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Abstract. The Intelligent Edge computing paradigm is playing a major
role in the design and development of Cyber-Physical and Cloud Systems
(CPCS), extending the Cloud and overcoming its limitations so as to bet-
ter address the issues related with the physical dimension of data—and
therefore of the data-aware intelligence (such as context-awareness and
real-time responses). Despite the proliferation of research works in this
area, a well-founded software engineering approach specifically address-
ing the distribution of intelligence sources between the Edge and the
Cloud is still missing. In this paper we propose some general criteria
along with a coherent set of guidelines to follow in the design of dis-
tributed intelligence within CPCS, suitably exploiting Edge and Cloud
paradigms to effectively enable data intelligence and accounting for both
symbolic and sub-symbolic approaches to reasoning. Then, we exploit the
notion of micro-intelligence as situated intelligence for Edge computing,
promoting the idea of intelligent environment embodying rational pro-
cesses meant to complement the cognitive process of individuals in order
to reduce their cognitive workload and augment their cognitive capa-
bilities. In order to demonstrate the general applicability of our guide-
lines, we propose Situated Logic Programming (SLP) as the conceptual
framework for delivering micro-intelligence in CPCS, and Logic Program-
ming as a Service (LPaaS) as its reference architecture and technological
embodiment.

Keywords: Design guidelines · CPCS · Micro-intelligence · LPaaS ·
Situated Logic Programming · Edge intelligence

1 Introduction

According to the so-called “CPS Revolution”, Cyber-Physical Systems (CPS)
are radically changing human needs and expectations, ultimately affecting every
aspect of human life through application domains such as smart grids, buildings,
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factories, and so on [18,21,22]. The steady growth of Cloud services pushes the
horizon of Edge computing forward as a new paradigm and promising architec-
ture to address the challenges of Cyber-Physical and Cloud Systems (CPCS). In
particular, Edge computing makes it possible to manage CPS devices by directly
taking into account their situated nature, as well as to match real-time require-
ments by avoiding communication bottlenecks between CPS and the Cloud. This
is why most CPCS applications are designed around Edge computing principles,
decentralising computation towards the edge of the network to lessen the pres-
sure on the Cloud, hence improving user experience through task offloading and
by acting in-between sensors and actuators and the Cloud.

Fully addressing CPCS issues and challenges mandates for intelligence, so
that intelligent capabilities – such as context-awareness and real-time planning
– become crucial for Edge devices in order to fill the gap between the CPS and the
Cloud ends. In particular, research efforts on Edge computing demonstrate the
benefits of distributing intelligence between the Cloud and the Edge [7,17,20].
However, most of the existing research work is basically strict in scope and
compartmentalised, so it does not provide for a general software engineering
standpoint [1,13,20]. As a consequence, criteria, guidelines, and methodologies
on how to design and distribute intelligence in CPCS according to the Edge
computing paradigm are mostly missing [8].

This is why in this paper we propose some general guidelines for the design
of distributed intelligence in CPCS. The proposed design approach accounts for
both symbolic and sub-symbolic approaches to reasoning, fruitfully combined to
produce intelligent behaviour—as the synergies between the two sorts of tech-
niques make it possible to deal with the diverse requirements of CPCS. Then, we
define micro-intelligence as the situated intelligence of Edge computing, promot-
ing the idea of intelligent environment embodying rational processes meant to
complement the cognitive process of individuals in order to reduce their cogni-
tive workload and augment their cognitive capabilities. In particular, we propose
Situated Logic Programming (SLP) as the conceptual framework for delivering
micro-intelligence in CPCS, and Logic Programming as a Service (LPaaS) [5] as
its reference architecture and technological embodiment.

2 Design Guidelines for Distributing Intelligence

Different CPCS come with different requirements in terms of intelligence. How-
ever, intelligence is often the result of several design choices which effectively fit
a given scenario. In this section we motivate and describe a number of guide-
lines, summarised in Table 1, aimed at steering designers in the complex task of
endowing CPCS with intelligence. Columns represent the design choices avail-
able to software engineers dealing with the issue of spreading intelligence in
CPCS, whereas rows represent the design criteria they should adopt and assess
so as to make informed, well-founded decisions, based on the specific application
scenario. Checkboxes represent suggestions, reasonable choices—which are by no
means intended to be strict.
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Table 1. Design choices (columns) and design criteria (rows) to distribute intelligence
in CPCS in a principled way. Checkmarks within parentheses represent weak prefer-
ences.

intelligence
which where who

symbolic sub-symbolic Cloud Edge individual environment e-institution

no requirement � � �
real-time req. (�) � �
no requirement � � �

fault-tolerance req. � �
no requirement � � �

safety critical req. � � �
big data � � �

small data � � �
macro scale � � �
micro scale � � �

commonsense KB � � (�)
contextual KB � �
disembodied � (�) �
embodied � �

no requirement � � �
situatedness req. (�) � �

Designers may obviously incur in some cases where the best decision con-
trast with our guidelines—as it typically happens for design guidelines in SE: as
“guidelines” they are meant to guide decision making towards the most proba-
ble path to follow, and demanding for thorough reasoning when leaving such a
path. In fact, it could even be argued that the most important contribution of
Table 1 are the criteria after which column and row headings are labelled, rather
than the mere checkboxes within: to the best of our knowledge, such a detailed
and pragmatically-motivated categorisation is novel in the literature on CPCS
software engineering.

The design guidelines presented in this paper concern first of all the distribu-
tion of the sources of intelligence along three dimensions, conveniently reported
in Table 1 (columns):

– which sort of intelligent source should be delivered—i.e., which approaches
(symbolic vs. sub-symbolic) are to be used for equipping the (portion of the)
CPCS with intelligence

– where such approaches and techniques should be deployed (Cloud vs. Edge)
– who – that is, which part/component of the CPCS – should be exhibiting the

designed intelligent behaviour.

With respect to the who feature, intelligence can be displayed by the active
individuals inhabiting the CPCS and performing their own decision making pro-
cess based on ascribed goals and rules, and their perceptions of the environment.



Engineering Micro-intelligence: Design Guidelines 263

There, the environment is the basic infrastructure enabling sensing, monitoring,
and feedback control, while adding intelligence in the form of, for instance, traffic
flow forecast, data analytics, self-healing capabilities (e.g., resolution of traffic
congestion). Finally, there is another, possibly less “visible” entity which may
exhibit intelligence: the e-institution [11], that is, the conceptual place where
all the norms, goals, constraints which set the boundaries for the overall sys-
tem behaviour are defined and, possibly, enforced (e.g. through sanctions and
penalties).

A few amongst the design criteria reported in the rows of Table 1 are simply
extracted from the peculiar features of CPS as devised out by the existing liter-
ature1—namely, their real-time nature, the need for fault tolerance, and the fact
that CPS are often safety-critical systems. A few others stem from the addi-
tion of the Cloud to the picture, which enables CPS to reach unprecedented
scale and provide them with the ability to gather and process a large amount of
(big) data, continuously sent to the Cloud by devices. The remaining criteria are
rather novel, and stem from two related aspects: the rise of Edge computing, on
the one hand, and the need for more powerful software engineering abstractions,
on the other.

Let us now discuss the guidelines in detail—that is, all the checkboxes appear-
ing in Table 1 cells.

Real-Time Requirement. Most CPS have strict real-time requirements constrain-
ing decision making, hence time from analysis of input data down to taking action
is typically severely limited. In that case, sub-symbolic approaches to deliver
intelligence, deployed at the Edge on individuals and environmental resources,
are the most likely to succeed, given that pressing timing constraints make
answers from Cloud easily too slow. Moreover, e-institutions are also usually
concerned with both enforcing norms governing the space of admissible interac-
tions between system components, and monitoring the long-term evolution of the
system so as to guarantee desired properties and detect misbehaviour. Indeed,
the Edge computing paradigm is precisely born with the foremost goal of reduc-
ing latency of processing and communications. Finally, application (not training)
of a sub-symbolic approach – which may amount at, for instance, traversing a
decision tree – is likely to be more performing compared to a symbolic one, which
usually implies some form of exhaustive reasoning or joint planning.

Fault-Tolerance Requirement. As depicted in the which column of Table 1, fault-
tolerance has little to do with the sort of approach to intelligence. In fact, fault-
tolerance – in the sense of ensuring that system faults or miscommunications
have the least possible impact on the outcomes of intelligent behaviour – is
greatly enhanced by leveraging decentralised approaches enabled by the Edge
computing paradigm, where individual devices and environmental resources can
replicate storage and functionality to achieve greater availability and reliabil-
ity of both information processing and services provided. Although the Cloud

1 See http://cyberphysicalsystems.org for a quick and nice overview.

http://cyberphysicalsystems.org
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is intrinsically a fault-tolerant computational environment – in the sense that
services and storage are usually replicated, and a fail-over mechanism is in place
– it is also a communication bottleneck as well as a single point of failure.

Safety-Critical Requirement. At least a portion of any given CPS is usually a
safety-critical system. This is the reason why whenever that requirement holds,
symbolic approaches deployed at the Edge under responsibility of individual
actors of the system are to be preferred. By no means, there, failure in, e.g., sensor
devices perceptions or communications between a group of collaborating actors
(governed by an e-institution) should lead to catastrophic consequences. For the
same reason, the opaque nature of sub-symbolic approaches cannot guarantee
absence of errors under any given circumstance, whereas symbolic approaches
can encode strict safety rules to be applied no matter what.

Big Data Available? The next design criterion concerns the nature of the data
available for processing with the goal of delivering intelligence: has it variety,
velocity, and volume, or, has it not? In the former case, it is desirable to exploit
sub-symbolic techniques so as to find relevant patterns buried in data by lever-
aging the Cloud horsepower. Such data may be well used to perform long-term
planning and predictive adaptation at the level of e-institution. Also, it is usu-
ally unfeasible to process large amounts of data streams coming into the system
at a fast pace at the Edge, and symbolic approaches often suffer from degraded
performance as the knowledge base increases in size.

Scale of Interest. It is worth emphasising the symmetry with the scale of interest
for delivering intelligence: as big data best suits the Cloud and e-institutions to
power sub-symbolic techniques, so does focussing on the macro scale of CPCS
as the target of intelligent behaviour. Indeed, as already mentioned, long-term
planning is likely to need lots of data, gathered in a considerable time span from
many heterogeneous sources, demanding statistical approaches to make sense
of it and find valuable insights. On the contrary, symbolic approaches perva-
sively deployed at the Edge of the CPCS are much more meaningful for small
data analysis, so as to leave individuals and intelligent environmental resources
perform local inference with the twofold goal of alleviating the computational
burden on the Cloud and deliver intelligence on a shorter time horizon, locally.

Nature of Knowledge. Here, we intend to focus on the kind of information that
artificial intelligence techniques exploit for delivering intelligence: is it general
knowledge of a problem domain, of the physical world, of the basics semantics
behind everyday objects and their relationships, or, is it specific information
which has value only in well-defined situations and w.r.t. precise goals? In other
words: is it commonsense or contextual knowledge?

The distinction is of paramount importance, in practice, and is reflected
by the checkmarks in Table 1. First, contextual knowledge is usually acquired
dynamically during the system operation by the sensor devices displaced at
the Edge of the CPCS, and is meant to keep the system informed about the
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ever changing situation that individuals and environment resources should deal
with. Commonsense knowledge, instead, has a more static and less “situational”
nature, since it is meant to capture the innate knowledge that we, as humans,
take for granted—an extremely complex task for machines, though. Depending
on how critical such information is, it may be stored and exploited either in the
Cloud or at the Edge. Going forward, the who column in Table 1 deserves special
attention: in fact, contextual knowledge has been attributed to the environment
and the institutional dimension, whereas commonsense to individuals and the
environment. While the environment is an obvious choice for the former – as
gathering and processing contextual knowledge is usually a typical sensors’ and
actuators’ responsibility –, involving the e-institution abstraction may seem odd,
at first. Conversely, the environment is not an obvious choice for commonsense
knowledge, as individuals instead possibly are.

Embodied Computation? Another design criterion is the notion of embodiment—
namely, the feature of a computation of being strictly bound to the physi-
cal nature of its hosting device. Embodied computations are better suited for
Edge computing and should be responsibility of individuals and environmen-
tal resources. Those are in fact the devices and physical components usually
equipped with sensing and actuating capabilities, hence whose computations
are inevitably bound to the available equipment. Disembodied computations are
instead the typical use case for the abstraction of e-institutions, which are meant
to encapsulate all the norms that rule interaction and behaviour of individuals.
As such, disembodied computations are typically hosted on the Cloud, but noth-
ing goes strong against executing them also at the Edge—after all, they are just
ordinary computations. Finally, since the embodiment of computations has little
to do with the technical approach to deliver intelligence, this criterion does not
impact the choice of whether to exploit either symbolic or sub-symbolic models.

Situatedness Requirement. Even if no preference is made explicit as regards the
“Which” of intelligence, there exist arguments in favour of a stronger prevalence
of symbolic approaches when situatedness is required. Intended as the property
of computations to heavily depend on environmental conditions, situatedness is
a key requirement for delivering intelligence in this context. Since, by definition,
it may correspond to rare (if not unique) occurrences of events out of the normal
system operations, few examples may exist for training a sub-symbolic model to
detect and classify them: this is why a symbolic approach may be well suited to
explicitly handling such exceptional conditions.
Finally, w.r.t. the last two criteria, we mean to emphasise that embodied vs.
disembodied, situated vs. non-situated computations should be viewed and dealt
with as complementary facets, to be exploited in synergy so as to better tackle
real-world problems with the proper “degree of situatedness” [15].
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3 Micro-intelligence in CPCS with LPaaS

In order to demonstrate the feasibility of our guidelines – that is, the actual appli-
cability in the architectural design phase –, in this Section we present the micro-
intelligence approach and LPaaS as its reference architecture and technology—
which can be used in the detailed design and development stages to implement
the guidelines. More precisely, the micro-intelligence approach [2] is exploited as
a way to reify the guidelines in the LPaaS technology, thus completing the tile
of intelligence in CPCS by acting synergically with sub-symbolic techniques.

In a nutshell, micro-intelligence is about scattering small chunks of machine
intelligence all over a distributed, situated system, capable of enabling the indi-
vidual intelligence of any kind of devices [16]: the main idea is that (micro-)
intelligence can be encapsulated in devices of any sort, making them both smart
and capable to work together in groups, aggregates, societies. Accordingly, the
reference scenario assumes that (i) knowledge is locally scattered in the dis-
tributed environment, hence its situated nature; (ii) inference capabilities are
admissible and available over this knowledge, with the goal of extending the
local knowledge through induction, deduction, abduction, and the like.

Philosophically, micro-intelligence can be interpreted as the externalised
rationality of cognitive agents (individual), complementing their own in the sense
of Clark and Chambers’ active externalism [9], and under the perspective of
Hutchins’ distributed cognition [12]. In that context, external means that it does
not strictly belong to individuals—in fact, it is a process independently possibly
executed by another entity (for instance the environments, the infrastructure) to
whom the individual is (possibly, temporarily) coupled. It is also rational because
it is supposed to convey a sound inference process. It complements individuals’
own cognitive process because, by embodying situated knowledge about the local
environment along with the inference processes admissible therein, augments the
cognitive capabilities of agents that can be unaware of the knowledge embodied
in the environment.

Moving from the widely-accepted consideration that pervasive and dis-
tributed systems have no global state (intended as a single, coherent knowledge
base), but are rather composed of local, fragmented knowledge chunks, Situated
Logic Programming (SLP) [3] introduces a possible framework for the embodi-
ment of the micro-intelligence vision: there, multiple logical theories, scattered
in the environment, can co-exist to represent the local, possibly partial knowl-
edge base (KB). In this perspective, SLP can be seen as an extension of LP
where each logic theory is situated in space, time, and (possibly) w.r.t. a specific
environmental resource. LPaaS [5] can be seen as the natural instantiation of
the SLP idea [5], designed according to the architectural style and principles
of the Service-Oriented Architecture (SOA) paradigm [10] and, in particular,
of the microservice vision [6]. As such, LPaaS constitutes a suitable reference
architecture for delivering micro-intelligence to the CPCS edge [4], enabling sit-
uated reasoning via the explicit definition of the spatio-temporal structure of
the environment where situated entities act and interact: by doing so, it suitably
re-interprets the notion of distribution of LP accordingly to the SLP framework.
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It is worth noting that its SOA nature further emphasises the role of situated-
ness, already brought along by distribution in itself—developing the idea of LP
as a situated service while promoting key features such as encapsulation, state-
lessness, and locality. Concretely, LPaaS features distributed service instances
(servers) scattered in a CPCS environment, each exposing its functionalities con-
currently to multiple client agents, via suitable interfaces: its implementation is
freely available at [14].

3.1 Symbolic Micro-intelligence at the Edge

In this section we discuss why the micro-intelligence vision and its incarnation
in LPaaS and technology can be seen as the reification of the above guidelines
for spreading intelligence in compliance with the Edge computing paradigm.

Scale of Interest. LPaaS is conceived for delivering intelligence at the micro
scale of the system, at the connected (intelligent) things level—as suggested
in [19], where the need for different scales of intelligence is highlighted. There,
intelligence at the Edge is provided by gathering information and inference pro-
cesses closer to the devices, by enabling local (symbolic) reasoning to complement
global sub-symbolic reasoning (usually in the cloud).

Big Data or Small Data. Micro-intelligence proposes to synergistically exploit
symbolic and sub-symbolic approaches, so as to better cope with the different
requirements arising when, for instance, dealing with big data or small data
analytics. Indeed, reasoning over symbolic knowledge bases allows consistency
checking (i.e., detecting contradictions between facts or statements), classifica-
tion (i.e., generating taxonomies), and other forms of deductive inference (i.e.,
revealing new, implicit knowledge given a set of facts).

Thus, we envision intelligent CPCS mitigating some of the issues experi-
enced in sub-symbolic approaches by adding symbolic techniques to the pic-
ture, ultimately enabling novel forms of distributed and local reasoning. For
instance, machine learning algorithms could generate the knowledge to be scat-
tered across the Edge of the network, containing general information about the
domain: then, such a knowledge could be refined by local constraints (e.g. specific
spatio-temporal data). An LPaaS service can then reason over such knowledge
to, e.g., guarantee consistency, or, infer novel information.

Fault-Tolerance Requirement. By isolating the failures of individual microser-
vices, the LPaaS architecture helps achieving fault tolerance: since services can
fail at any time, it is of paramount importance both that failures are quickly
detected and, mostly, that services are automatically and quickly restored. “Fail-
over” could be provided by the life-cycle management of the service itself, ensur-
ing that a failed inference process is taken over by another LPaaS service.
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Safety-Critical Requirement. Delivering the LPaaS services at the Edge delegates
the individual system actors to take autonomous decisions, preventing possible
failures in communication from leading to catastrophic consequences: hence, it
helps supporting safety-critical applications. Although communication problems
could arise because of the service architecture, such issues can be limited by
embedding the LPaaS service in both individual agents and the environment, as
well as by exploiting it as a library.

Nature of Knowledge. Being inherently rooted in the notion of situatedness,
micro-intelligence is a natural choice for the design and implementation of con-
textual knowledge and reasoning: in fact, the LPaaS resolution process is intrin-
sically bound to the general computational context, both in terms of spatio-
temporal context and environmental resources. This is why the LPaaS knowledge
base contains (those) specific rules whose validity is bound in space and time
(the “context”). Along this line, reasoning is delegated to components embed-
ding the situated knowledge, which are the only capable of timely recognising
exceptional situations: the inference capabilities enable the enactment of specific
countermeasures, possibly taking real-time requirements into account. New facts
and rules can also be acquired during the service lifetime, keeping the system
up-to-date about the ever changing situation that individuals and environment
resources are supposed to deal with. New rules can be inferred, as well.

Embodied Computation. Micro-intelligence lays its roots in the IoT world and
its inner physical nature: accordingly, the LPaaS service comes with an ad hoc
API for dealing with data collected by sensors and with streams of data (and
therefore of solutions). As a result, LPaaS turns out to be an effective choice for
capturing the embodiment feature of intelligence.

Situatedness Requirement. Stemming directly from the two previous consider-
ations, LPaaS can well be regarded as an effective embodiment of the Situ-
ated Logic Programming paradigm. Indeed, the situated nature of the service is
twofold: first, the LP inference process is itself situated in the spatio-temporal
context, thus affecting solutions in relation to both the place where the service
is physical located, and the time of the query; second, extra solve operations are
provided for dealing with streams of solutions and with timed requests, while
a dedicated API supports the exploration of services in a neighbourhood (the
reader is referred to [3] for a thorough discussion).

4 Conclusion

The CPS revolution is characterised by decentralisation – from the Cloud
towards the Edge – and by the need of exploiting low-level devices for the
decision-making process in order to deal with issues including distributed pro-
cessing, low latency, fault tolerance, better scalability and situated deliberation.
However, there is still no general, well-founded software engineering approach
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specifically addressing the issues of intelligent Edge computing for CPCS. Along
this line, in this paper we define a some general design criteria along with a coher-
ent set of design guidelines for distributing intelligence in CPCS. Such guidelines
could lay the foundation for the definition of a full-fledged methodology for intel-
ligent CPCS. To reify the guidelines in concrete architectures and technologies,
following the insights from distributed cognition, we introduce the concept of
micro-intelligence as the way to distribute chunks of symbolic intelligence at
the Edge of CPCS. We exploit Situated Logic Programming (SLP) as the refer-
ence framework for micro-intelligence, empowering the Edge with knowledge and
inference capabilities of computational logic, and show how LPaaS can straight-
forwardly work as the reference architecture ass well as a potential technological
embodiment.
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