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Abstract This chapter presents several solution methodologies for mixed-integer
linear optimization, stated as mixed-binary optimization problems, by means of
Lagrangian duals, subgradient optimization, cutting-planes, and recovery of primal
solutions. It covers Lagrangian duality theory for mixed-binary linear optimization,
a problem framework for which ultimate success—in most cases—is hard to
accomplish, since strong duality cannot be inferred. First, a simple conditional
subgradient optimization method for solving the dual problem is presented. Then,
we show how ergodic sequences of Lagrangian subproblem solutions can be
computed and used to recover mixed-binary primal solutions. We establish that the
ergodic sequences accumulate at solutions to a convexified version of the original
mixed-binary optimization problem. We also present a cutting-plane approach
to the Lagrangian dual, which amounts to solving the convexified problem by
Dantzig–Wolfe decomposition, as well as a two-phase method that benefits from
the advantages of both subgradient optimization and Dantzig–Wolfe decomposition.
Finally, we describe how the Lagrangian dual approach can be used to find near
optimal solutions to mixed-binary optimization problems by utilizing the ergodic
sequences in a Lagrangian heuristic, to construct a core problem, as well as to
guide the branching in a branch-and-bound method. The chapter is concluded with
a section comprising notes, references, historical downturns, and reading tips.
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15.1 Introduction and Motivation

The aim of this chapter is to provide theory and methodology for Lagrangian
dual approaches for solving mixed-integer linear optimization problems, when
stated as mixed-binary problems.1 It covers Lagrangian duality theory for mixed-
binary linear optimization, generalizations of classical dual subgradient algorithms,
cutting-plane methods, and (fractional) approximations of primal solutions from
ergodic sequences, as well as the recovery of primal integer solutions. The chapter
summarizes a research stream on subgradient methods for nondifferentiable opti-
mization applications accomplished by the authors over two decades. While being
based on a series of articles by the authors and co authors, some of the results
presented here are, however, hitherto unpublished.

A strong motive for using Lagrangian dual methods in many applications
of discrete and combinatorial optimization is that such problems may often be
viewed as relatively easily solvable problems (being commonly highly structured)
to which a number of complicating side constraints are added. An example is
the (asymmetric) traveling salesperson problem, which can be viewed as that of
finding a least cost trip assignment subject to subtour eliminating side constraints.
In a Lagrangian dual method appropriate prices are assigned to the side constraints
which then are included in the objective function. A solution to the resulting simpler
problem yields a lower bound on the optimal value of the original problem, but
does usually not fulfill the relaxed constraints. The prices are iteratively improved
by means of some updating rule in an attempt to find prices such that the relaxed
constraints become ’optimally fulfilled’, that is, such that an optimal solution to the
original problem is obtained. In discrete optimization, however, such prices usually
do not exist.

Lagrangian dual methods are nevertheless increasingly popular tools in dis-
crete optimization. Among their merits are their flexibility and applicability to
many different problem structures and their ease of implementation. They also
often produce higher lower bounds on the optimal value than does a continuous
(linear programming) relaxation.2 Lagrangian dual methods are most often used
successfully in combination with other discrete optimization methodologies, such as
branch-and-bound algorithms—within which they provide lower bounds —, local
search methods, and primal heuristics. Among the latter, a popular combination is
Lagrangian heuristics, which combine Lagrangian dual schemes with manipulations
of primal infeasible solutions, aiming at producing near optimal and primal feasible
solutions.

1Note that any mixed-integer optimization problem can be transformed into a mixed-binary
optimization problem with a finite number of binary variables, provided that the feasible region
for the original integer variables is bounded.
2One must add, however, that it requires solving a convex and nondifferentiable optimization
problem, which may be quite nontrivial.
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We consider a Lagrangian dual approach for solving mixed-binary linear opti-
mization problems. We outline the properties of the Lagrangian dual problem, its
relations to the primal mixed-binary problem, and its optimality conditions. Further,
primal–dual optimality conditions are presented, both for a convexified primal
problem and for the mixed-binary problem.

It is described how the dual problem can be solved by means of a simple
conditional subgradient optimization method. For this general method, we provide a
convergence result for an ergodic (averaged) sequence of solutions to the Lagrangian
subproblems. The ergodic sequence is constructed in the same manner as done in
[44, 60] for the case of convex optimization, and which establishes that the ergodic
sequences in the limit produce optimal solutions to the original problem. Here,
however, we establish that the sequences accumulate at solutions to a convexified
version of the original mixed-binary optimization problem.

We further present a cutting-plane approach to the Lagrangian dual problem;
it amounts to solving the convexified problem utilizing Dantzig–Wolfe decom-
position, that is, column generation with the columns being associated with the
solutions to the Lagrangian subproblems. Then we describe an approach to generate
high quality initial columns, obtained from subproblem solutions in a subgradient
optimization method applied—in a prediction phase—to the Lagrangian dual.

In the following section, we present a Lagrangian dual approach to find feasible
and near optimal solutions to mixed-binary optimization problems utilizing

(1) a Lagrangian heuristic based on the ergodic sequences,
(2) a core problem, which is constructed based on information from the ergodic

sequences, and
(3) the ergodic sequences to guide the branching in a branch-and-bound method.

The chapter is then concluded with an extensive section with notes, references,
historical downturns and further reading tips.

15.2 Mixed-Binary Linear Optimization and Its Convexified
Counterpart

We consider a general mixed-binary linear optimization problem. In our presenta-
tion and the derivation of methods to follow, the feasible set is described as the
intersection of two sets. One set is characterized by general, explicit linear inequality
constraints, which are to be Lagrangian relaxed. The other set is implicit and may
be a Cartesian product set, resulting in one or several separable subproblems in
the solution procedure(s); our description is general in that each subproblem may
contain solely continuous, solely binary, or mixed variables.
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Our mixed-binary linear optimization problem is defined as

z∗ := min
xb,xc

cb
�xb + cc

�xc (15.1a)

subject to Abxb + Acxc ≥ b, (15.1b)

(x�
b , x�

c )� ∈ X, (15.1c)

where z∗ denotes the optimal value, cb ∈ R
nb , cc ∈ R

nc , Ab ∈ R
m×nb , Ac ∈ R

m×nc ,
b ∈ R

m, and nb, nc,m ∈ Z+. The set X := {
(x�

b , x�
c )� ∈ {0, 1}nb × R

nc+ | Dbxb +
Dcxc ≥ d

}
, where Db ∈ R

k×nb , Dc ∈ R
k×nc , d ∈ R

k , and k ∈ Z+, is assumed
to be nonempty and bounded. By defining x := (x�

b , x�
c )�, c := (c�b , c�c )�, A :=

(Ab, Ac), D := (Db,Dc), and n := nb + nc, the optimization problem (15.1) can
be equivalently expressed as3

z∗ := min
x

c�x, (15.2a)

subject to Ax ≥ b, (15.2b)

x ∈ X, (15.2c)

where X = {
x ∈ {0, 1}nb × R

nc+ | Dx ≥ d
}
. We generally assume that the mixed-

binary linear optimization problem is feasible, that is, that { x ∈ X | Ax ≥ b } �= ∅
holds, and denote by X∗ := argminx∈X

{
c�x | Ax ≥ b

}
its nonempty solution set.

By denoting an extreme point of the convex hull of the set X with xq and letting
Q be an index set for all such points, the convex hull can be expressed as

Xconv := convX = conv
q∈Q

{
xq

}
. (15.3)

Any extreme point to Xconv can be expressed as xq = ((x
q
b)�, (x

q
c )�)�, where

x
q
b ∈ {0, 1}nb and x

q
c is an extreme point to the nonempty polyhedral set

Xc(x
q

b) := {
xc ∈ R

nc+
∣
∣ Dcxc ≥ d − Dbx

q

b

}
, q ∈ Q.

The linear programming (LP) relaxation of the set X is expressed as

XLP :=
{

(x�
b , x�

c )� ∈ [0, 1]nb × R
nc+ | Dbxb + Dcxc ≥ d

}
(15.4a)

= {
x ∈ [0, 1]nb × R

nc+ | Dx ≥ d
}
. (15.4b)

3The notation in (15.1) and (15.2) will be used interchangeably throughout this chapter.
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It holds that X ⊆ Xconv ⊆ XLP. Replacing the set X in (15.2c) with its convex hull
Xconv results in the linear optimization problem defined as

z∗
conv := min

x

{
c�x

∣
∣
∣ Ax ≥ b; x ∈ Xconv

}
≤ z∗. (15.5)

By assumption, the set { x ∈ Xconv | Ax ≥ b } is nonempty and bounded. We let
X∗

conv denote the solution set to the optimization problem (15.5). Replacing the set
X in (15.2c) by XLP yields

z∗
LP := min

x

{
c�x

∣
∣
∣ Ax ≥ b; x ∈ XLP

}
≤ z∗

conv, (15.6)

and we let X∗
LP denote the solution set to the optimization problem (15.6).

For the case when the set XLP possesses the integrality property with respect to
the binary variables, that is, when all its extreme points have only integer valued
variables xb, the equality Xconv = XLP holds, implying the equality z∗

conv = z∗
LP.

Remark 15.1 In many applications, the set X is a Cartesian product set, here
denoted by X := Y1 × Y2 × . . . × YS = ×s∈SYs , where S = {1, . . . , S}.
It is then assumed that each set Ys ⊂ {0, 1}nb,s × R

nc,s is defined over binary
and/or continuous variables ys , such that (y�

1 , . . . , y�
S )� ≡ x, and such that the

relations nb,s, nc,s ∈ Z+, s ∈ S,
∑

s∈S nb,s = nb, and
∑

s∈S nc,s = nc hold. The
optimization problem (15.2) is then expressed as

z∗ := min
ys ,s∈S

∑

s∈S
c�
s ys (15.7a)

subject to
∑

s∈S
Asys ≥ b, (15.7b)

ys ∈ Ys, s ∈ S, (15.7c)

where cs ∈ R
ns , As ∈ R

m×ns , and ns = nb,s + nc,s , s ∈ S. The constraints
(15.7b) are said to be coupling, since relaxing them will result in a Lagrangian
subproblem that separates into one minimization problem for each s ∈ S. The
integrality property may be considered for each of the sets Ys , as needed/being
relevant.

15.2.1 The Lagrangian Dual

The Lagrange function L : R
n × R

m �→ R with respect to the relaxation of the
constraints (15.1b) by means of the price vector u ∈ R

m+, also called dual variables
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or (Lagrangian or dual ) multipliers, is defined as

L(x,u) := c�x + u�(b − Ax).

Its minimization over x ∈ X determines the Lagrangian dual function h : Rm �→ R,
as defined by

h(u) := min
x∈X

L(x,u) = b�u + min
x∈X

{ (
c − A�u

)�
x

}

= b�u + min
q∈Q

{ (
c − A�u

)�
xq

}
. (15.8)

The function h is formed by the point wise minimum over |Q| affine functions,
and it is therefore piecewise affine and concave, hence continuous but generally
not everywhere differentiable. Letting X(u) and Q(u) denote the optimal set to the
respective inner minimization problem—the so-called Lagrangian subproblem or
Lagrangian relaxed problem—in (15.8), the following relations hold:

X(u) = argmin
x∈X

{(
c − A�u

)�
x
}

=
{
xq

}

q∈Q(u)
; (15.9a)

Xconv(u) := conv X(u) = argmin
x∈Xconv

{(
c − A�u

)�
x
}

= conv
q∈Q(u)

{
xq

}
. (15.9b)

The expression for X(u) in (15.9a) can always be replaced by its convexified
version Xconv(u) in (15.9b), since for any linear objective there is an optimal
extreme point to the set Xconv that is also optimal with respect to the set X.

By weak duality, the inequality h(u) ≤ c�x holds whenever u ∈ R
m+ and x =

(x�
b , x�

c )� is feasible in (15.2) [and, consequently, in (15.1)]. In order to find the
best possible underestimate of z∗, the prices u should be chosen as to maximize the
Lagrangian dual function, that is, to solve the Lagrangian dual problem defined as

h∗ := max
u∈Rm+

h(u). (15.10)

The problem (15.10) is a convex optimization problem having a concave and gen-
erally nondifferentiable objective function. By the assumption that the polyhedron
{x ∈ Xconv | Ax ≥ b } is nonempty, also the optimal set of (15.10)—denoted U∗—
is nonempty and polyhedral. Thus, by weak duality, the inequality h∗ ≤ z∗ holds.
For most mixed-binary linear optimization problems, however, it holds that h∗ < z∗,
that is, the duality gap z∗ − h∗ is nonzero.
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Using the transformations in (15.8) along with a LP dualization, the Lagrangian
dual (15.10) can be reformulated according to

h∗ = max
u

{
b�u + min

q∈Q
{ (

c − A�u
)�

xq
} ∣

∣
∣ u ∈ R

m+
}

(15.11a)

= max
u, v

{
b�u + v

∣
∣
∣
(
Axq

)�
u + v ≤ c�xq , q ∈ Q; u ∈ R

m+; v ∈ R

}
(15.11b)

= min
λ

⎧
⎨

⎩

∑

q∈Q

(
c�xq

)
λq

∣∣
∣
∣
∣
∣

∑

q∈Q

(
Axq

)
λq ≥ b;

∑

q∈Q
λq = 1; λq ≥ 0, q ∈ Q

⎫
⎬

⎭

(15.11c)

= min
x, λ

⎧
⎨

⎩
c�x

∣
∣
∣∣
∣
∣
Ax ≥ b; x =

∑

q∈Q
λqxq ;

∑

q∈Q
λq = 1; λq ≥ 0, q ∈ Q

⎫
⎬

⎭

(15.11d)

= min
x

{
c�x

∣
∣
∣ Ax ≥ b; x ∈ Xconv

}
= z∗

conv. (15.11e)

In summary, the above derivations of primal–dual connections imply the follow-
ing weak and strong duality relations for the problems (15.1), (15.2), (15.5), (15.6),
and (15.10):

z∗ ≥ z∗
conv = h∗ ≥ z∗

LP.

For typical—as well as the most interesting—applications of Lagrangian dualization
the straightforward continuous relaxation of the set X does, however, not result in
a set XLP [defined in (15.4)] having integer extreme points. Hence, although the
equality z∗

conv = z∗
LP may hold, typically Xconv ⊂ XLP holds [Xconv being defined

in (15.3)], which—in practice—most often implies the strict inequality z∗
conv > z∗

LP.

15.2.2 Optimality Conditions for the Convexified Problem

In order to derive optimality conditions for the convexified optimization problem
(15.5) and, eventually, also for the original optimization problem (15.1) [or (15.2)],
we first define the subdifferential of the concave function h at u ∈ R

m as

∂h(u) :=
{

γ ∈ R
m

∣
∣
∣ h(v) ≤ h(u) + γ �(v − u), v ∈ R

m
}

,

the elements of which are called subgradients. The following characterization of the
subdifferential holds for any Lagrangian dual objective function.
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Proposition 15.1 (Subdifferential of the Dual Objective Function) For each u ∈
R

m, it holds that ∂h(u) = { b − Ax | x ∈ Xconv(u) } = conv{ b − Axq | q ∈ Q(u) }.
The function h is differentiable at u if and only if ∂h(u) is a singleton set, that is, if
and only if b − Ax is constant on Xconv(u), in which case ∇h(u) = b − Ax for any
x ∈ Xconv(u).4

The normal cone to the set Rm+ at u ∈ R
m is defined as

NR
m+(u) :=

⎧
⎨

⎩

{
ν ∈ R

m | ν�(v − u) ≤ 0, v ∈ R
m+

}

= {
ν ∈ R

m− | ν�u = 0
}
, u ∈ R

m+,

∅ , u /∈ R
m+.

Letting ei denote the i-th unit column, NR
m+(u) = cone { −ei | ui = 0, i ∈

{ 1, . . . ,m } } holds for u ∈ R
m+. The conditional subdifferential of h at u ∈ R

m+,
the elements of which will be referred to as conditional subgradients, is in our
Lagrangian dual setting then defined as

∂R
m+h(u) : =

{
γ ∈ R

m
∣∣
∣ h(v) ≤ h(u) + γ �(v − u), v ∈ R

m+
}

= ∂h(u) − NR
m+(u) (15.12)

= conv
{
b − Axq | q ∈ Q(u)

} + cone
{
ei | ui = 0, i ∈ { 1, . . . ,m }}.

Clearly, ∂R
m+h(u) ⊇ ∂h(u) holds for all u ∈ R

m+. The next proposition is immediate.

Proposition 15.2 (Properties of the Conditional Subdifferential) The condi-
tional subdifferential ∂R

m+h(u) is nonempty, closed and convex for all u ∈ R
m+.

Further, ∂R
m+h(u) is unbounded whenever u ∈ bdRm+.

Proposition 15.3 (Properties of the Lagrangian Dual) The following statements
are equivalent.

(i) the Lagrangian dual problem (15.10) has a bounded optimal solution;
(ii) 000 ∈ ⋃

u∈Rm+ ∂R
m+h(u);

(iii) { x ∈ Xconv | Ax ≥ b } �= ∅.

The optimality conditions for the Lagrangian dual (15.10) are expressed as
follows.

Proposition 15.4 (Optimality Conditions for the Lagrangian Dual Problem) A
dual vector u ∈ R

m+ is optimal, that is, u ∈ U∗, if and only if ∂h(u) − NR
m+(u) � 000,

or equivalently, ∂h(u)∩NR
m+(u) �= ∅, that is, if and only if there exists a γ ∈ ∂h(u)

such that γ ≤ 000 and u�γ = 0 hold.

4While Proposition 15.1 implies that the function h is differentiable at u ∈ R
m if the set Xconv(u)

is a singleton, the opposite, however, does not hold in general.
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Further, subgradients that verify the optimality of dual solutions correspond to
optimal solutions to the convexified primal problem (15.11e), as expressed below.

Proposition 15.5 (Primal–Dual Optimality Conditions for the Convexified
Problem) Let (x,u) ∈ Xconv × R

m+. Then (x,u) ∈ X∗
conv × U∗ if and only

if x ∈ Xconv(u) and b − Ax ∈ ∂h(u) ∩ NR
m+(u) hold, that is, if and only if

x ∈ Xconv(u), Ax ≥ b, and u�(b − Ax) = 0 hold.

As is well known, a primal–dual pair (x,u) ∈ Xconv×R
m+ satisfies the conditions

of the proposition exactly when it is a saddle point of the Lagrange function L with
respect to Xconv × R

m+:

L(x,u) ≤ L(x,u) ≤ L(x,u), u ∈ R
m+, x ∈ Xconv. (15.13)

The mapping ∂h ∩ NR
m+ is constant on the dual solution set U∗. Hence,

irrespective of the choice of dual solution u∗ ∈ U∗ the solution set to the primal
problem (15.11e) may be expressed as

X∗
conv =

{
x ∈ Xconv(u

∗)
∣
∣
∣ Ax ≥ b; (

u∗)� (Ax − b) = 0
}

. (15.14)

In the typical situation, the subproblem solution set Xconv(u
∗) is not a singleton,

the dual objective function is nonsmooth on U∗, and finding a subgradient that
verifies dual optimality is computationally expensive. Further, since not all points
in Xconv(u

∗) are optimal in the primal problem,5 finding a point x ∈ X∗
conv is

nontrivial; this phenomenon is referred to as non-coordinability, and is relevant both
when the original problem is an LP or a mixed-binary linear optimization problem.

15.2.3 Conditions for Optimality and Near Optimality of
Mixed-Binary Linear Optimization Problems

The optimality conditions in Proposition 15.5 and the characterization in (15.14)
can be constructed because of the convexity of the problem (15.5), which yields
that strong duality, that is, h∗ = z∗

conv holds. For the nonconvex mixed-binary linear
optimization problem (15.2), for which h∗ ≤ z∗ (and typically h∗ < z∗) holds, these
conditions can be generalized through a well-defined relaxation.

5Usually, some points in Xconv(u
∗) are infeasible in (15.2), while others are feasible but non-

optimal.
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Proposition 15.6 (Primal–Dual Optimality Conditions for Mixed-Binary Lin-
ear Optimization) Let (x,u) ∈ X ×R

m+. Then (x,u) ∈ X∗ ×U∗ if and only if the
following system is consistent:

Ax ≥ b, (15.15a)

c�x + u�(b − Ax) ≤ h(u) + ε, (15.15b)

−u�(b − Ax) ≤ δ, (15.15c)

ε + δ ≤ z∗ − h∗, (15.15d)

ε, δ ≥ 0. (15.15e)

The conditions stated in Proposition 15.6 characterize primal–dual optimal solutions
through five properties:

(i) primal feasibility [x ∈ X and (15.15a)];
(ii) dual feasibility [u ∈ R

m+];
(iii) Lagrangian ε-optimality [(15.15b)];
(iv) a relaxed (δ-)complementarity [(15.15c)];
(v) a bounded sum of nonnegative perturbations [(15.15d)–(15.15e)].

The combination of the inequalities in (15.15) with the condition (x,u) ∈ X ×
R

m+ leads to the equality ε + δ = z∗ −h∗ being fulfilled. Further, the system (15.15)
is consistent for the primal–dual pair (x,u) ∈ X ×R

m+ if and only if the inequalities

L(x,u) − (z∗ − h∗) + ε ≤ L(x,u) ≤ L(x,u) + ε (15.16)

hold for all u ∈ R
m+ and all x ∈ X, and for some ε ∈ [0, z∗ − h∗], meaning that

(x,u) is a near saddle point to the Lagrange function L. For a zero duality gap, that
is, when z∗ = h∗, the conditions (15.15) reduce to those stated in Proposition 15.5
while the near saddle point property (15.16) reduces to that of an ordinary saddle
point, that is, (15.13).

Using the conditions (15.15) and an optimal Lagrangian dual solution u∗ ∈ U∗,
the optimal set of the mixed-binary linear optimization problem (15.2) is given by

X∗ =
⋃

δ=z∗−h∗−ε
ε∈[0, z∗−h∗]

{
x ∈ X

∣∣
∣Ax ≥ b; c�x − h∗ − ε ≤ −(u∗)�(b − Ax) ≤ δ

}
.

(15.17)

We define, for any u ∈ R
m+, the sets of ε-optimal [cf. (15.9a)] and δ-

complementary solutions to the Lagrangian subproblem by the following expres-
sions:

X
opt
ε (u) :=

{
x ∈ X

∣
∣ c�x + u�(b − Ax) ≤ h(u) + ε

}
, ε ≥ 0,
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X
comp
δ (u) :=

{
x ∈ X

∣
∣ − u�(b − Ax) ≤ δ

}
, δ ≥ 0.

The set X∗, as formulated in (15.17), can then for any u∗ ∈ U∗ be expressed as

X∗ =
⋃

ε∈[0, z∗−h∗]

{
x ∈ X

opt
ε (u∗)

∣
∣∣ Ax ≥ b; −(u∗)�(b − Ax) ≤ z∗ − h∗ − ε

}

(15.18a)

=
⋃

ε∈[0, z∗−h∗]

{
x ∈ X

opt
ε (u∗) ∩ X

comp
z∗−h∗−ε(u

∗)
∣
∣∣ Ax ≥ b

}
, (15.18b)

where (15.18a) is derived as a generalization of (15.14).
Given an optimal dual solution, the conditions in the expression (15.14) can, in

principle, be used to calculate an optimal solution to the convexified problem (15.5).
In contrast, given an optimal dual solution, the conditions in the expressions (15.17)
and (15.18) are in general not instrumental for finding optimal solutions to the
problem (15.2), because the size of the duality gap z∗− h∗ is unknown.

The characterizations (15.17) and (15.18) can be generalized to allow for
non-optimal choices of u ∈ R

m+ and to describe near optimal solutions to the
problem (15.2). For this purpose, we introduce the functions ε, δ : X × R

m+ �→ R,
defined by

ε(x,u) := c�x + u�(b − Ax) − h(u), (15.19a)

and

δ(x,u) := −u�(b − Ax). (15.19b)

It holds that ε(x,u) ≥ 0 when x ∈ X, and that δ(x,u) ≥ 0 when u ∈ R
m+ and Ax ≥

b. For any primal–dual pair (x,u) ∈ X×R
m+, (15.19) can be used to characterize the

ε-optimality and the δ-complementarity of a solution xappr(u) that is near optimal in
the Lagrangian subproblem (15.9a) and feasible in the primal problem (15.2), that
is, values of ε ≥ 0 and δ ≥ 0 such that xappr(u) is included in the sets X

opt
ε (u) =

{ x ∈ X | ε(x,u) ≤ ε } and X
comp
δ (u) = { x ∈ X | δ(x,u) ≤ δ }, respectively. Then,

for u ∈ R
m+ and β ≥ 0, the set of β-optimal solutions to the problem (15.2) can be

expressed as

X∗
β :=

{
x ∈ X

∣
∣∣ Ax ≥ b; c�x ≤ z∗ + β

}
(15.20a)

= {
x ∈ X

∣
∣ Ax ≥ b; ε(x,u) + δ(x,u) ≤ z∗ − h(u) + β

}
(15.20b)

=
{

x ∈ X
opt
ε (u) ∩ X

comp
δ (u)

∣
∣
∣Ax ≥ b; ε + δ ≤ z∗− h(u) + β; ε, δ ≥ 0

}
.

(15.20c)
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In particular, it holds that X∗
0 = X∗. Further, for β = 0 and any u ∈ U∗, the

characterizations (15.17)–(15.18) are recovered.
Neither of the characterizations in (15.20) are practically useful for solving the

problem (15.2), since the optimal value z∗ is unknown, but it suggests a heuristic
principle for searching for near optimal solutions. Given any value of u ∈ R

m+
[preferably being (near) optimal in the Lagrangian dual (15.10)], a point x ∈ X

such that Ax ≥ b holds and such that the values of ε(x,u) and δ(x,u) are both
small, should be sought, that is, a primal feasible solution that is ε-optimal and
δ-complementary, with small values of ε ≥ 0 and δ ≥ 0. A natural starting
point for such a heuristic search is a Lagrangian subproblem solution x(u) ∈
X

opt
0 (u) = X(u) [for which ε(x(u),u) = 0 holds], and the search should typically

be restricted to the set X. The search should then strive for primal feasibility with
respect to Ax ≥ b, while maintaining small values of ε(x,u) and δ(x,u). This
heuristic principle has shown to be effective for finding near optimal solutions
for applications where the problem (15.2) possesses specific structures that can be
exploited in a search which strive for primal feasibility.

Remark 15.2 In the case when the constraints (15.2b) are instead equalities,
δ(x,u) = 0 holds for any primal feasible solution. The characterization (15.20b)
then reduces to

X∗
β = {

x ∈ X
∣
∣Ax = b; ε(x,u) ≤ z∗ − h(u) + β

}
,

that is, primal feasibility and ε-optimality in the Lagrangian relaxed problem. In
particular, then X∗ = { x ∈ X | Ax = b; ε(x,u) ≤ z∗ − h(u) }. It follows that
Ax �= b must hold for any x ∈ X such that ε(x,u) < z∗ − h(u). Hence, a solution
x ∈ X is optimal in (15.2) if and only if it is the most near optimal solution in
the Lagrangian subproblem that is fulfills the relaxed constraints. This observation
implies that (15.2) can be solved by enumerating elements of X with respect to
increasing values of ε(x,u), whence the first one found that fulfills Ax = b is
therefore also optimal.

For the case of inequality constraints in the problem (15.2), only

X∗ ⊆ {
x ∈ X

∣
∣ Ax ≥ b; ε(x,u) ≤ z∗ − h(u)

}

holds, and there is no guarantee that a feasible solution with a minimal value of
ε(x,u) is optimal, since the corresponding value of δ(x,u) may be large [while an
optimal solution may have a large value of ε(x,u) and a small value of δ(x,u)]. If,
however, an upper bound z ≥ z∗ is at hand, by enumerating all elements in the set
{x ∈ X |Ax ≥ b; ε(x,u) ≤ z − h(u) } an optimal solution to (15.2) will be found.
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15.3 Conditional Subgradient Optimization

This section presents a generalization of subgradient optimization for solving a
Lagrangian dual problem to utilize conditional subgradients. We discuss a particular
choice of conditional subgradients, obtained through Euclidean projections, which
leads to an easily implementable modification of traditional subgradient optimiza-
tion schemes. Computational experiments have shown that the resulting subgradient
projection method performs better than traditional subgradient optimization; in
some cases the difference is considerable. This generalization of subgradient opti-
mization is especially advantageous in the context of Lagrangian duals possessing
many nonnegativity constraints, onto which Euclidean projections are simple. The
section further presents a computationally cheap scheme for generating ergodic
sequences of subproblem solutions and which is shown to converge to the optimal
set of the convexified problem (15.5). This scheme is then enhanced, in terms of
faster convergence to the optimal set. The section is then concluded by a heuristic
scheme for the finite generation of feasible solutions that are ε-optimal, for an
arbitrary ε > 0.

15.3.1 Basic Convergence in the Lagrangian Dual Problem

We consider solving the Lagrangian dual problem (15.10) by the conditional
subgradient optimization method, which is given by the following. Choose a starting
solution u0 ∈ R

m+ and compute iterates ut , t = 0, 1, . . ., according to

ut+ 1
2 = ut + αt

(
b − Ax(ut ) − ν(ut )

)
, ut+1 = [

ut+ 1
2
]
+, (15.21)

where x(ut ) ∈ X(ut ) solves the Lagrangian subproblem in (15.9) at ut ∈ R
m+,

so that b − Ax(ut ) ∈ ∂h(ut ) is a subgradient to h at ut , ν(ut ) ∈ NR
m+(ut ) is an

element of the normal cone of Rm+ at ut , αt > 0 is the step length chosen at iteration
t , and [·]+ denotes the Euclidean projection onto the nonnegative orthant Rm+. Note
that b − Ax(ut ) − ν(ut ) ∈ ∂R

m+h(ut ), that is, the step direction belongs to the
conditional subdifferential, defined in (15.12).

If { ν(ut ) } := {000}, then the method (15.21) reduces to the traditional subgradient
optimization method.

The choices ν(ut ) := argminv∈N
R

m+ (ut ) ‖ v − (b − Ax(ut )) ‖, where ‖ · ‖
denotes the Euclidean norm, define a special case of the method (15.21) called the
subgradient projection method, which uses a feasible direction from every ut ∈ R

m+,
as

bi − Aix(ut ) − νi(u
t ) =

{[
bi − Aix(ut )

]
+ , if ut

i = 0,

bi − Aix(ut ) , if ut
i > 0,

i = 1, . . . ,m,

(15.22)
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here bi /Ai /νi(·) denotes the i-th element/row of the vector/matrix b/A/ν(·).
Due to the nondifferentiability of the Lagrangian dual objective function, subgra-

dient based optimization methods cannot rely on a one dimensional maximization
for determining the step length in each iteration. Instead, to ensure convergence
of the sequence of dual iterates to optimality, the step lengths must be computed
according to a (typically predefined) rule. We next present convergence results
for the method (15.21) under different step length rules. The first assures that the
sequence of dual iterates tends to the set of solutions to the Lagrangian dual.

Theorem 15.1 (Convergence to the Solution Set by Divergent Series Step
Lengths) Let the method (15.21) be applied to the problem (15.10), with the
sequence { αt } of step lengths fulfilling the divergent series conditions

αt > 0, t = 0, 1, 2, . . . , (15.23a)

αt → 0, as t → ∞, (15.23b)

and

{
t−1∑

s=0

αs

}

→ ∞, as t → ∞. (15.23c)

If the sequence { ν(ut ) } is bounded then it holds that { h(ut ) } → h∗ and{
minu∈U∗ ‖u − ut ‖ } → 0 as t → ∞.

Proof We show that the iterates will eventually belong to an arbitrarily small
neighbourhood of the set of solutions to (15.10).

Let δ > 0 be arbitrary and define Bδ := { u ∈ R
m | ‖u‖ ≤ δ }. Since the function

h is piecewise affine and concave, the set Rm+ is nonempty, closed and convex, and
the set U∗ is nonempty and polyhedral, there exists an ε > 0 such that the level set
Uε := { u ∈ R

m+ | h(u) ≥ h∗ − ε } fulfills Uε ⊆ U∗ + Bδ/2. Further, the sequence
{ b − Ax(ut ) − ν(ut ) } is bounded and αt → 0. Hence, there exists an Nδ such that
αt ‖ b−Ax(ut )− ν(ut ) ‖2 ≤ ε and αt ‖ b−Ax(ut )− ν(ut ) ‖ ≤ δ/2 for all t ≥ Nδ .

The sequel of the proof is based on induction. First we show that there exists a
tδ ≥ Nδ such that utδ ∈ U∗ + Bδ . Then, we establish that if the inclusion ut ∈
U∗ + Bδ holds for some value t ≥ Nδ , then also ut+1 ∈ U∗ + Bδ .

For an arbitrary u∗ ∈ U∗, in each iteration t of the method (15.21) the relations

∥∥
∥u∗ − ut+1

∥∥
∥

2 =
∥∥
∥u∗ − [

ut + αt

(
b − Ax(ut ) − ν(ut )

)]
+

∥∥
∥

2
(15.24)

≤ ∥
∥u∗ − ut − αt

(
b − Ax(ut ) − ν(ut )

) ∥
∥2

= ∥
∥u∗ − ut

∥
∥2 − 2αt

(
b − Ax(ut ) − ν(ut )

)�(
u∗ − ut

)

+ α2
t

∥
∥ b − Ax(ut ) − ν(ut )

∥
∥2
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hold, where the inequality follows from the projection property.6 Now suppose that,
for all s ≥ Nδ , the inequality

2
(
b − Ax(us ) − ν(us )

)�(
u∗ − us

) − αs

∥
∥ b − Ax(us) − ν(us )

∥
∥2

> ε

(15.25)

holds. Then by telescoping (15.24), we obtain that for every t ≥ Nδ , the inequality

∥
∥
∥u∗ − ut+1

∥
∥
∥

2
<

∥
∥
∥u∗ − uNδ

∥
∥
∥

2 − ε

t∑

s=Nδ

αs,

holds. Then, from (15.23c) it follows that the right-hand-side of this inequality tends
to −∞ as t → ∞, which is clearly impossible. Therefore, the inequality

2
(
b − Ax(ut ) − ν(ut )

)�(
u∗ − ut

) − αt

∥
∥ b − Ax(ut ) − ν(ut )

∥
∥2 ≤ ε (15.26)

must hold for at least one iteration t = tδ ≥ Nδ . By definition of Nδ the inequality
αtδ‖ b − Ax(utδ ) − ν(utδ ) ‖2 ≤ ε holds, which together with (15.26) implies the
inequality (b−Ax(utδ )−ν(utδ ))�(u∗−utδ ) ≤ ε. Since u∗,utδ ∈ R

m+, the definition
(15.12) implies the inequality h(u∗)−h(utδ ) ≤ (b−Ax(utδ )− ν(utδ ))�(u∗ −utδ ).
Hence, it holds that h(utδ ) ≥ h∗ − ε, that is, utδ ∈ Uε ⊆ U∗ + Bδ/2 ⊂ U∗ + Bδ .

Now, suppose that ut ∈ U∗ + Bδ for some t ≥ Nδ . If (15.25) holds, then (15.24)
implies the inequality ‖u∗ − ut+1 ‖ < ‖u∗ − ut ‖ for any u∗ ∈ U∗. Defining the
Euclidean projection of ut onto U∗ as ut

proj := argminu∈U∗ ‖u−ut‖ then yields the
inequalities

∥
∥
∥ut+1

proj − ut+1
∥
∥
∥ ≤

∥
∥
∥ut

proj − ut+1
∥
∥
∥ <

∥
∥
∥ut

proj − ut
∥
∥
∥ ≤ δ, t = 0, 1, . . . ,

which imply the inclusion ut+1 ∈ U∗ + Bδ . Otherwise, (15.26) must hold and,
using the same arguments as above, we obtain the inequality h(ut ) ≥ h∗ − ε, that
is, ut ∈ Uε ⊆ U∗ + Bδ/2. Since the relations

∥
∥∥ut+1 − ut

∥
∥∥ =

∥
∥∥

[
ut + αt

(
b − Ax(ut ) − ν(ut )

)]
+ − ut

∥
∥∥

≤ ∥
∥ut + αt

(
b − Ax(ut ) − ν(ut )

) − ut
∥
∥

= αt

∥
∥ b − Ax(ut ) − ν(ut )

∥
∥ ≤ δ

2

hold whenever t ≥ Nδ , it follows that ut+1 ∈ U∗ + Bδ/2 + Bδ/2 = U∗ + Bδ .
We conclude that, in either case, whenever t ≥ Nδ , ut ∈ U∗ + Bδ implies that
ut+1 ∈ U∗ + Bδ .

6The projection property states that for any vectors v,w ∈ R
m and any convex set U ⊆ R

m, the
inequality

∥∥argminu∈U ‖u − v‖ − argminu∈U ‖u − w‖∥∥ ≤ ‖v − w‖ holds.
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By induction with respect to t ≥ tδ , it follows that ut ∈ U∗ + Bδ for all t ≥ tδ .
Since this holds for arbitrarily small values of δ > 0 and since the function h is
continuous, the theorem follows. ��

By requiring also that the sum of squared step lengths is convergent it is ensured
that the sequence of dual iterates accumulates at a point in the dual solution set.

Theorem 15.2 (Convergence to a Solution by Quadratically Convergent Diver-
gent Series Step Lengths) Let the method (15.21) be applied to the problem
(15.10), with the step lengths αt fulfilling the conditions (15.23) as well as

{
t−1∑

s=0

α2
s

}

→ p, as t → ∞, (15.27)

where p < ∞. If the sequence { ν(ut ) } is bounded, then { ut } → u∞ ∈ U∗.

Proof Let u∗ ∈ U∗ be arbitrary and let t ≥ 1. Telescoping (15.24) yields the
inequality

∥
∥u∗ − ut

∥
∥2 ≤

∥
∥∥u∗ − u0

∥
∥∥

2 − 2
t−1∑

s=0

αs

(
b − Ax(us ) − ν(us )

)� (
u∗ − us

)

+
t−1∑

s=0

α2
s

∥∥ b − Ax(us) − ν(us )
∥∥2

. (15.28)

Since u∗ ∈ U∗, us ∈ R
m+, and b − Ax(us ) − ν(us) ∈ ∂R

m+h(us) for all s ≥ 0 we
obtain the inequalities

h(us) ≤ h(u∗) ≤ h(us ) + (
b − Ax(us ) − ν(us)

)� (
u∗ − us

)
, (15.29)

and hence that the inequality
(
b − Ax(us ) − ν(us )

)�
(u∗ − us) ≥ 0 holds for

all s ≥ 0. We define c := supt { ‖ b − Ax(ut ) − ν(ut ) ‖ }, so that the inequality
‖ b − Ax(us) − ν(us) ‖ ≤ c holds for all s ≥ 0. From (15.27) and (15.23a) follow
that

∑t−1
s=0 α2

s < p for all t ≥ 1. By inserting this in (15.28), we then conclude that
‖u∗ − ut ‖2 < ‖u∗ − u0 ‖2 + pc2 for any t ≥ 1; it follows that the sequence { ut }
is bounded.

Assume now that there is no subsequence T such that { (b − Ax(ut ) −
ν(ut ))�(u∗ − ut ) }t∈T → 0. Then, there exists an ε > 0 and a tε > 1 such
that the inequality

(
b − Ax(us ) − ν(us )

)�
(u∗ − us) ≥ ε for all s ≥ tε . By

(15.28) and (15.23c) then follow that { ‖u∗ − ut ‖ } → −∞, which is clearly
impossible. Therefore, there is a subsequence T such that { (b − Ax(ut ) −
ν(ut ))�(u∗ − ut ) }t∈T → 0. From (15.29) then follows that { h(ut ) }t∈T → h∗.
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The boundedness of the sequence { ut } implies the existence of an accumulation
point of the subsequence { ut }t∈T , say u∞, and by the continuity of h then follows
that u∞ ∈ U∗.

To show that u∞ is the only accumulation point of the sequence { ut }, let δ > 0
and choose an Nδ ≥ 0 such that the inequalities ‖u∞ − uNδ‖2 ≤ δ/2 and∑∞

s=Nδ
α2

s ≤ δ/(2c2) hold. Consider any t > Nδ . Analogously to the derivation
of (15.28), and using (15.29), we then obtain that

∥
∥u∞ − ut

∥
∥2 ≤

∥
∥
∥u∞ − uNδ

∥
∥
∥

2 +
t−1∑

s=Nδ

α2
s

∥
∥ b − Ax(us) − ν(us)

∥
∥2

<
δ

2
+ δ

2c2 c2 = δ.

Since this holds for arbitrarily small values of δ > 0, the theorem follows. ��
In subgradient optimization, the important Polyak step length rule has doc-

umented practical usefulness. Convergence to an optimal solution with this step
length rule relies on the optimal objective value h∗. This result extends to the case
of the conditional subgradient optimization method (15.21), for which the Polyak
step length formula is defined by

αt := θt

(
h∗ − h(ut )

)

‖ b − Ax(ut ) − ν(ut ) ‖2 , 0 < ε1 ≤ θt ≤ 2 − ε2 < 2, t = 0, 1, 2, . . .

(15.30)

Proposition 15.7 (Convergence to a Solution by Polyak Step Lengths) Let the
method (15.21) be applied to the problem (15.10), with the step lengths αt fulfilling
the conditions (15.30). If the sequence { ν(ut ) } is bounded, then { h(ut ) } → h∗ and
{ ut } → u∞ ∈ U∗.

Remark 15.3 With step lengths defined by (15.30), the case of subgradient projec-
tion according to (15.22) yields actual steps in (15.21) (that is, ut+1 − ut ) that are
longer, as compared with the case of plain subgradients, that is, when { νt } ≡ {000 }
holds.

For an ε > h − h∗ ≥ 0, finite convergence to ε-optimality can be achieved by
replacing h∗ in (15.30) by an upper bound h ≥ h∗ and letting θt ≡ 1.

Proposition 15.8 (Finite ε-Optimality by Polyak Step Lengths) Let the method
(15.21) be applied to the problem (15.10), with the step lengths { αt } defined by

αt := θt

(
h − h(ut )

)

‖ b − Ax(ut ) − ν(ut ) ‖2
, t = 0, 1, 2, . . . , (15.31)
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where θt ≡ 1 and h > h∗. If the sequence { ν(ut ) } is bounded, then for any ε > 0,
there is a tε > 0 such that h(utε ) ≥ 2h∗ − h − ε.

Our results to follow in Sect. 15.3.2—on ergodic convergence to a primal sol-
ution—rely on the divergent series conditions (15.23), (15.27) on the step lengths in
the method (15.21). By ensuring that the sequence { αt } fulfills the conditions

a

b + t
≤ αt ≤ a

b + t
, 0 < a ≤ a, b > 0, t = 0, 1, . . . , (15.32)

convergence in terms of Theorem 15.2 can, however, be shown.7

Corollary 15.1 (Convergence to a Solution by Generalized Harmonic Series
Step Lengths) Let the method (15.21), where the sequence { αt } fulfills (15.32),
be applied to the problem (15.10). If the sequence { ν(ut ) } is bounded, then
{ ut } → u∞ ∈ U∗ hold.

15.3.2 Ergodic Convergence in the Primal Problem

The conditional subgradient optimization method (15.21) constructs a sequence
{ x(ut ) } of solutions to the Lagrangian subproblem (15.9). Due to the non-
coordinability of the Lagrangian subproblem (see Sect. 15.2.2) this sequence is,
however, not convergent. We propose a scheme for generating an ergodic sequence
of subproblem solutions, which is shown to converge to the solution set X∗

conv. The
generation of the ergodic sequence is computationally cheap and its storage requires
a relatively small amount of memory. The sequence is defined by convexity weights
that are proportional to the step lengths αt ; the latter requirement is then generalized
and improved.

From Propositions 15.2 and 15.4 follow that the set ∂h(u∞) ∩ NR
m+(u∞) is

nonempty. The next proposition establishes that the sequence { b − Ax(ut ) } of
subgradients to the dual objective function converges in an ergodic sense to an
element that verifies optimality of the Lagrangian dual, in terms of Proposition 15.4.

Proposition 15.9 (Ergodic Subgradients Converge to the Optimality-Verifying
Set) Apply the method (15.21), (15.23) to the problem (15.10) and define the
sequence

{
gt

}
as

gt := 1
∑t−1

s=0 αs

t−1∑

s=0

αs

(
b − Ax(us)

)
, t = 1, 2, . . .

If the sequence { ν(ut ) } is bounded, then
{

minγ∈∂h(u∞)∩N
R

m+ (u∞) ‖ γ − gt ‖ } → 0.

7For any sequence { αt } of step lengths as defined in (15.31) [or according to (15.23), (15.27)],
there exists constants a, a, and b such that the conditions (15.32) are fulfilled.
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The ergodic sequence
{
xt

}
is then defined as weighted averages (that is, convex

combinations) of the subproblem solutions found up to iteration t of (15.21), as

xt := 1
∑t−1

s=0 αs

t−1∑

s=0

αsx(us), t = 1, 2, . . . (15.33)

The convergence of the sequence { xt } to the set X∗
conv, as expressed in (15.14),

is then established in terms of fulfilment of the optimality conditions in Proposi-
tion 15.5.

Theorem 15.3 ({ xt } Converges to the Optimal Set of the Convexified Problem)
Let the method (15.21), (15.23) be applied to the problem (15.10), the set X∗

conv and
the sequence { xt } be given by (15.14) and (15.33), respectively, and suppose that
the sequence { ν(ut ) } is bounded. Then,

{
minx∈X∗

conv
‖ x − xt ‖ } → 0.

Efficient updates of the ergodic iterates xt requires only the previous ergodic
iterate xt−1 and subproblem solution x(ut−1), according to the convex combination

xt :=
∑t−1

s=0 αs − αt−1
∑t−1

s=0 αs

xt−1 + αt−1
∑t−1

s=0 αs

x(ut−1), t = 2, 3, . . . (15.34)

with x1 := x(u0).

15.3.3 Enhanced Primal Ergodic Convergence

The convergence of the ergodic sequence of subproblem solutions according to
Theorem 15.3 is, however, typically very slow. Efforts have therefore been put
into enhancing the convergence speed, by exploiting more information from later
subproblem solutions than from earlier ones. We next present a more general pattern
for constructing the ergodic sequences; the ergodic sequence { x̃t } is defined by

x̃t :=
t−1∑

s=0

μt
sx(us );

t−1∑

s=0

μt
s = 1; μt

s ≥ 0, s = 0, . . . , t − 1,

(15.35)

where the convexity weights μt
s are defined as

μt
s := γ t

s αs, s = 0, . . . , t − 1, t = 1, 2, . . . , (15.36a)
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and the parameters γ t
s fulfil the requirements (N > 0 being a constant)

γ t
s ≥ γ t

s−1, s = 1, . . . , t − 1, t = 2, 3, . . . ,

(15.36b)
{

max
s∈{1,...,t−1}

{
γ t
s − γ t

s−1

}
}

→ 0, as t → ∞, (15.36c)

γ t
0 → 0, as t → ∞, (15.36d)

γ t
t−1 ≤ N, t = 1, 2, . . . (15.36e)

The requirement (15.36b), together with the definition (15.36a), implies the inequal-
ity μt

s (μt
s−1)

−1 ≥ αs (αs−1)
−1, which means that the ratio of any two consecutive

convexity weights should be no less than that of the corresponding step lengths.
The requirement (15.36c) implies that the difference between consecutive pairs of
subsequent convexity weights tends to zero as t increases, meaning that no primal
iterate may be completely neglected. The requirement (15.36d) implies, however,
that the weight (that is, μt

0) of the first iterate [that is, x(u0)] tends to zero when
t increases. The requirements (15.36e), (15.36d), and (15.36b) assure that, for
decreasing step lengths αs , the convexity weights μt

s decrease at a rate not slower
than that of the step lengths. Efficient updates of the ergodic iterates x̃t can be made,
analogously to (15.34).

Theorem 15.4 ({ x̃t } Converges to the Optimal Set of the Convexified Problem)
Apply the method (15.21), (15.23), (15.27) to the problem (15.10) and define the set
X∗

conv and the sequence { x̃t } by (15.14) and (15.35), (15.36), respectively. If the
sequence { ν(ut ) } is bounded, then

{
minx∈X∗

conv
‖ x − x̃t ‖ } → 0.

Remark 15.4 For any fixed value of s ∈ {0, . . . , t − 1}, the requirements (15.36b)–
(15.36e) imply that γ t

s ≤ γ t
0 + s ·maxr∈{1,...,t−1}

{
γ t
r −γ t

r−1

} → 0 as t → ∞. This
yields that μt

s = γ t
s αs → 0 as t → ∞, since αs < ∞, s = 0, 1, . . .

Remark 15.5 The ergodic sequence {xt }, defined in (15.33), is equivalent to the
special case of (15.35), (15.36) defined by γ t

s := ( ∑t−1
r=0 αr

)−1 (being independent
of s). For this choice of { γ t

s }, the requirements (15.36b)–(15.36e) are fulfilled with
N := (α0)

−1.

Remark 15.6 For the special case of (15.35), (15.36) given by (15.32) with a :=
a = a, that is, modified harmonic series step lengths

αs := a

b + s
, a > 0, b > 0, s = 0, 1, . . . , t − 1, (15.37)

and choosing γ t
s := (tαs )

−1, the convexity weights become μt
s = t−1 (then, x̃t

equals a simple average of the subproblem solutions found). For these choices of



15 MILP: Primal–Dual Relations and Dual Subgradient and Cutting-Plane Methods 519

{ γ t
s } and { αs }, the requirements (15.36b)–(15.36e) are fulfilled, with N := a−1 ·

max { b, 1 }.
By choosing the step lengths αt according to (15.37) and letting the sequence

{ μt
s } of convexity weights fulfil the requirements

μt
s ≥ μt

s−1, s = 1, . . . , t − 1, t = 2, 3, . . . ,

(15.38a)
{
t · max

s∈{1,...,t−1}
{
μt

s − μt
s−1

}} → 0, as t → ∞, (15.38b)

t μt
t−1 ≤ M, t = 1, 2, . . . , (15.38c)

where M > 0 is a constant, it can be shown that also the requirements (15.36b)–
(15.36e) are fulfilled, with N = a−1M · max{ b, 1 }.

The so-called sk-rule, for which the corresponding convexity weights, μt
s , fulfill

the requirements (15.38), is defined by

μt
s := (s + 1)k

∑t−1
r=0(r + 1)k

, s = 0, . . . , t − 1, t = 1, 2, . . . , k ≥ 0.

(15.39)

For k > 0, the sk-rule results in an ergodic sequence (15.35) in which the later
iterates are assigned higher weights than the earlier ones. For larger values of k, the
weights are shifted towards later iterates. Given that step lengths αt according to
(15.37) are utilized in the method (15.21) applied to the Lagrangian dual (15.10), it
can be shown that weights according to (15.39) fulfill the requirements (15.38), so
that convergence for the resulting primal ergodic sequence { x̃t } to the optimal set
X∗

conv can be established.

Remark 15.7 Note that the s0-rule yields μt
s = t−1 [cf. Remark 15.6, where γ t

s =
(tαs)

−1]. For k > 0, the sk-rule results in an ergodic sequence in which later iterates
are assigned higher weights than earlier ones. For larger values of k, the weights are
shifted towards increasingly later iterates.

Remark 15.8 Since the conditional subgradient optimization method (15.21) is
memory-less, without loss of generality the computation of the ergodic sequences
{ xt }, { gt }, and { x̃t } may be postponed a finite number of iterations. If the
postponement is “long enough”, each xt (or x̃t ) will be a solution to the Lagrangian
subproblem at the optimal dual point u∞, as defined in Theorem 15.2.
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15.3.4 Finite Primal Feasibility and Finite ε-Optimality

Theorem 15.3 establishes optimality in the limit for the sequence { xt }. While
dual feasibility holds for the sequence { ut }, in general neither primal feasibility
(that is, Axt ≥ b) nor complementarity [that is, (ut )�(b − Axt ) = 0] will
be finitely satisfied. Eventually, however, xt will be both near feasible and near
complementary. Whenever finite primal feasibility is required, a procedure can be
applied that converts any xt into a feasible solution to (15.5), for example, by
computing the Euclidean projection of xt onto the feasible set, as

xt
proj := argmin

x∈Xconv

{ ∥
∥ x − xt

∥
∥

∣
∣ Ax ≥ b

}
. (15.40)

Solving (15.40) regularly may, however, be computationally too expensive. Instead,
we consider a heuristic procedure, preferably exploiting the structure of the set { x ∈
Xconv | Ax ≥ b } in the search for a feasible and near optimal solution to (15.40).
Let the function δ : R+ �→ R+ be continuous and such that δ(β) > 0 whenever
β > 0 and limβ→0+ δ(β) = 0. Define a heuristic projection xt

heur of xt ∈ Xconv by
the inclusion

xt
heur ∈ {

x ∈ Xconv | Ax ≥ b
}
, (15.41a)

and such that
∥∥
∥ xt

heur − xt
proj

∥∥
∥ ≤ δ(β) whenever

∥∥
∥ xt − xt

proj

∥∥
∥ ≤ β. (15.41b)

Theorem 15.5 (Convergence to Primal Optimality by Heuristic Projections)
Let the method (15.21), (15.23), (15.27) be applied to the problem (15.10). Let
the set X∗

conv and the sequences { xt }, { xt
proj }, and { xt

heur } be defined by (15.14),
(15.33), (15.40), and (15.41a), respectively. If the sequence { ν(ut ) } is bounded and
the conditions (15.41b) hold, then

{
minx∈X∗

conv
‖ x − xt

heur ‖ } → 0.

We can now construct an algorithm employing heuristic projections and yielding
convergence to the optimal value in both the primal and dual procedures.

Corollary 15.2 (Finite Termination at ε-Optimality) Given the assumptions of
Theorem 15.5, for every ε > 0 there is a tε > 0 such that c�xt

heur −h(ut ) ≤ ε holds
for all t ≥ tε .

This projection principle is thus a way to recover primal feasibility, and
eventually also optimality, in an otherwise purely dual method.
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15.4 Dual Cutting-Planes: Dantzig–Wolfe Decomposition

Assuming that a nonempty subset Q ⊆ Q is given, the Lagrangian dual function is
outer approximated by the function h : Rm �→ R as defined by

h(u) := b�u + min
q∈Q

{ (
c − A�u

)�
xq

}
. (15.42)

This function is formed by the point-wise minimum of
∣
∣Q

∣
∣ affine functions. Hence,

it is piecewise affine and concave, as is the Lagrangian dual function h. Clearly,
h(u) ≥ h(u) holds for any u ∈ R

m. Hence, the problem

h
∗ := max

u∈Rm+
h(u), (15.43)

is a relaxation of the Lagrangian dual problem (15.10), so that h
∗ ≥ h∗ holds. The

subdifferential of the function h at u is given by

∂h(u) := conv
q∈Q(u)

{
b − Axq

}
, u ∈ R

m+,

where Q(u) denotes the optimal index set of the inner minimization in (15.42), and
its conditional subdifferential is given by

∂R
m+h(u) = ∂h(u) − NR

m+(u), u ∈ R
m+.

The relaxed dual problem (15.43) has a bounded optimal solution if and only if

000 ∈
⋃

u∈Rm+

∂R
m+h(u). (15.44)

Remark 15.9 A sufficient condition for the relaxed Lagrangian dual problem
(15.43) to have a bounded optimal solution is that some point xq , q ∈ Q, is feasible
in the original mixed-binary linear optimization problem (15.2), since this implies
that

h
∗ = max

u∈Rm+

{
min
q∈Q

{
c�xq + u� (

b − Axq
)}

}

≤ max
u∈Rm+

{
c�xq + u� (

b − Axq
) }

= c�xq

holds, where the second equality holds because Axq ≥ b.
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Assuming that the condition (15.44) holds, we find a u ∈ R
m+ such that the

inclusion 000 ∈ ∂R
m+h(u) holds, implying that u is optimal in (15.42). Hence, h

∗ =
h(u) holds. The value of the Lagrangian dual function at this point is

h(u) = b�u + min
x∈X

{ (
c − A�u

)�
x

}
= b�u + min

q∈Q

{ (
c − A�u

)�
xq

}
.

From the Lagrangian dual problem (15.10) we conclude that h(u) ≤ h∗. To
summarize, the relations h(u) ≤ h∗ ≤ h

∗
hold, that is, the values h

∗
and h(u)

provide upper and lower bounds, respectively, on the optimal value h∗.
If the equality h(u) = h

∗
holds, it follows that h(u) = h∗, implying that u is

optimal in (15.10). In the case when h(u) < h
∗

holds, we consider any solution to
the minimization in (15.8) for u = u, which we denote by xq , where q ∈ Q(u),

such that h(u) = b�u + (
c − A�u

)�
xq holds. Then, the relations

b�u + (
c − A�u

)�
xq < h

∗ = b�u + min
q∈Q

{ (
c − A�u

)�
xq

}

hold, which yields that q /∈ Q. By then augmenting the set Q with the index q,
an improved outer approximation of the Lagrangian dual function is obtained. By
resolving the problem (15.43) and repeating, an iterative procedure for solving the
Lagrangian dual problem (15.10) is obtained. Its convergence is finite, since the set
Q is finite and since a point xq can never be regenerated.

The above procedure is commonly described as a cutting-plane or constraint
generation procedure for the LP formulation (15.11b) of the Lagrangian dual
problem. This formulation can be restated as

h∗ = max
(u,v)∈Rm+×R

{
b�u + v

∣
∣ c�xq − (

Axq
)�

u − v ≥ 0, q ∈ Q
}
. (15.45)

Let (u, v) ∈ R
m+ × R be optimal in the relaxed problem

h
∗ = max

(u,v)∈Rm+×R

{
b�u + v

∣
∣ c�xq − (

Axq
)�

u − v ≥ 0, q ∈ Q
}
. (15.46)

Then h
∗ = b�u + v. The question then is if all constraints in the problem (15.45)

are satisfied or not at the point (u, v) = (u, v). This is determined by finding the
most violated constraint, if any, and amounts to solving

min
q∈Q

{
c�xq − (

Axq
)�

u − v
}

= min
q∈Q

{
b�u + (

c − A�u
)�

xq − h
∗ }

= b�u + (
c − A�u

)�
xq − h

∗

= h(u) − h
∗
, (15.47)
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where xq ∈ X(u) solves the minimization in (15.8) at u = u. If the minimum value
h(u)−h

∗
is negative, then a most violated constraint has been identified. Otherwise,

h(u) = h
∗

holds and u ∈ R
m+ solves the dual problem (15.10).

The dual cutting-plane procedure sketched above is dually equivalent to applying
Dantzig–Wolfe decomposition to the convexified problem (15.5), which by the
reformulation (15.11c) is equivalent to the complete Dantzig–Wolfe master problem

min
λ

⎧
⎨

⎩

∑

q∈Q

(
c�xq

)
λq

∣
∣
∣
∣∣
∣

∑

q∈Q

(
Axq

)
λq ≥ b;

∑

q∈Q
λq = 1; λq ≥ 0, q ∈ Q

⎫
⎬

⎭
,

(15.48)

while also being the LP dual of the problem (15.45). Since

Xconv =
⎧
⎨

⎩
x =

∑

q∈Q
λqxq

∣
∣
∣
∣∣
∣

∑

q∈Q
λq = 1; λq ≥ 0, q ∈ Q

⎫
⎬

⎭

holds, the variables λq in (15.48) are commonly referred to as convexity variables
and the equality

∑
q∈Q λq = 1 as a convexity constraint. In Dantzig–Wolfe

decomposition, this problem is solved using the linear programming technique
called column generation, in which, for this application, a column corresponds to
the data of a convexity variable, that is, the values of the scalar c�xq , the vector
Axq , and a 1.

Using the analogous reformulation as in (15.11), we obtain

h
∗ = max

u∈Rm+

{
b�u + min

q∈Q

{ (
c − A�u

)�
xq

}}
(15.49a)

= min
λ

⎧
⎨

⎩

∑

q∈Q

(
c�xq

)
λq

∣∣
∣
∣
∣
∣

∑

q∈Q

(
Axq

)
λq ≥ b;

∑

q∈Q
λq = 1; λq ≥ 0, q ∈ Q

⎫
⎬

⎭

(15.49b)

= min
x

{
c�x

∣
∣
∣ Ax ≥ b; x ∈ conv

q∈Q
{
xq

}
}
. (15.49c)

The problem (15.49b) is the restricted Dantzig–Wolfe master problem, referring
to the fact that this problem includes the variables λq , with the corresponding

columns
(
c�xq, (Axq)�, 1

)�
, only for q ∈ Q ⊆ Q, which is clearly equivalent

to imposing the restrictions λq = 0 for q ∈ Q \ Q in (15.48).
Let (u, v) ∈ R

m+ × R be an optimal solution to the LP dual of the restricted
master problem. Using strong duality for LP, it then holds that h

∗ = b�u + v. The
LP reduced cost for any variable λq , q ∈ Q, in the complete master problem can
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then be expressed as

cq := c�xq − u�Axq − v = b�u +
(
c − A�u

)�
xq − h

∗
.

The problem of finding the variable λq , q ∈ Q, with the most negative reduced cost
reduces to find

min
q∈Q

{ (
c − A�u

)�
xq

}
= min

x∈X

{ (
c − A�u

)�
x

}
, (15.50)

which is in this context known as a column generation problem, or Dantzig–Wolfe
subproblem. If the solution to (15.50) corresponds to a negative reduced cost cq < 0,
q ∈ Q,8 then Q := Q ∪ {

q
}

and the problem (15.49b) is resolved. When no more
columns having negative reduced costs can be found, which clearly occurs finitely,
the convexified problem (15.5) has been solved.

Note that the problem (15.50) is equivalent to that of finding the most violated
cutting-plane in the dual space [cf. (15.47)], since each constraint in the cutting-
plane formulation of the Lagrangian dual corresponds to a convexity variable in
the master problem. Note also that relaxing the dual problem (15.45) into (15.46) is
dually equivalent to restricting the complete Dantzig–Wolfe master problem (15.48)
into (15.49b).

Remark 15.10 Many textbooks derive the Dantzig–Wolfe decomposition method
for an LP problem with two sets of explicit affine constraints, in our notation
corresponding to Ax ≥ b and x ∈ Xconv. The method can, however, be applied
also when no explicit representation of the set Xconv in terms of affine constraints is
available, as long as the subproblem (15.50) can be solved by some means.

Remark 15.11 If the mixed-binary linear optimization problem (15.2) has a Carte-
sian product structure, as in Remark 15.1, then a separate set of convexity variables
and a convexity constraint can be defined for each of the sets in the product. Letting
{yq

s }q∈Qs
denote the extreme points of conv Ys , s ∈ S, the complete Dantzig–Wolfe

master problem for the problem (15.7) becomes

z∗ = min
λsq , q∈Qs, s∈S

∑

s∈S

∑

q∈Qs

(
c�
s y

q
s

)
λsq (15.51a)

subject to
∑

s∈S

∑

q∈Qs

(
Asy

q
s

)
λsq ≥ b , (15.51b)

8It then holds that q ∈ Q \ Q, since cq ≥ 0 holds for all q ∈ Q.
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∑

q∈Qs

λsq = 1, s ∈ S, (15.51c)

λsq ≥ 0, q ∈ Qs , s ∈ S. (15.51d)

When applying column generation to the master problem (15.51), there will be one
Dantzig–Wolfe subproblem for each s ∈ S.

Since each vector ys , s ∈ S, is here described by a separate set of convexity
variables, the master problem (15.51) is based on a disaggregate representation,
while the master problem (15.48) is based on an aggregate representation. Whenever
the feasible set of the original problem (15.2) is described by a Cartesian product
set and coupling constraints, as in (15.7), a disaggregate representation is typically
favourable. This is due to (1) that the disaggregate and aggregate complete master
problems contain

∑
s∈S |Qs | and

∏
s∈S |Qs | convexity variables, respectively, and

(2) that a disaggregate restricted master problem is a relaxation of the corresponding
aggregate restricted master problem, and hence the former typically provides
stronger bounds on z∗.

15.5 A Two-Phase Method: Subgradient Optimization
and Dantzig–Wolfe Decomposition

Subgradient optimization and Dantzig–Wolfe decomposition as means for solving
the Lagrangian dual problem (15.10) possess their distinct advantages and disad-
vantages, which are consequences of the nondifferentiability of the Lagrangian dual
function and the inherent properties of these solution principles.

In subgradient optimization, the update of the dual iterate is inexpensive once the
Lagrangian relaxed problem has been solved. The method lacks, however, a good
termination criterion, and in practice it is therefore often run for a preset number of
iterations. Further, primal feasible solutions are typically not easily obtained, neither
to the mixed-binary linear optimization problem (15.2) nor to its convexified version
(15.5). It is, however, quite common to use a Lagrangian heuristic—tailored to
each specific application—to convert Lagrangian subproblem solutions into feasible
solutions to the original mixed-binary problem.

Dantzig–Wolfe decomposition converges finitely and produces feasible solutions
to the convexified problem (15.5). The latter property allows early termination
when the upper and lower bounds on the optimal value of (15.5) are close enough.
Each iteration of the method is, however, expensive, since the next dual iterate
is found by reoptimizing the LP restricted master problem. Further, due to the
inherent instability of cutting-plane approaches, the method typically shows a
poor convergence behaviour, in the sense that successive dual iterates may be
very far apart. This phenomenon is commonly prevented by the introduction of a
stabilization mechanism, such as trust regions in the dual space.
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Another way to improve a Dantzig–Wolfe decomposition scheme is to heuristi-
cally generate an initial set of columns of high quality. We here describe a specific
means to generate such columns, leading to a two-phase method that benefits from
the advantages of both subgradient optimization and Dantzig–Wolfe decomposition.
A first prediction phase employs subgradient optimization, in which Lagrangian
subproblem solutions are stored. At termination, a lower bound on the optimal value
of the convexified problem as well as a number of Lagrangian subproblem solutions
are at hand. A second solution phase uses these solutions to construct an initial
restricted master problem, whereafter the Dantzig–Wolfe method is employed.

The prediction phase aims at setting up a high quality initial restricted master
problem, such that the solution phase can attain and verify optimality in fewer
column generations. If the prediction phase works perfectly, then it is enough to
solve one restricted master problem and make one column generation in order to
reach and verify optimality. Hence, the solution phase can alternatively be viewed
as an evaluation of the outcome of the prediction phase, and if needed compensate
for its shortcoming. The rationale for the prediction phase is that the subgradient
optimization method asymptotically finds columns that are optimal in the complete
master problem, if the step lengths are appropriately chosen, as demonstrated below.

We consider solving the problem (15.10) by using the conditional subgradient
method (15.21), with a sequence { ν(ut ) } that is bounded and with step lengths
αt fulfilling the conditions (15.23) and (15.27), such that the assumptions of
Theorem 15.2 are fulfilled. This method will then in the limit find a dual solution
u∞, such that (u∞, v∞) is optimal in the LP dual (15.45) of the complete master
problem (15.48).

Define the index sets

Tq :=
{

t ∈ Z+
∣
∣x(ut ) = xq

}
, q ∈ Q,

and

Q̂ := {
q ∈ Q

∣
∣ Tq is infinite

} ⊆ Q,

that is, Q̂ contains the indices q ∈ Q such that xq solves the Lagrangian subproblem
an infinite number of times. Consider then the corresponding restricted master
problem

ĥ∗ := min
λ

⎧
⎨

⎩

∑

q∈Q̂

(
c�xq

)
λq

∣
∣
∣∣
∣
∣

∑

q∈Q̂

(
Axq

)
λq ≥ b;

∑

q∈Q̂
λq = 1; λq ≥ 0, q ∈ Q̂

⎫
⎬

⎭
.

(15.52)

Theorem 15.6 (Asymptotic Generation of Optimal Columns) Let the method
(15.21) be applied to the problem (15.10), with the step lengths { αt } fulfilling the
conditions (15.23) and (15.27), and assume that the sequence { ν(ut ) } is bounded.
Then ĥ∗ = h∗ holds.
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Further, let u∞ ∈ U∗ be the limit point for the sequence { ut } (cf. Theorem 15.2)
and let v = v∞ be optimal in (15.45) given that u = u∞, so that (u∞, v∞)

is an optimal dual solution to the complete master problem (15.48). For each
Lagrangian subproblem solution x(ut ), t ∈ Z+, define the reduced cost ct :=
c�x(ut ) − (u∞)� Ax(ut ) − v∞. Then c̄t = 0 holds for every t that is sufficiently
large.

Proof Consider the ergodic sequence
{
xt

}
of subproblem solutions given by

(15.33), that is, xt =
(∑t−1

s=0 αs

)−1 ∑t−1
s=0 αsx(us), t = 1, 2, . . . Define the

convexity weights

λt
q := 1

∑t−1
s=0 αs

∑

s∈T t
q

αs, q ∈ Q, t = 1, 2, . . . , (15.53)

where T t
q := { s ∈ {0, 1, . . . , t − 1} | x(us ) = xq }, q ∈ Q, t = 1, 2, . . . Clearly,

λt
q ≥ 0, q ∈ Q, and

∑
q∈Q λt

q = 1 hold for t = 1, 2, . . . Then, the ergodic solution
xt can alternatively be expressed as the convex combination

xt =
∑

q∈Q
λt

qxq, t = 1, 2, . . . (15.54)

The sequence { λt }∞t=1, where λt := (
λt

q

)
q∈Q, is contained in the unit simplex

in R
|Q|, in which it thus has some accumulation point, say λ. The sequence { xt }

then has an accumulation point at x := ∑
q∈Q λqxq . From Theorem 15.3 follows

that x ∈ X∗
conv must hold, which implies that λ is optimal in the complete master

problem (15.48).
For any q /∈ Q̂, the set Tq is finite and the formula (15.53) together with the

divergent series conditions (15.23) yield that λq = 0 holds. Hence, λ is feasible in
the restricted master problem (15.52). It follows that ĥ∗ = h∗ holds.

From the optimality of (u∞, v∞) in the LP dual (15.45) of the complete master
problem (15.48) follows that

h∗ = b�u∞ + v∞. (15.55)

Since the Lagrangian dual function h is polyhedral, for large enough values of t ,
x(ut ) solves the Lagrangian subproblem at ut as well as at u∞. Hence, it holds that
b − Ax(ut ) ∈ ∂h(ut ) ∩ ∂h(u∞), and it follows that the inequalities

h(u∞) ≤ h(ut ) + (
b − Ax(ut )

)�(
u∞ − ut

)

and

h(ut ) ≤ h(u∞) + (
b − Ax(ut )

)�(
ut − u∞)



528 A.-B. Strömberg et al.

hold. By combining these inequalities and simplifying we obtain the equalities

h(u∞) = h(ut ) + (
b − Ax(ut )

)�(
u∞ − ut

)

= c�x(ut ) + (
b − Ax(ut )

)�
ut + (

b − Ax(ut )
)�(

u∞ − ut
)

= c�x(ut ) − (
Ax(ut )

)�
u∞ + b�u∞,

which together with the equality (15.55) and h∗ = h(u∞) yield that

c�x(ut ) − (
Ax(ut )

)�
u∞ − v∞ = 0

holds when t is large enough. ��
According to Theorem 15.6, all columns that are needed to solve the complete

master problem (15.48) are eventually found in the subgradient optimization. In
case of nondegeneracy at a dual optimum, late iterations will provide exactly the
optimal basic columns of the complete master problem.9 Further, columns found
in the early iterations are never indispensable. These properties justify the use
of subgradient optimization for predicting optimal basic columns before applying
column generation.

In practice, the two-phase method works as follows. In the prediction phase, t̄

subgradient optimization iterations are performed, with step lengths fulfilling the
conditions (15.23) and (15.27). Lagrangian subproblem solutions are collected and
columns in the restricted master problem are constructed from iteration t ≤ t̄ .
Upon termination of this phase, an initial restricted master problem is available.
Thereafter, Dantzig–Wolfe decomposition is used as usual. In order to benefit from
the two-phase method, the Lagrangian relaxed problem must be computationally
cheap in comparison with the restricted master problems, since the prediction phase
involves a relatively large number of subgradient optimization iterations.

Theorem 15.3 suggests an ergodic sequence computed within the subgradient
optimization method (15.21) that asymptotically solves the problem (15.5), and
hence also (15.48). Finitely generated ergodic solutions are, however, typically
infeasible. In contrast, a Dantzig–Wolfe restricted master problem—finitely gener-
ated within the prediction phase—can be used to find feasible near optimal solutions
to (15.5). The key difference is that in the former approach, the primal solution is
defined by (15.54) with the convexity weights given a priori by (15.53), while in the
latter approach the values of the convexity weights are optimized by the restricted
master problem.

9In a degenerate dual optimum, nonbasic columns with zero reduced costs can also be obtained.
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15.6 Recovery of Primal Integer Solutions by Means
of Lagrangian Dual Methods

As an application of Theorem 15.3 we give a partial motivation for the success of
Lagrangian heuristics in cases where the Lagrangian lower bound is strong, that is,
when the difference z∗ − h∗ ≥ 0 is small. We establish that the extent to which one
may expect such heuristics to generate feasible solutions of high quality is governed
by the same factors as those determining the quality of lower bounds. Hence, a
solution strategy that yields a high quality Lagrangian lower bound h∗ = z∗

conv ≤ z∗
is also likely to yield a high quality upper bound z ≥ z∗.

15.6.1 Primal Integer Solutions From Lagrangian Heuristics

The basic idea behind Lagrangian heuristics is to use the information obtained from
the Lagrangian dual problem (15.10) to construct feasible solutions to the original
problem (15.2). A Lagrangian heuristic commonly works as follows. It is initiated
at a solution that is feasible with respect to the non-relaxed constraints (15.2c).
This solution is gradually adjusted through a finite number of steps that (1) use
information from the Lagrangian dual problem, (2) retain feasible in the non-relaxed
constraints (15.2c), and (3) strive for feasibility in the relaxed constraints (15.2b).
If the heuristic is successful, the final solution is feasible in (15.2). Lagrangian
heuristics are, however, often not guaranteed to find feasible solutions.

To comply with the required initial feasibility in the non-relaxed con-
straints (15.2c), Lagrangian heuristics are commonly initiated with (near) optimal
solutions to the subproblem in (15.8). Appropriate adjustments of solutions are
necessarily problem specific and range from simple roundings, via elaborate
manipulations of solutions, to solving a mixed-integer linear optimization problem.
The information used from the Lagrangian dual problem is typically a near optimal
dual solution, obtained by, for example, subgradient optimization. The adjustments
made when striving for feasibility in the relaxed constraints (15.2b) are often guided
by a merit function defined by original costs or Lagrangian cost, such that the final
solution, if feasible, is likely also near optimal. The heuristic may also continue
with a local search or meta-heuristic search in the original problem, after feasibility
is reached.

We distinguish between two types of Lagrangian heuristics: conservative and
radical. The latter type allows the solution finally found to be far from optimal in the
subproblem. A radical heuristic can, for example, solve a restriction of the original
problem (e.g., a Benders subproblem), which yields a feasible solution.

In conservative heuristics, which are the more common, the initial solution is
(near) optimal in the subproblem, the adjustments made are local and such that near
optimality in the subproblem is retained, and the number of adjustments is required
to be rather small. Due to these limitations, such a heuristic may produce very good
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feasible solutions, or frequently fail to find feasible solutions, depending on the
characteristics of the original problem and the details of the heuristic.

Initialize a conservative Lagrangian heuristic by a solution x̃ to the subproblem
(15.9). Then, the effect of the adjustments made can be characterized by the
inclusion

xheur(x̃) ∈ {x ∈ X |Ax ≥ b; “the distance ‖ x − x̃ ‖ is small” } . (15.56)

To understand (at least partially) why conservative heuristics can produce very good
feasible solutions, we first recall that x̃ is optimal in a relaxation of the original
problem. Further, in many applications a subproblem solution obtained using a near
optimal Lagrangian dual solution is near feasible in the original problem. Moreover,
if x̃ is near feasible, the adjustments needed to reach feasibility are small, and a
feasible solution xheur(x̃), will indeed be close to the input x̃. Hence, it appears
likely that xheur(x̃) can be near optimal in the original problem. The risk of failure
in a conservative heuristic is due to the adjustments being only local, which may be
insufficient to repair intricate infeasibilities.

As the dual sequence { ut } approaches the set U∗, the ergodic sequence { x̃ t }
will approach the set X∗

conv. If the Lagrangian lower bound h∗ is strong, that is, if
the duality gap z∗ − h∗ ≥ 0 is small, the sets X∗

conv and X∗ are expected to be
close, in the sense that the value min{ ‖ x − y ‖ ∣

∣ x ∈ X∗
conv, y ∈ X∗ } is (relatively)

small. Since the adjustments made to the ergodic primal iterates are quite small, a
heuristic based on the inclusion (15.56) can thus be expected to produce solutions
which are close to the set X∗. If, however, as in classical Lagrangian heuristics, the
subproblem solutions x(ut ) are used as inputs to the heuristic, the above arguments
cannot be used to claim that the resulting point will be close to X∗

conv or to X∗. We
thus propose to use the ergodic iterate x̃ t in place of the subproblem solution x(ut ),
as input to the Lagrangian heuristic of Algorithm 15.1; it is based on (15.56), that
is, to find xheur(x̃

t ).

Algorithm 15.1: Lagrangian heuristic for (15.2) utilizing ergodic sequences of
subproblem solutions

Data: u0 ∈ R
m+; t := 0;

Result: a (heuristic) solution xheur to (15.2);
repeat

Compute ut+1 and x(ut+1) according to (15.21), (15.23), (15.27);
t := t + 1;

Update x̃ t+1 according to (15.35) and (15.36) [or (15.38)];

Compute a solution xheur(x̃
t+1) according to (15.56);

until the best solution xheur found is satisfactory in (15.2);
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15.6.2 Approximate Solutions to the Primal Problem via Core
Problems

A common solution strategy for discrete optimization problems is to use some
heuristic, problem adapted technique for predicting optimal values for a (relatively
large) subset of the binary variables, and solve the (relatively small) restriction of
the original problem to the nonfixed variables—the core problem—either exactly or
approximately. The core problem should be constructed with the aim of making
it feasible; an optimal solution to the core problem then yields a feasible and
near optimal solution to the original problem. Whenever the core problem turns
infeasible, previously fixed variables need to be relaxed and reinserted in the core.

Let J ∗
0 ⊆ {1, . . . , nb} and J ∗

1 ⊆ {1, . . . , nb} \ J ∗
0 denote the sets of indices for

the variables in xb which possess the value 0 and 1, respectively, in every optimal
solution to the convexified problem (15.5). Further, let J ∗

frac := {1, . . . , nb} \ (J ∗
0 ∪

J ∗
1 ) denote the complementary index set, corresponding to the variables in xb which

possess a fractional optimal value in at least one optimal solution to (15.5).
For each iteration t in the method (15.21), let x̃ t denote the weighted average

of the solutions to the Lagrangian subproblem (15.8) as defined in (15.35), with
step lengths according to (15.23), (15.27), and the convexity weights fulfilling the
conditions (15.36) or (15.38). For each j ∈ {1, . . . , nb} the value x̃ t

b,j ∈ [0, 1] can
then be interpreted as the weighted relative frequency by which the variable xb,j

attains the value 1 in an optimal solution to the subproblem. The following result is
immediate.

Proposition 15.10 (On the Weighted Relative Frequency of Binary Solutions)
It holds that

{
x̃ t

b,j

} → 0 for all j ∈ J ∗
0 and

{
x̃ t

b,j

} → 1 for all j ∈ J ∗
1 . If the

sequence
{
x̃ t

b,j

}
accumulates at a point in the open interval (0, 1), then j ∈ J ∗

frac.

Proposition 15.10 motivates the use of the weighted relative frequency of the
binary subproblem solutions as an indicator for the solution to the convexified opti-
mization problem (15.5), as well as for the solution to the original problem (15.1)
[or (15.2)]. For each variable xb,j , j = 1, . . . , nb, we thus define the two threshold
values σ 0

j , σ 1
j ∈ (0, 1

2 ), which are used to define the two approximating sets

J0(σ
0, x̃ t ) :=

{
j ∈ {1, . . . , nb}

∣
∣ x̃ t

b,j ≤ σ 0
j

}

and

J1(σ
1, x̃ t ) :=

{
j ∈ {1, . . . , nb}

∣∣ x̃ t
b,j ≥ 1 − σ 1

j

}
.
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A sequence of core problems—to be utilized in Algorithm 15.2—is then defined by

z∗
core(σ

0, σ 1, x̃ t ) := min
xb,xc

c�
b xb + c�

c xc (15.57a)

subject to (x�
b , x�

c )� ∈ { x ∈ X | Ax ≥ b }, (15.57b)

xb,j = 0, j ∈ J0(σ
0, x̃ t ), (15.57c)

xb,j = 1, j ∈ J1(σ
1, x̃ t ). (15.57d)

We let xt
core denote a feasible (optimal or approximate) solution to the core problem

(15.57), the value of which—whenever feasible—is an upper bound on the optimal
value, that is, the inequalities c�xt

core ≥ z∗
core(σ

0, σ 1, x̃ t ) ≥ z∗ hold. We define
zt

core := mins=0,...,t

{
c�xs

core

}
. Since lower bounds h(ut ) ≤ h∗ are given by the

dual iterates ut , a termination criterion can be based on the differences

zt
core − ht ≥ z∗ − h∗ ≥ 0, (15.58)

where ht := maxs=0,...,t {h(us ) } , t = 1, 2, . . .

Algorithm 15.2: Approximate solution of (15.2) from a sequence of core
problems

Data: τ ∈ Z+; ε > z∗ − h∗; σ 0, σ 1 ∈ (0, 1
2 )nb ; u0 ∈ R

m+; t := 0;
Result: a (approximate) solution xcore to (15.2) [or (15.1)];
repeat

Perform τ iterations of the method (15.21), (15.23), (15.27);
Compute hτ as defined in (15.58);
Compute x̃τ as defined in (15.35) and (15.36) [or (15.38)];
repeat

Decrease the values of σ 0
j and σ 1

j , j = 1, . . . , nb;

Generate the sets J0(σ
0, x̃ τ ) and J1(σ

1, x̃ τ );
until the core problem (15.57) is feasible;
Compute a solution xτ

core (exact or approximate) to (15.57);
Update zτ

core;
Increase the values of σ 0

j and σ 1
j , j = 1, . . . , nb;

u0 := uτ , t := 0;
until zτ

core − hτ ≤ ε, or the solution xτ
core is satisfactory in (15.2);

15.6.3 Optimal Solutions via a Branch-and-Bound Framework

We next consider using ergodic sequences to obtain feasible solutions to the problem
(15.2) within a branch-and-bound framework. A subgradient method (15.21) can be
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applied to the Lagrange dual (15.10) of the local linear program corresponding to
each branch-and-bound tree node, yielding

(1) a lower bound on z∗ from a lower estimate of h∗ (that is, from the value of an
approximate solution to the Lagrangian dual of the node problem),

(2) an upper bound on z∗ from feasible solutions to (15.2) constructed using the
subproblem solutions obtained in (15.21), and

(3) a branching decision based on the (approximate) reduced costs obtained in the
dual sequence { ut }.

One drawback of this principle is that it seldom provides a fractional primal
solution, since the subproblem solutions are integer valued. So when aiming for a
breadth-first branching, deciding on which variable to branch on is nontrivial. We
propose a procedure in which the upper bounding (2) and the branching rule (3) are
replaced by measures based on the ergodic iterates x̃ t . The upper bound is obtained
by applying Algorithm 15.1, which provides feasible solutions to the problem
(15.2). The branching rule is based on the ergodic iterate x̃ t obtained from the
method (15.21), (15.23), (15.27), (15.35) and (15.36) [or (15.38)]. Branching can
be done on the variables with values close to binary or close to 1

2 . The optimization
problem addressed in node n of the branch-and-bound tree is then the problem
(15.5), with the additional constraints xb,j = �, j ∈ In

� , � ∈ {0, 1}, where the
set In

� contains the indices of the variables that have been fixed to � in the parent
node of node n. By defining the set Xn

conv := conv
{
x ∈ X | xb,j = �, j ∈ In

� , � ∈
{0, 1} } ⊆ Xconv, this linear program can then be expressed as

z∗
n := min

x
c�x (15.59a)

subject to Ax ≥ b, (15.59b)

x ∈ Xn
conv. (15.59c)

The branching procedure of Algorithm 15.3 is then applied, where the dual starting
point u0 in step 1 is often chosen as the final point uτ obtained from the subgradient
scheme for the parent node. The search strategy for the branch-and-bound tree can
be defined as, for example, depth-, breadth-, or best lower bound-first.

Algorithm 15.3: Branching decision based on ergodic primal iterates

Data: τ ∈ Z+; u0 ∈ R
m+; t := 0.

Step 1. Apply τ iterations of Algorithm 15.1 to the linear optimization
problem (15.59); this yields lower and upper bounds on z∗

n.
Step 2. Based on the lower and upper bounds on z∗, decide whether or not

branching should be performed.
Step 3. Perform a branching based on the ergodic iterate x̃τ : branch on a

variable xb,j with x̃ τ
b,j close to 1

2 , or close to 0 or 1.
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15.7 Notes and Further Reading

In this section we collect notes regarding the various results presented in the former
sections and review important background material, along with references to the
literature. While mentioning a few of the classic articles in the field of Lagrangian
duality—chosen for their eloquence and pioneer status rather than for representing
the state of the art—we also include a selection of more recent articles in the field—
that we think tie in well with the classics.

Notes on Sect. 15.2.1: The Lagrangian Dual That the Lagrangian dual function
h is piecewise affine and concave is shown in, for example, [11, Proposion 5.1.12].
That the dual optimal set U∗ is nonempty and polyhedral when the feasible set of the
convexified problem (15.5) is nonempty is verified in, for example, [11, Section 5].
When the feasible set of (15.5) is empty, however, the Lagrangian dual (15.10)
is unbounded; conditions for the existence of an optimal Lagrangian dual set are
detailed in [74].

In [31] Everett establishes a theorem for the Lagrangian function, which states
that for a given vector of dual multipliers (not necessarily optimal), the minimization
of the Lagrangian function over the primal variables yields a primal vector that
is globally optimal for a primal problem whose available resources are identical
to those utilized in the primal minimum of the Lagrangian function for the given
multipliers. This result suggests that dual multipliers are near optimal when the
minimum of the corresponding Lagrangian subproblem is near feasible. Brooks and
Geoffrion extend in [15] the analysis in [31] to provide near optimal solutions also
when the original problem may include, for example, integer variables.

In [46, 47] Held and Karp investigate approaches to the symmetric travel-
ing salesperson problem, based on a 1-tree relaxation.10 One seeks prices (i.e.,
multipliers) on the nodes (which, however, appear on the adjacent links) such
that the cheapest 1-tree equals an optimal Hamiltonian cycle. Optimal prices are
derived from the solution of the corresponding Lagrangian dual problem, which
is to maximize the value of the 1-tree. The lower bounds obtained from the dual
procedure are also utilized in a branch-and-bound procedure.

Guignard provides in [39] an extensive introduction to Lagrangean approaches
for the exact or approximate solution of difficult combinatorial optimization prob-
lems. The theme is similar to ours, while it is aimed at less experienced readers.

A quite little studied form of Lagrangian relaxation—not covered by this
chapter—is known as Lagrangian decomposition, or variable splitting; see [40, 53].
It can be applied to mixed-integer linear optimization problems with (at least)
two sets of explicit constraints [in (15.1b), (15.2b), or (15.7b)], such that two
different Lagrangian relaxations are possible. The starting point for this approach
is a problem reformulation in which copies of (a subset of) the primal variables
are introduced, in one of the sets of constraints, together with additional constraints

10A 1-tree is the union of a spanning tree and one additional link.
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that ensure consistency between the original variables and the copies. The consis-
tency constraints are then Lagrangian relaxed. The corresponding Lagrangian dual
problem can yield stronger bounds than both of the two possible straightforward
Lagrangian relaxations of the original problem, provided that neither of the LP
relaxations of the resulting Lagrangian subproblems possesses the integrality
property.

Notes on Sect. 15.2.2: Optimality Conditions for the Convexified Problem
While some literature on nondifferentiable functions (naturally) draw a distinction
between ‘supdifferentials of concave functions’ and ‘subdifferentials of convex
functions’, we use the term subdifferential all through, relying on the readers’
familiarity with the concept.

The subdifferential of a concave function is defined in [11, Definition 3.2.3].
Proposition 15.1 follows from [11, Theorem 6.3.7], the convexity of the set
Xconv, and [64, Theorem 11]. Further, the differentiability property of the dual
function h relying on the singleton property of the set Xconv(u) is depicted in
[11, Theorem 6.3.3]. For a proof of Proposition 15.4, see [11, Theorem 3.4.3].
The saddle point optimality in (15.13) is proven in [11, Theorem 6.2.4], while
Proposition 15.5 follows from [11, Theorem 6.2.5]. In [17, Lemma 2] it is shown
that the composite mapping ∂h ∩ NR

m+ is constant on the solution set U∗. The
definition of the subdifferential of an objective function is in [24, 25] generalized
to take the feasible set into account; in our terminology it is called the conditional
subdifferential. The non-coordinability phenomenon is a consequence of the non-
differentiability of the Lagrangian dual function, which in turn is a consequence of
the linearity of the primal problem. This phenomenon is of interest in economic
systems which are described by linear models and where constant prices are used
as a tool for steering decentralized decisions towards system optimality (e.g., [27]).

Turning to the question of how to exploit the Lagrangian dual problem (15.10) as
a tool for finding an (near) optimal solution to the mixed-binary linear optimization
problem (15.2), the fundamental observation is that the dual problem effectively
solves the convexified primal problem (15.5), that is, finds an element of the solution
set X∗

conv. Worth noting, however, is that whether such an element is directly
available or not depends on the solution strategy employed for the dual problem.11

If an (near) optimal, solution to the convexified problem (15.5) is at hand, a simple
strategy to find a mixed-binary feasible solution is to employ rounding, that is, to
systematically round the values of xb in a solution to the convexified problem to
binary values, and adjust the values of xc accordingly, with the aim of reaching
feasibility and near optimality in the original problem (15.2).

Simple rounding procedures are, however, in general inadequate for finding near
optimal or even feasible solutions. A more general idea is randomized rounding (see

11For example, a cutting-plane scheme for the dual problem identifies an element of X∗
conv while a

subgradient optimization scheme does not. The key difference is that the former scheme provides,
at termination, an optimal dual solution to the Lagrangian dual problem, that is, an optimal primal
solution, while this is not the case for the latter scheme.
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[78]), which for certain applications works as approximation algorithms. A generic
such technique entails the solution of a continuous relaxation of the original prob-
lem, followed by a randomization scheme to decide whether to round up or down.
The article [12] provides a framework for finding approximate solutions to covering
problems through generic heuristics, all based on rounding (deterministic—using
primal and dual information—or randomized—with nonlinear rounding functions)
of an optimal solution to a LP relaxation. The roundings are applied to several
known, as well as to new, results for the set covering, facility location, general
covering, network design, and cut covering problems. The follow-up article [13]
describes a class of structure exploiting methods to round fractional solutions, by
introducing dependencies in the process. The technique improves approximation
bounds for several problems, including the min-k-SAT problem.

The reader may note that rounding and randomized rounding strategies have in
common with the core problem principle (see Sect. 15.6.2) that they identify and
elaborate with a subset of the original variables, based on primal information (e.g.,
variable values) or dual information (e.g., Lagrangian reduced costs).

Notes on Sect. 15.2.3: Conditions for Optimality and Near Optimality of
Mixed-Binary Linear Optimization Problems The global primal–dual optimal-
ity conditions (15.15) and the equivalent near saddle point condition (15.16) were
introduced in [57], in which also computational results are reported. For examples
of solution methods related to the enumeration principle discussed in Remark 15.2,
see [45] and [21] (constrained shortest path problems), and [20] (train timetabling).

Notes on Sect. 15.3: Conditional Subgradient Optimization Subgradient opti-
mization methods for minimizing non-differentiable convex functions originate
in a work by Shor from 1962; [83] reviews the early history of nonsmooth
optimization. For the case of unconstrained optimization, Ermol’ev established in
[30] the convergence of the method using step lengths according to a divergent
series. Polyak extended in [76, 77] the method to the case of constrained convex
optimization and presented additional convergence results; see also [82, Section 2].
These methods have been frequently and often successfully applied, particularly in
connection with Lagrangian duality; see, for example, [32, 33, 36, 48]. Worth noting
is that subgradient optimization methods are closely related to relaxation methods
for solving systems of linear inequalities; see [37].

The important Polyak step length rule, which has proved to be very useful
in computational practice, was presented in [77]. For the case when the optimal
objective value h∗ is known a priori, convergence to an optimal solution by the
method (15.21) using the step lengths (15.30) was established: the restrictions on the
step length parameter θt guarantee that the distance between the current iterate and
the solution set decreases in every iteration. Finite convergence to a near optimal
point was also established for the case when the optimal value h∗ in (15.30) is
replaced by an estimate h ≥ h∗; this generalization, expressed in (15.31), is the
most commonly used in practice.
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Notes on Sect. 15.3.1: Basic Convergence in the Lagrangian Dual Problem The
conditional subgradient optimization method was presented in [58] (see also [24,
25]) and generalizes the subgradient optimization method; it includes as a special
case the subgradient projection method, as given in (15.22), which has shown a
better practical performance than traditional subgradient methods (see [58]). The
convergence of the method (15.21) was established in [58] for the divergent series
and the Polyak step length rules. The proofs of Theorems 15.1 and 15.2 are special
cases of those given in [58, Theorems 2.6 and 2.7, respectively]. The special case
of subgradient projection is detailed in [58, Section 3]. Proposition 15.7 can be
proven analogously as [77, Theorem 1] adapted to a Lagrangian dual problem,
while Proposition 15.8 follows from [77, Theorem 4]. The condition (15.32) is
referred to as the almost complete relaxation strategy; see [26, Section 3.4] and [58,
Corollary 2.8].

Notes on Sect. 15.3.2: Ergodic Convergence in the Primal Problem The princi-
ple of constructing ergodic sequences of primal subproblem solutions in subgradient
optimization can be traced back a long time; see [82, pp. 117] and [2]. The
results presented here are developed in a series of articles; see [56, 59, 60].
Proposition 15.9 and Theorem 15.3 are special cases of [60, Proposition 5 and
Theorem 1, respectively]. The convergence of sequences of convex combinations
in general relies on a result in [54] and which is described in [44, Lemma 3].

A relative to the principle of constructing ergodic primal solutions, and also to
the two-phase method presented in Sect. 15.5, is the volume algorithm of Barahona
and Anbil in [8]. Referencing the classic works of Held and Karp [46, 47] and Held
et al. [48] on the search for good lower bounds for computationally challenging
large-scale optimization problems, Barahona and Anbil identify the drawback of
not considering the convergence characteristics in the primal space and of the
lack of a natural stopping criterion. While at the outset admitting the lack of
a complete convergence theory, the authors describe a dual scheme, which is
similar to a classic conjugate subgradient method (see [93]), in tandem with a
constructive primal heuristic that mimics the master problem in Dantzig–Wolfe
decomposition. The volume algorithm is applied to large-scale linear optimization
problems arising from continuous relaxations of set partitioning, set covering,
airline crew scheduling, max-cut, and facility location problems. The conclusion
from the numerical experiments is that the more favourable problem instances
are those in which variables are bounded within the interval [0, 1], constraint
coefficients lie in the set { 0, 1,−1 }, and the pricing problem is solvable in linear
time.

Notes on Sect. 15.3.3: Enhanced Primal Ergodic Convergence Ergodic
sequences that exploit more information from later subproblem solutions (as
compared to earlier ones) were first presented in 1996 by Sherali and Choi [81]
for the case of LP; this construction of ergodic sequences was generalized in 2015
by Gustavsson et al. [44] to incorporate also general convex optimization, as well as
refined to the so-called sk-rule. Theorem 15.4 follows from [44, Theorem 1]. The
result that the requirements (15.38) on the convexity weights μt

s combined with step
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lengths αt according to a modified harmonic series (15.37) imply the requirements
(15.36b)–(15.36e) on the parameters γ t

s is established in [44, Proposition 5].
Convergence analyses for the sk-rule are presented in [44], while the delayed
initialization of the ergodic sequences according to Remark 15.8 is detailed in [60,
Section 3, Remark 1].

Notes on Sect. 15.3.4: Finite Primal Feasibility and Finite ε-Optimality The-
orem 15.5 and the finiteness result in Corollary 15.2 are established in [60,
Theorem 3 and Corollary 3, respectively]. Approximate solution of the Lagrangian
subproblems yields directions being ε-subgradients; the resulting conditional ε-
subgradient method is investigated and analysed in [61]. Finiteness results are also
presented in [63], in which the ergodic sequences are generated within a simplicial
decomposition framework for nondifferentiable convex optimization.

A characterization in the case of a possibly inconsistent primal problem (15.5)
is carefully detailed in [74], for the more general case of convex optimization.
Convergence is established of an ergodic sequence of subproblem solutions to a
point in the primal space such that the Euclidean norm of the infeasibility in the
relaxed primal constraints is minimized, while the sequence of dual iterates diverges
along the feasible direction of steepest ascent for the Lagrangian dual function.

Notes on Sect. 15.4: Dual Cutting-Planes: Dantzig–Wolfe Decomposition The
article “Decomposition principle for linear programs” published in 1960 by Dantzig
and Wolfe [23] is a pioneering work on the subject of large-scale optimization and
among the most influential publications in the history of operations research. The
Dantzig–Wolfe decomposition principle is founded on the representation theorem
for polyhedra (e.g., [65, Chapter 3, Theorem 3]), which states that a point belongs
to a polyhedron if and only if it can be expressed as a convex combination of the
polyhedron’s extreme points plus a nonnegative linear combination of its extreme
directions.

Dantzig–Wolfe decomposition is derived from the structure of the constraints
of the linear program. It is assumed that the constraints can be partitioned into
two sets, of which one is (relatively) computationally tractable. The other set of
constraints is deemed complicating; hence these are Lagrangian relaxed—giving
the method’s subproblem—and instead dealt with in a separate linear program—the
restricted master problem. For practical problems Dantzig–Wolfe decomposition
typically exploits a block diagonal structure of the subproblem, which can then
be solved as several separate subproblems. Assuming that the subproblems always
have finite optima, the optimal solutions obtained for different price vectors are—
in the restricted master problem—convex combined, such that the complicating
constraints are optimally utilized, with respect to the problem’s objective function.12

Subject to the usual non-degeneracy assumptions (or means for dealing with degen-

12The case of unbounded subproblem solutions can also be handled, by finding feasible directions
along which the objective value is unbounded and—in the restricted master problem—considering
nonnegative linear combinations of such directions.
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eracy), the convergence is finite; this follows directly from the finite convergence
of the simplex method, of which Dantzig–Wolfe decomposition is, in essence, an
application.

Plenty of variations of this computational scheme are possible. For example, each
subproblem can be terminated at a near optimal solution, as long as this solution is
good enough to ensure some progress in the restricted master problem. Further, the
solution of the restricted master problem can be truncated, as long as some progress
has been made. Further, convergence is ensured even if only the current basis is
maintained in the restricted master problem, in a revised simplex manner.

The extension of the Dantzig–Wolfe decomposition principle to the case of
nonconvex [e.g., (mixed-) integer] or non-linear optimization problems is known
as generalized LP. In [68], a fundamental property of generalized LP is established.
It is shown that for nearly all problems of practical importance, any limit point
of the sequence of dual solutions produced by the algorithm is optimal in the
Lagrangian dual problem of the given, primal, problem. This result holds even if
the generalized LP algorithm does not solve the primal problem, which is typically
the case whenever this problem is nonconvex.

Among the first applications of the Dantzig–Wolfe decomposition principle to a
mixed-integer optimization problem is the work in [29] by Dzielinski and Gomory
from 1965; see also [27, Section 7.2]. They consider a problem of production and
inventory planning, which can be characterized as a time indexed, multi product
economic lot size scheduling problem with common production resources. The
problem is straightforward to model as a mixed-integer optimization problem, but
they instead consider an approximate linear optimization model, which is based on
the work [69] by Manne from 1958 and in which each variable corresponds to a
complete production schedule for a single product. The approximate model can be
regarded as a Dantzig–Wolfe master problem for a convexified version of a mixed-
integer model of the problem. Since the number of possible production schedules
can be huge, column generation is used. The column generation problem (i.e., the
Dantzig–Wolfe subproblem) finds a production schedule for a single product and
can be efficiently solved by the well-known Wagner–Whitin lot-sizing algorithm
(which is a dynamic programming scheme), while the restricted master problem
optimally combines the available production schedules with respect to overall cost
and the common production resources.

In the pioneering two-part work [3, 4] on the application of column generation in
the field of vehicle routing, Appelgren describes column generation approaches to a
ship scheduling problem, obtained from a Swedish ship owning company. The first
article applies the Dantzig–Wolfe decomposition method to the LP relaxation of the
scheduling problem, which—probably thanks to the favourable matrix structure—
achieves solutions that are near integer. In the second article, the column generation
method is combined with a branch-and-bound algorithm, in which the branching
is performed on one of the “essential” fractional variables and the bounds are
obtained by the decomposition algorithm. This combined method was able to solve
all problem instances tested, mostly with one branching only.
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The work by Appelgren is an early predecessor to what is today known as branch-
and-price. (The term price refers to the column generation, i.e., the pricing problem.)
In the article [10] the authors first summarize the relations between branch-and-cut
and branch-and-price for (mixed-) integer optimization problems. In branch-and-
cut, classes of valid inequalities, preferably facets of the convex hull of the set of
feasible solutions, are left out of the LP relaxation, because they comprise far too
many constraints to generate and handle efficiently, and most of them will neither
be binding in an optimal solution. Then, if an optimal solution to a LP relaxation
is infeasible (with respect to integrality restrictions), a subproblem—called the
separation problem—is solved in order to identify violated inequalities in a class. If
one or more violated inequalities are found, some of them are added to the linear
optimization problem, in order to cut off the infeasible solution, followed by its re
optimization. Branching occurs only when no violated inequalities can be found.
Branch-and-cut is thus a generalization of branch-and-bound with LP relaxations,
which allows cutting to be applied throughout the branch-and-bound tree.

The philosophy of branch-and-price resembles that of branch-and-cut, except
that the focus is on column generation instead of row generation. In fact, pricing
and cutting are complementary procedures for tightening a LP relaxation. In branch-
and-price, sets of columns are left out of the LP relaxation because they are far too
many to be generated and handled efficiently, and most of the associated variables
will anyway be zero valued in an optimal solution. To check the optimality of a LP
solution, a subproblem—the pricing problem, which is a separation problem for the
dual linear program—is solved in order to identify columns to enter the basis, and
the linear program is re-optimized. Branching occurs when no columns price out to
enter the basis and the linear programming solution does not satisfy the integrality
conditions. branch-and-price is a generalization of branch-and-bound with linear
programming relaxations, which allows column generation to be applied throughout
the branch-and-bound tree.

While appearing contradictory at first, there are several reasons (see [10])
for considering formulations with huge numbers of variables. Not infrequently
a mixed-integer optimization formulation with many variables has a better LP
relaxation (with respect to bound quality). Further, a compact formulation—which
is a formulation not involving a huge number of variables—of a mixed-integer
optimization problem may possess structural symmetries that allows solutions
being mathematically different but having indifferent real-life interpretations; this
causes branch-and-bound perform poorly as the problem barely changes after
branching. A reformulation with a huge number of variables may eliminate such
symmetries. Further, column generation provides a decomposition of the problem
into a master problem and one or more subproblems. This decomposition may have
a natural interpretation in the problem context, thus allowing for the incorporation
of additional important constraints. Finally, a formulation with a huge number of
variables may be the only choice.

At first glance, it may seem that branch-and-price involves nothing more than
combining well-known ideas for solving linear programs by column generation
and traditional branch-and-bound. This is, however, not that straightforward, as
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observed already many years ago by Appelgren in [3, 4]. The most fundamental
difficulty arising is that the traditional single variable branching is no longer
viable, the reason being that it leads to regeneration of (already available) columns.
Appelgren resolved this by finding a best column among those that are not already
available.

Today, the common countermeasure is to use other branching techniques, which
are compatible with column generation by allowing branching restrictions to be
transferred to the column generation problem without leading to essential changes of
its properties. Vanderbeck analyzes in [88] the challenges in combining a branching
scheme with column generation. The article presents a generic branching scheme in
which the pricing oracle of the root node remains of use after branching, and which
does not require an extended formulation of the original problem. It then recursively
partitions the subproblem solution set. Branching constraints are enforced in the
pricing problem, which is solved approximately by a limited number of calls to
the pricing oracle. The scheme is illustrated on the cutting stock and bin packing
problems; it is the first branch-and-price algorithm capable of solving such problems
to integrality without modifying the subproblem or expanding its variable space.

An early and tidy application of branch-and-price is to the generalized assign-
ment problem [80], which is decomposed into a set partitioning master problem
and knapsack column generation problems. Another tidy application of branch-
and-price is given in [87], which considers a time-indexed (i.e., time discretized)
formulation of a machine scheduling problem. Such formulations are known to
provide strong LP bounds, but they tend to be extremely large. The authors show
how to (partly) alleviate this difficulty by means of Dantzig–Wolfe decomposition,
leading to a reformulation with many more variables, but far fewer constraints. The
central pricing problem is solved by dynamic programming in O(nT ) time, with
T and n being the number of time steps and jobs, respectively. To find an integer
optimum, the decomposition approach is embedded in a branch-and-bound scheme.

For general surveys of column generation and branch-and-price, see [66, 92].
A recent research trend in mixed-integer optimization is to develop effective and
efficient solution methods by combining decomposition approaches with heuristic
or metaheuristic principles, in order to exploit their respective advantages. For a
general overview of metaheuristic methods based on decomposition principles, see
[79]. In a column generation context, such a combined method would extend a
heuristic search beyond the columns necessary for solving the LP master problem.
Classes of column generation based primal heuristics for mixed-integer linear
optimization are reviewed in [51], with the aim to extract generic classes of column
generation methods for use as black-box primal heuristics across applications. One
such class consists of the so-called diving heuristics, which perform depth first
searches in a branch-and-price tree, gradually obtaining integer solutions by variable
fixings according to branchings which priorities columns that are part of LP optimal
solutions in the nodes. To escape from local optima, partial backtracking can be
used. Examples of applications of diving heuristics are found in, for example,
[35, 41].
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An interesting topic for further studies is to use an enumeration principle of the
type outlined in Remark 15.2 with the aim to find favourable columns for inclusion
in a restricted master problem. The goal is then to construct a restricted master
problem capable of identifying an (near) optimal solution to the original problem
(15.2), rather than to directly find an optimal solution through enumeration. This
strategy is reasonable if the original problem has a Cartesian product structure—see
Remarks 15.1 and 15.10—such that columns from different sets in the Cartesian
product can be combined in order to achieve overall (near) optimality. Solution
methods related to this strategy are found in [86] (a production planning problem)
and [7] (a vehicle routing problem, not having a Cartesian product structure but a
related suitable structure.)

Another interesting topic for further studies within the field of column generation
is the little studied combination of Lagrangian decomposition (see [40, 53]) and
Dantzig–Wolfe decomposition (i.e., dual cutting-planes) for solving the Lagrangian
dual problem; see [72, 75, 94] for examples of this combination. Both Lagrangian
decomposition and Dantzig–Wolfe decomposition can separately provide strong
lower bounds, and the synergy between these two bounding principles has the
potential to provide even stronger lower bounds.

Notes on Sect. 15.5: A Two-Phase Method: Subgradient Optimization and
Dantzig–Wolfe Decomposition The inherent instability of dual cutting-plane
procedures is discussed in, for example, [49, Chapter 15]. The fundamental dual box
step stabilization was introduced in [70]. Examples of applications of this type of
stabilized dual cutting-plane method (i.e., stabilized Dantzig–Wolfe decomposition)
are found in [62, 90]. More general stabilization techniques are given in [28].
The use of heuristically generated high quality starting columns in Dantzig–Wolfe
decomposition is discussed in, for example, [66, Subsection 4.1.1].

The two-phase method was introduced in [91], which also reports successful
computational experience from an application to large-scale multicommodity net-
work flows. Some similar methods can be found in the literature; in contrast to the
one presented, those methods are, however, not justified by theoretical results.

In [95], subgradient optimization is performed in a first phase, which—in
each iteration—stores dual cuts and solves a Dantzig–Wolfe master problem; the
objective value of the latter is used in the Polyak step length formula. If the same
cut is found too many times, the method switches to a second phase: the Dantzig–
Wolfe method. A drawback of this two-phase method is that a computationally
demanding master problem is solved in each subgradient iteration of the first phase,
although it is only the objective value of the master problem that is actually used.
This two-phase method is further developed in [89], which studies different criteria
for switching to the second phase, in which the effect of using a bundle method
is also studied. Also [55] studies a combined subgradient optimization and bundle
method.

In [9] a fixed number of subgradient iterations is run every few iterations of
the Dantzig–Wolfe method, starting from the restricted master dual optimum. The
columns found are then included in the master problem. Substantially shorter
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computing times are reported, as compared to the standard Dantzig–Wolfe method.
This line of research is continued in [50], which employs subgradient optimization
also for finding approximate dual solutions to Dantzig–Wolfe master problems.

Notes on Sect. 15.6: Recovery of Primal Integer Solutions by Means of
Lagrangian Dual Methods Besides our own stream of research, the recovery
of primal solutions has been treated in, for example, [67, 81, 84].

Notes on Sect. 15.6.1: Primal Integer Solutions from Lagrangian Heuristics A
classic reference on Lagrangian relaxation and Lagrangian heuristics in integer opti-
mization is [32] by Fisher from 1981. In [57] the characteristics of the Lagrangian
heuristic principle is described more formally and such heuristics are classified as
conservative or radical, depending on their nature. The essential difference is that
in a conservative Lagrangian heuristic, the goal is to keep the values of ε(x,u)

and δ(x,u) [defined in (15.19)] small, while in a radical heuristic they may be
large. A conservative heuristic typically starts at x(u) ∈ X(u) and makes small
changes, while a radical often involves solving an auxiliary optimization problem
over a subset of the original problem variables, while keeping the values of the other
variables fixed. For examples of conservative heuristics for specific applications,
see [18, 34, 38, 52]. Examples of radical heuristics are found in [16, 22, 73, 85];
all of these exploit auxiliary optimization problems, some of which, however, being
trivially solved.

The presented Lagrangian heuristic methodology utilizing ergodic sequences is
developed in [1, 43].

Notes on Sect. 15.6.2: Approximate Solutions to the Primal Problem via Core
Problems The use of core problems was introduced by Balas and Zemel [6] in
1981, then applied to binary knapsack problems; a collection of improvements of
their scheme is found in [71].

The core problem principle has also been applied to very large-scale set covering
models arising in crew scheduling [19, 22]; the construction of the core problem is
there based on near optimal LP reduced costs found by Lagrangian relaxation and
subgradient optimization. Further applications of core problems include capacitated
facility location [5] and fixed charge transportation [94].

Our procedure for constructing core problems using ergodic sequences of
Lagrangian subproblem solutions is developed in [42, 43].

Notes on Sect. 15.6.3: Optimal Solutions via a Branch-and-Bound Framework
The use of dual subgradient methods and Lagrangian heuristics as a means for
obtaining branching rules and bounds in branch-and-bound schemes is well studied
(e.g., [14, 32]). The utilization of ergodic sequences to guide the branching in a
branch-and-bound framework is developed in [1, 43].

Acknowledgements This chapter relies heavily on research and earlier publications by the authors
and their collaborators. The most important of these publications are—in chronological order—
[56], [58], [60], [57], [44], [43], [91], and [1].
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