
Chapter 17
A View of Lagrangian Relaxation and Its
Applications

Manlio Gaudioso

Abstract We provide an introduction to Lagrangian relaxation, a methodology
which consists in moving into the objective function, by means of appropriate
multipliers, certain complicating constraints of integer programming problems.
We focus, in particular, on the solution of the Lagrangian dual, a nonsmooth
optimization (NSO) problem aimed at finding the best multiplier configuration. The
algorithm for solving the Lagrangian dual can be equipped with heuristic procedures
for finding feasible solutions of the original integer programming problem. Such an
approach is usually referred to as Lagrangian heuristic. The core of the chapter
is the presentation of several examples of Lagrangian heuristic algorithms in areas
such as assignment problems, network optimization, wireless sensor networks and
machine learning.

17.1 Introduction

The relevance of any mathematical concept lies in its ability to generate many fruits
in diverse areas and to produce long-lasting effects. This is definitely the case of
the Lagrange multipliers [38], which have influenced the development of modern
mathematics and are still fertile as far as mathematical programming theory and
algorithms are concerned.

In this chapter we confine the discussion to the treatment of numerical optimiza-
tion problems in a finite dimension setting, where the decision variables are the
vectors of Rn.

Looking at the cornerstones of the historical development of such an area,
we observe that Lagrange multipliers have survived the crucial passages from
equality- to inequality-constrained problems, as well as from continuous to discrete
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optimization. In addition they have shown their potential also when nonsmooth
analysis has come into play [48, 49].

Originally the rationale of the introduction of Lagrange multipliers was to
extend to the equality constrained case the possible reduction of an optimization
problem to the solution of a system of nonlinear equations, based on the observation
that an optimality condition must necessarily involve both objective function and
constraints. The geometry of the constraints became more and more important
as soon as inequality constrained problems were taken into consideration, and
Lagrangian multipliers were crucial in the definition of the related optimality
conditions.

The introduction of the duality theory highlighted the role of the Lagrangian
multipliers in the game-theoretic setting, as well as in the study of value functions
associated to optimization problems. More recently, the 1960s of last century, it
was clear [18] that a Lagrangian multiplier-based approach was promising even in
dealing with optimization problems of discrete nature, showing that in some sense
it was possible to reduce the gap between continuous and integer optimization.

In this chapter we focus on Lagrangian relaxation, which was introduced in [29],
for dealing with integer or mixed integer optimization problems and immediately
conquered the attention of many scientist as a general-purpose tools for handling
hard problems [21]. Pervasiveness of Lagrangian relaxation is well evidenced in
[39].

The objective of the presentation is to demonstrate the usefulness of combined
use of Lagrangian relaxation and heuristic algorithms to tackle hard integer
programming problems. We will introduce several examples of application in fairly
diverse areas of practical optimization.

The chapter is organized as follows. Basic notions on Lagrangian relaxation are
in Sect. 17.2, while solution methods for tackling the Lagrangian dual are discussed
in Sect. 17.3. A basic scheme of Lagrangian heuristics, together with an example
of dual ascent for the classic set covering problem, is in Sect. 17.4. A number of
applications in areas such as assignment, network optimization, sensor location,
logistics and machine learning are discussed in Sect. 17.5. Some conclusions are
drawn in Sect. 17.6.

17.2 Basic Concepts

We introduce first the following general definition.

Definition 17.1 (Relaxation) Given a minimization problem (P ) in the following
form: {

minimize f (x)

subject to x ∈ X ⊂ R
n,

(17.1)
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with f : Rn → R, any problem (PR)

{
minimize h(x)

subject to x ∈ XR ⊂ R
n,

(17.2)

with h : Rn → R, is a relaxation of (P ), provided that the two following conditions
hold:

X ⊂ XR; (17.3)

h(x) ≤ f (x), x ∈ X. (17.4)

Under the above definition, if x∗ is any (global) minimum of (PR), then h(x∗) is a
lower bound on the optimal value of the problem (P ). Of course it is advantageous to
spend some effort to obtain such information whenever (PR) is substantially easier
to solve than (P ).

There exist many different ways for constructing relaxations. For example, the
usual continuous relaxation of any integer linear programming (ILP) problem
satisfies the conditions (17.3) and (17.4).

We introduce Lagrangian relaxation starting from a linear program (LP) in
standard form: ⎧⎪⎪⎨

⎪⎪⎩
minimize cT x

subject to Ax = b,

x ≥ 0,

(17.5)

with x, c ∈ R
n, A ∈ R

m×n and b ∈ R
m. We assume that the problem is feasible and

has optimal solution, so that the dual problem is feasible as well.
For any choice of the Lagrangian multiplier vector λ ∈ R

m (or, simply, the
multiplier vector), we define the Lagrangian relaxation (LR(λ))

{
minimize cT x + λT (b − Ax)

subject to x ≥ 0,
(17.6)

which can be rewritten as

bT λ + min (c − AT λ)T x

subject to x ≥ 0.
(17.7)

Letting zLR(λ) be the optimal value of the problem (17.7), we obtain

zLR(λ) =
{

bT λ, if c − AT λ ≥ 0,

−∞, otherwise.
(17.8)
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From the definition of relaxation, zLR(λ) is a lower bound for the LP problem (17.5),
possibly the trivial one for those values of λ which do not satisfy the condition
AT λ ≤ c. It is quite natural to look for the best lower bound and this results in
solving the problem

maximize zLR(λ), (17.9)

which, taking into account (17.8), is exactly the dual of (17.5),

{
maximize bT λ

subject to AT λ ≤ c.
(17.10)

The problem (17.9) will be referred to as the Lagrangian dual of the LP prob-
lem (17.5), and in fact the optimal solution λ∗ of the dual is optimal for (17.9)
as well.

The main motivation for the introduction of Lagrangian relaxation is the treat-
ment of ILP problems. We will not consider in the sequel the mixed integer linear
programming (MILP) case, where Lagrangian relaxation theory can be developed
in a completely analogous way as in the pure case. The binary linear programming
(BLP) problems can be considered as a special case of ILP. Thus we focus on the
following problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minimize cT x

subject to Ax = b,

Bx = d,

x ≥ 0, integer,

(17.11)

with x, c ∈ R
n, A ∈ R

m×n, B ∈ R
p×n, b ∈ R

m and d ∈ R
p. We assume that the

problem is feasible and that the set

X = { x ∈ R
n | Bx = d, x ≥ 0, integer}

is finite, that is X = {x1, x2, . . . , xK } and we denote by K = {1, 2, . . . ,K} the
corresponding index set. In writing the problem (17.11) two different families of
constraints are highlighted, those defined through Ax = b being the complicating
ones. By focusing exclusively on such set of constraints, we come out with the
Lagrangian relaxation defined for λ ∈ R

m

{
minimize cT x + λT (b − Ax)

subject to x ∈ X,
(17.12)
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which is supposed easier to solve than the original problem. By letting x(λ) and
zLR(λ) be, respectively, the optimal solution and the optimal value of (17.12), it is

zLR(λ) = cT x(λ) + λT (b − Ax(λ)) = min
k∈K

cT xk + λT (b − Axk). (17.13)

Remark 17.1 Function zLR(λ) is often referred to as the dual function. Note that,
in case x(λ) is feasible, that is Ax(λ) = b, then it is also optimal for the original
problem (17.11)

In order to look for the best among the lower bounds zLR(λ), we define also in
this case the Lagrangian dual

zLD = max
λ∈Rm

zLR(λ), (17.14)

that is, from (17.13)

zLD = max
λ

min
k∈K

cT xk + λT (b − Axk). (17.15)

The optimal value zLD is the best lower bound obtainable through Lagrangian
relaxation.

It is worth noting that the problem (17.15), which we will discuss later in more
details, consists in the maximization of a concave and piecewise affine function. It
is in fact the NSO problems which can be tackled by means of any of the methods
described in this book. On the other hand, by introducing the additional variable
v ∈ R, it can be rewritten in the following LP form:

⎧⎨
⎩maximize

λ,v
v

subject to v ≤ cT xk + λT (b − Axk), k ∈ K,
(17.16)

whose dual, in turn, is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
μ

cT (
∑
k∈K

μkxk)

subject to A(
∑
k∈K

μkxk) = b,

∑
k∈K

μk = 1,

μk ≥ 0, k ∈ K,

(17.17)
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or, equivalently,

⎧⎪⎪⎨
⎪⎪⎩

minimize cT x

subject to Ax = b,

x ∈ conv X,

(17.18)

where X = { x ∈ R
n | Bx = d, x ≥ 0 integer}. The Lagrangian dual is thus a

partially convexified version of the ILP (17.11). From the inclusion

convX ⊆ { x ∈ R
n | Bx = d, x ≥ 0} = X̄,

it follows

zLD ≥ zLP , (17.19)

where zLP is the optimal value of the continuous LP relaxation of (17.11):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minimize cT x

subject to Ax = b,

Bx = d,

x ≥ 0.

(17.20)

The property (17.19) indicates that the lower bound provided by the best (not by
any!) multiplier vector setting is not worse than the optimal value of the continuous
relaxation. Moreover, it is important to observe that in case the so-called integrality
property holds, that is in case the vertices of the polyhedron X̄ are integer, it is
zLD = zLP .

Whenever the integrality property is satisfied (and this is a rather common case
in integer programming applications) Lagrangian relaxation may appear a quite
weak approach compared to classic continuous relaxation: we need to solve a NSO
problem of the maxmin type just to get he same bound obtainable by solving a LP!
Nonetheless, Lagrangian relaxation may be a useful tool also in this case for the
following reasons:

• in several applications the continuous relaxation is a huge LP and it may be a
good idea not to tackle it;

• in Lagrangian relaxation the decision variables (think e.g. binary variables) keep
the original physical meaning, which, instead, gets lost in continuous relaxation;

• the possibly infeasible solutions of the Lagrangian relaxation are often more
suitable for repairing heuristics than those of the continuous relaxation.

Coming back to the two formulations (17.15) and (17.17), we observe that they
offer two possible schemes for solving the Lagrangian dual.
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Consider first (17.15), which is a finite maxmin problem where the function to
be maximized is concave. In fact it is defined as the pointwise minimum of a finite
(possibly very large) number of affine functions of variable λ, one for each xk ∈ X.
Application of the classic cutting plane model consists in generating an (upper)
approximation of the min function, initially based on a relatively small number of
affine pieces, which becomes more and more accurate as new affine pieces (cuts) are
added. In practice, taking any subset S ⊂ K (and the correspondent points xk ∈ X,
k ∈ S) the cutting plane approximation zS (λ) of zLR(λ) is defined as

zS (λ) = min
k∈S

cT xk + λT (b − Axk),

and thus we come out with the restricted primal problem

zrestr(S) = max
λ

min
k∈S

cT xk + λT (b − Axk), (17.21)

which, in turn, can be put in the LP form of the type (17.16):

⎧⎨
⎩maximize

λ,v
v

subject to v ≤ cT xk + λT (b − Axk), k ∈ S.
(17.22)

Assuming the problem (17.21) is not unbounded and letting λS be any optimal
solution, we calculate now zLR(λS ) (in fact we solve the Lagrangian relaxation for
λ = λS):

zLR(λS ) = min
k∈K

cT xk +λST (b−Axk) = bT λS +min
k∈K

(c−AT λS )T xk. (17.23)

Letting the optimal solution of the above problem be attained in correspondence to
any index, say kS , and assuming zLR(λS ) be sufficiently smaller than zrestr(S), the
procedure is then iterated after augmenting the set of affine pieces in (17.21) by the
one associated to the newly generated point xkS .

Consider now the formulation of the Lagrangian dual provided by (17.17). It is a
(possibly very large) LP in a form particularly suitable for column generation [53].
We observe in fact that the columns are associated to points xk , k ∈ K, in perfect
analogy with the association affine pieces–points of X in the formulation (17.15).
To apply the simplex method it is necessary to start from any subset of columns
providing a basic feasible solution and then look for a column with negative reduced
cost. Such operation is not necessarily accomplished by examining the reduced
costs of all non basic columns, instead it can be implemented by solving a pricing
problem. In fact the constraint matrix in (17.17) has size (m + 1) × K and has the
form: [

Ax1 . . . AxK

1 . . . 1

]
. (17.24)
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Letting λB be the vector assembling the first m dual variables associated to the basis,
the components of the reduced cost vector ĉ are:

ĉk = (c − AT λB)T xk − λm+1, k ∈ K,

where λm+1 is the last dual variable and plays the role of a constant in the definition
of ĉk , k ∈ K. Consequently, the pricing problem consists of solving

min
k∈K

(c − AT λB)T xk, (17.25)

which is a problem formally identical to (17.23).

Remark 17.2 It is worth noting that both (17.23) and (17.25) need not be solved at
optimality, as for the former it is sufficient to generate a cut, that is to calculate any
index k, k /∈ S such that

cT xk + λST (b − Axk) < zrestr(S),

while for the latter the optimization process can be stopped as soon as a column
with the negative reduced cost has been detected.

We observe, finally, that in the formulation (17.11) the complicating constraints
Ax = b are in the equality form. Lagrangian relaxation is well defined also in case
they are of the type Ax ≥ b, the only difference being in the need of setting λ ≥ 0.
This fact implies that the Lagrangian dual is now

max
λ≥000

zLR(λ). (17.26)

It is worth noting that feasibility of x(λ) no longer implies optimality. In fact it can
be easily proved that now x(λ) is only ε-optimal, for

ε = (Ax(λ) − b)T λ ≥ 0.

17.3 Tackling the Lagrangian Dual

Solving the Lagrangian dual problem (17.14) requires maximization of a concave
and piecewise affine function (see (17.15)). Consequently, all the available machin-
ery to deal with convex nondifferentiable optimization can be put in action. We
have already sketched in previous section possible use of the cutting plane method
[13, 35]. On the other hand the specific features of the Lagrangian dual can be
fruitfully exploited.

The basic distinction is between algorithms which do or do not use the differen-
tial properties of function zLR . Observe that a subgradient (concavity would suggest
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the more appropriate term supergradient) is immediately available as soon as zLR

has been calculated. Letting in fact (see (17.13))

zLR(λ) = cT x(λ) + λT (b − Ax(λ)) = min
k∈K

cT xk + λT (b − Axk)

we observe that, for any λ′ ∈ R
m, it is

zLR(λ′) = min
k∈K

cT xk + λ′T (b − Axk) ≤ cT x(λ) + λ′T (b − Ax(λ))

= cT x(λ) + λ′T (b − Ax(λ)) + λT (b − Ax(λ)) − λT (b − Ax(λ))

= zLR(λ) + (λ′ − λ)T (b − Ax(λ)),

thus (b−Ax(λ)) is a subgradient of zLR at λ, that is g(λ) = (b−Ax(λ)) ∈ ∂zLR(λ).
As for methods that use the subgradient for maximizing zLR(λ), we mention first

the classic (normalized) subgradient method [46, 51], where the h-th iteration is

λh+1 = λh + th
g(λh)

‖g(λh)‖ ,

th being the step size along the normalized subgradient direction. We remark that
monotonicity of the sequence of values zLR(λh) is not ensured, while convergence
to a maximum is guaranteed under the well known conditions on the step size th →
0 and

∑∞
h=1 th → ∞. Very popular formulae for setting th are

th = C

h
, (17.27)

and the Polyak formula

th = ẑ
(h)
LD − zLR(λh)

‖g(λh)‖ , (17.28)

where C is any positive constant and ẑ
(h)
LD is an improving overestimate at the

iteration h of zLD , the optimal value of the Lagrangian dual.
Subgradient-type were the first and the most widely used methods for dealing

with the Lagrangian dual, despite their slow convergence, mainly for their imple-
mentation simplicity. In more recent years, stemming from the approach introduced
in [44], the so-called fast gradient methods have received considerable attention
[26]. The approach consists in smoothing first the objective function and applying
next gradient-type methods. Besides such stream, incremental subgradient methods,
which are applicable whenever the objective function is expressed as a sum of
several convex component functions, have been devised to deal with the Lagrangian
dual [7, 36].

A careful analysis of the performance of subgradient methods for Lagrangian
relaxation is in [25].
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The cutting plane method previously summarized has been the building block
for devising two families of algorithms, the bundle [34] and the analytic center
[30] methods for convex minimization (or, equivalently, concave maximization).
They can be considered as an evolution of the cutting plane, aimed at overcoming
some inherent weakness in terms of stability, speed and well posedness. An update
discussion on bundle methods is in Chap. 3 of this book.

The above methods have been successfully employed in several applications of
Lagrangian relaxation in frameworks such as energy management [5, 8, 19, 31, 40],
network design [25], train timetabling [20], telecommunication networks [41],
logistics [43] etc.

As for methods which do not make explicit use of the subgradient of function
zLR, they are iterative algorithms of the coordinate or block-coordinate search type,
according to the fact that at each iteration just one or a (small) subset of multipliers
is modified. The update is aimed at increasing zLR , thus such class of methods is, in
general, referred to as the dual ascent one [33].

The choice of the component of the current multiplier vector λ to be updated is
usually driven by the properties of the optimal solution x(λ). In general one picks
up a violated constraint and modifies the corresponding multiplier trying to achieve
a twofold objective:

• to increase zLR;
• to ensure feasibility of the previously violated constraint.

In several cases it is possible to calculate exactly (sometimes by solving some
auxiliary problem) the multiplier update which guarantees satisfaction of both the
above objectives. Most of the times, however, it is necessary to introduce a line
search capable to handle possible null step exit, which cannot be excluded as
consequence of nonsmoothness of function zLR.

From the computational point of view, comparison of dual ascent and subgradient
methods shows that the former produce in general more rapid growth of the dual
function zLR . On the other hand, dual ascent algorithms are often affected by
premature stop at points fairly far from the maximum, whenever no coordinate
direction is actually an ascent one. In such a case it is useful to accommodate for
re-initialization, by adopting any subgradient as restart direction.

17.4 Lagrangian Heuristics

As pointed out in [39], Lagrangian relaxation is more than just a technique to
calculate lower bounds. Instead, it is a general philosophy to approach problems
which are difficult to tackle, because of their intrinsic complexity.

Lagrangian relaxation has been extensively used in the framework of exact
methods for integer programming. We will not enter into the discussion on the best
ways to embed Lagrangian relaxation into branch and bound, branch and cut and
branch and price algorithms. We refer the interested reader to the surveys [24] and
[32].
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We will focus, instead, on the use of Lagrangian relaxation in the so-called
Lagrangian heuristic framework for solving the problem (17.11). The computa-
tional scheme is fundamentally the following:

Algorithm 17.1: Lagrangian heuristic

Step 0. (Initialization) Choose λ(0). Set k = 0 and set zUB = ∞.

Step 1. (Lagrangian relaxation ) Calculate zLR(λ(k)) and the corresponding
x(λ(k)). If
x(λ(k)) is feasible, then stop.

Step 2. (Repairing heuristic) Implement any heuristic algorithm to provide,
starting from x(λ(k)), a feasible solution x

(k)
eur . Set z

(k)
eur = cT x

(k)
eur and

possibly update zUB .
Step 3. (Multiplier update) Calculate λ(k+1) by applying any algorithm for

the Lagrangian dual. Set k = k + 1. Perform a termination test and
possibly return to Step 1.

The above scheme is just an abstract description of how a Lagrangian heuristic
works and several points need to be specified.

As for the initialization, a possible choice, whenever the LP continuous relax-
ation (17.20) is not too hard to solve, is to set λ(0) = λ∗

LP , where λ∗
LP is the dual

optimal vector associated to constraints Ax = b.
At Step 2 the Lagrangian relaxation (17.12) is solved. As previously mentioned,

it is expected to be substantially easier than the original problem (17.11), and in
fact it is solvable, in many applications, in polynomial or pseudo-polynomial time.
This is not always the case, as (17.12) may be still a hard combinatorial problem.
In such cases it is possible to substitute an approximate calculation of zLR to the
exact one, which amounts to adopt a heuristic algorithm to tackle the Lagrangian
relaxation (17.12) at Step 1.

Inexact calculation of zLR has a strong impact on the way in which the
Lagrangian dual (17.14) is tackled at Step 3. Here all machinery of convex
optimization with inexact calculation of the objective function enters into play.
For an extensive treatment of the subject see [16, 37] and Chap. 12 of this book.
An example of the use of inexact calculation of zLR in a Lagrangian heuristic
framework is in [27].

The repairing heuristic at Step 2 is, of course, the problem dependent and it is
very often of the greedy type.

The termination test depends on the type of algorithm used for solving the
Lagrangian dual. Classic termination tests based on approximate satisfaction of the
condition 000 ∈ ∂zLR(λ(k)) can be used whenever bundle type algorithms are adopted.
In case subgradient or dual ascent algorithms are at work, stopping tests based on
variation of zLR can be adopted, together with a bound on the maximum number of
iterations.
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An important feature of Lagrangian heuristics is that they provide both a lower
and an upper bound and, consequently, significant indications on the upper–lower
bound gap are often at hand.

It is worth remarking, however, that, differently from the case where Lagrangian
relaxation is used within an exact algorithm, here the main aim is to produce good
quality feasible solutions rather than to obtain tight lower bounds. In fact it happens
in several applications that poor lower bounds are accompanied by a fairly good
upper bound. This is probably due to the fact that, as the algorithm proceeds,
many feasible solutions are explored, through a search mechanism where multiplier
update is finalized to get feasibility. From this point of view, adopting a not too fast
NSO algorithm is not always a disadvantage!

Consequence of the above observations is that Lagrangian heuristics can be
satisfactorily applied even to problems which exhibit the integrality property, that
is also in case one knows in advance that Lagrangian dual is unable to produce
anything better than the continuous LP relaxation lower bound.

17.4.1 An Example of Dual Ascent

The following example shows how to get, by tackling the Lagrangian dual, both a
lower and an upper bound for a classic combinatorial problem. The Lagrangian dual
is approached by means of a dual ascent algorithm, which works as a co-ordinate
search method and modifies just one multiplier at a time.

Consider the standard set covering problem (SCP), which is known to be NP-
hard. Suppose we are given a ground-set I = {1, . . . ,m}, a family of n subsets
Sj ⊆ I, j ∈ J = {1, . . . n} and a real cost vector c ∈ R

n, c > 0. The problem is to
select a minimum cost cover, that is an index set J ∗ ⊆ J such that ∪j∈J ∗Sj = I
with minimal associated cost

∑
j∈J ∗ cj . By defining the m × n binary incidence

matrix A of the subsets Sj and letting e be a vector of m ones, the SCP reads as
follows ⎧⎪⎪⎨

⎪⎪⎩
minimize cT x

subject to Ax ≥ e,

x binary,

(17.29)

where x is a binary decision variable vector with xj = 1 if j is taken into the cover
and xj = 0 otherwise, j ∈ J .

By relaxing the covering constraints Ax ≥ e by means of the multiplier vector
λ ≥ 000, λ ∈ R

m, we obtain

zLR(λ) = min cT x + λT (e − Ax)

subject to x binary,
(17.30)



17 A View of Lagrangian Relaxation and Its Applications 591

which can be in turn rewritten as

zLR(λ) = eT λ + min (c − AT λ)T x

subject to x binary.
(17.31)

An optimal solution x(λ) to the problem (17.31) can be obtained by simple
inspection of the (reduced) cost vector c(λ) = c − AT λ, by setting

xj (λ) =
{

1, if cj (λ) = cj − aj
T λ ≤ 0,

0, otherwise,
(17.32)

where aj is the column j of matrix A. Observe that in this case the integrality
property holds, thus zLD = zLP .

We introduce now a rule for updating the multiplier vector λ, in case the
corresponding x(λ) is infeasible, so that in the new multiplier setting:

• the number of satisfied constraints is increased;
• the function zLR increases as well.

We proceed by updating just one component of λ. Since we assume that x(λ) is
infeasible, there exists at least one row index, say h, such that:

∑
j∈J

ahjxj (λ) = 0, (17.33)

which implies, taking into account (17.32),

cj (λ) = cj − aj
T λ > 0, for all j ∈ J (h) = {j | ahj = 1}.

Now, defining a new multiplier setting in the form λ+ = λ + δeh for some δ > 0,
where eh is the h-th unit vector, the updated reduced cost is c(λ+) = c(λ)− δAT eh,
that is

cj (λ
+) =

{
cj (λ) − δ, if j ∈ J (h),

cj (λ), otherwise.
(17.34)

In particular, by setting δ = minj∈J (h) cj (λ) = cj∗(λ), it is cj∗(λ+) = 0 and thus,
from (17.32), xj∗(λ+) = 1. Summing up it is

xj (λ
+) =

{
xj (λ), if j 
= j∗,
1, if j = j∗.

(17.35)

Corresponding to the new solution x(λ+), the constraint h is no longer violated
and it is zLR(λ+) = zLR(λ)+ δ. Summing up, dual ascent has been achieved and at
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least one of the constraints previously violated is satisfied, while the satisfied ones
remain such. By iterating the multiplier update, we obtain, in at most m steps, both
a feasible solution and a lower bound, produced by a sequence of ascent steps.

Algorithm 17.2: Dual ascent for set covering

Step 0. (Initialization) Set λ(0) = 000, c(λ(0)) = c, zLR(λ(0)) = 0, x(λ(0)) = 000
and k = 0.

Step 1. (Termination test) If Ax(λ(k)) ≥ e, then calculate zUB = cT x(λ(k))

and stop. Otherwise, select h such that
∑n

j=1 ahjxj (λ) = 0, calculate

0 < δ = minj∈J (h) cj (λ
(k)) and j∗ = argminj∈J (h){cj (λ

(k))}, with

J (h) = {j | ahj = 1}.
Step 2. (Multiplier and reduced cost update) Put λ(k+1) = λ(k) + δeh,

c(λ(k+1)) = c(λ(k)) − δAT eh,

xj (λ
(k+1)) =

{
xj (λ

(k)), if j 
= j∗,
1, if j = j∗,

zLR(λ(k+1)) = zLR(λ(k)) + δ. Set k = k + 1 and return to Step 1.

At stop in correspondence to any iteration index k, we obtain both a feasible
solution x(λ(k)), with associate objective function value zUB , together with the
lower bound zLR(λ(k)).

Remark 17.3 For set covering problem the integrality property holds true, thus we
cannot expect from the above procedure anything better than the LP lower bound.
Moreover, since it is not at all guaranteed that the optimum of the Lagrangian is
achieved when the algorithm stops, the lower bound provided might be definitely
worse than the LP one. On the other hand the interplay between quest for feasibility
and dual function improvement is a typical aspect of the applications we are going
to describe in next section.

17.5 Applications

In this section we describe a number of applications of Lagrangian relaxation to
integer programming problems coming from fairly diverse areas. In almost all
cases a Lagrangian heuristic based on the abstract scheme sketched in Sect. 17.4 is
designed. The Lagrangian dual is dealt with either via dual ascent or via subgradient
algorithms. In particular the following problems will be treated:

• generalized assignment [22];
• spanning tree with minimum branch vertices [10];
• directional sensors location [3];
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• cross docking scheduling [14];
• feature selection in support vector machines [28];
• multiple instance learning [4].

The presentation is necessarily synthetic and no numerical results are presented.
The interested reader is referred to the original papers and to the references therein.

17.5.1 Generalized Assignment

A classic application of a dual ascent procedure based on updating one multiplier
at a time is the method for solving the generalized assignment problem (GAP)
described in [22]. GAP can be seen as the problem of assigning jobs to machines
with limited amount of a resource (e.g. time or space), with the objective of
maximizing the value of the assignment.

The sets I and J of machine and job indices, respectively, are given, together
with the following data:

• aij , the resource required by job j when processed on machine i, i ∈ I and
j ∈ J ;

• bi , resource availability of machine i, i ∈ I;
• cij , value of assigning job j to machine i, i ∈ I and j ∈ J .

Defining, for i ∈ I and j ∈ J , the decision variable xij = 1 if job j is assigned to
machine i and xij = 0 otherwise, the GAP is then formulated:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize
∑
i∈I

∑
j∈J

cij xij

subject to
∑
i∈I

xij = 1, j ∈ J ,

∑
j∈J

aij xij ≤ bi, i ∈ I,

xij binary, i ∈ I, j ∈ J .

(17.36)

A possible relaxation is obtained by acting on the semi-assignment constraints∑
i∈I xij = 1, j ∈ J , thus obtaining, for each choice of the multipliers λj ,

j ∈ J (they are grouped into vector λ), the following upper bound zLR(λ) (note
that (17.36) is a maximization problem, hence the Lagrangian dual is a minimization
problem):

zLR(λ) =
∑
j∈J

λj + max
∑
i∈I

∑
j∈J

(cij − λj )xij

subject to
∑
j∈J

aij xij ≤ bi, i ∈ I,

xij binary, i ∈ I, j ∈ J .

(17.37)
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It is easy to verify that the problem (17.37) decomposes into |I| binary knapsack
subproblems, that is

zLR(λ) =
∑
j∈J

λj +
∑
i∈I

z
(i)
LR(λ),

where

z
(i)
LR(λ) = max

∑
j∈J

(cij − λj )xij

subject to
∑
j∈J

aij xij ≤ bi,

xij binary, j ∈ J .

(17.38)

If for any λ the solution x(λ) of the Lagrangian relaxation satisfies the relaxed
constraints, then it is optimal for the GAP as well. In [22] a judicious selection
of the initial values of the multipliers by setting λj = max(2)

i∈I cij , where max(2)

indicates the second largest number in a set, makes x(λ) to satisfy the condition∑
i∈I xij (λ) ≤ 1, j ∈ J . Thus the only possible infeasibilities of such solution are

of the type
∑

i∈I xij (λ) = 0, for one or more jobs.
The core of the algorithm is the multiplier vector update which is driven by such

kind of infeasibility. In fact, consider any job h such that
∑

i∈I xih(λ) = 0. Any
decrease in multiplier λh makes all reduced costs (cih − λh) of such unassigned
job increase. As consequence, job h becomes more competitive in view of possible
assignment. The key point of the algorithm is the possibility of calculating exactly
the minimum reduction Δh of multiplier λh which allows, under the new setting,
assignment of the previously unassigned job to at least one machine.

This calculation can be performed as follows. It is first calculated Δih, the
minimum reduction in λh which allows assignment of job h to machine i, i ∈ I. To
this aim, the following auxiliary knapsack problem is solved:

z
(i,h)
LR (λ) = max

∑
j∈J , j 
=h

(cij − λj )xij

subject to
∑

j∈J , j 
=h

aij xij ≤ bi − aih,

xij binary, j ∈ J , j 
= h,

(17.39)

and then it is

Δih = z
(i)
LR(λ) − (

cih − λh + z
(i,h)
LR (λ)

) ≥ 0.
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Finally we have

Δh = min
i∈I

Δih,

and it is easy to verify that, in case Δh > 0 and letting λ+ = λ − Δheh, function
zLR reduces of exactly Δh.

We skip here some details of the algorithm, e.g., how to enforce condition∑
i∈I xij (λ) ≤ 1, j ∈ J to hold throughout the execution. We wish to emphasize,

instead, that at each iteration just one multiplier is updated (thus the algorithm is a
co-ordinate descent one). Moreover, unlike the algorithm for set covering discussed
in previous section, it is not ensured that the number of satisfied constraints increases
monotonically. However, termination at a feasible (and hence optimal) solution is
guaranteed.

An approach inspired by this method was introduced in [11] to deal with a classic
location–allocation problem known as terminal location.

17.5.2 Spanning Tree with Minimum Branch Vertices

In previous subsection it has been presented a dual ascent procedure, based on
modification of one multiplier at a time, with exact calculation of the step size along
the corresponding coordinate axis. Here we discuss a dual ascent algorithm for the
spanning tree with minimum branch vertices (ST-MBV) problem which still works
modifying just one multiplier at a time, but it is equipped with a line search along
the coordinate axis.

Another application of Lagrangian relaxation to a variant of the Steiner tree
problem is in [17].

The ST-MBV problem arises in the design of optical networks, where it is
necessary to guarantee connection to all nodes of a given network. Thus a spanning
tree is to be found. Since at least one switch must be installed at each node of the tree
whose degree is greater than two (branch vertices) the problem is to find a ST-MBV.

This problem admits several formulations. We focus on the integer programming
(IP) one described in [10], where a Lagrangian heuristic is presented in details.

We consider an undirected network G = (V ,E), where V denotes the set of n

vertices and E the set of m edges. The decision variables are the following:

• xe, e ∈ E, binary; xe = 1 if edge e is selected and xe = 0 otherwise;
• yv , v ∈ V , binary; yv = 1 if vertex v is of the branch type (that is its degree, as

vertex of the tree, is greater than two), and yv = 0 otherwise.
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Then, the IP formulation of the MBV is the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
∑
v∈V

yv

subject to
∑
e∈E

xe = n − 1,

∑
e∈E(S)

xe ≤ |S| − 1, S ⊆ V,

∑
e∈A(v)

xe − 2 ≤ δvyv, v ∈ V,

yv binary, v ∈ V and xe binary, e ∈ E,

(17.40)

where for any given subset of vertices S we denote by E(S) the set of edges having
both the endpoints in S. Moreover, we denote by A(v) the set of incident edges to
vertex v and by δv its size, i.e. δv = |A(v)|. The objective function to be minimized
is the total number of branch vertices. Constraints∑

e∈E

xe = n − 1 and
∑

e∈E(S)

xe ≤ |S| − 1, S ⊆ V,

ensure that a spanning tree is actually detected, while the complicating constraints
are

∑
e∈A(v) xe − 2 ≤ δvyv , v ∈ V . They guarantee that variable yv is set to 1

whenever v has more than two incident edges in the selected tree.
By introducing the multipliers λv ≥ 0, v ∈ V (grouped, as usual, in vector λ),

we obtain the following Lagrangian relaxation:

zLR(λ) = min
∑
v∈V

yv +
∑
v∈V

λv(
∑

e∈A(v)

xe − 2 − δvyv)

subject to
∑
e∈E

xe = n − 1,

∑
e∈E(S)

xe ≤ |S| − 1, S ⊆ V,

yv binary, v ∈ V and xe binary, e ∈ E.

(17.41)

By simple manipulations, zLR(λ) may be rewritten as

zLR(λ) = −2
∑
v∈V

λv + z
(1)
LR(λ) + z

(2)
LR(λ), (17.42)

where z
(1)
LR(λ) and z

(2)
LR(λ) are defined as follows:

z
(1)
LR(λ) = min

∑
v∈V

yv(1 − δvλv)

subject to yv binary, v ∈ V,

(17.43)



17 A View of Lagrangian Relaxation and Its Applications 597

and

z
(2)
LR(λ) = min

∑
v∈V

∑
e∈A(v)

λvxe

subject to
∑
e∈E

xe = n − 1,

∑
e∈E(S)

xe ≤ |S| − 1, S ⊆ V,

xe binary, e ∈ E.

(17.44)

Note that zLR(λ) is rather easy to calculate. In fact the problem (17.43) is solved
by inspection of the cost coefficients, by setting

{
yv = 1, if 1 − δvλv ≤ 0,

yv = 0, otherwise,
(17.45)

while z
(1)
LR(λ) is the optimal value of the minimum spanning tree problem where the

weight of edge e = (u, v) is λu + λv .
As for the Lagrangian dual, it is possible to prove [10] that the optimal multiplier

vector λ∗ satisfies the condition

λ∗
v ≤ 1

δv

, v ∈ V. (17.46)

On the basis of such property it is possible to devise an ascent strategy which
modifies one multiplier at a time. Suppose that (x(λ), y(λ)) is an optimal solution
to the Lagrangian relaxation for a given λ, then such strategy is at hand whenever
one of the two following cases occurs for some v ∈ V :

1.
∑

e∈A(v)

xe(λ) > 2 and yv(λ) = 0;

2.
∑

e∈A(v)

xe(λ) ≤ 2 and yv(λ) = 1.

Consider first the case 1 and observe (see the objective function of the prob-
lem (17.41)) that the v component

∑
e∈A(v) xe(λ) − 2 − δvyv(λ)) of a subgradient

of zLR is strictly positive, thus one can expect an increase in the objective if λv is
increased. Observe, in addition, that property (17.46) suggests to adopt an Armijo-
type line search along the co-ordinate direction ev with 1

δv
as initial step size. On

the other hand, a consequence of nonsmoothness of zLR is that direction ev is not
necessarily an ascent one, thus the backtracking line search must accommodate for
possible failure (the so-called null step, to use the terminology of bundle methods).

As for the case 2, the v subgradient component
∑

e∈A(v) xe(λ) − 2 − δvyv(λ)) is
negative and, in addition (see (17.45)) it is λv > 0. Thus it is worth to consider



598 M. Gaudioso

a possible reduction on λv , that is a move along the co-ordinate direction −ev ,
adopting, also in this case, an Armijo-type line search equipped with possible null
step declaration.

The use of the co-ordinate search approach has both advantages and drawbacks.
As pointed out in [10], co-ordinate search is definitely faster than standard sub-
gradient but the lower bound is slightly worse due to possible premature stop (see
Sect. 17.3).

We remark that for this application a feasible solution of the problem (17.40) is
available with no additional computational cost at each iteration of the dual ascent
procedure. After all, the Lagrangian relaxation provides a spanning tree, thus, to
implement a Lagrangian heuristic, it is only needed to calculate the corresponding
cost in terms of the objective function of (17.40).

17.5.3 Directional Sensors Location

In wireless sensor networks (WSN) [54] a sensor is a device capable to receive
(and possibly store and forward) information coming from a sufficiently close area.
In general, such an area is a circle of given radius, whose centre is the sensor
location itself. Points inside the area are deemed covered by the sensor. In case the
area, instead of being a circle, is an adjustable circular sector, the sensor is defined
directional [12].

The directional sensors continuous coverage problem (DSCCP) is about cov-
ering several targets, distributed in a plane, by a set of directional sensors whose
locations are known. Each sensor is adjustable, being characterized by a discrete set
of possible radii and aperture angles. The sensor orientation is a decision variable
too. The model accommodates for possible sensor switch off. Since different power
consumption is associated to the sensor adjustments, the objective is to minimize
the total power cost of coverage.

We report here the formulation given in [3] as a mixed integer nonlinear program
(MINLP). Note that in most of the literature only a discrete number of sensor
orientations are considered (see [50, Lemma 1 and Corollary 1]). The motivation
for defining, instead, the orientation as a continuous variable is in the choice of
Lagrangian relaxation as the attack strategy. It will be clear in the sequel, that
solving the relaxed problem is easy once the sensor orientation is assumed to be
a continuous variable.

Suppose that a given set I of sensors is located in a certain area and si ∈ R
2 is

the known position of sensor i, i ∈ I. The location tj ∈ R
2, j ∈ J , of the targets

is also known, together with the sensor-target distance parameters d ij = tj − si

and cij = ‖t j − si‖, i ∈ I and j ∈ J . A set of K + 1 different power levels k,
k = 0, . . . ,K can be considered for sensors, each of them corresponding to a couple
of values of the radius rk and of the half-aperture angle αk of the circular sector. In
particular, the level k = 0 is associated to an inactive sensor (r0 = 0 and α0 = 0).
We also introduce the parameter qk = cos αk , qk ∈ [−1, 1].
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The area covered by the sensor i, activated at level k, is then the revolution cone
defined as

{
x | x ∈ R

2, ‖x − si‖ ≤ rk, qk‖x − si‖ ≤ (x − si )
T wi

}
, (17.47)

where wi ∈ R
2, ‖wi‖ = 1, is the orientation direction assigned to sensor i, i ∈ I

(‖.‖ is assumed to be the Euclidean norm).
As a consequence, target j is covered by the sensor i, activated at level k, with

orientation direction wi if and only if the following two conditions hold:

rk ≥ cij and qkcij ≤ d ij
T wi . (17.48)

The decision variables are:

• wi ∈ R
2, the orientation direction assigned to sensor i, i ∈ I;

• xik , i ∈ I, k = 0, . . . ,K , binary: xik = 1 if sensor i is activated at power level k

and xik = 0 otherwise;
• σij , i ∈ I, j ∈ J , binary: σij = 0 implies that both conditions (17.48) are

satisfied;
• uj , j ∈ J , binary: uj = 0 implies that the target j is covered by at least one

sensor.

The model considers two types of costs:

• pk , the activation cost for turning on any sensor at power level k, k = 0, . . . ,K

(with p0 = 0);
• H , the penalty cost associated to an uncovered target.

Finally the DSCCP can be stated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
∑
i∈I

K∑
k=0

pkxik + H
∑
j∈J

uj

subject to
K∑

k=0

xik = 1, i ∈ I,

K∑
k=0

xikrk ≥ cij − Mσij , i ∈ I, j ∈ J ,

cij

K∑
k=0

qkxik − dij
T wi ≤ Mσij , i ∈ I, j ∈ J ,

uj ≥
∑
i∈I

σij − (|I | − 1), j ∈ J ,

‖wi‖ = 1, i ∈ I,

x, σ ,u binary and wi ∈ R
2, i ∈ I.

(17.49)
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The model contains the “big M” positive input parameter, which is common in
formulation of location problems. Variables xik , σij and uj are grouped into the
vectors x, σ and u, respectively.

The objective function is the sum of activation cost and penalty for possibly
uncovered targets. The first set of constraints are classic semi-assignment, ensuring
that exactly one power level (possibly the 0-level) is assigned to each sensor.
Constraints⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K∑
k=0

xikrk ≥ cij − Mσij , i ∈ I, j ∈ J ,

cij

K∑
k=0

qkxik − d ij
T wi ≤ Mσij , i ∈ I, j ∈ J ,

(17.50)

are related to target coverage. They are trivially satisfied if σij = 1 but, whenever
they are satisfied with σij = 0, then target j is covered by sensor i (see (17.48)).
Constraints

uj ≥
∑
i∈I

σij − (|I| − 1), j ∈ J (17.51)

impose that, for any target j , uj = 1 in case σij = 1 for all i ∈ I, that is if the target
j remains uncovered. At the optimum uj = 1 if and only if

∑
i∈I σij = |I|. Finally

the (nonconvex) constraints ‖wi‖ = 1, i ∈ I, aim at normalizing the orientation
direction assigned to each sensor.

By introducing the nonnegative multiplier vectors λ, θ and γ , the following
Lagrangian relaxation is defined

zLR(λ, θ , γ ) = min
∑
i∈I

K∑
k=0

pkxik + H

n∑
j=1

uj

+
∑
i∈I

∑
j∈J

λij (cij − Mσij −
K∑

k=0

xikrk)

+
∑
i∈I

∑
j∈J

θij (cij

K∑
k=0

xikqk − d ij
T wi − Mσij )

+
∑
j∈J

γj (
∑
i∈I

σij − (|I| − 1) − uj )

subject to
K∑

k=0

xik = 1, i ∈ I,

‖wi‖ = 1, i ∈ I,

x, σ ,u binary, wi ∈ R
2, i ∈ I,

(17.52)
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which, rearranging the objective function, may be rewritten as

zLR(λ, θ , γ ) =
∑
i∈I

∑
j∈J

λij cij + (1 − |I|)
∑
j∈J

γj

+ min
∑
i∈I

K∑
k=0

[pk +
∑
j∈J

(θij cij qk − λij rk)]xik

+
∑
i∈I

∑
j∈J

[γj − M(λij + θij )]σij

−
∑
i∈I

∑
j∈J

θijd ij
T wi +

∑
j∈J

(H − γj )uj

subject to
K∑

k=0

xik = 1, i ∈ I,

‖wi‖ = 1, i ∈ I,

x, σ ,u binary, wi ∈ R
2, i ∈ I,

(17.53)

The above formulation leads to the following decomposition:

zLR(λ, θ , γ ) = C(λ, γ )+z
(1)
LR(λ, θ)+z

(2)
LR(λ, θ , γ )+z

(3)
LR(θ)+z

(4)
LR(γ ), (17.54)

where

C(λ, γ ) =
∑
i∈I

∑
j∈J

λij cij + (1 − |I|)
∑
j∈J

γj , (17.55)

z
(1)
LR(λ, θ) = min

∑
i∈I

K∑
k=0

[pk +
∑
j∈J

(θij cij qk − λij rk)]xik

subject to
K∑

k=0

xik = 1, i ∈ I,

x binary,

(17.56)

z
(2)
LR(λ, θ , γ ) = min

∑
i∈I

∑
j∈J

[γj − M(λij + θij )]σij

subject to
K∑

k=0

xik = 1, i ∈ I,

σ binary,

(17.57)
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z
(3)
LR(θ) = − max

∑
i∈I

∑
j∈J

θijd ij
T wi

subject to ‖wi‖ = 1, i ∈ I,

wi ∈ R
2, i ∈ I,

(17.58)

and

z
(4)
LR(γ ) = min

∑
j∈J

(H − γj )uj

subject to u binary.

(17.59)

Calculation of the constant C(λ, γ ) is immediate. The solution of prob-
lems (17.56), (17.57), and (17.59) can be obtained by simple inspection of the
corresponding cost coefficients, while the problem (17.58) has optimal solution
wi (θ), i ∈ I, in the following closed form:

wi (θ) =

⎧⎪⎨
⎪⎩

∑
j∈J θijd ij

‖∑
j∈J θijdij ‖ , if

∑
j∈J

θijd ij 
= 000,

any vector w ∈ R
2, ‖w‖ = 1, otherwise.

(17.60)

In [3] the Lagrangian dual is tackled by applying a coordinate search method
which modifies one multiplier at a time, in view of possible increase of function
zLR(λ, θ , γ ). The choice of such multiplier is driven, as usual, by the type of
infeasibility occurring at the current solution of the Lagrangian relaxation. Thus
different rules are designed, according to the choice of the component either of λ or
θ or γ to be updated. For the details of such rules we refer the reader to [3].

The dual ascent procedure is particularly suitable for embedding a Lagrangian
heuristic. In fact the solution of the Lagrangian relaxation can be made feasible at a
quite low computational cost, hence providing an upper bound.

More specifically, whenever the solution to (17.52) is not feasible for (17.49), the
set J̄ of possibly uncovered targets is considered. For each of them at least one of
the following conditions holds:

K∑
k=0

xikrk < cij for all i ∈ I, (17.61)

cij

K∑
k=0

qkxik > d ij
T wi for all i ∈ I (17.62)
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at the optimum of the Lagrangian relaxation. Thus, for each target j ∈ J̄ , possible
coverage is sought by acting on the power levels (variables x) assigned to those
sensors which are eligible for covering it. In such search, sensor orientations
(variables wi) returned by the Lagrangian relaxation are not modified.

Summing up, at each iteration of the dual ascent procedure both a lower and
an upper bounds are calculated. In [3] it is highlighted that while the lower bound
provided by the algorithm is extremely poor, the best feasible solution found is, in
general, of good quality also for relatively large scale problems. It is worth noting
that the algorithm is equipped with possible restart along a subgradient direction in
case the Armijo line search fails along all coordinate directions.

17.5.4 Cross Docking Scheduling

A cross docking distribution centre (CD centre, in the following) is a modern logistic
node where goods are unloaded from inbound trucks, consolidated with respect to
the customer orders and then immediately loaded on outbound trucks, cancelling in
practice the traditional and costly storing and retrieval phases. Management of a CD
centre is a serious challenge since the processes of arrival and departure of goods
are strongly coupled and sophisticated synchronization schemes are to be fulfilled.

Intensive research efforts have been made to devise effective models and
algorithms for optimizing the combined scheduling of the inbound and outbound
trucks; more recently Lagrangian relaxation has been applied in this area (see [14]
and the references therein). The problem addressed is about finding the optimal
inbound and outbound sequences at a CD centre characterized by only two gates (or
doors), one for the inbound and the other for the outbound trucks. The objective is to
minimize the total completion time (the makespan in scheduling theory parlance).

The rules of the game are the following:

• only one truck at a time can be handled at a door and no interruption (preemption)
is allowed;

• the loading of an outbound truck cannot start until all goods it is expected to
deliver have been unloaded;

• all trucks require the same processing time (one slot) and are ready at the time 0.

As an input data we consider a set of n inbound trucks (I = {1, . . . , n}) to be
unloaded, together with a set of m outbound trucks (J = {1, . . . ,m}) to be loaded.
The following sets are also given:

• Ji , the set of outbound trucks receiving goods from the inbound truck i, i ∈ I;
• Ij , the set of inbound trucks providing goods to the outbound truck j , j ∈ J .

The planning horizon is discretized into time-slots, each of them being capable
to accommodate for processing of one truck. Let K = {1, . . . , n} and L =
{1, . . . , H }, H ≥ m+n, be the time horizon for the inbound and outbound services,
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respectively (note that, under the assumptions made, n + m is an upper bound on
the makespan).

Introducing the following binary decision variables:

• xik = 1, if the inbound truck i is assigned to the time-slot k and xik = 0
otherwise, i ∈ I, k ∈ K;

• yjh = 1, if the outbound truck j is assigned to the time-slot h, yjh = 0 otherwise,
j ∈ J , h ∈ L;

and the integer variable CMax , the makespan, then the one door cross docking
(ODCD) problem is modelled as follows:

Z = min CMax

subject to
∑
k∈K

xik = 1, i ∈ I,

∑
i∈I

xik = 1, k ∈ K,

∑
h∈L

yjh = 1, j ∈ J ,

∑
j∈J

yjh ≤ 1, h ∈ L,

CMax ≥
∑
h∈L

hyjh, j ∈ J ,

∑
h∈L

hyjh ≥
∑
k∈K

kxik + 1, j ∈ J , i ∈ Ij ,

xik binary, i ∈ I, k ∈ K,

yjh binary, j ∈ J , h ∈ L.

(17.63)

The first four constraint sets regulate the time slot-truck assignment at both the
inbound and outbound door. The constraints CMax ≥ ∑

h∈L hyjh, j ∈ J define the
makespan CMax as the maximum truck completion time, of course on the outbound
side. The constraints∑

h∈L
hyjh ≥

∑
k∈K

kxik + 1, j ∈ J , i ∈ Ij

ensure that loading of each outbound truck cannot start until the unloading of
all corresponding inbound trucks has been completed. They are the complicating
ones and lead to the following Lagrangian relaxation obtained via the multiplier
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vector λ ≥ 0.

zLR(λ) = min CMax +
∑
j∈J

∑
i∈Ij

λij

( ∑
k∈K

kxik −
∑
h∈L

hyjh + 1
)

subject to
∑
k∈K

xik = 1, i ∈ I,

∑
i∈I

xik = 1, k ∈ K,

∑
h∈L

yjh = 1, j ∈ J ,

∑
j∈J

yjh ≤ 1, h ∈ L,

CMax ≥
∑
h∈L

hyjh, j ∈ J ,

xik binary, i ∈ I, k ∈ K,

yjh binary, j ∈ J , h ∈ L.

(17.64)

The relaxation decomposes into two independent matching problems, related,
respectively, to the inbound and outbound door. In fact, by simple manipulations
based on the observation i ∈ Ij ⇔ j ∈ Ji , and setting

s =
∑
j∈J

∑
i∈Ij

λij =
∑
i∈I

∑
j∈Ji

λij , (17.65)

and

ρi =
∑
j∈Ji

λij , i ∈ I, σj =
∑
i∈Ij

λij , j ∈ J , (17.66)

we rewrite zLR as a function of vectors ρ and σ (grouping the ρis and the σj s,
respectively) as follows

zLR(ρ, σ ) = s + min
∑
i∈I

∑
k∈K

kρixik + CMax −
∑
j∈J

∑
h∈L

hσj yjh. (17.67)

Thus we define

zLR(ρ, σ ) = s + z
(1)
LR(ρ) + z

(2)
LR(σ ),
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with

z
(1)
LR(ρ) = min

∑
i∈I

∑
k∈K

kρixik

subject to
∑
k∈K

xik = 1, i ∈ I,

∑
i∈I

xik = 1, k ∈ K

xik binary, i ∈ I, k ∈ K,

(17.68)

and

z
(2)
LR(σ ) = min CMax −

∑
j∈J

∑
h∈L

hσj yjh

subject to
∑
j∈J

yjh ≤ 1, h ∈ L,

CMax ≥
∑
h∈L

hyjh, j ∈ J ,

yjh binary, j ∈ J , h ∈ L.

(17.69)

Problems (17.68) and (17.69) [14] are two simple single machine scheduling
problems which can be solved by appropriate sorting of the vectors ρ and σ .

The following holds for the Lagrangian dual.

Theorem 17.1 There exists an optimal solution to the Lagrangian dual problem
such that

s =
∑
i∈I

∑
j∈Ji

λij =
∑
i∈I

ρi =
∑
j∈J

∑
i∈Ij

λij =
∑
j∈J

σj ≤ 1. (17.70)

The above property is helpful in designing algorithms to solve the Lagrangian dual,
mainly as it enables appropriate sizing of the step size in implementing a line search.

It is worth noting that the ODCD does not enjoy the integrality property (see, in
particular, the problem (17.69)), thus the lower bound obtained from the Lagrangian
dual is more accurate than that provided by the LP relaxation.

In addition, any solution of a Lagrangian relaxation which is not feasible for the
ODCD can be repaired, at low computational cost, by implementing some heuristic
method based on simple forward-shifting of those outbounds trucks j for which the
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relaxed constraints ∑
h∈L

hyjh ≥
∑
k∈K

kxik + 1

have been violated for at least one i ∈ Ij at the optimum of (17.64).
In [14] the Lagrangian dual has been tackled by resorting to a standard

(projected) subgradient method, which has been equipped, at each iteration, with
a repairing procedure, thus allowing to possibly update both the lower and upper
bounds.

The Lagrangian heuristic has provided satisfactory results on test problem
characterized by a number of inbound trucks n up to 20 and a number of outbound
ones m in the range [10, 40].

17.5.5 Feature Selection in Support Vector Machines

Feature selection (FS) is a relevant issue in machine learning and, in particular, in
pattern classification. In fact classification is a kind of diagnostic process which
consists in attaching a label (that is certifying exactly one class membership) to
an individual (a sample or a pattern ), on the basis of a given number of known
parameters (the features). Most of the research work has been focussed on binary
classification, where the classes are only two. A binary classifier then is a tool
which is able to attach the appropriate label to a sample whose class membership is
unknown.

The classification models we are dealing with are of the supervised type, since
the classifier is constructed on the basis of the information provided by a certain
number of samples (the training set) whose class membership is known.

A fundamental paradigm to construct such classifier is the support vector
machines (SVM) [15, 45] which consists of separating the samples belonging to
the training set by means of a hyperplane, either in the feature space or in a higher
dimension one, upon an appropriate kernel transformation. Once the hyperplane
has been calculated, it is used to classify newly incoming patterns whose class
membership is unknown.

In the standard SVM approach, the training set is formed by two given point-sets
A = {ai , i ∈ I} and B = {bj , j ∈ J } in R

n (the feature space). The problem
is about finding a hyperplane defined by a couple (w ∈ R

n, γ ∈ R) that strictly
separates A and B. Thus one would require

wT ai + γ ≤ −1, i ∈ I (17.71)
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and

wT bj + γ ≥ 1, j ∈ J . (17.72)

Since the necessary and sufficient condition for existence of such strictly separating
hyperplane

conv{A} ∩ conv{B} = ∅

is, in general, not known to hold in advance, we define the point classification error
functions ξi(w, γ ), i ∈ I and ζj (w, γ ), j ∈ J as follows:

ξi(w, γ ) = max
{
0, 1 + (wT ai + γ )

}
, i ∈ I, (17.73)

and

ζj (w, γ ) = max
{
0, 1 − (wT bj + γ )

}
, j ∈ J . (17.74)

Note that ξi and ζj are positive if and only if (17.71) and (17.72) are violated,
respectively. Consequently, they can be considered as a measure of the classification
error related to point ai ∈ A and bj ∈ B.

The convex and nonsmooth error function E(w, γ ) is then defined as

E(w, γ ) =
∑
i∈I

max
{
0, 1 + (wT ai + γ )

} +
∑
j∈J

max
{
0, 1 − (wT bj + γ )

}

=
∑
i∈I

ξi(w, γ ) +
∑
j∈J

ζj (w, γ ).

Finally we come out with the standard SVM model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
w,γ,ξ ,ζ

‖w‖2 + C(
∑
i∈I

ξi +
∑
j∈J

ζj )

subject to aT
i w + γ ≤ ξi − 1, i ∈ I,

−bT
l w − γ ≤ ζj − 1, j ∈ J ,

ξi ≥ 0, i ∈ I,

ζj ≥ 0, j ∈ J.

(17.75)

The objective function is the sum of the error function E weighted by the parameter
C > 0 and the square of the norm of w. The latter term is aimed at maximizing the
separation margin between the two sets A and B. In fact (see [15, Chapter 6]) 2

‖w‖
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is the distance (the separation margin) between the hyperplanes

H− = {x | wT x + b = −1} and H+ = {x | wT x + b = 1},

thus minimization of ‖w‖ leads to maximization of the margin. In practical
applications the squared norm ‖w‖2 replaces ‖w‖ in the objective function.

In the SVM framework the role of the FS is to detect those features that are
really relevant for classification purposes. In other words a classifier embedding a FS
mechanism is expected to guarantee classification correctness (effective separation
of A and B) and, also, to be parsimonious, that is to provide a vector w (the normal
to the separating hyperplane) with as few as possible non-zero components.

Several different optimization-based approaches for the FS are available in
literature; we cite here, among the others, [9] and [47]. We focus on treatment of
the FS problem via mixed integer programming (see [6, 42]). In particular, we refer
to the model described in [28], where a Lagrangian relaxation approach has been
implemented.

Aiming at enforcing a feature selection mechanism, that is at reducing the
number of the non-zero components of w, the binary feature variable vector y ∈ R

n

is embedded into the model (17.75), with yk indicating whether or not feature k is
active. The following mixed binary formulation of the SVM-FS problem is stated:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
w,γ,ξ ,ζ

‖w‖2 + C(
∑
i∈I

ξi +
∑
j∈J

ζj ) + D

n∑
k=1

yk

subject to aT
i w + γ ≤ ξi − 1, i ∈ I,

−bT
l w − γ ≤ ζj − 1, j ∈ J ,

−ukyk ≤ wk ≤ ukyk, k = 1, . . . , n,

−uk ≤ wk ≤ uk, k = 1, . . . , n,

ξi ≥ 0, i ∈ I,

ζj ≥ 0, j ∈ J,

yk binary, k = 1, . . . , n.

(17.76)

The objective function of the problem (17.76) is the sum of three terms. The
norm ‖w‖, as usual in SVM-type models, is intended to maximize the separation
margin (we note in passing that in [28] the L1-norm, instead of the more commonly
used L2, is adopted). The second term is the error function E(w, γ ) and, finally, the
third one represents the number of nonzero components of w. Note also the presence
of the positive weights C and D in the objective function and of the upper bounds
uk > 0 on the modulus of each component wk of w.

In [28] the problem above has been tackled by resorting to Lagrangian relaxation
of the constraints linking the variables w and y, by means of the multiplier vectors
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λ ≥ 0 and μ ≥ 0. Thus we obtain

zLR(λ,μ) = min
w,γ ,ξ,ζ ,y

‖w‖ + C

(
m1∑
i=1

ξi +
m2∑
l=1

ζl

)
+ D

n∑
k=1

yk

+
n∑

k=1

λk(wk − ukyk) −
n∑

k=1

μk(wk + ukyk)

subject to aT
i w + γ ≤ ξi − 1, i ∈ I,

− bT
l w − γ ≤ ζj − 1, j ∈ J ,

− uk ≤ wk ≤ uk, k = 1, . . . , n,

ξi ≥ 0, i ∈ I,

ζj ≥ 0, j ∈ J,

yk binary, k = 1, . . . , n.

(17.77)

By rearranging the objective function, we get to the following decomposed formu-
lation:

zLR(λ,μ) = z
(1)
LR(λ,μ) + z

(2)
LR(λ,μ),

with

z
(1)
LR(λ,μ) = min

w,γ ,ξ,ζ
‖w‖2 + C

(
m1∑
i=1

ξi +
m2∑
l=1

ζl

)
+

n∑
k=1

(λk − μk)wk

subject to aT
i w + γ ≤ ξi − 1, i ∈ I,

− bT
l w − γ ≤ ζj − 1, j ∈ J ,

− uk ≤ wk ≤ uk, k = 1, . . . , n,

ξi ≥ 0, i ∈ I,

ζj ≥ 0, j ∈ J,

(17.78)

and

z
(2)
LR(λ,μ) = min

y

n∑
k=1

(D − uk(λk + μk))yk

subject to yk binary, k = 1, . . . , n.

(17.79)
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Note that calculation of z
(1)
LR(λ,μ) requires solution of a problem SVM-like, the

only difference being the presence of the linear term
∑n

k=1(λk − μk)wk into the

objective function. As for the second problem, z
(2)
LR(λ,μ) can be simply calculated

by sign inspection of the cost coefficients (D − uk(λk + μk)), k = 1, . . . , n.
As for the Lagrangian dual

zLD = max
(λ,μ)≥0

zLR(λ,μ),

the following proposition [28] holds:

Proposition 17.1 There exists an optimal solution to the Lagrangian dual satisfy-
ing the condition

uk(λk + μk) = D, k = 1, . . . , n. (17.80)

In [28] the above property is utilized to eliminate the variables μk , k = 1, . . . , n in
the Lagrangian dual, which is then tackled by resorting to the general purpose C++
bundle code developed in [23].

Solution of the Lagrangian dual is embedded into a Lagrangian heuristic algo-
rithm. Note in fact that a feasible solution (and consequently an upper bound) for
the problem (17.76) can be easily obtained starting from the optimal w(λ) obtained
by solving the Lagrangian relaxation for any feasible choice of the multiplier vector
λ. It is in fact sufficient to set yk = 1 whenever |wk(λ)| > 0 and yk = 0 otherwise.

Also in this application the Lagrangian heuristic approach has proved to work
well. The numerical results [28] are quite satisfactory, particularly in terms of trade-
off between the classification quality and the number of active features.

17.5.6 Multiple Instance Learning

Multiple instance learning (MIL) [1] is a classification paradigm, connected to
SVM [15], which is capable to handle complex problems, mainly in medical image
analysis and in text categorization. While the objective of SVM-like methods is
to classify samples in a given feature space, MIL deals with classification of sets
of samples, bags in Machine Learning parlance. We discuss here a specific MIL
problem where binary classification of bags is considered. The approach has been
introduced in [2] and Lagrangian relaxation has been applied in [4], giving rise to a
Lagrangian heuristic algorithm.

To provide an intuitive explanation of the problem, we describe an example
driven from image classification where the objects to be classified are images, each
of them representing a certain mix of geometric figures (e.g. triangles, squares,
circles and stars) of different size. Each image is a bag which is segmented according
to some appropriate rule [55] and in turn a feature vector in R

n is associated
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to each image segment, where aggregate information about segment luminosity,
texture, geometry etc. are reported. Thus each image is represented by a set of
points (instances), each of them being a vector in the feature spaces representing
one of its segments. In our example the problem at hand is to discriminate between
images containing at least one star (positive images) and those which contain no star
(negative ones). In the supervised classification framework, the class membership of
the images is known, thus each of them is labelled either as positive or negative.

A classic SVM scheme, aimed at separating by means of a hyperplane the
instances of positive bags from those of the negative ones, does not seem profitable
in this case. In fact the similarity degree between positive and negative images is
high (after all triangles, square and circles may definitely appear in images from
both classes) and, consequently, the expected separation quality is poor.

The MIL introduces a different paradigm. It is assumed in fact that a hyperplane
in the feature space correctly classifies the images if all instances of each negative
bag are in the same halfspace, while at least one instance of each positive bag is on
the other side.

The MINLP formulation of the problem proposed in [2] follows: Assume m

positive bags are given and let J+ = {J +
1 , . . . ,J +

m } be the family of the index
sets of the instances of each bag. Analogously let J− = {J −

1 , . . . ,J −
k } be the

family of the index sets for k given negative bags. We indicate by xj ∈ R
n the j -th

instance belonging to a positive or negative bag.
In the classic instance based SVM, we would look for a hyperplane defined by

a couple (w ∈ R
n, γ ∈ R) separating the instances belonging to the negative bags

from those belonging to the positive ones.
Instead, according to [2], one looks for a hyperplane

H(w, γ ) = {x | wT x + γ = 0},

such that

1. all negative bags are contained in the set S− = {x | wT x + γ ≤ −1};
2. at least one instance of each positive bag belongs to the set S+ = {x | wT x+γ ≥

1}.
The following optimization model, aimed at finding such a hyperplane, is then

introduced. The decision variables, apart the couple (w ∈ R
n, γ ∈ R), are the

labels yj ∈ {−1, 1} to be assigned to all instances of the positive bags. The twofold
objective consists of minimizing the classification error (which is equal to zero in
case a separating hyperplane is actually found) and of maximizing the separation
margin, defined as the distance between the shifted hyperplanes (see Sect. 17.5.5)

H− = {x | wT x + γ = −1} and H+ = {x | wT x + γ = 1}.
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That is,

z∗ = min
w,γ ,y

f (w, γ , y)

subject to
∑

j∈J +
i

yj + 1

2
≥ 1, i = 1, . . . ,m,

yj ∈ {−1, 1}, j ∈ J +
i , i = 1, . . . ,m,

(17.81)

where

f (w, γ , y) = 1

2
‖w‖2 + C

k∑
i=1

∑
j∈J −

i

max{0, 1 + (wT xj + γ )}

+ C

m∑
i=1

∑
j∈J +

i

max{0, 1 − yj (w
T xj + γ )},

with ‖ · ‖ being the Euclidean norm in R
n and C > 0 the trade-off parameter. Note

that constraints

∑
j∈J +

i

yj + 1

2
≥ 1, i = 1, . . .m

impose that, for each positive bag, at least one of its samples must be labelled as a
positive one. Function f is the sum of three terms:

1.
1

2
‖w‖2. As previously mentioned, minimization of ‖w‖ leads to maximization

of the margin;
2.

∑k
i=1

∑
j∈J −

i
max{0, 1+ (wT xj +γ )}. This term is the total classification error

relatively to the negative bags;
3.

∑m
i=1

∑
j∈J +

i
max{0, 1 − yj (w

T xj + γ )}. This term represents the total clas-
sification error of the instances belonging to positive bags. Notice that such
an error is zero if and only if for each positive bag J +

i , i = 1, . . . ,m, there
exists at least one instance j ∈ J +

i such that wT xj + γ ≥ 1. Note that, by
letting the corresponding label yj = 1, feasibility with respect to constraint∑

j∈J +
i

yj +1
2 ≥ 1 is achieved and, in addition, the classification error associated

to such a bag is driven to zero, provided no instance of such bag falls into the “no
man land”, that is in the area where |wT x + γ | < 1.

Summing up the classification error is equal to zero if and only if all negative bags
are contained in the set S−, at least one instance of each positive bag belongs to the
set S+ and no instance xj of any positive bag satisfies the condition |wT xj +γ | < 1.
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The Lagrangian heuristic introduced in [4] is based on relaxation of the linear

constraints
∑

j∈J +
i

yj +1
2 ≥ 1. The following problem is then obtained:

zLR(λ) = min
w,γ ,y

f (w, γ , y) +
m∑

i=1

λi

⎛
⎜⎝1 −

∑
j∈J +

i

yj + 1

2

⎞
⎟⎠

subject to yj ∈ {−1, 1}, j ∈ J +
i , i = 1, . . . ,m,

(17.82)

where λ ≥ 0 is a vector of multipliers in R
m.

The Lagrangian dual problem is, as usual,

zLD = max
λ≥0

zLR(λ). (17.83)

It is of course zLR(λ) ≤ z∗, for any choice of the multiplier λ ≥ 0, and zLD ≤
z∗. The tackling problem (17.83) within a Lagrangian heuristic scheme requires at
each iteration calculation of function zLR(λ) by solving (17.82), a MINLP which is
particularly suitable for application of a block coordinate descent method (see [52]).
In fact the algorithm adopted in [4] works by alternately fixing, at each iteration, the
values of y and of the couple (w, γ ), according to the following scheme.

Algorithm 17.3: Calculation of zLR(λ)

Step 0. Choose a feasible point y(0). Set l = 0.
Step 1. For the current y(l) solve the convex problem

min
w,γ

f (w, γ , y(l)) +
m∑

i=1

λi

⎛
⎜⎝1 −

∑
j∈J+

i

y
(l)
j + 1

2

⎞
⎟⎠

and obtain the couple (w(l+1), γ (l+1)).
Step 2. For the current couple (w(l+1), γ (l+1)) solve the problem

min
yj ∈{−1,1} f (w(l+1), γ (l+1), y) +

m∑
i=1

λi

⎛
⎜⎝1 −

∑
j∈J+

i

yj + 1

2

⎞
⎟⎠

and obtain y(l+1). Set l = l + 1 and go to Step 1.

We remark that the minimization problem at Step 1 is a standard SVM-like
problem, while solution of the problem at Step 2 can be easily obtained by
inspection of the values h

(l+1)
j = w(l+1)T xj + γ (l+1).
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In [4] update of the multiplier vector λ is performed by standard subgradient
method adopting the Polyak step size (17.28). A projection mechanism to take into
account the nonnegativity of λ is also embedded.

To complete the bird’s-eye view of the Lagrangian heuristic, we observe that
any solution (w(λ), γ (λ), y(λ)) of the Lagrangian relaxation which violates the
relaxed constraints can be easily “repaired” to get feasibility by means of greedy
modification of one or more label variables yj .

It is worth noting that the Lagrangian dual (17.83) enjoys the relevant property
that the duality gap is equal to zero, that is zLD = z∗. Moreover, by solving the
Lagrangian dual, one gets, in fact, also an optimal solution for the problem (17.81).
These results are provided by the following theorem [4].

Theorem 17.2 Let λ∗ be any optimal solution to the Lagrangian dual (17.83) and
let (w∗, γ ∗, y∗) be any optimal solution to the Lagrangian relaxation (17.82) for
λ = λ∗. Then (w∗, γ ∗, y∗) is optimal for the original problem (17.81) and zLD =
z∗.

The implementation of the Lagrangian heuristic has provided satisfactory results
on a number of benchmark test problems. In particular the zero duality gap has been
fully confirmed.

17.6 Conclusions

We have provided some basic notions on Lagrangian relaxation, focusing on its
application in designing heuristic algorithms of the so-called Lagrangian heuristic
type. Although the number of applications available in the literature is practically
uncountable, we are convinced that the potential for future application is still
enormous.
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