
Chapter 11
Numerical Solution of Generalized
Minimax Problems

Ladislav Lukšan, Ctirad Matonoha, and Jan Vlček

Abstract This contribution contains the description and investigation of three
numerical methods for solving generalized minimax problems. These problems con-
sists in the minimization of nonsmooth functions which are compositions of special
smooth convex functions with maxima of smooth functions. The most important
functions of this type are the sums of maxima of smooth functions. Section 11.2 is
devoted to primal interior point methods which use solutions of nonlinear equations
for obtaining minimax vectors. Section 11.3 contains investigation of smoothing
methods, based on using exponential smoothing terms. Section 11.4 contains
short description of primal-dual interior point methods based on transformation of
generalized minimax problems to general nonlinear programming problems. Finally
the last section contains results of numerical experiments.

11.1 Generalized Minimax Problems

In many practical problems we need to minimize functions that contain absolute
values or pointwise maxima of smooth functions. Such functions are nonsmooth
but they often have a special structure enabling the use of special methods that
are more efficient than methods for minimization of general nonsmooth functions.
The classical minimax problem, where F(x) = max1≤k≤m fk(x), or problems
where the function to be minimized is a nonsmooth norm, e.g. F(x) = ‖f (x)‖∞,
F(x) = ‖f+(x)‖∞, F(x) = ‖f (x)‖1, F(x) = ‖f+(x)‖1 with f (x) =
[f1(x), . . . , fm(x)]T and f+(x) = [max{f1(x), 0}, . . . , max{fm(x), 0}]T , are
typical examples. Such functions can be considered as special cases of more
general functions, so it is possible to formulate more general theories and construct
more general numerical methods. One possibility for generalization of the classical
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minimax problem consists in the use of the function

F(x) = max
1≤k≤k

pT
k f (x), (11.1)

where pk ∈ R
m, 1 ≤ k ≤ k, and f : Rn → R

m is a smooth mapping. This function
is a special case of composite nonsmooth functions of the form F(x) = f0(x) +
max1≤k≤k(p

T
k f (x) + bk), where f0 : R

n → R is a continuously differentiable
function [8, Section 14.1].

Remark 11.1 We can express all above mentioned minimax problems and nons-
mooth norms in form (11.1).

(a) Setting pk = ek , where ek is the k-th column of an identity matrix and k = m,
we obtain F(x) = max1≤k≤m fk(x) (the classical minimax).

(b) Setting pk = ek , pm+k = −ek and k = 2m, we obtain
F(x) = max1≤k≤m max{fk(x),−fk(x)} = ‖f (x)‖∞.

(c) Setting pk = ek , pm+1 = 0 and k = m + 1, we obtain
F(x) = max{max1≤k≤m fk(x), 0} = ‖f (x)+‖∞.

(d) If k = 2m and pk , 1 ≤ k ≤ 2m, are mutually different vectors whose elements
are either 1 or −1, we obtain
F(x) =∑m

k=1 max{fk(x),−fk(x)} = ‖f (x)‖1.
(e) If k = 2m and pk , 1 ≤ k ≤ 2m, are mutually different vectors whose elements

are either 1 or 0, we obtain F(x) =∑m
k=1 max{fk(x), 0} = ‖f+(x)‖1.

Remark 11.2 Since the mapping f (x) is continuously differentiable, the func-
tion (11.1) is Lipschitz. Thus, if the point x ∈ R

n is a local minimum of F(x),
then 0 ∈ ∂F (x) [25, Theorem 3.2.5] holds. According to [25, Theorem 3.2.13], one
has

∂F (x) = (∇f (x))T conv
{
pk : k ∈ Ī(x)

}
,

where Ī(x) = {k ∈ {1, . . . , k} : pT
k f (x) = F(x)}. Thus, if the point x ∈ R

n is
a local minimum of F(x), then multipliers λk ≥ 0, 1 ≤ k ≤ k, exist, such that
λk(p

T
k f (x) − F(x)) = 0, 1 ≤ k ≤ k,

k∑

k=1

λk = 1 and
k∑

k=1

λkJ
T (x)pk = 0,

where J (x) is a Jacobian matrix of the mapping f (x).

Remark 11.3 It is clear that a minimum of function (11.1) is a solution of a
nonlinear programming problem consisting in minimization of a function F̃ :
R

n+1 → R, where F̃ (x, z) = z, on the set

C = {(x, z) ∈ R
n+1 : pT

k f (x) ≤ z, 1 ≤ k ≤ k}.
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Denoting ck(x, z) = pT
k f (x) − z and ak = ∇ck(x, z), 1 ≤ k ≤ k, we obtain ak =

[pT
k J (x),−1]T and g = ∇F̃ (x, z) = [0T , 1]T , so the necessary KKT conditions

can be written in the form

[
0
1

]

+
k∑

k=1

[
J T (x)pk

−1

]

λk = 0,

λk(p
T
k f (x) − z) = 0, where λk ≥ 0, 1 ≤ k ≤ k, are the Lagrange multipliers and

z = F(x). Thus, we obtain the same necessary conditions for an extremum as in
Remark 11.2.

From the examples given in Remark 11.1 it follows that composite nondifferen-
tiable functions are not suitable for representation of the functions F(x) = ‖f (x)‖1
and F(x) = ‖f+(x)‖1 because in this case the expression on the right-hand side
of (11.1) contains 2m elements with vectors pk , 1 ≤ k ≤ 2m. In the subsequent
considerations, we will choose a somewhat different approach. We will consider
generalized minimax functions established in [5] and [23].

Definition 11.1 We say that F : Rn → R is a generalized minimax function if

F(x) = h(F1(x), . . . , Fm(x)), Fk(x) = max
1≤l≤mk

fkl(x), 1 ≤ k ≤ m,

(11.2)

where h : Rm → R and fkl : Rn → R, 1 ≤ k ≤ m, 1 ≤ l ≤ mk , are smooth
functions satisfying the following assumptions.

Assumption 11.1 Functions fkl , 1 ≤ k ≤ m, 1 ≤ l ≤ mk, are bounded from below
on R

n, so that there exists a constant F ∈ R such that fkl(x) ≥ F , 1 ≤ k ≤ m,
1 ≤ l ≤ mk , for all x ∈ R

n.

Assumption 11.2 Functions Fk , 1 ≤ k ≤ m, are bounded from below on R
n, so

that there exist constants Fk ∈ R such that Fk(x) ≥ Fk , 1 ≤ k ≤ m, for all x ∈ R
n.

Assumption 11.3 The function h is twice continuously differentiable and convex
satisfying

0 < hk ≤ ∂

∂zk

h(z) ≤ hk, 1 ≤ k ≤ m, (11.3)

for every z ∈ Z = {z ∈ R
m : zk ≥ Fk, 1 ≤ k ≤ m} (vector z ∈ R

m is called the
minimax vector).
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Assumption 11.4 Functions fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk, are twice
continuously differentiable on the convex hull of the level set

DF (F ) = {x ∈ R
n : Fk(x) ≤ F, 1 ≤ k ≤ m}

for a sufficiently large upper bound F and subsequently, constants g and G exist
such that ‖gkl(x)‖ ≤ g and ‖Gkl(x)‖ ≤ G for all 1 ≤ k ≤ m, 1 ≤ l ≤ mk , and
x ∈ convDF (F ), where gkl(x) = ∇fkl(x) and Gkl(x) = ∇2fkl(x).

Remark 11.4 The conditions imposed on the function h(z) are relatively strong but
many important nonsmooth functions satisfy them.

(1) Let h : R → R be an identity mapping, so h(z) = z and h′(z) = 1 > 0. Then
setting k = 1, m1 = l and

F(x) = h(F1(x)) = F1(x) = max
1≤l≤l

pT
l f (x)

(since f1l = pT
l f (x)), we obtain the composite nonsmooth function (11.1) and

therefore the functions F(x) = max1≤k≤m fk(x), F(x) = ‖f (x)‖∞, F(x) =
‖f+(x)‖∞.

(2) Let h : Rm → R, where h(z) = z1 +· · ·+zm, so ∂
∂zk

h(z) = 1 > 0, 1 ≤ k ≤ m.
Then function (11.2) has the form

F(x) =
m∑

k=1

Fk(x) =
m∑

k=1

max
1≤l≤mk

fkl(x) (11.4)

(the sum of maxima). If mk = 2 and Fk(x) = max{fk(x),−fk(x)}, we obtain
the function F(x) = ‖f (x)‖1. If mk = 2 and Fk(x) = max{fk(x), 0},
we obtain the function F(x) = ‖f+(x)‖1. It follows that the expression
of functions F(x) = ‖f (x)‖1 and F(x) = ‖f+(x)‖1 by (11.2) contains
only m summands and each summand is a maximum of two function values.
Thus, this approach is much more economic than the use of formulas stated in
Remark 11.1(d)–(e).

Remark 11.5 Since the functions Fk(x), 1 ≤ k ≤ m, are regular [25, Theo-
rem 3.2.13], the function h(z) is continuously differentiable, and hk = ∂

∂zk
h(z) > 0,

one can write [25, Theorem 3.2.9]

∂F (x) = conv
m∑

k=1

hk∂Fk(x) =
m∑

k=1

hk∂Fk(x)

=
m∑

k=1

hk conv{gkl(x) : l ∈ Īk(x)},
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where Īk(x) = {l : 1 ≤ l ≤ mk, fkl(x) = Fk(x)}. Thus, one has

∂F (x) =
m∑

k=1

hk

mk∑

l=1

λklgkl(x),

where for 1 ≤ k ≤ m it holds λkl ≥ 0, λkl(Fk(x) − fkl(x)) = 0, 1 ≤ l ≤ mk , and∑mk

l=1 λkl = 1. Setting ukl = hkλkl , 1 ≤ k ≤ m, 1 ≤ l ≤ mk, we can write

∂F (x) =
m∑

k=1

mk∑

l=1

uklgkl(x),

where for 1 ≤ k ≤ m it holds ukl ≥ 0, ukl(Fk(x) − fkl(x)) = 0, 1 ≤ l ≤ mk ,
and

∑mk

l=1 ukl = hk . If a point x ∈ R
n is a minimum of a function F(x), then

0 ∈ ∂F (x), so there exist multipliers ukl , 1 ≤ k ≤ m, 1 ≤ l ≤ mk , such that

m∑

k=1

mk∑

l=1

gkl(x)ukl = 0,

mk∑

l=1

ukl = hk, hk = ∂

∂zk

h(z), (11.5)

ukl ≥ 0, Fk(x) − fkl(x) ≥ 0, ukl(Fk(x) − fkl(x)) = 0. (11.6)

Remark 11.6 Unconstrained minimization of function (11.2) is equivalent to the
nonlinear programming problem

{
minimize F̃ (x, z) = h(z)

subject to fkl(x) ≤ zk, 1 ≤ k ≤ m, 1 ≤ l ≤ mk.
(11.7)

The condition (11.3) is sufficient for satisfying equalities zk = Fk(x), 1 ≤ k ≤ m,
at the minimum point. Denoting ckl(x, z) = fkl(x)−zk and akl(x, z) = ∇ckl(x, z),
1 ≤ k ≤ m, 1 ≤ l ≤ mk , we obtain akl(x, z) = [gT

kl(x),−eT
k ]T , where gkl(x) is

a gradient of fkl(x) in x and ek is the k-th column of the unit matrix of order m.
Thus, the necessary first-order (KKT) conditions have the form

g(x,u) =
m∑

k=1

mk∑

l=1

gkl(x)ukl = 0,

mk∑

l=1

ukl = hk, hk = ∂

∂zk

h(z), (11.8)

ukl ≥ 0, zk − fkl(x) ≥ 0, ukl(zk − fkl(x)) = 0, (11.9)

where ukl , 1 ≤ k ≤ m, 1 ≤ l ≤ mk , are Lagrange multipliers and zk = Fk(x). So
we obtain the same necessary conditions for an extremum as in Remark 11.5.
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Remark 11.7 A classical minimax problem

F(x) = max
1≤k≤m

fk(x) (11.10)

can be replaced with an equivalent nonlinear programming problem

{
minimize F̃ (x, z) = z

subject to fk(x) ≤ z, 1 ≤ k ≤ m,
(11.11)

and the necessary KKT conditions have the form

m∑

k=1

gk(x)uk = 0,

m∑

k=1

uk = 1, (11.12)

uk ≥ 0, z − fk(x) ≥ 0, uk(z − fk(x)) = 0, 1 ≤ k ≤ m. (11.13)

Remark 11.8 Minimization of the sum of absolute values

F(x) =
m∑

k=1

|fk(x)| =
m∑

k=1

max{f +
k (x), f −

k (x)}, (11.14)

where

f +
k (x) = fk(x), f −

k (x) = −fk(x)

can be replaced with an equivalent nonlinear programming problem

⎧
⎪⎨

⎪⎩

minimize F̃ (x, z) =
m∑

k=1
zk

subject to −zk ≤ fk(x) ≤ zk,

(11.15)

(there are two constraints c−
k (x) = zk − fk(x) ≥ 0 and c+

k (x) = zk + fk(x) ≥ 0
for each index 1 ≤ k ≤ m) and the necessary KKT conditions have the form

m∑

k=1

gk(x)(u+
k − u−

k ) = 0, u+
k + u−

k = 1, (11.16)

u+
k ≥ 0, zk − fk(x) ≥ 0, u+

k (zk − fk(x)) = 0, (11.17)

u−
k ≥ 0, zk + fk(x) ≥ 0, u−

k (zk + fk(x)) = 0, (11.18)
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where 1 ≤ k ≤ m. If we set uk = u+
k − u−

k and use the equality u+
k + u−

k = 1, we
obtain u+

k = (1 + uk)/2, u−
k = (1 − uk)/2. From conditions u+

k ≥ 0, u−
k ≥ 0 the

inequalities −1 ≤ uk ≤ 1, or |uk| ≤ 1, follow. The condition u+
k + u−

k = 1 implies
that the numbers u+

k , u−
k cannot be simultaneously zero, so either zk = fk(x) or

zk = −fk(x), that is zk = |fk(x)|. If fk(x) 
= 0, it cannot simultaneously hold
zk = fk(x) and zk = −fk(x), so the numbers u+

k , u−
k cannot be simultaneously

nonzero. Then either uk = u+
k = 1 and zk = fk(x) or uk = −u−

k = −1 and
zk = −fk(x), that is uk = fk(x)/|fk(x)|. Thus, the necessary KKT conditions
have the form

m∑

k=1

gk(x)uk = 0, zk = |fk(x)|,

|uk| ≤ 1, uk = fk(x)

|fk(x)| , if |fk(x)| > 0. (11.19)

Remark 11.9 Minimization of the sum of absolute values can also be reformulated
so that more slack variables are used. We obtain the problem

⎧
⎪⎨

⎪⎩

minimize F̃ (x, z) =
m∑

k=1
(z+

k + z−
k )

subject to fk(x) = z+
k − z−

k , z+
k ≥ 0, z−

k ≥ 0,

(11.20)

where 1 ≤ k ≤ m. This problem contains m general equality constraints and 2m

simple bounds for 2m slack variables.

In the subsequent considerations, we will restrict ourselves to functions of the
form (11.4), the sums of maxima that include most cases important for applications.
In this case, it holds

h(z) =
m∑

k=1

zk, ∇h(z) = ẽ, ∇2h(z) = 0, (11.21)

where ẽ ∈ R
m is a vector with unit elements. The case when h(z) is a general

function satisfying Assumption 11.3 is studied in [23].

11.2 Primal Interior Point Methods

11.2.1 Barriers and Barrier Functions

Primal interior point methods for equality constraint minimization problems are
based on adding a barrier term containing constraint functions to the minimized
function. A resulting barrier function, depending on a barrier parameter 0 < μ ≤
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μ < ∞, is successively minimized on R
n (without any constraints), where μ ↓ 0.

Applying this approach on the problem (11.7), we obtain a barrier function

Bμ(x, z) = h(z) + μ

m∑

k=1

mk∑

l=1

ϕ(zk − fkl(x)), 0 < μ ≤ μ, (11.22)

where ϕ : (0,∞) → R is a barrier which satisfies the following assumption.

Assumption 11.5 Function ϕ(t), t ∈ (0,∞), is twice continuously differentiable,
decreasing, and strictly convex, with limt↓0 ϕ(t) = ∞. Function ϕ′(t) is increasing
and strictly concave such that limt↑∞ ϕ′(t) = 0. For t ∈ (0,∞) it holds −tϕ′(t) ≤
1, t2ϕ′′(t) ≤ 1. There exist numbers τ > 0 and c > 0 such that for t < τ it holds

− tϕ′(t) ≥ c (11.23)

and

ϕ′(t)ϕ′′′(t) − ϕ′′(t)2 > 0. (11.24)

Remark 11.10 A logarithmic barrier function

ϕ(t) = log t−1 = − log t, (11.25)

is most frequently used. It satisfies Assumption 11.5 with c = 1 and τ = ∞ but
it is not bounded from below since log t ↑ ∞ for t ↑ ∞. For that reason, barriers
bounded from below are sometimes used, e.g. a function

ϕ(t) = log(t−1 + τ−1) = − log
tτ

t + τ
, (11.26)

which is bounded from below by number ϕ = − log τ , or a function

ϕ(t) = − log t, 0 < t ≤ τ, ϕ(t) = at−2 + bt−1 + c, t ≥ τ, (11.27)

which is bounded from below by number ϕ = c = − log τ − 3/2, or a function

ϕ(t) = − log t, 0 < t ≤ τ, ϕ(t) = at−1 + bt−1/2 + c, t ≥ τ, (11.28)

which is bounded from below by number ϕ = c = − log τ − 3. Coefficients a,
b, c are chosen so that function ϕ(t) as well as its first and second derivatives are
continuous in t = τ . All these barriers satisfy Assumption 11.5 [23] (the proof of
this statement is trivial for logarithmic barrier (11.25)).

Even if bounded from below barriers (11.26)–(11.28) have more advantageous
theoretical properties (Assumption 11.1 can be replaced with a weaker Assump-
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tion 11.2 and the proof of Lemma 11.2 below is much simpler, see [23]), algorithms
using logarithmic barrier (11.26) are usually more efficient. Therefore, we will only
deal with methods using the logarithmic barrier ϕ(t) = − log t in the subsequent
considerations.

11.2.2 Iterative Determination of a Minimax Vector

Suppose the function h(z) is of form (11.21). Using the logarithmic barrier ϕ(t) =
− log t , function (11.22) can be written as

Bμ(x, z) =
m∑

k=1

zk − μ

m∑

k=1

mk∑

l=1

log(zk − fkl(x)), 0 < μ ≤ μ. (11.29)

Further, we will denote gkl(x) and Gkl(x) gradients and Hessian matrices of
functions fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , and set

ukl(x, z) = μ

zk − fkl(x)
≥ 0,

vkl(x, z) = μ

(zk − fkl(x))2 = 1

μ
u2

kl(x, z) ≥ 0, (11.30)

and

uk(x, z) =
⎡

⎢
⎣

uk1(x, z)
...

ukmk (x, z)

⎤

⎥
⎦ , vk(x, z) =

⎡

⎢
⎣

vk1(x, z)
...

vkmk (x, z)

⎤

⎥
⎦ , ẽk =

⎡

⎢
⎣

1
...

1

⎤

⎥
⎦ .

Denoting by g(x, z) the gradient of the function Bμ(x, z) and γk(x, z) =
∂

∂zk
Bμ(x, z), the necessary conditions for an extremum of the barrier func-

tion (11.22) can be written in the form

g(x, z) =
m∑

k=1

mk∑

l=1

gkl(x)ukl(x, z) =
m∑

k=1

Ak(x)uk(x, z) = 0, (11.31)

γk(x, z) = 1 −
mk∑

l=1

ukl(x, z) = 1 − ẽT
k uk(x, z) = 0, 1 ≤ k ≤ m, (11.32)

where Ak(x) = [gk1(x), . . . ,gkmk
(x)], which is a system of n + m nonlinear

equations for unknown vectors x and z. These equations can be solved by the
Newton method. In this case, the second derivatives of the Lagrange function (which
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are the first derivatives of expressions (11.31) and (11.32)) are computed. Denoting

G(x, z) =
m∑

k=1

mk∑

l=1

Gkl(x)ukl(x, z), (11.33)

the Hessian matrix of the Lagrange function and setting

Uk(x, z) = diag[uk1(x, z), . . . , ukmk (x, z)],

Vk(x, z) = diag[vk1(x, z), . . . , vkmk (x, z)] = 1

μ
U2

k (x, z),

we can write

∂

∂x
g(x, z) =

m∑

k=1

mk∑

l=1

Gkl(x)ukl(x, z) +
m∑

k=1

mk∑

l=1

gkl(x)vkl(x, z)gT
kl(x)

= G(x, z) +
m∑

k=1

Ak(x)Vk(x, z)AT
k (x), (11.34)

∂

∂zk

g(x, z) = −
mk∑

l=1

gkl(x)vkl(x, z) = −Ak(x)vk(x, z), (11.35)

∂

∂x
γk(x, z) = −

mk∑

l=1

vkl(x, z)gT
kl(x) = −vT

k (x, z)AT
k (x), (11.36)

∂

∂zk

γk(x, z) =
mk∑

l=1

vkl(x, z) = ẽT
k vk(x, z). (11.37)

Using these formulas we obtain a system of linear equations describing a step of the
Newton method

⎡

⎢
⎢
⎢
⎣

W(x, z) −A1(x)v1(x, z) · · · −Am(x)vm(x, z)

−vT
1 (x, z)AT

1 (x) ẽT
1 v1(x, z) · · · 0

...
...

. . .
...

−vT
m(x, z)AT

m(x) 0 · · · ẽT
mvm(x, z)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Δx

Δz1
...

Δzm

⎤

⎥
⎥
⎥
⎦

(11.38)

= −

⎡

⎢
⎢
⎢
⎣

g(x, z)

γ1(x, z)
...

γm(x, z)

⎤

⎥
⎥
⎥
⎦

,
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where

W(x, z) = G(x, z) +
m∑

k=1

Ak(x)Vk(x, z)AT
k (x). (11.39)

Setting

C(x, z) = [A1(x)v1(x, z), . . . , Am(x)vm(x, z)],
D(x, z) = diag[ẽT

1 v1(x, z), . . . , ẽT
mvm(x, z)]

and γ (x, z) = [γ1(x, z), . . . , γm(x, z)]T , a step of the Newton method can be
written in the form

[
W(x, z) −C(x, z)

−CT (x, z) D(x, z)

] [
Δx

Δz

]

= −
[
g(x, z)

γ (x, z)

]

. (11.40)

The diagonal matrix D(x, z) is positive definite since it has positive diagonal
elements.

During iterative determination of a minimax vector we know a value of the
parameter μ and vectors x ∈ R

n, z ∈ R
m such that zk > Fk(x), 1 ≤ k ≤ m.

Using formula (11.40) we determine direction vectors Δx, Δz. Then, we choose a
step length α so that

Bμ(x + αΔx, z + αΔz) < Bμ(x, z) (11.41)

and zk + αΔzk > Fk(x + αΔx), 1 ≤ k ≤ m. Finally, we set x+ = x + αΔx,
z+ = z + αΔz and determine a new value μ+ < μ. If the matrix of system of
equations (11.40) is positive definite, inequality (11.41) is satisfied for a sufficiently
small value of the step length α.

Theorem 11.1 Let the matrix G(x, z) given by (11.33) be positive definite. Then
the matrix of system of equations (11.40) is positive definite.

Proof The matrix of system of equations (11.40) is positive definite if and only
if the matrix D and its Schur complement W − CD−1CT are positive definite [7,
Theorem 2.5.6]. The matrix D is positive definite since it has positive diagonal
elements. Further, it holds

W − CD−1CT = G +
m∑

k=1

(
AkVkA

T
k − AkVk ẽk(ẽ

T
k Vk ẽk)

−1(AkVk ẽk)
T
)

,

matrices AkVkA
T
k − AkVk ẽk(ẽ

T
k Vk ẽk)

−1(AkVk ẽk)
T , 1 ≤ k ≤ m, are positive

semidefinite due to the Schwarz inequality and the matrix G is positive definite
by the assumption. �
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11.2.3 Direct Determination of a Minimax Vector

Now we will show how to solve system of equations (11.31)–(11.32) by direct
determination of a minimax vector using two-level optimization

z(x; μ) = argmin
z∈Rm

Bμ(x, z), (11.42)

and

x∗ = argmin
x∈Rn

B̂(x; μ), B̂(x; μ)
Δ= Bμ(x, z(x; μ)). (11.43)

The problem (11.42) serves for determination of an optimal vector z(x; μ) ∈ R
m.

Let B̃μ(z) = Bμ(x, z) for a fixed chosen vector x ∈ R
n. The function B̃μ(z)

is strictly convex (as a function of a vector z), since it is a sum of convex
function (11.21) and strictly convex functions −μ log(zk − fkl(x)), 1 ≤ k ≤ m,
1 ≤ l ≤ mk. A minimum of the function B̃μ(z) is its stationary point, so it is
a solution of system of equations (11.32) with Lagrange multipliers (11.30). The
following theorem shows that this solution exists and is unique.

Theorem 11.2 The function B̃μ(z) : (F (x),∞) → R has a unique stationary
point which is its global minimum. This stationary point is characterized by a system
of equations γ (x, z) = 0, or

1 − ẽT
k uk = 1 −

mk∑

l=1

μ

zk − fkl(x)
= 0, 1 ≤ k ≤ m, (11.44)

which has a unique solution z(x; μ) ∈ Z ⊂ R
m such that

Fk(x) < Fk(x) + μ < zk(x; μ) < Fk(x) + mkμ (11.45)

for 1 ≤ k ≤ m.

Proof Definition 11.1 implies fkl(x) ≤ Fk(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , where the
equality occurs for at least one index l.

(a) If (11.44) holds, then we can write

1 =
mk∑

l=1

μ

zk − fkl(x)
>

μ

zk − Fk(x)
⇔ zk − Fk(x) > μ,

1 =
mk∑

l=1

μ

zk − fkl(x)
<

mkμ

zk − Fk(x)
⇔ zk − Fk(x) < mkμ,

which proves inequalities (11.45).
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(b) Since

γk(x, F + μ) = 1 −
mk∑

l=1

μ

μ + Fk(x) − fkl(x)
< 1 − μ

μ
= 0,

γk(x, F + mkμ) = 1 −
mk∑

l=1

μ

mkμ + Fk(x) − fkl(x)
> 1 − mkμ

mkμ
= 0,

and the function γk(x, zk) is continuous and decreasing in Fk(x) + μ <

zk(x; μ) < Fk(x) + mk by (11.37), the equation γk(x, zk) = 0 has a unique
solution in this interval. Since the function B̃μ(z) is convex this solution
corresponds to its global minimum.

�
System (11.44) is a system of m scalar equations with localization inequali-
ties (11.45). These scalar equations can be efficiently solved by robust methods
described e.g. in [14] and [15] (details are stated in [22]). Suppose that z = z(x; μ)

and denote

B̂(x; μ) =
m∑

k=1

zk(x; μ) − μ

m∑

k=1

mk∑

l=1

log(zk(x; μ) − fkl(x)). (11.46)

To find a minimum of Bμ(x, z) in R
n+m, it suffices to minimize B̂(x; μ) in R

n.

Theorem 11.3 Consider the barrier function (11.46). Then

∇B̂(x; μ) =
m∑

k=1

Ak(x)uk(x; μ), (11.47)

∇2B̂(x; μ) = W(x; μ) − C(x; μ)D−1(x; μ)CT (x; μ)

= G(x; μ) +
m∑

k=1

Ak(x)Vk(x; μ)AT
k (x)

−
m∑

k=1

Ak(x)Vk(x; μ)ẽk ẽ
T
k Vk(x; μ)AT

k (x)

ẽT
k Vk(x; μ)ẽk

, (11.48)

where G(x; μ) = G(x, z(x; μ)) and W(x; μ), C(x; μ), D(x; μ), Uk(x; μ),
Vk(x; μ) = U2

k (x; μ)/μ, 1 ≤ k ≤ m, are obtained by the same substitution. A
solution of equation

∇2B̂(x; μ)Δx = −∇B̂(x; μ) (11.49)
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is identical with Δx given by (11.40), where z = z(x; μ) (so γ (x, z(x; μ)) = 0).

Proof Differentiating the barrier function (11.46) and using (11.32) we obtain

∇B̂(x; μ) =
m∑

k=1

∂

∂x
zk(x; μ) −

m∑

k=1

mk∑

l=1

ukl(x; μ)

(
∂

∂x
zk(x; μ) − ∂

∂x
fkl(x)

)

=
m∑

k=1

∂

∂x
zk(x; μ)

(

1 −
mk∑

l=1

ukl(x; μ)

)

+
m∑

k=1

mk∑

l=1

ukl(x; μ)
∂

∂x
fkl(x)

=
m∑

k=1

mk∑

l=1

gkl(x)ukl(x; μ) =
m∑

k=1

Ak(x)uk(x; μ),

where

ukl(x; μ) = μ

zk(x; μ) − fkl(x)
, 1 ≤ k ≤ m, 1 ≤ l ≤ mk. (11.50)

Formula (11.48) can be obtained by additional differentiation of relations (11.32)
and (11.47) using (11.50). A simpler way is based on using (11.40). Since (11.32)
implies γ (x, z(x; μ)) = 0, we can substitute γ = 0 into (11.40), which yields the
equation

(
W(x, z) − C(x, z)D−1(x, z)CT (x, z)

)
Δx = −g(x, z),

where z = z(x; μ), that confirms validity of formulas (11.48) and (11.49) (details
can be found in [22]). �
Remark 11.11 To determine an inverse of the Hessian matrix, one can use a
Woodbury formula [7, Theorem 12.1.4] which gives

(∇2B̂(x; μ))−1 = W−1(x; μ) − W−1(x; μ)C(x; μ)

(
CT (x; μ)W−1(x; μ)C(x; μ) − D(x; μ)

)−1

CT (x; μ)W−1(x; μ). (11.51)

If the matrix ∇2B̂(x; μ) is not positive definite, it can be replaced by a matrix
LLT = ∇2B̂(x; μ) + E, obtained by the Gill–Murray decomposition [10]. Note
that it is more advantageous to use system of linear equations (11.40) instead
of (11.49) for determination of a direction vector Δx because the system of
nonlinear equations (11.44) is solved with prescribed finite precision, and thus a
vector γ (x, z), defined by (11.32), need not be zero.
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From

Vk(x; μ) = 1

μ
U2

k (x; μ), uk(x; μ) ≥ 0, ẽT
k uk(x; μ) = 1, 1 ≤ k ≤ m,

it follows that ‖Vk(x; μ)‖ ↑ ∞ if μ ↓ 0, so Hessian matrix (11.48) may be ill-
conditioned if the value μ is very small. From this reason, we use a lower bound
μ > 0 for μ.

Theorem 11.4 Let Assumption 11.4 be satisfied and μ ≥ μ > 0. If G(x; μ) is

uniformly positive definite (if a constant G exists such that vT G(x; μ)v ≥ G‖v‖2),
then there is a number κ ≥ 1 such that κ(∇2B̂(x; μ)) ≤ κ .

Proof

(a) Using (11.30), (11.48), and Assumption 11.4, we obtain

‖∇2B̂(x; μ)‖ ≤
∥
∥
∥
∥
∥
G(x; μ) +

m∑

k=1

Ak(x)Vk(x; μ)AT
k (x)

∥
∥
∥
∥
∥

≤
m∑

k=1

mk∑

l=1

(

|Gkl(x)ukl(x, μ)| + 1

μ

∣
∣
∣u2

kl(x; μ)gkl(x)gT
kl(x)

∣
∣
∣

)

≤ m

μ

(
μ G + g2

)
Δ= c

μ
≤ c

μ
, (11.52)

because 0 ≤ ukl(x; μ) ≤ ẽT
k uk(x; μ) = 1, 1 ≤ k ≤ m, 1 ≤ l ≤ mk, by (11.44).

(b) From the proof of Theorem 11.1 it follows that the matrix ∇2B̂(x; μ)−G(x; μ)

is positive semidefinite. Therefore,

λ(∇2B̂(x; μ)) ≥ λ(G(x; μ)) ≥ G.

(c) Since (a) implies λ(∇2B̂(x; μ)) = ‖∇2B̂(x; μ)‖ ≤ c/μ, using (b) we can write

κ(∇2B̂(x; μ)) = λ(∇2B̂(x; μ))

λ(∇2B̂(x; μ))
≤ c

μ G

Δ= κ. (11.53)

�
Remark 11.12 If there exists a number κ > 0 such that κ(∇2B̂(xi; μi)) ≤ κ , i ∈ N,
the direction vector Δxi , given by solving a system of equations ∇2B̂(xi; μi)Δxi =
−∇B̂(xi; μi), satisfies the condition

(Δxi )
T g(xi; μi) ≤ −ε0‖Δxi‖‖g(xi; μi)‖, i ∈ N, (11.54)

where ε0 = 1/
√

κ and g(x; μ) = ∇B̂(x; μ). Then, for arbitrary numbers 0 < ε1 ≤
ε2 < 1 one can find a step length parameter αi > 0 such that for xi+1 = xi +αiΔxi
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it holds

ε1 ≤ B̂(xi+1; μi) − B̂(xi; μi)

αi(Δxi )T g(xi; μi)
≤ ε2, (11.55)

so there exists a number c > 0 such that (see [26, Section 3.2])

B̂(xi+1; μi) − B̂(xi; μi) ≤ −c‖g(xi; μi)‖2, i ∈ N. (11.56)

If Assumption 11.4 is not satisfied, then only (Δxi )
T g(xi; μi) < 0 holds (because

the matrix ∇2B̂(x; μ) is positive definite by Theorem 11.1) and

B̂(xi+1; μi) − B̂(xi; μi) ≤ 0, i ∈ N. (11.57)

11.2.4 Implementation

Remark 11.13 In (11.39), it is assumed that G(x, z) is the Hessian matrix of the
Lagrange function. Direct computation of the matrix G(x; μ) = G(x, z(x; μ)) is
usually difficult (one can use automatic differentiation as described in [13]). Thus,
various approximations G ≈ G(x; μ) are mostly used.

• The matrix G ≈ G(x; μ) can be determined using differences

Gwj = 1

δ

(
m∑

k=1

Ak(x + δwj )uk(x; μ) −
m∑

k=1

A(x)uk(x; μ)

)

.

The vectors wj , 1 ≤ j ≤ k, are chosen so that the number of them is as small as
possible [4, 27].

• The matrix G ≈ G(x; μ) can be determined using the variable metric methods
[17]. The vectors

d = x+ − x, y =
m∑

k=1

Ak(x+)uk(x+; μ) −
m∑

k=1

Ak(x)uk(x+; μ)

are used for an update of G.
• If the problem is separable (i.e. fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , are functions of

a small number nkl = O(1) of variables), one can set as in [12]

G =
m∑

k=1

mk∑

l=1

ZklĜklZ
T
klukl(x, z),
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where the reduced Hessian matrices Ĝkl are updated using the reduced vectors
d̂kl = ZT

kl(x+ − x) and ŷkl = Zkl(gkl(x+) − gkl(x)).

Remark 11.14 The matrix G ≈ G(x; μ) obtained by the approach stated in
Remark 11.13 can be ill-conditioned so condition (11.54) (with a chosen value
ε0 > 0) may not be satisfied. In this case it is possible to restart the iteration
process and set G = I . Then G = 1 and G = 1 in (11.52) and (11.53), so it is
a higher probability of fulfilment of condition (11.54). If the choice G = I does not
satisfy (11.54), we set Δx = −g(x; μ) (a steepest descent direction).

An update of μ is an important part of interior point methods. Above all, μ ↓ 0
must hold, which is a main property of interior point methods. Moreover, rounding
errors may cause that zk(x; μ) = Fk(x) when the value μ is small (because Fk(x) <

zk(x; μ) ≤ Fk(x) + mkμ and Fk(x) + mkμ → Fk(x) if μ ↓ 0), which leads to
a breakdown (division by zk(x; μ) − Fk(x) = 0) when computing 1/(zk(x; μ) −
Fk(x)). Therefore, we need to use a lower bound μ for a barrier parameter (e.g.

μ = 10−8 when computing in double precision).
The efficiency of interior point methods also depends on the way of decreasing

the value of a barrier parameter. The following heuristic procedures proved success-
ful in practice, where g is a suitable constant.

Procedure A

Phase 1. If ‖g(xi; μi)‖ ≥ g, then μi+1 = μi (the value of a barrier parameter is
unchanged).

Phase 2. If ‖g(xi; μi)‖ < g, then

μi+1 = max
{
μ̃i+1, μ, 10 εM|F(xi+1)|

}
, (11.58)

where F(xi+1) = F1(xi+1) + · · · + Fm(xi+1), εM is a machine precision, and

μ̃i+1 = min
{

max{λμi, μi/(σμi + 1)}, max{‖g(xi; μi)‖2, 10−2k}
}

.

(11.59)

The values μ = 10−8, λ = 0.85, and σ = 100 are usually used.

Procedure B

Phase 1. If ‖g(xi; μi)‖2 ≥ ϑμi , then μi+1 = μi (the value of a barrier parameter
is unchanged).

Phase 2. If ‖g(xi; μi)‖2 < ϑμi , then

μi+1 = max{μ, ‖gi (xi; μi)‖2}. (11.60)

The values μ = 10−8 and ϑ = 0.1 are usually used.
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The choice of g in Procedure A is not critical. We can set g = ∞ but a lower
value is sometimes more advantageous. Formula (11.59) requires several comments.
The first argument of the minimum controls the decreasing speed of the value of a
barrier parameter which is linear (a geometric sequence) for small i (the term λμi )
and sublinear (a harmonic sequence) for large i (the term μi/(σμi + 1)). Thus, the
second argument ensuring that the value μ is small in a neighborhood of a desired
solution is mainly important for large i. This situation may appear if the gradient
norm ‖g(xi; μi)‖ is small even if xi is far from a solution. The idea of Procedure B
proceeds from the fact that a barrier function B̂(x; μ) should be minimized with a
sufficient precision for a given value of a parameter μ.

The considerations up to now are summarized in Algorithm 11.1 introduced in
the Appendix. This algorithm supposes that the matrix A(x) is sparse. If it is dense,
the algorithm is simplified because there is no symbolic decomposition.

11.2.5 Global Convergence

Now we prove the global convergence of the method realized by Algorithm 11.1.

Lemma 11.1 Let numbers zk(x; μ), 1 ≤ k ≤ m, be solutions of Eq. (11.44). Then

∂

∂μ
zk(x; μ) > 0, 1 ≤ k ≤ m,

∂

∂μ
B̂(x; μ) = −

m∑

k=1

mk∑

l=1

log(zk(x; μ) − fkl(x)).

Proof Differentiating (11.44) with respect to μ, one can write for 1 ≤ k ≤ m

−
mk∑

l=1

1

zk(x; μ) − fkl(x)
+

mk∑

l=1

μ

(zk(x; μ) − fkl(x))2

∂

∂μ
zk(x; μ) = 0,

which after multiplication of μ together with (11.30) and (11.44) gives

∂

∂μ
zk(x; μ) =

(
mk∑

l=1

μ2

(zk(x; μ) − fkl(x))2

)−1

=
(

mk∑

l=1

u2
kl(x; μ)

)−1

> 0.

Differentiating the function

B̂(x; μ) =
m∑

k=1

zk(x; μ) − μ

m∑

k=1

mk∑

l=1

log(zk(x; μ) − fkl(x)) (11.61)
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and using (11.44) we obtain

∂

∂μ
B̂(x; μ) =

m∑

k=1

∂

∂μ
zk(x; μ) −

m∑

k=1

mk∑

l=1

log(zk(x; μ) − fkl(x))

−
m∑

k=1

mk∑

l=1

μ

zk(x; μ) − fkl(x)

∂

∂μ
zk(x; μ)

= ∂

∂μ
zk(x; μ)

m∑

k=1

(

1 −
mk∑

l=1

μ

zk(x; μ) − fkl(x)

)

−
m∑

k=1

mk∑

l=1

log(zk(x; μ) − fkl(x))

= −
m∑

k=1

mk∑

l=1

log(zk(x; μ) − fkl(x)).

�
Lemma 11.2 Let Assumption 11.1 be satisfied. Let {xi} and {μi}, i ∈ N, be
the sequences generated by Algorithm 11.1. Then the sequences {B̂(xi; μi)},
{z(xi; μi)}, and {F(xi )}, i ∈ N, are bounded. Moreover, there exists a constant
L ≥ 0 such that for i ∈ N it holds

B̂(xi+1; μi+1) ≤ B̂(xi+1; μi) + L(μi − μi+1). (11.62)

Proof

(a) We first prove boundedness from below. Using (11.61) and Assumption 11.1,
one can write

B̂(x; μ) − F =
m∑

k=1

zk(x; μ) − F − μ

m∑

k=1

mk∑

l=1

log(zk(x; μ) − fkl(x))

≥
m∑

k=1

(
zk(x; μ) − F − mkμ log(zk(x; μ) − F )

)
.

A convex function ψ(t) = t − mμ log(t) has a unique minimum at the point
t = mμ because ψ ′(mμ) = 1 − mμ/mμ = 0. Thus, it holds

B̂(x; μ) ≥ F +
m∑

k=1

(mkμ − mkμ log(mkμ))
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≥ F +
m∑

k=1

min{0, mkμ(1 − log(mkμ)}

≥ F +
m∑

k=1

min{0, mkμ(1 − log(2mkμ)} Δ= B.

Boundedness from below of sequences {z(xi; μi)} and {F(xi )}, i ∈ N, follows
from inequalities (11.45) and Assumption 11.1.

(b) Now we prove boundedness from above. Similarly as in (a) we can write

B̂(x; μ) − F ≥
m∑

k=1

zk(x; μ) − F

2

+
m∑

k=1

(
zk(x; μ) − F

2
− mkμ log(zk(x; μ) − F)

)

.

A convex function t/2−mμ log(t) has a unique minimum at the point t = 2mμ.
Thus, it holds

B̂(x; μ) ≥
m∑

k=1

zk(x; μ) − F

2
+ F +

m∑

k=1

min{0, mμ(1 − log(2mkμ))}

=
m∑

k=1

zk(x; μ) − F

2
+ B

or

m∑

k=1

(zk(x; μ) − F) ≤ 2(B̂(x; μ) − B). (11.63)

Using the mean value theorem and Lemma 11.1, we obtain

B̂(xi+1; μi+1) − B̂(xi+1; μi)

=
m∑

k=1

mk∑

l=1

log(zk(xi+1; μ̃i) − fkl(xi+1))(μi − μi+1)

≤
m∑

k=1

mk∑

l=1

log(zk(xi+1; μi) − fkl(xi+1))(μi − μi+1)

≤
m∑

k=1

mk log(zk(xi+1; μi) − F)(μi − μi+1), (11.64)
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where 0 < μi+1 ≤ μ̃i ≤ μi . Since log(t) ≤ t/e (where e = exp(1)) for t > 0,
we can write using inequalities (11.63), (11.64), and (11.45)

B̂(xi+1; μi+1) − B ≤ B̂(xi+1; μi) − B

+
m∑

k=1

mk log(zk(xi+1; μi) − F)(μi − μi+1)

≤ B̂(xi+1; μi) − B

+ e−1
m∑

k=1

mk(zk(xi+1; μi) − F)(μi − μi+1)

≤ B̂(xi+1; μi) − B

+ 2e−1m(B̂(xi+1; μi) − B)(μi − μi+1)

= (1 + λδi)(B̂(xi+1; μi) − B)

≤ (1 + λδi)(B̂(xi; μi) − B),

where λ = 2m/e and δi = μi − μi+1. Therefore,

B̂(xi+1; μi+1) − B ≤
i∏

j=1

(1 + λδj )(B̂(x1; μ1) − B)

≤
∞∏

i=1

(1 + λδi)(B̂(x1; μ1) − B) (11.65)

and since

∞∑

i=1

λδi = λ

∞∑

i=1

(μi − μi+1) = λ(μ − lim
i↑∞ μi) ≤ λμ

the expression on the right-hand side of (11.65) is finite. Thus, the sequence
{B̂(xi; μi)}, i ∈ N, is bounded from above and the sequences {z(xi; μi)} and
{F(xi )}, i ∈ N, are bounded from above as well by (11.63) and (11.45).

(c) Finally, we prove formula (11.62). Using (11.64) and (11.45) we obtain

B̂(xi+1; μi+1) − B̂(xi+1; μi)

≤
m∑

k=1

mk log(zk(xi+1; μi) − F)(μi − μi+1)
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≤
m∑

k=1

mk log(Fk(xi+1) + mkμi − F)(μi − μi+1)

≤
m∑

k=1

mk log(F + mkμ − F)(μi − μi+1)

Δ= L(μi − μi+1)

(the existence of a constant F follows from boundedness of a sequence {F(xi )},
i ∈ N), which together with (11.57) gives B̂(xi+1; μi+1) ≤ B̂(xi; μi)+L(μi −
μi+1), i ∈ N. Thus, it holds

B̂(xi; μi) ≤ B̂(x1; μ1) + L(μ1 − μi) ≤ B̂(x1; μ1) + Lμ
Δ= B, i ∈ N.

(11.66)
�

The upper bounds g and G are not used in Lemma 11.2, so Assumption 11.4 may
not be satisfied. Thus, there exists an upper bound F (independent of g and G) such
that F(xi ) ≤ F for all i ∈ N. This upper bound can be used in definition of a set
DF (F ) in Assumption 11.4.

Lemma 11.3 Let Assumption 11.4 and the assumptions of Lemma 11.2 be satisfied.
Then, if we use Procedure A or Procedure B for an update of parameter μ, the values
{μi}, i ∈ N, form a non-decreasing sequence such that μi ↓ 0.

Proof The value of parameter μ is unchanged in the first phase of Procedure A
or Procedure B. Since a function B̂(x; μ) is continuous, bounded from below by
Lemma 11.2, and since inequality (11.56) is satisfied (with μi = μ), it holds
‖g(xi; μ)‖ ↓ 0 if phase 1 contains an infinite number of subsequent iterative steps
[26, Section 3.2]. Thus, there exists a step (with index i) belonging to the first
phase such that either ‖g(xi; μ)‖ < g in Procedure A or ‖g(xi; μ)‖2 < ϑμ in
Procedure B. However, this is in contradiction with the definition of the first phase.
Thus, there exists an infinite number of steps belonging to the second phase, where
the value of parameter μ is decreased so that μi ↓ 0. �
Theorem 11.5 Let assumptions of Lemma 11.3 be satisfied. Consider a sequence
{xi}, i ∈ N, generated by Algorithm 11.1, where δ = ε = μ = 0. Then

lim
i↑∞

m∑

k=1

mk∑

l=1

gkl(xi )ukl(xi; μi) = 0,

mk∑

l=1

ukl(xi; μi) = 1,

zk(xi; μi) − fkl(xi ) ≥ 0, ukl(xi; μi) ≥ 0,

lim
i↑∞ ukl(xi; μi)(zk(xi; μi) − fkl(xi )) = 0

for 1 ≤ k ≤ m and 1 ≤ l ≤ mk .
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Proof

(a) Equalities ẽT
k uk(xi; μi) = 1, 1 ≤ k ≤ m, are satisfied by (11.44) because

δ = 0. Inequalities zk(xi; μi) − fkl(xi ) ≥ 0 and ukl(xi; μi) ≥ 0 follow from
formulas (11.45) and statement (11.50).

(b) Relations (11.56) and (11.62) yield

B̂(xi+1; μi+1) − B̂(xi; μi) = (B̂(xi+1; μi+1) − B̂(xi+1; μi))

+(B̂(xi+1; μi) − B̂(xi; μi))

≤ L (μi − μi+1) − c ‖g(xi; μi)‖2

and since limi↑∞ μi = 0 (Lemma 11.3), we can write by (11.66) that

B ≤ lim
i↑∞ B̂(xi+1; μi+1)

≤ B̂(x1; μ1) + L

∞∑

i=1

(μi − μi+1) − c

∞∑

i=1

‖g(xi; μi)‖2

≤ B̂(x1; μ1) + Lμ − c

∞∑

i=1

‖g(xi; μi)‖2 = B − c

∞∑

i=1

‖g(xi; μi)‖2.

Thus, it holds

∞∑

i=1

‖g(xi; μi)‖2 ≤ 1

c
(B − B) < ∞,

which gives g(xi; μi) =∑m
k=1
∑mk

l=1 gkl(xi )ukl(xi; μi) ↓ 0.
(c) Let indices 1 ≤ k ≤ m and 1 ≤ l ≤ mk are chosen arbitrarily. Using (11.50)

and Lemma 11.3 we obtain

ukl(xi; μi)(zk(xi; μi) − fkl(xi )) = μi(zk(xi; μi) − fkl(xi ))

zk(xi; μi) − fkl(xi )
= μi ↓ 0.

�
Corollary 11.1 Let the assumptions of Theorem 11.5 be satisfied. Then, every
cluster point x ∈ R

n of a sequence {xi}, i ∈ N, satisfies necessary KKT
conditions (11.8)–(11.9) where z and u (with elements zk and ukl , 1 ≤ k ≤ m,
1 ≤ l ≤ mk) are cluster points of sequences {z(xi; μi)} and {u(xi; μi)}, i ∈ N.

Now we will suppose that the values δ, ε, and μ are nonzero and show how
a precise solution of the system of KKT equations will be after termination of
computation.

Theorem 11.6 Let the assumptions of Lemma 11.3 be satisfied. Consider a
sequence {xi}, i ∈ N, generated by Algorithm 11.1. Then, if the values δ > 0,
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ε > 0, and μ > 0 are chosen arbitrarily, there exists an index i ≥ 1 such that

‖g(xi; μi)‖ ≤ ε,

∣
∣
∣
∣
∣
1 −

mk∑

l=1

ukl(xi; μi)

∣
∣
∣
∣
∣
≤ δ,

zk(xi; μi) − fkl(xi ) ≥ 0, ukl(xi; μi) ≥ 0,

ukl(xi; μi)(zk(xi; μi) − fkl(xi )) ≤ μ,

for 1 ≤ k ≤ m and 1 ≤ l ≤ mk .

Proof Inequality |1− ẽT
k uk(xi; μi)| ≤ δ follows immediately from the fact that the

equation ẽT
k uk(xi; μi) = 1, 1 ≤ k ≤ m, is solved with precision δ. Inequalities

zk(xi; μi) − fkl(xi ) ≥ 0, ukl(xi; μi) ≥ 0 follow from formulas (11.45) and
statement (11.50) as in the proof of Theorem 11.5. Since μi ↓ 0 and g(xi; μi) ↓ 0
by Lemma 11.3 and Theorem 11.5, there exists an index i ≥ 1 such that μi ≤ μ

and ‖g(xi; μi)‖ ≤ ε. Using (11.50) we obtain

ukl(xi; μi)(zk(xi; μi) − fkl(xi )) = μi(zk(xi; μi) − fkl(xi ))

zk(xi; μi) − fkl(xi )
= μi ≤ μ.

�
Theorem 11.5 is a standard global convergence result. If the stopping parameters

δ, ε, μ are zero, the sequence of generated points converges to the point satisfying
the KKT conditions for the equivalent nonlinear programming problem. Theo-
rem 11.6 determines a precision of the obtained solution if the stopping parameters
are nonzero.

11.2.6 Special Cases

Both the simplest and most widely considered generalized minimax problem is the
classical minimax problem (11.10), when m = 1 in (11.4) (in this case we write
m, z, u, v, U , V , A instead of m1, z1, u1, v1, U1, V1, A1). For solving a classical
minimax problem one can use Algorithm 11.1, where a major part of computation
is very simplified. System of equations (11.38) is of order n + 1 and has the form

[
G(x, z) + A(x)V (x, z)AT (x) −A(x)V (x, z)ẽ

−ẽT V (x, z)AT (x) ẽT V (x, z)ẽ

] [
Δx

Δz

]

= −
[
g(x, z)

γ (x, z)

]

,

(11.67)

where g(x, z) = A(x)u(x, z), γ (x, z) = 1 − ẽT u(x, z), V (x, z) = U2(x, z)/μ =
diag[u2

1(x, z), . . . , u2
m(x, z)]/μ, and uk(x, z) = μ/(z−fk(x)), 1 ≤ k ≤ m. System
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of equations (11.44) is reduced to one nonlinear equation

1 − ẽT u(x, z) = 1 −
m∑

k=1

μ

z − fk(x)
= 0, (11.68)

whose solution z(x; μ) lies in the interval F(x) + μ ≤ z(x; μ) ≤ F(x) + mμ. To
find this solution by robust methods from [14, 15] is not difficult. A barrier function
has the form

B̂(x; μ) = z(x; μ) − μ

m∑

k=1

log(z(x; μ) − fk(x)) (11.69)

with ∇B̂(x; μ) = A(x)u(x; μ) and

∇2B̂(x; μ) = G(x; μ) + A(x)V (x; μ)AT (x) − A(x)V (x; μ)ẽẽT V (x; μ)AT (x)

ẽT V (x; μ)ẽ
.

If we write system (11.67) in the form

[
W(x, z) −c(x, z)

−cT (x, z) δ(x, z)

] [
Δx

Δz

]

= −
[
g(x, z)

γ (x, z)

]

,

where W(x, z) = G(x, z) + A(x)V (x, z)AT (x), c(x, z) = A(x)V (x, z)ẽ and
δ(x, z) = ẽT V (x, z)ẽ, then

∇2B̂(x; μ) = W(x; μ) − c(x; μ)cT (x; μ)

δ(x; μ)
.

Since

[
W −c

−cT δ

]−1

=
[
W−1 − W−1c ω−1cT H−1 −W−1c ω−1

−ω−1cT W−1 −ω−1

]

,

where ω = cT W−1c − δ, we can write

[
Δx

Δz

]

= −
[

W −c

−cT δ

]−1 [
g

γ

]

=
[
W−1(c Δz − g)

Δz

]

,

where

Δz = ω−1(cT W−1g + γ ).
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The matrix W is sparse if the matrix A(x) has sparse columns. If the matrix W is
not positive definite, we can use the Gill–Murray decomposition

W + E = LLT , (11.70)

where E is a positive semidefinite diagonal matrix. Then we solve equations

LLT p = g, LLT q = c (11.71)

and set

Δz = cT p + γ

cT q − δ
, Δx = q Δz − p. (11.72)

If we solve the classical minimax problem, Algorithm 11.1 must be somewhat
modified. In Step 2, we solve only Eq. (11.68) instead of the system of equa-
tions (11.44). In Step 4, we determine a vector Δx by solving Eq. (11.71) and
using relations (11.72). In Step 4, we use the barrier function (11.69) (the nonlinear
equation (11.68) must be solved at the point x + αΔx).

Minimization of a sum of absolute values, i.e., minimization of the func-
tion (11.14) is another important generalized minimax problem. In this case, a
barrier function has the form

Bμ(x, z) =
m∑

k=1

zk − μ

m∑

k=1

log(zk − fk(x)) − μ

m∑

k=1

log(zk + fk(x))

=
m∑

k=1

zk − μ

m∑

k=1

log(z2
k − f 2

k (x)), (11.73)

where zk > |fk(x)|, 1 ≤ k ≤ m. Differentiating Bμ(x, z) with respect to x and z

we obtain the necessary conditions for an extremum

m∑

k=1

2μfk(x)

z2
k − f 2

k (x)
gk(x) =

m∑

k=1

uk(x, zk) gk(x) = 0,

uk(x, zk) = 2μfk(x)

z2
k − f 2

k (x)

(11.74)

and

1− 2μzk

z2
k − f 2

k (x)
= 1−uk(x, zk)

zk

fk(x)
= 0 ⇒ uk(x, zk) = fk(x)

zk

, (11.75)
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where gk(x) = ∇fk(x), 1 ≤ k ≤ m, which corresponds to (11.31)–(11.32).
Equations in (11.44) are quadratic of the form

2μzk(x; μ)

z2
k(x; μ) − f 2

k (x)
= 1 ⇔ z2

k(x; μ) − f 2
k (x) = 2μzk(x; μ), (11.76)

where 1 ≤ k ≤ m, and their solutions is given by

zk(x; μ) = μ +
√

μ2 + f 2
k (x), 1 ≤ k ≤ m, (11.77)

(the second solutions of quadratic equations (11.76) do not satisfy the condition
zk > |fk(x)|, so the obtained vector z does not belong to a domain of B̃μ(z)).
Using (11.75) and (11.77) we obtain

uk(x; μ) = uk(x, zk(x; μ)) = fk(x)

zk(x; μ)
= fk(x)

μ +
√

μ2 + f 2
k (x)

(11.78)

for 1 ≤ k ≤ m and

B̂(x; μ) = B(x, z(x; μ)) =
m∑

k=1

zk(x; μ) − μ

m∑

k=1

log(z2
k(x; μ) − f 2

k (x))

=
m∑

k=1

zk(x; μ) − μ

m∑

k=1

log(2μzk(x; μ))

=
m∑

k=1

[
zk(x; μ) − μ log(zk(x; μ))

]− μm log(2μ). (11.79)

Using these expressions, we can write formulas (11.47) and (11.48) in the form

∇B̂(x; μ) =
m∑

k=1

gk(x)uk(x; μ) (11.80)

and

∇2B̂(x; μ) = W(x; μ) =
m∑

k=1

Gk(x)uk(x; μ) +
m∑

k=1

gk(x)vk(x; μ)gT
k (x),

(11.81)
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where

Gk(x) = ∇2fk(x), vk(x; μ) = 2μ

z2
k(x; μ) + f 2

k (x)
, 1 ≤ k ≤ m. (11.82)

A vector Δx ∈ R
n is determined by solving the equation

∇2B̂(x; μ)Δx = −g(x; μ), (11.83)

where g(x; μ) = ∇B̂(x; μ) 
= 0. From (11.83) and (11.81) it follows

(Δx)T g(x; μ) = −(Δx)T ∇2B̂(x; μ)Δx ≤ −(Δx)T G(x; μ)Δx,

so if a matrix G(x; μ) is positive definite, a matrix ∇B̂(x; μ) is positive definite
as well (since a diagonal matrix V (x; μ) is positive definite by (11.82)) and
(Δx)T g(x; μ) < 0 holds (a direction vector Δx is descent for a function B̂(x; μ)).

If we minimize a sum of absolute values, Algorithm 11.1 needs to be somewhat
modified. In Step 2, we solve quadratic equations (11.76) whose solutions are given
by (11.77). In Step 4, we determine a vector Δx by solving Eq. (11.83), where
matrix ∇2B̂(x; μ) is given by (11.83). In Step 4, we use the barrier function (11.79).

11.3 Smoothing Methods

11.3.1 Basic Properties

Similarly as in Sect. 11.2.1 we will restrict ourselves to sums of maxima, where a
mapping h : Rn → R

m is a sum of its arguments, so (11.4) holds. Smoothing meth-
ods for minimization of sums of maxima replace function (11.4) by a smoothing
function

S(x; μ) =
m∑

k=1

Sk(x; μ), (11.84)

where

Sk(x; μ) = μ log
mk∑

l=1

exp

(
fkl(x)

μ

)

= Fk(x) + μ log
mk∑

l=1

exp

(
fkl(x) − Fk(x)

μ

)

, (11.85)
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depending on a smoothing parameter 0 < μ ≤ μ, which is successively minimized
on R

n with μ ↓ 0. Since fkl(x) ≤ Fk(x), 1 ≤ l ≤ mk , and the equality arises for at
least one index, at least one exponential function on the right-hand side of (11.85)
has the value 1, so the logarithm is positive. Thus Fk(x) ≤ Sk(x; μ) ≤ Fk(x) +
μ log mk , 1 ≤ k ≤ m, hold. Therefore

F(x) ≤ S(x; μ) ≤ F(x) + μ

m∑

k=1

log mk, (11.86)

so S(x; μ) → F(x) if μ ↓ 0.

Remark 11.15 Similarly as in Sect. 11.2.2 we will denote gkl(x) and Gkl(x) the
gradients and Hessian matrices of functions fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk, and

uk(x; μ) =
⎡

⎢
⎣

uk1(x; μ)
...

ukmk (x; μ)

⎤

⎥
⎦ , ẽk =

⎡

⎢
⎣

1
...

1

⎤

⎥
⎦ ,

where

ukl(x; μ) = exp(fkl(x)/μ)
∑mk

l=1 exp(fkl(x)/μ)
= exp((fkl(x) − Fk(x))/μ)
∑mk

l=1 exp((fkl(x) − Fk(x))/μ)
. (11.87)

Thus, it holds ukl(x; μ) ≥ 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk , and

ẽT
k uk(x; μ) =

mk∑

l=1

ukl(x; μ) = 1. (11.88)

Further, we denote Ak(x) = J T
k (x) = [gk1(x), . . . ,gkmk

(x)] and Uk(x; μ) =
diag[uk1(x; μ), . . . , ukmk (x; μ)] for 1 ≤ k ≤ m.

Theorem 11.7 Consider the smoothing function (11.84). Then

∇S(x; μ) = g(x; μ) (11.89)

and

∇2S(x; μ) = G(x; μ) + 1

μ

m∑

k=1

Ak(x)Uk(x; μ)AT
k (x)

− 1

μ

m∑

k=1

Ak(x)uk(x; μ)(Ak(x)uk(x; μ))T

= G(x; μ) + 1

μ
A(x)U(x; μ)AT (x) − 1

μ
C(x; μ)C(x; μ)T

(11.90)
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where g(x; μ) =∑m
k=1 Ak(x)uk(x; μ) = A(x)u(x) and

G(x; μ) =
m∑

k=1

Gk(x)uk(x; μ), A(x) = [A1(x), . . . , Am(x)],

U(x; μ) = diag[U1(x; μ), . . . , Um(x; μ)],
C(x; μ) = [A1(x)u1(x; μ), . . . , Am(x)um(x; μ)].

Proof Obviously,

∇S(x; μ) =
m∑

k=1

∇Sk(x; μ), ∇2S(x; μ) =
m∑

k=1

∇2Sk(x; μ).

Differentiating functions (11.85) and using (11.87) we obtain

∇Sk(x; μ) = μ
∑mk

l=1 exp(fkl(x)/μ)

mk∑

l=1

1

μ
exp(fkl(x)/μ)gkl(x)

=
mk∑

l=1

gkl(x)ukl(x; μ) = Ak(x)uk(x; μ). (11.91)

Adding up these expressions yields (11.89). Further, it holds

∇ukl(x; μ) = 1

μ

exp(fkl(x)/μ)
∑mk

l=1 exp(fkl(x)/μ)
gkl(x)

− exp(fkl(x)/μ)
(∑mk

l=1 exp(fkl(x)/μ)
)2

mk∑

l=1

1

μ
exp(fkl(x)/μ)gkl(x)

= 1

μ
ukl(x; μ)gkl(x) − 1

μ
ukl(x; μ)

mk∑

l=1

ukl(x; μ)gkl(x). (11.92)

Differentiating (11.91) and using (11.92) we obtain

∇2Sk(x; μ) =
mk∑

l=1

Gkl(x)ukl(x; μ) +
mk∑

l=1

gkl(x)∇ukl(x; μ)

= Gk(x; μ) + 1

μ

mk∑

l=1

gkl(x)ukl(x; μ)gT
kl(x)
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− 1

μ

mk∑

l=1

gkl(x)ukl(x; μ)

(
mk∑

l=1

gkl(x)ukl(x; μ)

)T

= Gk(x; μ) + 1

μ
Ak(x)Uk(x; μ)AT

k (x)

− 1

μ
Ak(x)uk(x; μ)(Ak(x)uk(x; μ))T ,

where Gk(x; μ) = ∑mk

l=1 Gkl(x)ukl(x; μ). Adding up these expressions
yields (11.90). �
Remark 11.16 Note that using (11.90) and the Schwarz inequality we obtain

vT ∇2S(x; μ)v = vT G(x; μ)v

+ 1

μ

m∑

k=1

(

vT Ak(x)Uk(x; μ)AT
k (x)v − (vT Ak(x)Uk(x; μ)ẽk)

2

ẽT
k Uk(x; μ)ẽk

)

≥ vT G(x; μ)v,

because ẽT
k Uk(x; μ)ẽk = ẽT

k uk(x; μ) = 1, so the Hessian matrix ∇2S(x; μ) is
positive definite if the matrix G(x; μ) is positive definite.

Using Theorem 11.7, a step of the Newton method can be written in the form
x+ = x + αΔx where

∇2S(x; μ)Δx = −∇S(x; μ),

or
(

W(x; μ) − 1

μ
C(x; μ)CT (x; μ)

)

Δx = −g(x; μ), (11.93)

where

W(x; μ) = G(x; μ) + 1

μ
A(x)U(x; μ)AT (x), g(x; μ) = A(x)u(x; μ).

(11.94)

A matrix W in (11.94) has the same structure as a matrix W in (11.48) and, by
Theorem 11.7, smoothing function (11.84) has similar properties as the barrier
function (11.46). Thus, one can use an algorithm that is analogous to Algorithm 11.1
and considerations stated in Remark 11.12, where S(x; μ) and ∇2S(x; μ) are used
instead of B̂(x; μ) and ∇2B̂(x; μ). It means that

S(x i+1; μi) − S(x i; μi) ≤ −c‖g(xi; μi)‖2 for all i ∈ N, (11.95)
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if Assumption 11.4 is satisfied and

S(x i+1; μi) − S(x i; μi) ≤ 0 for all i ∈ N (11.96)

in remaining cases.
The considerations up to now are summarized in Algorithm 11.2 introduced

in the Appendix. This algorithm differs from Algorithm 11.1 in that a nonlinear
equation ẽT u(x; μ) = 1 need not be solved in Step 2 (because (11.88) follows
from (11.87)), Eq. (11.93)–(11.94) instead of (11.71)–(11.72)are used in Step 4, and
a barrier function B̂(x; μ) is replaced with a smoothing function S(x; μ) in Step 6.
Note that the parameter μ in (11.84) has different meaning than the same parameter
in (11.46), so we could use another procedure for its update in Step 7. However, it is
becoming apparent that using Procedure A or Procedure B is very efficient. On the
other hand, it must be noted that using exponential functions in Algorithm 11.2 has
certain disadvantages. Computation of the values of exponential functions is more
time consuming than performing standard arithmetic operations and underflow may
also happen (i.e. replacing nonzero values by zero values) if the value of a parameter
μ is very small.

11.3.2 Global Convergence

Now we prove the global convergence of the smoothing method realized by
Algorithm 11.2.

Lemma 11.4 Choose a fixed vector x ∈ R
n. Then Sk(x; μ) : (0,∞) → R, 1 ≤

k ≤ m, are nondecreasing convex functions of μ > 0 and

0 ≤ log mk ≤ ∂

∂μ
Sk(x; μ) ≤ log mk, (11.97)

where mk is a number of active functions (for which fkl(x) = Fk(x)) and

∂

∂μ
Sk(x; μ) = log

mk∑

l=1

exp

(
fkl(x) − Fk(x)

μ

)

−
mk∑

l=1

(
fkl(x) − Fk(x)

μ

)

ukl(x; μ).

(11.98)

Proof Denoting ϕkl(x; μ) = (fkl(x) − Fk(x))/μ ≤ 0, 1 ≤ k ≤ m, so

ϕ′
kl(x; μ)

Δ= ∂

∂μ
ϕkl(x; μ) = −ϕkl(x; μ)

μ
≥ 0,
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we can write by (11.85) that

Sk(x; μ) = Fk(x) + μ log
mk∑

l=1

exp ϕkl(x; μ)

and

∂

∂μ
Sk(x; μ) = log

mk∑

l=1

exp ϕkl(x; μ) + μ

∑mk

l=1 ϕ′
kl(x; μ) expϕkl(x; μ)

∑mk

l=1 exp ϕkl(x; μ)

= log
mk∑

l=1

exp ϕkl(x; μ) −
mk∑

l=1

ϕkl(x; μ)ukl(x; μ) ≥ 0, (11.99)

because ϕkl(x; μ) ≤ 0, ukl(x; μ) ≥ 0, 1 ≤ k ≤ m, and ϕkl(x; μ) = 0 holds
for at least one index. Thus, functions Sk(x; μ), 1 ≤ k ≤ m, are nondecreasing.
Differentiating (11.87) with respect to μ we obtain

∂

∂μ
ukl(x; μ) = − 1

μ

ϕkl(x; μ) exp ϕkl(x; μ)
∑mk

l=1 exp ϕkl(x; μ)

+ 1

μ

exp ϕkl(x; μ)
∑

k

l=1 m exp ϕkl(x; μ)

∑mk

l=1 ϕkl(x; μ) exp ϕkl(x; μ)
∑mk

l=1 exp ϕkl(x; μ)

= 1

μ
ukl(x; μ)

(

−ϕkl(x; μ) +
mk∑

l=1

ϕkl(x; μ)ukl(x; μ)

)

.

(11.100)

Differentiating (11.99) with respect to μ and using Eqs. (11.88) and (11.100) we
can write

∂2

∂μ2
Sk(x; μ) = − 1

μ

mk∑

l=1

ϕkl(x; μ)ukl(x; μ)

+ 1

μ

mk∑

l=1

ϕkl(x; μ)ukl(x; μ) − 1

μ

mk∑

l=1

ϕkl(x; μ)
∂

∂μ
ukl(x; μ)

= − 1

μ

mk∑

l=1

ϕkl(x; μ)
∂

∂μ
ukl(x; μ)

= 1

μ2

(
mk∑

l=1

ϕ2
kl(x; μ)ukl(x; μ)

)(
mk∑

l=1

ukl(x; μ)

)

− 1

μ2

(
mk∑

l=1

ϕkl(x; μ)ukl(x; μ)

)2

≥ 0,
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because

(
mk∑

l=1

ϕkl(x; μ)ukl(x; μ)

)2

=
(

mk∑

l=1

ϕkl(x; μ)
√

ukl(x; μ)
√

ukl(x; μ)

)2

≤
mk∑

l=1

ϕ2
kl(x; μ)ukl(x; μ)

mk∑

l=1

ukl(x; μ)

holds by the Schwarz inequality. Thus, functions Sk(x; μ), 1 ≤ k ≤ m, are convex,
so their derivatives ∂

∂μ
Sk(x; μ) are nondecreasing. Obviously, it holds

lim
μ↓0

∂

∂μ
Sk(x; μ) = lim

μ↓0
log

mk∑

l=1

exp ϕkl(x; μ) − lim
μ↓0

mk∑

l=1

ϕkl(x; μ)ukl(x; μ)

= log mk − 1

mk

lim
μ↓0

mk∑

l=1

ϕkl(x; μ) expϕkl(x; μ) = log mk,

because ϕkl(x; μ) = 0 if fkl(x) = Fk(x) and limμ↓0 ϕkl(x; μ) = −∞,
limμ↓0 ϕkl(x; μ) exp ϕkl(x; μ) = 0 if fkl(x) < Fk(x). Similarly, it holds

lim
μ↑∞

∂

∂μ
Sk(x; μ) = lim

μ↑∞ log
mk∑

l=1

exp ϕkl(x; μ) − lim
μ↑∞

mk∑

l=1

ϕkl(x; μ)ukl(x; μ)

= log m,

because limμ↑∞ ϕkl(x; μ) = 0 and limμ↑∞ |ukl(x; μ)| ≤ 1 for 1 ≤ k ≤ m. �
Lemma 11.5 Let Assumptions 11.2 and 11.4 be satisfied. Then the values μi , i ∈
N, generated by Algorithm 11.2, create a nonincreasing sequence such that μi ↓ 0.

Proof Lemma 11.5 is a direct consequence of Lemma 11.3 because the same
procedures for an update of a parameter μ are used and (11.95) holds. �
Theorem 11.8 Let the assumptions of Lemma 11.5 be satisfied. Consider a
sequence {xi} i ∈ N, generated by Algorithm 11.2, where ε = μ = 0. Then

lim
i↑∞

m∑

k=1

mk∑

l=1

ukl(xi; μi)gkl(xi ) = 0,

mk∑

l=1

ukl(xi; μi) = 1

and

Fk(xi ) − fkl(xi ) ≥ 0, ukl(xi; μi) ≥ 0, lim
i↑∞ ukl(xi; μi)(Fk(xi ) − fkl(xi )) = 0
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for 1 ≤ k ≤ m and 1 ≤ l ≤ mk .

Proof

(a) Equations ẽT
k uk(xi; μi) = 1 for 1 ≤ k ≤ m follow from (11.88). Inequalities

Fk(xi ) − fkl(xi ) ≥ 0 and ukl(xi; μi) ≥ 0 for 1 ≤ k ≤ m and 1 ≤ l ≤ mk

follow from (11.4) and (11.87).
(b) Since Sk(x; μ) are nondecreasing functions of the parameter μ by Lemma 11.4

and (11.95) holds, we can write

F ≤
m∑

k=1

Fk(xi+1) ≤ S(x i+1; μi+1) ≤ S(xi+1; μi)

≤ S(xi; μi) − c‖g(xi; μi)‖2 ≤ S(x1; μ1) − c

i∑

j=1

‖g(xj ; μj)‖2,

where F = ∑m
k=1 Fk and Fk , 1 ≤ k ≤ m, are lower bounds from

Assumption 11.2. Thus, it holds

F ≤ lim
i↑∞ S(x i+1; μi+1) ≤ S(x1; μ1) − c

∞∑

i=1

‖g(xi; μi)‖2,

or

∞∑

i=1

‖g(xi; μi)‖2 ≤ 1

c
(S(x1; μ1) − F),

so ‖g(xi; μi)‖ ↓ 0, which together with inequalities 0 ≤ ukl(xi; μi) ≤ 1,
1 ≤ k ≤ m, 1 ≤ l ≤ mk , gives limi↑∞ ukl(xi; μi)gkl(xi ) = 0.

(c) Let indices 1 ≤ k ≤ m and 1 ≤ l ≤ mk be chosen arbitrarily. Using (11.87) we
get

0 ≤ ukl(xi; μi)(Fk(xi ) − fkl(xi )) = −μi
ϕkl(xi; μi) exp ϕkl(xi; μi)
∑mk

l=1 exp ϕkl(xi; μi)

≤ −μiϕkl(xi; μi) exp ϕkl(xi; μi) ≤ μi

e
,

where ϕkl(xi; μi), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , are functions used in the proof of
Lemma 11.4, because

mk∑

l=1

exp ϕkl(xi; μi) ≥ 1
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and the function t exp t attains its minimal value −1/e at the point t = −1.
Since μi ↓ 0, we obtain ukl(xi; μi)(Fk(xi ) − fkl(xi )) ↓ 0.

�
Corollary 11.2 Let the assumptions of Theorem 11.8 be satisfied. Then every
cluster point x ∈ R

n of a sequence {xi}, i ∈ N, satisfies the necessary KKT
conditions (11.5) and (11.6), where u (with elements uk , 1 ≤ k ≤ m) is a cluster
point of a sequence {u(xi; μi)}, i ∈ N.

Now we will suppose that the values ε and μ are nonzero and show how a precise
solution of the system of KKT equations will be after termination of computation
of Algorithm 11.2.

Theorem 11.9 Let the assumptions of Theorem 11.5 be satisfied and let {xi}, i ∈ N,
be a sequence generated by Algorithm 11.2. Then, if the values ε > 0 and μ > 0
are chosen arbitrarily, there exists an index i ≥ 1 such that

‖g(xi; μi)‖ ≤ ε, ẽT
k uk(xi; μi) = 1, 1 ≤ k ≤ m,

and

Fk(xi ) − fkl(xi ) ≥ 0, ukl(xi; μi) ≥ 0, ukl(xi; μi)(Fk(xi ) − fkl(xi )) ≤ μ

e

for all 1 ≤ k ≤ m and 1 ≤ l ≤ mk .

Proof Equalities ẽT
k uk(xi; μi) = 1, 1 ≤ k ≤ m, follow from (11.88). Inequalities

Fk(xi ) − fkl(xi ) ≥ 0 and ukl(xi; μi) ≥ 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk , follow
from (11.10) and (11.87). Since μi ↓ 0 holds by Lemma 11.5 and ‖g(xi; μi)‖ ↓ 0
holds by Theorem 11.8, there exists an index i ≥ 1 such that μi ≤ μ and
‖g(xi; μi)‖ ≤ ε. By (11.87), as in the proof of Theorem 11.8, one can write

ukl(xi; μi)(Fk(xi ) − fkl(xi )) ≤ −μiϕkl(xi; μi) exp ϕkl(xi; μi) ≤ μi

e
≤ μ

e

for 1 ≤ k ≤ m and 1 ≤ l ≤ mk. �
Theorems 11.8 and 11.9 have the same meaning as Theorems 11.5 and 11.6

introduced in Sect. 11.2.5.

11.3.3 Special Cases

Both the simplest and most widely considered generalized minimax problem is the
classical minimax problem (11.10), when m = 1 in (11.4) (in this case we write m

and z instead of m1 and z1). For solving a classical minimax problem one can use
Algorithm 11.2, where a major part of computation is very simplified. A step of the
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Newton method can be written in the form x+ = x + αΔx where

∇2S(x; μ)Δx = −∇S(x; μ),

or
(

W(x; μ) − 1

μ
g(x; μ)gT (x; μ)

)

Δx = −g(x; μ), (11.101)

where

W(x; μ) = G(x; μ) + 1

μ
A(x)U(x; μ)AT (x), g(x; μ) = A(x)u(x; μ).

(11.102)

Since
(

W − 1

μ
ggT

)−1

= W−1 + W−1ggT W−1

μ − gT W−1g

holds by the Sherman–Morrison formula, the solution of system of equa-
tions (11.101) can be written in the form

Δx = μ

gT W−1g − μ
W−1g. (11.103)

If a matrix W is not positive definite, it may be replaced with a matrix LLT = W+E

obtained by the Gill–Murray decomposition described in [10]. Then, we solve an
equation

LLT p = g, (11.104)

and set

Δx = μ

gT p − μ
p. (11.105)

Minimization of a sum of absolute values, i.e., minimization of the func-
tion (11.14) is another important generalized minimax problem. In this case, a
smoothing function has the form

S(x; μ) = F(x)

+ μ

m∑

k=1

log

(

exp

(

−|fk(x)| − f +
k (x)

μ

)

+ exp

(

−|fk(x)| − f −
k (x)

μ

))

=
m∑

k=1

|fk(x)| + μ

m∑

k=1

log

(

1 + exp

(

−2|fk(x)|
μ

))

,
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because f +
k (x) = |fk(x)| if fk(x) ≥ 0 and f −

k (x) = |fk(x)| if fk(x) ≤ 0, and
by Theorem 11.7 we have

∇S(x; μ) =
m∑

k=1

(g+
k u+

k + g−
k u−

k ) =
m∑

k=1

gk(u
+
k − u−

k ) =
m∑

k=1

gkuk = g(x; μ),

∇2S(x; μ) =
m∑

k=1

Gk(u
+
k − u−

k ) + 1

μ

m∑

k=1

gkg
T
k (u+

k + u−
k )

− 1

μ

m∑

k=1

gkg
T
k (u+

k − u−
k )2 = G(x; μ) + 1

μ

m∑

k=1

gkg
T
k (1 − u2

k),

(because u+
k + u−

k = 1), where gk = gk(x),

uk = u+
k − u−

k =
exp

(

−|fk(x)|−f +
k (x)

μ

)

− exp

(

−|fk(x)|−f −
k (x)

μ

)

exp

(

−|fk(x)|−f +
k (x)

μ

)

+ exp

(

−|fk(x)|−f −
k (x)

μ

)

=
1 − exp

(
− 2|fk(x)|

μ

)

1 + exp
(
− 2|fk(x)|

μ

) sign(fk(x)),

and

1 − u2
k =

4 exp
(
− 2|fk(x)|

μ

)

(
1 + exp

(
− 2|fk(x)|

μ

))2 ,

and where sign(fk(x)) is a sign of a function fk(x).

11.4 Primal-Dual Interior Point Methods

11.4.1 Basic Properties

Primal interior point methods for solving nonlinear programming problems profit
from the simplicity of obtaining and keeping a point in the interior of the feasible
set (for generalized minimax problems, it suffices to set zk > Fk(x), 1 ≤ k ≤ m).
Minimization of a barrier function without constraints and a direct computation of
multipliers ukl , 1 ≤ k ≤ m, 1 ≤ l ≤ mk , are basic features of these methods. Primal-
dual interior point methods are intended for solving general nonlinear programming
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problems, where it is usually impossible to assure validity of constraints. These
methods guarantee feasibility of points by adding slack variables, which appear
in a barrier term added to the objective function. Positivity of the slack variables
is assured algorithmically (by a step length selection). Minimization of a barrier
function with equality constraints and an iterative computation of the Lagrange
multipliers (dual variables) are the main features of primal-dual interior point
methods.

Consider function (11.4). As is mentioned in the introduction, minimization of
this function is equivalent to the nonlinear programming problem

⎧
⎪⎨

⎪⎩

minimize
m∑

k=1
zk

subject to fkl(x) ≤ zk, 1 ≤ k ≤ m, 1 ≤ l ≤ mk.

(11.106)

Using slack variables skl > 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk , and a barrier function

Bμ(x, z, s) =
m∑

k=1

zk − μ

m∑

k=1

mk∑

l=1

log(skl), (11.107)

a solving of the problem (11.106) can be transformed to a successive solving of
problems

{
minimize Bμ(x, z, s)

subject to fkl(x) + skl − zk = 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk,
(11.108)

where μ ↓ 0. Necessary conditions for an extremum of the problem (11.108) have
the form

g(x,u) =
m∑

k=1

mk∑

l=1

gkl(x)ukl = 0,

1 −
mk∑

l=1

ukl = 0, 1 ≤ k ≤ m,

uklskl − μ = 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk,

fkl(x) + skl − zk = 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk,

which is n + m + 2m̄ equations for n + m + 2m̄ unknowns (vectors x, z = [zk],
s = [skl], u = [ukl], 1 ≤ k ≤ m, 1 ≤ l ≤ mk), where m̄ = m1 + · · · + mm. Denote
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A(x) = [A1(x), . . . , Am(x)], f = [fkl], S = diag[skl], U = diag[ukl], 1 ≤ k ≤ m,
1 ≤ l ≤ mk , and

E =

⎡

⎢
⎢
⎢
⎣

ẽ1 0 · · · 0
0 ẽ2 · · · 0
...

...
. . .

...

0 0 · · · ẽm

⎤

⎥
⎥
⎥
⎦

, ẽ =

⎡

⎢
⎢
⎢
⎣

ẽ1

ẽ2
...

ẽm

⎤

⎥
⎥
⎥
⎦

, z =

⎡

⎢
⎢
⎢
⎣

z1

z2
...

zm

⎤

⎥
⎥
⎥
⎦

(matrices Ak(x), vectors ẽk , and numbers zk , 1 ≤ k ≤ m, are defined in
Sect. 11.2.2). Applying the Newton method to this system of nonlinear equations,
we obtain a system of linear equations for increments (direction vectors) Δx, Δz,
Δs, Δu. After arrangement and elimination

Δs = −U−1S(u + Δu) + μS−1ẽ, (11.109)

this system has the form

⎡

⎣
G(x,u) 0 A(x)

0 0 −ET

AT (x) −E −U−1S

⎤

⎦

⎡

⎣
Δx

Δz

Δu

⎤

⎦ = −
⎡

⎣
g(x,u)

ẽ − ET u

f (x) − Ez + μU−1ẽ

⎤

⎦ , (11.110)

where G(x,u) = ∑m
k=1
∑mk

l=1 Gkl(x)ukl . Vector ẽ in the equation ẽ − ET u = 0
has unit elements, but its dimension is different from the dimension of a vector ẽ

in (11.109).
For solving this linear system, we cannot advantageously use the structure

of a generalized minimax problem (because substituting zk = Fk(x) =
max1≤l≤mk fkl(x) we would obtain a nonsmooth problem whose solution is
much more difficult). Therefore, we need to deal with a general nonlinear
programming problem. To simplify subsequent considerations, we use the notation
x̃ = [xT , zT ]T ,

g̃(x̃,u) =
[

g(x,u)

ẽ − ET u

]

, G̃(x̃,u) =
[
G(x,u) 0

0 0

]

, Ã(x̃) =
[
A(x)

−ET

]

,

(11.111)

and write (11.110) in the form

[
G̃(x̃,u) Ã(x̃)

ÃT (x̃) −U−1S

] [
Δx̃

Δu

]

= −
[

g̃(x̃,u)

c(x̃) + μU−1ẽ

]

, (11.112)

where c(x̃) = f (x) − Ez. This system of equations is more advantageous against
systems (11.49) and (11.93) in that its matrix does not depend on the barrier
parameter μ, so it is not necessary to use a lower bound μ. On the other hand,
system (11.112) has a dimension n + m + m̄, while systems (11.49) and (11.93)



11 Numerical Solution of Generalized Minimax Problems 403

have dimensions n. It would be possible to eliminate the vector Δu, so the resulting
system

(G̃(x̃,u) + Ã(x̃)M−1ÃT (x̃))Δx̃ = −g̃(x̃,u) − Ã(x̃)(M−1c(x̃) + μS−1ẽ),

(11.113)

where M = U−1S, would have dimension n + m (i.e., n + 1 for classical minimax
problems). Nevertheless, as follows from the equation uklskl = μ, either ukl ↓
0 or skl ↓ 0 if μ ↓ 0, so some elements of a matrix M−1 may tend to infinity,
which increases the condition number of system (11.113). Conversely, the solution
of Eq. (11.112) is easier if the elements of a matrix M are small (if M = 0, we obtain
the saddle point system, which can be solved by efficient iterative methods [1, 18]).
Therefore, it is advantageous to split the constraints to active with skl ≤ ε̃ukl (we
denote active quantities by ĉ(x̃), Â(x̃), ŝ, Δŝ, Ŝ, û, Δû, Û , M̂ = Û−1Ŝ) and inactive
with skl > ε̃ukl (we denote inactive quantities by č(x̃), Ǎ(x̃), š, Δš, Š, ǔ, Δǔ, Ǔ ,
M̌ = Ǔ−1Š). Eliminating inactive equations from (11.112) we obtain

Δǔ = M̌−1(č(x̃) + Ǎ(x̃)T Δx̃) + μŠ−1ẽ (11.114)

and

[
Ĝ(x̃,u) Â(x̃)

ÂT (x̃) −M̂

] [
Δx̃

Δû

]

= −
[

ĝ(x̃,u)

ĉ(x̃) + μÛ−1ẽ

]

, (11.115)

where

Ĝ(x̃,u) = G(x̃,u) + Ǎ(x̃)M̌−1ǍT (x̃),

ĝ(x̃,u) = g(x̃,u) + Ǎ(x̃)(M̌−1č(x̃) + μŠ−1ẽ),

and M̂ = Û−1Ŝ is a diagonal matrix of order m̂, where 0 ≤ m̂ ≤ m̄ is the number
of active constraints. Substituting (11.114) into (11.109) we can write

Δŝ = −M̂(û + Δû) + μÛ−1ẽ, Δš = −(č + ǍT Δx̃ + š). (11.116)

The matrix of the linear system (11.115) is symmetric, but indefinite, so its Choleski
decomposition cannot be determined. In this case, we use either dense [3] or
sparse [6] Bunch–Parlett decomposition for solving this system. System (11.115)
(especially if it is large and sparse) can be efficiently solved by iterative conjugate
gradient method with indefinite preconditioner [20]. If the vectors Δx̃ and Δû are
solutions of system (11.115), we determine vector Δǔ by (11.114) and vectors Δŝ,
Δš by (11.116).

Having vectors Δx̃, Δs, Δu, we need to determine a step length α > 0 and set

x̃+ = x̃ + αΔx̃, s+ = s(α), u+ = u(α), (11.117)
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where s(α) and u(α) are vector functions such that s(α) > 0, s′(0) = Δs and
u(α) > 0, u′(0) = Δu. This step is not trivial, because we need to decrease both
the value of the barrier function B̃μ(x̃, s) = Bμ(x, z, s) and the norm of constraints
‖c(x̃)‖, and also to assure positivity of vectors s and u. We can do this in several
different ways: using either the augmented Lagrange function [20, 21] or a bi-
criterial filter [9, 29] or a special algorithm [11, 16]. In this section, we confine our
attention to the augmented Lagrange function which has (for the problem (11.106))
the form

P(α) = B̃μ(x̃ + αΔx̃, s(α)) + (u + Δu)T (c(x̃ + αΔx̃) + s(α))

+ σ

2
‖c(x̃ + αΔx̃) + s(α)‖2, (11.118)

where σ ≥ 0 is a penalty parameter. The following theorem, whose proof is given
in [20], holds.

Theorem 11.10 Let s > 0, u > 0 and let vectors Δx̃, Δû be solutions of the linear
system

[
Ĝ(x̃,u) Â(x̃)

ÂT (x̃) −M̂

] [
Δx̃

Δû

]

+
[

ĝ(x̃,u)

ĉ(x̃) + μÛ−1ẽ

]

=
[
r

r̂

]

, (11.119)

where r and r̂ are residual vectors, and let vectors Δǔ and Δs be determined
by (11.114) and (11.116). Then

P ′(0) = −(Δx̃)T G̃(x̃,u)Δx̃ − (Δs)T M−1Δs − σ‖c(x̃) + s‖2

+ (Δx̃)T r + σ(ĉ(x̃) + ŝ)T r̂. (11.120)

If

σ > − (Δx̃)T G̃(x̃,u)Δx̃ + (Δs)T M−1Δs

‖c(x̃) + s‖2
(11.121)

and if system (11.115) is solved in such a way that

(Δx̃)T r+σ(ĉ(x̃)+ ŝ)T r̂ < (Δx̃)T G̃(x̃,u)Δx̃ + (Δs)T M−1Δs+σ(‖c(x̃)+s‖2),

(11.122)

then P ′(0) < 0.

Inequality (11.122) is significant only if linear system (11.115) is solved
iteratively and residual vectors r and r̂ are nonzero. If these vectors are zero,
then (11.122) follows immediately from (11.121). Inequality (11.121) serves for
determination of a penalty parameter, which should be as small as possible. If
the matrix G̃(x̃,u) is positive semidefinite, then the right-hand side of (11.121)
is negative and we can choose σ = 0.
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11.4.2 Implementation

The algorithm of the primal-dual interior point method consists of four basic
parts: determination of the matrix G(x,u) or its approximation, solving linear
system (11.115), a step length selection, and an update of the barrier parameter
μ. The matrix G(x,u) has form (11.33), so its approximation can be determined in
the one of the ways introduced in Remark 11.13.

The linear system (11.115), obtained by determination and subsequent elimina-
tion of inactive constraints in the way described in the previous subsection, is solved
either directly using the Bunch–Parlett decomposition or iteratively by the conjugate
gradient method with the indefinite preconditioner

C =
[

D̂ Â(x̃)

ÂT (x̃) −M̂

]

, (11.123)

where D̂ is a positive definite diagonal matrix that approximates matrix Ĝ(x̃,u).
An iterative process is terminated if residual vectors satisfy conditions (11.122) and

‖r‖ ≤ ω‖g̃(x̃,u)‖, ‖r̂‖ ≤ ω min{‖ĉ(x̃) + μÛ−1ẽ‖, ‖ĉ(x̃) + ŝ‖},
where 0 < ω < 1 is a prescribed precision. The directional derivative P ′(0) given
by (11.118) should be negative. There are two possibilities how this requirement can
be achieved. We either determine the value σ ≥ 0 satisfying inequality (11.121),
which implies P ′(0) < 0 if (11.122) holds (Theorem 11.10), or set σ = 0 and
ignore inequality (11.122). If P ′(0) ≥ 0, we determine a diagonal matrix D̃ with
elements

⎧
⎪⎪⎨

⎪⎪⎩

D̃jj = Γ , if ‖g̃‖
10 |G̃jj | < Γ ,

D̃jj = ‖g̃‖
10 |G̃jj |, if Γ ≤ ‖g̃‖

10 |G̃jj | ≤ Γ ,

D̃jj = Γ , if Γ <
‖g̃‖
10 |G̃jj |,

(11.124)

for 1 ≤ j ≤ n + m, where g̃ = g̃(x̃,u) and 0 < Γ < Γ , set G̃(x̃,u) = D̃ and
restart the iterative process by solving new linear system (11.115).

We use functions s(α) = [skl(α)], u(α) = [ukl(α)], where skl(α) = skl +
αskl Δskl , ukl(α) = ukl + αukl Δukl and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αskl = α, if Δskl ≥ 0,

αskl = min{α,−γ
skl

Δskl
}, if Δskl < 0,

αukl = α, if Δukl ≥ 0,

αukl = min{α,−γ ukl

Δukl
}, if Δukl < 0

when choosing a step length using the augmented Lagrange function. A parameter
0 < γ < 1 (usually γ = 0.99) assures the positivity of vectors s+ and u+
in (11.117). A parameter α > 0 is chosen to satisfy the inequality P(α) − P(0) ≤
ε1αP ′(0), which is possible because P ′(0) < 0 and a function P(α) is continuous.
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After finishing the iterative step, a barrier parameter μ should be updated.
There exist several heuristic procedures for this purpose. The following procedure
proposed in [28] seems to be very efficient.

Procedure C

Compute the centrality measure

� = m̄ minkl{sklukl}
sT u

,

where m̄ = m1 + · · · + mm and 1 ≤ k ≤ m, 1 ≤ l ≤ mk . Compute the value

λ = 0.1 min

{

0.05
1 − �

�
, 2

}3

and set μ = λsT u/m̄.

The considerations up to now are summarized in Algorithm 11.3 introduced in
the Appendix.

11.5 Numerical Experiments

The methods studied in this contribution were tested by using two collections of test
problems TEST14 and TEST15 described in [19], which are the parts of the UFO
system [24] and can be downloaded from the web-page www.cs.cas.cz/luksan/test.
html. Both these collections contain 22 problems with functions fk(x), 1 ≤ k ≤ m,
x ∈ R

n, where n is an input parameter and m ≥ n depends on n (we have used
the values n = 100 and n = 1000 for numerical experiments). Functions fk(x),
1 ≤ k ≤ m, have a sparse structure (the Jacobian matrix of a mapping f (x) is
sparse), so sparse matrix decompositions can be used for solving linear equation
systems.

The tested methods, whose results are reported in Tables 11.1, 11.2, 11.3, 11.4,
and 11.5 introduced in the Appendix, are denoted by five letters. The first pair of
letters gives the problem type: either a classical minimax MX (when a function
F(x) has form (11.10) or F(x) = ‖f (x)‖∞ holds) or a sum of absolute values SA
(when F(x) = ‖f (x)‖1 holds). Further two letters specify the method used:

PI –the primal interior point method (Sect. 11.2),
SM –the smoothing method (Sect. 11.3),
DI –the primal-dual interior point method (Sect. 11.4).

The last letter denotes the procedure for updating a barrier parameter μ (pro-
cedures A and B are described in Sect. 11.2.4 and procedure C is described in
Sect. 11.4.2).

www.cs.cas.cz/luksan/test.html
www.cs.cas.cz/luksan/test.html
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Table 11.1 TEST14 (minimization of maxima) — 22 problems

Newton methods: n=100 Variable metric methods: n=100

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 2232 7265 11575 0.74 4 - 2849 5078 2821 0.32 2 -

MXPI-B 2184 5262 9570 0.60 1 - 1567 2899 1589 0.24 1 -

MXSM-A 3454 11682 21398 1.29 5 - 4444 12505 4465 1.03 - -

MXSM-B 10241 36891 56399 4.15 3 - 8861 32056 8881 2.21 1 1

MXDI-C 1386 2847 14578 0.90 2 - 2627 5373 2627 0.96 3 -

Newton methods: n=1000 Variable metric methods: n=1000

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 1386 3735 7488 5.58 4 - 3237 12929 3258 5.91 6 -

MXPI-B 3153 6885 12989 9.03 4 - 1522 3287 1544 2.68 5 -

MXSM-A 10284 30783 82334 54.38 7 - 4221 9519 4242 8.00 8 -

MXSM-B 18279 61180 142767 87.76 6 - 13618 54655 13639 45.10 9 1

MXDI-C 3796 6677 48204 49.95 6 - 2371 5548 2371 18.89 3 -

Table 11.2 TEST14 (L∞-approximation) — 22 problems

Newton methods: n=100 Variable metric methods: n=100

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 2194 5789 10553 0.67 3 - 2890 5049 2912 0.48 1 -

MXPI-B 6767 17901 39544 3.79 4 - 1764 3914 1786 0.37 2 -

MXSM-A 3500 9926 23568 1.79 7 - 8455 23644 8476 4.69 4 -

MXSM-B 15858 48313 92486 8.33 5 - 9546 34376 9566 2.59 9 1

MXDI-C 1371 2901 11580 1.12 8 - 2467 5130 2467 1.59 3 -

Newton methods: n=1000 Variable metric methods: n=1000

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 4110 14633 20299 18.89 4 - 1549 2636 1571 2.51 3 -

MXPI-B 6711 31618 29939 30.73 7 - 1992 6403 2013 4.96 4 -

MXSM-A 9994 24333 88481 67.45 11 - 6164 15545 6185 29.37 8 -

MXSM-B 23948 84127 182604 149.63 8 - 24027 92477 24048 132.08 8 1

MXDI-C 3528 9084 26206 49.78 12 - 1932 2845 1932 18.73 5 -

The columns of all tables correspond to two classes of methods. The Newton
methods use approximations of the Hessian matrices of the Lagrange function
obtained by gradient differences [4] and variable metric methods update approxi-
mations of the Hessian matrices of the partial functions by the methods belonging
to the Broyden family [12] (Remark 11.13).
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Table 11.3 TEST15 (L∞-approximation) — 22 problems

Newton methods: n=100 Variable metric methods: n=100

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 15525 20272 55506 4.41 1 - 6497 8204 6518 1.37 3 -

MXPI-B 7483 17999 27934 3.27 5 - 1764 7598 2488 0.74 2 -

MXSM-A 17574 29780 105531 11.09 4 - 9879 15305 9900 5.95 - -

MXSM-B 13446 29249 81938 6.80 9 1 9546 34376 9566 2.59 3 -

MXDI-C 980 1402 7356 0.79 1 - 1179 1837 1179 1.06 2 -

Newton methods: n=1000 Variable metric methods: n=1000

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 10325 15139 32422 39.30 6 - 6484 9904 6502 13.77 2 -

MXPI-B 14836 30724 46864 68.70 10 - 7388 15875 7409 19.98 3 -

MXSM-A 11722 24882 69643 61.65 10 - 6659 12824 6681 41.55 8 -

MXSM-B 13994 31404 86335 78.45 9 1 15125 25984 15147 61.62 10 -

MXDI-C 1408 2406 10121 15.63 6 - 2228 3505 2228 35.13 10 -

Table 11.4 TEST14 (L1-approximation) — 22 problems

Newton methods: n=100 Variable metric methods: n=100

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

SAPI-A 1647 5545 8795 0.63 5 - 12265 23579 12287 1.37 2 1

SAPI-B 1957 7779 10121 0.67 6 - 4695 6217 10608 0.67 3 -

SASM-A 1677 4505 16079 0.74 3 - 20025 27369 20047 2.83 4 -

SASM-B 2389 8085 23366 1.18 4 - 5656 11637 5678 1.02 2 -

SADI-C 4704 13012 33937 4.16 7 1 6547 7012 6547 9.18 8 -

Newton methods: n=1000 Variable metric methods: n=1000

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

SAPI-A 7592 19621 46100 15.39 4 - 22277 36610 22298 19.09 7 1

SAPI-B 9067 35463 56292 19.14 6 - 16650 35262 16672 14.47 6 1

SASM-A 5696 13534 41347 15.28 4 - 20020 30736 20042 23.05 5 1

SASM-B 8517 30736 57878 23.60 6 - 18664 28886 18686 18.65 5 1

SADI-C 6758 11011 47960 94.78 11 1 13123 14610 13124 295.46 8 2

The tables contain total numbers of iterations NIT, function evaluations NFV,
gradient evaluations NFG, and also the total computational time, the number of
problems with the value Δ decreased and the number of failures (the number of
unsolved problems). The decrease of the maximum step length Δ is used for three
reasons. First, too large steps may lead to overflows if arguments of functions (roots,
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Table 11.5 TEST15 (L1-approximation) — 22 problems

Newton methods: n=100 Variable metric methods: n=100

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

SAPI-A 15760 21846 58082 4.24 8 - 39469 58157 39486 6.28 4 1

SAPI-B 4592 17050 17778 1.46 5 - 5932 25035 5952 1.48 6 1

SASM-A 10098 14801 610511 3.54 5 - 9162 28421 9184 3.65 6 1

SASM-B 4528 14477 290379 2.94 8 - 3507 9036 3528 1.27 6 -

SADI-C 877 1373 6026 0.84 3 - 15528 15712 15529 14.49 5 1

Newton methods: n=1000 Variable metric methods: n=1000

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

SAPI-A 18519 39319 70951 61.04 5 - 27308 44808 27327 36.64 4 1

SAPI-B 12405 57969 43189 55.06 7 - 12712 32179 12731 21.48 8 1

SASM-A 19317 32966 113121 62.65 8 - 22264 42908 22284 62.46 7 1

SASM-B 14331 33572 86739 57.56 6 - 12898 42479 12919 47.05 7 1

SADI-C 2093 3681 12616 20.01 3 1 23957 28000 23960 186.92 5 3

logarithms, exponentials) lie outside of their definition domain. Second, the change
of Δ can affect the finding of a suitable (usually global) minimum. Finally, it can
prevent from achieving a domain in which the objective function has bad behavior
leading to a loss of convergence. The number of times the step length has decreased
is in some sense a symptom of robustness (a lower number corresponds to higher
robustness).

Several conclusions can be done from the results stated in these tables.

• The smoothing methods are less efficient than the primal interior point methods.
For testing the smoothing methods, we had to use the value μ = 10−6, while the
primal interior methods work well with the smaller value μ = 10−8, which gives
more precise results.

• The primal-dual interior point methods are slower than the primal interior point
methods, especially for the reason that system of equations (11.115) is indefinite,
so we cannot use the Choleski (or the Gill–Murray [10]) decomposition. If the
matrix of linear system (11.115) is large and sparse, we can use the Bunch–
Parlett decomposition [6]. In this case, a large fill-in of new nonzero elements
(and thus to overflow of the operational memory or large extension of the
computational time) may appear. In this case, we can also use the iterative
conjugate gradient method with an indefinite preconditioner [18], however, the
ill-conditioned systems can require a large number of iterations and thus a large
computational time.

• It cannot be uniquely decided whether Procedure A is better than Procedure B.
The Newton methods usually work better with Procedure A while the variable
metric methods are more efficient with Procedure B.
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• The variable metric methods are usually faster because it is not necessary to
determine the elements of the Hessian matrix of the Lagrange function by
gradient differences. The Newton methods seem to be more robust (especially
in case of L1-approximation).

Appendix

Algorithm 11.1: Primal interior point method
Data: A tolerance for the gradient norm of the Lagrange function ε > 0. A

precision for determination of a minimax vector δ > 0. Bounds for a barrier
parameter 0 < μ < μ. Coefficients for decrease of a barrier parameter
0 < λ < 1, σ > 1 (or 0 < ϑ < 1). A tolerance for a uniform descent
ε0 > 0. A tolerance for a step length selection ε1 > 0. A maximum step
length Δ > 0.

Input. A sparsity pattern of the matrix A(x) = [A1(x), . . . , Am(x)].
A starting point x ∈ R

n.
Step 1. (Initiation) Choose μ ≤ μ. Determine a sparse structure of the

matrix W = W(x; μ) from the sparse structure of the matrix A(x) and
perform a symbolic decomposition of the matrix W (described in [2,
Section 1.7.4]). Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , values
Fk(x) = max1≤l≤mk fkl(x), 1 ≤ k ≤ m, and the value of objective function
(11.4). Set r = 0 (restart indicator).

Step 2. (Termination) Solve nonlinear equations (11.44) with precision δ

to obtain a minimax vector z(x; μ) and a vector of Lagrange multipliers
u(x; μ). Determine a matrix A = A(x) and a vector g = g(x; μ) =
A(x)u(x; μ). If μ ≤ μ and ‖g‖ ≤ ε, terminate the computation.

Step 3. (Hessian matrix approximation) Set G = G(x; μ) or compute an
approximation G of the Hessian matrix G(x; μ) using gradient differences
or using quasi-Newton updates (Remark 11.13).

Step 4. (Direction determination) Determine a matrix ∇2B̂(x; μ) by (11.48)
and a vector Δx by solving Eq. (11.49) with the right-hand side defined
by (11.47).

Step 5. (Restart) If r = 0 and (11.54) does not hold, set G = I , r = 1 and
go to Step 4. If r = 1 and (11.54) does not hold, set Δx = −g. Set r = 0.

Step 6. (Step length selection) Determine a step length α > 0 satisfying
inequalities (11.55) (for a barrier function B̂(x; μ) defined by (11.46)) and
α ≤ Δ/‖Δx‖. Note that nonlinear equations (11.44) are solved at the point
x + αΔx. Set x := x + αΔx. Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤
l ≤ mk , values Fk(x) = max1≤l≤mk fkl(x), 1 ≤ k ≤ m, and the value of
objective function (11.4).

Step 7. (Barrier parameter update) Determine a new value of a barrier
parameter μ ≥ μ using Procedure A or Procedure B. Go to Step 2.
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The values ε = 10−6, δ = 10−6, μ = 10−8, μ = 1, λ = 0.85, σ = 100, ϑ = 0.1,

ε0 = 10−8, ε1 = 10−4, and Δ = 1000 were used in our numerical experiments.

Algorithm 11.2: Smoothing method
Data: A tolerance for the gradient norm of the smoothing function ε > 0.

Bounds for a smoothing parameter 0 < μ < μ. Coefficients for decrease of
a smoothing parameter 0 < λ < 1, σ > 1 (or 0 < ϑ < 1). A tolerance for
a uniform descent ε0 > 0. A tolerance for a step length selection ε1 > 0. A
maximum step length Δ > 0.

Input. A sparsity pattern of the matrix A(x) = [A1(x), . . . , Am(x)].
A starting point x ∈ R

n.
Step 1. (Initiation) Choose μ ≤ μ. Determine a sparse structure of the

matrix W = W(x; μ) from the sparse structure of the matrix A(x) and
perform a symbolic decomposition of the matrix W (described in [2,
Section 1.7.4]). Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk ,
values Fk(x) = max1≤l≤mk fkl(x), 1 ≤ k ≤ m, and the value of objective
function (11.4). Set r = 0 (restart indicator).

Step 2. (Termination) Determine a vector of smoothing multipliers u(x; μ)

by (11.87). Determine a matrix A = A(x) and a vector g = g(x; μ) =
A(x)u(x; μ). If μ ≤ μ and ‖g‖ ≤ ε, terminate the computation.

Step 3. (Hessian matrix approximation) Set G = G(x; μ) or compute an
approximation G of the Hessian matrix G(x; μ) using gradient differences
or using quasi-Newton updates (Remark 11.13).

Step 4. (Direction determination) Determine the matrix W by (11.94) and
the vector Δx by (11.93) using the Gill–Murray decomposition of the
matrix W .

Step 5. (Restart) If r = 0 and (11.54) does not hold, set G = I , r = 1 and
go to Step 4. If r = 1 and (11.54) does not hold, set Δx = −g. Set r = 0.

Step 6. (Step length selection) Determine a step length α > 0 satisfying
inequalities (11.55) (for a smoothing function S(x; μ)) and α = Δ/‖Δx‖.
Set x := x +αΔx. Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , values
Fk(x) = max1≤l≤mk fkl(x), 1 ≤ k ≤ m, and the value of the objective
function (11.4).

Step 7. (Smoothing parameter update) Determine a new value of the smooth-
ing parameter μ ≥ μ using Procedure A or Procedure B. Go to Step 2.

The values ε = 10−6, μ = 10−6, μ = 1, λ = 0.85, σ = 100, ϑ = 0.1,

ε0 = 10−8, ε1 = 10−4, and Δ = 1000 were used in our numerical experiments.



412 L. Lukšan et al.

Algorithm 11.3: Primal-dual interior point method
Data: A tolerance for the gradient norm ε > 0. A parameter for determina-

tion of active constraints ε̃ > 0. A parameter for initiation of slack variables
and Lagrange multipliers δ > 0. An initial value of the barrier parameter
μ > 0. A precision for the direction determination 0 ≤ ω < 1. A parameter
for the step length selection 0 < γ < 1. A tolerance for the step length
selection ε1 > 0. Maximum step length Δ > 0.

Input. A sparsity pattern of the matrix A(x) = [A1(x), . . . , Am(x)].
A starting point x ∈ R

n.
Step 1. (Initialization) Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk ,

and set Fk(x) = max1≤l≤mk fkl(x), zk = Fk(x) + δ, 1 ≤ k ≤ m. Compute
values ckl(x̃) = fkl(x)− zk , and set skl = −ckl(x̃), ukl = δ. Set μ = μ and
compute the value of the barrier function B̃μ(x̃, s).

Step 2. (Termination) Determine a matrix Ã(x̃) and a vector g̃(x̃,u) =
Ã(x̃)u by (11.111). If the KKT conditions ‖g̃(x̃,u)‖ ≤ ε, ‖c(x̃) + s‖ ≤ ε,
and sT u ≤ ε are satisfied, terminate the computation.

Step 3. (Hessian matrix approximation) Set G = G(x,u) or compute an
approximation G of the Hessian matrix G(x,u) using gradient differences
or utilizing quasi-Newton updates (Remark 11.13). Determine a parameter
σ ≥ 0 by (11.121) or set σ = 0. Split the constraints into active if ŝkl ≤ ε̃ûkl

and inactive if škl > ε̃ǔkl .
Step 4. (Direction determination) Determine the matrix G̃ = G̃(x̃,u)

by (11.111) (where the Hessian matrix G(x,u) is replaced with its
approximation G). Determine vectors Δx̃ and Δû by solving linear sys-
tem (11.115), a vector Δǔ by (11.114), and a vector Δs by (11.116). Linear
system (11.115) is solved either directly using the Bunch–Parlett decom-
position (we carry out both the symbolic and the numeric decompositions
in this step) or iteratively by the conjugate gradient method with indefinite
preconditioner (11.123). Compute the derivative of the augmented Lagrange
function by formula (11.120).

Step 5. (Restart) If P ′(0) ≥ 0, determine a diagonal matrix D̃ by (11.124),
set G̃ = D̃, σ = 0, and go to Step 4.

Step 6. (Step length selection) Determine a step length parameter α > 0
satisfying inequalities P(α) − P(0) ≤ ε1αP ′(0) and α ≤ Δ/‖Δx‖.
Determine new vectors x̃ := x̃ + αΔx̃, s := s(α), u := u(α) by (11.117).
Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk, and set ckl(x̃) =
fkl(x) − zk , 1 ≤ k ≤ m, 1 ≤ l ≤ mk . Compute the value of the barrier
function B̃μ(x̃, s).

Step 7. (Barrier parameter update) Determine a new value of the barrier
parameter μ ≥ μ using Procedure C. Go to Step 2.

The values ε = 10−6, ε̃ = 0.1, δ = 0.1, ω = 0.9, γ = 0.99, μ = 1, ε1 = 10−4,
and Δ = 1000 were used in our numerical experiments.
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20. Lukšan, L., Matonoha, C., Vlček, J.: Interior-point method for non-linear non-convex opti-
mization. Numer. Linear Algebra Appl. 11, 431–453 (2004)
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