII.2)

where Hm−4 K is the restriction to K of the m− 4 Hausdorff measure and f is
a Hm−4 K measurable function f(x) ∈ L∞(K). �

This result is very close to a similar result proved in [23] by F.H. Lin for
harmonic maps in super-critical dimension m ≥ 3.

Proof of Theorem VIII.2. The starting point of the proof of Theorem VIII.2 is the
following monotonicity formula computed first by P. Price in [38].

Proposition VIII.3 (Monotonicity formula). Let m ≥ 4 and A be a G-valued 1-
forms in Bm

1 (0) assume that A is a smooth solution to the Yang–Mills equation

d∗AFA = 0 in Bm
1 (0) .

then the following monotonicity formula holds for any point p in Bm
1 (0) and any

r < dist(p, ∂Bm
1 (0))

d

dr

[
1

rm−4

∫
Bm

r (p)

|FA|2 dxm

]
=

4

rm−4

∫
∂Bm

r (p)

|FA ∂r|2 dvol∂Bm
r
, (VIII.3)

where ∂r = r−1
∑m

i=1 xi ∂xi and

FA ∂r := r−1
m∑

i,j=1

(FA)ij xi dxj . �

13The weak compactness of the sequence of Yang–Mills connection as it is presented in Tian’s
work [57] does not involve the gauge invariant L2-distance (VIII.1). Nevertheless by combining

the ε regularity result VIII.5 with the L2-control of some gauge by the Yang–Mills energy given
in [35] one can recast the weak convergence mentioned in [57] into (VIII.1).
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The monotonicity formula is a direct consequence of the stationarity condi-
tion which is satisfied by any smooth critical point of the Yang–Mills Lagrangian.
Precisely the stationarity condition says

∀ X ∈ C∞
0 (Bm,Rm)

d

dt

∫
Bm

|Ψ∗
tFA|2

∣∣∣∣
t=0

= 0 , (VIII.4)

where Ψt is the flow of X .
This condition is equivalent to the following stationary equation:∫

Bm

|FA|2 divX − 4

m∑
ijk=1

〈(FA)ij , (FA)kj〉 ∂xiX
k dxm . (VIII.5)

The monotonicity formula is obtained by applying (VIII.4) to the each vector field
X of the following form: On the ball Br(p) the vector field X is equal to the radial
one, X = ∂r for canonical coordinates centered at p which generates the dilations
centred at p, and it realizes a smooth interpolation to 0 outside Br+δ(p) for any
δ > 0 (see [38]). Once such a vector field is chosen one computes (VIII.4) and make
δ tend to zero. This computation gives then (VIII.3).

The second ingredient of the proof is the extension of the Coulomb gauge
extraction in dimension larger than 4 to the framework of the so-called Morrey
spaces where the m − 4 densities of Yang–Mills energy are assumed to be small
everywhere and at any scale. The following result has been established first in [26]
by Yves Meyer and the author of the present survey and independently by Terence
Tao and Gang Tian in [54].

Theorem VIII.3 (Coulomb gauge extraction). Let m ≥ 4 and G be a compact
Lie group, there exists εm,G > 0 such that for any smooth G-valued 1-forms A in
Bm

1 (0) satisfying the small Morrey energy condition

‖FA‖2M0
2,4(B

m
1 (0)) := sup

p∈Bm
1 (0), r>0

1

rm−4

∫
Bm

r (p)∩Bm
1 (0)

|FA|2 dxm < εm,G ,

then there exists a gauge g ∈ W 2,2(Bm
1/2(0), G) such that

sup
p∈Bm

1 (0), r>0

1

rm−4

∫
Bm

r (p)∩Bm
1 (0)

m∑
i,j=1

|∂xi(A
g)j |2 ≤ C ‖FA‖2M0

2,4(B
m
1 (0)) ,

and {
d∗(A)g = 0 in Bm

1 (0)

ι∗∂Bm
1 (0) ∗ (A)g = 0 ,

where the constant C only depends on m and G. �
In this Coulomb gauge any Yang–Mills smooth connection 1-form satisfies

ΔAg = d∗(Ag ∧ Ag) + [Ag, dAg] + [Ag, (Ag ∧ Ag)] . (VIII.6)

We shall make now use of the following generalization of Theorem VI.8 to
Morrey spaces.
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Theorem VIII.4. Let m ≥ 4 and N ∈ N∗. Let f ∈ C∞(RN × (Rm⊗RN),RN ) and
let g ∈ C∞(RN ,RN) such that there exists C > 0 satisfying

|f(ξ,Ξ)| ≤ C |ξ| |Ξ| and |g(ξ)| ≤ C |ξ|3 . (VIII.7)

There exists ε > 0 such that for any u in L4 ∩W 1,2(Bm,RN ) satisfying

sup
p∈Bm

1 (0), r>0

1

rm−4

∫
Bm

r (p)∩Bm
1 (0)

|∇u|2 dxm < εm,G , (VIII.8)

and
Δu = f(u,∇u) + g(u) , (VIII.9)

then we have for any l ∈ N the existence of Cl > 0 such that

‖∇lu‖2L∞(Bm
1/2

(0)) ≤ Cl sup
p∈Bm

1 (0), r>0

1

rm−4

∫
Bm

r (p)∩Bm
1 (0)

|∇u|2 dxm . (VIII.10)

�
The proof of this theorem is more or less identical to the one of Theorem VI.8

replacing the different spaces in four dimensions by their Morrey counterparts in
higher dimension, bearing in mind that Calderòn–Zygmund theory extends with
the natural exponents to these spaces (see [27]).

Combining the monotonicity formula, Theorem VIII.3 and Theorem VIII.4
applied to the PDE (VIII.6), adapting the arguments we followed for proving
the corresponding result – Theorem VII.1 – from the 4-D counterparts of theo-
rem VIII.4 in the conformal dimension four, we obtain the following ε-regularity
result14:

Theorem VIII.5 (ε-regularity for smooth Yang–Mills). Let m ≥ 4 and G be a
compact Lie group, there exists εm,G > 0 such that for any smooth G-valued 1-
forms A in Bm

1 (0) satisfying the Yang–Mills equation

d∗AFA = 0 in Bm
1 (0) .

and the small energy condition∫
Bm

1 (0)

|FA|2 dxm < εm,G ,

then there exists a gauge g in which the following estimates holds: for any l ∈ N
there exists Cl > 0 such that

‖∇l(A)g‖2L∞(B1/2(0))
≤ Cl

∫
Bm

1 (0)

|FA|2 dxm . �

14An ε-regularity theorem for smooth Yang–Mills fields has first been obtained by H. Nakajima
(see [30]). It is however a “gauge invariant result” which gives only an L∞ bound on the cur-
vature under the small energy assumption but is not providing any control of the connection in
some gauge. The proof of Nakajima ε-regularity for smooth Yang–Mills fields is following the
arguments originally introduced by R. Schoen in [46] for proving the corresponding result for

smooth harmonic map. It is using the Bochner Formula as a starting point together with the
maximum principle and the Moser iteration technique.
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Proof of Theorem VIII.2 continued. Let

Ek
r :=

{
p ∈ Bm ;

1

rm−4

∫
Br(p)

|FAk | dxm ≥ εm,G

}
,

where εm,G is the epsilon in the ε-regularity theorem VIII.5. The monotonicity
formula implies

∀k ∈ N ∀ r < ρ Ek
r ⊂ Ek

ρ .

Hence, by a standard diagonal argument we can extract a subsequence such that
Ek′,2−j converges to a limiting closed set E∞,2−j which of course satisfy

E∞
2−j−1 ⊂ E∞

2−j .

Let

K :=
⋂
j∈N

E∞
2−j

A classical Federer–Zimmer covering argument gives

Hm−4(K) < +∞ .

With the ε-regularity theorem at hand, extracting possibly a further subsequence
following a diagonal argument, we can ensure that Ak′

converges locally away from
K in every Cl-norm in the Coulomb gauges constructed in Theorem VIII.3 and
we have

μk′
:= |FAk′ |2 dxm ⇀ μ∞ := |FA∞ |2 dxm + ν ,

where ν is a Radon measure supported in the closed set K. Because of the Radon
measure convergence, the monotonicity formula (VIII.3) satisfied by Ak can be
transferred to the measure μ∞

∀ p ∈ Bm
1 (0) ∀ Bm

r (p) ⊂ Bm
1 (0)

d

dr

[
μ∞(Bm

r (p))

rm−4
dxm

]
≥ 0 ,

from which we deduce

θm−4(μ∞, p) := lim
r→0

μ∞(Bm
r (p))

rm−4
≥ 0 exists for every p ∈ Bm

1 (0) .

Observe that

K =
{
p ∈ Bm

1 (0) ; θm−4(μ∞, p) > 0
}
. (VIII.11)

Using the monotonicity we have that for any ρ ∈ (0, 1) and any p ∈ K ∩Bρ(0)

ν(Bm
r (p)) ≤ rm−4

(1− ρ)m−4
lim

k′→+∞

∫
Bm

1 (0)

|FAk′ |2 dxm .

We deduce from this inequality that ν is absolutely continuous with respect to
Hm−4 K, the restriction to K of the m− 4-Hausdorff measure. Let δ > 0, define

Gδ :=

{
p ∈ Bm

1 (0) ; δ < lim sup
r→0

1

rm−4

∫
Bm

r (p)

|FA∞ |2 dxm

}
.
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Considering for any δ > 0 for any η > 0 and any p ∈ Gδ a radius 0 < rηp < η such
that ∫

Bm
r
η
p
(p)

|FA∞ |2 dxm ≥ δ

2
(rηp)

m−4.

For any η > 0 we extract from the covering (Bm
rηp
(p))p∈Gδ

a Besicovitch subcovering

(Bm
ri (p))i∈I of Gδ in such a way that there exists an integer Nm > 0 depending

only on m such that each point of Bm is covered by at most Nm balls of this
sub-covering. We then have

Hm−4(Gδ) ≤
2

δ
lim sup

η→0

∑
i∈I

∫
Bm

ri
(p)

|FA∞ |2 dxm

≤ 2Nm

δ
lim sup

η→0

∫
dist(x,K)<η

|FA∞ |2 dxm .

Since K is closed and has Lebesgue measure zero we deduce that

Hm−4

(⋂
δ>0

Gδ

)
= 0 ,

or in other words

for Hm−4 almost every p ∈ Bm lim sup
r→0

1

rm−4

∫
Bm

r (p)

|FA∞ |2 dxm = 0 .

Using the characterization of K given by (VIII.11) and the fact that ν is absolutely
continuous with respect to Hm−4 K we deduce from the previous fact that

for ν almost every p ∈ Bm lim
r→0

ν(Br(p))

rm−4
exists and is positive .

The following result, which is an important contribution to Geometric measure
theory was proved by D. Preiss in [37] and answered positively to a conjecture
posed by Besicovitch. It permits to conclude the proof of Theorem VIII.2. �

Theorem VIII.6. Let ν be a Borel non-negative measure in Bm. Assume that ν
almost everywhere the n-dimensional density of ν exists and is positive then ν is
supported by an n-dimensional rectifiable subset in Bm. �

In order to have a more complete description of the compactification of the
moduli space of smooth Yang–Mills fields in supercritical dimension three main
questions are left open in this theorem

i) What are the special geometric properties satisfied by the set K?

ii) What is the energy defect f(x)?

iii) What is the regularity of A∞ – modulo gauge – throughout K?

In subcritical dimension m < 4, due to the analysis we have exposed in the
previous sections, we have that K = ∅, f = 0 and modulo gauge transformation
the limiting connection extends to a smooth Yang–Mills field over the whole ball.
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In critical four dimensions these questions are answered by the point remov-
ability theorem (Theorem VI.9): the set K is made of isolated points, the function
f is the sum of the Yang–Mills energies of Yang–Mills fields over S4 (see [42])
and, modulo gauge transformation, the limiting connection extends to a smooth
Yang–Mills field over the whole ball.

In super-critical dimension it is expected that K with the multiplicity f de-
fines a so-called stationary varifold (see [50]). This belief comes from the fact that
smooth Yang–Mills fields satisfy the stationarity condition (VIII.4) and it is ex-
pected that this condition should still be satisfied by the weak limit A∞ itself, and
hence, due to the Radon measure convergence (VIII.2), it would be “transferred” to
the measure f Hm−4 K. This last fact is equivalent to the stationarity of (K, f).

Regarding the regularity of A∞ a result of T. Tao and G. Tian [54] asserts
that A∞ is a smooth Yang–Mills connection of a smooth bundle defined away of
a closed subset L ⊂ K satisfying Hm−4(L) = 0. This partial regularity result is
probably not optimal but this optimality or non-optimality is an open problem (a
similar open question exists for stationary harmonic maps – see [43]).

The author has proved in [42] that a uniform L1 control of the Hessian of
the curvature leads to the energy quantisation along K. Precisely the following
theorem holds.

Theorem VIII.7 ([42]). Let Ak be a sequence of smooth Yang–Mills Fields on Bm

satisfying

lim sup
k→+∞

∫
Bm

|∇2FAk |+ |FAk |2 dxm < +∞ .

Then, modulo extraction of a subsequence, there exists a m−4 rectifiable K ⊂ Bm

and a Hm−4 K measurable function f ∈ L∞(K). such that

|FAk |2 dxm ⇀ |FA∞ |2 dxm + f dHm−4 K ,

where FA∞ is the curvature of a smooth Yang–Mills field of a G-bundle over Bm.
Moreover

For Hm−4- a.e. x ∈ K ∃Nx ∈ N ∇1 · · · ∇Nx and

f(x) =

Nx∑
j=1

∫
S4

|F∇j |2 dvolS4 ,

where ∇j are Yang–Mills connections of some smooth G-bundles over S4.

Recently, Aaron Naber and Daniele Valtorta in [29] have been able to prove
the following uniform L1 control of the Hessian which had been conjectured by
the author in [42].

Theorem VIII.8 ([29]). Let A be a smooth Yang–Mills Fields of a smooth G-bundle
over a closed manifold (Mm, h) such that∫

Mm

|FA|2 dvolh ≤ Λ ,
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then ∫
Mm

|∇2FA| dvolh ≤ C(Λ, dim(G), (Mm, h)) . �

Combining Theorem VIII.7 and Theorem VIII.8 implies the energy quanti-
sation along K (i.e., the conclusion of Theorem VIII.7) for sequences of smooth
Yang–Mills connections under Yang–Mills energy control only.

VIII.3. The Ω-anti-self-dual instantons

In four dimension a special class of solutions to the Yang–Mills equation, the anti-
self-dual instantons have been considered by S. Donaldson in the early 80s to pro-
duce invariants of differential four-dimensional manifolds. On a four-dimensional
Riemannian manifold (M4, h) for some given SU(n)-bundle over Mm we consider
connections A solutions to the equation

∗hFA = −FA . (VIII.12)

This equation is issued from an elliptic complex (see [13]) and is the natural
generalization in four dimension of the flat connection equation FA = 0 on Riemann
surfaces considered to classify holomorphic complex structures over such a surface.
It defines special solutions to Yang–Mills equation. Indeed taking the covariant
exterior derivative with respect to A, using the Bianchi identity dAFA = 0 one
obtains d∗hFA = 0. The anti-self-dual equation (VIII.12) is generalized in higher
dimension

∗hFA = − Ω ∧ FA , (VIII.13)

where Ω is a closed m− 4 form. Again, due to Bianchi identity, by taking the co-
variant exterior derivative with respect to the connection A, using Leibnitz identity
on 1-derivations and the fact that Ω is closed, we obtain the Yang–Mills equation
d∗hFA = 0. The Ω-anti-self-dual equation is not elliptic in general. There are how-
ever special situations of geometric interest when the base manifold has a restricted
holonomy.

Hermitian Yang–Mills fields. Let (M2n, h) be an even-dimensional Riemannian
manifold. We assume that M2n is equipped with an integrable complex structure
JM – i.e., the brackets operation leaves the space of 1− 0 vector fields of TM ⊗C
invariant

∀ X,Y vector fields J [X − i J X, Y − i J Y ] = i [X − i J X, Y − i J Y ] .

Finally we assume that (M2m, h, JM ) is Kähler: ω(·, ·) := g(·, JM ·) is a closed
2-form. It defines a non degenerate 2-form and ωm/m! = dvolg. Let

Ω := ωm−2/(m− 2)!

Consider a Hermitian vector bundle E associated to a principal SU(n) bundle over
Mm with projection map π : E → M2m. A connection ∇ is Ω anti self-dual if
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and only if it satisfies the Hermitian Yang–Mills equations:

∗F∇ = − Ω ∧ F∇ ⇐⇒
{

F 0,2
∇ = 0

ω · F 1,1
∇ = 0

where F 0,2
∇ (resp. F 1,1

∇ ) is the 0− 2 (resp. 1− 1) part of the curvature (the space
T ∗M ⊗ C is decomposed according to the eigenspaces of JM for the eigenvalues i
and −i) so the Hermitian Yang–Mills equation⎧⎪⎪⎨⎪⎪⎩

F 0,2
∇ = 0 ⇔ ∀ X,Y F∇(X − iJX, Y − iJY ) = 0

ω · F 1,1
∇ = 0 ⇔

m∑
l=1

(F∇)εl,J εl = 0 where ω =

m∑
l=1

εl ∧ Jεl

and εl denotes an orthonormal basis of (T ∗M2m, h).

The Hermitian Yang–Mills equation can be interpreted as follows. The equi-
variant horizontal distribution of plane H associated to ∇ defines an almost com-
plex structure J∇ on E in the following way

∀ ξ ∈ E ∀X ∈ TξE J∇(X) := JE(X
V ) + (JM (π∗X))H ,

we recall that XV is the projection onto the tangent vertical space (the kernel of
the projection π∗) with respect to the horizontal plane H , and JE is the complex
structure on the tangent vertical space defined by the SU(n) structure group of the
bundle. The first part of the equation Hermitian Yang–Mills can be reformulated
as follows

∀ X,Y vector fields in M2m F 0,2(X,Y ) = 0 ⇐⇒
J∇ [(X − i JM X)H , (Y − i JM Y )H ] = i [(X − i JM X)H , (Y − i JM Y )H ] ,

which is equivalent to say that J∇ is integrable and that the Hermitian bundle is
holomorphic.

If A is a su(n)-valued 1-form representing ∇ in an orthonormal trivialization,
this integrability condition implies, by switching to a local holomorphic trivializa-
tion, that there is a gauge change g (non-unitary anymore but taking values into
Gl(n,C)) such that locally

g−1∂g + g−1A0,1g = (Ag)0,1 = 0

and the 0− 1 part of the connection ∇ in this holomorphic trivialization coincide

with ∂. Since A is taking values into su(n), we have that A1,0 = −A0,1
t
. Thus we

obtain the fact that

(A1,0)g = h−1 ∂h ,

where h := gt g is taking values into invertible self-dual matrices. So the so-called
“Einstein part” of the equation ω · F 1,1

∇ = 0 becomes equivalent to the non-linear
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elliptic equation15

ω · ∂[h−1 ∂h] = 0 .

SU(4)-instantons in Calaby–Yau 4-folds. In high energy physics and later in ge-
ometry (see the PhD thesis of C. Lewis, [14, 57]) the following generalization
of instantons has been introduced. Consider an SU(n) principal bundle P over
(M8, g) a Calabi–Yau manifold of complex dimension four – i.e., (M8, g) has ho-
lonomy SU(4). Such a manifold possesses an integrable complex structure JM for
which (M8, g, JM ) is Kähler and it possesses in addition a global holomorphic 4−0
form θ of unit norm – unique modulo unit complex number multiplication – and
satisfying

θ ∧ θ =
ω4

4!
.

The 4-form Ω defined by

Ω := 4-(θ) + ω2

2
is closed, parallel and of unit co-mass (see [57, Lemma 4.4.1)]: ∀ x ∈ M

1 = ‖Ω‖∗(x) = sup

{
〈Ω, u1 ∧ u2 ∧ u3 ∧ u4〉∏4

i=1 |ui|
; ui ∈ TxM \ {0}

}
.

The holomorphic 4 − 0 form θ defines an isometry of the space of 0 − 2 forms on
M8 such that

∀α , β ∈ ∧0,2M8 α ∧ ∗θβ = α · β θ .

Some basic computation gives the Ω-anti self dual equation in this case is equiva-
lent to

∗F∇ = − Ω ∧ F∇ ⇐⇒
{
(1 + ∗θ)F 0,2

∇ = 0

ω · F 1,1
∇ = 0 ,

which is also known as the SU(4) instanton equation.

VIII.4. Tian’s regularity conjecture on Ω-anti-self-dual instantons

Tian’s result in the case of Ω anti-self dual instantons for a closed m − 4-form Ω
of co-mass less than 1 is the following.

Theorem VIII.9. Let (Mm, h) be a compact Riemannian manifold. Let Ω be a
smooth m− 4 closed form in Mm. Assume Ω has co-mass less than 1

‖|Ω|∗‖L∞(Mm) ≤ 1 ,

where

|Ω|∗(x) := sup

{
〈Ω, u1 ∧ · · · ∧ um−4〉∏m−4

i=1 |ui|
; ui ∈ TxM \ {0}

}
.

15Recall that in a Kähler manifold ω · ∂∂ = Δ
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Let E be a Hermitian vector bundle associated to an SU(n)-bundle over Mm and
let ∇k be a sequence of smooth SU(n)-connections satisfying the Ω anti self dual
instantons equation

∗hF∇k = − Ω ∧ F∇k in Mm .

Then, modulo extraction of a subsequence, there exists a m − 4 rectifiable closed
subset of Mm, K, of finite m− 4 Hausdorff measure, Hm−4(K) < +∞, a Hermit-
ian bundle E0 defined over Mm \K and a smooth SU(n) connection ∇∞ of E0

such that
∗hF∇∞ = − Ω ∧ F∇∞ in Mm \K , (VIII.14)

moreover

∀ Br(x0) ⊂ Mm \K ∃ a sequence of trivializations s. t.

Ak′
→ A∞ strongly in Cl(Bm) ∀l ∈ N ,

where ∇k′ � d+Ak′
in these trivializations and ∇∞ � d+A∞ in a trivialization

of E0 over Bm. Moreover there exists an integer rectifiable current C such that for
any smooth m− 4 form ϕ on Mm∫

Mm

Tr(F∇k′ ∧ F∇k′ ) ∧ ϕ →
∫
Mm

Tr(F∇∞ ∧ F∇∞) ∧ ϕ+ 8π2 C(ϕ) ,

and the current C is calibrated by Ω

C(Ω) = M(C) = sup{C(ϕ) ; ‖|ϕ|∗‖L∞(Mm) ≤ 1} ,
where M is the mass of the current C. Finally the following convergence holds
weakly as Radon measures

|F∇k′ |2h dvolh ⇀ |F∇∞ |2h dvolh + 8π2 Θ(C) Hm−4 K ,

where Θ(C) is the integer-valued L1 function with respect to the restriction of the
m− 4 Hausdorff measure to K and which is giving the multiplicity of the current
C at each point. �

Observe that no bound is a priori needed for the Yang–Mills energy of the
sequence. We have indeed

YM(∇k) = −
∫
Mm

Tr(F∇k ∧ ∗hF∇k ) dvolh

=

∫
Mm

Tr(F∇k ∧ F∇k ) ∧Ω .

Since Ω is closed this integral only depends on the cohomology class of the other
closed form Tr(F∇k ∧ F∇k ) which is the second Chern class of E and which is
independent of ∇k.

Remark VIII.2. Regarding the limiting bundle E0, it is important to insist on the
fact that there is no reason for E0 to extend through K over the whole manifold
Mm as a smooth bundle. Hence there is a priori no meaning to give to ∇∞ over
the whole manifold and therefore the Ω-anti-self dual equation (VIII.14) cannot
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even hold in a distributional sense throughout K if we do not relax the notion of
bundle and connections. �

An important question directly related to the regularity of the limiting con-
figuration (E0,∇∞, C) is the following open problem.

Open problem. Show that the limiting current C has no boundary:

∂C = 0 . �

The resolution of this conjecture would imply that the limiting connection (though
defined on Mm \ supp(C) only) satisfies globally the stationary equation VIII.5
(i.e., more precisely the version of (VIII.5) on (Mm, h)). One proves that the open
question about proving that ∂C = 0 is equivalent to

d (Tr(F∇∞ ∧ F∇∞)) = 0 .

This last identity should be equivalent to the following

Strong approximation property: Does there exist a sequence Dk of smooth SU(n)-
connection of smooth Hermitian bundles over Mm such that

lim
k→+∞

inf
g∈W 1,2

∫
Mm

|∇∞ − (Dk)g|2h + |F∇∞ − g−1FDkg|2h dvolh = 0 ?

If we would know that ∂C = 0 then C defines a calibrated integral cycle.
The optimal regularity for calibrated and semi-calibrated integral cycles of dimen-
sion two has been proved respectively in [44] and [12]. Such cycles have at most
isolated point singularities. More generally, the calibrated condition implies that
such a cycle is homologically mass minimizing (see [18]). From this later fact,
using Almgren regularity result [2] proved also by C. De Lellis and E. Spadaro
([9], [10] and [11]), we would obtain that C is the integration along a rectifiable
set which is a smooth dimension m − 4 sub-manifold away from a co-dimension
two singular set with smooth integer multiplicity away from that set. This result
is optimal: integration along holomorphic curves in CPn is a calibrated integral
cycle for the Fubini–Study–Kähler form and can have isolated singularities which
are of co-dimension two within the curve.

In his paper Tian made the following conjecture.

Tian regularity conjecture. Let (E0,∇∞) be the weak limit of smooth Ω-anti-self
dual instantons on a bundle E. Then the limiting bundle E0 and the limiting
connections ∇∞ extend to smooth bundle, resp. smooth connection, away from a
closed co-dimension six set L in Mm. �

There is one case which has been completely settled and where the conjecture
has been proved. This is the case of Hermitian Yang–Mills fields. In that case the
currents defined by

ϕ −→
∫
M2m

Tr(F∇k ∧ F∇k) ∧ ϕ
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is a (m − 2) − (m − 2) positive cycle (i.e., calibrated by ωm−2/(m − 2)!), This
condition is of course preserved at the limit and then

ϕ −→
∫
Mm

Tr(F∇∞ ∧ F∇∞) ∧ ϕ+ 8π2 C(ϕ)

is also a (m− 2)− (m− 2) positive cycle (i.e., calibrated by ωm−2/(m− 2)!). The
points of non zero density correspond to the support of C and using an important
result by Y.T. Siu [51] we obtain that C is the integration along a holomorphic
sub-variety of complex co-dimension two. Using now a result by S. Bando and
Y.T. Siu [4] we obtain that E0 extends to an analytic reflexive sheaf over the
whole M2m it is then locally free (i.e., it realizes a smooth bundle) away from a
closed complex co-dimension three subset of M2m which is included in K (see,
for instance, [22]). They also prove a point removability asserting that ∇∞ defines
a smooth connection on the part where the sheaf is free which proves the Tian
regularity conjecture in the special case of Hermitian Yang–Mills fields.

VIII.5. The space of weak connections

As we saw in the previous section, in dimension larger than four, “bundles with
singularities” arise naturally as “carriers” of limits of smooth Yang–Mills fields
with uniformly bounded energy over smooth bundles. If now we remove the as-
sumption to be Yang–Mills and just follow sequences of connections with uniformly
bounded Yang–Mills energy over smooth bundles we have seen in the beginning of
this section that the limiting carrying bundle can have twists everywhere on the
base! Similarly, taking a sequence of closed sub-manifolds with uniformly bounded
volume the limit “escape” from the space of smooth sub-manifold and can be
singular. The main achievement of the work of Federer and Fleming has been to
introduce a class of objects, the integral cycles which complete the space of closed
sub-manifold with uniformly bounded volume and which was suitable to solve the
Plateau problem in a general framework. The purpose of the work [34] is to de-
fine a class of weak bundles and weak connections satisfying a closure property
under uniformly bounded Yang–Mills energy and suitable to solve the Yang–Mills
Plateau problem.

We introduce the following stratified definition.

Definition VIII.2. Let G be a compact Lie group and (Mm, h) a compact Rie-
mannian manifold. For m ≤ 4 the space of weak connections AG(M

m) is defined
to coincide with the space of Sobolev connections defined by

AG(M
m) :=

⎧⎨⎩A ∈ L2(∧1Mm,G) ;
∫
Mm

|dA+A ∧ A|2h dvolh < +∞

locally ∃ g ∈ W 1,2 s.t. Ag ∈ W 1,2 .

⎫⎬⎭
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For m > 4 we define the space of weak connections AG(M
m) to be

A(Mm) :=

⎧⎨⎩A ∈ L2(∧1Mm,G) ;
∫
Mm

|dA+A ∧ A|2h dvolh < +∞

∀ p ∈ Mm for a.e. r > 0 ι∗∂Br(p)
A ∈ AG(∂B

m
r (p)) ,

⎫⎬⎭
where Bm

r (p) denotes the geodesic ball of center p and radius r > 0 and ι∗∂Br(p)
A

is the restriction of the 1-form A on the boundary of Bm
r (p). �

As an illustration of this space, tt is not difficult to check that the limiting
connections ∇∞ from Tian’s closure theorem are in AG. We have the following
result which justifies the previous definition.

Theorem VIII.10. For any m ∈ N∗ the space of weak connection AG(B
m) is weakly

sequentially closed bellow any Yang–Mills energy level. Precisely, let Ak ∈ AG(B
m)

such that

lim sup
k→+∞

∫
Bm

|dAk +Ak ∧ Ak|2 dxm < +∞ ,

then there exists a subsequence k′ and A∞ ∈ AG(B
m) such that

δ(Ak′
, A∞) := sup

f∈Lip1(B
m,Rm−4)

inf
g∈W 1,2(Bm,G)

∫
Bm

|Ak′
−(A∞)g∧f∗ω|2 dxm

|f∗ω| −→ 0 ,

where Lip1(B
m) is the space of Lipschitz function on Bm with norm bounded by

1 and ω := dx1 ∧ · · · ∧ dxm−4. �
Remark VIII.3. In the statement of Theorem VIII.10 δ can be replaced by the
more coercive gauge invariant L2 distance (VIII.1) when G = SU(2). It is expected
this fact to be true at least for G = SU(n) and n arbitrary. It is related to an
interesting problem in multilinear algebra (see [35]). �
Remark VIII.4. Theorem VIII.10 can be seen as a Rellich–Kondrachov type result
for weak connections with L2-bounded curvatures. �

A proof of Theorem VIII.10 is given in [34] and [35]. It is using the following
strong approximation theorem whose proof is rather technical.

Theorem VIII.11. Let A ∈ AG(B
m) then there exists Ak which are the connection

G 1-forms on Bm associated to smooth connections of a sequence of smooth bundles
over Bm minus polyhedral chains of codimension five such that

lim
k→+∞

inf
g∈W 1,2(Bm,G)

∫
Bm

|A− (Ak)g|2h + |FA − g−1FAkg|2 dxm = 0 . �

These two last results take their roots in the following weak sequential closure,
respectively strong approximation, results proved in [32].

Theorem VIII.12. Let p > 1 and let Fk be a sequence of Lp 2-forms in B3 such
that

∀ p ∈ B3 for a.e. Br(p) ⊂ B3

∫
∂Br(p)

Fk ∈ 2πZ .
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Assume Fk ⇀ F∞ weakly in Lp then

∀ p ∈ B3 for a.e. Br(p) ⊂ B3

∫
∂Br(p)

F∞ ∈ 2π Z . �

The strong approximation result says the following.

Theorem VIII.13. Let p > 1 and let F be an Lp 2-forms in B3 such that

∀ p ∈ B3 for a.e. Br(p) ⊂ B3

∫
∂Br(p)

F ∈ 2π Z .

then there exists a sequence Ak of smooth connections of a sequence of smooth
U(1) bundles over B3 minus finitely many points such that

lim
k→+∞

∫
B3

|FAk − F |p dx3 = 0 . �

VIII.6. The resolution of the Yang–Mills Plateau problem in five dimensions

In the present section we are solving the “Schoen–Uhlenbeck type” question in-
troduced for the first time in [48] for harmonic maps. We call it in our framework
“Yang–Mills Plateau Problem”. We present the result in five dimension which has
appeared in [34] while the higher-dimensional case is under preparation.

In order to solve the Yang–Mills Plateau problem in the five-dimensional
ball B5, we introduce a sub-space of ASU(n)(B

5) of weak connections admitting a
trace.

Let η be a weak connection 1-form of AG(S
4) we denote by Aη

SU(n)(B
5) the

subspace of ASU(n)(B
5) made of weak connection 1-forms A such that

lim
r→1−

inf
g∈W 1,2(S4,G)

∫
S4

|D∗
rA− g−1 dg − g−1η g|2 dvolS4 ,

where D∗
rA is the pull-back on S4 � ∂B5

1(0) of the restriction of A to ∂B5
r (0) by

the dilation of ratio r. It is proved in [34] that for any η ∈ AG the space Aη
G is

weakly sequentially closed under any Yang–Mills energy level. Hence we have the
following theorem.

Theorem VIII.14 (Existence for YM minimizers). Let G be a compact Lie group
and let η be an arbitrary Sobolev connection 1-form in AG(S

4) then the following
minimization problem is achieved

inf

{∫
B5

|dA+A ∧ A|2 dx5 ; A ∈ Aη
G(B

5)

}
. (VIII.15)

�
Solutions to this minimization problem will be called solutions to the Plateau
problem for the boundary connection η.

Once the existence of the minimizer is established it is legitimate to ask about
the regularity for these solutions to the Yang–Mills Plateau problem. Before to give
the optimal regularity we give an intermediate result which holds in the general
class of stationary Yang–Mills in the space of weak connections AG(B

5).
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Theorem VIII.15 (ε-regularity for weak stationary YM fields in 5D). Let G be a
compact Lie group, there exists εG > 0 such that for any weak connection 1-forms
A in AG(B

5) satisfying weakly the Yang–Mills equation

d∗FA + [A, FA] = 0 in D′(B5
1(0)) .

assume also that it satisfies the stationarity condition

∀ X ∈ C∞
0 (B5,R5)

d

dt

∫
B5

|Ψ∗
tFA|2

∣∣∣∣
t=0

= 0 ,

where Ψt is the flow of X, and the small energy condition∫
B5

1(0)

|FA|2 dx5 < εG ,

then there exists a gauge g ∈ W 1,2(B5
1/2(0), G) in which the following estimates

hold: for any l ∈ N there exists Cl > 0 such that

‖∇l(A)g‖2L∞(B5
1/2

(0)) ≤ Cl

∫
B5

1(0)

|FA|2 dx5 . �

This theorem is a consequence the monotonicity formula deduced from the
stationarity condition and a weak version of the Coulomb gauge extraction theo-
rem VIII.3 which generalizes the work of T. Tao and G. Tian [54] for admissible
connections or the work of Y. Meyer and the author [26] for approximable connec-
tions to the general framework of weak connections in AG(B

5).

With the ε-regularity result at hand, using a Luckhaus lemma together with
a Federer dimension reduction method following the proof of the regularity result
of R. Schoen and K. Uhlenbeck for minimizing harmonic map [48] we obtain the
following theorem.

Theorem VIII.16 (Regularity for minimizers of the Yang–Mills Plateau problem).
Let G be a compact Lie group, and let η be the connection 1-form associated to a
smooth connection of some G-bundle over ∂B5 then the minimizers of the Yang–
Mills Plateau problem (VIII.15) are smooth connections ∇ of a smooth bundle
defined on B5 minus finitely many points. For G = SU(2) we have

d(tr(F∇ ∧ F∇)) =
∑
i

εi δai with εi ∈ {−1,+1} ,

where ai are the point singularities. �

It is proved in [34] that the theorem is optimal in the sense that there exists
a smooth su(2)-valued 1-form η – defining then a connection of the trivial bundle
over S4 – such that any solution to the Plateau problem (VIII.15) has isolated
singularities.
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VIII.7. Weak holomorphic structures over complex manifolds

With the definition of weak connection at hands one can reformulate a more general
version of Tian’s regularity conjecture as follows.

Conjecture. Let (Mm, h) be a compact Riemannian manifold and Ω a closed m−4
form of co-mass less than one. Let A be a weak connection in A(Mm) for the Lie
group G and solving

∗hFA = −Ω ∧ FA in D′(Mm) .

Does A define a smooth connection of some smooth G-bundle over the whole man-
ifold minus a closed subset of co-dimension six.

A case of special interest for instance is given by the space ofWeak Hermitian
Yang–Mills SU(n)-connections over a Kähler manifold (M2p, J, ω): the elements
in ASU(n)(M

2p) satisfying{
F 0,2
A = 0

ω · F 1,1
A = 0

in D′(M2p) . (VIII.16)

In order to study this question it is of interest to first concentrate on density
properties within the following space of weak holomorphic structures

A1,1
SU(n)(M

2p) :=
{
A ∈ ASU(n)(M

2p) ; F 0,2
A = 0 a. e.

}
.

The following result asserts that weak holomorphic structures in two complex
dimension (the dimension for which the Yang–Mills energy is critical) are defining
classical smooth holomorphic structures and are strongly approximable by smooth
ones.

Theorem VIII.17 ([31]). Let (M4, J, ω) be a Kähler two-dimensional manifold and

A ∈ A1,1
SU(n)(M

2p) and denote by E the smooth SU(n)-bundle defined by A and by

∇ the associated Sobolev connection (see Proposition VIII.1). Then there exists a
smooth holomorphic structure E on E such that

∇ = ∂0 + h−1∂0h+ ∂E ,

where h and h−1 are W 2,p-sections of GL(E) for any p < 2, ∂0 and ∂E are
respectively the 1− 0 and the 0− 1 parts of the Chern connection associated to E
and the choice of some smooth Hermitian structure on the bundle. Moreover there
exists a sequence of smooth connections ∇k satisfying

F 0,2
∇k = 0 ,

and

lim
k→+∞

inf
g∈W 1,2(M4,G)

∫
M4

|A− (∇k)g|2h + |FA − g−1F∇kg|2h dvolh = 0 ,

where h(·, ·) = ω(·, J ·). �
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Remark VIII.5. It is natural to expect the above Theorem VIII.17 to be ex-
tended in higher dimension but allowing singularities and replacing in the result the
smooth holomorphic bundle E by a the more general notion of coherent sheaf. �

Finally we are closing this section by mentioning two open problems relating weak
1− 1 curvatures and the strong approximability property.

Open Problem 1. Let F be a 1 − 1 real 2-form in C2 such that F ∈ Lp
loc(C

2) for
1 ≤ p and satisfying for almost every two spheres S in C2∫

S

F ∈ Z . (VIII.17)

Prove that F is a closed form16

The result should still hold in the almost complex framework. As a mat-
ter of illustration we mention the following open question. In [45], Tian and the
author of these notes establish the optimal partial regularity result for W 1,2-
pseudo-holomorphic maps from an almost Kähler17 four-dimensional real manifold
(M4, J, ω) into a projective space CPn assuming u∗ωCPn is closed18 where ωCPn

is the Fubini–Study–Kähler 2-form on CPn.
A priori only the condition (VIII.17) is satisfied for F := u∗ω but it is natural

to ask whether d(u∗ω) = 0 always hold when u is pseudo-holomorphic and if the
closedness assumption made in [45] is redundant or not.

Open Problem 2. Let (M2p, J, ω) be a p-dimensional complex manifold equipped

with a Kähler structure and let A ∈ A1,1
SU(n)(M

2p). Does the following identity19

hold true

d(tr(FA ∧ FA)) = 0 . (VIII.18)

�

16If p ≥ 4/3, using Hölder inequality, one proves that under these assumptions
∫
S
F is equal to

zero for almost every 2-spheres and then F is closed.
17The form ω, compatible with J , is closed but J is not necessarily integrable.
18The condition

d(u∗ω) = 0

is obviously always satisfied for any smooth maps. It is equivalent to the local strong approxima-
bility by smooth maps for a map in W 1,2(M4,CPn). Observe that it is not satisfied by every
map in W 1,2(M4,CPn). For the particular case of W 1,2-pseudo-holomorphic maps the local
strong approximability is proven in [45] to be equivalent to the stationarity condition. This is
very special to the pseudo-holomorphic case. In general there exists minimizing harmonic maps
from B3 into CP 1, and hence stationary, where d(u∗ωCP1) = 0.
19This identity is equivalent to the following strong approximation question: does there exists a
sequence of smooth SU(n)-connections ∇k satisfying

lim
k→+∞

inf
g∈W1,2(M4,G)

∫
M4

|A− (∇k)g|2h + |FA − g−1F∇kg|2h dvolh = 0?
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If (VIII.18) would always hold true under the assumption that A ∈ A1,1
SU(n)(M

2p),

we could then deduce from such an approximation property the Tian’s regularity
conjecture in the particular case ofWeak Hermitian Yang–Mills SU(n) connections
over a closed p-Kähler manifold in it’s full generality20.
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Prologue

Harmonic functions are special. They enjoy a high degree of regularity, and in
some vague sense are considered to be more aesthetically pleasing than an arbi-
trary function. In geometry, one similarly seeks aesthetically pleasing structures
on a given space. A typical example is that of an Einstein structure. Among all
Riemannian structures Einstein structures are special in many ways; the interested
reader is referred to the book by Besse [23].

Harmonic functions can be defined as solutions to the Laplace equation. A
fundamental result in analysis is that harmonic functions are also characterized as
minimizers of the Dirichlet energy. This result is fundamental in many ways. First,
the Dirichlet energy makes sense for functions whose gradient is merely square
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integrable while Laplace’s equation requires two derivatives to exist pointwise.
Second, it gives an approach to actually constructing harmonic functions.

Kähler–Einstein metrics can be defined as solutions to a fully nonlinear
analogue of the Laplace equation. A nonlinear analogue of the Dirichlet energy
was introduced by Mabuchi 30 years ago. A basic aspect of this analogy is that
the Euler–Lagrange equation for the Mabuchi functional is precisely the Kähler–
Einstein equation. One possible way to view these lectures is as an attempt to
explain some aspects of this analogy in more detail. In doing so, we strive to give
a quick – and at least partly introductory – course in Kähler geometry.

A second prologue

The Kähler–Einstein problem is also strongly motivated by an analogy with the
Yamabe problem, that is, of course, itself motivated by the classical Dirichlet
problem described above. The following table serves as an overall guidance to the
Kähler–Einstein problem, especially for those familiar with the resolution of the
Yamabe problem. Our goal in these lectures is to describe the right column of
this table, culminating in a complete analytic description of “Tian’s properness
conjectures” and “Tian’s Moser–Trudinger conjecture” at the bottom right.

A few remarks are in place. First, this table is highly schematic, and its
main purpose is to highlight some possible analogies between the two analytic
problems. Second, the infimum in the definition of μ[ω] is, of course, solely for

the analogy, since μ[ω] =
1
2

∫
M Rgωϕ

ωn
ϕ/
∫
M ωn

ϕ is a cohomological invariant of the
Kähler class. Third, an alternative sufficient and necessary condition that appeared
very recently and after these lectures were delivered can now be described in terms
of an invariant that is different but related to α[ω] coming from algebraic geometry
and K-stability [35, 55, 99]. Yet, this last characterization is purely algebraic, and
so it is less pertinent to the analogy with the Yamabe problem. Finally, one may
also discuss the more general problem of constant scalar curvature (csc) Kähler
metrics. While this is beyond the scope of the lectures, it is worth mentioning
briefly the state-of-the-art on this problem at the time the lectures were given.
Indeed, in [45] aside from solving the Kähler–Einstein case we also were able
to reduce the general csc problem to the regularity of weak minimizers of the
Mabuchi energy. Shortly afterwards, our techniques played a rôle in the resolution
of this regularity problem, and hence of the analytic characterization of constant
scalar curvature Kähler metrics [18, 34]. Some of these important developments
are already described in the survey [42], while others just appeared and seem to
involve important new ideas beyond the scope of these lectures. In the same breath
let me guide the reader that Darvas’ survey [42] complements the present one in
the sense that it gives the necessary detail on some of the geometric pluripotential
methods that are needed in the proof of the properness conjectures; this is also
the reason that I do not go into many of those details here.
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Finally, I should of course point out that the analogy between the Kähler–
Einstein problem and the Yamabe problem is an old one that goes back to T. Aubin
and pursued by many others, e.g., Futaki, Bourguignon, Tian. Indeed, in his thesis
work [1], Aubin studied in the very same paper the prescription of curvature in a
conformal class and in a Kähler class. In many senses this is a pioneering paper
that is largely overlooked nowadays. In it Aubin even solved the Calabi conjecture
under the assumption of nonnegative bisectional curvature. Later, already in the
first edition of his book, Aubin described the Yamabe and Kähler–Einstein problem
side by side [4]. Soon afterward Aubin introduced his functionals I and J which
play a crucial role in these lecture notes. The discerning reader of his paper [5] will
realize that his familiarity with the Yamabe problem could very well have been
crucial in this ingenious construction. Subsequently, Futaki introduced his famous
eponymous invariants inspired by those of Kazdan–Warner in the conformal world
[56, 63] (and Bourguignon later explained that they both can be constructed in
a unified manner [16]; this could actually have been another line in the table
in the next page, but it was hard already to fit the table into one page!). Several
years later, when Tian introduced his α-invariant he pointed out its relation to the
Moser–Trudinger inequality in the conformal world [93, p. 225] and the inspiration
the Yamabe problem has had on his resolution of the Kähler–Einstein problem in
dimension two [94, p. 104].
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Yamabe problem Kähler–Einstein problem

structure Riemannian manifold (Mn, g) Kähler manifold (M2n, J, ω)

class conformal class (Mn, [g]) Kähler class (M2n, [ω])

=
{
Fg : C∞(M) � F > 0

}
=
{
ω+

√−1∂∂̄ϕ>0:ϕ∈C∞(M)
}

problem (non)-existence of constant (non)-existence of a Kähler–
scalar curvature metric in Einstein metric in a Kähler
a conformal class (Mn, [g]) class (M2n, [ω])

equation uN−2g has constant ωϕ := ω +
√−1∂∂̄ϕ has constant

curvature μ (here N := 2n
n−2

) scalar Ricci curvature μ

� �

μ = uN−1
(
Rgu− (N + 2)Δgu

)
μ = − log

ωn
ϕ

ωnefω

/
ϕ

(here Rg = scalar curvature of g) (here Δωfω = 1
2
(Rgω − 2nμ[ω])

where μ[ω] is defined below and
gω( · , · ) := ω(·, J·))

functional Yamabe energy Mabuchi energy

uN−2g �→ Y (u) := ωϕ �→E(ϕ) :=

∫
M

log
ωn
ϕ

ωnefω
ωn
ϕ∫

M

(
(N + 2)|∇gu|2 +Rgu

2
)
dVg( ∫

M
uNdVg

)2/N
−μ

∫
M

√−1∂ϕ ∧ ∂̄ϕ

∧
n−1∑
k=0

ωn−1−k ∧ ωϕ
k

(n+ 1)/(k + 1)

(invariant under u �→cu, c>0) (invariant under ϕ �→ϕ+c, c∈R)

sign μ[g] := inf
u>0

∫
M

RugdVug

/(∫
M

dVug

) 2
N

μ[ω] := inf
ϕ>0

1

2

∫
M

Rgωϕ
ωn
ϕ

/∫
M

ωn
ϕ

invariant

solution always exists always exists
(μ ≤ 0)

sufficient crit- exists if μ[g] < μ[gSn ] (Aubin) exists if α[ω] >
nμ[ω]

n+ 1
(Tian)

erion (μ > 0) where μ[gSn ] = n(n− 1)vol(Sn(1))
2
n where α[ω] :=

sup
c>0

{
c : sup

ωϕ>0
sup ϕ=−1

∫
M

e−cϕωn < ∞
}

necessary Aubin’s criterion always holds Tian’s properness conjectures?
condition (if [g] �= [gSn ])

strong border- Aubin’s strong Moser–Trudinger Tian’s Moser–Trudinger
line Sobolev inequality on Sn conjecture?
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1. Introduction

The main motivation for these lectures are three conjectures: Tian’s properness
conjectures and Tian’s Moser–Trudinger conjecture. Consider the space

H = {ωϕ := ω +
√
−1∂∂̄ϕ : ϕ ∈ C∞(M), ωϕ > 0} (1)

of all Kähler metrics representing a fixed cohomology class on a compact Kähler
manifold (M, J, ω).

Motivated by results in conformal geometry and the direct method in the
calculus of variations, in the 90s Tian introduced the notion of “properness on H”
[95, Definition 5.1] in terms of the Aubin nonlinear energy functional J [5] and
the Mabuchi K-energy E [69] as follows (both functionals are defined § 3 below,
see (7) and (12)).

Definition 1.1. The functional E : H → R is said to be proper if

∀ωj ∈ H, lim
j

J(ωj) →∞ =⇒ lim
j

E(ωj) →∞. (2)

Tian made the following influential conjecture [95, Remark 5.2], [97, Conjecture
7.12]. Denote by Aut(M, J)0 the identity component of the group of automorphisms
of (M, J), and denote by aut(M, J) its Lie algebra, consisting of holomorphic vector
fields.

Conjecture 1.2. Let (M, J, ω) be a Fano manifold. Let K be a maximally compact
subgroup of Aut(M, J)0. Then H contains a Kähler–Einstein metric if and only if
E is proper on the subset HK ⊂ H consisting of K-invariant metrics.

Tian’s conjecture is central in Kähler geometry since it predicts an analytic
characterization of Kähler–Einstein manifolds. Appropriate analogues of this con-
jecture in conformal geometry are known and were crucial in the solution of the
famous Yamabe problem concerning the existence of constant scalar curvature
metrics in conformal classes. We briefly discuss this in Section 16.

The conjecture has attracted much attention over the past two and a half
decades including motivating much work on equivalence between algebro-geometric
notions of stability and existence of canonical metrics, as well as on the inter-
face of pluripotential theory and Monge–Ampère equations. While the algebraic-
geometric characterization of Kähler–Einstein manifolds has been finally obtained
[35, 99], the analytic characterization of Conjecture 1.2 has remained open. We
refer to the surveys [73, 75, 81, 92, 98].

Conjecture 1.2 (which we refer to as the Tian’s first properness conjecture)
gives a characterization of Kähler–Einstein manifolds in terms of the Mabuchi
energy. Thus, it can be seen as the analogue of the properness of the Yamabe en-
ergy which led to the resolution of the Yamabe problem. Another central theorem
in conformal geometry is Aubin’s strong Moser–Trudinger inequality on spheres.
Tian’s second properness conjecture suggests a Kähler geometry analogue of this
inequality on any Kähler–Einstein manifold, and is referred to as the Moser–
Trudinger inequality for Kähler–Einstein Fano manifolds, which we now describe.



386 Y.A. Rubinstein

Denote by Λ1 the real eigenspace of the smallest positive eigenvalue of −Δω,
and set

H⊥
ω :=

{
ϕ ∈ H :

∫
ϕψωn = 0, ∀ψ ∈ Λ1

}
.

When ω is Kähler–Einstein, it is well known that Λ1 is in a one-to-one corre-
spondence with holomorphic gradient vector fields [57]. Tian made the following
conjecture in the 90’s [96, Conjecture 5.5], [97, Conjecture 6.23],[98, Conjecture
2.15].

Conjecture 1.3. Suppose (M, J, ω) is Fano Kähler–Einstein. Then for some C,
D > 0,

E(ϕ) ≥ CJ(ϕ)−D, ϕ ∈ H⊥
ω .

By the end of these lectures we will present results that resolve both Con-
jectures 1.2 and 1.3. For Conjecture 1.2, the special case when K is trivial has
already been known for almost 20 years from the work of Tian and Tian–Zhu
[96, 100]. Treating the general case has remained open since. Somewhat surpris-
ingly, Conjecture 1.2 was actually disproved by Darvas and the author recently
[45]. More precisely, Theorem 6.5 establishes precisely for which manifolds Con-
jecture 1.2 holds, giving a converse to a result of Phong et al. [74]. Next, and this
is the second main result of [45], an alternative formulation to Conjecture 1.2 is
established, giving the sought after analytic characterization for Kähler–Einstein
metrics. This is stated in Theorem 12.4. Finally, the Moser–Trudinger inequality
for Kähler–Einstein manifolds is established, confirming Conjecture 1.3 [45]. This
is stated in Corollary 16.7

We leave out a few relevant topics due to space and time limitations. Notably,
we mostly do not delve into the pluripotential theoretic and Bergman kernel as-
pects of the proof of Theorem 12.4, for which we refer to Darvas’ survey that has
appeared in the meantime [42]. On the other hand, our treatment is rather self-
contained and reviews most of the basics, giving an opportunity for the interested
reader for a rapid introduction to current research in Kähler geometry.

2. Kähler and Fano manifolds

In these lectures all manifolds will be assumed to be complex. Complex mani-
folds are just like topological or differentiable manifolds except that the transition
functions between the different charts in the atlas are required to be holomorphic
in both directions (i.e., biholomorphic). Thus, all our manifolds will be of even
dimension. In dimension two all complex manifolds are also Kähler. In higher di-
mensions, however, the latter condition is rather subtle and reflects the existence
of a Riemannian structure highly compatible with the given complex structure –
we explain this next.
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Let (M, J, g) denote a complex manifold together with a Riemannian metric
g on M that is compatible with J in the sense that

g(x, y) = g(Jx, Jy), ∀x, y ∈ Γ(M,TM),

where Γ(M,TM) denotes smooth vector fields on M . Since J2 = −I, the formula
ω := ω = g(J · , · ) defines a 2-form on M . We call (M, J, g) a Kähler manifold if
the form ω is a closed 2-form,

dω = 0.

Kähler manifolds have many other equivalent characterizations; we refer the
reader to [80, § 2.1.4].

In these lectures we will be interested in the curvature of Kähler manifolds.
In particular, we will be interested in trying to understand when Kähler manifolds
admit Einstein metrics. Just as the Riemannian metric can be transformed using
the complex structure into a skew-symmetric form, so can the Ricci curvature
tensor Ric g. We denote the Ricci form by

Ricω := Ric g(J · , · ).
Thus, on a Kähler manifold the Einstein equation

Ric g = cg,

transforms to
Ricω = cω. (3)

Let z1, . . . , zn be local holomorphic coordinates on a neighborhood in M . In those
coordinates express the form ω,

ω =
√
−1gij̄dz

i ∧ dzj.

As discovered by Schouten [83], Schouten and van Dantzig [84, 85], and Kähler
[66] (see [80, p. 35] for more references) the Ricci form then has the following
expression

Ricω = −
√
−1∂∂̄ log det[gij̄ ]. (4)

In fact, the proof is not hard. First, recall some useful formulæ:

Exercise 2.1. Let D be a constant coefficient first-order operator defined on some
domain in Rm and let A be a matrix-valued function on the same domain. Then,

D log detA = AijDAij , and DAij = −AitDAtsA
sj ,

where Aij is the coefficient in the ith row and jth column of the inverse matrix
of A.

Therefore,

∂∂̄ log det[gij̄ ] = −git̄gts̄,kg
sj̄gij̄,l̄ + gij̄gij̄,kl̄.

Now, dω = 0 implies that both ∂ω = ∂̄ω = 0. Thus, gij̄,k = gkj̄,i and gij̄,k̄ = gik̄,j̄ .

Exercise 2.2. Complete the proof of (4).



388 Y.A. Rubinstein

Thus, if η is any Kähler form such that locally η =
√
−1hij̄dz

i ∧ dzj then

Ricω − Ric η =
√
−1∂∂̄ log

det[hij̄ ]

det[gij̄ ]
=
√
−1∂∂̄ log

ηn

ωn
(5)

is an exact two form on M since log ηn

ωn is a globally defined smooth function on

M as ηn

ωn > 0. Therefore, the Ricci form of any Kähler metric is not only a closed
two-form (as is evident from (4)), but also lies in a fixed cohomology class. Up to
a constant factor, this class is called the first Chern class of M and is denoted by
2πc1(M).

The point of this discussion is that Einstein metrics on a Kähler manifold
can exist only if the equality of cohomology classes

μ[ω] = 2πc1(M) (6)

holds. Now, as a rule of thumb, Einstein metrics of negative Ricci curvature exist
in abundance on Riemannian manifolds, while Einstein metrics of positive Ricci
curvature are quite harder to come by [23]. Somewhat analogously, it is easier
to prove existence of Kähler–Einstein metrics of negative Ricci curvature, i.e.,
when μ < 0: a fundamental theorem of Aubin and Yau states that then (6) also
implies that there exists a unique Kähler–Einstein metric whose cohomology class
is [ω] [2, 3, 105]. Around the same time, Yau also showed that the same is true
when μ = 0 [105]. A couple years earlier Aubin proved this under a restrictive
assumption on the bisectional curvature [1]. However, when μ > 0 it was shown
by Matsushima already in the 50s that (6) is not sufficient. Kähler manifolds for
which (6) holds with μ > 0 are called Fano manifolds. Thus, it is natural to ask:

Question 2.3. When does a Fano manifold admit a Kähler–Einstein metric?

As just explained, if such a Kähler–Einsteinmetric exists it must have positive
Ricci curvature. (Conversely, if a Kähler manifold admits a Kähler metric of posi-
tive Ricci curvature it is Fano.) In these lectures we describe an answer to this ques-
tion. The key player will be the Mabuchi energy, which we now turn to describe.

3. The Mabuchi energy

Before defining the Mabuchi energy we introduce several other basic functionals.
The two most basic functionals, introduced by Aubin [5], are defined by

J(ϕ) = J(ωϕ) := V −1

∫
M

ϕωn − V −1

n+ 1

∫
M

ϕ

n∑
l=0

ωn−l ∧ ωl
ϕ,

I(ϕ) = I(ωϕ) := V −1

∫
M

ϕ(ωn − ωn
ϕ).

(7)

Here,

V =

∫
ωn
ϕ,

is a constant independent of ωϕ ∈ H. Whenever we integrate without mentioning
the domain we mean integrating over M .
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Exercise 3.1. Show that V is n! times the volume of M with respect to the Rie-
mannian metric g. (See the end of the proof of Proposition 2.1 in [38] for a solution.)

The notation J(ϕ) = J(ωϕ) (and similarly for I) is justified by the fact that
J(ϕ) = J(ϕ + c) for any c ∈ R. These two functionals, as well as their difference,
are mostly equivalent, in the sense that,

1

n2
(I − J) ≤ 1

n(n+ 1)
I ≤ 1

n
J ≤ I − J ≤ n

n+ 1
I ≤ nJ. (8)

Remark 3.2. We will be rather sloppy and often say “ϕ ∈ H” when we really mean
ωϕ ∈ H. However, see Remark 8.17 where we start being more precise.

A closely related functional is the Aubin–Mabuchi functional, introduced by
Mabuchi [69, Theorem 2.3],

AM(ϕ) := V −1

∫
M

ϕωn − J(ϕ) =
V −1

n+ 1

n∑
j=0

∫
M

ϕωj ∧ ωn−j
ϕ , (9)

Exercise 3.3. Prove the integration by parts formula∫
g
√
−1∂∂̄f ∧ αj ∧ βn−j−1 =

∫
f
√
−1∂∂̄g ∧ αj ∧ βn−j−1,

whenever α, β are smooth closed (1, 1)-forms and f, g ∈ C2(M). Then, show that
if δ �→ ϕ(δ) denotes a C1 curve in H, (in the sense that δ �→ ϕ(δ)(x) is C1 map
for each x ∈ M , and ωϕ(δ) ∈ H for each δ),

d

dδ
AM(ϕ(δ)) = V −1

∫
d

dδ
ϕ(δ)ωn

ϕ(δ). (10)

Denote by

Ent(ν, χ) =
1

V

∫
M

log
χ

ν
χ, (11)

the entropy of the measure χ with respect to the measure ν (where here V =∫
M χ =

∫
M ν).

The Mabuchi energy (sometimes also called the K-energy as in Mabuchi’s
original article)

E : H → R,

is defined by [81, (5.27)],

E(ωϕ) = E(ϕ) := Ent(efωωn, ωn
ϕ)− μAM(ϕ) + μV −1

∫
M

ϕωϕ
n. (12)

Here, fω is a smooth function depending on ω that we define next. For historical
reasons, let us point that the original definition of Mabuchi [69] is different than
(12); the equivalence of the two definitions was first shown by Tian [95, 97] and
later also by Chen [32].
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Definition 3.4. The Ricci potential of ω, fω, satisfies√
−1∂∂̄fω = Ric ω − μω, (13)

where it is convenient to require the normalization
∫
efωωn =

∫
ωn.

Exercise 3.5. Show that

AM(ϕ) = (I − J)(ϕ) + V −1

∫
ϕωϕ

n, (14)

and therefore the last two terms in (12) equal −μ(I − J)(ω, ωϕ), so

E(ωϕ) = Ent(efωωn, ωn
ϕ)− μ(I − J)(ω, ωϕ). (15)

From this formula, we see that understanding the K-energy essentially means
understanding the interplay between the entropy and the Aubin functional I − J
(or, the equivalent functionals I or J , recall (8)). This is in some sense the holy
grail, the difficult analytical question at the heart of Tian’s conjecture. A first (and
fundamental) result in this direction is Theorem 3.8 below, however only after
much more work do we obtain a clearer picture of this relationship, culminating
in Theorem 12.4.

Exercise 3.6. Show that indeed E(ωϕ) = E(ϕ), i.e., that E(ϕ+C) = E(ϕ) for any
C ∈ R.

There is another way to write the K-energy:

E(ϕ) := Ent(ωn, ωn
ϕ) + s0AM(ϕ)− 1

V

n−1∑
j=0

∫
M

ϕRicω ∧ ωϕ
j ∧ ωn−1−j , (16)

where s0 = V −1
∫
M

sωω
n is the average scalar curvature. Of course,

V −1

∫
M

sωω
n = V −1

∫
M

nRicω ∧ ωn−1 = nμ

so s0 = nμ.

Exercise 3.7. Show that (16) coincides with (12) when μ[ω] = 2πc1(M) (=
[Ricω]).

The point of (16) is that it actually makes sense on any Kähler manifold. We
will however stick to the first formula in these lectures for simplicity.

3.1. The K-energy when μ < 0

Using Exercise 3.5, Conjecture 1.2 is seen to hold in the case μ < 0 as follows.
First, convexity of the exponential function implies that∫

log fdν ≤ log

∫
fdν,

whenever dν is a probability measure (so
∫
dν = 1), so

Ent(ν, χ) = −
∫

log
ν

χ

χ

V
≥ − log

∫
ν

χ

χ

V
= 0, (17)
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i.e., the entropy is always nonnegative. Therefore,

E(ϕ) = Ent(efωωn, ωn
ϕ)− μ(I − J)(ϕ) ≥ |μ|

n
J(ϕ), (18)

as desired.

3.2. The K-energy when μ ≥ 0

We now describe a technique, due to Tian [97, § 7], to treat some of the cases when
μ ≥ 0 by showing the entropy itself is always proper. Since

Ent(efωωn, ωn
ϕ) ≥ Ent(ωn, ωn

ϕ)− sup fω, (19)

it suffices to estimate Ent(ωn, ωn
ϕ). Since the functionals I and J are interchange-

able as far as properness goes (recall (8)), what we would like to show is:

Theorem 3.8. There exists a positive β,C such that

Ent(ωn, ωn
ϕ) ≥ βI(ϕ)− C = −βV −1

∫
M

(
ϕ− V −1

∫
M

ϕωn
)
ωn
ϕ − C.

Rewriting the functional I in this way is useful for the following reason:

βI(ϕ) − Ent(ωn, ωn
ϕ) =

∫
log e

log ωn

ωn
ϕ
−β(ϕ−V −1

∫
M

ϕωn)
ωn
ϕ/V

≤ log

∫
e
log ωn

ωn
ϕ e−β(ϕ−V −1

∫
M

ϕωn)ωn
ϕ/V

= log

∫
e−β(ϕ−V −1

∫
M

ϕωn)ωn/V,

(20)

and so the question reduces to whether there exists a positive β such that the
functional

ϕ �→
∫

e−β(ϕ−V −1
∫
M

ϕωn)ωn

is uniformly bounded on H. Observe that we have managed to eliminate the de-
pendence on the measure ωn

ϕ. To be more precise, the question is now about
integrability properties of functions in H with respect to a fixed measure. We treat
this question in the next subsection. Before doing so, observe that an affirmative
answer implies the K-energy E is proper whenever μ = 0. When μ > 0, using (8),
an affirmative answer implies

E(ϕ) ≥ (β − nμ/(n+ 1))I(ϕ). (21)

Thus, if β can be taken larger than nμ/(n+ 1) then the K-energy is proper even
when μ ≥ 0.
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3.3. Tian’s invariant

The preceding question is equivalent to the following:

Question 3.9. Is

α(M, [ω]) = sup

{
β : sup

ϕ∈H

∫
M

e−β(ϕ−V −1
∫
M

ϕωn)ωn < C(β)

for some constant C(β) > 0

} (22)

positive?

By definition, the number α(M, [ω]) is an invariant of the Kähler class [ω].
It was introduced by Tian, who answered Question 3.9 affirmatively [93, Proposi-
tion 2.1].

Theorem 3.10. α(M, [ω]) > 0.

As explained above, Theorem 3.10 implies Theorem 3.8.

Before going into the detailed proof of this theorem we observe that the last
statement of the previous subsection can be stated as follows.

Theorem 3.11. Suppose (6) holds. The K-energy is proper whenever α(M, [ω]) >
nμ/(n+ 1).

Thanks to Theorem 3.10, Theorem 3.11 treats in a unified fashion the nega-
tive, zero, and some positive cases.

Remark 3.12. Using (16) instead of (12) one may generalize Theorem 3.11 to co-
homology classes nearby c1(M)/μ, as shown recently by Dervan [47, Theorem 1.3].

We now turn to proving Theorem 3.10. The key is an elementary, but by
no means trivial, result on subharmonic functions in the plane from Hörmander’s
book [64, Theorem 4.4.5]. Denote the ball of radius R about the origin in C by

BR(0).

Theorem 3.13. Let R > 0 and let ψ be a smooth subharmonic function defined on
BR(0) ⊂ C, satisfying

ψ(0) ≥ −1,

ψ ≤ 0, on BR(0).
(23)

Then for every ρ ∈ [R/2, e−1/2R) there exists a constant C depending only on R, ρ
such that ∫

Bρ(0)

e−ψ
√
−1dz ∧ dz ≤ C. (24)

Proof. Let ψ̃ := ψ + 1 (so that ψ̃ ≤ 1 and ψ̃(0) ≥ 0). We prove (24) for ψ̃ which
is the same thing as (24) for ψ up to a factor of e.
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The Riesz (or Poisson) representation of a smooth function f : BR(0) → R
takes the form

f(z) =
1

2π

∫
BR(0)

log
∣∣∣Rz −Rζ

R2 − zζ̄

∣∣∣Δf(ζ)

√
−1

2
dζ ∧ dζ̄

+

∫ 2π

0

R2 − |z|2

|z −Re
√
−1θ|2

f(Re
√
−1θ)

dθ

2π
.

(25)

Now we consider (25) for f = ψ̃ and try to obtain bounds for each of the
terms.

Second term: First we show that the second term in (25) for f = ψ̃ is actually

itself uniformly bounded when z ∈ BR/2(0). Indeed, putting z = 0 and f = ψ̃ in
(25),

0 ≤ ψ̃(0) =
1

2π

∫
BR(0)

log
|ζ|
R

Δψ̃(ζ)

√
−1

2
dζ ∧ dζ̄ +

∫ 2π

0

ψ̃(Re
√
−1θ)

dθ

2π
.

Hence

2π ≥ 2π − 2πψ̃(0) =

∫
BR(0)

log
R

|ζ|Δψ̃(ζ)

√
−1

2
dζ ∧ dζ̄ +

∫ 2π

0

(1− ψ̃(Re
√
−1θ))dθ.

(26)

Since ψ̃ ≤ 1 the second integrand is nonnegative. So is the first, since Δψ̃ ≥ 0. So
each of the terms is nonnegative and hence bounded from above by 2π. Therefore,∫ 2π

0

|ψ̃(Re
√
−1θ)|dθ ≤

∫ 2π

0

(1− ψ̃(Re
√
−1θ))dθ +

∫ 2π

0

1 · dθ ≤ 2π + 2π = 4π,

hence∣∣∣ ∫ 2π

0

R2 − |z|2
|z − ζ|2 ψ̃(Re

√
−1θ)

dθ

2π

∣∣∣ ≤ sup
z∈Br(0), |ζ|=R

R2 − |z|2
|z − ζ|2

∫ 2π

0

|ψ̃(Re
√
−1θ)| dθ

2π

≤ C(r, R) · 1

2π
4π = 6, (27)

where C(r, R) is some constant depending only on r, R.

First term: The first term in (25) is not uniformly bounded, however we will show it
is uniformly exponentially integrable in the sense of the statement of the theorem.
We split this first term into two parts one of which will be actually uniformly
bounded (all we really need is a uniform bound from below):

Claim 3.14. For each z such that |z| < r < ρ one has∣∣∣∣ 12π
∫
BR(0)\Bρ(0)

log
∣∣∣Rz −Rζ

R2 − zζ̄

∣∣∣Δψ̃

√
−1

2
dζ ∧ dζ̄

∣∣∣∣ ≤ C,

for some constant C > 0 depending only on r, ρ, R.
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Proof. Recall that in (26) each of the terms was bounded by 2π, so∫
BR(0)

log
R

|ζ|Δψ̃(ζ)

√
−1

2
dζ ∧ dζ̄ ≤ 2π.

Thus, as log(1 + b) ≥ Cb for some constant C = C(ε) ∈ (0, 1) when b ∈ (0, ε),∫
BR(0)\BR(1−ε)(0)

(C
|R − |ζ||

|ζ| )Δψ̃(ζ)

√
−1

2
dζ ∧ dζ̄ ≤ 2π.

We have,

C

∫
BR(0)

|R − |ζ||
|ζ| Δψ̃(ζ)

√
−1

2
dζ ∧ dζ̄ ≤ 2π,

in particular,

C

∫
BR(0)

|1− |ζ|/R|Δψ̃(ζ)

√
−1

2
dζ ∧ dζ̄ ≤ 2π. (28)

Now, ∣∣∣ R2 − zζ̄

Rz −Rζ

∣∣∣ ∈ ∂B1(0), ∀ζ ∈ ∂BR(0),

as can be checked from the fact that for each z such that |z| < 1 the map ζ �→ 1−zζ̄
z−ζ

is a Möbius map, i.e., sends ∂B1(0) to itself and then scaling. Thus, if z ∈ Br(0)
with r < 1, there exists C > 0 possibly depending on r, ρ, R such that∣∣∣∣ log ∣∣∣Rz −Rζ

R2 − zζ̄

∣∣∣∣∣∣∣ ≤
{
C
∣∣1− |ζ|/R

∣∣ for ζ ∈ (R(1− ε), R),

C for ζ ∈ (ρ,R(1− ε)).

Then,∣∣∣∣ 12π
∫
BR(0)\Bρ(0)

log
∣∣∣Rz −Rζ

R2 − zζ̄

∣∣∣Δψ̃

√
−1

2
dζ ∧ dζ̄

∣∣∣∣
≤ C

1

2π

∫
BR(0)\BR(1−ε)(0)

∣∣1− |ζ|/R
∣∣Δψ̃

√
−1

2
dζ ∧ dζ̄

+ C
1

2π

∫
BR(1−ε)(0)\Bρ(0)

Δψ̃

√
−1

2
dζ ∧ dζ̄.

The first term on the right-hand side is uniformly bounded by (28). The second
term is uniformly bounded by Claim 3.15 below. �

Since ρ < e−1/2R from now and on we write

ρ = e−1/2−εR,

with ε > 0 small, say ε = 1/500, where 500 could be replaced by a generous

quantity (cf. [7, Proposition 8.1]). In order to estimate e−ψ̃ we only need to estimate
for each z such that |z| < r the exponential term (note the minus sign)

exp
(
− 1

2π

∫
B

e−1/2−εR
(0)

log
∣∣∣Rz −Rζ

R2 − zζ̄

∣∣∣Δψ̃

√
−1

2
dζ ∧ dζ̄

)
. (29)
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This can be done using Jensen’s inequality, or just the arithmetic mean-geometric
mean inequality. For that need to normalize the measure so that it integrates to 1
(i.e., becomes a probability measure). That is need to divide by

a :=
1

2π

∫
B

e−1/2−εR
(0)

Δψ̃

√
−1

2
dζ ∧ dζ̄,

i.e., the mass of the harmonic measure on this ball. It is well known that the mass
of the harmonic measure on a compact subset of a ball is uniformly bounded by
a constant depending on the distance to the boundary of the ball whenever the
function is uniformly bounded from above on the whole ball and its value is fixed
at one point. Moreover,

a < 2 !

Indeed, this is the reason to choose ρ = e−1/2−εR:

a =
1

2π

∫
Bρ(0)

Δψ̃

√
−1

2
dζ ∧ dζ̄ ≤ 1

2π

∫
Bρ(0)

(
2 log R

|ζ|

)
1 + 2ε

Δψ̃

√
−1

2
dζ ∧ dζ̄

≤ 2

1 + 2ε
· 2π
2π

=
2

1 + 2ε
,

since earlier we proved the first term of (26) is bounded by 2π (note all we did
was insert a term between the large parenthesis which is bigger than 1).

For an earlier reference we state the following claim whose proof is identical
to the computation of a.

Claim 3.15. For every ε ∈ (0, 1) there is a constant C = C(ε) such that

1

2π

∫
BR(1−ε)(0)

Δψ̃

√
−1

2
dζ ∧ dζ̄ ≤ C.

Exercise 3.16. Compute the constant C(ε) in the previous claim.

So we come back to (29), and apply the arithmetic mean-geometric mean
inequality:

(29) = exp
(∫

B
e−1/2−εR

(0)

−a · log
∣∣∣Rz −Rζ

R2 − zζ̄

∣∣∣Δψ̃

√
−1

2
dζ ∧ dζ̄/(2πa)

)
≤
∫
B

e−1/2−εR
(0)

∣∣∣ R2 − zζ̄

Rz −Rζ

∣∣∣aΔψ̃

√
−1

2
dζ ∧ dζ̄/(2πa)

≤ C

∫
B

e−1/2−εR
(0)

1

|z − ζ|aΔψ̃

√
−1

2
dζ ∧ dζ̄/(2πa).

Now this itself may not be bounded, however, it is in L1 in z – more precisely
in L1(Br(0)) – and this is what we want to show. It is crucial here that a < 2 or
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in other words to chose ρ = e−1/2−εR earlier. To be precise, we integrate now in z
to get∫

B1/2R(0)

∫
B

e−1/2−εR
(0)

1

|z − ζ|aΔψ̃(ζ)

√
−1

2
dζ ∧ dζ̄/(2πa) ∧

√
−1

2
dz ∧ dz̄/2π

≤
∫
B

(1/2+e−1/2−ε)R
(0)

∫
B

e−1/2−εR
(0)

× 1

|ξ|aΔψ̃(ζ)

√
−1

2
dζ ∧ dζ̄/(2πa) ∧

√
−1

2
dξ ∧ dξ̄/2π

=
2π

2− a
[(1/2 + e−1/2−ε)R]2−a

∫
B

e−1/2−εR
(0)

Δψ̃(ζ)

√
−1

2
dζ ∧ dζ̄/(2πa)

≤ 2π

2− a
[(1/2 + e−1/2−ε)R]2−a = C(ε).

Note Fubini’s theorem applies thanks to the last estimate, so the change of order
of integration is justified, and so the original integral is bounded, concluding the
proof of Theorem 3.13. �
Exercise 3.17. Show that the fraction in (27) is bounded above by a constant
depending only on r/R as claimed and blows up as r approaches 0. When r = R/2
show that this constant is equal to 3 (it is even simpler to see it must be ≤ 4).

Exercise 3.18. Compute the Green kernel of BR(0) and then derive the Riesz
representation formula (25) starting with the identity (cf. [58, § 2.4], [101])

f(x) = −
∫
BR(0)

G(x, y)Δf(y)dy +

∫
∂BR(0)

∂rG(x, y)f(y)dy.

Exercise 3.19. Show that Theorem 3.13 holds for any subharmonic function f by
using the fact that the Riesz representation (25) holds with the same expression by

interpreting Δf(ζ)
√
−1
2 dζ∧dζ̄ as the harmonic measure associated to f (a positive

measure with respect to which the Green kernel is integrable) [77, Theorem 4.5.1].

Theorem 3.13 can be extended to any dimension as follows [64, Theorem
4.4.5].

Corollary 3.20. The same result holds in Cn with constants that might addition-
ally depend on n. In other words, if ψ is a smooth plurisubharmonic function on
BR(0) ⊂ Cn, satisfying

ψ(0) ≥ −1,

ψ ≤ 0, on BR(0),
(30)

then for every ρ ∈ [R/2, e−1/2R) there exists a constant C depending only on
R, ρ, n such that∫

Bρ(0)

e−ψ
√
−1dz1 ∧ dz1 ∧ · · · ∧

√
−1dzn ∧ dzn ≤ C. (31)
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Remark 3.21. In both Theorem 3.13 and Corollary 3.20 one may drop the smooth-
ness assumption on ψ: indeed convolve ψ with a smooth mollifier and then observe
the integrals on the left-hand side converge in the limit.

Proof. Write∫
Br(0)⊆Cn

e−ψ

=

∫
∂B1(0)⊆Cn

dVS2n−1
r

(λ)

∫
Br(0)⊆C

|w|2n−2e−ψ(λw)

√
−1

2
dw ∧ dw̄/2π,

(32)

and |w|2n−2 ≤ r2n−2 is uniformly bounded, so we can apply the previous result
for n = 1. To obtain (32), note that we are integrating over a 2n+ 1-dimensional
manifold on the right-hand side and on a 2n-dimensional one on the left-hand side.
We normalize by 2π, the area of S1 since each point is counted “S1 times”, since
if wish to write z = λw with w ∈ C, λ ∈ S2n−1, and |z| = |w|, |λ| = 1 then w is
only determined in C up to multiplication by a number in S1! This is not quite
precise since we should normalize by an S1 of varying radius! So need to actually
divide by 2π|w|, however the change of variables introduces a factor |w|2n−1; so
we get (32). �

Proof of Theorem 3.10. Let the injectivity radius of (M,ω) be 6r (so at each point
exists a geodesic ball of that radius). Choose an r-net of M , that is a collection of
points {xj}Nj=1 such that M = ∪jBr(xj). For each ϕ ∈ H one has n + Δωϕ > 0.

Hence Green’s formula says that [6, Theorem 4.13 (a), p. 108]

ϕ(x) = V −1

∫
M

ϕωn + V −1

∫
−G(x, y)Δωϕ(y)ω

n(y) ≤ V −1

∫
M

ϕωn + nAω,

(33)
where G(x, y) ≥ −Aω and

∫
M G(x, y)ωn(y) = 0 for each x ∈ M . Note that Aω is a

constant depending only on (M,ω), in other words, the Green kernel is uniformly
bounded from below [6, Theorem 4.13 (d), p. 108]. Since we are also assuming
supϕ = 0, we obtain (the right-hand side of (33) is independent of x)

V −1

∫
M

ϕωn + nAω ≥ 0.

Hence, since ϕ is non-positive,∫
Br(xj)

ϕωn ≥
∫
M

ϕωn ≥ −nAωV,

that is,

sup
Br(xj)

ϕ ≥ −nAωV

vol(Br(xj))
. (34)

Choose a local Kähler potential ψj satisfying
√
−1∂∂̄ψj = ω|B5r(xj). Let C2 :=

supj supB5r(xj) ψj . Therefore, since ϕ ≤ 0,

ψj + ϕ ≤ C2, on B5r(xj).
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Also, let yj ∈ Br(xj) be such that (using (34))

ϕ(yj) ≥
−nAωV

volω(Br(xj))
.

We may also assume without loss of generality that ψj(yj) = 0, otherwise we add
a constant to ψj (and then C2 possibly increases).

Now the function ϕ+ψj is plurisubharmonic (psh for short) on B5r(yj) (recall
that ϕ is not psh only ω-psh so we add to it a local potential for ω in order to be
able to apply Hörmander’s result). Also, since B4r(yj) ⊆ B5r(xj), we have that on
the set B4r(yj) it holds

ϕ+ ψj − C2 ≤ 0

(ϕ+ ψj − C2)(yj) ≥ −C2 −
nAωV

vol(Br(xj))
.

Therefore can apply Hörmander’s result to fj := (ϕ+ψj −C2)/(C2 +
nAωV

vol(Br(xj))
)

on B4r(yj) (note C2 ≥ 0, Aω > 0, so we are not dividing by zero), namely obtain
that ∫

B2r(yj)

e−fj ωn
∣∣
B2r(yj)

< Cj

(instead of 2r could have taken any number in the range [2r, e−1/24r)). Patching
these up, using the fact that B2r(yj) ⊇ Br(xj) and M is covered by the latter, we
obtain that regardless of ϕ, one has∫

M

e−aϕωn < C,

where a := minj
1(

C2+
nAωV

vol(Br(xj))

) , and consequently α(M, [ω]) ≥ a > 0. �

4. The Kähler–Einstein equation

The Kähler–Einstein equation (3) is a fourth-order equation in terms of the Kähler
potential. The remarkable formula (4) for the Ricci form, however, allows to inte-
grate it to a second-order equation. Indeed, subtracting Ricω from both sides of
the equation and using (5) yields

Ric ωϕ − Ricω =
√
−1∂∂̄ log

ωn

ωn
ϕ

= μωϕ − Ricω = μ
√
−1∂∂̄ϕ−

√
−1∂∂̄fω,

where fω is called the Ricci potential of ω, and satisfies
√
−1∂∂̄fω = Ric ω − μω,

where it is convenient to require the normalization
∫
efωωn =

∫
ωn. We thus obtain

the Kähler–Einstein equation,

ωn
ϕ = ωnefω−μϕ, on M (35)
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for a global smooth function ϕ (called the Kähler potential of ωϕ relative to ω).
The function fω, in turn, is given in terms of the reference geometry and is thus
known. Observe that, strictly speaking, the right-hand side of (35) should be

ωnefω−μϕ+C

For some constant C; whenever μ �= 0 we can incorporate the constant C by
subtracting C/μ from ϕ since the left-hand side of (35) is invariant under this.
When μ = 0, the constant C must be zero by (13).

Note also that the solution ϕ is only determined up to a constant when μ = 0,
while it is uniquely determined when μ �= 0 by (13).

We close this section by noting a relationship between the K-energy and
Kähler–Einstein metrics: the Euler–Lagrange equation of the K-energy is precisely
the Kähler–Einstein equation. Indeed,

d

dε

∣∣∣
ε=0

E(ϕ(ε)) =
d

dε

∣∣∣
ε=0

Ent(efωωn, ωn
ϕ(ε))

− μV −1

∫
M

ϕ̇ωn
ϕ + μV −1

∫
M

ϕ̇ωn
ϕ + μV −1

∫
M

ϕΔϕ̇ωn
ϕ

= V −1

∫
M

(
Δωϕϕ̇+ log

ωn
ϕ

efωωn
Δϕ̇

)
ωn
ϕ + μV −1

∫
M

ϕΔϕ̇ωn
ϕ

= V −1

∫
M

(
log

ωn
ϕ

efωωn
Δϕ̇

)
ωn
ϕ + μV −1

∫
M

ϕΔϕ̇ωn
ϕ

= −V −1

∫
M

ϕ̇Δωϕfωϕω
n
ϕ,

(36)

where we used Exercise 2.1 and the following exercise.

Exercise 4.1. Show that the Ricci potential satisfies the following equation

fωϕ = log
efωωn

ωn
ϕ

− μϕ− log V −1

∫
M

efω−μϕωn. (37)

Thus, the Euler–Lagrange equation of the K-energy is precisely

Δωϕfωϕ = 0, i.e., as M is compact fωϕ = const,

that, recalling Definition 3.4, means that Ric ωϕ = μωϕ.

5. Properness implies existence

In this section we prove the easier part of Conjecture 1.2:

Theorem 5.1. If the Mabuchi energy E is proper on HK then there exists a K-
invariant Kähler–Einstein metric in H.

This result is due to Tian [96], even though it is in some sense already implicit
in Ding–Tian [50]. The proof we give follows the same ideas as in the original proof,
with some simplifications in the presentation.



400 Y.A. Rubinstein

In particular, in combination with Theorem 3.11, we obtain as a corollary a
theorem of Tian [93, Theorem 2.1]:

Corollary 5.2. Let μ > 0 and suppose that (6) holds. Whenever

α(M, 2πc1(M)/μ) > nμ/(n+ 1)

there exists Kähler–Einstein metric cohomologous to 2πc1(M)/μ.

We also obtain as a corollary the theorems of Aubin and Yau:

Corollary 5.3. Let μ ≤ 0 and suppose that (6) holds. Then there exists a unique
Kähler–Einstein metric cohomologous to ω.

Remark 5.4. The proof of Corollary 5.3 we will give will not directly use the fact
that the K-energy is proper whenever μ ≤ 0 (which holds according to Theorem
3.11). In fact, the proof of Corollary 5.3 will be more or less a step in the proof of
Theorem 5.1.

5.1. A two-parameter continuity method

We will give a somewhat nonstandard proof of Theorem 5.1 using a two-parameter
continuity method instead of the more standard proofs that use one-parameter con-
tinuity methods or the Ricci flow equation. Namely, we consider the two-parameter
family of equations,

ωn
ϕ = etfω+ct−sϕωn, ct := − log

1

V

∫
M

etfωωn, (s, t) ∈ A, (38)

where

A := (−∞, 0]× [0, 1] ∪ [0, μ]× {1}
is the parameter set – the union of a semi-infinite rectangle and an interval, and
show that there exists a unique solution ϕ(s, t) for each (s, t) ∈ A once we require
that the solution be continuous in the parameters s, t. Of course, we are really
looking to show the existence of ϕ(μ, 1). Thus, the strategy is to first construct
ϕ(s, t) for other values of (s, t) for which existence is easier to show and then
perturbing the equation and eventually arriving at the equation for the values
(μ, 1). Hence, the name ‘continuity method.’

To show existence for the sub-rectangle (−∞, 0] × [0, 1] is easier and is pre-
cisely what proves Corollary 5.3. Also, one could restrict to the sub-rectangle
(−S, μ] × [0, 1] for any value S > 0 as far as proving the existence theorems is
concerned. Working on A requires no more work and is somewhat more natural
and canonical, since the value s = −∞ corresponds, in a sense that can be made
precise [104, Proposition 7.3],[65, § 9],[13], to the initial reference metric ω. Thus,
one can view this continuity method as starting with the given reference metric
and deforming it to the Kähler–Einstein metric. In fact, the one-parameter conti-
nuity method with t = 1 fixed and s varying between −∞ and μ can be viewed as
the continuity method analogue of the Kähler–Ricci flow, and is called the Ricci
continuity method, introduced in [79] and further developed in [65]. One of the
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reasons we work with the two-parameter family in these lectures is that then the
existence of solutions for some parameter values is automatic. Indeed,

ϕ(s, 0) = 0, s ∈ (−∞, 0]. (39)

Working with the one-parameter Ricci continuity method is harder since it is non-
trivial to show the existence of solutions for some parameter value (s, 1). The
full strength of the Ricci continuity method however goes beyond that of the
two-parameter family in that the former can be used to show existence of Kähler–
Einstein edge metrics, which are a natural generalization of Kähler–Einstein met-
rics that allows for a singularity along a complex submanifold of codimension one.
In that context the two-parameter continuity method does not always seem to
work.

Exercise 5.5. Show that for each (s, t) ∈ A,

Ricωϕ(s,t) = (1 − t)Ricω + sωϕ(s,t) + (μt− s)ω. (40)

Note that this implies that if indeed, as claimed, ϕ(s, 1) → 0 as s → −∞ then
fω − sϕ should be small, i.e., ϕ ≈ fω/s in that regime.

5.2. Openness

Let

PSH(M,ω) = {ϕ ∈ L1(M,ωn) : ϕ is upper semicontinuous and ωϕ ≥ 0}
denote the set of ω-plurisubharmonic functions on M .

Define Ms,t : C
2,γ ∩ PSH(M,ω) → C0,γ by

Ms,t(ϕ) := log
ωn
ϕ

ωn
− tfω + sϕ− ct, (s, t) ∈ A.

If ϕ(s, t) ∈ C2,γ ∩ PSH(M,ω) is a solution of (38), we claim that its linearization

DMs,t|ϕ(s,t) = Δϕ(s,t) + s : C2,γ → C0,γ , (s, t) ∈ A, (41)

is an isomorphism when s �= 0 and s < μ. If s = 0, this map is an isomorphism
if we restrict on each side to the codimension one subspace of functions with
integral equal to 0 with respect to ωn

ϕ(0,t). Furthermore, we also claim that C2,γ ∩
PSH(M,ω)×A # (ϕ, s, t) �→ Ms,t(ϕ) ∈ C0,γ is a C1 mapping. Given these claims,
the Implicit Function Theorem then guarantees the existence of a solution ϕ(s̃, t̃) ∈
C2,γ for all (s̃, t̃) ∈ A sufficiently close to (s, t). This solution must necessarily
be contained in PSH(M,ω) since Ms,t(ϕ(s, t)) = 0 means that (38) holds, so in
particular ωn

ϕ(s,t) > 0, and by the continuity of ωϕ(s,t) in the parameters it follows

that all the eigenvalues of the metric stay positive along the deformation.
We concentrate on the first claim, since the second claim is easier.
Now, DMs,t is an elliptic operator and there is a classical and well-developed

theory for those kind of operators acting on Hölder spaces [58]. In particular, such
an operator has a generalized inverse, or Green kernel. Also, it is Fredholm of
index 0. Using the existence of a Green kernel shows that C2,γ decomposes as a
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direct sum {Gf : f ∈ C0,γ} ⊕Ks,t, where Ks,t denotes the kernel of the operator
DMs,t. Thus, whenever Ks,t = {0} the operator is an isomorphism.

The nullspace of DMs,t is clearly trivial when s < 0 since the spectrum of
Δϕ(s,t) is contained in (−∞, 0]. When s = 0 the nullspace consists of the constants
and so is an isomorphism when restricted to functions of zero average. Thus, the
claim is verified whenever s ≤ 0. To deal with the case when s is positive the
following lemma is needed.

Lemma 5.6. Suppose that Ms,1(ϕ(s, 1)) = 0 and that s ∈ (0, μ). Then the spectrum
of Δϕ(s,1) is contained in (−∞,−s).

Proof. Let ψ be an eigenfunction of Δωϕ(s,t)
with eigenvalue −λ1. By standard

theory, ψ is smooth. The Bochner–Weitzenböck formula states that

1

2
Δg|∇gf |2g = Ric (∇gf,∇gf) + |∇2f |2g +∇f · ∇(Δgf).

Since Δg = 2Δω and |∇2f |2g = 2|∇1,0∇1,0f |2 + 2(Δωf)
2, this becomes

Δω|∇1,0ψ|2g = 2Ric (∇1,0ψ,∇0,1ψ) + 2|∇1,0∇1,0ψ|2 + 2λ2
1ψ

2 − 4λ1|∇1,0ψ|2ω . (42)

Integrating (42) and using that Ricω(s) > sω(s) when s < μ by (40),∫ (
(2s− 4λ1)|∇1,0ψ|2ω + 2λ2

1ψ
2
)
ωn < 0.

Now, ∫
2λ2

1ψ
2ωn = −

∫
2λ1ψΔωψω

n =

∫
2λ1|∇1,0ψ|2ω .

Thus, ∫
(2s− 2λ1)|∇1,0ψ|2ωωn < 0,

so we see that λ1 > s. �

Remark 5.7. Here we see why we cannot use the rectangle

(−∞, μ]× [0, 1]

containing A: we run into trouble with openness. If we had chosen ω to have
nonnegative Ricci curvature we could have also worked on the larger trapezoid

(−∞, 0]× [0, 1] ∪ {(s, t) ∈ [0, μ]× [0, 1] : μt ≥ s}.

Producing such an ω is possible by applying Corollary 5.3 with μ = 0 (whose proof
does not require these arguments).
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5.3. An L∞ bound in the sub-rectangle

The following two lemmas will be sufficient for our purposes.

Lemma 5.8. Suppose that ϕ(s, t) is a solution of (38). Then whenever s < 0,

ϕ(s, t) < C(1 + 1/|s|),
for some uniform constant C independent of s and t.

Proof. Let p be a point where the maximum of ϕ is achieved. Then,
√
−1∂∂̄ϕ(p) ≤

0. Thus,
ωn
ϕ

ωn
(p) ≤ 1, i.e., tfω(p) + ct − sϕ(s, t)(p) ≤ 0,

so,

maxϕ(s, t) = ϕ(s, t)(p) ≤ (−ct − tmin fω)/|s|.
Similarly, if q is a point where the minimum is achieved,

minϕ(s, t) = ϕ(s, t)(q) ≥ (−ct − tmax fω)/|s|.
concluding the proof. �

Lemma 5.9. Suppose that ϕ(0, t) is a solution of (38). Then,

max
M

|ϕ(0, t)| < C,

for some uniform constant C independent of t.

Proof. As remarked earlier, the solution in this case is a priori only unique up to
a constant. However, we fixed the normalization by requiring that the solution be
continuous in the parameters s, t. We will eventually show that there are solutions
ϕ(s, t) for all s less than 0 and all t ∈ [0, 1]. Therefore, ϕ(s, t) converges pointwise
to the solution ϕ(0, t) for each fixed t as s tends to 0, and so this solution is actually
unique. In particular, since the latter change sign, so must the former. Thus, it is
enough to estimate the oscillation of ϕ(0, t) in order to estimate the L∞ norm of
ϕ(0, t), i.e., it suffices to estimate the minimum of

ϕ(0, t)−maxϕ(0, t)− 1.

This bound, due to Yau [105], then follows just as in [97, § 5]. �

5.4. An L∞ bound in the interval

Lemma 5.10. Let t = 1. The K-energy is monotonically decreasing in s.

Proof. When t = 1, ct = 0. Then,

d

ds
E(ϕ(s, 1)) =

d

ds
Ent(efωωn, efω−sϕωn)

− μV −1

∫
M

ϕ̇ωϕ
n + μV −1

∫
M

ϕ̇ωϕ
n + μV −1

∫
M

ϕΔϕ̇ωϕ
n

= V −1

∫
M

(−ϕ− sϕ̇− sϕΔϕ̇)ωϕ
n + μV −1

∫
M

ϕΔϕ̇ωϕ
n.
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Differentiating (38) yields

ϕ(s, t) = −(Δ + s)ϕ̇(s, t). (43)

Thus,
d

ds
E(ϕ(s, 1)) = V −1

∫
M

(Δϕ̇ − (μ− s)Δϕ̇(Δ + s)ϕ̇)ωϕ
n

= −(μ− s)V −1

∫
M

ϕ̇Δ(Δ + s)ϕ̇ωϕ
n < 0,

since ϕ̇ is not constant as can be seen from (43) and (38), while Δ+s is a negative
operator for s < μ thanks to Lemma 5.6. �

By the previous lemma, the K-energy actually decreases along the interval.
By properness this implies that the functional I−J stays uniformly bounded along
the interval once we know ϕ(0, 1) exists. This will indeed be the case as we will
show (in the first step of the proof) existence in the sub-rectangle for all values
s ≤ 0. Now, the explicit formula (12) for the K-energy hence implies that the
entropy is bounded from above along the interval,

Ent(efωωn, ωn
ϕ(s,1)) < C, (44)

thus, ∫ (
(t− 1)fω − sϕ(s, 1) + ct

)
ωn
ϕ < C, (45)

or ∫
−ϕ(s, 1)ωn

ϕ(s,1) < C(1 + 1/s). (46)

Observe that here we may assume that s > ε >0 since by openness about the
value (0, 1) we have existence for small positive values of s. Going back to (7) now
shows that ∫

ϕ(s, 1)ωn < C(1 + 1/s), (47)

the mean value inequality (33) shows that

maxϕ(s, 1) < C(1 + 1/s). (48)

It remains to estimate minϕ(s, 1). Now, as in the proof of Lemma 5.9, we set

α(s) := maxϕ(s, 1)− ϕ(s, 1) + 1.

A standard Moser iteration argument now yields an estimate [97, § 5]
||α(s)||L∞(M,ωn

ϕ(s,1)
) ≤ C

(
||α(s)||L1(M,ωn

ϕ(s,1)
)

)
,

but

||α(s)||L1(M,ωn
ϕ(s,1)

) = maxϕ(s, 1) + 1 +

∫
−ϕ(s, 1)ωn

ϕ(s,1) < C(1 + 1/s).

Thus, we have proven the following.
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Lemma 5.11. Suppose that ϕ(s, 1) exists for s ∈ (0, ε] for some ε > 0. Then for
every s > ε,

max
M

|ϕ(s, 1)| < C(1 + 1/s).

5.5. Second-order estimates

The reference for this subsection is [81, § 7.2–7.4,7.7].
We say that ω, ωϕ are uniformly equivalent if

C1ω ≤ ωϕ ≤ C2ω, (49)

for some constants C2 ≥ C1 > 0. We start with a simple result which shows that
a Laplacian estimate can be interpreted geometrically. Denote

trωη := tr
(
[gij̄ ]

−1[hkl̄]
)
,

where ω = gij̄dz
i ∧ dzj, η = hij̄dz

i ∧ dzj in local coordinates. Similarly, denote

detωη := det
(
[gij̄ ]

−1[hkl̄]
)
.

Exercise 5.12. Show that (49) is implied by either

n+Δωϕ = trωωϕ ≤ C2, and detωωϕ ≥ C1C
n−1
2 /(n− 1)n−1, (50)

or,

n−Δωϕϕ = trωϕω ≤ 1/C1, and detωωϕ ≤ C1C
n−1
2 (n− 1)n−1. (51)

Exercise 5.13. Conversely, show that (49) implies

trωωϕ ≤ nC2, and detωωϕ ≥ Cn
1 ,

as well as
trωϕω ≤ n/C1, and detωωϕ ≤ Cn

2 .

(Indeed,
∑

(1 + λj) ≤ A, and Π(1 + λj) ≥ B implies 1 + λj ≥ (n− 1)n−1B/An−1;

conversely, Π(1 + λj) ≥
(
1
n

∑ 1
1+λj

)−n ≥ Cn
1 .)

The quantities trωωϕ and detωωϕ have a nice geometric interpretation. To
see that, we will study the geometry of the identity map ι : M → M ! Consider
∂ι−1 either as a map from T 1,0M to itself, or as a map from ΛnT 1,0M to itself.
Alternatively, it is section of T 1,0�M ⊗ T 1,0M , or of ΛnT 1,0�M ⊗ ΛnT 1,0M , and
we may endow these product bundles with the product metric induced by ω on
the first factor, and by ωϕ on the second factor. Then, (50) means that the norm
squared of ∂ι−1, in its two guises above, is bounded from above by C2, respectively
bounded from below by C1C

n−1
2 /(n − 1)n−1. Similarly, the quantities trωϕω and

detωϕω and (51) can be interpreted in terms of ∂ι.
Now, for us the quantities

detωωϕ(s,t) = etfω+ct−sϕ(s,t) and detωϕ(s,t)
ω = e−tfω−ct+sϕ(s,t)

are already uniformly bounded thanks to the uniform estimate on ||ϕ(s, t)||L∞

obtained in § 5.3–5.4. Thus, according to Exercise 5.12, it remains to find an upper
bound for either |∂ι−1|2 or |∂ι|2 (from now on we just consider maps on T 1,0M).
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The standard way to approach this is by using the maximum principle, and
thus involves computing the Laplacian of either one of these two quantities. The
classical approach, due to Aubin [1–3] and Yau [105], is to estimate the first, while
a more recent approach is to estimate the second [65, 79], and this builds on
using and finessing older work of Lu [67] and Bando–Kobayashi [8]. Both of these
approaches are explained in a unified manner in [81, § 7]. The result we need is
[81, Corollary 7.8 (i)].

Lemma 5.14. Let ϕ ∈ C4(M) ∩ PSH(M,ω). Suppose that

Ricωϕ ≥ −C1ω − C2ωϕ, (52)

and
max
M

Bisecω ≤ C3. (53)

Then

−n < Δωϕ ≤ (C1 + n(C2 + 2C3 + 1))e(C2+2C3+1) oscϕ − n. (54)

To see that this result is applicable, observe first that (53) holds simply
because M is compact and ω is smooth. Second, according to (40)

Ricωϕ(s,t) = (1 − t)Ricω + sωϕ(s,t) + (μt− s)ω

≥ sωϕ(s,t) + (μt+ (1− t)C4 − s)ω,

where C4 is a lower bound for the Ricci curvature of ω, i.e., satisfying

Ricω ≥ C4ω.

Therefore, Lemma 5.14 holds with

C1 = max{0, |μt+ (1− t)C4 − s|}, C2 = max{0, |s|}, C3 = C3(ω).

5.6. Higher-order compactness via Evans–Krylov’s estimate

To show our solutions along the continuity method are smooth, it suffices to im-
prove the Laplacian estimate to a C2,γ estimate for some γ > 0. Indeed, then it
is standard to see that the solutions automatically have uniform Ck,γ estimates
for each k (Exercise 5.18). This is obtained via the standard Evans–Krylov esti-
mate, adapted to the complex setting. The standard references for this are the
lecture notes of Siu [87] and B�locki [20, § 5], as well as the treatment of the real
Monge–Ampère equation by Gilbarg and Trudinger [58], with the modification by
Wang–Jiang [102], B�locki [19].

Lemma 5.15. Let ψ ∈ C4(M) ∩ PSH(M,ω) be a solution to ωn
ψ = ωneF . Then

||ψ||C2,γ ≤ C, (55)

where γ > 0 and C depend only on M,ω, ||Δωψ||C0 , ||ψ||C0 , and ||F ||C2 .

Proof. For concreteness, we carry out the proof for out particular F in (38). For
each pair (s, t) define h = h(s, t) by

log h := tfω − sϕ+ ct + log det[ψij̄ ], (56)
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where ψ is a local Kähler potential for ω on some fixed neighborhood (we will
obtain our estimate only on this neighborhood, but then cover M with finitely
many such). Set u := ψ + ϕ. Each Ck,γ norm of ψ is bounded by a constant
C = C(k, γ, ω), so to get the desired bound on ϕ is tantamount to bounding u.

Let η = (η1, . . . , ηn) ∈ Cn be a unit vector, and consider u as a function of
(z1, . . . , zn) ∈ Cn. Then,

(log det[uij̄ ])ηη̄ = −uil̄ukj̄uηij̄uη̄kl̄ + uij̄uηη̄ij̄ .

(repeated differentiation is justified since by assumption ϕ and hence u belong to
C4(M)). Since

log det[uij̄ ] = log det[ψij̄ + ϕij̄ ] = log h,

and letting
w := uηη̄, (57)

we thus have

uij̄wij̄ ≥ (log h)ηη̄ =
hηη̄

h
− |hη|2

h2
, (58)

which can be rewritten in divergence form,

(huij̄wi)j̄ ≥ ηl̄(ηkhk)l̄ − g, g :=
|hη|2
h

. (59)

Theorem 5.16 ([58, Theorem 8.18]). Let Ω ⊂ Rm, and assume B4ρ = B4ρ(y) ⊂ Ω.
Let L = Di(a

ijDj + bi)+ ciDi+ d be strictly elliptic, λI < [aij ], with aij , bi, ci, d ∈
L∞(Ω), satisfying∑

i,j

|aij |2 < Λ2, λ−2
∑

(|bi|2 + |ci|2) + λ−1|d| ≤ ν2.

Then if U ∈ W 1,2(Ω) is nonnegative and satisfies LU ≤ g+Dif
i, with f i ∈ Lq, g ∈

Lq/2 with q > m, then for any p ∈ [1, m
m−2 ),

ρ−m/p||U ||Lp(B2ρ) < C(inf
Bρ

U + ρ1−m/q||f ||Lq(B2ρ) + ρ2−2n/q||g||Lq/2(B2ρ))

< C(inf
Bρ

U + ρ||f ||L∞(B2ρ) + ρ2||g||L∞(B2ρ)),

with C = C(n,Λ/λ, νρ, q, p).

Lemma 5.17. Let w be defined by (57). Suppose that s > S. One has

sup
B2ρ

w − 1

|Bρ|

∫
Bρ

wωn ≤ C
(
sup
B2ρ

w − sup
Bρ

w + ρ(ρ+ 1)
)
, (60)

with C = C(M,ω, S, ||ϕ(s, t)||C0(M), ||Δωϕ(s, t)||C0).

Proof. By (59) v := supB2ρ
w − w satisfies

(huij̄vi)j̄ ≤ g − ηl̄(ηkhk)l̄, (61)

where g :=
|hη|2
h . In general, there are positive bounds on [uij̄ ] and [uij̄ ], depending

only on ||Δωϕ(s, t)||C0 , and hence similar positive bounds on [aij̄ ] := h[uij̄ ] and
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its inverse, in these coordinates, depending only on S,M, ω, ||Δωϕ(s, t)||C0 , and
||ϕ(s, t)||C0 (since the latter two quantities control ||ϕ(s, 1)||C0,1 by interpolation).
This, together with Theorem 5.16, gives the desired inequalities provided that
v ∈ W 1,2(M,ωn), which is automatic as v and ωn are smooth and M is compact.
The lemma follows. �

Now, let {Vj}nj=1 be smooth vector fields on M that span T 1,0M over M and

that on a local chart are given by Vk := ∂
∂zk

, k = 1, . . . , n, and denote

M(ρ) := sup
|ζ|,|Z|∈(0,ρ)

n∑
j=1

VjVju, m(ρ) := inf
|ζ|,|Z|∈(0,ρ)

n∑
j=1

VjVju

Our goal is to show that ν(ρ) := M(ρ) −m(ρ) is Hölder continuous with respect

to gω, i.e., ν(ρ) ≤ Cργ
′
, for some γ′ > 0, or equivalently that ν(ρ) ≤ (1− ε)ν(2ρ)+

σ(ρ), for some ε ∈ (0, 1) and some non-decreasing function σ [58, Lemma 8.23].
Let

Mη(ρ) := sup
|ζ|,|Z|∈(0,ρ)

uηη̄, mη(ρ) := inf
|ζ|,|Z|∈(0,ρ)

uηη̄, νη(ρ) := Mη(ρ)−mη(ρ).

Equation (60) implies

sup
B2ρ

w − 1

|Bρ|

∫
Bρ

w ≤ C
(
νη(2ρ)− νη(ρ) + ρ(ρ+ 1)

)
, (62)

and so it remains to obtain a similar inequality for w − infB2ρ w.
Note that DF |A.(A−B) ≤ F (A)−F (B), by concavity of F (A) := log detA

on the space of positive Hermitian matrices. Since DF |∇1,1u = (∇1,1u)−1, we have

uij̄(y)(uij̄(y)− uij̄(x)) ≤ log detuij̄(y)− log detuij̄(x) ≤ |h|C0,1 |y − x|. (63)

We now decompose (uij̄) as a sum of rank one matrices. This will result in the
previous equation being the sum of pure second derivatives for which we can apply
our estimate from the previous step. By uniform ellipticity this decomposition can
be done uniformly in y [87, p. 103],[20]. Namely, we can fix a set {γk}Nk=1 of unit
vectors in Cn (which we can assume contains γ1 = η as well as a unitary frame of
which η is an element) and write

(uij̄(y)) =
N∑

k=1

βk(y)γ
∗
kγk,

with βk(y) uniformly positive depending only on n, λ and Λ. Thus (63) gives

w(y)− w(x) ≤ C|y − x| −
N∑

k=2

βk(y)(uγk γ̄k
(y)− uγkγ̄k

(x))

≤ C|y − x|+
N∑

k=2

βk(y)(sup
B2ρ

uγkγ̄k
− uγkγ̄k

(y)).
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Now let w(x) = infB2ρ w, and average over Bρ to get, using (62),

1

|Bρ|

∫
Bρ

w − inf
B2ρ

w ≤ C
( N∑
k=2

νηk
(2ρ)− νηk

(ρ) + ρ(ρ+ 1)
)
. (64)

Combining this with (62), and summing over k = 1, . . . , N we thus obtain an

estimate on ν(ρ) of the desired form. Hence Δωϕ(s) ∈ C0,γ′
for some γ′ > 0. In

fact our proof actually showed that ϕηη̄ ∈ C0,γ′
for any η. Hence, by polarization

we deduce that also ϕij̄ ∈ C0,γ′
, for any i, j. Hence, |Δωϕ(s, t)|C0,γ′ ≤ C =

C(M,ω, S, ||Δωϕ(s, t)||C0(M), ||ϕ(s, t)||C0(M)). This concludes the proof of Lemma
5.15. �

Exercise 5.18. Suppose that ϕ ∈ C∞(M) satisfies ωn
ϕ = eFωn and that

||ϕ|C2,γ ≤ C.

Show that there exists C′ such that

||ϕ|C3,γ ≤ C′ = C′(M,ω, ||F ||C1,α).

(Hint: Let D be a first-order operator with constant coefficients in some holomor-
phic coordinate chart. Write the Monge–Ampère equation in those coordinates
as

log det[uij̄ ] = log det[ψij̄ ] + F =: F̃ ,

as in the proof of Lemma 5.15 and apply D to this equation. By Exercise 2.1 this
then gives a Poisson type equation for Du,

uij̄(Du)ij̄ = DF̃ .

This is not quite a Poisson equation since the Laplacian on the left-hand side
depends on u itself! However, since we already have uniform C0,γ estimates on
[uij̄ ] and [uij̄ ] the usual Schauder estimates [58] give

||Du||C2,γ ≤ C
(
||Du||C0,γ + ||F̃ ||C0,γ

)
.

Since this holds for

D ∈
{

∂

∂z1
, . . . ,

∂

∂zn
,

∂

∂z1
, . . . ,

∂

∂zn

}
,

we are done.)

Applying the previous exercise repeatedly yields the following improvement
of Lemma 5.15:

Corollary 5.19. Let ψ ∈ Ck+1(M)∩PSH(M,ω) be a solution to ωn
ψ = ωneF . Then

||ψ||Ck,γ ≤ C, (65)

where γ > 0 and C depend only on M,ω, ||Δωψ||C0 , ||ψ||C0 , and ||F ||Ck−1 , and C
depends additionally also on k.
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5.7. Properness implies existence

We now complete the proof of one direction of Conjecture 1.2. LetK be a connected
compact subgroup of the automorphism group. Recall that

HK ⊂ H
consists of all K-invariant elements of H. We denote by

Ck,γ
K

the subset of Ck,γ consisting of K-invariant functions. Denote by

B ⊂ A

the subset of parameter values (s, t) for which there exists a K-invariant C2,γ

solution ϕ(s, t) to (41). Note that (−∞, 0]×{0} ⊂ B since ϕ(s, 0) = 0 and we can
always assume that ω is K-invariant, for instance by taking an arbitrary Kähler
metric and averaging it with respect to the Haar measure of G [62, p. 88].

Next, observe that the openness arguments of § 5.2 run through unchanged for
K-invariant solutions. This is because Ms,t : C

2,γ ∩PSH(M,ω) → C0,γ defined by

Ms,t(ϕ) := log
ωn
ϕ

ωn
− tfω + sϕ− ct, (s, t) ∈ A,

actually maps C2,γ
K ∩ PSH(M,ω) to C0,γ

K , and therefore

DMs,t|ϕ(s,t) = Δϕ(s,t) + s, (s, t) ∈ A,

maps C2,γ
K to C0,γ

K . In conclusion then, B is a nonempty open subset of A. More-
over, if

AS := (−S,−1/S]× [0, 1], (66)

we have that B ∩ AS is a nonempty open subset of AS for any value S > 1.
First, we show that AS ⊂ B. Indeed, let (s, t) ∈ ∂(B ∩ AS), and let

{(sj , tj)}j ⊂ B∩AS be a subsequence converging to (s, t). According to Lemma 5.8,

sup
j

max
M

|ϕ(sj , tj)| < C(1 + S).

Then, according to Lemma 5.14,

sup
j

max
M

|Δωϕ(sj , tj)| < C = C(M,ω, S).

Thus, according to Lemma 5.15,

sup
j

max
M

||ϕ(sj , tj)||C2,γ < C = C(M,ω, S).

Therefore, for every α ∈ (0, γ), the functions ϕ(sj , tj) converge to ϕ(s, t) in the
C2,α topology, and moreover ϕ(s, t) ∈C2,γ . Thus, (s, t) ∈ B. This completes the
proof that AS ⊂ B, So we have shown that

∪S>1AS = (−∞, 0)× [0, 1] ⊂ B.

Observe that this actually concludes the proof of Corollary 5.3 whenever μ < 0
thanks to the elliptic regularity results mentioned below.
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Second, we show that actually A∞ ⊂ B. Indeed, (0, 0) ∈ B, and by openness
also {(0, t) : 0 < t < ε} ⊂ B, for some ε > 0. Applying now Lemma 5.9 instead of
Lemma 5.8, we get just as in the previous paragraph

sup
t

max
M

||ϕ(0, t)||C2,γ < C = C(M,ω).

Thus, as before it follows that A∞ ⊂ B. Observe that the solutions we constructed
are continuous in the parameters s, t ∈ A∞, in particular even up to s = 0, since
we use the openness argument that relies on the implicit function theorem that
necessarily produces solutions that depend continuously on the parameters. This
actually concludes the proof of Corollary 5.3 (again, thanks to the elliptic regularity
results).

Third, we treat the remaining piece in A. First, by openness {(s, 1) : 0 ≤
s < ε} ⊂ B, for some ε = ε(M,ω) > 0. Therefore, by Lemma 5.11 together with
the higher-order estimates (as in the preceding paragraphs)

sup
s

max
M

||ϕ(s, 1)||C2,γ < C = C(M,ω).

Once again, this is enough to conclude that [0, μ]× {1} ⊂ B. Thus,

B = A,

as desired.
Finally, by Corollary 5.19 (standard elliptic regularity results), the C2,γ so-

lutions we constructed are actually smooth. Thus, ϕ(μ, 1) ∈ HK , and ωϕ(μ,1) is
K-invariant Kähler–Einstein metric. This concludes the proof of Theorem 5.1.

6. A counterexample to Tian’s first conjecture and
a revised conjecture

Theorem 5.1 shows that properness implies existence. This is one direction of
Tian’s first conjecture (Conjecture 1.2). The special case when there are no auto-
morphisms (by which we mean ones homotopic to the identity, i.e., Aut(M, J)0 =
{id}) of the other, harder, direction of Conjecture 1.2 was established by Tian
[96] under a technical assumption that was removed by Tian–Zhu [100]. This gave
considerable plausibility to the conjecture. We now explain another reason why
the general case of the conjecture seems plausible.

6.1. Why Tian’s conjecture is plausible

First we explain why it is natural (in fact, necessary!) for this harder converse
direction to only try to establish properness on HK and not on all of H. For
this, observe first that E is invariant under the action of Aut(M, J)0 whenever a
Kähler–Einstein metric exists:

Claim 6.1. Suppose (M, J, ω) is Fano Kähler–Einstein with μ[ω] = 2πc1(M) and
μ > 0. Then E(g�ωϕ) = E(ωϕ) for all g ∈ Aut(M, J)0 and ϕ ∈ H.



412 Y.A. Rubinstein

Proof. By (36),

d

dt

∣∣∣
t=0

E((expI tX)�ωϕ) = −V −1

∫
M

ψX
ωϕ

Δωϕfωϕω
n
ϕ

= −V −1

∫
M

ψX
ωϕ

(sωϕ − nμ)fωϕω
n
ϕ.

(67)

By a theorem of Futaki the functional

η �→
∫
M

ψX
η (sη − nμ)fηη

n

is constant on H [26, 29, 56]. Since it is zero at ω (Ricω = μω implies sω = nμ),
it is identically zero. Thus,

d

dt

∣∣∣
t=0

E((expI tX)�ωϕ) = 0. (68)

Now, actually
d

dt

∣∣∣
t=s

E((expI tX)�ωϕ) = 0 (69)

for every s. Indeed,

d

dt

∣∣∣
t=s

E((expI tX)�ωϕ) =
d

dt

∣∣∣
t=0

E((expI(s+ t)X)�ωϕ)

=
d

dt

∣∣∣
t=0

E((expI tX)�((expI sX)�ωϕ))

= 0,

(70)

by replacing ωϕ by (expI sX)�ωϕ in (68). Since Aut(M, J)0 is a covered by its
one-parameter subgroups, the statement follows. �

On the other hand, the Aubin functional is not invariant under the action of
automorphisms. In fact, it might blow up along a one-parameter subgroup. The
following lemma is due to Bando–Mabuchi [9, Lemma 6.2].

Lemma 6.2. Let ω ∈ H be arbitrary and suppose η ∈ H is Kähler–Einstein with
μ > 0. The function Fη : Aut(M, J)0 → R+,

Fη : g �→ (I − J)(g�η)

is proper (when we identify Aut(M, J)0 with its η-orbit in H and endow this subset
of H with the C2,γ(M,ω)-topology).

Proof. Indeed, suppose that I − J is bounded on a sequence ωj = ωϕj of Kähler–
Einstein metrics in Aut(M, J)0.η ⊂ H. By Claim 6.1 and (15),

C = E(ϕ1) = E(ϕj) = Ent(efωωn, ωn
ϕj
)− μ(I − J)(ϕj).

Now, normalize ϕj so that (recall (35))

ωn
ϕj

= ωnefω−μϕj
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(this fixes ϕj since μ > 0 and the right-hand side must integrate to V ). Plugging
back into the formula for E(ϕj) gives

C = E(ϕj) = −μ

∫
ϕjω

n
ϕj

− μ(I − J)(ϕj),

or,

−μ

∫
ϕjω

n
ϕj

= C + μ(I − J)(ϕj) ≤ C′,

by assumption that (I − J)(ϕj) is uniformly bounded. But now

V −1

∫
ϕjω

n = −V −1

∫
−ϕjω

n
ϕj

+ I(ϕj)

≤ −V −1

∫
−ϕjω

n
ϕj

+
n+ 1

n
(I − J)(ϕj)

≤ −(I − J)(ϕj) +
n+ 1

n
(I − J)(ϕj)

=
1

n+ 1
(I − J)(ϕj) ≤

C

n+ 1
.

(71)

Thus, by (33),

maxϕj ≤ V −1

∫
ϕjω

n + C′ < C′′.

Now a Moser iteration argument just as in § 5.4 applies (the Sobolev and Poincaré
constants of the Kähler–Einstein metrics of Ricci curvature equal to μ > 0 are all
uniform) to give

−minϕj ≤
C

V

∫
−ϕjω

n
ϕj

+ C.

Combining the last two equations,

oscϕj = maxϕj −minϕj ≤ C +
C

V

∫
−ϕjω

n
ϕj

+ C′′ ≤ C′′′,

using the display prior to (71). Since ϕj must change signs (from the normalization
for ϕj inherent in ωn

ϕj
= ωnefω−μϕj and the one for fω in Definition 3.4), we have

showed that

||ϕj ||L∞ < C,

and consequently

||ϕj ||Ck,γ < C(k, γ),

for all k, α, which when k = 2 gives

C−1ω ≤ ωj ≤ Cω.

Thus, endowing Aut(M, J)0 with, say, the C2,γ-topology we see that the preimage
under of Fη of compact sets in R+ are compact in the C2,γ-topology, i.e., by
definition Fη (the original Fη considered as a map on the group Aut(M, J)0) is
proper. �
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Corollary 6.3. Suppose (M, J, η) is Fano Kähler–Einstein with μ[ω] = 2πc1(M)
and μ > 0 and that Aut(M, J)0 is nontrivial. Then

(I − J) : {g�η : g ∈ Aut(M, J)0} → R+

is unbounded from above.

Proof. Indeed, by Corollary 14.7 below Fη (defined in Lemma 6.2) descends to a
function on isom(M, g), still denoted by Fη,

Fη(X) = (I − J)
(
(expI JX)�η

)
.

Since this function is still proper and isom(M, g) is a non-compact vector space,
Fη must be unbounded. �
Remark 6.4. There is actually no particular need to look at the orbit of a Kähler–
Einstein metric to show unboundedness; the same is true for the orbit of any metric
as long as a Kähler–Einstein exists. Indeed, if α, ω, η ∈ H, with η Kähler–Einstein,

E(g�α) = E(ω, g�α) = E(ω, g�η) + E(g�η, g�α) = E(ω, g�η) + E(η, α).

Thus, E(g�α) is unbounded if and only if E(g�η) is (as E(η, α) is some fixed
constant).

6.2. A counterexample

However, surprisingly, Tian’s first conjecture (which was stated as a theorem in
[96, Theorem 4.4]) was recently disproved by Darvas and the author by establishing
the following optimal version of Tian’s conjecture.

Theorem 6.5. Suppose (M, J, ω) is Fano with μ[ω] = 2πc1(M) and μ > 0, and that
K is a maximal compact subgroup of Aut(M, J)0 with ω ∈ HK . The following are
equivalent:

(i) There exists a Kähler–Einstein metric in HK and Aut(M, J)0 has finite cen-
ter.

(ii) There exists C,D > 0 such that E(η) ≥ CJ(η)−D, η ∈ HK .

Thus, restricting to the K-invariant potentials is necessary, but not sufficient,
to guarantee properness.

Remark 6.6. The estimate in (ii) gives a concrete version of the properness condi-
tion (2). The direction (i) ⇒ (ii) is due to Phong et al. [74, Theorem 2], building
on earlier work of Tian [96] and Tian–Zhu [100] in the case Aut(M, J)0 = {id},
who obtained a weaker inequality in (ii) with J replaced by Jδ for some δ ∈ (0, 1)
(for more details see also the survey [98, p. 131]).

Example 6.7. [45, Example 2.2] Let M denote the blow-up of P2 at three non
colinear points. It is well known that it admits Kähler–Einstein metrics (see, e.g.,
[103]). In fact, one way to see this is by showing that Tian’s invariant is equal to
1 for an appropriately chosen group of symmetries [10] and then apply Corollary
5.2 (with μ = 1). According to [51, Theorem 8.4.2],

Aut(M, J)0 = (C�)2. (72)



Tian’s Properness Conjectures 415

We will explain this fact in a moment. Given this, we see that Aut(M, J)0 is equal
to its center which is clearly not finite. Thus, Conjecture 1.2 fails forM by Theorem
6.5. Following the appearance of [45], X.-H. Zhu informed the author that using
toric methods one can give an alternative proof that Conjecture 1.2 fails in the
special case of toric Fano n-manifolds that satisfy Aut(M, J)0 = (C�)n.

To see (72), observe that automorphisms homotopic to the identity map
preserve the cohomology class of divisors. Thus, they preserve each of the three
exceptional divisors. In particular, they descend to automorphisms of P2 which
preserve the three blowup points. By that we mean that if f ∈ Aut(M, J)0 then
π ◦ f ◦ π−1 ∈ Aut(P2). Now automorphisms of P2 are represented by invertible
three-by-three matrices, up to a nonzero complex number. We may assume in this
representation that the three points are then [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]
(since they are not collinear!). Thus, each such automorphism is represented by a
diagonal matrix. Since the matrix is invertible, and determined up to a nonzero
complex number, that matrix can be taken to be⎛⎝a 0 0

0 b 0
0 0 1

⎞⎠ , a, b ∈ C�.

Conversely, the blow-up of P2 at three non colinear points is a toric manifold so
its automorphism group contains a copy of (C�)2. Thus, (72) is established.

These results motivate a reformulation of Tian’s original conjecture. To pre-
sent this reformulation we first make an excursion to infinite-dimensional metric
geometry in the next sections. In Section 12 we return to state the reformulated
conjecture, whose proof is described in Section 15.

7. Infinite-dimensional metrics on H
Approaching problems in Kähler geometry through an infinite-dimensional per-
spective goes back to Calabi in 1953 [28] and later Mabuchi in 1986 [69]. These
works proposed two different weak Riemannian metrics of L2 type which have been
studied extensively since.

The most widely studied such metric is the Mabuchi metric [69],

gM(ν, η)|ϕ :=

∫
M

νη ωn
ϕ, ν, η ∈ TϕHω

∼= C∞(M), (73)

discovered independently also by Semmes [86] and Donaldson [52] (see, e.g., [80,
Chapter 2] for an exposition and further references).

Calabi’s metric is given by

gC(ν, η)|ϕ :=

∫
M

ΔϕνΔϕη
ωn
ϕ

n!
. (74)

This metric was introduced by Calabi in the 1950s in talks and in a research
announcement [28]. It might seem a little less natural at first since it involves more
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derivatives than the Mabuchi metric. However, from a Riemannian geometric point
of view it is actually more natural, since it is simply the L2 metric on the level
of Riemannian metrics, as the following simple result shows. To state this result
we let

M
denote the infinite-dimensional space of all smooth Riemannian metrics on M .
The Ebin metric, also called the L2 metric [53] (cf. [48]) is defined by

gE(h, k)|g :=

∫
M

tr(g−1hg−1k)dVg , (75)

where g ∈ M, h, k ∈ TgM and TgM ∼= Γ(Sym2T �M), the space of smooth,
symmetric (0, 2)-tensor fields on M .

Proposition 7.1 ([38, Proposition 2.1]). Consider the inclusion ιH : H ↪→ M.
Then, ι�H gE = 2gC.

In other words, (H, 2gC) is isometrically embedded in (M, gE), or what is the
same, the metric gC is induced by the metric gE.

On the other hand, the Mabuchi metric is more natural from a symplectic
or complex geometry point of view. As shown by Semmes and Donaldson, the
Mabuchi metric can be considered as an infinite-dimensional analogue of the sym-
metric space metric structure on spaces of the form GC/G where G is a compact
Lie group, but where the group is now infinite-dimensional, more specifically the
group of Hamiltonian diffeomorphisms of (M,ω). We refer the reader to [52, 86],
[97, Chapter 4], [92]. In another vein, the Mabuchi metric is also natural from
the point of view of semi-classical complex geometry, also referred to as Kähler
quantization sometimes. We refer the reader to [54, 75, 80, 82].

8. Metric completions of H
Historically, Calabi claimed that the completion of his metric “consists of the
positive semidefinite Kähler metrics defining the same principal class,” i.e., of

{ωϕ := ω +
√
−1∂∂̄ϕ : ϕ ∈ C∞(M), ωϕ ≥ 0}.

Except from this single line published in his short talk abstract in 1953 [28],
there has been no study or even conjectures in the literature concerning metric
completions of H. The first article in this direction is due to Clarke–Rubinstein in
2011 [38], that we now turn to discuss.

8.1. The Calabi metric completion

Denote by dC : H ×H → R+ the distance function associated to metric gC. It is
defined as follows. A curve [0, 1] # t �→ αt ∈ H is called smooth if α(t, z) is smooth
in both t and z. Denote α̇t := ∂α(t)/∂t. The length of a smooth curve t → αt is

�C(α) :=

∫ 1

0

√
gC(α̇t, α̇t)|αtdt. (76)
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Definition 8.1. The path length distance of (H, gC) is defined by

dC(ω, η) := inf
{
�C(α) : α : [0, 1] → H
is a smooth curve with α(0) = ω, α(1) = η

}
.

We refer to the pseudometric dC as the Calabi metric.

Remark 8.2. As observed already by Calabi, the Calabi–Yau Theorem implies that
(H, gC) is isometric to a portion of a sphere in L2(M,ωn), and therefore the Calabi
(pseudo)-metric is actually a metric, justifying the above name (see, e.g., [38, pp.
1488–1489] or [30]). Even though we refer to dC and to gC by the same name, we
hope it will be clear below to which one we are referring to from the context.

The Calabi metric completion is given by the following theorem due to
Clarke–Rubinstein [38, Theorem 5.6].

Theorem 8.3. The metric completion of (H, dC) is given by

(H, dC) ∼= {ϕ ∈ E(M,ω) : ωn
ϕ is absolutely continuous with

respect to ωn and ωn
ϕ/ω

n ∈ L1(M,ωn)},
and is a strict subset of

E(M,ω) :=

{
ϕ ∈ PSH(M,ω) : lim

j→∞

∫
{ϕ≤−j}

(ω +
√
−1∂∂̄max{ϕ,−j})n = 0

}
.

Furthermore, convergence with respect to dC is characterized as follows. A sequence
{ωϕk

} ⊂ H converges to ωϕ ∈ H with respect to dC if and only if ωn
ϕk

→ ωn
ϕ in the

L1 sense, i.e., ∫
M

∣∣∣ωn
ϕk

ωn
−

ωn
ϕ

ωn

∣∣∣ωn → 0.

Remark 8.4. Observe that the metric completion turns out to be considerably
larger than what Calabi claimed. We also note that Theorem 8.3 was motivated by
the computation of the metric completion of the ambient space (M, gE) obtained
in Clarke’s thesis [37]. It is interesting to note that his result does not directly
imply Theorem 8.3 as one might suspect from Proposition 7.1.

Remark 8.5. The space E(M,ω) was introduced by Guedj–Zeriahi [60, Definition
1.1]. The statement of Theorem 8.3 of course assumes that the measure ωn

ϕ can be
defined for each ϕ ∈ E(M,ω). This is indeed the case, but requires considerable
background from pluripotential theory. One defines

ωn
ϕ := lim

j→−∞
1{ϕ>j}(ω +

√
−1∂∂̄max{ϕ, j})n.

By definition, 1{ϕ>j}(x) is equal to 1 if ϕ(x) > j and zero otherwise, and the

measure (ω +
√
−1∂∂̄max{ϕ, j})n is defined by the work of Bedford–Taylor [11]

since max{ϕ, j} is bounded. The limit is then well defined as a Borel measure; for
more details we refer to [60, p. 445].
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What is perhaps more interesting than computing the metric completion
itself, is the fact that this computation yields nontrivial geometric information
[38, Theorem 6.3].

Definition 8.6. We say that (M,J) is Calabi–Ricci unstable (or CR-unstable) if

there exists a Ricci flow trajectory that diverges in (H, dC). Otherwise, we say
(M,J) is CR-stable.

Theorem 8.7. A Fano manifold (M,J) is CR-stable if and only if it admits a
Kähler–Einstein metric. Moreover, if it is CR-unstable then any Ricci flow trajec-
tory diverges in (H, dC).

Theorem 8.7 might seem rather abstract, however it shows that convergence
in the metric completion is fundamental geometrically. In addition, it can be stated
entirely in terms of an a priori estimates without any reference to the metric
completion [38, Corollary 6.9]:

Corollary 8.8. The Ricci flow (78) converges smoothly if and only if

||s− n||L1(R+,L2(M,ω(t))) < ∞, (77)

where s = s(t) denotes the scaler curvature of (M,ω(t)).

This improves a result of Phong et al. [74], where (77) is replaced by

||s− n||L1(R+,C0(M)) < ∞,

which was proved by completely different methods. The novelty in Corollary 8.8 is
that it uses supposedly “soft” infinite-dimensional geometry to prove actual “hard”
a priori estimates for a PDE. Of course, the catch is that some analysis does go
into computing the metric completion and, aside from that, some PDE techniques
are still needed in the proof of Corollary 8.8. But, nevertheless, the idea that
some PDE estimates can be explained using infinite-dimensional geometry seems
attractive.

Exercise 8.9. Show that the length of the curve t �→ ωϕ(t) with respect to the
Calabi metric is equal to

||s− n||L1(R+,L2(M,ω(t)))

if ωϕ(t) satisfies the Ricci flow equation

∂ω(t)

∂t
= −Ricω(t) + μω(t), ω(0) = ω ∈ H. (78)

Also, show that any solution of (78) that starts in H remains in H [64]. Thus, it
makes sense to write ω(t) = ωϕ(t).

Thus, Corollary 8.8 shows that convergence of the flow is equivalent to having
finite distance in the Calabi metric.

Exercise 8.10. Rewrite (78) in the form of a complex Monge–Ampère equation

ωn
ϕ = ωnefω−μϕ+ϕ̇, ϕ(0) = const. (79)
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We remark that, depending on the context, the choice of the constant ϕ(0)
might involve some care (see [36, § 10.1],[72, § 2]).

Exercise 8.11. Assuming the theory of short-time existence for (78) (which replaces
the openness arguments for the continuity method) show that for every ω ∈ H
the equation (79) admits a solution for all t > 0 whenever μ < 0. To do this,
use Exercise 8.10 as well as the results of § 5. Moreover, show that as t tends to
infinity, the solutions ω(t) converge to the Kähler–Einstein metric.

Recently, Darvas generalized Calabi’s metric to a two-parameter family of
Finsler metrics, given by

||η||C,p,q
ϕ :=

(∫
M

|Δωϕη|p
(ωn

ϕ

ωn

)q ωn

n!

)1/q

, (80)

and computed the corresponding metric completions, directly generalizing The-
orem 8.3. Denote by dC,p,q : H × H → R+ the path-length distance function
associated to (80).

Theorem 8.12 ([41, Theorem 1.1]). Let p, q ∈ (1,∞) and q ≤ p. The metric com-
pletion of (H, dC,p,q) is given by

(H, dC,p,q) ∼= {ϕ ∈ E(M,ω) : ωn
ϕ is absolutely continuous with

respect to ωn and ωn
ϕ/ω

n ∈ Lq(M,ωn)}.
Furthermore, convergence with respect to dC,p,q is characterized as follows. A se-
quence {ωϕk

} ⊂ H converges to ωϕ ∈ H with respect to dC,p,q if and only if
ωn
ϕk

→ ωn
ϕ in the Lq sense, i.e.,∫

M

∣∣∣ωn
ϕk

ωn
−

ωn
ϕ

ωn

∣∣∣qωn → 0.

In particular, the metric completion is independent of p! This immediately
yields, by the same results of [38] that lead to Corollary 8.8, the following improve-
ment to Corollary 8.8 [41, Theorem 1.1].

Corollary 8.13. The Ricci flow (78) converges smoothly if and only if

||s− n||L1(R+,L1(M,ω(t))) < ∞. (81)

Exercise 8.14. Show that the length of the curve t �→ ωϕ(t) with respect to dC,1,1

is equal to

||s− n||L1(R+,L1(M,ω(t)))

if ωϕ(t) satisfies the Ricci flow equation (78).

It would be interesting to obtain a proof of Corollary 8.13 using direct flow
methods. At the same time, it is remarkable that such metric completion techniques
can lead to new estimates on geometric flows. We believe that this circle of ideas
should find more applications in other geometric and analytic settings.
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8.2. The Mabuchi metric completion

As remarked earlier, the Calabi metric is more closely tied with the Riemannian
geometry of M , and indeed convergence in the Calabi metric is related to conver-
gence of the associated Riemannian volume forms. The Mabuchi metric, on the
other hand, is more closely tied with the complex geometry ofM , and so completely
different methods would be needed to compute the Mabuchi metric completion.
Using sophisticated techniques from pluripotential theory this was carried through
by Darvas. A special case was also obtained around the same time by Guedj [59].
Define,

Hω = {ϕ : ϕ ∈ C∞(M), ωϕ > 0}, (82)

and

E2 :=

{
ϕ ∈ E(M,ω) :

∫
ϕ2ωn

ϕ < ∞
}
.

A curve [0, 1] # t �→ ϕ(t) ∈ Hω is called smooth if ϕ(t, z) = ϕ(t)(z) ∈
C∞([0, 1]×M). Denote ϕ̇(t) := ∂ϕ(t)/∂t. The length of a smooth curve t �→ ϕ(t) is

�M(α) :=

∫ 1

0

√
gM(ϕ̇(t), ϕ̇(t))|ϕ(t)dt. (83)

Definition 8.15. The path length distance of (Hω, dM) is defined by

dM(ϕ0, ϕ1) := inf
{
�M(ϕ) : ϕ : [0, 1] → Hω

is a smooth curve with ϕ(0) = ϕ0, ϕ(1) = ϕ1

}
.

We call the pseudometric dM the Mabuchi metric.

The metric completion of the Mabuchi metric is given by the following the-
orem of Darvas [39, Theorem 1] which also justifies the name given to dM above.

Theorem 8.16. (Hω , dM) is a metric space. Moreover, the metric completion of
(Hω, dM) equals (E2, dM,2), where

dM,2(ϕ0, ϕ1) := lim
k→∞

dM(ϕ0(k), ϕ1(k)), (84)

for any smooth decreasing sequences {ϕi(k)}k∈N ⊂ H converging pointwise to ϕi ∈
E2, i = 0, 1.

Of course, the statement should be understood as also including the claims
that: (i) (84) is well defined independently of the choices of the approximating
sequences, (ii) convergence in the metric completion is characterized as follows:
{ϕj} ⊂ E2 converges to ϕ ∈ E2 if limj dM,2(ϕj , ϕ) = 0.

The first part Theorem 8.16, namely the statement that (Hω, dM) is a met-
ric space, was essentially proven by Chen in 2000 [33] following a conjecture by
Donaldson in 1999 [52].

Remark 8.17. The space H (1) is the space of Kähler forms, while the space Hω

(82) is the space of Kähler potentials. In many instances one can go back and forth
between the two carelessly, however in some situations some care is needed. One
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may also identify the latter as a subspace of the former in several ways, but again
some care is needed in doing so. For example,

Hω ∩ {AM = 0} (85)

is a dM-totally geodesic submanifold (hypersurface) of Hω [69, Proposition 2.6.1],
[52, § 3]. The submanifold (85) can be naturally identified with H. Sometimes,
though, we will use identifications different from (85).

In the vein of Remark 8.17, we distinguish between solutions of (78), which
we continue to refer to as solutions to the Ricci flow, and solutions of (79), which
we refer to as solutions to the Kähler–Ricci flow.

Exercise 8.18. Does the map ω(t) �→ ϕ(t) that sends solutions of (78) to solutions
of (79), come from the identification of H with (85)?

Theorem 8.16 has already found several geometric applications. The first is
the following analogue of Theorem 8.7 for the Mabuchi metric, due to Darvas
[39, Theorem 6.1].

Definition 8.19. We say that (M,J) is Mabuchi–Ricci unstable (or MR-unstable)

if there exists a Kähler–Ricci flow trajectory that diverges in (H, dM). Otherwise,
we say (M,J) is MR-stable.

Theorem 8.20. A Fano manifold (M,J) is MR-stable if and only if it admits a
Kähler–Einstein metric. Moreover, if it is MR-unstable then any Ricci flow tra-

jectory diverges in (H, dC).

Exercise 8.21. Show that the length of the curve t �→ ϕ(t) with respect to dM is
equal to

||fωϕ(t)
||L1(R+,L2(M,ωϕ(t))) (86)

if ϕ(t) satisfies (79) (which by Exercise 8.10 implies that ωϕ(t) satisfies the Ricci
flow equation (78)). As observed by Darvas, Theorem 8.20 together with the ar-
guments of [38] imply the following analogue of Corollary 8.13 first obtained by
McFeron [71]: the flow (79) converges if and only if (86) is finite.

In fact, the following improvement of the last statement in Exercise 8.21 is
due to Darvas. It follows from [39, Theorem 6.1] together with later work of Darvas
surveyed in § 9:
Theorem 8.22. The Kähler–Ricci flow (79) converges smoothly if and only if

||f ||L1(R+,L1(M,ωϕ(t))) < ∞, (87)

where f = fωϕ(t)
is the Ricci potential along the flow (recall Definition 3.4).

Other applications for Theorem 8.16 include the work of Streets [90], and
more recently Berman–Darvas–Lu [18], who show that one gains new insight on
the long time behavior of the Calabi flow by placing it in the context of the Mabuchi
metric completion; the work of Darvas–He [43], where the asymptotic behavior of
the Kähler–Ricci flow in the metric completion is related to destabilizing geodesic
rays. We refer the reader to the survey [81] for more references.
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9. The Darvas metric and its completion

Perhaps surprisingly, a key observation of Darvas is that not a Riemannian, but
rather a Finsler metric, encodes the asymptotic behavior of the Aubin functional
J . This is discussed in Section 10. In this section we introduce the Darvas metric
and survey some of its basic properties. In later sections, through considerable
more technical work, we survey later work of Darvas–Rubinstein that shows that
the same is also true for essentially all energy functionals on H whose critical
points are precisely various types of canonical metrics in Kähler geometry. In fact,
as pointed out in [45, Remark 7.3], the same kind of statement is in general false for
the much-studied Riemannian metrics of Calabi and Mabuchi. Thus, the Darvas
metric turns out to be fundamental.

The Darvas metric is a weak Finsler metric on Hω given by [40],

‖ν‖Dϕ := V −1

∫
M

|ν|ωn
ϕ, ν ∈ TϕHω = C∞(M). (88)

As in § 8.2, define the length of a smooth curve t �→ ϕ(t),

�D(α) :=

∫ 1

0

∫
M

|ϕ̇(t)|ωn
ϕ(t) ∧ dt. (89)

Definition 9.1. The path length distance of (Hω , dD) is defined by

dD(ϕ0, ϕ1) := inf
{
�1(α) : α : [0, 1] → Hω

is a smooth curve with α(0) = ϕ0, α(1) = ϕ1

}
.

We call the pseudometric dD the Darvas metric.

The following result of Darvas justifies this name. To state the result, consider
[0, 1] × R × M as a complex manifold of dimension n + 1, and denote by π2 :
[0, 1]× R×M → M the natural projection.

Theorem 9.2 ([40, Theorem 3.5]). (Hω, dD) is a metric space. Moreover,

dD(ϕ0, ϕ1) = ‖ϕ̇0‖ϕ0 ≥ 0, (90)

with equality iff ϕ0 = ϕ1, where ϕ̇0 is the image of (ϕ0, ϕ1) ∈ Hω ×Hω under the
Dirichlet-to-Neumann map for the Monge–Ampère equation,

ϕ ∈ PSH(π�
2ω, [0, 1]×R×M), (π�

2ω+
√
−1∂∂̄ϕ)n+1 = 0, ϕ|{i}×R = ϕi, i = 0, 1.

(91)

Remark 9.3. (i) The Dirichlet-to-Neumann operator simply maps (ϕ0, ϕ1) to the
initial tangent vector of the curve

t �→ ϕ(t) ≡ ϕt

that solves (91).
(ii) One needs to make sense of the expression ϕ̇0 in (90) since there is no guarantee
that ϕt will be smooth in t. Since ϕ (considered as a function on [0, 1]×R×M) is
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π∗
2ω-psh and independent of the imaginary part of the first variable, it is convex

in t. Thus,

ϕ̇0(x) := lim
t→0+

ϕ(t, x) − ϕ0(x)

t
, (92)

with the limit well defined since the difference quotient is decreasing in t.

The metric completion of the Darvas metric is given by the next result [40,
Theorem 2]. The proof is similar in spirit to that of Theorem 8.16, but involves
considerable additional technicalities stemming, at least intuitively, from the fact
that x �→ x2 is a smooth function while x �→ |x| is only Liphscitz; partly due to
this dealing with an L1 type metric is technically harder in this setting.

Theorem 9.4. The metric completion of (Hω , dD) equals (E1, dD), where
dD(ϕ0, ϕ1) := lim

k→∞
dD(ϕ0(k), ϕ1(k)),

for any smooth decreasing sequences {ϕi(k)}k∈N ⊂ Hω converging pointwise to
ϕi ∈ E1, i = 0, 1. Moreover, for each t ∈ (0, 1), define

ϕt := lim
k→∞

ϕt(k), t ∈ (0, 1), (93)

where ϕt(k) is the solution of (91) with endpoints ϕi(k), i = 0, 1. Then ϕt ∈ E1,
and the curve t → ϕt is well defined independently of the choices of approximating
sequences and is a dD-geodesic.

10. The Aubin functional and the Darvas distance function

Finally we come to the fact stated at the beginning of the previous section relating
the Darvas metric to the Aubin functional.

The subspace
H0 := AM−1(0) ∩Hω (94)

is isomorphic to H (1), the space of Kähler metrics (recall Remark 8.17). We use
this isomorphism to endow H with a metric structure, by pulling back the Darvas
metric defined on Hω.

Proposition 10.1 ([40, Remark 6.3]). There exists C > 1 such that for all ϕ ∈ H0

(recall (94)),
1

C
J(ϕ) − C ≤ dD(0, ϕ) ≤ CJ(ϕ) + C.

We refer the reader to [45, Proposition 5.5] for a proof.
Given the equivalence of J and dD on H0 it is natural to expect that this

should extend to the metric completion. This is indeed the case. This amounts
to two things: (i) one can extend Aubin’s functional J to the metric completion
in a continuous way with respect to the dD-topology, (ii) H0, considered as a
submanifold of H endowed with the metric induced by dD, is a totally geodesic
metric space whose completion coincides with E1∩AM−1(0), which in turn requires
verifying that the Aubin–Mabuchi functional AM can be extended to E1 in a
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continuous way with respect to the dD-topology. These facts are contained in the
following Lemma [45, Lemma 5.2].

Lemma 10.2.

(i) AM, J : Hω → R each admit a unique dD-continuous extension to E1 and
these extensions still satisfy (9) and (7) (in the sense of pluripotential theory).

(ii) The subspace (E1 ∩ AM−1(0), dD) is a complete geodesic metric space, coin-
ciding with the metric completion of (H0, dD) (recall (94)).

Consequently, from now on we denote by AM, J the unique dD-continuous
extensions to E1 given by the previous lemma.

Corollary 10.3. There exists C > 1 such that for all ϕ ∈ E1 ∩ AM−1(0),

1

C
J(ϕ) − C ≤ dD(0, ϕ) ≤ CJ(ϕ) + C.

Next, we discuss a concrete formula for the dD metric relating it to the Aubin–
Mabuchi energy and also give a concrete growth estimate for dD. First we need to
introduce the following rooftop type envelope for u, v ∈ E1:

P (u, v)(z) := sup
{
w(z) : w ∈ PSH(M,ω), w ≤ min{u, v}

}
.

Note that P (u, v) ∈ E1 [39, Theorem 2]. Darvas shows the following beautiful
“Pythagorean” formula for dD, as well as a very useful growth estimate [40, Corol-
lary 4.14, Theorem 3].

Proposition 10.4. Let u, v ∈ E1. Then,
dD(u, v) = AM(u) + AM(v)− 2AM(P (u, v)). (95)

Also, there exists C > 1 such that for all u, v ∈ E1,

C−1dD(u, v) ≤
∫
M

|u − v|ωn
u +

∫
M

|u− v|ωn
v ≤ CdD(u, v). (96)

11. Quotienting the metric completion by a group action

We now incorporate automorphisms into the picture. Since automorphisms induce
isometries of the various infinite-dimensional metrics we have studied so far it is
natural to consider the associated quotient spaces from the metric geometry point
of view. In addition, the various functionals we have studied also admit natural
descents to the quotient spaces.

11.1. The action of the automorphism group on H
Let Aut0(M, J) denote the connected component of the complex Lie group of au-
tomorphisms (biholomorphisms, i.e., homeomorphisms that are holomorphic and
admit a holomorphic inverse) of (M, J). Denote by aut(M, J) the Lie algebra of
Aut0(M, J), consisting of infinitesimal automorphisms, i.e., real vector fields X
satisfying LXJ = 0, equivalently,

J[X,Y ] = [X, JY ], ∀X ∈ aut(M, J), ∀Y ∈ diff(M), (97)
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where diff(M) denotes all smooth vector fields on M . Thus aut(M, J) is a complex
Lie algebra with complex structure J.

The automorphism group Aut(M, J)0 acts on H by pullback:

f.η := f�η, f ∈ Aut(M, J)0, η ∈ H. (98)

Given the one-to-one correspondence between H and H0, the group Aut(M, J)0
also acts on H0. The action is described in the next lemma.

Lemma 11.1. For ϕ ∈ H0 and f ∈ Aut(M, J)0 let f.ϕ ∈ H0 be the unique element
such that f.ωϕ = ωf.ϕ. Then,

f.ϕ = f.0 + ϕ ◦ f, f ∈ Aut(M, J)0, ϕ ∈ H0. (99)

Proof. Note that (99) is a Kähler potential for f�ωϕ. Indeed, f ∈ Aut(M, J) implies

that f�
√
−1∂∂̄ϕ =

√
−1∂∂̄ϕ ◦ f . That AM(f.0 + ϕ ◦ f) = 0 follows from Exercise

11.2 as we have,

AM(f.0 + ϕ ◦ f) = AM(f.0 + ϕ ◦ f)−AM(f.0)

=

∫
M

ϕ ◦ f
n∑

j=0

f�ωn−j ∧ f�ωj
ϕ = AM(ϕ) = 0.

(Of course, AM(f.0) = 0 since by definition f.0 ∈ H0.) �
Exercise 11.2. Show that

AM(v)−AM(u) =
V −1

n+ 1

∫
M

(v − u)

n∑
k=0

ωn−k
u ∧ ωk

v . (100)

Among other things, this formula shows that AM is monotone, i.e.,

u ≤ v ⇒ AM(u) ≤ AM(v). (101)

Lemma 11.3. The action of Aut(M, J)0 on H0 is a dD-isometry.

Proof. From (99),
d

dt
f.ϕt = ϕ̇t ◦ f,

for any smooth path t �→ ϕt in H0. Thus, the dD-length of t �→ f.ϕt is

V −1

∫
[0,1]×M

|ϕ̇t ◦ f |f�ωn
ϕt

∧ dt = V −1

∫
[0,1]×M

|ϕ̇t|ωn
ϕt

∧ dt,

equal to the dD-length of ϕt. �
Suppose G is a subgroup of Aut(M, J)0. By the previous lemma G acts on H

by dD-isometries, hence induces a pseudometric on the orbit space H/G,

dD,G(Gu,Gv) := inf
f,g∈G

dD(f.u, g.v).

Here, we denote by Gu the orbit of u under the action of G. Naturally, Gu is an
element of the orbit space H/G. Thus, dD,G measures the distance between orbits.

It is natural to expect that the group action extends to the metric completion.
This is indeed the case.
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Lemma 11.4. Let (X, ρ) and (Y, δ) be two complete metric spaces, W a dense subset
of X and f : W → Y a C-Lipschitz function, i.e.,

δ(f(a), f(b)) ≤ Cρ(a, b), ∀ a, b ∈ W. (102)

Then f has a unique C-Lipschitz continuous extension to a map f̄ : X → Y .

Proof. Let wk ∈ W be a Cauchy sequence converging to some w ∈ X . Lipschitz
continuity gives

δ(f(wk), f(wl)) ≤ Cρ(wk, wl),

hence f̄(w) := limk f(wk) ∈ Y is well defined and independent of the choice of
approximating sequence wk. Choose now another Cauchy sequence zk ∈ W with
limit z ∈ X , plugging in wk, zk in (102) and taking the limit gives that f̄ : X → Y
is C-Lipschitz continuous. �

Lemma 11.5. The action of Aut(M, J)0 on H0 has a unique dD-isometric extension

to the metric completion (H0, dD) = (E1 ∩ AM−1(0), dD).

Proof. Because Aut(M, J)0 acts by dD-isometries, each f ∈ Aut(M, J)0 induces a
1-Lipschitz continuous self-map of H0. By Lemma 11.4, such maps have a unique
1-Lipschitz extension to the completion E1 ∩ AM−1(0) and the extension is addi-
tionally a dD-isometry. By density, the laws governing a group action have to be
preserved as well. �

For any Lie subgroup K of the isometry group of (M, gω) define the subspace

HK
ω := {ϕ ∈ Hω : ϕ is invariant under K}, (103)

and similarly define HK
0 = HK ∩ AM−1(0). According to Theorem 9.4, the dD-

metric completion of HK
ω is

EK
1 := {u ∈ E1 : u is invariant under K}.

The next result follows using the arguments in the proofs of Lemmas 10.2
and 11.5.

Lemma 11.6. The metric completion of (HK
0 , dD) is EK

1 ∩ AM−1(0).

11.2. The Aubin functional on the quotient space

Let G ⊂ Aut(M, J)0 be a subgroup. Following Zhou–Zhu [107, Definition 2.1] and
Tian [98, Definition 2.5], define the descent of J to H/G,

JG(Gu) := inf
g∈G

J(g.u).

By Lemma 10.2 this functional can be extended to a functional

JG : E1 ∩ AM−1(0)/G → R,

still satisfying

JG(Gu) = inf
g∈G

J(g.u). (104)
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We now see that the key inequality between the Aubin functional and the Darvas
distance function (Proposition 10.1) descends to the metric completion of the
quotient space.

Lemma 11.7. For u ∈ E1 ∩AM−1(0) we have

1

C
JG(Gu)− C ≤ dD,G(G0, Gu) ≤ CJG(Gu) + C, (105)

where dD,G is the pseudometric of the quotient E1 ∩ AM−1(0)/G.

Proof. By Lemma 11.3,

dD,G(G0, Gu) = inf
f∈G

dD(0, f.u).

The result now follows from Proposition 10.1. �

12. A modified conjecture

At last, we return to Conjecture 1.2 and pick up the discussion from where we
left it at the end of Section 6. Lemma 11.7 motivates the following modification of
Conjecture 1.2.

Definition 12.1. Let F : H → R be G-invariant.

• We say F is dD,G-proper if for some C,D > 0,

F (u) ≥ CdD,G(G0, Gu)−D.

• We say F is JG-proper if for some C,D > 0,

F (u) ≥ CJG(Gu)−D.

Conjecture 12.2. Let (M, J, ω) be a Fano manifold. Set G := Aut(M, J)0. There
exists a Kähler–Einstein metric in H if and only if the descent of the Mabuchi
energy E to the quotient space H/G is dD,G-proper (equivalently, JG-proper).

Note that according to Lemma 11.7 both notions of properness are indeed
equivalent. Also, the G-invariance condition can be considered as a version of the
Futaki obstruction [56].

Albeit being a purely analytic criterion, properness should be morally equiva-
lent to properness in a metric geometry sense, namely, that the Mabuchi functional
should grow at least linearly relative to some metric on H, and this is precisely
the content of Conjecture 12.2.

Remark 12.3. We now come back to the analogy with the Dirichlet energy alluded
to in the Prologue. There we seek to minimize the Dirichlet energy, say on the unit
ball in Rn,

E(f) :=

∫
B1(0)

n∑
i=1

(∂xif)
2dx1 ∧ · · · dxn.
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The space of competitors H is now the space of smooth functions with prescribed
boundary values g ∈ C∞(∂B1(0)),

H := {f ∈ C∞(B1(0)) : f |∂B1(0) = g}.
In some sense, the prescribed boundary values can be morally thought of as the
analogue for fixing a Kähler class. What is the analogue of the Aubin functional?
In this case it is just E itself, i.e., we put J = E, so an analogue of Conjecture 1.2
is trivial here. However, the direct method in the calculus of variations motivates
replacing J (which is theW 1,2 seminorm) with theW 1,2 norm. Namely, we consider
the metric

(h, k) :=

∫ n∑
i=1

∂xih∂xikdx
1 ∧ · · · dxn +

∫
hkdx1 ∧ · · · dxn.

The path-length distance is then just the one coming from the norm W 1,2, and
the properness inequality is a consequence of the Poincaré inequality. This then
implies that a minimizer exists in the W 1,2 completion of H. The Euler–Lagrange
equation is precisely the Laplace equation with prescribed boundary data. Elliptic
regularity theory then shows the minimizer must be an element of H itself, hence
a smooth harmonic function agreeing with g on the boundary.

In the remainder of these notes, we sketch the resolution of Conjecture 12.2
due to Darvas–Rubinstein [45].

Theorem 12.4. Conjecture 12.2 holds.

The proof of this result is completed in Section 15.

Remark 12.5. The easier implication “JG-proper ⇒ existence of Kähler–Einstein”
is due to Tian [98, Theorem 2.6] and is a modification of the proof of Theorem 5.1.
Our proof of Theorem 12.4 also furnishes a new proof of this fact. In the special
case of toric Fano manifolds, a variant of the converse direction is due to Zhou–Zhu
[107, Theorem 0.2].

13. A general existence/properness principle

Motivated by Remark 12.3, we approach Conjecture 12.2 using an abstract metric
geometry framework. While seemingly abstract it turns out to be a powerful way
of dealing with several different minimization problems in Kähler geometry.

Notation 13.1. The data (R, d, F,G) is defined as follows.

(A1) (R, d) is a metric space with a distinguished element 0 ∈ R, whose metric
completion is denoted (R, d).

(A2) F : R → R is lower semicontinuous (lsc). Let F : R → R ∪ {+∞} be the
largest lsc extension of F : R→ R:

F (u) = sup
ε>0

(
inf
v∈R

d(u,v)≤ε

F (v)

)
, u ∈ R.
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For each u, v ∈ R define also

F (u, v) := F (v)− F (u).

(A3) The set of minimizers of F on R is denoted

M :=
{
u ∈ R : F (u) = inf

v∈R
F (v)

}
.

(A4) Let G be a group acting on R by G × R # (g, u) → g.u ∈ R. Denote by
R/G the orbit space, by Gu ∈ R/G the orbit of u ∈ R, and define dG :
R/G×R/G → R+ by

dG(Gu,Gv) := inf
f,g∈G

d(f.u, g.v).

Hypothesis 13.2. The data (R, d, F,G) satisfies the following properties.

(P1) For any ϕ0, ϕ1 ∈ R there exists a d-geodesic segment [0, 1] # t �→ ϕt ∈ R for
which t �→ F (ϕt) is continuous and convex on [0, 1].

(P2) If {ϕj}j ⊂ R satisfies limj→∞ F (ϕj) = infR F , and for some C > 0,
d(0, ϕj) ≤ C for all j, then there exists a u ∈ M and a subsequence {ϕjk}k
d-converging to u.

(P3) M⊂ R.
(P4) G acts on R by d-isometries.
(P5) G acts on M transitively.
(P6) If M �= ∅, then for any u, v ∈ R there exists g ∈ G such that dG(Gu,Gv) =

d(u, g.v).
(P7) For all u, v ∈ R and g ∈ G, F (u, v) = F (g.u, g.v).

The following result will provide the aforementioned framework for dealing
with many minimization problems.

Theorem 13.3. Let (R, d, F,G) be as in Notation 13.1 and satisfying Hypothesis
13.2. Then M is nonempty if and only if F : R→ R is G-invariant, and for some
C,D > 0,

F (u) ≥ CdG(G0, Gu)−D, for all u ∈ R. (106)

One direction in this theorem is easy. Namely, if (106) holds, then F is
bounded from below. By (A2),

inf
v∈R

F (v) = inf
v∈R

F (v). (107)

This, combined with (106), the G-invariance of F and the definition of dG implies
there exists ϕj ∈ R such that limj F (ϕj) = infR F and d(0, ϕj) ≤ dG(G0, Gϕj) +
1 < C for C independent of j. By (P2), M is non-empty. For the other direction
we refer the reader to [45, Theorem 3.4].

We have set up things in such a way that the modified properness conjecture,
Conjecture 12.2, would become a corollary of Theorem 13.3 applied to the following
data

R = H0, d = d1, F = E, G := Aut0(M, J), (108)
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if this data satisfies the hypothesis of Theorem 13.3. In the next sections we verify
that this is indeed the case. Property (P4) has already been verified in Lemma
11.5. In the next few sections we verify the remaining hypothesis of Theorem 13.3.

14. Applying the general existence/properness principle

In this section we briefly motivate – in the context of the Kähler–Einstein problem
– some of the key assumptions in the general existence/properness principle. The
point is to convince the reader that this principle fits naturally/seamlessly with
classical/foundational results in Kähler geometry.

First, a seemingly harmless condition, tucked into the “notation” part of
Theorem 13.3, is that the functional we are trying to minimize on the metric
completion should be the greatest lower semicontinuous extension (with respect
to the path-length metric) of the functional we are trying to study originally on
the “regular” objects R. This turns out to be quite a technical thing to verify. At
first, this might cause confusion: indeed any functional admits such an extension
by means of the abstract formula

F (u) = sup
ε>0

(
inf
v∈R

d(u,v)≤ε

F (v)

)
, u ∈ R. (109)

However, the issue is to verify that this abstract formula, say in the case of the
Mabuchi energy, coincides with the original defining formula (12) which initially
only makes sense on the space of smooth potentials R = H. This is because
only then can we actually verify that this extended functional satisfies the other
hypothesis in Theorem 13.3 (without an explicit formula it is not clear how to
proceed). Fortunately, condition (A2) for (108) does hold by the following result
[45, Proposition 5.21].

Proposition 14.1. Formula (12) coincides with formula (109) on E1. In other
words, formula (12) gives the greatest d1-lsc extension of E : H → R to E1.

Remark 14.2. The analogue of this result for the Mabuchi metric dM can be found
in [18].

Second, property (P1) holds for the Mabuchi energy due to a result of Ber-
man–Berndtsson [14, Theorem 1.1]. In fact, we remark that it is well known that
the geodesic between smooth endpoints has considerable regularity (as compared
to just being in R) [24, 33]. In [14] it is shown that the Mabuchi energy is convex
along such partially regular geodesics.

Third, property (P2) stipulates precompactness of sublevel sets of the Ma-
buchi energy with respect to the Darvas metric. Pre-compactness with respect to
other functionals is a key result in the works [17, 25], and can be adapted to show
the aforementioned pre-compactness [45, Proposition 5.28].

Fourth, property (P3) stipulates regularity of minimizers of the Mabuchi
energy in the metric completion. This follows from the regularity result of Berman
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[12, Theorem 1.1] combined with the characterization of the metric completion of
Darvas (Theorem 9.4).

Fifth, property (P5), modulo property (P3), amounts to the classical Bando–
Mabuchi theorem on uniqueness of Kähler–Einstein metrics up to automorphisms.

Sixth, property (P7) says that the Mabuchi functional is exact, or of “Bott–
Chern” type, and this is precisely Mabuchi’s original theorem on his functional
[68, Theorem 2.4]. For an expository treatment we referred to [81, § 5].

Finally, property (P6) is a new ingredient, and so we go into more detail,
sketching property (P6) for (108). It fits nicely into our framework since it shows
precisely the role of another classical result in Kähler geometry, namely, Mat-
sushima’s classical theorem about the automorphism group of a Kähler–Einstein
manifold. The key result in showing (P6) is the following [45, Proposition 6.8].

Proposition 14.3. Let (M, J, ω, g) be Kähler–Einstein. Define (R, d, F,G) by (108),
and suppose that (A1)–(A4) and (P4) hold. Finally, assume the following:

(i) For each X ∈ isom(M, g), t �→ expI tJX.ω is a dD-geodesic whose speed
depends continuously on X.

(ii) Aut(M, J)0×Aut(M, J)0 # (f, g) �→ d(f.u, g.v) is a continuous map for every
u, v ∈ H.

Then property (P6) holds.

Condition (i) is essentially a corollary of (90), while (ii) follows from (96).
Property (P6) stipulates that a certain infimum over the group G is attained.
Thus, for the proof of Proposition 14.3 we decompose the group G into a compact
part and a non-compact part in such a way that the compact part acts by d-
isometries while on the non-compact part (but finite-dimensional!) we have d-
properness. Then, together with conditions (i) and (ii), the existence of a minimizer
is guaranteed.

The aforementioned decomposition of the group into a compact and a non-
compact part is stated in Corollary 14.7 below. It should be well known and
relies on classical results that we now recall. First, we recall Matsushima’s classi-
cal theorem [70, Théorème 1]. We refer to Gauduchon [57] for more details. Let
g( · , · ) = ω( · , J · ) denote the Riemannian metric associated to (M, J, ω). Denote
by Isom(M, g)0 the identity component of the isometry group of (M, g). Since M
is compact so is Isom(M, g)0 [76, Proposition 29.4]. Denote by isom(M, g) the Lie
algebra of Isom(M, g)0.

Theorem 14.4. Let (M, J, ω, g) be a Fano Kähler manifold. Suppose g is a Kähler–
Einstein metric. Then,

aut(M, J) = isom(M, g)⊕ J isom(M, g). (110)

The following result is classical, and we only state its Kähler–Einstein version,
whose proof we sketch.

Theorem 14.5. Let (M, J, ω, g) be Kähler–Einstein. Then any maximally compact
subgroup of Aut(M, J)0 is conjugate to Isom(M, g)0.
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Proof. By a Theorem of Iwasawa–Malcev [91, Theorem 32.5], if G is a connected
Lie group then its maximal compact subgroup must be connected and any two
maximal compact subgroups are conjugate. But then by Theorem 14.4 Isom(M, g)0
has to be a maximal compact subgroup of Aut(M, J)0. �

Next, we need a version of the classical Cartan decomposition [27, Proposition
32.1, Remark 31.1].

Theorem 14.6. Let S be a compact connected semisimple Lie group. Denote by
(SC, J) the complexification of S, namely the unique connected complex Lie group
whose Lie algebra is the complexification of that of s, the Lie algebra of S. Then
the map C from S × s to SC given by

(s,X) �→ C(s,X) := s expI JX (111)

is a diffeomorphism.

Combining Theorems 14.4, 14.5 and 14.6 we obtain the decomposition of
Aut(M, J)0 into a compact and a non-compact part that is needed for the proof
of Proposition 14.3. For details on how the following result yields Proposition 14.3
we refer to [45, § 6], where a more general result is proven in the constant scalar
curvature setting (when the Cartan type decomposition is not given by classical
results and we construct instead a “partial Cartan decomposition” that may only
be surjective).

Corollary 14.7. Let (M, J, ω, g) be Kähler–Einstein. Then the map C from

Isom(M, g)0 × isom(M, g) to Aut(M, J)0

given by

(s,X) �→ C(s,X) := s expI JX (112)

is a diffeomorphism.

15. A proof of Tian’s modified first conjecture

As already explained at the end of Section 13, and as we started to elaborate in
the previous section, we prove Theorem 12.4 by applying Theorem 13.3 to data
(108). Thus, it only remains to verify that this data satisfies the hypothesis of
Theorem 13.3.

First, we go over Notation 13.1. First, in (A1),R = E1∩AM−1(0) by Theorem
9.4 and Lemma 10.2. Observe that (A2) holds by Proposition 14.1. In (A3), the
minimizers of F are denoted by M. Finally, (A4) holds since G ⊂ Aut(M, J)0
implies that if g ∈ G and η ∈ H then g.η is both Kähler and cohomologous to η,
i.e., g.η ∈ H. Thus, it remains to verify Hypothesis 13.2.

Properties (P1)–(P7) were all verified in § 14 with the exception of property
(P4), that itself follows from Lemma 11.3.
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Finally, we need to justify why we did not state E must be Aut(M, J)0-
invariant in Theorem 12.4, while it is needed to apply Theorem 13.3. This follows
from Futaki’s theorem [56, p. 437]. Indeed, as in the proof of Claim 6.1

d

dt
E((expI tX)�ωϕ) = CX ,

for some R # CX depending on X but not on ωϕ ∈ H. Also,

d

dt
E((expI −tX)�ωϕ) = −CX .

Thus, unless this derivative, i.e., CX , is zero for every X ∈ aut(M, J) and ωϕ ∈
H, the functional E cannot be bounded from below. Now, properness of E with
respect to any nonnegative functional implies E is bounded from below. Thus,
JG-properness of E implies it is Aut(M, J)0-invariant.

16. A proof of Tian’s second conjecture:
the Moser–Trudinger inequality

We now explain the proof of Tian’s second properness conjecture. First, let us
recall the statement.

Denote by Λ1 the real eigenspace of the smallest positive eigenvalue of −Δω,
and set

H⊥
ω := {ϕ ∈ H :

∫
ϕψωn = 0, ∀ψ ∈ Λ1}.

Conjecture 16.1. Suppose (M, J, ω) is Fano Kähler–Einstein. Then for some C,
D > 0,

E(ϕ) ≥ CJ(ϕ)−D, ϕ ∈ H⊥
ω . (113)

Observe that no invariance properties are assumed, and the functionals are
not taken on the quotient space. Instead, an orthogonality assumption is made.

Conjecture 1.3 was originally motivated by results in conformal geometry
related to the determination of the best constants in the borderline case of the
Sobolev inequality. By restricting to functions orthogonal to the first eigenspace
of the Laplacian, Aubin was able to improve the constant in the aforementioned
inequality on spheres [6, p. 235]. This can be seen as the sort of coercivity of the
Yamabe energy occuring in the Yamabe problem, and it clearly fails without the
orthogonality assumption due to the presence of conformal maps. Conjecture 1.3
stands in clear analogy with the picture in conformal geometry, by stipulating that
coercivity of the K-energy holds in ‘directions perpendicular to holomorphic maps’
(when ω is Kähler–Einstein, it is well known that Λ1 is in a one-to-one correspon-
dence with holomorphic gradient vector fields, in fact this is how Matsushima’s
Theorem 14.4 is proven [31, 57]). It can be thought of as a higher-dimensional fully
nonlinear generalization of the classical Moser–Trudinger inequality.

It is a rather simple consequence of the work of Bando–Mabuchi [9] that
when a Kähler–Einstein metric exists, JG-properness implies J-properness on H⊥

ω
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[96, Corollary 5.4],[107, Lemma A.2],[98, Theorem 2.6]. We now explain how to
carry this through. The key is to study the Aubin functional restricted to orbits
of Aut(M, J)0 and identify the minimizers and relate them to the first eigenspace.

Fix η ∈ H. Let Fη : Aut(M, J)0 → R+ be given by

Fη(g) := (I−J)(g�η) = V −1 1

n+ 1

∫
M

√
−1∂ϕg ∧ ∂̄ϕg ∧

n−1∑
l=0

(n− l)ωn−l−1∧ (g�η)l,

where ϕg ∈ Hω is such that g�η = ω +
√
−1∂∂̄ϕg (i.e., where the I − J energy of

g�η with respect to the reference form ω).

Lemma 16.2. Suppose (M, J, η = ωψ) is Fano Kähler–Einstein. Then

h ∈ Aut(M, J)0

is a critical point of Fη precisely if −ϕh ∈ H⊥
h�η.

Proof. Using (14) and (10),

d

dδ
(I − J)(ϕ(δ)) =

d

dδ
AM(ϕ)− d

dδ
V −1

∫
ϕ(δ)ωn

ϕ(δ)

= V −1

∫
d

dδ
ϕ(δ)ωn

ϕ(δ) − V −1

∫ ( d

dδ
ϕ(δ) + ϕ(δ)Δωϕ(δ)

d

dδ
ϕ(δ)

)
ωn
ϕ(δ)

= −V −1

∫
ϕ(δ)Δωϕ(δ)

d

dδ
ϕ(δ)ωn

ϕ(δ). (114)

Writing gt = h expI tX with X ∈ aut(M, J), observe that
√
−1∂∂̄ϕ̇h =

√
−1∂∂̄ϕ̇g0

=
d

dt

∣∣∣
0

(
ω +

√
−1∂∂̄ϕgt

)
=

d

dt

∣∣∣
0
g�t η =

d

dt

∣∣∣
0
(expI tX)�(h�η) =

√
−1∂∂̄ψX

h�η.

Therefore,

d

dt

∣∣∣
0
Fη(gt) = −V −1

∫
ϕhΔh�ηϕ̇h(h

�η)n = −V −1

∫
ϕhΔh�ηψ

X
h�η(h

�η)n

= V −1

∫
ϕhψ

X
h�η(h

�η)n. (115)

Since this holds for all X ∈ aut(M, J), it follows that ϕh ∈ H⊥
h�η. �

Lemma 16.3. Suppose (M, J, η = ωψ) is Fano Kähler–Einstein. By Theorem 14.5

then Aut(M, J)0 = KC for a maximally compact subgroup K. Suppose ω ∈ HK .
Then Fη has a unique critical point which is a global minimum.

Proof. We start with the following observation.

Exercise 16.4. If g ∈ Aut(M, J)0 preserves ω then

(I − J)(g�η) = (I − J)(η).



Tian’s Properness Conjectures 435

Thus, using the Cartan decomposition (Corollary 14.7), Fη descends to a
function on isom(M, g), still denoted by Fη,

Fη(X) = (I − J)
(
(expI JX)�η

)
.

Now, we show that the function (expI tJX)�η satisfies a useful equation.
The Hodge decomposition implies that every X ∈ aut(M, J) can be uniquely

written as [57]

X = XH +∇ψX
ω − J∇ψJX

ω , (116)

where ∇ is the gradient with respect to the Riemannian metric associated to J
and ω, and XH is the gω-Riemannian dual of a gω-harmonic 1-form.

By (116) and the fact that X ∈ isom(M, gη) (here gη denotes the Riemannian
metric associated to J and η) it follows that

JX = ∇ψJX
η (117)

is a gradient (with respect to gη) vector field [69, Theorem 3.5]. We set

ωϕ(t) := ω(t) = expI tJX.η.

Thus,

ω̇(t) =
d

dt
expI tJX.η = LJXη ◦ expI tJX =

√
−1∂∂̄ψJX

η ◦ expI tJX, (118)

and

ω̈(t) =
√
−1∂∂̄

(
(JX)(ψJX

η )
)
◦ expI tJX =

√
−1∂∂̄

(
dψJX

η (JX)
)
◦ expI tJX

=
√
−1∂∂̄|∇ψJX

η |2 ◦ expI tJX,

since the η-Riemannian dual of dψJX
η is ∇ψJX

η . Thus,

ϕ̈(t) − |∇ϕ̇(t)|2ωϕ(t)
= 0.

Next, we can generalize this computation slightly to obtain an equation for
the function (expI J((1−t)Y +tZ))�η. By (116) and the fact that X ∈ isom(M, gη)
(here gη denotes the Riemannian metric associated to J and η) it follows that

J(Z − Y ) = ∇ψJ(Z−Y )
η (119)

is a gradient (with respect to gη) vector field [69, Theorem 3.5]. We set

ωϕ(t) := ω(t) = (expI J((1 − t)Y + tZ))�η.

Thus,

ω̇(t) =
d

dt
(expI J((1 − t)Y + tZ))�η

= LJ(Z−Y )η ◦ expI J((1− t)Y + tZ)

=
√
−1∂∂̄ψJ(Z−Y )

η ◦ expI J((1− t)Y + tZ),

(120)

and
ω̈(t) =

√
−1∂∂̄

(
(J(Z − Y ))(ψJ(Z−Y )

η )
)
◦ expI tJ(Z − Y )

=
√
−1∂∂̄|∇ψJ(Z−Y )

η |2 ◦ expI J((1 − t)Y + tZ),
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Thus, again,

ϕ̈(t)− |∇ϕ̇(t)|2ωϕ(t)
= 0. (121)

Observe that

Fη((1− t)Y + tZ) = (I − J)
(
(expI J((1 − t)Y + tZ))�η

)
.

Therefore,

d

dt

∣∣∣
0
Fη((1 − t)Y + tZ) = −V −1

∫
ϕ(t)Δg�

t ηϕ̇(t)(g
�
t η)

n

= −V −1

∫
ϕ(t)Δω(t)ϕ̇(t)ω(t)

n

= −V −1

∫
ϕ̇(t)Δω(t)ϕ(t)ω(t)

n

= V −1

∫
ϕ̇(t)n(ω − ω(t)) ∧ ω(t)n−1,

(122)

where gt := expI J((1 − t)Y + tZ), since g�t η = ω(t). Also, using (121),

d2

dt2

∣∣∣
0
Fη((1− t)Y + tZ)

= V −1

∫
ϕ̈(t)n(ω − ω(t)) ∧ ω(t)n−1

− V −1

∫
ϕ̇(t)n

√
−1∂∂̄ϕ̇(t) ∧ ω(t)n−1

+ V −1

∫
ϕ̇(t)n(n− 1)(ω − ω(t)) ∧

√
−1∂∂̄ϕ̇(t) ∧ ω(t)n−2

= nV −1

∫
|∇ϕ̇|2ω ∧ ω(t)n−1 − nV −1

∫
|∇ϕ̇|2ω(t)n

+ nV −1

∫ √
−1∂ϕ̇(t) ∧

√
−1∂̄ϕ̇(t) ∧ ω(t)n−1

+ V −1

∫
ϕ̇(t)n(n− 1)ω ∧

√
−1∂∂̄ϕ̇(t) ∧ ω(t)n−2

− V −1

∫
ϕ̇(t)n(n− 1)

√
−1∂∂̄ϕ̇(t) ∧ ω(t)n−1

= nV −1

∫
|∇ϕ̇|2ω ∧ ω(t)n−1 − nV −1

∫
|∇ϕ̇|2ω(t)n

+ V −1

∫
|∇ϕ̇|2ω(t)n

+ V −1

∫
ϕ̇(t)n(n− 1)ω ∧

√
−1∂∂̄ϕ̇(t) ∧ ω(t)n−2

+ (n− 1)V −1

∫
|∇ϕ̇|2ω(t)n
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= nV −1

∫
|∇ϕ̇|2ω ∧ ω(t)n−1

− n(n− 1)V −1

∫ √
−1∂ϕ̇(t) ∧

√
−1∂̄ϕ̇(t) ∧ ω ∧ ω(t)n−2

=
n

V

∫ (
|∇ϕ̇|2ω(t)− (n− 1)

√
−1∂ϕ̇(t) ∧

√
−1∂̄ϕ̇(t)

)
∧ ω ∧ ω(t)n−2

≥ n

V

∫ √
−1∂ϕ̇(t) ∧

√
−1∂̄ϕ̇(t) ∧ ω ∧ ω(t)n−2 > 0, (123)

since if α, β are two positive (1,1)-forms then (trαβ)α − β ≥ 0, in general, so
have |∇ϕ̇|2ω(t)− n

√
−1∂ϕ̇(t) ∧

√
−1∂̄ϕ̇(t) ≥ 0. Thus, Fη is strictly convex on the

vector space isom(M, g). Now, observe that it is a proper function by Lemma 6.2.
Since a proper strictly convex function attains a unique minimum, the proof is
complete. �
Exercise 16.5. Prove the formula (see, e.g., [80, p. 140])

(I − J)(ω, η) = J(η, ω),

where (I − J)(ω, η) is just (I − J)(ϕ) for any ϕ such that η = ωϕ, while J(η, ω) is
just J (recall (7)) “of” ω “with respect to” the reference η, in the sense that

J(η, ω) = V −1

∫
M

ϕηn − V −1

n+ 1

∫
M

ψ
n∑

l=0

ηn−l ∧ ωl,

where ψ satisfies ω = ηψ.

Proposition 16.6. Suppose (M, J, η) is Fano Kähler–Einstein. If E is JG-proper
then (113) holds.

Proof. According to Lemma 16.2, the functional

g �→ (I − J)(ω, g�η)

has a critical point at the identity g = id if η = ω−
√
−1∂∂̄ϕ when ϕ ∈ H⊥

η . Now,
by Exercise 16.5, this is tantamount to the functional

g �→ J(g�η, ω) (124)

having a critical point at the identity g = id if η = ω −
√
−1∂∂̄ϕ when ϕ ∈ H⊥

η .

Suppose now that indeed ϕ ∈ H⊥
η . Then the functional (124) has a critical

point at g = id. By Lemma 16.3, this is the unique minimum of this functional.
Thus, using also Aut(M, J)0-invariance of J yields

J(ϕ) =: J(η, ηϕ) = J(η, ω) = inf
g∈G

J(g�η, ηϕ) = inf
g∈G

J(η, g�ηϕ).

The last expression is precisely JG(ϕ) (with respect to the reference metric η (not
ω!)). By assumption E is JG-proper, so, say, for concreteness,

E(ϕ) ≥ CJG(η)−D = CJ(ϕ) −D,

as desired. (Observe that the proof also gives the converse, namely that if (113)
holds then E is JG-proper.) �
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Therefore, Theorem 12.4 and Proposition 16.6 confirm Tian’s conjecture.

Corollary 16.7. Conjecture 1.3 holds.
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[72] D.H. Phong, N. Sešum, J. Sturm, Multiplier ideal sheaves and the Kähler–Ricci
flow, Comm. Anal. Geom. 15 (2007), 613–632.

[73] D.H. Phong, J. Song, J. Sturm, Complex Monge–Ampère equations, in: Survey in
Differential Geometry XVII, Int. Press, 2012, pp. 327–410.

[74] D.H. Phong, J. Song, J. Sturm, B. Weinkove, The Moser–Trudinger inequality on
Kähler–Einstein manifolds, Amer. J. Math. 130 (2008), 651–665.

[75] D.H. Phong, J. Sturm, Lectures on stability and constant scalar curvature, in:
Current developments in mathematics 2007, Int. Press, 2009, pp. 101–176.

[76] M.M. Postnikov, Geometry VI. Riemannian geometry, Springer, 2001.



442 Y.A. Rubinstein

[77] T. Ransford, Potential theory in the complex plane, Cambridge University Press,
1995.

[78] Y.A. Rubinstein, On energy functionals, Kähler–Einstein metrics, and the Moser–
Trudinger–Onofri neighborhood, J. Funct. Anal. 255, special issue dedicated to Paul
Malliavin (2008), 2641–2660.

[79] , Some discretizations of geometric evolution equations and the Ricci iteration
on the space of Kähler metrics, Adv. Math. 218 (2008), 1526–1565.

[80] , Geometric quantization and dynamical constructions on the space of Kähler
metrics, Ph.D. Thesis, Massachusetts Institute of Technology, 2008.

[81] , Smooth and singular Kähler–Einstein metrics, in: Geometric and Spectral
Analysis, (P. Albin et al., Eds.), Contemp. Math. 630, Amer. Math. Soc. and Centre
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Ancient Solutions in Geometric Flows

Natasa Sesum

Abstract. In this survey paper we discuss ancient solutions to different geo-
metric flows, such as the Ricci flow, the mean curvature flow and the Yamabe
flow. We survey the classification results of ancient solutions in the Ricci flow
and the mean curvature flow. We also discuss methods for constructing new
ancient solutions to the Yamabe flow, indicating that the classification results
for this flow are impossible to expect.
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1. Introduction

A solution to a geometric evolution equation such as the MCF, the Ricci flow, or
the Yamabe flow is called ancient if it exists for all t ∈ (−∞, t0], for some t0 ≤ +∞.
If t0 = +∞, the solution is called eternal. While solutions starting from arbitrary
smooth initial data can be constructed on a short enough time interval for all these
flows, the requirement that a solution should exist for all time t ≤ t0, combined
with some sort of positive curvature condition, turns out to be very restrictive. In
a number of cases there are results which state that the list of possible ancient
solutions to some given geometric flow consists of self-similar solutions (“solitons”)
and a shorter list of non self similar solutions.

Definition 1.1. Assume that a geometric flow, say for example the Ricci flow, devel-
ops a singularity at time T < ∞. We say the singularity is Type I if lim supt→T (T−
t) supM |Rm| < ∞, otherwise we say the singularity is Type II.

We study singularities in geometric flows using the blow up analysis. In the
case of a Type I singularity, the sequence of a rescaled solution around the singu-
larity subconverges to an ancient solution. In the case of Type II singularity there
exists a rescaled sequence around the singularity (see [27]) that subconverges to
an eternal solution.

c© Springer Nature Switzerland AG 2020
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All geometric flows tend to develop finite time singularities and in order to
use the flows to understand topological and other properties of an underlying man-
ifold,we need to better understand singularities. As mentioned above, ancient and
eternal solutions arise as singularity models in geometric flows. More precisely,
ancient solutions play an important role in understanding the singularity forma-
tion in geometric flows, as such solutions are usually obtained after performing
a blow up near points where the curvature is very large. In fact, Perelman’s fa-
mous work on the Ricci flow [40] shows that the high curvature regions in the
three-dimensional Ricci flow are modeled on ancient solutions which have nonneg-
ative curvature and are κ-noncollapsed. Similar results for mean curvature flow
were obtained in [31, 45, 46] assuming mean convexity and embeddedness. That
is why understanding those solutions, and more specifically, their classification, is
important for understanding singularities of geometric flows.

For instance, for two-dimensional Ricci flow, Daskalopoulos, Hamilton and
Sesum [22] classified all compact ancient solutions. It turns out the complete list
contains only the shrinking sphere solitons and the King–Rosenau solutions [35,
42]. The latter are not solitons and can be visualized as two steady solitons, called
“cigars”, coming from spatial infinities and glued together. In [18] the authors
obtained the full classification of simple closed embedded convex ancient solutions
to the curve shortening flow. They are either the family of contracting circles or
Angenent ovals, known as well as “paper clips”. The latter can be visualized as
two grim repears (which are translators) glued together, moving apart from each
other, as time approaches negative infinity.

The higher-dimensional analogue of the curve shortening flow is the mean
curvature flow. In [4] we showed that all rotationally symmetric noncollapsed closed
ancient solutions that are not self-similar have unique asymptotics as t → −∞.
Using that, in a subsequent paper [5], we show that all uniformly two-convex
noncollapsed ancient closed solutions to the mean curvature flow that are not
self-similar are rotationally symmetric and unique up to isometries, scalings and
translations in time.

The outline of this survey article is as follows. In Section 2 we survey classi-
fication results of ancient solutions in two dimensions and discuss what is known
and expected in higher dimensions. In Section 3 we survey classification results of
ancient solutions in the mean curvature flow. In Section 4 we survey our work on
ancient solutions in the Yamabe flow.

2. Ancient solutions to the Ricci flow

We consider an ancient solution of the Ricci flow

∂gij
∂t

= −2Rij (2.1)

on a compact two-dimensional surface that exists for time t ∈ (−∞, T ) and be-
comes singular at t = T , for some T < ∞.
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2.1. Ancient closed solutions

In two dimensions we have Rij = 1
2Rgij , where R is the scalar curvature of

the surface. Moreover, on an ancient non-flat solution we have R > 0. It is well
known ([15], [26]) that the surface also becomes extinct at T and it becomes
spherical, which means that after a normalization, the normalized flow converges
to a spherical metric, to which we will refer as to the limiting sphere.

Since R > 0, by the Uniformization theorem and the fact that the Ricci flow
in dimension two preserves the conformal class, we can parametrize the Ricci flow
by the limiting sphere at time T , that is, we can write

g(·, t) = u(·, t) gS2 .

The spherical metric can be written as

gS2 = dψ2 + cos2 ψ dθ2 (2.2)

where ψ, θ denote the global coordinates on the sphere. An easy computation shows
that (2.1) is equivalent to the following evolution equation for the conformal factor
u(·, t), namely

ut = ΔS2 log u− 2 on S2 × (−∞, T ) (2.3)

where ΔS2 denotes the Laplacian on S2. Let us recall, for future reference, that
the only nonzero Christoffel symbols for the spherical metric (2.2) are

Γ2
12 = Γ2

21 = − tanψ, Γ1
22 =

sin 2ψ

2

where we use the indices 1, 2 for the ψ, θ variables respectively. It follows that for
any function f on the sphere we have

ΔS2f = fψψ − tanψ fψ + sec2 ψ fθθ

which, in the case of a radially symmetric function f = f(ψ), becomes

ΔS2f = fψψ − tanψ fψ.

We will assume, in this article, that g = u ds2p is an ancient solution to the
Ricci flow (2.3) on the sphere which becomes extinct at time T = 0.

It is natural to consider the pressure function v = u−1 which evolves by

vt = v2 (ΔS2 log v + 2) on S2 × (−∞, 0) (2.4)

or, after expanding the Laplacian of log v,

vt = vΔS2v − |∇S2v|2 + 2v2 on S2 × (−∞, 0). (2.5)

Definition 2.1. We say that an ancient solution to the Ricci flow (2.1) on a compact
surface M is type I, if it satisfies

lim sup
t→−∞

(|t| max
M

R(·, t)) < ∞.

A solution which is not of type I, is called type II.
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Explicit examples of ancient solutions to the Ricci flow in two dimensions
are:

1. The contracting spheres
They are described on S2 by a pressure vS that is given by

vS(ψ, t) =
1

2(−t)
(2.6)

and they are examples of ancient type I shrinking Ricci solitons.
2. The King–Rosenau solutions

They were discovered by J.R. King ([35]) and later, independently, by P. Ro-
senau ([42]). They are described on S2 by a pressure vK that has the form

vK(ψ, t) = a(t)− b(t) sin2 ψ (2.7)

with a(t) = −μ coth(2μt), b(t) = −μ tanh(2μt), for some μ > 0. These solu-
tions are not solitons. We can visualize them as two cigars “glued” together to
form a compact solution to the Ricci flow. They are type II ancient solutions.

In [18] we have proved the following classification result:

Theorem 2.2. Let g = u gS2 be an ancient compact solution to the Ricci flow
(2.1). Then u is either one of the contracting spheres or one of the King–Rosenau
solutions.

Remark 2.3. The classification of two-dimensional, complete, non-compact ancient
solutions of the Ricci flow was recently given in [19] (see also in [16, 28]). The
result in Theorem 2.2 together with the results in [19] and [16] provide a complete
classification of all ancient two-dimensional complete solutions to the Ricci flow,
with the scalar curvature uniformly bounded at each time-slice.

In the course of proving Theorem 2.2 we first show a priori derivative es-
timates on any ancient solution v of (2.5), which hold uniformly in time, up to
t = −∞. These estimates turn out to play a crucial role throughout the proof
of the Theorem. We also introduce a suitable Lyapunov functional and use it to
show that the solution v(·, t) of (2.5) converges, as t → −∞, in the C1,α norm, to
a steady state v∞. Next, we classify all backward limits v∞. We show that there is
a parametrization of the flow by a sphere, in which v∞(ψ, θ) = μ cos2 ψ, for some
μ ≥ 0 (ψ, θ are the global coordinates on S2). When μ > 0, then v∞ represents
the cylindrical metric. If v∞(ψ, θ) = μ cos2 ψ, with μ > 0, then we show v must
be one of the King–Rosenau solutions. Finally, we show that if v∞ ≡ 0, then the
solution v must be one of the contracting spheres. Note that in proving Theorem
2.2 we relied on the fact that all our known solutions have been given in closed
forms, which enabled us to construct various monotone quantities along the flow,
that needed to vanish on our solutions and their backward limits.

A higher-dimensional analogue of the two-dimensional King–Rosenau solu-
tion is Perelman’s ancient noncollapsed ancient solution. This is the rotationally
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symmetric ancient κ-noncollapsed solution on S3 constructed in [41]. For the defi-
nition of κ-noncollapsed solutions to the Ricci flow see [40]. It can be showed that
the backward asymptotic gradient shrinking Ricci soliton for this solution is a
round cylinder S2×R. Note that Perelman’s ancient noncollapsed solution is type
II (backward in time), since supM×(−∞,0] |t||R(x, t)| = ∞, whereas it forms a type

I singularity (forward in time), as it shrinks to a round point. Perelman’s ancient
solution has backward in time limits which are the Bryant soliton and the round
cylinder S2 ×R, depending on how the sequence of points and times about which
one rescales are chosen. These are the only backward in time limits of Perelman’s
ancient solution.

Roughly speaking, Perelman’s ancient solution is constructed as follows. Let
S2(r) denote the round 2-sphere of radius r. For any L ∈ (1,∞) we construct a
rotationally symmetric metric gL(0) on S2 with weakly positive curvature operator

which metrically looks like a long round cylinder S2(
√
2)× [−L,L] with two caps

B2
+ and B2

− smoothly attached to the boundary components S2(
√
2) × {−L,L}.

Perelman’s ancient solution is obtained by taking rescaled and time translated
limit, as L → ∞, of the solutions of the Ricci flow with initial metrics gL(0).
There is some work involved in showing that this limit exists.

Conjecture 2.4. The only closed three-dimensional κ-noncollapsed ancient solu-
tions to the Ricci flow are either the family of contracting spheres or Perelman’s
solution.

The same construction as above leads to the existence of Perelman’s solu-
tions in dimensions n ≥ 3 as well. Perelman believes (see Section 1.3 of [41]) the
analogous conjecture to Conjecture 2.4 holds in dimensions n > 3 as well, under
the additional assumption of positivity of curvature operator.

2.2. Complete ancient solutions

Self-similar solutions play an important role in the study of the Ricci flow and have
been extensively studied in connection with singularity formation ([25, 40, 41]).
There are three types of self-similar solutions, which are referred to as shrinking
solitons, steady solitons and expanding solitons. Shrinking solitons are special ex-
amples of ancient solutions. Spheres are a typical example of closed Ricci shrinkers
and cylinders are examples of complete noncompact Ricci shrinkers. Steady soli-
tons are special examples of eternal solutions. A steady Ricci soliton (M, g) is
characterized by the fact that 2Ric = LX(g) for some vector field X . If the vec-
tor field X is the gradient of a function, we say (M, g) is a steady gradient Ricci
soliton.

The simplest example of a steady Ricci soliton is the cigar soliton in di-
mension two, which was found by Hamilton ([25]). Bryant ([14]) discovered a
steady Ricci soliton in dimension three, which is the unique rotationally symmet-
ric complete steady Ricci soliton in dimension three. Brendle in [8] showed that
any three-dimensional complete steady gradient Ricci soliton which is non-flat and
κ-noncollapsed must be rotationally symmetric and hence isometric to the Bryant
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soliton up to scaling. In [9] Brendle shows that if (M, g) is a steady gradient Ricci
soliton of dimension n ≥ 4 which has positive sectional curvature and is asymp-
totically cylindrical, then (M, g) is rotationally symmetric. In particular, (M, g) is
isometric to the n-dimensional Bryant soliton up to scaling. In a recent paper [7],
Brendle classifies all three-dimensional ancient complete noncompact noncollapsed
Ricci flow solutions. He shows those solutions must be rotationally symmetric and
then using rotational symmetry he shows they need to be steady solitons.

Conjecture 2.5. Every complete three-dimensional κ-noncollapsed eternal solution
to the Ricci flow has to be steady soliton.

If Conjecture 2.4 and Conjecture 2.5 were completed, that combined with
Brendle’s result ([8]) would give us complete classification of three-dimensional
κ-noncollapsed ancient solutions to the Ricci flow.

3. Ancient solutions to the Mean Curvature Flow

We consider now the Mean Curvature Flow. Recall that a family of immersed
hypersurfaces X : Mn × [0, T ) → Rn+1 evolves by Mean Curvature Flow (MCF)
if it satisfies (

∂X

∂t

)⊥
= Hν, (3.1)

where ν is a unit normal vector of the surface Mt = X(Mn, t), H is the mean

curvature in the direction of the normal ν, and
(
Xt(ξ, t)

)⊥
is the component of

the velocity Xt(ξ, t) that is perpendicular to Mt at X(ξ, t).
A smooth solution {Mt}0≤t<T to MCF exists on a sufficiently short time

interval 0 ≤ t < T for any prescribed smooth initial immersed hypersurface M0.
If the initial hypersurface M0 is convex, then the solution Mt will also be convex.
The simplest possible convex ancient solution is the shrinking sphere, i.e., if Mt is
the sphere of radius

√
−2nt centered at the origin, then {Mt}t<0 is a self similar

ancient solution. It is the only compact and convex self-similar solution to MCF. In
the text below we will give the notion of a non-collapsed solution to MCF, which
was introduced by B. Andrews in [1]. With this in mind we give the following
definition.

Definition 3.1. An ancient oval is any ancient compact non-collapsed (in the sense
of Definition 3.4) solution to MCF that is not self similar (i.e., that is not the
sphere).

Note that the “non-collapsedness” condition from Definition 3.4 is necessary
due to other “pancake” type examples which become collapsed as t → −∞ (see
[6]) and which we will discuss more later. On the other hand, it has been shown in
[31] that all non-collapsed ancient compact solutions to the mean curvature flow
are convex, hence the ancient ovals are convex solutions.
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3.1. Curve shortening flow

For Curve Shortening, i.e., MCF for curves in the plane, Angenent found such
solutions (see [3] and also [39]). These solutions, which can be written in closed
form, may be visualized as two “Grim Reapers” with the same asymptotes that
approach each other from opposite ends of the plane. Daskalopoulos, Hamilton, and
Sesum [18] classified all ancient convex solutions to Curve Shortening by showing
that there are no other ancient ovals for Curve Shortening.

More precisely, consider an ancient embedded solution Γt ⊂ R2 of the curve
shortening flow

∂X

∂t
= −κN (3.2)

which moves each point X on the curve Γt in the direction of the inner normal
vector N to the curve at P by a speed which is equal to the curvature κ of the
curve.

Let Γt ⊂ R2 be an embedded ancient solution to the curve shortening flow
(3.2). If s is the arclength along the curve and X = (x, y) we can express (3.2) as
a system

∂x

∂t
=

∂2x

∂s2
,

∂y

∂t
=

∂2y

∂s2
.

The evolution for the curvature κ of Γt is given by

κt = κss + κ3 (3.3)

which is a strictly parabolic equation. Let θ be the angle between the tangent
vector and the x axis. For convex curves we can use the angle θ as a parameter.
It has been computed that

κt = κ2 κθθ + κ3. (3.4)

It turns out that the evolution of the family Γt is completely described by the
evolution (3.4) of the curvature κ.

We will assume that Γt is an ancient solution of the curve shortening flow
defined on (−∞, T ). We will also assume that our extinction time T = 0.

It is natural to consider the pressure function

p := κ2

which evolves by

pt = p pθθ −
1

2
p2θ + 2 p2. (3.5)

In accordance with Definition 2.1 we say that an ancient solution to (3.4) is:

• of type I: if it satisfies supt∈(−∞,−1] supΓt
|t||p(x, t)| < ∞.

• of type II: if supt∈(−∞,−1] supΓt
|t||p(x, t)| = ∞.

The ancient solution to (3.4) defined by

p(θ, t) =
1

2(−t)
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corresponds to a family of contracting circles. This solution is of type I and at
the same time falls in a category of contracting self-similar solutions (these are
solutions of the flow whose shapes change homothetically during the evolution).
We will show in the next section the existence of compact ancient solutions to
(3.4) that are not self-similar. Since they have been discovered by Angenent we
will refer to them as to the Angenent ovals.

One very nice and important property of ancient solutions to the curve short-
ening flow is that κt ≥ 0. This fact follows from Hamilton’s Harnack estimate for
convex curves ([27]). By the strong maximum principle, κ(·, t) > 0 for all t < 0. If
we start at any time t0 ≤ 0, Hamilton proved that

κt +
κ

2(t− t0)
− κ2

s

k
≥ 0. (3.6)

Letting t0 → −∞ we get

κt ≥ 0. (3.7)

In [18] we provide the following classification of ancient convex solutions to
the curve shottening flow.

Theorem 3.2 (Daskalopulos, Hamilton, Sesum). Let p(θ, t) = κ2(θ, t) be an ancient
solution to (3.5), defining a family of embedded closed convex curves in R2 that
evolve by the curve shortening flow. Then,

(i) either p(θ, t) = 1
(−2t) , which corresponds to contracting circles, or

(ii) p(θ, t) = λ( 1
1−e2λt − sin2(θ + γ)), for two parameters λ > 0 and γ, which

corresponds to the Angenent ovals.

In the proof of Theorem 3.2 we found a monotone integral quantity along the
flow whose limit as t → T and the limit as t → −∞ have been vanishing, forcing
the quantity and its derivative to be identically zero along the flow. After that,a
simple ODE argument concludes the proof of the theorem. The construction of
our monotone integral quantity relied on the fact we knew the explicit formulas
for all possible solutions.

3.2. Closed ancient solutions to the MCF

Natural questions to ask are whether there exists an analog of the Ancient Curve
Shortening Ovals from [3, 39] in higher-dimensional Mean Curvature Flow and
whether a classification of ancient ovals similar to the Daskalopoulos–Hamilton–
Sesum [18] result is possible.

The existence question was already settled by White in [45] who gave a
construction of ancient ovals for which

in-radius Mt

out-radius Mt
→ 0 as t → −∞.

Haslhofer and Hershkovits [32] provided recently more details on White’s con-
struction. If one represents Rn+1 as Rn+1 = Rk × Rl with k + l = n + 1, then
the White–Haslhofer–Hershkovits construction proves the existence of an ancient
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solution Mt with O(k) × O(l) symmetry. The construction of those solutions is
similar to the construction of Perelman’s closed ancient solutions for the Ricci
flow. More precisely, they considered convex regions of increasing eccentricity and
using limiting arguments, they proved the existence of ancient flows of compact,
convex sets that are not self-similar. In contrast with the Ancient Curve Short-
ening Ovals, these solutions cannot be written in closed forms. Formal matched
asymptotics, as t → −∞, were given by Angenent in [2].

The classification question is more complicated in higher dimensions.

Conjecture 3.3 (Uniqueness of ancient ovals). For each (k, l) with k + l = n + 1
there is only one “ancient oval” solution with O(k) × O(l) symmetry, up to time
translation and parabolic rescaling of space-time.

Since the “ancient oval” solutions are not given in closed form and they are
not solitons their classification as stated in the above conjecture poses a difficult
question. In fact, up to now the only known classification results for ancient or eter-
nal solutions involve either solitons or other special solutions that can be written
in closed form.

In [4] we have made a partial progress towards the above conjecture by show-
ing that any ancient, closed non-collapsed solution of MCF with O(1) × O(n)
symmetry satisfies the detailed asymptotic expansions described in [2]. In particu-
lar, our results in that paper give precise estimates on the extrinsic diameter and
maximum curvature of all such solutions near t → −∞.

Instead of an evolving family of convex hypersurfaces {Mt} we can also think
in terms of the evolving family {Kt} of compact domains enclosed by Mt (thus
Mt = ∂Kt). Andrews [1] introduced the following notion of “non-collapsedness”
for any compact mean convex subset K ⊂ Rn+1. Recall that a domain K ⊂ Rn+1

with smooth boundary is mean convex if H > 0 on ∂K.

Definition 3.4. If K ⊂ Rn+1 is a smooth, compact, mean convex domain and if
α > 0, then K is α-noncollapsed if for every p ∈ ∂K there are closed balls B̄int ⊂ K
and B̄ext ⊂ Rn+1\Int(K) of radius at least α

H(p) that are tangent to ∂K at p from

the interior and exterior of K, respectively (in the limiting case H(p) = 0 this
means that K is a half-space).

Every compact, smooth, strictly mean convex domain is α-noncollapsed for
some α > 0. Andrews showed that if the initial condition K0 of a smooth compact
mean curvature flow is α-noncollapsed, then so is the whole flow Kt for all later
times t.

Definition 3.5. We say that a mean convex ancient solution {Mt}t∈(−∞,T ] to
MCF is noncollapsed if there exists a constant α > 0 so that the flow Mt is
α-noncollapsed for all t ∈ (−∞, T ], in the sense of Definition 3.4.

In order to say more about the classification of closed ancient noncollapsed
solutions to the mean curvature flow, we need to understand first the geometry of
those solutions and their more precise asymptotics. We first focus on hypersurfaces
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with O(1) × O(n) symmetry. More precisely, we first consider noncollapsed and
therefore convex ancient solutions that are O(1)×O(n)-invariant hypersurfaces in
Rn+1. Such hypersurfaces can be represented as

Mt =
{
(x, x′) ∈ R× Rn : −d(t) < x < d(t), ‖x′‖ = U(x, t)

}
(3.8)

for some function ‖x′‖ = U(x, t). The points (±d(t), 0) are called the tips of the
surface. The function U(x, t), which we call the profile of the hypersurface Mt, is
only defined for x ∈ [−d(t), d(t)].

Any surface Mt defined by (3.8) is automatically invariant under O(n) acting
on R× Rn. The surface will also be invariant under the O(1) action on R× Rn if
U is even, i.e., if U(−x, t) = U(x, t).

Convexity of the surface Mt is equivalent to concavity of the profile U , i.e.,
Mt is convex if and only if Uxx ≤ 0.

For a family of surfaces defined by ‖x′‖ = U(x, t), equation (3.1) for MCF
holds if and only if the profile U(x, t) satisfies the evolution equation

∂U

∂t
=

Uxx

1 + U2
x

− n− 1

U
. (3.9)

We know by Huisken’s result ([34]) that the surfaces Mt will contract to a point
in finite time.

Self-similar solutions to MCF are of the form Mt =
√
T − t M̄ for some fixed

surface M̄ and some “blow-up time” T . We rewrite a general ancient solution
{Mt : t < t0} as

Mt =
√
T − t M̄− log(T−t). (3.10)

The family of surfaces M̄τ with τ = − log(T − t), is called a type-I or parabolic
blow-up of the original solution Mt. These are again O(1)×O(n) symmetric with
profile function u, which is related to U by

U(x, t) =
√
T − t u(y, τ), y =

x√
T − t

, τ = − log(T − t). (3.11)

If the Mt satisfy MCF, then the hypersurfaces M̄τ evolve by the rescaled MCF

ν · ∂X
∂τ

= H + 1
2X · ν. (3.12)

For the parabolic blow-up u this is equivalent with the equation

∂u

∂τ
=

uyy

1 + u2
y

− y

2
uy −

n− 1

u
+

u

2
. (3.13)

Regarding notation, we denote by H(·, t), d(t), etc., the mean curvature and ex-
trinsic diameter of the surface Mt, respectively, and by H̄(·, τ), d̄(τ), etc., the
mean curvature and extrinsic diameter of a corresponding parabolic blow-up M̄τ ,
respectively. In general, we will use the bar to denote geometric quantities for M̄τ .

The following theorem, which is shown in [4], describes certain geometric
properties of the ancient solutions described above.



Ancient Convex Flows 455

Theorem 3.6. Let {Mt} be any compact smooth noncollapsed ancient mean curva-
ture flow with O(1)×O(n) symmetry. Then there exist uniform constants c, C > 0
so that the extrinsic diameter d̄(τ), the area Ā(τ) and the maximum mean curva-
ture H̄max(τ) of the rescaled mean curvature flow M̄τ satisfy

c d̄(τ) ≤ H̄max(τ) ≤ d̄(τ), c d̄(τ) ≤ Ā(τ) ≤ C d̄(τ). (3.14)

Corollary 6.3 in [44] implies that the dilations {X̄ ∈ Rn+1 | (−t)1/2X̄ ∈ Mt},
of hypersurfacesMt which evolve by (3.1) and which satisfy conditions of Theorem
3.6 that sweep out the whole space, converge as t → −∞
(a) to either a sphere of radius

√
2n or

(b) a cylinder Sn−1 × R, where Sn−1 is a sphere of radius
√
2(n− 1).

In the present paper we show that any compact convex ancient solution to
(3.1) as in Theorem 3.6 has unique asymptotics as t → −∞. The hope has been
to use that to prove Conjecture 3.3. More precisely, we show that the following
holds.

Theorem 3.7. Let {Mt} be any compact smooth noncollapsed ancient mean curva-
ture flow as in Theorem 3.6. Then, either Mt is a family of contracting spheres or
the solution u(y, τ) to (3.13), defined on R× R, has the following asymptotics in
the parabolic and the intermediate region:

(i) Parabolic region: For every M > 0,

u(y, τ) =
√
2(n− 1)

(
1− y2 − 2

4|τ |
)
+ o(|τ |−1), |y| ≤ M

as τ → −∞.
(ii) Intermediate region: Define z := y/

√
|τ | and ū(z, τ) := u(z

√
|τ |, τ). Then,

ū(z, τ) converges, as τ → −∞ and uniformly on compact subsets in z, to the

function
√
2− z2.

(iii) Tip region: Denote by pt the tip of Mt ⊂ Rn+1, and for any t∗ < 0 we define
the rescaled flow

M̃t∗(t) = λ(t∗)
(
Mt∗+tλ(t∗)−2 − pt∗

)
where λ(t) := H(pt, t) = Hmax(t). Then, as t∗ → −∞, the family of solu-
tions Mt∗(·) to MCF converges to the unique Bowl soliton, i.e., the unique
rotationally symmetric translating soliton with velocity one.

While the α-noncollapsedness property for mean curvature flow is preserved
forward in time, it is not necessarily preserved going back in time. Indeed, Xu-
Jia Wang [44] exhibited examples of ancient compact convex mean curvature flow
solutions {Mt | t < 0}, that are not uniformly α-noncollapsed for any α > 0.
Such solutions lie in slab regions. The methods in [44] rely on the level set flow.
Recently, Bourni, Langford and Tinaglia [6] provided a detailed construction of
the Xu-Jia Wang solutions by different methods, showing also that the solution
they construct is unique within the class of rotationally symmetric mean curvature
flows that lie in a slab of a fixed width. In the present paper we will not consider
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these ancient collapsed solutions and focus on the classification of ancient closed
noncollapsed mean curvature flows. In [33] they classify graphical translators for
the mean curvature flow in dimension three. They also construct new examples of
those in higher dimensions.

Definition 3.8. We say that an ancient solution {Mt : −∞ < t < T } is uniformly
2-convex if there exists a uniform constant β > 0 so that

λ1 + λ2 ≥ βH, for all t ≤ t0. (3.15)

Throughout the paper we will be using the following observation: if an An-
cient Oval Mt is uniformly 2-convex, then by results in [44], the backward limit
of its type-I parabolic blow-up must be a shrinking round cylinder R× Sn−1, with
radius

√
2(n− 1).

Using Theorem 3.7, in [5] we first prove the uniqueness of uniformly 2-convex
Ancient ovals in the presence of symmetry.

Theorem 3.9 (Uniqueness ofO(n)-invariant Ancient Ovals). Let (M1)t and (M2)t,
−∞ < t < T , be two O(n)-invariant Ancient Ovals with the same axis of sym-
metry (which is assumed to be the x1-axis) whose profile functions U1(x, t) and
U2(x, t) satisfy equation (3.9) and rescaled profile functions u1(y, τ) and u2(y, τ)
satisfy equation (3.13). Then, they are the same up to translations along the axis
of symmetry (translations in x), translations in time and parabolic rescaling.

In [5] we also establish the following result.

Theorem 3.10 (Rotational symmetry of Ancient Ovals). If {Mt : −∞ < t < 0} is
an Ancient Oval which is uniformly 2-convex, then it is rotationally symmetric.

Combining Theorem 3.2 and Theorem 3.10 yields the following result that
establishes the uniqueness of uniformly two convex Ancient ovals. More precisely,
we have the following.

Theorem 3.11 (Uniqueness of Ancient Ovals). Let {Mt, −∞ < t < T } be a uni-
formly 2-convex Ancient Oval. Then it is unique up to rotation, scaling and trans-
lation in time and hence it must the solution constructed by White in [45] and later
by Haslhofer and Hershkovits in [32].

3.3. Complete ancient solutions to the MCF

A special case of ancient solutions are solitons; these are solutions that move in
a self-similar fashion under the evolution. In a recent paper [8], Brendle proved
that every noncollapsed steady Ricci soliton in dimension three is rotationally
symmetric, and hence is isometric to the Bryant soliton up to scaling. Using similar
techniques, Haslhofer in [30] subsequently proved that every noncollapsed, convex
translating soliton for the mean curvature flow in R3 is rotationally symmetric,
and hence coincides with the bowl soliton up to scaling and ambient isometries. A
related uniqueness result for the bowl soliton was proved in an important paper
by Wang in [44]; this relies on a completely different approach.
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In [12] the authors classified all convex ancient solutions to mean curvature
flow in R3 under a noncollapsing assumption. They prove the following.

Theorem 3.12 (Brendle, Choi). Let Mt, for t ∈ (−∞, 0), be a noncompact ancient
solution of mean curvature flow in R3 which is strictly convex and noncollapsed.
Then Mt agrees with the bowl soliton, up to scaling and ambient isometries.

By combining the previous theorem with earlier work of White [45, 46] (see
also [31]), the following conclusion holds.

Corollary 3.13. Consider an arbitrary closed, embedded, mean convex surface in
R3, and evolve it by mean curvature flow. At the first singular time, the only
possible blow-up limits are shrinking round spheres; shrinking round cylinders; and
the translating bowl soliton.

In the course of proof of Theorem 3.12 the authors study the asymptotic
behavior of the flow as t → −∞. To establish more precise asymptotics they
study the linearization of the mean curvature equation around a round cylinder.
Using those asymptotics they establish the Neck Improvement Theorem, which
asserts that a neck becomes more symmetric under the evolution. This result does
not require that the solution is ancient, it can be applied whenever we have a
solution of mean curvature flow which is close to a cylinder on a sufficiently large
parabolic neighborhood. They iterate the Neck Improvement Theorem to show Mt

is rotationally symmetric. Then, by analyzing the rotationally symmetric solutions,
Brendle and Choi show that such solutions agree with the Bowl soliton. They treat
higher-dimensional cases in [13].

3.4. Sketch of the proof of Theorem 3.11

Our proof of Theorem 3.10 closely follows the arguments by Brendle and Choi in
[12, 13] on the uniqueness of strictly convex, non-compact, uniformly 2-convex,
and noncollapsed ancient mean curvature flow.

The proof of Theorem 3.2 is quite involved. Our method is based on a priori
estimates for various distance functions between two given ancient solutions in
appropriate coordinates and measured in weighted L2 norms. We need to consider
two different regions: the cylindrical region and the tip region. The tip region
is divided in two sub-regions: the collar and the soliton region, because we use
different weights in those regions, ensuring the weight is C1 at the overlap of the
regions. We give definitions of all the regions, review the equations in each region
and define appropriate weighted L2 norms with respect to which we prove coercive
type estimates.

In the statement of Theorem 3.2 we claim the uniqueness of any two Ancient
Ovals up to dilations and translations. In fact since equation (3.13) is invariant
under translation in time, translation in space and also under cylindrical dilations
in space-time, each solutionMi(t) gives rise to a three parameter family of solutions

Mαβγ
i (t) = eγ/2 Φα(Mi(e

−γ(t− β))), (3.16)
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where Φα is a rigid motion, that is just the translation of the hypersurface along x
axis by value α. The theorem claims the following: given two ancient oval solutions
we can find α, β, γ and t0 ∈ R such that

M1(t) = Mαβγ
2 (t), for t ≤ t0.

The profile function Uαβγ
i corresponding to the modified solution Mαβγ

i (t) is
given by

Uαβγ
i (x, t) = eγ/2Ui

(
e−γ/2(x− α), e−γ(t− β)

)
. (3.17)

We rescale the solutions Mi(t) by a factor
√
−t and introduce a new time variable

τ = − log(−t), that is, we set

Mi(t) =
√
−t M̄i(τ), τ := − log(−t). (3.18)

These are again O(n) symmetric with profile function u, which is related to U by

U(x, t) =
√
−t u(y, τ), y =

x√
−t

, τ = − log(−t). (3.19)

If the Ui satisfy the MCF equation (3.9), then the rescaled profiles ui satisfy (3.13),
i.e.,

∂u

∂τ
=

uyy

1 + u2
y

− y

2
uy −

n− 1

u
+

u

2
.

Translating and dilating the original solution Mi(t) to Mαβγ
i (t) has the following

effect on ui(y, τ):

uαβγ
i (y, τ) =

√
1 + βeτ ui

(
y − αeτ/2√
1 + βeτ

, τ + γ − log
(
1 + βeτ

))
. (3.20)

To prove the uniqueness theorem we look at the difference U1 − Uαβγ
2 , or

equivalently at u1 − uαβγ
2 . The parameters α, β, γ are chosen so that the projec-

tions of u1 − uαβγ
2 onto positive eigenspace (that is spanned by two independent

eigenvectors) and zero eigenspace of the linearized operator L at the cylinder are
equal to zero at time τ0, which is chosen sufficiently close to −∞. Correspondingly,

we denote the difference U1−Uαβγ
2 by U1−U2 and u1−uαβγ

2 by u1−u2. What we
actually observe is that the parameters α, β and γ can be chosen to lie in a certain
range, which allows our main estimates to hold without having to keep track of
these parameters during the proof.

4. Ancient solutions to Yamabe flow

Let (M, g0) be a compact manifold without boundary of dimension n ≥ 3. If

g = v
4

n−2 g0 is a metric conformal to g0, the scalar curvature R of g is given in
terms of the scalar curvature R0 of g0 by

R = v−
n+2
n−2

(
− c̄nΔg0v +R0 v

)
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where Δg0 denotes the Laplace Beltrami operator with respect to g0 and c̄n =
4(n− 1)/(n− 2).

In 1989 R. Hamilton introduced the Yamabe flow

∂g

∂t
= −Rg (4.1)

as an approach to solve the Yamabe problem on manifolds of positive conformal
Yamabe invariant. It is the negative L2-gradient flow of the total scalar curvature,
restricted to a given conformal class. The flow may be interpreted as deforming a
Riemannian metric to a conformal metric of constant scalar curvature, when this
flow converges.

Hamilton [29] showed the existence of the normalized Yamabe flow (which is
the re-parametrization of (4.1) to keep the volume fixed) for all time; moreover,
in the case when the scalar curvature of the initial metric is negative, he showed
the exponential convergence of the flow to a metric of constant scalar curvature.

Since then, there has been a number of works on the convergence of the
Yamabe flow on a compact manifold to a metric of constant scalar curvature.
Chow [15] showed the convergence of the flow, under the conditions that the initial
metric is locally conformally flat and of positive Ricci curvature. The convergence
of the flow for any locally conformally flat initially metric was shown by Ye [47].

More recently, Schwetlick and Struwe [43] obtained the convergence of the
Yamabe flow on a general compact manifold under a suitable Kazdan–Warner type
of condition that rules out the formation of bubbles and that is verified (via the
positive mass Theorem) in dimensions 3 ≤ n ≤ 5. The convergence result, in its full
generality, was established by Brendle [10] and [11] (up to a technical assumption,
in dimensions n ≥ 6, on the rate of vanishing of Weyl tensor at the points at
which it vanishes): starting with any smooth metric on a compact manifold, the
normalized Yamabe flow converges to a metric of constant scalar curvature.

In the special case where the background manifold M0 is the sphere Sn

and g0 is the standard spherical metric g
Sn , the Yamabe flow evolving a metric

g = v
4

n−2 (·, t) g
Sn takes (after rescaling in time by a constant) the form of the fast

diffusion equation

(v
n+2
n−2 )t = ΔSnv − cnv, cn =

n(n− 2)

4
. (4.2)

Explicit examples of ancient solutions to the Yamabe flow on Sn are:

Contracting spheres: They are special solutions v of (4.2) which depend only on
time t and satisfy the ODE

dv
n+2
n−2

dt
= −cn v.

They are given by

vS(p, t) =

(
4

n+ 2
cn (T − t)

)n−2
4

. (4.3)
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and represent a sequence of round spheres shrinking to a point at time t = T .
They are shrinking solitons and type I ancient solutions.

King solutions: They were discovered by J.R. King [35]. They can be expressed on

Rn in closed from, namely g = v̄K(·, t) 4
n−2 g

Rn
, where v̄K is the radial function

v̄K(r, t) =

(
A(t)

1 + 2B(t) r2 + r4

)n−2
4

. (4.4)

and the coefficients A(t) and B(t) satisfy a certain system of ODEs. The King
solutions are analogous to the King–Rosenau solution and they can be visualized
as two shrinking solitons, called the Barenblatt solutions, coming from spatial
infinities and glued together.

It has been showed by Daskalopoulos, Hamilton and Sesum [22] that the
spheres and the King–Rosenau solutions are the only compact ancient solutions
to the two-dimensional Ricci flow. The natural question to raise is whether the
analogous statement holds true for the Yamabe flow, that is, whether the con-
tracting spheres and the King solution are the only compact ancient solutions to
the Yamabe flow. This occurs not to be the case as the following few results show.

In [20] we show the following result thus showing that the classification of
closed ancient solutions to the Yamabe flow is very difficult, if not impossible.
Unlike the above-mentioned closed ancient solutions, the Ricci curvature of the
tower of bubbles solutions changes its sign (they still have nonnegative scalar
curvature).

Theorem 4.1. There exist infinitely many ancient radially symmetric solutions of
the Yamabe flow (4.2) on Sn other than the contracting spheres (4.3) and the King
solutions (4.4). Our new solutions, as t → −∞, may be visualized as two spheres
joint by a short neck. Their curvature operator changes sign and they are type II
ancient solutions. We refer to those solutions as to a tower of n moving bubbles.

Since the towers of moving bubbles are shown to be type II ancient solutions,
while the contracting spheres and the King solutions are of type I, one may still
ask whether the latter two are the only ancient compact type I solutions of the
Yamabe flow on Sn, equation (4.2). In [21] we observe that this is not the case, as
we show the existence of other ancient compact type I solutions on Sn. We prove
the following theorem.

Theorem 4.2. There exist infinitely many ancient closed Type I solutions to the
Yamabe flow that can be viewed, as time approaches −∞, as two traveling waves,
that is Yamabe shrinkers, glued together, with the cylinder in the middle.

There exist infinitely many complete, noncompact rotationally symmetric
Yamabe shrinkers that open up as cylinders at spatial infinity and in the previous
theorem we can use any two of these Yamabe shrinkers to construct a closed ancient
solution to the Yamabe flow. Theorem 4.1 and 4.2 imply the classification result
of closed ancient solutions to the Yamabe flow is nearly impossible to obtain.
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MA, 1992.

[4] Angenent, S., Daskalopoulos, P., Sesum, N., Unique asymptotics of ancient convex
mean curvature flow solutions; to appear in J. Diff. Geom.

[5] Angenent, S., Daskalopoulos, P., Sesum, N., Uniqueness of two-convex closed ancient
solutions to the mean curvature flow; arXiv:1804.07230.

[6] Bourni, T., Langford, M., Tinaglia, G., On the existence of translating solutions of
mean curvature flow in slab regions; arxiv:1805.05173.

[7] Brendle, S., Ancient solutions to the Ricci flow in dimension 3; arXiv:1811.02559.

[8] Brendle, S., Rotational symmetry of self-similar solutions to the Ricci flow; Invent.
Math. 194 (2013), no. 3, 731–764.

[9] Brendle, S., Rotational symmetry of Ricci solitons in higher dimensions; J. Differen-
tial Geom. 97 (2014), no. 2, 191–214.

[10] Brendle, S., Convergence of the Yamabe flow for arbitrary initial energy, J. Differ-
ential Geom. 69 (2005), 217–278.

[11] Brendle, S., Convergence of the Yamabe flow in dimension 6 and higher, Invent.
Math. 170 (2007), 541–576.

[12] Brendle, S., Choi, K., Uniqueness of convex ancient solutions to the mean curvature
flow in R3; arXiv: 1711.00823v2.

[13] Brendle, S., Choi, K., Uniqueness of convex ancient solutions to mean curvature flow
in higher dimensions; arXiv: 1804.00018.

[14] R.L. Bryant, Ricci flow solitons in dimension three with SO(3)-symmetries; available
at www.math.duke.edu/ bryant/3DRotSymRicciSolitons.pdf

[15] Chow, B., The Ricci flow on the 2-sphere, J. Diff. Geom. 33 (1991), 325–334.

[16] Chu, S.C., Type II ancient solutions to the Ricci flow on surfaces, Comm. Anal.
Geom. 15 (2007), 195–216.

[17] Courant, R., Hilbert, D., Methods of mathematical physics. Vol. I. Interscience Pub-
lishers, Inc., New York, N.Y., 1953.

[18] Daskalopoulos, P., Hamilton, R., Sesum, N., Classification of compact ancient solu-
tions to the curve shortening flow; J. Differential Geom. 84 (2010), no. 3, 455–464.

[19] Daskalopoulos, P., Sesum, N., Eternal solutions to the Ricci flow on R2; Int. Math.
Res. Not. 2006, 1–20.

http://www.math.duke.edu/bryant/3DRotSymRicciSolitons.pdf


462 N. Sesum

[20] Daskalopoulos, P., del Pino, M., Sesum, N., Type II ancient compact solutions to the
Yamabe flow; to appear in J. reine ang. Math.; arXiv: arXiv:1209.5479.

[21] Daskalopulos, P., del Pino, M., Sesum, N., New Type I ancient compact solutions of
the Yamabe flow; Math. Res. Lett. 18 (2011).

[22] Daskalopoulos, P., Hamilton, R., Sesum, N., Classification of ancient compact solu-
tions to the Ricci flow on surfaces; J. Differential Geom. 91 (2012), no. 2, 171–214.

[23] Drugan, G., Self-shrinking Solutions to Mean Curvature Flow. Thesis (Ph.D.)-
University of Washington. 2014. 123 pp. ISBN: 978-1321-10634-3

[24] Filippas, S., Kohn, R., Refined asymptotics for the blowup of ut −Δu = up; Comm.
Pure Appl. Math. 45 (1992), 821–869.

[25] Hamilton, R., Formation of singularities in the Ricci flow; Surveys in Differential
Geometry, vol II, 7–136, International Press, Somerville MA (1995).

[26] Hamilton, R., The Ricci flow on surfaces; Mathematics and General Relativity 71
(1988), 237–261.

[27] Hamilton, R., Harnack estimate for the mean curvature flow; J. Diff. Geom. 41
(1995), 215–226.

[28] Hamilton, R., Eternal solutions to the Ricci flow, J. Diff. Geom. 38 (1993), 1–11.

[29] Hamilton, R.S., Lectures on geometric flows, 1989, unpublished.

[30] Haslhofer, R., Uniqueness of the bowl soliton, Geom. Topol. 19, 2393–2406 (2015).

[31] Haslhofer, R., Kleiner, B., Mean curvature flow of mean convex hypersurfaces;
arXiv:1304.0926v2.

[32] Haslhofer, R., Hershkovits, O., Ancient solutions of the mean curvature flow; Comm.
Anal. Geom. 24 (2016).

[33] Hoffman, D., Ilmanen, T., Martin, F., White, B., Graphical translators for mean
curvature flow; arXiv: 1805.10860.

[34] Huisken, G., Flow by mean curvature of convex surfaces into spheres; J. Differential
Geom. 20 (1984), no. 1, 237–266.

[35] King, J.R., Exact polynomial solutions to some nonlinear diffusion equations, Phys-
ica. D 64 (1993), 39–65.

[36] Kleene, S., Møller, N.M., Self-shrinkers with a rotational symmetry. Trans. Amer.
Math. Soc. 366 (2014), no. 8, 3943–3963.

[37] Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N., Linear and Quasi-linear
Equations of Parabolic Type; A.M.S. Transl. Math. Monogr. 23 (1968).

[38] Merle, F., Zaag, H., Optimal estimates for blowup rate and behavior for nonlinear
heat equations; Comm. Pure Appl. Math., 51 (1998), 139–196.

[39] Nakayama, K., Iizuka, T. and Wadati, M., Curve Lengthening Equation and its So-
lutions, Journal of the Physical Society of Japan, 1994, 63, 1311–1321.

[40] Perelman, G., The entropy formula for the Ricci flow and its geometric applications;
arXiv:math/0211159.

[41] Perelman, G., Ricci flow with surgery on three-manifolds; arXiv:math/0303109.

[42] Rosenau, P., Fast and superfast diffusion processes, Phys. Rev. Lett. 74 (1995), 1056–
1059.



Ancient Convex Flows 463

[43] Schwetlick, H.; Struwe, M., Convergence of the Yamabe flow for “large” energies, J.
Reine Angew. Math. 562 (2003), 59–100.

[44] Wang, X.-J., Convex solutions to the mean curvature flow; Ann. of Math. (2) 173
(2011), no. 3, 1185–1239.

[45] White, B., The nature of singularities in mean curvature flow of mean convex sets;
J. Amer. Math. Soc., 16(1):123–138, 2003.

[46] White, B., The size of the singular set in mean curvature flow of mean convex sets;
J. Amer. Math. Soc. 13 (2000).

[47] Ye, R., Global existence and convergence of Yamabe flow, J. Differential Geom. 39
(1994), 35–50.

Natasa Sesum
Department of Mathematics
Rutgers University
e-mail: natasas@math.rutgers.edu



Progress in Mathematics, Vol. 333, 465–469

The Kähler–Ricci Flow on CP2

Jian Song

Abstract. We give a direct proof of the convergence of the Kähler–Ricci flow
on CP2 without assuming the existence of the Kähler–Einstein metric.

Mathematics Subject Classification (2010). Primary 53C55, 53C20.

Keywords. Kähler–Ricci flow, projective space.

1. Introduction

A Fano manifold is a closed Kähler manifold with positive First Chern class. The
well-known Yau–Tian–Donaldson conjecture predicts the equivalence between the
existence of the Kähler–Einstein metric and the algebraic K-stability. This conjec-
ture was recently settled in [6, 21], extending Yau’s solution to the Calabi conjec-
ture [25]. The Ricci flow, introduced by Hamilton [9], is a canonical deformation
to obtain Einstein or soliton metrics on Riemannian manifolds. In the Kähler
case, the Kähler–Ricci flow provides an alternative proof for the Calabi conjecture
[4]. In the Fano case, the Kähler–Ricci flow is proved to converge to a Q-Fano
Kähler–Einstein space with possible mild singularities [3, 8, 22]. The smooth con-
vergence of the Fano Kähler–Ricci flow is obtained in [23, 24] assuming existence
of Kähler–Einstein metric. In general, it is not clear how to directly prove general
smooth convergence of the flow on CPn without assuming the existence of Kähler–
Einstein metric, algebraicK-stability or curvature assumption on the initial metric
[7]. In the case of CP2, the smooth convergence is established in [15] assuming the
Mabuch K-energy is bounded below, a condition equivalent to K-semistability. In
this short note, we give a direct proof for the convergence of the Kähler–Ricci flow
on CP2 without assuming the existence of Kähler–Einstein metrics by combining
the blow-up argument and the classification of ALE Ricci flat Kähler surfaces.
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Let (X,ω0) be a Fano manifold equipped with a Kähler metric ω0 ∈ c1(X).
We consider the following normalized Kähler–Ricci flow on X⎧⎨⎩

∂

∂t
ω = −Ric(ω) + ω,

ω|t=0 = ω0 .
(1.1)

The following is the main result of the paper.

Theorem 1.1. Let ω(t) be the global solution of the normalized Kähler–Ricci flow

(1.1) on CP2 with initial Kähler metric ω0 ∈ c1(CP2). Then ω(t) converges smooth-
ly to a Kähler–Einstein metric on CP2.

The upshot of the proof for Theorem 1.1 is that we do not assume existence
of Kähler–Einstein metric on CP2. The method can possibly be extended to CP2

blow-up at one point.

2. Proof

The main result in this section is to establish a uniform curvature bound for the
Kähler–Ricci flow (1.1) on CP2.

Proposition 2.1. For any initial Kähler metric ω0 ∈ c1(CP2), there exists C > 0
such that for

sup
CP2×[0,∞)

|Rm(g(t))|g(t) < ∞.

We will prove the proposition by contradiction. Let g(t) be the solution of
(1.1) associated to the Kähler form ω(t). Suppose there exist a sequence (zj , tj) ∈
CP2 × [0,∞) with limj→∞ tj = ∞ such that

lim
j→∞

|Rm|g(zj , tj) = ∞.

Without loss of generality, we can assume that

|Rm|g(zj , tj) = max
CP2×[0,tj ]

|Rm|g.

Let us recall the following result of Perelman [13, 16].

Lemma 2.2. Let g(t) be a global solution of the Kähler–Ricci flow (1.1). Then there
exists C > 0 such that for all t ≥ 0,

|R(t)| ≤ C, (2.1)

where R(t) is the scalar curvature of g(t).

We now apply the parabolic scaling to g(t) by letting

gj(t) = λjg(λ
−1
j t+ tj)).

Then gj(t) satisfies
∂gj
∂t

= −Ric(gj) + λ−1
j gj . (2.2)
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In particular,

max
CP2×[−tj ,0]

|Rmgj |g = |Rm(gj)|gj (zj , 0) = 1.

Therefore we can apply Hamilton’s compactness theorem. After possibly pass-
ing to a subsequence, (CP2, gj(t), zj) converges to a smooth Kähler–Ricci flow
(X∞, g∞(t)) for t ∈ (−∞, 0)

∂g∞
∂t

= −Ric(g∞), (2.3)

where X∞ is a smooth complete Kähler surface.

Lemma 2.3. For all t ∈ (−∞, 0), we have

Ric(g∞(t)) ≡ 0.

Proof. Let R and Ric be the scalar curvature and Ricci curvature of g∞(t). Then

∂R

∂t
= Δg∞R+ |Ric |2g∞ .

On the other hand, by Lemma 2.2,

R ≡ 0.

The lemma then immediately follows. �

In particular, g∞(t) is a static solution and we use g∞ for g∞(t).

Lemma 2.4. (X∞, g∞) is a Ricci flat ALE Kähler surface.

Proof. Let z∞ be the limiting point of zj along the sequence (CP2, gj(t), zj). By
Perelman’s κ-noncollapsing, there exists κ > 0 such that for any r > 0

Volg∞(Bg∞(z∞, r)) ≥ κr4.

Furthermore, the L2-curvature of (X∞, g∞) is bounded from the smooth conver-
gence. We can now blow down (X∞, g∞, z∞) by letting

g∞,k = εkg∞, lim
k→∞

εk = 0.

By the Cheeger–Colding–Tian theory [5], (X∞, g∞,k, z∞) converges in pointed
Gromov–Hausdorff sense to an orbifold Kähler surface Z with a cone metric gZ .
In fact, (Z, gZ) is the tangent cone of (X∞, g∞) at infinity. In particular, there is at
most one isolated orbifold point p as the limiting point of z∞ and gZ is a smooth
Ricci-flat Kähler metric on Z \ {p}. Therefore the link of the cone (X∞, g∞) must
be quotient of S3 and (Z, gZ) is the quotient space of Euclidean C2 by a finite
subgroup of U(2) by the standard theory of four manifolds [1, 10, 18]. The lemma
immediately follows. �

The following lemma is obtained in [17] to generalizing the hyper-Kähler case [10].

Lemma 2.5. Let (M,J, g) be a smooth ALE Ricci-flat Kähler surface whose tangent
cone at the infinity is C2/H for some finite subgroup of U(2). Then (M,J) can be
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obtained as the minimal resolution of a one parameter Q-Gorenstein deformation
of C2/H.

The following corollary follows immediately from Lemma 2.5 and the Hodge
relation for complex surfaces by considering the exceptional curve in the resolution
of Lemma 2.5.

Corollary 2.6. There exists a holomorphic curve D of negative self-intersection in
(X∞, J ′) for some complex structure J ′.

Now we can complete the proof of Proposition 2.1. Since (CP2, gj(0), zj) con-
verges smoothly to (X∞, g∞). There exists R > 0 such that D ⊂ Bg∞(z∞, R). This

implies that there exists an element in H2(CP2) with negative self-intersection.
Contradiction.

Finally, we are ready to prove Theorem 1.1. By Hamilton’s compactness
theorem, for any tj → ∞, after possibly taking a subsequence, g(t + tj) with t ∈
[0, 1] converge smoothly to a Kähler–Ricci soliton metric g∞(t) on a limiting Kähler
surface (X∞, J∞) diffeomorphic to CP2. By Kodaira’s classification of complex

surfaces, (X∞, J∞) must be biholomorphic to CP2. Therefore the limiting metric
g∞ is a Kähler–Ricci soliton metric on CP2. On the other hand, the Lie algebra
of the automorphism group for CPn is η = sl(n + 1,C) and η = [η, η]. Direct
computations show the Futaki invariant of CPn vanishes (see [20]). Therefore there
cannot be non-Einstein Kähler–Ricci soliton on CPn. This completes the proof of
Theorem 1.1.
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Pluriclosed Flow and the
Geometrization of Complex Surfaces

Jeffrey Streets

Abstract. We recall fundamental aspects of the pluriclosed flow equation and
survey various existence and convergence results, and the various analytic
techniques used to establish them. Building on this, we formulate a precise
conjectural description of the long time behavior of the flow on complex sur-
faces. This suggests an attendant geometrization conjecture which has impli-
cations for the topology of complex surfaces and the classification of general-
ized Kähler structures.

Mathematics Subject Classification (2010). 53C44, 53C55.

Keywords. Pluriclosed flow, complex surfaces.

1. Introduction

The Enriques–Kodaira classification of compact complex surfaces is a landmark
achievement of 20th century mathematics, exploiting deep techniques from com-
plex analysis, partial differential equations and algebraic geometry to give a de-
scriptive classification of complex manifolds of complex dimension two. Despite be-
ing dubbed a classification, many questions remain unanswered, and the structure
of complex surfaces remains an active area of research to this day. As the classi-
cal uniformization of Riemann surfaces profoundly intertwines complex structures
and associated canonical Riemannian geometries, it is natural to try to associate
canonical metrics to complex surfaces in order to provide further insight. The pur-
pose of this article is to describe such a “geometrization conjecture” for compact
complex surfaces. Specifically we aim to associate canonical families of Hermit-
ian metrics on all complex surfaces via a universal geometric flow construction,
and use properties of the resulting metrics to capture aspects of the underlying
complex structure, and in particular yield the classification of Kodaira’s Class VII
surfaces.

c© Springer Nature Switzerland AG 2020
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This strategy for understanding complex surfaces is inspired by Perelman’s
landmark resolution of Thurston’s Geometrization Conjecture for 3-manifolds us-
ing Ricci flow [47, 58, 63–65]. Thurston [89] sought to decompose any compact
3-manifold into pieces, each of which admits canonical Riemannian metrics, the
models of which are inspired by a thorough understanding of possible locally ho-
mogeneous spaces. In 1982, Hamilton introduced the Ricci flow equation and used
it to classify compact 3-manifolds with positive Ricci curvature. Over the ensuing
decades Hamilton further developed the theory of Ricci flow, eventually giving
a conjectural description of the singularity formation and long time behavior of
the flow, which would lead to a proof of Geometrization. Exploiting many deep
insights into the structure of Ricci flow, Perelman achieved a precise description of
this singularity formation, in particular yielding Geometrization. Amazingly, this
one analytic tool provides both the topological decomposition of the underlying 3-
manifold as well as an essentially canonical construction of the relevant geometric
structures.

Inspired by this story, the author and Tian sought to bring the philosophy
of geometric evolution to bear in understanding the topology and geometry of
complex manifolds [80, 81]. Of course Ricci flow has already had a strong in-
fluence in complex, Kähler, geometry. The Ricci flow equation preserves Kähler
geometry, and Cao initiated the study of Kähler–Ricci flow, [11] using it to re-
prove the Calabi–Yau [103] and Aubin–Yau Theorems [4, 103], canonically con-
structing Kähler–Einstein metrics on manifolds with c1 = 0, c1 < 0 respectively.
More recently, Song–Tian initiated the analytic minimal model program [70], seek-
ing to understand the algebraic minimal model program through the singularities
of Kähler–Ricci flow. However, there are many examples of complex, non-Kähler
manifolds, starting with the basic example of Hopf who constructed complex struc-
tures on S3 × S1. The Kähler–Ricci flow cannot be employed on such manifolds,
and one can show that for non-Kähler metrics the Ricci flow will not even preserve
the condition that a metric is Hermitian, thus one must look elsewhere to apply
the ideas of geometric evolutions. Thus the pluriclosed flow equation [80] was in-
troduced as an extension of Kähler–Ricci flow which preserves natural conditions
for Hermitian, non-Kähler metrics.

Following the general philosophy of geometric evolutions, one expects the
limiting behavior of pluriclosed flow to meaningfully reflect aspects of the complex
structure and topology of the underlying surface. Up to now results have been
established which support the main conjecture on the maximal smooth existence
time of the flow, and we will recount these below. Moreover we have phenomeno-
logical results in the locally homogeneous setting which suggest the general lim-
iting behavior of the flow in many cases [7]. However, there is not yet a precise
conjectural picture of how the flow behaves on most complex surfaces, most im-
portantly Kodaira’s Class VII+ surfaces. These are minimal complex surfaces of
negative Kodaira dimension and b2 > 0. Conjecturally these are all diffeomorphic

to S3×S1#kCP
2
, with a complete description of the different complex structures.
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Despite the relative simplicity of the underlying diffeotypes, these represent a large
and varied class of surfaces, and their classification remains the main open problem
in the Kodaira classification of surfaces. In this article we formulate precise conjec-
tures on the limiting behavior of the pluriclosed flow on all complex surfaces, and
announce a number of new global existence and convergence results in support of
these conjectures.

Furthermore, it turns out that the pluriclosed flow is also related to Hitchin’s
“generalized geometry” program. The first hint of this was shown in [82], where
the author and Tian showed that the pluriclosed flow equation actually preserves
the delicate integrability conditions of Gualtieri/Hitchin’s “generalized Kähler ge-
ometry,” a subject with roots in mathematical physics. We will see in part III
below that the conjectural framework for pluriclosed flow leads to a classification
of generalized Kähler structures on complex surfaces. One example of particular
interest is the case of CP2, where the global existence and convergence of the
pluriclosed flow implies a uniqueness theorem for generalized Kähler structures,
extending Yau’s theorem on the uniqueness of the complex structure [102].

Part I: Pluriclosed flow

2. Existence and basic regularity properties

2.1. Definition and local existence

In this section we recount the rudimentary properties of the pluriclosed flow equa-
tion. To begin we define the pluriclosed condition.

Definition 2.1. Let (M2n, g, J) be a complex manifold with Hermitian metric g,
and associated Kähler form ω(X,Y ) = g(X, JY ). The metric g is Kähler if

dω = 0.

The metric g is pluriclosed if
√
−1∂∂ω = ddcω = 0,

where dcω =
√
−1(∂ − ∂)ω = −dω(J, J, J). As they are equivalent notions we will

often refer to the Kähler form ω as being either Kähler or pluriclosed.

The Kähler condition is the simplest, and strongest, integrability condition for
a Hermitian metric. The pluriclosed condition is essentially the only weakening of
the Kähler condition which is linear in the Kähler form. As the aim is to understand
all complex surfaces through the geometry of pluriclosed metrics, the following
result of Gauduchon is of fundamental importance.
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Theorem 2.2 ([30]). Let (M2n, g, J) be a compact complex manifold with Hermitian
metric g. There exists a unique u ∈ C∞(M) such that

√
−1∂∂

(
e2uω

)n−1
= 0,

∫
M

udVg = 0.

In particular, applying this theorem in the case n = 2, we see that every compact
complex surface admits pluriclosed metrics.

It is well known that for a Kähler manifold, the Levi-Civita connection pre-
serves J , and is the unique Hermitian connection associated to the pair (g, J).
When the metric is not Kähler, there is a natural one-parameter family of Hermit-
ian connections associated to (g, J) ([32]). Two of these are particularly relevant
to pluriclosed flow, namely the Bismut and Chern connections, defined by:〈

∇B
XY, Z

〉
=
〈
∇LC

X Y, Z
〉
+ 1

2d
cω(X,Y, Z),〈

∇C
XY, Z

〉
=
〈
∇LC

X Y, Z
〉
+ 1

2dω(JX, Y, Z).

These connections induce curvature tensors ΩB and ΩC , and also connections on
the canonical bundle, yielding in turn representatives of the first Chern class:

ρBαβ = gjiΩB
αβij

, ρCαβ = gjiΩC
αβij

.

By Chern–Weil theory we know that dρB,C = 0, and ρB,C ∈ c1. However, it is
not the case in general that ρB is of type (1, 1). Of course in the Kähler setting
ρB = ρC = ρ, the Ricci form of the underlying metric.

The classical quest for canonical metrics on manifolds often centers around
existence questions for Einstein metrics, i.e., solutions of

Rc = λg

for some constant λ. Hamilton [38] introduced the Ricci flow

∂

∂t
g = − 2Rc

as a tool for constructing such metrics by the parabolic flow method. Cao [11]
observed that the Ricci flow equation will preserve the Kähler condition, and can
be expressed in terms of the Kähler form as

∂

∂t
ω = − ρ =

√
−1∂∂ log det g, (2.1)

where the last expression holds in local complex coordinates.
Given the vast array of analytic tools and structure available for Ricci flow,

one would want to use it to understand complex manifolds beyond the Kähler
setting. However, for a general Hermitian metric the Ricci tensor is not of (1, 1)
type and thus the Ricci flow equation will not preserve the class of Hermitian
metrics. For this reason we are forced to define a new equation if we are to preserve
aspects of Hermitian, non-Kähler geometry. In [81] the author and Tian introduced
a family of parabolic equations for Hermitian metrics on complex manifolds. Let

Sij = glkΩC
klij

, which is a kind of Ricci tensor defined using the Chern connection,
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and is always a (1, 1) form. Furthermore, we let T denote the torsion of the Chern
connection, and let Q = T  T denote an arbitrary quadratic in T which satisfies
Q ∈ Λ1,1. In [81] the author and Tian defined the class of flow equations:

∂

∂t
ω = −S +Q, (2.2)

referring to these generally as Hermitian curvature flow. We showed that for an
arbitrary choice of Q this equation is strictly parabolic and satisfies various natural
analytic conditions such as smoothing estimates and stability near Kähler–Einstein
metrics. In [81] a particular choice of Q was identified corresponding to the Euler
equation of a certain Hilbert-type functional in Hermitian geometry. More recently
Ustinovskiy [99] showed that for a different choice of Q the flow will preserve var-
ious curvature positivity conditions, leading to extensions of the classical Frankel
conjecture into non-Kähler geomery. Given the rich diversity of Hermitian geome-
try, it is natural to expect that different flows, i.e., different choices of Q, would be
needed to address different situations. In [80] the author and Tian identified a par-
ticular choice of Q which yields a flow which preserves the pluriclosed condition,
specifically

Q1
ij
= glkgqpTikpTjlq.

As it turns out the resulting flow equation has several different useful manifesta-
tions, and we record the fundamental definition including some of these forms.

Definition 2.3. Let (M2n, J) be a complex manifold. We say that a one-parameter
family of pluriclosed metrics ωt is a solution of pluriclosed flow if

∂

∂t
ω = − S +Q1.

This is an example of Hermitian curvature flow, which is well posed for arbitrary
Hermitian metrics. With pluriclosed initial data it can also be expressed using the
Bismut curvature as

∂

∂t
ω = − ρ1,1B .

It is useful to furthermore express the flow in local complex coordinates, yielding

∂

∂t
ω = ∂∂∗

ωω + ∂∂
∗
ωω +

√
−1∂∂ log det g. (2.3)

As an example of Hermitian curvature flow, there exist short time solutions
on compact manifolds as remarked above. Arguing specifically in this setting, it
turns out that the operator ρ1,1B , restricted to the class of pluriclosed metrics, is
strictly elliptic. In fact, the symbol of the linearized operator is just the Laplacian
with respect to the given metric. This renders pluriclosed flow a strictly parabolic
equation, and so by appealing to general theory we can obtain short time existence
on compact manifolds. Moreover, comparing (2.3) and (2.1), it is natural to expect
that if we start the flow with Kähler initial data then it is a solution of Kähler–Ricci
flow. This in fact holds, so to summarize:
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Theorem 2.4 (cf. [80, Theorem 1.2]). Let (M2n, J) be a compact complex manifold.
Suppose ω0 is a pluriclosed metric on M . Then there exists ε > 0 and a unique
solution to pluriclosed flow ωt with initial condition ω0. If ω0 is Kähler, then ωt is
the unique solution to Kähler–Ricci flow with initial data ω0.

Having obtained short time solutions, the main task is to describe the maxi-
mal smooth existence time, as well as the limiting behavior at this time, in general
a formidable task. The remainder of this paper is devoted to giving precise con-
jectures on these questions in the specific case of complex surfaces.

Remark 2.5. We point out that a different geometric flow approach has been
introduced to study complex surfaces, the Chern–Ricci flow:

∂

∂t
ω = − ρC .

This flow also preserves the pluriclosed condition, and reduces to a scalar PDE
modeled on the parabolic complex Monge–Ampère equation. A crucial qualitative
distinction between this flow and pluriclosed flow is that for Chern–Ricci flow the
torsion is fixed as a tensor along the flow, i.e., dωt = dω0, whereas for pluriclosed
flow the torsion tensor satisfies a parabolic PDE.

Despite this difference there are similarities between the results and expec-
tations of pluriclosed flow and Chern–Ricci flow, especially in the cases of pos-
itive Kodaira dimension, where it is natural to rescale by “blowing down” the
flow, which then yields dωt = e−tdω0, allowing for convergence to Kähler metrics.
Specifically, the analogue of Conjectures 6.3 and 7.1 below were shown to hold for
Chern–Ricci flow ([97, Theorem 1.7], [98, Theorem 1.1]).

Differences start to appear in Kodaira dimension zero. For instance, as shown
in [34], given an arbitrary Hermitian metric on the torus, the Chern–Ricci flow
will exist globally and converge to a Chern–Ricci flat, but not necessarily flat,
metric. Here the fact that dωt = dω0 prevents the flow converging to a Kähler
metric when starting from a non-Kähler metric in this setting. This is related to
the fact that there is an infinite-dimensional moduli space of pluriclosed Chern–
Ricci flat metrics on the torus, using perturbations of the flat metric via ∂α+ ∂α.
Alternatively, Theorem 4.4 shows that the pluriclosed flow on the torus, with
arbitrary initial data, exists globally and converges to a flat metric.

The differences become even more stark for Kodaira dimension −∞, where
for instance pluriclosed flow has fixed points on Hopf surfaces, whereas Chern–
Ricci flow always encounters a finite time singularity. Also on CP2 the Fubini–
Study metric is stable for normalized pluriclosed flow (also see Theorem 9.4 below
for more general convergence results), whereas normalized Chern–Ricci flow will
satisfy dωt = etdω0, and so cannot converge to Fubini–Study for non-Kähler initial
data. In a strange quirk, the geometry of Inoue surfaces again requires a blowdown
to obtain a geometric limit, so here again the expectations between the two flows
agree, and the natural analogue of Conjecture 7.5 for Chern–Ricci flow was shown
to hold for certain initial data [24].
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2.2. Pluriclosed flow as a gradient flow

The original motivation for defining pluriclosed flow came from complex geometry,
aiming to preserve natural properties of Hermitian metrics. As it turns out, this
equation has a remarkable and useful relationship to the Ricci flow or, more pre-
cisely, the generalized Ricci flow which couples to the heat equation for a closed
three-form.

Theorem 2.6 (cf. [83, Theorem 6.5]). Let (M2n, ωt, J) be a solution to pluriclosed
flow. Let (gt, Ht = dcωt) be the associated 1-parameter families of Riemannian
metrics and Bismut torsion forms. Then

∂

∂t
g = − 2Rc+ 1

2H
2 − Lθ�g,

∂

∂t
H = ΔdH − Lθ�H.

(2.4)

Notice that we may apply a family of diffeomorphisms to remove the Lie
derivative terms, yielding a solution of the system of equations

∂

∂t
g = − 2Rc+ 1

2H
2,

∂

∂t
H = ΔdH.

(2.5)

This system of equations originally arose in mathematical physics in the context of
renormalization group flow in the theory of σ-models. The author studied this sys-
tem under the name “connection Ricci flow” [74] and “generalized Ricci flow” [76]
due to the relationship to the curvature of the Bismut connection and generalized
geometry. Notice that in the context of pluriclosed flow, if we apply the relevant
gauge transformation to produce a solution (gt, Ht) to (2.5), then gt remains a
pluriclosed metric, but with respect to the appropriately gauge-modified family of
complex structures. This seemingly minor point is actually an essential and rich
feature of the generalized Kähler–Ricci flow, explained in §9. But first, the pri-
mary analytic consequence of Theorem 2.6 is the realization of pluriclosed flow as
a gradient flow. As shown in [62], (2.5) is the gradient flow of the first eigenvalue of
a certain Schrödinger operator, extending Perelman’s monotonicity formulas for
Ricci flow. We briefly describe this construction, and the reader should consult
([62, 63]) for further detail.

To begin we define the functional

F(g,H, f) =

∫
M

(
R− 1

12 |H |2 + |∇f |2
)
e−fdVg, (2.6)

for f ∈ C∞(M). This functional obeys a monotonicity formula when f obeys the
appropriate conjugate heat equation, which is the adjoint of the heat equation
with respect to the spacetime L2 norm, in particular

∂

∂t
f = −Δf −R+ 1

4 |H |2 . (2.7)
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Given (gt, Ht) a solution of generalized Ricci flow, and ft is an associated solution
of (2.7), then one obtains the equation

d

dt
F(gt, Ht, ft) =

∫
M

[
2
∣∣Rc− 1

4H
2 +∇2f

∣∣2 + |d∗H +∇f H |2
]
e−fdVg. (2.8)

The right-hand side is of course nonnegative, so that F is monotone nondecreasing.
Underlying this monotonicity is the fact that generalized Ricci flow is the gradient
flow of the lowest eigenvalue λ of the operator −4Δ + R − 1

12 |H |2, characterized
via

λ(g,H) := inf
{f | ∫

M
e−fdVg=1}

F(g,H, f). (2.9)

Theorem 2.7 ([62, Proposition 3.4]). Generalized Ricci flow is the gradient flow ofλ.

These monotonicity formulas have strong consequences for the singularity
formation and conjectural framework for pluriclosed flow. In particular, this mono-
tonicity formula motivates a key concept, that of a generalized Ricci soliton. These
are triples (g,H, f) such that

Rc− 1
4H

2 +∇2f = 0

d∗H +∇f H = 0,
(2.10)

which by (2.8) correspond to critical points for F or λ. Given such a triple (g,H, f),
the solution to generalized Ricci flow with this initial data evolves via pullback
by the 1-parameter family of diffeomorphisms generated by −∇f , and so these
solutions are self-similar, and thus a natural, more general notion of a fixed point
for generalized Ricci flow.

3. Conjectural existence properties

In this section we describe the conjectural maximal smooth existence time for
pluriclosed flow on compact complex manifolds, and give a more refined picture
in the case of complex surfaces, following [83]. We first recall the fundamental
theorem of Tian–Zhang [95] on the maximal smooth existence of Kähler–Ricci flow.
We then extend the formal definition behind this result to the case of pluriclosed
flow, and state the relevant conjectures. To finish we recall a result of [83] giving a
characterization of the relevant positive cone in cohomology on complex surfaces
which allows us to explicitly compute the formal existence time for the flow in
part II.

3.1. Sharp local existence for Kähler–Ricci flow

To understand the formal picture of the long time existence and singularity for-
mation of Kähler–Ricci flow, we first study the flow at the level of cohomology.
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Definition 3.1. Let (M2n, J) be a Kähler manifold. Let

H1,1
R :=

{
Kerd : Λ1,1

R → Λ3
}{√

−1∂∂f | f ∈ C∞
} .

Furthermore, define the Kähler cone via

K :=
{
[ψ] ∈ H1,1 | ∃ ω ∈ [ψ], ω > 0

}
.

The structure of the Kähler cone plays a fundamental role in understanding
the singularity formation of the Kähler–Ricci flow. First note that an elementary
consequence of the Kähler–Ricci flow equation is that

[ωt] = [ω0]− tc1. (3.1)

Thus the Kähler class moves along a ray in K, and we thus obtain an upper bound
for the possible smooth existence time:

Lemma 3.2. Let (M2n, g0, J) be a Kähler manifold. Let

τ∗(ω0) := sup{t ≥ 0 | [ω0]− tc1 ∈ K}, (3.2)

and let T denote the maximal smooth existence time for the Kähler–Ricci flow with
initial condition g0. Then T ≤ τ∗(ω0).

Proof. Let ωt denote the one parameter family of Kähler forms evolving by Kähler–
Ricci flow with initial condition ω0. If the flow existed smoothly for some time
t > τ∗, then in particular by (3.1) there exists a smooth positive definite metric
in [ω0]− tc1, contradicting the definition of τ∗. �

Informally this lemma states that the flow must go singular by the time the
associated family of Kähler classes leaves the Kähler cone. In view of this, the
natural question to ask is if singularities can possibly form without leaving the
Kähler cone. The answer is no, due to Tian–Zhang, meaning that τ∗(ω0) is the
maximal smooth existence time of the flow.

Theorem 3.3 ([95, Proposition 1.1]). Let (M2n, g0, J) be a compact Kähler mani-
fold. The maximal smooth solution of Kähler–Ricci flow with initial condition g0
exists on [0, τ∗(ω0)).

The proof requires the development of a priori estimates for the metric along
the flow. The fundamental role played by the formal considerations above is that,
for times t < τ∗(ω0), it is possible to reduce the Kähler–Ricci flow to a scalar
PDE modeled on the parabolic complex Monge–Ampère equation. This allows for
various delicate applications of the maximum principle to obtain control over the
metric as long as t < τ∗(ω0).
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3.2. A positive cone and conjectural existence for pluriclosed flow

Now we follow the discussion of the previous subsection and investigate the formal
existence time for pluriclosed flow. First we define the relevant positive cone, this
time in an Aeppli cohomology space.

Definition 3.4. Let (M2n, J) be a complex manifold. Define the real (1, 1) Bott–
Chern cohomology via

H1,1
BC,R :=

{
Ker d : Λ1,1

R → Λ3
R

}
{√

−1∂∂f | f ∈ C∞
} .

Furthermore, define the real (1, 1) Aeppli cohomology via

H1,1

∂+∂,R
:=

{
Ker

√
−1∂∂ : Λ1,1

R → Λ2,2
R

}
{
∂α+ ∂α | α ∈ Λ1,0

} .

The restriction to real (1, 1) forms make these different spaces from what is usually
referred to as Bott–Chern and Aeppli cohomology. Nonetheless in what follows we
will drop the R from the notation and always mean these spaces defined above.
Lastly, we define the (1, 1) Aeppli positive cone via

P :=
{
[ψ] ∈ H1,1

∂+∂
| ∃ ω ∈ [ψ], ω > 0

}
.

Note that P consists precisely of the (1, 1) Aeppli classes represented by
pluriclosed metrics. Similarly to (3.1), we want to derive an ODE for the Aeppli
classes associated to a solution of pluriclosed flow. First note that, on a general
complex manifold, the first Chern class c1 is usually considered as an element of
(1, 1) Bott–Chern cohomology. There is a natural map i : H1,1

BC → H1,1

∂+∂
, and using

this we consider c1 as an element of (1, 1) Aeppli cohomology, without further
notation. Thus, given a solution ωt of pluriclosed flow (2.3), we compute as an
equation of (1, 1) Aeppli classes,

d

dt
[ωt] = −[ρ1,1B ] = [∂∂∗

ωt
ωt + ∂∂

∗
ωt
ωt − ρC(ωt)] = −c1.

Thus precisely as in the Kähler–Ricci flow case we obtain, as an equation of (1, 1)
Aeppli classes,

[ωt] = [ω0]− tc1. (3.3)

This formal calculation allows us to derive an upper bound for the maximal smooth
existence time of a solution to pluriclosed flow, whose proof is identical to that of
Lemma 3.2.

Lemma 3.5. Let (M2n, g0, J) be a complex manifold with pluriclosed metric. Let

τ∗(ω0) := sup{t ≥ 0 | [ω0]− tc1 ∈ P}, (3.4)

and let T denote the maximal smooth existence time for the pluriclosed flow with
initial condition g0. Then T ≤ τ∗(ω0).
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What follows is the main conjecture guiding the study of pluriclosed flow.
While Lemma 3.5 indicates the elementary fact that the maximal existence time
for the flow can be no larger than τ∗(ω0), Conjecture 3.6 indicates that the flow is
actually smooth up to time τ∗(ω0), i.e., that it equals the maximal existence time.

Conjecture 3.6 (Main Existence Conjecture). Let (M2n, g0, J) be a compact com-
plex manifold with pluriclosed metric. The maximal smooth solution of pluriclosed
flow with initial condition g0 exists on [0, τ∗(ω0)).

This conjecture first appeared in our joint work with Tian ([83, Conjecture 5.2]),
inspired by Theorem 3.3.

3.3. Characterizations of positive cones

As a guide for the nature of singularity formation as one leaves the positive cone
it is useful to have a characterization of the necessary and sufficient conditions
for cohomology classes to lie in the appropriate positive cone. We give such a
characterization in the case n = 2 in this subsection. First, for a given complex
surface define

Γ =
{da ∈ Λ1,1

R }{√
−1∂∂f |f ∈ C∞

} .
By ([86, Lemma 2.3]), This is identified with a subspace of R, via the L2 inner

product with a pluriclosed metric ω. Note that if (M4, J) is Kähler then the ∂∂-
lemma holds and so Γ = {0}. Further arguments of ([86, Lemma 2.3]) in fact
show that the vanishing of Γ implies the manifold is Kähler. Thus, on a non-
Kähler surface we may choose a positive generator γ0 for Γ, and since the space
of pluriclosed metrics on M is connected, this orientation is well defined. This
form γ0 plays a key role in the characterization of the positive cone P in the next
theorem.

Theorem 3.7 ([83, Theorem 5.6]). Let (M4, J) be a complex non-Kähler surface.
Suppose φ ∈ Λ1,1 is pluriclosed. Then [φ] ∈ P if and only if

1.
∫
M

φ ∧ γ0 > 0

2.
∫
D
φ > 0 for every effective divisor with negative self-intersection.

A natural question is whether there is a characterization of P in higher di-
mensions. In such cases it is not even clear how to define natural conditions which
only depend on Aeppli cohomology classes. As the quantity

∫
M ω∧γ0 will be fixed

along a solution to pluriclosed flow, as a corollary of this theorem we obtain a
clean characterization of the quantity τ∗:

Corollary 3.8. Let (M4, J) be a complex non-Kähler surface. Given ω0 a pluriclosed
metric, one has

τ∗(ω0) = sup

{
t ≥ 0 |

∫
D

ω0 − tc1 > 0 for D2 < 0

}
.
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4. (1,0)-form reduction

As described above, the proof of Theorem 3.3 rests on the key fact that the Kähler–
Ricci flow, for times t < τ∗(ω0), the Kähler–Ricci flow can be reduced to a scalar
equation. Due to the ∂∂-lemma, we know that locally Kähler metrics admit scalar
potential functions, and thus one expects any variation of Kähler metrics to reduce
to a variation of Kähler potentials, up to global topological considerations. Locally
this PDE is modeled on the parabolic complex Monge–Ampère equation,

∂f

∂t
= log det

√
−1∂∂f, (4.1)

where ω =
√
−1∂∂f . Using the scalar reduction, various maximum principle ar-

guments are employed to obtain C∞ estimates for f , and thus the Kähler–Ricci
flow ([95]).

Turning to the pluriclosed flow, we first note that in non-Kähler geometry,
Hermitian metrics, even pluriclosed, cannot be described by a single potential func-
tion. Thus it is not reasonable to expect to reduce the pluriclosed flow to a scalar
PDE. Instead, pluriclosed metrics admit local potential (1, 0) forms. In particular,
a short argument using the Dolbeault lemma shows that for any pluriclosed met-
ric, locally there exists a (1, 0)-form α such that ω = ∂α+ ∂α. Thus for a solution

to pluriclosed flow, locally we can express ωt = ωαt := ∂αt + ∂αt, and using (2.3)
one can show that αt should locally satisfy the PDE

∂α

∂t
= ∂

∗
gαωα −

√
−1

2
∂ log det gα. (4.2)

Observe that this is a strict generalization of (4.1), where if the metric is Kähler

and αt =
√
−1
2 ∂f , then the PDE for α corresponds to that satisfied by the gradi-

ent of a function evolving by (4.1). As it turns out, equation (4.2) is degenerate
parabolic, with the degeneracy arising from the redundancy wherein α and α+∂f
describe the same metric for f ∈ C∞(M,R).

A full, positive resolution of Conjecture 3.6 will hinge on a complete under-
standing of equation (4.2). Using this reduced equation, we have achieved many
global existence and convergence results which confirm Conjecture 3.6 in a variety
of cases, and these are described below. We will not give a full account of the
proofs of these results here, but rather describe one key estimate underlying all of
these proofs. In establishing regularity of Kähler–Ricci flow, it is crucial to obtain
the C2,α estimate for the potential in the presence of C1,1 estimates. This can
be achieved using Calabi/Yau’s C3 estimate ([10, 103]) or the Evans–Krylov style
of estimates ([23, 52]). On the other hand, thinking in terms of the metric ten-
sor, this is a Cα estimate in the presence of uniform parabolicity bounds. As the
pluriclosed flow is a parabolic system of equations for the Hermitian metric g, an
estimate of this kind would be analogous to the DeGiorgi–Nash–Moser/Krylov–
Safonov [14, 53, 54, 59, 61] estimate for uniformly parabolic equations. However,
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these results are false for general systems of equations [15]. Despite these chal-
lenges we are able to obtain this an estimate of this kind by uncovering a kind of
convexity structure described below.

We give an informal statement of the result here, which combines ([75, The-
orems 1.7, 1.8]), referring there for the precise claims.

Theorem 4.1. Let (M2n, J) be a compact complex manifold. Suppose gt is a solution
to the pluriclosed flow on [0, τ). Suppose there exist a constant λ > 0 such that

λg0 ≤ gt.

Then there exist uniform C∞ estimates for gt on [0, τ).

The crucial point behind this theorem is a sharp differential inequality for a
delicate combination of first derivatives of the potential α. In particular, consider
the section of Sym2(T ⊕ T ∗) defined by

W =

(
g − ∂αg−1∂α

√
−1∂αg−1

√
−1g−1∂α g−1

)
.

The form of this matrix is inspired in part by Legendre transforms [84], and in
part from its appearance as the “generalized metric,” in generalized geometry
[35], where i∂α plays the role of the “B-field.” A delicate computation shows
that LW ≤ 0, where L is the Laplacian of the time-dependent metric. Using this
together with the fact that detW = 1 it is possible to obtain a Cα estimate for
the matrix W , which yields Cα estimates for g. Via a blowup argument one then
obtains all higher-order estimates.

Thus using this theorem we see that the remaining obstacle to establish
Conjecture 3.6 is to obtain a uniform lower bound for the metric along the flow.
This is a significant hurdle, which is overcome in the Kähler setting through a
delicate combination of maximum principles for the parabolic complex Monge–
Ampère equation. There are many cases where Conjecture 3.6 can be established
by exploiting some further underlying geometric structures. The simplest case to
address is that of manifolds with nonpositive bisectional curvature:

Theorem 4.2 ([75, Theorem 1.1]). Suppose (M4, J, h) is a compact complex surface,
with Hermitian metric h with nonpositive holomorphic bisectional curvature. Given
g0 a pluriclosed metric on M , the solution to normalized pluriclosed flow exists for
all time.

In general the limiting behavior at infinity in the above theorem can be
delicate, involving contraction of divisors as well as collapsing. With a further
curvature restriction we can obtain a convergence result as well:

Theorem 4.3 ([75, Theorem 1.1]). Suppose (M4, J, h) is a compact complex surface,
with Hermitian metric h with constant negative bisectional curvature. Given g0 a
pluriclosed metric on M , the solution to normalized pluriclosed flow exists for all
time and converges to h.



484 J. Streets

Also, we can obtain convergence to a flat metric in the case of tori, which
requires further a priori estimates and use of the F -functional described in §2.2.

Theorem 4.4 ([75, Theorem 1.1]). Let (M4, J) be biholomorphic to a torus. Given
g0 a pluriclosed metric, the solution to pluriclosed flow with initial data g0 exists
on [0,∞) and converges to a flat Kähler metric.

This theorem confirms the basic principle that pluriclosed flow cannot develop
“local” singularities. For instance, on any manifold one can choose initial metrics
whereby the Ricci flow develops topologically trivial neckpinches. The rigidity of
pluriclosed metrics/pluriclosed flow apparently prevents the construction of such
singular solutions.

5. Pluriclosed flow of locally homogeneous surfaces

Having described fundamental analytic aspects governing the regularity of pluri-
closed flow, we now turn to describing the behavior of locally homogeneous metrics,
which in principle give the prototypical behavior for different classes of complex
surfaces. As we will see the pluriclosed flow naturally incorporates two classical
points of view on canonical geometries: “geometric structures” in the sense of
Thurston and (Kähler) Einstein metrics. In this section we recall fundamental
aspects of Thurston geometries and how pluriclosed flow of locally homogeneous
metrics relates to these structures.

5.1. Wall’s classification

In 1985 Wall, directly inspired by the Thurston geometrization conjecture [89],
sought to understand complex surfaces through the use of Thurston’s “model ge-
ometries.” By combining elements of Lie theory with results from the Kodaira
classification he gave a complete classification of complex surfaces admitting model
geometric structure. Following [100] we will briefly recall these results and later
describe the relationship of pluriclosed flow to this classification. We recall the
fundamental definition:

Definition 5.1. A model geometry is a triple (X, g,G) such that (X, g) is a com-
plete, simply connected Riemannian manifold, G is a group of isometries acting
transitively on (X, g), and G has a discrete subgroup Γ such that Γ\X is compact.

Let us very briefly describe the model geometries up to dimension four, only
indicating the space X . In dimension one there is a unique geometry, the real line.
In dimension two there are three, namely S2,R2, and H2. In dimension three there
are eight geometries, classified by Thurston [90]. First there are S3,R3, and H3, as

well as the product geometries S2 × R and H2 × R. Another example is S̃L2, the
universal cover of the unit tangent bundle of H2, with metric left-invariant under
the natural Lie group structure. Also one has Nil3, the unique simply connected
nilpotent Lie group in three dimensions, as well as a solvable Lie group Sol3,
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realized as an extension R2 �α R, where α(t)(x, y) = (etx, e−ty), again with left
invariant metric.

In four dimensions these geometries were classified by Filipkiewicz [26]. First
there are the irreducible symmetric spaces S4,H4,CP2,CH2, as well as products
of all lower-dimensional examples above. There is a four-dimensional nilpotent Lie
group Nil4 and a family of solvable Lie groups Sol4m,n which we will not describe
as these do not admit compatible complex structures. Another class of solvable
Lie groups arises, Sol40 = R3 �δ R, where δ(t)(x, y, z) = (etx, ety, e−2tz). Lastly
one has Sol41 which is the Lie group of matrices⎧⎨⎩

⎛⎝1 b c
0 α a
0 0 1

⎞⎠ : α, a, b, c ∈ R, α > 0

⎫⎬⎭ .

Another geometry denoted F 4 is identified which we ignore as it admits no compact
models.

In describing the existence of compatible complex structures on these geome-
tries, some subtleties arise. We recall the main theorems of Wall [100] here.

Theorem 5.2. 1. A model geometry X carries a complex structure compatible
with the maximal connected group of isometries if and only if X is one of:

CP2, CH2, S2 × S2, S2 × R2, S2 ×H2, R2 ×H2,

H2 ×H2, S̃L2 × R,Nil3×R, Sol40, Sol41 .

2. R4 admits a complex structure compatible with R4 � U2, and S3 × R admits
a complex structure compatible with U2 × R. All other geometries admit no
compatible complex structure.

3. In every case except Sol41 the complex structure is unique up to isomorphism,

and on Sol41 there are two isomorphism classes. As complex manifolds these
are denoted Sol41 and (Sol41)

′

4. There are Kähler metrics compatible with the complex and geometric structure
precisely in the cases

CP2, CH2, S2 × S2, S2 × R2, S2 ×H2, R2 ×H2,H2 ×H2.

5.2. Existence and convergence results

For locally homogeneous pluriclosed metrics, the pluriclosed flow will reduce to a
system of ODE which greatly simplifies the analysis. We record theorem statements
here assuming familiarity with the Kodaira classification of surfaces, described
in more detail in part II. First there is a complete description of the long time
existence behavior as well as the limiting behavior on the universal cover.

Theorem 5.3 ([7, Theorem 1.1]). Let gt be a locally homogeneous solution of pluri-
closed flow on a compact complex surface which exists on a maximal time interval
[0, T ). If T < ∞ then the complex surface is rational or ruled. If T = ∞ and the
manifold is a Hopf surface, the evolving metric converges exponentially fast to a
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multiple of the Hopf metric (cf. 7.1). Otherwise, for the lift g̃ of the flow to the
universal cover there is a blowdown limit

(g̃∞)t = lim
s→∞

s−1g̃st

which is an expanding soliton in the sense that g̃t = tg̃1.

It is implicit in the proof that one can actually recover the underlying com-
plex surface from the asymptotic behavior of the flow. In particular, if a locally
homogeneous solution to pluriclosed flow encounters a finite time singularity, then
the singularity is of type I and the underlying complex surface is rational or ruled.
If it is type IIb, i.e., |Rm| t →∞, then the underlying manifold is a diagonal Hopf
surface, whereas if it is type III, i.e., |Rm| t < ∞, then the underlying manifold is
one of the remaining surfaces in the Wall classification, i.e., a torus, hyperlliptic,
Kodaira, or Inoue surface. In fact, much sharper statements can be made concern-
ing the Gromov–Hausdorff limits at infinity which recover precisely the underlying
complex surface.

Theorem 5.4 ([7, Theorem 1.2]). Let ωt be a locally homogeneous solution of pluri-
closed flow on a compact complex surface (M,J) which exists on [0,∞) and suppose
(M,J) is not a Hopf surface. Let ω̂t =

ωt

t .

1. If the surface is a torus, hyperelliptic, or Kodaira surface, then the family
(M, ω̂t) converges as t →∞ to a point in the Gromov–Hausdorff topology.

2. If the surface is an Inoue surface, then the family (M, ω̂t) converges as t →∞
to a circle in the Gromov–Hausdorff topology and moreover the length of this
circle depends only on the complex structure of the surface.

3. If the surface is a properly elliptic surface where the genus of the base curve
is at least 2, then the family (M, ω̂t) converges as t → ∞ to the base curve
with constant curvature metric in the Gromov–Hausdorff topology.

4. If the surface is of general type, then the family (M, ω̂t) converges as t →∞
to a product of Kähler–Einstein metrics on M .

Part II: Geometrization of complex surfaces

First we recall the rudimentary aspects of the Kodaira classification of surfaces,
referring the reader to the classic text [5] for a very detailed accounting. The first
main tool for classifying complex surfaces is the Kodaira dimension. If (M4, J) is
a complex surface, let K denote the canonical bundle, and let pn = dimH0(K⊗n)
denote the plurigenera of M . If all pn are zero, we say that the Kodaira dimension
of M is kod(M) = −∞. Otherwise kod(M) is the smallest integer k such that pn

nk

is bounded, which is no greater than 2 in this case, giving the four possibilities,
−∞, 0, 1 and 2. Within these four classes one wants to understand which surfaces
admit Kähler metrics. Applying the Kähler identities to Dolbeault cohomology, one
obtains that the odd Betti numbers of a Kähler surface are even. Building on many
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results in the Kodaira classification, Siu [67] proved the converse: if b1(M) is even
then the surface admits Kähler metrics. Later, direct proofs of this equivalence were
given by Buchdahl [9], Lamari [55]. This leaves in principle eight classes of surfaces,
although it follows from Grauert’s ampleness criterion (cf. [5, IV.6]) that any
surface with kod(M) = 2 is projective, and hence Kähler, thus non-Kähler surfaces
only occur for kod(M) ≤ 1, leaving seven classes. We will address each of these
classes in turn, and state the conjectural behavior of pluriclosed flow for each case.

6. Conjectural limiting behavior on Kähler surfaces

It is natural to ask why one would bother studying pluriclosed flow on a Kähler
surface, since one can detect via topological invariants whether a given complex
surface admits Kähler metrics, and thus simply study Kähler–Ricci flow on these
manifolds to produce canonical geometries. However, as we ultimately want to
apply pluriclosed flow as an a priori geometrizing process relying on minimal hy-
potheses, understanding its properties with arbitrary initial data even on Kähler
manifolds plays an important philosophical role. Moreover, Kähler surfaces are a
rich class of complex manifolds on which to test the naturality and tameness of
pluriclosed flow from a PDE point of view. Most importantly, as we will see in part
III, there are concrete applications to understanding the classification of general-
ized Kähler manifolds that cannot be approached through the Kähler–Ricci flow.

Having said this, the guiding principle here is quite simple:

“Pluriclosed flow behaves like Kähler–Ricci flow on Kähler manifolds.”

To illustrate, note that Theorems 4.3 and 4.4 yield the same existence time, and
converge to the same limits as, the Kähler–Ricci flow in those settings. The con-
jectures to follow below all follow this principle.

Remark 6.1. In the discussion below we make the assumption that the underlying
complex surface is minimal, i.e., free of (−1)-curves. By a standard argument
([5, Theorem III.4.5]) one can perform a finite sequence of blowdowns to obtain a
minimal complex surface. Thus from the point of view of complex geometry little
is lost by considering only minimal surfaces. Of course from the point of view of
analysis one still would like to know what happens to the flow in the general setting.
An elementary calculation using the adjunction formula shows that pluriclosed flow
homothetically shrinks the area of (−1) curves to zero in finite time. Conjecturally
one expects that pluriclosed flow “performs the blowdown” in an appropriate sense.
This has been confirmed in some special cases for Kähler–Ricci flow [71].

6.1. Surfaces of general type

By definition these are complex surfaces with Kodaira dimension two. These sur-
faces have c21(M) > 0 and so it follows from Grauert’s ampleness criterion (cf. [5,
IV.6]) that all such are automatically projective, hence Kähler. In the case c1 < 0
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the existence of a Kähler–Einstein metric follows from the work of Aubin–Yau,
and the construction of this metric via Kähler–Ricci flow follows from Cao [11].

Theorem 6.2 (Aubin–Yau [4, 103], Cao [11]). Let (M4, J) be a compact Kähler
surface with c1 < 0. There exists a unique metric ωKE ∈ −c1 satisfying ρωKE =
−ωKE. Moreover, given any Kähler metric ω0, the solution to Kähler–Ricci flow
with initial condition ω0 exists on [0,∞), and

lim
t→∞

ωt

t
= ωKE.

More generally, these surfaces can have c1 ≤ 0, admitting finitely many −2 curves,
and their canonical models are orbifolds obtained by contraction of these curves.
Tian–Zhang [95] proved in this setting that the Kähler–Ricci flow exists globally,
converging after normalization to the unique oribfold Kähler–Einstein metric on
the canonical model.

To describe the conjectured behavior of the pluriclosed flow, we first compute
the formal existence time. By choosing a background metric with ρ(ω̃) ≤ 0, given
any pluriclosed metric ω0 it follows that ω0− tρ(ω̃) > 0, and so τ∗(ω0) = ∞. Thus
we expect the pluriclosed flow to exist globally on such manifolds, and converge
after normalization to the unique Kähler–Einstein metric on the canonical model.
Theorem 4.3 confirms this conjecture for a large class of surfaces of general type.

Conjecture 6.3. Let (M,J) be a complex surface of general type. Given ω0 a pluri-
closed metric, the solution to pluriclosed flow with initial condition ω0 exists on
[0,∞), and the solution to the normalized pluriclosed flow exists on [0,∞) and
converges exponentially to ωKE, the unique orbifold Kähler–Einstein metric on
the associated canonical model.

6.2. Properly Elliptic surfaces

By definition these are Kähler complex surfaces of Kodaira dimension one. For
such surfaces there is a curve Σ together with a holomorphic map π : M → Σ
such that the canonical bundle of M satisfies K = π∗L for an ample line bundle
L over Σ. Further, the generic fiber of π is a smooth elliptic curve, and we call
such points regular. Near regular points we obtain a map to the moduli space of
elliptic curves, and thus we can pull back the L2 Weil–Petersson metric to obtain
a semipositive (1, 1) form ωWP on the regular set. This form plays a key role in
describing the limiting behavior of Kähler–Ricci flow on these surfaces, done by
Song–Tian [69]:

Theorem 6.4 ([69, Theorem 1.1]). Let π : M → Σ be a minimal elliptic surface
of kod(M) = 1 with singular fibers Ms1 = m1F1, . . . ,Msk = mkFk of multiplicity
mi ∈ N, i = 1, . . . , k. Then for any initial Kähler metric ω0, the normalized
Kähler–Ricci flow with this initial data exists on [0,∞) and satisfies:

1. ωt converges to π∗ω∞∈−2πc1(M) as currents for a positive current ω∞ on Σ.
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2. ω∞ is smooth on Σreg and ρ(ω∞) is a well-defined current on Σ satisfying

ρ(ω∞) = −ω∞ + ωWP + 2π

k∑
i=1

mk − 1

mk
[si].

Turning to pluriclosed flow, we first note that since KM is semiample, there
exists a background metric with nonpositive Ricci curvature, and using this back-
ground metric it is clear that for any pluriclosed metric ω0 one has τ∗(ω0) = ∞.
Furthermore, we conjecture the same limiting behavior as the Kähler–Ricci flow:

Conjecture 6.5. Let π : M → Σ be a minimal elliptic surface of kod(M) = 1. Given
ω0 a pluriclosed metric, the solution to normalized pluriclosed flow with initial
condition ω0 exists on [0,∞), and satisfies conclusions (1) and (2) of Theorem 6.4.

6.3. Elliptic surfaces of Kodaira dimension zero

It follows from the Kodaira classification that a minimal Kähler surface of Kodaira
dimension zero is finitely covered by either a torus or a K3 surface. In particular,
c1 = 0, and a Ricci flat (Calabi–Yau) metric is known to exist in each Kähler
class by Yau [103]. The global existence and convergence of Kähler–Ricci flow to
a Calabi–Yau metric follows from Cao [11]:

Theorem 6.6 (Yau [103], Cao [11]). Let (M4, J) be a compact Kähler surface with
c1 = 0. Given [ω] a Kähler class, there exists a unique metric ωCY ∈ [ω] satisfying
ρωCY = 0. Moreover, given any Kähler metric ω0, the solution to Kähler–Ricci
flow with initial condition ω0 exists on [0,∞), satisfies [ωt] ∈ [ω], and moreover

lim
t→∞

ωt = ωCY.

For the pluriclosed flow, first note that as c1 = 0, the Aeppli cohomology
class is fixed along pluriclosed flow, and so τ∗(ω0) = ∞ for any g0, thus following
the general principle we conjecture global existence, as well as convergence to a
Calabi–Yau metric.

Conjecture 6.7. Let (M4, J) be a compact Kähler surface with kod(M) = 0. Given
ω0 a pluriclosed metric on M , the pluriclosed flow with initial condition ω0 exists
on [0,∞), and converges to a Kähler Calabi–Yau metric ωCY .

Theorem 4.4 confirms this for tori, while ([77, Theorem 1.1]) establishes the
long time existence and weak convergence for certain solutions to pluriclosed flow
arising in generalized Kähler geometry (cf. §9 below).

6.4. Rational and ruled surfaces

By the Kodaira classification Kähler surfaces with kod(M) = −∞ are birational
to CP2. An important case of such surfaces are Fano surfaces, i.e., surfaces with
c1 > 0, as these are candidates to admit Kähler–Einstein metrics. It follows from
the Enriques–Kodaira classification that the smooth manifolds underlying Fano

surfaces are CP1×CP1 and CP2#kCP
2
, for 0 ≤ k ≤ 8. The existence of a Kähler–

Einstein metric in this setting is obstructed in general, in particular Matsushima
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showed the automorphism group must be reductive ([57]), with further obstruc-

tions due to Futaki [28]. This rules out CP2#kCP
2
for k = 1, 2. For the remaining

cases, Tian settled the existence question:

Theorem 6.8 ([91]). Let (M4, J) be a compact Fano surface such that the Lie
algebra of the automorphism group is reductive. There exists a metric ωKE ∈ c1
satisfying ρωKE = ωKE.

Extending our point of view slightly, we can look for Kähler–Ricci solitons,
i.e., solutions of

ρω = ω + LXω,

where X is a holomorphic vector field. Koiso [51] showed the existence of a soliton

on CP2#CP
2
using a symmetry ansatz. Later Wang–Zhu [101] showed the exis-

tence of Kähler–Ricci solitons on all toric Kähler manifolds of positive first Chern

class, in particular covering the case of CP2#2CP
2
.

It is natural to expect the Kähler–Ricci flow to converge to these canonical
metrics, when they exist. There is a fairly complete picture of the Kähler–Ricci
flow on Fano surfaces confirming this expectation:

Theorem 6.9 ([94, 96]). Let (M4, J) be a compact Fano surface admitting a Kähler–
Ricci soliton (ωKRS , X). Given ω0 ∈ c1 a Kähler metric which is GX -invariant,
where GX is the one-parameter subgroup generated by Im(X), the solution to nor-
malized Kähler–Ricci flow exists on [0,∞) and converges to a Kähler–Ricci soliton.

For the pluriclosed flow in the Fano setting, the normalized flow will fix the
Aeppli cohomology class, and thus we expect global existence of the flow, and
convergence to a soliton when one exists.

Conjecture 6.10. Let (M4, J) be a compact Fano surface admitting a Kähler–Ricci
soliton (ωKRS , X). Given ω0 ∈ c1 a Kähler metric which is GX-invariant, where
GX is the one-parameter subgroup generated by Im(X), the solution to normalized
pluriclosed flow exists on [0,∞) and converges to a Kähler–Ricci soliton.

As mentioned in the introduction, this conjecture would have consequences for the
classification of generalized Kähler structures, and this will be detailed in part III
below. As we describe in Theorem 9.4 below, the global existence of the normalized
pluriclosed flow as well as a weak form of convergence can be established on CP2,
which proves a kind of uniqueness for generalized Kähler structure on CP2.

Beyond Fano surfaces, the behavior of Kähler–Ricci flow more generally on
rational and ruled surfaces can be quite delicate. Even on a fixed Hirzebruch surface
the Kähler–Ricci flow can exhibit diverse behavior depending on the initial Kähler
class. In particular, Song–Weinkove ([71, Theorem 1.1]) confirmed a conjecture of

Feldman–Ilmanen–Knopf ([25]) and showed that the flow can collapse CP1 fibers,
shrink to a point, or contract exceptional divisors, depending on the choice of
initial Kähler class. More generally Song–Székelyhidi–Weinkove ([68]) established
contraction of the fibers for more general ruled surfaces. Rather than delving into
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these possibilities we refer to the general principle that one expects the same kinds
of singularity formation for the pluriclosed flow.

7. Conjectural limiting behavior on non-Kähler surfaces

We now turn to the case of non-Kähler surfaces. As it turns out, most complex
surfaces outside of Class VII+ admit locally homogeneous metrics, and thus admit
special solutions to pluriclosed flow as described in Theorems 5.3, 5.4. It is natural
to expect that the convergence behavior on such manifolds for arbitrary initial
data is the same as that in the homogeneous case, and we formalize and expand
on this below. Turning to the case of Class VII+, we do not have homogeneous
solutions available to guide us. Nonetheless based on some examples and carefully
inspecting monotonicity formulas for pluriclosed flow, we motivate a conjectural
description of all long time solutions, which is loosely related to the theory of
complete Calabi–Yau metrics on the complement of canonical divisors in surfaces,
pioneered by Tian–Yau [92, 93].

7.1. Properly elliptic surfaces

For elliptic fibrations with b1 odd and kod(M) ≥ 0, it is known (cf. [100, Lemma
7.2], [8, Lemmas 1, 2]) that only multiple fibers can occur, and thus there is a
finite covering of M which is an elliptic fiber bundle over a new curve which is a
branched cover of the original base curve. Furthermore, the condition kod(M) = 1
is equivalent to the Euler characteristic of the base curve being negative, and
these are called properly elliptic surfaces. For these surfaces the canonical bundle
is numerically effective, and so it follows from Corollary 3.8 that τ∗(ω0) = ∞
for any initial metric, and thus we expect global existence of pluriclosed flow.
Due to the lack of singular fibers, the expected limiting behavior in this case is
actually simpler than that observed previously for the Kähler–Ricci flow on elliptic
surfaces of Kodaira dimension one (cf. Theorem 6.4). Also, for these surfaces it
follows from ([100, Theorem 7.4]) that M admits a geometric structure modeled

on S̃L2×R. Thus in particular Theorem 5.4 (3) gives a class of metrics exhibiting
global existence and Gromov–Hausdorff convergence to the base curve. Moreover,
by Theorem 5.3, there exists a blowdown limit of the solutions at infinity. These
exhibit the interesting behavior that the blowdown limits on the universal covers
are invariant metrics on H × C, so that the geometric type “jumps” in the limit.
This behavior is conjecturally universal.

Conjecture 7.1. Let (M4, J) be a properly elliptic surface with kod(M) = 1 and b1
odd. Given ω a pluriclosed metric on M , the solution to pluriclosed flow with this
initial data exists on [0,∞), and (M, ωt

t ) converges in the Gromov–Hausdorff topol-
ogy to (B,ωKE), the base curve with canonical orbifold Kähler–Einstein metric.
On the universal cover of M there is a blowdown limit ω̃∞(t) = lims→∞ s−1ω̃(st)
which is a locally homogeneous expanding soliton.
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Recently we were able to establish some cases of this conjecture, namely for
initial data invariant under the torus action.

Theorem 7.2 ([72]). Let (M4, J) be a properly elliptic surface with kod(M) =
1 and b1 odd. Given ω a T 2-invariant pluriclosed metric on M , the solution to
pluriclosed flow with this initial data exists on [0,∞), and (M, ωt

t ) converges in
the Gromov–Hausdorff topology to (B,ωKE), the base curve with canonical orbifold
Kähler–Einstein metric. On the universal cover of M there is a blowdown limit
ω̃∞(t) = lims→∞ s−1ω̃(st) which is a locally homogeneous expanding soliton.

7.2. Kodaira surfaces

Kodaira surfaces are the complex surfaces with kod(M) = 0 and b1 odd. These are
elliptic fiber bundles over elliptic curves, called primary Kodaira surfaces, or finite
quotients of such, called secondary Kodaira surfaces (cf. [5, V.5]). Wall showed
([100, Theorem 7.4]) that these surfaces admit a geometric structure modelled
on Nil3×R. This was refined by Klingler [48], who gave the precise description
of the universal covers as well as the presentations of the lattice subgroups. To
describe the pluriclosed flow on these surfaces we first compute the formal existence
time. Topological considerations (cf. [5, p. 197]) show that the canonical bundle of
primary Kodaira surfaces is trivial. Thus K ·D = 0 for all divisors D, and thus for
any pluriclosed metric ω0 it follows directly from Corollary 3.8 that τ∗(ω0) = ∞.
Thus we expect global existence of the flow in general. Theorem 5.4 confirms this,
and gives the limiting behavior of the flow, in the locally homogeneous setting,
which we conjecture to be the general behavior.

Conjecture 7.3. Let (M4, J) be a Kodaira surface. Given ω0 a pluriclosed metric
on M , the solution to pluriclosed flow with this initial data exists on [0,∞), and
(M, ωt

t ) converges in the Gromov–Hausdorff topology to a point. On the universal

cover of M there is a blowdown limit ω̃∞(t) = lims→∞ s−1ω̃(st) which is a locally
homogeneous expanding soliton.

Similar to the case of properly elliptic surfaces, we can exploit the fibration
structure to prove the conjecture for invariant initial data.

Theorem 7.4 ([72]). Let (M4, J) be a Kodaira surface. Given ω a T 2-invariant
pluriclosed metric on M , the solution to pluriclosed flow with this initial data exists
on [0,∞), and (M, ωt

t ) converges in the Gromov–Hausdorff topology to a point. On

the universal cover of M there is a blowdown limit ω̃∞(t) = lims→∞ s−1ω̃(st) which
is a locally homogeneous expanding soliton.

7.3. Class VII0 surfaces

Surfaces of Class VII0 are defined by the conditions kod(M) = −∞, b1 = 1, and
b2 = 0. Hopf surfaces are of this type, and Inoue [43] gave classes of examples,
and showed that surfaces in this class with no curves must be one of his examples.
Later, using the methods of gauge theory, Li–Yau–Zheng [56] and Teleman [88]
showed that all surfaces in this class are either Hopf surfaces or Inoue surfaces.
We describe the conjectured behavior on these two classes of surfaces below.
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7.3.1. Inoue surfaces. Inoue surfaces were introduced in [43], giving examples of
complex surfaces with b1 = 1, b2 = 0, and containing no curves. These come in
three classes, all of which are quotients of H×C by affine subgroups, and we will
recall the construction of the simplest of these classes. First, fix Z ∈ SL(3,Z),
with eigenvalues α, β, β such that α > 1 and β �= β. Choose a real eigenvector
(a1, a2, a3) for α and an eigenvector (b1, b2, b3) for β. It follows that the three
complex vectors (ai, bi) are linearly independent over R. Using these we define a
group of automorphisms GZ of H× C generated by

g0(w, z) = (αw, βz),

gi(w, z) = (w + ai, z + bi), i = 1, 2, 3.

This action is free and properly discontinuous, and so defines a quotient surface
SZ = H×C/GZ. If we let G denote the subgroup generated by g1, g2, g3, it is clear
that this is isomorphic to Z3, and preserves the affine varieties

(w0, z0) + (R(a1, b1)⊕ R(a2, b2)⊕ R(a3, b3)).

These spaces are parameterized by +(w0), and thus the quotient H × C/G is
diffeomorphic to T 2 ×R+. Since g0 preserves the fibers of this quotient, it follows
that the quotient SZ is a three-torus bundle over S1, with b1 = 1, b2 = 0. Wall
shows ([100, Proposition 9.1]) that these surfaces are precisely those with geometric
structure Sol40, Sol

4
1, or (Sol

4
1)

′. In particular for the example above one sees that

each gi ∈ Sol40.

To understand the pluriclosed flow on these surfaces, we first compute the
formal existence time. As shown by Inoue ([43, §2–§4]), these surfaces contain no
curves, thus it follows immediately from Corollary 3.8 that τ∗(ω0) = ∞ for any
ω0. This long time existence was verified in the homogeneous setting by Boling
(Theorem 5.3), and also in the commuting generalized Kähler setting ([79, Theo-
rem 1.3], cf. Theorem 9.2 below). Boling also established interesting convergence
behavior in the homogeneous setting (Theorem 5.4), showing that the pluriclosed
flow collapses the three-torus fibers described above, yielding the base circle as the
Gromov–Hausdorff limit. Moreover, he showed the existence of a blowdown limit
on the universal cover which is an expanding soliton. We conjecture that this is
the general behavior.

Conjecture 7.5. Let (M4, J) be an Inoue surface. Given ω0 a pluriclosed metric on
M , the solution ωt to pluriclosed flow with this initial data exists on [0,∞). The

family (M, ω̂t

t ) converges as t → ∞ to a circle in the Gromov–Hausdorff topol-
ogy and moreover the length of this circle depends only on the complex structure
of the surface. On the universal cover of M there is a blowdown limit ω̃∞(t) =
lims→∞ s−1ω̃(st) which is a canonical locally homogeneous expanding soliton.

7.3.2. Hopf surfaces. Hopf surfaces by definition are all compact quotients of
C2\{0}. A Hopf surface is called primary if its fundamental group is isomorphic
to Z. Since every Hopf surface has a finite cover which is primary, we restrict our
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discussion to the primary case. By ([50, Theorem 30]), the possible group actions
on C2\{0} take the form

γ(z1, z2) = (αz1, βz2 + λzm1 ), where 0 < |α| ≤ |β| < 1, (α− βm)λ = 0.

We call the resulting quotient surface (M,Jα,β,λ). It follows that M is always
diffeomorphic to S3 × S1, thus b1 = 1, b2 = 0, and the surfaces are not Kähler.
We call the surface Class 1 if λ = 0, and Class 0 otherwise. Within Class 1 Hopf
surfaces we call the surface diagonal if |α| = |β|.

To describe the conjectured behavior of pluriclosed flow, we begin with a
simple example. On C2\{0}, define the metric

ωHopf :=

√
−1∂∂ |z|2

|z|2
. (7.1)

Written in this form, it is clear that this is a Hermitian metric which is invariant
under γ(z1, z2) = (αz1, βz2), where |α| = |β|, and thus descends to a metric
on the diagonal Hopf surfaces. Elementary calculations show that this metric is
pluriclosed. Of course C2\{0} ∼= S3×R, and as it turns out the Riemannian metric
corresponding to ωHopf is isometric to gS3 ⊕ ds2, where gS3 is the round metric on
S3 and s is a parameter on R. Further calculations reveal that the torsion tensor H
is a multiple of dVgS3 , the volume form on S3. Since θ =  H for complex surfaces,
it follows that θ is a multiple of ds, and is in particular parallel. Putting these
facts together and applying Theorem 2.6, it follows that ωHopf is a fixed point of
pluriclosed flow, and in particular the pair (g,H) satisfies

Rc− 1
4H

2 = 0,

d∗H = 0.

Thus we see explicitly a basic principle which appears to distinguish the non-Kähler
setting from the Kähler setting: for this metric the torsion acts as a “balancing
force” which cancels out the positive Ricci curvature of gS3 . Thus this metric is
Bismut–Ricci flat, while certainly not Ricci flat. In fact more is true: the Bismut
connection is flat. As S3 is a simple Lie group, there are flat connections ∇± which
are compatible with a bi-invariant metric and having torsion T (X,Y ) = ±[X,Y ].
The connection∇+, after taking a direct sum with a flat connection on S1, recovers
the Bismut connection of ωHopf . It follows from work of Cartan–Schouten ([12, 13]),
that triples (Mn, g,H) with flat Bismut connection are isometric to products of
simple Lie groups and classically flat spaces, as in this example.

Surprisingly, the metrics described above, which exist on diagonal Hopf sur-
faces, are the only non-Kähler fixed points of pluriclosed flow, a result of Gaudu-
chon–Ivanov ([33, Theorem 2]). The central point is to employ a Bochner argument
to show that the Lee form is parallel. Thus it either vanishes identically, in which
case the metric is Kähler and Calabi–Yau, or it is everywhere nonvanishing and
yields a metric splitting of the universal cover. Looking back at the fixed point
equation, one then observes that the geometry transverse to the Lee form has
constant positive Ricci curvature, and so is a quotient of the round sphere. Thus
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the universal cover is isometric to gS3 ⊕ ds2. This identifies the metric structure,
and using a lemma of Gauduchon ([31, III Lemma 11]) one identifies the possible
complex structures, yielding only the diagonal Hopf surfaces.

This rigidity result is surprising since it implies that a naive extension of the
Calabi–Yau theorem/Cao’s theorem is impossible in the context of pluriclosed flow.
In particular, all Hopf surfaces have b2 = 0 and thus c1 = 0, and so τ∗(ω0) = ∞ for
all ω0, and so one expects global existence of the pluriclosed flow. However, only
the restricted class of diagonal Hopf surfaces admits fixed points. This observation,
together with the Perelman-type monotonicity formula, inspired the author to look
for soliton-type fixed points of pluriclosed flow, as described in §2. In [78] we were
able to construct such soliton solutions of pluriclosed flow on all Class 1 Hopf
surfaces, and show that Hopf surfaces are the only compact complex surfaces on
which solitons can exist. Note that this is a key qualitative distinction from the
case of Ricci flow, where all compact steady solitons are trivial, i.e., Einstein. While
we were not able to rule out existence on Class 0 Hopf surfaces, we conjecture that
they do not exist. It would be interesting to develop invariants akin to Futaki’s
invariants for Kähler–Einstein metrics to try to rule them out, or for that matter
to rule out fixed points on non-diagonal Class 1 Hopf surfaces via such invariants.

With this background we can now state the conjectured convergence behav-
ior. In particular, on diagonal Hopf surfaces the flow should converge to ωHopf .
More generally, for Class 1 Hopf surfaces one expects convergence to a soliton,
which is presumably unique. If it is true that solitons cannot exist on Class 0 Hopf
surfaces, one cannot obtain convergence to a soliton in the usual sense. Due to
the nature of Cheeger–Gromov convergence, it is however possible for the complex
structure to “jump” in the limit. In particular, every Class 1 Hopf surface occurs
as the central fiber in a family of Hopf surfaces, all other fibers of which are biholo-
morphic to the same Class 0 Hopf surface. The diffeomorphism actions necessary
in taking Cheeger–Gromov limits on Class 0 surfaces should result in the limiting
complex structure jumping to the central fiber, i.e., the associated Class 1 Hopf
surface.

Conjecture 7.6. Let (M4, J) be a primary Hopf surface. Given ω0 a pluriclosed
metric on M , the solution ωt to pluriclosed flow exists on [0,∞).

1. If (M,J) is a diagonal Hopf surface, ωt converges in the C∞ topology to
ωHopf .

2. If (M,Jα,β) is a Class 1 Hopf surface, (M,Jα,β , ωt) converges in the C∞

Cheeger–Gromov topology to a unique steady soliton (M,Jα,β , ωS).
3. If (M,Jα,β,λ) is a Class 0 Hopf surface, (M,Jα,β,λ, ωt) converges in the C∞

Cheeger–Gromov topology to a unique steady soliton (M4, Jα,β , ωS) on the
Class 1 Hopf surface adjacent to Jα,β,λ as described above.

Recently, in line with the results described above for properly elliptic and
Kodaira surfaces, we are able to establish partial results confirming this behavior.
In this case, for technical reasons, to establish the global existence we require an
extra condition, namely that the torsion is nowhere vanishing.
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Theorem 7.7 ([72]). Let (M4, J) be a diagonal Hopf surface. Given ω0 a T 2-
invariant pluriclosed metric with nowhere vanishing torsion, the solution to pluri-
closed flow with this initial data exists on [0,∞) and converges to ωHopf .

7.4. Class VII+ surfaces

Surfaces of Class VII+ are defined by the conditions kod(M) = −∞, b1 = 1, and
b2 > 0. We briefly recall a general construction of surfaces of this type due to Kato
[46], building on the initial construction of Inoue [44]. Let Π0 denote blowup of
the origin of the unit ball B in C2. Let Π1 denote the blowup of a point O0 ∈
C0 := Π−1

0 (0). Iteratively let Πi+1 denote blowup of a point Oi ∈ Ci = Π−1
i (Oi−1).

Let Π : B̂ → B denote the composition of these blowups. Choose a holomorphic
embedding σ : B → B̂ such that σ(0) ∈ Ck, the final exceptional divisor. Let

N = B̂\σ(B), which has two boundary components ∂B̂ and σ(∂B). The map

σ ◦ Π : ∂B̂ → σ(∂B) can be used to glue these two boundaries, producing a
minimal compact complex surface M = Mπ,σ, and such surfaces are referred to as

Kato surfaces. These surfaces are diffeomorphic to S3×S1#kCP2, but the complex
structures are minimal. It was conjectured by Nakamura ([60] Conjecture 5.5) that
all complex surfaces of Class VII+ are in fact Kato surfaces, and this remains the
main open question in the Kodaira classification of surfaces.

One approach to resolving this conjecture focuses on a particular geometric
feature shared by all Kato surfaces, that of a global spherical shell (GSS). This
is a biholomorphism of an annulus in C2 − {0} into M such that the image does
not disconnect M . These are easily seen to exist in Hopf surfaces, and moreover
in the construction of Kato surfaces as above, any annulus around the origin
in B is a GSS. The relevance of GSS was exhibited by Kato [46], who showed
that every surface admitting a global spherical shell is a degeneration of a blown
up primary Hopf surface, and moreover is a Kato surface. Later it was shown
by Dloussky, Oeljeklaus, and Toma [21] that if a complex surface of Class VII+
admits b2 complex curves, then it has a global spherical shell, and is hence a Kato
surface. Given this, Teleman [85] proved the existence of a curve on all Class VII+
surfaces with b2 = 1, thus finishing their classification. Moreover, when b2 = 2
Teleman [87] showed the presence of a cycle of rational curves, again yielding the
classification for this case. This deep work remains the only proof of classification
of these surfaces for b2 > 0.

In our initial joint work with Tian [80], we conceived pluriclosed flow in part to
address this classification problem. In the follow-up [83], we discussed an argument
by contradiction whereby a Class VII+ with no curves at all would violate natural
existence conjectures for the pluriclosed flow. However, this line of argument via
contradiction still leaves us with the question of what, even conjecturally, the flow
may actually do in these settings. First we address the existence time. It follows
from ([49, p. 755], [50, p. 683]) that one has the following topological characteristics
for any Class VII+ surface:

h0,1 = 1, h1,0 = h2,0 = h0,2 = 0, b+2 = 0, c21 = −b2. (7.2)
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Since the intersection form is negative definite, it follows from the adjunction
formula that K · D ≥ 0 for any divisor D, with equality if and only if D is
a (−2)-curve. Corollary 3.8 then implies that τ∗(ω0) = ∞ for any ω0 (cf. [83,
Proposition 5.7]).

To describe the conjectural limiting behavior, we recall basic facts on the
configuration of curves in these surfaces. In the simplest case of parabolic Inoue
surfaces, corresponding to a generic sequence of blowups in the construction de-
scribed above, there is a cycle of (−2) curves Ci satisfying K · Ci = 0, as well
as an elliptic curve E satisfying K · E = 1. In general, by blowing up the same
point several times in the Kato construction, one can have rational curves of high
negative self-intersection, which then satisfy K · C > 0. We define

Σ0 := {curves C, K · C = 0} ,
Σ>0 := {curves C, K · C > 0} .

It follows from the adjunction formula that Σ0 consists of smooth rational (−2)
curves, as well as rational curves with an ordinary double point and zero self-
intersection.

Given these remarks on the structure of curves, a natural guess arises for the
limiting behavior of pluriclosed flow which we now rule out. Along pluriclosed flow
the area of curves in Σ0 will remain fixed, while the area of curves in Σ>0 will
grow linearly. This is similar to the situation for surfaces of general type, where
(−2) curves remain fixed and all other curves grow linearly. In that situation, one
considers the normalized flow, for which the areas of (−2) curves decay exponen-
tially and the areas of all other curves approach a fixed positive value. It was
proved by Tian–Zhang ([95]) that in this setting the Kähler–Ricci flow converges
to a Kähler–Einstein metric on the canonical model of the original surface, which
is the orbifold given by contraction of all (−2) curves. Thus one might expect
a similar picture for pluriclosed flow, with the normalized flow converging to a
canonical metric on an orbifold obtained by contraction of the (−2) curves on the
original surface. However, it follows from a short calculation (cf. [80, Proposition
3.8]) that along pluriclosed flow the integral of the Chern scalar curvature evolves
by −c21 = b2 > 0. Thus for the normalized flow it approaches the value b2. How-
ever, using the expanding entropy functional for generalized Ricci flow ([74]), if
the normalized flow converged to some smooth metric on an orbifold, it would be
a negative scalar curvature Kähler–Einstein metric, contradicting that the integral
is b2 > 0.

Instead, let us argue proceeding from the observation that the integral of
Chern scalar curvature is asymptotically b2t. As this implies that the scalar cur-
vature is becoming positive on average, this would force the volume to go to zero
if not for the torsion acting as a “restoring force” as described in §7.3.2. Thus,
for a point p where the scalar curvature is positive, bounded and bounded away
from zero, one expects to be able to construct a nonflat limit of pointed solu-
tions (M,ωt, J, p). Arguing formally using the F -functional monotonicity (2.8)
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one expects this limit to be a steady soliton. In almost every case, the set Σ>0 is
nonempty, and the areas of these curves grow linearly and so form the infinity of
the resulting complete metric. In these cases one expects that limits bases at any
point p /∈ Σ>0 will yield a nonflat steady soliton, while points in Σ>0 will yield a
flat limit. The exceptional cases are the Enoki surfaces described below which are
certain exceptional compactifications of line bundles over elliptic curves. In the
special case of parabolic Inoue surfaces the zero section of the line bundle is an
elliptic curve, and forms Σ>0. Outside of this special case the set Σ>0 is empty,
but nonetheless we expect some section of the line bundle to play the role of Σ>0

as described above. We summarize:

Conjecture 7.8. Let (M4, J) be a compact surface of Class VII+. Given ω0 a pluri-
closed metric on M the solution ωt to pluriclosed flow with this initial data ex-
ists on [0,∞). For a generic point p ∈ M as described above, the pointed spaces
(M,J, ωt, p) converge in the pointed C∞ Cheeger–Gromov sense to a nonflat com-
plete steady soliton (M∞, J∞, ω∞, p) for some smooth function f∞. Furthermore,

1. The vector field θ�∞ +∇f∞ is J∞-holomorphic.
2. M∞ admits a compactification to a complex surface (M∞, J∞).
3. The distribution orthogonal to θ�∞+∇f∞ is integrable, and its generic leaf is

an embedded submanifold of M∞, whose closure in M∞ is a global spherical
shell.

This is a natural extension of Conjecture 7.6. We note that for all steady
solitons the vector field θ�+∇f is automatically holomorphic ([78, Proposition 3.4],
which can be extended to the complete setting). Moreover, the twisted Lee form
e−f (θ + df) is automatically closed, and so this distribution is always integrable.
Also, for the solitons on Hopf surfaces constructed in [78], one can verify that the
leaves of the distribution ker e−f (θ + df) are global spherical shells. It would be
interesting to determine if this was true for a general, non-Kähler complete steady
soliton. Given the nature of the convergence process, assuming the generic leaf is
a global spherical shell, this will yield the existence of one on the original complex
surface (M,J), thus finishing the classification as described above.

Note that these conjectured limits bear a family resemblance to complete
Calabi–Yau metrics, pioneered in work of Tian–Yau [92, 93]. A prototypical result
of this kind exhibits a complete Calabi–Yau metric on M\D, where M is smooth
quasi-projective, andD is a smooth anticanonical divisor withD2 ≥ 0. Very loosely
speaking the anticanonical divisor is a topological obstruction to the existence of
a Ricci flat metric, and by removing it one can construct complete examples.
Similarly, in this setting the curves in Σ>0 form an obstruction to the existence of
a “Calabi–Yau” type metric, which the flow naturally pushes to infinity. We note
however that complete Calabi–Yau do not arise as limits of the Kähler–Ricci flow
on compact complex surfaces. The difference in the expected qualitative behavior
can be traced back to the simple fact that c21 = −b2 ≤ 0 on these surfaces, which
has a profound effect on the existence time and qualitative behavior on Class VII+
surfaces versus other surfaces of Kodaira dimension −∞.
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For complete pluriclosed solitons as described, in line with a conjecture of Yau
for complete Calabi–Yau metrics [104], it is natural to expect that these complete
solitons admit compactifications (M∞, J∞). These should be compact complex
surfaces with b1 = 1, thus Class VII+ surfaces, although here again it is possible
that the complex structure has “jumped” in the limit so that this compactification
need not be biholomorphic to the original surface. Lastly, we note that not every
Class VII surface admits holomorphic vector fields, and those that do are classified
in [19, 20]. Despite this restriction, the conjectured convergence can still happen
since we do not necessarily expect the vector field to extend smoothly to the
compactification, and moreover the complex structure can change in the limit as
mentioned.

Let us flesh this picture out for specific classes of Kato surfaces. First we
consider the Enoki/Inoue surfaces, described as exceptional compactifications of
line bundles over elliptic curves. We let E = C∗/ 〈α〉, 0 < |α| < 1, be an elliptic
curve. Fix some n ≥ 1 and t ∈ Cn, identified with a polynomial via t(w) =

∑
tkw

k.
Using these one defines an automorphism of C× C∗,

gn,α,t(z, w) = (wnz + t(w), αw).

Let An,α,t denote the quotient surface C × C∗/ 〈gn,α,t〉, which is an affine line
bundle over E. Enoki showed [22], generalizing a previous construction of Inoue
[44], that these can be compactified with a cycle of rational curves, yielding a
compact surface Sn,α,t of Class VII+. Generically this cycle of curves are the only
curves present in the surface, but in the case t = 0 (also known as parabolic Inoue
surfaces), the zero section of the line bundle is a smooth elliptic curve in Sn,α,0,
satisfying K · E = 1. Thus according to the conjecture above for parabolic Inoue
surfaces we expect the area of this elliptic curve to grow linearly and ultimately
form the “infinity” of a limiting complete steady soliton. For more general Enoki
surfaces En,α,t, there is still a topological torus in the homotopy class of the cycle
of rational curves, whose area goes to infinity, conjecturally resulting in the same
steady soliton limit resulting from En,α,0. It seems likely that the compactified
limiting surfaces are all biholomorphic to En,α,0.

Next consider the Inoue–Hirzebruch surfaces. These were initially constructed
by Inoue [45], using ideas related to Hirzebruch’s description of Hilbert modular
surfaces [39]. These surfaces are constructed by resolving singularities of compact-
ified quotients of H×C. These surfaces always admit two cycles of rational curves
(cf. [17] for a description of these surfaces and the structure of their curves), each
of which contains curves of self-intersection ≤ −3. Thus according to the conjec-
ture above we expect the limit soliton to have at least two ends, possibly more
depending on the structure of the curves. In a given cycle of rational curves smooth
−2 curves may intersect curves of high self-intersection. As their area stays fixed
while the high self-intersection curve is pushed to infinity, this suggests that the
−2 curve forms a finite area cusp end with the intersection point now at infinity.

The two examples of Enoki surfaces and Inoue–Hirzebruch surfaces form the
extreme cases of Dloussky’s index invariant [16], with the remaining cases called
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“intermediate surfaces”. Despite the intricate structure of curves on these surfaces,
the limiting picture is essentially the same as described in the examples above, with
the curves in Σ>0 being pushed to infinity, forming potentially several ends, and
all −2 curves either contained in a compact region or intersecting curves at infinity
with a cusp end.

Part III: Classification of generalized Kähler structures

8. Generalized Kähler geometry

Generalized Kähler geometry arose in work of Gates–Hull–Roček [29], in the course
of their investigation of supersymmetric sigma models. Later, using the framework
of Hitchin’s generalized geometry [40], Gualtieri [36, 37] understood generalized
Kähler geometry in terms of a pair of commuting complex structures on TM⊕T ∗M
satisfying further compatibility conditions. For our purposes here we will restrict
ourselves to the “classical” formulation and not exploit the language of generalized
geometry. Thus a generalized Kähler structure on a manifold M is a triple (g, I, J)
of a Riemannian metric together with two integrable complex structures, such that

dcIωI = −dcJωJ , ddcIωI = 0,

where ωI = g(I·, ·), and dcI =
√
−1(∂I − ∂I), with analogous definitions for J .

Associated to every generalized Kähler structure is a Poisson structure

σ = 1
2g

−1[I, J ]. (8.1)

As shown by Pontecorvo [66] and Hitchin [41], σ is the real part of a holomorphic
Poisson structure with respect to both I and J , in other words

∂Iσ
2,0
I = 0, ∂Jσ

2,0
J = 0.

The vanishing locus of σ has profound implications for the structure of generalized
Kähler manifolds, and it is natural to understand their classification in terms of
its structure. The simplest case occurs when σ ≡ 0. In this case [I, J ] = 0, and
the endomorphism Q = IJ satisfies Q2 = Id. Thus Q has eigenvalues ±1, and the
eigenspaces of Q yield a splitting TM = T+⊕T−. These summands are I-invariant,
thus we obtain a further splitting

TCM = T 1,0
+ ⊕ T 0,1

+ ⊕ T 1,0
− ⊕ T 0,1

− .

Complex surfaces admitting a holomorphic splitting of the tangent bundle were
classified by Beauville [6]. Apostolov and Gualitieri [2] determined precisely which
of these admits generalized Kähler structure of this type.

Theorem 8.1 ([2, Theorem 1]). A compact complex surface (M, I) admits a gener-
alized Kähler structure (g, I, J) with [I, J ] = 0 if and only if (M, I) is biholomor-
phic to
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1. A ruled surface which is the projectivization of a projectively flat holomorphic
vector bundle over a compact Riemann surface,

2. A bi-elliptic surface,
3. A surface of Kodaira dimension one with b1 even, which is an elliptic fibration

over a compact Riemann surface, with singular fibers only multiple smooth
elliptic curves,

4. A surface of general type, whose universal cover is biholomorphic to H × H,
with fundamental group acting diagonally on the factors.

5. A class 1 Hopf surface
6. An Inoue surface of type SM .

The next simplest case occurs when σ defines a nondegenerate bilinear form
at all points. It follows that Ω = σ−1 is a symplectic form, which is the real part
of a holomorphic symplectic form with respect to both I and J . The simplest ex-
ample comes from hyperKähler geometry. If (M4n, g, I, J,K) is hyperKähler, then
the triple (M4n, g, I, J) is generalized Kähler, and using the quaternion relations
one computes that Ω = ωK . As we will describe in §9.2, it is possible to deform this
example to obtain a non-Kähler generalized Kähler structure with nondegenerate
Poisson structure. The existence of a holomorphic symplectic form places strong
restrictions on the underlying complex manifolds. For complex surfaces, it follows
from ([1, Proposition 2]) that the only possible underlying complex surfaces are
tori, K3 surfaces, or primary Kodaira surfaces. Considering the I and J-imaginary
pieces of Ω, one overall obtains three independent self-dual forms, ruling out Ko-
daira surfaces which have b+2 = 2. Thus such structures exist only on tori and K3
surfaces.

Generally, the Poisson structure can experience “type change”, that is, the
rank can drop on some locus. As we are in four dimensions, and the rank jumps
in multiples of 4, the Poisson structure will be nondegenerate outside of a locus

T = {p ∈ M | I = ±J} .
It turns out that T is a complex curve in both (M, I) and (M,J). In the case the
underlying surfaces are Kähler, T is the support of an anticanonical divisor, and
so only Del Pezzo surfaces are possible backgrounds, and Hitchin [42] constructed
generalized Kähler structures on these surfaces. If the underlying surfaces are non-
Kähler T is the support of a numerically anticanonical divisor (cf. [18]). In fact
T must be disconnected ([1, Proposition 4]), and by a result of Nakamura ([27,
Lemma 3.3]), a surface with disconnected numerical anticanonical divisor must
be either a class 1 Hopf surface, or a parabolic or hyperbolic Inoue surface. The
existence of generalized Kähler structures in some of these cases was established
by Fujiki–Pontecorvo [27].



502 J. Streets

9. Generalized Kähler–Ricci flow

As shown in ([82, Theorem 1.2]), the pluriclosed flow preserves generalized Kähler
geometry. This arises as a consequence of Theorem 2.6. In particular, one notes
that generalized Kähler structures consist of a metric which is pluriclosed with re-
spect to two distinct complex structures, satisfying further integrability conditions.
By solving pluriclosed flow on both complex manifolds, and applying gauge trans-
formations one obtains two solutions to (2.5) with the same initial data, yielding
a time-dependent triple (gt, It, Jt) of generalized Kähler structures (cf. [82] for de-
tails). Unpacking the construction yields the following evolution equations, which
have the notable feature that the complex structures must evolve along the flow.

Definition 9.1. A one-parameter family of generalized Kähler structures (M2n, gt,
It, Jt, Ht) is a solution of generalized Kähler–Ricci flow (GKRF) if

∂

∂t
g = − 2Rcg +

1

2
H2,

∂

∂t
H = ΔdH,

∂

∂t
I = Lθ�

I
I,

∂

∂t
J = Lθ�

J
J.

(9.1)

As a special case of pluriclosed flow, in principle we have already described
all of the conjectural long time existence and convergence behavior in part II.
Nonetheless we will provide further discussion of long time existence results and re-
fined descriptions of convergence behavior in this setting. Interestingly, the GKRF
in the I-fixed gauge preserves the Poisson structure on complex surfaces, a natural
fact since it is holomorphic and thus rigid. This can be shown using a case-by-case
depending on the type (vanishing, nondegnerate, general) of the Poisson structure.
Conjecturally this is true in all dimensions, and should follow from a direct com-
putation. Depending on the type of the Poisson structure, the GKRF takes very
different forms, which we will describe in turn below.

9.1. Commuting case

As discussed in §8, in the case [I, J ] = 0 one obtains a splitting of the tangent
bundle according to the eigenspaces of Q = IJ . This also induces a splitting of
the cotangent bundle, which induces a splitting of the exterior derivative

d = ∂+ + ∂+ + ∂− + ∂−.

Arguing similarly to the ∂∂-Lemma in Kähler geometry, it is possible to obtain
a local potential function describing generalized Kähler metrics in this setting.
In particular if (g, I, J) is generalized Kähler then near any point there exists a
smooth function f such that

ωI =
√
−1

(
∂+∂+ − ∂−∂−

)
f.

This difference of sign indicates a fundamental distinction between Kähler geome-
try and generalized Kähler geometry in this setting: rather than being described lo-
cally by a plurisubharmonic function, the metric is described by a function which is
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plurisubharmonic in certain directions and plurisuperharmonic in others. Nonethe-
less, given this local description, one expects the pluriclosed flow to reduce to a
scalar PDE in this setting. This was confirmed in ([79, Theorem 1.1]), and locally
this PDE takes the form

∂f

∂t
= log

det
√
−1∂+∂+f

det(−
√
−1∂−∂−f)

. (9.2)

We refer to this equation as “twisted Monge–Ampère,” as it is a natural com-
bination of Monge–Ampère operators for the different pieces of the metric. This
PDE is still parabolic, but is mixed concave/convex, and thus many of the usual
methods for analyzing fully nonlinear PDE do not directly apply. Nonetheless we
were able to give a nearly complete picture of the long time existence of the flow
on complex surfaces of this type.

Theorem 9.2 ([79, Theorem 1.3]). Let (M4, g0, I, J) be a generalized Kähler surface
satisfying [I, J ] = 0 and I �= ±J . Suppose (M4, I) is biholomorphic to one of:

1. A ruled surface over a curve of genus g ≥ 1.
2. A bi-elliptic surface,
3. An elliptic fibration of Kodaira dimension one,
4. A compact complex surface of general type, whose universal cover is biholo-

morphic to H×H,
5. An Inoue surface of type SM .

Then the solution to pluriclosed flow with initial condition g0 exists on [0, τ∗(ω0)).

Referring back to Theorem 8.1, the only cases not covered by this theorem
are ruled surfaces over curves of genus 0 and Hopf surfaces. The reason for the
restriction in the theorem is that we require one of the line subbundles T± to have
nonpositive first Chern class to obtain some partial a priori control over the metric.
Also we note that there is overlap between this theorem and Theorems 4.3, 4.4
above.

9.2. Nondegenerate case

On the other extreme of generalized Kähler geometry is the nondegenerate case
described above. In §8 we explained that if (M4, g, I, J,K) is hyperKähler, we can
interpret (M4, g, I, J) as a generalized Kähler structure. Of course the underlying
pairs (g, I) and (g, J) are still Kähler, but Joyce showed (cf. [1]) that one can
deform away from these examples to produce genuine examples of non-Kähler,
generalized Kähler, structures with σ nondegenerate. Specifically, given ft a one-
parameter family of smooth functions, we define a family of vector fields Xt via

Xt = σdft.

Let φt denote the one parameter family of diffeomorphisms generated by Xt,
which one notes is Ω-Hamiltonian by construction (recall Ω = σ−1). The triple
(I, φ∗

t J,Ω) determines a generalized Kähler structure, with gt determined alge-
braically by (8.1).
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Surprisingly, the generalized Kähler–Ricci flow evolves by precisely this type
of deformation. In particular, given a generalized Kähler structure (M4, g, I, J) we
let

p = 1
4 tr IJ

denote the angle between I and J . One has |p| ≤ 1, and the inequality is strict
everywhere in the nondegenerate setting. In four dimensions the function p is
constant if and only if g is hyperKähler ([66]). Thus we expect the generalized
Kähler–Ricci flow in this setting to completely reduce to quantities involving the
angle function, and indeed this is the case. Specifically, if we gauge-modify the
generalized Kähler–Ricci flow to fix the complex structure I, then Jt = φ∗

t J ,
where

dφ

dt
= σd log

1 + p

1− p
.

This is roughly analogous to the usual scalar reduction for Kähler–Ricci flow,
although here the Hamiltonian diffeomorphism φt depends on the entire history
of the flow on [0, t], and thus does not truly reduce to a single scalar.

We can give a complete description of the long time existence and a weak
confirmation of the conjectured convergence behavior in this setting.

Theorem 9.3 ([77, Theorem 1.1]). Let (M4, g, I, J) be a nondegenerate generalized
Kähler four-manifold. The solution to generalized Kähler–Ricci flow with initial
data (g, I, J) exists for all time. Moreover, (ωI)t subconverges to a closed current.

While one expects smooth convergence to a hyperKähler structure, the conver-
gence behavior above at least shows that the flow contracts to the space of Kähler
structures. In fact more convergence properties can be shown (cf. [77] for detail).
This result was extended to arbitrary dimensions by the author and Apostolov
[3]. The key observation is to show that a “generalized Calabi–Yau quantity,”
motivated by natural constructions in generalized geometry ([35]), governs the

dynamics of the flow in the same manner that log 1+p
1−p does in four dimensions.

9.3. General case

The general case involves Poisson structures with type change locus, which exist
on Del Pezzo surfaces, Hopf surfaces, and parabolic and hyperbolic Inoue surfaces
as described above. In all of these cases the conjectures on pluriclosed flow imply
a connectedness result for the space of generalized Kähler structures. Note that on
a given complex manifold, the space of Kähler metrics is convex by linear paths,
whereas uniqueness and moduli questions for complex structures are of course
much more subtle. In understanding the space of generalized Kähler metrics, these
two problems are linked. Moreover, there is no linear structure to this space, with
the natural class of deformations instead using Hamiltonian diffeomorphisms as
described above. Thus the generalized Kähler–Ricci flow can potentially yield con-
nectedness of the space of generalized Kähler structures, a nontrivial consequence
due to the nonlinear structure of this space. Furthermore, the conjectural behavior
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for parabolic and hyperbolic Inoue surfaces described in part II suggests that the
limiting complete steady soliton metrics associated to these surfaces should in fact
be generalized Kähler, and thus generalized Kähler structures should play a key
role in understanding the geometrization of complex surfaces.

As an example, consider the case of CP2, where uniqueness of the complex
structure in known [102]. Hitchin [42] constructed generalized Kähler structures
on CP2 by a modification of the Hamiltonian diffeomorphism method described
above, deforming away from the standard Fubini Study structure. Given this, and
even knowing the uniqueness of complex structure on CP2, it is still possible that
the space of generalized Kähler metrics has multiple disconnected components, i.e.,
there may exist other generalized Kähler triples not arising by this deformation.
This problem can be very naturally addressed using the generalized Kähler–Ricci
flow, and in particular we can rule out the existence of such exotic generalized
Kähler structures. The main input is a description of the long time existence and
weak convergence behavior of generalized Kähler–Ricci flow in this setting.

Theorem 9.4 ([73]). Let (CP2, g, I, J) be a generalized Kähler structure. The so-
lution to normalized generalized Kähler–Ricci flow with initial condition (g, I, J)
exists on [0,∞). Moreover, (ωI)t subconverges to a closed current.

As we detail in [73], there is a natural completion of the space of generalized
Kähler metrics extending the usual completion of Kähler metrics in the space of
closed currents. Our result yields connectivity of this space, and in fact that any
point in this space is equivalent to the standard Fubini study structure by an
extended Courant symmetry. This is a natural extension of the classical unique-
ness Theorem of Yau [102] for complex structures on CP2 to generalized Kähler
structures.
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Ann. 267, 4 (1984), 495–518.

[31] Gauduchon, P. Structures de Weyl–Einstein, espaces de twisteurs et variétés de
type S1 × S3. J. Reine Angew. Math. 469 (1995), 1–50.

[32] Gauduchon, P. Hermitian connections and Dirac operators. Boll. Un. Mat. Ital.
B (7) 11, 2, suppl. (1997), 257–288.

[33] Gauduchon, P., and Ivanov, S. Einstein–Hermitian surfaces and Hermitian
Einstein-Weyl structures in dimension 4. Math. Z. 226, 2 (1997), 317–326.

[34] Gill, M. Convergence of the parabolic complex Monge–Ampère equation on com-
pact Hermitian manifolds. Comm. Anal. Geom. 19, 2 (2011), 277–303.

[35] Gualtieri, M. Generalized complex geometry. PhD thesis, St. John’s College, Uni-
versity of Oxford, 11 2003.

[36] Gualtieri, M. Generalized complex geometry. Ann. of Math. (2) 174, 1 (2011),
75–123.

[37] Gualtieri, M. Generalized Kähler geometry. Comm. Math. Phys. 331, 1 (2014),
297–331.

[38] Hamilton, R.S. Three-manifolds with positive Ricci curvature. J. Differential
Geom. 17, 2 (1982), 255–306.

[39] Hirzebruch, F.E.P. Hilbert modular surfaces. Enseignement Math. (2) 19 (1973),
183–281.

[40] Hitchin, N. Generalized Calabi–Yau manifolds. Q. J. Math. 54, 3 (2003), 281–308.

[41] Hitchin, N. Instantons, Poisson structures and generalized Kähler geometry.
Comm. Math. Phys. 265, 1 (2006), 131–164.

[42] Hitchin, N. Bihermitian metrics on del Pezzo surfaces. J. Symplectic Geom. 5, 1
(2007), 1–8.

[43] Inoue, M. On surfaces of Class VII0. Invent. Math. 24 (1974), 269–310.

[44] Inoue, M. New surfaces with no meromorphic functions. 423–426.

[45] Inoue, M. New surfaces with no meromorphic functions. II. 91–106.

[46] Kato, M. Compact complex manifolds containing “global” spherical shells. I. In
Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ.,
Kyoto, 1977) (1978), Kinokuniya Book Store, Tokyo, pp. 45–84.

[47] Kleiner, B., and Lott, J. Notes on Perelman’s papers. Geom. Topol. 12, 5 (2008),
2587–2855.



508 J. Streets

[48] Klingler, B. Structures affines et projectives sur les surfaces complexes. Ann.
Inst. Fourier (Grenoble) 48, 2 (1998), 441–477.

[49] Kodaira, K. On the structure of compact complex analytic surfaces. I. Amer. J.
Math. 86 (1964), 751–798.

[50] Kodaira, K. On the structure of compact complex analytic surfaces. II. Amer. J.
Math. 88 (1966), 682–721.

[51] Koiso, N.On rotationally symmetric Hamilton’s equation for Kähler–Einstein met-
rics. In Recent topics in differential and analytic geometry, vol. 18 of Adv. Stud. Pure
Math. Academic Press, Boston, MA, 1990, pp. 327–337.

[52] Krylov, N.V. Boundedly inhomogeneous elliptic and parabolic equations. Izv.
Akad. Nauk SSSR Ser. Mat. 46, 3 (1982), 487–523, 670.

[53] Krylov, N.V., and Safonov, M.V. An estimate for the probability of a diffusion
process hitting a set of positive measure. Dokl. Akad. Nauk SSSR 245, 1 (1979),
18–20.

[54] Krylov, N.V., and Safonov, M.V. A property of the solutions of parabolic equa-
tions with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44, 1 (1980),
161–175, 239.
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certaine variété kählérienne. Nagoya Math. J. 11 (1957), 145–150.

[58] Morgan, J., and Tian, G. Ricci flow and the Poincaré conjecture, vol. 3 of Clay
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Abstract. In this paper we discuss the link between domain convexity in op-
timal transportation and the estimation of second derivatives in augmented
Hessian equations, leading to the estimation of second derivatives in fully non-
linear Yamabe problems with boundary with boundary curvature conditions
which may be also nonlinear.
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1. Introduction

In this paper, we explain the link between domain convexity in optimal transporta-
tion with the estimation of second derivatives in fully nonlinear Yamabe problems
with boundary, arising from our study of oblique boundary value problems for
augmented Hessian equations in [7–9]. Our presentation here is based on that in
talks given most recently at the International Conference on Differential Geometry
in celebration of Professor Gang Tian’s 60th birthday at Sydney in January 2018
and previously at meetings in Seoul and Armidale in 2016 and Hangzhou in 2017.

We begin by formulating a general nonlinear Yamabe problem with boundary
which extends the boundary mean curvature case studied in [2, 3, 12, 13, 15]. For
an account of the history of the Yamabe problem and its nonlinear extensions
the reader is referred for example to the most recent of these works [15]. Here we
just recall that the original Yamabe problem concerned the conformal deformation
of a metric on a compact Riemannian manifold, without boundary, to one with
constant scalar curvature and was partially solved by the author in [22], following
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the original work by Yamabe [31], and completely solved by Schoen in [20]. In the
fully nonlinear version with boundary, which we formulate here, our nonlinearities
will be described in terms of symmetric functions on cones in Euclidean space Rn.
Accordingly we let Γ denote an open, convex, symmetric cone ⊂ Rn, with vertex
at 0, containing the positive cone K+. and f a positive, increasing function in
C∞(Γ)∩C0(Γ̄), vanishing on ∂Γ and normalized to be positive one-homogeneous.
Henceforth we refer to (f,Γ) as a symmetric pair in Rn and as a concave symmetric
pair when f is also a concave function on Γ. Now we let (M, g) denote a compact,
n-dimensional, (n ≥ 3), C∞ Riemannian manifold with metric g and boundary
∂M . The Schouten tensor of (M, g) is given by

Ag =
1

n− 2

(
Ricg −

1

2(n− 1)
Rg

)
, (1.1)

where Ricg, R denote respectively the Ricci tensor and scalar curvature of (M, g).
We denote by λ(Ag) the eigenvalues of Ag and by κg = (κ1, . . . , κn−1) the principal

curvatures of ∂M , both with respect to g. Letting (f,Γ), (f̃ , Γ̃) be symmetric pairs
on Rn, Rn−1 respectively, our general, (non-degenerate), Yamabe problem can be
now expressed as follows:

To find a smooth conformal metric ḡ so that λ(Aḡ) ∈ Γ, κḡ ∈ Γ̃ and f(λ(Aḡ)),

f̃(κḡ) are given positive constants.

More generally we can seek to prescribe

f(λ(Aḡ)) = ψ, f̃(κḡ) = ψ̃, (1.2)

for given positive ψ ∈ C∞(M), ψ̃ ∈ C∞(∂M).
Note that this problem is meaningful for bounded domains in Rn, unlike the

Yamabe problem for domains without boundary.

We may also consider various degenerate cases: (i) κḡ ∈ ¯̃Γ, ψ̃ ≥ 0, (ii) λ(Aḡ) ∈
Γ̄, ψ ≥ 0, (iii) f , (or f̃), degenerate with Dif ≥ 0,

∑
Dif > 0, i = 1, . . . , n, while

in the original cases of the Yamabe problem when f or f̃ is linear, that is ψ is the
scalar curvature of M or ψ̃ is the mean curvature of ∂M , it is also meaningful to
allow ψ or ψ̃ to be negative and Γ = Rn or Γ̃ = Rn−1.

The connection to nonlinear partial differential equations arises by consider-
ing conformal deformations of the form:

ḡ = e−2ug, u ∈ C∞(M), (1.3)

leading to the nonlinear Neumann problem:

PDE : F (U) = f(λ(U)) = e−2uψ, λ(U) ∈ Γ in M, (1.4)

BC : f̃(DνuI + κg) = e−uψ̃, DνuI + κg ∈ Γ̃ on ∂M, (1.5)

where U denotes the augmented Hessian,

U = ∇2u+ du ⊗ du− 1

2
|∇u|2g +Ag, (1.6)

I = (1, . . . , 1) and ν denotes the unit inner normal to ∂M .
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Our conditions on f and Γ imply that the PDE (1.4) is elliptic with respect
to u. In the degenerate cases (ii) and (iii) above, the PDE (1.4) may become de-
generate elliptic, in which case we would only expect solutions at most in C1,1(M).

Using the properties of Γ̃ we may also write the boundary condition as a semilinear
Neumann condition,

Dνu = ϕ(·, u) (1.7)

for some function ϕ ∈ C∞(∂M × R).

We conclude this introduction with a list of basic examples of symmetric
pairs.

(i) Elementary symmetric functions:

Γ = Γk = {λ ∈ Rn | Sj(λ) > 0, j = 1, . . . , k}, k = 1, ·, n,
f = fk = (Sk)

1/k, Sk(λ) =
∑

1≤i1<···<ik≤n λi1 · · ·λik ,

k = 1 : S1(λ) =
∑

λi, Γ1 = positive half-space,

k = n : Γn = {λi > 0} = positive cone K+, Sn(λ) =
∏

λi .

(ii) Quotients:

Γ = Γk, f = fk,l =
(

Sk

Sl

) 1
k−l

, , 0 < l < k ≤ n,

k = n, l = n− 1 : fn,n−1 = Sn,n−1 =
(∑

1
λi

)−1

, harmonic mean.

(iii) Negative means:

Γ = K+, f = fα =
(∑

λα
i

)1/α
, −∞ < α < 0,

α = −1 : f−1 = fn,n−1,

α → −∞ : f−∞ = min λi, (degenerate, Dif ≥ 0,
∑

Dif = 1, a.e.).

(iv) General interpolants:

Let (f,Γ) be a symmetric pair on R(
n
m),

(
n
m

)
= n!

m!(n−m)! , 0 < m ≤ n.

Γ(m) = {λ ∈ Rn | {λi1 + · · ·+ λim | 1 ≤ i1 < · · · < im ≤ n} ∈ Γ},
f (m) = f({λi1 + · · ·+ λim | 1 ≤ i1 < · · · < im ≤ n}) .

(iv)′ Special cases:

Pm = Γ
(m)

(n
m)

= {λ ∈ Rn |
∑m

s=1 λis > 0, 1 ≤ i1 < · · · < im ≤ n}

P1 = Γn, Pn = Γ1, Γk ⊂ Pn−k+1, 1 < k < n,

Pm(λ) =
∏

i1<···<im

∑m
s=1 λis , f (m) = f

(m)

(n
m)

= (Pm)

1

(n
m)

In general (Γ(m), f (m)) interpolate between (Γ, f) = (Γ(1), f (1)) and (Γ1, f1) =
(Γ(n), f (n)) where f1 = f(1)S1. Historically, examples (i) and (ii) arose in the pi-
oneering works on Hessian equations [1, 5, 23] while examples (iii) and (iv)′ are
from [4] and [21]. Note that our general construction here in example (iv) can be
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iterated further to give an abundance of further examples, although we are not
aware of applications where these arise except for the special case of (iv)′.

Concavity: We remark that f is concave in examples (i)–(iii), (iv)′ and f (m) is
concave in example (iv) whenever f is concave.

2. Optimal transportation

The theory of optimal transportation, (see for example [28, 29]), is based upon
the notion of a cost function, which for our purposes here, we can assume is
a smooth real-valued function c defined on the product of the closures of two
bounded domains Ω,Ω∗ ⊂ Rn such that cx(x, ·) is smoothly invertible on Ω̄∗, for
all x ∈ Ω̄. We can then define a smooth mapping Y by

Y (x, p) = (cx)
−1(x, p) for x ∈ Ω, p ∈ cx(x, ·)(Ω∗) (2.1)

Finding an optimal transport map T involves solving, in an appropriate sense, the
second boundary value problem for a Monge–Ampère type equation,

det[D2u−A(·, Du)] = B(·, Du), D2u > A(·, Du), in Ω (2.2)

Tu(Ω) := Y (·, Du)(Ω) = Ω∗, (2.3)

where

A(x, p) = cxx(x, Y ), B(x, p) = | det cx,y(x, Y )|ρ(x)/ρ∗(Y ) (2.4)

and ρ, ρ∗ are given positive densities on Ω,Ω∗, satisfying the mass balance condi-
tion, ∫

ρ =

∫
ρ∗. (2.5)

Corresponding to our notion of symmetric pair in Section 1, we have in (2.2),

Γ = K+ and F = det1/n (for one-homogeneity).
For classical solvability of the boundary value problem (2.2), (2.3) there are

two critical conditions introduced in our papers, [19, 24, 26]. The first is a notion of
domain convexity. Namely, the domain Ω is c-convex, (uniformly c-convex), with
respect to the target domain Ω∗ if and only if cy(·, y)(Ω) is convex for all y ∈ Ω∗,
(uniformly convex for all y ∈ Ω̄∗).

Note that by defining c∗(x, y) := c(y, x) we have a dual notion of c∗-convexity
for Ω∗ with respect to Ω.

The second is a notion of co-dimension one convexity for the matrix function
A. Namely A is regular, (strictly regular), at (x, p) if and only if

Dpkpl
Aij(x, z, p)ξiξjηkηl ≥ 0, (> 0), ∀ξ, η �= 0, ∈ Rn, ξ.η = 0. (2.6)

As shown in [17, 19], the c and c∗-convexity of Ω and Ω∗, with respect to
each other, and the regularity of A are in fact necessary for classical solvability of
(2.2), (2.3).

The following classical existence theorem is proved in [6, 25, 26].
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Theorem 2.1. Assume:

• the domains Ω, Ω∗ are smooth and uniformly c, c∗-convex with respect to each
other;

• the mappings cx(x, ·), cy(·, y) are smoothly invertible for all x ∈ Ω, y ∈ Ω∗;
• the matrix function A is regular for all x ∈ Ω, Y (x, p) ∈ Ω∗;
• the densities ρ and ρ∗ are smooth and positive on Ω̄, Ω̄∗, satisfying the mass

balance condition (2.5).

Then there exists a unique, (up to additive constants), elliptic solution u ∈ C2(Ω̄)
of the second boundary value problem (2.2), (2.3).

The key estimates in the proof of Theorem 2.1 are global second derivative
estimates and an obliqueness estimate for the equivalent oblique boundary condi-
tion:

G[u] := Φ∗ ◦ Y (·, Du) = 0 on ∂Ω (2.7)

where Φ∗ is a smooth defining function for Ω∗.

3. Augmented Hessian equations

We describe here some relevant results from our study of oblique boundary value
problems for augmented Hessian equations in [7–9].

The general set up is as follows. We let Ω denote a bounded smooth domain
in Rn, A a smooth mapping from Ω̄×R×Rn to Sn, the linear space of n× n real
symmetric matrices, Γ an open, convex cone in Sn, with vertex at 0, containing
the positive cone K+ and F a smooth increasing positive real function on Γ. Our
augmented Hessian operator on C2(Ω) is now defined by

F [u] := F (D2u−A(·, u,Du)), u ∈ C2(Ω), (3.1)

with augmented Hessian

U := D2u−A(·, u,Du) ∈ Γ. (3.2)

A function u ∈ C2(Ω) satisfying (3.2) is called admissible and clearly this implies
that the operator F is elliptic with respect to u.

Also we call F orthogonally invariant if Γ is invariant under orthogonal trans-
formations and F (r) = f(λ) for a symmetric function f where λ denotes the
eigenvalues of r ∈ Γ. Unless there is confusion, we will also use Γ and F = f to
denote the corresponding cones in Rn and symmetric functions in the orthogonally
invariant case. Our main examples are then our examples of symmetric pairs in
Section 1.

Next letting G denote a smooth real function on ∂Ω × R × Rn, our general
boundary operator is now defined by

G[u] = G(·, u,Du), u ∈ C1(Ω̄). (3.3)
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The operator G is called oblique if Gp.ν > 0 on ∂Ω×R×Rn, where ν denotes the
inner normal to ∂Ω, and semilinear if

G(x, z, p) = β(x).p− ϕ(x, z) (3.4)

for all (x, z, p) ∈ ∂Ω × R × Rn, where β and ϕ are smooth functions on ∂Ω and
∂Ω× R, respectively, normalized with |β| = 1.

Letting B denote a smooth positive function on Ω × R × Rn, we consider
oblique boundary value problems of the form:

PDE : F [u] = B(·, u,Du), U ∈ Γ in Ω, (3.5)

BC : G[u] = 0 on ∂Ω. (3.6)

We explain now how the concept of c-convexity in optimal transportation
leads to the natural notion of domain convexity for the boundary value problem
(3.5), (3.6). First we express the c-convexity, (uniform c-convexity), of a smooth
connected domain Ω as a boundary condition,

[−Diνj(x) +Dpk
Aij(x, p)νk(x)]τiτj ≥ 0, (> 0), (3.7)

for all x ∈ ∂Ω, τ tangential at x and G(x, p) := Φ∗ ◦ Y (x, p) ≥ 0, where the
smooth defining function Φ∗ satisfies Φ∗ > 0 in Ω, Φ∗ = 0, DΦ∗ �= 0 on ∂Ω. This
characterization was the starting point for global regularity in [26]. We observe now
that it essentially depends only on the cone Γ, matrix function A and boundary
operator G. For general A in (3.2), we define the A-curvature of ∂Ω at (x, z, p) ∈
∂Ω× R× Rn by

KA[∂Ω](x, z, p) = −δν(x) + P (x)[DpA(x, z, p).ν(x)]P (x), (3.8)

where δ = D − νDν is the tangential gradient and P = I − ν ◦ ν is the projection
onto the tangent space. Then we define ∂Ω to be uniformly (Γ, A,G)- convex, with
respect to u ∈ C0(∂Ω), at x ∈ ∂Ω, if

KA(x, u(x), p) + μν ◦ ν ∈ Γ, (3.9)

for some μ = μ(x, p) and for all p such that G(x, u(x), p) ≥ 0.
It follows that if A is regular at (x, z, p) then ν.DpKA(x, z, p) ≥ 0 so that

KA[∂Ω] is nondecreasing in p.ν and thus we need only G(x, u(x), p) = 0 in (3.9)
for the case of the semilinear Neumann problem, that is when β = ν.

Moreover if A is strictly regular, then ν.DpKAτ.τ > 0, for all tangential τ ,
so that we obtain a natural association with A of oblique boundary operators,
for example given by G = F ′ ◦ KA for a smooth increasing function F ′ on an
appropriate subset of Sn, for example F ′ = S1.

When Γ is orthogonally invariant, (so we can assume Γ ⊂ Rn), defining

Γ′ = {λ′ ∈ Rn−1 | (λ′, μ) ∈ Γ, } for some μ > 0, (3.10)

we see that (3.9) is equivalent to κ̃′ ∈ Γ′, where (κ̃′, 0) denotes the eigenvalues of
KA. As examples, we have for our fundamental cones in examples (i) and (iv)′,

Γ′
k = Γk−1 for k > 1, Γ′

1 = Rn, P ′
m = Pm, m < n. (3.11)
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The following interior and local boundary second derivative estimates are
proved, in a more general form, in [7, 9].

Theorem 3.1. Assume:

• u is a smooth admissible solution of the boundary value problem:

F [u] = ψ(·, u), U ∈ Γ in Ω, inf ψ > 0, (3.12)

G[u] = β.Du − ϕ(·, u) = 0 on ∂Ω, β.ν > 0; (3.13)

• F is positive, increasing, one-homogeneous and concave in Γ ⊂ Pn−1, F = 0
on ∂Γ;

• A is strictly regular for x ∈ BR ∩ Ω, z = u(x), p ∈ Rn, for some ball
BR = BR(x0) ⊂ Rn;

• ∂Ω is uniformly (Γ, A,G)-convex with respect to u on ∂Ω ∩BR.

Then we have the local second derivative estimate,

sup
Ω∩BR/2

|D2u| ≤ C, (3.14)

where C is a constant depending on Ω, A,G,Γ, ψ and |u|1;BR∩Ω.

We remark that instead of assuming F is concave we may more generally
assume that μ ◦ F is concave for some smooth increasing function μ on (0,∞)
and instead of assuming F = 0 on ∂Γ, we only need F < inf ψ on ∂Γ. From our
previous remark about the Neumann case β = ν, we only need to assume ∂Ω is
uniformly (Γ, A,G)-convex with respect to u in the weaker sense that (3.9) need
only hold for p = Du(x), x ∈ ∂Ω∩BR. Also such estimates are not true in general
for the standard Hessian equation, A = 0, even in the global case when β �= ν, as

is already known in the Monge–Ampère case, F = det1/n [27, 30].
There are various alternative conditions for gradient estimates and these do

not require any geometric conditions on the boundary ∂Ω. Keeping in mind our
application to the boundary value problem (1.4), (1.5), we have the following
estimate, from [7], which extends that in [12] for (1.4), (1.7).

Theorem 3.2. Assume

• u is a smooth admissible solution of the boundary value problem (3.12), (3.13),
• F is positive, increasing and one-homogeneous in Γ,with F = 0 on ∂Γ,
• A is uniformly regular, in the sense that

Dpkpl
Aij(x, z, p)ξiξjηkηl ≥ λ0|ξ|2|η|2 − 1

λ0
(ξ.η)2, (3.15)

for all ξ, η ∈ Rn, x ∈ BR ∩ Ω, z = u(x), p ∈ Rn, for some constant λ0 > 0,
• A has quadratic growth, in the sense that

Ax, Az , |p|A = O(|p|2) as p →∞, Az ≤ 0. (3.16)

Then we have the local gradient estimate

sup
Ω∩BR/2

|Du| ≤ C, (3.17)

where C is a constant depending on Ω, A,G,Γ, ψ, ϕ and |u|0;BR∩Ω.



518 N.S. Trudinger

From Theorems 3.1 and 3.2, follows the existence of classical solutions under
appropriate monotonicity conditions on ϕ and ψ or a priori L∞ bounds.

Note that to dispense with the uniformly regular condition (3.15) in general,

we also need F orthogonally invariant, | β
β.ν −ν| < 1/

√
n, A = o(|p|2) in (3.16) and

either F concave and also p.Ap ≤ o(|p|2) in (3.16) or Fi/
∑

Fi bounded away from
zero, whenever the eigenvalue λi is negative, [7, 9]. In the special case when Γ is
the positive cone K+, we can simply replace (3.15) and (3.16) by a lower quadratic
bound A ≥ O(|p|2), [10].

4. Application to conformal geometry

Specializing to Rn, we have

A =
1

2
|p|2I − p⊗ p, (4.1)

so that

P [DpA(·, u,Du).ν]P = Dνu(I − ν ⊗ ν) = ϕ(·, u)(I − ν ⊗ ν) (4.2)

on ∂Ω. Consequently we have local second (and first) derivative bounds for solu-
tions of (3.12) and (3.13), with β = ν, if F is orthogonally invariant and κ̃ ∈ Γ′,

where κ̃i = κi + ϕ(·, u). For the special case of the mean curvature, f̃ = S1, we
have, from (1.5),

κ̃i =

(
κi −

1

n− 1

∑
κi

)
+

1

n− 1
ψ̃e−u, (4.3)

which clearly includes the umbilic boundary case, κi =
1

n−1

∑
κi, [2, 12], by virtue

of our assumed positivity of ψ̃. Note also that when f = fk and f̃ = fl for
l ≥ k − 1, no convexity condition on Ω is needed for second derivatives estimates.
In the degenerate case ψ̃ ≥ 0, second derivative estimates are also proved in
the umbilic case in [2, 12] and these would also follow as a limiting case of our
methods. In fact, from our barrier constructions in [7], we would conjecture that
the umbilic condition is also necessary in this case. In the “negative” case when the
condition κ̃ ∈ Γ̄′ is violated, we would also expect not to have second derivative
estimates at the boundary and a result in this direction has been already given
in the umbilic case in [14]. We remark also that in the alternative degenerate
cases, ψ ≥ 0 or f degenerate, as in examples (ii) and (iii) in Section 1, our second
derivative estimates in Theorem 3.1 continue to hold but we would not expect
classical solutions u ∈ C2(Ω).

Finally we remark that these results readily extend to Riemannian manifolds
(M, g), which are conformally flat near their boundaries or when f = fn, as already

indicated in the umbilic case for (f̃ , Γ̃) = (S1,Γ1), in [12]. For further special cases,
notably for examples (i) and (ii), this can also be achieved for general manifolds,
as for the umbilic case in [11], utilizing the approach to second derivative esti-
mates originating in [16] and a different approach to boundary normal derivative
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estimates from [18]. As in the Euclidean case, our boundary convexity condition
is simply κ̃g := κg +ϕ(·, u)(1, . . . , n− 1) ∈ Γ′, where ϕ is given by (1.7), and holds
automatically when ∂M is umbilic. To solve our nonlinear Yamabe problem, we
would still need a priori solution bounds and so far this has only been achieved in
the umbilic case, for locally conformally flat manifolds, in [15].
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Abstract. We survey special Lagrangian equation and its related fully nonlin-
ear elliptic and parabolic equations: definition, geometric background, basic
properties, and progress. These include the rigidity of entire solutions, a priori
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1. Introduction

1.1. Definition of the equation

We start with a scalar function u with its gradient Du and Hessian D2u. The
real symmetric matrix D2u has n many real eigenvalues λ1, . . . , λn. Adding them
together, we have the Laplace equation

Δu = λ1 + · · ·+ λn = c;

multiplying them together, we have the Monge–Ampère equation

ln detD2u = lnλ1 + · · ·+ lnλn = c. (1.1)

Switching from the logarithm function to the inverse tangent function, we then
have the special Lagrangian equation

arctanD2u = arctanλ1 + · · ·+ arctanλn = Θ. (1.2)
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Figure 1. Elliptic equation corresponds to a monotonic function

The fundamental symmetric algebraic combination of those eigenvalues forms the
general σk-equation

σk(λ) :=
∑

1≤i1<···<ik≤n

λi1 · · ·λik = c.

General analytic combinations generate general second-order equations

F (D2u) = f(λ) = 0. (1.3)

If f(λ) is monotonic in λi, then the equation is elliptic (Figure 1). In principle,
when the defining function f is convex (or concave), the regularity of solutions is
easier to study; otherwise, it is more complicated.

1.2. Special Lagrangian submanifold background of the equation

If a half-codimensional graph (x, F (x)) ∈ Rn × Rn has a potential u such that
F (x) = Du(x), then it is called a Lagrangian graph. Certainly, the vector field F (x)
having a potential is equivalent to it being irrotational. Meanwhile, if the tangent
space T of the Lagrangian submanifold is perpendicular to JT at each point, with
J being the complex structure of Rn × Rn = Cn, then F (x) has a potential.
Special Lagrangian submanifold means its volume is minimizing compared to all
submanifolds (Lagragian or not) with the same boundary.

Harvey–Lawson[14] showed that the “gradient” graph (x,Du(x)) is volume
minimizing if and only if u satisfies special Lagrangian equation (1.2), by apply-
ing the fundamental theorem of calculus to a calibration, namely the real closed n

form Re(e−
√
−1Θdz1∧· · ·∧dzn). One obtains odd- as well as even-dimensional vol-

ume minimizing submanifolds from solving the special Lagrangian equation. Pre-
viously, the only known high-codimensional volume minimizing submanifolds were
real even-dimensional complex submanifolds; the volume minimality was proved
through applying the fundamental theorem of calculus to the real closed 2k form
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Figure 2. Lagrangian submanifold

1
k!ω

k by Wirtinger, where ω = 1
2
√
−1

∑n
i=1 dzi ∧ dz̄i. Moreover, the volume mini-

mality of codimensional one minimal graph (x, f(x)) over convex domains can also
be proved by applying the fundamental theorem of calculus to variable coefficient
n form

1√
1+ |Df |2

[
dx1∧···∧dxn+

n∑
i=1

(−1)
i−1

fidx1∧···∧ d̂xi∧···∧dxn∧dxn+1

]
.

This form is closed because f satisfies the minimal surface equation

div

(
Df/

√
1 + |Df |2

)
= 0.

Interestingly, there is an analogous presentation for the Monge–Ampère equa-
tion. Indeed, consider spacelike Lagrangian submanifolds in Rn×Rn with pseudo-
Euclidean ambient metric dx2 − dy2 or dxdy; we can show that a spacelike “gra-
dient” graph of u is volume maximizing if and only if u satisfies Monge–Ampère

equation (1.1). In passing, let us recall the potential |x|−1
for the three-dimensional

gravitational field − (x1,x2, x3) |x|−3 satisfies the Laplace equation Δ |x|−1 = 0.

1.3. Algebraic form of the equation

From the eigenvalues λ1, . . . , λn of D2u we define a complex number

z := (1 +
√
−1λ1) · · · (1 +

√
−1λn) = (1− σ2 + · · · ) +

√
−1(σ1 − σ3 + · · · ).

Denoting the phase by Θ = arctanD2u, z can also be written as

z =
√
(1 + λ2

1) · · · (1 + λ2
n)(cosΘ +

√
−1 sinΘ).

Obviously, z is perpendicular to complex number − sinΘ+
√
−1 cosΘ (Figure 3),

such that u satisfies

Σ := cosΘ(σ1 − σ3 + · · · )− sinΘ(1− σ2 + · · · ) = 0. (1.4)
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Figure 3. Phase Θ = arctanD2u

Note that σk has a divergence structure; thus, when u satisfies (1.2), that is, Θ
is a constant, (1.4) is also an equation in divergence form. In particular, equation
(1.4) has the following special forms:

• n = 2,Θ = 0: σ1 = 0;
• n = 2 or 3, Θ = ±π

2 : σ2 = 1;

• n = 3,Θ = 0 or ±π: σ3 = σ1, that is detD
2u = Δu.

It is worth noticing that the induced metric of the “gradient” graph of u is g =
I + (D2u)D2u, such that its volume element becomes√

det g =
√
(1 + λ2

1) · · · (1 + λ2
n) = cosΘ(1− σ2 + · · · ) + sinΘ(σ1 − σ3 + · · · ).

When Θ is constant, the above volume element also has a divergence structure.

1.4. Level set of the equation

As mentioned above, the ellipticity of equation (1.3) means the defining function f
is monotonic. Actually, we can also give a geometric description of the ellipticity.
Consider the level set of f in λ-space; the ellipticity of the equation is equivalent
to the fact that the normal of the level set N := Dλf falls into the positive cone
Γ; namely all components of N are positive. Further, uniform ellipticity means
N is uniformly inside the positive cone Γ, or all components of the unit normal
N/|N | have a fixed lower and upper bound. For example, Figure 4 illustrates
the level sets of the three-dimensional special Lagrangian equations. In [32] we
observed that the level set of the special Lagrangian equation is convex if and
only if |Θ| ≥ (n − 2)π

2 . Naturally, (n − 2)π2 is called the critical phase. Solutions
are better behaved when their equations are convex. Indeed, we have Bernstein
type results for special Lagrangian equations with supercritical phase, and a priori
estimates and regularity in the critical and supercritical cases. On the other hand,
singular solutions do exist in the subcritical case.
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Figure 4. Level sets of Θ in λ-space (n = 3)

2. Results

2.1. Outline

Once equations are given, the first question to answer is the existence of solutions.
Smooth ones cannot be reached at once, in general; worse, they may not even exist.
The usual way to compromise is to first search for weak solutions, in the integral
sense if the equation has divergence structure, or in the “pointwise integration by
parts sense”, namely, in the viscosity sense if the equation enjoys a comparison
principle. After obtaining those weak solutions, one studies the regularity and
other properties of the solutions, such as Liouville or Bernstein type results for
entire solutions. All these depend on a priori estimates of derivatives of solutions:

‖D2u‖L∞(B1) ≤ C(‖Du‖L∞(B2)) ≤ C(‖u‖L∞(B3)).

Given the L∞ bound of the Hessian, the ellipticity of the above fully nonlinear
equations becomes uniform, we can apply Evans–Krylov–Safonov theory (for the
ones with convexity/concavity, possibly without divergence structure) or Evans–
Krylov–De Giorgi–Nash theory (for the ones with convexity/concavity and diver-
gence structure) to obtain C2,α estimates of solutions. For the special Lagrangian
equation, this C2,α estimate can also be achieved via geometric measure theory;
for the Monge–Ampère equation, earlier in the 1950s, Calabi reached C3 estimates
by interpreting the cubic derivatives in terms of the curvature of the correspond-
ing Hessian metric g = D2u. In turn, iterating the classic Schauder estimates, one
gains smoothness of the solutions, and even analyticity, if the smooth equations
are also analytic.
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2.2. Rigidity of entire solutions

The classic Liouville theorem asserts every entire harmonic function bounded from
below or above is a constant. Thus every semiconvex harmonic function is a qua-
dratic one, as its double derivatives are all harmonic with lower bounds, hence
constants. Similarly, every entire (convex) solution to the Monge–Ampère equation
detD2u = 1 is quadratic. This was first proved in two-dimensional case by Jörgens,
later in low dimensions by Calabi, and in all dimensions by Pogorelov. Also, Cheng–
Yau had a geometric proof. For the special Lagrangian equation arctanD2u = Θ,
Yuan [31] showed every entire convex solution is quadratic. Actually the convexity
condition can be relaxed to a semiconvex one

D2u ≥ − tan
π

6
− ε(n),

where ε(n) is a small-dimensional constant. On the other hand, Yuan [32] replaced
the convexity condition of solutions with the phase condition on the equation

|Θ| > (n− 2)
π

2

for a rigidity result. This shows the phase (n−2)π2 is indeed a critical one: all entire
solutions to the special Lagrangian equation with supercritical phase must be
quadratic. It is a Bernstein type result. Chang–Yuan [4] proved a similar Liouville
type result for the σ2-equation: If u is an entire solution to σ2(D

2u) = 1 such that

D2u ≥
(
δ −

√
2

n(n− 1)

)
I,

for any small fixed δ > 0, then u is quadratic. In all the above rigidity results,
certain convexity of the solutions u or lower bound of the Hessian D2u is needed.
Otherwise, there are counterexamples. For example, when n = 2 , u = sinx1e

x2 is
a nontrivial solution to arctanD2u = 0. Whereas for n = 3 , Warren [27] found a
precious explicit solution

u = (x2
1 + x2

2)e
x3 − ex3 +

1

4
e−x3

to the equation arctanD2u = π
2 or σ2(D

2u) = 1.
In the following, we present the idea of showing the rigidity of entire solutions

to special Lagrangian equation in the two-dimensional case as an example. Given
an entire solution u to arctanλ1 + arctanλ2 = Θ > 0. First, notice that every
dihedral angle arctanλ1 or arctanλ2 between the tangent plane of the “gradient”
graph (x,Du) ⊂ R2 × R2 and x plane has a lower bound Θ − π/2. So after
we rotate the x coordinate plane to another one x̄ = x cosΘ/2 + y sinΘ/2, the
original tangent plane and the new coordinate x̄ plane form the new dihedral
angles (arctanλ1 −Θ/2, arctanλ2 −Θ/2). Those two angles fall into the interval
(−π/2 + Θ/2, π/2−Θ/2) . This means the old “gradient” graph is still a graph
in the new coordinate system x̄ and ȳ = −x sinΘ/2 + y cosΘ/2. Further, it is
another “gradient” graph (x̄, Dū) corresponding to a new potential ū. It is easy
to see the Hessian D2ū of the new potential ū is bounded, and moreover, its
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eigenvalues satisfy equation arctan λ̄1 + arctan λ̄2 = 0. Thus, we have obtained
an entire harmonic function ū with bounded Hessian; in turn, ū is quadratic.
From this, we know the “gradient” graph is a plane. Therefore, the original entire
solution u is quadratic.

For higher-dimensional special Lagrangian equation with supercritical phase,
via a similar coordinate rotation, we get a new entire solution to special Lagrangian
equation with critical phase. Applying Evans–Krylov’s C2,α estimates (really its
scaled version in the entire space), we know the new Hessian is a constant matrix.
Therefore, the original entire solution u is quadratic.

The above Liouville type result for the σ2-equation can be proved in a similar
way. As for the rigidity of entire semiconvex solutions to the special Lagrangian
equation with subcritical phase, more effort is required, because the new equation
loses convexity.

2.3. A priori estimates for Monge–Ampère equation

In the 1950s, Heinz [15] studied a priori estimates for the two-dimensional Monge–
Ampère equation, a particular case is the following: If u is a solution to the equation
detD2u = 1 in the unit ball, then

|D2u(0)| ≤ C(‖u‖L∞(B1)).

Later, this result was achieved in the higher-dimensional case by Pogorelov [19],
but with a strict convexity restriction. Chou–Wang [10] proved similar estimates
for “k-strictly” convex solutions to σk-equation by adapting Pogorelov’s technique.
Trudinger [22], Urbas [23], and Bao–Chen [1] obtained a priori Hessian bound in
terms of the integral of the Hessian for solutions to σk-equation and its quotient
forms. Bao–Chen–Guan–Ji [2] proved a priori Hessian estimates for strictly convex
solutions to the quotient σn/σk type equations. If no strict convexity restriction is

assumed, then Pogorelov [19] constructed his famous singular C1,1− 2
n solution to

the Monge–Ampère equation detD2u = 1. Caffarelli provided merely Lipschitz so-
lution to the Monge–Ampère equation with variable right-hand side. Furthermore,
Caffarelli–Yuan obtained Lipschitz and C1,α, with α being any rational number in
(0, 1− 2

n ], singular solutions to the Monge–Ampère equation detD2u = 1.

2.4. A priori estimates for special Lagrangian equation with critical
and supercritical phases

For special Lagrangian equation with critical and supercritical phases

arctanD2u = Θ, |Θ| ≥ (n− 2)
π

2
, (2.1)

Wang–Yuan [24] proved the following a priori estimates for the Hessian (Figure
5): Suppose u is a smooth solution to special Lagrangian equation (2.1) in n-
dimensional (n ≥ 3) unit ball B1 ⊂ Rn. Then for |Θ| ≥ (n− 2)π2 ,

|D2u(0)| ≤ C(n) exp
(
C(n)‖Du‖2n−2

L∞(B1)

)
; (2.2)
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Figure 5. A priori estimate for Hessian D2u

and for |Θ| = (n− 2)π2 ,

|D2u(0)| ≤ C(n) exp
(
C(n)‖Du‖2n−4

L∞(B1)

)
. (2.3)

Combined with the gradient estimates for equation (2.1) by Warren–Yuan [30]

max
BR(0)

|Du| ≤ C(n)
(
oscB2R(0)

u

R
+ 1

)
,

we immediately obtain the estimate for D2u in terms of solution u itself. Actually
the gradient estimates for equation (2.1) can be improved slightly [33]

max
BR(0)

|Du| ≤ C(n) oscB2R(0)
u

R
.

For n = 3, earlier onWarren–Yuan [29, 30] proved a priori Hessian estimates in the
critical and supercritical cases. Chen–Warren–Yuan [9] showed similar estimates
for convex solutions to the special Lagrangian equation. Warren–Yuan [28] derived
Hessian estimates for solutions to two-dimensional special Lagrangian equation

|D2u(0)| ≤ C(2) exp

(
C(2)

| sinΘ| 32
‖Du‖L∞(B1)

)
.

From the minimal surface example by Finn [13] via Heinz transformation [16],
one sees that the above Hessian bound in terms of linear exponential of gradient
is sharp. For n ≥ 3, corresponding sharp Hessian estimates are not known. As
applications of the above a priori estimates, we immediately know all C0 viscosity
solutions to (2.1) are smooth, and even analytic. For comparison, in the 1980s
Caffarelli–Nirenberg–Spruck [3] obtained the interior regularity for solutions with
C4 smooth boundary data to the special Lagrangian equation (1.2) with |Θ| =
[n−1

2 ]π. Another direct consequence is that every entire solution with quadratic
growth to critical phase special Lagrangian equation

arctanD2u = (n− 2)
π

2
is quadratic.
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We briefly explain the possible reason and the idea in obtaining the Hessian
estimates. Heuristically, the Hessian of any solution to (2.1) in certain norm is
strongly subharmonic, such that its reciprocal is superharmonic. Thus, if this su-
perharmonic quantity is zero somewhere, then it is zero everywhere. That is, if
the Hessian is unbounded at one point, then it must be unbounded everywhere.
Roughly, this contradicts the graphical picture of the corresponding “gradient”
graph (x,Du). A key point in the argument is to show

Δg
1√

1 + λ2
max

≤ 0,

where λmax is the maximal eigenvalue of D2u, and Δg is the Laplace operator
with respect to the induced metric of the Lagrangian submanifold. The above
superharmonicity inequality is equivalent to the Jacobi inequality

Δg ln
√
1 + λ2

max ≥ |∇g ln
√
1 + λ2

max|2.
The outline of the argument is to start from the mean value inequality on the

minimal Lagrangian graph, relying on the Sobolev inequality, Jacobi inequality,
and the divergence structure of σk(D

2u), then to control the integral average of

the logarithm of the maximal eigenvalue ln
√

1 + λ2
max in terms of the gradient

of the solution. The process can be viewed as an arduous nonlinearization of the
mean value equality proof for the a priori estimate of the Hessian in terms of the
gradient of a harmonic function.

2.5. Singular solutions to special Lagrangian equation with subcritical phase

For the special Lagrangian equation with subcritical phase |Θ| < (n − 2)π
2 , the

above a priori Hessian estimates are not valid. Nadirashvili–Vladuct [17] first con-

structed C1, 13 singular solutions to three-dimensional special Lagrangian equation

3∑
i=1

arctanλi = 0.

For the three-dimensional special Lagrangian equation with arbitrary subcritical
phase |Θ| ∈ (−π

2 ,
π
2 ), Wang–Yuan [25] constructed C1,r singular solutions, where

r = 1
2m−1 ∈ (0, 1

3 ],m = 2, 3, . . . . To produce higher-dimensional singular solutions
to subcritical special Lagrangian equation, we only need to add quadratics in terms
of the extra variables to those three-dimensional singular solutions. The main new
tool in [25] is a partial U(n) coordinate rotation, the difficulty lies in proving that,
after the rotation of preliminary solutions, the special Lagrangian submanifold
is still a graph. The concrete construction goes as follows: first consider critical
phase special Lagrangian equation |Θ| = π

2 ; its algebraic equivalent form is the
σ2-equation

σ2(D
2u) = λ1λ2 + λ2λ3 + λ3λ1 = 1. (2.4)

We construct a family of approximate polynomials P of order 2m such that the
dihedral angles between the tangent plane of the corresponding “gradient” graph
and the x coordinate plane are roughly (0−, π

4 ,
π
4 ) (Figure 6). Then taking this fam-
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Figure 6. Construction of dihedral angles

ily of approximate solutions as initial data, we obtain a family of exact solutions
u to equation (2.4) by Cauchy–Kowalevskaya. Next, we make a U(3) coordinate
rotation of −π

2 , namely the Legendre transformation of u, to get singular ũ with

roughly the dihedral angles (π2
−,−π

4 ,−
π
4 ) satisfying the special Lagrangian equa-

tion with zero phase. Finally using a “horizontal” rotation which keeps the z1
plane invariant, we can adjust the phase of ũ to any subcritical one, to obtain the
desired singular solutions.

3. Curvature flows with potential

3.1. Lagrangian mean curvature flow in Euclidean space

Under mean curvature flow, a submanifold is being deformed according to its mean
curvature in the ambient space. The (effective) equation is

∂tX = H = ΔgX,

where X(·, t) is a family of immersed submanifolds with time parameter, H is the
mean curvature, and g is the induced metric from the ambient space. A known fact
is that the Lagrangian structure of Lagrangian submanifolds is preserved under
the mean curvature flow Smoczyk [20].

Meanwhile, we consider the following fully nonlinear parabolic equation sat-
isfied by potential u(x, t)

∂tu = arctanD2u. (3.1)

Differentiating both sides of the equation with respect to space variables, we have

∂t(x,Du) =
n∑

i,j=1

gij∂ij(x,Du), (3.2)

where parabolic coefficients gij are the inverse of the induced metric g = I +
D2uD2u of the “gradient” graph (x,Du) in Euclidean space (Rn×Rn, dx2+dy2).
The normal projection of the right-hand side of this equation (3.2) is the mean
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curvature, thus the effective part of the deformation of the “gradient” graph is
indeed equal to its mean curvature. In dimension one, (3.1) and (3.2) respectively
simplify to

∂tu = arctanuxx and ∂tux =
uxxx

1 + u2
xx

.

For the initial value problem for the potential equation (3.1) of the Lagrangian
mean curvature flow, in the periodic case, namely the gradient Du0 of initial
data u0 is a lift to Rn of a map from Tn into itself, applying Krylov’s theory for
fully nonlinear uniformly parabolic equation with concavity, Smoczyk–Wang [21]
showed, under the “uniform” convexity assumption 0 ≤ D2u0 ≤ C or equivalently

−(1− δ)In ≤ D2u0 ≤ (1− δ)In, δ > 0,

on the initial data, the long time existence of solutions to equation (3.1). Chau–
Chen–He [5] removed the periodicity assumption on Du0; their a priori estimates
deteriorate as δ → 0. For weak solutions to equation (3.1) with continuous initial
data on Rn, Chen–Pang [8] proved the long time existence and uniqueness of
continuous viscosity solutions. For the standard heat equation ut = Δu, it is worth
noting here that there are the Tikhonov nonuniqueness example and the finite time

blow-up solution u (x, t) = 1√
1−t

exp
(

x2

4(1−t)

)
. The contrasting phenomena can be

explained by the heat conduction coefficient being uniform for the standard heat
equation, but degenerate for fully nonlinear parabolic equation (3.1) when the
spatial Hessian becomes unbounded. Moreover, saddle solutions to (3.1) could
blow up in finite time at the second spatial derivative level.

Here, we explain a result on long time existence of smooth solutions with
almost convexity by Chau–Chen–Yuan [6]. If initial potential u0 satisfies

−(1 + η)I ≤ D2u0 ≤ (1 + η)I, (3.3)

where η = η(n) is a small-dimensional positive constant, then the potential equa-
tion (3.1) of the Lagrangian mean curvature flow has a unique long time solution
u(x, t) : Rn × [0,∞) → R1 such that u is smooth for t > 0; and moreover

1) −
√
3I ≤ D2u(x, t) ≤

√
3I for any t > 0;

2) ‖Dlu‖L∞(Rn) ≤ Clt
2−l, for any t > 0, l ≥ 3;

3) Du(x, t) is C
1
2 with respect to t at t = 0.

Relying on this result, via the U(n) coordinate rotation technique described
in the above, we immediately obtain long time existence of smooth solutions and
related estimates to equation (3.1) with locally C1,1 convex initial data or initial
data u0 with a large phase arctanD2u0 ≥ (n− 1)π2 .

We point out that one cannot apply Krylov’s theory for fully nonlinear uni-
formly parabolic equation with convexity here under the almost convexity (3.3),
as the convexity condition fails. To overcome the difficulty, Chau–Chen–Yuan used
approximation and the compactness of the solution space. The key tools are the
uniqueness of solutions by Chen–Pang and the parabolic Schauder estimate for
the potential equation (3.1) of the Lagrangian mean curvature flow with certain
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convexity but not the “full” convexity condition. And not surprisingly, the a priori
estimates by Nguyen–Yuan [18] are based on the Bernstein–Liouville type results
for the corresponding elliptic special Lagrangian equation.

3.2. Lagrangian mean curvature flow in pseudo-Euclidean space and
Kähler–Ricci flow on Kähler manifold

We have introduced the parabolic version of the special Lagrangian equation

∂tv = arctanD2v. (3.4)

For the Monge–Ampère equation, we can consider its parabolic version too

∂tv = ln detD2v. (3.5)

Again differentiating the equation with respect to spatial variables, we have

∂t(x,Dv) =

n∑
i,j=1

gij∂ij(x,Dv),

where parabolic coefficients gij are the inverse of the induced metric g = D2v of the
spacelike “gradient” graph in pseudo-Euclidean space (Rn × Rn, dxdy). Similarly,
the normal projection of the right-hand side of this equation is the mean curvature;
thus, the effective part of the deformation of the “gradient” graph is indeed equal
to its mean curvature. We can also consider the parabolic complex Monge–Ampère
equation, which is satisfied by a real-valued scalar function v on complex space Cm

∂tv = ln det ∂∂̄v. (3.6)

Differentiating the equation with respect to spatial variables twice, we have

∂tgik̄ = −Rik̄

where gik̄ = vik̄ is the Kähler metric and Rik̄ = −∂i∂̄k ln det ∂∂̄v is the Kähler–
Ricci curvature. Thus the second-order parabolic potential equation (3.6) actually
corresponds to the Kähler–Ricci flow in geometric analysis.

We investigate a class of self-similar solutions to the above three parabolic
equations, that is, shrinking solitons in the form

v(x, t) = −tu

(
x√
−t

)
.

If the above-defined v satisfies the three parabolic equations (3.4), (3.5), and (3.6)
respectively, then the profile u respectively satisfies the following three elliptic
equations:

arctanD2u =
1

2
x ·Du(x)− u(x), (3.7)

ln detD2u =
1

2
x ·Du(x)− u(x), (3.8)

ln det ∂∂̄u =
1

2
x ·Du(x)− u(x). (3.9)

For shrinking solitons, Chau–Chen–Yuan [7] proved the following rigidity result:
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1) If u is an entire smooth solution to equation (3.7) on Rn, then u(x) = u(0)+
1
2

〈
D2u(0)x, x

〉
.

2) If u is an entire convex smooth solution to equation (3.8) on Rn, and satisfies

D2u(x) ≥ 2(n−1)
|x|2 near ∞, then u is quadratic.

3) If u is an entire complex convex (pluri-subharmonic, ∂∂̄u ≥ 0) smooth solu-
tion to equation (3.9) on Cm, and satisfies ∂∂̄u(x) ≥ 2m−1

2|x|2 near ∞, then u

is quadratic.

In fact, after differentiating the parabolic equations with respect to the time
variable, Chau–Chen–Yuan observed that the phase function corresponding to
shrinking solitons satisfies a second-order elliptic equation with an “amplifying”
force term on the whole space. In dimension one, this elliptic equation can be
interpreted in terms of acceleration being proportional to velocity. Hence, the
changing rate of the phase function cannot be non-zero; in turn, the phase is
constant. Further, notice that the right-hand side of the self-similar equation is
the “excess of the potential from being quadratic” so we see that the smooth
potential must be quadratic.

Let us explain more the argument for the above result by Chau–Chen–Yuan,
using the first case as an example. Let Θ = arctanD2u. Simple calculation shows
that given solution u to equation (3.7), the phase function Θ satisfies∑n

i,j=1
gij∂ijΘ(x) =

1

2
x ·DΘ(x), (3.10)

Where, gij being the inverse of the induced metric g = I +D2uD2u, has an upper
bound. The above second-order elliptic equation with the “amplifying ” force term
allows us to construct a suitable barrier, so that we can prove that Θ attains its
minimum at a finite point. Then the strong minimum principle forces Θ to be a
constant. Finally, Euler’s theorem on homogeneous functions, applied to equation
(3.7), leads to the desired quadratic conclusion of u.

As a matter of fact, in the above case of Monge–Ampère, the inverse square
lower bound on the induced metrics is a concrete condition for the metric being
complete. Now if we assume the metric is complete (abstractly), then the above
rigidity result for the shrinking solitons in the Monge–Ampère case (complex as
well as real) is also true. This is contained in Drugan–Lu–Yuan [12]. The further
observation is that the radial derivative of the phase is the negative of the scalar
curvature of the corresponding Kähler metric (3.10). On the other hand, the scalar
curvature for self-shrinking solitons is nonnegative. In turn, the phase function
attains its maximum at the origin. Similarly we arrive at the rigidity conclusion
by applying the strong maximum principle. Heuristically, the non-negativity of
scalar curvature R can be seen from its equation

ΔgR ≤ 1

2
rRr +R− 1

m
R2.

If R attains its minimum somewhere, then 0 ≤ Rmin − R2
min/m. It follows that

R ≥ 0. The proof can actually be realized when the metric is complete.



534 Y. Yuan

Ding–Xin [11] and Wang [26] respectively proved a Bernstein type result
for self-similar real Monge–Ampère equation (3.8) and one-dimensional complex
Monge–Ampère equation (3.9); namely every entire solution is quadratic.

4. Problems

Problem 1. Can one find a pointwise argument for the a priori Hessian estimates
to the special Lagrangian equation? Our proof is in integral form. If possible, it
would represent a push-forward for a long time open problem on Hessian estimates
for the quadratic symmetric Hessian equation σ2(D

2u) = 1. The desire for such a
pointwise way is because so far, we have not seen any structure in high dimensions
(n ≥ 4), as in the low-dimensional case (n ≤ 3) for this equation, resulting in
an effective mean value inequality to be employed. Recall for codimension one

minimal surface equation div
(
Df/

√
1 + |Df |2

)
= 0, one has the classic gradient

estimates for solutions

|Df (0)| ≤ C (n) exp
[
C (n) ‖f‖L∞(B1)

]
.

The proof by Bombieri–De Giorgi–Miranda in the 1960s and its simplification by
Trudinger in the 1970s are both in integral form. In the 1980s, Korevaar found a
strikingly simple pointwise argument. They are all based on the Jacobi inequality

Δg ln
√
1 + |Df |2 ≥ |∇g ln

√
1 + |Df |2|2.

Problem 2. Construction of nontrivial entire solutions to the special Lagrangian
equation with critical phase arctanD2u = (n− 2)π/2 in high dimensions (n ≥ 3).
The construction in dimension three by Warren is through separating variables
with adjustment. The key for a systematic method is to search for nontrivial super
and sub solutions. This is because we already have the follow-up tool to finish,
namely the Hessian estimates in term of the solutions. A more urgent problem
is the existence or nonexistence of nontrivial homogeneous-order two solutions to
the special Lagrangian equation with subcritical phase in high dimension (n ≥ 5).
The rigidity and regularity for general special Lagrangian equation hinge on it.

Problem 3. Is every entire smooth solution to self-similar complex Monge–Ampère
equation ln det ∂∂̄u = 1

2x·Du(x)−u(x) quadratic? As mentioned above, it is indeed
so in complex dimension one. Now there is known quite a lot of nontrivial entire
solutions with corresponding Kähler metric being complete and non-flat to the
complex Monge–Ampère equation ln det ∂∂̄u = 0, but the self-similar term on the
right-hand side of the self-similar equation should still have a strong effect to force
entire solutions to be trivial. Just as in the cases of self-similar codimension one
minimal surface equation and self-similar special Lagrangian equation, rigidity is
available, because of the self-similarity. Once self-similarity is removed, nontrivial
entire solutions do exist in both cases.
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Abstract. We generalize the famous result of Gromov and Lawson on the
nonexistence of metric of positive scalar curvature on enlargeable manifolds to
the case of foliations, without using index theorems on noncompact manifolds.
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0. Introduction

It has been an important subject in differential geometry to study when a smooth
manifold carries a Riemannian metric of positive scalar curvature (cf. [8, Chap.
IV]). A famous result of Gromov and Lawson [6], [7] states that an enlargeable
manifold (in the sense of [7, Definition 5.5]) does not carry a metric of positive
scalar curvature. In particular, there is no metric of positive scalar curvature on
any torus, which is a classical result of Schoen–Yau [10] and Gromov–Lawson [6].
A generalization to foliations of the Schoen–Yau and Gromov–Lawson result on
torus has been given in [11, Corollary 0.5]. In this paper, we further extend the
above result of Gromov–Lawson on enlargeable manifolds to the case of foliations.

Let F be an integrable subbundle of the tangent vector bundle TM of a closed
smooth manifold M . Let gF be a Euclidean metric on F , and kF ∈ C∞(M) be the
associated leafwise scalar curvature (cf. [11, (0.1)]). For any covering manifold π :

M̃ → M , one has a lifted integrable subbundle with metric (F̃ , gF̃ ) = (π∗F, π∗gF ).

Definition 0.1. One calls (M,F ) an enlargeable foliation if for any ε > 0, there is a

covering manifold M̃ → M and a smooth map f : M̃ → SdimM (1) (the standard
unit sphere), which is constant near infinity and has non-zero degree, such that

for any X ∈ Γ(F̃ ), |f∗(X)| ≤ ε|X |.

When F = TM and M is spin, this is the original definition of the enlarge-
ability of M due to Gromov and Lawson [6], [7].

c© Springer Nature Switzerland AG 2020
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The main result of this paper can be stated as follows.

Theorem 0.2. Let (M,F ) be an enlargeable foliation. Then

(i) if TM is spin, then there is no gF such that kF > 0 over M ;
(ii) if F is spin, then there is no gF such that kF > 0 over M .

When F = TM , one recovers the classical theorem of Gromov–Lawson
[6], [7] mentioned at the begining. In a recent paper [2], Benameur and Heitsch
proved Theorem 0.2(ii) under the condition that (M,F ) has a Hausdorff homotopy
groupoid.

As a direct consequence of Theorem 0.2(i), one obtains an alternate proof,
without using the families index theorem, of [11, Corollary 0.5] mentioned above
(for the special case where the integrable subbundle on torus is spin, this result is
due to Connes, as was stated in [5, p. 192]).

If M is enlargeable and (M,F ) carries a transverse Riemannian structure,
then Theorem 0.2(i) is trivial, as in this case, if there is gF with kF > 0 over M ,
then one can construct gTM with kTM > 0 over M , which contradicts with the
Gromov–Lawson theorem. Thus, the main difficulty for Theorem 0.2 is that there
might be no transverse Riemannian structure on (M,F ). This is similar to what
happens in [4] and [11], where one adapts the Connes fibration constructed in [4]
to overcome this kind of difficulty.

Recall that we have proved geometrically in [11] that if M is oriented and
there exists gF with kF > 0 over M , then under the condition that either TM

or F is spin, one has Â(M) = 0. The case where F is spin is a famous result of
Connes [4, Theorem 0.2].

Our proof of Theorem 0.2 combines the methods in [6], [7] and [11]. It is
based on deforming (twisted) sub-Dirac operators on the Connes fibration over

M̃ . A notable difference with respect to [7], where the relative index theorem on
noncompact manifolds plays an essential role, is that we will work with compact
manifolds even for the noncompactly enlargeable situation. It will be carried out
in Section 1.

1. Proof of Theorem 0.2

In this section, we first prove in Section 1.1 the easier case where (M,F ) is a

compactly enlargeable foliation, i.e., the covering manifold M̃ in Definition 0.1 is
compact. Then in Section 1.2 we show how to extend the arguments in Section 1.1

to the case where M̃ is noncompact.

1.1. The case of compactly enlargeable foliations

Let F be an integrable subbundle of the tangent bundle TM of an oriented closed
manifold M .

Let gF be a metric on F and kF be the scalar curvature of gF . Let (E, gE)
be a Hermitian vector bundle on M carrying a Hermitian connection ∇E .
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Let RE = (∇E)2 be the curvature of ∇E .
For any ε > 0, we say (E, gE ,∇E) verifies the leafwise ε-condition if for any

X, Y ∈ Γ(F ), the following pointwise formula holds on M ,∣∣RE(X,Y )
∣∣ ≤ ε |X | |Y |. (1.1)

The following result extends slightly [11, Theorem 0.1] and [4, Theorem 0.2].1

Theorem 1.1. If kF > 0 over M and either TM or F is spin, then there exists
ε0 > 0 such that if (E, gE ,∇E) verifies the leafwise ε0-condition, then

〈Â(TM)ch(E), [M ]〉 = 0.

Proof. The proof of this theorem is an easy modification of the proof given in
[11] for the case of E = C|M . We only give a brief description, by following the
notations given in [11]. Let δ > 0 be such that kF ≥ δ over M . Without loss of
generality, we may well assume that dimM , rk(F ) are divisible by 4, and that
TM , F and TM/F are oriented with compatible orientations.

We assume first that TM is spin.
Following [4, §5] (cf. [11, §2.1]), let π : M → M be the Connes fibration

over M such that for any x ∈ M , Mx = π−1(x) is the space of Euclidean metrics
on the linear space TxM/Fx. Let T

VM denote the vertical tangent bundle of the

fibration π : M → M . Then it carries a natural metric gT
V M.

By using the Bott connection on TM/F , which is leafwise flat, one lifts F to
an integrable subbundle F of TM. Then gF lifts to a Euclidean metric gF = π∗gF

on F .
Let F⊥

1 ⊆ TM be a subbundle, which is transversal to F ⊕ T VM, such
that we have a splitting TM = (F ⊕ T VM) ⊕ F⊥

1 . Then F⊥
1 can be identified

with TM/(F ⊕ T VM) and carries a canonically induced metric gF
⊥
1 . We denote

F⊥
2 = T VM.

Let E = π∗E be the lift of E which carries the lifted Hermitian metric
gE = π∗gE and the lifted Hermitian connection ∇E = π∗∇E . Let RE = (∇E)2 be
the curvature of ∇E .

For any β, ε > 0, following [11, (2.15)], let gTM
β,ε be the metric on TM defined

by the orthogonal splitting,

TM = F ⊕ F⊥
1 ⊕F⊥

2 , gTM
β,ε = β2gF ⊕ gF

⊥
1

ε2
⊕ gF

⊥
2 . (1.2)

Now we replace the sub-Dirac operator constructed in [11, (2.16)] by the
obvious twisted (by E) analogue

DE
F⊕F⊥

1 ,β,ε : Γ
(
Sβ,ε(F ⊕ F⊥

1 )⊗̂Λ∗ (F⊥
2

)
⊗ E

)
−→ Γ

(
Sβ,ε(F ⊕ F⊥

1 )⊗̂Λ∗ (F⊥
2

)
⊗ E

)
,

(1.3)

where Sβ,ε(·) is the notation for the spinor bundle determined by gTM
β,ε .

1The case where F is spin is due to Connes, cf. [5, p. 192].
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The analogue of [11, (2.28)] now takes the form

(
DE

F⊕F⊥
1 ,β,ε

)2
= −ΔE,β,ε +

kF

4β2
+

1

2β2

rk(F )∑
i, j=1

RE(fi, fj)cβ,ε
(
β−1fi

)
cβ,ε

(
β−1fj

)
+OR

(
1

β
+

ε2

β2

)
, (1.4)

where −ΔE,β,ε ≥ 0 is the corresponding Bochner Laplacian, kF = π∗kF ≥ δ
and f1, . . . , frk(F ) is an orthonormal basis of (F , gF ). Moreover, the analogue of
[11, (2.34)] now takes the form

ind
(
P E
R,β,ε,+

)
=
〈
Â(TM)ch(E), [M ]

〉
. (1.5)

From (1.1), (1.4), (1.5) and proceed as in [11, §2.2 and §2.3], one gets Theorem
1.1 for the case where TM is spin easily. As in [11, §2.5], the same proof applies to
give a geometric proof for the case where F is spin, with an obvious modification
of the (twisted) sub-Dirac operators (cf. [11, (2.58)]). �

Now for the proof of Theorem 0.2, one follows [6], [8] and chooses a complex
vector bundle E0 over SdimM (1) such that〈

ch (E0) ,
[
SdimM (1)

]〉
�= 0. (1.6)

From Definition 0.1 and [8, (5.8) of Chap. IV], one sees that for any ε > 0, one

can find a compact covering M̃ → M and a map f : M̃ → SdimM (1) of non-zero
degree such that E = f∗(E0) verifies the leafwise ε-condition. Thus, if there is gF

with kF > 0 over M , then by Theorem 1.1 and in view of either [11, Theorem 0.1]
(in the case where M is spin) or [4, Theorem 0.2] (in the case where F is spin),
one has

0 =
〈
Â
(
TM̃

)
ch (E) ,

[
M̃
]〉

= (rk(E0))Â
(
M̃
)
+
〈
Â
(
TM̃

)
f∗ (ch (E0)− rk (E0)) ,

[
M̃
]〉

= deg(f)
〈
ch (E0) , S

dimM (1)
〉
,

(1.7)

where the last equality comes from the definition of deg(f), as ch(E0)− rk(E0) is
a top class on SdimM (1). This contradicts with (1.6) and completes the proof of

Theorem 0.2 for compact M̃ .

Remark 1.2. Since any torus T n is compactly enlargeable (cf. [8, p. 303]), the
proof above already applies to give an alternate proof of [11, Corollary 0.5] on
the nonexistence of any foliation with metric of positive leafwise scalar curvature
on T n.
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1.2. The case where M̃ is noncompact

We will deal with the case where F = TM in detail. We will work with compact
manifolds, thus giving a new proof of the Gromov–Lawson theorem [7, Theorem

5.8] in the case where M̃ is noncompact. With this “compact” approach it is easy
to prove the foliation extension as in Section 1.1.

We assume that M̃ is noncompact. To simplify the notation, from now on

we simply denote M̃ by M , or rather Mε to emphasize the dependence on ε. The
key point is that the geometric data on M now comes from isometric liftings of
geometric data on a compact manifold.

Thus for any ε > 0, let fε : Mε → SdimM (1) be as in Definition 0.1. Let
Kε ⊂ Mε be a compact subset of Mε such that f(Mε \ Kε) = x0, where x0

is a (fixed) point on SdimM (1).2 Following [7], we take a compact hypersurface
Hε in Mε \ Kε. We denote by MHε the compact manifold with boundary Hε

containing Kε.
Let M ′

Hε
be another copy of MHε . We glue MHε and M ′

Hε
along Hε to get

the double, which we denote by M̂Hε . Let g
TM̂Hε be a metric on TM̂Hε such that

gTM̂Hε |MHε
= gTM |MHε

. The existence of gTM̂Hε is clear.3 Let S(TM̂Hε) denote
the corresponding spinor bundle.

We extend fε : MHε → SdimM (1) to fε : M̂Hε → SdimM (1) by setting
fε(M

′
Hε

) = x0.

Let (E0, g
E0) be a Hermitian vector bundle on SdimM (1) verifying (1.6) and

carrying a Hermitian connection ∇E0 . Let (E1 = Ck|SdimM (1), g
E1 ,∇E1), with

k = rk(E0), be the canonical Hermitian trivial vector bundle on SdimM (1). Let
v : Γ(E0) → Γ(E1) be an endomorphism such that v|x0 is an isomorphism. Let
v∗ : Γ(E1) → Γ(E0) be the adjoint of v with respect to gE0 and gE1 . Set

V = v + v∗. (1.8)

Then the self-adjoint endomorphism V : Γ(E0 ⊕ E1) → Γ(E0 ⊕ E1) is invertible
near x0.

Let (ξ, gξ,∇ξ) = (ξ0 ⊕ ξ1, g
ξ0 ⊕ gξ1 ,∇ξ0 ⊕ ∇ξ1) = (f∗

εE0 ⊕ f∗
εE1, f

∗
ε g

E0 ⊕
f∗
ε g

E1 , f∗
ε∇E0⊕f∗

ε∇E1) be the Z2-graded Hermitian vector bundle with Hermitian

connection over M̂Hε (here for simplicity, we do not make explicit the subscript ε
in ξ, ξ0 and ξ1). Let R

ξ = (∇ξ)2 be the curvature of ∇ξ. Set Vfε = f∗
ε V . Then[

∇ξ, Vfε

]
= 0 (1.9)

on M ′
Hε

.

Let Dξ : Γ(S(TM̂Hε)⊗̂ξ) → Γ(S(TM̂Hε)⊗̂ξ) be the canonically defined
(twisted) Dirac operator (cf. [8]). Let

Dξ
± : Γ((S(TM̂Hε)⊗̂ξ)±) → Γ((S(TM̂Hε)⊗̂ξ)∓)

2Up to an isometry of SdimM (1), one can always assume that x0 is fixed and does not depend
on ε.
3Here we need not assume that gTM̂Hε is of product structure near MHε .
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be the obvious restrictions, where

(S(TM̂Hε)⊗̂ξ)+ = S+(TM̂Hε)⊗ ξ0 ⊕ S−(TM̂Hε)⊗ ξ1,

while

(S(TM̂Hε)⊗̂ξ)− = S−(TM̂Hε)⊗ ξ0 ⊕ S+(TM̂Hε)⊗ ξ1.

By the Atiyah–Singer index theorem [1] (cf. [8]) and [7], one has

ind
(
Dξ

+

)
=
〈
Â
(
TM̂Hε

)
(ch (ξ0)− ch (ξ1)) ,

[
M̂Hε

]〉
= (deg(fε))

〈
ch (E0) ,

[
SdimM (1)

]〉
,

(1.10)

where the last equality comes from the definition of deg(fε) (cf. [7]).

Let kTM denote the scalar curvature of gTM . We assume that there is δ > 0
such that kTM ≥ δ over M .

For any ε > 0, let Dξ
ε : Γ(S(TM̂Hε)⊗̂ξ) → Γ(S(TM̂Hε)⊗̂ξ) be the deformed

operator defined by

Dξ
ε = Dξ + Vfε . (1.11)

Proposition 1.3. There is ε0>0 such that for any 0<ε≤ε0, one has ker(D
ξ
ε)={0}.

Proof. Recall that x0 ∈ SdimM (1) is fixed and V |x0 is invertible. Let Ux0 ⊂
SdimM (1) be a (fixed) sufficiently small open neighborhood of x0 such that the
following inequality holds on Ux0 ,

V 2 ≥ δ1. (1.12)

Let ψ : Sdim1(1) → [0, 1] be a smooth function such that ψ = 1 near x0 and
Supp(ψ) ⊂ Ux0 . Then ϕε = 1 − f∗

εψ is a smooth function on Mε (and thus on

MHε), which extends to a smooth function on M̂Hε such that ϕε = 0 on M ′
Hε

.

Following [3, p. 115], let ϕε,1, ϕε,2 : M̂Hε → [0, 1] be defined by

ϕε,1 =
ϕε

(ϕ2
ε + (1− ϕε)2)

1
2

, ϕε,2 =
1− ϕε

(ϕ2
ε + (1 − ϕε)2)

1
2

. (1.13)

Then ϕ2
ε,1 + ϕ2

ε,2 = 1. Thus, for any s ∈ Γ(S(TM̂Hε)⊗̂ξ), one has∥∥Dξ
εs
∥∥2 =

∥∥ϕε,1D
ξ
εs
∥∥2 + ∥∥ϕε,2D

ξ
εs
∥∥2 , (1.14)

from which one gets
√
2
∥∥Dξ

εs
∥∥ ≥ ∥∥ϕε,1D

ξ
εs
∥∥+ ∥∥ϕε,2D

ξ
εs
∥∥

≥
∥∥Dξ

ε (ϕε,1s)
∥∥+ ∥∥Dξ

ε (ϕε,2s)
∥∥− ‖c (dϕε,1) s‖ − ‖c (dϕε,2) s‖ ,

(1.15)

where we identify dϕε,i, i = 1, 2, with the gradient of ϕε,i.
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Let e1, . . . , edimM be an orthonormal basis of gTM̂Hε . Then by (1.11), one
has (

Dξ
ε

)2
=
(
Dξ
)2

+

dimM∑
i=1

c (ei)
[
∇ξ

ei , Vfε

]
+ V 2

fε . (1.16)

From (1.16), one has for j = 1, 2 that

∥∥Dξ
ε (ϕε,js)

∥∥2 =
∥∥Dξ (ϕε,js)

∥∥2 + dimM∑
i=1

〈
c (ei)

[
∇ξ

ei , Vfε

]
ϕε,js, ϕε,js

〉
+ ‖ϕε,jVfεs‖

2
.

(1.17)

By the Lichnerowicz formula [9] (cf. [8]), one has on MHε that

(
Dξ
)2

= −Δξ +
kTM

4
+

1

2

dimM∑
i, j=1

c (ei) c (ej)R
ξ (ei, ej) , (1.18)

where Δξ is the corresponding Bochner Laplacian and kTM ≥ δ by assumption.
By Definition 0.1 and proceeding as in [8, (5.8) of Chap. IV], one finds on

MHε that

1

2

dimM∑
i, j=1

c (ei) c (ej)R
ξ (ei, ej) +

dimM∑
i=1

c (ei)
[
∇ξ

ei , Vfε

]
=

1

2

dimM∑
i, j=1

c (ei) c (ej) f
∗
ε

(
RE0 (fε∗ei, fε∗ej)

)
+

dimM∑
i=1

c (ei) f
∗
ε

([
∇E0⊕E1

fε∗ei
, V
])

= O (ε) .

(1.19)

On the other hand, for any 1 ≤ i ≤ dimM , one verifies that

ei (ϕε) = −ei (f
∗
εψ) = −f∗

ε ((fε∗ei) (ψ)) = O(ε). (1.20)

From (1.13) and (1.20), one finds that for i = 1, 2,

|c (dϕε,i)| = O(ε). (1.21)

From (1.9), (1.12), (1.13), (1.15), (1.17)–(1.19) and (1.21), one deduces that
there exists δ2 > 0 such that when ε > 0 is sufficiently small, one has (compare
with [11, p. 1062]) ∥∥Dξ

εs
∥∥ ≥ δ2‖s‖, (1.22)

which completes the proof of Proposition 1.3. �

From Proposition 1.3, one finds ind(Dξ
+) = 0, which contradicts with (1.10)

where the right-hand side is non-zero. Thus, there should be no gTM with kTM > 0
overM . This completes the proof of Theorem 0.2 for the case of F = TM (which is
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the original Gromov–Lawson theorem [7, Theorem 5.8]), without using the relative
index theorem on noncompact manifolds in [7].

Now to prove Theorem 0.2(i), one simply combines the method in Section 1.1
with the doubling and gluing tricks above. The details are easy to fill. Theorem
0.2(ii) follows by modifying the sub-Dirac operator as in [11, §2.5].

The proof of Theorem 0.2 is completed.
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Abstract. This is an expository paper. In the first part, we discuss variant
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0. Introduction

Since the celebrated work of Yau [81] on the existence of Kähler–Einstein met-

rics on Kähler manifolds with negative or vanishing first Chern class, and that

of Aubin [1] on compact complex manifolds with negative first Chern class, sig-

nificant progress has been made in the study of Kähler–Einstein metrics on Fano

manifolds, namely Kähler manifolds with positive first Chern class. The famous

Yau–Tian–Donaldson’s conjecture has been recently proved separately by Tian

[70], and Chen, Donaldson and Sun [19]. This conjecture asserts that the existence

of Kähler–Einstein metrics on Fano manifolds is equivalent to the K-stability.

The notion of K-stability was first introduced by Tian by using special degener-

ations [68] and then reformulated by Donaldson in algebraic geometry via test-

configurations [26]. For both special degenerations and test-configurations, one

The author was partially supported by NSFC Grants 11331001 and 11771019.
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has to study infinitely possible degenerations of the manifold. A natural question

is how to verify the K-stability in finite steps. In this survey, we hope to give

a picture for this question through examples of toric Fano manifolds as well as

G-manifolds from various views in differential geometry, algebraic geometry, and

differential equation, etc.

The history in the study of Kähler–Einstein metrics on toric manifolds can

go back to more than 30 years ago. In 1987, Mabuchi began to classify toric

Fano 3-folds with vanishing Futaki invariant by using the classification of toric

Fano 3-folds in [9, 49]. However, beside the Fubini–Study metric on CPn, the

first example of Kähler–Einstein metrics on toric manifolds was constructed on

the blow-up of CP 2 at three points, CP 2#3CP 2, by using PDE from the work

of Tian and Yau [71], and Siu [58]. Latterly, by using Tian’s α-invariant criterion

[66], Real extended the example CP 2#3CP 2 to CPn#(n + 1)CPn for any n > 2

[56], where CPn#(n + 1)CPn denotes the manifold obtained from the complex

projective space CPn by blowing-up at (n+ 1) generic points.

After the Mabuchi’s work, Nakagawa [51, 52] classified toric Fano Kähler–

Einstein manifolds of dimension four by using results of Tian–Yau and Real based

on the classification of toric Fano 4-folds of Batyrev [10]. In 1999, Batyrev and

Selivanova proved that any symmetric toric Fano manifolds admits a Kähler–

Einstein metric [12]. A toric manifold M is called symmetric if its associated

polytope is symmetric with respect to the barycenter of polytope. In particular, the

Futaki invariant of M vanishes. Batyrev and Selivanova’s method is also through

the computation of Tian’s α-invariant.

To construct a Kähler–Einstein metric on a Fano manifold, people usually

use the continuity method to solve the following family of complex Monge–Ampère

equations (cf. [58, 66, 69, 81]),

det(gij̄ + ϕij̄) = det(gij̄)exp{h− tϕ}, (gij̄ + ϕij̄) > 0, (0.1)

where h is a Ricci potential of the background Kähler metric g in 2πc1(M), and

t is a parameter from 0 to 1. One can check that (0.1) is equivalent to a Kähler–

Einstein metric equation when t = 1. It is known that the existence problem

of Kähler–Einstein metrics is reduced to a prior C0-estimate for solutions ϕt of

(0.1). Tian used this approach to solve the problem completely on Fano surfaces

through computing his α-invariant and establishing the partial C0-estimate on

Kähler–Einstein Fano surfaces in 1990 [67].

In the case of toric Fano manifolds, (0.1) can be further reduced to the

following real Monge–Ampère equations in a global Euclidean space,

det(uij) = exp{−tu− (1 − t)ψ0} in Rn, (0.2)
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where u = ut = ψ0+ϕt and ψ0 is a Kähler potential of torus-invariant background

metric g0. By estimating the minimum of the convex functions wt = tut+(1− t)ψ0

and the distance of the minimal points of wt away from the original o, Wang and

the author got a C0-estimate for solutions ϕt in [79] (also see Section 2 below).

As a result, this gives a complete resolution for the existence of Kähler–Einstein

metrics. That is

Theorem 0.1. There exists a unique Kähler–Ricci soliton up to holomorphic au-

tomorphisms on any toric Fano manifold. Moreover, the Kähler–Ricci soliton is

Einstein if and only if the Futaki-invariant vanishes.

Recall that a Kähler–Ricci soliton on a complex manifold M is a pair (X,ω),

where X is a holomorphic vector field on M and g is a Kähler metric on M , such

that

Ric(ω) − ω = LX(ω), (0.3)

where LX is the Lie derivative alongX . IfX = 0, the Kähler–Ricci soliton becomes

a Kähler–Einstein metric. The uniqueness theorem in [72, 73] states that a Kähler–

Ricci soliton on a compact complex manifold, if it exists, must be unique modulo

Aut(M).1 Furthermore, X lies in the center of Lie algebra of the reductive part

of Aut0(M), which is the connected component of holomorphisms group Aut(M)

containing the identity.

Theorem 0.1 has been generalized in various directions via the method in

[79] in recent ten years. For examples, Podesta and Spiro proved the existence of

Kähler–Ricci solitons on the torus bundle over a homogeneous space [55], Shi and

the author proved the existence of Kähler–Ricci solitons on toric Fano orbifolds

[62], Futaki, Ono andWang proved the existence of transverse Sasaki–Ricci solitons

on toric Sasaki manifolds [36], and very recently Deltroix proved the existence of

Kähler–Einstein metrics on G-manifolds [33] (also see Section 5 below), etc. There

are other applications of C0-estimate in [79] found, such as in Ricci flow [88], in

the study of singularities arising in (0.1) on toric Fano manifolds [42, 63]. We will

discuss them in Subsection 3.1, 3.2, respectively.

In [84], Zhou and the author found another method to do C0-estimate for

solutions ϕt by proving the properness of Mabuchi’s K-energy. The idea is based

on a Tian’s result of analytic criterion for the existence of Kähler–Einstein metrics

via K-energy K(·) [69]. In case of toric Fano manifolds, Donaldson observed that

K(·) is equivalent to a reduced K-energy μ(·) via Legendre dual functions if one

restricts the Kähler potentials in the space of torus invariant functions [26]. In [84],

we actually found a way to verify the properness of μ(·). More precisely, we give a

criterion for the properness of μ(·) in terms of polytope associated to the Kähler

1In the case of Kähler–Einstein metrics, this uniqueness theorem is due to Bando–Mabuchi [8].
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class. The advantage is that the C0-estimate problem returns to study the structure

of polytope. Thus, this method works for any Kähler class on a toric manifold. As

an application, we can prove the existence of weak minimizers of K-energy on toric

manifolds [86].2 Recently, we extended this method to G-manifolds and proved

the existence of weak minimizers of K-energy [45]. Analogous criterion was also

established for the modified K-energy associated to Kähler–Ricci solitons on toric

manifolds [80], Mabuchi’s extremal metrics on G-manifolds [47], and transverse

Sasaki–Ricci solitons on G-Sasaki manifolds [46], respectively.

This paper is organized as follows. In Section 1, we recall some basic notations

for toric manifolds. In Section 2, we discuss the C0-estimate in [79]. In Section 3,

we discuss another proof of Theorem 0.1 via Ricci flow in [88] and a Li’s result for

singular solutions of (0.1) [42]. These results can be regarded as applications of C0-

estimate in [79]. In Section 4, we discuss the method in [84] to prove Theorem 0.1

via K-energy. In Section 5, we discuss a recent result on the existence of Kähler–

Einstein metrics on G-manifolds in [45]. In the last section as an appendix, we

give some examples of Fano G-manifolds with a maximal torus action of rank 2

and discuss whether there are Kähler–Einstein metrics or Kähler–Ricci solitons on

them.

Note. We are not able to discuss other interesting works for the construction of

canonical metrics on toric manifolds, such as singular Kähler–Ricci solitons on a

toric Q-Fano variety [13, 64], conical Kähler–Einstein metrics [25, 80], and Calabi’s

extremal metrics [21, 22, 29, 30] on a toric Fano manifold, etc. We refer the reader

to those papers.

1. Preliminary on toric manifolds

An n-dimensional toric manifold M is a compactification of n-dimensional torus

TC = (C∗)n = (S1)n × Rn (cf. [53]). Then TC acts naturally on M . Denote K =

(S1)n. Thus a K-invariant Kähler metric g corresponds to a convex function ψ0

in Rn such that its Kähler form ωg is an extension of
√
−1∂∂̄ψ0 =

√
−1∂z∂z̄ψ0 on

(C∗)n. Here z = (z1, . . . , zn) ( zi = logwi = xi+
√
−1θi) are the affine logarithmic

coordinates on TC and (w1, . . . , wn) ∈ (C∗)n. Let HK(ωg) be the set of such K-

invariant Kähler potentials in [ωg]. Then it is easy to see that

HK(ωg) = {φ ∈ C∞(Rn)| |φ| < ∞ and ψ0 + φ is uniformly convex}.

2A recent work of Chen–Cheng shows that these minimizers are associated to the existence of

canonical Kähler metrics with constant scalar curvature [17].
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Let P be the image of the gradient of ψ0 for x ∈ Rn, namely,

∇ψ =

(
∂ψ

∂x1
, . . . . . . ,

∂ψ

∂xn

)
= (y1, . . . . . . , yn).

Then P is a ploytope in Rn, which is an intersection of d hyperplanes in Rn as

follows,

P = {x ∈ Rn| lα(x) > λα, α = 1, . . . , d}, (1.1)

where lα(x) =
∑

liαxi with lα = (l1α, . . . , l
n
α) ∈ Zn. Moreover, P satisfies the

Delzant condition (cf. [2, 32, 37]). In particular, ωg ∈ 2πc1(M) if and only if

λα = 2 for all α after a translation to P . P is also called the moment polytope. It

is easy to see that P is independent of the choice of ψ = ψ0 +φ with φ ∈ HK(ωg),

i.e., the choice of ωφ as a moment polytope.

As an obstruction to the existence of Kähler–Einstein metrics, Futaki intro-

duced the following holomorphic invariant (Futaki invariant) in 1983 [35],

F (X) =

ˆ
M

X(h)ωn
g , ∀ X ∈ η(M), (1.2)

where h is a Ricci potential of ωg, and η(M) is the Lie algebra of holomorphisms

transformation group Aut(M), which consists of holomorphic vector fields on a

compact Kähler manifold (M, g). In case of toric manifolds, we have (cf. [49]

and [79]),

Lemma 1.1. Let M be an n-dimensional toric Fano manifold and P the associated

moment polytope as in (1.1) with all λα = 2. Then the Futaki invariant vanishes

if and only if the barycenter of P is the original. Namely,ˆ
P

yidy = 0, i = 1, . . . , n. (1.3)

2. A priori C0-estimate

In this section, we discuss two main technical lemmas in the proof of Theorem

0.1 by solving (0.2). For simplicity, we assume that the Futaki invariant vanishes.

In general case, we shall modify (0.2) to an equation of Kähler–Ricci soliton type

[72, 79].

By a Harnack inequality in [66] and higher-order estimates in [66, 81], it

suffices to prove that for any solution ϕt of (0.1), it holds

sup
M

ϕt ≤ C. (2.1)

The proof includes two steps. First we show
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Lemma 2.1. We have

mt =: inf
Rn

wt(x) ≤ C (2.2)

for some C > 0 independent of t ∈ [ε0, 1].

We will use the following well-known result for convex domains [50].

Lemma 2.2. Let Ω be a bounded convex domain in Rn. Then there is a unique

ellipsoid E, called the minimum ellipsoid of Ω, which attains minimal volume

among all ellipsoids containing Ω, such that

1
nE ⊂ Ω ⊂ E,

where αE denotes the α-dilation of E with concentrated center.

Let T be a linear transformation with |T | = 1, which leaves the center x0 of

E invariant, namely T (x) = A(x − x0) + x0 for some matrix A, such that T (E)

is a ball BR. Then we have BR/n ⊂ T (Ω) ⊂ BR for two balls with concentrated

center.

Proof of Lemma 2.1. For any nonnegative integer k, we denote

Ak = {x ∈ Rn : mt + k ≤ w(x) ≤ mt + k + 1}.

Then for any k ≥ 0,
⋃k

i=0 Ai = {w < mt + k + 1} is convex. Observe that

∇w(Rn) = P and by (1.1), the origin is contained in P . Hence for any k ≥ 0, Ak

is a bounded set and the minimum mt is attained at some point in A0.

By equation (0.2), we have

det(wij) ≥ tn det(uij) ≥ tne−w,

where d = sup{clyl : y ∈ P}. Recall that t ≥ ε0, we obtain

det(wij) ≥ C0e
−mt in A0,

where C0 = εn0 . By Lemma 2.2, there exists a linear transformation y = T (x) with

|T | = 1, which leaves the center of the minimum ellipsoid of A0 invariant, such

that BR/n ⊂ T (A0) ⊂ BR. The above equation is unchanged under the linear

transformation. We claim

R ≤
√
2nC

−1/2n
0 emt/2n. (2.3)

Indeed, let

v(y) =
1

2
C

1/n
0 e−mt/n

[
|y − yt|2 −

(
R

n

)2
]
+mt + 1,

where yt is the center of the minimum ellipsoid of A0. Then

det(vij) = C0e
−mt in T (A0),
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and v ≥ w on ∂T (A0). Hence by the comparison principle we have v ≥ w in T (A0).

In particular we have

mt ≤ w(yt) ≤ v(yt)

= −1

2
C

1/n
0 e−mt/n

(
R

n

)2

+mt + 1.

Hence (2.3) follows.

By the convexity of w, we have

T (Ak) ⊂ B2(k+1)R.

We obtain ˆ
Rn

e−w =
∑
k

ˆ
T (Ak)

e−w

≤
∑
k

e−mt−k|T (Ak)|

≤ ωn

∑
e−mt−k|2(k + 1)R|n

= ωn
(2R)n

emt

∑ (k + 1)n

ek

≤ Ce−mt/2,

where ωn is the area of the sphere Sn−1. We note that the above integration

is invariant under any linear transformation T with |T | = 1. Returning to the

coordinates x, by equation (0.2), we have

e−mt/2 ≥ 1

C

ˆ
Rn

e−wdx

=
1

C

ˆ
M

ωn
g = C1,

where we have used the transformation y = ∇u(x). Hence mt ≤ C. �

Next by using the vanishing Futaki invariant we prove

Lemma 2.3. Let xt = (xt
1, . . . , x

t
n) ∈ Rn be the minimal point of w = wt. Then

|xt| ≤ C

for some uniform constant C.

Proof. By equation (0.2), ˆ
Rn

e−wdx =

ˆ
P

dy = β



552 X. Zhu

for some constant β. Recall that |∇w| ≤ d0 := sup{|x| : x ∈ P}. Hence by (2.3)

there exists R > 0 such that inf∂BR(xt) w ≥ mt + 1. By convexity we have

|∇w(x)| ≥ 1/R in Rn \BR(x
t).

Hence for any ε > 0 small, there exists Rε sufficiently large such thatˆ
Rn\BRε (x

t)

e−wdx ≤ C

ˆ
Rn\BRε (x

t)

e−|x−xt|/R ≤ ε,

where both R and Rε are independent of t.

Observe that ψ0 is a convex function defined on Rn satisfying ∇ψ0(Rn) = P ,

and by the fact of the origin 0 ∈ P . Hence for any small ε > 0, there exists a large

constant C > 0 such that if |xt| > C,

∂u0

∂ξ
>

1

2
a0 in BRε(x

t),

where ξ = xt

|xt| and a0 = inf{|x| : x ∈ ∂P}. To see the above inequality it suffices

to consider the restriction of u0 on the ray
−→
oxt. Henceˆ

BRε(x
t)

∂u0

∂ξ
e−wdx ≥ 1

4
a0β,

and ∣∣∣∣ ˆ
Rn\BRε(x

t)

∂u0

∂ξ
e−wdx

∣∣∣∣ ≤ d0

∣∣∣∣ˆ
Rn\BRε (x

t)

e−wdx

∣∣∣∣ ≤ εd0.

If ε > 0 is sufficiently small, we obtainˆ
Rn

∂u0

∂ξ
e−wdx > 0 .

On the other hand, by the vanishing of the Futaki invariant (1.3) in Lemma 1.1

and equation (0.2),

0 =

ˆ
P

yidy

=

ˆ
Rn

∂u

∂xi
e−wdx

= −1− t

t

ˆ
Rn

∂u0

∂xi
e−wdx.

We obtain ˆ
Rn

∂u0

∂ξ
e−wdx = 0

for any unit vector ξ ∈ Rn. We reach a contradiction if |xt| >> 1. This completes

the proof. �



Kähler–Einstein Metrics on Toric Manifolds and G-manifolds 553

Proof of Theorem 0.1. We need to get the estimate (2.1). In fact, by tϕt(xt) =

mt − ψ0(xt), we see from Lemma 2.1 and Lemma 2.3 that

ϕt(xt) ≤ A0, (2.4)

for some uniform constant A0. Note that |∇ϕ|(x) ≤ 2|∇ψ(x)| ≤ 2diam(P ). Then

ϕt(x) ≤ A0 + 2diam(P ), ∀ x ∈ B1(xt) ⊂ Rn. (2.5)

On the other hand, by the mean value inequality,

sup
M

ϕt ≤
1

V

ˆ
M

ϕtω
n
g + C,

where C is a uniform constant. One can easily show that there exists a point

x ∈ B1(xt) such that

sup
M

ϕt ≤ ϕt(x) + C′.

Thus combining it with (2.5), we get (2.1). �

3. Generalization of Lemma 2.1 and its applications

In this section, we consider a more general equation of (0.2),

det(uij) = exp{−tu− (1 − t)ψ0 + f(x, t)} in Rn, (3.1)

where f(x, t) is a uniformly bounded smooth function on Rn. Following the argu-

ment in the proof of Lemma 2.1, we actually prove

Lemma 3.1. Let ε0 be a small positive number and u = ut a convex solution of

(3.1) (t ∈ [ε0, 1]). Suppose thatˆ
Rn

det(uij)dx ≥ C0.

Then there is uniform constant independent of t such that

mt =: inf
Rn

wt(x) ≤ C. (3.2)

We will give two applications of Lemma 3.1 in the following.

3.1. Deformation of Ricci flow

Ricci flow was introduced by Hamilton in his study of three-dimensional sphere

geometry in 1982 [39]. On a Fano manifold (M, g) with ωg ∈ 2πc1(M), we usually

study the following normalized Kähler–Ricci flow,

∂ω(·, s)
∂s

= −Ric(ω(·, s)) + ω(·, s), ω(·, 0) = ωg. (3.3)



554 X. Zhu

(3.3) gives an approach to construct Kähler–Einstein metrics. It can be rewritten

as a parabolic complex Monge–Ampère equation for solutions in a space H(ωg) of

Kähler potentials,

∂ϕ

∂s
= log

ωn
ϕ

ωn
g

+ ϕ+ h,

ωϕ = ωg +
√
−1∂∂̄ϕ > 0, ϕ|s=0 = 0. (3.4)

In case of toric manifolds, the author proved the following smooth conver-

gence of (3.3) [88].

Theorem 3.2. Suppose that ωg is K-invariant on a toric Fano manifold M . Then

there is a family of holomorphisms σt ∈ Aut0(M) such that σ∗
t ωϕt converge to a

Kähler–Ricci soliton exponentially.

Theorem 3.2 gives a parabolic proof of Theorem 0.1. To the best of authors’

knowledge, Theorem 3.2 is the first result about the global convergence of Kähler–

Ricci flow on a Fano manifold without any assumptions on the curvature. Under the

assumption of the existence of Kähler–Einstein metrics or a Kähler–Ricci soliton,

a general convergence result of Kähler–Ricci flow was proved by Tian and the

author in [74–76].3

As the same as in the equation (0.1) arising in the continuity method, we

need to get a C0-estimate for ϕ(x, t) in (3.3) [14]. By a Harnack inequality in

[74, 88], it suffices to prove

sup
M×[0,∞)

ϕ(x, s) ≤ C. (3.5)

But for the parabolic equation, we can modify (3.4) by a family of holomorphisms

σ = σs ∈ Aut0(M) to

σ∗ ∂ϕ

∂s
= log

ωn
ϕ̃

ωn
g

+ ϕ̃− h,

ωϕ̃ = ωg +
√
−1∂∂̄ϕ̃ > 0, ϕ̃|s=0 = 0, (3.6)

where ϕ̃(s, ·) is an induced Kähler potential of ωϕ̃ = σ∗ωϕ by σs. In toric case, we

can take σs ∈ TC. Then the corresponding Kähler potential u(x, s) of ωϕ becomes

ũ(x, s) = u(x+xs, s) in the affine coordinates x+
√
−1θ = (x1 +

√
−1θ1, . . . , xn +√

−1θn) ∈ Cn, where we choose points xs such that u(xs, s) = infM u(x, s). Thus

ũ(x, s) = ψ0 + ϕ̃(x, s) satisfies a parabolic real Monge–Ampère equation,

σ∗ ∂u

∂s
= log det(ũij) + ũ, in Rn,

ũ(0, ·) = u0. (3.7)

3Perelman announced this result in case of Kähler–Einstein manifolds in his first paper to solve

the Poincaré conjecture [54].
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We need the following Perelman result (cf. [60]).

Lemma 3.3. There exists constant cs for each s > 0 in (3.4) such that

|∂ϕ
∂s

+ cs| ≤ C,

where C is a uniform constant.

Remark 3.4. It was shown that cs is uniformly bounded by adding a constant to

h in (3.4) if the K-energy or modified K-energy is bounded below along the flow

[23, 73]. Namely, |∂ϕ∂s | ≤ C.

Proof of Theorem 3.2. Applying Lemma 3.3 to (3.7), ū(x, s) = ũ(x, s)+cs satisfies

det(ūij) = e−ū+f , in Rn,

where f(x, s) = σ∗ ∂u
∂s + cs is a uniformly bounded function by Lemma 3.3. Then

by Lemma 3.1,

ϕ̄(o, s) ≤ A

for some uniform constant, where ϕ̄(x, s) = ū(x, s) − u0. Thus as in the proof of

Theorem 0.1, we see that

sup
M

ϕ̄(x, s) ≤ C. (3.8)

By the monotonicity of modified K-energy, we get (cf. [89]),

I(ϕ̄(x, s)) ≤ C.

Therefore, by the Harnack inequality [74, 88], we obtain

|ϕ̄(x, s)| ≤ C. (3.9)

By (3.8), we can show that the modified K-energy defined in [73] is bounded

below along the flow (3.4). Then by (3.9) and Remark 3.4, it follows that

|ϕ̃(x, s)| ≤ C. (3.10)

Moreover, by equation (3.4), ϕ̃ satisfies

∂ϕ̃

∂s
= log

ωn
ϕ̃

ωn
g

+ ϕ̃+ h+Xs(ϕ̃), (3.11)

where Xs =
dσs

ds is a family of holomorphic vector fields on M . On the other hand,

by using a trick in [23] with the help of (3.10) (also see [88]), one can modify the

holomorphisms σs such that |Xs|g is uniformly bounded. Thus by a result in [87]

(also see [84]), we get

|Xs(ϕ̃)| ≤ C. (3.12)
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By the higher-order estimate together with (3.10) and (3.12) as done in [72],

we have

‖ϕ̃‖Ck ≤ Ck.

By Perelman’s entropy [54], there is a subsequence of ωφ̃ which converge to a

Kähler–Ricci soliton (M,ωKS) with respect to some holomorphic vector field X

on M . Let σs(X)∗ωϕs be the family of induced metrics by σs(X) generated by

X . Then, by the uniqueness of Kähler–Ricci solitons [72], σs(X)∗ωϕs converges to

ωKS exponentially [89]. �

3.2. Singular solutions arising in the continuity method

If the Futaki invariant does not vanish, there is no solution of (0.1) when t = 1.

Then there is a T̄ ≤ 1 such that

T̄ = {t̄| there is a solution ϕ of (0.1) for any t ≤ t̄}. (3.13)

Thus the metric ωϕt will blow-up as t → T̄ . It is interesting to analyze the behavior

of ωϕt such as the partial regularity of Gromov–Hausdorff limit, the current limit

in terms of weak pluri-subharmonic functions, the singular set structure of these

limits, etc. More recently, Székeyihidi proved the partial regularity of Gromov–

Hausdorff limit by showing that ωϕt has locally bounded Ricci curvature [59]. For

a simple example of CPn#CPn, Shi and the author showed that the rotational

metrics ωϕt arising in (0.1) must locally smoothly converge to a conical Kähler

metric on CPn#CPn when t → T̄ [62]. But, the limit is not a soliton metric,

which is different to the situation of Kähler–Ricci flow as in Section 3.1 above.

We call a Kähler metric ω on B1(o)\{z1 = 0} ⊂ Cn with conical singularities

along the hyperplane {z1 = 0} ⊂ Cn if there is a smooth function u(z, z̄) on B1(o)\
{z1 = 0} ⊂ Cn such that ω = ω0+

√
−1∂∂̄u and ũ(w1, z

′, w̄, z̄′) = u(wβ , z′, wβ , z̄′)

can be locally extended to a C2,α smooth function on the variables w1, w̄1, z
′, z̄′

near w1 = 0 (cf. [28, 62]). Here z′ = (z2, . . . , zn), ω0 =
√
−1∂∂̄|z|2 is the standard

flat metric on Cn, and 2πβ ∈ (0, 2π] is called the conical angle.

In this subsection, we discuss a Li result of local convergence of ωϕt above

on a toric Fano manifold [42]. Let g be the Fubini–Study metric of M induced by

the Kodaira embedding of Fano toric manifold. Namely,

ωg =
√
−1∂∂̄ log(

N∑
i=1

|si|2),

where si is a basis of holomorphic sections of K−1
M , each of which can be given

by a defining section of combination of some infinity divisors Di of M . Then Li

proved the following theorem,

Theorem 3.5. Let ϕt be a solution of (0.1) with a (S1)n-invariant background

metric g. Let T be the number defined in (3.13). Then there exist a sequence of
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ti → T̄ and σti ∈ TC such that the induced Kähler potential ϕ̃ti of ωϕti
by σti

converges locally C∞ to a current solution ϕ∞, which satisfies

ωn
ϕ

ωn
g

= e−T̄ϕ−h+F∞+c0 , (3.14)

where c0 is a constant, and

F∞ = (1− T̄ ) log

∑
|si|2∑

i′ |bi′si′ |2

with some positive numbers bi′ < 1, i′ ∈ {1, . . . , N}.

Proof. As in the proof of Theorem 0.1, we let

ũt = ut(x+ xt)− ut(xt), ϕ̃t(x) = ũ− ψ0,

where xt is the minimal point of wt = tu+(1−t)ψ0 as in Lemma 2.3, but |xt| → ∞.

Then ϕ̃ = ϕ̃t(x) satisfies an equation,

ωn
ϕ̃

ωn
g

= e−tϕ̃−h+F+mt , (3.15)

where mt are uniformly bounded constants by Lemma 2.1 and

F = Ft = (1− t) log

∑
|si|2∑

i |si(σt)|2 −
∑

i |si|(xt)2
.

Moreover, ϕ̃(o) = −ψ0(o), and consequently, by the mean value inequality,

sup
M

ϕ̃ ≤ C.

On the other hand, by the argument in [66], Li proved the Harnack inequality [42],

− inf
M

ϕ̃ ≤ (n+ 1) sup
M

ϕ̃+ C.

Thus we get the C0-estimate,

|ϕ̃| ≤ C.

Since (3.15) is equivalent to a Ricci equation,

Ric(ωϕ̃) = tωϕ̃ + (1− t)σ∗ωg,

In particular, Ric(ωϕ̃) ≥ 0. By the Schwartz Lemma [16, 43], we have

Δg′(trg′(ωg) ≥ −a(ωg) trg′(ωg),

where the constant −a(ωg) depends on the upper bound of curvature of g and g′

is the Kähler metric associated to ωϕ̃. Let f = log trg′(ωg) − Aϕ̃, where A is a

large constant. Then

Δg′f ≥ A

2
ef − C.
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By the maximum principle, we get

trg′(ωg) ≤ C′.

As a consequence, by (3.15), Li proved

1

C
ωg ≤ ω′ ≤ C(1 + eFt)ωg. (3.16)

Next, we claim that Ft converges to F∞ locally smoothly. In fact, we can

choose a basis of si generated by the vertices pi of P , since M is a toric Fano

manifold. Then |si|2(x) = e〈pi,x〉. It follows∑
i

|si|(σt)
2 −

∑
i

|si|(xt)
2 =

∑ e〈pi,xt〉∑
e〈pl,xt〉

|si|2.

Clearly, there is a limit for each sequence of e〈pi,xt〉∑
e〈pl,xt〉 as |xt| → ∞. We write it by

b′i if it is not zero. Hence, Ft converges to F∞. Moreover, eF∞ ∈ Lp(M) with some

p > 1.

Define an analytic set by

D =
{
x ∈ M |

∑
i′
b′i|si|2 = 0

}
. (3.17)

Then by (3.16), (3.15) is uniformly elliptic away from D. By the regularity of

uniformly elliptic equation (cf. [38, 78]), ϕ̃t are uniformly Ck-bounded away from

D. It follows that there exists a sequence of ti → T̄ such that ωϕ̃ti
converges

locally to a solution ϕ∞ of (3.14) smoothly on M \D. Note that ϕ∞ ∈ L∞(M)

and eF∞ ∈ Lp(M) with some p > 1. Hence, ϕ∞ is also a current solution of (3.14)

on M (cf. [41]). �

Example 3.6. In [42], Li computed T̄ and the limit set D (3.17) on the blow-up of

CP 2 at two points as follows, T = 4
21 ,

D = {x ∈ M | |z1|2|z2|2(|z1|2 + |z2|2) = 0},
and z1 and z2 are two defining sections of exceptional divisors D1 and D2, re-

spectively. Thus the limit solution ϕ∞ satisfies the following type equation near

divisors D1 and D2,

(ωg +
√
−1∂∂̄ϕ)n =

h

|z1|2|z2|2(|z1|2 + |z2|2)
,

where h is a non-zero smooth function. It is easy to see that φ∞ cannot be extended

as a conical metric on the point D1 ∩D2.

Remark 3.7. ωϕ̃ti
in Theorem 3.5 has a Hausdorff–Gromov limit (M∞, ω∞) since

Ric(ωϕ̃ti
) ≥ tiωϕ̃ti

. It is easy to see that ω∞ = ωϕ∞ away from D. Furthermore,

one can show that the completion of ωϕ∞ |M\D coincides with ω∞ (cf. [57, 61, 77],

etc.).
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We may ask the following question.

Question 3.8. Is it true that ωϕ∞ in Theorem (3.5) is a conical metric along the

smooth part of D?

If the answer is true to Question 3.8, the codimension of set of non-conical

singularities of Hausdorff–Gromov limit (M∞, ω∞) is at least 4.

4. Reduced K-energy μ(u)

In this section, we describe the third proof of Theorem 0.1 by studying the proper-

ness of K-energy in [84]. For simplicity, we also assume that the Futaki invariant

vanishes. In general case, we can use the modified K-energy introduced in [24]

instead of K-energy to prove the existence of Kähler–Ricci soliton [80].

The K-energy K(φ) was introduced by Mabuchi in 1987 [48]. It plays an

important role in the study of Kähler–Einstein metrics (cf. [7, 69]). According to

the definition,

K(φ) = − 1

V

ˆ 1

0

ˆ
M

φ̇t(S(φt)− n)
ωn
φt

n!
∧ dt, ∀φ ∈ H(ωg), (4.1)

where φt is a path in H(ωg) which connects 0 and φ, and S(φt) is the scalar curva-

ture of ωφt . Recall two Aubin functionals [1], i.e., I-functional and J-functional, by

Iωg (φ) =
1

V

ˆ
M

φ

(
ωn
g

n!
−

ωn
φ

n!

)
,

Jωg (φ) =
1

V

ˆ 1

0

ˆ
M

φ̇s

(
ωn
g

n!
−

ωn
φs

n!

)
∧ ds.

It is known that [1, 65],

n

n+ 1
Iωg (φ) ≥ Jωg (φ) ≥

1

n+ 1
Iωg (φ), ∀ φ ∈ H(ωg). (4.2)

Then K(·) can also be rewritten as (cf. [68]),

K(φ) =
1

V

ˆ
M

log

(
ωn
φ

ωn
g

)
ωn
φ

n!
− (Iωg (φ)− Jωg (φ)) +

1

V

ˆ
M

hg

(
ωn
g

n!
−

ωn
φ

n!

)
. (4.3)

Definition 4.1. Let K be a maximal compact subgroup of Aut0(M) and HK(ωg)

the subset of K-invariant Kähler in H(ωg). Let G0 be another subgroup of

Aut0(M). K(·) is called proper on HK(ωg) modulo G0 if there is a function f(t)

(t ∈ [−A,∞)) with property f(t) →∞ as t →∞ such that

K(φ) ≥ inf
σ∈G0

f(I(φσ)), ∀φ ∈ HK(ω),

where φσ is an induced Kähler potential defined by

ωφσ = σ∗(ωg +
√
−1∂∂̄φ) = ωg +

√
−1∂∂̄φσ.



560 X. Zhu

The following theorem was proved in [69, 74].

Theorem 4.2. Let (M, g) be a Fano manifold with ω ∈ 2πc1(M). Let K be a

maximal compact subgroup of Aut0(M) and G0 another subgroup of Aut0(M).

Then M admits a Kähler–Einstein metric if K(·) is proper on HK(ωg) modulo G0.

4.1. The reduction of K-energy

Denote HK(ωg) ⊂ H(ωg) to be the set of K-invariant Kähler potentials on a toric

Fano manifold (M, g) with ωg ∈ 2πc1(M), where K = (S1)n. Then HK(ωg) is

equal to the set

{φ ∈ C∞(Rn)| |φ| < ∞ and ψ0 + φ is uniformly convex}.
By using the Legendre transformation ξ = (∇ψ0)

−1(x), one sees that the function

(Legendre dual function) defined by

u0(x) = 〈ξ,∇ψ0(ξ)〉 − ψ0(ξ) = 〈ξ(x), x〉 − ψ0(ξ(x)), ∀ x ∈ P (4.4)

is uniformly convex. Set the space of symplectic potentials by

C = {u = u0 + f | u is a uniformly convex function in P, f ∈ C∞(P )}.
It was shown in [2] that there is a bijection between C and HK(ωg).

Let

L(u) =
ˆ
∂P

u dσ − n

ˆ
P

u dx. (4.5)

and

μ(u) = −
ˆ
P

log det(uij) dx+ L(u). (4.6)

Then we have

Proposition 4.3. Let uφ be the Legendre dual function of ϕ = ψ0 + φ for any

φ ∈ HK(ωg). Then

K(φ) =
(2π)n

V
μ(u) + const. (4.7)

Proof. By (4.3), a direct computation shows

μ(φ) =
1

V

ˆ
M

log

(
ωn
φ

ωn
g

)
ωn
φ

n!
−
[
1

V

ˆ 1

0

ˆ
M

φ̇t

ωn
φt

n!
∧ dt− 1

V

ˆ
M

φ
ωn
φ

n!

]
− 1

V

ˆ
M

hg

(
ωn
φ

n!
−

ωn
g

n!

)
=

1

V

ˆ
M

log

(
ωn
φ

ωn
g

eφ−hg

)
ωn
φ

n!
− 1

V

ˆ 1

0

ˆ
M

φ̇t

ωn
φt

n!
∧ dt++

1

V

ˆ
M

hg

ωn
g

n!

=
1

V

ˆ
M

log

(
ωn
φ

ωn
g

eφ−hg

)
ωn
φ

n!
− 1

V

ˆ 1

0

ˆ
M

φ̇t

ωn
φt

n!
∧ dt+ const. (4.8)
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On the other hand,

hg = −ψ0 − log det(ψ0ij) + C.

Then
ωn
φ

ωn
g

eφ−hg = C det(ϕij)e
ϕ.

It follows thatˆ
M

log

(
ωn
φ

ωn
g

eφ−hg

)
ωn
φ

n!
= (2π)n

[ˆ
Rn

log det(ϕij) det(ϕij) dξ +

ˆ
Rn

ϕdet(ϕij) dξ

]
.

(4.9)

By using the relations

ϕ =

n∑
i=1

xiui − u, det(ϕij) dξ = dx, φ̇t = −u̇t,

where φt is a path in HK(ωg) and ut is the symplectic potential of ϕt = ψ0 + φt,

we also get
ˆ 1

0

ˆ
M

φ̇t

ωn
φt

n!
∧ dt

= (2π)n
ˆ 1

0

ˆ
Rn

φ̇t det(ϕtij) dξ ∧ dt = −(2π)n
ˆ
P

udx+ const., (4.10)

ˆ
Rn

log det(ϕij) det(ϕij) dξ +

ˆ
Rn

ϕdet(ϕij) dξ

= −
ˆ
P

log det(uij) dx+

ˆ
P

(∑n

i=1
xiui − u

)
dx. (4.11)

Hence inserting (4.9)–(4.11) into (4.8), we obtain

K(φ) =
(2π)n

V

[
−
ˆ
P

log det(uij) dx+

ˆ
P

n∑
i=1

xiui dx

]
+ C.

Integrating by parts, we deduce (4.7) immediately. �

Remark 4.4. μ(u) is usually called reducedK-energy on a toric manifold. (4.7) was

first obtained by Donaldson for K-invariant Kähler potentials in general Kähler

class [ωg] on a toric manifold while the linear functional L(·) replaced by

L(u) =
ˆ
∂P

u dσ − R̄

ˆ
P

u dx,

where R̄ is the average of scalar curvature of g. Here we give a proof by using the

formula (4.3) for 2πc1(M). This argument can be generalized to prove an analogy

of (4.7) for the modified K-energy (cf. [80]).
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4.2. Properness of K(φ)

In this subsection, we verify the properness of K(φ) via μ(u). First, we need the

following lemma due to Donaldson [26].

Lemma 4.5. Let C∞ be a set of C∞-convex functions on P̄ . Then there exists a

constant C > 0 such that for any u ∈ C∞, it holdsˆ
P

log det(uij)dx ≤ LB(u) + C, (4.12)

where B = (u0)
ij
ij is a bounded function on P̄ , and

LB(u) =

ˆ
∂P

udσ +

ˆ
P

Budx. (4.13)

Proof. Let f = u− u0. By the convexity of − log det, we have

log det(uij) ≤ log det((u0)ij) + (u0)
ijfij .

For any δ > 0, let Pδ be the interior polygon with faces parallel to those of P

separated by distance δ, then f is smooth over the closure of Pδ.

Integrating by parts,ˆ
Pδ

(u0)
ijfij dx =

ˆ
∂Pδ

(u0)
ijfinj dσ0 −

ˆ
Pδ

(u0)
ij
j fi dx.

Integrating by parts for the last two terms again, we haveˆ
Pδ

(u0)
ijfij dx =

ˆ
∂Pδ

(u0)
ijfinj dσ0 −

ˆ
∂Pδ

(u0)
ij
j nifdσ0 +

ˆ
Pδ

(u0)
ij
ijf dx.

Note that

(u0)
ijnj dσ0 → 0, −(u0)

ij
j nidσ0 → dσ

as δ → 0 [26, 27]. Thenˆ
∂Pδ

(u0)
ijfinj dσ0 and

ˆ
∂Pδ

(u0)
ij
j nif dσ0 −→

ˆ
∂P

f dσ

as δ → 0. In conclusion,ˆ
P

(u0)
ijfij dx =

ˆ
∂P

f dσ +

ˆ
P

Bf dx.

Hence,ˆ
P

log det(uij) dx

≤
ˆ
∂P

u dσ +

ˆ
P

Budx+

ˆ
∂P

u0 dσ −
ˆ
P

Bu0 dx+

ˆ
P

log det((u0)ij dx

=

ˆ
∂P

u dσ +

ˆ
P

Budx+ const. �
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The vanishing of Futaki invariant implies that L(u) is invariant when adding u

by a linear function. We call a convex function normalized at 0 ∈ P if infP u = u(0).

Let C̃∞ be the set of such normalized functions in C∞. Then we prove

Lemma 4.6. There exists a λ > 0 such that

L(u) ≥ λ

ˆ
∂P

u dσ, u ∈ C̃∞. (4.14)

Proof. Since dσ = 〈�n, x〉 dσ0, we have
ˆ
∂Pu

dσ =

ˆ
P

div(xu) dx =

ˆ
P

(
nu+

n∑
i=1

xiui

)
dx.

It follows that

L(u) =
ˆ
P

n∑
i=1

xiui dx =

ˆ
P

[(
n∑

i=1

xiui − u

)
+ u

]
dx ≥

ˆ
P

u dx. (4.15)

We claim that (4.15) implies (4.14).

By the contradiction, we suppose that (4.14) is not true. Then there is a

sequence of functions {uk} in C̃∞ such thatˆ
∂P

uk dσ = 1 (4.16)

and

L(uk) −→ 0, as k −→∞. (4.17)

By (4.16), there exists a subsequence (still denoted by {uk}) of {uk}, which con-

verges locally uniformly to a convex function u∞ ≥ 0 on P . By (4.15), we haveˆ
P

uk dx ≤ L(uk) −→ 0.

Thus ˆ
P

u∞ dx = 0.

Hence, we obtain u∞ ≡ 0 in P . On the other hand,

L(uk) =

ˆ
∂P

ukdσ − n

ˆ
P

uk dx

−→ 1− n

ˆ
P

u∞dx = 1 > 0.

This contradicts with (4.17). Thus (4.14) is true and the lemma is proved. �

Proposition 4.7. Suppose that the Futaki invariant vanishes on M . Then there

exists Cδ such that

μ(u) ≥ δ

ˆ
P

udy − Cδ, ∀u ∈ C̃∞. (4.18)
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Proof. We compute the difference of L(u) and LB(u) as follows,

|L(u)− LB(u)| =
∣∣∣∣ˆ

P

(n+B)u dx

∣∣∣∣
≤ C ′

ˆ
P

u dx

≤ (1 + δ)C0C
′
ˆ
∂P

u dσ − δC′
ˆ
P

u dx

where C′ = ‖n+B‖L∞ . Note
ˆ
P

u dx ≤ C0

ˆ
∂P

udσ, ∀ u ∈ C̃∞.

Then by (4.14), it follows

|L(u)− LB(u)| ≤
(1 + δ)C0C

′

λ
L(u)− δC′

ˆ
P

udx.

Thus (
1 +

(1 + δ)C0C
′

λ

)
L(u) ≥ LB(u) + δC′

ˆ
P

u dx.

Now let r =
(
1 + (1+δ)C0C

′

λ

)−1

, we get

L(u) ≥ LB(ru) + rδC′
ˆ
P

u dx. (4.19)

On the other hand, by applying the inequality (4.12) to ru, we have

−
ˆ
P

log det(uij) dx ≥ −LB(ru) − C + n log r.

Hence, combining it with (4.19), we obtain

μ(u) ≥ rδC ′
ˆ
P

u dx− C + n log r. �

By Proposition 4.7 and Proposition 4.3, we prove

Theorem 4.8. There exist numbers δ > 0 and C such that

K(φ) ≥ δ inf
τ∈TC

Iωg (φτ )− C, ∀ φ ∈ HK(ωg). (4.20)

In particular, K(φ) is proper for any φ ∈ HK(ωg) modulo TC.

Theorem 4.8 and Theorem 4.2 imply Theorem 0.1.

With respect to Theorem 4.8, we propose the following conjecture.
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Conjecture 4.9. Let (M, g) be an n-dimensional Kähler–Einstein manifold with

ωg = 2πc1(M). Then there are δ, Cδ > 0 such that for any K-invariant Kähler

potential φ of ωg it holds

K(φ) ≥ δ inf
τ∈Z(Aut(M))

I(φτ )− Cδ, (4.21)

where K is a maximal compact subgroup of Aut0(M) and Z(Aut(M)) is the center

of Aut0(M)).

Conjecture 4.9 can be regarded as a version of Tian’s conjecture for K-

invariant Kähler potentials proposed in [69]. We note that Conjecture 4.9 is true by

a result of Tian [69], if Aut(M) is finite. Recently, Darvas and Rubinstein proved

Tian’s conjecture when Z(Aut(M)) is replaced by Aut(M) [31].

5. Kähler–Einstein metrics on G-manifolds

In this section, we discuss a recent result of Delcroix for the existence of Kähler–

Einstein metrics on a G-manifold M in [33], where G is a reductive complex

Lie group. Here we will give another proof of Delcroix’ Theorem (cf. Theorem

5.1 below) by verifying the properness of K-energy as we did in Section 4 [45].

M is called a G-manifold (bi-equivariant compactification of G) if it admits a

holomorphic G × G action on M with an open and dense orbit isomorphic to G

as a G × G-homogeneous space. (M,L) is called a polarized G-manifold if L is a

G × G-linearized ample line bundle on M . In general, there are many different

compactifications of G with an extended G × G action, and the compactification

space may not be a smooth manifold, perhaps just an algebraic variety [3–5].

Clearly, toric manifolds are a class of simplest G-manifolds. We will discuss more

examples in the Appendix at the end of this paper.

Let us introduce some notations for G-manifolds. Assume that TC is a r-

dimensional maximal complex torus of G and M is its group of characters. Denote

the roots system of (G, TC) in M by Φ and choose a set of positive roots Φ+ =

{α(i)}i=1,...,n−r
2

. Let P be the polytope associated to (M,L), and P+ the positive

part of P defined by Φ+ such that P+ = {y ∈ P | 〈α, y〉 > 0, ∀ α ∈ Φ+}, Here 〈·, ·〉
denotes the Cartan–Killing inner product on the dual space a∗ of the real part a of

Lie algebra tC of TC. We call Wα = {y ∈ a∗| 〈α, y〉 = 0} the Weyl wall associated

to α ∈ Φ+. Set a function on a∗ by

π(y) =
∏

α∈Φ+

〈α, y〉2, y ∈ a∗.

Clearly, π(y) vanishes on ∂P+ ∩Wα for each α ∈ Φ+. Denote by 2P+ a dilation of

P+ at rate 2. We define a barycentre of 2P+ with respect to the weighted measure
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π(y)dy by

bar(2P+) =

´
2P+

yπ(y) dy´
2P+

π(y) dy
.

More recently, Delcroix extended Theorem 0.1 to a Fano G-manifold M and

proved the following theorem [33].

Theorem 5.1. Let M be a Fano G-manifold. Then M admits a Kähler–Einstein

metric if and only if

bar(2P+) ∈ 4ρ+ Ξ, (5.1)

where ρ = 1
2

∑
α∈Φ+

α is a vector in a∗ and Ξ is the relative interior of the cone

generated by Φ+.

It was pointed by Delcroix that (5.1) implies that the Futaki invariant van-

ishes for holomorphic vector fields induced by G × G, but the converse is not

true in general. In fact, (5.1) is related to the K-stability and is determined by a

generalized Futaki invariant for some test-configurations in terms of [26, 68] (cf.

[33, 45]). In particular, M is K-unstable if bar(2P+) �∈ 4ρ+ Ξ. In this section,

we will use an argument in [84, 85] to derive an analytic obstruction to the exis-

tence of Kähler metrics with constant scalar curvature on a G-manifold in terms

of convex piecewise linear functions. Then constructing a piecewise Weyl-invariant

linear function as in [45], the analytic obstruction implies (5.1).

The sufficient part of Theorem 5.1 was proved by Delcroix using the method

in [79] to establish an analogy of Lemma 2.1 and Lemma 2.3, respectively. How-

ever the reduced real Monge–Ampère equation from the Kähler–Einstein metric

equation as in (0.2) is degenerate, which is defined in a cone a+ = {x ∈ a| α(x) >
0, ∀ α ∈ Φ+} of a. Thus there need more delicate estimates to do. In [45], we gave

another proof of Theorem 5.1 by verifying the properness of K-energy as done

on a toric manifold in [84]. The method can work for the K-energy on a general

polarized compactification (M,L) of G.

Let us introduce more notations before we state our main results in [45]. We

divide ∂(2P+) ∩ ∂(2P ) into several pieces {FA}d0

A=1 such that for any A, FA lies

on an (r − 1)-dimensional hyperplane defined by 〈y, uA〉 = λA for some primitive

uA ∈ N, whereN is the Z-dual ofM. Define a cone by EA = {ty| t ∈ [0, 1], y ∈ FA}
for any A. It is clear that 2P+ =

⋃d0

A=1
EA. Let

ΛA =
2

λA
(1 + 〈2ρ, uA〉) .

Then the average of scalar curvature S̄ of ω0 ∈ 2πc1(L) is given by

S̄ =
n
∑

A ΛA

´
EA

π dy´
2P+

π dy
.
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Define a weighted barycentre b̃ar of 2P+ by

b̃ar =

∑
A ΛA

´
EA

yπ dy∑
A ΛA

´
EA

π dy
.

Note that both bar and b̃ar lie in a∗. Denote by barss and b̃arss the projections of

bar and b̃ar on the semisimple part a∗ss of a∗, respectively. Then we have

Theorem 5.2. Let (M,L) be a polarized compactification of G with vanishing Futaki

invariant, and ω0 ∈ 2πc1(L) a K × K-invariant Kähler metric, where K is a

maximal compact subgroup of G, which complexifies G. Suppose that the polytope

2P+ satisfies the following conditions,(
min
A

ΛA · b̃arss − 4ρ
)
∈ Ξ, (5.2)(

b̃arss − barss

)
∈ Ξ̄, (5.3)

(n+ 1) ·min
A

ΛA − S̄ > 0. (5.4)

Then the K-energy K(·) is proper on HK×K(ω0) modulo Z(G), where HK×K(ω0)

is the space of K × K-invariant Kähler potentials in 2πc1(L) and Z(G) is the

centre of G.

In case that M is Fano and L = K−1
M , then S̄ = n and ΛA = 1 for all A.

We have b̃ar = bar, thus (5.3), (5.4) are automatically satisfied. Moreover, (5.1)

is equivalent to the vanishing of Futaki invariant and (5.2). Consequently, K(·)
is proper modulo the action of Z(G). Hence we get an alternative proof for the

sufficient part of Theorem 5.1.

As mentioned above, we prove Theorem 5.2 by using the reduced K-energy

μ(·). One of the advantages of μ(·) is that it can be defined on a complete space

C̃∗ of convex functions on 2P+. Following the argument in [86], we can discuss the

semi-continuity property of μ(·) and prove the following

Theorem 5.3. μ(u) is lower semi-continuous on C̃∗. Furthermore, if K(·) is proper
on HK×K(ω0) modulo Z(G), then there exists a minimizer of μ(·) on C̃∗.

It is interesting to study the regularity of minimizers in Theorem 5.3. We

guess that they are smooth in 2P+ if the dimension of the torus TC is less than

two. In case of toric surfaces, it is verified by Zhou in [82, 83].

In the following subsections, we outline a proof of Theorem 5.2 and prove the

necessary part of Theorem 5.1. First we give a formula of scalar curvature under

the Legendre transformation.
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5.1. Reduced scalar curvature equation on a+

Let Z be the closure of TC in M . It is known that (Z,L|Z) is a polarized toric

manifold with a Weyl action, and L|Z is a W -linearized ample toric line bundle

on Z [3–5, 34]. Let ω0 ∈ 2πc1(L) be a K × K-invariant Kähler form induced

from (M,L) and P be the polytope associated to (Z,L|Z), which is defined by the

moment map associated to ω0. Then P is a W -invariant Delzant polytope in a∗.

By the K ×K-invariance, for any φ ∈ HK×K(ω0), the restriction of ωφ on Z is a

toric Kähler metric. It induces a smooth strictly convex function ψ on a, which is

W -invariant [6].

By the KAK-decomposition ([40], Theorem 7.39), for any g ∈ G, there are

k1, k2 ∈ K and x ∈ a such that g = k1 exp(x)k2. Here x is uniquely determined

up to a W -action. This means that x is unique in ā+. Then we define a smooth

K ×K-invariant function Ψ on G by

Ψ(exp(·)) = ψ(·) : a → R.

Clearly Ψ is well defined since ψ is W -invariant. We usually call ψ the function

associated to Ψ. It can be verified that Ψ is a Kähler potential on G such that

ω =
√
−1∂∂̄Ψ on G. Actually, we have the following lemma, which is due to

Delcroix [34, Theorem 1.2].

Lemma 5.4. Let Ψ be a K × K invariant function on G, and ψ the associated

function on a. Let Φ+ = {α(1), . . . , α(n−r
2 )}. Then there are local holomorphic

coordinates on G such that for x ∈ a+, the complex Hessian matrix of Ψ is diagonal

by blocks as follows,

HessC(Ψ)(exp(x)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
4HessR(ψ)(x) 0 0

0 Mα(1)
(x) 0

0 0
. . .

...
...

...
. . . 0

0 0 Mα
(n−r

2
)
(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(5.5)

where

Mα(i)
(x) =

1

2
〈α(i),∇ψ(x)〉

(
cothα(i)(x)

√
−1

−
√
−1 cothα(i)(x)

)
.

By (5.5) in Lemma 5.4, we see that ψ is convex on a. The complex Monge–

Ampère measure is given by ωn
φ = (

√
−1∂∂̄Ψ)n = MAC(Ψ) dVG, where

MAC(Ψ)(exp(x)) =
1

4r+p
MAR(ψ)(x)

1

J(x)

∏
α∈Φ+

〈α,∇ψ(x)〉2 (5.6)
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and

J(x) =
∏

α∈Φ+

sinh2 α(x).

Let

χ(x) = − logJ(x) = −2
∑

α∈Φ+

log sinhα(x).

Then applying Lemma 5.4 to the K ×K-invariant function

ψ̃ = log det(∇2ψ) + 2
∑

α∈Φ+

logα(∇ψ) + χ(x),

Ric(ωφ) can be expressed as

−HessC(log det(∂∂̄Ψ))(exp(x))

= −

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
4HessR(ψ̃)(x) 0 0

0 M̃α(1)
(x) 0

0 0
. . .

...
...

...
. . . 0

0 0 M̃α
(n−r

2
)
(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.7)

where x ∈ a+. Thus we get the following formula of scalar curvature of ωφ,

S(ωφ)|exp(x) = −tr
(
(∇2ψ)−1∇2ψ̃

)
−

∑
α∈Φ+

〈α,∇ψ̃〉
〈α,∇ψ〉 . (5.8)

Let u be a Legendre function of ψ defined as in (4.4). Then by (5.8), one can

show that

S(ωφ) = − uij
,ij − 2uij

,j

π,i

π
− uij π,ij

π

− u,ik
∂2χ

∂xi∂xk

∣∣∣∣
x=∇u

− ∂χ

∂xi

∣∣∣∣
x=∇u

π,i

π
. (5.9)

(5.9) can be rewritten as

S(ωφ) = − 1

π

(
(uijπ),ij +

∂

∂vi

(
π

∂χ

∂xi

∣∣∣∣
x=∇u

))
. (5.10)

(5.9) can be regarded as Abreu’s equation of scalar curvature on a G-manifold,

which is defined on P+. We note that u can be extended smoothly up to the Weyl

walls Wβ of P+ although the functions π is degenerate and χ is singular on Wβ ,

respectively.
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5.2. A sketch of proof of Theorem 5.2

In this subsection, we outline a proof of Theorem 5.2 by using the argument in

Section 4. First we have an analogy of Proposition 4.3 as follows.

Proposition 5.5. Let φ ∈ HK×K(ω0) and u be the Legendre function of ψ = ψ0+φ.

Let V =
´
2P+

π dy. Then

K(φ) =
1

V
μ(u) + const.,

where μ(u) is a reduced K-energy of K(φ) defined by

μ(u) =
∑
A

ˆ
FA

ΛA〈y, νA〉uπ dσ0 −
ˆ
2P+

S̄uπ dy

−
ˆ
2P+

log det(uij)π dy +

ˆ
2P+

χ(∇u)π dy.

Proposition 5.5 can be proved by using the formula (5.9) of scalar curvature

as in the proof of Proposition 4.3 [45].

For convenience, we write μ(u) as μ(u) = L(u) +N (u), where

L(u) =
∑
A

ˆ
FA

ΛA〈y, νA〉uπ dσ0 −
ˆ
2P+

S̄uπ dy −
ˆ
2P+

4〈ρ,∇u〉π dy, (5.11)

N (u) = −
ˆ
2P+

log det (u,ij)π dy +

ˆ
2P+

[χ (∇u) + 4〈ρ,∇u〉]π dy. (5.12)

By integration by parts, we can rewrite L(u) as

L(u) =
∑
A

ˆ
EA

[
〈ΛAy − 4ρ,∇u〉+ (ΛAn− S̄)u

]
π dy, (5.13)

or

L(u) =
∑
A

2

λA

ˆ
FA

〈y, νA〉uπ dσ0 −
ˆ
2P+

S̄uπ dy +

ˆ
2P+

4〈ρ,∇π〉u dy. (5.14)

Next we estimate the terms of L(u) and N (u). For convenience, we denote

the set of smooth convex W -invariant functions on P̄ by C∞,W . Clearly, L(u) is

well defined on C∞,W . Moreover, N (u) is also well defined as we will see below.

We want to normalize u as follows. Let O be the origin of a∗. Note that the dual

a∗t of center of Lie algebra g of G is the fixed point set of the W -action. Then

∇u(O) ∈ a∗t for any u ∈ C∞,W . Thus we can normalize u ∈ C∞,W by

ũ(y) = u(y)− 〈∇u(O), y〉 − u(O). (5.15)

Clearly, ũ ∈ C∞,W and

min
2P

ũ = ũ(O) = 0. (5.16)

The subset of normalized functions in C∞,W will be denoted by Ĉ∞,W .
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By the argument in [84] together with the conditions (5.2)–(5.4) in Theorem

5.2, the following lemma was proved in [45].

Lemma 5.6. Under the assumption of Theorem 5.2, there exists a positive constant

λ such that

L(u) ≥ λ

ˆ
∂(2P+)

〈y, ν〉uπ dσ0, ∀u ∈ Ĉ∞,W .

The following lemma gives a comparison between L(u) and N (u) (cf. [45,

Proposition 4.4]).

Lemma 5.7. There exist uniform constants CΛ, CL, C0 > 0 such that for any

u ∈ Ĉ∞,+,

N (u) ≥ −CLL(u)− CΛ

ˆ
∂(2P+)

u〈y, ν〉π dσ0 − C0 +

ˆ
2P+

Quπ dy, (5.17)

where

Q = − ∂χ

∂xi

∣∣∣∣
x=∇u0

π,i

π
− ∂2χ

∂xi∂xk

∣∣∣∣
x=∇u0

u0,ik − uij
0

π,ij

π
. (5.18)

Since Q is singular and π vanishes along each Wα, we shall give an explicit

estimate for the singular order of Q. Actually, we prove (cf. [45, Proposition 4.5]),

Lemma 5.8. There are constants CI , CII > 0 independent of u such that∣∣∣∣∣
ˆ
2P+

Quπ dy

∣∣∣∣∣ ≤ CI

ˆ
2P+

〈ρ,∇π〉u dy + CII

ˆ
2P+

uπ dy, ∀u ∈ Ĉ∞,W .

By Lemma 5.7 and Lemma 5.8, we see that N (u) is well defined on C∞,W .

Combining Lemmas 5.6–5.8, as in the proof of Proposition 4.7, we finally prove

Proposition 5.9. Under the assumption of Theorem 5.2, there exists δ > 0 and Cδ

such that

K(u) ≥ δ

ˆ
2P+

uπ dy − Cδ, ∀ u ∈ Ĉ∞,W . (5.19)

Theorem 5.2 follows from Propositions 5.5 and 5.9 immediately.

5.3. Proof of the necessary part of Theorem 5.1

The following proposition gives an analytic obstruction to the existence of Kähler

metrics with constant scalar curvature on a G-manifold in terms of convex piece-

wise linear functions.

Proposition 5.10. Suppose that a G-manifold M admits a Kähler metric ωφ with

constant scalar curvature. Then for any convex W -invariant piecewise linear func-

tion f on 2P , we have

L(f) ≥ 0.
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Moreover, the equality holds if and only if

f(v) = aivi

for some a = (ai) ∈ az, where az = z(g) ∩ a and z(g) is the center of Lie algebra

of G.

Proof. Note that a convex W -invariant piecewise linear function f on 2P can be

written as

f = max
1≤N≤N0

{fN},

where fN is W -invariant such that

fN |P+(v) = aiNvi + cN

for some constant vector aN = (aiN ). Moreover, it can be showed that aN ∈ a+ (cf.

[45, Proposition 3.4]). Then we can divide 2P+ into τ0 sub-polytopes P1, . . . , Pτ0

such that for each τ = 1, . . . , τ0, there is an N(τ) ∈ {1, . . . , N0} with

f |Pτ = fN(τ).

For simplicity, we write fτ as fN(τ).

By a Calabi result [15], ωφ is a K ×K-invariant metric. Then by (5.10), we

have on each Pτ ,

−S̄

ˆ
Pτ

fπ dv =

ˆ
Pτ

(
(uijπ),ij +

∂

∂vi

(
π

∂χ

∂xi

∣∣∣∣
x=∇u

))
f dv, (5.20)

where S̄ = S(ωφ) is the average of S(ωφ) and u is a Legendre function of ψ. Note

that f,ij = 0 on each Pτ . Taking integration by parts, we get

ˆ
Pτ

(uijπ),ijfπdv =

ˆ
∂Pτ

(uij
0,jνiπ + uijπ,iνj)f dσ0 −

ˆ
∂Pτ

uijνif,jπ dσ0

andˆ
Pτ

∂

∂vi

(
π

∂χ

∂xi

∣∣∣∣
x=∇u

)
f dσ0 =

ˆ
∂Pτ

νi
∂χ

∂xi

∣∣∣∣
x=∇u

fπ dσ0 −
ˆ
pτ

∂χ

∂xi

∣∣∣∣
x=∇u

f,iπ dv.

Plugging the above relations into (5.20), it follows

−S̄

ˆ
Pτ

fπ dv =

ˆ
∂Pτ

(
uij
0,jνiπ + uijπ,iνj + νiπ

∂χ

∂xi

∣∣∣∣
x=∇u

)
f dσ0

−
ˆ
∂Pτ

uijνif,jπ dσ0 −
ˆ
Pτ

∂χ

∂xi

∣∣∣∣
x=∇u

f,iπ dv.
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Thus summing over τ , by the argument of [84, Proposition 2.2], we obtain

−S̄

ˆ
2P+

fπ dv =
∑
τ1<τ2

ˆ
∂Pτ1∩∂Pτ2

uij(aiτ1 − aiτ2)(a
j
τ1 − ajτ2)

|aτ1 − aτ2 |
π dσ0 (5.21)

−
∑
A

ΛA

ˆ
F′

A∩∂P+

f〈v, νA〉π dσ0 −
∑
τ

ˆ
Pτ

∂χ

∂xi

∣∣∣∣
x=∇u

aiτπ dv.

Recall (5.13). We see that

VP · L(f) =
∑
A

ΛA

ˆ
F′

A∩∂2P+

f〈v, νA〉π dσ0 − S̄

ˆ
2P+

fπ dv − 4
∑
τ

ˆ
Pτ

σ(aτ )π dv.

(5.22)

Note that for any aτ = (aiτ ) ∈ a+,

−aiτ
∂χ

∂xi
− 4σia

i
τ = 2

∑
α∈Φ+

(cothα(x) − 1)α(aτ ) ≥ 0, ∀ x ∈ a+.

Hence, plugging (5.21) into (5.22), we derive

VP · L(f) =
∑
τ1<τ2

ˆ
∂Pτ1∩∂Pτ2

uij
0 (a

i
τ1 − aiτ2)(a

j
τ1 − ajτ2)

|aτ1 − aτ2 |
π dσ0

+ 2
∑
τ

∑
α∈Φ+

ˆ
Pτ

(cothα(x) − 1)α(aτ )π dv ≥ 0. (5.23)

It is easy to see that the equality in (5.23) holds if and only there is an

a = (ai) ∈ a+ such that

aτ = a, ∀ τ and α(a) = 0, ∀ α ∈ Φ+.

The second relation means that a ∈ az. The proposition is proved. �

Proof of necessary part of Theorem 5.1. On the contrary, we assume that

bar(2P+)− 4ρ �∈ Ξ.

Since the Futaki invariant vanishes, we also have

bar(2P+)− 4ρ ∈ a∗ss.

Let {α(1), . . . , α(r)} be the simple roots in Φ+. Without loss of generality, we can

write

bar(2P+)− 4ρ = λ1α(1) + · · ·+ λrα(r),

where λ1 ≤ 0. Let {�i} be the fundamental weights for {α(1), . . . , α(r)} such that
2〈�i,α(j)〉
|α(j)|2 = δij . Define a W -invariant rational piecewise linear function f on 2P by

f(v) = max
w∈W

{〈w ·�1, v〉}.



574 X. Zhu

Then

f |2P+ = 〈�1, v〉.
Note that �1 ∈ a∗ss. However,

L(f) = 1

2
|α(1)|2λ1 ≤ 0.

This contradicts to Proposition 5.10. Hence (5.1) is true. �

6. Appendix: Examples of Fano G-manifolds

In this appendix, we compute some examples of Fano G-manifolds with a maximal

torus subgroup of rank 2. The most examples are from Delcroix’ papers [33, 34].

In case of G with a torus subgroup of rank 1, there are only two examples, one

is SL2(C), the other is PSL2(C). A wonderful Fano compactification of SL2(C)
was described by Delcroix in his thesis (cf. [33]). The corresponding P+ of SL2(C)
is [0, 3]. The Fano compactification of PSL2(C) is just CP3 with P+ = [0, 2].

Since they are both homogenous manifolds, there admit Kähler–Einstein metrics

on them.

Example 6.1. The wonderful compactification of PGL3(C) [34].

In this example, the corresponding roots system is A2. We denote by α1 and

α2 the simple roots. The third positive root is then α1 +α2, and 2ρ = 2(α1 +α2).

For p = xα1 + yα2,∏
α∈Φ+

〈α, p〉2 = (x− y/2)2(−x/2 + y)2(x/2 + y/2)2.

The barycenter bar(P+) is given by

bar(P+) =
24641

9888
(α1 + α2).

As a consequence, X1 admits a Kähler–Einstein metric. Figure 1 gives a represen-

tation of P+, where the cross is the barycenter, and the convex cone delimited by

the dashed lines is 2ρ+ Ξ.

Example 6.2. GL2(C). There are eight possible Fano compactifications GL2(C).

A) There exist Kähler–Einstein metrics on first four compactifications, whose cor-

responding P+ are given in [34] as follows.

Now we give the data. Let E1, E2 be the generator of M. We choose a coor-

dinate on a∗ such that (x, y) is associated to the point xE1 + yE2. Then the only

positive root is

α+ = 2ρ = (1,−1), and a∗+ = {x− y > 0}.
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P+

α1

α2

Figure 1

•
2ρ

P+

(1)

•
2ρ

P+

(2)

•
2ρ

P+

(3)

•
2ρ

P+

(4)

Figure 2

Thus

2ρ+ Ξ = {(t,−t)|t > 1}, and π(x, y) = (x− y)2.

Case (1). The polytope

P+ = {x− y > 0, 2− x > 0, 2 + y > 0},

and the barycenter

bar(P+) =

(
6

5
,−6

5

)
.
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Case (2). The polytope

P+ = {x− y > 0, 2− x > 0, 2 + y > 0, 3− x+ y > 0},

and the barycenter

bar(P+) =

(
36

35
,−36

35

)
.

Case (3). The polytope

P+ = {x− y > 0, 1 + x+ y > 0, 2− x > 0, 2 + y ≥ 0, 1− x− y > 0},

and the barycenter

bar(P+) =

(
2343

1750
,−2343

1750

)
.

Case (4). The polytope

P+ = {x− y > 0, 2− x > 0, 1 + x+ y > 0},

and the barycenter

bar(P+) =

(
3

2
,−3

2

)
.

B) There exist Kähler–Ricci solitons on last four compactifications, whose corre-

sponding P+ are given as follows4.

It is easy to check that each of P+ above in Figure 3 does not satisfy the

condition (5.1). Thus there is no Kähler–Einstein metric on the compactification

associated to P+. On the other hand, a version of Theorem 5.1 for the existence

of Kähler–Ricci solitons was also established under a modification of (5.1) in [45]

(also see [34]). A numerical computation shows that each of compactifications

satisfies this modification condition. Hence, there exists a Kähler–Ricci soliton.

Now we describe the data. Since the soliton vector field lies in at = a ∩ z(g),

we may assume

X = a(1, 1).

In the following, we will approximate a by using software Maple.

Case (5). The polytope is

P+ = {x− y > 0, 2− x > 0, 2 + y > 0, 1 + x+ y > 0},

and by a numerical computation, we have

a ∈ (−0.54596,−0.54595).

4The last two of them are constructed by Yan Li. I would like to thank him for telling me the

result.
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•
2ρ

P+

(5)

•
2ρ

P+

(6)

•
2ρ

P+

(7)

•
2ρ

P+

(8)

Figure 3

Thus the weighted barycenter can be approximated by

barX(P+) ∼= (1.30041,−1.30041) .

Case (6). The polytope is

P+ = {x− y > 0, 2− x > 0, 1− x− y > 0, 1 + x+ y > 0},

and by a numerical computation, we have

a ∈ (0.1896710, 0.1896712).

Thus the weighted barycenter can be approximated by

barX(P+) ∼= (1.3354,−1.33354) .

Case (7). The polytope is

P+ = {x− y > 0, 1− x− y > 0, 1 + 2y + x > 0, 2 + y > 0, 1 + x+ y > 0},

and by a numerical computation, we have

a ∈ (−1.952245,−1.952235).
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Thus the weighted barycenter can be approximated by

barX(P+) ∼= (1.35664,−1.35664) .

Case (8). The polytope is

P+ = {x− y > 0, 1 + x+ y > 0, 2− 2x− y > 0, 1− x = y > 0},

and by a numerical computation, we have

a ∈ (2.35616, 2.35618).

Thus the weighted barycenter can be approximated by

barX(P+) ∼= (1.50000,−1.50000) .

Example 6.3. SO4(C). There are three possible Fano compactifications of SO4(C)
[34].

A) There is one smooth Fano compactification of SO4(C), of dimension six,

which admits a Kähler–Einstein metric. P+ is given as in Figure 4.

• •
2ρ

P+

(1)

Figure 4

Now we describe the data. Choose a coordinate on a∗ such that the basis are

the generator of M. Then the positive roots are

α1 = (1,−1), α2 = (1, 1), and 2ρ = (2, 0).

Thus

a∗+ = {x > y > −x},
2ρ+ Ξ = {−2 + x > y > 2− x},
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and

π(x, y) = (x− y)2(x+ y)2.

Case (1). The polytope is

P+ = {y > −x, x > y, 2− x > 0, 2 + y > 0}.

Thus the barycenter is

bar(P+) =

(
18

7
, 0

)
.

B) There are two smooth Fano compactifications of SO4(C) with vanishing Futaki

invariant but no Kähler–Einstein metrics. P+ are given as Figure 5.

• •
2ρ

P+

(2)

• •
2ρ

P+

(3)

Figure 5

Both of P+ above in Figure 5 do not satisfy (5.1). Moreover, The Futaki

invariant vanishes since the center of automorphisms group are finite. Hence there

are no Kähler–Ricci solitons on the compactifications associated to P+ above.

Case (2). The polytope is

P+ = {y > −x, x > y, 2− x > 0, 2 + y > 0, 3− x+ y > 0}.

Thus the barycenter is

bar(P+) =

(
489

196
,
15

28

)
.

Case (3). The polytope is

P+ = {y > −x, x > y, 2− x > 0, 2 + y > 0, 3− x+ y > 0, 5− 2x+ y > 0}.
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Thus the barycenter is

bar(P+) =

(
102741

43004
,
16575

23156

)
.

It is interesting to study the deformation of Kähler–Ricci flow (3.3) on two

examples of Fano G-manifolds in Example 6.3-B as in Subsection 3.1. According

to the Hamilton–Tian conjecture, the flow will converge to a Kähler–Ricci soliton

with possible singularities of at least complex codimension 2. However, the limit

of Kähler–Ricci soliton could not be smooth on such manifolds, otherwise, it is

Einstein and still a compactification of SO4(C), which keeps the complex structure

[44]. But this is impossible by the classification in Examples 6.3! As a consequence,

the Ricci flow will produce a singular point of type II on these two G-manifolds.

To the best of author’s knowledge, these are the first examples of Ricci flow with

singularities of type II on compact Kähler manifolds in the literature. There are

recent significant progresses by Tian and Zhang, Chen and Wang, and Bamler on

the Hamilton–Tian conjecture, respectively. We refer the reader to their papers

[11, 18, 77].
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297–310.

[52] Nakagawa, Y., Classification of Einstein–Kähler toric Fano manifolds, Tôhoku Math.
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Abstract. This survey article, in honor of G. Tian’s 60th birthday, is inspired
by R. Pandharipande’s 2002 note highlighting research directions central to
Gromov–Witten theory in algebraic geometry and by G. Tian’s complex-
geometric perspective on pseudoholomorphic curves that lies behind many
important developments in symplectic topology since the early 1990s.
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Symplectic topology is an area of geometry originating in and closely asso-
ciated with classical mechanics. While long established, it has been flourishing
especially since the introduction of pseudoholomorphic curves techniques in [41].
These techniques have led to an immense wealth of remarkable applications, mu-
tually enriching interplay with algebraic geometry, and striking connections with
string theory. They have in particular given rise to counts of such curves in sym-
plectic manifolds, now known as the Gromov–Witten invariants. While many long-
standing problems have been spectacularly resolved, new profound questions that
could have been hardly imagined in the past have arisen in their place. This arti-
cle, greatly influenced by G. Tian’s perspective on the field, highlights a number
of questions concerning pseudoholomorphic curves and their applications in sym-
plectic topology, algebraic geometry, and string theory.

R. Pandharipande’s ICM note [75] assembled three conjectures concerning
structures in Gromov–Witten theory:

(P1) a Poincaré Duality for the tautological cohomology ring of the Deligne–
Mumford moduli spaceMg,n of stable nodal n-marked genus g curves, known

as the Gorenstein property of R∗(Mg,n);
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(P2) integral counts of holomorphic curves in smooth complex projective three-
folds, known as the BPS states;

(P3) algebraic restrictions on Gromov–Witten invariants, known as the Virasoro
constraints.

Each of these conjectures presented a deep quandary requiring fundamentally new
ideas to address.

The Gorenstein property is a triviality for g = 0, since M0,n is a smooth

projective variety and R∗(M0,n)=H∗(M0,n). It is established for g=1 in [82] and
shown to fail for g=2 whenever n≥ 20 in [83, 84]. The Virasoro constraints had
been established for the Gromov–Witten invariants of manifolds with only even-
dimensional cohomology in genus 0, of a point, of a curve, and of the complex
projective space Pn before [75] in [37, 62, 71, 72], respectively, with the last case
extended to arbitrary symplectic manifolds with semi-simple quantum cohomology
in [92]. However, no geometric rationale behind this conjecture that might confirm
it in general has emerged so far, and its testing outside of fairly standard cases
in algebraic geometry has been limited by the available computational techniques.
Just as (P1), the Virasoro Conjecture of (P3) may yet turn out to fail, at least for
non-projective symplectic manifolds.

Unlike (P1) and perhaps (P3), (P2) is most naturally viewed from the sym-
plectic topology perspective in which it splits into three parts. The extensive work
on (P2) in algebraic geometry since [75] has not succeeded in confirming this con-
jecture even in special cases. On the other hand, fundamentally new approaches to
the three different parts of (P2) have emerged in symplectic topology which should
fully resolve its original formulation in a stronger formulation; see Section 2.

The questions collected in this article fall under four distinct, but related,
topics:

(1) the topology of moduli spaces of pseudoholomorphic maps and applications
to the mirror symmetry predictions of string theory and to the enumerative
geometry of algebraic curves;

(2) integral counts of pseudoholomorphic curves in arbitrary compact symplectic
manifolds;

(3) decomposition formulas for counts of pseudoholomorphic curves under “flat”
degenerations of symplectic manifolds;

(4) applications of pseudoholomorphic curves techniques in symplectic topology
and algebraic geometry.

Each of these topics involves fundamental issues concerning pseudoholomorphic
curves and a deep contribution from G. Tian.
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1. Topology of moduli spaces

A symplectic form on a 2n-dimensional manifold X is a closed 2-form on X such
that ωn is a volume form on X . A tame almost complex structure on a symplectic
manifold (X,ω) is a bundle endomorphism

J : TX −→ TX s.t. J2 = −Id, ω(v, Jv) > 0 ∀ v∈TxX, x∈X, v �=0.

If Σ is a (possibly nodal) Riemann surface with complex structure j, a smooth
map u : Σ−→X is called J-holomorphic if it solves the Cauchy–Riemann equation
corresponding to (J, j):

∂̄Ju ≡ 1

2

(
du+ J ◦ du ◦ j

)
= 0. (1.1)

The image of such a map in X is called a J-holomorphic curve. GW-invariants
are rational counts of such curves that depend only on (X,ω). They are generally
obtained by counting smooth maps u : Σ−→X that solve locally deformed versions
of (1.1) and pass through specified cycles in X as in (2.1) and/or satisfy other
cohomological restrictions.

The most fundamental object in GW-theory is the moduli space Mg,k(A; J)
of stable k-marked (geometric) genus g J-holomorphic maps in the homology class
A ∈H2(X). This compact space is generally highly singular. However, as shown
in [59], Mg,k(A; J) still determines a rational homology class, called virtual funda-

mental class (VFC) and denoted by [Mg,k(A; J)]
vir. This class lives in an arbitrarily

small neighborhood of Mg,k(A; J) in the naturally stratified configuration space
Xg,k(A) of smooth stable maps introduced in [59] and is independent of J . Inte-

gration of cohomology classes against [Mg,k(A; J)]
vir gives rise to GW-invariants;

see (2.1). The construction of [59] adapts the deformation-obstruction analysis
from the algebro-geometric setting of [58] to symplectic topology via local ver-
sions of the inhomogeneous deformations the ∂̄J -equation introduced in [88, 89]
and presents [Mg,k(A; J)]

vir as the homology class of a space stratified by even-
codimensional orbifolds. This approach is ideally suited for a range of concrete ap-
plications, some of which are indicated below, and can be readily extended via [104]
beyond the so-called perfect deformation-obstruction settings. Alternative imple-
mentations of the key principles behind [58, 59] later appeared in [10, 11, 26, 77]
and other works.

While Mg,k(A; J) is often called a “compactification” of its subspace

Mg,k(A; J) ⊂ Mg,k(A; J)

of maps from smooth domains, Mg,k(A; J) usually is not dense in Mg,k(A; J). For
example,

M1(Pn, d) ≡ M1,0

(
dL; JPn

)
,

where L ∈ H2(Pn) is the standard generator and JPn is the standard complex
structure on Pn, is a quasi-projective variety over C containing M1(Pn, d) as a
Zariski open subspace; see [27]. For m ∈ Z+ with m ≤ n, the dimension of the

Zariski open subspaceMm
1 (Pn, d) ofM1(Pn, d) consisting of maps u from a smooth
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Figure 1. The domain of an element of M3
1(P, d) from the points of

view of symplectic topology and algebraic geometry, with the first num-
ber in each pair in the second diagram denoting the genus of the asso-
ciated smooth irreducible component and the second number denoting
the degree of the restriction of the map to this component.

genus 1 curve ΣP with m copies of P1 attached directly to ΣP so that u(ΣP )⊂Pn

is a point is

dimC Mm
1 (Pn, d) = (n+1)d+n−m ≥ (n+1)d = dimC M1(Pn, d);

see Figure 1. For example,

M1
1(P

n, d) ≈ M1,1×M0,1(Pn, d) .

Thus, M1(Pn, d) is not dense in M1(Pn, d). This motivates the following deep
question concerning the convergence of J-holomorphic maps in the sense of [41].

Question 1 ([88, p. 276]). Is there a natural Hausdorff space M
0

g,k(A; J) of k marked
J-holomorphic maps to X with images of arithmetic genus at least g containing

Mg,k(A; J) as an open subspace so that M
0

g,k(A; J) is compact whenever X is?

The “natural” requirement in particular includes that⊔
B∈H2(Y )
ι∗B=A

M
0

g,k

(
B; J |Y

)
=
{
u∈M

0

g,k(A; J) : Im u⊂Y
}

for every inclusion ι : Y −→X of an almost complex submanifold and relatedly

that M
0

g,k(A; J) determines a fundamental class [M
0

g,k(A; J)]
vir. For g = 0, the

usual moduli spaces already have the desired properties and so

M
0

0,k(A; J) = M0,k(A; J) .

We also note that M0,k(Pn, d) is a smooth irreducible quasi-projective variety
containing M0,k(Pn, d) as a Zariski dense open subspace and that

M0,k(Pn, d)−M0,k(Pn, d) ⊂ M0,k(Pn, d)

is a normal crossings divisor.
For g=1, Question 1 is answered affirmatively in [106, 107] by defining

M
0

1,k(A; J) ⊂ M1,k(A; J)
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and showing that M
0

1,k(A; J) determines a fundamental class. In particular, this
subspace contains an element u of Mm

1,k(A; J) if and only if the differentials of

the restrictions of u to the m copies of P1 at the nodes attached to ΣP span a
subspace of Tu(ΣP )X of complex dimension less than m. This imposes no condition
if 2m>dimR X . If m≤n, this imposes a condition of complex codimension n+1−m
on Mm

1 (Pn, d) and ensures that

dimC

(
M

0

1(P
n, d)∩Mm

1 (Pn, d)
)
= dimC M1(Pn, d)− 1 .

We also note that M
0

1,k(P
n, d) is a singular irreducible quasi-projective variety

containing M1,k(Pn, d) as a Zariski dense open subspace and that

M
0

1,k(P
n, d)−M1,k(Pn, d) ⊂ M

0

1,k(P
n, d)

is a divisor. An explicit desingularization M̃0
1,k(P

n, d) of this space is constructed

in [97] so that

M̃0
1,k(P

n, d)−M1,k(Pn, d) ⊂ M̃0
1,k(P

n, d)

is a normal crossings divisor. The numerical curve-counting invariants obtained

by integrating cohomology classes against [M
0

1,k(A; J)]
vir as in (2.1) are called

reduced genus 1 GW-invariants in [107]. An algebro-geometric approach to these
invariants is suggested in [96].

For sufficiently positive symplectic manifolds (X,ω), the standard genus 0
and reduced genus 1 GW-invariants with insertions pulled back from X only are
integer counts of J-holomorphic counts in X for a generic ω-compatible almost
complex structure J . The standard complex structure JPn on Pn works for these
purposes. As demonstrated in [73, 88], the good properties of M0,k(Pn, d) indi-
cated above are key to the enumeration of genus 0 curves in Pn and in particular
establish Kontsevich’s recursion for counts of such curves. The explicit construc-

tions of M
0

1,k(A; J) and M̃0
1,k(P

n, d) in [97, 106] have opened the door for similar
applications to the enumerative geometry of genus 1 curves.

For example, the Eguchi–Hori–Xiong recursion for counts of genus 1 curves
in P2 is established in [74] by lifting Getzler’s relation [35] fromM1,4 toM1,k(P2, d)
and obtaining a recursion for the genus 1 GW-invariants of P2; the latter are the
same as the corresponding enumerative invariants in this particular case. Getzler’s

relation can also be lifted to M1,k(A; J), M
0

1,k(A; J), and M̃0
1,k(P

n, d) to yield rela-

tions between the genus 0 GW and standard (resp. reduced) genus 1 GW-invariants
from the first (resp. second/third) lift. The reduced genus 1 GW-invariants of Pn

are the same as the corresponding enumerative invariants. As shown in [105], the
difference between the standard and reduced genus 1 GW-invariants is a combi-
nation of the genus 0 GW-invariants; this combination takes a very simple form
in complex dimension three. This leads to the following, very concrete question.

Question 2. Can any of the above three lifts be used to obtain a recursion for the
genus 1 standard or reduced GW-invariants of Pn for n≥3 and thus a Pn analogue
of the Eguchi–Hori–Xiong recursion enumerating genus 1 curves?
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For g=2, [69] provides the affirmative answer to the main part of Question 1
by defining

M
0

2,k(A; J) ⊂ M2,k(A; J)

and leaves no fundamental difficulty in constructing a fundamental class for this
space. The description of this subspace is significantly more complicated than of
its g=1 analogue. In addition to the simple “level 1” condition appearing in the
g = 1 case, this description involves a more elaborate “level 2” condition which
depends on precisely how the “level 1” condition is satisfied relative to the invo-
lution and the Weierstrass points on the principal component ΣP of the domain.

While M
0

2,k(Pn, d) is still a quasi-projective variety, it is no longer irreducible and

M2,k(Pn, d) is not dense in M
0

2,k(P
n, d). However, this is not material for some

applications.

While Question 1 concerns a foundational issue in GW-theory (and thus
is of interest in itself), a satisfactory answer to this problem is key to relating
GW-invariants of a compact symplectic submanifold Y of a compact symplectic
manifold (X,ω) given as the zero set of a transverse bundle section to the GW-
invariants of the ambient symplectic manifold X . If πL : L−→X is a holomorphic
vector bundle and ιL : X −→ L is the inclusion as the zero section, there is a
natural projection map

π̃L : VA
g,k(L) ≡ Mg,k(ιL∗A; J) −→ Mg,k(A; J),[
ũ : Σ−→L

]
−→

[
πL◦ ũ : Σ−→X

]
.

The fiber of π̃L over an element [u : Σ−→X ] is H0(Σ;u∗L), the space of holomor-
phic sections of the holomorphic bundle u∗L −→ Σ. If X and L are sufficiently
positive (such as Pn and sum of positive line bundles) and g= 0, π̃L is in fact a
vector orbi-bundle and∑

B∈H2(Y )
ι∗B=A

ι∗
[
M0,k(B; J)

]vir
= e

(
VA
0,k(L)

)
∩ [M0,k(A; J)]

vir. (1.2)

This observation in [51], now known as the Quantum Lefschetz Hyperplane Theo-
rem for genus 0 GW-invariants, was the starting point for the proofs of the genus 0
mirror symmetry prediction of [7] for the quintic threefold X5⊂P4 in [36, 61].

Question 3. Is there an analogue of the g = 0 Quantum Lefschetz Hyperplane
Theorem (1.2) for g≥1?

While π̃L is not even a vector bundle for g≥1 (even for sufficiently positive X
and L), it is shown in [60, 103] that the restriction

π̃L : VA
1,k(L)

∣∣
M

0
1,k(A;J)

−→ M
0

1,k(A; J) (1.3)
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carries a well-defined Euler class, which in turn relates the reduced genus 1 GW-
invariants of the submanifold Y and the ambient manifold X :∑

B∈H2(Y )
ι∗B=A

ι∗[M
0

1,k(B; J)]vir = PD
[M

0
1,k(A;J)]

e
(
VA
1,k(L)

)
. (1.4)

This is a Quantum Lefschetz Hyperplane Theorem for the reduced genus 1 GW-
invariants introduced in [107]. Along with the comparison of the standard and
reduced genus 1 GW-invariants established in [105], (1.4) provides a Quantum
Lefschetz Hyperplane Theorem for the standard genus 1 GW-invariants. The latter
is combined in [108] with the desingularization of the relevant special cases of (1.3)
constructed in [97] to confirm the genus 1 mirror symmetry prediction of [2] for X5

and to obtain similar mirror symmetry formulas for Calabi–Yau hypersurfaces in
all projective spaces.

The concrete topological construction of virtual fundamental class in [59]
is particularly convenient for the purposes of [103, 106, 107]. It readily handles

the moduli spaces M
0

1,k(A; J), which are not virtually smooth, but are virtually
stratified by smooth orbifolds of even codimensions. The representation of VFC
by a geometric object in [59] also fits well with the comparisons carried out in
[60, 103]. However, later variations on [59] of topological flavor, such as [26, 77],
should also fit with [60, 103, 105–107].

A satisfactory affirmative answer to Question 1 for each g≥2, combined with
the geometric virtual fundamental class perspective of [59], should readily lead to
a Quantum Lefschetz Hyperplane Theorem and to computations of GW-invariants
of projective complete intersections in the same genus g. In light of [69], there are
no fundamental difficulties left to confirm the genus 2 mirror symmetry predictions
of [2] for X5 and other projective complete intersections by paralleling the genus 1
approach initiated in [106] and completed in [108]. The same approach should also
yield confirmations of the mirror symmetry predictions of [99] for the real GW-
invariants constructed in [32], after the additional topological subtleties typically
arising in the real setting are addressed.

The methods of [69, 106] provide “level 1” and “level 2” obstructions to
smoothing J-holomorphic maps from nodal domains and can be used to define
natural closed subspaces

M
0

g,k(A; J) ⊂ Mg,k(A; J)

for g≥3, which refine Gromov’s Compactness Theorem and determine fundamen-
tal classes giving rise to curve-counting invariants of compact symplectic manifolds.
However, these sharper compactifications would still not be sufficiently small to
exclude all J-holomorphic maps to X with images of arithmetic genus below g, but
above 1. The associated reduced GW-invariants would then include lower-genus
contributions, even for very positive almost complex structures J . Furthermore,
there are indications in [69] that the answer to Question 1 may in fact be negative
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for an arbitrary almost complex structure J on X if g > 2 (or perhaps slightly
larger) and the dimension of X is sufficiently large.

On the other hand, an affirmative answer to Question 1 in full generality is not
needed for specific applications, including to the enumerative geometry of positive-
genus curves in the spirit of [73] and to the mirror symmetry predictions in the

spirit of [105, 108]. While the complexity of a complete description of M
0

g,k(A; J),
whenever it can be defined, would increase rapidly with the genus g, it is likely not
to be needed for specific applications either. In particular, it appears feasible to
set up a scheme paralleling the genus 1 approach initiated in [106] and completed
in [108] that would compute all GW-invariants of X5 modulo finitely many inputs
in each genus g. This could potentially show that the generating functions Fg for
these invariants satisfy the holomorphic anomaly equations as predicted in [2],
without determining each specific Fg explicitly.

2. BPS states for arbitrary symplectic manifolds

GW-invariants of a symplectic manifold (X,ω) are in general rational numbers
arising from families of J-holomorphic curves in X of possibly lower genus and/or
“lower” degree (relative to the symplectic deformation equivalence class of ω). The
primary genus 0 GW-invariants of positive symplectic manifolds (such as smooth
Fano varieties) and of symplectic fourfolds arise only from J-holomorphic curves
of the same genus and degree, for a generic ω-compatible almost complex struc-
ture J on X , and are integer counts of such curves. One might hope that the
GW-invariants of (X,ω) in general are expressible in terms of some integer invari-
ants of (X,ω) arising from J-holomorphic curves on X , for J generic at least in
some non-empty open subset of such J ’s. The explicit prediction of [40] relating
GW-invariants of Calabi–Yau (or CY) sixfolds (X,ω) to certain conjecturally in-
teger counts could be interpreted in such a way; this prediction has since been
extended to a number of other special cases in [49, 75, 76, 99].

For a compact symplectic manifold (X,ω), we denote by Jω the space of
ω-compatible almost complex structures on X . For g, k∈Z≥0, A∈H2(X), J ∈Jω ,
and i=1, . . . , k, let

evi : Mg,k(A; J) −→ X, evi
(
[u, z1, . . . , zk]

)
= u(zi),

be the evaluation map at the ith marked point. We denote by

GWX
g,A : H∗(X) ≡

∞⊔
k=1

H∗(X)⊕k −→ Q,

GWX
g,A

(
μ1, . . . , μk

)
=

〈 k∏
i=1

ev∗iμi,
[
Mg,k(A; J)

]vir〉
,

(2.1)
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the primary genus g degree A GW-invariants of (X,ω); these multilinear function-
als are graded symmetric. The number above vanishes unless

k∑
i=1

dimR μi = dim
[
Mg,k(A; J)

]vir
= 2

(
〈c1(X,ω), A〉+k

)
+ dimR X − 6. (2.2)

In general, this number arises from the families of genus g′ degreeA′ J-holomorphic
curves in X that pass through generic pseudocycle representatives for the Poincaré
duals of μ1, . . . , μk in the sense of [104].

We denote the symplectic deformation equivalence class of a symplectic
form ω on a manifold X by [ω] and let

A
(
[ω]
)
=
{
(g,A)∈Z≥0×(H2(X)−{0}) :Mg(A; J) �=∅ ∀ J ∈Jω′ , ω′∈ [ω]

}
.

The genus g degree A GW-invariants of a compact symplectic manifold (X,ω)
depend only on [ω] and vanish unless (g,A)∈A([ω]) or A = 0. In general, they
arise from families of connected J-holomorphic curves in X described by decorated
graphs, i.e., tuples of the form

Γ =
(
V,Edg, g : V−→Z≥0, d : V−→H2(X)−{0}

)
. (2.3)

In such a tuple, V(Γ)≡V and Edg(Γ)≡Edg are finite collections of vertices and
edges, respectively; the latter are pairs of vertices, but of not necessarily distinct
ones, and some pairs may appear multiple times in the collection Edg. The vertices
and the edges index the irreducible components Cv of the curves and the nodes
between them, respectively. The values of the maps g and d at v ∈V specify the
geometric genus of Cv and its degree, respectively. For a tuple as in (2.3), we define

g(Γ) = 1+|Edg|−|V|+
∑
v∈V

g(v), gv(Γ) = g(v), dv(Γ) = d(v) ∀ v∈V .

We denote by P([ω]) the collection of connected decorated graphs Γ as in (2.3)
such that (g(v), d(v)) is an element of A([ω]) for every v∈V.

For (g,A)∈A([ω]), let Γ0(g,A) be the unique connected edgeless graph with

gv
(
Γ0(g,A)

)
= g and dv

(
Γ0(g,A)

)
= A

for the unique vertex v. Define

P̃g,A

(
[ω]
)
=
{
(Γ,m) : Γ∈P([ω]), g(Γ)≤g, |Edg(Γ)|≤(n−3)(g−g(Γ)),

m∈(Z+)V(Γ),
∑
v∈V

mvdv(Γ) = A
}
,

where 2n ≡ dimR X . By Gromov’s Compactness Theorem [41], this collection is
finite for every (g,A)∈A(ω). Let

P̃�
g,A

(
[ω]
)
⊂ P̃g,A([ω])

be the complement of the pair (Γ0(g,A), 1).
For a graded symmetric multilinear functional

E: H∗(X) −→ Q
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and μ∈H∗(X)⊕k0 , we denote by E(μ, ·) the graded symmetric multilinear func-
tional obtained by inserting additional k inputs after the k0 inputs μ. For m∈Z+,
define

〈E〉m : H∗(X) −→ Q, 〈E〉m(μ) = mkE(μ) ∀μ∈Hk(X), k∈Z≥0 .

For graded symmetric multilinear functionals E1, . . . ,Er as above, let∏
(E1, . . . ,Er) : H∗(X) −→ Q

be the graded symmetric multilinear functional obtained by distributing the k in-
puts between the r functionals E1, . . . ,Er, multiplying their outputs, and summing
over all possible distributions with the appropriate signs depending on the degrees
of the inputs.

For a symplectic form ω on X and A,A∗ ∈ H2(X), we define A ≤ω A∗ if
ω′(A) ≤ ω′(A∗) for some ω′ ∈ [ω]. For the purposes of the question below, we
identify the vertices V of each graph as in (2.3) with the set {1, . . . , |V|}.

Question 4. Let (X,ω) be a compact symplectic manifold. Are there a collection

C
(g)
g,m ∈ Q g∈Z≥0, (g,m)∈(Z≥0)r×(Z+)r, r∈Z+,

of rational numbers and collections

EX
Γ,m : H∗(X) −→ Z, Γ∈P

(
[ω]
)
, m∈(Z+)V(Γ),

EX
g,A : H∗(X) −→ Z, (g,A)∈A([ω]),

of graded symmetric multilinear functionals that depend only on [ω] and satisfy the
following properties?

(E1) for every (g,A)∈A([ω]),

GWX
g,A = EX

g,A +
∑

(Γ,m)∈P̃�
g,A([ω])

EX
Γ,m ; (2.4)

(E2) for every Γ ∈ P([ω]) as in (2.3), there exist N(Γ) ∈ Z≥0 and μr;v ∈H∗(X)
with r=1, . . . , N(Γ) and v∈V such that

EX
Γ,m = C

(g)
g(Γ),m

N(Γ)∑
r=1

∏((〈
EX
g(v),d(v)

〉
mv
(μr;v, ·)

)
v∈V

)
∀m∈(Z+)V(Γ); (2.5)

(E3) for every A∈H2(X) with ω′(A)>0 for all ω′∈ [ω],

sup
{
g∈Z≥0 : EX

g,A �=0
}
< ∞; (2.6)

(E4) for all g∗ ∈ Z≥0 and A∗ ∈H2(X) there exists a subset J reg
ω ⊂Jω of second

category in a nonempty open subset of Jω so that for all (g,A)∈A([ω]) with
g≤g∗ and A≤ωA

∗, J ∈J reg
ω , and μ1, . . . , μk∈H∗(X) satisfying (2.2), there

exist pseudocycle representatives fi for the Poincaré duals of μi such that
• the set of genus g degree A J-holomorphic curves meeting the pseudocycles
f1, . . . , fk is cut out transversely and thus is finite,

• the signed cardinality of this set is EX
g,A(μ1, . . . , μk).
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For all n∈Z≥0 and A∈H2(Pn), there exists gA∈Z+ so that every degree A
JPn-holomorphic map u : Σ−→Pn from a smooth closed connected genus g ≥ gA
Riemann surface is a branched cover of a line P1 ⊂ Pn; this is a special of the
classical Castelnuovo bound [38, p. 252]. In light of (E4), (E3) is an analogue of
this bound for J-holomorphic curves in arbitrary symplectic manifolds.

For symplectic fourfolds, i.e., n=2 in the definition of the collection P̃g,A([ω]),

(2.4) and (2.5) reduce to GWX
g,A =EX

g,A; (E4) is well known to hold in this case.
For symplectic sixfolds, i.e., n=3, (g,A) �∈A([ω]) unless〈

c1(X,ω), A
〉
= 0 or

〈
c1(X,ω), A

〉
> 0 . (2.7)

In both cases, only edgeless connected graphs appear in (2.4). Precise predictions
for the structure of (2.4) and (2.5) for symplectic sixfolds involve the coefficients
Ch,A(g)∈Q specified by

∞∑
g=0

Ch,A(g)t
2g =

(
sin(t/2)

t/2

)2h−2+〈c1(X,ω),A〉
. (2.8)

In the second, Fano, case of (2.7), (2.4) and (2.5) were predicted in [75] to reduce to

GWX
g,A(μ) =

g∑
h=0

Ch,A(g−h)EX
h,A(μ) ∀μ∈H∗(X). (2.9)

In the g=0, 1 cases, this becomes

GWX
0,A(μ) = EX

0,A(μ), GWX
1,A(μ) = EX

1,A(μ) +
2−〈c1(X,ω), A〉

24
EX
0,A(μ), (2.10)

respectively.
The first equation in (2.10) with EX

0,A(μ) described by (E4) is the original

definition of GWX
0,A(μ) for Fano classes A in the basic case of the semi-positive

symplectic manifolds (which include all symplectic sixfolds). The second equa-

tion in (2.10) holds with EX
1,A(μ) replaced by the reduced genus 1 GW-invariants

GWX;0
1,A (μ) constructed in [107], which satisfy the first bullet in (E4) whenever

(X,ω) is semi-positive; see [107, Theorem 1.1] and [106, Section 1.3], respectively.
The existence of a subspace J reg

ω ⊂Jω of second category satisfying (E4) for the
Fano classes A on symplectic sixfolds is established in [109]. Since the system of
equations (2.9) with all such classes A is invertible and the GW-invariants depend

only on [ω], this implies that the resulting counts EX
h,A(μ) depend only on [ω] and

thus affirmatively answers Question 4 with the exception of (E3) in the Fano case
of (2.7).

The first, CY, case of (2.7) is much harder because degree m ≥ 2 covers
of genus h degree A/m J-holomorphic curves C ⊂ X contribute to the genus g
degree A GW-invariants of (X,ω). For d ∈ Z+, we denote by P(d) the set of
partitions of d into positive integers d1≥· · ·≥dk. Each such partition ρ corresponds
to a Ferrers diagram, i.e., a collection of boxes indexed by the set

S(ρ) =
{
(i, j) : i∈1, . . . , k, j∈1, . . . , di

}
,
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and to a dual partition ρ′≡(d′1≥· · ·≥d′k′) of d specified by

k′ = d1, d′j = max
{
i=1, . . . , k : di≥j

}
.

The hooklength of a box (i, j)∈S(ρ) is defined to be

�ij(ρ) = di+dj−i−j+1 ∈ Z+ .

The degree d contribution n
(h)
h′,d ∈ Z+ of a genus h curve to the genus h′ curve

count was predicted in [6] to be given by

exp

( ∞∑
d=1

∞∑
h′=h

n
(h)
h′,d

( ∞∑
m=1

qmd

m

(
2 sin(mt/2)

)2h′−2
))

= 1 +
∞∑
d=1

qd
( ∑

ρ∈P(d)

∏
(i,j)∈S(ρ)

(
2 sin

(
�ij(ρ)t/2

))2h−2
)
.

(2.11)

We note that

exp

( ∞∑
m=1

qm

m

(
2 sin(mt/2)

)−2
)

= 1 +

∞∑
d=1

qd
( ∑

ρ∈P(d)

∏
(i,j)∈S(ρ)

(
2 sin

(
�ij(ρ)t/2

))−2
)
,

∞∑
d=1

( ∞∑
m=1

qmd

m

)
= −

∞∑
d=1

ln
(
1−qd

)
= ln

( ∞∏
d=1

(
1−qd

)−1
)

= ln

(
1+

∞∑
d=1

qd
∣∣P(d)

∣∣);
the first identity above is the t1 = t, t2 = t−1 case of [68, (4.5)]. Combining these
two identities with the h=0, 1 cases of (2.11), we obtain

n
(0)
h′,d =

{
1, if (h′, d)=(0, 1);

0, otherwise;
n
(1)
h′,d =

{
1, if h′=1;

0, otherwise.
(2.12)

However, n
(h)
h′,d is generally nonzero for h≥2, d∈Z+, and some h′>h.

The primary GW-invariants (2.1) in the CY classes A are encoded by the
rational numbers NX

g,A≡GWg,A(), i.e., the GW-invariants with no insertions. In

this case, (2.4) and (2.5) were predicted in [40] to reduce to

NX
g,A =

∑
m∈Z+

A/m∈A([ω])

m2g−3

g∑
h=0

( ∑
d∈Z+

m/d∈Z

d3−2g

g∑
h′=h

Ch′,0(g−h′)n
(h)
h′,d

)
nX
h,A/m , (2.13)

where nX
g,A≡Eg,A(). For m∈Z+, we denote by 〈m〉 the sum of the positive divisors

of m. By (2.12), the g=0, 1 cases of (2.13) become

NX
0,A =

∑
m∈Z+

A/m∈A([ω])

m−3nX
0,A/m, NX

1,A =
∑

m∈Z+

A/m∈A([ω])

m−1

(
〈m〉nX

1,A/m+
1

12
nX
0,A/m

)
, (2.14)

respectively.
The system of equations (2.13) with all CY classes A on a symplectic six-

fold (X,ω) is also invertible. Thus, it determines the numbers nX
g,A ∈Q from the
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number NX
g,A. The original version of Question 4, known as the Gopakumar–Vafa

Conjecture for projective CY threefolds, in fact predicted only the integrality of
the numbers nX

g,A obtained in this way and the existence of a Castelnuovo-type

bound for them. However, (E4) has been generally believed to be the underlying
reason for the validity of this conjecture since its appearance in the late 1990s.
Until [48], (E4) had also been central to every claim, including by the authors
of [48] in the early 2000s, to establish the integrality part of this conjecture; all of
these claims had quickly turned out to be erroneous.

A fundamentally new perspective on the integrality part of the Gopakumar–
Vafa Conjecture for symplectic sixfolds is introduced in [48]. It completely bypasses
the analytic step (E4) and appears to succeed in establishing the integrality of the
numbers nX

g,A arising from (2.13) via local arguments that are generally topological
in spirit. The existence of a subset J reg

ω ⊂Jω of second category satisfying the first
bullet in (E4) for symplectic CY sixfolds is treated in [101] following the general
approach to this transversality issue in [13], but with additional technical input.
However, it still remains to establish that the resulting counts of J-holomorphic
curves satisfy the second bullet in (E4). Taking a geometric analysis perspective
previously unexplored in GW-theory, [12] uses [86], which established an analogue
of Gromov’s Convergence Theorem for J-holomorphic maps without an a priori
genus bound, to reduce the Castelnuovo-type bound (E3) for symplectic CY six-
folds to the existence of J ∈Jω satisfying (E4).

Precise predictions for the structure of (2.4) and (2.5) have also been made
in some cases for symplectic manifolds of real dimensions 2n≥8. The genus 0 pre-
diction for symplectic CY manifolds is a direct generalization of the first equation
in (2.14) and is given by

GWX
0,A

(
μ1, . . . , μk

)
=

∑
m∈Z+

A/m∈A([ω])

mk−3EX
0,A/m

(
μ1, . . . , μk

)
(2.15)

for all μ1, . . . , μk ∈ H∗(X); see [49, (2)]. The genus 1 predictions for symplectic
CY manifolds of real dimensions 8 and 10 appear in [49] and [76], respectively.
In contrast to the arbitrary genus GW-invariants of symplectic sixfolds in (2.9)
and (2.13) and to the genus 0 GW-invariants of symplectic CY manifolds in (2.15),
the genus 1 GW-invariants of symplectic CY manifolds (X,ω) of real dimensions
2n ≥ 8 include contributions from families of J-holomorphic curves in (X,ω) of
positive dimensions (2(n−3)-dimensional families of genus 0 curves). This makes the
analogues of (2.9), (2.13), and (2.15) in the last case significantly more complicated.
All curves appearing in the relevant families of J-holomorphic curves are reduced
in the sense of algebraic geometric geometry and have simple nodes if n = 4, 5.
As noted in the last paragraphs of [76, Sections 1.2,2.2], non-reduced curves and
curves with non-simple nodes appear in such families if n≥6. In order to obtain a
precise prediction for the structure of (2.4) and (2.5) for the genus 1 GW-invariants
of symplectic CY manifolds of real dimensions 2n≥ 12, contributions from such
curves to the genus 0 and genus 1 GW-invariants still need to be determined.
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Question 4 readily extends to the real GW-invariants GWφ
g,A of compact real

symplectic manifolds (X,ω, φ), whenever these invariants are defined. For example,
the genus 0 real GW-invariants of real symplectic fourfolds constructed in [100]
are just signed counts of J-holomorphic curves. So, the real analogues of (2.4)

and (2.5) in this case also reduce to GWφ
0,A = Eφ

0,A. Arbitrary genus real GW-

invariants are constructed in [32] for many real symplectic manifolds, including
the odd-dimensional projective spaces P2n−1 and quintic threefolds X5 ⊂ P4 cut
out by real equations. It is established in [70] that the analogue of (2.9) for the
Fano classes A on a real symplectic sixfold (X,ω, φ) is

GWφ
g,A(μ) =

∑
0≤h≤g
g−h∈2Z

C̃h,A

(
g−h
2

)
Eφ
h,A(μ) ∀ μ∈H∗(X), (2.16)

with the coefficients C̃h,A(g)∈Q defined by

∞∑
g=0

C̃h,A(g)t
2g =

(
sinh(t/2)

t/2

)h−1+〈c1(X,ω),A〉/2
. (2.17)

The invariants Eφ
h,A(μ) appearing in (2.16) are signed counts of real genus g de-

gree A J-holomorphic curves C⊂X .
The real Fano threefold case treated in [70] and [99, (5.41)] suggest that the

real analogue of (2.13) should be

Nφ
g,A =

∑
m∈Z+−2Z

A/m∈A([ω])

mg−2
∑

0≤h≤g
g−h∈2Z

( ∑
d∈Z+

m/d∈Z

d2−g
∑

h≤h′≤g
g−h′∈2Z

C̃h′,0
(
g−h′

2

)
ñ
(h)
h′,d

)
nφ
h,A/m , (2.18)

for some ñ
(h)
h′,d ∈ Z (only the d odd cases matter). The right-hand sides of [99,

(5.10),(5.28)] suggest that

ñ
(0)
h′,d =

{
1, if (h′, d)=(0, 1);

0, otherwise;
ñ
(1)
h′,d =

{
1, if h′=1;

0, otherwise.

This would reduce the g=0, 1 cases of (2.18) to

Nφ
0,A =

∑
m∈Z+−2Z

A/m∈A([ω])

m−2nφ
0,A/m, Nφ

1,A =
∑

m∈Z+−2Z
A/m∈A([ω])

m−1〈m〉nφ
1,A/m.

The numbers ñ
(h)
h′,d should arise from a real analogue of (2.11), with the exponent

on the left-hand side combining the real curve counts ñ
(h)
h′,d and the complex curve

counts n
(h)
h′,d to account for the real doublets of [33, Theorem 1.3]. The three theo-

rems of [33, Section 1] should provide the necessary geometric input to adapt the
approach of [6] for (2.13) to the real setting; related equivariant localization data
is provided by [34, Section 4.2]. An analogue of (2.11) for the real setting has been
obtained in [29].
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The approach of [48] to the integrality of the numbers nX
g,A determined

by (2.13) should be adaptable to other situations when the GW-invariants in ques-
tion are expected to arise entirely from isolated J-holomorphic curves. These situa-
tions include the real genus 0 GW-invariants of many real symplectic manifolds and
the real arbitrary genus GW-invariants of real symplectic CY sixfolds constructed
in [28] and [32], respectively. In fact, the integrality of the numbers EX

0,A(μ) deter-
mined by (2.15) is already a (secondary) subject of [48]. On the other hand, the
approach of [48] does not appear readily adaptable to situations when positive-
dimensional families of J-holomorphic curves in X are expected to contribute to
the GW-invariants in question. These situations include the genus 1 GW-invariants
of symplectic CY manifolds of real dimensions 8 and 10 studied in [49] and [76], re-
spectively. The approaches of [101] and [12] to the existence of a subset J reg

ω ⊂Jω

satisfying (E4) and to the Castelnuovo-type bound for the associated counts of
J-holomorphic curves, respectively, appear more flexible in this regard.

Enumerative geometry of curves in projective varieties is a classical subject
originating in the middle of the nineteenth century. However, the developments in
this field had been limited to very low degrees until the emergence of GW-theory
and its applications to enumerative geometry in the early 1990s. As the mod-
uli spaces Mg,k(A; J) have fairly nice deformation-obstruction theory, the GW-
invariants arising from these spaces are often amendable to computations. When-
ever these invariants can be related to enumerative curve counts as in Question 4,
computations of GW-invariants translate into direct applications to enumerative
geometry. The most famous such application is perhaps Kontsevich’s recursion for
counts of genus 0 curves in CP2, stated in [52] and proved in [88]. Analogues of
this recursion for counts of real genus 0 curves in P2 defined in [100] and in P2n−1

defined in [28] appear in [91] and [30, 31], respectively. The counts of genus g
degree d curves arising from the proofs of the mirror symmetry predictions for
the projective CY complete intersections in genus 0 in [36, 61] and in genus 1
in [85, 108] via (2.14) have been shown to match the classical enumerative counts
for g = 0, d ≤ 3 and for g = 1, d ≤ 4; see [14]. The genus 0 real GW-invariants
of real symplectic fourfolds defined in [100] and of many higher-dimensional real
symplectic manifolds defined in [28] directly provide lower bounds for counts of
genus 0 real curves; the arbitrary genus real GW-invariants defined in [32] pro-
vide such bounds in arbitrary genera via the relation (2.16) proved in [70]. For
local CY manifolds, Question 4 points to intriguing number-theoretic properties
of GW-invariants; see G. Martin’s conjecture in [76, Section 3.2].

The coefficients C̃0,0(g) in (2.17) are the coefficients of the renown A-series
central to the Index Theorem [54, Theorem 3.13]; they in particular determine the
index of the Dirac operator on a Spin bundle. The coefficients in (2.8) are closely
related to the A-series as well. It is tempting to wonder if there is some connection
between the multiply covered contributions encoded by (2.8) and by (2.17) and
Dirac operators.
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3. Symplectic degenerations and Gromov–Witten invariants

It is natural and essential to study the behavior of GW-invariants under reasonable
degenerations and decompositions of symplectic manifolds, as pointed out in [93].
The standard example of such a decomposition is provided by the symplectic sum
construction of [39]; it joins two symplectic manifolds X1 and X2 along a com-
mon smooth symplectic divisor X12 (i.e., a closed symplectic submanifold of real
codimension 2) with dual normal bundles in the two manifolds into a symplectic
manifold X1#X12X2. In fact, the symplectic sum construction of [39] provides a
symplectic fibration π : Z−→Δ over the unit disk Δ⊂C, whose central fiber Z0

is X1∪X12 X2 and the remaining fibers are smooth symplectic manifolds which
are symplectically deformation equivalent to each other; see the first diagram in
Figure 2. While the behavior of GW-invariants under the basic degenerations and
decompositions associated with the construction of [39] was understood long ago
and has since been followed up by numerous applications throughout GW-theory,
the progress beyond these cases has been slow. The interest in finding usable
decomposition formulas for GW-invariants in more general situations has grown
considerably since the advent of the Gross–Siebert program [43] for a (fairly) direct
approach to the mirror symmetry predictions of string theory.

Figure 2. A 2-fold simple normal crossings variety Z0=X1∪X12X2

with its smoothing Zλ=X1#X12X2, its dual intersection complex, and

a toric 2-fold decomposition of P2 into P2 and its one-point blowup P̂2

along a line L⊂P2 and the exceptional divisor E⊂ P̂2.

A sequence of J-holomorphic curves in the smooth fibers Zλ = X1#X12X2

of a symplectic fibration π : Z−→Δ associated with the construction of [39] with
λ −→ 0 converges to curves in the singular fiber Z0 = X1∪X12 X2. Each of the
irreducible components of a limiting curve either lies entirely in X12 or meets X12

in finitely many points (possibly none) and lies entirely in either X1 or X2. A key
prediction in [93] concerning the behavior of the GW-invariants of Zλ as λ−→0 is
that they should arise only from J-holomorphic curves in Z0 with no irreducible
components contained inX12 and with the irreducible components mapped intoX1

and X2 having the same contacts with X12; see Figure 3. In particular, there
should be no direct contribution from the GW-invariants of X12. The multiplicity
with which such a limiting curve should contribute to the GW-invariants of Zλ is
determined in [9] based on a straightforward algebraic reason.
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Figure 3. A connected curve in Z0 possibly contributing to the GW-
invariants of Zλ.

Notions of stable J-holomorphic maps to simple normal crossings (or SC)
projective varieties of the form X1∪X12X2 and of stable maps to Xi relative to a
smooth projective divisor X12 are introduced in [56]. A degeneration formula re-
lating the virtual cycles of the moduli spaces Mg,k(Aλ; J) with Aλ∈H2(Zλ) to the

virtual cycles of the moduli spaces Mg,k(A0; J) with A0∈H2(Z0) appears in [57].
A splitting formula decomposing the latter into the virtual cycles of the moduli
spaces Mgi,ki;si(X12, Ai; J) of stable relative maps to (Xi, X12) via a Kunneth
decomposition of the diagonal

ΔX12 =
{
(x, x) : x∈X12

}
in X 2

12 is also established in [57]. The relative GW-invariants of (Xi, X12) are
in turn shown to reduce to the (absolute) GW-invariants of Xi and X12 in [63].
Thus, [56, 57, 63] fully establish the prediction of [93] in the projective category
in the case of basic degenerations of the target as in Figure 2. An expository
account of the symplectic topology perspective on the numerical reduction of the
decomposition formula of [57] appears in [23].

The standard symplectic sum construction of [39] readily extends to the set-
ting where the disjoint union X1"X2 is replaced by a single symplectic manifold

(X̃, ω̃) and the two copies of the divisor X12 are replaced by a single smooth sym-

plectic divisor X̃12⊂X̃ with a symplectic involution ψ. The NC symplectic variety

Zψ;0≡Xψ is then obtained from X̃ by identifying the points on X̃12 via ψ. This
setting is discussed in Example 6.10 in the first two versions of [19]; a construction
smoothing Zψ;0 into symplectic manifolds Zψ;λ is a special case of the construction
outlined in Section 7 of the first version of [20] and detailed in [22]. The reason-
ing behind the decomposition formulas for GW-invariants in the basic setting of
the previous paragraph readily extends to provide a relation between the GW-
invariants of a smoothing Zψ;λ of the NC symplectic variety Xψ and the relative

GW-invariants of (X̃, X̃12). The only difference in the resulting formula is that
a Kunneth decomposition of the diagonal ΔX12 ⊂X 2

12 is replaced by a Kunneth
decomposition of the ψ-diagonal

Δ̃ψ =
{(

x̃, ψ(x̃)
)
: x̃∈X̃12

}
;
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the resulting sum of pairwise products of the GW-invariants of (X̃, X̃12) should
then be divided by 2.

The decomposition formulas of [57] do not completely determine the GW-
invariants of a smooth fiber Zλ = X1#X12X2 in terms of the GW-invariants of
(Xi, X12) in many cases because of the so-called vanishing cycles: second homology
classes in Zλ which vanish under the projection to Z0=X1∪X12X2. A refinement
to the usual relative GW-invariants of (X,V ) of [56] is suggested in [46] with the
aim of resolving this unfortunate deficiency of the decompositions formulas of [57]
in [47]. This refinement is constructed in [24] via a lifting

ẽvVX : Mg,k;s(V,A; J) −→ V̂X;s

of the relative evaluation map to a covering of Vs≡V �, where �∈Z≥0 is the length of
the relative contact vector s. This refinement sharpens the decomposition formulas
of [57] by pulling back closed submanifolds

V̂ A
X1,X2;s ⊂

(
V̂X1 ;s×V̂X2;s

)∣∣
Δ �

V

, (3.1)

with V =X12 and A∈H2(X1#X12X2), by ẽvVX1
×ẽvVX2

; see [25, Section 1.2]. However,
this does not necessarily lead to a decomposition of the GW-invariants of X1∪X12

X2 into the GW-invariants of (Xi, X12) that completely describes the former in
terms of the latter. The same approach provides a sharper version of the relation
between the GW-invariants of a smoothing Zψ;λ of Xψ and the GW-invariants of

(X̃, X̃12) indicated in the previous paragraph. The submanifolds (3.1) in this case
are replaced by certain submanifolds

V̂ A
X̃;ss

⊂ V̂X̃;ss

∣∣
Δ �

ψ

,

with V =X̃12; the resulting relative invariants of (X̃, X̃12) should then be divided
by 2.

Qualitative applications of the above refinements to relative GW-invariants
and to the decomposition formula of [57] are described in [24, 25]. These refine-
ments in principle distinguish between the GW-invariants of Zλ in degrees Aλ

differing by torsion. Torsion classes can also arise from the one-parameter families
of smoothings Zψ;λ of Xψ as above. Quantitative computation of GW-invariants
in degrees differing by torsion has been a long-standing problem.

Question 5. Is it possible to compute GW-invariants in degrees differing by torsion
in some cases via the sharper version of the decomposition formula described in [25]
and/or its analogue for the degenerations of the form Zψ;λ above?

The Enriques surfaceX forms an elliptic fibration over P1 with 12 nodal fibers
and 2 double fibers; see [64, Section 1.3]. The difference F1−F2 between the two
double fibers is a 2-torsion class. A smooth genus 1 curve E has a fixed-point-free
holomorphic involution ψ. The quotient

X2 ≡
(
P1×E

)/
∼, (z, p) −→

(
−z, ψ(p)

)
,
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forms an elliptic fibration over P1 with 2 double fibers. The blowup X̃ of P2 at
the 9-point base locus of a generic pencil of cubics is an elliptic fibration over P1

with 12 nodal fibers. The NC variety Z0 ≡ X2 ∪E X̃ can be smoothed out to
an Enriques surface Zλ ≡ X . The genus 1 GW-invariants of X are determined
in [64] by applying the decomposition formula of [57] in this setting and using
the Virasoro constraints. However, the computation in [64] does not distinguish
between the map degrees differing by the torsion F1−F2; this torsion arises from
the vanishing cycles and thus is not detected by the decomposition formula of [57].
On the other hand, it may be possible to fully compute the genus 1 GW-invariants
of X by refining the computation in [64] via the sharper version of this formula
described in [25].

Another potential approach to a complete computation of the GW-invariants
of the Enriques surface X is provided by the extension of the standard symplectic
sum construction of [39] indicated above Question 5. Let ψ be a fixed-point-free

holomorphic involution on a smooth fiber F ≈E of X̃−→P1. The NC variety

Zψ;0≡Xψ ≡ X̃
/
∼, p ∼ ψ(p) ∀ p∈X̃12≡F,

has a Z2-collection of one-parameter families of smoothings Zψ;λ. The total spaces

of these families are Z2-quotients of the total families of the smoothings of X̃∪FX̃ .
The fibers Zλ of one of the latter families are K3 surfaces. Thus, the fibers Zψ;λ in
one of the families of smoothings of Xψ should be Enriques surfaces (at least up to
symplectic deformation equivalence). The extension of the standard degeneration
formula of [57] indicated above applies to these families of smoothings and again
distinguishes between the GW-invariants in degrees differing by the torsion F1−F2.

The Gross–Siebert program [43] for a direct proof of mirror symmetry re-
quires degeneration and splitting formulas for GW-invariants under degenerations
π : Z−→Δ of algebraic varieties that are locally of the form

π :
{
(λ, z1, . . . , zk, p)∈Ck+2×Cn−k : z1· · ·zk=λ

}
−→ C, (3.2)

π
(
λ, z1, . . . , zk, p

)
= λ,

around the central fiber Z0 ≡ π−1(0). The degenerations discussed above, i.e.,
the standard one associated with the symplectic sum construction of [39] and its
extension indicated in [19, 20], correspond to k = 2 in (3.2). The central fiber
of π for k ≥ 3 in the algebro-geometric category is a more general NC variety;
see Figure 4. Degeneration and splitting formulas for GW-invariants in this more
general setting require notions of GW-invariants for (smoothable) NC varieties
and for smooth varieties relative to NC divisors. A degeneration formula in the
projective category extending that of [57] has finally appeared in the setting of
the logarithmic GW-theory of [44] in [1]; the latter includes GW-invariants of
smoothable NC varieties and of smooth varieties relative to NC divisors. However,
a splitting formula for the GW-invariants of NC varieties in the projective category
remains to be established.
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Figure 4. A 3-fold simple normal crossings variety Z0, its dual inter-
section complex, and a toric 3-fold decomposition of P2 into three copies

of its one-point blowup P̂2 along the exceptional divisor E⊂ P̂2 and the

proper transform L⊂ P̂2 of a line L⊂P2.

The logarithmic GW-invariants of [44] are special cases of the GW-invariants
of exploded manifolds introduced in [78]. Degeneration and splitting formulas for
these invariants are studied in [79]. Based on the k=2 case established in [57], one
might expect that all curves in Z0 contributing to the GW-invariants of Zλ either

• have no irreducible components lying in the singular locus Z ′
0 of Z0 and meet

at the smooth points of Z0 or at least
• have no irreducible components in Z ′

0.

As demonstrated in [79], even the weaker alternative does not hold in general. This
makes any general splitting formula necessarily complicated; its k=3 case is de-
scribed in [80]. A more geometric perspective on the GW-invariants of [78] appears
in [45], without analogues of the crucial degeneration and splitting formulas.

The GW-invariants of exploded manifolds of [78] and their interpretation in
some cases in [45] are essentially invariants of deformation equivalence classes of al-
most Kähler structures on manifolds. While these classes are much larger than the
deformation equivalence classes of the algebro-geometric structures in [1, 44], GW-
invariants are fundamentally invariants of the still larger deformation equivalence
classes of symplectic structures. Purely topological notions of NC symplectic divi-
sors and varieties are introduced in [19, 21], addressing a fundamental quandary
of [42, p. 343] in the case of NC singularities. Crucial to the introduction of these
long desired notions is the new perspective proposed in [19]:

A symplectic variety/subvariety should be viewed as a deformation equiv-
alence class of objects with the same topology, not as a single object.

It is then shown in [19, 21] that the spaces of NC symplectic divisors and varieties
are weakly homotopy equivalent to the spaces of almost Kähler structures, as
needed for geometric applications.

The equivalence between the topological and geometric notions of NC sym-
plectic variety established in [19, 21] immediately implies that any invariants aris-
ing from [45, 79] in fact depend only on the deformation equivalence classes of
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symplectic structures. These equivalences are also used in [20, 22] to establish
a smoothability criterion for NC symplectic varieties. Direct approaches to con-
structing GW-invariants of symplectic manifolds relative to NC symplectic divisors
in the perspective of [19, 21] and to obtaining degeneration and splitting formulas
for the degenerations appearing in [20, 22] are discussed in [16] and [17], respec-
tively.

The decomposition and splitting formulas for GW-invariants in [79] involve
exploded de Rham cohomology of [81], which makes these formulas very hard to
apply. The purpose of this elaborate modification of the ordinary de Rham coho-
mology is to correct the standard Kunneth decompositions of the diagonals of the
strata of the singular locus Z ′

0 of the central fiber Z0 for the presence of lower-
dimensional strata. This removes certain degenerate contributions to the Kunneth
decompositions of the diagonals of the strata of Z ′

0. A local, completely topo-
logical approach to computing degenerate contributions in terms of the ordinary
cohomology of the strata is presented in [102].

Question 6. Is there a reasonably usable formula for general NC degenerations
π : Z−→Δ of symplectic manifolds which splits the GW-invariants of a smooth
fiber Zλ into the GW-invariants of the strata of the central fiber Z0 that involves
only the ordinary cohomology of the strata?

The introduction of symplectic topology notions of NC divisors, varieties, and
degenerations in [19–22] has made it feasible to study Question 6 entirely in the
symplectic topology category, which is far more flexible than the algebraic geom-
etry category of [1, 44] and the almost Kähler category of [45, 78]. A symplectic
approach to this question should fit well with the topological approach of [102]
to degenerate contributions. A splitting formula for GW-invariants of Zλ result-
ing from such an approach should involve sums over finite trees with the edges
labeled by integer weights and the vertices labeled by paths in the dual intersec-
tion complex of Z0 with additional de Rham cohomology data; these paths would
correspond to the tropical curves of [79]. While such a formula would still be more
complicated than in the standard case of [57], it should be more readily applicable
than the presently available splitting formula of [79] that involves exploded de
Rham cohomology.

Degeneration and splitting formulas for real GW-invariants under real degen-
erations of real symplectic manifolds have been obtained only in a small number
of special cases. A fundamental difficulty for obtaining such formulas is that the
standard notions of relative invariants of the complex GW-theory do not have
direct analogues in the real GW-theory in most settings. Real GW-invariants of
a real symplectic manifold (X,ω, φ) with simple contacts with a real symplectic
divisor V ⊂X can be readily defined whenever the real GW-invariants of (X,ω, φ)
are defined and V is disjoint from the fixed locus Xφ of φ. This observation lies
behind the splitting formula and related vanishing result for some genus 0 real
GW-invariants under special real degenerations of real symplectic manifolds ob-
tained in [15].
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The reduction of the complex relative GW-invariants of (X,V ) to the com-
plex GW-invariants of X and V in [63] suggests the possibility of expressing the
real GW-invariants of a real symplectic sum X1#X12X2 in terms of the real GW-
invariants of X1, X2, X12, whenever these are defined. If X1 and X2 are of real
dimension four, then X is a real surface and the real GW-invariants of X1#X12X2

should reduce to the real GW-invariants of X1 and X2. By [4, Theorem 7] and
[3, Theorem 1.1], this is indeed the case for the genus 0 real GW-invariants if
X12 ≈ P1 is a real symplectic submanifold of self-intersection 2 in X2=P1×P1

and in some other settings with X12≈P1. Genus 0 real GW-invariants have been
defined for many real symplectic sixfolds and for all real symplectic fourfolds. This
leads to the following question.

Question 7. Is it possible to express the genus 0 real GW-invariants of a real
symplectic sum X1#X12X2 of real symplectic sixfolds (Xi, ωi, φi) along a common
real symplectic divisor X12 in terms of the genus 0 real GW-invariants X1, X2, X12,
whenever the genus 0 real GW-invariants of the sixfolds are defined?

4. Geometric applications

Pseudoholomorphic curves were originally introduced in [41] with the aim of ap-
plications in symplectic topology. These applications have included the Symplectic
Non-Squeezing Theorem [41], classification of symplectic 4-manifolds [53, 65], dis-
tinguishing diffeomorphic symplectic manifolds [87], symplectic isotopy problem
[90, 94], and applications in birational algebraic geometry [50, 95]. However, many
deep related problems remain open.

Rational curves, i.e., images of J-holomorphic maps from chains of spheres,
play a particularly important role in algebraic geometry. A smooth algebraic man-
ifold X is called uniruled (resp. rationally connected or RC) if there is a rational
curve through every point (resp. every pair of points) in X . According to [50],
a uniruled algebraic variety admits a nonzero genus 0 GW-invariant with a point
insertion (i.e., a count of stable maps in a fixed homology class which pass through
a point and some other constraints). This implies that the uniruled property is in-
variant under symplectic deformations. The RC property is known to be invariant
under integrable deformations of the complex structure [50]. It is a long-standing
conjecture of J. Kollár that the RC property is invariant under symplectic defor-
mations as well. It is unknown if every RC algebraic manifold admits a nonzero
genus 0 GW-invariant with two point insertions; this would immediately imply
Kollár’s conjecture. The dimension three case of this conjecture is established
in [95] by combining the special cases treated in [98] with the minimal model
program.

As GW-invariants are symplectic invariants, it is natural to consider the
parallel situation in symplectic topology. Given the flexibility of the symplectic
category, this may also provide a different approach to Kollár’s conjecture. A
symplectic manifold (X,ω) is called uniruled (resp. RC) if for some ω-compatible
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almost complex structure J there is a genus 0 connected rational J-holomorphic
curve through every point (resp. every pair of points) in X . This leads to the
following two pairs of questions.

Question 8. Let J be any almost complex structure on a uniruled (resp. RC) com-
pact symplectic manifold (X,ω). Is there a connected rational J-holomorphic curve
through every point (resp. every pair of points) in X?

Question 9. Does every uniruled (resp. RC) compact symplectic manifold (X,ω)
admit a nonzero genus 0 GW-invariant with a point insertion (resp. two point
insertions)?

The affirmative answer to each case of Question 9 would immediately imply
the affirmative answer to the corresponding case of Question 8. The uniruled case of
Question 9 is known only under the rigidity assumptions that X is either Kähler
[50] or admits a Hamiltonian S1-action [66]. It is not difficult to construct J-
holomorphic curves in a symplectic manifold that disappear as the almost complex
structure J deforms. On the other hand, regular J-holomorphic curves do not
disappear under small deformations of J , while J-holomorphic curves contributing
to nonzero GW-invariants survive all deformations of J . Thus, the above four
questions concern the fundamental issue of the extent of flexibility in the symplectic
category with implications to birational algebraic geometry.

If u : P1−→X is a J-holomorphic map into a Kähler manifold and for some
z∈P1 the evaluation map

H0(P1;u∗TX) −→ Tu(z)X, ξ −→ ξ(z), (4.1)

is onto, then H1(P1;u∗TX) = 0, i.e., u is regular. This statement is key to the
arguments of [50] in the algebraic setting. It in particular implies that if the ra-
tional J-holomorphic curves cover a nonempty open subset of a connected Kähler
manifold, then they cover all of X . As shown in [67], the last implication can fail in
the almost Kähler category. The first implication need not hold either, even if the
evaluation homomorphism (4.1) is surjective for every z ∈P1. However, the main
results of [50] may still extend to the almost Kähler category. In particular, for
the interplay between openness and closedness of various properties of complex
structures exhibited in the proof of deformation invariance of the RC property
for integrable complex structures in [50] to extend to a non-integrable complex
structure, the vanishing of the obstruction space needs to hold only generically in
a family of J-holomorphic maps covering X . This leads to a potentially even more
fundamental problem in this spirit.

Question 10. Let {uα : P1−→X} be a family of J-holomorphic curves on a compact
symplectic manifold (X,ω) that covers X. Is a generic member of this family a
regular map?

There are still many open questions concerning the geography and topology of
symplectic manifolds The multifold smoothing constructions of [20, 22] may shed
light on some of these questions. Just as the (2-fold) symplectic sum construction
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of [39], the multifold constructions could be used to build vast classes of non-Kähler
symplectic manifolds with various topological properties. They might also be useful
for studying properties of symplectic manifolds of algebro-geometric flavor, in the
spirit of the perspective on symplectic topology initiated in [41].

Question 11 ([18, Question 14]). Is every compact almost Kähler manifold with a
rational J-holomorphic curve of a fixed homology class through every pair of points
simply connected?

By [8, Theorem 3.5], a compact RC Kähler manifold is simply connected. As
noted by J. Starr, the fundamental group of a compact almost Kähler manifold
(X,ω, J) as in Question 11 is finite. The multifold sum/smoothing constructions of
[20, 22] can be used to obtain symplectic manifolds that are not simply connected
from simply connected ones and thus may be useful in answering Question 11
negatively. The constructions of [20, 22] may also be useful in studying this ques-
tion under the stronger assumption of the existence of a nonzero GW-invariant
of (X,ω) with two point insertions.

As in the complex case, it is natural to expect that a real symplectic manifold
(X,ω, φ) which has well-defined genus 0 real GW-invariants and is covered by real
rational curves admits a nonzero genus 0 real GW-invariant with a real point
insertion. However, the reasoning neither in [50], which relies on the positivity
of intersections in complex geometry, nor in [66], which makes use of quantum
cohomology, is readily adaptable to the real setting. Thus, there is not apparent
approach to this problem at the present.

Another important question in real algebraic geometry is the existence of real
rational curves on real even-degree complete intersections X ⊂Pn; this would be
implied by the existence of a well-defined nonzero genus 0 real GW-invariant of X .
However, the real analogue of the Quantum Lefschetz Hyperplane Principle (1.2)
suggests that all such invariants should vanish. On the other hand, one may hope
for some real analogue of the reduced/family GW-invariants of [5, 55], which ef-
fectively remove a trivial line bundle from the obstruction cone for deformations
of J-holomorphic maps to X . The resulting reduced/family real invariants could
well be nonzero.
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